
Oracle® Streams
Concepts and Administration

10g Release 1 (10.1)

Part No. B10727-01

December 2003



Oracle Streams Concepts and Administration, 10g Release 1 (10.1)

Part No. B10727-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved. 

Primary Author: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: Sundeep Abraham, Nimar Arora, Lance Ashdown, Ram Avudaiappan, Sukanya 
Balaraman, Neerja Bhatt, Ragamayi Bhyravabhotla, Chipper Brown, Diego Cassinera, Debu Chatterjee, 
Jack Chung, Alan Downing, Lisa Eldridge, Curt Elsbernd, Yong Feng, Jairaj Galagali, Brajesh Goyal, 
Connie Green, Sanjay Kaluskar, Lewis Kaplan, Joydip Kundu, Anand Lakshminath, Jing Liu, Edwina Lu, 
Raghu Mani, Pat McElroy, Krishnan Meiyyappan, Shailendra Mishra, Tony Morales, Bhagat Nainani, 
Anand Padmanaban, Maria Pratt, Arvind Rajaram, Viv Schupmann, Vipul Shah, Neeraj Shodhan, 
Wayne Smith, Benny Souder, Jim Stamos, Janet Stern, Mahesh Subramaniam, Kapil Surlaker, 
Bob Thome, Hung Tran, Ramkumar Venkatesan, Byron Wang, Wei Wang, James M. Wilson, Lik Wong, 
David Zhang

The Programs (which include both the software and documentation) contain proprietary information of 
Oracle Corporation; they are provided under a license agreement containing restrictions on use and 
disclosure and are also protected by copyright, patent and other intellectual and industrial property 
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required 
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems 
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this 
document is error-free. Except as may be expressly permitted in your license agreement for these 
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on 
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial 
computer software" and use, duplication, and disclosure of the Programs, including documentation, 
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement. 
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer 
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for 
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the 
Programs. 

Oracle is a registered trademark, and Oracle9i, Oracle Store, SQL*Plus, and PL/SQL are trademarks or 
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective 
owners. 



iii

Contents

Send Us Your Comments ................................................................................................................    xvii

Preface..........................................................................................................................................................    xix

Audience ................................................................................................................................................     xx
Organization..........................................................................................................................................     xx
Related Documentation .....................................................................................................................    xxiii
Conventions.........................................................................................................................................     xxv
Documentation Accessibility ..........................................................................................................    xxviii

What's New in Oracle Streams? .................................................................................................    xxix

Streams Performance Improvements...............................................................................................     xxx
Streams Configuration and Manageability Enhancements ..........................................................     xxx
Streams Replication Enhancements .............................................................................................     xxxvii
Streams Messaging Enhancements ....................................................................................................    xlii
Rules Interface Enhancements ..........................................................................................................     xliv

Part I   Streams Concepts

1  Introduction to Streams

Overview of Streams ..........................................................................................................................    1-2
What Can Streams Do? ................................................................................................................    1-3
What Are the Uses of Streams? ..................................................................................................    1-4

Overview of the Capture Process.....................................................................................................    1-7



iv

Overview of Event Staging and Propagation ................................................................................    1-9
Overview of Directed Networks ................................................................................................    1-9
Explicit Enqueue and Dequeue of Events ...............................................................................    1-10

Overview of the Apply Process ......................................................................................................    1-12
Overview of the Messaging Client ................................................................................................    1-13
Overview of Automatic Conflict Detection and Resolution ....................................................    1-14
Overview of Rules ............................................................................................................................    1-14
Overview of Transformations.........................................................................................................    1-16
Overview of Streams Tags ...............................................................................................................    1-17
Overview of Heterogeneous Information Sharing ....................................................................    1-17

Overview of Oracle to Non-Oracle Data Sharing ..................................................................    1-18
Overview of Non-Oracle to Oracle Data Sharing ..................................................................    1-19

Example Streams Configurations ..................................................................................................    1-20
Administration Tools for a Streams Environment .....................................................................    1-22

Oracle-Supplied PL/SQL Packages .........................................................................................    1-22
Streams Data Dictionary Views................................................................................................    1-24
Streams Tool in the Oracle Enterprise Manager Console .....................................................    1-24

2  Streams Capture Process

The Redo Log and a Capture Process ..............................................................................................    2-2
Logical Change Records (LCRs) .......................................................................................................    2-2

Row LCRs ......................................................................................................................................    2-3
DDL LCRs ......................................................................................................................................    2-5
Extra Information in LCRs ..........................................................................................................    2-6

Capture Process Rules ........................................................................................................................    2-7
Datatypes Captured ............................................................................................................................    2-8
Types of Changes Captured ............................................................................................................    2-10

Types of DML Changes Captured............................................................................................    2-10
Types of DDL Changes Ignored by a Capture Process .........................................................    2-12
Other Types of Changes Ignored by a Capture Process .......................................................    2-13
NOLOGGING and UNRECOVERABLE Keywords for SQL Operations..........................    2-13
UNRECOVERABLE Clause for Direct Path Loads................................................................    2-14

Supplemental Logging in a Streams Environment ....................................................................    2-15
Instantiation in a Streams Environment ......................................................................................    2-15



v

Local Capture and Downstream Capture.....................................................................................    2-17
Local Capture ..............................................................................................................................    2-17
Downstream Capture.................................................................................................................    2-19

SCN Values Relating to a Capture Process ..................................................................................    2-23
Captured SCN and Applied SCN ............................................................................................    2-24
First SCN and Start SCN............................................................................................................    2-24

Streams Capture Processes and RESTRICTED SESSION........................................................    2-26
Streams Capture Processes and Oracle Real Application Clusters.........................................    2-27
Capture Process Architecture .........................................................................................................    2-28

Capture Process Components...................................................................................................    2-29
Capture Process States ...............................................................................................................    2-30
Multiple Capture Processes in a Single Database..................................................................    2-31
Capture Process Checkpoints ...................................................................................................    2-31
Capture Process Creation ..........................................................................................................    2-32
A New First SCN Value and Purged LogMiner Dictionary Information ..........................    2-44
The Streams Data Dictionary ....................................................................................................    2-45
ARCHIVELOG Mode and a Capture Process ........................................................................    2-46
Capture Process Parameters .....................................................................................................    2-47
Capture Process Rule Evaluation .............................................................................................    2-49
Persistent Capture Process Status Upon Database Restart...................................................    2-52

3  Streams Staging and Propagation

Introduction to Event Staging and Propagation ...........................................................................    3-2
Captured and User-Enqueued Events.............................................................................................    3-3
Event Propagation Between Queues ...............................................................................................    3-5

Propagation Rules ........................................................................................................................    3-5
Ensured Event Delivery...............................................................................................................    3-6
Directed Networks .......................................................................................................................    3-7
Binary File Propagation .............................................................................................................    3-11

Messaging Clients ............................................................................................................................    3-11
SYS.AnyData Queues and User Messages ..................................................................................    3-12
SYS.AnyData Queues and Oracle Real Application Clusters .................................................    3-14
Streams Staging and Propagation Architecture ..........................................................................    3-16

Buffered Queues .........................................................................................................................    3-16
Propagation Jobs.........................................................................................................................    3-17



vi

Secure Queues .............................................................................................................................    3-19
Transactional and Nontransactional Queues .........................................................................    3-22
Streams Data Dictionary for Propagations .............................................................................    3-23

4  Streams Apply Process

Introduction to the Apply Process ...................................................................................................    4-2
Apply Process Rules ...........................................................................................................................    4-2
Event Processing with an Apply Process .......................................................................................    4-3

Processing Captured and User-Enqueued Events with an Apply Process ..........................    4-3
Event Processing Options with an Apply Process...................................................................    4-4

Datatypes Applied ............................................................................................................................    4-11
Streams Apply Processes and RESTRICTED SESSION ...........................................................    4-12
Streams Apply Processes and Oracle Real Application Clusters ............................................    4-13
Apply Process Architecture.............................................................................................................    4-14

Apply Process Components ......................................................................................................    4-14
Apply Process Creation .............................................................................................................    4-17
Streams Data Dictionary for an Apply Process ......................................................................    4-18
Apply Process Parameters.........................................................................................................    4-19
Persistent Apply Process Status Upon Database Restart ......................................................    4-22
The Error Queue .........................................................................................................................    4-22

5  Rules

The Components of a Rule................................................................................................................    5-2
Rule Condition ..............................................................................................................................    5-2
Rule Evaluation Context ..............................................................................................................    5-6
Rule Action Context ...................................................................................................................    5-10

Rule Set Evaluation ..........................................................................................................................    5-13
Rule Set Evaluation Process ......................................................................................................    5-14
Partial Evaluation .......................................................................................................................    5-15

Database Objects and Privileges Related to Rules.....................................................................    5-17
Privileges for Creating Database Objects Related to Rules ..................................................    5-18
Privileges for Altering Database Objects Related to Rules ...................................................    5-18
Privileges for Dropping Database Objects Related to Rules ................................................    5-19



vii

Privileges for Placing Rules in a Rule Set................................................................................    5-19
Privileges for Evaluating a Rule Set.........................................................................................    5-20
Privileges for Using an Evaluation Context ...........................................................................    5-20

6  How Rules Are Used In Streams

Overview of How Rules Are Used In Streams..............................................................................    6-2
Rule Sets and Rule Evaluation of Events.......................................................................................    6-4

Streams Client With No Rule Set ...............................................................................................    6-5
Streams Client With a Positive Rule Set Only ..........................................................................    6-5
Streams Client With a Negative Rule Set Only ........................................................................    6-5
Streams Client With Both a Positive and a Negative Rule Set...............................................    6-5
Streams Client With One or More Empty Rule Sets................................................................    6-6
Summary of Rule Sets and Streams Client Behavior...............................................................    6-6

System-Created Rules ........................................................................................................................    6-7
Global Rules ................................................................................................................................    6-14
Schema Rules...............................................................................................................................    6-18
Table Rules ..................................................................................................................................    6-20
Subset Rules.................................................................................................................................    6-23
Message Rules .............................................................................................................................    6-36
System-Created Rules and Negative Rule Sets ......................................................................    6-39
System-Created Rules with Added User-Defined Conditions ............................................    6-44

Evaluation Contexts Used in Streams...........................................................................................    6-45
Evaluation Context for Global, Schema, Table, and Subset Rules ......................................    6-45
Evaluation Contexts for Message Rules ..................................................................................    6-48

Streams and Event Contexts ...........................................................................................................    6-50
Streams and Action Contexts..........................................................................................................    6-50

Purposes of Action Contexts in Streams .................................................................................    6-50
Make Sure Only One Rule Can Evaluate to TRUE for a Particular Rule Condition ........    6-52
Action Context Considerations for Schema and Global Rules ............................................    6-53

User-Created Rules, Rule Sets, and Evaluation Contexts .........................................................    6-54
User-Created Rules and Rule Sets............................................................................................    6-54
User-Created Evaluation Contexts...........................................................................................    6-63

Rule-Based Transformations ..........................................................................................................    6-63
Rule-Based Transformations and a Capture Process ............................................................    6-67
Rule-Based Transformations and a Propagation ...................................................................    6-69



viii

Rule-Based Transformations and an Apply Process .............................................................    6-71
Rule-Based Transformations and a Messaging Client ..........................................................    6-74
Multiple Rule-Based Transformations.....................................................................................    6-75

7  Streams High Availability Environments

Overview of Streams High Availability Environments ..............................................................    7-2
Protection from Failures ....................................................................................................................    7-2

Streams Replica Database............................................................................................................    7-3
When Not to Use Streams............................................................................................................    7-5
Application Maintained Copies..................................................................................................    7-6

Best Practices for Streams High Availability Environments ......................................................    7-6
Configuring Streams for High Availability ..............................................................................    7-7
Recovering from Failures ............................................................................................................    7-9

Part II    Streams Administration

8  Preparing a Streams Environment

Configuring a Streams Administrator ............................................................................................    8-2
Setting Initialization Parameters Relevant to Streams................................................................    8-6
Preparing a Database to Run a Streams Capture Process .........................................................    8-11
Configuring Network Connectivity and Database Links .........................................................    8-11

9  Managing a Capture Process

Creating a Capture Process ...............................................................................................................    9-2
Creating a Local Capture Process...............................................................................................    9-4
Creating a Downstream Capture Process That Assigns Log Files Implicitly ......................    9-6
Creating a Downstream Capture Process That Assigns Log Files Explicitly ....................    9-18
Creating a Local Capture Process with Non-NULL Start SCN ...........................................    9-23

Starting, Stopping, and Dropping a Capture Process ................................................................    9-25
Starting a Capture Process.........................................................................................................    9-26
Stopping a Capture Process ......................................................................................................    9-26
Dropping a Capture Process .....................................................................................................    9-26



ix

Managing the Rule Set for a Capture Process .............................................................................    9-27
Specifying a Rule Set for a Capture Process ...........................................................................    9-27
Adding Rules to a Rule Set for a Capture Process.................................................................    9-28
Removing a Rule from a Rule Set for a Capture Process......................................................    9-30
Removing a Rule Set for a Capture Process............................................................................    9-31

Setting a Capture Process Parameter.............................................................................................    9-32
Setting the Capture User for a Capture Process..........................................................................    9-32
Specifying Supplemental Logging at a Source Database .........................................................    9-33
Adding an Archived Redo Log File to a Capture Process Explicitly ......................................    9-33
Setting SCN Values for an Existing Capture Process ................................................................    9-34

Setting the First SCN for an Existing Capture Process .........................................................    9-34
Setting the Start SCN for an Existing Capture Process .........................................................    9-36

Specifying Whether Downstream Capture Uses a Database Link .........................................    9-37
Managing Extra Attributes in Captured LCRs............................................................................    9-38

Including Extra Attributes in Captured LCRs .......................................................................    9-39
Excluding Extra Attributes from Captured LCRs .................................................................    9-39

10 Managing Staging and Propagation

Managing SYS.AnyData Queues...................................................................................................    10-2
Creating a SYS.AnyData Queue ...............................................................................................    10-2
Enabling a User to Perform Operations on a Secure Queue ................................................    10-3
Disabling a User from Performing Operations on a Secure Queue ....................................    10-5
Removing a SYS.AnyData Queue ............................................................................................    10-6

Managing Streams Propagations and Propagation Jobs ...........................................................    10-7
Creating a Propagation ..............................................................................................................    10-8
Enabling a Propagation Job.....................................................................................................    10-11
Scheduling a Propagation Job.................................................................................................    10-12
Altering the Schedule of a Propagation Job..........................................................................    10-12
Unscheduling a Propagation Job............................................................................................    10-13
Specifying the Rule Set for a Propagation.............................................................................    10-14
Specifying a Positive Rule Set for a Propagation .................................................................    10-14
Specifying a Negative Rule Set for a Propagation ...............................................................    10-15
Adding Rules to the Rule Set for a Propagation ..................................................................    10-15
Removing a Rule from the Rule Set for a Propagation .......................................................    10-17
Removing a Rule Set for a Propagation ................................................................................    10-18



x

Disabling a Propagation Job....................................................................................................   10-18
Dropping a Propagation ..........................................................................................................   10-19

Managing a Streams Messaging Environment .........................................................................    10-20
Wrapping User Message Payloads in a SYS.AnyData Wrapper and Enqueuing Them    10-20
Dequeuing a Payload That Is Wrapped in a SYS.AnyData Payload ................................    10-23
Configuring a Messaging Client and Message Notification...............................................    10-25

11 Managing an Apply Process

Creating, Starting, Stopping, and Dropping an Apply Process...............................................    11-2
Creating an Apply Process ........................................................................................................    11-2
Starting an Apply Process .......................................................................................................    11-10
Stopping an Apply Process .....................................................................................................    11-10
Dropping an Apply Process ....................................................................................................   11-10

Managing the Rule Set for an Apply Process............................................................................    11-11
Specifying the Rule Set for an Apply Process.......................................................................    11-11
Adding Rules to the Rule Set for an Apply Process ............................................................    11-12
Removing a Rule from the Rule Set for an Apply Process .................................................   11-14
Removing a Rule Set for an Apply Process...........................................................................    11-15

Setting an Apply Process Parameter ...........................................................................................    11-16
Setting the Apply User for an Apply Process............................................................................    11-17
Managing the Message Handler for an Apply Process ...........................................................    11-17

Setting the Message Handler for an Apply Process ............................................................    11-18
Removing the Message Handler for an Apply Process ......................................................    11-18

Managing the Precommit Handler for an Apply Process .......................................................   11-18
Creating a Precommit Handler for an Apply Process.........................................................    11-18
Setting the Precommit Handler for an Apply Process ........................................................    11-20
Removing the Precommit Handler for an Apply Process ..................................................    11-21

Specifying Event Enqueues by Apply Processes......................................................................    11-21
Setting the Destination Queue for Events That Satisfy a Rule ...........................................    11-21
Removing the Destination Queue Setting for a Rule...........................................................    11-22

Specifying Execute Directives for Apply Processes .................................................................    11-23
Specifying That Events That Satisfy a Rule Are Not Executed..........................................    11-23
Specifying That Events That Satisfy a Rule Are Executed..................................................    11-24



xi

Managing an Error Handler..........................................................................................................    11-25
Creating an Error Handler ......................................................................................................    11-25
Setting an Error Handler .........................................................................................................    11-30
Unsetting an Error Handler ....................................................................................................    11-31

Managing Apply Errors .................................................................................................................    11-32
Retrying Apply Error Transactions .......................................................................................    11-32
Deleting Apply Error Transactions........................................................................................    11-33

12 Managing Rules and Rule-Based Transformations

Managing Rule Sets and Rules ......................................................................................................    12-2
Creating a Rule Set .....................................................................................................................    12-3
Creating a Rule............................................................................................................................    12-4
Adding a Rule to a Rule Set ......................................................................................................    12-6
Altering a Rule ............................................................................................................................    12-7
Modifying System-Created Rules ..........................................................................................    12-13
Removing a Rule from a Rule Set...........................................................................................    12-14
Dropping a Rule........................................................................................................................    12-14
Dropping a Rule Set .................................................................................................................    12-14

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules ...................................    12-15
Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules.....................    12-15
Granting Object Privileges on an Evaluation Context, Rule Set, or Rule.........................    12-16
Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules....................    12-17
Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule........................    12-17

Managing Rule-Based Transformations.....................................................................................    12-18
Creating a Rule-Based Transformation .................................................................................    12-19
Altering a Rule-Based Transformation..................................................................................    12-25
Removing a Rule-Based Transformation ..............................................................................    12-27

13 Other Streams Management Tasks

Performing Full Database Export/Import in a Streams Environment ....................................    13-2
Removing a Streams Configuration..............................................................................................    13-7



xii

14 Monitoring a Streams Environment

Summary of Streams Static Data Dictionary Views ..................................................................    14-2
Summary of Streams Dynamic Performance Views ..................................................................    14-3
Monitoring Streams Administrators and Other Streams Users...............................................    14-4

Listing Local Streams Administrators .....................................................................................    14-4
Listing Users Who Allow Access to Remote Streams Administrators ...............................    14-5

Monitoring a Streams Capture Process ........................................................................................    14-6
Displaying the Queue, Rule Sets, and Status of Each Capture Process ..............................    14-7
Displaying General Information About Each Capture Process ...........................................    14-8
Displaying Information About Each Downstream Capture Process ..................................    14-9
Displaying the Registered Redo Log Files for Each Capture Process...............................    14-11
Displaying the Redo Log Files That Will Never Be Needed by Any Capture Process ..   14-13
Displaying SCN Values for Each Redo Log File Used by a Capture Process ..................    14-13
Displaying the Last Archived Redo Entry Available to Each Capture Process ..............    14-15
Listing the Parameter Settings for Each Capture Process...................................................    14-16
Viewing the Extra Attributes Captured by Each Capture Process....................................    14-17
Determining the Applied SCN for All Capture Processes in a Database.........................    14-17
Determining Redo Log Scanning Latency for Each Capture Process ...............................    14-18
Determining Event Enqueuing Latency for Each Capture Process...................................    14-19
Displaying Information About Rule Evaluations for Each Capture Process...................    14-20

Monitoring a SYS.AnyData Queue and Messaging ................................................................    14-22
Displaying the SYS.AnyData Queues in a Database ...........................................................    14-22
Viewing the Messaging Clients in a Database......................................................................    14-23
Viewing Message Notifications ..............................................................................................    14-24
Determining the Consumer of Each User-Enqueued Event in a Queue ..........................    14-24
Viewing the Contents of User-Enqueued Events in a Queue ............................................   14-25

Monitoring Streams Propagations and Propagation Jobs.......................................................   14-27
Determining the Source Queue and Destination Queue for Each Propagation..............    14-27
Determining the Rule Sets for Each Propagation.................................................................    14-28
Displaying the Schedule for a Propagation Job....................................................................    14-29
Determining the Total Number of Events and Bytes Propagated by Each Propagation   14-31

Monitoring a Streams Apply Process..........................................................................................    14-32
Determining the Queue, Rule Sets, and Status for Each Apply Process ..........................    14-32
Displaying General Information About Each Apply Process ............................................   14-34
Listing the Parameter Settings for Each Apply Process ......................................................    14-34



xiii

Displaying Information About Apply Handlers .................................................................    14-35
Displaying Information About the Reader Server for Each Apply Process ....................    14-38
Determining Capture to Dequeue Latency for an Event ....................................................    14-39
Displaying General Information About Each Coordinator Process..................................    14-40
Displaying Information About Transactions Received and Applied ...............................    14-41
Determining the Capture to Apply Latency for an Event for Each Apply Process........    14-42
Displaying Information About the Apply Servers for Each Apply Process ....................    14-44
Displaying Effective Apply Parallelism for an Apply Process ..........................................    14-46
Viewing Rules That Specify a Destination Queue On Apply ............................................    14-47
Viewing Rules That Specify No Execution On Apply ........................................................    14-48
Checking for Apply Errors......................................................................................................    14-48
Displaying Detailed Information About Apply Errors.......................................................    14-50

Monitoring Rules and Rule-Based Transformations ...............................................................    14-56
Displaying All Rules Used by All Streams Clients..............................................................    14-57
Displaying the Streams Rules Used by a Specific Streams Client .....................................    14-60
Displaying the Current Condition for a Rule .......................................................................    14-63
Displaying Rule Conditions for Streams Rules That Have Been Modified .....................    14-64
Displaying the Evaluation Context for Each Rule Set.........................................................    14-65
Displaying Information About the Tables Used by an Evaluation Context ....................    14-65
Displaying Information About the Variables Used in an Evaluation Context................    14-66
Displaying All of the Rules in a Rule Set ..............................................................................    14-67
Displaying the Condition for Each Rule in a Rule Set ........................................................    14-68
Listing Each Rule that Contains a Specified Pattern in Its Condition ..............................    14-68
Displaying Rule-Based Transformations ..............................................................................    14-69
Displaying Aggregate Statistics for All Rule Set Evaluations............................................    14-70
Displaying General Information About Rule Set Evaluations...........................................    14-71
Determining the Resources Used by Evaluation of Each Rule Set....................................    14-72
Displaying Evaluation Statistics for a Rule...........................................................................    14-74

Monitoring Compatibility in a Streams Environment ............................................................    14-74
Listing the Database Objects That Are Not Compatible With Streams............................    14-75
Listing the Database Objects That Have Become Compatible With Streams Recently..    14-77

Monitoring Streams Performance Using Statspack .................................................................    14-79



xiv

15 Troubleshooting a Streams Environment

Troubleshooting Capture Problems ..............................................................................................    15-2
Is the Capture Process Enabled?...............................................................................................    15-2
Is the Capture Process Current? ...............................................................................................    15-3
Are Required Redo Log Files Missing? ...................................................................................    15-4
Is a Downstream Capture Process Waiting for Redo Log Files? .........................................    15-4
Are You Trying to Configure Downstream Capture Using DBMS_STREAMS_ADM? ..    15-6
Are More Actions Required for Downstream Capture without a Database Link?...........    15-7

Troubleshooting Propagation Problems.......................................................................................    15-7
Does the Propagation Use the Correct Source and Destination Queue?............................    15-8
Is the Propagation Job Used by a Propagation Enabled? .....................................................    15-9
Are There Enough Job Queue Processes? .............................................................................    15-10
Is Security Configured Properly for the SYS.AnyData Queue?.........................................    15-11

Troubleshooting Apply Problems ...............................................................................................    15-13
Is the Apply Process Enabled?................................................................................................    15-13
Is the Apply Process Current? ................................................................................................    15-14
Does the Apply Process Apply Captured Events or User-Enqueued Events?................    15-15
Is the Apply Process Queue Receiving the Events to Apply?............................................   15-15
Is a Custom Apply Handler Specified? .................................................................................    15-17
Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero? ...................................    15-17
Are There Any Apply Errors in the Error Queue? ..............................................................    15-18

Troubleshooting Problems with Rules and Rule-Based Transformations ..........................    15-18
Are Rules Configured Properly for the Streams Client?.....................................................    15-19
Are the Rule-Based Transformations Configured Properly? .............................................    15-26

Checking the Trace Files and Alert Log for Problems .............................................................   15-27
Does a Capture Process Trace File Contain Messages About Capture Problems? .........    15-28
Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?...   15-28
Does an Apply Process Trace File Contain Messages About Apply Problems? .............    15-29



xv

Part III    Example Environments and Applications

16 Single Database Capture and Apply Example

Overview of the Single Database Capture and Apply Example .............................................    16-2
Prerequisites ......................................................................................................................................    16-4

17 Rule-Based Application Example

Overview of the Rule-Based Application ....................................................................................    17-2

Part IV   Appendixes

A  XML Schema for LCRs

Definition of the XML Schema for LCRs.......................................................................................    A-2

B  Online Database Upgrade and Maintenance With Streams

Overview of Using Streams in the Database Maintenance Process .........................................    B-2
Performing a Database Version Upgrade Using Streams ...........................................................    B-3

Performing a Database Version Upgrade Using Streams and Original Export/Import ...    B-4
Performing a Database Version Upgrade Using Streams and RMAN.................................    B-8

Performing a Database Maintenance Operation Using Streams.............................................    B-14
Preparing for Upgrades to User-Created Applications ........................................................    B-14
Deciding Which Utility to Use for Instantiation ....................................................................    B-15
Performing the Maintenance Operation Using Export/Import and Streams ...................   B-16
Performing the Maintenance Operation Using RMAN and Streams .................................    B-20

Finishing the Database Maintenance Operation........................................................................    B-28

Index



xvi



xvii

Send Us Your Comments

Oracle Streams Concepts and Administration, 10g Release 1 (10.1)

Part No. B10727-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this 
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document 
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: infodev_us@oracle.com 
� FAX: (650) 506-7227   Attn: Server Technologies Documentation Manager
� Postal service:

Oracle Corporation 
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA  94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.



xviii



xix

Preface

Oracle Streams Concepts and Administration describes the features and functionality of 
Streams. This document contains conceptual information about Streams, along with 
information about managing a Streams environment. In addition, this document 
contains detailed examples that configure a Streams capture and apply environment 
and a rule-based application.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions

� Documentation Accessibility



xx

Audience
Oracle Streams Concepts and Administration is intended for database administrators 
who create and maintain Streams environments. These administrators perform one 
or more of the following tasks:

� Plan for a Streams environment

� Configure a Streams environment

� Administer a Streams environment

� Monitor a Streams environment

� Perform necessary troubleshooting activities

To use this document, you need to be familiar with relational database concepts, 
SQL, distributed database administration, Advanced Queuing concepts, PL/SQL, 
and the operating systems under which you run a Streams environment. 

Organization
This document contains:

Part I, "Streams Concepts"
Contains chapters that describe conceptual information relating to Streams.

Chapter 1, "Introduction to Streams"
Introduces the major features of Streams and how they can be used.

Chapter 2, "Streams Capture Process"
Contains conceptual information about the Streams capture process. Includes 
information about logical change records (LCRs), datatypes and types of changes 
captured, and supplemental logging, along with information about capture process 
architecture.

Chapter 3, "Streams Staging and Propagation"
Contains conceptual information about staging and propagation in a Streams 
environment. Includes information about the differences between captured and 
user-enqueued events, propagation, the differences between transactional and 
non-transactional queues, and using SYS.AnyData queues. Also includes 
information about queue and propagation architecture.



xxi

Chapter 4, "Streams Apply Process"
Contains conceptual information about the Streams apply process. Includes 
information about event processing with an apply process, considerations for apply 
changes to tables, conditions for applying DDL changes, and controlling a trigger's 
firing property, along with information about the oldest SCN for an apply process 
and apply process architecture.

Chapter 5, "Rules"
Contains conceptual information about rules. Includes information about rule 
components, rule sets, and privileges related to rules.

Chapter 6, "How Rules Are Used In Streams"
Contains conceptual information about how rules are used in Streams. Includes 
information about table rules, subset rules, schema rules, and global rules. Also 
includes information about rule-based transformations.

Chapter 7, "Streams High Availability Environments"
Contains conceptual information about using Streams for high availability 
environments.

Part II, "Streams Administration"
Contains chapters that describe managing a capture process, staging, propagation, 
an apply process, rules, rule-based transformations, logical change records (LCRs), 
and Streams tags.

Chapter 8, "Preparing a Streams Environment"
Contains information about preparing for a Streams environment. Includes 
instructions for configuring a Streams administrator, setting initialization 
parameters that are important to Streams, preparing for a capture process, and 
configuring networking connectivity.

Chapter 9, "Managing a Capture Process"
Contains information about managing a capture process. Includes instructions for 
creating, starting, stopping, and altering a capture process, as well as other 
information related to capture process administration.



xxii

Chapter 10, "Managing Staging and Propagation"
Contains information about managing staging and propagation of events in a 
Streams environment. Includes instructions for creating a SYS.AnyData queue, 
and instructions for enabling, disabling, and altering a propagation, as well as other 
information related to staging, propagation, and messaging.

Chapter 11, "Managing an Apply Process"
Contains information about managing an apply process. Includes instructions for 
creating, starting, stopping, and altering an apply process, as well as instructions 
about using apply process handlers, configuring conflict resolution, and managing 
an exception queue.

Chapter 12, "Managing Rules and Rule-Based Transformations"
Contains information about managing rules and rule-based transformations. 
Includes instructions for managing rules and rule sets, as well as information about 
granting and revoking privileges related to rules. In addition, this chapter includes 
instructions for creating, altering, and removing rule-based transformations.

Chapter 13, "Other Streams Management Tasks"
Contains information about managing logical change records (LCRs) and Streams 
tags. Includes instructions for constructing and enqueuing LCRs, and instructions 
for setting and removing tag values for a session or an apply process.

Chapter 14, "Monitoring a Streams Environment"
Contains information about using data dictionary views and scripts to monitor a 
Streams environment. Includes information about monitoring capture processes, 
queues, propagations, apply processes, rules, rule-based transformations, and tags.

Chapter 15, "Troubleshooting a Streams Environment"
Contains information about possible problems in a Streams environment and how 
to resolve them. Includes information about troubleshooting a capture process, 
propagation, apply process, messaging client, and the rules used by these Streams 
clients, as well as information about checking trace files and the alert log for 
problems.



xxiii

Part III, "Example Environments and Applications"
Contains chapters that illustrate example environments.

Chapter 16, "Single Database Capture and Apply Example"
Contains a step by step example that configures a single database capture and 
apply example using Streams. Specifically, this chapter illustrates an example of a 
single database that captures changes to a table, uses a DML handler during apply 
to re-enqueue the captured changes into a queue, and then applies a subset of the 
changes to a different table.

Chapter 17, "Rule-Based Application Example"
Contains step by step examples that illustrate a rule-based application that uses the 
Oracle rules engine.

Part IV, "Appendixes"
Contains one appendix that describes the XML schema for logical change 
records (LCRs).

Appendix A, "XML Schema for LCRs"
Contains the definition of the XML schema for LCRs.

Appendix B, "Online Database Upgrade and Maintenance With Streams"
Contains information about performing certain maintenance operations on an 
Oracle database with little or no down time. These maintenance operations include 
upgrading to a new version of the Oracle Database, migrating an Oracle Database 
to a different operating system or character set, upgrading user-created 
applications, and applying Oracle Database patches.

Related Documentation
For more information, see these Oracle resources:

� Oracle Streams Replication Administrator's Guide

� Oracle Database Concepts

� Oracle Database Administrator's Guide 

� Oracle Database SQL Reference

� PL/SQL Packages and Types Reference



xxiv

� PL/SQL User's Guide and Reference

� Oracle Database Utilities

� Oracle Database Heterogeneous Connectivity Administrator's Guide

� Oracle Streams Advanced Queuing User's Guide and Reference

� Streams online help for the Streams tool in Oracle Enterprise Manager

You may find more information about a particular topic in the other documents in 
the Oracle documentation set.

Oracle error message documentation is only available in HTML. If you only have 
access to the Oracle Documentation CD, you can browse the error messages by 
range. Once you find the specific range, use your browser's "find in page" feature to 
locate the specific message. When connected to the Internet, you can search for a 
specific error message using the error message search feature of the Oracle online 
documentation.

Many of the examples in this book use the sample schemas of the seed database, 
which is installed by default when you install Oracle. Refer to Oracle Database 
Sample Schemas for information on how these schemas were created and how you 
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other 
collateral, please visit the Oracle Technology Network (OTN). You must register 
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to 
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

In addition, you can find resources related to Oracle Streams at

http://otn.oracle.com/products/dataint/content.html



xxv

Conventions
This section describes the conventions used in the text and code examples of this 
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms. 
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are 
defined in the text or terms that appear in 
a glossary, or both.

When you specify this clause, you create an 
index-organized table. 

Italics Italic typeface indicates book titles or 
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target 
database do not reside on the same disk.

UPPERCASE 
monospace 
(fixed-width) 
font

Uppercase monospace typeface indicates 
elements supplied by the system. Such 
elements include parameters, privileges, 
datatypes, RMAN keywords, SQL 
keywords, SQL*Plus or utility commands, 
packages and methods, as well as 
system-supplied column names, database 
objects and structures, usernames, and 
roles.

You can specify this clause only for a NUMBER 
column.

You can back up the database by using the 
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS 
procedure.



xxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line 
statements. They are displayed in a monospace (fixed-width) font and separated 
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and 
provides examples of their use.

lowercase 
monospace 
(fixed-width) 
font

Lowercase monospace typeface indicates 
executables, filenames, directory names, 
and sample user-supplied elements. Such 
elements include computer and database 
names, net service names, and connect 
identifiers, as well as user-supplied 
database objects and structures, column 
names, packages and classes, usernames 
and roles, program units, and parameter 
values.

Note: Some programmatic elements use a 
mixture of UPPERCASE and lowercase. 
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the 
/disk1/oracle/dbs directory.

The department_id, department_name, 
and location_id columns are in the 
hr.departments table.

Set the QUERY_REWRITE_ENABLED 
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these 
methods.

lowercase 
italic 
monospace 
(fixed-width) 
font

Lowercase italic monospace font 
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed 
prior to upgrading.

Convention Meaning Example

[ ] Brackets enclose one or more optional 
items. Do not enter the brackets.

DECIMAL (digits [ , precision ])

{ } Braces enclose two or more items, one of 
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two 
or more options within brackets or braces. 
Enter one of the options. Do not enter the 
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example



xxvii

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the 
code that are not directly related to 
the example

� That you can repeat a portion of the 
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM 
employees;

 .
 .
 .

Vertical ellipsis points indicate that we 
have omitted several lines of code not 
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME
------------------------------------
/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than 
brackets, braces, vertical bars, and ellipsis 
points as shown.

acctbal NUMBER(11,2);
acct    CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or 
variables for which you must supply 
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements 
supplied by the system. We show these 
terms in uppercase in order to distinguish 
them from terms you define. Unless terms 
appear in brackets, enter them in the 
order and with the spelling shown. 
However, because these terms are not 
case sensitive, you can enter them in 
lowercase.

SELECT last_name, employee_id FROM 
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates 
programmatic elements that you supply. 
For example, lowercase indicates names 
of tables, columns, or files.

Note: Some programmatic elements use a 
mixture of UPPERCASE and lowercase. 
Enter these elements as shown.

SELECT last_name, employee_id FROM 
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example



xxviii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of 
assistive technology. This documentation is available in HTML format, and contains 
markup to facilitate access by the disabled community. Standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For additional information, visit the Oracle 
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen 
reader, may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, JAWS may not always read a line of text that 
consists solely of a bracket or brace. 

Accessibility of Links to External Web Sites in Documentation This 
documentation may contain links to Web sites of other companies or organizations 
that Oracle does not own or control. Oracle neither evaluates nor makes any 
representations regarding the accessibility of these Web sites.



xxix

What's New in Oracle Streams?

This section describes new features of Oracle Streams for Oracle Database 10g 
Release 1 (10.1) and provides pointers to additional information where appropriate.

The following sections describe the new features in Oracle Streams:

� Streams Performance Improvements

� Streams Configuration and Manageability Enhancements

� Streams Replication Enhancements

� Streams Messaging Enhancements

� Rules Interface Enhancements



xxx

Streams Performance Improvements
Oracle Database 10g Release 1 (10.1) includes performance improvements for most 
Streams operations. Specifically, the following Streams components have been 
improved to perform more efficiently and handle greater workloads: 

� Capture processes

� Propagations

� Apply processes 

This release also includes performance improvements for SYS.AnyData queue 
operations and rule set evaluations.

Streams Configuration and Manageability Enhancements
The following are Streams configuration manageability enhancements for Oracle 
Database 10g Release 1 (10.1):

� Negative Rule Sets

� Downstream Capture

� Subset Rules for Capture and Propagation

� Streams Pool

� Access To Buffered Queue Information

� SYSAUX Tablespace Usage

� Ability to Add User-Defined Conditions to System-Created Rules

� Simpler Rule-Based Transformation Configuration and Administration

� Enqueue Destinations Upon Apply

� Execution Directives Upon Apply

� Support for Additional Datatypes

� Support for Index-Organized Tables

� Precommit Handlers

� Better Interoperation With Oracle Real Application Clusters (RAC)

� Support for Function-Based Indexes and Descending Indexes

� Simpler Removal of Rule Sets When a Streams Client Is Dropped



xxxi

� Simpler Removal of SYS.AnyData Queues

� Control Over Data Dictionary Builds in the Redo Log

� Additional Streams Data Dictionary Views and View Columns

� Copying and Moving Tablespaces

� Simpler Streams Administrator Configuration

� Streams Configuration Removal

Negative Rule Sets
Streams clients, which include capture processes, propagations, apply processes, 
and messaging clients, can use two rule sets: a positive rule set and a negative rule 
set. Negative rule sets make it easier to discard specific changes so that they are not 
processed by a Streams client.

Downstream Capture
A capture process can run on a database other than the source database. The redo 
log files from the source database are copied to the other database, called a 
downstream database, and the capture process captures changes in these redo log 
files at the downstream database.

Subset Rules for Capture and Propagation
You can use subset rules for capture processes, propagations and messaging clients, 
as well as for apply processes.

Streams Pool
In a single database, you can specify that Streams memory be allocated from a new 
pool in the SGA called the Streams pool. To configure the Streams pool, specify the 
size of the pool in bytes using the STREAMS_POOL_SIZE initialization parameter. 

See Also: Chapter 6, "How Rules Are Used In Streams"

See Also:

� "Downstream Capture" on page 2-19

� "Creating a Capture Process" on page 9-2

See Also: "Subset Rules" on page 6-23



xxxii

The Streams pool contains buffered queues and is used for internal communications 
during parallel capture and apply.

Access To Buffered Queue Information
The following new dynamic performance views enable you to monitor buffered 
queues:

� V$BUFFERED_QUEUES

� V$BUFFERED_SUBSCRIBERS

� V$BUFFERED_PUBLISHERS

SYSAUX Tablespace Usage
The default tablespace for LogMiner has been changed from the SYSTEM tablespace 
to the SYSAUX tablespace. When configuring a new database to run a capture 
process, you no longer need to relocate the LogMiner tables to a non-SYSTEM 
tablespace.

Ability to Add User-Defined Conditions to System-Created Rules
Some of the procedures that create rules in the DBMS_STREAMS_ADM package 
include an and_condition parameter. This parameter enables you to add custom 
conditions to system-created rules.

See Also:

� "Buffered Queues" on page 3-16

� "Setting Initialization Parameters Relevant to Streams" on 
page 8-6

See Also:

� "Buffered Queues" on page 3-16

� Oracle Streams Replication Administrator's Guide for information 
about monitoring buffered queues

See Also: "System-Created Rules with Added User-Defined 
Conditions" on page 6-44



xxxiii

Simpler Rule-Based Transformation Configuration and Administration
A new procedure, SET_RULE_TRANSFORM_FUNCTION in the DBMS_STREAMS_ADM 
package, makes it easy to specify and administer rule-based transformations.

Enqueue Destinations Upon Apply
A new procedure, SET_ENQUEUE_DESTINATION in the DBMS_APPLY_ADM 
package, makes it easy to specify a destination queue for events that satisfy a 
particular rule. When an event satisfies such a rule in an apply process rule set, the 
apply process enqueues the event into the specified queue.

Execution Directives Upon Apply
A new procedure, SET_EXECUTE in the DBMS_APPLY_ADM package, enables you to 
specify that apply processes do not execute events that satisfy a certain rule. 

Support for Additional Datatypes
Streams capture processes and apply processes now support the following 
additional datatypes: 

� NCLOB

� BINARY_FLOAT

� BINARY_DOUBLE

� LONG

� LONG RAW

Logical change records (LCRs) containing these datatypes may also be propagated 
using propagations.

See Also:

� "Rule-Based Transformations" on page 6-63

� "Managing Rule-Based Transformations" on page 12-18

See Also: "Specifying Event Enqueues by Apply Processes" on 
page 11-21

See Also: "Specifying Execute Directives for Apply Processes" on 
page 11-23



xxxiv

Support for Index-Organized Tables
Streams capture processes and apply processes now support processing changes to 
index-organized tables.

Precommit Handlers
You can use a new type of apply handler called a precommit handler to record 
information about commits processed by an apply process. 

Better Interoperation With Oracle Real Application Clusters (RAC)
The following are specific enhancements that improve Streams interoperation 
with RAC:

� Streams capture processes running in a RAC environment can capture changes 
in the online redo log as well as the archived redo log. 

� If the owner instance for a queue table containing a queue used by a capture 
process or apply process becomes unavailable, then queue ownership is 
transferred automatically to another instance in the cluster and the capture 
process or apply process is restarted automatically (if it had been running).

See Also:

� "Datatypes Captured" on page 2-8

� "Datatypes Applied" on page 4-11

See Also:

� "Types of DML Changes Captured" on page 2-10

� Oracle Streams Replication Administrator's Guide

See Also:

� "Audit Commit Information for Events Using Precommit 
Handlers" on page 4-8

� "Managing the Precommit Handler for an Apply Process" on 
page 11-18



xxxv

Support for Function-Based Indexes and Descending Indexes
Streams capture processes and apply processes now support processing changes to 
tables that use function-based indexes and descending indexes.

Simpler Removal of Rule Sets When a Streams Client Is Dropped
A new parameter, drop_unused_rule_sets, is added to the following 
procedures:   

� DROP_CAPTURE in the DBMS_CAPTURE_ADM package

� DROP_PROPAGATION in the DBMS_PROPAGATION_ADM package

� DROP_APPLY in the DBMS_APPLY_ADM package

If you drop a Streams client using one of these procedures and set this parameter to 
true, then the procedure drops any rule sets, positive and negative, used by the 
specified Streams client if these rule sets are not used by any other Streams client. 
Streams clients include capture processes, propagations, apply processes, and 
messaging clients. If this procedure drops a rule set, then this procedure also drops 
any rules in the rule set that are not in another rule set.

Simpler Removal of SYS.AnyData Queues
A new procedure, REMOVE_QUEUE in the DBMS_STREAMS_ADM package, enables 
you to remove a SYS.AnyData queue. This procedure also has a cascade 
parameter. When cascade is set to true, any Stream client that uses the queue is 
removed also.

See Also:

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13

See Also:

� "Dropping a Capture Process" on page 9-26

� "Dropping a Propagation" on page 10-19

� "Dropping an Apply Process" on page 11-10

� PL/SQL Packages and Types Reference for more information about 
the procedures for dropping Streams clients



xxxvi

Control Over Data Dictionary Builds in the Redo Log
You can use the BUILD procedure in the DBMS_CAPTURE_ADM package to extract 
the data dictionary of the current database to the redo log. A capture process can 
use the extracted information in the redo log to create the LogMiner data dictionary 
for the capture process. This procedure also identifies a valid first system change 
number (SCN) value that can be used by the capture process. The first SCN for a 
capture process is the lowest SCN in the redo log from which a capture process can 
capture changes. In addition, you can reset the first SCN for a capture process to 
purge unneeded information in a LogMiner data dictionary.

Additional Streams Data Dictionary Views and View Columns
This release includes new Streams data dictionary views and new columns in 
Streams data dictionary views that existed in past releases.

Copying and Moving Tablespaces
The DBMS_STREAMS_TABLESPACE_ADM package provides administrative 
procedures for copying tablespaces between databases and moving tablespaces 
from one database to another. This package uses transportable tablespaces, Data 
Pump, and the DBMS_FILE_TRANSFER package.

See Also:

� "Removing a SYS.AnyData Queue" on page 10-6

� PL/SQL Packages and Types Reference for more information about 
the REMOVE_QUEUE procedure

See Also:

� "Capture Process Creation" on page 2-32

� "First SCN and Start SCN" on page 2-24

� "First SCN and Start SCN Specifications During Capture 
Process Creation" on page 2-40

See Also:

� Chapter 14, "Monitoring a Streams Environment" for an 
overview of the Streams data dictionary views and example 
queries

� Oracle Streams Replication Administrator's Guide for example 
queries that are useful in a Streams replication environment



xxxvii

Simpler Streams Administrator Configuration
In this release, granting the DBA role to a Streams administrator is sufficient for 
most actions performed by the Streams administrator. In addition, a new package, 
DBMS_STREAMS_AUTH, provides procedures that make it easy for you to configure 
and manage a Streams administrator.

Streams Configuration Removal
A new procedure, REMOVE_STREAMS_CONFIGURATION in the 
DBMS_STREAMS_ADM package, enables you to remove the entire Streams 
configuration at a database.

Streams Replication Enhancements
The following are Streams replication enhancements for Oracle Database 10g 
Release 1 (10.1):

� Additional Supplemental Logging Options

� Additional Ways To Perform Instantiations

� New Data Dictionary Views for Schema and Global Instantiations

� Recursively Setting Schema and Global Instantiation SCN

� Access to Streams Client Information During LCR Processing

� Maintaining Tablespaces

� Control Whether Old Values Are Compared for Conflict Detection

� Extra Attributes in LCRs

� New Member Procedures and Functions for LCR Types

� A Generated Script To Migrate From Advanced Replication To Streams

See Also: PL/SQL Packages and Types Reference

See Also: "Configuring a Streams Administrator" on page 8-2

See Also: PL/SQL Packages and Types Reference for more 
information about the REMOVE_STREAMS_CONFIGURATION 
procedure



xxxviii

Additional Supplemental Logging Options
For database supplemental logging, you can specify that all FOREIGN KEY columns 
in a database are supplementally logged, or that ALL columns in a database are 
supplementally logged. These new options are added to the PRIMARY KEY and 
UNIQUE options, which were available in past releases.

For table supplemental logging, you can specify the following options for log 
groups:

� PRIMARY KEY

� FOREIGN KEY 

� UNIQUE

� ALL

These new options make it easier to specify and manage supplemental logging at a 
source database because you can specify supplemental logging without listing each 
column in a log group. If a table changes in the future, then the correct columns are 
logged automatically. For example, if you specify FOREIGN KEY for a table's log 
group, then the foreign key for a row is logged when the row is changed, even if the 
columns in the foreign key change in the future.

Additional Ways To Perform Instantiations
In addition to original export/import, you can use Data Pump export/import, 
transportable tablespaces, and RMAN to perform Streams instantiations.

New Data Dictionary Views for Schema and Global Instantiations
The following new data dictionary views enable you to determine which database 
objects have a set instantiation SCN at the schema and global level:

� DBA_APPLY_INSTANTIATED_SCHEMAS

� DBA_APPLY_INSTANTIATED_GLOBAL

See Also: Oracle Streams Replication Administrator's Guide for more 
information about supplemental logging in a Streams replication 
environment

See Also: Oracle Streams Replication Administrator's Guide for more 
information about performing instantiations



xxxix

Recursively Setting Schema and Global Instantiation SCN
A new recursive parameter in the SET_SCHEMA_INSTANTIATION_SCN and 
SET_GLOBAL_INSTANTIATION_SCN procedures enables you to set the 
instantiation SCN for a schema or database, respectively, and for all of the database 
objects in the schema or database.

Access to Streams Client Information During LCR Processing
The DBMS_STREAMS package includes two new functions: GET_STREAMS_NAME 
and GET_STREAMS_TYPE. These functions return the name and type, respectively, 
of a Streams client that is processing an LCR. You can use these functions in rule 
conditions, rule-based transformations, apply handlers, error handlers, and in a rule 
condition. 

For example, if you use one error handler for multiple apply processes, then you 
can use the GET_STREAMS_NAME function to determine the name of the apply 
process that raised the error. Also, you can use the GET_STREAMS_TYPE function to 
instruct a DML handler to operate differently if it is processing events from the 
error queue (ERROR_EXECUTION type) instead of the apply process queue (APPLY 
type).

Maintaining Tablespaces
You can use the MAINTAIN_SIMPLE_TABLESPACE procedure to configure Streams 
replication for a simple tablespace, and you can use the MAINTAIN_TABLESPACES 
procedure to configure Streams replication for a set of self-contained tablespaces. 
Both of these procedures are in the DBMS_STREAMS_ADM package. These 
procedures use transportable tablespaces, Data Pump, the 

See Also:

� Oracle Streams Replication Administrator's Guide for more 
information about performing instantiations

� PL/SQL Packages and Types Reference for more information about 
the SET_SCHEMA_INSTANTIATION_SCN and 
SET_GLOBAL_INSTANTIATION_SCN procedures

See Also:

� "Managing an Error Handler" on page 11-25 for an example of 
an error handler that uses the GET_STREAMS_NAME function

� PL/SQL Packages and Types Reference for more information about 
these functions



xl

DBMS_STREAMS_TABLESPACE_ADM package, and the DBMS_FILE_TRANSFER 
package to configure the environment.

Control Whether Old Values Are Compared for Conflict Detection
The COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package enables 
you to specify whether to compare old values of one or more columns in a row LCR 
with the current value of the corresponding columns at the destination database 
during apply.

Extra Attributes in LCRs
You can optionally use the INCLUDE_EXTRA_ATTRIBUTE procedure in the 
DBMS_CAPTURE_ADM package to instruct a capture process to include the following 
extra attributes in LCRs:

� row_id

� serial#

� session#

� thread#

� tx_name

� username

New Procedure for Point-In-Time Recovery in a Streams Environment
The GET_SCN_MAPPING procedure in the DBMS_STREAMS_ADM package gets 
information about the SCN values to use for Streams capture and apply processes 
to recover transactions after point-in-time recovery is performed on a source 
database in a multiple source Streams environment.

See Also:

� Oracle Streams Replication Administrator's Guide

� PL/SQL Packages and Types Reference

See Also: PL/SQL Packages and Types Reference

See Also: "Extra Information in LCRs" on page 2-6

See Also: Oracle Streams Replication Administrator's Guide



xli

New Member Procedures and Functions for LCR Types
You can use the following new member procedures and functions for LCR types:

� Access to the commit SCN of LCRs

The GET_COMMIT_SCN member function returns the commit SCN of the 
transaction to which the current LCR belongs.

� The ability to get and set extra attributes in LCRs

The GET_EXTRA_ATTRIBUTE member function returns the value for the 
specified extra attribute in an LCR, and the SET_EXTRA_ATTRIBUTE member 
procedure enables you to set the value for the specified extra attribute in 
an LCR.

� Access to compatibility information for LCRs

The GET_COMPATIBLE member function returns the minimal database 
compatibility required to support an LCR.

� The ability to convert LONG data in a row LCR into a LOB chunk

The CONVERT_LONG_TO_LOB_CHUNK member procedure converts LONG data 
in a row LCR into a CLOB, or converts LONG RAW data in a row LCR into a BLOB. 

A Generated Script To Migrate From Advanced Replication To Streams
You can use the procedure DBMS_REPCAT.STREAMS_MIGRATION to generate a 
SQL*Plus script that migrates an existing Advanced Replication environment to a 
Streams environment. 

See Also:

� PL/SQL Packages and Types Reference for more information about 
LCR types and the new member procedures and functions

� Oracle Streams Replication Administrator's Guide for an example 
of a DML handler that uses the GET_COMMIT_SCN member 
function

� "Rule Conditions That Instruct Streams Clients to Discard 
Unsupported LCRs" on page 6-56 for an example of a rule 
condition that uses the GET_COMPATIBLE member function

See Also: Oracle Streams Replication Administrator's Guide for 
information about migrating from Advanced Replication to 
Streams



xlii

Streams Messaging Enhancements
The following are Streams messaging enhancements for Oracle Database 10g 
Release 1 (10.1):

� Streams Messaging Client

� Simpler Enqueue and Dequeue of Messages

� Simpler Configuration of Rule-Based Dequeue or Apply of Messages

� Simpler Configuration of Rule-Based Propagations of Messages

� Simpler Configuration of Message Notifications

Streams Messaging Client
A messaging client is a new type of Streams client that enables users and 
applications to dequeue messages from a SYS.AnyData queue based on rules. You 
can create a messaging client by specifying dequeue for the streams_type 
parameter in certain procedures in the DBMS_STREAMS_ADM package.

Simpler Enqueue and Dequeue of Messages
A new package, DBMS_STREAMS_MESSAGING, provides an easy interface for 
enqueuing messages into and dequeuing messages from a SYS.AnyData queue. 

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for more information about Streams messaging 
enhancements

See Also:

� Chapter 3, "Streams Staging and Propagation"

� "Message Rule Example" on page 6-36

� "Configuring a Messaging Client and Message Notification" on 
page 10-25

� PL/SQL Packages and Types Reference for more information about 
the DBMS_STREAMS_ADM package



xliii

Simpler Configuration of Rule-Based Dequeue or Apply of Messages
A new procedure, ADD_MESSAGE_RULE in the DBMS_STREAMS_ADM package, 
enables you to configure messaging clients and apply processes, and it enables you 
to create the rules for user-enqueued messages that control the behavior of these 
messaging clients and apply processes.

Simpler Configuration of Rule-Based Propagations of Messages
A new procedure, ADD_MESSAGE_PROPAGATION_RULE in the 
DBMS_STREAMS_ADM package, enables you to configure propagations and create 
rules for propagations that propagate user-enqueued messages.

Simpler Configuration of Message Notifications
A new procedure, SET_MESSAGE_NOTIFICATION in the DBMS_STREAMS_ADM 
package, enables you to configure message notifications that are sent when a 
Streams messaging client dequeues messages. The notification can be sent to an 
email address, a URL, or a PL/SQL procedure.

See Also:

� "Configuring a Messaging Client and Message Notification" on 
page 10-25

� PL/SQL Packages and Types Reference for more information about 
the DBMS_STREAMS_MESSAGING package

See Also:

� "Message Rules" on page 6-36

� PL/SQL Packages and Types Reference for more information about 
the ADD_MESSAGE_RULE procedure

See Also: PL/SQL Packages and Types Reference for more 
information about the ADD_MESSAGE_PROPAGATION_RULE 
procedure

See Also:

� "Configuring a Messaging Client and Message Notification" on 
page 10-25

� PL/SQL Packages and Types Reference for more information about 
the SET_MESSAGE_NOTIFICATION procedure



xliv

Rules Interface Enhancements
The following are rules interface enhancements for Oracle Database 10g 
Release 1 (10.1):

� Iterative Evaluation Results

� New Dynamic Performance Views for Rule Sets and Rule Evaluations

Iterative Evaluation Results
During rule set evaluation, a client now can specify that evaluation results are sent 
iteratively, instead of in a complete list at one time. The EVALUATE procedure in the 
DBMS_RULE package includes the following two new parameters that enable you 
specify that evaluation results are sent iteratively: true_rules_interator and 
maybe_rules_iterator.

In addition, a new procedure in the DBMS_RULE package, GET_NEXT_HIT, returns 
the next rule that evaluated to TRUE from a true rules iterator, or returns the next 
rule that evaluated to MAYBE from a maybe rules iterator. Also, the new 
CLOSE_ITERATOR procedure in the DBMS_RULE package enables you to close an 
open iterator.

New Dynamic Performance Views for Rule Sets and Rule Evaluations
You can use the following new dynamic performance views to monitor rule sets 
and rule evaluations:

� V$RULE_SET_AGGREGATE_STATS

� V$RULE_SET

� V$RULE

See Also:

� "Rule Set Evaluation" on page 5-13

� Chapter 17, "Rule-Based Application Example" for examples 
that use iterative evaluation results

� PL/SQL Packages and Types Reference for more information about 
the DBMS_RULE package

See Also: "Monitoring Rules and Rule-Based Transformations" on 
page 14-56



Part I
  Streams Concepts

This part describes conceptual information about Streams and contains the 
following chapters:

� Chapter 1, "Introduction to Streams"

� Chapter 2, "Streams Capture Process"

� Chapter 3, "Streams Staging and Propagation"

� Chapter 4, "Streams Apply Process"

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"

� Chapter 7, "Streams High Availability Environments"





Introduction to Streams 1-1

1
Introduction to Streams

This chapter briefly describes the basic concepts and terminology related to Oracle 
Streams. These concepts are described in more detail in other chapters in this book 
and in the Oracle Streams Replication Administrator's Guide.

This chapter contains these topics:

� Overview of Streams

� Overview of the Capture Process

� Overview of Event Staging and Propagation

� Overview of the Apply Process

� Overview of the Messaging Client

� Overview of Automatic Conflict Detection and Resolution

� Overview of Rules

� Overview of Transformations

� Overview of Streams Tags

� Overview of Heterogeneous Information Sharing

� Example Streams Configurations

� Administration Tools for a Streams Environment



Overview of Streams

1-2 Oracle Streams Concepts and Administration

Overview of Streams
Oracle Streams enables information sharing. Using Oracle Streams, you can share 
data and events in a stream. The stream can propagate information within a 
database or from one database to another. The stream routes specified information 
to specified destinations. The result is a feature that provides greater functionality 
and flexibility than traditional solutions for capturing and managing events, and 
sharing the events with other databases and applications. Streams provides the 
capabilities needed to build and operate distributed enterprises and applications, 
data warehouses, and high availability solutions. You can use all of the capabilities 
of Oracle Streams at the same time. If your needs change, then you can implement a 
new capability of Streams without sacrificing existing capabilities.

Using Oracle Streams, you control what information is put into a stream, how the 
stream flows or is routed from database to database, what happens to events in the 
stream as they flow into each database, and how the stream terminates. By 
configuring specific capabilities of Streams, you can address specific requirements. 
Based on your specifications, Streams can capture, stage, and manage events in the 
database automatically, including, but not limited to, data manipulation language 
(DML) changes and data definition language (DDL) changes. You also can put 
user-defined events into a stream, and Streams can propagate the information to 
other databases or applications automatically. When events reach a destination, 
Streams can consume them based on your specifications. Figure 1–1 shows the 
Streams information flow.

Figure 1–1 Streams Information Flow

ConsumptionCapture Staging



Overview of Streams

Introduction to Streams 1-3

What Can Streams Do?
The following sections provide an overview of what Streams can do.

Capture Events at a Database
A capture process can capture changes made to tables, schemas, or an entire 
database. Such changes are recorded in the redo log for a database, and a capture 
process captures changes from the redo log and formats each captured change into 
an event called a logical change record (LCR). Rules determine which changes are 
captured by a capture process, and these captured changes are called captured 
events. 

The database where changes are generated in the redo log is called the source 
database. A capture process may capture changes locally at the source database, or 
it may capture changes remotely at a downstream database. A capture process 
enqueues LCRs into a queue that is associated with it. When a capture process 
captures events, it is sometimes referred to as implicit capture.

Users and applications also can enqueue events into a queue manually. These 
events are called user-enqueued events, and they can be LCRs or messages of a 
user-defined type called user messages. When users and applications enqueue 
events into a queue manually, it is sometimes referred to as explicit capture.

Stage Events in a Queue
Events are stored (or staged) in a queue. These events may be captured events or 
user-enqueued events. A capture process enqueues events into a SYS.AnyData 
queue. A a SYS.AnyData queue can stage events of different types. Users and 
applications may enqueue events into a SYS.AnyData queue or into a typed 
queue. A typed queue can stage events of one specific type only.

Propagate Events From One Queue To Another
Streams propagations can propagate events from one queue to another. These 
queues may be in the same database or in different databases. Rules determine 
which events are propagated by a propagation.

Consume Events
An event is consumed when it is dequeued from a queue. An apply process can 
dequeue events from a queue implicitly. A user, application, or messaging client 
can dequeue events explicitly. The database where events are consumed is called 



Overview of Streams

1-4 Oracle Streams Concepts and Administration

the destination database. In some configurations, the source database and the 
destination database may be the same.

Rules determine which events are dequeued and processed by an apply process. An 
apply process may apply events directly to database objects, or an apply process 
may pass events to custom PL/SQL subprograms for processing.

Rules determine which events are dequeued by a messaging client. A messaging 
client dequeues events when it is invoked by an application or a user.

Other Capabilities of Streams
Other capabilities of Streams include the following:

� Directed networks

� Automatic conflict detection and resolution

� Transformations

� Heterogeneous information sharing

These capabilities are discussed briefly later in this chapter and in detail later in this 
document and in the Oracle Streams Replication Administrator's Guide.

What Are the Uses of Streams?
The following sections briefly describe some of the reasons for using Streams. 
In some cases, Streams components provide infrastructure for various features 
of Oracle.

Message Queuing
Oracle Streams Advanced Queuing (AQ) enables user applications to enqueue 
messages into a queue, propagate messages to subscribing queues, notify user 
applications that messages are ready for consumption, and dequeue messages at the 
destination. A queue may be configured to stage messages of a particular type only, 
or a queue may be configured as a SYS.AnyData queue. Messages of almost any 
type can be wrapped in a SYS.AnyData wrapper and staged in SYS.AnyData 
queues. AQ supports all the standard features of message queuing systems, 
including multiconsumer queues, publish and subscribe, content-based routing, 
Internet propagation, transformations, and gateways to other messaging 
subsystems.



Overview of Streams

Introduction to Streams 1-5

You can create a queue at a database, and applications can enqueue messages into 
the queue explicitly. Subscribing applications or messaging clients can dequeue 
messages directly from this queue. If an application is remote, then a queue may be 
created in a remote database that subscribes to messages published in the source 
queue. The destination application can dequeue messages from the remote queue. 
Alternatively, the destination application can dequeue messages directly from the 
source queue using a variety of standard protocols.

Data Replication
Streams can capture DML and DDL changes made to database objects and replicate 
those changes to one or more other databases. A Streams capture process captures 
changes made to source database objects and formats them into LCRs, which can be 
propagated to destination databases and then applied by Streams apply processes.

The destination databases can allow DML and DDL changes to the same database 
objects, and these changes may or may not be propagated to the other databases in 
the environment. In other words, you can configure a Streams environment with 
one database that propagates changes, or you can configure an environment where 
changes are propagated between databases bidirectionally. Also, the tables for 
which data is shared do not need to be identical copies at all databases. Both the 
structure and the contents of these tables can differ at different databases, and the 
information in these tables can be shared between these databases.

Event Management and Notification
Business events are valuable communications between applications or 
organizations. An application may enqueue events into a queue explicitly, or a 
Streams capture process may capture a database event. These captured events may 
be DML or DDL changes. Propagations may propagate events in a stream through 
multiple queues. Finally, a user application may dequeue events explicitly, or a 
Streams apply process may dequeue events implicitly. An apply process may 
re-enqueue these events explicitly into the same queue or a different queue if 
necessary.

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for more information about AQ

See Also: Oracle Streams Replication Administrator's Guide for more 
information using Streams for replication



Overview of Streams

1-6 Oracle Streams Concepts and Administration

You can configure queues to retain explicitly-enqueued messages after consumption 
for a specified period of time. This capability enables you to use Advanced Queuing 
(AQ) as a business event management system. AQ stores all messages in the 
database in a transactional manner, where they can be automatically audited and 
tracked. You can use this audit trail to extract intelligence about the business 
operations. 

Capture processes, propagations, apply processes, and messaging clients perform 
actions based on rules. You specify which events are captured, propagated, applied, 
and dequeued using rules, and a built-in rules engine evaluates events based on 
these rules. The ability to capture events and propagate them to relevant consumers 
based on rules means that you can use Streams for event notification. Events staged 
in a queue may be dequeued explicitly by a messaging client or an application, and 
then actions can be taken based on these events, which may include an email 
notification, or passing the message to a wireless gateway for transmission to a cell 
phone or pager.

Data Warehouse Loading
Data warehouse loading is a special case of data replication. Some of the most 
critical tasks in creating and maintaining a data warehouse include refreshing 
existing data, and adding new data from the operational databases. Streams 
components can capture changes made to a production system and send those 
changes to a staging database or directly to a data warehouse or operational data 
store. Streams capture of redo log information avoids unnecessary overhead on the 
production systems. Support for data transformations and user-defined apply 
procedures enables the necessary flexibility to reformat data or update 
warehouse-specific data fields as data is loaded. In addition, Change Data Capture 
uses some of the components of Streams to identify data that has changed so that 
this data can be loaded into a data warehouse.

See Also:

� Chapter 3, "Streams Staging and Propagation", Chapter 10, 
"Managing Staging and Propagation", and Oracle Streams 
Advanced Queuing User's Guide and Reference for more 
information about explicitly enqueuing and dequeuing events

� Chapter 16, "Single Database Capture and Apply Example" for 
an example environment that explicitly dequeues events

See Also: Oracle Data Warehousing Guide for more information 
about data warehouses



Overview of the Capture Process

Introduction to Streams 1-7

Data Protection
One solution for data protection is to create a local or remote copy of a production 
database. In the event of human error or a catastrophe, the copy can be used to 
resume processing. You can use Streams to configure flexible high availability 
environments. In addition, you can use Oracle Data Guard, a data protection feature 
that uses some of the same infrastructure as Streams, to create and maintain a 
logical standby database, which is a logically equivalent standby copy of a 
production database. As in the case of Streams replication, a capture process 
captures changes in the redo log and formats these changes into LCRs. These LCRs 
are applied at the standby databases. 

The standby databases are fully open for read/write and may include specialized 
indexes or other database objects. Therefore, these standby databases can be queried 
as updates are applied, making Oracle Data Guard a good solution for off loading 
queries from a production database.

It is important to move the updates to the remote site as soon as possible with a 
logical standby database. Doing so ensures that, in the event of a failure, lost 
transactions are minimal. By directly and synchronously writing the redo logs at the 
remote database, you can achieve no data loss in the event of a disaster. At the 
standby system, the changes are captured and directly applied to the standby 
database with an apply process.

Overview of the Capture Process
Changes made to database objects in an Oracle database are logged in the redo log 
to guarantee recoverability in the event of user error or media failure. A capture 
process is an Oracle background process that scans the database redo log to capture 
DML and DDL changes made to database objects. A capture process formats these 
changes into events called LCRs and enqueues them into a queue. There are two 
types of LCRs: row LCRs contain information about a change to a row in table 
resulting from a DML operation, and DDL LCRs contain information about a DDL 
change to a database object. Rules determine which changes are captured. 
Figure 1–2 shows a capture process capturing LCRs.

See Also:

� Chapter 7, "Streams High Availability Environments"

� Oracle Data Guard Concepts and Administration for more 
information about logical standby databases



Overview of the Capture Process

1-8 Oracle Streams Concepts and Administration

Figure 1–2 Capture Process

You can configure change capture locally at a source database or remotely at a 
downstream database. If a capture process runs on a downstream database, then 
redo log files from the source database are copied to the downstream database, and 
the capture process captures changes in these redo log files.

Note: The capture process does not capture some types of DML 
and DDL changes, and it does not capture changes made in the 
SYS, SYSTEM, or CTXSYS schemas.

See Also: Chapter 2, "Streams Capture Process" for more 
information about capture processes and for detailed information 
about which DML and DDL statements are captured by a capture 
process

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

LCRs

Capture
Changes

Log
Changes



Overview of Event Staging and Propagation

Introduction to Streams 1-9

Overview of Event Staging and Propagation
Streams uses queues to stage events for propagation or consumption. Propagations 
send events from one queue to another, and these queues can be in the same 
database or in different databases. The queue from which the events are propagated 
is called the source queue, and the queue that receives the events is called the 
destination queue. There can be a one-to-many, many-to-one, or many-to-many 
relationship between source and destination queues.

Events that are staged in a queue can be consumed by an apply process, a 
messaging client, or by an application. Rules determine which events are 
propagated by a propagation. Figure 1–3 shows propagation from a source queue to 
a destination queue.

Figure 1–3 Propagation from a Source Queue to a Destination Queue

Overview of Directed Networks
Streams enables you to configure an environment in which changes are shared 
through directed networks. In a directed network, propagated events may pass 
through one or more intermediate databases before arriving at a destination 
database where they are consumed. The events may or may not be consumed at an 
intermediate database in addition to the destination database. Using Streams, you 
can choose which events are propagated to each destination database, and you can 
specify the route events will traverse on their way to a destination database.

Source 
Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Destination 
Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate 
Events



Overview of Event Staging and Propagation

1-10 Oracle Streams Concepts and Administration

Figure 1–4 shows an example directed networks environment. Notice that, in this 
example, the queue at the intermediate database in Chicago is both a source queue 
and a destination queue.

Figure 1–4 Example Directed Networks Environment

Explicit Enqueue and Dequeue of Events
User applications can enqueue events into a queue explicitly. The user applications 
can format these user-enqueued events as LCRs or user messages, and an apply 
process, a messaging client, or a user application can consume these events. Events 
that were enqueued explicitly into a queue can be propagated to another queue or 
explicitly dequeued from the same queue. Figure 1–5 shows explicit enqueue of 
events into and dequeue of events from the same queue.

See Also: Chapter 3, "Streams Staging and Propagation" for more 
information about staging and propagation

Destination Database
in New York

Queue

Destination Database
in Miami

Queue

Intermediate Database
in Chicago

Queue

This queue is:
• Destination queue

for the source queue
in Hong Kong. 

• Source queue for the
destination queues in 
New York and Miami.

Source Database
in Hong Kong

Queue
Propagate Events

Propagate 
Events

Propagate 
Events



Overview of Event Staging and Propagation

Introduction to Streams 1-11

Figure 1–5 Explicit Enqueue and Dequeue of Events in a Single Queue

When events are propagated between queues, events that were enqueued explicitly 
into a source queue can be dequeued explicitly from a destination queue by a 
messaging client or user application. These events also may be processed by an 
apply process. Figure 1–6 shows explicit enqueue of events into a source queue, 
propagation to a destination queue, and then explicit dequeue of events from the 
destination queue.

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

User Application A
Produces Messages

User Application B
Consumes Messages

LCRs or
Messages

LCRs or 
Messages



Overview of the Apply Process

1-12 Oracle Streams Concepts and Administration

Figure 1–6 Explicit Enqueue, Propagation, and Dequeue of Events 

Overview of the Apply Process
An apply process is an Oracle background process that dequeues events from a 
queue and either applies each event directly to a database object or passes the event 
as a parameter to a user-defined procedure called an apply handler. Apply handlers 
include message handlers, DML handlers, DDL handlers, precommit handlers, and 
error handlers.

Typically, an apply process applies events to the local database where it is running, 
but, in a heterogeneous database environment, it can be configured to apply events 
at a remote non-Oracle database. Rules determine which events are dequeued by an 
apply process. Figure 1–7 shows an apply process processing LCRs and user 
messages.

See Also: "SYS.AnyData Queues and User Messages" on 
page 3-12 for more information about explicit enqueue and 
dequeue of events

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate 
Events

User Application C
Produces Messages

User Application D
Consumes Messages

LCRs or
Messages

LCRs or
Messages



Overview of the Messaging Client

Introduction to Streams 1-13

Figure 1–7 Apply Process

Overview of the Messaging Client
A messaging client consumes user-enqueued events when it is invoked by an 
application or a user. Rules determine which user-enqueued events are dequeued 
by a messaging client. These user-enqueued events may be LCRs or user messages. 
Figure 1–8 shows a messaging client dequeuing user-enqueued events.

Figure 1–8 Messaging Client

See Also: Chapter 4, "Streams Apply Process"

See Also: "Messaging Clients" on page 3-11

Database Objects

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Message
Handler

Procedure

LCRs or
Messages 

Messages
Apply
Changes

DML
Handler

Procedure

DDL
Handler

Procedure

Row
LCRs

DDL
LCRs

Precommit
Handler

Procedure

Messages
or
LCRs

Apply
Process

Explicity Dequeue 
User-Enqueued 
Events

Invoke 
Messaging
Client

Queue

User-Enqueued LCR
User-Enqueued Message
User-Enqueued Message
User-Enqueued Message
User-Enqueued LCR
User-Enqueued LCR
.
.
.

Messaging
Client

Application
or User



Overview of Automatic Conflict Detection and Resolution

1-14 Oracle Streams Concepts and Administration

Overview of Automatic Conflict Detection and Resolution
An apply process detects conflicts automatically when directly applying LCRs in a 
replication environment. Typically, a conflict results when the same row in the 
source database and destination database is changed at approximately the same 
time. 

When a conflict occurs, you need a mechanism to ensure that the conflict is resolved 
in accordance with your business rules. Streams offers a variety of prebuilt conflict 
handlers. Using these prebuilt handlers, you can define a conflict resolution system 
for each of your databases that resolves conflicts in accordance with your business 
rules. If you have a unique situation that Oracle's prebuilt conflict resolution 
handlers cannot resolve, then you can build your own conflict resolution handlers.

If a conflict is not resolved, or if a handler procedure raises an error, then all events 
in the transaction that raised the error are saved in the error queue for later analysis 
and possible reexecution.

Overview of Rules
Streams enables you to control which information to share and where to share it 
using rules. A rule is specified as a condition that is similar to the condition in the 
WHERE clause of a SQL query.

A rule consists of the following components:

� The rule condition combines one or more expressions and conditions and 
returns a Boolean value, which is a value of TRUE, FALSE, or NULL (unknown), 
based on an event.

� The rule evaluation context defines external data that can be referenced in rule 
conditions. The external data either can exist as external variables, as table data, 
or both.

� The rule action context is optional information associated with a rule that is 
interpreted by the client of the rules engine when the rule is evaluated.

You can group related rules together into rule sets. In Streams, rule sets may be 
positive or negative.

See Also: Oracle Streams Replication Administrator's Guide



Overview of Rules

Introduction to Streams 1-15

For example, the following rule condition may be used for a rule in Streams to 
specify that the schema name that owns a table must be hr and that the table name 
must be departments for the condition to evaluate to TRUE:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS'

The :dml variable is used in rule conditions for row LCRs. In a Streams 
environment, a rule with this condition may be used in the following ways:

� If the rule is in a positive rule set for a capture process, then it instructs the 
capture process to capture row changes that result from DML changes to the 
hr.departments table. If the rule is in a negative rule set for a capture 
process, then it instructs the capture process to discard DML changes to the 
hr.departments table.

� If the rule is in a positive rule set for a propagation, then it instructs the 
propagation to propagate LCRs that contain row changes to the 
hr.departments table. If the rule is in a negative rule set for a propagation, 
then it instructs the propagation to discard LCRs that contain row changes to 
the hr.departments table.

� If the rule is in a positive rule set for an apply process, then it instructs the 
apply process to apply LCRs that contain row changes to the 
hr.departments table. If the rule is in a negative rule set for an apply 
process, then it instructs the apply process to discard LCRs that contain row 
changes to the hr.departments table. 

� If the rule is in a positive rule set for a messaging client, then it instructs the 
messaging client to dequeue LCRs that contain row changes to the 
hr.departments table. If the rule is in a negative rule set for a messaging 
client, then it instructs the messaging client to discard LCRs that contain row 
changes to the hr.departments table. 

Streams performs tasks based on rules. These tasks include capturing events with a 
capture process, propagating events with a propagation, applying events with an 
apply process, dequeuing events with a messaging client, and discarding events. 

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Overview of Transformations

1-16 Oracle Streams Concepts and Administration

Overview of Transformations
A rule-based transformation is any modification to an event that results when a 
rule in a positive rule set evaluates to TRUE. For example, a rule-based 
transformation can change the datatype of a particular column in a table for an 
event. In this case, the transformation can be a PL/SQL function that takes as input 
a SYS.AnyData object containing an LCR with a NUMBER datatype for a column 
and returns a SYS.AnyData object containing an LCR with a VARCHAR2 datatype 
for the same column.

A transformation can occur at the following times:

� During enqueue of an event by a capture process, which can be useful for 
formatting an event in a manner appropriate for all destination databases

� During propagation of an event, which may be useful for subsetting data before 
it is sent to a remote site

� During dequeue of an event by an apply process or messaging client, which can 
be useful for formatting an event in a manner appropriate for a specific 
destination database

When a transformation is performed during apply, an apply process may apply the 
transformed event directly or send the transformed event to an apply handler for 
processing. Figure 1–9 shows a rule-based transformation during apply.

Figure 1–9 Transformation During Apply

Queue
Dequeue
Events

Apply
Handlers

Continue Dequeue 
of Transformed 
Events

Apply Transformed
Events Directly

Send Transformed 
Events to Apply 
Handlers

Transformation
During Dequeue

Database Objects

Apply
Process



Overview of Heterogeneous Information Sharing

Introduction to Streams 1-17

Overview of Streams Tags
Every redo entry in the redo log has a tag associated with it. The datatype of the tag 
is RAW. By default, when a user or application generates redo entries, the value of 
the tag is NULL for each redo entry, and a NULL tag consumes no space in the redo 
entry. The size limit for a tag value is 2000 bytes.

In Streams, rules may have conditions relating to tag values to control the behavior 
of Streams clients. For example, a tag can be used to determine whether an LCR 
contains a change that originated in the local database or at a different database, so 
that you can avoid change cycling (sending an LCR back to the database where it 
originated). Also, a tag can be used to specify the set of destination databases for 
each LCR. Tags may be used for other LCR tracking purposes as well.

You can specify Streams tags for redo entries generated by a certain session or by an 
apply process. These tags then become part of the LCRs captured by a capture 
process. Typically, tags are used in Streams replication environments, but you can 
use them whenever it is necessary to track database changes and LCRs.

Overview of Heterogeneous Information Sharing
In addition to information sharing between Oracle databases, Streams supports 
information sharing between Oracle databases and non-Oracle databases. The 
following sections contain an overview of this support.

Note: A rule must be in a positive rule set for its rule-based 
transformation to be invoked. A rule-based transformation 
specified for a rule in a negative rule set is ignored by capture 
processes, propagations, apply processes, and messaging clients.

See Also: "Rule-Based Transformations" on page 6-63

See Also: Oracle Streams Replication Administrator's Guide for more 
information about Streams tags

See Also: Oracle Streams Replication Administrator's Guide for more 
information about heterogeneous information sharing with Streams



Overview of Heterogeneous Information Sharing

1-18 Oracle Streams Concepts and Administration

Overview of Oracle to Non-Oracle Data Sharing
If an Oracle database is the source and a non-Oracle database is the destination, 
then the non-Oracle database destination lacks the following Streams mechanisms:

� A queue to receive events

� An apply process to dequeue and apply events 

To share DML changes from an Oracle source database with a non-Oracle 
destination database, the Oracle database functions as a proxy and carries out some 
of the steps that would normally be done at the destination database. That is, the 
events intended for the non-Oracle destination database are dequeued in the Oracle 
database itself, and an apply process at the Oracle database uses Heterogeneous 
Services to apply the events to the non-Oracle database across a network connection 
through a gateway. Figure 1–10 shows an Oracle databases sharing data with a 
non-Oracle database.

Figure 1–10 Oracle to Non-Oracle Heterogeneous Data Sharing

Heterogeneous
Services

Oracle
Database

Non-Oracle
Database

Queue

Database
Objects

Dequeue
Events

Oracle
Transparent

Gateway

Apply
ChangesApply

Process



Overview of Heterogeneous Information Sharing

Introduction to Streams 1-19

Overview of Non-Oracle to Oracle Data Sharing
To capture and propagate changes from a non-Oracle database to an Oracle 
database, a custom application is required. This application gets the changes made 
to the non-Oracle database by reading from transaction logs, using triggers, or some 
other method. The application must assemble and order the transactions and must 
convert each change into an LCR. Next, the application must enqueue the LCRs into 
a queue in an Oracle database by using the PL/SQL interface, where they can be 
processed by an apply process. Figure 1–11 shows a non-Oracle databases sharing 
data with an Oracle database.

Figure 1–11 Non-Oracle to Oracle Heterogeneous Data Sharing 

See Also: Oracle Database Heterogeneous Connectivity 
Administrator's Guide for more information about Heterogeneous 
Services

Oracle
Database

Non-Oracle
Database

Queue
Get
Changes

Dequeue
Events

Enqueue User
Messages 
Containing
LCRs

Database
Objects

User
Application

Apply
Changes

Apply
Process



Example Streams Configurations

1-20 Oracle Streams Concepts and Administration

Example Streams Configurations
Figure 1–12 shows how Streams might be configured to share information within a 
single database, while Figure 1–13 shows how Streams might be configured to share 
information between two different databases.

Figure 1–12 Streams Configuration in a Single Database

Oracle Database

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

Message
Handler

Procedure

LCRs
LCRs or
Messages 

Changes

Changes

Messages

Changes

User Application A
Produces Messages

User Application B
Consumes Messages

LCRs or
Messages

LCRs or 
Messages

DML
Handler

Procedure

DDL
Handler

Procedure

Apply
Process

Row
LCRs

DDL
LCRs



Example Streams Configurations

Introduction to Streams 1-21

Figure 1–13 Streams Configuration Sharing Information Between Databases

Oracle Database Oracle Database

User Changes

Redo
Log

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Capture
Process

Message
Handler

Procedure

LCRs LCRs or
Messages

Changes

Changes

Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate 
Events

MessagesChanges

User Application C
Produces Messages

User Application D
Consumes Messages

LCRs or
Messages

LCRs or
Messages

Database Objects
Database Objects

DML
Handler

Procedure

DDL
Handler

Procedure

Row
LCRs

DDL
LCRs

Apply
Process



Administration Tools for a Streams Environment

1-22 Oracle Streams Concepts and Administration

Administration Tools for a Streams Environment
Several tools are available for configuring, administering, and monitoring your 
Streams environment. Oracle-supplied PL/SQL packages are the primary 
configuration and management tool, while the Streams tool in the Oracle Enterprise 
Manager Console provides some configuration, administration, and monitoring 
capabilities to help you manage your environment. Additionally, Streams data 
dictionary views keep you informed about your Streams environment.

Oracle-Supplied PL/SQL Packages
The following Oracle-supplied PL/SQL packages contain procedures and functions 
for configuring and managing a Streams environment.

DBMS_STREAMS_ADM Package
The DBMS_STREAMS_ADM package provides an administrative interface for adding 
and removing simple rules for capture processes, propagations, and apply 
processes at the table, schema, and database level. This package also enables you to 
add rules that control which events a propagation propagates and which events a 
messaging client dequeues. This package also contains procedures for creating 
queues and for managing Streams metadata, such as data dictionary information. 
This package also contains procedures that enable you to configure and maintain a 
Streams replication environment for specific tablespaces. This package is provided 
as an easy way to complete common tasks in a Streams environment. You can use 
other packages, such as the DBMS_CAPTURE_ADM, DBMS_PROPAGATION_ADM, 
DBMS_APPLY_ADM, DBMS_RULE_ADM, and DBMS_AQADM packages, to complete 
these same tasks, as well as tasks that require additional customization.

DBMS_CAPTURE_ADM Package
The DBMS_CAPTURE_ADM package provides an administrative interface for starting, 
stopping, and configuring a capture process. This package also provides 
administrative procedures that prepare database objects at the source database for 
instantiation at a destination database.

DBMS_PROPAGATION_ADM Package
The DBMS_PROPAGATION_ADM package provides an administrative interface for 
configuring propagation from a source queue to a destination queue. 

See Also: PL/SQL Packages and Types Reference for more 
information about these packages



Administration Tools for a Streams Environment

Introduction to Streams 1-23

DBMS_APPLY_ADM Package
The DBMS_APPLY_ADM package provides an administrative interface for starting, 
stopping, and configuring an apply process. This package includes procedures that 
enable you to configure apply handlers, set enqueue destinations for events, and 
specify execution directives for events. This package also provides administrative 
procedures that set the instantiation SCN for objects at a destination database. This 
package also includes subprograms for configuring conflict detection and 
resolution and for managing apply errors.

DBMS_STREAMS_MESSAGING Package
The DBMS_STREAMS_MESSAGING package provides interfaces to enqueue 
messages into and dequeue messages from a SYS.AnyData queue.

DBMS_RULE_ADM Package
The DBMS_RULE_ADM package provides an administrative interface for creating and 
managing rules, rule sets, and rule evaluation contexts. This package also contains 
subprograms for managing privileges related to rules.

DBMS_RULE Package
The DBMS_RULE package contains the EVALUATE procedure, which evaluates a rule 
set. The goal of this procedure is to produce the list of satisfied rules, based on the 
data. This package also contains subprograms that enable you to use iterators 
during rule evaluation. Instead of returning all rules that evaluate to TRUE or 
MAYBE for an evaluation, iterators can return one rule at a time.

DBMS_STREAMS Package
The DBMS_STREAMS package provides interfaces to convert SYS.AnyData objects 
into LCR objects, to return information about Streams attributes and Streams 
clients, and to annotate redo entries generated by a session with a tag. This tag may 
affect the behavior of a capture process, a propagation job, an apply process, or a 
messaging client whose rules include specifications for these tags in redo entries 
or LCRs.

DBMS_STREAMS_AUTH Package
The DBMS_STREAMS_AUTH package provides interfaces for granting privileges to 
Streams administrators and revoking privileges from Streams administrators.



Administration Tools for a Streams Environment

1-24 Oracle Streams Concepts and Administration

DBMS_STREAMS_TABLESPACE_ADM
The DBMS_STREAMS_TABLESPACE_ADM package provides administrative 
procedures for copying tablespaces between databases and moving tablespaces 
from one database to another. This package uses transportable tablespaces, Data 
Pump, and the DBMS_FILE_TRANSFER package.

Streams Data Dictionary Views
Every database in a Streams environment has Streams data dictionary views. These 
views maintain administrative information about local rules, objects, capture 
processes, propagations, apply processes, and messaging clients. You can use these 
views to monitor your Streams environment.

Streams Tool in the Oracle Enterprise Manager Console
To help configure, administer, and monitor Streams environments, Oracle provides 
a Streams tool in the Oracle Enterprise Manager Console. You also can use the 
Streams tool to generate Streams configuration scripts, which you can then modify 
and run to configure your Streams environment. The Streams tool online help is the 
primary documentation source for this tool. Figure 1–14 shows the Topology tab in 
the Streams tool.

See Also:

� Chapter 14, "Monitoring a Streams Environment"

� Oracle Streams Replication Administrator's Guide for example 
queries that are useful in a Streams replication environment

� Oracle Database Reference for more information about these data 
dictionary views



Administration Tools for a Streams Environment

Introduction to Streams 1-25

Figure 1–14 Streams Tool

See Also: See the online help for the Streams tool in the Oracle 
Enterprise Manager Console for more information about using it



Administration Tools for a Streams Environment

1-26 Oracle Streams Concepts and Administration



Streams Capture Process 2-1

2
Streams Capture Process

This chapter explains the concepts and architecture of the Streams capture process.

This chapter contains these topics:

� The Redo Log and a Capture Process

� Logical Change Records (LCRs)

� Capture Process Rules

� Datatypes Captured

� Types of Changes Captured

� Supplemental Logging in a Streams Environment

� Instantiation in a Streams Environment

� Local Capture and Downstream Capture

� SCN Values Relating to a Capture Process

� Streams Capture Processes and RESTRICTED SESSION

� Streams Capture Processes and Oracle Real Application Clusters

� Capture Process Architecture

See Also: Chapter 9, "Managing a Capture Process"



The Redo Log and a Capture Process

2-2 Oracle Streams Concepts and Administration

The Redo Log and a Capture Process
Every Oracle database has a set of two or more redo log files. The redo log files for a 
database are collectively known as the database's redo log. The primary function of 
the redo log is to record all changes made to the database.

Redo logs are used to guarantee recoverability in the event of human error or media 
failure. A capture process is an optional Oracle background process that scans the 
database redo log to capture DML and DDL changes made to database objects. 
When a capture process is configured to capture changes from a redo log, the 
database where the changes were generated is called the source database.

A capture process may run on the source database or on a remote database. When a 
capture process runs on the source database, the capture process is a local capture 
process. When a capture process runs on a remote database, the remote database is 
called the downstream database. If a capture process runs on a downstream 
database, then archived redo log files from the source database are copied to the 
downstream database, and the capture process captures changes from these files at 
the downstream database.

Logical Change Records (LCRs)
A capture process reformats changes captured from the redo log into LCRs. An LCR 
is an object with a specific format that describes a database change. A capture 
process captures two types of LCRs: row LCRs and DDL LCRs. Row LCRs and 
DDL LCRs are described in detail later in this section.

After capturing an LCR, a capture process enqueues an event containing the LCR 
into a queue. A capture process is always associated with a single SYS.AnyData 
queue, and it enqueues events into this queue only. For improved performance, 
captured events always are stored in a buffered queue, which is System Global Area 
(SGA) memory associated with a SYS.AnyData queue. You can create multiple 
queues and associate a different capture process with each queue. Figure 2–1 shows 
a capture process capturing LCRs.

Note: A capture process can be associated only with a 
SYS.AnyData queue, not with a typed queue.



Logical Change Records (LCRs)

Streams Capture Process 2-3

Figure 2–1 The Capture Process

Row LCRs
A row LCR describes a change to the data in a single row or a change to a single 
LONG, LONG RAW, or LOB column in a row. The change results from a data 
manipulation language (DML) statement or a piecewise update to a LOB. For 
example, a single DML statement may insert or merge multiple rows into a table, 
may update multiple rows in a table, or may delete multiple rows from a table. 

Therefore, a single DML statement can produce multiple row LCRs. That is, a 
capture process creates an LCR for each row that is changed by the DML statement. 

See Also:

� Oracle Streams Replication Administrator's Guide for information 
about managing LCRs

� PL/SQL Packages and Types Reference for more information about 
LCR types

� "Buffered Queues" on page 3-16

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

LCRs

Capture
Changes

Log
Changes



Logical Change Records (LCRs)

2-4 Oracle Streams Concepts and Administration

In addition, an update to a LONG, LONG RAW, or LOB column in a single row may 
result in more than one row LCR.

Each row LCR is encapsulated in an object of LCR$_ROW_RECORD type and 
contains the following attributes:

� source_database_name: The name of the source database where the row 
change occurred

� command_type: The type of DML statement that produced the change, either 
INSERT, UPDATE, DELETE, LOB ERASE, LOB WRITE, or LOB TRIM

� object_owner: The schema name that contains the table with the 
changed row

� object_name: The name of the table that contains the changed row

� tag: A raw tag that can be used to track the LCR

� transaction_id: The identifier of the transaction in which the DML 
statement was run

� scn: The system change number (SCN) at the time when the change record was 
written to the redo log

� old_values: The old column values related to the change. These are the 
column values for the row before the DML change. If the type of the DML 
statement is UPDATE or DELETE, then these old values include some or all of 
the columns in the changed row before the DML statement. If the type of the 
DML statement is INSERT, then there are no old values.

� new_values: The new column values related to the change. These are the 
column values for the row after the DML change. If the type of the DML 
statement is UPDATE or INSERT, then these new values include some or all of 
the columns in the changed row after the DML statement. If the type of the 
DML statement is DELETE, then there are no new values.

A captured row LCR also may contain transaction control statements. These row 
LCRs contain directives such as COMMIT and ROLLBACK. Such row LCRs are 
internal and are used by an apply process to maintain transaction consistency 
between a source database and a destination database.



Logical Change Records (LCRs)

Streams Capture Process 2-5

DDL LCRs
A DDL LCR describes a data definition language (DDL) change. A DDL statement 
changes the structure of the database. For example, a DDL statement may create, 
alter, or drop a database object.

Each DDL LCR contains the following information:

� source_database_name: The name of the source database where the DDL 
change occurred

� command_type: The type of DDL statement that produced the change, for 
example ALTER TABLE or CREATE INDEX

� object_owner: The schema name of the user who owns the database object on 
which the DDL statement was run

� object_name: The name of the database object on which the DDL statement 
was run

� object_type: The type of database object on which the DDL statement was 
run, for example TABLE or PACKAGE

� ddl_text: The text of the DDL statement

� logon_user: The logon user, which is the user whose session executed the 
DDL statement

� current_schema: The schema that is used if no schema is specified for an 
object in the DDL text

� base_table_owner: The base table owner. If the DDL statement is dependent 
on a table, then the base table owner is the owner of the table on which it is 
dependent.

� base_table_name: The base table name. If the DDL statement is dependent 
on a table, then the base table name is the name of the table on which it is 
dependent.

� tag: A raw tag that can be used to track the LCR

� transaction_id: The identifier of the transaction in which the DDL 
statement was run

� scn: The SCN when the change was written to the redo log



Logical Change Records (LCRs)

2-6 Oracle Streams Concepts and Administration

Extra Information in LCRs
In addition to the information discussed in the previous sections, row LCRs and 
DDL LCRs optionally may include the following extra information (or LCR 
attributes):

� row_id: The rowid of the row changed in a row LCR. This attribute is not 
included in DDL LCRs, nor in row LCRs for index-organized tables.

� serial#: The serial number of the session that performed the change captured 
in the LCR

� session#: The identifier of the session that performed the change captured in 
the LCR

� thread#: The thread number of the instance in which the change captured in 
the LCR was performed. Typically, the thread number is relevant only in a Real 
Application Clusters environment.

� tx_name: The name of the transaction that includes the LCR

� username: The name of the user who performed the change captured in 
the LCR

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the 
DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more 
extra attributes.

Note: Both row LCRs and DDL LCRs contain the source database 
name of the database where a change originated. If captured LCRs 
will be propagated by a propagation or applied by an apply 
process, then, to avoid propagation and apply problems, Oracle 
Corporation recommends that you do not rename the source 
database after a capture process has started capturing changes. 

See Also: The "SQL Command Codes" table in the Oracle Call 
Interface Programmer's Guide for a complete list of the types of DDL 
statements



Capture Process Rules

Streams Capture Process 2-7

Capture Process Rules
A capture process either captures or discards changes based on rules that you 
define. Each rule specifies the database objects and types of changes for which the 
rule evaluates to TRUE. You can place these rules in a positive or negative rule set 
for the capture process. 

If a rule evaluates to TRUE for a change, and the rule is in the positive rule set for a 
capture process, then the capture process captures the change. If a rule evaluates to 
TRUE for a change, and the rule is in the negative rule set for a capture process, then 
the capture process discards the change. If a capture process has both a positive and 
a negative rule set, then the negative rule set is always evaluated first.

You can specify capture process rules at the following levels:

� A table rule captures or discards either row changes resulting from DML 
changes or DDL changes to a particular table. Subset rules are table rules that 
include a subset of the row changes to a particular table.

� A schema rule captures or discards either row changes resulting from DML 
changes or DDL changes to the database objects in a particular schema.

� A global rule captures or discards either all row changes resulting from DML 
changes or all DDL changes in the database.

See Also:

� "Managing Extra Attributes in Captured LCRs" on page 9-38

� "Viewing the Extra Attributes Captured by Each Capture 
Process" on page 14-17

� PL/SQL Packages and Types Reference for more information about 
the INCLUDE_EXTRA_ATTRIBUTE procedure

Note: The capture process does not capture certain types of 
changes and changes to certain datatypes in table columns. Also, a 
capture process never captures changes in the SYS, SYSTEM, or 
CTXSYS schemas.



Datatypes Captured

2-8 Oracle Streams Concepts and Administration

Datatypes Captured
When capturing the row changes resulting from DML changes made to tables, a 
capture process can capture changes made to columns of the following datatypes:

� VARCHAR2

� NVARCHAR2

� NUMBER

� LONG

� DATE

� BINARY_FLOAT

� BINARY_DOUBLE

� TIMESTAMP

� TIMESTAMP WITH TIME ZONE

� TIMESTAMP WITH LOCAL TIME ZONE

� INTERVAL YEAR TO MONTH

� INTERVAL DAY TO SECOND

� RAW

� LONG RAW

� CHAR

� NCHAR

� CLOB

� NCLOB

� BLOB

� UROWID

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Datatypes Captured

Streams Capture Process 2-9

A capture process does not capture the results of DML changes to columns of the 
following datatypes: BFILE, ROWID, and user-defined types (including object types, 
REFs, varrays, nested tables, and Oracle-supplied types). A capture process raises 
an error if it tries to create a row LCR for a DML change to a table containing a 
column of an unsupported datatype.

When a capture process raises an error, it writes the LCR that caused the error into 
its trace file, raises an ORA-00902 error, and becomes disabled. In this case, modify 
the rules used by the capture process to avoid the error, and restart the capture 
process.

Note:

� You may add rules to a negative rule set for a capture process 
that instruct the capture process to discard changes to tables 
with columns of unsupported datatypes. However, if these 
rules are not simple rules, then a capture process may create a 
row LCR for the change and continue to process it. In this case, 
a change that includes an unsupported datatype may cause the 
capture process to raise an error, even if the change does not 
satisfy the rule sets used by the capture process. The 
DBMS_STREAMS_ADM package creates only simple rules.

� Some of the datatypes listed previously in this section may not 
be supported by Streams in earlier releases of Oracle. If your 
Streams environment includes one or more databases from an 
earlier release of Oracle, then make sure row LCRs do not flow 
into a database that does not support all of the datatypes in the 
row LCRs. See the Streams documentation for the earlier Oracle 
release for information about supported datatypes.



Types of Changes Captured

2-10 Oracle Streams Concepts and Administration

Types of Changes Captured
A capture process can capture only certain types of changes made to a database and 
its objects. The following sections describe the types of DML and DDL changes that 
can be captured.

Types of DML Changes Captured
When you specify that DML changes made to certain tables should be captured, a 
capture process captures the following types of DML changes made to these tables:

� INSERT

� UPDATE

� DELETE

� MERGE

� Piecewise updates to LOBs

See Also:

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets

� "Capture Process Rule Evaluation" on page 2-49

� "Datatypes Applied" on page 4-11 for information about the 
datatypes that can be applied by an apply process

� Oracle Database SQL Reference for more information about these 
datatypes

Note: A capture process never captures changes in the SYS, 
SYSTEM, or CTXSYS schemas.

See Also: Chapter 4, "Streams Apply Process" for information 
about the types of changes an apply process can apply



Types of Changes Captured

Streams Capture Process 2-11

The following are considerations for capturing DML changes:

� A capture process converts each MERGE change into an INSERT or UPDATE 
change. MERGE is not a valid command type in a row LCR.

� A capture process can capture changes made to an index-organized table only if 
the index-organized table meets the following conditions:

� The index-organized table does not require an OVERFLOW clause.

� The index-organized table does not contain any columns of the following 
datatypes: LONG, LONG RAW, CLOB, NCLOB, BLOB, BFILE, ROWID, UROWID, 
and user-defined types (including object types, REFs, varrays, and nested 
tables). 

� If the index-organized table is partitioned, then it does not have row 
movement enabled.

If an index-organized table does not meet these requirements, then a capture 
process raises an error when a user makes a change to the index-organized table 
and the change satisfies the capture process rule sets.

� A capture process does not capture CALL, EXPLAIN PLAN, or LOCK TABLE 
statements.

� A capture process cannot capture DML changes made to temporary tables or 
object tables.

� If you share a sequence at multiple databases, then sequence values used for 
individual rows at these databases may vary. Also, changes to actual sequence 
values are not captured. For example, if a user references a NEXTVAL or sets the 
sequence, then a capture process does not capture changes resulting from these 
operations.



Types of Changes Captured

2-12 Oracle Streams Concepts and Administration

Types of DDL Changes Ignored by a Capture Process
A capture process captures the DDL changes that satisfy its rule sets, except for the 
following types of DDL changes:

� ALTER DATABASE

� CREATE CONTROLFILE

� CREATE DATABASE

� CREATE PFILE

� CREATE SPFILE

A capture process can capture DDL statements, but not the results of DDL 
statements, unless the DDL statement is a CREATE TABLE AS SELECT statement. 
For example, when a capture process captures an ANALYZE statement, it does not 
capture the statistics generated by the ANALYZE statement. However, when a 
capture process captures a CREATE TABLE AS SELECT statement, it captures the 
statement itself and all of the rows selected (as INSERT row LCRs).

Some types of DDL changes that are captured by a capture process cannot be 
applied by an apply process. If an apply process receives a DDL LCR that specifies 
an operation that cannot be applied, then the apply process ignores the DDL LCR 
and records information about it in the trace file for the apply process.

See Also:

� "Datatypes Captured" on page 2-8 for information about the 
datatypes supported by a capture process

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets

� Oracle Streams Replication Administrator's Guide for information 
about applying DML changes with an apply process and for 
information about strategies to use to avoid having the same 
sequence-generated value for two different rows at different 
databases



Types of Changes Captured

Streams Capture Process 2-13

Other Types of Changes Ignored by a Capture Process
The following types of changes are ignored by a capture process:

� The session control statements ALTER SESSION and SET ROLE

� The system control statement ALTER SYSTEM

� Invocations of PL/SQL procedures, which means that a call to a PL/SQL 
procedure is not captured. However, if a call to a PL/SQL procedure causes 
changes to database objects, then these changes may be captured by a capture 
process if the changes satisfy the capture process rule sets.

In addition, online table redefinition using the DBMS_REDEFINITION package is 
not supported on a table or schema for which a capture process captures changes.

NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then 
the changes resulting from the SQL operation cannot be captured by a capture 
process. Therefore, do not use these keywords if you want to capture the changes 
that result from a SQL operation.

If the object for which you are specifying the logging attributes resides in a database 
or tablespace in FORCE LOGGING mode, then Oracle ignores any NOLOGGING or 
UNRECOVERABLE setting until the database or tablespace is taken out of FORCE 
LOGGING mode. You can determine the current logging mode for a database by 
querying the FORCE_LOGGING column in the V$DATABASE dynamic performance 
view. You can determine the current logging mode for a tablespace by querying the 
FORCE_LOGGING column in the DBA_TABLESPACES static data dictionary view.

See Also:

� Oracle Streams Replication Administrator's Guide for information 
about applying DDL changes with an apply process

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets



Types of Changes Captured

2-14 Oracle Streams Concepts and Administration

UNRECOVERABLE Clause for Direct Path Loads
If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct 
path load, then the changes resulting from the direct path load cannot be captured 
by a capture process. Therefore, if the changes resulting from a direct path load 
should be captured by a capture process, then do not use the UNRECOVERABLE 
clause.

If you perform a direct path load without logging changes at a source database, but 
you do not perform a similar direct path load at the destination databases of the 
source database, then apply errors may result at these destination databases when 
changes are made to the loaded objects at the source database. In this case, a capture 
process at the source database can capture changes to these objects, and one or more 
propagations can propagate the changes to the destination databases, but these 
objects may not exist at the destination databases, or, the objects may exist at the 
destination database, but the rows related to these changes may not exist.

Therefore, if you use the UNRECOVERABLE clause for a direct path load and a 
capture process is configured to capture changes to the loaded objects, then make 
sure any destination databases contain the loaded objects and the loaded data to 
avoid apply errors. One way to make sure that these objects exist at the destination 
databases is to perform a direct path load at each of these destination databases that 
is similar to the direct path load performed at the source database.

If you load objects into a database or tablespace that is in FORCE LOGGING mode, 
then Oracle ignores any UNRECOVERABLE clause during a direct path load, and the 
loaded changes are logged. You can determine the current logging mode for a 
database by querying the FORCE_LOGGING column in the V$DATABASE dynamic 
performance view. You can determine the current logging mode for a tablespace by 
querying the FORCE_LOGGING column in the DBA_TABLESPACES static data 
dictionary view.

Note: The UNRECOVERABLE keyword is deprecated and has been 
replaced with the NOLOGGING keyword in the logging_clause. 
Although UNRECOVERABLE is supported for backward 
compatibility, Oracle Corporation strongly recommends that you 
use the NOLOGGING keyword, when appropriate.

See Also: Oracle Database SQL Reference for more information 
about the NOLOGGING and UNRECOVERABLE keywords, FORCE 
LOGGING mode, and the logging_clause



Instantiation in a Streams Environment

Streams Capture Process 2-15

Supplemental Logging in a Streams Environment
Supplemental logging places additional column data into a redo log whenever an 
operation is performed. A capture process captures this additional information and 
places it in LCRs. Supplemental logging is always configured at a source database, 
regardless of location of the capture process that captures changes to the source 
database.

Typically, supplemental logging is required in Streams replication environments. In 
these environments, an apply process needs the additional information in the LCRs 
to properly apply DML changes and DDL changes that are replicated from a source 
database to a destination database. However, supplemental logging may also be 
required in environments where changes are not applied to database objects directly 
by an apply process. In such environments, an apply handler may process the 
changes without applying them to the database objects, and the supplemental 
information may be needed by the apply handlers.

Instantiation in a Streams Environment
In a Streams environment that shares a database object within a single database or 
between multiple databases, a source database is the database where changes to the 
object are generated in the redo log, and a destination database is the database 
where these changes are dequeued by an apply process. If a capture process 
captures or will capture such changes, and the changes will be applied locally or 
propagated to other databases and applied at destination databases, then you must 
instantiate these source database objects before these changes can be dequeued and 
processed by an apply process. If a database where changes to the source database 
objects will be applied is a different database than the source database, then the 
destination database must have a copy of these database objects. 

See Also: Oracle Database Utilities for information about direct 
path loads and SQL*Loader

See Also: Oracle Streams Replication Administrator's Guide for 
detailed information about when supplemental logging is required



Instantiation in a Streams Environment

2-16 Oracle Streams Concepts and Administration

In Streams, the following general steps instantiate a database object:

1. Prepare the object for instantiation at the source database.

2. If a copy of the object does not exist at the destination database, then create an 
object physically at the destination database based on an object at the source 
database. You can use export/import, transportable tablespaces, or RMAN to 
copy database objects for instantiation. If the database objects already exist at 
the destination database, then this step is not necessary.

3. Set the instantiation SCN for the database object at the destination database. An 
instantiation SCN instructs an apply process at the destination database to 
apply only changes that committed at the source database after the 
specified SCN.

In some cases, Step 1 and Step 3 are completed automatically. For example, when 
you add rules for an object to the positive rule set for a capture process by running a 
procedure in the DBMS_STREAMS_ADM package, the object is prepared for 
instantiation automatically. Also, when you use export/import or transportable 
tablespaces to copy database objects from a source database to a destination 
database, instantiation SCNs may be set for these objects automatically. 
Instantiation is required whenever an apply process dequeues captured LCRs, even 
if the apply process sends the LCRs to an apply handler that does not execute them.

Note: You can use either Data Pump export/import or original 
export/import for Streams instantiations. General references to 
export/import in this document refer to both Data Pump and 
original export/import. This document distinguishes between Data 
Pump and original export/import when necessary.

See Also: Oracle Streams Replication Administrator's Guide for 
detailed information about instantiation in a Streams replication 
environment



Local Capture and Downstream Capture

Streams Capture Process 2-17

Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or remotely 
on a downstream database. The following sections describe these options in detail.

Local Capture
Local capture means that a capture process runs on the source database. Figure 2–1 
on page 2-3 shows a database using local capture.

The Source Database Performs All Change Capture Actions
If you configure local capture, then the following actions are performed at the 
source database:

� The DBMS_CAPTURE_ADM.BUILD procedure is run to extract (or build) the data 
dictionary to the redo log.

� Supplemental logging at the source database places additional information in 
the redo log. This information may be needed when captured changes are 
applied by an apply process.

� The first time a capture process is started at the database, Oracle uses the 
extracted data dictionary information in the redo log to create a LogMiner data 
dictionary, which is separate from the primary data dictionary for the source 
database. Additional capture processes may use this existing LogMiner data 
dictionary, or they may create new LogMiner data dictionaries.

� A capture process scans the redo log for changes using LogMiner.

� The rules engine evaluates changes based on the rules in one or more of the 
capture process rule sets.

� The capture process enqueues changes that satisfy the rules in its rule sets into a 
local SYS.AnyData queue.

� If the captured changes are shared with one or more other databases, then one 
or more propagations propagate these changes from the source database to the 
other databases.

� If database objects at the source database must be instantiated at a destination 
database, then the objects must be prepared for instantiation and a mechanism 
such as an Export utility must be used to make a copy of the database objects.



Local Capture and Downstream Capture

2-18 Oracle Streams Concepts and Administration

Advantages of Local Capture
The following are the advantages of using local capture:

� Configuration and administration of the capture process is simpler than when 
downstream capture is used. When you use local capture, you do not need to 
configure redo log file copying to a downstream database, and you administer 
the capture process locally at the database where the captured changes 
originated.

� A local capture process can scan changes in the online redo log before the 
database writes these changes to an archived redo log file. When you use 
downstream capture, archived redo log files are copied to the downstream 
database after the source database has finished writing changes to them, and 
some time is required to copy the redo log files to the downstream database.

� The amount of data being sent over the network is reduced, because the entire 
redo log file is not copied to the downstream database. Even if captured LCRs 
are propagated to other databases, the captured LCRs may be a subset of the 
total changes made to the database, and only the LCRs that satisfy the rules in 
the rule sets for a propagation are propagated.

� Security may be improved because only the source (local) database can access 
the redo log files. For example, if you want to capture changes in the hr schema 
only, then, when you use local capture, only the source database can access the 
redo log to enqueue changes to the hr schema into the capture process queue. 
However, when you use downstream capture, the redo log files are copied to 
the downstream database, and these redo log files contain all of the changes 
made to the database, not just the changes made to the hr schema.

� Some types of rule-based transformations are simpler to configure if the capture 
process is running at the local source database. For example, if you use local 
capture, then a rule-based transformation may use cached information in a 
PL/SQL session variable which is populated with data stored at the source 
database.

� In a Streams environment where events are captured and applied in the same 
database, it may be simpler, and may use less resources, to configure local 
queries and computations that require information about captured changes and 
the local data.



Local Capture and Downstream Capture

Streams Capture Process 2-19

Downstream Capture
Downstream capture means that a capture process runs on a database other than 
the source database. Archived redo log files from the source database are copied to 
the downstream database, and the capture process captures changes in these files at 
the downstream database. You can copy the archived redo log files to the 
downstream database using log transport services, the DBMS_FILE_TRANSFER 
package, file transfer protocol (FTP), or some other mechanism.

Figure 2–2 Downstream Capture

Downstream Database

Redo
Log

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Capture
Process

Capture
Changes

LCRs

Source Database

User Changes

Redo
Log

Log
Changes

Copy Redo
Log Files

Database Objects



Local Capture and Downstream Capture

2-20 Oracle Streams Concepts and Administration

You can configure multiple capture processes at a downstream database to capture 
changes from a single source database. You also can copy redo log files from 
multiple source databases and configure multiple capture processes to capture 
changes in these redo log files at a single downstream database. 

In addition, a single database may have one or more capture processes that capture 
local changes and other capture processes that capture changes from a remote 
source database. That is, you can configure a single database to perform both local 
capture and downstream capture.

The Downstream Database Performs Most Change Capture Actions
If you configure downstream capture, then the following actions are performed at 
the downstream database:

� The first time a downstream capture process is started at the downstream 
database, Oracle uses data dictionary information in the redo log to create a 
LogMiner data dictionary at the downstream database. The 
DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract 
the source data dictionary information to the redo log at the source database. 
Next, the redo log files are copied to the downstream database from the source 
database. Additional downstream capture processes for the same source 
database may use this existing LogMiner data dictionary, or they may create 
new LogMiner data dictionaries.

� A capture process scans the redo log files for changes using LogMiner.

� The rules engine evaluates changes based on the rules in one or more of the 
capture process rule sets.

Note: As illustrated in Figure 2–2, the source database for a 
change captured by a downstream capture process is the database 
where the change was recorded in the redo log, not the database 
running the downstream capture process.

See Also: Oracle Data Guard Concepts and Administration for more 
information about log transport services



Local Capture and Downstream Capture

Streams Capture Process 2-21

� The capture process enqueues changes that satisfy the rules in its rule sets into a 
local SYS.AnyData queue.

� If the captured changes are shared with one or more other databases, then one 
or more propagations propagate these changes from the downstream database 
to the other databases.

In a downstream capture configuration, the following actions are performed at the 
source database:

� The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to 
extract the data dictionary to the redo log.

� Supplemental logging at the source database places additional information that 
may be needed for apply in the redo log.

� If database objects at the source database must be instantiated at other 
databases in the environment, then the objects must be prepared for 
instantiation and a mechanism such as an Export utility must be used to make a 
copy of the database objects.

In addition, the redo log files must be copied from the computer system running the 
source database to the computer system running the downstream database. 
Typically, log transport services copies these redo log files to the downstream 
database.

Advantages of Downstream Capture
The following are the advantages of using downstream capture:

� Capturing changes uses less resources at the source database because the 
downstream database performs most of the required work.

� If you plan to capture changes originating at multiple source databases, then 
capture process administration may be simplified by running multiple capture 
processes with different source databases at one downstream database. That is, 
one downstream database can act as the central location for change capture 
from multiple sources.

See Also: Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for information 
about how events satisfy rule sets



Local Capture and Downstream Capture

2-22 Oracle Streams Concepts and Administration

� Copying redo log files to one or more downstream databases provides 
improved protection against data loss. For example, the redo log files at the 
downstream database may be used for recovery of the source database in some 
situations.

� The ability to configure multiple capture processes at one or more downstream 
databases that capture changes from a single source database provides more 
flexibility and may improve scalability.

Optional Database Link from the Downstream Database to the Source Database
When you create or alter a downstream capture process, you can optionally specify 
the use of a database link from the downstream database to the source database. 
This database link must have the same name as the global name of the source 
database. Such a database link simplifies the creation and administration of a 
downstream capture process. You specify that a downstream capture process uses a 
database link by setting the use_database_link parameter to true when you 
run CREATE_CAPTURE or ALTER_CAPTURE on the downstream capture process.

When a downstream capture process uses a database link to the source database, 
the capture process connects to the source database to perform the following 
administrative actions automatically:

� In certain situations, runs the DBMS_CAPTURE_ADM.BUILD procedure at the 
source database to extract the data dictionary at the source database to the redo 
log when a capture process is created

� Prepares source database objects for instantiation

� Obtains the first SCN for the downstream capture process if the first SCN is not 
specified during capture process creation. The first SCN is needed to create a 
capture process.

If a downstream capture process does not use a database link, then you must 
perform these actions manually.

Note: If two different capture processes capture changes from a 
single source database, then the resulting LCRs from these capture 
processes should never be staged in the same queue if the queue is 
used by an apply process that applies any of these changes. Instead, 
a separate queue and apply process should be used to apply 
changes from each capture process.



SCN Values Relating to a Capture Process

Streams Capture Process 2-23

Operational Requirements for Downstream Capture
The following are operational requirements for using downstream capture:

� The source database must be running at least Oracle Database 10g and the 
downstream capture database must be running the same version of Oracle as 
the source database or higher.

� The operating system on the source and downstream capture sites must be the 
same, but the operating system release does not need to be the same. In 
addition, the downstream sites can use a different directory structure from the 
source site.

� The hardware architecture on the source and downstream capture sites must be 
the same. For example, a downstream capture configuration with a source 
database on a 32-bit Sun system must have a downstream database that is 
configured on a 32-bit Sun system. Other hardware elements, such as the 
number of CPUs, memory size, and storage configuration, can be different 
between the source and downstream sites.

In a downstream capture environment, the source database can be a single instance 
database or a multi-instance Real Application Clusters (RAC) database. The 
downstream database can be a single instance database or a multi-instance RAC 
database, regardless of whether the source database is single instance or 
multi-instance. 

SCN Values Relating to a Capture Process
This section describes system change number (SCN) values that are important for a 
capture process. You can query the ALL_CAPTURE data dictionary view to display 
these values for one or more capture processes.

See Also: "Creating a Downstream Capture Process That Uses a 
Database Link" on page 9-9 for information about when the 
DBMS_CAPTURE_ADM.BUILD procedure is run automatically 
during capture process creation if the downstream capture process 
uses a database link



SCN Values Relating to a Capture Process

2-24 Oracle Streams Concepts and Administration

Captured SCN and Applied SCN
The captured SCN is the SCN that corresponds to the most recent change scanned 
in the redo log by a capture process. The applied SCN for a capture process is the 
SCN of the most recent event dequeued by the relevant apply processes. All events 
lower than this SCN have been dequeued by all apply processes that apply changes 
captured by the capture process. The applied SCN for a capture process is 
equivalent to the low-watermark SCN for an apply process that applies changes 
captured by the capture process. 

First SCN and Start SCN
This section describes the first SCN and start SCN for a capture process.

First SCN
The first SCN is the lowest SCN in the redo log from which a capture process can 
capture changes. If you specify a first SCN during capture process creation, then the 
database must be able to access redo log information from the SCN specified and 
higher. 

The DBMS_CAPTURE_ADM.BUILD procedure extracts the source database data 
dictionary to the redo log. When you create a capture process, you can specify a 
first SCN that corresponds to this data dictionary build in the redo log. Specifically, 
the first SCN for the capture process being created can be set to any value returned 
by the following query:

COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
  WHERE DICTIONARY_BEGIN = 'YES';

The value returned for the NAME column is the name of the redo log file that 
contains the SCN corresponding to the first SCN. This redo log file, and subsequent 
redo log files, must be available to the capture process. If this query returns multiple 
distinct values for FIRST_CHANGE#, then the DBMS_CAPTURE_ADM.BUILD 
procedure has been run more than once on the source database. In this case, choose 
the first SCN value that is most appropriate for the capture process you are creating.

In some cases, the DBMS_CAPTURE_ADM.BUILD procedure is run automatically 
when a capture process is created. When this happens, the first SCN for the capture 
process corresponds to this data dictionary build.



SCN Values Relating to a Capture Process

Streams Capture Process 2-25

Start SCN
The start SCN is the SCN from which a capture process begins to capture changes. 
You can specify a start SCN that is different than the first SCN during capture 
process creation, or you can alter a capture process to set its start SCN. The start CN 
does not need to be modified for normal operation of a capture process.

Start SCN Must Be Greater Than or Equal to First SCN
If you specify a start SCN when you create or alter a capture process, then the start 
SCN specified must be greater than or equal to the first SCN for the capture process. 
A capture process always scans any unscanned redo log records that have higher 
SCN values than the first SCN, even if the redo log records have lower SCN values 
than the start SCN. So, if you specify a start SCN that is greater than the first SCN, 
then the capture process may scan redo log records for which it cannot capture 
changes, because these redo log records have a lower SCN than the start SCN.

Scanning redo log records before the start SCN should be avoided if possible 
because it may take some time. Therefore, Oracle Corporation recommends that the 
difference between the first SCN and start SCN be as small as possible during 
capture process creation to keep the initial capture process startup time to a 
minimum.

A Start SCN Setting That Is Prior to Preparation for Instantiation
If you want to capture changes to a database object and apply these changes using 
an apply process, then only changes that occurred after the database object has been 
prepared for instantiation can be applied. Therefore, if you set the start SCN for a 
capture process lower than the SCN that corresponds to the time when a database 
object was prepared for instantiation, then any captured changes to this database 
object prior to the prepare SCN cannot be applied by an apply process.

Attention: When a capture process is started or restarted, it may 
need to scan redo log files with a FIRST_CHANGE# value that is 
lower than start SCN. Removing required redo log files before they 
are scanned by a capture process causes the capture process to 
abort. You can query the DBA_CAPTURE data dictionary view to 
determine the first SCN, start SCN, and required checkpoint SCN. 
A capture process needs the redo log file that includes the required 
checkpoint SCN, and all subsequent redo log files. See "Capture 
Process Creation" on page 2-32 for more information about the first 
SCN and start SCN for a capture process.



Streams Capture Processes and RESTRICTED SESSION

2-26 Oracle Streams Concepts and Administration

This limitation may be important during capture process creation. If a database 
object was never prepared for instantiation prior to the time of capture process 
creation, then an apply process cannot apply any captured changes to the object 
from a time before capture process creation time.

In some cases, database objects may have been prepared for instantiation before a 
new capture process is created. For example, if you want to create a new capture 
process for source database whose changes are already being captured by one or 
more existing capture processes, then some or all of the database objects may have 
been prepared for instantiation before the new capture process is created. If you 
want to capture changes to a certain database object with a new capture process 
from a time before the new capture process was created, then the following 
conditions must be met for an apply process to apply these captured changes:

� The database object must have been prepared for instantiation before the new 
capture process is created.

� The start SCN for the new capture process must correspond to a time before the 
database object was prepared for instantiation.

� The redo logs for the time corresponding to the specified start SCN must be 
available. Additional redo logs previous to the start SCN may be required as 
well.

Streams Capture Processes and RESTRICTED SESSION
When you enable restricted session during system startup by issuing a STARTUP 
RESTRICT statement, capture processes do not start, even if they were running 
when the database shut down. When the restricted session is disabled, each capture 
process that was running when the database shut down is started.

When the restricted session is enabled in a running database by the SQL statement 
ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, it does not affect 
any running capture processes. These capture processes continue to run and capture 
changes. If a stopped capture process is started in a restricted session, then the 
capture process does not start until the restricted session is disabled.

See Also:

� Oracle Streams Replication Administrator's Guide for more 
information about preparing database objects for instantiation

� "Capture Process Creation" on page 2-32



Streams Capture Processes and Oracle Real Application Clusters

Streams Capture Process 2-27

Streams Capture Processes and Oracle Real Application Clusters
You can configure a Streams capture process to capture changes in a Real 
Application Clusters (RAC) environment. If you use one or more capture processes 
and RAC in the same environment, then all archived logs that contain changes to be 
captured by a capture process must be available to all instances in the RAC 
environment. In a RAC environment, a capture process reads changes made by all 
instances.

Each capture process is started on the owner instance for its SYS.AnyData queue, 
even if the start procedure is run on a different instance. Also, a capture process will 
follow its queue to a different instance if the current owner instance becomes 
unavailable. The queue itself follows the rules for primary instance and secondary 
instance ownership. If the owner instance for a queue table containing a queue used 
by a capture process becomes unavailable, then queue ownership is transferred 
automatically to another instance in the cluster. In addition, if the capture process 
was enabled when the owner instance became unavailable, then the capture process 
is restarted automatically on the new owner instance. If the capture process was 
disabled when the owner instance became unavailable, then the capture process 
remains disabled on the new owner instance.

The DBA_QUEUE_TABLES data dictionary view contains information about the 
owner instance for a queue table. Also, any parallel execution servers used by a 
single capture process run on a single instance in a RAC environment.

See Also:

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14 for information about primary and secondary 
instance ownership for queues

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13

� Oracle Database Reference for more information about the 
DBA_QUEUE_TABLES data dictionary view

� Oracle Real Application Clusters Administrator's Guide for more 
information about configuring archived logs to be shared 
between instances



Capture Process Architecture

2-28 Oracle Streams Concepts and Administration

Capture Process Architecture
A capture process is an optional Oracle background process whose process name is 
cnnn, where nnn is a capture process number. Valid capture process names include 
c001 through c999. A capture process captures changes from the redo log by using 
the infrastructure of LogMiner. Streams configures LogMiner automatically. You 
can create, alter, start, stop, and drop a capture process, and you can define capture 
process rules that control which changes a capture process captures.

Changes are captured by a capture user. The capture user captures all changes that 
satisfy the capture process rule sets. In addition, the capture user runs all rule-based 
transformations specified by the rules in these rule sets. The capture user must have 
the necessary privileges to perform these actions, including execute privilege on the 
rule sets used by the capture process, execute privilege on all rule-based 
transformation functions specified for rules in the positive rule set, and privileges to 
enqueue events into the capture process queue. A capture process can be associated 
with only one user, but one user may be associated with many capture processes.

This section discusses the following topics:

� Capture Process Components

� Capture Process States

� Multiple Capture Processes in a Single Database

� Capture Process Checkpoints

� Capture Process Creation

� A New First SCN Value and Purged LogMiner Dictionary Information

� The Streams Data Dictionary

� ARCHIVELOG Mode and a Capture Process

� Capture Process Parameters

� Capture Process Rule Evaluation

� Persistent Capture Process Status Upon Database Restart

See Also: "Configuring a Streams Administrator" on page 8-2 for 
information about the required privileges



Capture Process Architecture

Streams Capture Process 2-29

Capture Process Components
A capture process consists of the following components:

� One reader server that reads the redo log and divides the redo log into regions

� One or more preparer servers that scan the regions defined by the reader server 
in parallel and perform prefiltering of changes found in the redo log. 
Prefiltering involves sending partial information about changes, such as schema 
and object name for a change, to the rules engine for evaluation, and receiving 
the results of the evaluation.

� One builder server that merges redo records from the preparer servers. These 
redo records either evaluated to true during partial evaluation or partial 
evaluation was inconclusive for them. The builder server preserves the SCN 
order of these redo records and passes the merged redo records to the capture 
process.

� The capture process (cnnn) performs the following actions for each change 
when it receives merged redo records from the builder server:

� Formats the change into an LCR

� If the partial evaluation performed by a preparer server was inconclusive 
for the change in the LCR, then sends the LCR to the rules engine for full 
evaluation

� Receives the results of the full evaluation of the LCR if it was performed

� Enqueues the LCR into the queue associated with the capture process if the 
LCR satisfies the rules in the positive rule set for the capture process, or 
discards the LCR if it satisfies the rules in the negative rule set for the 
capture process or if it does not satisfy the rules in the positive rule set

Each reader server, preparer server, and builder server is a parallel execution 
server. The capture process (cnnn) is an Oracle background process.

See Also:

� "Capture Process Parallelism" on page 2-48 for more 
information about the parallelism parameter

� "Capture Process Rule Evaluation" on page 2-49

� Oracle Database Administrator's Guide for information about 
managing parallel execution servers



Capture Process Architecture

2-30 Oracle Streams Concepts and Administration

Capture Process States
The state of a capture process describes what the capture process is doing currently. 
You can view the state of a capture process by querying the STATE column in the 
V$STREAMS_CAPTURE dynamic performance view. The following capture process 
states are possible:

� INITIALIZING - Starting up

� WAITING FOR DICTIONARY REDO - Waiting for redo log files containing the 
dictionary build related to the first SCN to be added to the capture process 
session. A capture process cannot begin to scan the redo log files until all of the 
log files containing the dictionary build have been added.

� DICTIONARY INITIALIZATION - Processing a dictionary build

� MINING (PROCESSED SCN = scn_value) - Mining a dictionary build at the 
SCN scn_value

� LOADING (step X of Y) - Processing information from a dictionary build and 
currently at step X in a process that involves Y steps, where X and Y are 
numbers

� CAPTURING CHANGES - Scanning the redo log for changes that evaluate to true 
against the capture process rule sets

� WAITING FOR REDO - Waiting for new redo log files to be added to the capture 
process session. The capture process has finished processing all of the redo log 
files added to its session. This state is possible if there is no activity at a source 
database. For a downstream capture process, this state is possible if the capture 
process is waiting for new log files to be added to its session.

� EVALUATING RULE - Evaluating a change against a capture process rule set

� CREATING LCR - Converting a change into an LCR

� ENQUEUING MESSAGE - Enqueuing an LCR that satisfies the capture process 
rule sets into the capture process queue

� PAUSED FOR FLOW CONTROL - Unable to enqueue LCRs either because of low 
memory or because propagations and apply processes are consuming messages 
slower than the capture process is creating them. This state indicates flow 
control that is used to reduce spilling of captured LCRs when propagation or 
apply has fallen behind.

� SHUTTING DOWN - Stopping



Capture Process Architecture

Streams Capture Process 2-31

Multiple Capture Processes in a Single Database
If you run multiple capture processes on a single database, consider increasing the 
size of the System Global Area (SGA) for each instance. Use the SGA_MAX_SIZE 
initialization parameter to increase the SGA size. Also, you should increase the size 
of the Streams pool by 10 MB for each capture process parallelism on a database. 
For example, if you have two capture processes running on a database, and the 
parallelism parameter is set to 4 for one of them and 1 for the other, then increase 
the Streams pool by 50 MB (4 + 1 = 5 parallelism).

Capture Process Checkpoints
At regular intervals, a capture process tries to record a checkpoint. At a checkpoint, 
the capture process records its current state persistently in the data dictionary of the 
database running the capture process. 

The required checkpoint SCN is the lowest checkpoint SCN for which a capture 
process requires redo information. The redo log file that contains the required 
checkpoint SCN, and all subsequent redo log files, must be available to the capture 
process. If a capture process is stopped and restarted, then it starts scanning the 
redo log from the SCN that corresponds to its required checkpoint SCN. The 
required checkpoint SCN is important for recovery if a database stops unexpectedly. 

See Also: "Displaying General Information About Each Capture 
Process" on page 14-8 for a query that displays the state of a capture 
process

Note:

� Oracle Corporation recommends that each capture process use 
a separate queue to keep LCRs from different capture processes 
separate.

� If the size of the Streams pool is zero, then Streams may use up 
to 10% of the shared pool. The STREAMS_POOL_SIZE 
initialization parameter controls the size of the Streams pool.

� Each capture process uses one LogMiner session.

See Also: "Setting Initialization Parameters Relevant to Streams" 
on page 8-6 for more information about the STREAMS_POOL_SIZE 
initialization parameter



Capture Process Architecture

2-32 Oracle Streams Concepts and Administration

Also, if the first SCN is reset for a capture process, then it must be set to a value that 
is less than or equal to the required checkpoint SCN for the captured process. You 
can determine the required checkpoint SCN for a capture process by querying the 
REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.

Also, the SCN value that corresponds to the last checkpoint recorded by a capture 
process is the maximum checkpoint SCN. If you create a capture process that 
captures changes from a source database, and other capture processes already exist 
which capture changes from the same source database, then the maximum 
checkpoint SCNs of the existing capture processes can help you decide whether the 
new capture process should create a new LogMiner data dictionary or share one of 
the existing LogMiner data dictionaries. You can determine the maximum 
checkpoint SCN for a capture process by querying the MAX_CHECKPOINT_SCN 
column in the DBA_CAPTURE data dictionary view.

Capture Process Creation
You can create a capture process using the DBMS_STREAMS_ADM package or the 
DBMS_CAPTURE_ADM package. Using the DBMS_STREAMS_ADM package to create a 
capture process is simpler because defaults are used automatically for some 
configuration options. In addition, when you use the DBMS_STREAMS_ADM 
package, a rule set is created for the capture process and rules may be added to the 
rule set automatically. The rule set is a positive rule set if the inclusion_rule 
parameter is set to true (the default), or it is a negative rule set if the 
inclusion_rule parameter is set to false. 

Alternatively, using the DBMS_CAPTURE_ADM package to create a capture process is 
more flexible, and you create one or more rule sets and rules for the capture process 
either before or after it is created. You can use the procedures in the 
DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules to a 
rule set for the capture process. 

See Also:

� "The LogMiner Data Dictionary for a Capture Process" on 
page 2-34

� "First SCN and Start SCN Specifications During Capture 
Process Creation" on page 2-40



Capture Process Architecture

Streams Capture Process 2-33

When you create a capture process using a procedure in the DBMS_STREAMS_ADM 
package and generate one or more rules in the positive rule set for the capture 
process, the objects for which changes are captured are prepared for instantiation 
automatically, unless it is a downstream capture process and there is no database 
link from the downstream database to the source database.

When you create a capture process using the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package, you should prepare for instantiation any objects for 
which you plan to capture changes as soon as possible after capture process 
creation. You can prepare objects for instantiation using one of the following 
procedures in the DBMS_CAPTURE_ADM package:

� PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

� PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the 
objects in a schema and all objects added to the schema in the future.

� PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the 
objects in a database and all objects added to the database in the future.

Note:

� To create a capture process at a downstream database, you 
must use the DBMS_CAPTURE_ADM package.

� After creating a capture process, avoid changing the DBID or 
global name of the source database for the capture process. If 
you change either the DBID or global name of the source 
database, then the capture process must be dropped and 
re-created.



Capture Process Architecture

2-34 Oracle Streams Concepts and Administration

The LogMiner Data Dictionary for a Capture Process
A capture process requires a data dictionary that is separate from the primary data 
dictionary for the source database. This separate data dictionary is called a 
LogMiner data dictionary. There may be more than one LogMiner data dictionary 
for a particular source database. If there are multiple capture processes capturing 
changes from the source database, then two or more capture processes may share a 
LogMiner data dictionary, or each capture process may have its own LogMiner data 
dictionary. If the LogMiner data dictionary needed by a capture process does not 
exist, then the capture process populates it using information in the redo log when 
the capture process is started for the first time.

The DBMS_CAPTURE_ADM.BUILD procedure extracts data dictionary information to 
the redo log, and this procedure must be run at least once on the source database 
before any capture process capturing changes originating at the source database is 
started. The extracted data dictionary information in the redo log is consistent with 
the primary data dictionary at the time when the DBMS_CAPTURE_ADM.BUILD 
procedure is run. This procedure also identifies a valid first SCN value that can be 
used to create a capture process. 

You may perform a build of data dictionary information in the redo log multiple 
times, and a particular build may or may not be used by a capture process to create 
a LogMiner data dictionary. The amount of information extracted to a redo log 
when you run the BUILD procedure depends on the number of database objects in 
the database. Typically, the BUILD procedure generates a large amount of redo 

See Also:

� Chapter 9, "Managing a Capture Process" and PL/SQL Packages 
and Types Reference for more information about the following 
procedures, which can be used to create a capture process: 

DBMS_STREAMS_ADM.ADD_SUBSET_RULES

DBMS_STREAMS_ADM.ADD_TABLE_RULES

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

DBMS_CAPTURE_ADM.CREATE_CAPTURE

� Oracle Streams Replication Administrator's Guide for more 
information about capture process rules and preparation for 
instantiation, and for more information about changing the 
DBID or global name of a source database



Capture Process Architecture

Streams Capture Process 2-35

information that a capture process must scan subsequently. Therefore, you should 
run the BUILD procedure only when necessary.

A capture process requires a LogMiner data dictionary because the information in 
the primary data dictionary may not apply to the changes being captured from the 
redo log. These changes may have occurred minutes, hours, or even days before 
they are captured by a capture process. For example, consider the following 
scenario:

1. A capture process is configured to capture changes to tables.

2. A database administrator stops the capture process. When the capture process 
is stopped, it records the SCN of the change it was currently capturing.

3. User applications continue to make changes to the tables while the capture 
process is stopped.

4. The capture process is restarted three hours after it was stopped.

In this case, to ensure data consistency, the capture process must begin capturing 
changes in the redo log at the time when it was stopped. The capture process starts 
capturing changes at the SCN that it recorded when it was stopped. 

The redo log contains raw data. It does not contain database object names and 
column names in tables. Instead, it uses object numbers and internal column 
numbers for database objects and columns, respectively. Therefore, when a change 
is captured, a capture process must reference a data dictionary to determine the 
details of the change.

Because a LogMiner data dictionary may be populated when a capture process is 
started for the first time, it might take some time to start capturing changes. The 
amount of time required depends on the number of database objects in the 
database. You can query the STATE column in the V$STREAMS_CAPTURE dynamic 
performance view to monitor the progress while a capture process is processing a 
data dictionary build.

See Also:

� "Capture Process Rule Evaluation" on page 2-49

� "First SCN and Start SCN" on page 2-24

� "Capture Process States" on page 2-30

� Oracle Streams Replication Administrator's Guide for more 
information about preparing database objects for instantiation



Capture Process Architecture

2-36 Oracle Streams Concepts and Administration

Scenario Illustrating Why a Capture Process Needs a LogMiner Data Dictionary  Consider a 
scenario in which a capture process has been configured to capture changes to table 
t1, which has columns a and b, and the following changes are made to this table at 
three different points in time:

Time 1:  Insert values a=7 and b=15.

Time 2:  Add column c.

Time 3:  Drop column b.

If for some reason the capture process is capturing changes from an earlier time, 
then the primary data dictionary and the relevant version in the LogMiner data 
dictionary contain different information. Table 2–1 illustrates how the information 
in the LogMiner data dictionary is used when the current time is different than the 
change capturing time.

Assume that the capture process captures the change resulting from the insert at 
time 1 when the actual time is time 3. If the capture process used the primary data 
dictionary, then it might assume that a value of 7 was inserted into column a and a 
value of 15 was inserted into column c, because those are the two columns for table 
t1 at time 3 in the primary data dictionary. However, a value of 15 actually was 
inserted into column b, not column c.

Because the capture process uses the LogMiner data dictionary, the error is avoided. 
The LogMiner data dictionary is synchronized with the capture process and 
continues to record that table t1 has columns a and b at time 1. So, the captured 
change specifies that a value of 15 was inserted into column b.

Multiple Capture Processes for the Same Source Database  If one or more capture 
processes are capturing changes made to a source database, and you want to create 
a new capture process that captures changes to the same source database, then the 
new capture process either can create a new LogMiner data dictionary or share one 
of the existing LogMiner data dictionaries with one or more other capture 
processes. Whether a new LogMiner data dictionary is created for a new capture 

Table 2–1 Information About Table t1 in the Primary and LogMiner Data Dictionaries

Current 
Time

Change Capturing 
Time Primary Data Dictionary LogMiner Data Dictionary

1 1 Table t1 has columns a and b. Table t1 has columns a and b at time 1.

2 1 Table t1 has columns a, b, and c. Table t1 has columns a and b at time 1.

3 1 Table t1 has columns a and c. Table t1 has columns a and b at time 1.



Capture Process Architecture

Streams Capture Process 2-37

process depends on the setting for the first_scn parameter when you run 
CREATE_CAPTURE to create a capture process:

� If you specify NULL for the first_scn parameter, then the new capture 
process attempts to share a LogMiner data dictionary with one or more existing 
capture processes that capture changes from the same source database. NULL is 
the default for the first_scn parameter.

� If you specify a non-NULL value for the first_scn parameter, then the new 
capture process uses a new LogMiner data dictionary that is created when the 
new capture process is started for the first time.

If multiple LogMiner data dictionaries exist, and you specify NULL for the 
first_scn parameter during capture process creation, then the new capture 
process automatically attempts to share the LogMiner data dictionary of one of the 
existing capture processes that has taken at least one check point. You can view the 
maximum checkpoint SCN for all existing capture processes by querying the 
MAX_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.

If multiple LogMiner data dictionaries exist, and you specify a non-NULL value for 
the first_scn parameter during capture process creation, then the new capture 
process creates a new LogMiner data dictionary the first time it is started. In this 
case, before you create the new capture process, you must run the BUILD procedure 
in the DBMS_CAPTURE_ADM package on the source database. The BUILD procedure 
generates a corresponding valid first scn value that you can specify when you 
create the new capture process. You can find a first SCN generated by the BUILD 
procedure by running the following query:

Note:

� When you create a capture process and specify a non-NULL 
first_scn parameter value, this value should correspond to a 
data dictionary build in the redo log obtained by running the 
DBMS_CAPTURE_ADM.BUILD procedure.

� During capture process creation, if the first_scn parameter 
is NULL and the start_scn parameter is non-NULL, then an 
error is raised if the start_scn parameter setting is lower 
than all of the first SCN values for all existing capture 
processes.



Capture Process Architecture

2-38 Oracle Streams Concepts and Administration

COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
  WHERE DICTIONARY_BEGIN = 'YES';

This query may return more than one row if the BUILD procedure was run more 
than once.

The most important factor to consider when deciding whether a new capture 
process should share an existing LogMiner data dictionary or create a new one is 
the difference between the maximum checkpoint SCN values of the existing capture 
processes and the start SCN of the new capture process. If the new capture process 
shares a LogMiner data dictionary, then it must scan the redo log from the point of 
the maximum checkpoint SCN of the shared LogMiner data dictionary onward, 
even though the new capture process cannot capture changes prior to its first SCN. 
If the start SCN of the new capture process is much higher than the maximum 
checkpoint SCN of the existing capture process, then the new capture process must 
scan a large amount of redo log information before it reaches its start SCN.

A capture process creates a new LogMiner data dictionary when the first_scn 
parameter is non-NULL during capture process creation. Follow these guidelines 
when you decide if a new capture process should share an existing LogMiner data 
dictionary or create a new one:

� If one or more maximum checkpoint SCN values is greater than the start SCN 
you want to specify, and if this start SCN is greater than the first SCN of one or 
more existing capture processes, then it may be better to share the LogMiner 
data dictionary of an existing capture process. In this case, you can assume 
there is a checkpoint SCN that is less than the start SCN and that the difference 
between this checkpoint SCN and the start SCN is small. The new capture 
process will begin scanning the redo log from this checkpoint SCN and will 
catch up to the start SCN quickly.

� If no maximum checkpoint SCN is greater than the start SCN, and if the 
difference between the maximum checkpoint SCN and the start SCN is small, 
then it may be better to share the LogMiner data dictionary of an existing 
capture process. The new capture process will begin scanning the redo log from 
the maximum checkpoint SCN, but it will catch up to the start SCN quickly. 



Capture Process Architecture

Streams Capture Process 2-39

� If no maximum checkpoint SCN is greater than the start SCN, and if the 
difference between the highest maximum checkpoint SCN and the start SCN is 
large, then it may take a long time for the capture process to catch up to the 
start SCN. In this case, it may be better for the new capture process to create a 
new LogMiner data dictionary. It will take some time to create the new 
LogMiner data dictionary when the new capture process is first started, but the 
capture process can specify the same value for its first SCN and start SCN, and 
thereby avoid scanning a large amount of redo information unnecessarily.

Figure 2–3 illustrates these guidelines.

Figure 2–3 Deciding Whether to Share a LogMiner Data Dictionary

SCN values Increasing

Start SCN of
New Capture

Process
First SCN of Existing

Capture Process

Maximum checkpoint
SCN of Existing
Capture Process

SCN values Increasing

Maximum Checkpoint
SCN of Existing
Capture Process

Start SCN of New
Capture Process

SCN values Increasing

Maximum Checkpoint
SCN of Existing
Capture Process

Start SCN of
New Capture

Process

New Capture Process 
Should Create a New 
LogMiner Data 
Dictionary

New Capture Process 
Should Share LogMiner 
Data Dictionary of 
Existing Capture 
Process

10000 70000 90000

10000 3000000

70000 90000



Capture Process Architecture

2-40 Oracle Streams Concepts and Administration

First SCN and Start SCN Specifications During Capture Process Creation
When you create a capture process using the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package, you can specify the first SCN and start SCN for the 
capture process. The first SCN is the lowest SCN in the redo log from which a 
capture process can capture changes, and it should be obtained through a data 
dictionary build or a query on the V$ARCHIVED_LOG dynamic performance view. 
The start SCN is the SCN from which a capture process begins to capture changes. 
The start SCN must be equal to or greater than the first SCN.

A capture process scans the redo information from the first SCN or an existing 
capture process checkpoint forward, even if the start SCN is higher than the first 
SCN or the checkpoint SCN. In this case, the capture process does not capture any 
changes in the redo information before the start SCN. Oracle Corporation 
recommends that, at capture process creation time, the difference between the first 
SCN and start SCN be as small as possible to keep the amount of redo scanned by 
the capture process to a minimum.

In some cases, the behavior of the capture process is different depending on the 
settings of these SCN values and on whether the capture process is local or 
downstream.

Note:

� If you create a capture process using one of the procedures in 
the DBMS_STREAMS_ADM package, then it is the same as 
specifying NULL for the first_scn and start_scn 
parameters in the CREATE_CAPTURE procedure.

� You must prepare database objects for instantiation if a new 
capture process will capture changes made to these database 
objects. This requirement holds even if the new capture process 
shares a LogMiner data dictionary with one or more other 
capture processes for which these database objects have been 
prepared for instantiation.

See Also:

� "First SCN and Start SCN" on page 2-24

� "Capture Process Checkpoints" on page 2-31



Capture Process Architecture

Streams Capture Process 2-41

The following sections describe capture process behavior for SCN value settings:

� Non-NULL First SCN and NULL Start SCN for a Local or Downstream Capture 
Process

� Non-NULL First SCN and Non-NULL Start SCN for a Local or Downstream 
Capture Process

� NULL First SCN and Non-NULL Start SCN for a Local Capture Process

� NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process

� NULL First SCN and NULL Start SCN

Non-NULL First SCN and NULL Start SCN for a Local or Downstream Capture Process  The 
new capture process is created at the local database with a new LogMiner session 
starting from the value specified for the first_scn parameter. The start SCN is set 
to the specified first SCN value automatically, and the new capture process does not 
capture changes that were made before this SCN.

The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. 
This procedure should have been called at least once before on the source database, 
and the specified first SCN must correspond to the SCN value of a previous build 
that is still available in the redo log. When the new capture process is started for the 
first time, it creates a new LogMiner data dictionary using the data dictionary 
information in the redo log. If the BUILD procedure in the DBMS_CAPTURE_ADM 
package has not been run at least once on the source database, then an error is 
raised when the capture process is started.

Capture process behavior is the same for a local capture process and a downstream 
capture process created with these SCN settings, except that a local capture process 
is created at the source database and a downstream capture process is created at the 
downstream database.

Non-NULL First SCN and Non-NULL Start SCN for a Local or Downstream Capture Process  If 
the specified value for the start_scn parameter is greater than or equal to the 
specified value for the first_scn parameter, then the new capture process is 
created at the local database with a new LogMiner session starting from the 
specified first SCN. In this case, the new capture process does not capture changes 

Note: When you create a capture process using the 
DBMS_STREAMS_ADM package, both the first SCN and the start 
SCN are set to NULL during capture process creation.



Capture Process Architecture

2-42 Oracle Streams Concepts and Administration

that were made before the specified start SCN. If the specified value for the 
start_scn parameter is less than the specified value for the first_scn 
parameter, then an error is raised.

The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. 
This procedure must have been called at least once before on the source database, 
and the specified first_scn must correspond to the SCN value of a previous 
build that is still available in the redo log. When the new capture process is started 
for the first time, it creates a new LogMiner data dictionary using the data 
dictionary information in the redo log. If the BUILD procedure in the 
DBMS_CAPTURE_ADM package has not been run at least once on the source 
database, then an error is raised.

Capture process behavior is the same for a local capture process and a downstream 
capture process created with these SCN settings, except that a local capture process 
is created at the source database and a downstream capture process is created at the 
downstream database.

NULL First SCN and Non-NULL Start SCN for a Local Capture Process  The new capture 
process creates a new LogMiner data dictionary if either one of the following 
conditions is true:

� There is no existing capture process for the local source database, and the 
specified value for the start_scn parameter is greater than or equal to the 
current SCN for the database.

� There are existing capture processes, but none of the capture processes have 
taken a checkpoint yet, and the specified value for the start_scn parameter is 
greater than or equal to the current SCN for the database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package 
is run during capture process creation. The new capture process uses the resulting 
build of the source data dictionary in the redo log to create a LogMiner data 
dictionary the first time it is started, and the first SCN corresponds to the SCN of 
the data dictionary build.

However, if there is at least one existing local capture process for the local source 
database that has taken a checkpoint, then the new capture process shares an 
existing LogMiner data dictionary with one or more of the existing capture 
processes. In this case, a capture process with a first SCN that is lower than or equal 
to the specified start SCN must have been started successfully at least once.

If there is no existing capture process for the local source database (or if no existing 
capture processes have taken a checkpoint yet), and the specified start SCN is less 
than the current SCN for the database, then an error is raised.



Capture Process Architecture

Streams Capture Process 2-43

NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process  If the 
use_database_link parameter is set to true during capture process creation, 
then the database link is used to obtain the current SCN of the source database. In 
this case, the new capture process creates a new LogMiner data dictionary if either 
one of the following conditions is true:

� There is no existing capture process that captures changes to the source 
database at the downstream database, and the specified value for the 
start_scn parameter is greater than or equal to the current SCN for the 
source database.

� There are existing capture processes that capture changes to the source database 
at the downstream database, but none of the capture processes have taken a 
checkpoint yet, and the specified value for the start_scn parameter is greater 
than or equal to the current SCN for the source database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package 
is run during capture process creation. The first time you start the new capture 
process, it uses the resulting build of the source data dictionary in the redo log files 
copied to the downstream database to create a LogMiner data dictionary. Here, the 
first SCN for the new capture process corresponds to the SCN of the data dictionary 
build.

However, if there is at least one existing capture process that has taken a checkpoint 
and captures changes to the source database at the downstream database, then the 
new capture process shares an existing LogMiner data dictionary with one or more 
of these existing capture processes, regardless of the use_database_link 
parameter setting. In this case, one of these existing capture processes with a first 
SCN that is lower than or equal to the specified start SCN must have been started 
successfully at least once.

If the use_database_link parameter is set to true during capture process 
creation, there is no existing capture process that captures changes to the source 
database at the downstream database (or no existing capture process has taken a 
checkpoint), and the specified start_scn parameter value is less than the current 
SCN for the source database, then an error is raised.

If the use_database_link parameter is set to false during capture process 
creation and there is no existing capture process that captures changes to the source 
database at the downstream database (or no existing capture process has taken a 
checkpoint), then an error is raised.



Capture Process Architecture

2-44 Oracle Streams Concepts and Administration

NULL First SCN and NULL Start SCN  The behavior is the same as setting the 
first_scn parameter to NULL and setting the start_scn parameter to the 
current SCN of the source database.

A New First SCN Value and Purged LogMiner Dictionary Information
When you reset the first SCN value for an existing capture process, Oracle 
automatically purges LogMiner data dictionary information prior to the new first 
SCN setting. If the start SCN for a capture process corresponds to information that 
has been purged, then Oracle automatically resets the start SCN to the same value 
as the first SCN. However, if the start SCN is higher than the new first SCN setting, 
then the start SCN remains unchanged.

Figure 2–4 shows how Oracle automatically purges LogMiner data dictionary 
information prior to a new first SCN setting, and how the start SCN is not changed 
if it is higher than the new first SCN setting.

Figure 2–4 Start SCN Higher Than Reset First SCN

See Also:

� "NULL First SCN and Non-NULL Start SCN for a Local 
Capture Process" on page 2-42

� "NULL First SCN and Non-NULL Start SCN for a Downstream 
Capture Process" on page 2-43

Time 1

Time 2

SCN values in the Log Miner data dictionary

SCN values in the Log Miner data dictionary

Start SCN
479502

First SCN
407835

Start SCN
479502

New first SCN setting
423667

Purged Information



Capture Process Architecture

Streams Capture Process 2-45

Given this example, if the first SCN is reset again to a value higher than the start 
SCN value for a capture process, then the start SCN no longer corresponds to 
existing information in the LogMiner data dictionary. Figure 2–5 shows how Oracle 
resets the start SCN automatically if it is lower than a new first SCN setting.

Figure 2–5 Start SCN Lower Than Reset First SCN

As you can see, the first SCN and start SCN for a capture process may continually 
increase over time, and, as the first SCN moves forward, it may no longer 
correspond to an SCN established by the DBMS_CAPTURE_ADM.BUILD procedure.

The Streams Data Dictionary
Propagations and apply processes use a Streams data dictionary to keep track of 
the database objects from a particular source database. A Streams data dictionary is 
populated whenever one or more database objects are prepared for instantiation at 
a source database. Specifically, when a database object is prepared for instantiation, 
it is recorded in the redo log. When a capture process scans the redo log, it uses this 
information to populate the local Streams data dictionary for the source database. In 
the case of local capture, this Streams data dictionary is at the source database. In 

See Also:

� "First SCN and Start SCN" on page 2-24

� "Setting the Start SCN for an Existing Capture Process" on 
page 9-36

� The DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure in the 
PL/SQL Packages and Types Reference for information about 
altering a capture process

Time 3

Time 4

SCN values in the Log Miner data dictionary

SCN values in the Log Miner data dictionary

Start SCN
479502

First SCN
423667

New first SCN setting. Start SCN
automatically set to this value.

502631Purged Information



Capture Process Architecture

2-46 Oracle Streams Concepts and Administration

the case of downstream capture, this Streams data dictionary is at the downstream 
database.

When you prepare a database object for instantiation, you are informing Streams 
that information about the database object is needed by propagations that 
propagate changes to the database object and apply processes that apply changes to 
the database object. Any database that propagates or applies these changes requires 
a Streams data dictionary for the source database where the changes originated. 

After an object has been prepared for instantiation, the local Streams data dictionary 
is updated when a DDL statement on the object is processed by a capture process. 
In addition, an internal message containing information about this DDL statement 
is captured and placed in the queue for the capture process. Propagations may then 
propagate these internal messages to destination queues at databases.

A Streams data dictionary is multiversioned. If a database has multiple 
propagations and apply processes, then all of them use the same Streams data 
dictionary for a particular source database. A database can contain only one 
Streams data dictionary for a particular source database, but it can contain multiple 
Streams data dictionaries if it propagates or applies changes from multiple source 
databases.

ARCHIVELOG Mode and a Capture Process
A local capture process reads online redo logs whenever possible and archived redo 
log files otherwise. A downstream capture process always reads archived redo log 
files from its source database. For this reason, the source database must be running 
in ARCHIVELOG mode when a capture process is configured to capture changes. 
You must keep an archived redo log file available until you are certain that no 
capture process will need that file.

You can query the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE 
data dictionary view to determine the required checkpoint SCN for a capture 
process. When the capture process is restarted, it scans the redo log from the 
required checkpoint SCN forward. Therefore, the redo log file that includes the 

See Also:

� Oracle Streams Replication Administrator's Guide for more 
information about instantiation

� "Streams Data Dictionary for Propagations" on page 3-23

� "Streams Data Dictionary for an Apply Process" on page 4-18



Capture Process Architecture

Streams Capture Process 2-47

required checkpoint SCN, and all subsequent redo log files, must be available to the 
capture process.

The first SCN for a capture process can be reset to a higher value, but it cannot be 
reset to a lower value. Therefore, a capture process will never need the redo log files 
that contain information prior to its first SCN. Query the 
DBA_LOGMNR_PURGED_LOG data dictionary view to determine which archived 
redo log files will never be needed by any capture process.

When a local capture process falls behind, there is a seamless transition from 
reading an online redo log to reading an archived redo log, and, when a local 
capture process catches up, there is a seamless transition from reading an archived 
redo log to reading an online redo log.

Capture Process Parameters
After creation, a capture process is disabled so that you can set the capture process 
parameters for your environment before starting it for the first time. Capture 
process parameters control the way a capture process operates. For example, the 
time_limit capture process parameter can be used to specify the amount of time 
a capture process runs before it is shut down automatically.

See Also:

� Oracle Database Administrator's Guide for information about 
running a database in ARCHIVELOG mode

� "Displaying the Redo Log Files That Will Never Be Needed by 
Any Capture Process" on page 14-13

See Also:

� "Setting a Capture Process Parameter" on page 9-32

� This section does not discuss all of the available capture process 
parameters. See the DBMS_CAPTURE_ADM.SET_PARAMETER 
procedure in the PL/SQL Packages and Types Reference for 
detailed information about all of the capture process 
parameters.



Capture Process Architecture

2-48 Oracle Streams Concepts and Administration

Capture Process Parallelism
The parallelism capture process parameter controls the number of preparer 
servers used by a capture process. The preparer servers concurrently format 
changes found in the redo log into LCRs. Each reader server, preparer server, and 
builder server is a parallel execution server, and the number of preparer servers 
equals the number specified for the parallelism capture process parameter. So, if 
parallelism is set to 5, then a capture process uses a total of seven parallel 
execution servers, assuming seven parallel execution servers are available: one 
reader server, five preparer servers, and one builder server.

Automatic Restart of a Capture Process
You can configure a capture process to stop automatically when it reaches certain 
limits. The time_limit capture process parameter specifies the amount of time a 
capture process runs, and the message_limit capture process parameter specifies 
the number of events a capture process can capture. The capture process stops 
automatically when it reaches one of these limits.

The disable_on_limit parameter controls whether a capture process becomes 
disabled or restarts when it reaches a limit. If you set the disable_on_limit 
parameter to y, then the capture process is disabled when it reaches a limit and does 
not restart until you restart it explicitly. If, however, you set the 
disable_on_limit parameter to n, then the capture process stops and restarts 
automatically when it reaches a limit.

Note:

� Resetting the parallelism parameter automatically stops 
and restarts the capture process.

� Setting the parallelism parameter to a number higher than 
the number of available parallel execution servers might 
disable the capture process. Make sure the PROCESSES and 
PARALLEL_MAX_SERVERS initialization parameters are set 
appropriately when you set the parallelism capture process 
parameter.

See Also: "Capture Process Components" on page 2-29 for more 
information about preparer servers



Capture Process Architecture

Streams Capture Process 2-49

When a capture process is restarted, it starts to capture changes at the point where it 
last stopped. A restarted capture process gets a new session identifier, and the 
parallel execution servers associated with the capture process also get new session 
identifiers. However, the capture process number (cnnn) remains the same.

Capture Process Rule Evaluation
A capture process evaluates changes it finds in the redo log against its positive and 
negative rule sets. The capture process evaluates a change against the negative rule 
set first. If one or more rules in the negative rule set evaluate to TRUE for the 
change, then the change is discarded, but if no rule in the negative rule set evaluates 
to TRUE for the change, then the change satisfies the negative rule set. When a 
change satisfies the negative rule set for a capture process, the capture process 
evaluates the change against its positive rule set. If one or more rules in the positive 
rule set evaluate to TRUE for the change, then the change satisfies the positive rule 
set, but if no rule in the positive rule set evaluates to TRUE for the change, then the 
change is discarded. If a capture process only has one rule set, then it evaluates 
changes against this one rule set only.

A running capture process completes the following series of actions to capture 
changes:

1. Finds changes in the redo log.

2. Performs prefiltering of the changes in the redo log. During this step, a capture 
process evaluates rules in its rule sets at the object level and schema level to 
place changes found in the redo log into two categories: changes that should be 
converted into LCRs and changes that should not be converted into LCRs.

Prefiltering is a safe optimization done with incomplete information. This step 
identifies relevant changes to be processed subsequently, such that:

� A capture process converts a change into an LCR if the change satisfies the 
capture process rule sets.

� A capture process does not convert a change into an LCR if the change does 
not satisfy the capture process rule sets.

� Regarding MAYBE evaluations, the rule evaluation proceeds as follows:

– If a change evaluates to MAYBE against both the positive and negative 
rule set for a capture process, then the capture process may not have 
enough information to determine whether the change will definitely 
satisfy both of its rule sets. In this case, the change is converted to an 
LCR for further evaluation.



Capture Process Architecture

2-50 Oracle Streams Concepts and Administration

– If the change evaluates to FALSE against the negative rule set and 
MAYBE against the positive rule set for the capture process, then the 
capture process may not have enough information to determine 
whether the change will definitely satisfy both of its rule sets. In this 
case, the change is converted to an LCR for further evaluation.

– If the change evaluates to MAYBE against the negative rule set and TRUE 
against the positive rule set for the capture process, then the capture 
process may not have enough information to determine whether the 
change will definitely satisfy both of its rule sets. In this case, the 
change is converted to an LCR for further evaluation.

– If the change evaluates to TRUE against the negative rule set and MAYBE 
against the positive rule set for the capture process, then the capture 
process discards the change. 

– If the change evaluates to MAYBE against the negative rule set and 
FALSE against the positive rule set for the capture process, then the 
capture process discards the change.

3. Converts changes that satisfy, or may satisfy, the capture process rule sets into 
LCRs based on prefiltering.

4. Performs LCR filtering. During this step, a capture process evaluates rules 
regarding information in each LCR to separate the LCRs into two categories: 
LCRs that should be enqueued and LCRs that should be discarded.

5. Discards the LCRs that should not be enqueued because they did not satisfy the 
capture process rule sets.

6. Enqueues the remaining captured LCRs into the queue associated with the 
capture process.

For example, suppose the following rule is defined in the positive rule set for a 
capture process: Capture changes to the hr.employees table where the 
department_id is 50. No other rules are defined for the capture process, and the 
parallelism parameter for the capture process is set to 1.



Capture Process Architecture

Streams Capture Process 2-51

Given this rule, suppose an UPDATE statement on the hr.employees table changes 
50 rows in the table. The capture process performs the following series of actions for 
each row change:

1. Finds the next change resulting from the UPDATE statement in the redo log.

2. Determines that the change resulted from an UPDATE statement to the 
hr.employees table and must be captured. If the change was made to a 
different table, then the capture process ignores the change.

3. Captures the change and converts it into an LCR.

4. Filters the LCR to determine whether it involves a row where the 
department_id is 50.

5. Either enqueues the LCR into the queue associated with the capture process if it 
involves a row where the department_id is 50, or discards the LCR if it 
involves a row where the department_id is not 50 or is missing.

Figure 2–6 illustrates capture process rule evaluation in a flowchart.

See Also:

� "Capture Process Components" on page 2-29

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets



Capture Process Architecture

2-52 Oracle Streams Concepts and Administration

Figure 2–6 Flowchart Showing Capture Process Rule Evaluation

Persistent Capture Process Status Upon Database Restart
A capture process maintains a persistent status when the database running the 
capture process is shut down and restarted. For example, if a capture process is 
enabled when the database is shut down, then the capture process automatically 
starts when the database is restarted. Similarly, if a capture process is disabled or 
aborted when a database is shut down, then the capture process is not started and 
retains the disabled or aborted status when the database is restarted.

Could
the change pass the

capture process rule sets given
the schema and object name

corresponding to the
change ?

Does
the LCR pass the
capture process

rule sets?

END

START

Find change in Redo Log

Convert Change into LCR

Yes

No

No

Yes

Enqueue LCR Ignore ChangeDiscard LCR



Streams Staging and Propagation 3-1

3
Streams Staging and Propagation

This chapter explains the concepts relating to staging events in a queue and 
propagating events from one queue to another.

This chapter contains these topics:

� Introduction to Event Staging and Propagation

� Captured and User-Enqueued Events

� Event Propagation Between Queues

� Messaging Clients

� SYS.AnyData Queues and User Messages

� SYS.AnyData Queues and Oracle Real Application Clusters

� Streams Staging and Propagation Architecture

See Also: Chapter 10, "Managing Staging and Propagation"



Introduction to Event Staging and Propagation

3-2 Oracle Streams Concepts and Administration

Introduction to Event Staging and Propagation
Streams uses queues of type SYS.AnyData to stage events. In Streams, there are 
two types of events that can be encapsulated into a SYS.AnyData event and staged 
in a SYS.AnyData queue: logical change records (LCRs) and user messages. An 
LCR is an object that contains information about a change to a database object, 
while a user message is a message of a user-defined type created by users or 
applications. Both types of events can be used for information sharing within a 
single database or between databases.

Staged events can be consumed or propagated, or both. Staged events can be 
consumed by an apply process, by a messaging client, or by a user application. A 
running apply process implicitly dequeues events, but messaging clients and user 
applications explicitly dequeue events. Even after an event is consumed, it may 
remain in the queue if you also have configured Streams to propagate the event to 
one or more other queues or if message retention is specified for user-enqueued 
messages. The queues to which events are propagated may reside in the same 
database or in different databases than the queue from which the events are 
propagated. In either case, the queue from which the events are propagated is 
called the source queue, and the queue that receives the events is called the 
destination queue. There can be a one-to-many, many-to-one, or many-to-many 
relationship between source and destination queues. Figure 3–1 shows propagation 
from a source queue to a destination queue.

Figure 3–1 Propagation from a Source Queue to a Destination Queue

You can create, alter, and drop a propagation, and you can define propagation rules 
that control which events are propagated. The user who owns the source queue is 
the user who propagates events, and this user must have the necessary privileges to 
propagate events. 

Source 
Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Destination 
Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate 
Events



Captured and User-Enqueued Events

Streams Staging and Propagation 3-3

These privileges include the following:

� Execute privilege on the rule sets used by the propagation

� Execute privilege on all rule-based transformation functions used in the rule 
sets

� Enqueue privilege on the destination queue if the destination queue is in the 
same database

If the propagation propagates events to a destination queue in a remote database, 
then the owner of the source queue must be able to use the propagation's database 
link, and the user to which the database link connects at the remote database must 
have enqueue privilege on the destination queue.

Captured and User-Enqueued Events
Events can be enqueued in two ways:

� A capture process enqueues captured changes in the form of events containing 
LCRs. An event containing an LCR that was originally captured and enqueued 
by a capture process is called a captured event.

� A user application enqueues user messages encapsulated in events of type 
SYS.AnyData. These user messages can contain LCRs or any other type of 
message. Any user message that was explicitly enqueued by a user or an 
application is called a user-enqueued event. Events that were enqueued by a 
user procedure called from an apply process are also user-enqueued events.

Note:

� Connection qualifiers cannot be used with Streams 
propagations.

� Message retention does not apply to LCRs captured by a 
capture process.

See Also:

� "Logical Change Records (LCRs)" on page 2-2

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about message retention for user-enqueued 
messages



Captured and User-Enqueued Events

3-4 Oracle Streams Concepts and Administration

So, each captured event contains an LCR, but a user-enqueued event may or may 
not contain an LCR. Propagating a captured event or a user-enqueued event 
enqueues the event into the destination queue.

Events can be dequeued in two ways:

� An apply process dequeues either captured or user-enqueued events. If the 
event contains an LCR, then the apply process either can apply it directly or call 
a user-specified procedure for processing. If the event does not contain an LCR, 
then the apply process can invoke a user-specified procedure called a message 
handler to process it. In addition, captured LCRs that are dequeued by an apply 
process and then enqueued using the SET_ENQUEUE_DESTINATION procedure 
in the DBMS_APPLY_ADM package are user-enqueued events.

� A user application explicitly dequeues user-enqueued events and processes 
them. The user application may or may not use a Streams messaging client. 
Captured events cannot be dequeued by a user application. Captured events 
must be dequeued by an apply process. However, if a user procedure called by 
an apply process explicitly enqueues an event, then the event is a 
user-enqueued event and can be explicitly dequeued, even if the event was 
originally a captured event.

The dequeued events may have originated at the same database where they are 
dequeued, or they may have originated at a different database. 

See Also:

� Chapter 2, "Streams Capture Process" for more information 
about the capture process

� "Messaging Clients" on page 3-11

� Chapter 4, "Streams Apply Process" for more information about 
the apply process

� Oracle Streams Advanced Queuing User's Guide and Reference for 
information about enqueuing events into a queue

� Oracle Streams Replication Administrator's Guide for more 
information about managing LCRs



Event Propagation Between Queues

Streams Staging and Propagation 3-5

Event Propagation Between Queues
You can use Streams to configure event propagation between two queues, which 
may reside in different databases. Streams uses job queues to propagate events.

A propagation is always between a source queue and a destination queue. 
Although propagation is always between two queues, a single queue may 
participate in many propagations. That is, a single source queue may propagate 
events to multiple destination queues, and a single destination queue may receive 
events from multiple source queues. However, only one propagation is allowed 
between a particular source queue and a particular destination queue. Also, a single 
queue may be a destination queue for some propagations and a source queue for 
other propagations.

A propagation may propagate all of the events in a source queue to a destination 
queue, or a propagation may propagate only a subset of the events. Also, a single 
propagation can propagate both captured and user-enqueued events. You can use 
rules to control which events in the source queue are propagated to the destination 
queue and which events are discarded.

Depending on how you set up your Streams environment, changes could be sent 
back to the site where they originated. You need to ensure that your environment is 
configured to avoid cycling a change in an endless loop. You can use Streams tags 
to avoid such a change cycling loop.

Propagation Rules
A propagation either propagates or discards events based on rules that you define. 
For LCR events, each rule specifies the database objects and types of changes for 
which the rule evaluates to TRUE. You can place these rules in a positive rule set for 
the propagation or a negative rule set for the propagation.

See Also:

� "Managing Streams Propagations and Propagation Jobs" on 
page 10-7

� Oracle Streams Advanced Queuing User's Guide and Reference for 
detailed information about the propagation infrastructure 
in AQ

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Event Propagation Between Queues

3-6 Oracle Streams Concepts and Administration

If a rule evaluates to TRUE for an event, and the rule is in the positive rule set for a 
propagation, then the propagation propagates the change. If a rule evaluates to 
TRUE for an event, and the rule is in the negative rule set for a propagation, then the 
propagation discards the change. If a propagation has both a positive and a 
negative rule set, then the negative rule set is always evaluated first.

You can specify propagation rules for LCR events at the following levels:

� A table rule propagates or discards either row changes resulting from DML 
changes or DDL changes to a particular table. Subset rules are table rules that 
include a subset of the row changes to a particular table.

� A schema rule propagates or discards either row changes resulting from DML 
changes or DDL changes to the database objects in a particular schema.

� A global rule propagates or discards either all row changes resulting from DML 
changes or all DDL changes in the source queue.

For non-LCR events, you can create your own rules to control propagation.

A queue subscriber that specifies a condition causes the system to generate a rule. 
The rule sets for all subscribers to a queue are combined into a single 
system-generated rule set to make subscription more efficient.

Ensured Event Delivery
A user-enqueued event is propagated successfully to a destination queue when the 
enqueue into the destination queue is committed. A captured event is propagated 
successfully to a destination queue when both of the following actions are 
completed:

� The event is processed by all relevant apply processes associated with the 
destination queue.

� The event is propagated successfully from the destination queue to all of its 
relevant destination queues.

When an event is successfully propagated between two SYS.AnyData queues, the 
destination queue acknowledges successful propagation of the event. If the source 
queue is configured to propagate an event to multiple destination queues, then the 
event remains in the source queue until each destination queue has sent 

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Event Propagation Between Queues

Streams Staging and Propagation 3-7

confirmation of event propagation to the source queue. When each destination 
queue acknowledges successful propagation of the event, and all local consumers in 
the source queue database have consumed the event, the source queue can drop the 
event.

This confirmation system ensures that events are always propagated from the 
source queue to the destination queue, but, in some configurations, the source 
queue can grow larger than an optimal size. When a source queue grows, it uses 
more SGA memory and may use more disk space.

There are two common reasons for source-queue growth:

� If an event cannot be propagated to a specified destination queue for some 
reason (such as a network problem), then the event will remain in the source 
queue until the destination queue becomes available. This situation could cause 
the source queue to grow large. So, you should monitor your queues regularly 
to detect problems early.

� Suppose a source queue is propagating captured events to multiple destination 
queues, and one or more destination databases acknowledge successful 
propagation of events much more slowly than the other queues. In this case, the 
source queue can grow because the slower destination databases create a 
backlog of events that have already been acknowledged by the faster 
destination databases. In an environment such as this, consider creating more 
than one capture process to capture changes at the source database. In this case, 
you can use one source queue for the slower destination databases and another 
source queue for the faster destination databases.

Directed Networks
A directed network is one in which propagated events may pass through one or 
more intermediate databases before arriving at a destination database. An event 
may or may not be processed by an apply process at an intermediate database. 
Using Streams, you can choose which events are propagated to each destination 
database, and you can specify the route that events will traverse on their way to a 
destination database. Figure 3–2 shows an example of a directed networks 
environment.

See Also:

� Chapter 2, "Streams Capture Process"

� "Monitoring a SYS.AnyData Queue and Messaging" on 
page 14-22



Event Propagation Between Queues

3-8 Oracle Streams Concepts and Administration

Figure 3–2 Example Directed Networks Environment

The advantage of using a directed network is that a source database does not need 
to have a physical network connection with a destination database. So, if you want 
events to propagate from one database to another, but there is no direct network 
connection between the computers running these databases, then you can still 
propagate the events without reconfiguring your network, as long as one or more 
intermediate databases connect the source database to the destination database.

If you use directed networks, and an intermediate site goes down for an extended 
period of time or is removed, then you may need to reconfigure the network and 
the Streams environment.

Queue Forwarding and Apply Forwarding
An intermediate database in a directed network may propagate events using queue 
forwarding or apply forwarding. Queue forwarding means that the events being 
forwarded at an intermediate database are the events received by the intermediate 
database. The source database for an event is the database where the event 
originated. 

Destination Database
in New York

Queue

Destination Database
in Miami

Queue

Intermediate Database
in Chicago

Queue

This queue is:
• Destination queue

for the source queue
in Hong Kong. 

• Source queue for the
destination queues in 
New York and Miami.

Source Database
in Hong Kong

Queue
Propagate Events

Propagate 
Events

Propagate 
Events



Event Propagation Between Queues

Streams Staging and Propagation 3-9

Apply forwarding means that the events being forwarded at an intermediate 
database are first processed by an apply process. These events are then recaptured 
by a capture process at the intermediate database and forwarded. When you use 
apply forwarding, the intermediate database becomes the new source database for 
the events because the events are recaptured from the redo log generated there.

Consider the following differences between queue forwarding and apply 
forwarding when you plan your Streams environment:

� With queue forwarding, an event is propagated through the directed network 
without being changed, assuming there are no capture or propagation 
transformations. With apply forwarding, events are applied and recaptured at 
intermediate databases and may be changed by conflict resolution, apply 
handlers, or apply transformations.

� With queue forwarding, a destination database must have a separate apply 
process to apply events from each source database. With apply forwarding, 
fewer apply processes may be required at a destination database because 
recapturing of events at intermediate databases may result in fewer source 
databases when changes reach a destination database.

� With queue forwarding, one or more intermediate databases are in place 
between a source database and a destination database. With apply forwarding, 
because events are recaptured at intermediate databases, the source database 
for an event can be the same as the intermediate database connected directly 
with the destination database.

A single Streams environment may use a combination of queue forwarding and 
apply forwarding.

Advantages of Queue Forwarding  Queue forwarding has the following advantages 
compared to apply forwarding:

� Performance may be improved because an event is captured only once. 

� Less time may be required to propagate an event from the database where the 
event originated to the destination database, because the events are not applied 
and recaptured at one or more intermediate databases. In other words, latency 
may be lower with queue forwarding.

� The origin of an event can be determined easily by running the 
GET_SOURCE_DATABASE_NAME member procedure on the LCR contained in 
the event. If you use apply forwarding, then determining the origin of an event 
requires the use of Streams tags and apply handlers. 



Event Propagation Between Queues

3-10 Oracle Streams Concepts and Administration

� Parallel apply may scale better and provide more throughput when separate 
apply processes are used because there are fewer dependencies, and because 
there are multiple apply coordinators and apply reader processes to perform 
the work.

� If one intermediate database goes down, then you can reroute the queues and 
reset the start SCN at the capture site to reconfigure end-to-end capture, 
propagation, and apply. 

If you use apply forwarding, then substantially more work may be required to 
reconfigure end-to-end capture, propagation, and apply of events, because the 
destination database(s) downstream from the unavailable intermediate 
database were using the SCN information of this intermediate database. 
Without this SCN information, the destination databases cannot apply the 
changes properly.

Advantages of Apply Forwarding  Apply forwarding has the following advantages 
compared to queue forwarding:

� A Streams environment may be easier to configure because each database can 
apply changes only from databases directly connected to it, rather than from 
multiple remote source databases.

� In a large Streams environment where intermediate databases apply changes, 
the environment may be easier to monitor and manage because fewer apply 
processes may be required. An intermediate database that applies changes must 
have one apply process for each source database from which it receives 
changes. In an apply forwarding environment, the source databases of an 
intermediate database are only the databases to which it is directly connected. 
In a queue forwarding environment, the source databases of an intermediate 
database are all of the other source databases in the environment, whether they 
are directly connected to the intermediate database or not.

See Also:

� Chapter 4, "Streams Apply Process"

� Oracle Streams Replication Administrator's Guide for an example 
of an environment that uses queue forwarding and for an 
example of an environment that uses apply forwarding



Messaging Clients

Streams Staging and Propagation 3-11

Binary File Propagation
You can propagate a binary file between databases by using Streams. To do so, you 
put one or more BFILE attributes in a message payload and then propagate the 
message to a remote queue. Each BFILE referenced in the payload is transferred to 
the remote database after the message is propagated, but before the message 
propagation is committed. The directory object and filename of each propagated 
BFILE are preserved, but you can map the directory object to different directories 
on the source and destination databases. The message payload can be a BFILE 
wrapped in a SYS.AnyData payload, or the message payload can be one or more 
BFILE attributes of an object wrapped in a SYS.AnyData payload. 

The following are not supported in a message payload:

� One or more BFILE attributes in a varray

� A user-defined type object with a SYS.AnyData attribute that contains one or 
more BFILE attributes

Propagating a BFILE in Streams has the same restrictions as the procedure 
DBMS_FILE_TRANSFER.PUT_FILE.

Messaging Clients
A messaging client consumes user-enqueued events when it is invoked by an 
application or a user. You use rules to specify which user-enqueued events in the 
queue are dequeued by a messaging client. These user-enqueued events may be 
user-enqueued LCRs or user-enqueued messages.

You can create a messaging client by specifying dequeue for the streams_type 
parameter when you run one of the following procedures in the 
DBMS_STREAMS_ADM package:

� ADD_MESSAGE_RULE

� ADD_TABLE_RULES

� ADD_SUBSET_RULES

� ADD_SCHEMA_RULES

� ADD_GLOBAL_RULES

See Also: Oracle Database Concepts, Oracle Database Administrator's 
Guide, and PL/SQL Packages and Types Reference for more 
information about transferring files with the 
DBMS_FILE_TRANSFER package



SYS.AnyData Queues and User Messages

3-12 Oracle Streams Concepts and Administration

When you create a messaging client, you specify the name of the messaging client 
and the SYS.AnyData queue from which the messaging client dequeues messages. 
These procedures also can add rules to the positive or negative rule set of a 
messaging client. You specify the message type for each rule, and a single 
messaging client can dequeue messages of different types.

The user who creates a messaging client is granted the privileges to dequeue from 
the queue using the messaging client. This user is the messaging client user. The 
messaging client user can dequeue messages that satisfy the messaging client rule 
sets. A messaging client can be associated with only one user, but one user may be 
associated with many messaging clients.

Figure 3–3 shows a messaging client dequeuing user-enqueued events.

Figure 3–3 Messaging Client

SYS.AnyData Queues and User Messages
Streams enables messaging with queues of type SYS.AnyData. These queues can 
stage user messages whose payloads are of SYS.AnyData type. A SYS.AnyData 
payload can be a wrapper for payloads of different datatypes.

By using SYS.AnyData wrappers for message payloads, publishing applications 
can enqueue messages of different types into a single queue, and subscribing 
applications can dequeue these messages, either explicitly using a messaging client 

See Also:

� Chapter 6, "How Rules Are Used In Streams" for information 
about messaging clients and rules

� "Configuring a Messaging Client and Message Notification" on 
page 10-25

Explicity Dequeue 
User-Enqueued 
Events

Invoke 
Messaging
Client

Queue

User-Enqueued LCR
User-Enqueued Message
User-Enqueued Message
User-Enqueued Message
User-Enqueued LCR
User-Enqueued LCR
.
.
.

Messaging
Client

Application
or User



SYS.AnyData Queues and User Messages

Streams Staging and Propagation 3-13

or an application, or implicitly using an apply process. If the subscribing 
application is remote, then the messages can be propagated to the remote site, and 
the subscribing application can dequeue the messages from a local queue in the 
remote database. Alternatively, a remote subscribing application can dequeue 
messages directly from the source queue using a variety of standard protocols, such 
as PL/SQL and OCI.

Streams includes the features of Advanced Queuing (AQ), which supports all the 
standard features of message queuing systems, including multiconsumer queues, 
publish and subscribe, content-based routing, internet propagation, 
transformations, and gateways to other messaging subsystems.

You can wrap almost any type of payload in a SYS.AnyData payload. To do this, 
you use the Convertdata_type static functions of the SYS.AnyData type, where 
data_type is the type of object to wrap. These functions take the object as input 
and return a SYS.AnyData object.

You cannot enqueue SYS.AnyData payloads that contain payloads of the following 
datatypes into a SYS.AnyData queue:

� CLOB

� NCLOB

� BLOB

In addition, you cannot enqueue SYS.AnyData payloads that contain payloads of 
object types with attributes of these datatypes into a SYS.AnyData queue, nor 
object types that use type evolution or type inheritance.

Note:

� Payloads of ROWID datatype cannot be wrapped in a 
SYS.AnyData wrapper. This restriction does not apply to 
payloads of UROWID datatype.

� A queue that can stage messages of only one particular type is 
called a typed queue.



SYS.AnyData Queues and Oracle Real Application Clusters

3-14 Oracle Streams Concepts and Administration

SYS.AnyData Queues and Oracle Real Application Clusters
You can configure a SYS.AnyData queue to stage and propagate captured and 
user-enqueued events in a Real Application Clusters (RAC) environment. In a RAC 
environment, only the owner instance may have a buffer for a queue, but different 
instances may have buffers for different queues. A buffered queue is System Global 
Area (SGA) memory associated with a SYS.AnyData queue that contains only 
captured events. Buffered queues are discussed in more detail later in this chapter. 

A SYS.AnyData queue that contains only user-enqueued events behaves the same 
as a typed queue in a RAC environment. However, if a SYS.AnyData queue 
contains or will contain captured events in a RAC environment, then each 
propagation that propagates captured events to a RAC destination database must 
use an instance-specific database link that refers to the owner instance of the 
destination queue. If the propagation connects to any other instance, then the 
propagation will raise an error.

Each capture process and apply process is started on the owner instance for its 
SYS.AnyData queue, even if the start procedure is run on a different instance. If 
the owner instance for a queue table containing a destination queue becomes 
unavailable, then queue ownership is transferred automatically to another instance 
in the cluster. If this happens, then database links from remote source queues must 
be reconfigured manually to connect to the instance that owns the destination 
queue. 

See Also:

� "Managing a Streams Messaging Environment" on page 10-20

� "Wrapping User Message Payloads in a SYS.AnyData Wrapper 
and Enqueuing Them" on page 10-20

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information relating to SYS.AnyData queues, such as 
wrapping payloads in a SYS.AnyData wrapper, programmatic 
environments for enqueuing messages into and dequeuing 
messages from a SYS.AnyData queue, propagation, and 
user-defined types 

� PL/SQL Packages and Types Reference for more information about 
the SYS.AnyData type



SYS.AnyData Queues and Oracle Real Application Clusters

Streams Staging and Propagation 3-15

Streams processes and jobs support primary instance and secondary instance 
specifications for queue tables. If you use these specifications, then the secondary 
instance assumes ownership of a queue table when the primary instance becomes 
unavailable, and ownership is transferred back to the primary instance when it 
becomes available again. If both the primary and secondary instance for a queue 
table containing a destination queue become unavailable, then queue ownership is 
transferred automatically to another instance in the cluster. In this case, if the 
primary or secondary instance becomes available again, then ownership is 
transferred back to one of them accordingly. You can set primary and secondary 
instance specifications using the ALTER_QUEUE_TABLE procedure in the 
DBMS_AQADM package.

The DBA_QUEUE_TABLES data dictionary view contains information about the 
owner instance for a queue table. A queue table may contain multiple queues. In 
this case, each queue in a queue table has the same owner instance as the queue 
table. 

See Also:

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13

� "Buffered Queues" on page 3-16

� Oracle Database Reference for more information about the 
DBA_QUEUE_TABLES data dictionary view

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about queues and RAC 

� PL/SQL Packages and Types Reference for more information about 
the ALTER_QUEUE_TABLE procedure



Streams Staging and Propagation Architecture

3-16 Oracle Streams Concepts and Administration

Streams Staging and Propagation Architecture
In general, SYS.AnyData queues use the same infrastructure as typed queues. 
However, unlike typed queues, which stage all events in a queue table, 
SYS.AnyData queues have a buffered queue to stage captured events in shared 
memory. This section describes buffered queues, propagation jobs, and secure 
queues, and how they are used in Streams. In addition, this section discusses how 
transactional queues handle captured and user-enqueued events, as well as the 
need for a Streams data dictionary at databases that propagate captured events.

This section contains the following topics:

� Buffered Queues

� Propagation Jobs

� Secure Queues

� Transactional and Nontransactional Queues

� Streams Data Dictionary for Propagations

Buffered Queues
A buffered queue includes the following storage areas:

� System Global Area (SGA) memory associated with a SYS.AnyData queue that 
contains only captured events

� Part of a queue table for a SYS.AnyData queue that stores captured events that 
have spilled from memory 

A buffered queue enables Oracle to optimize captured events by buffering captured 
events in the SGA instead of always storing them in a queue table. This buffering of 
captured events happens in any database where captured events are staged in a 
SYS.AnyData queue. Such a database may be a source database, an intermediate 
database, or a destination database. Captured events are always stored in a buffered 
queue, but user-enqueued LCR events and user-enqueued non-LCR events are 
always stored in queue tables, not in buffered queues. Also, when a transaction is 

See Also:

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about AQ infrastructure

� PL/SQL Packages and Types Reference for more information about 
the DBMS_JOB package



Streams Staging and Propagation Architecture

Streams Staging and Propagation 3-17

moved to the error queue, all events in the transaction are stored in a queue table, 
not in a buffered queue.

Buffered queues improve performance, but some of the information in a buffered 
queue may be lost if the instance containing the buffered queue shuts down 
normally or abnormally. Streams automatically recovers from these cases, assuming 
full database recovery is performed on the instance.

In a single database, you can specify that Streams memory be allocated from a new 
pool in the SGA called the Streams pool. To configure the Streams pool, specify the 
size of the pool in bytes using the STREAMS_POOL_SIZE initialization parameter. If 
the size of the Streams pool is greater than zero, then any SGA memory used by 
Streams is allocated from the Streams pool. If the size of the Streams pool is zero, 
then the memory used by Streams is allocated from the shared pool and may use up 
to 10% of the shared pool.

Captured events in a buffered queue may spill from memory into the queue table if 
they have been staged in the buffered queue for a period of time without being 
dequeued, or if there is not enough space in memory to hold all of the captured 
events. Captured events that spill from memory are stored in the appropriate 
AQ$_queue_table_name_p table, where queue_table_name is the name of the 
queue table for the queue.

Propagation Jobs
A Streams propagation is configured internally using the DBMS_JOBS package. 
Therefore, a propagation job is the mechanism that propagates events from a source 
queue to a destination queue. Like other jobs configured using the DBMS_JOBS 
package, propagation jobs have an owner, and they use job queue processes (Jnnn) 
as needed to execute jobs.

See Also:

� "Setting Initialization Parameters Relevant to Streams" on 
page 8-6 for more information about the STREAMS_POOL_SIZE 
initialization parameter

� Oracle Database Concepts for more information about the SGA

� Oracle Streams Replication Administrator's Guide for information 
about performing database point-in-time recovery on a 
database in a Streams environment



Streams Staging and Propagation Architecture

3-18 Oracle Streams Concepts and Administration

A propagation job may be used by more than one propagation. All destination 
queues at a database receive events from a single source queue through a single 
propagation job. By using a single propagation job for multiple destination queues, 
Streams ensures that an event is sent to a destination database only once, even if the 
same message is received by multiple destination queues in the same database. 
Communication resources are conserved because messages are not sent more than 
once to the same database.

Propagation Scheduling and Streams Propagations
A propagation schedule specifies how often a propagation job propagates events 
from a source queue to a destination queue. Therefore, all propagations that use a 
propagation job have the same propagation schedule. A default propagation 
schedule is established for the new propagation job when you create the 
propagation job using one of the following procedures:

� The ADD_GLOBAL_PROPAGATION_RULES procedure in the 
DBMS_STREAMS_ADM package

� The ADD_SCHEMA_PROPAGATION_RULES procedure in the 
DBMS_STREAMS_ADM package

� The ADD_TABLE_PROPAGATION_RULES procedure in the 
DBMS_STREAMS_ADM package

� The ADD_SUBSET_PROPAGATION_RULE procedure in the 
DBMS_STREAMS_ADM package

� The CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM 
package

Note:

� A single propagation job propagates all events that use a 
particular database link, even if the database link is used by 
more than one propagation to propagate events to multiple 
destination queues.

� The source queue owner performs the propagation, but the 
propagation job is owned by the user who creates it. These two 
users may or may not be the same.



Streams Staging and Propagation Architecture

Streams Staging and Propagation 3-19

The default schedule has the following properties:

� The start time is SYSDATE().

� The duration is NULL, which means infinite.

� The next time is NULL, which means that propagation restarts as soon as it 
finishes the current duration.

� The latency is three seconds, which is the wait time after a queue becomes 
empty to resubmit the propagation job. Therefore, the latency is the maximum 
wait, in seconds, in the propagation window for a message to be propagated 
after it is enqueued.

If you want to alter the default schedule for a propagation job, then use the 
ALTER_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

Propagation Jobs and RESTRICTED SESSION
When the restricted session is enabled during system startup by issuing a STARTUP 
RESTRICT statement, propagation jobs with enabled propagation schedules do not 
propagate events. When the restricted session is disabled, each propagation 
schedule that is enabled and ready to run will run when there is an available job 
queue process.

When the restricted session is enabled in a running database by the SQL statement 
ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, any running 
propagation job continues to run to completion. However, any new propagation job 
submitted for a propagation schedule is not started. Therefore, propagation for an 
enabled schedule may eventually come to a halt.

Secure Queues
Secure queues are queues for which AQ agents must be associated explicitly with 
one or more database users who can perform queue operations, such as enqueue 
and dequeue. The owner of a secure queue can perform all queue operations on the 
queue, but other users cannot perform queue operations on a secure queue, unless 
they are configured as secure queue users. In Streams, secure queues can be used to 
ensure that only the appropriate users and Streams clients enqueue events into a 
queue and dequeue events from a queue.

See Also: "Altering the Schedule of a Propagation Job" on 
page 10-12



Streams Staging and Propagation Architecture

3-20 Oracle Streams Concepts and Administration

Secure Queues and the SET_UP_QUEUE Procedure 
All SYS.AnyData queues created using the SET_UP_QUEUE procedure in the 
DBMS_STREAMS_ADM package are secure queues. When you use the 
SET_UP_QUEUE procedure to create a queue, any user specified by the 
queue_user parameter is configured as a secure queue user of the queue 
automatically, if possible. The queue user is also granted ENQUEUE and DEQUEUE 
privileges on the queue. To enqueue events into and dequeue events from a queue, 
a queue user must also have EXECUTE privilege on the 
DBMS_STREAMS_MESSAGING package or the DBMS_AQ package. The 
SET_UP_QUEUE procedure does not grant either of these privileges. Also, an event 
cannot be enqueued into a queue unless a subscriber who can dequeue the event is 
configured.

To configure a queue user as a secure queue user, the SET_UP_QUEUE procedure 
creates an AQ agent with the same name as the user name, if one does not already 
exist. The user must use this agent to perform queue operations on the queue. If an 
agent with this name already exists and is associated with the queue user only, then 
the existing agent is used. SET_UP_QUEUE then runs the ENABLE_DB_ACCESS 
procedure in the DBMS_AQADM package, specifying the agent and the user.

If you use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to 
create a secure queue, and you want a user who is not the queue owner and who 
was not specified by the queue_user parameter to perform operations on the 
queue, then you can configure the user as a secure queue user of the queue 
manually. Alternatively, you can run the SET_UP_QUEUE procedure again and 
specify a different queue_user for the queue. In this case, SET_UP_QUEUE will 
skip queue creation, but it will configure the user specified by queue_user as a 
secure queue user of the queue.

If you create a SYS.AnyData queue using the DBMS_AQADM package, then you use 
the secure parameter when you run the CREATE_QUEUE_TABLE procedure to 
specify whether the queue is secure or not. The queue is secure if you specify true 
for the secure parameter when you run this procedure. When you use the 
DBMS_AQADM package to create a secure queue, and you want to allow users to 
perform queue operations on the secure queue, then you must configure these 
secure queue users manually. 

Secure Queues and Streams Clients
When you create a capture process or an apply process, an AQ agent of the secure 
queue associated with the Streams process is configured automatically, and the user 
who runs the Streams process is specified as a secure queue user for this queue 
automatically. Therefore, a capture process is configured to enqueue into its secure 



Streams Staging and Propagation Architecture

Streams Staging and Propagation 3-21

queue automatically, and an apply process is configured to dequeue from its secure 
queue automatically. In either case, the AQ agent has the same name as the Streams 
client. 

For a capture process, the user specified as the capture_user is the user who runs 
the capture process. For an apply process, the user specified as the apply_user is 
the user who runs the apply process. If no capture_user or apply_user is 
specified, then the user who invokes the procedure that creates the Streams process 
is the user who runs the Streams process. 

Also, if you change the capture_user for a capture process or the apply_user 
for an apply process, then the specified capture_user or apply_user is 
configured as a secure queue user of the queue used by the Streams process. 
However, the old capture user or apply user remains configured as a secure queue 
user of the queue. To remove the old user, run the DISABLE_DB_ACCESS 
procedure in the DBMS_AQADM package, specifying the old user and the relevant 
AQ agent. You may also want to drop the agent if it is no longer needed. You can 
view the AQ agents and their associated users by querying the 
DBA_AQ_AGENT_PRIVS data dictionary view.

When you create a messaging client, an AQ agent of the secure queue with the same 
name as the messaging client is associated with the user who runs the procedure 
that creates the messaging client. This messaging client user is specified as a secure 
queue user for this queue automatically. Therefore, this user can use the messaging 
client to dequeue messages from the queue.

A capture process, an apply process, or a messaging client can be associated with 
only one user. However, one user may be associated with multiple Streams clients, 
including multiple capture processes, apply processes, and messaging clients. For 
example, an apply process cannot have both hr and oe as apply users, but hr may 
be the apply user for multiple apply processes.

If you drop a capture process, apply process, or messaging client, then the users 
who were configured as secure queue users for these Streams clients remain secure 
queue users of the queue. To remove these users as secure queue users, run the 
DISABLE_DB_ACCESS procedure in the DBMS_AQADM package for each user. You 
may also want to drop the agent if it is no longer needed.

Note: No configuration is necessary for propagations and secure 
queues. Therefore, when a propagation is dropped, no additional 
steps are necessary to remove secure queue users from the 
propagation's queues.



Streams Staging and Propagation Architecture

3-22 Oracle Streams Concepts and Administration

Transactional and Nontransactional Queues
A transactional queue is one in which user-enqueued events can be grouped into a 
set that are applied as one transaction. That is, an apply process performs a COMMIT 
after it applies all the user-enqueued events in a group. The SET_UP_QUEUE 
procedure in the DBMS_STREAMS_ADM package always creates a transactional 
queue. 

A nontransactional queue is one in which each user-enqueued event is its own 
transaction. That is, an apply process performs a COMMIT after each user-enqueued 
event it applies. In either case, the user-enqueued events may or may not contain 
user-created LCRs.

The difference between transactional and nontransactional queues is important only 
for user-enqueued events. An apply process always applies captured events in 
transactions that preserve the transactions executed at the source database. 
Table 3–1 shows apply process behavior for each type of event and each type of 
queue.

See Also:

� "Enabling a User to Perform Operations on a Secure Queue" on 
page 10-3

� "Disabling a User from Performing Operations on a Secure 
Queue" on page 10-5

� PL/SQL Packages and Types Reference for more information about 
AQ agents and using the DBMS_AQADM package

Table 3–1 Apply Process Behavior for Transactional and Nontransactional Queues

Event Type Transactional Queue Nontransactional Queue

Captured Events Apply process preserves the 
original transaction

Apply process preserves the 
original transaction

User-Enqueued 
Events

Apply a user-specified group of 
user-enqueued events as one 
transaction

Apply each user-enqueued 
event in its own transaction



Streams Staging and Propagation Architecture

Streams Staging and Propagation 3-23

Streams Data Dictionary for Propagations
When a database object is prepared for instantiation at a source database, a Streams 
data dictionary is populated automatically at the database where changes to the 
object are captured by a capture process. The Streams data dictionary is a 
multiversioned copy of some of the information in the primary data dictionary at a 
source database. The Streams data dictionary maps object numbers, object version 
information, and internal column numbers from the source database into table 
names, column names, and column datatypes. This mapping keeps each captured 
event as small as possible because the event can store numbers rather than names 
internally.

The mapping information in the Streams data dictionary at the source database is 
needed to evaluate rules at any database that propagates the captured events from 
the source database. To make this mapping information available to a propagation, 
Oracle automatically populates a multiversioned Streams data dictionary at each 
database that has a Streams propagation. Oracle automatically sends internal 
messages that contain relevant information from the Streams data dictionary at the 
source database to all other databases that receive captured events from the source 
database.

The Streams data dictionary information contained in these internal messages in a 
queue may or may not be propagated by a propagation. Which Streams data 
dictionary information to propagate depends on the rule sets for the propagation. 
When a propagation encounters Streams data dictionary information for a table, the 
propagation rule sets are evaluated with partial information that includes the 
source database name, table name, and table owner. If the partial rule evaluation of 
these rule sets determines that there may be relevant LCRs for the given table from 
the specified database, then the Streams data dictionary information for the table is 
propagated. 

When Streams data dictionary information is propagated to a destination queue, it 
is incorporated into the Streams data dictionary at the database that contains the 
destination queue, in addition to being enqueued into the destination queue. 
Therefore, a propagation reading the destination queue in a directed networks 
configuration can forward LCRs immediately without waiting for the Streams data 
dictionary to be populated. In this way, the Streams data dictionary for a source 

See Also:

� "Managing SYS.AnyData Queues" on page 10-2

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about message grouping



Streams Staging and Propagation Architecture

3-24 Oracle Streams Concepts and Administration

database always reflects the correct state of the relevant database objects for the 
LCRs relating to these database objects.

See Also:

� "The Streams Data Dictionary" on page 2-45

� Chapter 6, "How Rules Are Used In Streams"



Streams Apply Process 4-1

4
Streams Apply Process

This chapter explains the concepts and architecture of the Streams apply process.

This chapter contains these topics:

� Introduction to the Apply Process

� Apply Process Rules

� Event Processing with an Apply Process

� Datatypes Applied

� Streams Apply Processes and RESTRICTED SESSION

� Streams Apply Processes and Oracle Real Application Clusters

� Apply Process Architecture

See Also: Chapter 11, "Managing an Apply Process"



Introduction to the Apply Process

4-2 Oracle Streams Concepts and Administration

Introduction to the Apply Process
An apply process is an optional Oracle background process that dequeues logical 
change records (LCRs) and user messages from a specific queue and either applies 
each one directly or passes it as a parameter to a user-defined procedure. The LCRs 
dequeued by an apply process contain the results of data manipulation language 
(DML) changes or data definition language (DDL) changes that an apply process 
can apply to database objects in a destination database. A user-enqueued message 
dequeued by an apply process is of type SYS.AnyData and can contain any user 
message, including a user-created LCR.

Apply Process Rules
An apply process applies changes based on rules that you define. Each rule specifies 
the database objects and types of changes for which the rule evaluates to TRUE. You 
can place these rules in a positive rule set for the apply process or a negative rule set 
for the apply process.

If a rule evaluates to TRUE for a change, and the rule is in the positive rule set for an 
apply process, then the apply process applies the change. If a rule evaluates to TRUE 
for a change, and the rule is in the negative rule set for an apply process, then the 
apply process discards the change. If an apply process has both a positive and a 
negative rule set, then the negative rule set is always evaluated first.

You can specify apply process rules for LCR events at the following levels:

� A table rule applies or discards either row changes resulting from DML changes 
or DDL changes to a particular table. Subset rules are table rules that include a 
subset of the row changes to a particular table.

� A schema rule applies or discards either row changes resulting from DML 
changes or DDL changes to the database objects in a particular schema.

� A global rule applies or discards either all row changes resulting from DML 
changes or all DDL changes in the queue associated with an apply process.

For non-LCR events, you can create your own rules to control apply process 
behavior.

Note: An apply process can be associated only with a 
SYS.AnyData queue, not with a typed queue.



Event Processing with an Apply Process

Streams Apply Process 4-3

Event Processing with an Apply Process
An apply process is a flexible mechanism for processing the events in a queue. You 
have options to consider when you configure one or more apply processes for your 
environment. This section discusses the types of events that an apply process can 
apply and the ways that it can apply them.

Processing Captured and User-Enqueued Events with an Apply Process
A single apply process can apply either captured events or user-enqueued events, 
but not both. If a queue at a destination database contains both captured and 
user-enqueued events, then the destination database must have at least two apply 
processes to process the events.

When you create an apply process using one of the following procedures in the 
DBMS_STREAMS_ADM package, the apply process applies only captured events:

� ADD_SUBSET_RULES

� ADD_TABLE_RULES

� ADD_SCHEMA_RULES

� ADD_GLOBAL_RULES

When you create an apply process using the ADD_MESSAGE_RULE procedure in the 
DBMS_STREAMS_ADM package, the apply process applies only user-enqueued 
events.

When you create an apply process using the CREATE_APPLY procedure in the 
DBMS_APPLY_ADM package, you use the apply_captured parameter to specify 
whether the apply process applies captured or user-enqueued events. By default, 
the apply_captured parameter is set to false for an apply process created with 
this procedure. Therefore, by default, an apply process created with the 
CREATE_APPLY procedure in the DBMS_APPLY_ADM package applies 
user-enqueued events.

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Event Processing with an Apply Process

4-4 Oracle Streams Concepts and Administration

Event Processing Options with an Apply Process
Your options for event processing depend on whether or not the event received by 
an apply process is an LCR event. Figure 4–1 shows the event processing options for 
an apply process.

Figure 4–1 The Apply Process

LCR Event Processing
An apply process either can apply captured LCRs or user-enqueued LCRs, but not 
both. Regarding captured LCRs, an apply process can apply captured LCRs from 
only one source database, because processing these LCRs requires knowledge of the 
dependencies, meaningful transaction ordering, and transactional boundaries at the 
source database. For a captured LCR, the source database is the database where the 
change encapsulated in the LCR was generated in the redo log.

Captured LCRs from multiple databases may be sent to a single destination queue. 
However, if a single queue contains captured LCRs from multiple source databases, 
then there must be multiple apply processes retrieving these LCRs. Each of these 
apply processes should be configured to receive captured LCRs from exactly one 

See Also:

� "Introduction to Event Staging and Propagation" on page 3-2 
for more information about captured and user-enqueued events

� PL/SQL Packages and Types Reference for more information about 
the CREATE_APPLY procedure

Database Objects

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Message
Handler

Procedure

LCRs or
Messages 

Messages
Apply
Changes

DML
Handler

Procedure

DDL
Handler

Procedure

Row
LCRs

DDL
LCRs

Precommit
Handler

Procedure

Messages
or
LCRs

Apply
Process



Event Processing with an Apply Process

Streams Apply Process 4-5

source database using rules. Regarding user-enqueued events containing LCRs (not 
captured events), a single apply process can apply these user-enqueued events, 
even if they are from multiple source databases.

Also, each apply process can apply captured LCRs from only one capture process. If 
there are multiple capture processes running on a source database, and LCRs from 
more than one of these capture processes are applied at a destination database, then 
there must be one apply process to apply changes from each capture process. In 
such an environment, Oracle Corporation recommends that each SYS.AnyData 
queue used by a capture process or apply process have captured LCRs from at most 
one capture process from a particular source database. A queue can contain LCRs 
from more than one capture process if each capture process is capturing changes 
that originated at a different source database.

You can configure an apply process to process a captured or user-enqueued event 
that contains an LCR in the following ways: directly apply the LCR event or pass 
the LCR event as a parameter to a user procedure for processing. The following 
sections explain these options.

Apply the LCR Event Directly  If you use this option, then an apply process applies the 
LCR event without running a user procedure. The apply process either successfully 
applies the change in the LCR to a database object or, if a conflict or an apply error 
is encountered, tries to resolve the error with a conflict handler or a user-specified 
procedure called an error handler. 

If a conflict handler can resolve the conflict, then it either applies the LCR or it 
discards the change in the LCR. If the error handler can resolve the error, then it 
should apply the LCR, if appropriate. An error handler may resolve an error by 
modifying the LCR before applying it. If the conflict handler or error handler 
cannot resolve the error, then the apply process places the transaction, and all LCRs 
associated with the transaction, into the error queue.

Call a User Procedure to Process the LCR Event  If you use this option, then an apply 
process passes the LCR event as a parameter to a user procedure for processing. The 
user procedure can process the LCR event in a customized way.

A user procedure that processes row LCRs resulting from DML statements is called 
a DML handler, while a user procedure that processes DDL LCRs resulting from 
DDL statements is called a DDL handler. An apply process can have many DML 
handlers but only one DDL handler, which processes all DDL LCRs dequeued by 
the apply process. 



Event Processing with an Apply Process

4-6 Oracle Streams Concepts and Administration

For each table associated with an apply process, you can set a separate DML 
handler to process each of the following types of operations in row LCRs:

� INSERT

� UPDATE

� DELETE

� LOB_UPDATE

For example, the hr.employees table may have one DML handler to process 
INSERT operations and a different DML handler to process UPDATE operations.

A user procedure can be used for any customized processing of LCRs. For example, 
if you want each insert into a particular table at the source database to result in 
inserts into multiple tables at the destination database, then you can create a user 
procedure that processes INSERT operations on the table to accomplish this. Or, if 
you want to log DDL changes before applying them, then you can create a user 
procedure that processes DDL operations to accomplish this.

A DML handler should never commit and never roll back, except to a named save 
point that the user procedure has established. To execute a row LCR inside a DML 
handler, invoke the EXECUTE member procedure for the row LCR. To execute a 
DDL LCR inside a DDL handler, invoke the EXECUTE member procedure for the 
DDL LCR.

To set a DML handler, use the SET_DML_HANDLER procedure in the 
DBMS_APPLY_ADM package. You either may set a DML handler for a specific apply 
process, or you may set a DML handler to be a general DML handler that is used by 
all apply processes in the database. If a DML handler for an operation on a table is 
set for a specific apply process, and another DML handler is a general handler for 
the same operation on the same table, then the specific DML handler takes 
precedence over the general DML handler.

To associate a DDL handler with a particular apply process, use the ddl_handler 
parameter in the CREATE_APPLY or the ALTER_APPLY procedure in the 
DBMS_APPLY_ADM package.

You create an error handler in the same way that you create a DML handler, except 
that you set the error_handler parameter to true when you run the 
SET_DML_HANDLER procedure. An error handler is invoked only if an apply error 
results when an apply process tries to apply a row LCR with the specified operation 
on the specified table.



Event Processing with an Apply Process

Streams Apply Process 4-7

Typically, DML handlers and DDL handlers are used in Streams replication 
environments to perform custom processing of LCRs, but these handlers may be 
used in non-replication environments as well. For example, such handlers may be 
used to record changes made to database objects without replicating these changes.

Non-LCR User Message Processing
A user-enqueued event that does not contain an LCR is processed by the message 
handler specified for an apply process. A message handler is a user-defined 
procedure that can process non-LCR user messages in a customized way for your 
environment.

The message handler offers advantages in any environment that has applications 
that need to update one or more remote databases or perform some other remote 
action. These applications can enqueue user messages into a queue at the local 
database, and Streams can propagate each user message to the appropriate queues 
at destination databases. If there are multiple destinations, then Streams provides 
the infrastructure for automatic propagation and processing of these messages at 
these destinations. If there is only one destination, then Streams still provides a 
layer between the application at the source database and the application at the 

Attention: Do not modify LONG, LONG RAW or LOB column data in 
an LCR. This includes DML handlers, error handlers, and 
rule-based transformation functions.

Note: When you run the SET_DML_HANDLER procedure, you 
specify the object for which the handler is used. This object does 
not need to exist at the destination database.

See Also:

� "Logical Change Records (LCRs)" on page 2-2 for more 
information about row LCRs and DDL LCRs

� PL/SQL Packages and Types Reference for more information about 
the EXECUTE member procedure for LCR types

� "Rule-Based Transformations" on page 6-63

� Oracle Streams Replication Administrator's Guide for more 
information about DML handlers and DDL handlers



Event Processing with an Apply Process

4-8 Oracle Streams Concepts and Administration

destination database, so that, if the application at the remote database becomes 
unavailable, then the application at the source database can continue to function 
normally. 

For example, a message handler may format a user message into an electronic mail 
message. In this case, the user message may contain the attributes you would expect 
in an electronic mail message, such as from, to, subject, text_of_message, 
and so on. A message handler could convert these user messages into electronic 
mail messages and send them out through an electronic mail gateway.

You can specify a message handler for an apply process using the 
message_handler parameter in the CREATE_APPLY or the ALTER_APPLY 
procedure in the DBMS_APPLY_ADM package. A Streams apply process always 
assumes that a non-LCR message has no dependencies on any other events in the 
queue. If parallelism is greater than 1 for an apply process that applies 
user-enqueued messages, then these messages may be dequeued by a message 
handler in any order. Therefore, if dependencies exist between these messages in 
your environment, then Oracle Corporation recommends that you set apply process 
parallelism to 1.

Audit Commit Information for Events Using Precommit Handlers
You can use a precommit handler to audit commit directives for captured events 
and transaction boundaries for user-enqueued events. A precommit handler is a 
user-defined PL/SQL procedure that can receive the commit information for a 
transaction and process the commit information in any customized way. A 
precommit handler may work with a DML handler or a message handler.

For example, a handler may improve performance by caching data for the length of 
a transaction. This data may include cursors, temporary LOBs, data from an event, 
and so on. The precommit handler can release or execute the objects cached by the 
handler when a transaction completes.

A precommit handler executes when the apply process commits a transaction. You 
can use the commit_serialization apply process parameter to control the 
commit order for an apply process.

See Also: "Managing the Message Handler for an Apply Process" 
on page 11-17



Event Processing with an Apply Process

Streams Apply Process 4-9

Commit Directives for Captured Events  When you are using a capture process, and a 
user commits a transaction, the capture process captures an internal commit 
directive for the transaction if the transaction contains row LCRs that were 
captured. Once enqueued into a queue, these commit directives may be propagated 
to destination queues, along with the LCRs in a transaction. A precommit handler 
receives the commit SCN for these internal commit directives in the queue of an 
apply process before they are processed by the apply process.

Transaction Boundaries for User-Enqueued Events  A user or application may enqueue 
messages into a queue and then issue a COMMIT statement to end the transaction. 
The enqueued messages are organized into a message group. Once enqueued into a 
queue, the messages in a message group may be propagated to other queues. When 
an apply process is configured to process user-enqueued messages, it generates a 
single transaction identifier and commit SCN for all the messages in a message 
group. Transaction identifiers and commit SCN values generated by an individual 
apply process have no relation to the source transaction, nor to the values generated 
by any other apply process. A precommit handler configured for such an apply 
process receives the commit SCN supplied by the apply process.

Summary of Event Processing Options
Table 4–1 summarizes the event processing options available when you are using 
one or more of the apply handlers described in the previous sections. Apply 
handlers are optional for row LCRs and DDL LCRs because an apply process can 
apply these events directly. However, a message handler is required for processing 
non-LCR user messages. In addition, an apply process dequeues an event only if the 
event satisfies the rule sets for the apply process. In general, an event satisfies the 
rule sets for an apply process if no rules in the negative rule set evaluate to TRUE for 
the event, and at least one rule in the positive rule set evaluates to TRUE for the event.

See Also: "Managing the Precommit Handler for an Apply 
Process" on page 11-18



Event Processing with an Apply Process

4-10 Oracle Streams Concepts and Administration

In addition to the event processing options described in this section, you can use the 
SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package to 
instruct an apply process to enqueue events into a specified destination queue. 
Also, you can control event execution using the SET_EXECUTE procedure in the 
DBMS_APPLY_ADM package.

Considerations for Apply Handlers
The following are considerations for using apply handlers:

� DML handlers, DDL handlers, and message handlers can execute an LCR by 
calling the LCR's EXECUTE member procedure.

� All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls 
the EXECUTE member procedure of a DDL LCR, then a commit is performed 
automatically.

Table 4–1 Summary of Event Processing Options

Apply Handler Type of Event
Default Apply 
Process Behavior

Scope of User 
Procedure

DML Handler or 
Error Handler

Row LCR Execute DML One operation on 
one table

DDL Handler DDL LCR Execute DDL Entire apply process

Message Handler Non-LCR User 
Message

Create error 
transaction (if no 
message handler 
exists)

Entire apply process

Precommit Handler Commit directive for 
transactions that 
include row LCRs or 
non-LCR user 
messages

Commit transaction Entire apply process

See Also:

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets

� "Specifying Event Enqueues by Apply Processes" on page 11-21

� "Specifying Execute Directives for Apply Processes" on 
page 11-23



Datatypes Applied

Streams Apply Process 4-11

� If necessary, an apply handler can set a Streams session tag.

� An apply handler may call a Java stored procedure that is published (or 
wrapped) in a PL/SQL procedure.

� If an apply process tries to invoke an apply handler that does not exist or is 
invalid, then the apply process aborts.

� If an apply handler invokes a procedure or function in an Oracle-supplied 
package, then the user who runs the apply handler must have direct EXECUTE 
privilege on the package. It is not sufficient to grant this privilege through a 
role.

Datatypes Applied
When applying row LCRs resulting from DML changes to tables, an apply process 
applies changes made to columns of the following datatypes:

� VARCHAR2

� NVARCHAR2

� NUMBER

� LONG

� DATE

� BINARY_FLOAT

� BINARY_DOUBLE

� TIMESTAMP

� TIMESTAMP WITH TIME ZONE

� TIMESTAMP WITH LOCAL TIME ZONE

� INTERVAL YEAR TO MONTH

� INTERVAL DAY TO SECOND

See Also:

� PL/SQL Packages and Types Reference for more information about 
the EXECUTE member procedure for LCR types

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Streams Apply Processes and RESTRICTED SESSION

4-12 Oracle Streams Concepts and Administration

� RAW

� LONG RAW

� CHAR

� NCHAR

� CLOB

� NCLOB

� BLOB

� UROWID

The apply process does not apply row LCRs containing the results of DML changes 
in columns of the following datatypes: BFILE, ROWID, and user-defined type 
(including object types, REFs, varrays, nested tables, and Oracle-supplied types). 
The apply process raises an error if it attempts to apply a row LCR that contains 
information about a column of an unsupported datatype. Next, the apply process 
moves the transaction that includes the LCR into the error queue.

Streams Apply Processes and RESTRICTED SESSION
When the restricted session is enabled during system startup by issuing a STARTUP 
RESTRICT statement, apply processes do not start, even if they were running when 
the database shut down. When the restricted session is disabled, each apply process 
that was not stopped is started.

When the restricted session is enabled in a running database by the SQL statement 
ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, it does not affect 
any running apply processes. These apply processes continue to run and apply 
events. If a stopped apply process is started in a restricted session, then the apply 
process does not start until the restricted session is disabled.

See Also:

� "Datatypes Captured" on page 2-8

� Oracle Database SQL Reference for more information about these 
datatypes



Streams Apply Processes and Oracle Real Application Clusters

Streams Apply Process 4-13

Streams Apply Processes and Oracle Real Application Clusters
You can configure a Streams apply process to apply changes in a Real Application 
Clusters (RAC) environment. Each apply process is started on the owner instance 
for its SYS.AnyData queue, even if the start procedure is run on a different 
instance. 

If the owner instance for a queue table containing a queue used by an apply process 
becomes unavailable, then queue ownership is transferred automatically to another 
instance in the cluster. Also, an apply process will follow its queue to a different 
instance if the current owner instance becomes unavailable. The queue itself follows 
the rules for primary instance and secondary instance ownership. In addition, if the 
apply process was enabled when the owner instance became unavailable, then the 
apply process is restarted automatically on the new owner instance. If the apply 
process was disabled when the owner instance became unavailable, then the apply 
process remains disabled on the new owner instance.

The DBA_QUEUE_TABLES data dictionary view contains information about the 
owner instance for a queue table. Also, in a RAC environment, an apply coordinator 
process, its corresponding apply reader server, and all of its apply server processes 
run on a single instance.

See Also:

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14 for information about primary and secondary 
instance ownership for queues

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27

� Oracle Database Reference for more information about the 
DBA_QUEUE_TABLES data dictionary view

� "Persistent Apply Process Status Upon Database Restart" on 
page 4-22



Apply Process Architecture

4-14 Oracle Streams Concepts and Administration

Apply Process Architecture
You can create, alter, start, stop, and drop an apply process, and you can define 
apply process rules that control which events an apply process dequeues from its 
queue. Events applied by an apply process are applied by an apply user. The apply 
user applies all changes that satisfy the apply process rule sets. In addition, the 
apply user runs all rule-based transformations specified by the rules in these rule 
sets. The apply user also runs user-defined apply handlers. 

The apply user must have the necessary privileges to apply changes, including 
execute privilege on the rule sets used by the apply process, execute privilege on all 
rule-based transformation functions specified for rules in the positive rule set, 
execute privilege on any apply handlers, and privileges to dequeue events from the 
apply process queue. An apply process can be associated with only one user, but 
one user may be associated with many apply processes.

This section discusses the following topics:

� Apply Process Components

� Apply Process Creation

� Streams Data Dictionary for an Apply Process

� Apply Process Parameters

� Persistent Apply Process Status Upon Database Restart

� The Error Queue

Apply Process Components
An apply process consists of the following components:

� A reader server that dequeues events. The reader server is a parallel execution 
server that computes dependencies between LCRs and assembles events into 
transactions. The reader server then returns the assembled transactions to the 
coordinator process, which assigns them to idle apply servers.

� A coordinator process that gets transactions from the reader server and passes 
them to apply servers. The coordinator process name is annn, where nnn is a 
coordinator process number. Valid coordinator process names include a001 
through a999. The coordinator process is an Oracle background process.

See Also: "Configuring a Streams Administrator" on page 8-2 for 
information about the required privileges



Apply Process Architecture

Streams Apply Process 4-15

� One or more apply servers that apply LCRs to database objects as DML or DDL 
statements or that pass the LCRs to their appropriate handlers. For non-LCR 
messages, the apply servers pass the events to the message handler. Each apply 
server is a parallel execution server. If an apply server encounters an error, then 
it then tries to resolve the error with a user-specified conflict handler or error 
handler. If an apply server cannot resolve an error, then it rolls back the 
transaction and places the entire transaction, including all of its events, in the 
error queue.

When an apply server commits a completed transaction, this transaction has 
been applied. When an apply server places a transaction in the error queue and 
commits, this transaction also has been applied.

If a transaction being handled by an apply server has a dependency with another 
transaction that is not known to have been applied, then the apply server contacts 
the coordinator process and waits for instructions. The coordinator process 
monitors all of the apply servers to ensure that transactions are applied and 
committed in the correct order.

For example, consider these two transactions:

1. A row is inserted into a table.

2. The same row is updated to change certain column values.

In this case, transaction 2 is dependent on transaction 1, because the row cannot be 
updated until after it is inserted into the table. Suppose these transactions are 
captured from the redo log at a source database, propagated to a destination 
database, and applied at the destination database. Apply server A handles the 
insert transaction, and apply server B handles the update transaction.

If apply server B is ready to apply the update transaction before apply server A has 
applied the insert transaction, then apply server B waits for instructions from the 
coordinator process. After apply server A has applied the insert transaction, the 
coordinator process instructs apply server B to apply the update transaction.

Reader Server States
The state of a reader server describes what the reader server is doing currently. You 
can view the state of the reader server for an apply process by querying the 
V$STREAMS_APPLY_READER dynamic performance view. The following reader 
server states are possible:

� IDLE - Performing no work

� DEQUEUE MESSAGES - Dequeuing events from the apply process queue



Apply Process Architecture

4-16 Oracle Streams Concepts and Administration

� SCHEDULE MESSAGES - Computing dependencies between events and 
assembling events into transactions

Coordinator Process States
The state of a coordinator process describes what the coordinator process is doing 
currently. You can view the state of a coordinator process by querying the 
V$STREAMS_APPLY_COORDINATOR dynamic performance view. The following 
coordinator process states are possible:

� INITIALIZING - Starting up

� APPLYING - Passing transactions to apply servers

� SHUTTING DOWN CLEANLY - Stopping without an error

� ABORTING - Stopping because of an apply error

Apply Server States
The state of an apply server describes what the apply server is doing currently. You 
can view the state of each apply server for an apply process by querying the 
V$STREAMS_APPLY_SERVER dynamic performance view. The following apply 
server states are possible:

� IDLE - Performing no work

� RECORD LOW-WATERMARK - Performing an administrative action that maintains 
information about the apply progress, which is used in the 
ALL_APPLY_PROGRESS and DBA_APPLY_PROGRESS data dictionary views 

� ADD PARTITION - Performing an administrative action that adds a partition 
that is used for recording information about in-progress transactions 

� DROP PARTITION - Performing an administrative action that drops a partition 
that was used to record information about in-progress transactions 

� EXECUTE TRANSACTION - Applying a transaction 

See Also: "Displaying Information About the Reader Server for 
Each Apply Process" on page 14-38 for a query that displays the 
state of an apply process reader server

See Also: "Displaying General Information About Each 
Coordinator Process" on page 14-40 for a query that displays the 
state of a coordinator process



Apply Process Architecture

Streams Apply Process 4-17

� WAIT COMMIT - Waiting to commit a transaction until all other transactions with 
a lower commit SCN are applied. This state is possible only if the 
COMMIT_SERIALIZATION apply process parameter is set to a value other than 
none and the PARALELLISM apply process parameter is set to a value greater 
than 1.

� WAIT DEPENDENCY - Waiting to apply an LCR in a transaction until another 
transaction, on which it has a dependency, is applied. This state is possible only 
if the PARALELLISM apply process parameter is set to a value greater than 1. 

� WAIT FOR NEXT CHUNK - Waiting for the next set of LCRs for a large transaction

� TRANSACTION CLEANUP - Cleaning up an applied transaction, which includes 
removing LCRs from the apply process queue

Apply Process Creation
You can create an apply process using the DBMS_STREAMS_ADM package or the 
DBMS_APPLY_ADM package. Using the DBMS_STREAMS_ADM package to create an 
apply process is simpler because defaults are used automatically for some 
configuration options. 

In addition, when you use the DBMS_STREAMS_ADM package, a rule set is created 
for the apply process and rules may be added to the rule set automatically. The rule 
set is a positive rule set if the inclusion_rule parameter is set to true (the 
default), or it is a negative rule set if the inclusion_rule parameter is set to 
false. Alternatively, using the DBMS_APPLY_ADM package to create an apply 
process is more flexible, and you create one or more rule sets and rules for the apply 
process either before or after it is created.

An apply process created by the procedures in the DBMS_STREAMS_ADM package 
can apply events only at the local database. To create an apply process that applies 
events at a remote database, use the CREATE_APPLY procedure in the 
DBMS_APPLY_ADM package. 

Changes applied by an apply process created by the DBMS_STREAMS_ADM package 
generate tags in the redo log at the destination database with a value of 00 (double 
zero), but you can set the tag value if you use the CREATE_APPLY procedure. 
Alternatively, you can set the tag using the ALTER_APPLY procedure in the 
DBMS_APPLY_ADM package.

See Also: "Displaying Information About the Apply Servers for 
Each Apply Process" on page 14-44 for a query that displays the 
state of each apply process apply server



Apply Process Architecture

4-18 Oracle Streams Concepts and Administration

When you create an apply process by running the CREATE_APPLY procedure in the 
DBMS_APPLY_ADM package, you can specify nondefault values for the 
apply_captured, apply_database_link, and apply_tag parameters. Then 
you can use the procedures in the DBMS_STREAMS_ADM package or the 
DBMS_RULE_ADM package to add rules to a rule set for the apply process.

If you create more than one apply process in a database, then the apply processes 
are completely independent of each other. These apply processes do not 
synchronize with each other, even if they apply LCRs from the same source 
database.

Streams Data Dictionary for an Apply Process
When a database object is prepared for instantiation at a source database, a Streams 
data dictionary is populated automatically at the database where changes to the 
object are captured by a capture process. The Streams data dictionary is a 
multiversioned copy of some of the information in the primary data dictionary at a 
source database. The Streams data dictionary maps object numbers, object version 
information, and internal column numbers from the source database into table 
names, column names, and column datatypes. This mapping keeps each captured 
event as small as possible because a captured event can often use numbers rather 
than names internally.

Unless a captured event is passed as a parameter to a rule-based transformation 
during capture or propagation, the mapping information in the Streams data 
dictionary at the source database is needed to interpret the contents of the LCR at 
any database that applies the captured event. To make this mapping information 

See Also: PL/SQL Packages and Types Reference for more 
information about the following procedures, which can be used to 
create an apply process.

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_STREAMS_ADM.ADD_MESSAGE_RULE 

� DBMS_CAPTURE_ADM.CREATE_APPLY

Also, see Oracle Streams Replication Administrator's Guide for more 
information about Streams tags.



Apply Process Architecture

Streams Apply Process 4-19

available to an apply process, Oracle automatically populates a multiversioned 
Streams data dictionary at each destination database that has a Streams apply 
process. Oracle automatically propagates relevant information from the Streams 
data dictionary at the source database to all other databases that apply captured 
events from the source database.

Apply Process Parameters
After creation, an apply process is disabled so that you can set the apply process 
parameters for your environment before starting the process for the first time. 
Apply process parameters control the way an apply process operates. For example, 
the time_limit apply process parameter can be used to specify the amount of 
time an apply process runs before it is shut down automatically. After you set the 
apply process parameters, you can start the apply process.

Apply Process Parallelism
The parallelism apply process parameter specifies the number of apply servers 
that may concurrently apply transactions. For example, if parallelism is set to 5, 
then an apply process uses a total of five apply servers. In addition, the reader 
server is a parallel execution server. So, if parallelism is set to 5, then an apply 
process uses a total of six parallel execution servers, assuming six parallel execution 
servers are available in the database. An apply process always uses two or more 
parallel execution servers.

See Also:

� "The Streams Data Dictionary" on page 2-45

� "Streams Data Dictionary for Propagations" on page 3-23

See Also:

� "Setting an Apply Process Parameter" on page 11-16

� This section does not discuss all of the available apply process 
parameters. See the DBMS_APPLY_ADM.SET_PARAMETER 
procedure in the PL/SQL Packages and Types Reference for 
detailed information about all of the apply process parameters.



Apply Process Architecture

4-20 Oracle Streams Concepts and Administration

Commit Serialization
Apply servers may apply transactions at the destination database in an order that is 
different from the commit order at the source database. Only nondependent 
transactions can be applied in a different order than the commit order at the source 
database. Dependent transactions are always applied at the destination database in 
the same order as they were committed at the source database.

You control whether the apply servers can apply nondependent transactions in a 
different order at the destination database using the commit_serialization 
apply parameter. This parameter has the following settings:

� full: An apply process commits applied transactions in the order in which 
they were committed at the source database. This setting is the default. 

� none: An apply process may commit non-dependent transactions in any order. 
Performance is best if you specify this value.

Note:

� Resetting the parallelism parameter automatically stops 
and restarts the apply process when the currently executing 
transactions are applied, which may take some time depending 
on the size of the transactions.

� Setting the parallelism parameter to a number higher than 
the number of available parallel execution servers may disable 
the apply process. Make sure the PROCESSES and 
PARALLEL_MAX_SERVERS initialization parameters are set 
appropriately when you set the parallelism apply process 
parameter.

See Also:

� "Apply Process Components" on page 4-14 for more 
information about apply servers and the reader server

� Oracle Database Administrator's Guide for information about 
managing parallel execution servers



Apply Process Architecture

Streams Apply Process 4-21

If you specify none, then it is possible that a destination database may commit 
changes in a different order than the source database. For example, suppose two 
nondependent transactions are committed at the source database in the following 
order:

1. Transaction A

2. Transaction B

At the destination database, these transactions may be committed in the opposite 
order:

1. Transaction B

2. Transaction A

Automatic Restart of an Apply Process
You can configure an apply process to stop automatically when it reaches certain 
predefined limits. The time_limit apply process parameter specifies the amount 
of time an apply process runs, and the transaction_limit apply process 
parameter specifies the number of transactions an apply process can apply. The 
apply process stops automatically when it reaches these limits.

The disable_on_limit parameter controls whether an apply process becomes 
disabled or restarts when it reaches a limit. If you set the disable_on_limit 
parameter to y, then the apply process is disabled when it reaches a limit and does 
not restart until you restart it explicitly. If, however, you set the 
disable_on_limit parameter to n, then the apply process stops and restarts 
automatically when it reaches a limit.

When an apply process is restarted, it gets a new session identifier, and the parallel 
execution servers associated with the apply process also get new session identifiers. 
However, the coordinator process number (annn) remains the same. 

Stop or Continue on Error 
Using the disable_on_error apply process parameter, you either can instruct an 
apply process to become disabled when it encounters an error, or you can allow the 
apply process to continue applying transactions after it encounters an error.

See Also: "The Error Queue" on page 4-22



Apply Process Architecture

4-22 Oracle Streams Concepts and Administration

Persistent Apply Process Status Upon Database Restart
An apply process maintains a persistent status when the database running the 
apply process is shut down and restarted. For example, if an apply process is 
enabled when the database is shut down, then the apply process automatically 
starts when the database is restarted. Similarly, if an apply process is disabled or 
aborted when a database is shut down, then the apply process is not started and 
retains the disabled or aborted status when the database is restarted.

The Error Queue
The error queue contains all of the current apply errors for a database. If there are 
multiple apply processes in a database, then the error queue contains the apply 
errors for each apply process. To view information about apply errors, query the 
DBA_APPLY_ERROR data dictionary view.

The error queue stores information about transactions that could not be applied 
successfully by the apply processes running in a database. A transaction may 
include many events, and when an unhandled error occurs during apply, an apply 
process automatically moves all of the events in the transaction that satisfy the 
apply process rule sets to the error queue.

You can correct the condition that caused an error and then reexecute the error 
transaction. For example, you might modify a row in a table to correct the condition 
that caused an error. When the condition that caused the error has been corrected, 
you can either reexecute the transaction in the error queue using the 
EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure or delete the transaction 
from the error queue using the DELETE_ERROR or DELETE_ALL_ERRORS 
procedure. These procedures are in the DBMS_APPLY_ADM package.

When you reexecute a transaction in the error queue, you can specify that the 
transaction be executed either by the user who originally placed the error in the 
error queue or by the user who is reexecuting the transaction. Also, the current 
Streams tag for the apply process is used when you reexecute a transaction in the 
error queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution 
handlers. If, to resolve the error, a row LCR in an error queue must be modified 
before it is executed, then you can configure a DML handler to process the row LCR 
that caused the error in the error queue. In this case, the DML handler may modify 
the row LCR in some way to avoid a repeat of the same error. The row LCR is 
passed to the DML handler when you reexecute the error containing the row LCR 
using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the 
DBMS_APPLY_ADM package.



Apply Process Architecture

Streams Apply Process 4-23

The error queue contains information about errors encountered at the local 
destination database only. It does not contain information about errors for apply 
processes running in other databases in a Streams environment.

The error queue uses the exception queues in the database. When you create a 
SYS.AnyData queue using the SET_UP_QUEUE procedure in the 
DBMS_STREAMS_ADM package, the procedure creates a queue table for the queue if 
one does not already exist. When a queue table is created, an exception queue is 
created automatically for the queue table. Multiple queues may use a single queue 
table, and each queue table has one exception queue. Therefore, a single exception 
queue may store errors for multiple queues and multiple apply processes.

An exception queue only contains the apply errors for its queue table, but the 
Streams error queue contains information about all of the apply errors in each 
exception queue in a database. You should use the procedures in the 
DBMS_APPLY_ADM package to manage Streams apply errors. You should not 
dequeue apply errors from an exception queue directly.

Note: If a messaging client encounters an error when it is 
dequeuing messages, then the messaging client moves these 
messages to the exception queue associated with the its queue 
table. However, information about messaging client errors is not 
stored in the error queue. Only information about apply process 
errors is stored in the error queue.



Apply Process Architecture

4-24 Oracle Streams Concepts and Administration

See Also:

� "Managing Apply Errors" on page 11-32

� "Checking for Apply Errors" on page 14-48

� "Displaying Detailed Information About Apply Errors" on 
page 14-50

� "Managing an Error Handler" on page 11-25

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets

� PL/SQL Packages and Types Reference for more information on the 
DBMS_APPLY_ADM package

� Oracle Database Reference for more information about the 
DBA_APPLY_ERROR data dictionary view



Rules 5-1

5
Rules

This chapter explains the concepts related to rules.

This chapter contains these topics:

� The Components of a Rule

� Rule Set Evaluation

� Database Objects and Privileges Related to Rules

See Also:

� Chapter 6, "How Rules Are Used In Streams"

� Chapter 12, "Managing Rules and Rule-Based Transformations"

� Chapter 17, "Rule-Based Application Example"



The Components of a Rule

5-2 Oracle Streams Concepts and Administration

The Components of a Rule
A rule is a database object that enables a client to perform an action when an event 
occurs and a condition is satisfied. Rules are evaluated by a rules engine, which is a 
built-in part of Oracle. Both user-created applications and Oracle features, such as 
Streams, can be clients of the rules engine.

A rule consists of the following components:

� Rule Condition

� Rule Evaluation Context (optional)

� Rule Action Context (optional)

Each rule is specified as a condition that is similar to the condition in the WHERE 
clause of a SQL query. You can group related rules together into rule sets. A single 
rule can be in one rule set, multiple rule sets, or no rule sets.

Rule Condition
A rule condition combines one or more expressions and conditions and returns a 
Boolean value, which is a value of TRUE, FALSE, or NULL (unknown). An 
expression is a combination of one or more values and operators that evaluate to a 
value. A value can be data in a table, data in variables, or data returned by a SQL 
function or a PL/SQL function. For example, the following expression includes only 
a single value:

salary

The following expression includes two values (salary and .1) and an operator (*):

salary * .1

The following condition consists of two expressions (salary and 3800) and a 
condition (=):

salary = 3800

This logical condition evaluates to TRUE for a given row when the salary column 
is 3800. Here, the value is data in the salary column of a table.

Note: A rule must be in a rule set for it to be evaluated.



The Components of a Rule

Rules 5-3

A single rule condition may include more than one condition combined with the 
AND, OR, and NOT logical conditions to a form compound condition. A logical 
condition combines the results of two component conditions to produce a single 
result based on them or to invert the result of a single condition. For example, 
consider the following compound condition:

salary = 3800 OR job_title = 'Programmer' 

This rule condition contains two conditions joined by the OR logical condition. If 
either condition evaluates to TRUE, then the rule condition evaluates to TRUE. If the 
logical condition were AND instead of OR, then both conditions must evaluate to 
TRUE for the entire rule condition to evaluate to TRUE.

Variables in Rule Conditions
Rule conditions may contain variables. When you use variables in rule conditions, 
precede each variable with a colon (:). The following is an example of a variable 
used in a rule condition:

:x = 55

Variables enable you to refer to data that is not stored in a table. A variable may also 
improve performance by replacing a commonly occurring expression. Performance 
may improve because, instead of evaluating the same expression multiple times, the 
variable is evaluated once.

A rule condition may also contain an evaluation of a call to a subprogram. These 
conditions are evaluated in the same way as other conditions. That is, they evaluate 
to a value of TRUE, FALSE, or NULL (unknown). The following is an example of a 
condition that contains a call to a simple function named is_manager that 
determines whether an employee is a manager:

is_manager(employee_id) = 'Y'

Here, the value of employee_id is determined by data in a table where 
employee_id is a column.

You can use user-defined types for variables. Therefore, variables can have 
attributes. When a variable has attributes, each attribute contains partial data for the 
variable. In rule conditions, you specify attributes using dot notation. For example, 
the following condition evaluates to TRUE if the value of attribute z in variable 
y is 9:

:y.z = 9



The Components of a Rule

5-4 Oracle Streams Concepts and Administration

Simple Rule Conditions
A simple rule condition is a condition that has either of the following forms:

� simple_rule_expression condition constant

� constant condition simple_rule_expression

In a simple rule condition, a simple_rule_expression is one of the following:

� Table column

� Variable

� Variable attribute

� Method result where the method takes no arguments and the method result can 
be returned by the variable method function, so that the expression is either a 
numerical or character type

For table columns, variables, and variable attributes, all numeric (NUMBER, FLOAT, 
DOUBLE, INTEGER) and character (CHAR, VARCHAR2) types are supported. Use of 
other types of expressions results in non-simple rule conditions.

In a simple rule condition, a condition is one of the following:

� <=

� <

� =

� >

� >=

� !=

Note: A rule cannot have a NULL (or empty) rule condition.

See Also:

� Oracle Database SQL Reference for more information about 
conditions, expressions, and operators

� Oracle Database Application Developer's Guide - Object-Relational 
Features for more information about user-defined types



The Components of a Rule

Rules 5-5

� IS NULL

� IS NOT NULL

Use of other conditions results in non-simple rule conditions.

A constant is a fixed value. A constant can be:

� A number, such as 12 or 5.4 

� A character, such as x or $

� A character string, such as "this is a string" 

Therefore, the following conditions are simple rule conditions:

� tab1.col = 5

� tab2.col != 5

� :v1 > 'aaa'

� :v2.a1 < 10.01

� :v3.m() = 10

� :v4 IS NOT NULL

Rules with simple rule conditions are called simple rules. You can combine two or 
more simple conditions with the logical conditions AND and OR for a rule, and the 
rule remains simple. For example, rules with the following conditions are simple 
rules:

� tab1.col = 5 AND :v1 > 'aaa'

� tab1.col = 5 OR :v1 > 'aaa'

However, using the NOT logical condition in a rule's condition causes the rule to be 
non-simple. 

Simple rules are important for the following reasons:

� Simple rules are indexed by the rules engine internally.

� Simple rules can be evaluated without executing SQL.

� Simple rules can be evaluated with partial data.

When a client uses DBMS_RULE.EVALUATE to evaluate an event, the client can 
specify that only simple rules should be evaluated by specifying true for the 
simple_rules_only parameter.



The Components of a Rule

5-6 Oracle Streams Concepts and Administration

Rule Evaluation Context
A rule evaluation context is a database object that defines external data that can be 
referenced in rule conditions. The external data can exist as variables, table data, or 
both. The following analogy may be helpful: If the rule condition were the WHERE 
clause in a SQL query, then the external data in the rule's evaluation context would 
be the tables and bind variables referenced in the FROM clause of the query. That is, 
the expressions in the rule condition should reference the tables, table aliases, and 
variables in the evaluation context to make a valid WHERE clause.

A rule evaluation context provides the necessary information for interpreting and 
evaluating the rule conditions that reference external data. For example, if a rule 
refers to a variable, then the information in the rule evaluation context must contain 
the variable type. Or, if a rule refers to a table alias, then the information in the 
evaluation context must define the table alias.

The objects referenced by a rule are determined by the rule evaluation context 
associated with it. The rule owner must have the necessary privileges to access 
these objects, such as SELECT privilege on tables, EXECUTE privilege on types, and 
so on. The rule condition is resolved in the schema that owns the evaluation 
context.

For example, consider a rule evaluation context named hr_evaluation_context 
that contains the following information:

� Table alias dep corresponds to the hr.departments table.

� Variables loc_id1 and loc_id2 are both of type NUMBER.

The hr_evaluation_context rule evaluation context provides the necessary 
information for evaluating the following rule condition:

dep.location_id IN (:loc_id1, :loc_id2)

In this case, the rule condition evaluates to TRUE for a row in the hr.departments 
table if that row has a value in the location_id column that corresponds to either 
of the values passed in by the loc_id1 or loc_id2 variables. The rule cannot be 
interpreted or evaluated properly without the information in the 
hr_evaluation_context rule evaluation context. Also, notice that dot notation 
is used to specify the column location_id in the dep table alias.

See Also: Oracle Database SQL Reference for more information 
about conditions and logical conditions



The Components of a Rule

Rules 5-7

Explicit and Implicit Variables
The value of a variable referenced in a rule condition may be explicitly specified 
when the rule is evaluated, or the value of a variable may be implicitly available 
given the event. 

Explicit variables are supplied by the caller at evaluation time. These values are 
specified by the variable_values parameter when the DBMS_RULE.EVALUATE 
procedure is run.

Implicit variables are not given a value supplied by the caller at evaluation time. 
The value of an implicit variable is obtained by calling the variable value function. 
You define this function when you specify the variable_types list during the 
creation of an evaluation context using the CREATE_EVALUATION_CONTEXT 
procedure in the DBMS_RULE_ADM package. If the value for an implicit variable is 
specified during evaluation, then the specified value overrides the value returned 
by the variable value function.

Specifically, the variable_types list is of type SYS.RE$VARIABLE_TYPE_LIST, 
which is a list of variables of type SYS.RE$VARIABLE_TYPE. Within each instance 
of SYS.RE$VARIABLE_TYPE in the list, the function used to determine the value of 
an implicit variable is specified as the variable_value_function attribute.

Whether variables are explicit or implicit is the choice of the designer of the 
application using the rules engine. The following are reasons for using an implicit 
variable:

� The caller of the DBMS_RULE.EVALUATE procedure does not need to know 
anything about the variable, which may reduce the complexity of the 
application using the rules engine. For example, a variable may call a function 
that returns a value based on the data being evaluated.

� The caller may not have execute privileges on the variable value function.

� The caller of the DBMS_RULE.EVALUATE procedure does not know the variable 
value based on the event, which may improve security if the variable value 
contains confidential information. 

� The variable may be used infrequently, and the variable's value always can be 
derived if necessary. Making such variables implicit means that the caller of the 
DBMS_RULE.EVALUATE procedure does not need to specify many uncommon 
variables.



The Components of a Rule

5-8 Oracle Streams Concepts and Administration

For example, in the following rule condition, the values of variable x and variable y 
could be specified explicitly, but the value of the variable max could be returned by 
running the max function:

:x = 4 AND :y < :max

Alternatively, variable x and y could be implicit variables, and variable max could 
be an explicit variable. So, there is no syntactic difference between explicit and 
implicit variables in the rule condition. You can determine whether a variable is 
explicit or implicit by querying the DBA_EVALUATION_CONTEXT_VARS data 
dictionary view. For explicit variables, the VARIABLE_VALUE_FUNCTION field is 
NULL. For implicit variables, this field contains the name of the function called by 
the implicit variable.

Evaluation Context Association with Rule Sets and Rules
A single rule evaluation context can be associated with multiple rules or rule sets. 
The following list describes which evaluation context is used when a rule is 
evaluated:

� If an evaluation context is associated with a rule, then it is used for the rule 
whenever the rule is evaluated, and any evaluation context associated with the 
rule set being evaluated is ignored.

� If a rule does not have an evaluation context, but an evaluation context was 
specified for the rule when it was added to a rule set using the ADD_RULE 
procedure in the DBMS_RULE_ADM package, then the evaluation context 
specified in the ADD_RULE procedure is used for the rule when the rule set is 
evaluated.

� If no rule evaluation context is associated with a rule and none was specified by 
the ADD_RULE procedure, then the evaluation context of the rule set is used for 
the rule when the rule set is evaluated.

See Also:

� PL/SQL Packages and Types Reference for more information about 
the DBMS_RULE and DBMS_RULE_ADM packages, and for more 
information about the Oracle-supplied rule types

� Oracle Database Reference for more information about the 
DBA_EVALUATION_CONTEXT_VARS data dictionary view



The Components of a Rule

Rules 5-9

Evaluation Function
You have the option of creating an evaluation function to be run with a rule 
evaluation context. You may choose to use an evaluation function for the following 
reasons:

� You want to bypass the rules engine and instead evaluate events using the 
evaluation function.

� You want to filter events so that some events are evaluated by the evaluation 
function and other events are evaluated by the rules engine.

You can associate the function with the rule evaluation context by specifying the 
function name for the evaluation_function parameter when you create the 
rule evaluation context with the CREATE_EVALUATION_CONTEXT procedure in the 
DBMS_RULE_ADM package. The rules engine invokes the evaluation function during 
the evaluation of any rule set that uses the evaluation context. 

The DBMS_RULE.EVALUATE procedure is overloaded. The function must have each 
parameter in one of the DBMS_RULE.EVALUATE procedures, and the type of each 
parameter must be same as the type of the corresponding parameter in the 
DBMS_RULE.EVALUATE procedure, but the names of the parameters may be 
different.

An evaluation function has the following return values:

� DBMS_RULE_ADM.EVALUATION_SUCCESS: The user specified evaluation 
function completed the rule set evaluation successfully. The rules engine returns 
the results of the evaluation obtained by the evaluation function to the rules 
engine client using the DBMS_RULE.EVALUATE procedure.

� DBMS_RULE_ADM.EVALUATION_CONTINUE: The rules engine evaluates the 
rule set as if there were no evaluation function. The evaluation function is not 
used, and any results returned by the evaluation function are ignored.

� DBMS_RULE_ADM.EVALUATION_FAILURE: The user specified evaluation 
function failed. Rule set evaluation stops, and an error is raised.

Note: If a rule does not have an evaluation context, and you try to 
add it to a rule set that does not have an evaluation context, then an 
error is raised, unless you specify an evaluation context when you 
run the ADD_RULE procedure.



The Components of a Rule

5-10 Oracle Streams Concepts and Administration

If you always want to bypass the rules engine, then the evaluation function should 
return either EVALUATION_SUCCESS or EVALUATION_FAILURE. However, if you 
want to filter events so that some events are evaluated by the evaluation function 
and other events are evaluated by the rules engine, then the evaluation function 
may return all three return values, and it returns EVALUATION_CONTINUE when 
the rules engine should be used for evaluation.

If you specify an evaluation function for an evaluation context, then the evaluation 
function is run during evaluation when the evaluation context is used by a rule set 
or rule.

Rule Action Context
A rule action context contains optional information associated with a rule that is 
interpreted by the client of the rules engine when the rule is evaluated for an event. 
The client of the rules engine can be a user-created application or an internal feature 
of Oracle, such as Streams. Each rule has only one action context. The information 
in an action context is of type SYS.RE$NV_LIST, which is a type that contains an 
array of name-value pairs.

The rule action context information provides a context for the action taken by a 
client of the rules engine when a rule evaluates to TRUE or MAYBE. The rules engine 
does not interpret the action context. Instead, it returns the action context, and a 
client of the rules engine can interpret the action context information. 

For example, suppose an event is defined as the addition of a new employee to a 
company. If the employee information is stored in the hr.employees table, then 
the event occurs whenever a row is inserted into this table. The company wants to 
specify that a number of actions are taken when a new employee is added, but the 
actions depend on which department the employee joins. One of these actions is 
that the employee is registered for a course relating to the department.

In this scenario, the company can create a rule for each department with an 
appropriate action context. Here, an action context returned when a rule evaluates 
to TRUE specifies the number of a course that an employee should take. Here are 
parts of the rule conditions and the action contexts for three departments:

See Also: PL/SQL Packages and Types Reference for more 
information about the evaluation function specified in the 
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT procedure 
and for more information about the overloaded 
DBMS_RULE.EVALUATE procedure



The Components of a Rule

Rules 5-11

These action contexts return the following instructions to the client application:

� The action context for the rule_dep_10 rule instructs the client application to 
enroll the new employee in course number 1057.

� The action context for the rule_dep_20 rule instructs the client application to 
enroll the new employee in course number 1215.

� The NULL action context for the rule_dep_30 rule instructs the client 
application not to enroll the new employee in any course.

Each action context can contain zero or more name-value pairs. If an action context 
contains more than one name-value pair, then each name in the list must be unique. 
In this example, the client application to which the rules engine returns the action 
context registers the new employee in the course with the returned course number. 
The client application does not register the employee for a course if a NULL action 
context is returned or if the action context does not contain a course number.

If multiple clients use the same rule, or if you want an action context to return more 
than one name-value pair, then you can list more than one name-value pair in an 
action context. For example, suppose the company also adds a new employee to a 
department electronic mailing list. In this case, the action context for the 
rule_dep_10 rule might contain two name-value pairs:

The following are considerations for names in name-value pairs:

� If different applications use the same action context, then avoid naming 
conflicts by using different names or prefixes of names.

� Do not use $ and # in names to avoid conflicts with Oracle-supplied action 
context names.

Rule Name Part of the Rule Condition Action Context Name-Value Pair

rule_dep_10 department_id = 10 course_number, 1057

rule_dep_20 department_id = 20 course_number, 1215

rule_dep_30 department_id = 30 NULL

Name Value

course_number 1057

dist_list admin_list



The Components of a Rule

5-12 Oracle Streams Concepts and Administration

You can add a name-value pair to an action context using the ADD_PAIR member 
procedure of the RE$NV_LIST type. You can remove a name-value pair from an 
action context using the REMOVE_PAIR member procedure of the RE$NV_LIST 
type. If you want to modify an existing name-value pair in an action context, then 
you should first remove it using the REMOVE_PAIR member procedure and then 
add an appropriate name-value pair using the ADD_PAIR member procedure.

An action context cannot contain information of the following datatypes:

� CLOB

� NCLOB

� BLOB

� LONG

� LONG RAW

In addition, an action context cannot contain object types with attributes of these 
datatypes, nor object types that use type evolution or type inheritance.

Note: Streams uses action contexts for rule-based transformations 
and, when subset rules are specified, for internal transformations 
that may be required on LCRs containing UPDATE operations. 
Streams also uses action contexts to specify a destination queue into 
which an apply process enqueues events that satisfy the rule. In 
addition, Streams uses action contexts to specify whether or not an 
event that satisfies an apply process rule is executed by the apply 
process.

See Also:

� "Streams and Action Contexts" on page 6-50

� "Creating a Rule With an Action Context" on page 12-5 and 
"Altering a Rule" on page 12-7 for examples that add and 
modify name-value pairs

� PL/SQL Packages and Types Reference for more information about 
the RE$NV_LIST type



Rule Set Evaluation

Rules 5-13

Rule Set Evaluation
The rules engine evaluates rule sets against an event. An event is an occurrence that 
is defined by the client of the rules engine. The client initiates evaluation of an event 
by calling the DBMS_RULE.EVALUATE procedure. This procedure enables the client 
to send some information about the event to the rules engine for evaluation against 
a rule set. The event itself may have more information than the information that the 
client sends to the rules engine.

The information specified by the client when it calls the DBMS_RULE.EVALUATE 
procedure includes the following:

� The name of the rule set that contains the rules to use to evaluate the event

� The evaluation context to use for evaluation. Only rules that use the specified 
evaluation context are evaluated.

� Table values and variable values. The table values contain rowids that refer to 
the data in table rows, and the variable values contain the data for explicit 
variables. Values specified for implicit variables override the values that might 
be obtained using a variable value function. If a specified variable has 
attributes, then the client can send a value for the entire variable, or the client 
can send values for any number of the variable's attributes. However, clients 
cannot specify attribute values if the value of the entire variable is specified.

� An optional event context. An event context is a varray of type 
SYS.RE$NV_LIST that contains name-value pairs that contain information 
about the event. This optional information is not directly used or interpreted by 
the rules engine. Instead, it is passed to client callbacks, such as an evaluation 
function, a variable value function (for implicit variables), and a variable 
method function.

The client also can send other information about how to evaluate an event against 
the rule set using the DBMS_RULE.EVALUATE procedure. For example, the caller 
may specify if evaluation must stop as soon as the first TRUE rule or the first MAYBE 
rule (if there are no TRUE rules) is found.

If the client wants all of the rules that evaluate to TRUE or MAYBE returned to it, then 
the client can specify whether evaluation results should be sent back in a complete 
list of the rules that evaluated to TRUE or MAYBE, or evaluation results should be 
sent back iteratively. When evaluation results are sent iteratively to the client, the 
client can retrieve each rule that evaluated to TRUE or MAYBE one by one using the 
GET_NEXT_HIT function in the DBMS_RULE package.



Rule Set Evaluation

5-14 Oracle Streams Concepts and Administration

The rules engine uses the rules in the specified rule set for evaluation and returns 
the results to the client. The rules engine returns rules using two OUT parameters in 
the EVALUATE procedure. This procedure is overloaded and the two OUT 
parameters are different in each version of the procedure:

� One version of the procedure returns all of the rules that evaluate to TRUE in 
one list or all of the rules that evaluate to MAYBE in one list, and the two OUT 
parameters for this version of the procedure are true_rules and 
maybe_rules. That is, the true_rules parameter returns rules in one list 
that evaluate to TRUE, and the maybe_rules parameter returns rules in one 
list that may evaluate to TRUE given more information.

� The other version of the procedure returns all of the rules that evaluate to TRUE 
or MAYBE iteratively at the request of the client, and the two OUT parameters for 
this version of the procedure are true_rules_iterator and 
maybe_rules_iterator. That is, the true_rules_iterator parameter 
returns rules that evaluate to TRUE one by one, and the 
maybe_rules_iterator parameter returns rules one by one that may 
evaluate to TRUE given more information.

Rule Set Evaluation Process
Figure 5–1 shows the rule set evaluation process:

1. A client-defined event occurs.

2. The client initiates evaluation of a rule set by sending information about an 
event to the rules engine using the DBMS_RULE.EVALUATE procedure.

3. The rules engine evaluates the rule set for the event using the relevant 
evaluation context. The client specifies both the rule set and the evaluation 
context in the call to the DBMS_RULE.EVALUATE procedure. Only rules that are 
in the specified rule set, and use the specified evaluation context, are used for 
evaluation.

4. The rules engine obtains the results of the evaluation. Each rule evaluates to 
either TRUE, FALSE, or NULL (unknown).

5. The rules engine returns rules that evaluated to TRUE to the client, either in a 
complete list or one by one. Each returned rule is returned with its entire action 
context, which may contain information or may be NULL.

6. The client performs actions based on the results returned by the rules engine. 
The rules engine does not perform actions based rule evaluations.



Rule Set Evaluation

Rules 5-15

Figure 5–1 Rule Set Evaluation

Partial Evaluation
Partial evaluation occurs when the DBMS_RULE.EVALUATE procedure is run 
without data for all the tables and variables in the specified evaluation context. 
During partial evaluation, some rules may reference columns, variables, or 
attributes that are unavailable, while some other rules may reference only available 
data.

For example, consider a scenario where only the following data is available during 
evaluation:

� Column tab1.col = 7

� Attribute v1.a1 = 'ABC'

See Also:

� PL/SQL Packages and Types Reference for more information about 
the DBMS_RULE.EVALUATE procedure

� "Rule Conditions with Undefined Variables That Evaluate to 
NULL" on page 6-61 for information about Streams clients and 
maybe_rules

Rules
Engine

Client

Event

True, False,
or Unknown

Optional
Action Context

Rules and
Evaluation
Contexts

Action

2

5
6

Event

1
3

4



Rule Set Evaluation

5-16 Oracle Streams Concepts and Administration

The following rules are used for evaluation:

� Rule R1 has the following condition: 

(tab1.col = 5)

� Rule R2 has the following condition: 

(:v1.a2 > 'aaa')

� Rule R3 has the following condition: 

(:v1.a1 = 'ABC') OR (:v2 = 5)

� Rule R4 has the following condition: 

(:v1.a1 = UPPER('abc'))

Given this scenario, R1 and R4 reference available data, R2 references unavailable 
data, and R3 references available data and unavailable data.

Partial evaluation always evaluates only simple conditions within a rule. If the rule 
condition has parts which are not simple, then the rule may or may not be 
evaluated completely, depending on the extent to which data is available. If a rule is 
not completely evaluated, then it can be returned as a MAYBE rule.

For example, given the rules in the previous scenario, R1 and the first part of R3 are 
evaluated, but R2 and R4 are not evaluated. The following results are returned to 
the client:

� R1 evaluates to FALSE, and so is not returned.

� R2 is returned as MAYBE because information about attribute v1.a2 is not 
available.

� R3 is returned as TRUE because R3 is a simple rule and the value of v1.a1 
matches the first part of the rule condition.

� R4 is returned as MAYBE because the rule condition is not simple. The client 
must supply the value of variable v1 for this rule to evaluate to TRUE or FALSE.

See Also: "Simple Rule Conditions" on page 5-4



Database Objects and Privileges Related to Rules

Rules 5-17

Database Objects and Privileges Related to Rules
You can create the following types of database objects directly using the 
DBMS_RULE_ADM package:

� Evaluation contexts

� Rules

� Rule sets

You can create rules and rule sets indirectly using the DBMS_STREAMS_ADM 
package. You control the privileges for these database objects using the following 
procedures in the DBMS_RULE_ADM package:

� GRANT_OBJECT_PRIVILEGE

� GRANT_SYSTEM_PRIVILEGE

� REVOKE_OBJECT_PRIVILEGE

� REVOKE_SYSTEM_PRIVILEGE

To allow a user to create rule sets, rules, and evaluation contexts in the user's own 
schema, grant the user the following system privileges:

� CREATE_RULE_SET_OBJ

� CREATE_RULE_OBJ

� CREATE_EVALUATION_CONTEXT_OBJ

These privileges, and the privileges discussed in the following sections, can be 
granted to the user directly or through a role.

Note: When you grant a privilege on "ANY" object (for example, 
ALTER_ANY_RULE), and the initialization parameter 
O7_DICTIONARY_ACCESSIBILITY is set to false, you give the 
user access to that type of object in all schemas, except the SYS 
schema. By default, the initialization parameter 
O7_DICTIONARY_ACCESSIBILITY is set to false.

If you want to grant access to an object in the SYS schema, then you 
can grant object privileges explicitly on the object. Alternatively, 
you can set the O7_DICTIONARY_ACCESSIBILITY initialization 
parameter to true. Then privileges granted on "ANY" object will 
allow access to any schema, including SYS.



Database Objects and Privileges Related to Rules

5-18 Oracle Streams Concepts and Administration

Privileges for Creating Database Objects Related to Rules
To create an evaluation context, rule, or rule set in a schema, a user must meet at 
least one of the following conditions:

� The schema must be the user's own schema, and the user must be granted the 
create system privilege for the type of database object being created. For 
example, to create a rule set in the user's own schema, a user must be granted 
the CREATE_RULE_SET_OBJ system privilege.

� The user must be granted the create any system privilege for the type of 
database object being created. For example, to create an evaluation context in 
any schema, a user must be granted the CREATE_ANY_EVALUATION_CONTEXT 
system privilege.

Privileges for Altering Database Objects Related to Rules
To alter an evaluation context, rule, or rule set, a user must meet at least one of the 
following conditions:

� The user must own the database object.

� The user must be granted the alter object privilege for the database object if it is 
in another user's schema. For example, to alter a rule set in another user's 

See Also:

� "The Components of a Rule" on page 5-2 for more information 
about these database objects

� PL/SQL Packages and Types Reference for more information about 
the system and object privileges for these database objects

� Oracle Database Concepts and Oracle Database Security Guide for 
general information about user privileges

� Chapter 6, "How Rules Are Used In Streams" for more 
information about creating rules and rule sets indirectly using 
the DBMS_STREAMS_ADM package

Note: When creating a rule with an evaluation context, the rule 
owner must have privileges on all objects accessed by the 
evaluation context.



Database Objects and Privileges Related to Rules

Rules 5-19

schema, a user must be granted the ALTER_ON_RULE_SET object privilege on 
the rule set.

� The user must be granted the alter any system privilege for the database object. 
For example, to alter a rule in any schema, a user must be granted the 
ALTER_ANY_RULE system privilege.

Privileges for Dropping Database Objects Related to Rules
To drop an evaluation context, rule, or rule set, a user must meet at least one of the 
following conditions:

� The user must own the database object.

� The user must be granted the drop any system privilege for the database object. 
For example, to drop a rule set in any schema, a user must be granted the 
DROP_ANY_RULE_SET system privilege.

Privileges for Placing Rules in a Rule Set
This section describes the privileges required to place a rule in a rule set. The user 
must meet at least one of the following conditions for the rule:

� The user must own the rule.

� The user must be granted the execute object privilege on the rule if the rule is in 
another user's schema. For example, to place a rule named depts in the hr 
schema in a rule set, a user must be granted the EXECUTE_ON_RULE privilege 
for the hr.depts rule.

� The user must be granted the execute any system privilege for rules. For 
example, to place any rule in a rule set, a user must be granted the 
EXECUTE_ANY_RULE system privilege.

The user also must meet at least one of the following conditions for the rule set:

� The user must own the rule set.

� The user must be granted the alter object privilege on the rule set if the rule set 
is in another user's schema. For example, to place a rule in the 
human_resources rule set in the hr schema, a user must be granted the 
ALTER_ON_RULE_SET privilege for the hr.human_resources rule set.

� The user must be granted the alter any system privilege for rule sets. For 
example, to place a rule in any rule set, a user must be granted the 
ALTER_ANY_RULE_SET system privilege.



Database Objects and Privileges Related to Rules

5-20 Oracle Streams Concepts and Administration

In addition, the rule owner must have privileges on all objects referenced by the 
rule. These privileges are important when the rule does not have an evaluation 
context associated with it.

Privileges for Evaluating a Rule Set
To evaluate a rule set, a user must meet at least one of the following conditions:

� The user must own the rule set.

� The user must be granted the execute object privilege on the rule set if it is in 
another user's schema. For example, to evaluate a rule set named 
human_resources in the hr schema, a user must be granted the 
EXECUTE_ON_RULE_SET privilege for the hr.human_resources rule set.

� The user must be granted the execute any system privilege for rule sets. For 
example, to evaluate any rule set, a user must be granted the 
EXECUTE_ANY_RULE_SET system privilege.

Granting EXECUTE object privilege on a rule set requires that the grantor have the 
EXECUTE privilege specified WITH GRANT OPTION on all rules currently in the rule 
set.

Privileges for Using an Evaluation Context
To use an evaluation context in a rule or a rule set, the user who owns the rule or 
rule set must meet at least one of the following conditions for the evaluation 
context:

� The user must own the evaluation context.

� The user must be granted the EXECUTE_ON_EVALUATION_CONTEXT privilege 
on the evaluation context, if it is in another user's schema.

� The user must be granted the EXECUTE_ANY_EVALUATION_CONTEXT system 
privilege for evaluation contexts.



How Rules Are Used In Streams 6-1

6
How Rules Are Used In Streams

This chapter explains how rules are used in Streams.

This chapter contains these topics:

� Overview of How Rules Are Used In Streams

� Rule Sets and Rule Evaluation of Events

� System-Created Rules

� Evaluation Contexts Used in Streams

� Streams and Event Contexts

� Streams and Action Contexts

� User-Created Rules, Rule Sets, and Evaluation Contexts

� Rule-Based Transformations

See Also:

� Chapter 5, "Rules" for more information about rules

� Chapter 12, "Managing Rules and Rule-Based Transformations"



Overview of How Rules Are Used In Streams

6-2 Oracle Streams Concepts and Administration

Overview of How Rules Are Used In Streams
In Streams, each of the following mechanisms is a client of a rules engine, when the 
mechanism is associated with one or more rule sets:

� Capture process

� Propagation

� Apply process 

� Messaging client

Each of these clients can be associated with at most two rule sets: a positive rule set 
and a negative rule set. A single rule set can be used by multiple capture processes, 
propagations, apply processes, and messaging clients within the same database. 
Also, a single rule set may be a positive rule set for one Streams client and a 
negative rule set for another Streams client. Figure 6–1 illustrates how multiple 
clients of a rules engine can use one rule set.

Figure 6–1 One Rule Set Can Be Used by Multiple Clients of a Rules Engine

A Streams client performs a task if an event satisfies its rule sets. In general, an 
event satisfies the rule sets for a Streams client if no rules in the negative rule set 
evaluate to TRUE for the event, and at least one rule in the positive rule set evaluates 
to TRUE for the event. "Rule Sets and Rule Evaluation of Events" on page 6-4 
contains more detailed information about how an event satisfies the rule sets for a 
Streams client, including information about Streams client behavior when one or 
more rule sets are not specified.

Rule
Set

PropagationCapture
Process

Apply
Process

Messaging
Client



Overview of How Rules Are Used In Streams

How Rules Are Used In Streams 6-3

Specifically, you use rule sets in Streams to do the following:

� Specify the changes that a capture process captures from the redo log or 
discards. That is, if a change found in the redo log satisfies the rule sets for a 
capture process, then the capture process captures the change. If a change found 
in the redo log causes does not satisfy the rule sets for a capture process, then 
the capture process discards the change.

� Specify the events that a propagation propagates from one queue to another or 
discards. That is, if an event in a queue satisfies the rule sets for a propagation, 
then the propagation propagates the event. If an event in a queue does not 
satisfy the rule sets for a propagation, then the propagation discards the event.

� Specify the events that an apply process retrieves from a queue or discards. 
That is, if an event in a queue satisfies the rule sets for an apply process, then 
the event is dequeued and processed by the apply process. If an event in a 
queue does not satisfy the rule sets for an apply process, then the apply process 
discards the event.

� Specify the user-enqueued events that a messaging client dequeues from a 
queue or discards. That is, if a user-enqueued event in a queue satisfies the rule 
sets for a messaging client, then the user or application that is using the 
messaging client dequeues the event. If a user-enqueued event in a queue does 
not satisfy the rule sets for a messaging client, then the user or application that 
is using the messaging client discards the event.

In the case of a propagation or an apply process, the events evaluated against the 
rule sets can be captured events or user-enqueued events.

If there are conflicting rules in the positive rule set associated with a client, then the 
client performs the task if either rule evaluates to TRUE. For example, if a rule in the 
positive rule set for a capture process contains one rule that instructs the capture 
process to capture the results of data manipulation language (DML) changes to the 
hr.employees table, but another rule in the rule set instructs the capture process 
not to capture the results of DML changes to the hr.employees table, then the 
capture process captures these changes.

Similarly, if there are conflicting rules in the negative rule set associated with a 
client, then the client discards an event if either rule evaluates to TRUE for the event. 
For example, if a rule in the negative rule set for a capture process contains one rule 
that instructs the capture process to discard the results of DML changes to the 
hr.departments table, but another rule in the rule set instructs the capture 
process not to discard the results of DML changes to the hr.departments table, 
then the capture process discards these changes.



Rule Sets and Rule Evaluation of Events

6-4 Oracle Streams Concepts and Administration

Rule Sets and Rule Evaluation of Events
Streams clients perform the following tasks based on rules:

� A capture process captures changes in the redo log, converts the changes into 
logical change record (LCR) events, and enqueues these events into the capture 
process queue.

� A propagation propagates either captured or user-enqueued events, or both, 
from a source queue to a destination queue.

� An apply process dequeues either captured or user-enqueued events from its 
queue and applies these events directly or sends the events to an apply handler.

� A messaging client dequeues user-enqueued events from its queue.

These Streams clients are all clients of the rules engine. A Streams client performs its 
task for an event when the event satisfies the rule sets used by the Streams client. A 
Streams client may have no rule set, only a positive rule set, only a negative rule set, 
or both a positive and a negative rule set. The following sections explain how rule 
evaluation works in each of these cases:

� Streams Client With No Rule Set

� Streams Client With a Positive Rule Set Only

� Streams Client With a Negative Rule Set Only

� Streams Client With Both a Positive and a Negative Rule Set

� Streams Client With One or More Empty Rule Sets

� Summary of Rule Sets and Streams Client Behavior

See Also: For more information about Streams clients:

� Chapter 2, "Streams Capture Process"

� "Event Propagation Between Queues" on page 3-5

� Chapter 4, "Streams Apply Process"

� "Messaging Clients" on page 3-11



Rule Sets and Rule Evaluation of Events

How Rules Are Used In Streams 6-5

Streams Client With No Rule Set
A Streams client with no rule set performs its task for all of the events it encounters. 
An empty rule set is not the same as no rule set at all.

Streams Client With a Positive Rule Set Only
A Streams client with a positive rule set, but no negative rule set, performs its task 
for an event if any rule in the positive rule set evaluates to TRUE for the event. 
However, if all of the rules in a positive rule set evaluate to FALSE for the event, 
then the Streams client discards the event.

Streams Client With a Negative Rule Set Only
A Streams client with a negative rule set, but no positive rule set, discards an event 
if any rule in the negative rule set evaluates to TRUE for the event. However, if all of 
the rules in a negative rule set evaluate to FALSE for the event, then the Streams 
client performs its task for the event.

Streams Client With Both a Positive and a Negative Rule Set
If Streams client has both a positive and a negative rule set, then the negative rule 
set is evaluated first for an event. If any rule in the negative rule set evaluates to 
TRUE for the event, then the event is discarded, and the event is never evaluated 
against the positive rule set. 

However, if all of the rules in the negative rule set evaluate to FALSE for the event, 
then the event is evaluated against the positive rule set. At this point, the behavior 
is the same as when the Streams client only has a positive rule set. That is, the 
Streams client performs its task for an event if any rule in the positive rule set 
evaluates to TRUE for the event. If all of the rules in a positive rule set evaluate to 
FALSE for the event, then the Streams client discards the event.

See Also: "Streams Client With One or More Empty Rule Sets" on 
page 6-6



Rule Sets and Rule Evaluation of Events

6-6 Oracle Streams Concepts and Administration

Streams Client With One or More Empty Rule Sets
A Streams client may have one or more empty rule sets. A Streams client behaves in 
the following ways if it has one or more empty rule sets:

� If a Streams client has no positive rule set, and its negative rule set is empty, 
then the Streams client performs its task for all events.

� If a Streams client has both a positive and a negative rule set, and the negative 
rule set is empty but its positive rule set contains rules, then the Streams client 
performs its task based on the rules in the positive rule set.

� If a Streams client has a positive rule set that is empty, then the Streams client 
discards all events, regardless of the state of its negative rule set.

Summary of Rule Sets and Streams Client Behavior
Table 6–1 summarizes the Streams client behavior described in the previous 
sections.

Table 6–1 Rule Sets and Streams Client Behavior

Negative Rule Set Positive Rule Set Streams Client Behavior

None None Performs its task for all events

None Exists with rules Performs its task for events that evaluate to 
TRUE against the positive rule set

Exists with rules None Discards events that evaluate to TRUE against 
the negative rule set, and performs its task for 
all other events

Exists with rules Exists with rules Discards events that evaluate to TRUE against 
the negative rule set, and performs its task for 
remaining events that evaluate to TRUE 
against the positive rule set. The negative rule 
set is evaluated first.

Exists but is empty None Performs its task for all events

Exists but is empty Exists with rules Performs its task for events that evaluate to 
TRUE against the positive rule set

None Exists but is empty Discards all events

Exists but is empty Exists but is empty Discards all events

Exists with rules Exists but is empty Discards all events



System-Created Rules

How Rules Are Used In Streams 6-7

System-Created Rules
A Streams client performs its task for an event if the event satisfies its rule sets. A 
system-created rule may specify one of the following levels of granularity: table, 
schema, or global. This section describes each of these levels. You can specify more 
than one level for a particular task. For example, you can instruct a single apply 
process to perform table-level apply for specific tables in the oe schema and 
schema-level apply for the entire hr schema. In addition, a single rule pertains to 
either the results of data manipulation language (DML) changes or data definition 
language (DDL) changes. So, for example, you must use at least two system-created 
rules to include all of the changes to a particular table: one rule for the results of 
DML changes and another rule for DDL changes. The results of a DML change are 
the row changes recorded in the redo log because of the DML change, or the row 
LCRs in a queue that encapsulate each row change.

Table 6–2 shows what each level of rule means for each Streams task. Remember 
that a negative rule set is evaluated before a positive rule set.

Table 6–2 Types of Tasks and Rule Levels 

Task Table Rule Schema Rule Global Rule

Capture with a 
capture process

If the table rule is in a 
negative rule set, then 
discard the changes in the 
redo log for the specified 
table.

If the table rule is in a 
positive rule set, then 
capture all or a subset of 
the changes in the redo log 
for the specified table, 
convert them into logical 
change records (LCRs), 
and enqueue them.

If the schema rule is in a 
negative rule set, then discard 
the changes in the redo log for 
the schema itself and for the 
database objects in the specified 
schema.

If the schema rule is in a positive 
rule set, then capture the 
changes in the redo log for the 
schema itself and for the 
database objects in the specified 
schema, convert them into LCRs, 
and enqueue them.

If the global rule is in a 
negative rule set, then 
discard the changes to all 
of the database objects in 
the database.

If the global rule is in a 
positive rule set, then 
capture the changes to all 
of the database objects in 
the database, convert them 
into LCRs, and enqueue 
them.



System-Created Rules

6-8 Oracle Streams Concepts and Administration

Propagate with a 
propagation

If the table rule is in a 
negative rule set, then 
discard the LCRs relating 
to the specified table in the 
source queue.

If the table rule is in a 
positive rule set, then 
propagate all or a subset of 
the LCRs relating to the 
specified table in the 
source queue to the 
destination queue.

If the schema rule is in a 
negative rule set, then discard 
the LCRs related to the specified 
schema itself and the LCRs 
related to database objects in the 
schema in the source queue.

If the schema rule is in a positive 
rule set, then propagate the 
LCRs related to the specified 
schema itself and the LCRs 
related to database objects in the 
schema in the source queue to 
the destination queue.

If the global rule is in a 
negative rule set, then 
discard all of the LCRs in 
the source queue.

If the global rule is in a 
positive rule set, then 
propagate all of the LCRs 
in the source queue to the 
destination queue.

Apply with an 
apply process

If the table rule is in a 
negative rule set, then 
discard the LCRs in the 
queue relating to the 
specified table.

If the table rule is in a 
positive rule set, then 
apply all or a subset of the 
LCRs in the queue relating 
to the specified table.

If the schema rule is in a 
negative rule set, then discard 
the LCRs in the queue relating to 
the specified schema itself and 
the database objects in the 
schema.

If the schema rule is in a positive 
rule set, then apply the LCRs in 
the queue relating to the 
specified schema itself and the 
database objects in the schema.

If the global rule is in a 
negative rule set, then 
discard all of the LCRs in 
the queue.

If the global rule is in a 
positive rule set, then 
apply all of the LCRs in 
the queue.

Dequeue with a 
messaging client

If the table rule is in a 
negative rule set, then, 
when the messaging client 
is invoked, discard the 
user-enqueued LCRs 
relating to the specified 
table in the queue.

If the table rule is in a 
positive rule set, then, 
when the messaging client 
is invoked, dequeue all or 
a subset of the 
user-enqueued LCRs 
relating to the specified 
table in the queue.

If the schema rule is in a 
negative rule set, then, when the 
messaging client is invoked, 
discard the user-enqueued LCRs 
relating to the specified schema 
itself and the database objects in 
the schema in the queue.

If the schema rule is in a positive 
rule set, then, when the 
messaging client is invoked, 
dequeue the user-enqueued 
LCRs relating to the specified 
schema itself and the database 
objects in the schema in the 
queue.

If the global rule is in a 
negative rule set, then, 
when the messaging client 
is invoked, discard all of 
the user-enqueued LCRs in 
the queue.

If the global rule is in a 
positive rule set, then, 
when the messaging client 
is invoked, dequeue all of 
the user-enqueued LCRs in 
the queue.

Table 6–2 Types of Tasks and Rule Levels (Cont.)

Task Table Rule Schema Rule Global Rule



System-Created Rules

How Rules Are Used In Streams 6-9

You can use procedures in the DBMS_STREAMS_ADM package to create rules at each 
of these levels. A system-created rule may include conditions that modify the 
Streams client behavior beyond the descriptions in Table 6–2. For example, some 
rules may specify a particular source database for LCRs, and, in this case, the rule 
evaluates to TRUE only if an LCR originated at the specified source database. 
Table 6–3 lists the types of system-created rule conditions that can be specified in 
the rules created by the DBMS_STREAMS_ADM package.

Table 6–3 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package 

Rule Condition Evaluates to TRUE for Streams Client Create Using Procedure

All row changes recorded in the redo log 
because of DML changes to any of the tables 
in a particular database

Capture Process ADD_GLOBAL_RULES

All DDL changes recorded in the redo log to 
any of the database objects in a particular 
database

Capture Process ADD_GLOBAL_RULES

All row changes recorded in the redo log 
because of DML changes to any of the tables 
in a particular schema

Capture Process ADD_SCHEMA_RULES 

All DDL changes recorded in the redo log to 
a particular schema and any of the database 
objects in the schema

Capture Process ADD_SCHEMA_RULES

All row changes recorded in the redo log 
because of DML changes to a particular 
table

Capture Process ADD_TABLE_RULES 

All DDL changes recorded in the redo log to 
a particular table

Capture Process ADD_TABLE_RULES 

All row changes recorded in the redo log 
because of DML changes to a subset of rows 
in a particular table

Capture Process ADD_SUBSET_RULES

All row LCRs in the source queue Propagation ADD_GLOBAL_PROPAGATION_RULES

All DDL LCRs in the source queue Propagation ADD_GLOBAL_PROPAGATION_RULES

All row LCRs in the source queue relating to 
the tables in a particular schema

Propagation ADD_SCHEMA_PROPAGATION_RULES

All DDL LCRs in the source queue relating 
to a particular schema and any of the 
database objects in the schema

Propagation ADD_SCHEMA_PROPAGATION_RULES



System-Created Rules

6-10 Oracle Streams Concepts and Administration

All row LCRs in the source queue relating to 
a particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All DDL LCRs in the source queue relating 
to a particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All row LCRs in the source queue relating to 
a subset of rows in a particular table

Propagation ADD_SUBSET_PROPAGATION_RULES

All user-enqueued events in the source 
queue of the specified type that satisfy the 
user-specified rule condition

Propagation ADD_MESSAGE_PROPAGATION_RULE

All row LCRs in the apply process’s queue Apply Process ADD_GLOBAL_RULES

All DDL LCRs in the apply process’s queue Apply Process ADD_GLOBAL_RULES

All row LCRs in the apply process’s queue 
relating to the tables in a particular schema

Apply Process ADD_SCHEMA_RULES 

All DDL LCRs in the apply process’s queue 
relating to a particular schema and any of 
the database objects in the schema

Apply Process ADD_SCHEMA_RULES

All row LCRs in the apply process’s queue 
relating to a particular table

Apply Process ADD_TABLE_RULES 

All DDL LCRs in the apply process’s queue 
relating to a particular table

Apply Process ADD_TABLE_RULES 

All row LCRs in the apply process’s queue 
relating to a subset of rows in a particular 
table

Apply Process ADD_SUBSET_RULES

All user-enqueued events in the apply 
process’s queue of the specified type that 
satisfy the user-specified rule condition

Apply Process ADD_MESSAGE_RULE

All user-enqueued row LCRs in the 
messaging client’s queue

Messaging Client ADD_GLOBAL_RULES

All user-enqueued DDL LCRs in the 
messaging client’s queue

Messaging Client ADD_GLOBAL_RULES

All user-enqueued row LCRs in the 
messaging client’s queue relating to the 
tables in a particular schema

Messaging Client ADD_SCHEMA_RULES 

Table 6–3 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package (Cont.)

Rule Condition Evaluates to TRUE for Streams Client Create Using Procedure



System-Created Rules

How Rules Are Used In Streams 6-11

Each procedure listed in Table 6–3 does the following:

� Creates a capture process, propagation, apply process, or messaging client if it 
does not already exist.

� Creates a rule set for the specified capture process, propagation, apply process, 
or messaging client if a rule set does not already exist for it. The rule set may be 
a positive rule set or a negative rule set. You can create each type of rule set by 
running the procedure at least twice.

� Creates zero or more rules and adds the rules to the rule set for the specified 
capture process, propagation, apply process, or messaging client. Based on your 
specifications when you run one of these procedures, the procedure either adds 
the rules to the positive rule set, or it adds the rules to the
 negative rule set.

Except for the ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE 
procedures, these procedures create rule sets that use the 
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context, which is an 
Oracle-supplied evaluation context for Streams environments. Also, global, schema, 
table, and subset rules use the SYS.STREAMS$_EVALUATION_CONTEXT evaluation 
context. 

All user-enqueued DDL LCRs in the 
messaging client’s queue relating to a 
particular schema and any of the database 
objects in the schema

Messaging Client ADD_SCHEMA_RULES

All user-enqueued row LCRs in the 
messaging client’s queue relating to a 
particular table

Messaging Client ADD_TABLE_RULES 

All user-enqueued DDL LCRs in the 
messaging client’s queue relating to a 
particular table

Messaging Client ADD_TABLE_RULES 

All user-enqueued row LCRs in the 
messaging client’s queue relating to a subset 
of rows in a particular table

Messaging Client ADD_SUBSET_RULES

All user-enqueued events in the messaging 
client’s queue of the specified type that 
satisfy the user-specified rule condition

Messaging Client ADD_MESSAGE_RULE

Table 6–3 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package (Cont.)

Rule Condition Evaluates to TRUE for Streams Client Create Using Procedure



System-Created Rules

6-12 Oracle Streams Concepts and Administration

However, when you create a rule using either the ADD_MESSAGE_RULE or the 
ADD_MESSAGE_PROPAGATION_RULE procedure, the rule uses a system-generated 
evaluation context that is customized specifically for each message type. Also, if the 
ADD_MESSAGE_RULE or the ADD_MESSAGE_PROPAGATION_RULE procedure 
creates a rule set, then the rule set does not have an evaluation context.

Except for ADD_SUBSET_RULES, ADD_SUBSET_PROPAGATION_RULES, 
ADD_MESSAGE_RULE, and ADD_MESSAGE_PROPAGATION_RULE, these procedures 
create either zero, one, or two rules. If you want to perform the Streams task for 
only the row changes resulting from DML changes or only for only DDL changes, 
then only one rule is created. If, however, you want to perform the Streams task for 
both the results of DML changes and DDL changes, then a rule is created for each. If 
you create a DML rule for a table now, then you can create a DDL rule for the same 
table in the future without modifying the DML rule created earlier. The same 
applies if you create a DDL rule for a table first and a DML rule for the same table 
in the future.

The ADD_SUBSET_RULES and ADD_SUBSET_PROPAGATION_RULES procedures 
always create three rules for three different types of DML operations on a table: 
INSERT, UPDATE, and DELETE. These procedures do not create rules for DDL 
changes to a table. You can use the ADD_TABLE_RULES or 
ADD_TABLE_PROPAGATION_RULES procedure to create a DDL rule for a table. In 
addition, you can add subset rules to positive rule sets only, not to negative rule 
sets. 

The ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE procedures 
always create one rule with a user-specified rule condition. These procedures create 
rules for user-enqueued events. They do not create rules for the results of DML 
changes or DDL changes to a table. 

When you create propagation rules for captured events, Oracle Corporation 
recommends that you specify a source database for the changes. An apply process 
uses transaction control events to assemble captured events into committed 
transactions. These transaction control events, such as COMMIT and ROLLBACK, 
contain the name of the source database where the event occurred. To avoid 
unintended cycling of these events, propagation rules should contain a condition 
specifying the source database, and you accomplish this by specifying the source 
database when you create the propagation rules.



System-Created Rules

How Rules Are Used In Streams 6-13

The following sections describe system-created rules in more detail:

� Global Rules

� Schema Rules

� Table Rules

� Subset Rules

� Message Rules

� System-Created Rules and Negative Rule Sets

� System-Created Rules with Added User-Defined Conditions

Note:

� To create rules with more complex rule conditions, such as 
rules that use the NOT or OR logical conditions, either use the 
and_condition parameter, which is available with some of 
the procedures in the DBMS_STREAMS_ADM package, or use the 
DBMS_RULE_ADM package.

� Each example in this section should be completed by a Streams 
administrator that has been granted the appropriate privileges, 
unless specified otherwise.

� Some prerequisites are required for the examples in this section 
to work. For example, a queue specified by a procedure 
parameter must exist.

See Also:

� "Rule Sets and Rule Evaluation of Events" on page 6-4 for 
information about how events satisfy the rule sets for a Streams 
client

� PL/SQL Packages and Types Reference for more information about 
the DBMS_STREAMS_ADM package and the DBMS_RULE_ADM 
package

� "Evaluation Contexts Used in Streams" on page 6-45

� "Logical Change Records (LCRs)" on page 2-2

� "Complex Rule Conditions" on page 6-58



System-Created Rules

6-14 Oracle Streams Concepts and Administration

Global Rules
When you use a rule to specify a Streams task that is relevant either to an entire 
database or to an entire queue, you are specifying a global rule. You can specify a 
global rule for DML changes, a global rule for DDL changes, or two rules for each 
type of change.

A single global rule in the positive rule set for a capture process means that the 
capture process captures either the results of all DML changes or all DDL changes 
to the source database. A single global rule in the negative rule set for a capture 
process means that the capture process discards either the results of all DML 
changes or all DDL changes to the source database.

A single global rule in the positive rule set for a propagation means that the 
propagation propagates either all row LCRs or all DDL LCRs in the source queue to 
the destination queue. A single global rule in the negative rule set for a propagation 
means that the propagation discards either all row LCRs or all DDL LCRs in the 
source queue.

A single global rule in the positive rule set for an apply process means that the 
apply process applies either all row LCRs or all DDL LCRs in its queue for a 
specified source database. A single global rule in the negative rule set for an apply 
process means that the apply process discards either all row LCRs or all DDL LCRs 
in its queue for a specified source database.

If you want to use global rules, but you are concerned about changes to database 
objects that are not supported by Streams, then you can create rules using the 
DBMS_RULE_ADM package to discard unsupported changes.

Global Rules Example
Suppose you use the ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM 
package to instruct a Streams capture process to capture all DML changes and DDL 
changes in a database.

See Also: "Rule Conditions That Instruct Streams Clients to 
Discard Unsupported LCRs" on page 6-56



System-Created Rules

How Rules Are Used In Streams 6-15

Run the ADD_GLOBAL_RULES procedure to create the rules:

BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type        =>  'capture',
    streams_name        =>  'capture',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  true,
    include_tagged_lcr  =>  false,
    source_database     =>  NULL,
    inclusion_rule      =>  true);
END;
/

Notice that the inclusion_rule parameter is set to true. This setting means that 
the system-created rules are added to the positive rule set for the capture process.

NULL can be specified for the source_database parameter because rules are 
being created for a local capture process. You also may specify the global name of 
the local database. When creating rules for a downstream capture process or apply 
process using ADD_GLOBAL_RULES, specify a source database name.

The ADD_GLOBAL_RULES procedure creates two rules: one for row LCRs (which 
contain the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:

(:dml.is_null_tag() = 'Y' )

Notice that the condition in the DML rule begins with the variable :dml. The value 
is determined by a call to the specified member function for the row LCR being 
evaluated. So, :dml.is_null_tag() in the previous example is a call to the 
IS_NULL_TAG member function for the row LCR being evaluated.

Here is the rule condition used by the DDL LCR rule:

(:ddl.is_null_tag() = 'Y' )

Notice that the condition in the DDL rule begins with the variable :ddl. The value 
is determined by a call to the specified member function for the DDL LCR being 
evaluated. So, :ddl.is_null_tag() in the previous example is a call to the 
IS_NULL_TAG member function for the DDL LCR being evaluated.



System-Created Rules

6-16 Oracle Streams Concepts and Administration

For a capture process, these conditions indicate that the tag must be NULL in a redo 
record for the capture process to capture a change. For a propagation, these 
conditions indicate that the tag must be NULL in an LCR for the propagation to 
propagate the LCR. For an apply process, these conditions indicate that the tag 
must be NULL in an LCR for the apply process to apply the LCR.

Given the rules created by this example in the positive rule set for the capture 
process, the capture process captures all supported DML and DDL changes made to 
the database.

System-Created Global Rules Avoid Empty Rule Conditions Automatically
You can omit the is_null_tag condition in system-created rules by specifying 
true for the include_tagged_lcr parameter when you run a procedure in the 
DBMS_STREAMS_ADM package. For example, the following ADD_GLOBAL_RULES 
procedure creates rules without the is_null_tag condition:

BEGIN DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type        =>  'capture',
   streams_name        =>  'capture_002',
   queue_name          =>  'streams_queue',
   include_dml         =>  true,
   include_ddl         =>  true,
   include_tagged_lcr  =>  true,
   source_database     =>  NULL,
   inclusion_rule      =>  true);
END;
/

When you set the include_tagged_lcr parameter to true for a global rule, and 
the source_database_name parameter is set to NULL, the rule condition used by 
the row LCR rule is the following:

(( :dml.get_source_database_name()>=' ' OR 
:dml.get_source_database_name()<=' ') )

Here is the rule condition used by the DDL LCR rule:

(( :ddl.get_source_database_name()>=' ' OR 
:ddl.get_source_database_name()<=' ') )

The system-created global rules contain these conditions to enable all row and DDL 
LCRs to evaluate to TRUE. 



System-Created Rules

How Rules Are Used In Streams 6-17

These rule conditions are specified to avoid NULL rule conditions for these rules. 
NULL rule conditions are not supported. In this case, if you want to capture all DML 
and DDL changes to a database, and you do not want to use any rule-based 
transformations for these changes upon capture, then you may choose to run the 
capture process without a positive rule set instead of specifying global rules.

Note:

� When you create a capture process using a procedure in the 
DBMS_STREAMS_ADM package and generate one or more rules 
for the capture process, the objects for which changes are 
captured are prepared for instantiation automatically, unless it 
is a downstream capture process and there is no database link 
from the downstream database to the source database.

� The capture process does not capture some types of DML and 
DDL changes, and it does not capture changes made in the 
SYS, SYSTEM, or CTXSYS schemas.

See Also:

� Oracle Streams Replication Administrator's Guide for more 
information about capture process rules and preparation for 
instantiation

� Chapter 2, "Streams Capture Process" for more information 
about the capture process and for detailed information about 
which DML and DDL statements are captured by a capture 
process

� Chapter 5, "Rules" for more information about variables in 
conditions

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags

� "Rule Sets and Rule Evaluation of Events" on page 6-4 for more 
information about running a capture process with no positive 
rule set



System-Created Rules

6-18 Oracle Streams Concepts and Administration

Schema Rules
When you use a rule to specify a Streams task that is relevant to a schema, you are 
specifying a schema rule. You can specify a schema rule for DML changes, a schema 
rule for DDL changes, or two rules for each type of change to the schema.

A single schema rule in the positive rule set for a capture process means that the 
capture process captures either the DML changes or the DDL changes to the 
schema. A single schema rule in the negative rule set for a capture process means 
that the capture process discards either the DML changes or the DDL changes to the 
schema.

A single schema rule in the positive rule set for a propagation means that the 
propagation propagates either the row LCRs or the DDL LCRs in the source queue 
that contain changes to the schema. A single schema rule in the negative rule set for 
a propagation means that the propagation discards either the row LCRs or the DDL 
LCRs in the source queue that contain changes to the schema.

A single schema rule in the positive rule set for an apply process means that the 
apply process applies either the row LCRs or the DDL LCRs in its queue that 
contain changes to the schema. A single schema rule in the negative rule set for an 
apply process means that the apply process discards either the row LCRs or the 
DDL LCRs in its queue that contain changes to the schema.

If you want to use schema rules, but you are concerned about changes to database 
objects in a schema that are not supported by Streams, then you can create rules 
using the DBMS_RULE_ADM package to discard unsupported changes.

Schema Rule Example
Suppose you use the ADD_SCHEMA_PROPAGATION_RULES procedure in the 
DBMS_STREAMS_ADM package to instruct a Streams propagation to propagate row 
LCRs and DDL LCRs relating to the hr schema from a queue at the dbs1.net 
database to a queue at the dbs2.net database.

See Also: "Rule Conditions That Instruct Streams Clients to 
Discard Unsupported LCRs" on page 6-56



System-Created Rules

How Rules Are Used In Streams 6-19

Run the ADD_SCHEMA_PROPAGATION_RULES procedure at dbs1.net to create the 
rules:

BEGIN 
  DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
    schema_name              =>  'hr',
    streams_name             =>  'dbs1_to_dbs2',
    source_queue_name        =>  'streams_queue',
    destination_queue_name   =>  'streams_queue@dbs2.net',
    include_dml              =>  true,
    include_ddl              =>  true,
    include_tagged_lcr       =>  false,
    source_database          =>  'dbs1.net',
    inclusion_rule           =>  true);
END;
/

Notice that the inclusion_rule parameter is set to true. This setting means that 
the system-created rules are added to the positive rule set for the propagation.

The ADD_SCHEMA_PROPAGATION_RULES procedure creates two rules: one for row 
LCRs (which contain the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' 
and :dml.get_source_database_name() = 'DBS1.NET' )

Here is the rule condition used by the DDL LCR rule:

((:ddl.get_object_owner() = 'HR' or :ddl.get_base_table_owner() = 'HR') 
and :ddl.is_null_tag() = 'Y' and :ddl.get_source_database_name() = 'DBS1.NET' )

The GET_BASE_TABLE_OWNER member function is used in the DDL LCR rule 
because the GET_OBJECT_OWNER function may return NULL if a user who does not 
own an object performs a DDL change on the object.

Given these rules in the positive rule set for the propagation, the following list 
provides examples of changes propagated by the propagation:

� A row is inserted into the hr.countries table.

� The hr.loc_city_ix index is altered.

� The hr.employees table is truncated.

� A column is added to the hr.countries table.



System-Created Rules

6-20 Oracle Streams Concepts and Administration

� The hr.update_job_history trigger is altered.

� A new table named candidates is created in the hr schema.

� Twenty rows are inserted into the hr.candidates table.

The propagation propagates the LCRs that contain all of the changes previously 
listed from the source queue to the destination queue.

Now, given the same rules, suppose a row is inserted into the oe.inventories 
table. This change is ignored because the oe schema was not specified in a schema 
rule, and the oe.inventories table was not specified in a table rule.

Table Rules
When you use a rule to specify a Streams task that is relevant only for an individual 
table, you are specifying a table rule. You can specify a table rule for DML changes, 
a table rule for DDL changes, or two rules for each type of change for a specific 
table.

A single table rule in the positive rule set for a capture process means that the 
capture process captures either the results of DML changes or the DDL changes to 
the table. A single table rule in the negative rule set for a capture process means that 
the capture process discards either the results of DML changes or the DDL changes 
to the table.

A single table rule in the positive rule set for a propagation means that the 
propagation propagates either the row LCRs or the DDL LCRs in the source queue 
that contain changes to the table. A single table rule in the negative rule set for a 
propagation means that the propagation discards either the row LCRs or the DDL 
LCRs in the source queue that contain changes to the table.

A single table rule in the positive rule set for an apply process means that the apply 
process applies either the row LCRs or the DDL LCRs in its queue that contain 
changes to the table. A single table rule in the negative rule set for an apply process 
means that the apply process discards either the row LCRs or the DDL LCRs in its 
queue that contain changes to the table.

Table Rules Example
Suppose you use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM 
package to instruct a Streams apply process to behave in the following ways:

� Apply All Row LCRs Related to the hr.locations Table

� Apply All DDL LCRs Related to the hr.countries Table



System-Created Rules

How Rules Are Used In Streams 6-21

Apply All Row LCRs Related to the hr.locations Table  The changes in these row LCRs 
originated at the dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.locations',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/

Notice that the inclusion_rule parameter is set to true. This setting means that 
the system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to 
the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS')) 
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET' )

Apply All DDL LCRs Related to the hr.countries Table  The changes in these DDL LCRs 
originated at the dbs1.net source database. 

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.countries',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  false,
    include_ddl         =>  true,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/



System-Created Rules

6-22 Oracle Streams Concepts and Administration

Notice that the inclusion_rule parameter is set to true. This setting means that 
the system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to 
the following:

(((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'COUNTRIES')
or (:ddl.get_base_table_owner() = 'HR' 
and :ddl.get_base_table_name() = 'COUNTRIES')) and :ddl.is_null_tag() = 'Y' 
and :ddl.get_source_database_name() = 'DBS1.NET' )

The GET_BASE_TABLE_OWNER and GET_BASE_TABLE_NAME member functions 
are used in the DDL LCR rule because the GET_OBJECT_OWNER and 
GET_OBJECT_NAME functions may return NULL if a user who does not own an 
object performs a DDL change on the object.

Summary of Rules  In this example, the following table rules were defined:

� A table rule that evaluates to TRUE if a row LCR contains a row change that 
results from a DML operation on the hr.locations table. 

� A table rule that evaluates to TRUE if a DDL LCR contains a DDL change 
performed on the hr.countries table. 

Given these rules, the following list provides examples of changes applied by an 
apply process:

� A row is inserted into the hr.locations table.

� Five rows are deleted from the hr.locations table.

� A column is added to the hr.countries table.

The apply process dequeues the LCRs containing these changes from its associated 
queue and applies them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored 
by the apply process:

� A row is inserted into the hr.employees table. This change is not applied 
because a change to the hr.employees table does not satisfy any of the rules.

� A row is updated in the hr.countries table. This change is a DML change, 
not a DDL change. This change is not applied because the rule on the 
hr.countries table is for DDL changes only.



System-Created Rules

How Rules Are Used In Streams 6-23

� A column is added to the hr.locations table. This change is a DDL change, 
not a DML change. This change is not applied because the rule on the 
hr.locations table is for DML changes only.

Subset Rules
A subset rule is a special type of table rule for DML changes. You can create subset 
rules for capture processes, apply processes, and messaging clients using the 
ADD_SUBSET_RULES procedure, and you can create subset rules for propagations 
using the ADD_SUBSET_PROPAGATION_RULES procedure. These procedures 
enable you to use a condition similar to a WHERE clause in a SELECT statement to 
specify the following:

� That a capture process only captures a subset of the row changes resulting from 
DML changes to a particular table

� That a propagation only propagates a subset of the row LCRs relating to a 
particular table

� That an apply process only applies a subset of the row LCRs relating to a 
particular table

� That a messaging client only dequeues a subset of the row LCRs relating to a 
particular table

The ADD_SUBSET_RULES procedure and the ADD_SUBSET_PROPAGATION_RULES 
procedure can add subset rules to the positive rule set only of a Streams client. You 
cannot add subset rules to the negative rule set for a Streams client using these 
procedures.

The following sections describe subset rules in more detail:

� Subset Rules Example

� Row Migration and Subset Rules

� Subset Rules and Supplemental Logging

� Guidelines for Using Subset Rules

� Restrictions for Subset Rules



System-Created Rules

6-24 Oracle Streams Concepts and Administration

Subset Rules Example
This example instructs a Streams apply process to apply a subset of row LCRs 
relating to the hr.regions table where the region_id is 2. These changes 
originated at the dbs1.net source database. 

Run the ADD_SUBSET_RULES procedure to create three rules:

BEGIN 
  DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
    table_name               =>  'hr.regions',
    dml_condition            =>  'region_id=2',
    streams_type             =>  'apply',
    streams_name             =>  'apply',
    queue_name               =>  'streams_queue',
    include_tagged_lcr       =>  false,
    source_database          =>  'dbs1.net');
END;
/

The ADD_SUBSET_RULES procedure creates three rules: one for INSERT operations, 
one for UPDATE operations, and one for DELETE operations.

Here is the rule condition used by the insert rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type() IN ('UPDATE','INSERT') 
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_command_type()='INSERT' 
OR ((:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL 
WHERE (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2))))

Note:

� Creating subset rules for tables that have one or more LOB, 
LONG, LONG RAW, or user-defined type columns is not 
supported.

� Capture process, propagation, and messaging client subset 
rules can be specified only at databases running Oracle 
Database 10g, but apply process subset rules can be specified at 
databases running Oracle9i release 2 (9.2) or higher.



System-Created Rules

How Rules Are Used In Streams 6-25

Based on this rule condition, row LCRs are evaluated in the following ways:

� For an insert, if the new value in the row LCR for region_id is 2, then the 
insert is applied.

� For an insert, if the new value in the row LCR for region_id is not 2 or is 
NULL, then the insert is filtered out.

� For an update, if the old value in the row LCR for region_id is not 2 or is 
NULL and the new value in the row LCR for region_id is 2, then the update is 
converted into an insert and applied. This automatic conversion is called row 
migration. See "Row Migration and Subset Rules" on page 6-27 for more 
information.

Here is the rule condition used by the update rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type()='UPDATE' 
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

Based on this rule condition, row LCRs are evaluated in the following ways:

� For an update, if both the old value and the new value in the row LCR for 
region_id are 2, then the update is applied as an update.

� For an update, if either the old value or the new value in the row LCR for 
region_id is not 2 or is NULL, then the update does not satisfy the update 
rule. The LCR may satisfy the insert rule, the delete rule, or neither rule.

Here is the rule condition used by the delete rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type() IN ('UPDATE','DELETE') 
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_command_type()='DELETE' 
OR ((:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL 
WHERE (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2))))



System-Created Rules

6-26 Oracle Streams Concepts and Administration

Based on this rule condition, row LCRs are evaluated in the following ways:

� For a delete, if the old value in the row LCR for region_id is 2, then the delete 
is applied.

� For a delete, if the old value in the row LCR for region_id is not 2 or is NULL, 
then the delete is filtered out.

� For an update, if the old value in the row LCR for region_id is 2 and the new 
value in the row LCR for region_id is not 2 or is NULL, then the update is 
converted into a delete and applied. This automatic conversion is called row 
migration. See "Row Migration and Subset Rules" on page 6-27 for more 
information.

Given these subset rules, the following list provides examples of changes applied by 
an apply process:

� A row is updated in the hr.regions table where the old region_id is 4 and 
the new value of region_id is 2. This update is transformed into an insert.

� A row is updated in the hr.regions table where the old region_id is 2 and 
the new value of region_id is 1. This update is transformed into a delete.

The apply process dequeues row LCRs containing these changes from its associated 
queue and applies them to the hr.regions table at the destination database.

Given these subset rules, the following list provides examples of changes that are 
ignored by the apply process:

� A row is inserted into the hr.employees table. This change is not applied 
because a change to the hr.employees table does not satisfy the subset rules.

� A row is updated in the hr.regions table where the region_id was 1 before 
the update and remains 1 after the update. This change is not applied because 
the subset rules for the hr.regions table evaluate to TRUE only when the new 
or old (or both) values for region_id is 2.



System-Created Rules

How Rules Are Used In Streams 6-27

Row Migration and Subset Rules
When you use subset rules, an update operation may be converted into an insert or 
delete operation when it is captured, propagated, applied, or dequeued. This 
automatic conversion is called row migration and is performed by an internal 
transformation specified automatically in a subset rule's action context. The 
following sections describe row migration during capture, propagation, apply, and 
dequeue.

Row Migration During Capture  When a subset rule is in the rule set for a capture 
process, an update that satisfies the subset rule may be converted into an insert or 
delete when it is captured.

For example, suppose you use a subset rule to specify that a capture process 
captures changes to the hr.employees table where the employee's 
department_id is 50 using the following subset condition: 
department_id = 50. Assume that the table at the source database contains 
records for employees from all departments. If a DML operation changes an 
employee's department_id from 80 to 50, then the capture process with the 
subset rule converts the update operation into an insert operation and captures the 
change. Therefore, a row LCR that contains an INSERT is enqueued into the capture 
process queue. Figure 6–2 illustrates this example.

Attention: Subset rules should only reside in positive rule sets. 
You should not add subset rules to negative rule sets. Doing so may 
have unpredictable results because row migration would not be 
performed on LCRs that are not discarded by the negative rule set. 
Also, row migration is not performed on LCRs discarded because 
they evaluate to TRUE against a negative rule set.



System-Created Rules

6-28 Oracle Streams Concepts and Administration

Figure 6–2 Row Migration During Capture

Similarly, if a captured update changes an employee's department_id from 50 to 
20, then a capture process with this subset rule converts the update operation into a 
DELETE operation.

Row Migration During Propagation  When a subset rule is in the rule set for a 
propagation, an update operation may be converted into an insert or delete 
operation when a row LCR is propagated.

For example, suppose you use a subset rule to specify that a propagation 
propagates changes to the hr.employees table where the employee's 
department_id is 50 using the following subset condition: 
department_id = 50. If the source queue for the propagation contains a row LCR 
with an update operation on the hr.employees table that changes an employee's 
department_id from 50 to 80, then the propagation with the subset rule converts 

Source Database

UPDATE hr.employees
SET department_id = 50
WHERE employee_id = 167;

Redo
Log

Enqueue
Transformed
LCR

Capture
Change

Record
Change

Propagate 
LCR

hr.employees Table

Destination Database

Apply
Process

Dequeue
LCR

Apply
change 
as
INSERT

hr.employees 
Subset Table

Queue

Only employees
with 
department_id = 50

Queue

Capture
Process

Subset Rule
Transformation:

UPDATE to INSERT



System-Created Rules

How Rules Are Used In Streams 6-29

the update operation into a delete operation and propagates the row LCR to the 
destination queue. Therefore, a row LCR that contains a DELETE is enqueued into 
the destination queue. Figure 6–3 illustrates this example.

Figure 6–3 Row Migration During Propagation

Similarly, if a captured update changes an employee's department_id from 80 to 
50, then a propagation with this subset rule converts the update operation into an 
INSERT operation.

Row Migration During Apply  When a subset rule is in the rule set for an apply process, 
an update operation may be converted into an insert or delete operation when a 
row LCR is applied. 

Source Database

(Before UPDATE, 
department_id is 50
for employee_id 190)
UPDATE hr.employees
SET department_id = 80
WHERE employee_id = 190;

Redo
Log

Capture
Process

Enqueue
LCR

Capture
Change

Record
Change

Dequeue 
LCR to Begin
Propagation

Continue
Propagation 
of LCR

hr.employees Table

Destination Database

Apply
Process

Dequeue
LCR

Apply
change 
as
DELETE

hr.employees 
Subset Table

Queue

Only employees
with 
department_id = 50

Queue

Subset Rule
Transformation:
UPDATE to
DELETE



System-Created Rules

6-30 Oracle Streams Concepts and Administration

For example, suppose you use a subset rule to specify that an apply process applies 
changes to the hr.employees table where the employee's department_id is 50 
using the following subset condition: department_id = 50. Assume that the table 
at the destination database is a subset table that only contains records for employees 
whose department_id is 50. If a source database captures a change to an 
employee that changes the employee's department_id from 80 to 50, then the 
apply process with the subset rule at a destination database applies this change by 
converting the update operation into an insert operation. This conversion is needed 
because the employee's row does not exist in the destination table. Figure 6–4 
illustrates this example.

Figure 6–4 Row Migration During Apply

Source Database

UPDATE hr.employees
SET department_id = 50
WHERE employee_id = 145;

Redo
Log

Capture
Process

Enqueue
LCR

Capture
Change

Record Change

Propagate 
LCR

hr.employees Table

Destination Database

Subset Rule
Transformation:
UPDATE to 
INSERT

Apply
Process

Continue
Dequeue

Dequeue
LCR

Apply
change 
as
INSERT

hr.employees 
Subset Table

Queue

Only employees
with 
department_id = 50

Queue



System-Created Rules

How Rules Are Used In Streams 6-31

Similarly, if a captured update changes an employee's department_id from 50 to 
20, then an apply process with this subset rule converts the update operation into a 
DELETE operation.

Row Migration During Dequeue by a Messaging Client  When a subset rule is in the rule set 
for a messaging client, an update operation may be converted into an insert or 
delete operation when a row LCR is dequeued.

For example, suppose you use a subset rule to specify that a messaging client 
dequeues changes to the hr.employees table when the employee's 
department_id is 50 using the following subset condition: 
department_id = 50. If the queue for a messaging client contains a 
user-enqueued row LCR with an update operation on the hr.employees table 
that changes an employee's department_id from 50 to 90, then when a user or 
application invokes a messaging client with this subset rule, the messaging client 
converts the update operation into a delete operation and dequeues the row LCR. 
Therefore, a row LCR that contains a DELETE is dequeued. The messaging client 
may process this row LCR in any customized way. For example, it may send the 
row LCR to a custom application. Figure 6–5 illustrates this example.



System-Created Rules

6-32 Oracle Streams Concepts and Administration

Figure 6–5 Row Migration During Dequeue by a Messaging Client

Similarly, if a user-enqueued row LCR contains an update that changes an 
employee's department_id from 90 to 50, then a messaging client with this 
subset rule converts the UPDATE operation into an INSERT operation during 
dequeue.

Subset Rules and Supplemental Logging
If you specify a subset rule for a table for capture, propagation, or apply, then an 
unconditional supplemental log group must be specified at the source database for 
all the columns in the subset condition and all of the columns in the table(s) at the 
destination database(s) that will apply these changes. In certain cases, when a 
subset rule is specified, an update may be converted to an insert, and, in these cases, 
supplemental information may be needed for some or all of the columns.

For example, if you specify a subset rule for an apply process at database 
dbs2.net on the postal_code column in the hr.locations table, and the 
source database for changes to this table is dbs1.net, then specify supplemental 

Oracle Database

Subset Rule
Transformation:

UPDATE to 
DELETE

Messaging
Client

User or
Application

Dequeue
LCR

Continue
Dequeue

Queue

Enqueue row LCR that updates 
the hr. employees table. The old 
value for the department_id 
column is 50. The new value for 
this column is 90.



System-Created Rules

How Rules Are Used In Streams 6-33

logging at dbs1.net for all of the columns that exist in the hr.locations table at 
dbs2.net, as well as the postal_code column, even if this column does not exist 
in the table at the destination database.

Guidelines for Using Subset Rules
The following sections provide guidelines for using subset rules:

� Use Capture Subset Rules When All Destinations Only Need a Subset of 
Changes

� Use Propagation or Apply Subset Rules When Some Destinations Need Subsets

� Make Sure the Table Where Subset Row LCRs Are Applied Is a Subset Table

Use Capture Subset Rules When All Destinations Only Need a Subset of Changes  Subset 
rules should be used with a capture process when all destination databases of the 
capture process only need row changes that satisfy the subset condition for the 
table. In this case, a capture process captures a subset of the DML changes to the 
table, and one or more propagations propagate these changes in the form of row 
LCRs to one or more destination databases. At each destination database, an apply 
process applies these row LCRs to a subset table in which all of the rows satisfy the 
subset condition in the subset rules for the capture process. None of the destination 
databases need all of the DML changes made to the table. When you use subset 
rules for a local capture process, some additional overhead is incurred to perform 
row migrations at the site running the source database. 

Use Propagation or Apply Subset Rules When Some Destinations Need Subsets  Subset rules 
should be used with a propagation or an apply process when some destinations in 
an environment only need a subset of captured DML changes. The following are 
examples of such an environment:

� Most of the destination databases for captured DML changes to a table need a 
different subset of these changes.

� Most of the destination databases need all of the captured DML changes to a 
table, but some destination databases only need a subset of these changes.

In these types of environments, the capture process must capture all of the changes 
to the table, but you can use subset rules with propagations and apply processes to 
ensure that subset tables at destination databases only apply the correct subset of 
captured DML changes. 

See Also: Oracle Streams Replication Administrator's Guide for 
detailed information about supplemental logging



System-Created Rules

6-34 Oracle Streams Concepts and Administration

Consider these factors when you decide to use subset rules with a propagation in 
this type of environment:

� You can reduce network traffic because fewer row LCRs are propagated over 
the network.

� The site that contains the source queue for the propagation incurs some 
additional overhead to perform row migrations.

Consider these factors when you decide to use subset rules with an apply process in 
this type of environment:

� The queue used by the apply process can contain all row LCRs for the subset 
table. In a directed networks environment, propagations may propagate any of 
the row LCRs for the table to destination queues as appropriate, whether or not 
the apply process applies these row LCRs.

� The site that is running the apply process incurs some additional overhead to 
perform row migrations.

Make Sure the Table Where Subset Row LCRs Are Applied Is a Subset Table  If an apply 
process may apply row LCRs that have been transformed by a row migration, then 
Oracle Corporation recommends that the table at the destination database be a 
subset table where each row matches the condition in the subset rule. If the table is 
not such a subset table, then apply errors may result. 

For example, consider a scenario where a subset rule for a capture process has the 
condition department_id = 50 for DML changes to the hr.employees table. If 
the hr.employees table at a destination database of this capture process contains 
rows for employees in all departments, not just in department 50, then a constraint 
violation may result during apply:

1. At the source database, a DML change updates the hr.employees table and 
changes the department_id for the employee with an employee_id of 100 
from 90 to 50.

2. A capture process using the subset rule captures the change and converts the 
update into an insert and enqueues the change into the capture process queue 
as a row LCR.

3. A propagation propagates the row LCR to the destination database without 
modifying it.

4. An apply process attempts to apply the row LCR as an insert at the destination 
database, but an employee with an employee_id of 100 already exists in the 
hr.employees table, and an apply error results.



System-Created Rules

How Rules Are Used In Streams 6-35

In this case, if the table at the destination database were a subset of the 
hr.employees table and only contained rows of employees whose 
department_id was 50, then the insert would have been applied successfully.

Similarly, if an apply process may apply row LCRs that have been transformed by a 
row migration to a table, and you allow users or applications to perform DML 
operations on the table, then Oracle Corporation recommends that all DML changes 
satisfy the subset condition. If you allow local changes to the table, then the apply 
process cannot ensure that all rows in the table meet the subset condition. For 
example, suppose the condition is department_id = 50 for the hr.employees 
table. If a user or an application inserts a row for an employee whose 
department_id is 30, then this row remains in the table and is not removed by 
the apply process. Similarly, if a user or an application updates a row locally and 
changes the department_id to 30, then this row also remains in the table.

Restrictions for Subset Rules
The following restrictions apply to subset rules in the positive rule set for a capture 
process, propagation, apply process, or messaging client:

� A table with the table name referenced in the subset rule must exist in the same 
database as the subset rule, and this table must be in the same schema 
referenced for the table in the subset rule.

� If the subset rule is in the positive rule set for a capture process, then the table 
must contain the columns specified in the rule's subset condition, and the 
datatype of each of these columns must match the datatype of the 
corresponding column at the source database.

� If the subset rule is in the positive rule set for a propagation or apply process, 
then the table must contain the columns specified in the rule's subset condition, 
and the datatype of each column must match the datatype of the corresponding 
column in row LCRs that evaluate to TRUE for the subset rule.



System-Created Rules

6-36 Oracle Streams Concepts and Administration

Message Rules
When you use a rule to specify a Streams task that is relevant only for a 
user-enqueued event of a specific message type, you are specifying a message rule. 
You can specify message rules for propagations, apply processes, and messaging 
clients. 

A single message rule in the positive rule set for a propagation means that the 
propagation propagates the user-enqueued events of the message type in the source 
queue that satisfy the rule condition. A single message rule in the negative rule set 
for a propagation means that the propagation discards the user-enqueued events of 
the message type in the source queue that satisfy the rule condition.

A single message rule in the positive rule set for an apply process means that the 
apply process dequeues user-enqueued events of the message type that satisfy the 
rule condition. The apply process then sends these user-enqueued events to its 
message handler. A single message rule in the negative rule set for an apply process 
means that the apply process discards user-enqueued events of the message type in 
its queue that satisfy the rule condition.

A single message rule in the positive rule set for a messaging client means that a 
user or an application can use the messaging client to dequeue user-enqueued 
events of the message type that satisfy the rule condition. A single message rule in 
the negative rule set for a messaging client means that the messaging client discards 
user-enqueued events of the message type in its queue that satisfy the rule 
condition. Unlike propagations and apply processes, which propagate or apply 
events automatically when they are running, a messaging client does not 
automatically dequeue or discard events. Instead, a messaging client must be used 
by a user or application to dequeue or discard events.

Message Rule Example
Suppose you use the ADD_MESSAGE_RULE procedure in the DBMS_STREAMS_ADM 
package to instruct a Streams client to behave in the following ways:

� Dequeue User-Enqueued Events If region Is EUROPE and priority Is 1

� Send User-Enqueued Events to a Message Handler If region Is AMERICAS and 
priority Is 2

The first instruction in the previous list pertains to a messaging client, while the 
second instruction pertains to an apply process.



System-Created Rules

How Rules Are Used In Streams 6-37

The rules created in these examples are for events of the following type:

CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
  region         VARCHAR2(100),
  priority       NUMBER,
  message        VARCHAR2(3000))
/

Dequeue User-Enqueued Events If region Is EUROPE and priority Is 1  Run the 
ADD_MESSAGE_RULE procedure to create a rule for messages of region_pri_msg 
type:

BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
    message_type    =>  'strmadmin.region_pri_msg',
    rule_condition  =>  ':msg.region = ''EUROPE'' AND  ' ||
                        ':msg.priority = ''1'' ',
    streams_type    =>  'dequeue',
    streams_name    =>  'msg_client',
    queue_name      =>  'streams_queue',
    inclusion_rule  =>  true);
END;
/

Notice that dequeue is specified for the streams_type parameter. Therefore, this 
procedure creates a messaging client named msg_client if it does not already 
exist. If this messaging client already exists, then this procedure adds the message 
rule to its rule set. Also, notice that the inclusion_rule parameter is set to true. 
This setting means that the system-created rule is added to the positive rule set for 
the messaging client. The user who runs this procedure is granted the privileges to 
dequeue from the queue using the messaging client. 

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to 
the following:

:"VAR$_52".region = 'EUROPE' AND  :"VAR$_52".priority = '1'

The variables in the rule condition that begin with VAR$ are variables that are 
specified in the system-generated evaluation context for the rule.

See Also: "Evaluation Contexts Used in Streams" on page 6-45



System-Created Rules

6-38 Oracle Streams Concepts and Administration

Send User-Enqueued Events to a Message Handler If region Is AMERICAS and priority Is 2  
Run the ADD_MESSAGE_RULE procedure to create a rule for messages of 
region_pri_msg type:

BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
    message_type    =>  'strmadmin.region_pri_msg',
    rule_condition  =>  ':msg.region = ''AMERICAS'' AND  ' ||
                        ':msg.priority = ''2'' ',
    streams_type    =>  'apply',
    streams_name    =>  'apply_msg',
    queue_name      =>  'streams_queue',
    inclusion_rule  =>  true);
END;
/

Notice that apply is specified for the streams_type parameter. Therefore, this 
procedure creates an apply process named apply_msg if it does not already exist. 
If this apply process already exists, then this procedure adds the message rule to its 
rule set. Also, notice that the inclusion_rule parameter is set to true. This 
setting means that the system-created rule is added to the positive rule set for the 
messaging client.

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to 
the following:

:"VAR$_56".region = 'AMERICAS' AND  :"VAR$_56".priority = '2'

The variables in the rule condition that begin with VAR$ are variables that are 
specified in the system-generated evaluation context for the rule.

Summary of Rules  In this example, the following message rules were defined:

� A message rule for a messaging client named msg_client that evaluates to 
TRUE if a message has EUROPE for its region and 1 for its priority. Given this 
rule, a user or application can use the messaging client to dequeue messages of 
region_pri_msg type that satisfy the rule's condition.

� A message rule for an apply process named apply_msg that evaluates to TRUE 
if a message has AMERICAS for its region and 2 for its priority. Given this rule, 
the apply process dequeues messages of region_pri_msg type that satisfy the 
rule's condition and sends these messages to its message handler or 
re-enqueues the messages into a specified queue.

See Also: "Evaluation Contexts Used in Streams" on page 6-45



System-Created Rules

How Rules Are Used In Streams 6-39

System-Created Rules and Negative Rule Sets
You add system-created rules to a negative rule set to specify that you do not want 
a Streams client to perform its task for changes that satisfy these rules. Specifically, 
a system-created rule in a negative rule set means the following for each type of 
Streams client:

� A capture process discards changes that satisfy the rule. 

� A propagation discards events in its source queue that satisfy the rule.

� An apply process discards events in its queue that satisfy the rule.

� A messaging client discards events in its queue that satisfy the rule.

If a Streams client does not have a negative rule set, then you can create a negative 
rule set and add rules to it by running one of the following procedures and setting 
the inclusion_rule parameter to false:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_STREAMS_ADM.ADD_MESSAGE_RULE

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE

If a negative rule set already exists for the Streams client when you run one of these 
procedures, then the procedure adds the system-created rules to the existing 
negative rule set. 

See Also:

� "Non-LCR User Message Processing" on page 4-7

� "Enqueue Destinations for Events During Apply" on page 6-52



System-Created Rules

6-40 Oracle Streams Concepts and Administration

Alternatively, you can create a negative rule set when you create a Streams client by 
running one of the following procedures and specifying a non-NULL value for the 
negative_rule_set_name parameter:

� DBMS_CAPTURE_ADM.CREATE_CAPTURE

� DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

� DBMS_APPLY_ADM.CREATE_APPLY

Also, you can specify a negative rule set for an existing Streams client by altering 
the client. For example, to specify a negative rule set for an existing capture process, 
use the DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure. After a Streams client 
has a negative rule set, you can use the procedures in the DBMS_STREAM_ADM 
package listed previously to add system-created rules to it.

Instead of adding rules to a negative rule set, you also can exclude changes to 
certain tables or schemas in the following ways:

� Do not add system-created rules for the table or schema to a positive rule set for 
a Streams client. For example, to capture DML changes to all of the tables in a 
particular schema except for one table, add a DML table rule for each table in 
the schema, except for the excluded table, to the positive rule set for the capture 
process. The disadvantages of this approach are that there may be many tables 
in a schema and each one requires a separate DML rule, and, if a new table is 
added to the schema, and you want to capture changes to this new table, then a 
new DML rule must be added for this table to the positive rule set for the 
capture process. 

� Use the NOT logical condition in the rule condition of a complex rule in the 
positive rule set for a Streams client. For example, to capture DML changes to 
all of the tables in a particular schema except for one table, use the 
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES procedure to add a system-created 
DML schema rule to the positive rule set for the capture process that instructs 
the capture process to capture changes to the schema, and use the 
and_condition parameter to exclude the table with the NOT logical condition. 
The disadvantages to this approach are that it involves manually specifying 
parts of rule conditions, which can be error prone, and rule evaluation is not as 
efficient for complex rules as it is for unmodified system-created rules.

Given the goal of capturing DML changes to all of the tables in a particular schema 
except for one table, you can add a DML schema rule to the positive rule set for the 
capture process and a DML table rule for the excluded table to the negative rule set 
for the capture process. 



System-Created Rules

How Rules Are Used In Streams 6-41

This approach has the following advantages over the alternatives described 
previously:

� You add only two rules to achieve the goal.

� If a new table is added to the schema, and you want to capture DML changes to 
the table, then the capture process captures these changes without requiring 
modifications to existing rules or additions of new rules.

� You do not need to specify or edit rule conditions manually.

� Rule evaluation is more efficient if you avoid using complex rules.

Negative Rule Set Example
Suppose you want to apply row LCRs that contain the results of DML changes to all 
of the tables in hr schema except for the job_history table. To do so, you can use 
the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package to 
instruct a Streams apply process to apply row LCRs that contain the results of DML 
changes to the tables in the hr schema. In this case, the procedure creates a schema 
rule and adds the rule to the positive rule set for the apply process. 

You can use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM 
package to instruct the Streams apply process to discard row LCRs that contain the 
results of DML changes to the tables in the hr.job_history table. In this case, the 
procedure creates a table rule and adds the rule to the negative rule set for the 
apply process.

The following sections explain how to run these procedures:

� Apply All DML Changes to the Tables in the hr Schema

� Discard Row LCRs Containing DML Changes to the hr.job_history Table

See Also:

� "Complex Rule Conditions" on page 6-58

� "System-Created Rules with Added User-Defined Conditions" 
on page 6-44 for more information about the and_condition 
parameter



System-Created Rules

6-42 Oracle Streams Concepts and Administration

Apply All DML Changes to the Tables in the hr Schema  These changes originated at the 
dbs1.net source database. 

Run the ADD_SCHEMA_RULES procedure to create this rule:

BEGIN
  DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
    schema_name         =>  'hr',   
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',

 include_dml      =>  true,
  include_ddl       =>  false,

    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/

Notice that the inclusion_rule parameter is set to true. This setting means that 
the system-created rule is added to the positive rule set for the apply process.

The ADD_SCHEMA_RULES procedure creates a rule with a rule condition similar to 
the following:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' 
and :dml.get_source_database_name() = 'DBS1.NET' )

Discard Row LCRs Containing DML Changes to the hr.job_history Table  These changes 
originated at the dbs1.net source database. 

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.job_history',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  true,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  false);
END;
/



System-Created Rules

How Rules Are Used In Streams 6-43

Notice that the inclusion_rule parameter is set to false. This setting means 
that the system-created rule is added to the negative rule set for the apply process. 

Also notice that the include_tagged_lcr parameter is set to true. This setting 
means that all changes for the table, including tagged LCRs that satisfy all of the 
other rule conditions, will be discarded. In most cases, specify true for the 
include_tagged_lcr parameter if the inclusion_rule parameter is set to 
false.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to 
the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'JOB_HISTORY')) 
and :dml.get_source_database_name() = 'DBS1.NET' )

Summary of Rules  In this example, the following rules were defined:

� A schema rule that evaluates to TRUE if a DML operation is performed on the 
tables in the hr schema. This rule is in the positive rule set for the apply 
process.

� A table rule that evaluates to TRUE if a DML operation is performed on the 
hr.job_history table. This rule is in the negative rule set for the apply 
process.

Given these rules, the following list provides examples of changes applied by the 
apply process:

� A row is inserted into the hr.departments table.

� Five rows are updated in the hr.employees table.

� A row is deleted from the hr.countries table.

The apply process dequeues these changes from its associated queue and applies 
them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored 
by the apply process:

� A row is inserted into the hr.job_history table.

� A row is updated in the hr.job_history table.

� A row is deleted from the hr.job_history table.

These changes are not applied because they satisfy a rule in the negative rule set for 
the apply process.



System-Created Rules

6-44 Oracle Streams Concepts and Administration

System-Created Rules with Added User-Defined Conditions
Some of the procedures that create rules in the DBMS_STREAMS_ADM package 
include an and_condition parameter. This parameter enables you to add 
conditions to system-created rules. The condition specified by the and_condition 
parameter is appended to the system-created rule condition using an AND clause in 
the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that 
the table rules generated by the ADD_TABLE_RULES procedure evaluate to true 
only if the table is hr.departments, the source database is dbs1.net, and the 
Streams tag is the hexadecimal equivalent of '02', run the following procedure:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'apply',
    streams_name        =>  'apply_02',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  true,
    include_tagged_lcr  =>  true,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true,
    and_condition       =>  ':lcr.get_tag() = HEXTORAW(''02'')');
END;
/

The ADD_TABLE_RULES procedure creates a DML rule with the following 
condition:

(((((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'DEPARTMENTS'))
 and :dml.get_source_database_name() = 'DBS1.NET' )) 
and (:dml.get_tag() = HEXTORAW('02')))

See Also: "Rule Sets and Rule Evaluation of Events" on page 6-4



Evaluation Contexts Used in Streams

How Rules Are Used In Streams 6-45

It creates a DDL rule with the following condition:

(((((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'DEPARTMENTS')
or (:ddl.get_base_table_owner() = 'HR' 
and :ddl.get_base_table_name() = 'DEPARTMENTS')) 
and :ddl.get_source_database_name() = 'DBS1.NET' )) 
and (:ddl.get_tag() = HEXTORAW('02')))

Notice that the :lcr in the specified condition is converted to :dml or :ddl, 
depending on the rule that is being generated. If you are specifying an LCR member 
subprogram that is dependent on the LCR type (row or DDL), then make sure this 
procedure only generates the appropriate rule. Specifically, if you specify an LCR 
member subprogram that is valid only for row LCRs, then specify true for the 
include_dml parameter and false for the include_ddl parameter. If you 
specify an LCR member subprogram that is valid only for DDL LCRs, then specify 
false for the include_dml parameter and true for the include_ddl 
parameter. 

For example, the GET_OBJECT_TYPE member function only applies to DDL LCRs. 
Therefore, if you use this member function in an and_condition, then specify 
false for the include_dml parameter and true for the include_ddl 
parameter.

Evaluation Contexts Used in Streams
This section describes the system-created evaluation contexts used in Streams.

Evaluation Context for Global, Schema, Table, and Subset Rules
When you create global, schema, table, and subset rules, the system-created rule 
sets and rules use a built-in evaluation context in the SYS schema named 
STREAMS$_EVALUATION_CONTEXT. PUBLIC is granted the EXECUTE privilege on 
this evaluation context. Global, schema, table, and subset rules may be used by 
capture processes, propagations, apply processes, and messaging clients.

See Also:

� PL/SQL Packages and Types Reference for more information about 
LCR member subprograms

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Evaluation Contexts Used in Streams

6-46 Oracle Streams Concepts and Administration

During Oracle installation, the following statement creates the Streams evaluation 
context:

DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
    SYS.RE$VARIABLE_TYPE('DML', 'SYS.LCR$_ROW_RECORD', 
       'SYS.DBMS_STREAMS_INTERNAL.ROW_VARIABLE_VALUE_FUNCTION',
       'SYS.DBMS_STREAMS_INTERNAL.ROW_FAST_EVALUATION_FUNCTION'),
    SYS.RE$VARIABLE_TYPE('DDL', 'SYS.LCR$_DDL_RECORD',
       'SYS.DBMS_STREAMS_INTERNAL.DDL_VARIABLE_VALUE_FUNCTION',
       'SYS.DBMS_STREAMS_INTERNAL.DDL_FAST_EVALUATION_FUNCTION'));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name => 'SYS.STREAMS$_EVALUATION_CONTEXT',
    variable_types          => vt,
    evaluation_function     =>
                       'SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION');
END;
/

This statement includes references to the following internal functions in the 
SYS.DBMS_STREAM_INTERNAL package:

� ROW_VARIABLE_VALUE_FUNCTION

� DDL_VARIABLE_VALUE_FUNCTION

� EVALUATION_CONTEXT_FUNCTION

� ROW_FAST_EVALUATION_FUNCTION

� DDL_FAST_EVALUATION_FUNCTION

The ROW_VARIABLE_VALUE_FUNCTION converts a SYS.AnyData payload, which 
encapsulates a SYS.LCR$_ROW_RECORD instance, into a SYS.LCR$_ROW_RECORD 
instance prior to evaluating rules on the data.

The DDL_VARIABLE_VALUE_FUNCTION converts a SYS.AnyData payload, which 
encapsulates a SYS.LCR$_DDL_RECORD instance, into a SYS.LCR$_DDL_RECORD 
instance prior to evaluating rules on the data.

The EVALUATION_CONTEXT_FUNCTION is specified as an 
evaluation_function in the call to the CREATE_EVALUATION_CONTEXT 
procedure. This function supplements normal rule evaluation for captured events. 
A capture process enqueues row LCRs and DDL LCRs into its queue, and this 
function enables it to enqueue other internal events into the queue, such as 



Evaluation Contexts Used in Streams

How Rules Are Used In Streams 6-47

commits, rollbacks, and data dictionary changes. This information is also used 
during rule evaluation for a propagation or apply process.

ROW_FAST_EVALUATION_FUNCTION improves performance by optimizing access 
to the following LCR$_ROW_RECORD member functions during rule evaluation: 

� GET_OBJECT_OWNER

� GET_OBJECT_NAME

� IS_NULL_TAG

� GET_SOURCE_DATABASE_NAME

� GET_COMMAND_TYPE

DDL_FAST_EVALUATION_FUNCTION improves performance by optimizing access 
to the following LCR$_DDL_RECORD member functions during rule evaluation if 
the condition is <, <=, =, >=, or > and the other operand is a constant: 

� GET_OBJECT_OWNER

� GET_OBJECT_NAME

� IS_NULL_TAG

� GET_SOURCE_DATABASE_NAME

� GET_COMMAND_TYPE

� GET_BASE_TABLE_NAME

� GET_BASE_TABLE_OWNER

Rules created using the DBMS_STREAMS_ADM package use 
ROW_FAST_EVALUATION_FUNCTION or DDL_FAST_EVALUATION_FUNCTION, 
except for subset rules created using the ADD_SUBSET_RULES or 
ADD_SUBSET_PROPAGATION_RULES procedure.

Attention: Information about these internal functions is provided 
for reference purposes only. You should never run any of these 
functions directly.

See Also: PL/SQL Packages and Types Reference for more 
information about LCRs and their member functions



Evaluation Contexts Used in Streams

6-48 Oracle Streams Concepts and Administration

Evaluation Contexts for Message Rules
When you use either the ADD_MESSAGE_RULE procedure or the 
ADD_MESSAGE_PROPAGATION_RULE procedure to create a message rule, the 
message rule uses a user-defined message type that you specify when you create 
the rule. Such a system-created message rule uses a system-created evaluation 
context. The name of the system-created evaluation context is different for each 
message type used to create message rules. Such an evaluation context has a 
system-generated name and is created in the schema that owns the rule. Only the 
user who owns this evaluation context is granted the EXECUTE privilege on it.

The evaluation context for this type of message rule contains a variable that is the 
same type as the message type. The name of this variable is in the form 
VAR$_number, where number is a system-generated number. For example, if you 
specify strmadmin.region_pri_msg as the message type when you create a 
message rule, then the system-created evaluation context has a variable of this type, 
and the variable is used in the rule condition. Assume that the following statement 
created the strmadmin.region_pri_msg type:

CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
  region         VARCHAR2(100),
  priority       NUMBER,
  message        VARCHAR2(3000))
/

When you create a message rule using this type, you may specify the following rule 
condition:

:msg.region = 'EUROPE' AND :msg.priority = '1'

The system-created message rule replaces :msg in the rule condition you specify 
with the name of the variable. The following is an example of a message rule 
condition that may result:

:VAR$_52.region = 'EUROPE' AND  :VAR$_52.priority = '1'

In this case, VAR$_52 is the variable name, the type of the VAR$_52 variable is 
strmadmin.region_pri_msg, and the evaluation context for the rule contains 
this variable.



Evaluation Contexts Used in Streams

How Rules Are Used In Streams 6-49

The message rule itself has an evaluation context. A statement similar to the 
following creates an evaluation context for a message rule:

DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
    SYS.RE$VARIABLE_TYPE('VAR$_52', 'STRMADMIN.REGION_PRI_MSG', 
       'SYS.DBMS_STREAMS_INTERNAL.MSG_VARIABLE_VALUE_FUNCTION', NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name => 'STRMADMIN.EVAL_CTX$_99',
    variable_types          => vt,
    evaluation_function     => NULL);
END;
/

The name of the evaluation context is in the form EVAL_CTX$_number, where 
number is a system-generated number. In this example, the name of the evaluation 
context is EVAL_CTX$_99. 

This statement also includes a reference to the MSG_VARIABLE_VALUE_FUNCTION 
internal function in the SYS.DBMS_STREAM_INTERNAL package. This function 
converts a SYS.AnyData payload, which encapsulates a message instance, into an 
instance of the same type as the variable prior to evaluating rules on the data. For 
example, if the variable type is strmadmin.region_pri_msg, then the 
MSG_VARIABLE_VALUE_FUNCTION converts the message payload from a 
SYS.AnyData payload to a strmadmin.region_pri_msg payload.

If you create rules for different message types, then Oracle creates a different 
evaluation context for each message type. If you create a new rule with the same 
message type as an existing rule, then the new rule uses the evaluation context for 
the existing rule. Also, when you use the ADD_MESSAGE_RULE or 
ADD_MESSAGE_PROPAGATION_RULE to create a rule set for a messaging client or 
apply process, the new rule set does not have an evaluation context.

See Also:

� "Message Rules" on page 6-36

� "Evaluation Context for Global, Schema, Table, and Subset 
Rules" on page 6-45



Streams and Event Contexts

6-50 Oracle Streams Concepts and Administration

Streams and Event Contexts
In Streams, capture processes and messaging clients do not use event contexts, but 
propagations and apply processes do. Both captured events and user-enqueued 
events can be staged in a queue. When an event is staged in a queue, a propagation 
or apply process can send the event, along with an event context, to the rules engine 
for evaluation. An event context always has the following name-value pair: 
AQ$_MESSAGE as the name and the Streams event itself as the value. 

If you create a custom evaluation context, then you can create propagation and 
apply process rules that refer to Streams events using implicit variables. The 
variable value function for each implicit variable can check for event contexts with 
the name AQ$_MESSAGE. If an event context with this name is found, then the 
variable value function returns a value based on the event itself. You also can pass 
the event context to an evaluation function and a variable method function.

Streams and Action Contexts
The following sections describe the purposes of action contexts in Streams and the 
importance of ensuring that only one rule in a rule set can evaluate to TRUE for a 
particular rule condition.

Purposes of Action Contexts in Streams
In Streams, an action context serves the following purposes: 

� Internal LCR Transformations in Subset Rules

� User-Defined Rule-Based Transformations

� Enqueue Destinations for Events During Apply

� Execution Directives for Events During Apply

A different name-value pair may exist in a rule's action context for each of these 
purposes. If an action context for a rule contains more than one of these name-value 

See Also:

� "Rule Set Evaluation" on page 5-13 for more information about 
event contexts

� "Explicit and Implicit Variables" on page 5-7 for more 
information about variable value functions

� "Evaluation Function" on page 5-9



Streams and Action Contexts

How Rules Are Used In Streams 6-51

pairs, then the actions specified by the name-value pairs are performed in the 
following order:

1. Perform subset transformation

2. Perform user-defined rule-based transformation

3. Follow execution directive and perform execution if directed to do so (apply 
only)

4. Enqueue into a destination queue (apply only)

Internal LCR Transformations in Subset Rules
When you use subset rules, an update operation may be converted into an insert or 
delete operation when it is captured, propagated, applied, or dequeued. This 
automatic conversion is called row migration and is performed by an internal 
transformation specified in a subset rule's action context when the subset rule 
evaluates to TRUE. The name-value pair for a subset transformation has 
STREAMS$_ROW_SUBSET for the name and either INSERT or DELETE for the value.

User-Defined Rule-Based Transformations
A rule-based transformation is any user-defined modification to an event that 
results when a rule evaluates to TRUE. The name-value pair for a user-defined 
rule-based transformation has STREAMS$_TRANSFORM_FUNCTION for the name 
and the name of the transformation function for the value.

Note: The actions specified in the action context for a rule are 
performed only if the rule is in the positive rule set for a capture 
process, propagation, apply process, or messaging client. If a rule is 
in a negative rule set, then these Streams clients ignore the rule's 
action context.

See Also:

� "Subset Rules" on page 6-23

� "Managing Rule-Based Transformations" on page 12-18 for 
information about using rule-based transformation with subset 
rules



Streams and Action Contexts

6-52 Oracle Streams Concepts and Administration

Execution Directives for Events During Apply
The SET_EXECUTE procedure in the DBMS_APPLY_ADM package specifies whether 
an event that satisfies the specified rule is executed by an apply process. The 
name-value pair for an execution directive has APPLY$_EXECUTE for the name and 
NO for the value if the apply process should not execute the event. If an event that 
satisfies a rule should be executed by an apply process, then this name-value pair is 
not present in the rule's action context.

Enqueue Destinations for Events During Apply
The SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package 
sets the queue where an event that satisfies the specified rule is enqueued 
automatically by an apply process. The name-value pair for an enqueue destination 
has APPLY$_ENQUEUE for the name and the name of the destination queue for the 
value.

Make Sure Only One Rule Can Evaluate to TRUE for a Particular Rule Condition
If you use a non-NULL action context for one or more rules in a positive rule set, 
then make sure only one rule can evaluate to TRUE for a particular rule condition. If 
more than one rule evaluates to TRUE for a particular condition, then only one of 
the rules is returned, which can lead to unpredictable results. 

For example, suppose there are two rules that evaluate to TRUE if an LCR contains a 
DML change to the hr.employees table. The first rule has a NULL action context. 
The second rule has an action context that specifies a rule-based transformation. If 
there is a DML change to the hr.employees table, then both rules evaluate to 
TRUE for the change, but only one rule is returned. In this case, the transformation 
may or may not occur, depending on which rule is returned.

See Also:

� "Rule-Based Transformations" on page 6-63

� "Managing Rule-Based Transformations" on page 12-18

See Also: "Specifying Execute Directives for Apply Processes" on 
page 11-23

See Also: "Specifying Event Enqueues by Apply Processes" on 
page 11-21



Streams and Action Contexts

How Rules Are Used In Streams 6-53

You may want to ensure that only one rule in a positive rule set can evaluate to 
TRUE for any condition, regardless of whether any of the rules have a non-NULL 
action context. By following this guideline, you can avoid unpredictable results if, 
for example, a non-NULL action context is added to a rule in the future.

Action Context Considerations for Schema and Global Rules
If you use an action context for a rule-based transformation, enqueue destination, or 
execute directive with a schema or global rule, then the action specified by the 
action context is carried out on an event if the event causes the schema or global 
rule to evaluate to true. For example, if a schema rule has an action context that 
specifies a rule-based transformation, then the transformation is performed on 
LCRs for the tables in the schema.

You may want to use an action context with a schema or global rule but exclude a 
subset of LCRs from the action performed by the action context. For example, if you 
want to perform a rule-based transformation on all of the tables in the hr schema 
except for the job_history table, then make sure the transformation function 
returns the original LCR if the table is job_history. 

If you want to set an enqueue destination or an execute directive for all of the tables 
in the hr schema except for the job_history table, then you may use a schema 
rule and add the following condition to it:

:dml.get_object_name() != 'JOB_HISTORY'

In this case, if you want LCRs for the job_history table to evaluate to true, but 
you do not want to perform the enqueue or execute directive, then you can add a 
table rule for the table to a positive rule set. That is, the schema rule would have the 
enqueue destination or execute directive, but the table rule would not.

See Also: "Rule-Based Transformations" on page 6-63

See Also: "System-Created Rules" on page 6-7 for more 
information about schema and global rules



User-Created Rules, Rule Sets, and Evaluation Contexts

6-54 Oracle Streams Concepts and Administration

User-Created Rules, Rule Sets, and Evaluation Contexts
The DBMS_STREAMS_ADM package generates system-created rules and rule sets, 
and it may specify an Oracle supplied evaluation context for rules and rule sets or 
generate system-created evaluation contexts. If you need to create rules, rule sets, or 
evaluation contexts that cannot be created using the DBMS_STREAMS_ADM package, 
then you can use the he DBMS_RULE_ADM package to create them.

Some of the reasons you may need to use the DBMS_RULE_ADM package are the 
following:

� You need to create rules with rule conditions that cannot be created using the 
DBMS_STREAMS_ADM package, such as rule conditions for specific types of 
operations, or rule conditions that use the LIKE condition.

� You need to create custom evaluation contexts for the rules in your Streams 
environment.

You can create a rule set using the DBMS_RULE_ADM package, and you can associate 
it with a capture process, propagation, apply process, or messaging client. Such a 
rule set may be a positive or negative rule set for a Streams client, and a rule set 
may be a positive rule set for one Streams client and a negative rule set for another.

This section contains the following topics:

� User-Created Rules and Rule Sets

� User-Created Evaluation Contexts

User-Created Rules and Rule Sets
The following sections describe some of the types of rules and rule sets that you can 
create using the DBMS_RULE_ADM package:

� Rule Conditions for Specific Types of Operations

� Rule Conditions That Instruct Streams Clients to Discard Unsupported LCRs

� Complex Rule Conditions

See Also:

� "Specifying a Rule Set for a Capture Process" on page 9-27

� "Specifying the Rule Set for a Propagation" on page 10-14

� "Specifying the Rule Set for an Apply Process" on page 11-11



User-Created Rules, Rule Sets, and Evaluation Contexts

How Rules Are Used In Streams 6-55

� Rule Conditions with Undefined Variables That Evaluate to NULL

� Avoid Using :dml and :ddl Variables as Function Parameters in Rule Conditions

Rule Conditions for Specific Types of Operations
In some cases, you may want to capture, propagate, apply, or dequeue changes that 
contain only certain types of operations. For example, you may want to apply 
changes containing only insert operations for a particular table, but not other 
operations, such as update and delete.

Suppose you want to specify a rule condition that evaluates to TRUE only for 
INSERT operations on the hr.employees table. You can accomplish this by 
specifying the INSERT command type in the rule condition:

:dml.get_command_type() = 'INSERT' AND :dml.get_object_owner() = 'HR' 
AND :dml.get_object_name() = 'EMPLOYEES' AND :dml.is_null_tag() = 'Y'

Similarly, suppose you want to specify a rule condition that evaluates to TRUE for 
all DML operations on the hr.departments table, except DELETE operations. You 
can accomplish this by specifying the following rule condition:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND (:dml.get_command_type() = 'INSERT' OR
:dml.get_command_type() = 'UPDATE')

This rule condition evaluates to TRUE for INSERT and UPDATE operations on the 
hr.departments table, but not for DELETE operations. Because the 
hr.departments table does not include any LOB columns, you do not need to 
specify the LOB command types for DML operations (LOB ERASE, LOB WRITE, and 
LOB TRIM), but these command types should be specified in such a rule condition 
for a table that contains one or more LOB columns.

Note: You can add user-defined conditions to a system-created 
rule by using the and_condition parameter that is available in 
some of the procedures in the DBMS_STREAMS_ADM package. Using 
the and_condition parameter might be easier than creating rules 
with the DBMS_RULE_ADM package. 

See Also: "System-Created Rules with Added User-Defined 
Conditions" on page 6-44 for more information about the 
and_condition parameter



User-Created Rules, Rule Sets, and Evaluation Contexts

6-56 Oracle Streams Concepts and Administration

The following rule condition accomplishes the same behavior for the 
hr.departments table. That is, the following rule condition evaluates to TRUE for 
all DML operations on the hr.departments table, except DELETE operations: 

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() != 'DELETE'

The example rule conditions described previously in this section are all simple rule 
conditions. However, when you add custom conditions to system-created rule 
conditions, the entire condition may not be a simple rule condition, and non-simple 
rules may not evaluate efficiently. In general, you should use simple rule conditions 
whenever possible to improve rule evaluation performance. Rule conditions created 
using the DBMS_STREAMS_ADM package, without custom conditions added, are 
always simple.

Rule Conditions That Instruct Streams Clients to Discard Unsupported LCRs
You can use the following functions in rule conditions to instruct a Streams client to 
discard LCRs that encapsulate unsupported changes:

� The GET_COMPATIBLE member function for LCRs. This function returns the 
minimal database compatibility required to support an LCR. 

� The COMPATIBLE_9_2 function and the COMPATIBLE_10_1 function in the 
DBMS_STREAMS package. These functions return constant values that 
correspond to 9.2.0 and 10.1.0 compatibility in a database, respectively. You 
control the compatibility of an Oracle database using the COMPATIBLE 
initialization parameter.

For example, consider the following rule:

BEGIN
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'strmadmin.dml_compat_9_2',
    condition => ':dml.GET_COMPATIBLE() > DBMS_STREAMS.COMPATIBLE_9_2()');
END;
/

See Also:

� "Simple Rule Conditions" on page 5-4

� "Complex Rule Conditions" on page 6-58



User-Created Rules, Rule Sets, and Evaluation Contexts

How Rules Are Used In Streams 6-57

If this rule is in the negative rule set for a Streams client, such as a capture process, a 
propagation, or an apply process, then the Streams client discards any row LCR that 
is not compatible with release 9.2 of Oracle.

The following is an example that is more appropriate for a positive rule set:

BEGIN
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'strmadmin.dml_compat_9_2',
    condition => ':dml.GET_COMPATIBLE() <= DBMS_STREAMS.COMPATIBLE_10_1()');
END;
/

If this rule is in the positive rule set for a Streams client, then the Streams client 
discards any row LCR that is not compatible with release 10.1 or lower of Oracle. 
That is, the Streams client processes any row LCR that is compatible with release 9.2 
or release 10.1 and satisfies the other rules in its rule sets, but it discards any row 
LCR that is not compatible with these releases.

Both of the rules in the previous examples evaluate efficiently. If you use schema or 
global rules created by the DBMS_STREAMS_ADM package to capture, propagate, 
apply, or dequeue LCRs, then rules such as these can be used to discard LCRs that 
are not supported by a particular database.

Note:

� You can determine which database objects in a database are not 
supported by Streams by querying the 
DBA_STREAMS_UNSUPPORTED data dictionary view.

� Instead of using the DBMS_RULE_ADM package to create rules 
with GET_COMPATIBLE conditions, you can use one of the 
procedures in the DBMS_STREAMS_ADM package to create such 
rules by specifying the GET_COMPATIBLE condition in the 
AND_CONDITION parameter.

� DDL LCRs always return DBMS_STREAMS.COMPATIBLE_9_2.



User-Created Rules, Rule Sets, and Evaluation Contexts

6-58 Oracle Streams Concepts and Administration

Complex Rule Conditions
Complex rule conditions are rule conditions that do not meet the requirements for 
simple rule conditions described in "Simple Rule Conditions" on page 5-4. In a 
Streams environment, the DBMS_STREAMS_ADM package creates rules with simple 
rule conditions only, assuming no custom conditions are added to the 
system-created rules. Table 6–3 on page 6-9 describes the types of system-created 
rule conditions that you can create with the DBMS_STREAMS_ADM package. If you 
need to create rules with complex conditions, then you can use the 
DBMS_RULE_ADM package.

There are a wide range of complex rule conditions. The following sections contain 
some examples of complex rule conditions. 

See Also:

� "Monitoring Compatibility in a Streams Environment" on 
page 14-74

� "Global Rules Example" on page 6-14, "Schema Rule Example" 
on page 6-18, and "System-Created Rules with Added 
User-Defined Conditions" on page 6-44

� Oracle Database Reference and Oracle Database Upgrade Guide for 
more information about the COMPATIBLE initialization 
parameter

Note:

� Complex rule conditions may degrade rule evaluation 
performance.

� In rule conditions, names of database objects, such as tables 
and users, must exactly match the names in the database, 
including the case of each character. Also, the name cannot be 
enclosed in double quotes.

� In rule conditions, if you specify the name of a database, then 
make sure you include the full database name, including the 
domain name.



User-Created Rules, Rule Sets, and Evaluation Contexts

How Rules Are Used In Streams 6-59

Rule Conditions Using the NOT Logical Condition to Exclude Objects  You can use the NOT 
logical condition to exclude certain changes from being captured, propagated, 
applied, or dequeued in a Streams environment. 

For example, suppose you want to specify rule conditions that evaluate to TRUE for 
all DML and DDL changes to all database objects in the hr schema, except for 
changes to the hr.regions table. You can use the NOT logical condition to 
accomplish this with two rules: one for DML changes and one for DDL changes. 
Here are the rule conditions for these rules:

(:dml.get_object_owner() = 'HR' AND NOT :dml.get_object_name() = 'REGIONS')
AND :dml.is_null_tag() = 'Y' 

((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_table_owner() = 'HR') 
AND NOT :ddl.get_object_name() = 'REGIONS') AND :ddl.is_null_tag() = 'Y'

Notice that object names, such as HR and REGIONS are specified in all uppercase 
characters in these examples. For rules to evaluate properly, the case of the 
characters in object names must match the case of the characters in the data 
dictionary. Therefore, if no case was specified for an object when the object was 
created, then specify the object name in all uppercase in rule conditions. However, if 
a particular case was specified through the use of double quotation marks when the 
objects was created, then specify the object name in the same case in rule conditions. 

For example, if the REGIONS table in the HR schema was actually created as 
"Regions", then specify Regions in rule conditions that involve this table, as in 
the following example:

:dml.get_object_name() = 'Regions'

You can use the Streams evaluation context when you create these rules using the 
DBMS_RULE_ADM package. The following example creates a rule set to hold the 
complex rules, creates rules with the previous conditions, and adds the rules to the 
rule set:

BEGIN
  -- Create the rule set
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name       => 'strmadmin.complex_rules',
    evaluation_context  => 'SYS.STREAMS$_EVALUATION_CONTEXT');



User-Created Rules, Rule Sets, and Evaluation Contexts

6-60 Oracle Streams Concepts and Administration

  -- Create the complex rules
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name  => 'strmadmin.hr_not_regions_dml',
    condition  => ' (:dml.get_object_owner() = ''HR'' AND NOT ' ||
                  ' :dml.get_object_name() = ''REGIONS'') AND ' ||
                  ' :dml.is_null_tag() = ''Y'' ');
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name  => 'strmadmin.hr_not_regions_ddl',
    condition  => ' ((:ddl.get_object_owner() = ''HR'' OR ' ||
                  ' :ddl.get_base_table_owner() = ''HR'') AND NOT ' ||
                  ' :ddl.get_object_name() = ''REGIONS'') AND ' ||
                  ' :ddl.is_null_tag() = ''Y'' ');
  --  Add the rules to the rule set
  DBMS_RULE_ADM.ADD_RULE(
    rule_name      => 'strmadmin.hr_not_regions_dml', 
    rule_set_name  => 'strmadmin.complex_rules');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name      => 'strmadmin.hr_not_regions_ddl', 
    rule_set_name  => 'strmadmin.complex_rules');
END;
/

In this case, the rules inherit the Streams evaluation context from the rule set.
 

Rule Conditions Using the LIKE Condition  You can use the LIKE condition to create 
complex rules that evaluate to TRUE when a condition in the rule matches a certain 
pattern. For example, suppose you want to specify rule conditions that evaluate to 
TRUE for all DML and DDL changes to all database objects in the hr schema that 
begin with the pattern JOB. You can use the LIKE condition to accomplish this with 
two rules: one for DML changes and one for DDL changes. Here are the rule 
conditions for these rules:

Note: In most cases, you can avoid using complex rules with the 
NOT logical condition by using the DBMS_STREAMS_ADM package to 
add rules to the negative rule set for a Streams client

See Also: "System-Created Rules and Negative Rule Sets" on 
page 6-39



User-Created Rules, Rule Sets, and Evaluation Contexts

How Rules Are Used In Streams 6-61

(:dml.get_object_owner() = 'HR' AND :dml.get_object_name() LIKE 'JOB%')
AND :dml.is_null_tag() = 'Y'

((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_table_owner() = 'HR') 
AND :ddl.get_object_name() LIKE 'JOB%') AND :ddl.is_null_tag() = 'Y'

Rule Conditions with Undefined Variables That Evaluate to NULL
During evaluation, an implicit variable in a rule condition is undefined if the 
variable value function for the variable returns NULL. An explicit variable without 
any attributes in a rule condition is undefined if the client does not send the value 
of the variable to the rules engine when it runs the DBMS_RULE.EVALUATE 
procedure.

Regarding variables with attributes, a variable is undefined if the client does not 
send the value of the variable, or any of its attributes, to the rules engine when it 
runs the DBMS_RULE.EVALUATE procedure. For example, if variable x has 
attributes a and b, then the variable is undefined if the client does not send the 
value of x and does not send the value of a and b. However, if the client sends the 
value of at least one attribute, then the variable is defined. In this case, if the client 
sends the value of a, but not b, then the variable is defined. 

An undefined variable in a rule condition evaluates to NULL for Streams clients of 
the rules engine, which include capture processes, propagations, apply processes, 
and messaging clients. In contrast, for non-Streams clients of the rules engine, an 
undefined variable in a rule condition may cause the rules engine to return 
maybe_rules to the client. When a rule set is evaluated, maybe_rules are rules 
that may evaluate to TRUE given more information.

The number of maybe_rules returned to Streams clients is reduced by treating 
each undefined variable as NULL, and reducing the number of maybe_rules can 
improve performance if it results in more efficient evaluation of a rule set when an 
event occurs. Rules that would result in maybe_rules for non-Streams clients can 
result in TRUE or FALSE rules for Streams clients, as the following examples 
illustrate.

Examples of Undefined Variables That Result in TRUE Rules for Streams Clients  Consider 
the following user-defined rule condition:

:m IS NULL

If the value of the variable m is undefined during evaluation, then a maybe rule 
results for non-Streams clients of the rules engine. However, for Streams clients, this 
condition evaluates to true because the undefined variable m is treated as a NULL. 



User-Created Rules, Rule Sets, and Evaluation Contexts

6-62 Oracle Streams Concepts and Administration

You should avoid adding rules such as this to rule sets for Streams clients, because 
such rules will evaluate to true for every event. So, for example, if the positive rule 
set for a capture process has such a rule, then the capture process may capture 
events that you did not intend to capture.

Here is another user-specified rule condition that uses a Streams :dml variable:

:dml.get_object_owner() = 'HR' AND :m IS NULL

For Streams clients, if an event consists of a row change to a table in the hr schema, 
and the value of the variable m is not known during evaluation, then this condition 
evaluates to true because the undefined variable m is treated as a NULL.

Examples of Undefined Variables That Result in FALSE Rules for Streams Clients  Consider 
the following user-defined rule condition:

:m = 5

If the value of the variable m is undefined during evaluation, then a maybe rule 
results for non-Streams clients of the rules engine. However, for Streams clients, this 
condition evaluates to false because the undefined variable m is treated as a NULL.

Consider another user-specified rule condition that uses a Streams :dml variable:

:dml.get_object_owner() = 'HR' AND :m = 5

For Streams clients, if an event consists of a row change to a table in the hr schema, 
and the value of the variable m is not known during evaluation, then this condition 
evaluates to false because the undefined variable m is treated as a NULL.

Avoid Using :dml and :ddl Variables as Function Parameters in Rule Conditions
Oracle Corporation recommends that you avoid using :dml and :ddl variables as 
function parameters for rule conditions. The following example uses the :dml 
variable as a parameter to a function named my_function:

my_function(:dml) = 'Y'

Rule conditions such as these can degrade rule evaluation performance and can 
result in the capture or propagation of extraneous Streams data dictionary 
information. 

See Also: "Rule Set Evaluation" on page 5-13

See Also: "The Streams Data Dictionary" on page 2-45



Rule-Based Transformations

How Rules Are Used In Streams 6-63

User-Created Evaluation Contexts
You can use a custom evaluation context in a Streams environment. Any 
user-defined evaluation context involving LCRs must include all the variables in 
SYS.STREAMS$_EVALUATION_CONTEXT. The type of each variable and its variable 
value function must be the same for each variable as the ones defined in 
SYS.STREAMS$_EVALUATION_CONTEXT. In addition, when creating the 
evaluation context using DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT, the 
SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION must be 
specified for the evaluation_function parameter.

You can find information about an evaluation context in the following data 
dictionary views:

� ALL_EVALUATION_CONTEXT_TABLES

� ALL_EVALUATION_CONTEXT_VARS

� ALL_EVALUATION_CONTEXTS

If necessary, you can use the information in these data dictionary views to build a 
new evaluation context based on the SYS.STREAMS$_EVALUATION_CONTEXT.

Rule-Based Transformations
In Streams, a rule-based transformation is any user-defined modification to an 
event that results when a rule in a positive rule set evaluates to TRUE. You may use 
a rule-based transformation to modify both captured and user-enqueued events, 
and these events may be LCRs or user messages. A transformation must be defined 
as a PL/SQL function that takes a SYS.AnyData object as input and returns a 
SYS.AnyData object. Rule-based transformations support only one to one 
transformations.

For example, a rule-based transformation may be used when the datatype of a 
particular column in a table is different at two different databases. Such a column 
could be a NUMBER column in the source database and a VARCHAR2 column in the 

Note: Avoid using variable names with special characters, such as 
$ and #, to ensure that there are no conflicts with Oracle-supplied 
evaluation context variables.

See Also: Oracle Database Reference for more information about 
these data dictionary views



Rule-Based Transformations

6-64 Oracle Streams Concepts and Administration

destination database. In this case, the transformation takes as input a SYS.AnyData 
object containing a row LCR with a NUMBER datatype for a column and returns a 
SYS.AnyData object containing a row LCR with a VARCHAR2 datatype for the 
same column.

Other examples of transformations on events include:

� Renaming the owner of a database object

� Renaming a database object

� Renaming or removing a column

� Splitting a column into several columns

� Combining several columns into one column

� Modifying the contents of a column

� Modifying the payload of a user message

Although you can modify a captured LCR with a rule-based transformation, a 
rule-based transformation that is executed on a captured LCR must not construct a 
new LCR and return it. That is, a rule-based transformation must return the same 
captured LCR that it receives. However, a rule-based transformation that receives a 
user-enqueued event may construct a new event and return it. In this case, the 
returned event may be an LCR constructed by the rule-based transformation.

You use the SET_RULE_TRANSFORM_FUNCTION procedure in the 
DBMS_STREAMS_ADM package to specify a rule-based transformation for a rule. This 
procedure modifies the rule's action context to specify the transformation. A rule 
action context is optional information associated with a rule that is interpreted by 
the client of the rules engine after the rule evaluates to TRUE for an event. The client 
of the rules engine can be a user-created application or an internal feature of Oracle, 
such as Streams. The information in an action context is an object of type 
SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A rule-based transformation in Streams always consists of the following 
name-value pair in an action context:

� The name is STREAMS$_TRANSFORM_FUNCTION.

� The value is a SYS.AnyData instance containing a PL/SQL function name 
specified as a VARCHAR2. This function performs the transformation.

You can view the existing rule-based transformations in a database by querying the 
DBA_STREAMS_TRANSFORM_FUNCTION data dictionary view.



Rule-Based Transformations

How Rules Are Used In Streams 6-65

The user that calls the transformation function must have EXECUTE privilege on the 
function. The following list describes which user calls the transformation function:

� If a transformation is specified for a rule used by a capture process, then the 
user who calls the transformation function is the capture user for the capture 
process.

� If a transformation is specified for a rule used by a propagation, then the user 
who calls the transformation function is the owner of the source queue for the 
propagation.

� If a transformation is specified on a rule used by an apply process, then the user 
who calls the transformation function is the apply user for the apply process.

� If a transformation is specified on a rule used by a messaging client, then the 
user who calls the transformation function is the user who invokes the 
messaging client.

When a rule in a positive rule set evaluates to TRUE for an event in a Streams 
environment, and an action context that contains a name-value pair with the name 
STREAMS$_TRANSFORM_FUNCTION is returned, the PL/SQL function is run, 
taking the event as an input parameter. Other names in an action context beginning 
with STREAMS$_  are used internally by Oracle and must not be directly added, 
modified, or removed. Streams ignores any name-value pair that does not begin 
with STREAMS$_ or APPLY$_.

When a rule evaluates to FALSE for an event in a Streams environment, the rule is 
not returned to the client, and any PL/SQL function appearing in a name-value pair 
in the action context is not run. Different rules can use the same or different 
transformations. For example, different transformations may be associated with 
different operation types, tables, or schemas for which events are being captured, 
propagated, applied, or dequeued.

The following are considerations for rule-based transformations:

� For a rule-based transformation to be performed by a Streams client, the rule 
must be in the positive rule set for the Streams client. If the rule is in the 
negative rule set for the Streams client, then the Streams client ignores the 
rule-based transformation.

� Rule-based transformations are different from transformations performed using 
the DBMS_TRANSFORM package. This section does not discuss transformations 
performed with the DBMS_TRANSFORM package.



Rule-Based Transformations

6-66 Oracle Streams Concepts and Administration

� If a large percentage of row LCRs will be transformed in your environment, or 
if you need to make transformations on row LCRs that are expensive, then 
consider making these modifications within a DML handler instead, because 
DML handlers can execute in parallel when apply parallelism is greater than 1.

� When you perform rule-based transformations on DDL LCRs, you probably 
need to modify the DDL text in the DDL LCR to match any other modifications. 
For example, if the rule-based transformation changes the name of a table in the 
DDL LCR, then the rule-based transformation should change the table name in 
the DDL text in the same way.

� You cannot use a rule-based transformation to convert an LCR event into a 
non-LCR event. This restriction applies to captured LCRs and user-enqueued 
LCRs.

The following sections provide more information about rule-based transformations 
for each type of Streams client:

� Rule-Based Transformations and a Capture Process

� Rule-Based Transformations and a Propagation

� Rule-Based Transformations and an Apply Process

� Rule-Based Transformations and a Messaging Client

� Multiple Rule-Based Transformations

See Also:

� "Managing Rule-Based Transformations" on page 12-18

� "Rule Action Context" on page 5-10

� Oracle Streams Advanced Queuing User's Guide and Reference and 
PL/SQL Packages and Types Reference for more information about 
the DBMS_TRANSFORM package

� "Event Processing with an Apply Process" on page 4-3 for more 
information about DML handlers



Rule-Based Transformations

How Rules Are Used In Streams 6-67

Rule-Based Transformations and a Capture Process
If a capture process uses a positive rule set, then both of the following conditions 
must be met, in order, for a transformation to be performed during capture:

� A rule in the positive rule set evaluates to TRUE for a particular change found in 
the redo log. 

� An action context containing a name-value pair with the name 
STREAMS$_TRANSFORM_FUNCTION is returned to the capture process when 
the rule is evaluated.

Given these conditions, the capture process completes the following steps:

1. Formats the change in the redo log into an LCR

2. Converts the LCR into a SYS.AnyData object

3. Runs the PL/SQL function in the name-value pair to transform the 
SYS.AnyData object

4. Enqueues the transformed SYS.AnyData object into the queue associated with 
the capture process

All actions are performed as the capture user. Figure 6–6 shows a transformation 
during capture.



Rule-Based Transformations

6-68 Oracle Streams Concepts and Administration

Figure 6–6 Transformation During Capture

For example, if an LCR event is transformed during capture, then the transformed 
LCR event is enqueued into the queue used by the capture process. Therefore, if 
such a captured LCR event is propagated from the dbs1.net database to the 
dbs2.net and the dbs3.net databases, then the queues at dbs2.net and 
dbs3.net will contain the transformed LCR event after propagation.

The advantages of performing transformations during capture are the following:

� Security can be improved if the transformation removes or changes private 
information, because this private information does not appear in the source 
queue and is not propagated to any destination queue.

� Space consumption may be reduced, depending on the type of transformation 
performed. For example, a transformation that reduces the amount of data 
results in less data to enqueue, propagate, and apply.

User Changes

Database Objects

Redo
Log

QueueCapture
Process

Transformation

Enqueue 
Transformed
LCRs

Capture
Changes

Log
Changes



Rule-Based Transformations

How Rules Are Used In Streams 6-69

� Transformation overhead is reduced when there are multiple destinations for a 
transformed LCR event, because the transformation is performed only once at 
the source, not at multiple destinations.

The possible disadvantages of performing transformations during capture are the 
following:

� The transformation overhead occurs in the source database if the capture 
process is a local capture process. However, if the capture process is a 
downstream capture process, then this overhead occurs at the downstream 
database, not at the source database.

� All sites receive the transformed LCR event.

Rule-Based Transformation Errors During Capture
If an error occurs when the transformation function is run during capture, then the 
change is not captured, the error is returned to the capture process, and the capture 
process is disabled. Before the capture process can be enabled, you must either 
change or remove the rule-based transformation to avoid the error.

Rule-Based Transformations and a Propagation
If a propagation uses a positive rule set, then both of the following conditions must 
be met, in order, for a transformation to be performed during propagation:

� A rule in the positive rule set evaluates to TRUE for an event in the source queue 
for the propagation. This event can be a captured or a user-enqueued event.

� An action context containing a name-value pair with the name 
STREAMS$_TRANSFORM_FUNCTION is returned to the propagation when the 
rule is evaluated.

Attention: A rule-based transformation cannot be used with a 
capture process to modify or remove a column of a datatype that is 
not supported by Streams. See "Datatypes Captured" on page 2-8.

See Also: "Captured and User-Enqueued Events" on page 3-3



Rule-Based Transformations

6-70 Oracle Streams Concepts and Administration

Given these conditions, the propagation process includes the following steps:

1. The propagation starts dequeuing the event from the source queue.

2. The source queue owner runs the PL/SQL function in the name-value pair to 
transform the event.

3. The propagation completes dequeuing the transformed event.

4. The propagation propagates the transformed event to the destination queue.

Figure 6–7 shows a transformation during propagation.

Figure 6–7 Transformation During Propagation

For example, suppose you use a rule-based transformation for a propagation that 
propagates events from the dbs1.net database to the dbs2.net database, but you 
do not use a rule-based transformation for a propagation that propagates events 
from the dbs1.net database to the dbs3.net database.

In this case, an event in the queue at dbs1.net can be transformed before it is 
propagated to dbs2.net, but the same event can remain in its original form when 
it is propagated to dbs3.net. In this case, after propagation, the queue at 
dbs2.net contains the transformed event, and the queue at dbs3.net contains 
the original event. 

Source 
Queue

Destination 
Queue

PropagateTransformation
During Dequeue



Rule-Based Transformations

How Rules Are Used In Streams 6-71

The advantages of performing transformations during propagation are the 
following:

� Security can be improved if the transformation removes or changes private 
information before events are propagated.

� Some destination queues can receive a transformed event, while other 
destination queues can receive the original event.

� Different destinations can receive different variations of the same event.

The possible disadvantages of performing transformations during propagation are 
the following:

� Once an event is transformed, any database to which it is propagated after the 
first propagation receives the transformed event. For example, if dbs2.net 
propagates the event to dbs4.net, then dbs4.net receives the transformed 
event.

� When the first propagation in a directed network performs the transformation, 
and the capture process that captured the event is local, the transformation 
overhead occurs on the source database. However, if the capture process is a 
downstream capture process, then this overhead occurs at the downstream 
database, not at the source database.

� The same transformation may be done multiple times when multiple 
destination databases need the same transformation.

Rule-Based Transformation Errors During Propagation
If an error occurs when the transformation function is run during propagation, then 
the event that caused the error is not dequeued or propagated, and the error is 
returned to the propagation. Before the event can be propagated, you must change 
or remove the rule-based transformation to avoid the error.

Rule-Based Transformations and an Apply Process
If an apply process uses a positive rule set, then both of the following conditions 
must be met, in order, for a transformation to be performed during apply:

� A rule in the positive rule set evaluates to TRUE for an event in the queue 
associated with the apply process. This event can be a captured or a 
user-enqueued event.



Rule-Based Transformations

6-72 Oracle Streams Concepts and Administration

� An action context containing a name-value pair with the name 
STREAMS$_TRANSFORM_FUNCTION is returned to the apply process when the 
rule is evaluated.

Given these conditions, the apply process completes the following steps:

1. Starts to dequeue the event from the queue

2. Runs the PL/SQL function in the name-value pair to transform the event 
during dequeue 

3. Completes dequeuing the transformed event

4. Applies the transformed event, which may involve changing database objects at 
the destination database or sending the transformed event to an apply handler

All actions are performed as the apply user. Figure 6–8 shows a transformation 
during apply.

Figure 6–8 Transformation During Apply

For example, suppose an event is propagated from the dbs1.net database to the 
dbs2.net database in its original form. When the apply process dequeues the 
event from a queue at dbs2.net, the event is transformed. 

See Also: "Captured and User-Enqueued Events" on page 3-3

Queue
Dequeue
Events

Apply
Handlers

Continue Dequeue 
of Transformed 
Events

Apply Transformed
Events Directly

Send Transformed 
Events to Apply 
Handlers

Transformation
During Dequeue

Database Objects

Apply
Process



Rule-Based Transformations

How Rules Are Used In Streams 6-73

The possible advantages of performing transformations during apply are the 
following:

� Any database to which the event is propagated after the first propagation can 
receive the event in its original form. For example, if dbs2.net propagates the 
event to dbs4.net, then dbs4.net can receive the original event.

� The transformation overhead does not occur on the source database when the 
source and destination database are different.

The possible disadvantages of performing transformations during apply are the 
following:

� Security may be a concern if the events contain private information, because all 
databases to which the events are propagated receive the original events.

� The same transformation may be done multiple times when multiple 
destination databases need the same transformation.

Rule-Based Transformation Errors During Apply Process Dequeue
If an error occurs when the transformation function is run during apply process 
dequeue, then the event that caused the error is not dequeued, the transaction 
containing the event is not applied, the error is returned to the apply process, and 
the apply process is disabled. Before the apply process can be enabled, you must 
change or remove the rule-based transformation to avoid the error.

Apply Errors on Transformed Events
If an apply error occurs for a transaction in which some of the events have been 
transformed by a rule-based transformation, then the transformed events are 
moved to the error queue with all of the other events in the transaction. If you use 
the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package to reexecute a 
transaction in the error queue that contains transformed events, then the 
transformation is not performed on the events again because the apply process rule 
set containing the rule is not evaluated again.

Note: Before modifying one or more rules for an apply process, 
you should stop the apply process.



Rule-Based Transformations

6-74 Oracle Streams Concepts and Administration

Rule-Based Transformations and a Messaging Client
If a messaging client uses a positive rule set, then both of the following conditions 
must be met, in order, for a transformation to be performed when a messaging 
client dequeues an event from its queue:

� A rule in the positive rule set of the messaging client evaluates to TRUE for the 
event. This event can be a user-enqueued LCR or a user-enqueued message.

� An action context containing a name-value pair with the name 
STREAMS$_TRANSFORM_FUNCTION is returned to the messaging client when 
the rule is evaluated.

Given these conditions, the messaging client completes the following steps:

1. Starts to dequeue the event from the queue

2. Runs the PL/SQL function in the name-value pair to transform the event 
during dequeue 

3. Completes dequeuing the transformed event

All actions are performed as the user who invokes the messaging client. Figure 6–9 
shows a transformation during messaging client dequeue.

Figure 6–9 Transformation During Messaging Client Dequeue

For example, suppose an event is propagated from the dbs1.net database to the 
dbs2.net database in its original form. When the messaging client dequeues the 
event from a queue at dbs2.net, the event is transformed. 

Queue
Dequeue
Events

Messaging
Client

Continue Dequeue 
of Transformed 
Events

Transformation
During Dequeue



Rule-Based Transformations

How Rules Are Used In Streams 6-75

One possible advantage of performing transformations during dequeue in a 
messaging environment is that any database to which the event is propagated after 
the first propagation can receive the event in its original form. For example, if 
dbs2.net propagates the event to dbs4.net, then dbs4.net can receive the 
original event.

The possible disadvantages of performing transformations during dequeue in a 
messaging environment are the following:

� Security may be a concern if the events contain private information, because all 
databases to which the events are propagated receive the original events.

� The same transformation may be done multiple times when multiple 
destination databases need the same transformation.

Rule-Based Transformation Errors During Messaging Client Dequeue
If an error occurs when the transformation function is run during messaging client 
dequeue, then the event that caused the error is not dequeued, and the error is 
returned to the messaging client. Before the event can be dequeued by the 
messaging client, you must change or remove the rule-based transformation to 
avoid the error.

Multiple Rule-Based Transformations
You can transform an event during capture, propagation, apply, or dequeue, or 
during any combination of capture, propagation, apply, and dequeue. For example, 
if you want to hide sensitive data from all recipients, then you can transform an 
event during capture. If some recipients require additional custom transformations, 
then you can transform the previously transformed event during propagation, 
apply, or dequeue.



Rule-Based Transformations

6-76 Oracle Streams Concepts and Administration



Streams High Availability Environments 7-1

7
Streams High Availability Environments

This chapter explains concepts relating to Streams high availability environments.

This chapter contains these topics:

� Overview of Streams High Availability Environments

� Protection from Failures

� Best Practices for Streams High Availability Environments



Overview of Streams High Availability Environments

7-2 Oracle Streams Concepts and Administration

Overview of Streams High Availability Environments
Configuring a high availability solution requires careful planning and analysis of 
failure scenarios. Database backups and physical standby databases provide 
physical copies of a source database for failover protection. Oracle Data Guard, in 
SQL apply mode, implements a logical standby database in a high availability 
environment. Because Oracle Data Guard is designed for a high availability 
environment, it handles most failure scenarios. However, some environments may 
require the flexibility available in Oracle Streams, so that they can take advantage of 
the extended feature set offered by Streams. 

This chapter discusses some of the scenarios that may benefit from a Streams-based 
solution and explains Streams-specific issues that arise in high availability 
environments. It also contains information about best practices for deploying 
Streams in a high availability environment, including hardware failover within a 
cluster, instance failover within an Oracle Real Application Clusters (RAC) cluster, 
and failover and switchover between replicas.

Protection from Failures
Oracle RAC is the preferred method for protecting from an instance or system 
failure. After a failure, services are provided by a surviving node in the cluster. 
However, clustering does not protect from user error, media failure, or disasters. 
These types of failures require redundant copies of the database. You can make both 
physical and logical copies of a database.

Physical copies are identical, block for block, with the source database, and are the 
preferred means of protecting data. There are three types of physical copies: 
database backup, mirrored or multiplexed database files, and a physical standby 
database.

Logical copies contain the same information as the source database, but the 
information may be stored differently within the database. Creating a logical copy 
of your database offers many advantages. However, you should always create a 
logical copy in addition to a physical copy, not instead of physical copy.

See Also:

� Oracle Data Guard Concepts and Administration for more 
information about Oracle Data Guard

� Oracle Real Application Clusters Administrator's Guide



Protection from Failures

Streams High Availability Environments 7-3

Some of the benefits of a logical copy include the following:

� A logical copy can be open while being updated. This ability makes the logical 
copy useful for near real time reporting.

� A logical copy can have a different physical layout that is optimized for its own 
purpose. For example, it can contain additional indexes, and thereby improve 
the performance of reporting applications that utilize the logical copy.

� A logical copy provides better protection from corruptions. Because data is 
logically captured and applied, it is very unlikely that a physical corruption can 
propagate to the logical copy of the database.

There are three types of logical copies of a database:

� Logical standby databases

� Streams replica databases

� Application maintained copies

Logical standby databases are best maintained using Oracle Data Guard in SQL 
apply mode. The rest of this chapter discusses Streams replica databases and 
application maintained copies.

Streams Replica Database
Like Oracle Data Guard in SQL apply mode, Oracle Streams can capture database 
changes, propagate them to destinations, and apply the changes at these 
destinations. Streams is optimized for replicating data. Streams can capture changes 
locally in the online redo log as it is written, and the captured changes can be 
propagated asynchronously to replica databases. This optimization can reduce the 
latency and can enable the replicas to lag the primary database by no more than a 
few seconds.

See Also:

� Oracle Database Backup and Recovery Basics and Oracle Database 
Backup and Recovery Advanced User's Guide for more information 
about database backups and mirroring or multiplexing 
database files

� Oracle Data Guard Concepts and Administration for more 
information about physical standby databases and logical 
standby databases



Protection from Failures

7-4 Oracle Streams Concepts and Administration

Nevertheless, you may choose to use Streams to configure and maintain a logical 
copy of your production database. Although using Streams may require additional 
work, it offers increased flexibility that may be required to meet specific business 
requirements. A logical copy configured and maintained using Streams is called a 
replica, not a logical standby, because it provides many capabilities that are beyond 
the scope of the normal definition of a standby database. Some of the requirements 
that can best be met using an Oracle Streams replica are listed in the following 
sections.

Updates at the Replica Database
The greatest difference between a replica database and a standby database is that a 
replica database can be updated and a standby database cannot. Applications that 
must update data can run against the replica, including job queues and reporting 
applications that log reporting activity. Replica databases also allow local 
applications to operate autonomously, protecting local applications from WAN 
failures and reducing latency for database operations.

Heterogeneous Platform Support
The production and the replica do not need to be running on the exact same 
platform. This provides more flexibility in using computing assets, and facilitates 
migration between platforms.

Multiple Character Sets
Streams replicas can use different character sets than the production database. Data 
is automatically converted from one character set to another before being applied. 
This ability is extremely important if you have global operations and you must 
distribute data in multiple countries.

Mining the Online Redo Logs To Minimize Latency
If the replica is used for near real-time reporting, Streams can lag the production 
database by no more than a few seconds, providing up-to-date and accurate 
queries. Changes can be read from the online redo logs as the logs are written, 
rather than from the redo logs after archiving.

See Also: Oracle Streams Replication Administrator's Guide for more 
information about replicating database changes with Streams



Protection from Failures

Streams High Availability Environments 7-5

Greater Than Ten Copies Of Data
Streams supports unlimited numbers of replicas. Its flexible routing architecture 
allows for hub and spoke configurations that can efficiently propagate data to 
hundreds of replicas. This ability may be important if you must provide 
autonomous operation to many local offices in your organization. In contrast, 
because standby databases configured with Oracle Data Guard use the 
LOG_ARCHIVE_DEST_n initialization parameter to specify destinations, there is a 
limit of ten copies when you use Oracle Data Guard.

Fast Failover
Streams replicas can be open to read/write operations at all times. If a primary 
database fails, then Streams replicas are able to instantly resume processing. A 
small window of data may be left at the primary database, but this data will be 
automatically applied when the primary database recovers. This ability may be 
important if you value fast recovery time over no lost data. Assuming the primary 
database can eventually be recovered, the data is only temporarily unavailable.

Single Capture for Multiple Destinations
In a complex environment, changes need only be captured once. These changes can 
then be sent to multiple destinations. This ability enables more efficient use of the 
resources needed to mine the redo logs for changes.

When Not to Use Streams
As mentioned previously, there are scenarios where you may choose to use Streams 
to meet some of your high availability requirements. One of the rules of high 
availability is to keep it simple. Oracle Data Guard is designed for high availability 
and is easier to implement than a Streams-based high availability solution. If you 
decide to leverage the flexibility offered by Streams, then you must be prepared to 
invest in the expertise and planning required to make a Streams-based solution 
robust. This means writing scripts to implement much of the automation and 
management tools provided with Oracle Data Guard. 



Best Practices for Streams High Availability Environments

7-6 Oracle Streams Concepts and Administration

Application Maintained Copies
The best availability can be achieved by designing the maintenance of logical copies 
of data directly into an application. The application knows what data is valuable 
and must be immediately moved off-site to guarantee no data loss. It also can 
synchronously replicate truly critical data, while asynchronously replicating less 
critical data. Applications maintain copies of data by either synchronously or 
asynchronously sending data to other applications that manage another logical 
copy of the data. Synchronous operations are performed using the distributed SQL 
or remote procedure features of the database. Asynchronous operations are 
performed using Advanced Queuing. Advanced Queuing is a database message 
queuing feature that is part of Oracle Streams.

Although the highest levels of availability can be achieved with application 
maintained copies of data, great care is required to realize these results. Typically, a 
great amount of custom development is required. Many of the difficult boundary 
conditions that have been analyzed and solved with solutions such as Oracle Data 
Guard and Streams replication must be re-analyzed and solved by the custom 
application developers. In addition, standard solutions like Oracle Data Guard and 
Streams replication undergo stringent testing both by Oracle and its customers. It 
will take a great deal of effort before a custom-developed solution can exhibit the 
same degree of maturity. For these reasons, only organizations with substantial 
patience and expertise should attempt to build a high availability solution with 
application maintained copies.

Best Practices for Streams High Availability Environments
Implementing Streams in a high availability environment requires consideration of 
possible failure and recovery scenarios, and the implementation of procedures to 
ensure Streams continues to capture, propagate, and apply changes after a failure. 
Some of the issues that must be examined include the following:

� Configuring Streams for High Availability

� Directly Connecting Every Database to Every Other Database

� Creating Hub and Spoke Configurations

� Configuring Oracle Real Application Clusters with Streams

� Local or Downstream Capture with Streams

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for more information about developing applications with 
Advanced Queuing



Best Practices for Streams High Availability Environments

Streams High Availability Environments 7-7

� Recovering from Failures

� Automatic Capture Process Restart After a Failover

� Database Links Reestablishment After a Failover

� Propagation Job Restart After a Failover

� Automatic Apply Process Restart After a Failover

The following sections discuss these issues in detail.

Configuring Streams for High Availability
When configuring a solution using Streams, it is important to anticipate failures and 
design availability into the architecture. You must examine every database in the 
distributed system, and design a recovery plan in case of failure of that database. In 
some situations, failure of a database affects only services accessing data on that 
database. In other situations, a failure is multiplied, because it may affect other 
databases.

Directly Connecting Every Database to Every Other Database
A configuration where each database is directly connected to every other database 
in the distributed system is the most resilient to failures, because a failure of one 
database will not prevent any other databases from operating or communicating. 
Assuming all data is replicated, services that were using the failed database can 
connect to surviving replicas.

Creating Hub and Spoke Configurations
Although configurations where each database is directly connected to every other 
database provide the best high availability characteristics, they can become difficult 
to manage when the number of databases becomes large. Hub and spoke 
configurations solve this manageability issue by funneling changes from many 
databases into a hub database, and then to other hub databases, or to other spoke 
databases. To add a new source or destination, you simply connect it to a hub 
database, rather than establishing connections to every other database.

See Also:

� Oracle Streams Replication Administrator's Guide for a detailed 
example of such an environment

� "Queue Forwarding and Apply Forwarding" on page 3-8



Best Practices for Streams High Availability Environments

7-8 Oracle Streams Concepts and Administration

A hub, however, becomes a very important node in your distributed environment. 
Should it fail, all communications flowing through the hub will fail. Due to the 
asynchronous nature of the events propagating through the hub, it can be very 
difficult to redirect a stream from one hub to another. A better approach is to make 
the hub resilient to failures. 

The same techniques used to make a single database resilient to failures also apply 
to distributed hub databases. Oracle Corporation recommends Oracle RAC to 
provide protection from instance and node failures. This configuration should be 
combined with a "no loss" physical standby database, to protect from disasters and 
data errors. Oracle Corporation does not recommend using a Streams replica as the 
only means to protect from disasters or data errors.

Configuring Oracle Real Application Clusters with Streams
Using Oracle RAC with Streams introduces some important considerations. When 
running in an Oracle RAC cluster, a capture process runs on the instance that owns 
the queue that is receiving the captured logical change records (LCRs). Job queues 
should be running on all instances, and a propagation job running on an instance 
will propagate LCRs from any queue owned by that instance to destination queues. 
An apply process runs on the instance that owns the queue from which the apply 
process dequeues its events. That may or may not be the same queue on which 
capture runs.

Any propagation to the database running Oracle RAC is made over database links. 
The database links must be configured to connect to the destination instance that 
owns the queue that will receive the events.

You may choose to use a cold failover cluster to protect from system failure rather 
than Oracle RAC. A cold failover cluster is not an Oracle Real Application Cluster. 
Instead, a cold failover cluster uses a secondary node to mount and recover the 
database when the first node fails.

See Also: Oracle Streams Replication Administrator's Guide for a 
detailed example of such an environment



Best Practices for Streams High Availability Environments

Streams High Availability Environments 7-9

Local or Downstream Capture with Streams
In Oracle Database 10g, Streams supports capturing changes from the redo log on 
the local source database or at a downstream database at a different site. The choice 
of local capture or downstream capture has implications for availability. When a 
failure occurs at a source database, some changes may not have been captured. 
With local capture, those changes may not be available until the source database is 
recovered. In the event of a catastrophic failure, those changes may be lost.

Downstream capture at a remote database reduces the window of potential data 
loss in the event of a failure. Depending on the configuration, downstream capture 
enables you to guarantee all changes committed at the source database are safely 
copied to a remote site, where they can be captured and propagated to other 
databases and applications. Streams uses the same mechanism as Oracle Data 
Guard to copy log files to remote destinations, and supports the same operational 
modes, including maximum protection, maximum availability, and maximum 
performance.

Recovering from Failures
The following sections provide best practices for recovering from failures.

Automatic Capture Process Restart After a Failover
After a failure and restart of a single node database, or a failure and restart of a 
database on another node in a cold failover cluster, the capture process will 
automatically return to the status it was in at the time of the failure. That is, if it was 
running at the time of the failure, then the capture process will restart automatically. 

Similarly, for a capture process running in an Oracle RAC environment, if an 
instance running the capture process fails, then the queue that receives the captured 
LCRs will be assigned to another node in the cluster, and the capture process will be 

See Also:

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13

See Also: "Local Capture and Downstream Capture" on page 2-17



Best Practices for Streams High Availability Environments

7-10 Oracle Streams Concepts and Administration

restarted automatically. A capture process will follow its queue to a different 
instance if the current owner instance becomes unavailable, and the queue itself 
follows the rules for primary instance and secondary instance ownership. 

Database Links Reestablishment After a Failover
It is important to ensure that a propagation continues to function after a failure of a 
destination database instance. A propagation job will retry (with increasing delay 
between retries) its database link sixteen times after a failure until the connection is 
reestablished. If the connection is not reestablished after sixteen tries, then the 
propagation schedule is disabled.

If the database is restarted on the same node, or on a different node in a cold 
failover cluster, then the connection should be reestablished. In some circumstances, 
the database link may be waiting on a read or write, and will not detect the failure 
until a lengthy timeout expires. The timeout is controlled by the 
TCP_KEEPALIVE_INTERVAL TCP/IP parameter. In such circumstances, you 
should drop and re-create the database link to ensure that communication is 
reestablished quickly.

When an instance in an Oracle RAC cluster fails, the instance is recovered by 
another node in the cluster. Each queue that was previously owned by the failed 
instance is assigned to a new instance. If the failed instance contained one or more 
destination queues for propagations, then you must drop and reestablish any 
inbound database links to point to the new instance that owns a destination queue. 
You do not need to modify a propagation that uses a re-created database link.

In a high availability environment, you can prepare scripts that will drop and 
re-create all necessary database links. After a failover, you can execute these scripts 
so that Streams can resume propagation.

See Also:

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27

� "Starting a Capture Process" on page 9-26

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14 for information about primary and secondary 
instance ownership for queues



Best Practices for Streams High Availability Environments

Streams High Availability Environments 7-11

Propagation Job Restart After a Failover
For events to be propagated from a source queue to a destination queue, a 
propagation job must run on the instance owning the source queue. In a single node 
database, or cold failover cluster, propagation will resume when the single database 
instance is restarted. 

When running in an Oracle RAC environment, a propagation job runs on the 
instance that owns the source queue from which the propagation job sends events 
to a destination queue. If the owner instance for a propagation job goes down, then 
the propagation job automatically migrates to a new owner instance. You should 
not alter instance affinity for Streams propagation jobs, because Streams manages 
instance affinity for propagation jobs automatically. Also, for any jobs to run on an 
instance, the modifiable initialization parameter JOB_QUEUE_PROCESSES must be 
greater than zero for that instance.

Automatic Apply Process Restart After a Failover
After a failure and restart of a single node database, or a failure and restart of a 
database on another node in a cold failover cluster, the apply process will 
automatically return to the status it was in at the time of the failure. That is, if it was 
running at the time of the failure, then the apply process will restart automatically.

Similarly, in an Oracle RAC cluster, if an instance hosting the apply process fails, 
then the queue from which the apply process dequeues events will be assigned to 
another node in the cluster, and the apply process will be restarted automatically. 
An apply process will follow its queue to a different instance if the current owner 
instance becomes unavailable, and the queue itself follows the rules for primary 
instance and secondary instance ownership.

See Also:

� "Configuring Network Connectivity and Database Links" on 
page 8-11 for information about creating database links in a 
Streams environment

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14 for more information about database links in a 
RAC environment

See Also: "SYS.AnyData Queues and Oracle Real Application 
Clusters" on page 3-14



Best Practices for Streams High Availability Environments

7-12 Oracle Streams Concepts and Administration

See Also:

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13

� "Starting an Apply Process" on page 11-10

� "SYS.AnyData Queues and Oracle Real Application Clusters" 
on page 3-14 for information about primary and secondary 
instance ownership for queues



Part II
   Streams Administration

This part describes managing a Streams environment, including step-by-step 
instructions for configuring, administering, monitoring and troubleshooting. This 
part contains the following chapters:

� Chapter 8, "Preparing a Streams Environment"

� Chapter 9, "Managing a Capture Process"

� Chapter 10, "Managing Staging and Propagation"

� Chapter 11, "Managing an Apply Process"

� Chapter 12, "Managing Rules and Rule-Based Transformations"

� Chapter 13, "Other Streams Management Tasks"

� Chapter 14, "Monitoring a Streams Environment"

� Chapter 15, "Troubleshooting a Streams Environment"





Preparing a Streams Environment 8-1

8
Preparing a Streams Environment

This chapter provides instructions for preparing a database or a distributed 
database environment to use Streams and for configuring a Streams environment.

This chapter contains these topics:

� Configuring a Streams Administrator

� Setting Initialization Parameters Relevant to Streams

� Preparing a Database to Run a Streams Capture Process

� Configuring Network Connectivity and Database Links



Configuring a Streams Administrator

8-2 Oracle Streams Concepts and Administration

Configuring a Streams Administrator
To manage a Streams environment, either create a new user with the appropriate 
privileges or grant these privileges to an existing user. You should not use the SYS 
or SYSTEM user as a Streams administrator, and the Streams administrator should 
not use the SYSTEM tablespace as its default tablespace.

Complete the following steps to configure a Streams administrator at each database 
in the environment that will use Streams:

1. Connect in SQL*Plus as an administrative user who can create users, grant 
privileges, and create tablespaces. Remain connected as this administrative user 
for all subsequent steps.

2. Either create a tablespace for the Streams administrator or use an existing 
tablespace. For example, the following statement creates a new tablespace for 
the Streams administrator:

CREATE TABLESPACE streams_tbs DATAFILE '/usr/oracle/dbs/streams_tbs.dbf' 
  SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

3. Create a new user to act as the Streams administrator or use an existing user. 
For example, to create a new user named strmadmin and specify that this user 
uses the streams_tbs tablespace, run the following statement:

CREATE USER strmadmin IDENTIFIED BY strmadminpw
   DEFAULT TABLESPACE streams_tbs
   QUOTA UNLIMITED ON streams_tbs;

4. Grant the Streams administrator CONNECT and RESOURCE role so that this 
administrator can connect to the database and manage different types of 
database objects in the administrator's own schema. Also, grant the Streams 
administrator DBA role.

GRANT CONNECT, RESOURCE, DBA TO strmadmin;

Note: To ensure security, use a password other than 
strmadminpw for the Streams administrator.



Configuring a Streams Administrator

Preparing a Streams Environment 8-3

5. Optionally, run the GRANT_ADMIN_PRIVILEGE procedure in the 
DBMS_STREAMS_AUTH package. You may choose to run this procedure on the 
Streams administrator created in Step3 if any of the following conditions are 
true:

� The Streams administrator will run user-created subprograms that execute 
subprograms in Oracle supplied packages associated with Streams. An 
example is a user-created stored procedure that executes a procedure in the 
DBMS_STREAMS_ADM package.

� The Streams administrator will run user-created subprograms that query 
data dictionary views associated with Streams. An example is a 
user-created stored procedure that queries the DBA_APPLY_ERROR data 
dictionary view.

A user must have explicit EXECUTE privilege on a package to execute a 
subprogram in the package inside of a user-created subprogram, and a user 
must have explicit SELECT privilege on a data dictionary view to query the 
view inside of a user-created subprogram. These privileges cannot be through a 
role. You may run the GRANT_ADMIN_PRIVILEGE procedure to grant such 
privileges to the Streams administrator, or you may grant them directly.

Depending on the parameter settings for the GRANT_ADMIN_PRIVILEGE 
procedure, it either grants the privileges needed to be a Streams administrator 
directly, or it generates a script that you can edit and then run to grant these 
privileges.

Use the GRANT_ADMIN_PRIVILEGE procedure to grant privileges directly:

BEGIN
  DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
    grantee          => 'strmadmin',    
    grant_privileges => true);
END;
/

See Also: PL/SQL Packages and Types Reference for more 
information about this procedure



Configuring a Streams Administrator

8-4 Oracle Streams Concepts and Administration

Use the GRANT_ADMIN_PRIVILEGE procedure to generate a script:

a. Use the SQL statement CREATE DIRECTORY to create a directory object for 
the directory into which you want to generate the script. A directory object 
is similar to an alias for the directory. For example, to create a directory 
object called admin_dir for the /usr/admin directory on your computer 
system, run the following procedure:

CREATE DIRECTORY admin_dir AS '/usr/admin';

b. Run the GRANT_ADMIN_PRIVILEGE procedure to generate a script named 
grant_strms_privs.sql and place this script in the /usr/admin 
directory on your computer system:

BEGIN
  DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
    grantee          => 'strmadmin',    
    grant_privileges => false,
    file_name        => 'grant_strms_privs.sql',
    directory_name   => 'admin_dir');
END;
/

Notice that the grant_privileges parameter is set to false so that the 
procedure does not grant the privileges directly. Also, notice that the 
directory object created in Step a is specified for the directory_name 
parameter.

c. Edit the generated script if necessary and save your changes.

d. Execute the script in SQL*Plus:

SET ECHO ON
SPOOL grant_strms_privs.out
@/usr/admin/grant_strms_privs.sql
SPOOL OFF

e. Check the spool file to ensure that all of the grants executed successfully. If 
there are errors, then edit the script to correct the errors and rerun it.

6. If necessary, grant the Streams administrator the following privileges:

� SELECT_CATALOG_ROLE if you want to grant the user privileges to query 
non-Streams data dictionary views

� SELECT ANY DICTIONARY privilege if you plan to use the Streams tool in 
the Oracle Enterprise Manager Console



Configuring a Streams Administrator

Preparing a Streams Environment 8-5

� If no apply user is specified for an apply process, then the necessary 
privileges to perform DML and DDL changes on the apply objects owned 
by another user. If an apply user is specified, then the apply user must have 
these privileges.

� If no apply user is specified for an apply process, then EXECUTE privilege 
on any PL/SQL procedure owned by another user that is executed by a 
Streams apply process. These procedures may be used in apply handlers or 
error handlers. If an apply user is specified, then the apply user must have 
these privileges.

� EXECUTE privilege on any PL/SQL function owned by another user that is 
specified in a rule-based transformation for a rule used by a Streams 
capture process, propagation, apply process, or messaging client. For a 
capture process, if a capture user is specified, then the capture user must 
have these privileges. For an apply process, if an apply user is specified, 
then the apply user must have these privileges.

� Privileges to alter database objects where appropriate. For example, if the 
Streams administrator must create a supplemental log group for a table in 
another schema, then the Streams administrator must have the necessary 
privileges to alter the table.

� If the Streams administrator does not own the queue used by a Streams 
capture process, propagation, apply process, or messaging client, and is not 
specified as the queue user for the queue when the queue is created, then 
the Streams administrator must be configured as a secure queue user of the 
queue if you want the Streams administrator to be able to enqueue events 
into or dequeue events from the queue. The Streams administrator may also 
need ENQUEUE or DEQUEUE privileges on the queue, or both. See "Enabling 
a User to Perform Operations on a Secure Queue" on page 10-3 for 
instructions.

� EXECUTE privilege on any object types that the Streams administrator may 
need to access

7. Repeat all of the previous steps at each database in the environment that will 
use Streams.

See Also: "Monitoring Streams Administrators and Other 
Streams Users" on page 14-4



Setting Initialization Parameters Relevant to Streams

8-6 Oracle Streams Concepts and Administration

Setting Initialization Parameters Relevant to Streams
Table 8–1 lists initialization parameters that are important for the operation, 
reliability, and performance of a Streams environment. Set these parameters 
appropriately for your Streams environment. This table specifies whether each 
parameter is modifiable. A modifiable initialization parameter can be modified 
using the ALTER SESSION or ALTER SYSTEM statement while an instance is 
running.

See Also: Oracle Database Reference for more information about 
these initialization parameters

Table 8–1 Initialization Parameters Relevant to Streams 

Parameter Values Description

COMPATIBLE Default: 9.2.0

Range: 9.2.0 to Current Release 
Number

Modifiable?: No

This parameter specifies the release with 
which the Oracle server must maintain 
compatibility. Oracle servers with 
different compatibility levels can 
interoperate. 

To use the new Streams features 
introduced in Oracle Database 10g, this 
parameter must be set to 10.1.0 or 
higher. To use downstream capture, this 
parameter must be set to 10.1.0 or 
higher at both the source database and 
the downstream database.

GLOBAL_NAMES Default: false

Range: true or false

Modifiable?: Yes

Specifies whether a database link is 
required to have the same name as the 
database to which it connects. 

To use Streams to share information 
between databases, set this parameter to 
true at each database that is 
participating in your Streams 
environment. 

JOB_QUEUE_PROCESSES Default: 0

Range: 0 to 1000

Modifiable?: Yes

Specifies the number of Jn job queue 
processes for each instance (J000 ... 
J999). Job queue processes handle 
requests created by DBMS_JOB. 

This parameter must be set to at least 2 
at each database that is propagating 
events in your Streams environment, and 
should be set to the same value as the 
maximum number of jobs that can run 
simultaneously plus two.



Setting Initialization Parameters Relevant to Streams

Preparing a Streams Environment 8-7

LOG_ARCHIVE_DEST_n Default: None

Range: None

Modifiable?: Yes

Defines up to ten log archive 
destinations, where n is 1, 2, 3, ... 10. 

To use downstream capture and copy the 
redo log files to the downstream 
database using log transport services, at 
least one log archive destination must be 
at the site running the downstream 
capture process.

See Also: Oracle Data Guard Concepts and 
Administration

LOG_ARCHIVE_DEST_STATE_n Default: enable

Range: One of the following:

� alternate

� reset

� defer

� enable

Modifiable?: Yes

Specifies the availability state of the 
corresponding destination. The 
parameter suffix (1 through 10) specifies 
one of the ten corresponding 
LOG_ARCHIVE_DEST_n destination 
parameters.

To use downstream capture and copy the 
redo log files to the downstream 
database using log transport services, 
make sure the destination that 
corresponds to the 
LOG_ARCHIVE_DEST_n destination for 
the downstream database is set to 
enable.

OPEN_LINKS Default: 4

Range: 0 to 255

Modifiable?: No

Specifies the maximum number of 
concurrent open connections to remote 
databases in one session. These 
connections include database links, as 
well as external procedures and 
cartridges, each of which uses a separate 
process. 

In a Streams environment, make sure this 
parameter is set to the default value of 4 
or higher.

PARALLEL_MAX_SERVERS Default: Derived from the values of 
the following parameters:

CPU_COUNT

PARALLEL_ADAPTIVE_MULTI_USER

PARALLEL_AUTOMATIC_TUNING

Range: 0 to 3599 

Modifiable?: Yes

Specifies the maximum number of 
parallel execution processes and parallel 
recovery processes for an instance. As 
demand increases, Oracle will increase 
the number of processes from the 
number created at instance startup up to 
this value. 

In a Streams environment, each capture 
process and apply process may use 
multiple parallel execution servers. Set 
this initialization parameter to an 
appropriate value to ensure that there are 
enough parallel execution servers.

Table 8–1 Initialization Parameters Relevant to Streams (Cont.)

Parameter Values Description



Setting Initialization Parameters Relevant to Streams

8-8 Oracle Streams Concepts and Administration

PROCESSES Default: Derived from 
PARALLEL_MAX_SERVERS 

Range: 6 to operating system 
dependent limit 

Modifiable?: No

Specifies the maximum number of 
operating system user processes that can 
simultaneously connect to Oracle. 

Make sure the value of this parameter 
allows for all background processes, such 
as locks, job queue processes, and 
parallel execution processes. In Streams, 
capture processes and apply processes 
use background processes and parallel 
execution processes, and propagation 
jobs use job queue processes.

REMOTE_ARCHIVE_ENABLE Default: true

Range: true or false

Modifiable?: No

Enables or disables the sending of redo 
archival to remote destinations and the 
receipt of remotely archived redo.

To use downstream capture and copy the 
redo log files to the downstream 
database using log transport services, 
this parameter must be set to true at 
both the source database and the 
downstream database.

SESSIONS Default: Derived from:

 (1.1 * PROCESSES) + 5

Range: 1 to 231

Modifiable?: No

Specifies the maximum number of 
sessions that can be created in the 
system.

To run one or more capture processes or 
apply processes in a database, you may 
need to increase the size of this 
parameter. Each background process in a 
database requires a session.

SGA_MAX_SIZE Default: Initial size of SGA at startup

Range: 0 to operating system 
dependent limit

Modifiable?: No

Specifies the maximum size of SGA for 
the lifetime of a database instance.

To run multiple capture processes on a 
single database, you may need to 
increase the size of this parameter.

SHARED_POOL_SIZE Default: 

32-bit platforms: 32 MB, rounded up 
to the nearest granule size 

64-bit platforms: 84 MB, rounded up 
to the nearest granule size 

Range: 

Minimum: the granule size 

Maximum: operating 
system-dependent 

Modifiable?: Yes

Specifies (in bytes) the size of the shared 
pool. The shared pool contains shared 
cursors, stored procedures, control 
structures, and other structures.

If the STREAMS_POOL_SIZE 
initialization parameter is set to zero, 
then Streams may use up to 10% of the 
shared pool.

Table 8–1 Initialization Parameters Relevant to Streams (Cont.)

Parameter Values Description



Setting Initialization Parameters Relevant to Streams

Preparing a Streams Environment 8-9

STREAMS_POOL_SIZE Default: 0

Range: 

Minimum: 0 

Maximum: operating 
system-dependent 

Modifiable?: Yes

Specifies (in bytes) the size of the Streams 
pool. The Streams pool contains captured 
events. In addition, the Streams pool is 
used for internal communications during 
parallel capture and apply. 

If the size of the Streams pool is greater 
than zero, then any SGA memory used 
by Streams is allocated from the Streams 
pool. If the Streams pool size is set to 
zero, then SGA memory used by Streams 
is allocated from the shared pool and 
may use up to 10% of the shared pool.

This parameter is modifiable. However, 
if this parameter is set to zero when an 
instance starts, then increasing it beyond 
zero has no effect on the current instance 
because it is using the shared pool for 
Streams allocations. Also, if this 
parameter is set to a value greater than 
zero when an instance starts and is then 
reduced to zero when the instance is 
running, then Streams processes and jobs 
will not run.

You should increase the size of the 
Streams pool for each of the following 
factors:

� 10 MB for each capture process 
parallelism

� 1 MB for each apply process 
parallelism 

� 10 MB or more for each queue 
staging captured events

For example, if parallelism is set to 3 for 
a capture process, then increase the 
Streams pool by 30 MB. If parallelism is 
set to 5 for an apply process, then 
increase the Streams pool by 5 MB.

Table 8–1 Initialization Parameters Relevant to Streams (Cont.)

Parameter Values Description



Setting Initialization Parameters Relevant to Streams

8-10 Oracle Streams Concepts and Administration

TIMED_STATISTICS Default: 

If STATISTICS_LEVEL is set to 
TYPICAL or ALL, then true 

If STATISTICS_LEVEL is set to 
BASIC, then false

The default for STATISTICS_LEVEL 
is TYPICAL.

Range: true or false

Modifiable?: Yes

Specifies whether or not statistics related 
to time are collected.

To collect elapsed time statistics in the 
dynamic performance views related to 
Streams, set this parameter to true. The 
views that include elapsed time statistics 
include: V$STREAMS_CAPTURE, 
V$STREAMS_APPLY_COORDINATOR, 
V$STREAMS_APPLY_READER, 
V$STREAMS_APPLY_SERVER.

UNDO_RETENTION Default: 900

Range: 0 to 232-1 (max value 
represented by 32 bits)

Modifiable?: Yes

Specifies (in seconds) the amount of 
committed undo information to retain in 
the database.

For a database running one or more 
capture processes, make sure this 
parameter is set to specify an adequate 
undo retention period. 

If you are running one or more capture 
processes and you are unsure about the 
proper setting, then try setting this 
parameter to at least 3600. If you 
encounter "snapshot too old" errors, then 
increase the setting for this parameter 
until these errors cease. Make sure the 
undo tablespace has enough space to 
accommodate the UNDO_RETENTION 
setting.

See Also: Oracle Database Administrator's 
Guide for more information about the 
retention period and the undo tablespace

Table 8–1 Initialization Parameters Relevant to Streams (Cont.)

Parameter Values Description



Configuring Network Connectivity and Database Links

Preparing a Streams Environment 8-11

Preparing a Database to Run a Streams Capture Process
Any source database that generates redo log information that will be captured by a 
capture process must be running in ARCHIVELOG mode. In addition, make sure the 
initialization parameters are set properly on any database that will run a capture 
process.

Configuring Network Connectivity and Database Links
If you plan to use Streams to share information between databases, then configure 
network connectivity and database links between these databases:

� For Oracle databases, configure your network and Oracle Net so that the 
databases can communicate with each other.

� For non-Oracle databases, configure an Oracle gateway for communication 
between the Oracle database and the non-Oracle database.

� If you plan to propagate events from a source queue at a database to a 
destination queue at another database, then create a private database link 
between the database containing the source queue and the database containing 
the destination queue. Each database link should use a CONNECT TO clause for 
the user propagating events between databases.

For example, to create a database link to a database named dbs2.net 
connecting as a Streams administrator named strmadmin, run the following 
statement:

CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'dbs2.net';

See Also:

� "ARCHIVELOG Mode and a Capture Process" on page 2-46

� Oracle Database Administrator's Guide for information about 
running a database in ARCHIVELOG mode

� "Setting Initialization Parameters Relevant to Streams" on 
page 8-6

See Also: Oracle Net Services Administrator's Guide

See Also: Oracle Database Heterogeneous Connectivity 
Administrator's Guide



Configuring Network Connectivity and Database Links

8-12 Oracle Streams Concepts and Administration

See Also: Oracle Database Administrator's Guide for more 
information about creating database links



Managing a Capture Process 9-1

9
Managing a Capture Process

A capture process captures changes in a redo log, reformats the captured changes 
into logical change records (LCRs), and enqueues the LCRs into a SYS.AnyData 
queue. 

This chapter contains these topics:

� Creating a Capture Process

� Starting, Stopping, and Dropping a Capture Process

� Managing the Rule Set for a Capture Process

� Setting a Capture Process Parameter

� Setting the Capture User for a Capture Process

� Specifying Supplemental Logging at a Source Database

� Adding an Archived Redo Log File to a Capture Process Explicitly

� Setting SCN Values for an Existing Capture Process

� Specifying Whether Downstream Capture Uses a Database Link

� Managing Extra Attributes in Captured LCRs

Each task described in this chapter should be completed by a Streams administrator 
that has been granted the appropriate privileges, unless specified otherwise.

See Also:

� Chapter 2, "Streams Capture Process"

� "Configuring a Streams Administrator" on page 8-2



Creating a Capture Process

9-2 Oracle Streams Concepts and Administration

Creating a Capture Process
You can create a capture process that captures changes to the local source database, 
or you can create a capture process that captures changes remotely at a downstream 
database. If a capture process runs on a downstream database, then redo log files 
from the source database are copied to the downstream database, and the capture 
process captures changes in these redo log files at the downstream database.

You can use any of the following procedures to create a local capture process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_CAPTURE_ADM.CREATE_CAPTURE

Each of the procedures in the DBMS_STREAMS_ADM package creates a capture 
process with the specified name if it does not already exist, creates either a positive 
or negative rule set for the capture process if the capture process does not have such 
a rule set, and may add table, schema, or global rules to the rule set. 

The CREATE_CAPTURE procedure creates a capture process, but does not create a 
rule set or rules for the capture process. However, the CREATE_CAPTURE procedure 
enables you to specify an existing rule set to associate with the capture process, 
either as a positive or a negative rule set, a first SCN, and a start SCN for the 
capture process. To create a capture process that performs downstream capture, 
you must use the CREATE_CAPTURE procedure.

Attention: When a capture process is started or restarted, it may 
need to scan redo log files with a FIRST_CHANGE# value that is 
lower than start SCN. Removing required redo log files before they 
are scanned by a capture process causes the capture process to 
abort. You can query the DBA_CAPTURE data dictionary view to 
determine the first SCN, start SCN, and required checkpoint SCN. 
A capture process needs the redo log file that includes the required 
checkpoint SCN, and all subsequent redo log files. See "Capture 
Process Creation" on page 2-32 for more information about the first 
SCN and start SCN for a capture process.



Creating a Capture Process

Managing a Capture Process 9-3

The following tasks must be completed before you create a capture process:

� Complete the tasks described in "Preparing a Database to Run a Streams 
Capture Process" on page 8-11.

� Create a SYS.AnyData queue to associate with the capture process, if one does 
not exist. See "Creating a SYS.AnyData Queue" on page 10-2 for instructions.

The following sections describe:

� Creating a Local Capture Process

� Creating a Downstream Capture Process That Assigns Log Files Implicitly

� Creating a Downstream Capture Process That Assigns Log Files Explicitly

� Creating a Local Capture Process with Non-NULL Start SCN

Note:

� After creating a capture process, avoid changing the DBID or 
global name of the source database for the capture process. If 
you change either the DBID or global name of the source 
database, then the capture process must be dropped and 
re-created.

� To create a capture process, a user must be granted DBA role.

See Also:

� "Capture Process Creation" on page 2-32

� "First SCN and Start SCN" on page 2-24

� Oracle Streams Replication Administrator's Guide for information 
about changing the DBID or global name of a source database



Creating a Capture Process

9-4 Oracle Streams Concepts and Administration

Creating a Local Capture Process
The following sections describe using the DBMS_STREAMS_ADM package and the 
DBMS_CAPTURE_ADM package to create a local capture process.

Example of Creating a Local Capture Process Using DBMS_STREAMS_ADM
The following is an example that runs the ADD_TABLE_RULES procedure in the 
DBMS_STREAMS_ADM package to create a local capture process:

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name         => 'hr.employees',
    streams_type       => 'capture',
    streams_name       => 'strm01_capture',
    queue_name         => 'strm01_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => false,
    source_database    => NULL,
    inclusion_rule     => true);
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm01_capture. The capture process is 
created only if it does not already exist. If a new capture process is created, then 
this procedure also sets the start SCN to the point in time of creation.

� Associates the capture process with an existing queue named strm01_queue

� Creates a positive rule set and associates it with the capture process, if the 
capture process does not have a positive rule set, because the 
inclusion_rule parameter is set to true. The rule set uses the 
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name 
is specified by the system.

� Creates two rules. One rule evaluates to TRUE for DML changes to the 
hr.employees table, and the other rule evaluates to TRUE for DDL changes to 
the hr.employees table. The rule names are specified by the system.

� Adds the two rules to the positive rule set associated with the capture process. 
The rules are added to the positive rule set because the inclusion_rule 
parameter is set to true.



Creating a Capture Process

Managing a Capture Process 9-5

� Specifies that the capture process captures a change in the redo log only if the 
change has a NULL tag, because the include_tagged_lcr parameter is set 
to false. This behavior is accomplished through the system-created rules for 
the capture process.

� Creates a capture process that captures local changes to the source database 
because the source_database parameter is set to NULL. For a local capture 
process, you also may specify the global name of the local database for this 
parameter.

� Prepares the hr.employees table for instantiation

Example of Creating a Local Capture Process Using DBMS_CAPTURE_ADM
The following is an example that runs the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package to create a local capture process:

BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strm02_queue',
    capture_name       => 'strm02_capture',
    rule_set_name      => 'strmadmin.strm01_rule_set',
    start_scn          => NULL,
    source_database    => NULL,
    use_database_link  => false,
    first_scn          => NULL);
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm02_capture. A capture process with 
the same name must not exist.

� Associates the capture process with an existing queue named strm02_queue

� Associates the capture process with an existing rule set named 
strm01_rule_set. This rule set is the positive rule set for the capture process.

See Also:

� "Capture Process Creation" on page 2-32

� "System-Created Rules" on page 6-7

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Creating a Capture Process

9-6 Oracle Streams Concepts and Administration

� Creates a capture process that captures local changes to the source database 
because the source_database parameter is set to NULL. For a local capture 
process, you also may specify the global name of the local database for this 
parameter.

� Specifies that the Oracle database determines the start SCN and first SCN for 
the capture process because both the start_scn parameter and the 
first_scn parameter are set to NULL.

� If no other capture processes that capture local changes are running on the local 
database, then the BUILD procedure in the DBMS_CAPTURE_ADM package is run 
automatically. Running this procedure extracts the data dictionary to the redo 
log, and a LogMiner data dictionary is created when the capture process is 
started for the first time.

Creating a Downstream Capture Process That Assigns Log Files Implicitly
To create a capture process that performs downstream capture, you must use the 
CREATE_CAPTURE procedure. The following sections describe creating a 
downstream capture process that uses a database link to the source database and 
one that does not. In both examples, assume the following:

� The source database is dbs1.net and the downstream database is dbs2.net.

� The capture process that will be created at dbs2.net uses the strm03_queue.

� The capture process will capture DML changes to the hr.departments table.

� The capture process assigns log files implicitly. That is, the downstream capture 
process automatically scans all redo log files added by log transport services or 
manually from the source database to the downstream database.

Preparing to Copy Redo Log Files for Downstream Capture
Whether a database link from the downstream database to the source database is 
used or not, complete the following steps to prepare the source database to copy its 
redo log files to the downstream database, and to prepare the downstream database 
to accept these redo log files.

See Also:

� "Capture Process Creation" on page 2-32

� "SCN Values Relating to a Capture Process" on page 2-23



Creating a Capture Process

Managing a Capture Process 9-7

1. Configure Oracle Net so that the source database can communicate with the 
downstream database.

2. Set the following initialization parameters to configure log transport services to 
copy redo log files from the source database to the downstream database:

� At the source database, set at least one archive log destination in the 
LOG_ARCHIVE_DEST_n initialization parameter to a directory on the 
computer system running the downstream database. To do this, set the 
following attributes of this parameter:

– SERVICE - Specify the network service name of the downstream 
database.

– ARCH or LGWR ASYNC - If you specify ARCH (the default), then the 
archiver process (ARCn) will archive the redo log files to the 
downstream database. If you specify LGWR ASYNC, then the log writer 
process (LGWR) will archive the redo log files to the downstream 
database. Either ARCH or LGWR ASYNC is acceptable for a downstream 
database destination.

– MANDATORY or OPTIONAL - If you specify MANDATORY, then archiving 
of a redo log file to the downstream database must succeed before the 
corresponding online redo log at the source database can be 
overwritten. If you specify OPTIONAL, then successful archiving of a 
redo log file to the downstream database is not required before the 
corresponding online redo log at the source database can be 
overwritten. Either MANDATORY or OPTIONAL is acceptable for a 
downstream database destination.

– NOREGISTER - Specify this attribute so that the downstream database 
location is not recorded in the downstream database control file.

– REOPEN - Specify the minimum number of seconds the archiver process 
(ARCn) should wait before trying to access the downstream database 
location if a previous attempt to access this location failed.

– TEMPLATE - Specify a directory and format template for archived redo 
logs at the downstream database. The TEMPLATE attribute overrides 
the LOG_ARCHIVE_FORMAT initialization parameter settings at the 
downstream database. The TEMPLATE attribute is valid only with 
remote destinations. Make sure the format uses all of the following 
variables at each source database: %t, %s, and %r.

See Also: Oracle Net Services Administrator's Guide



Creating a Capture Process

9-8 Oracle Streams Concepts and Administration

The following is an example of an LOG_ARCHIVE_DEST_n setting that 
specifies a downstream database:

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.NET ARCH OPTIONAL NOREGISTER REOPEN=60
   TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log'

If another source database transfers log files to this downstream database, 
then, in the initialization parameter file at this other source database, you 
can use the TEMPLATE attribute to specify a different directory and format 
for the log files at the downstream database. The log files from each source 
database are kept separate at the downstream database.

� At the source database, set the LOG_ARCHIVE_DEST_STATE_n 
initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n 
parameter for the downstream database to enable.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set 
for the downstream database, then set one LOG_ARCHIVE_DEST_STATE_2 
parameter in the following way:

LOG_ARCHIVE_DEST_STATE_2=enable 

� At both the source database and the downstream database, set the 
REMOTE_ARCHIVE_ENABLE initialization parameter to true.

3. If you reset any initialization parameters while the instance is running at a 
database in Step 2, then you may want to reset them in the initialization 
parameter file as well, so that the new values are retained when the database is 
restarted. 

If you did not reset the initialization parameters while the instance was 
running, but instead reset them in the initialization parameter file in Step 2, 
then restart the database. The source database must be open when it sends redo 
log files to the downstream database because the global name of the source 
database is sent to the downstream database only if the source database is open.

4. Specify primary key supplemental logging for the hr.departments table at 
the source database dbs1.net:

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

See Also: Oracle Database Reference and Oracle Data Guard Concepts 
and Administration for more information about these initialization 
parameters



Creating a Capture Process

Managing a Capture Process 9-9

Primary key supplemental logging is required for the hr.departments table 
because the examples in this section create capture processes that capture 
changes to this table.

5. Perform the steps in one of the following sections depending on whether or not 
you want to use a database link from the downstream database to the source 
database:

� "Creating a Downstream Capture Process That Uses a Database Link" on 
page 9-9

� "Creating a Downstream Capture Process That Does Not Use a Database 
Link" on page 9-13

Creating a Downstream Capture Process That Uses a Database Link
This section contains an example that runs the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package to create a capture process at the dbs2.net 
downstream database that captures changes made to the dbs1.net source 
database. The capture process in this example uses a database link to dbs1.net for 
administrative purposes.

Connect to the downstream database dbs2.net as the Streams administrator and 
complete the following steps: 

1. Create the database link from dbs2.net to dbs1.net. For example, if the user 
strmadmin is the Streams administrator on both databases, then create the 
following database link:

CONNECT strmadmin/strmadminpw@dbs2.net

CREATE DATABASE LINK dbs1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'dbs1.net';

This example assumes that a Streams administrator exists at the source 
database dbs1.net. If no Streams administrator exists at the source database, 
then the Streams administrator at the downstream database should connect to a 
user who allows remote access by a Streams administrator. You can enable 
remote access for a user by specifying the user as the grantee when you run the 
GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH 
package at the source database.



Creating a Capture Process

9-10 Oracle Streams Concepts and Administration

2. Create the queue for the capture process if it does not exist:

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.strm03_queue_table',

 queue_name => 'strmadmin.strm03_queue');
END;
/

3. Run the CREATE_CAPTURE procedure to create the capture process:

BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strm03_queue',
    capture_name       => 'strm03_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => true,
    first_scn          => NULL,
    logfile_assignment => 'implicit');
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm03_capture at the downstream 
database dbs2.net. A capture process with the same name must not exist.

� Associates the capture process with an existing queue on dbs2.net named 
strm03_queue

� Specifies that the source database of the changes that the capture process 
will capture is dbs1.net

� Specifies that the capture process uses a database link with the same name 
as the source database global name to perform administrative actions at the 
source database

� Specifies that the capture process accepts new redo log files implicitly from 
dbs1.net. Therefore, the capture process scans any new log files copied 
from dbs1.net to dbs2.net for changes that it must capture. These log 
files can be added to the capture process automatically using log transport 
services or manually using the following DDL statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE file_name FOR capture_process;



Creating a Capture Process

Managing a Capture Process 9-11

Here, file_name is the name of the redo log file and capture_process 
is the name of the capture process that will use the redo log file at the 
downstream database. You must add redo log files manually only if the 
logfile_assignment parameter is set to explicit.

This step does not associate the capture process strm03_capture with any 
rule set. A rule set will be created and associated with the capture process in the 
next step.

If no other capture process at dbs2.net is capturing changes from the 
dbs1.net source database, then the DBMS_CAPTURE_ADM.BUILD procedure is 
run automatically at dbs1.net using the database link. Running this 
procedure extracts the data dictionary at dbs1.net to the redo log, and a 
LogMiner data dictionary for dbs1.net is created at dbs2.net when the 
capture process strm03_capture is started for the first time at dbs2.net.

If multiple capture processes at dbs2.net are capturing changes from the 
dbs1.net source database, then the new capture process strm03_capture 
uses the same LogMiner data dictionary for dbs1.net as one of the existing 
capture process. Streams automatically chooses which LogMiner data 
dictionary to share with the new capture process.

4. Create the positive rule set for the capture process and add a rule to it:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'strm03_capture',
    queue_name          =>  'strm03_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;

See Also:

� "SCN Values Relating to a Capture Process" on page 2-23

� Oracle Database SQL Reference for more information about the 
ALTER DATABASE statement

� Oracle Data Guard Concepts and Administration for more 
information registering redo log files



Creating a Capture Process

9-12 Oracle Streams Concepts and Administration

/

Running this procedure performs the following actions:

� Creates a rule set at dbs2.net for capture process strm03_capture. The 
rule set has a system-generated name. The rule set is the positive rule set for 
the capture process because the inclusion_rule parameter is set to 
true.

� Creates a rule that captures DML changes to the hr.departments table, 
and adds the rule to the positive rule set for the capture process. The rule 
has a system-generated name. The rule is added to the positive rule set for 
the capture process because the inclusion_rule parameter is set to 
true.

� Prepares the hr.departments table at dbs1.net for instantiation using 
the database link created in Step 1

Now you can configure propagation or apply, or both, of the LCRs captured by the 
strm03_capture capture process.

In this example, if you want to use an apply process to apply the LCRs at the 
downstream database dbs2.net, then set the instantiation SCN for the 
hr.departments table at dbs2.net. If this table does not exist at dbs2.net, 
then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then set the 
instantiation SCN for the hr.departments table at dbs2.net by running the 
following procedure at the destination database dbs2.net:

DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@DBS1.NET;
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => iscn);
END;
/

After the instantiation SCN has been set, you can configure an apply process to 
apply LCRs for the hr.departments table from the strm03_queue queue. 
Setting the instantiation SCN for an object at a database is required only if an apply 
process applies LCRs for the object.



Creating a Capture Process

Managing a Capture Process 9-13

Creating a Downstream Capture Process That Does Not Use a Database Link
This section contains an example that runs the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package to create a capture process at the dbs2.net 
downstream database that captures changes made to the dbs1.net source 
database. The capture process in this example does not use a database link to 
dbs1.net.

Complete the following steps: 

1. Connect to the source database dbs1.net as the Streams administrator. For 
example, if the Streams administrator is strmadmin, then issue the following 
statement:

CONNECT strmadmin/strmadminpw@dbs1.net

If you do not use a database link from the downstream database to the source 
database, then a Streams administrator must exist at the source database.

2. If there is no capture process at dbs2.net that captures changes from 
dbs1.net, then perform a build of the dbs1.net data dictionary in the redo 
log. This step is optional if a capture process at dbs2.net is already configured 
to capture changes from the dbs1.net source database.

SET SERVEROUTPUT ON
DECLARE
  scn  NUMBER;
BEGIN
  DBMS_CAPTURE_ADM.BUILD(
    first_scn => scn);
  DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/

Note: If you want the database objects to be synchronized at the 
source database and the destination database, then make sure the 
database objects are consistent when you set the instantiation SCN 
at the destination database. In the previous example, the 
hr.departments table should be consistent at the source and 
destination databases when the instantiation SCN is set.

See Also: Oracle Streams Replication Administrator's Guide for more 
information about instantiation



Creating a Capture Process

9-14 Oracle Streams Concepts and Administration

First SCN Value = 409391

This procedure displays the valid first SCN value for the capture process that 
will be created at dbs2.net. Make a note of the SCN value returned because 
you will use it when you create the capture process at dbs2.net. 

If you run this procedure to build the data dictionary in the redo log, then when 
the capture process is first started at dbs2.net, it will create a LogMiner data 
dictionary using the data dictionary information in the redo log.

If you choose to build the data dictionary without displaying the valid first 
SCN value when the procedure completes, then you can query the 
V$ARCHIVED_LOG dynamic performance view to determine a valid first SCN 
value for the capture process that will be created at dbs2.net.

SELECT DISTINCT FIRST_CHANGE# FROM V$ARCHIVED_LOG
  WHERE DICTIONARY_BEGIN = 'YES';

Your output looks similar to the following:

FIRST_CHANGE#
-------------
       409391

If more than one value is returned, then make a note of the highest value.

3. Prepare the hr.departments table for instantiation:

BEGIN
  DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
     table_name  =>  'hr.departments');
END;
/

4. Connect to the downstream database dbs2.net as the Streams administrator. 
For example, if the Streams administrator is strmadmin, then issue the 
following statement:

CONNECT strmadmin/strmadminpw@dbs2.net

5. Create the queue for the capture process if it does not exist:

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.strm03_queue_table',

 queue_name => 'strmadmin.strm03_queue');
END;



Creating a Capture Process

Managing a Capture Process 9-15

/

6. Run the CREATE_CAPTURE procedure to create the capture process and specify 
the value obtained in Step 2 for the first_scn parameter:

BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strm03_queue',
    capture_name       => 'strm04_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => false,
    first_scn          => 409391, -- Use value from Step 2
    logfile_assignment => 'implicit');
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm04_capture at the downstream 
database dbs2.net. A capture process with the same name must not exist.

� Associates the capture process with an existing queue on dbs2.net named 
strm03_queue

� Specifies that the source database of the changes that the capture process 
will capture is dbs1.net

� Specifies that the first SCN for the capture process is 409391. This value 
was obtained in Step 2. The first SCN is the lowest SCN for which a capture 
process can capture changes. Because a first SCN is specified, the capture 
process creates a new LogMiner data dictionary when it is first started, 
regardless of whether there are existing LogMiner data dictionaries for the 
same source database.

� Specifies that the capture process accepts new redo log files implicitly from 
dbs1.net. Therefore, the capture process scans any new log files copied 
from dbs1.net to dbs2.net for changes that it must capture. These log 
files must be added to the capture process automatically using log transport 
services or manually using the following DDL statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE file_name FOR capture_process;

Here, file_name is the name of the redo log file and capture_process 
is the name of the capture process that will use the redo log file at the 



Creating a Capture Process

9-16 Oracle Streams Concepts and Administration

downstream database. You must add redo log files manually only if the 
logfile_assignment parameter is set to explicit.

This step does not associate the capture process strm04_capture with any 
rule set. A rule set will be created and associated with the capture process in the 
next step.

7. Create the positive rule set for the capture process and add a rule to it:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'strm04_capture',
    queue_name          =>  'strm03_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true );
END;
/

Running this procedure performs the following actions:

� Creates a rule set at dbs2.net for capture process strm04_capture. The 
rule set has a system-generated name. The rule set is a positive rule set for 
the capture process because the inclusion_rule parameter is set to 
true.

� Creates a rule that captures DML changes to the hr.departments table, 
and adds the rule to the rule set for the capture process. The rule has a 
system-generated name. The rule is added to the positive rule set for the 
capture process because the inclusion_rule parameter is set to true.

See Also:

� "Capture Process Creation" on page 2-32

� "SCN Values Relating to a Capture Process" on page 2-23

� Oracle Database SQL Reference for more information about the 
ALTER DATABASE statement

� Oracle Data Guard Concepts and Administration for more 
information registering redo log files



Creating a Capture Process

Managing a Capture Process 9-17

Now you can configure propagation or apply, or both, of the LCRs captured by the 
strm04_capture capture process.

In this example, if you want to use an apply process to apply the LCRs at the 
downstream database dbs2.net, then set the instantiation SCN for the 
hr.departments table at dbs2.net. If this table does not exist at dbs2.net, 
then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then set the 
instantiation SCN for the hr.departments table at dbs2.net by running the 
following procedure at the source database dbs1.net:

CONNECT strmadmin/strmadminpw@dbs1.net

DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => iscn);
END;
/

After the instantiation SCN has been set, you can configure an apply process to 
apply LCRs for the hr.departments table from the strm03_queue queue. 
Setting the instantiation SCN for an object at a database is required only if an apply 
process applies LCRs for the object.

Note:

� To set the instantiation SCN using the previous example 
requires a database link from the source database to the 
destination database.

� If you want the database objects to be synchronized at the 
source database and the destination database, then make sure 
the database objects are consistent when you set the 
instantiation SCN at the destination database. In the previous 
example, the hr.departments table should be consistent at 
the source and destination databases when the instantiation 
SCN is set.



Creating a Capture Process

9-18 Oracle Streams Concepts and Administration

Creating a Downstream Capture Process That Assigns Log Files Explicitly
To create a capture process that performs downstream capture, you must use the 
CREATE_CAPTURE procedure. This section describes creating a downstream capture 
process that assigns redo log files explicitly. That is, you must use the 
DBMS_FILE_TRANSFER package, FTP, or some other method to transfer redo log 
files from the source database to the downstream database, and then you must 
register these redo log files with the downstream capture process manually.

In this example, assume the following:

� The source database is dbs1.net and the downstream database is dbs2.net.

� The capture process that will be created at dbs2.net uses the strm03_queue.

� The capture process will capture DML changes to the hr.departments table.

� The capture process does not use a database link to the source database for 
administrative actions.

Complete the following steps:

1. Connect to the source database dbs1.net as the hr user:

CONNECT hr/hr@dbs1.net

2. Specify primary key supplemental logging for the hr.departments table:

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

Primary key supplemental logging is required for the hr.departments table 
because this example creates a capture processes that captures changes to this 
table.

3. Connect to the source database dbs1.net as the Streams administrator. For 
example, if the Streams administrator is strmadmin, then issue the following 
statement:

CONNECT strmadmin/strmadminpw@dbs1.net

If you do not use a database link from the downstream database to the source 
database, then a Streams administrator must exist at the source database.

See Also: Oracle Streams Replication Administrator's Guide for more 
information about instantiation



Creating a Capture Process

Managing a Capture Process 9-19

4. If there is no capture process at dbs2.net that captures changes from 
dbs1.net, then perform a build of the dbs1.net data dictionary in the redo 
log. This step is optional if a capture process at dbs2.net is already configured 
to capture changes from the dbs1.net source database.

SET SERVEROUTPUT ON
DECLARE
  scn  NUMBER;
BEGIN
  DBMS_CAPTURE_ADM.BUILD(
    first_scn => scn);
  DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391

This procedure displays the valid first SCN value for the capture process that 
will be created at dbs2.net. Make a note of the SCN value returned because 
you will use it when you create the capture process at dbs2.net. 

If you run this procedure to build the data dictionary in the redo log, then when 
the capture process is first started at dbs2.net, it will create a LogMiner data 
dictionary using the data dictionary information in the redo log.

5. Prepare the hr.departments table for instantiation:

BEGIN
  DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
     table_name  =>  'hr.departments');
END;
/

6. Connect to the downstream database dbs2.net as the Streams administrator. 
For example, if the Streams administrator is strmadmin, then issue the 
following statement:

CONNECT strmadmin/strmadminpw@dbs2.net



Creating a Capture Process

9-20 Oracle Streams Concepts and Administration

7. Run the CREATE_CAPTURE procedure to create the capture process and specify 
the value obtained in Step 2 for the first_scn parameter:

BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strm03_queue',
    capture_name       => 'strm05_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => false,
    first_scn          => 409391, -- Use value from Step 2
    logfile_assignment => 'explicit');
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm05_capture at the downstream 
database dbs2.net. A capture process with the same name must not exist.

� Associates the capture process with an existing queue on dbs2.net named 
strm03_queue

� Specifies that the source database of the changes that the capture process 
will capture is dbs1.net

� Specifies that the first SCN for the capture process is 409391. This value 
was obtained in Step 2. The first SCN is the lowest SCN for which a capture 
process can capture changes. Because a first SCN is specified, the capture 
process creates a new LogMiner data dictionary when it is first started, 
regardless of whether there are existing LogMiner data dictionaries for the 
same source database.

� Specifies new redo log files from dbs1.net must be assigned to the 
capture process explicitly. After a redo log file has been transferred to the 
computer running the downstream database, you assign the log file to the 
capture process explicitly using the following DDL statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE file_name FOR capture_process;

Here, file_name is the name of the redo log file and capture_process 
is the name of the capture process that will use the redo log file at the 
downstream database. You must add redo log files manually if the 
logfile_assignment parameter is set to explicit.



Creating a Capture Process

Managing a Capture Process 9-21

This step does not associate the capture process strm05_capture with any 
rule set. A rule set will be created and associated with the capture process in the 
next step.

8. Create the positive rule set for the capture process and add a rule to it:

BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'strm05_capture',
    queue_name          =>  'strm03_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true );
END;
/

Running this procedure performs the following actions:

� Creates a rule set at dbs2.net for capture process strm04_capture. The 
rule set has a system-generated name. The rule set is a positive rule set for 
the capture process because the inclusion_rule parameter is set to 
true.

� Creates a rule that captures DML changes to the hr.departments table, 
and adds the rule to the rule set for the capture process. The rule has a 
system-generated name. The rule is added to the positive rule set for the 
capture process because the inclusion_rule parameter is set to true.

See Also:

� "Capture Process Creation" on page 2-32

� "SCN Values Relating to a Capture Process" on page 2-23

� Oracle Database SQL Reference for more information about the 
ALTER DATABASE statement

� Oracle Data Guard Concepts and Administration for more 
information registering redo log files



Creating a Capture Process

9-22 Oracle Streams Concepts and Administration

9. After the redo log file at the source database dbs1.net that contains the first 
SCN for the downstream capture process is archived, transfer the archived redo 
log file to the computer running the downstream database. The BUILD 
procedure in Step 4 determined the first SCN for the downstream capture 
process. If the redo log file is not yet archived, you can run the ALTER SYSTEM 
SWITCH LOGFILE statement on the database to archive it.

You can run the following query at dbs1.net to identify the archived redo log 
file that contains the first SCN for the downstream capture process:

COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A50
COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999

SELECT NAME, FIRST_CHANGE# FROM V$ARCHIVED_LOG
  WHERE FIRST_CHANGE# IS NOT NULL AND DICTIONARY_BEGIN = 'YES';

Transfer the archived redo log file with a FIRST_CHANGE# that matches the 
first SCN returned in Step 4 to the computer running the downstream capture 
process.

10. At the downstream database dbs2.net, connect as an administrative user and 
assign the transferred redo log file to the capture process. For example, if the 
redo log file is /oracle/logs_from_dbs1/1_10_486574859.dbf, then 
issue the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE 
   '/oracle/logs_from_dbs1/1_10_486574859.dbf' FOR 'strm05_capture';

Now you can configure propagation or apply, or both, of the LCRs captured by the 
strm05_capture capture process.

In this example, if you want to use an apply process to apply the LCRs at the 
downstream database dbs2.net, then set the instantiation SCN for the 
hr.departments table at dbs2.net. If this table does not exist at dbs2.net, 
then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then set the 
instantiation SCN for the hr.departments table at dbs2.net by running the 
following procedure at the source database dbs1.net:

CONNECT strmadmin/strmadminpw@dbs1.net



Creating a Capture Process

Managing a Capture Process 9-23

DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => iscn);
END;
/

After the instantiation SCN has been set, you can configure an apply process to 
apply LCRs for the hr.departments table from the strm03_queue queue. 
Setting the instantiation SCN for an object at a database is required only if an apply 
process applies LCRs for the object.

Creating a Local Capture Process with Non-NULL Start SCN
This example runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM 
package to create a local capture process with a start SCN set to 223525. This 
example assumes that there is at least one local capture processes at the database, 
and that this capture process has taken at least one checkpoint. You can always 
specify a start SCN for a new capture process that is equal to or greater than the 
current SCN of the source database. If you want to specify a start SCN that is lower 
than the current SCN of the database, then the specified start SCN must be higher 

Note:

� To set the instantiation SCN using the previous example 
requires a database link from the source database to the 
destination database.

� If you want the database objects to be synchronized at the 
source database and the destination database, then make sure 
the database objects are consistent when you set the 
instantiation SCN at the destination database. In the previous 
example, the hr.departments table should be consistent at 
the source and destination databases when the instantiation 
SCN is set.

See Also: Oracle Streams Replication Administrator's Guide for more 
information about instantiation



Creating a Capture Process

9-24 Oracle Streams Concepts and Administration

than the lowest first SCN for an existing local capture process that has been started 
successfully at least once and has taken at least one checkpoint. 

You can determine the first SCN for existing capture processes, and whether these 
capture processes have taken a checkpoint, by running the following query:

SELECT CAPTURE_NAME, FIRST_SCN, MAX_CHECKPOINT_SCN FROM DBA_CAPTURE;  

Your output looks similar to the following:

CAPTURE_NAME                    FIRST_SCN MAX_CHECKPOINT_SCN
------------------------------ ---------- ------------------
CAPTURE_SIMP                       223522             230825

These results show that the capture_simp capture process has a first SCN of 
223522. Also, this capture process has taken a checkpoint because the 
MAX_CHECKPOINT_SCN value is non-NULL. Therefore, the start SCN for the new 
capture process can be set to 223522 or higher.

Run the following procedure to create the capture process:

BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strm01_queue',
    capture_name       => 'strm05_capture',
    rule_set_name      => 'strmadmin.strm01_rule_set',
    start_scn          => 223525,
    source_database    => NULL,
    use_database_link  => false,
    first_scn          => NULL);
END;
/

Running this procedure performs the following actions:

� Creates a capture process named strm05_capture. A capture process with 
the same name must not exist.

� Associates the capture process with an existing queue named strm01_queue

� Associates the capture process with an existing rule set named 
strm01_rule_set. This rule set is the positive rule set for the capture process.



Starting, Stopping, and Dropping a Capture Process

Managing a Capture Process 9-25

� Specifies 223525 as the start SCN for the capture process. The new capture 
process uses the same LogMiner data dictionary as one of the existing capture 
processes. Streams automatically chooses which LogMiner data dictionary to 
share with the new capture process. Because the first_scn parameter was set 
to NULL, the first SCN for the new capture process is the same as the first SCN 
of the existing capture process whose LogMiner data dictionary was shared. In 
this example, the existing capture process is capture_simp.

� Creates a capture process that captures local changes to the source database 
because the source_database parameter is set to NULL. For a local capture 
process, you also may specify the global name of the local database for this 
parameter.

Starting, Stopping, and Dropping a Capture Process
This section contains instructions for starting, stopping and dropping a capture 
process. It contains the following topics:

� Starting a Capture Process

� Stopping a Capture Process

� Dropping a Capture Process

Note: If no local capture process exists when the procedure in this 
example is run, then the DBMS_CAPTURE_ADM.BUILD procedure is 
run automatically during capture process creation to extract the 
data dictionary into the redo log. The first time the new capture 
process is started, it uses this redo log information to create a 
LogMiner data dictionary. In this case, a specified start_scn 
parameter value must be equal to or higher than the current 
database SCN.

See Also:

� "Capture Process Creation" on page 2-32

� "First SCN and Start SCN Specifications During Capture 
Process Creation" on page 2-40



Starting, Stopping, and Dropping a Capture Process

9-26 Oracle Streams Concepts and Administration

Starting a Capture Process
You run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to 
start an existing capture process. For example, the following procedure starts a 
capture process named strm01_capture:

BEGIN
  DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

Stopping a Capture Process
You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop 
an existing capture process. For example, the following procedure stops a capture 
process named strm01_capture:

BEGIN
  DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

Dropping a Capture Process
You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to 
drop an existing capture process. For example, the following procedure drops a 
capture process named strm02_capture:

BEGIN
  DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name          => 'strm02_capture',
    drop_unused_rule_sets => true);
END;
/

Note: If a new capture process will use a new LogMiner data 
dictionary, then, when you first start the new capture process, some 
time may be required to populate the new LogMiner data 
dictionary. A new LogMiner data dictionary is created if a 
non-NULL first SCN value was specified when the capture process 
was created.



Managing the Rule Set for a Capture Process

Managing a Capture Process 9-27

Because the drop_unused_rule_sets parameter is set to true, this procedure 
also drops any rule sets used by the strm02_capture capture process, unless a 
rule set is used by another Streams client. If the drop_unused_rule_sets 
parameter is set to true, then both the positive and negative rule set for the capture 
process may be dropped. If this procedure drops a rule set, then it also drops any 
rules in the rule set that are not in another rule set.

Managing the Rule Set for a Capture Process
This section contains instructions for completing the following tasks:

� Specifying a Rule Set for a Capture Process

� Adding Rules to a Rule Set for a Capture Process

� Removing a Rule from a Rule Set for a Capture Process

� Removing a Rule Set for a Capture Process

� Specifying a Rule Set for a Capture Process

Specifying a Rule Set for a Capture Process
You can specify one positive rule set and one negative rule set for a capture process. 
The capture process captures a change if it evaluates to TRUE for at least one rule in 
the positive rule set and evaluates to FALSE for all the rules in the negative rule set. 
The negative rule set is evaluated before the positive rule set.

Note: A capture process must be stopped before it can be 
dropped.

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Managing the Rule Set for a Capture Process

9-28 Oracle Streams Concepts and Administration

Specifying a Positive Rule Set for a Capture Process
You specify an existing rule set as the positive rule set for an existing capture 
process using the rule_set_name parameter in the ALTER_CAPTURE procedure. 
This procedure is in the DBMS_CAPTURE_ADM package. 

For example, the following procedure sets the positive rule set for a capture process 
named strm01_capture to strm02_rule_set.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name  => 'strm01_capture',
    rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Specifying a Negative Rule Set for a Capture Process
You specify an existing rule set as the negative rule set for an existing capture 
process using the negative_rule_set_name parameter in the ALTER_CAPTURE 
procedure. This procedure is in the DBMS_CAPTURE_ADM package. 

For example, the following procedure sets the negative rule set for a capture process 
named strm01_capture to strm03_rule_set.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name           => 'strm01_capture',
    negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/

Adding Rules to a Rule Set for a Capture Process
To add rules to a rule set for an existing capture process, you can run one of the 
following procedures and specify the existing capture process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to 
the positive or negative rule set for a capture process. The ADD_SUBSET_RULES 
procedure can add rules only to the positive rule set for a capture process.



Managing the Rule Set for a Capture Process

Managing a Capture Process 9-29

Adding Rules to the Positive Rule Set for a Capture Process
The following is an example that runs the ADD_TABLE_RULES procedure in the 
DBMS_STREAMS_ADM package to add rules to the positive rule set of a capture 
process named strm01_capture:

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name      =>  'hr.departments',
 streams_type    =>  'capture',
 streams_name    =>  'strm01_capture',
    queue_name      =>  'strm01_queue',
 include_dml    =>  true,
 include_ddl     =>  true,
    inclusion_rule  =>  true);
END;
/

Running this procedure performs the following actions:

� Creates two rules. One rule evaluates to TRUE for DML changes to the 
hr.departments table, and the other rule evaluates to TRUE for DDL changes 
to the hr.departments table. The rule names are specified by the system.

� Adds the two rules to the positive rule set associated with the capture process 
because the inclusion_rule parameter is set to true

� Prepares the hr.departments table for instantiation by running the 
PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM 
package. If the capture process is performing downstream capture, then the 
table is prepared for instantiation only if the downstream capture process uses a 
database link to the source database. If a downstream capture process does not 
use a database link to the source database, then the table must be prepared for 
instantiation manually.

Adding Rules to the Negative Rule Set for a Capture Process
The following is an example that runs the ADD_TABLE_RULES procedure in the 
DBMS_STREAMS_ADM package to add rules to the negative rule set of a capture 
process named strm01_capture:

See Also: "System-Created Rules" on page 6-7



Managing the Rule Set for a Capture Process

9-30 Oracle Streams Concepts and Administration

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name      =>  'hr.job_history',
 streams_type    =>  'capture',
 streams_name    =>  'strm01_capture',
 queue_name      =>  'strm01_queue',
    include_dml    =>  true,
 include_ddl     =>  true,
    inclusion_rule  =>  false);
END;
/

Running this procedure performs the following actions:

� Creates two rules. One rule evaluates to TRUE for DML changes to the 
hr.job_history table, and the other rule evaluates to TRUE for DDL changes 
to the hr.job_history table. The rule names are specified by the system.

� Adds the two rules to the negative rule set associated with the capture process 
because the inclusion_rule parameter is set to false.

Removing a Rule from a Rule Set for a Capture Process
You specify that you want to remove a rule from a rule set for an existing capture 
process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM 
package. For example, the following procedure removes a rule named 
departments3 from the positive rule set of a capture process named 
strm01_capture.

BEGIN
  DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
  streams_type => 'capture',
 streams_name  => 'strm01_capture',
    drop_unused_rule => true,
    inclusion_rule   => true);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE 
procedure is set to true, which is the default setting. Therefore, if the rule being 
removed is not in any other rule set, then it will be dropped from the database. If 
the drop_unused_rule parameter is set to false, then the rule is removed from 
the rule set, but it is not dropped from the database.



Managing the Rule Set for a Capture Process

Managing a Capture Process 9-31

If the inclusion_rule parameter is set to false, then the REMOVE_RULE 
procedure removes the rule from the negative rule set for the capture process, not 
the positive rule set.

In addition, if you want to remove all of the rules in a rule set for the capture 
process, then specify NULL for the rule_name parameter when you run the 
REMOVE_RULE procedure.

Removing a Rule Set for a Capture Process
You specify that you want to remove a rule set from an existing capture process 
using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. This 
procedure can remove the positive rule set, negative rule set, or both. Specify true 
for the remove_rule_set parameter to remove the positive rule set for the 
capture process. Specify true for the remove_negative_rule_set parameter to 
remove the negative rule set for the capture process.

For example, the following procedure removes both the positive and negative rule 
set from a capture process named strm01_capture.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name             => 'strm01_capture',
    remove_rule_set          => true,
    remove_negative_rule_set => true);
END;
/

See Also: "Streams Client With One or More Empty Rule Sets" on 
page 6-6

Note: If a capture process does not have a positive or negative 
rule set, then the capture process captures all supported changes to 
all objects in the database, excluding database objects in the SYS, 
SYSTEM, and CTXSYS schemas.



Setting a Capture Process Parameter

9-32 Oracle Streams Concepts and Administration

Setting a Capture Process Parameter
Set a capture process parameter using the SET_PARAMETER procedure in the 
DBMS_CAPTURE_ADM package. Capture process parameters control the way a 
capture process operates.

For example, the following procedure sets the parallelism parameter for a 
capture process named strm01_capture to 3.

BEGIN
  DBMS_CAPTURE_ADM.SET_PARAMETER(
    capture_name => 'strm01_capture',
    parameter    => 'parallelism',
    value        => '3');
END;
/

Setting the Capture User for a Capture Process
The capture user is the user who captures all DML changes and DDL changes that 
satisfy the capture process rule sets. Set the capture user for a capture process using 
the capture_user parameter in the ALTER_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package. 

To change the capture user, the user who invokes the ALTER_CAPTURE procedure 
must be granted DBA role. Only the SYS user can set the capture_user to SYS.

Note:

� Setting the parallelism parameter automatically stops and 
restarts a capture process.

� The value parameter is always entered as a VARCHAR2, even if 
the parameter value is a number.

See Also:

� "Capture Process Parameters" on page 2-47

� The DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the 
PL/SQL Packages and Types Reference for detailed information 
about the capture process parameters



Adding an Archived Redo Log File to a Capture Process Explicitly

Managing a Capture Process 9-33

For example, the following procedure sets the capture user for a capture process 
named strm01_capture to hr.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    capture_user => 'hr');
END;
/

Running this procedure grants the new capture user enqueue privilege on the 
queue used by the capture process and configures the user as a secure queue user of 
the queue. In addition, make sure the capture user has the following privileges:

� Execute privilege on the rule sets used by the capture process

� Execute privilege on all rule-based transformation functions used in the rule set

These privileges must be granted directly to the capture user. They cannot be 
granted through roles.

Specifying Supplemental Logging at a Source Database
Supplemental logging must be specified for certain columns at a source database for 
changes to the columns to be applied successfully at a destination database. 
Typically, supplemental logging is required in Streams replication environments, 
but it may be required in any environment that processes captured events with an 
apply process. You use the ALTER DATABASE statement to specify supplemental 
logging for all tables in a database, and you use the ALTER TABLE statement to 
specify supplemental logging for a particular table.

Adding an Archived Redo Log File to a Capture Process Explicitly
You can add an archived redo log file to a capture process manually using the 
following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE 
   file_name FOR capture_process;

Here, file_name is the name of the archived redo log file being added and 
capture_process is the name of the capture process that will use the redo log file 

See Also: Oracle Streams Replication Administrator's Guide for more 
information about specifying supplemental logging



Setting SCN Values for an Existing Capture Process

9-34 Oracle Streams Concepts and Administration

at the downstream database. The capture_process is equivalent to the 
logminer_session_name and must be specified. The redo log file must be 
present at the site running capture process.

For example, to add the /usr/log_files/1_3_486574859.dbf archived redo 
log file to a capture process named strm03_capture, issue the following 
statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE '/usr/log_files/1_3_486574859.dbf' 
  FOR 'strm03_capture';

Setting SCN Values for an Existing Capture Process
This section contains the following topics:

� Setting the First SCN for an Existing Capture Process

� Setting the Start SCN for an Existing Capture Process

Setting the First SCN for an Existing Capture Process
You can set the first SCN for an existing capture process using the ALTER_CAPTURE 
procedure in the DBMS_CAPTURE_ADM package. The specified first SCN must meet 
the following requirements:

� It must be greater than the current first SCN for the capture process.

� It must be less than or equal to the current applied SCN for the capture process. 
However, this requirement does not apply if the current applied SCN for the 
capture process is zero.

� It must be less than or equal to the required checkpoint SCN for the capture 
process.

You can determine the current first SCN, applied SCN, and required checkpoint 
SCN for each capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
   FROM DBA_CAPTURE;

See Also: Oracle Database SQL Reference for more information 
about the ALTER DATABASE statement and Oracle Data Guard 
Concepts and Administration for more information registering redo 
log files



Setting SCN Values for an Existing Capture Process

Managing a Capture Process 9-35

When you reset a first SCN for a capture process, information below the new first 
SCN setting is purged from the LogMiner dictionary for the capture process 
automatically. Therefore, after the first SCN is reset for a capture process, the start 
SCN for the capture process cannot be set lower than the new first SCN. Also, redo 
log files prior that contain information prior to the new first SCN setting will never 
be needed by the capture process.

For example, the following procedure sets the first SCN for a capture process 
named strm01_capture to 351232.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    first_scn    => 351232);
END;
/

Note:

� If the specified first SCN is higher than the current start SCN 
for the capture process, then the start SCN is set automatically 
to the new value of the first SCN.

� If you need to capture changes in the redo log from a point in 
time in the past, then you can create a new capture process and 
specify a first SCN that corresponds to a previous data 
dictionary build in the redo log. The BUILD procedure in the 
DBMS_CAPTURE_ADM package performs a data dictionary build 
in the redo log.

� You can query the DBA_LOGMNR_PURGED_LOG data dictionary 
view to determine which redo log files will never be needed by 
any capture process.



Setting SCN Values for an Existing Capture Process

9-36 Oracle Streams Concepts and Administration

Setting the Start SCN for an Existing Capture Process
You can set the start SCN for an existing capture process using the 
ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Typically, you 
reset the start SCN for a capture process if point-in-time recovery must be 
performed on one of the destination databases that receive changes from the 
capture process.

The specified start SCN must be greater than or equal to the first SCN for the 
capture process. You can determine the first SCN for each capture process in a 
database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

Also, when you reset a start SCN for a capture process, make sure the required redo 
log files are available to the capture process.

For example, the following procedure sets the start SCN for a capture process 
named strm01_capture to 750338.

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    start_scn    => 750338);
END;
/

See Also:

� "SCN Values Relating to a Capture Process" on page 2-23

� "The LogMiner Data Dictionary for a Capture Process" on 
page 2-34

� "First SCN and Start SCN Specifications During Capture 
Process Creation" on page 2-40

� "Displaying the Redo Log Files That Will Never Be Needed by 
Any Capture Process" on page 14-13



Specifying Whether Downstream Capture Uses a Database Link

Managing a Capture Process 9-37

Specifying Whether Downstream Capture Uses a Database Link
You specify whether an existing downstream capture process uses a database link to 
the source database for administrative purposes using the ALTER_CAPTURE 
procedure in the DBMS_CAPTURE_ADM package. Set the use_database_link 
parameter to true to specify that the downstream capture process uses a database 
link, or you set the use_database_link parameter to false to specify that the 
downstream capture process does not use a database link.

If you want a capture process that is not using a database link currently to begin 
using a database link, then specify true for the use_database_link parameter. 
In this case, a database link with the same name as the global name as the source 
database must exist at the downstream database. 

If you want a capture process that is using a database link currently to stop using a 
database link, then specify false for the use_database_link parameter. In this 
case, some administration must be performed manually after you alter the capture 
process. For example, if you add new capture process rules using the 
DBMS_STREAMS_ADM package, then you must prepare the objects relating to the 
rules for instantiation manually at the source database.

If you specify NULL for the use_database_link parameter, then the current 
value of this parameter for the capture process is not changed.

The example in "Creating a Downstream Capture Process That Does Not Use a 
Database Link" on page 9-13 created the capture process strm04_capture and 
specified that this capture process does not use a database link. To create a database 
link to the source database dbs1.net and specify that this capture process uses the 
database link, complete the following actions:

CREATE DATABASE LINK dbs1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'dbs1.net';

See Also:

� "SCN Values Relating to a Capture Process" on page 2-23

� Oracle Streams Replication Administrator's Guide for information 
about performing database point-in-time recovery on a 
destination database in a Streams environment



Managing Extra Attributes in Captured LCRs

9-38 Oracle Streams Concepts and Administration

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name       => 'strm04_capture',
    use_database_link  => true);
END;
/

Managing Extra Attributes in Captured LCRs
You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the 
DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more 
extra attributes. You also can use this procedure to instruct a capture process to 
exclude an extra attribute that it is capturing currently.

The extra attributes are the following:

� row_id (row LCRs only)

� serial#

� session#

� thread#

� tx_name

� username

This section contains instructions for completing the following tasks:

� Including Extra Attributes in Captured LCRs

� Excluding Extra Attributes from Captured LCRs

See Also: "Local Capture and Downstream Capture" on page 2-17

See Also:

� "Extra Information in LCRs" on page 2-6

� "Viewing the Extra Attributes Captured by Each Capture 
Process" on page 14-17

� PL/SQL Packages and Types Reference for more information about 
the INCLUDE_EXTRA_ATTRIBUTE procedure



Managing Extra Attributes in Captured LCRs

Managing a Capture Process 9-39

Including Extra Attributes in Captured LCRs
To instruct a capture process named strm01_capture to include the transaction 
name in each captured LCR, run the following procedure:

BEGIN
  DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
    capture_name   => 'strm01_capture',
    attribute_name => 'tx_name',
    include        => true);
END;
/

Excluding Extra Attributes from Captured LCRs
To instruct a capture process named strm01_capture to exclude the transaction 
name from each captured LCR, run the following procedure:

BEGIN
  DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
    capture_name   => 'strm01_capture',
    attribute_name => 'tx_name',
    include        => false);
END;
/



Managing Extra Attributes in Captured LCRs

9-40 Oracle Streams Concepts and Administration



Managing Staging and Propagation 10-1

10
Managing Staging and Propagation

This chapter provides instructions for managing SYS.AnyData queues, 
propagations, and messaging environments.

This chapter contains these topics:

� Managing SYS.AnyData Queues

� Managing Streams Propagations and Propagation Jobs

� Managing a Streams Messaging Environment

Each task described in this chapter should be completed by a Streams administrator 
that has been granted the appropriate privileges, unless specified otherwise.

See Also:

� Chapter 3, "Streams Staging and Propagation"

� "Configuring a Streams Administrator" on page 8-2



Managing SYS.AnyData Queues

10-2 Oracle Streams Concepts and Administration

Managing SYS.AnyData Queues
A SYS.AnyData queue stages events whose payloads are of SYS.AnyData type. 
Therefore, a SYS.AnyData queue can stage an event with payload of nearly any 
type, if the payload is wrapped in a SYS.AnyData wrapper. Each Streams capture 
process and apply process is associated with one SYS.AnyData queue, and each 
Streams propagation is associated with one Streams source queue and one 
SYS.AnyData destination queue.

This section provides instructions for completing the following tasks related to 
SYS.AnyData queues:

� Creating a SYS.AnyData Queue

� Enabling a User to Perform Operations on a Secure Queue

� Disabling a User from Performing Operations on a Secure Queue

� Removing a SYS.AnyData Queue

Creating a SYS.AnyData Queue
You use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to 
create a SYS.AnyData queue. This procedure enables you to specify the following 
for the SYS.AnyData queue it creates:

� The queue table for the queue 

� A storage clause for the queue table

� The queue name

� A queue user that will be configured as a secure queue user of the queue and 
granted ENQUEUE and DEQUEUE privileges on the queue

� A comment for the queue

This procedure creates a queue that is both a secure queue and a transactional 
queue and starts the newly created queue.

For example, to create a SYS.AnyData queue named strm01_queue in the 
strmadmin schema with a queue table named strm01_queue_table and grant 
the hr user the privileges necessary to enqueue events into and dequeue events 
from the queue, run the following procedure:



Managing SYS.AnyData Queues

Managing Staging and Propagation 10-3

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.strm01_queue_table',

 queue_name => 'strmadmin.strm01_queue',
 queue_user => 'hr');
END;
/

You also can use procedures in the DBMS_AQADM package to create a SYS.AnyData 
queue.

Enabling a User to Perform Operations on a Secure Queue
For a user to perform queue operations, such as enqueue and dequeue, on a secure 
queue, the user must be configured as a secure queue user of the queue. If you use 
the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to create the 
secure queue, then the queue owner and the user specified by the queue_user 
parameter are configured as secure users of the queue automatically. If you want to 
enable other users to perform operations on the queue, then you can configure these 
users in one of the following ways:

� Run SET_UP_QUEUE and specify a queue_user. Queue creation is skipped if 
the queue already exists, but a new queue user is configured if one is specified.

� Associate the user with an AQ agent manually

Note:

� Queue names and queue table names can be a maximum of 24 
bytes.

� An event cannot be enqueued into a queue unless a subscriber 
who can dequeue the event is configured.

See Also:

� "Wrapping User Message Payloads in a SYS.AnyData Wrapper 
and Enqueuing Them" on page 10-20 for an example that 
creates a SYS.AnyData queue using procedures in the 
DBMS_AQADM package

� "Secure Queues" on page 3-19

� "Transactional and Nontransactional Queues" on page 3-22



Managing SYS.AnyData Queues

10-4 Oracle Streams Concepts and Administration

The following example illustrates associating a user with an AQ agent manually. 
Suppose you want to enable the oe user to perform queue operations on the 
strm01_queue created in "Creating a SYS.AnyData Queue" on page 10-2. The 
following steps configure the oe user as a secure queue user of strm01_queue:

1. Connect as an administrative user who can create AQ agents and alter users.

2. Create an agent:

EXEC DBMS_AQADM.CREATE_AQ_AGENT(agent_name => 'strm01_queue_agent');

3. If the user must be able to dequeue events from queue, then make the agent a 
subscriber of the secure queue:

DECLARE
  subscriber SYS.AQ$_AGENT;
BEGIN
  subscriber :=  SYS.AQ$_AGENT('strm01_queue_agent', NULL, NULL);  
  DBMS_AQADM.ADD_SUBSCRIBER(
    queue_name          =>  'strmadmin.strm01_queue',
    subscriber          =>  subscriber,
    rule                =>  NULL,
    transformation      =>  NULL);
END;
/

4. Associate the user with the agent:

BEGIN
  DBMS_AQADM.ENABLE_DB_ACCESS(
    agent_name  => 'strm01_queue_agent',
    db_username => 'oe');
END;
/

5. Grant the user EXECUTE privilege on the DBMS_STREAMS_MESSAGING package 
or the DBMS_AQ package, if the user is not already granted these privileges:

GRANT EXECUTE ON DBMS_STREAMS_MESSAGING TO oe;

GRANT EXECUTE ON DBMS_AQ TO oe;

When these steps are complete, the oe user is a secure user of the strm01_queue 
queue and can perform operations on the queue. You still must grant the user 
specific privileges to perform queue operations, such as enqueue and dequeue 
privileges.



Managing SYS.AnyData Queues

Managing Staging and Propagation 10-5

Disabling a User from Performing Operations on a Secure Queue
You may want to disable a user from performing queue operations on a secure 
queue for the following reasons:

� You dropped a capture process, but you did not drop the queue that was used 
by the capture process, and you do not want the user who was the capture user 
to be able to perform operations on the remaining secure queue.

� You dropped an apply process, but you did not drop the queue that was used 
by the apply process, and you do not want the user who was the apply user to 
be able to perform operations on the remaining secure queue.

� You used the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to 
change the apply_user for an apply process, and you do not want the old 
apply_user to be able to perform operations on the apply process queue.

� You enabled a user to perform operations on a secure queue by completing the 
steps described in Enabling a User to Perform Operations on a Secure Queue on 
page 10-3, but you no longer want this user to be able to perform operations on 
the secure queue.

To disable a secure queue user, you can revoke ENQUEUE and DEQUEUE privilege on 
the queue from the user, or you can run the DISABLE_DB_ACCESS procedure in the 
DBMS_AQADM package. For example, suppose you want to disable the oe user from 
performing queue operations on the strm01_queue created in "Creating a 
SYS.AnyData Queue" on page 10-2. 

See Also:

� "Secure Queues" on page 3-19

� PL/SQL Packages and Types Reference for more information about 
AQ agents and using the DBMS_AQADM package

Attention: If an AQ agent is used for multiple secure queues, then 
running DISABLE_DB_ACCESS for the agent prevents the user 
associated with the agent from performing operations on all of 
these queues.



Managing SYS.AnyData Queues

10-6 Oracle Streams Concepts and Administration

1. Run the following procedure to disable the oe user from performing queue 
operations on the secure queue strm01_queue:

BEGIN
  DBMS_AQADM.DISABLE_DB_ACCESS(
    agent_name  => 'strm01_queue_agent',
    db_username => 'oe');
END;
/

2. If the agent is no longer needed, you can drop the agent:

BEGIN
  DBMS_AQADM.DROP_AQ_AGENT(
    agent_name  => 'strm01_queue_agent');
END;
/

3. Revoke privileges on the queue from the user, if the user no longer needs these 
privileges.

BEGIN
  DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
   privilege   => 'ALL',
   queue_name  => 'strmadmin.strm01_queue',
   grantee     => 'oe');
END;
/

Removing a SYS.AnyData Queue
You use the REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package to 
remove an existing SYS.AnyData queue. When you run the REMOVE_QUEUE 
procedure, it waits until any existing events in the queue are consumed. Next, it 
stops the queue, which means that no further enqueues into the queue or dequeues 
from the queue are allowed. When the queue is stopped, it drops the queue.

See Also:

� "Secure Queues" on page 3-19

� PL/SQL Packages and Types Reference for more information about 
AQ agents and using the DBMS_AQADM package



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-7

You also can drop the queue table for the queue if it is empty and is not used by 
another queue. To do so, specify true, the default, for the 
drop_unused_queue_table parameter.

In addition, you can drop any Streams clients that use the queue by setting the 
cascade parameter to true. By default, the cascade parameter is set to false.

For example, to remove a SYS.AnyData queue named strm01_queue in the 
strmadmin schema and drop its empty queue table, run the following procedure:

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(

 queue_name            => 'strmadmin.strm01_queue',
    cascade                 => false,
 drop_unused_queue_table => true);
END;
/

In this case, because the cascade parameter is set to false, this procedure drops 
the strm01_queue only if no Streams clients use the queue. If the cascade 
parameter is set to false and any Streams client uses the queue, then an error is 
raised.

Managing Streams Propagations and Propagation Jobs
A propagation propagates events from a Streams source queue to a Streams 
destination queue. This section provides instructions for completing the following 
tasks:

� Creating a Propagation

� Enabling a Propagation Job

� Scheduling a Propagation Job

� Altering the Schedule of a Propagation Job

� Unscheduling a Propagation Job

� Specifying the Rule Set for a Propagation

� Adding Rules to the Rule Set for a Propagation

� Removing a Rule from the Rule Set for a Propagation

� Removing a Rule Set for a Propagation



Managing Streams Propagations and Propagation Jobs

10-8 Oracle Streams Concepts and Administration

� Disabling a Propagation Job

� Dropping a Propagation

In addition, you can use the features of Oracle Advanced Queuing (AQ) to manage 
Streams propagations.

Creating a Propagation
You can use any of the following procedures to create a propagation:

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

� DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

Each of the procedures in the DBMS_STREAMS_ADM package creates a propagation 
with the specified name if it does not already exist, creates either a positive or 
negative rule set for the propagation if the propagation does not have such a rule 
set, and may add table, schema, or global rules to the rule set. The 
CREATE_PROPAGATION procedure creates a propagation, but does not create a rule 
set or rules for the propagation. However, the CREATE_PROPAGATION procedure 
enables you to specify an existing rule set to associate with the propagation, either 
as a positive or a negative rule set. All propagations are started automatically upon 
creation.

The following tasks must be completed before you create a propagation:

� Create a source queue and a destination queue for the propagation, if they do 
not exist. See "Creating a SYS.AnyData Queue" on page 10-2 for instructions.

� Create a database link between the database containing the source queue and 
the database containing the destination queue. See "Configuring Network 
Connectivity and Database Links" on page 8-11 for information.

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for more information about managing propagations with 
the features of AQ



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-9

Example of Creating a Propagation Using DBMS_STREAMS_ADM
The following is an example that runs the ADD_TABLE_PROPAGATION_RULES 
procedure in the DBMS_STREAMS_ADM package to create a propagation:

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name              => 'hr.departments',
 streams_name            => 'strm01_propagation',
 source_queue_name      => 'strmadmin.strm01_queue',
 destination_queue_name => 'strmadmin.strm02_queue@dbs2.net',
 include_dml            => true,
 include_ddl             => true,
 include_tagged_lcr      => false,
    source_database         => 'dbs1.net',
    inclusion_rule          => true);
END;
/

Running this procedure performs the following actions:

� Creates a propagation named strm01_propagation. The propagation is 
created only if it does not already exist.

� Specifies that the propagation propagates LCRs from strm01_queue in the 
current database to strm02_queue in the dbs2.net database

� Specifies that the propagation uses the dbs2.net database link to propagate 
the LCRs, because the destination_queue_name parameter contains 
@dbs2.net

� Creates a positive rule set and associates it with the propagation because the 
inclusion_rule parameter is set to true. The rule set uses the evaluation 
context SYS.STREAMS$_EVALUATION_CONTEXT. The rule set name is 
specified by the system.

� Creates two rules. One rule evaluates to TRUE for row LCRs that contain the 
results of DML changes to the hr.departments table, and the other rule 
evaluates to TRUE for DDL LCRs that contain DDL changes to the 
hr.departments table. The rule names are specified by the system.

� Adds the two rules to the positive rule set associated with the propagation. The 
rules are added to the positive rule setbecause the inclusion_rule 
parameter is set to true.



Managing Streams Propagations and Propagation Jobs

10-10 Oracle Streams Concepts and Administration

� Specifies that the propagation propagates an LCR only if it has a NULL tag, 
because the include_tagged_lcr parameter is set to false. This behavior is 
accomplished through the system-created rules for the propagation.

� Specifies that the source database for the LCRs being propagated is dbs1.net, 
which may or may not be the current database. This propagation does not 
propagate LCRs in the source queue that have a different source database.

� Creates a propagation job, if one does not exist for the specified database link

Example of Creating a Propagation Using DBMS_PROPAGATION_ADM
The following is an example that runs the CREATE_PROPAGATION procedure in the 
DBMS_PROPAGATION_ADM package to create a propagation:

BEGIN
  DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
    propagation_name   => 'strm02_propagation',
    source_queue       => 'strmadmin.strm03_queue',
    destination_queue  => 'strmadmin.strm04_queue',
    destination_dblink => 'dbs2.net',
    rule_set_name      => 'strmadmin.strm01_rule_set');
END;
/

Running this procedure performs the following actions:

� Creates a propagation named strm02_propagation. A propagation with the 
same name must not exist.

� Specifies that the propagation propagates events from strm03_queue in the 
current database to strm04_queue in the dbs2.net database. Depending on 
the rules in the rule sets for the propagation, the propagated events may be 
captured events or user-enqueued events, or both.

� Specifies that the propagation uses the dbs2.net database link to propagate 
the events

See Also:

� "Event Propagation Between Queues" on page 3-5

� "System-Created Rules" on page 6-7

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-11

� Associates the propagation with an existing rule set named 
strm01_rule_set. This rule set is the positive rule set for the propagation.

� Creates a propagation job, if one does not exist for the specified database link

Enabling a Propagation Job
By default, propagation jobs are enabled upon creation. If you disable a propagation 
job and want to enable it, then use the ENABLE_PROPAGATION_SCHEDULE 
procedure in the DBMS_AQADM package.

For example, to enable a propagation job that propagates events from the 
strmadmin.strm01_queue source queue using the dbs2.net database link, run 
the following procedure:

BEGIN
  DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
    queue_name  => 'strmadmin.strm01_queue',
    destination => 'dbs2.net');
END;
/

See Also:

� "Captured and User-Enqueued Events" on page 3-3

� "Event Propagation Between Queues" on page 3-5

Note: Completing this task affects all propagations that propagate 
events from the source queue to all destination queues that use the 
dbs2.net database link.

See Also:

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about using the 
ENABLE_PROPAGATION_SCHEDULE procedure

� "Propagation Jobs" on page 3-17



Managing Streams Propagations and Propagation Jobs

10-12 Oracle Streams Concepts and Administration

Scheduling a Propagation Job
You can schedule a propagation job using the SCHEDULE_PROPAGATION procedure 
in the DBMS_AQADM package. If there is a problem with a propagation job, then 
unscheduling and scheduling the propagation job may correct the problem.

For example, the following procedure schedules a propagation job that propagates 
events from the strmadmin.strm01_queue source queue using the dbs2.net 
database link:

BEGIN
  DBMS_AQADM.SCHEDULE_PROPAGATION(
   queue_name  => 'strmadmin.strm01_queue',
   destination => 'dbs2.net'); 
END;
/

Altering the Schedule of a Propagation Job
You can alter the schedule of an existing propagation job using the 
ALTER_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

For example, suppose you want to alter the schedule of a propagation job that 
propagates events from the strmadmin.strm01_queue source queue using the 
dbs2.net database link. The following procedure sets the propagation job to 
propagate events every 15 minutes (900 seconds), with each propagation lasting 300 
seconds, and a 25 second wait before new events in a completely propagated queue 
are propagated.

Note: Completing this task affects all propagations that propagate 
events from the source queue to all destination queues that use the 
dbs2.net database link.

See Also:

� "Unscheduling a Propagation Job" on page 10-13

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about using the SCHEDULE_PROPAGATION 
procedure

� "Propagation Jobs" on page 3-17



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-13

BEGIN
  DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
   queue_name  => 'strmadmin.strm01_queue',
   destination => 'dbs2.net',
   duration    => 300,
   next_time   => 'SYSDATE + 900/86400',
   latency     => 25); 
END;
/

Unscheduling a Propagation Job
You can unschedule a propagation job using the UNSCHEDULE_PROPAGATION 
procedure in the DBMS_AQADM package. If there is a problem with a propagation 
job, then unscheduling and scheduling the propagation job may correct the 
problem.

For example, the following procedure unschedules a propagation job that 
propagates events from the strmadmin.strm01_queue source queue using the 
dbs2.net database link:

BEGIN
  DBMS_AQADM.UNSCHEDULE_PROPAGATION(
   queue_name  => 'strmadmin.strm01_queue',
   destination => 'dbs2.net'); 
END;
/

Note: Completing this task affects all propagations that propagate 
events from the source queue to all destination queues that use the 
dbs2.net database link.

See Also:

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about using the 
ALTER_PROPAGATION_SCHEDULE procedure

� "Propagation Jobs" on page 3-17



Managing Streams Propagations and Propagation Jobs

10-14 Oracle Streams Concepts and Administration

Specifying the Rule Set for a Propagation
You can specify one positive rule set and one negative rule set for a propagation. 
The propagation propagates an event if it evaluates to TRUE for at least one rule in 
the positive rule set and discards a change if it evaluates to TRUE for at least one 
rule in the negative rule set. The negative rule set is evaluated before the positive 
rule set.

Specifying a Positive Rule Set for a Propagation
You specify an existing rule set as the positive rule set for an existing propagation 
using the rule_set_name parameter in the ALTER_PROPAGATION procedure. 
This procedure is in the DBMS_PROPAGATION_ADM package. 

For example, the following procedure sets the positive rule set for a propagation 
named strm01_propagation to strm02_rule_set.

BEGIN
  DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
    propagation_name  => 'strm01_propagation',
    rule_set_name     => 'strmadmin.strm02_rule_set');
END;
/

Note: Completing this task affects all propagations that propagate 
events from the source queue to all destination queues that use the 
dbs2.net database link.

See Also:

� "Scheduling a Propagation Job" on page 10-12

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about using the 
UNSCHEDULE_PROPAGATION procedure

� "Propagation Jobs" on page 3-17

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-15

Specifying a Negative Rule Set for a Propagation
You specify an existing rule set as the negative rule set for an existing propagation 
using the negative_rule_set_name parameter in the ALTER_PROPAGATION 
procedure. This procedure is in the DBMS_PROPAGATION_ADM package. 

For example, the following procedure sets the negative rule set for a propagation 
named strm01_propagation to strm03_rule_set.

BEGIN
  DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
    propagation_name        => 'strm01_propagation',
    negative_rule_set_name  => 'strmadmin.strm03_rule_set');
END;
/

Adding Rules to the Rule Set for a Propagation
To add rules to the rule set of a propagation, you can run one of the following 
procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these procedures 
can add rules to the positive or negative rule set for a propagation. The 
ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the positive 
rule set for a propagation.

Adding Rules to the Positive Rule Set for a Propagation
The following is an example that runs the ADD_TABLE_PROPAGATION_RULES 
procedure in the DBMS_STREAMS_ADM package to add rules to the positive rule set 
of an existing propagation named strm01_propagation:

See Also:

� "Event Propagation Between Queues" on page 3-5

� "System-Created Rules" on page 6-7



Managing Streams Propagations and Propagation Jobs

10-16 Oracle Streams Concepts and Administration

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
    table_name              => 'hr.locations',
    streams_name            => 'strm01_propagation',
    source_queue_name       => 'strmadmin.strm01_queue',
    destination_queue_name  => 'strmadmin.strm02_queue@dbs2.net',
    include_dml            => true,
    include_ddl             => true,
    source_database         => 'dbs1.net',
    inclusion_rule          => true);
END;
/

Running this procedure performs the following actions:

� Creates two rules. One rule evaluates to TRUE for row LCRs that contain the 
results of DML changes to the hr.locations table, and the other rule 
evaluates to TRUE for DDL LCRs that contain DDL changes to the 
hr.locations table. The rule names are specified by the system.

� Specifies that both rules evaluate to TRUE only for LCRs whose changes 
originated at the dbs1.net source database

� Adds the two rules to the positive rule set associated with the propagation 
because the inclusion_rule parameter is set to true.

Adding Rules to the Negative Rule Set for a Propagation
The following is an example that runs the ADD_TABLE_PROPAGATION_RULES 
procedure in the DBMS_STREAMS_ADM package to add rules to the negative rule set 
of an existing propagation named strm01_propagation:

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
    table_name              => 'hr.departments',
    streams_name            => 'strm01_propagation',
    source_queue_name       => 'strmadmin.strm01_queue',
    destination_queue_name  => 'strmadmin.strm02_queue@dbs2.net',
    include_dml            => true,
    include_ddl             => true,
    source_database         => 'dbs1.net',
    inclusion_rule          => false);
END;
/



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-17

Running this procedure performs the following actions:

� Creates two rules. One rule evaluates to TRUE for row LCRs that contain the 
results of DML changes to the hr.departments table, and the other rule 
evaluates to TRUE for DDL LCRs that contain DDL changes to the 
hr.departments table. The rule names are specified by the system.

� Specifies that both rules evaluate to TRUE only for LCRs whose changes 
originated at the dbs1.net source database

� Adds the two rules to the negative rule set associated with the propagation 
because the inclusion_rule parameter is set to false.

Removing a Rule from the Rule Set for a Propagation
You specify that you want to remove a rule from the rule set for an existing 
propagation by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM 
package. For example, the following procedure removes a rule named 
departments3 from the positive rule set of a propagation named 
strm01_propagation.

BEGIN
  DBMS_STREAMS_ADM.REMOVE_RULE(
    rule_name        => 'departments3',
    streams_type     => 'propagation',
   streams_name     => 'strm01_propagation',
    drop_unused_rule => true,
    inclusion_rule   => true);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE 
procedure is set to true, which is the default setting. Therefore, if the rule being 
removed is not in any other rule set, then it will be dropped from the database. If 
the drop_unused_rule parameter is set to false, then the rule is removed from 
the rule set, but it is not dropped from the database.

If the inclusion_rule parameter is set to false, then the REMOVE_RULE 
procedure removes the rule from the negative rule set for the propagation, not the 
positive rule set.

In addition, if you want to remove all of the rules in the rule set for the propagation, 
then specify NULL for the rule_name parameter when you run the REMOVE_RULE 
procedure.



Managing Streams Propagations and Propagation Jobs

10-18 Oracle Streams Concepts and Administration

Removing a Rule Set for a Propagation
You specify that you want to remove a rule set from a propagation using the 
ALTER_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package. This 
procedure can remove the positive rule set, negative rule set, or both. Specify true 
for the remove_rule_set parameter to remove the positive rule set for the 
propagation. Specify true for the remove_negative_rule_set parameter to 
remove the negative rule set for the propagation.

For example, the following procedure removes both the positive and the negative 
rule set from a propagation named strm01_propagation.

BEGIN
  DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
    propagation_name         => 'strm01_propagation',
    remove_rule_set          => true,
    remove_negative_rule_set => true);
END;
/

Disabling a Propagation Job
To stop a propagation job, use the DISABLE_PROPAGATION_SCHEDULE procedure 
in the DBMS_AQADM package.

For example, to stop a propagation job that propagates events from the 
strmadmin.strm01_queue source queue using the dbs2.net database link, run 
the following procedure:

BEGIN
  DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
    queue_name  => 'strmadmin.strm01_queue',
    destination => 'dbs2.net');
END;
/

See Also: "Streams Client With One or More Empty Rule Sets" on 
page 6-6

Note: If a propagation does not have a positive or negative rule 
set, then the propagation propagates all events in the source queue 
to the destination queue.



Managing Streams Propagations and Propagation Jobs

Managing Staging and Propagation 10-19

Dropping a Propagation
You run the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM 
package to drop an existing propagation. For example, the following procedure 
drops a propagation named strm01_propagation:

BEGIN
  DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name      => 'strm01_propagation',
    drop_unused_rule_sets => true);
END;
/

Because the drop_unused_rule_sets parameter is set to true, this procedure 
also drops any rule sets used by the propagation strm01_propagation, unless a 
rule set is used by another Streams client. If the drop_unused_rule_sets 
parameter is set to true, then both the positive and negative rule set for the 
propagation may be dropped. If this procedure drops a rule set, then it also drops 
any rules in the rule set that are not in another rule set.

Note:

� Completing this task affects all propagations that propagate 
events from the source queue to all destination queues that use 
the dbs2.net database link.

� The DISABLE_PROPAGATION_SCHEDULE disables the 
propagation job immediately. It does not wait for the current 
duration to end.

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for more information about using the 
DISABLE_PROPAGATION_SCHEDULE procedure

Note: When you drop a propagation, the propagation job used by 
the propagation is dropped automatically, if no other propagations 
are using the propagation job.



Managing a Streams Messaging Environment

10-20 Oracle Streams Concepts and Administration

Managing a Streams Messaging Environment
Streams enables messaging with queues of type SYS.AnyData. These queues stage 
user messages whose payloads are of SYS.AnyData type, and a SYS.AnyData 
payload can be a wrapper for payloads of different datatypes. 

This section provides instructions for completing the following tasks:

� Wrapping User Message Payloads in a SYS.AnyData Wrapper and Enqueuing 
Them

� Dequeuing a Payload That Is Wrapped in a SYS.AnyData Payload

� Configuring a Messaging Client and Message Notification

Wrapping User Message Payloads in a SYS.AnyData Wrapper and Enqueuing Them
You can wrap almost any type of payload in a SYS.AnyData payload. The 
following sections provide examples of enqueuing messages into, and dequeuing 
messages from, a SYS.AnyData queue.

Note: The examples in this section assume that you have 
configured a Streams administrator at each database.

See Also:

� "SYS.AnyData Queues and User Messages" on page 3-12 for 
conceptual information about messaging in Streams

� "Configuring a Streams Administrator" on page 8-2

� Oracle Streams Advanced Queuing User's Guide and Reference for 
more information about AQ

� PL/SQL Packages and Types Reference for more information about 
the SYS.AnyData type



Managing a Streams Messaging Environment

Managing Staging and Propagation 10-21

The following steps illustrate how to wrap payloads of various types in a 
SYS.AnyData payload.

1. Connect as an administrative user who can create users, grant privileges, create 
tablespaces, and alter users at the dbs1.net database.

2. Grant EXECUTE privilege on the DBMS_AQ package to the oe user so that this 
user can run the ENQUEUE and DEQUEUE procedures in that package:

GRANT EXECUTE ON DBMS_AQ TO oe;

3. Connect as the Streams administrator, as in the following example:

CONNECT strmadmin/strmadminpw@dbs1.net

4. Create a SYS.AnyData queue if one does not already exist.

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table  => 'oe_q_table_any',
    queue_name   => 'oe_q_any',
    queue_user   => 'oe');
END;
/

The oe user is configured automatically as a secure queue user of the 
oe_q_any queue and is given ENQUEUE and DEQUEUE privileges on the queue. 
In addition, an AQ agent named oe is configured and is associated with the oe 
user. However, a message cannot be enqueued into a queue unless a subscriber 
who can dequeue the message is configured.

5. Add a subscriber for oe_q_any queue. This subscriber will perform explicit 
dequeues of events.

DECLARE
  subscriber SYS.AQ$_AGENT;
BEGIN
  subscriber :=  SYS.AQ$_AGENT('OE', NULL, NULL);  
  SYS.DBMS_AQADM.ADD_SUBSCRIBER(
    queue_name  =>  'strmadmin.oe_q_any',
    subscriber  =>  subscriber);
END;
/

6. Connect as the oe user.

CONNECT oe/oe@dbs1.net



Managing a Streams Messaging Environment

10-22 Oracle Streams Concepts and Administration

7. Create a procedure that takes as an input parameter an object of SYS.AnyData 
type and enqueues a message containing the payload into an existing 
SYS.AnyData queue.

CREATE OR REPLACE PROCEDURE oe.enq_proc (payload SYS.AnyData) 
IS
  enqopt     DBMS_AQ.ENQUEUE_OPTIONS_T;
  mprop      DBMS_AQ.MESSAGE_PROPERTIES_T;
  enq_msgid  RAW(16);
BEGIN
  mprop.SENDER_ID := SYS.AQ$_AGENT('OE', NULL, NULL); 
  DBMS_AQ.ENQUEUE(
    queue_name          =>  'strmadmin.oe_q_any',
    enqueue_options     =>  enqopt,
    message_properties  =>  mprop,
    payload             =>  payload,
    msgid               =>  enq_msgid);
END;
/

8. Run the procedure you created in Step 7 by specifying the appropriate 
Convertdata_type function. The following commands enqueue messages of 
various types.

VARCHAR2 type:

EXEC oe.enq_proc(SYS.AnyData.ConvertVarchar2('Chemicals - SW'));
COMMIT;

NUMBER type:

EXEC oe.enq_proc(SYS.AnyData.ConvertNumber('16'));
COMMIT;

User-defined type:

BEGIN
  oe.enq_proc(SYS.AnyData.ConvertObject(oe.cust_address_typ(
    '1646 Brazil Blvd','361168','Chennai','Tam', 'IN')));
END;
/
COMMIT;



Managing a Streams Messaging Environment

Managing Staging and Propagation 10-23

Dequeuing a Payload That Is Wrapped in a SYS.AnyData Payload
The following steps illustrate how to dequeue a payload wrapped in a 
SYS.AnyData payload. This example assumes that you have completed the steps 
in "Wrapping User Message Payloads in a SYS.AnyData Wrapper and Enqueuing 
Them" on page 10-20.

To dequeue messages, you must know the consumer of the messages. To find the 
consumer for the messages in a queue, connect as the owner of the queue and query 
the AQ$queue_table_name, where queue_table_name is the name of the queue 
table. For example, to find the consumers of the messages in the oe_q_any queue, 
run the following query:

CONNECT strmadmin/strmadminpw@dbs1.net

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ANY;

1. Connect as the oe user:

CONNECT oe/oe@dbs1.net

2. Create a procedure that takes as an input the consumer of the messages you 
want to dequeue. The following example procedure dequeues messages of 
oe.cust_address_typ and prints the contents of the messages.

CREATE OR REPLACE PROCEDURE oe.get_cust_address (
consumer IN VARCHAR2) AS
  address         OE.CUST_ADDRESS_TYP;
  deq_address     SYS.AnyData; 
  msgid           RAW(16); 
  deqopt          DBMS_AQ.DEQUEUE_OPTIONS_T; 
  mprop           DBMS_AQ.MESSAGE_PROPERTIES_T;
  new_addresses   BOOLEAN := true;
  next_trans      EXCEPTION;
  no_messages     EXCEPTION; 
  pragma exception_init (next_trans, -25235);
  pragma exception_init (no_messages, -25228);
  num_var         pls_integer;

See Also: "Viewing the Contents of User-Enqueued Events in a 
Queue" on page 14-25 for information about viewing the contents 
of these enqueued messages



Managing a Streams Messaging Environment

10-24 Oracle Streams Concepts and Administration

BEGIN
     deqopt.consumer_name := consumer;
     deqopt.wait := 1;
     WHILE (new_addresses) LOOP
     BEGIN
      DBMS_AQ.DEQUEUE( 
         queue_name          =>  'strmadmin.oe_q_any',
         dequeue_options     =>  deqopt,
         message_properties  =>  mprop,
         payload             =>  deq_address,
         msgid               =>  msgid);

          deqopt.navigation := DBMS_AQ.NEXT;
         DBMS_OUTPUT.PUT_LINE('****');
         IF (deq_address.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
             DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' ||  
                                   deq_address.GetTypeName()); 
             num_var := deq_address.GetObject(address);    
             DBMS_OUTPUT.PUT_LINE(' **** CUSTOMER ADDRESS **** ');
             DBMS_OUTPUT.PUT_LINE(address.street_address);
             DBMS_OUTPUT.PUT_LINE(address.postal_code);
             DBMS_OUTPUT.PUT_LINE(address.city);
             DBMS_OUTPUT.PUT_LINE(address.state_province);
             DBMS_OUTPUT.PUT_LINE(address.country_id);
         ELSE
            DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' ||    
                                  deq_address.GetTypeName()); 
         END IF;  
       COMMIT;   
    EXCEPTION
      WHEN next_trans THEN
      deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
      WHEN no_messages THEN
        new_addresses := false;
        DBMS_OUTPUT.PUT_LINE('No more messages');
     END;
  END LOOP; 
END;
/

3. Run the procedure you created in Step 1 and specify the consumer of the 
messages you want to dequeue, as in the following example: 

SET SERVEROUTPUT ON SIZE 100000
EXEC oe.get_cust_address('OE');



Managing a Streams Messaging Environment

Managing Staging and Propagation 10-25

Configuring a Messaging Client and Message Notification
This section contains instructions for configuring the following elements in a 
database:

� An enqueue procedure that enqueues messages into a SYS.AnyData queue at 
a database. In this example, the enqueue procedure uses a trigger to enqueue a 
message every time a row is inserted into the oe.orders table.

� A messaging client that can dequeue user-enqueued events based on rules. In 
this example, the messaging client uses a rule so that it only dequeues messages 
that involve the oe.orders table, and the messaging client uses the DEQUEUE 
procedure in the DBMS_STREAMS_MESSAGING to dequeue one message at a 
time and display the order number for the order.

� Message notification for the messaging client. In this example, a notification is 
sent to an email address when a message is enqueued into the queue used by 
the messaging client, and the message can be dequeued by the messaging client 
because the message satisfies the messaging client's rule sets.

You can query the DBA_STREAMS_MESSAGE_CONSUMERS data dictionary view for 
information about existing messaging clients and notifications.

Complete the following steps to configure a messaging client and message 
notification:

1. Connect as an administrative user who can grant privileges and execute 
subprograms in supplied packages.

2. Set the host name used to send the email, the mail port, and the email account 
who sends email messages for email notifications using the DBMS_AQELM 
package. The following example sets the mail host name to 
smtp.mycompany.com, the mail port to 25, and the email account to 
Mary.Smith@mycompany.com:

BEGIN
  DBMS_AQELM.SET_MAILHOST('smtp.mycompany.com') ;
  DBMS_AQELM.SET_MAILPORT(25) ;
  DBMS_AQELM.SET_SENDFROM('Mary.Smith@mycompany.com');
END;
/

To determine the current mail host, mail port, and send from settings for a 
database, you can use procedures in the DBMS_AQELM package to get this 
information. For example, to determine the current mail host for a database, use 
the DBMS_AQELM.GET_MAILHOST procedure.



Managing a Streams Messaging Environment

10-26 Oracle Streams Concepts and Administration

3. Grant the necessary privileges to the users who will create the messaging client, 
enqueue and dequeue messages, and specify message notifications. In this 
example, the oe user performs all of these tasks.

GRANT EXECUTE ON DBMS_AQ TO oe;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO oe;
GRANT EXECUTE ON DBMS_STREAMS_MESSAGING TO oe;

BEGIN 
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'oe', 
    grant_option => false);
END;
/

BEGIN 
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ, 
    grantee      => 'oe', 
    grant_option => false);
END;
/

BEGIN 
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'oe', 
    grant_option => false);
END;
/

4. Connect as the oe user: 

CONNECT oe/oe

5. Create a SYS.AnyData queue using SET_UP_QUEUE, as in the following 
example: 

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'oe.notification_queue_table',

 queue_name => 'oe.notification_queue');
END;
/



Managing a Streams Messaging Environment

Managing Staging and Propagation 10-27

6. Create the types for the user-enqueued messages, as in the following example:

CREATE TYPE oe.user_msg AS OBJECT(
  object_name    VARCHAR2(30),
  object_owner   VARCHAR2(30),
  message        VARCHAR2(50));
/

7. Create a trigger that enqueues a message into the queue whenever an order is 
inserted into the oe.orders table, as in the following example:

CREATE OR REPLACE TRIGGER oe.order_insert AFTER INSERT
ON oe.orders FOR EACH ROW
DECLARE
  msg            oe.user_msg;
  str            VARCHAR2(2000);
BEGIN
  str := 'New Order - ' || :NEW.ORDER_ID || ' Order ID';
  msg  := oe.user_msg(
             object_name   => 'ORDERS',
             object_owner  => 'OE',
             message       => str);
  DBMS_STREAMS_MESSAGING.ENQUEUE (
    queue_name   => 'oe.notification_queue',
    payload      => SYS.AnyData.CONVERTOBJECT(msg));
END;
/

8. Create the messaging client that will dequeue messages from the queue and the 
rule used by the messaging client to determine which messages to dequeue, as 
in the following example:

BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
    message_type   => 'oe.user_msg',
    rule_condition => ' :msg.OBJECT_OWNER = ''OE'' AND  ' ||
                      ' :msg.OBJECT_NAME = ''ORDERS'' ',
    streams_type   => 'dequeue',
    streams_name   => 'oe',
    queue_name     => 'oe.notification_queue');
END;
/



Managing a Streams Messaging Environment

10-28 Oracle Streams Concepts and Administration

9. Set the message notification to send email upon enqueue of messages that can 
be dequeued by the messaging client, as in the following example:

BEGIN
  DBMS_STREAMS_ADM.SET_MESSAGE_NOTIFICATION (
    streams_name         => 'oe',
    notification_action  => 'Mary.Smith@mycompany.com',
    notification_type    => 'MAIL',
    include_notification => true,
    queue_name           => 'oe.notification_queue');
END;
/

10. Create a PL/SQL procedure that dequeues messages using the messaging 
client, as in the following example:

CREATE OR REPLACE PROCEDURE oe.deq_notification(consumer IN VARCHAR2) AS
  msg            SYS.AnyData;
  user_msg       oe.user_msg;
  num_var        PLS_INTEGER;
  more_messages  BOOLEAN := true;
  navigation     VARCHAR2(30);
BEGIN
  navigation := 'FIRST MESSAGE';
  WHILE (more_messages) LOOP
    BEGIN
      DBMS_STREAMS_MESSAGING.DEQUEUE(
        queue_name   => 'oe.notification_queue',
        streams_name => consumer,
        payload      => msg,
        navigation   => navigation,
        wait         => DBMS_STREAMS_MESSAGING.NO_WAIT);
      IF msg.GETTYPENAME() = 'OE.USER_MSG' THEN
        num_var := msg.GETOBJECT(user_msg);
        DBMS_OUTPUT.PUT_LINE(user_msg.object_name);
        DBMS_OUTPUT.PUT_LINE(user_msg.object_owner);
        DBMS_OUTPUT.PUT_LINE(user_msg.message);
      END IF;
      navigation := 'NEXT MESSAGE';
      COMMIT;



Managing a Streams Messaging Environment

Managing Staging and Propagation 10-29

    EXCEPTION WHEN SYS.DBMS_STREAMS_MESSAGING.ENDOFCURTRANS THEN
                navigation := 'NEXT TRANSACTION';
              WHEN DBMS_STREAMS_MESSAGING.NOMOREMSGS THEN
                more_messages := false;
                DBMS_OUTPUT.PUT_LINE('No more messages.');
              WHEN OTHERS THEN
                RAISE;  
    END;
  END LOOP;
END;
/

11. Insert rows into the oe.orders table, as in the following example:

INSERT INTO oe.orders VALUES(2521, 'direct', 144, 0, 922.57, 159, NULL);
INSERT INTO oe.orders VALUES(2522, 'direct', 116, 0, 1608.29, 153, NULL);
COMMIT;
INSERT INTO oe.orders VALUES(2523, 'direct', 116, 0, 227.55, 155, NULL);
COMMIT;

Message notification sends a message to the email address specified in Step 9 for 
each message that was enqueued. Each notification is an AQXmlNotification, 
which includes of the following:

� notification_options, which includes the following: 

� destination - The destination queue from which the message was 
dequeued 

� consumer_name - The name of the messaging client that dequeued the 
message 

� message_set - The set of message properties

The following is an example of the AQXmlNotification format sent in an email 
notification:



Managing a Streams Messaging Environment

10-30 Oracle Streams Concepts and Administration

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
    <Body>
        <AQXmlNotification xmlns="http://ns.oracle.com/AQ/schemas/access">
            <notification_options>
                <destination>OE.NOTIFICATION_QUEUE</destination>
                <consumer_name>OE</consumer_name>
            </notification_options>
            <message_set>
                <message>
                    <message_header>
                        <message_id>CB510DDB19454731E034080020AE3E0A</message_id>
                        <expiration>-1</expiration>
                        <delay>0</delay>
                        <priority>1</priority>
                        <delivery_count>0</delivery_count>
                        <sender_id>
                            <agent_name>OE</agent_name>
                            <protocol>0</protocol>
                        </sender_id>
                        <message_state>0</message_state>
                    </message_header>
                </message>
            </message_set>
        </AQXmlNotification>
    </Body>
</Envelope>

You may dequeue the messages enqueued in this example by running the 
oe.deq_notification procedure:

SET SERVEROUTPUT ON SIZE 100000
EXEC oe.deq_notification('OE');

See Also:

� "Viewing the Messaging Clients in a Database" on page 14-23

� "Viewing Message Notifications" on page 14-24

� Chapter 6, "How Rules Are Used In Streams" for more 
information about rule sets for Streams clients and for 
information about how events satisfy rule sets

� Oracle Streams Advanced Queuing User's Guide and Reference and 
Oracle XML DB Developer's Guide for more information about 
message notifications and XML



Managing an Apply Process 11-1

11
Managing an Apply Process

A Streams apply process dequeues logical change records (LCRs) and user 
messages from a specific queue and either applies each one directly or passes it as a 
parameter to a user-defined procedure.

This chapter contains these topics:

� Creating, Starting, Stopping, and Dropping an Apply Process

� Managing the Rule Set for an Apply Process

� Setting an Apply Process Parameter

� Setting the Apply User for an Apply Process

� Managing the Message Handler for an Apply Process

� Managing the Precommit Handler for an Apply Process

� Specifying Event Enqueues by Apply Processes

� Specifying Execute Directives for Apply Processes

� Managing an Error Handler

� Managing Apply Errors

Each task described in this chapter should be completed by a Streams administrator 
that has been granted the appropriate privileges, unless specified otherwise.



Creating, Starting, Stopping, and Dropping an Apply Process

11-2 Oracle Streams Concepts and Administration

Creating, Starting, Stopping, and Dropping an Apply Process
This section contains instructions for creating, starting, stopping and dropping an 
apply process. It contains the following topics:

� Creating an Apply Process

� Starting an Apply Process

� Stopping an Apply Process

� Dropping an Apply Process

Creating an Apply Process
You can use any of the following procedures to create an apply process:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_STREAMS_ADM.ADD_MESSAGE_RULE

� DBMS_APPLY_ADM.CREATE_APPLY

Each of the procedures in the DBMS_STREAMS_ADM package creates an apply 
process with the specified name if it does not already exist, creates either a positive 
or negative rule set for the apply process if the apply process does not have such a 
rule set, and may add table rules, schema rules, global rules, or a message rule to 
the rule set. 

See Also:

� Chapter 4, "Streams Apply Process"

� "Configuring a Streams Administrator" on page 8-2

� Oracle Streams Replication Administrator's Guide for more 
information about managing DML handlers, DDL handlers, 
and Streams tags for an apply process



Creating, Starting, Stopping, and Dropping an Apply Process

Managing an Apply Process 11-3

The CREATE_APPLY procedure in the DBMS_APPLY_ADM package creates an apply 
process, but does not create a rule set or rules for the apply process. However, the 
CREATE_APPLY procedure enables you to specify an existing rule set to associate 
with the apply process, either as a positive or a negative rule set, and a number of 
other options, such as apply handlers, an apply user, an apply tag, and whether to 
apply captured or user-enqueued events.

Before you create an apply process, create a SYS.AnyData queue to associate with 
the apply process, if one does not exist.

Examples of Creating an Apply Process Using DBMS_STREAMS_ADM
The first example in this section creates an apply process that applies captured 
events, and the second example in this section creates an apply process that applies 
user-enqueued events. A single apply process cannot apply both captured and 
user-enqueued events.

� Example That Creates an Apply Process for Captured Events Using 
DBMS_STREAMS_ADM

� Example That Creates an Apply Process for User-Enqueued Events Using 
DBMS_STREAMS_ADM

Note:

� Depending on the configuration of the apply process you 
create, supplemental logging may be required at the source 
database on columns in the tables for which an apply process 
applies changes.

� To create an apply process, a user must be granted DBA role.

See Also:

� "Creating a SYS.AnyData Queue" on page 10-2

� "Supplemental Logging in a Streams Environment" on 
page 2-15 for information about when supplemental logging is 
required

� "Specifying Supplemental Logging at a Source Database" on 
page 9-33



Creating, Starting, Stopping, and Dropping an Apply Process

11-4 Oracle Streams Concepts and Administration

Example That Creates an Apply Process for Captured Events Using DBMS_STREAMS_ADM  
The following is an example that runs the ADD_SCHEMA_RULES procedure in the 
DBMS_STREAMS_ADM package to create an apply process that applies captured 
events:

BEGIN
  DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name        => 'hr',
 streams_type       => 'apply',
 streams_name       => 'strm01_apply',
 queue_name      => 'strm01_queue',
 include_dml       => true,
 include_ddl        => false,
 include_tagged_lcr => false,
    source_database    => 'dbs1.net',
    inclusion_rule     => true);
END;
/

Running this procedure performs the following actions:

� Creates an apply process named strm01_apply that applies captured events 
to the local database. The apply process is created only if it does not already 
exist.

� Associates the apply process with an existing queue named strm01_queue

� Creates a positive rule set and associates it with the apply process, if the apply 
process does not have a positive rule set, because the inclusion_rule 
parameter is set to true. The rule set uses the 
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name 
is specified by the system.

� Creates one rule that evaluates to TRUE for row LCRs that contain the results of 
DML changes to database objects in the hr schema. The rule name is specified 
by the system.

See Also:

� "Apply Process Creation" on page 4-17

� "System-Created Rules" on page 6-7

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags



Creating, Starting, Stopping, and Dropping an Apply Process

Managing an Apply Process 11-5

� Adds the rule to the positive rule set associated with the apply process because 
the inclusion_rule parameter is set to true

� Sets the apply_tag for the apply process to a value that is the hexadecimal 
equivalent of '00' (double zero). Redo entries generated by the apply process 
have a tag with this value.

� Specifies that the apply process applies a row LCR only if it has a NULL tag, 
because the include_tagged_lcr parameter is set to false. This behavior is 
accomplished through the system-created rule for the apply process.

� Specifies that the LCRs applied by the apply process originate at the dbs1.net 
source database. The rules in the apply process rule sets determine which 
events are dequeued by the apply process. If the apply process dequeues an 
LCR with a source database that is different than dbs1.net, then an error is 
raised. 

Example That Creates an Apply Process for User-Enqueued Events Using 
DBMS_STREAMS_ADM  The following is an example that runs the 
ADD_MESSAGE_RULE procedure in the DBMS_STREAMS_ADM package to create an 
apply process:

BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE(
 message_type       => 'oe.order_typ',
    rule_condition     => ':msg.order_status = 1',
 streams_type       => 'apply',
 streams_name       => 'strm02_apply',
 queue_name      => 'strm02_queue',
    inclusion_rule     => true);
END;
/

Running this procedure performs the following actions:

� Creates an apply process named strm02_apply that dequeues user-enqueued 
events of oe.order_typ type and sends them to the message handler for the 
apply process. The apply process is created only if it does not already exist.

� Associates the apply process with an existing queue named strm02_queue

� Creates a positive rule set and associates it with the apply process, if the apply 
process does not have a positive rule set, because the inclusion_rule 
parameter is set to true. The rule set name is specified by the system, and the 
rule set does not use an evaluation context. 



Creating, Starting, Stopping, and Dropping an Apply Process

11-6 Oracle Streams Concepts and Administration

� Creates one rule that evaluates to TRUE for user-enqueued events that satisfy 
the rule condition. The rule uses a system-created evaluation context for the 
message type. The rule name and the evaluation context name are specified by 
the system. 

� Adds the rule to the positive rule set associated with the apply process because 
the inclusion_rule parameter is set to true

� Sets the apply_tag for the apply process to a value that is the hexadecimal 
equivalent of '00' (double zero). Redo entries generated by the apply process, 
including any redo entries generated by a message handler, have a tag with this 
value.

Examples of Creating an Apply Process Using DBMS_APPLY_ADM
The first example in this section creates an apply process that applies captured 
events, and the second example in this section creates an apply process that applies 
user-enqueued events. A single apply process cannot apply both captured and 
user-enqueued events.

� Example That Creates Apply Process for Captured Events Using 
DBMS_APPLY_ADM

� Example That Creates an Apply Process for User-Enqueued Events Using 
DBMS_APPLY_ADM

Note: You can use the ALTER_APPLY procedure in the 
DBMS_APPLY_ADM package to specify a message handler for an 
apply process.

See Also:

� "Message Rule Example" on page 6-36

� "Evaluation Contexts for Message Rules" on page 6-48



Creating, Starting, Stopping, and Dropping an Apply Process

Managing an Apply Process 11-7

Example That Creates Apply Process for Captured Events Using DBMS_APPLY_ADM  The 
following is an example that runs the CREATE_APPLY procedure in the 
DBMS_APPLY_ADM package to create an apply process that applies captured events:

BEGIN
  DBMS_APPLY_ADM.CREATE_APPLY(
    queue_name             => 'strm03_queue',
    apply_name             => 'strm03_apply',
    rule_set_name          => 'strmadmin.strm03_rule_set',
    message_handler        => NULL,     
    ddl_handler            => 'strmadmin.history_ddl',
    apply_user             => 'hr',
    apply_database_link    => NULL,
    apply_tag              => HEXTORAW('5'),
    apply_captured         => true,
    precommit_handler      => NULL,
    negative_rule_set_name => NULL,
    source_database        => 'dbs1.net');
END;
/

Running this procedure performs the following actions:

� Creates an apply process named strm03_apply. An apply process with the 
same name must not exist.

� Associates the apply process with an existing queue named strm03_queue

� Associates the apply process with an existing rule set named 
strm03_rule_set. This rule set is the positive rule set for the apply process.

� Specifies that the apply process does not use a message handler.

See Also:

� "Apply Process Creation" on page 4-17

� "Event Processing Options with an Apply Process" on page 4-4 
for more information about apply handlers

� Oracle Streams Replication Administrator's Guide for more 
information about Streams tags

� Oracle Streams Replication Administrator's Guide for information 
about configuring an apply process to apply events to a 
non-Oracle database using the apply_database_link 
parameter



Creating, Starting, Stopping, and Dropping an Apply Process

11-8 Oracle Streams Concepts and Administration

� Specifies that the DDL handler is the history_ddl PL/SQL procedure in the 
strmadmin schema. The user who runs the CREATE_APPLY procedure must 
have EXECUTE privilege on the history_ddl PL/SQL procedure. An example 
in the Oracle Streams Replication Administrator's Guide creates this procedure.

� Specifies that the user who applies the changes is hr, and not the user who is 
running the CREATE_APPLY procedure (the Streams administrator).

� Specifies that the apply process applies changes to the local database because 
the apply_database_link parameter is set to NULL.

� Specifies that each redo entry generated by the apply process has a tag that is 
the hexadecimal equivalent of '5'.

� Specifies that the apply process applies captured LCRs, and not user-enqueued 
events. Therefore, if an LCR that was constructed by a user application, not by 
by a capture process, is staged in the queue for the apply process, then this 
apply process does not apply the LCR.

� Specifies that the apply process does not use a precommit handler.

� Specifies that the apply process does not use a negative rule set.

� Specifies that the LCRs applied by the apply process originate at the dbs1.net 
source database. The rules in the apply process rule sets determine which 
events are dequeued by the apply process. If the apply process dequeues an 
LCR with a source database that is different than dbs1.net, then an error is 
raised. 

Example That Creates an Apply Process for User-Enqueued Events Using 
DBMS_APPLY_ADM  The following is an example that runs the CREATE_APPLY 
procedure in the DBMS_APPLY_ADM package to create an apply process that applies 
user-enqueued events:



Creating, Starting, Stopping, and Dropping an Apply Process

Managing an Apply Process 11-9

BEGIN
  DBMS_APPLY_ADM.CREATE_APPLY(
    queue_name             => 'strm04_queue',
    apply_name             => 'strm04_apply',
    rule_set_name          => 'strmadmin.strm04_rule_set',
    message_handler        => 'strmadmin.mes_handler',
    ddl_handler            => NULL,
    apply_user             => NULL,
    apply_database_link    => NULL,
    apply_tag              => NULL,
    apply_captured         => false,
    precommit_handler      => NULL,
    negative_rule_set_name => NULL);
END;
/

Running this procedure performs the following actions:

� Creates an apply process named strm04_apply. An apply process with the 
same name must not exist.

� Associates the apply process with an existing queue named strm04_queue

� Associates the apply process with an existing rule set named 
strm04_rule_set. This rule set is the positive rule set for the apply process.

� Specifies that the message handler is the mes_handler PL/SQL procedure in 
the strmadmin schema. The user who runs the CREATE_APPLY procedure 
must have EXECUTE privilege on the mes_handler PL/SQL procedure.

� Specifies that the apply process does not use a DDL handler.

� Specifies that the user who applies the changes is the user who runs the 
CREATE_APPLY procedure, because the apply_user parameter is NULL.

� Specifies that the apply process applies changes to the local database, because 
the apply_database_link parameter is set to NULL.

� Specifies that each redo entry generated by the apply process has a NULL tag.

� Specifies that the apply process applies user-enqueued events, and not captured 
events.

� Specifies that the apply process does not use a precommit handler.

� Specifies that the apply process does not use a negative rule set.



Creating, Starting, Stopping, and Dropping an Apply Process

11-10 Oracle Streams Concepts and Administration

Starting an Apply Process
You run the START_APPLY procedure in the DBMS_APPLY_ADM package to start an 
existing apply process. For example, the following procedure starts an apply 
process named strm01_apply:

BEGIN
  DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'strm01_apply');
END;
/

Stopping an Apply Process
You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an 
existing apply process. For example, the following procedure stops an apply 
process named strm01_apply:

BEGIN
  DBMS_APPLY_ADM.STOP_APPLY(
 apply_name => 'strm01_apply');
END;
/

Dropping an Apply Process
You run the DROP_APPLY procedure in the DBMS_APPLY_ADM package to drop an 
existing apply process. For example, the following procedure drops an apply 
process named strm02_apply:

BEGIN
  DBMS_APPLY_ADM.DROP_APPLY(
 apply_name            => 'strm02_apply',
    drop_unused_rule_sets => true);
END;
/

Because the drop_unused_rule_sets parameter is set to true, this procedure 
also drops any rule sets used by the strm02_apply apply process, unless a rule set 
is used by another Streams client. If the drop_unused_rule_sets parameter is 
set to true, then both the positive and negative rule set for the apply process may 
be dropped. If this procedure drops a rule set, then it also drops any rules in the 
rule set that are not in another rule set.



Managing the Rule Set for an Apply Process

Managing an Apply Process 11-11

An error is raised if you try to drop an apply process and there are errors in the 
error queue for the specified apply process. Therefore, if there are errors in the error 
queue for an apply process, delete the errors before dropping the apply process.

Managing the Rule Set for an Apply Process
This section contains instructions for completing the following tasks:

� Specifying the Rule Set for an Apply Process

� Adding Rules to the Rule Set for an Apply Process

� Removing a Rule from the Rule Set for an Apply Process

� Removing a Rule Set for an Apply Process

Specifying the Rule Set for an Apply Process
You can specify one positive rule set and one negative rule set for an apply process. 
The apply process applies an event if it evaluates to TRUE for at least one rule in the 
positive rule set and discards an event if it evaluates to TRUE for at least one rule in 
the negative rule set. The negative rule set is evaluated before the positive rule set.

Specifying a Positive Rule Set for an Apply Process
You specify an existing rule set as the positive rule set for an existing apply process 
using the rule_set_name parameter in the ALTER_APPLY procedure. This 
procedure is in the DBMS_APPLY_ADM package. 

For example, the following procedure sets the positive rule set for an apply process 
named strm01_apply to strm02_rule_set.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name    => 'strm01_apply',
    rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

See Also: "Managing Apply Errors" on page 11-32

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"



Managing the Rule Set for an Apply Process

11-12 Oracle Streams Concepts and Administration

Specifying a Negative Rule Set for an Apply Process
You specify an existing rule set as the negative rule set for an existing apply process 
using the negative_rule_set_name parameter in the ALTER_APPLY procedure. 
This procedure is in the DBMS_APPLY_ADM package. 

For example, the following procedure sets the negative rule set for an apply process 
named strm01_apply to strm03_rule_set.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name             => 'strm01_apply',
    negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/

Adding Rules to the Rule Set for an Apply Process
To add rules to the rule set for an apply process, you can run one of the following 
procedures:

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to 
the positive or negative rule set for an apply process. The ADD_SUBSET_RULES 
procedure can add rules only to the positive rule set for an apply process.

Adding Rules to the Positive Rule Set for an Apply Process
The following is an example that runs the ADD_TABLE_RULES procedure in the 
DBMS_STREAMS_ADM package to add rules to the positive rule set of an apply 
process named strm01_apply:

See Also: "System-Created Rules" on page 6-7



Managing the Rule Set for an Apply Process

Managing an Apply Process 11-13

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name       => 'hr.departments',
 streams_type     => 'apply',
 streams_name     => 'strm01_apply',
 queue_name    => 'strm01_queue',
 include_dml     => true,
 include_ddl      => true,
    source_database  => 'dbs1.net',
    inclusion_rule   => true);
END;
/

Running this procedure performs the following actions:

� Creates one rule that evaluates to TRUE for row LCRs that contain the results of 
DML changes to the hr.departments table. The rule name is specified by the 
system.

� Creates one rule that evaluates to TRUE for DDL LCRs that contain DDL 
changes to the hr.departments table. The rule name is specified by the 
system.

� Specifies that both rules evaluate to TRUE only for LCRs whose changes 
originated at the dbs1.net source database

� Adds the rules to the positive rule set associated with the apply process because 
the inclusion_rule parameter is set to true

Adding Rules to the Negative Rule Set for an Apply Process
The following is an example that runs the ADD_TABLE_RULES procedure in the 
DBMS_STREAMS_ADM package to add rules to the negative rule set of an apply 
process named strm01_apply:

BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name       => 'hr.regions',
 streams_type     => 'apply',
 streams_name     => 'strm01_apply',
 queue_name    => 'strm01_queue',
 include_dml     => true,
 include_ddl      => true,
    source_database  => 'dbs1.net',
    inclusion_rule   => false);
END;



Managing the Rule Set for an Apply Process

11-14 Oracle Streams Concepts and Administration

/

Running this procedure performs the following actions:

� Creates one rule that evaluates to TRUE for row LCRs that contain the results of 
DML changes to the hr.regions table. The rule name is specified by the 
system.

� Creates one rule that evaluates to TRUE for DDL LCRs that contain DDL 
changes to the hr.regions table. The rule name is specified by the system.

� Specifies that both rules evaluate to TRUE only for LCRs whose changes 
originated at the dbs1.net source database

� Adds the rules to the negative rule set associated with the apply process 
because the inclusion_rule parameter is set to false

Removing a Rule from the Rule Set for an Apply Process
You specify that you want to remove a rule from a rule set for an existing apply 
process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM 
package. For example, the following procedure removes a rule named 
departments3 from the positive rule set of an apply process named 
strm01_apply.

BEGIN
  DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
  streams_type => 'apply',
 streams_name  => 'strm01_apply',
    drop_unused_rule => true,
    inclusion_rule   => true);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE 
procedure is set to true, which is the default setting. Therefore, if the rule being 
removed is not in any other rule set, then it will be dropped from the database. If 
the drop_unused_rule parameter is set to false, then the rule is removed from 
the rule set, but it is not dropped from the database.

If the inclusion_rule parameter is set to false, then the REMOVE_RULE 
procedure removes the rule from the negative rule set for the apply process, not the 
positive rule set.



Managing the Rule Set for an Apply Process

Managing an Apply Process 11-15

In addition, if you want to remove all of the rules in a rule set for the apply process, 
then specify NULL for the rule_name parameter when you run the REMOVE_RULE 
procedure.

Removing a Rule Set for an Apply Process
You specify that you want to remove a rule set from an existing apply process using 
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. This procedure 
can remove the positive rule set, negative rule set, or both. Specify true for the 
remove_rule_set parameter to remove the positive rule set for the apply process. 
Specify true for the remove_negative_rule_set parameter to remove the 
negative rule set for the apply process.

For example, the following procedure removes both the positive and negative rule 
set from an apply process named strm01_apply.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name               => 'strm01_apply',
    remove_rule_set          => true,
    remove_negative_rule_set => true);
END;
/

See Also: "Streams Client With One or More Empty Rule Sets" on 
page 6-6

Note: If an apply process that applies captured events does not 
have a positive or negative rule set, then the apply process applies 
all captured events in its queue. Similarly, if an apply process that 
applies user-enqueued events does not have a positive or negative 
rule set, then the apply process applies all user-enqueued events in 
its queue.



Setting an Apply Process Parameter

11-16 Oracle Streams Concepts and Administration

Setting an Apply Process Parameter
Set an apply process parameter using the SET_PARAMETER procedure in the 
DBMS_APPLY_ADM package. Apply process parameters control the way an apply 
process operates.

For example, the following procedure sets the commit_serialization 
parameter for an apply process named strm01_apply to none. This setting for the 
commit_serialization parameter enables the apply process to commit 
transactions in any order.

BEGIN
  DBMS_APPLY_ADM.SET_PARAMETER(
    apply_name   => 'strm01_apply',
    parameter    => 'commit_serialization',
    value        => 'none');
END;
/

Note:

� The value parameter is always entered as a VARCHAR2, even if 
the parameter value is a number.

� If you set the parallelism apply process parameter to a 
value greater than 1, then you must specify a conditional 
supplemental log group at the source database for all of the 
unique and foreign key columns in the tables for which an 
apply process applies changes. Supplemental logging may be 
required for other columns in these tables as well, depending 
on your configuration.

See Also:

� "Apply Process Parameters" on page 4-19

� The DBMS_APPLY_ADM.SET_PARAMETER procedure in the 
PL/SQL Packages and Types Reference for detailed information 
about the apply process parameters

� "Specifying Supplemental Logging at a Source Database" on 
page 9-33



Managing the Message Handler for an Apply Process

Managing an Apply Process 11-17

Setting the Apply User for an Apply Process
The apply user is the user who applies all DML changes and DDL changes that 
satisfy the apply process rule sets and who runs user-defined apply handlers. Set 
the apply user for an apply process using the apply_user parameter in the 
ALTER_APPLY procedure in the DBMS_APPLY_ADM package. 

To change the apply user, the user who invokes the ALTER_APPLY procedure must 
be granted DBA role. Only the SYS user can set the apply_user to SYS.

For example, the following procedure sets the apply user for an apply process 
named strm03_apply to hr.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name => 'strm03_apply',
    apply_user => 'hr');
END;
/

Running this procedure grants the new apply user dequeue privilege on the queue 
used by the apply process and configures the user as a secure queue user of the 
queue. In addition, make sure the apply user has the following privileges:

� Execute privilege on the rule sets used by the apply process

� Execute privilege on all rule-based transformation functions used in the rule set

� Execute privilege on all apply handler procedures

These privileges must be granted directly to the apply user. They cannot be granted 
through roles.

Managing the Message Handler for an Apply Process
This section contains instructions for setting and removing the message handler for 
an apply process.

See Also:

� "Event Processing with an Apply Process" on page 4-3

� Oracle Streams Advanced Queuing User's Guide and Reference for 
an example that creates a message handler



Managing the Precommit Handler for an Apply Process

11-18 Oracle Streams Concepts and Administration

Setting the Message Handler for an Apply Process
Set the message handler for an apply process using the message_handler 
parameter in the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For 
example, the following procedure sets the message handler for an apply process 
named strm03_apply to the mes_handler procedure in the strmadmin schema.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name      => 'strm03_apply',
    message_handler => 'strmadmin.mes_handler');
END;
/

The user who runs the ALTER_APPLY procedure must have EXECUTE privilege on 
the specified message handler.

Removing the Message Handler for an Apply Process
You remove the message handler for an apply process by setting the 
remove_message_handler parameter to true in the ALTER_APPLY procedure 
in the DBMS_APPLY_ADM package. For example, the following procedure removes 
the message handler from an apply process named strm03_apply.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name             => 'strm03_apply',
    remove_message_handler => true);
END;
/

Managing the Precommit Handler for an Apply Process
This section contains instructions for creating, specifying, and removing the 
precommit handler for an apply process.

Creating a Precommit Handler for an Apply Process
A precommit handler must have the following signature:

PROCEDURE handler_procedure (
   parameter_name   IN  NUMBER);



Managing the Precommit Handler for an Apply Process

Managing an Apply Process 11-19

Here, handler_procedure stands for the name of the procedure and 
parameter_name stands for the name of the parameter passed to the procedure. 
The parameter passed to the procedure is a commit SCN from an internal commit 
directive in the queue used by the apply process. 

You can use a precommit handler to record information about commits processed 
by an apply process. The apply process may apply captured or user-enqueued 
events. For a captured row LCR, a commit directive contains the commit SCN of the 
transaction from the source database, but for a user-enqueued event, the commit 
SCN is generated by the apply process.

The precommit handler procedure must conform to the following restrictions:

� Any work that commits must be an autonomous transaction. 

� Any rollback must be to a named save point created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is 
rolled back, and all of the events in the transaction are moved to the error queue.

For example, a precommit handler may be used for auditing the row LCRs applied 
by an apply process. Such a precommit handler is used with one or more separate 
DML handlers to record the source database commit SCN for a transaction, and 
possibly the time when the apply process applies the transaction, in an audit table.

Specifically, this example creates a precommit handler that is used with a DML 
handler that records information about row LCRs in the following table:

CREATE TABLE strmadmin.history_row_lcrs(
  timestamp             DATE,
  source_database_name  VARCHAR2(128),
command_type VARCHAR2(30),
object_owner VARCHAR2(32),
object_name           VARCHAR2(32),

  tag                   RAW(10),
  transaction_id        VARCHAR2(10),
  scn                   NUMBER,
  commit_scn            NUMBER,
old_values            SYS.LCR$_ROW_LIST,

  new_values            SYS.LCR$_ROW_LIST)
    NESTED TABLE old_values STORE AS old_values_ntab
    NESTED TABLE new_values STORE AS new_values_ntab;



Managing the Precommit Handler for an Apply Process

11-20 Oracle Streams Concepts and Administration

The DML handler inserts a row in the strmadmin.history_row_lcrs table for 
each row LCR processed by an apply process. The precommit handler created in 
this example inserts a row into the strmadmin.history_row_lcrs table when a 
transaction commits.

Create the procedure that inserts the commit information into the 
history_row_lcrs table:

CREATE OR REPLACE PROCEDURE strmadmin.history_commit(commit_number IN NUMBER)  
 IS
 BEGIN
  -- Insert commit information into the history_row_lcrs table
  INSERT INTO strmadmin.history_row_lcrs (timestamp, commit_scn) 
    VALUES (SYSDATE, commit_number);
END;
/

Setting the Precommit Handler for an Apply Process
A precommit handler processes all commit directives dequeued by an apply 
process. Set the precommit handler for an apply process using the 
precommit_handler parameter in the ALTER_APPLY procedure in the 
DBMS_APPLY_ADM package. For example, the following procedure sets the 
precommit handler for an apply process named strm01_apply to the 
history_commit procedure in the strmadmin schema.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name        => 'strm01_apply',
    precommit_handler => 'strmadmin.history_commit');
END;
/

You may also specify a precommit handler when you create an apply process using 
the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

See Also:

� "Audit Commit Information for Events Using Precommit 
Handlers" on page 4-8

� Oracle Streams Replication Administrator's Guide for more 
information about the DML handler referenced in this example



Specifying Event Enqueues by Apply Processes

Managing an Apply Process 11-21

Removing the Precommit Handler for an Apply Process
You remove the precommit handler for an apply process by setting the 
remove_precommit_handler parameter to true in the ALTER_APPLY 
procedure in the DBMS_APPLY_ADM package. For example, the following procedure 
removes the precommit handler from an apply process named strm01_apply.

BEGIN
  DBMS_APPLY_ADM.ALTER_APPLY(
    apply_name               => 'strm01_apply',
    remove_precommit_handler => true);
END;
/

Specifying Event Enqueues by Apply Processes
This section contains instructions for setting a destination queue into which apply 
processes that use a specified rule in a positive rule set will enqueue events that 
satisfy the rule. This section also contains instructions for removing destination 
queue settings.

Setting the Destination Queue for Events That Satisfy a Rule
You use the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM 
package to set a destination queue for events that satisfy a certain rule. For example, 
to set the destination queue for a rule named employees5 to the queue 
hr.change_queue, run the following procedure:

BEGIN
  DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
    rule_name               =>  'employees5',
    destination_queue_name  =>  'hr.change_queue');
END;
/

This procedure modifies the specified rule's action context to specify the queue. 
Any apply process in the local database with the employees5 rule in its positive 
rule set will enqueue an event into hr.change_queue if the event satisfies the 
employees5 rule. If you want to change the destination queue for the 
employees5 rule, then run the SET_ENQUEUE_DESTINATION procedure again 
and specify a different queue.

See Also: "Viewing Rules That Specify a Destination Queue On 
Apply" on page 14-47



Specifying Event Enqueues by Apply Processes

11-22 Oracle Streams Concepts and Administration

The apply user of each apply process using the specified rule must have the 
necessary privileges to enqueue events into the specified queue. If the queue is a 
secure queue, then the apply user must be a secure queue user of the queue.

An event that has been enqueued into an queue using the 
SET_ENQUEUE_DESTINATION procedure is the same as any other user-enqueued 
event. Such events can be manually dequeued, applied by an apply process created 
with the apply_captured parameter set to false, or propagated to another 
queue.

Removing the Destination Queue Setting for a Rule
You use the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM 
package to remove a destination queue for events that satisfy a certain rule. 
Specifically, you set the destination_queue_name parameter in this procedure 
to NULL for the rule. When a destination queue specification is removed for a rule, 
events that satisfy the rule are no longer enqueued into the queue by an apply 
process. 

For example, to remove the destination queue for a rule named employees5, run 
the following procedure:

BEGIN
  DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
    rule_name               =>  'employees5',
    destination_queue_name  =>  NULL);
END;
/

Note: The specified rule must be in the positive rule set for an 
apply process. If the rule is in the negative rule set for an apply 
process, then the apply process does not enqueue the event into the 
destination queue.

See Also:

� "Enabling a User to Perform Operations on a Secure Queue" on 
page 10-3

� "Enqueue Destinations for Events During Apply" on page 6-52 
for more information about how the 
SET_ENQUEUE_DESTINATION procedure modifies the action 
context of the specified rule



Specifying Execute Directives for Apply Processes

Managing an Apply Process 11-23

Any apply process in the local database with the employees5 rule in its positive 
rule set no longer enqueues an event into hr.change_queue if the event satisfies 
the employees5 rule.

Specifying Execute Directives for Apply Processes
This section contains instructions for setting an apply process execute directive for 
events that satisfy a specified rule in the positive rule set for the apply process.

Specifying That Events That Satisfy a Rule Are Not Executed
You use the SET_EXECUTE procedure in the DBMS_APPLY_ADM package to specify 
that apply processes do not execute events that satisfy a certain rule. Specifically, 
you set the execute parameter in this procedure to false for the rule. After 
setting the execution directive to false for a rule, an apply process with the rule in 
its positive rule set does not execute an event that satisfies the rule.

For example, to specify that apply processes do not execute events that satisfy a rule 
named departments8, run the following procedure:

BEGIN
  DBMS_APPLY_ADM.SET_EXECUTE(
    rule_name   =>  'departments8',
    execute     =>  false);
END;
/

This procedure modifies the specified rule's action context to specify the execution 
directive. Any apply process in the local database with the departments8 rule in 
its positive rule set will not execute an event if the event satisfies the 
departments8 rule. That is, if the event is an LCR, then an apply process does not 
apply the change in the LCR to the relevant database object. Also, an apply process 
does not send an event that satisfies this rule to any apply handler.

See Also: "Viewing Rules That Specify No Execution On Apply" 
on page 14-48



Specifying Execute Directives for Apply Processes

11-24 Oracle Streams Concepts and Administration

Specifying That Events That Satisfy a Rule Are Executed
You use the SET_EXECUTE procedure in the DBMS_APPLY_ADM package to specify 
that apply processes execute events that satisfy a certain rule. Specifically, you set 
the execute parameter in this procedure to true for the rule. By default, each 
apply process executes events that satisfy a rule in the positive rule set for the apply 
process, assuming that the event does not satisfy a rule in the negative rule set for 
the apply process. Therefore, you need to set the execute parameter to true for a 
rule only if this parameter was set to false for the rule in the past.

For example, to specify that apply processes executes events that satisfy a rule 
named departments8, run the following procedure:

BEGIN
  DBMS_APPLY_ADM.SET_EXECUTE(
    rule_name   =>  'departments8',
    execute     =>  true);
END;
/

Note:

� The specified rule must be in the positive rule set for an apply 
process for the apply process to follow the execution directive. 
If the rule is in the negative rule set for an apply process, then 
the apply process ignores the execution directive for the rule.

� The SET_EXECUTE procedure may be used with the 
SET_ENQUEUE_DESTINATION procedure if you want to 
enqueue events that satisfy a particular rule into a destination 
queue without executing these events. After an event is 
enqueued using the SET_ENQUEUE_DESTINATION procedure, 
it is a user-enqueued event in the destination queue. Therefore, 
it can be manually dequeued, applied by an apply process, or 
propagated to another queue.

See Also:

� "Execution Directives for Events During Apply" on page 6-52 
for more information about how the SET_EXECUTE procedure 
modifies the action context of the specified rule

� "Specifying Event Enqueues by Apply Processes" on page 11-21



Managing an Error Handler

Managing an Apply Process 11-25

Any apply process in the local database with the departments8 rule in its positive 
rule set will execute an event if the event satisfies the departments8 rule. That is, 
if the event is an LCR, then an apply process applies the change in the LCR to the 
relevant database object. Also, an apply process sends an event that satisfies this 
rule to an apply handler if it is configured to do so.

Managing an Error Handler
This section contains instructions for creating, setting, and removing an error 
handler.

Creating an Error Handler
You create an error handler by running the SET_DML_HANDLER procedure in the 
DBMS_APPLY_ADM package and setting the error_handler parameter to true.

An error handler must have the following signature:

PROCEDURE user_procedure (
     message             IN SYS.AnyData,
     error_stack_depth   IN NUMBER,
     error_numbers       IN DBMS_UTILITY.NUMBER_ARRAY,
     error_messages      IN emsg_array);

Here, user_procedure stands for the name of the procedure. Each parameter is 
required and must have the specified datatype. However, you can change the 
names of the parameters. The emsg_array parameter must be a user-defined array 
that is a PL/SQL table of type VARCHAR2 with at least 76 characters.

See Also: "Event Processing with an Apply Process" on page 4-3

Note: Certain restrictions on the user procedure specified in 
SET_DML_HANDLER must be met for error handlers. See Oracle 
Streams Replication Administrator's Guide for information about these 
restrictions.



Managing an Error Handler

11-26 Oracle Streams Concepts and Administration

Running an error handler results in one of the following outcomes:

� The error handler successfully resolves the error, applies the row LCR if 
appropriate, and returns control back to the apply process.

� The error handler fails to resolve the error, and the error is raised. The raised 
error causes the transaction to be rolled back and placed in the error queue.

If you want to retry the DML operation, then have the error handler procedure run 
the EXECUTE member procedure for the LCR.

The following example creates an error handler named regions_pk_error that 
resolves primary key violations for the hr.regions table. At a destination 
database, assume users insert rows into the hr.regions table and an apply 
process applies changes to the hr.regions table that originated from a capture 
process at a remote source database. In this environment, there is a possibility of 
errors resulting from users at the destination database inserting a row with the 
same primary key value as an insert row LCR applied from the source database.

This example creates a table in the strmadmin schema called errorlog to record 
the following information about each primary key violation error on the 
hr.regions table:

� The timestamp when the error occurred

� The name of the apply process that raised the error

� The user who caused the error (sender), which is the capture process name for 
captured LCRs or the name of the AQ agent for user-enqueued LCRs

� The name of the object on which the DML operation was run, because errors for 
other objects may be logged in the future

� The type of command used in the DML operation

� The name of the constraint violated

� The error message

� The LCR that caused the error

This error handler resolves only errors that are caused by a primary key violation 
on the hr.regions table. To resolve this type of error, the error handler modifies 
the region_id value in the row LCR using a sequence and then executes the row 
LCR to apply it. If other types of errors occur, then you can use the row LCR you 
stored in the errorlog table to resolve the error manually.



Managing an Error Handler

Managing an Apply Process 11-27

For example, the following error is resolved by the error handler:

1. At the destination database, a user inserts a row into the hr.regions table 
with a region_id value of 6 and a region_name value of 'LILLIPUT'. 

2. At the source database, a user inserts a row into the hr.regions table with a 
region_id value of 6 and a region_name value of 'BROBDINGNAG'.

3. A capture process at the source database captures the change described in 
Step 2.

4. A propagation propagates the LCR containing the change from a queue at the 
source database to the queue used by the apply process at the destination 
database.

5. When the apply process tries to apply the LCR, an error results because of a 
primary key violation.

6. The apply process invokes the error handler to handle the error.

7. The error handler logs the error in the strmadmin.errorlog table.

8. The error handler modifies the region_id value in the LCR using a sequence 
and executes the LCR to apply it.

Complete the following steps to create the regions_pk_error error handler:

1. Create the sequence used by the error handler to assign new primary key 
values by connecting as hr user and running the following statement:

CONNECT hr/hr

CREATE SEQUENCE hr.reg_exception_s START WITH 9000;

This example assumes that users at the destination database will never insert a 
row into the hr.regions table with a region_id greater than 8999.

2. Grant the Streams administrator ALL privilege on the sequence:

GRANT ALL ON reg_exception_s TO strmadmin;

3. Create the errorlog table by connecting as the Streams administrator and 
running the following statement:

CONNECT strmadmin/strmadminpw



Managing an Error Handler

11-28 Oracle Streams Concepts and Administration

CREATE TABLE strmadmin.errorlog(
  logdate       DATE,
  apply_name    VARCHAR2(30),
  sender        VARCHAR2(100),
  object_name   VARCHAR2(32),
  command_type  VARCHAR2(30),
  errnum        NUMBER,
  errmsg        VARCHAR2(2000),
  text          VARCHAR2(2000),
  lcr           SYS.LCR$_ROW_RECORD);

4. Create a package that includes the regions_pk_error procedure:

CREATE OR REPLACE PACKAGE errors_pkg 
AS
 TYPE emsg_array IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
 PROCEDURE regions_pk_error( 
   message            IN SYS.ANYDATA,
   error_stack_depth  IN NUMBER,
   error_numbers      IN DBMS_UTILITY.NUMBER_ARRAY,
   error_messages     IN EMSG_ARRAY);
END errors_pkg ;
/

5. Create the package body that includes the regions_pk_error procedure:

CREATE OR REPLACE PACKAGE BODY errors_pkg AS
 PROCEDURE regions_pk_error ( 
   message            IN SYS.ANYDATA,
   error_stack_depth  IN NUMBER,
   error_numbers      IN DBMS_UTILITY.NUMBER_ARRAY,
   error_messages     IN EMSG_ARRAY )
 IS
  reg_id     NUMBER;
  ad         SYS.ANYDATA;
  lcr        SYS.LCR$_ROW_RECORD;
  ret        PLS_INTEGER;
  vc         VARCHAR2(30);
  apply_name VARCHAR2(30);
  errlog_rec errorlog%ROWTYPE ;
  ov2        SYS.LCR$_ROW_LIST;



Managing an Error Handler

Managing an Apply Process 11-29

 BEGIN
  -- Access the error number from the top of the stack.
  -- In case of check constraint violation,
  -- get the name of the constraint violated
  IF error_numbers(1) IN ( 1 , 2290 ) THEN
   ad  := DBMS_STREAMS.GET_INFORMATION('CONSTRAINT_NAME');
   ret := ad.GetVarchar2(errlog_rec.text);
  ELSE 
   errlog_rec.text := NULL ;
  END IF ;
  -- Get the name of the sender and the name of the apply process
  ad  := DBMS_STREAMS.GET_INFORMATION('SENDER');
  ret := ad.GETVARCHAR2(errlog_rec.sender);
  apply_name := DBMS_STREAMS.GET_STREAMS_NAME();
  -- Try to access the LCR
  ret := message.GETOBJECT(lcr);
  errlog_rec.object_name  := lcr.GET_OBJECT_NAME() ;
  errlog_rec.command_type := lcr.GET_COMMAND_TYPE() ;
  errlog_rec.errnum := error_numbers(1) ;
  errlog_rec.errmsg := error_messages(1) ;
  INSERT INTO strmadmin.errorlog VALUES (SYSDATE, apply_name, 
       errlog_rec.sender, errlog_rec.object_name, errlog_rec.command_type, 
       errlog_rec.errnum, errlog_rec.errmsg, errlog_rec.text, lcr);
  -- Add the logic to change the contents of LCR with correct values
  -- In this example, get a new region_id number 
  -- from the hr.reg_exception_s sequence
  ov2 := lcr.GET_VALUES('new', 'n');
  FOR i IN 1 .. ov2.count
  LOOP
    IF ov2(i).column_name = 'REGION_ID' THEN
     SELECT hr.reg_exception_s.NEXTVAL INTO reg_id FROM DUAL; 
     ov2(i).data := Sys.AnyData.ConvertNumber(reg_id) ;
    END IF ;
  END LOOP ;
  -- Set the NEW values in the LCR
  lcr.SET_VALUES(value_type => 'NEW', value_list => ov2);
  -- Execute the modified LCR to apply it
  lcr.EXECUTE(true);
 END regions_pk_error;
END errors_pkg;
/



Managing an Error Handler

11-30 Oracle Streams Concepts and Administration

Setting an Error Handler
An error handler handles errors resulting from a row LCR dequeued by any apply 
process that contains a specific operation on a specific table. You can specify 
multiple error handlers on the same table, to handle errors resulting from different 
operations on the table. You either can set an error handler for a specific apply 
process, or you can set an error handler as a general error handler that is used by all 
apply processes that apply the specified operation to the specified table. 

You can set the error handler using the SET_DML_HANDLER procedure in the 
DBMS_APPLY_ADM package. When you run this procedure to set an error handler, 
set the error_handler parameter to true.

For example, the following procedure sets the error handler for INSERT operations 
on the hr.regions table. Therefore, when any apply process dequeues a row LCR 
containing an INSERT operation on the local hr.regions table, and the row LCR 
results in an error, the apply process sends the row LCR to the 
strmadmin.errors_pkg.regions_pk_error PL/SQL procedure for 
processing. If the error handler cannot resolve the error, then the row LCR and all 
of the other row LCRs in the same transaction are moved to the error queue. 

Note:

� For subsequent changes to the modified row to be applied 
successfully, you should converge the rows at the two 
databases as quickly as possible. That is, you should make the 
region_id for the row match at the source and destination 
database. If you do not want these manual changes to be 
recaptured at a database, then use the SET_TAG procedure in 
the DBMS_STREAMS package to set the tag for the session in 
which you make the change to a value that is not captured.

� This example error handler illustrates the use of the 
GET_VALUES member function and SET_VALUES member 
procedure for the LCR. However, if you are modifying only one 
value in the LCR, then the GET_VALUE member function and 
SET_VALUE member procedure may be more convenient and 
more efficient.

See Also: Oracle Streams Replication Administrator's Guide for more 
information about setting tag values generated by the current 
session



Managing an Error Handler

Managing an Apply Process 11-31

In this example, the apply_name parameter is set to NULL. Therefore, the error 
handler is a general error handler that is used by all of the apply processes in the 
database.

Run the following procedure to set the error handler:

BEGIN
  DBMS_APPLY_ADM.SET_DML_HANDLER(
    object_name         => 'hr.regions',
    object_type         => 'TABLE',
    operation_name      => 'INSERT',
    error_handler       => true,
    user_procedure      => 'strmadmin.errors_pkg.regions_pk_error',
    apply_database_link => NULL,
    apply_name          => NULL);
END;
/

Unsetting an Error Handler
You unset an error handler using the SET_DML_HANDLER procedure in the 
DBMS_APPLY_ADM package. When you run that procedure, set the 
user_procedure parameter to NULL for a specific operation on a specific table. 

For example, the following procedure unsets the error handler for INSERT 
operations on the hr.regions table:

BEGIN
  DBMS_APPLY_ADM.SET_DML_HANDLER(
    object_name    => 'hr.regions',
    object_type    => 'TABLE',
    operation_name => 'INSERT',
    user_procedure => NULL,
    apply_name     => NULL);
END;
/

Note: The error_handler parameter does not need to be 
specified.



Managing Apply Errors

11-32 Oracle Streams Concepts and Administration

Managing Apply Errors
This section contains instructions for retrying and deleting apply errors.

Retrying Apply Error Transactions
The following sections describe how to retry a specific error transaction and how to 
retry all error transactions for an apply process. You may need to make DML or 
DDL changes to database objects to correct the conditions that caused one or more 
apply errors before you retry apply error transactions. You may also have one or 
more capture processes configured to capture changes to the same database objects. 
However, you may not want the changes captured. In this case, you can set the tag 
to a value that will not be captured for the session that makes the changes.

Retrying a Specific Apply Error Transaction
After you correct the conditions that caused an apply error, you can retry the 
transaction by running the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM 
package. For example, to retry a transaction with the transaction identifier 
5.4.312, run the following procedure:

BEGIN
  DBMS_APPLY_ADM.EXECUTE_ERROR(
    local_transaction_id => '5.4.312',
    execute_as_user      => false);
END;
/

If execute_as_user is true, then the apply process reexecutes the transaction in 
the security context of the current user. If execute_as_user is false, then the 

See Also:

� "The Error Queue" on page 4-22

� "Checking for Apply Errors" on page 14-48

� "Displaying Detailed Information About Apply Errors" on 
page 14-50

� Oracle Streams Replication Administrator's Guide for information 
about the possible causes of apply errors

See Also: Oracle Streams Replication Administrator's Guide for more 
information about setting tag values generated by the current 
session



Managing Apply Errors

Managing an Apply Process 11-33

apply process reexecutes the transaction in the security context of the original 
receiver of the transaction. The original receiver is the user who was processing the 
transaction when the error was raised.

In either case, the user who executes the transaction must have privileges to 
perform DML and DDL changes on the apply objects and to run any apply 
handlers. This user must also have dequeue privileges on the queue used by the 
apply process.

Retrying All Error Transactions for an Apply Process
After you correct the conditions that caused all of the apply errors for an apply 
process, you can retry all of the error transactions by running the 
EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package. For example, 
to retry all of the error transactions for an apply process named strm01_apply, 
you can run the following procedure:

BEGIN
  DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
    apply_name       => 'strm01_apply',
    execute_as_user  => false);
END;
/

Deleting Apply Error Transactions
The following sections describe how to delete a specific error transaction and how 
to delete all error transactions for an apply process.

Deleting a Specific Apply Error Transaction
If an error transaction should not be applied, then you can delete the transaction 
from the error queue using the DELETE_ERROR procedure in the 
DBMS_APPLY_ADM package. For example, a transaction with the transaction 
identifier 5.4.312, run the following procedure: 

EXEC DBMS_APPLY_ADM.DELETE_ERROR(local_transaction_id => '5.4.312');

Note: If you specify NULL for the apply_name parameter, and 
you have multiple apply processes, then all of the apply errors are 
retried for all of the apply processes.



Managing Apply Errors

11-34 Oracle Streams Concepts and Administration

Deleting All Error Transactions for an Apply Process
If none of the error transactions should be applied, then you can delete all of the 
error transactions by running the DELETE_ALL_ERRORS procedure in the 
DBMS_APPLY_ADM package. For example, to delete all of the error transactions for 
an apply process named strm01_apply, you can run the following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ALL_ERRORS(apply_name => 'strm01_apply');

Note: If you specify NULL for the apply_name parameter, and 
you have multiple apply processes, then all of the apply errors are 
deleted for all of the apply processes.



Managing Rules and Rule-Based Transformations 12-1

12
Managing Rules and Rule-Based

Transformations

A Streams environment uses rules to control the behavior of capture processes, 
propagations, apply processes, and messaging clients. A Streams environment uses 
rule-based transformations to modify an event that results when a rule evaluates to 
TRUE. Transformations can occur during capture, propagation, apply, or dequeue of 
an event. In addition, you can create custom applications that are clients of the rules 
engine. This chapter contains instructions for managing rule sets, rules, and 
rule-based transformations.

This chapter contains these topics:

� Managing Rule Sets and Rules

� Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

� Managing Rule-Based Transformations

Each task described in this chapter should be completed by a Streams administrator 
that has been granted the appropriate privileges, unless specified otherwise.

Note: This chapter does not contain examples for creating 
evaluation contexts, nor does it contain examples for evaluating 
events using the DBMS_RULE.EVALUATE procedure. See 
Chapter 17, "Rule-Based Application Example" for these examples.



Managing Rule Sets and Rules

12-2 Oracle Streams Concepts and Administration

Managing Rule Sets and Rules
You can change a rule or rule set without stopping Streams capture processes, 
propagations, and apply processes that use the rule or rule set. Streams will detect 
the change immediately after it is committed. If you need precise control over 
which events use the new version of a rule or rule set, then you should stop the 
relevant capture processes and apply processes and disable the relevant 
propagation jobs, change the rule or rule set, and then restart the stopped processes 
and propagation jobs.

This section provides instructions for completing the following tasks:

� Creating a Rule Set

� Creating a Rule

� Adding a Rule to a Rule Set

� Altering a Rule

� Modifying System-Created Rules

� Removing a Rule from a Rule Set

� Dropping a Rule

� Dropping a Rule Set

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"

� "Rule-Based Transformations" on page 6-63

� "Configuring a Streams Administrator" on page 8-2

See Also:

� "Stopping a Capture Process" on page 9-26

� "Disabling a Propagation Job" on page 10-18

� "Stopping an Apply Process" on page 11-10



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-3

Creating a Rule Set
The following is an example that runs the CREATE_RULE_SET procedure in the 
DBMS_RULE_ADM package to create a rule set:

BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name       => 'strmadmin.hr_capture_rules',
  evaluation_context  => 'SYS.STREAMS$_EVALUATION_CONTEXT');
END;
/

Running this procedure performs the following actions:

� Creates a rule set named hr_capture_rules in the strmadmin schema. A 
rule set with the same name and owner must not exist.

� Associates the rule set with the SYS.STREAMS$_EVALUATION_CONTEXT 
evaluation context, which is the Oracle-supplied evaluation context for Streams

You also can use the following procedures in the DBMS_STREAMS_ADM package to 
create a rule set automatically, if one does not exist for a Streams capture process, 
propagation, apply process, or messaging client:

� ADD_MESSAGE_PROPAGATION_RULE

� ADD_MESSAGE_RULE

� ADD_TABLE_PROPAGATION_RULES

� ADD_TABLE_RULES

� ADD_SUBSET_PROPAGATION_RULES

� ADD_SUBSET_RULES

� ADD_SCHEMA_PROPAGATION_RULES

� ADD_SCHEMA_RULES

� ADD_GLOBAL_PROPAGATION_RULES

� ADD_GLOBAL_RULES

Except for ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES, these 
procedures can create either a positive or a negative rule set for a Streams client. 
ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES can only create a 
positive rule set for a Streams client.



Managing Rule Sets and Rules

12-4 Oracle Streams Concepts and Administration

Creating a Rule
The following examples use the CREATE_RULE procedure in the DBMS_RULE_ADM 
package to create a rule without an action context and a rule with an action context.

Creating a Rule Without an Action Context
To create a rule without an action context, run the CREATE_RULE procedure and 
specify the rule's name using the rule_name parameter and the rule's condition 
using the condition parameter, as in the following example:

BEGIN  
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name  => 'strmadmin.hr_dml',
    condition  => ' :dml.get_object_owner() = ''HR'' ');
END;
/

Running this procedure performs the following actions:

� Creates a rule named hr_dml in the strmadmin schema. A rule with the same 
name and owner must not exist.

� Creates a condition that evaluates to TRUE for any DML change to a table in the 
hr schema

In this example, no evaluation context is specified for the rule. Therefore, the rule 
will either inherit the evaluation context of any rule set to which it is added, or it 
will be assigned an evaluation context explicitly when the 
DBMS_RULE_ADM.ADD_RULE procedure is run to add it to a rule set. At this point, 
the rule cannot be evaluated because it is not part of any rule set.

See Also:

� "Example of Creating a Local Capture Process Using 
DBMS_STREAMS_ADM" on page 9-4

� "Example of Creating a Propagation Using 
DBMS_STREAMS_ADM" on page 10-9

� "Example That Creates an Apply Process for Captured Events 
Using DBMS_STREAMS_ADM" on page 11-4



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-5

You also can use the following procedures in the DBMS_STREAMS_ADM package to 
create rules and add them to a rule set automatically:

� ADD_MESSAGE_PROPAGATION_RULE

� ADD_MESSAGE_RULE

� ADD_TABLE_PROPAGATION_RULES

� ADD_TABLE_RULES

� ADD_SUBSET_PROPAGATION_RULES

� ADD_SUBSET_RULES

� ADD_SCHEMA_PROPAGATION_RULES

� ADD_SCHEMA_RULES

� ADD_GLOBAL_PROPAGATION_RULES

� ADD_GLOBAL_RULES

Except for ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES, these 
procedures can add rules to either the positive or the negative rule set for a Streams 
client. ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES can only 
add rules to the positive rule set for a Streams client.

Creating a Rule With an Action Context
To create a rule with an action context, run the CREATE_RULE procedure and 
specify the rule's name using the rule_name parameter, the rule's condition using 
the condition parameter, and the rule's action context using the 
action_context parameter. You add a name-value pair to a rule's action context 
using the ADD_PAIR member procedure of the RE$NV_LIST type

See Also:

� "Example of Creating a Local Capture Process Using 
DBMS_STREAMS_ADM" on page 9-4

� "Example of Creating a Propagation Using 
DBMS_STREAMS_ADM" on page 10-9

� "Example That Creates an Apply Process for Captured Events 
Using DBMS_STREAMS_ADM" on page 11-4



Managing Rule Sets and Rules

12-6 Oracle Streams Concepts and Administration

The following example creates a rule with a non-NULL action context: 

DECLARE
  ac  SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('course_number', SYS.AnyData.CONVERTNUMBER(1057));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'strmadmin.rule_dep_10',
    condition      => ' :dml.get_object_owner()=''HR'' AND ' || 
       ' :dml.get_object_name()=''EMPLOYEES'' AND ' || 
       ' (:dml.get_value(''NEW'', ''DEPARTMENT_ID'').AccessNumber()=10) AND ' || 
       ' :dml.get_command_type() = ''INSERT'' ',
    action_context => ac);
END;
/

Running this procedure performs the following actions:

� Creates a rule named rule_dep_10 in the strmadmin schema. A rule with the 
same name and owner must not exist.

� Creates a condition that evaluates to TRUE for any insert into the 
hr.employees table where the department_id is 10.

� Creates an action context with one name-value pair that has course_number 
for the name and 1057 for the value.

Adding a Rule to a Rule Set
The following is an example that runs the ADD_RULE procedure in the 
DBMS_RULE_ADM package to add the hr_dml rule to the hr_capture_rules rule 
set:

BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name          => 'strmadmin.hr_dml', 
    rule_set_name      => 'strmadmin.hr_capture_rules',
    evaluation_context => NULL);
END;
/

See Also: "Rule Action Context" on page 5-10 for a scenario that 
uses such a name-value pair in an action context



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-7

In this example, no evaluation context is specified when running the ADD_RULE 
procedure. Therefore, if the rule does not have its own evaluation context, it will 
inherit the evaluation context of the hr_capture_rules rule set. If you want a 
rule to use an evaluation context other than the one specified for the rule set, then 
you can set the evaluation_context parameter to this evaluation context when 
you run the ADD_RULE procedure.

Altering a Rule
You can use the ALTER_RULE procedure in the DBMS_RULE_ADM package to alter 
an existing rule. Specifically, you can use this procedure to do the following:

� Change a rule's condition

� Change a rule's evaluation context

� Remove a rule's evaluation context

� Modify a name-value pair in a rule's action context

� Add a name-value pair to a rule's action context

� Remove a name-value pair from a rule's action context

� Change the comment for a rule

� Remove the comment for a rule

The following sections contains examples for some of these alterations.

Changing a Rule's Condition
You use the condition parameter in the ALTER_RULE procedure to change the 
condition of an existing rule. For example, suppose you want to change the 
condition of the rule created in "Creating a Rule" on page 12-4. The condition in the 
existing hr_dml rule evaluates to TRUE for any DML change to any object in the hr 
schema. If you want to exclude changes to the employees table in this schema, 
then you can alter the rule so that it evaluates to FALSE for DML changes to the 
hr.employees table, but continues to evaluate to TRUE for DML changes to any 
other table in this schema. The following procedure alters the rule in this way:



Managing Rule Sets and Rules

12-8 Oracle Streams Concepts and Administration

BEGIN  
  DBMS_RULE_ADM.ALTER_RULE(
    rule_name          => 'strmadmin.hr_dml',
    condition          => ' :dml.get_object_owner() = ''HR'' AND NOT ' ||
                          ' :dml.get_object_name() = ''EMPLOYEES'' ',
    evaluation_context => NULL);
END;
/

Modifying a Name-Value Pair in a Rule's Action Context
To modify a name-value pair in a rule's action context, you first remove the 
name-value pair from the rule's action context and then add a different name-value 
pair to the rule's action context.

This example modifies a name-value pair for rule rule_dep_10 by first removing 
the name-value pair with the name course_name from the rule's action context 
and then adding a different name-value pair back to the rule's action context with 
the same name (course_name) but a different value. This name-value pair being 
modified was added to the rule in the example in "Creating a Rule With an Action 
Context" on page 12-5.

If an action context contains name-value pairs in addition to the name-value pair 
that you are modifying, then be cautious when you modify the action context so 
that you do not change or remove any of the other name-value pairs.

Note:

� Changing the condition of a rule affects all rule sets that contain 
the rule.

� If you want to alter a rule but retain the rule's action context, 
then specify NULL for action_context parameter in the 
ALTER_RULE procedure. NULL is the default value for the 
action_context parameter.



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-9

Complete the following steps to modify a name-value pair in an action context:

1. You can view the name-value pairs in the action context of a rule by performing 
the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context Number Value' FORMAT 9999

SELECT 
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME = 'RULE_DEP_10';

This query displays output similar to the following:

Action Context Name       Action Context Number Value
------------------------- ---------------------------
course_number                                    1057

2. Modify the name-value pair. Make sure no other users are modifying the action 
context at the same time. This step first removes the name-value pair containing 
the name course_number from the action context for the rule_dep_10 rule 
using the REMOVE_PAIR member procedure of the RE$NV_LIST type. Next, 
this step adds a name-value pair containing the new name-value pair to the 
rule's action context using the ADD_PAIR member procedure of this type. In 
this case, the name is course_number and the value is 1108 for the added 
name-value pair.

To preserve any existing name-value pairs in the rule's action context, this 
example selects the rule's action context into a variable before altering it: 

DECLARE
  action_ctx       SYS.RE$NV_LIST;
  ac_name          VARCHAR2(30) := 'course_number';
BEGIN
  SELECT RULE_ACTION_CONTEXT
    INTO action_ctx
    FROM DBA_RULES R
    WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
  action_ctx.REMOVE_PAIR(ac_name);
  action_ctx.ADD_PAIR(ac_name,
                 SYS.ANYDATA.CONVERTNUMBER(1108));



Managing Rule Sets and Rules

12-10 Oracle Streams Concepts and Administration

  DBMS_RULE_ADM.ALTER_RULE(
    rule_name       =>  'strmadmin.rule_dep_10',
    action_context  => action_ctx);
END;
/

To ensure that the name-value pair was altered properly, you can rerun the 
query in Step 1. The query should display output similar to the following:

Action Context Name       Action Context Number Value
------------------------- ---------------------------
course_number                                    1108

Adding a Name-Value Pair to a Rule's Action Context
You can preserve the existing name-value pairs in the action context by selecting the 
action context into a variable before adding a new pair using the ADD_PAIR 
member procedure of the RE$NV_LIST type. Make sure no other users are 
modifying the action context at the same time. The following example preserves the 
existing name-value pairs in the action context of the rule_dep_10 rule and adds 
a new name-value pair with dist_list for the name and admin_list for the 
value:

DECLARE
  action_ctx       SYS.RE$NV_LIST;
  ac_name          VARCHAR2(30) := 'dist_list';
BEGIN
  action_ctx := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
  SELECT RULE_ACTION_CONTEXT
    INTO action_ctx
    FROM DBA_RULES R
    WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
  action_ctx.ADD_PAIR(ac_name,
                 SYS.ANYDATA.CONVERTVARCHAR2('admin_list'));
  DBMS_RULE_ADM.ALTER_RULE(
    rule_name       =>  'strmadmin.rule_dep_10',
    action_context  => action_ctx);
END;
/

To make sure the name-value pair was added successfully, you can run the 
following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context|Number Value' FORMAT 9999
COLUMN AC_VALUE_VARCHAR2 HEADING 'Action Context|Text Value' FORMAT A25



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-11

SELECT 
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER,
    AC.NVN_VALUE.ACCESSVARCHAR2() AC_VALUE_VARCHAR2
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME = 'RULE_DEP_10';

This query should display output similar to the following:

                          Action Context Action Context
Action Context Name         Number Value Text Value
------------------------- -------------- -------------------------
course_number                       1088
dist_list                                admin_list

Removing a Name-Value Pair from a Rule's Action Context
You remove a name-value pair in the action context of a rule using the 
REMOVE_PAIR member procedure of the RE$NV_LIST type. Make sure no other 
users are modifying the action context at the same time. 

Removing a name-value pair means altering the action context of a rule. If an action 
context contains name-value pairs in addition to the name-value pair being 
removed, then be cautious when you modify the action context so that you do not 
change or remove any other name-value pairs.

This example assumes that the rule_dep_10 rule has the following name-value 
pairs:

See Also: "Rule Action Context" on page 5-10 for a scenario that 
uses similar name-value pairs in an action context

Name Value

course_number 1088

dist_list admin_list



Managing Rule Sets and Rules

12-12 Oracle Streams Concepts and Administration

This example preserves existing name-value pairs in the action context of the 
rule_dep_10 rule that should not be removed by selecting the existing action 
context into a variable and then removing the name value pair with dist_list for 
the name.

DECLARE
  action_ctx       SYS.RE$NV_LIST;
  ac_name          VARCHAR2(30) := 'dist_list';
BEGIN
  SELECT RULE_ACTION_CONTEXT
    INTO action_ctx
    FROM DBA_RULES R
    WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
  action_ctx.REMOVE_PAIR(ac_name);
  DBMS_RULE_ADM.ALTER_RULE(
    rule_name       =>  'strmadmin.rule_dep_10',
    action_context  =>  action_ctx);
END;
/

To make sure the name-value pair was removed successfully without removing any 
other name-value pairs in the action context, you can run the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context|Number Value' FORMAT 9999
COLUMN AC_VALUE_VARCHAR2 HEADING 'Action Context|Text Value' FORMAT A25

SELECT 
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER,
    AC.NVN_VALUE.ACCESSVARCHAR2() AC_VALUE_VARCHAR2
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME = 'RULE_DEP_10';

See Also: You added these name-value pairs to the 
rule_dep_10 rule if you completed the examples in the following 
sections: 

� "Creating a Rule With an Action Context" on page 12-5

� "Modifying a Name-Value Pair in a Rule's Action Context" on 
page 12-8

� "Adding a Name-Value Pair to a Rule's Action Context" on 
page 12-10



Managing Rule Sets and Rules

Managing Rules and Rule-Based Transformations 12-13

This query should display output similar to the following:

                          Action Context Action Context
Action Context Name         Number Value Text Value
------------------------- -------------- -------------------------
course_number                       1108

Modifying System-Created Rules
System-created rules are rules created by running a procedure in the 
DBMS_STREAMS_ADM package. If you want to use a rule-based transformation for a 
system-created rule, then you can use the SET_RULE_TRANSFORM_FUNCTION 
procedure in the DBMS_STREAMS_ADM package.

Also, if you cannot create a rule with the rule condition you need using the 
DBMS_STREAMS_ADM package, then you can create a new rule with a condition 
based on a system-created rule by following these general steps:

1. Copy the rule condition of the system-created rule. You can view the rule 
condition of a system-created rule by querying the DBA_STREAMS_RULES data 
dictionary view.

2. Modify the condition.

3. Create a new rule with the modified condition. 

4. Add the new rule to a rule set for a Streams capture process, propagation, apply 
process, or messaging client. 

5. Remove the original rule if it is no longer needed using the REMOVE_RULE 
procedure in the DBMS_STREAMS_ADM package. 

See Also:

� "Rule-Based Transformations" on page 6-63

� Chapter 14, "Monitoring a Streams Environment" for more 
information about the data dictionary views related to Streams



Managing Rule Sets and Rules

12-14 Oracle Streams Concepts and Administration

Removing a Rule from a Rule Set
The following is an example that runs the REMOVE_RULE procedure in the 
DBMS_RULE_ADM package to remove the hr_dml rule from the 
hr_capture_rules rule set:

BEGIN
  DBMS_RULE_ADM.REMOVE_RULE(
    rule_name     => 'strmadmin.hr_dml', 
    rule_set_name => 'strmadmin.hr_capture_rules');
END;
/

After running the REMOVE_RULE procedure, the rule still exists in the database and, 
if it was in any other rule sets, it remains in those rule sets.

Dropping a Rule
The following is an example that runs the DROP_RULE procedure in the 
DBMS_RULE_ADM package to drop the hr_dml rule from the database:

BEGIN
  DBMS_RULE_ADM.DROP_RULE(
    rule_name => 'strmadmin.hr_dml', 
    force     => false);
END;
/

In this example, the force parameter in the DROP_RULE procedure is set to false, 
which is the default setting. Therefore, the rule cannot be dropped if it is in one or 
more rule sets. If the force parameter is set to true, then the rule is dropped from 
the database and automatically removed from any rule sets that contain it.

Dropping a Rule Set
The following is an example that runs the DROP_RULE_SET procedure in the 
DBMS_RULE_ADM package to drop the hr_capture_rules rule set from the 
database:

BEGIN
  DBMS_RULE_ADM.DROP_RULE_SET(
    rule_set_name => 'strmadmin.hr_capture_rules', 
    delete_rules  => false);
END;
/



Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

Managing Rules and Rule-Based Transformations 12-15

In this example, the delete_rules parameter in the DROP_RULE_SET procedure 
is set to false, which is the default setting. Therefore, if the rule set contains any 
rules, then these rules are not dropped. If the delete_rules parameter is set to 
true, then any rules in the rule set, which are not in another rule set, are dropped 
from the database automatically. If some of the rules in the rule set are in one or 
more other rule sets, then these rules are not dropped.

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
This section provides instructions for completing the following tasks:

� Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules

� Granting Object Privileges on an Evaluation Context, Rule Set, or Rule

� Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules

� Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules
You can use the GRANT_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM 
package to grant system privileges on evaluation contexts, rule sets, and rules to 
users and roles. These privileges enable a user to create, alter, execute, or drop these 
objects in the user's own schema or, if the "ANY" version of the privilege is granted, 
in any schema.

For example, to grant the hr user the privilege to create an evaluation context in the 
user's own schema, enter the following while connected as a user who can grant 
privileges and alter users:

See Also:

� "Database Objects and Privileges Related to Rules" on page 5-17

� The GRANT_SYSTEM_PRIVILEGE and 
GRANT_OBJECT_PRIVILEGE procedures in the 
DBMS_RULE_ADM package in PL/SQL Packages and Types 
Reference



Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

12-16 Oracle Streams Concepts and Administration

BEGIN 
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
    grantee      => 'hr', 
    grant_option => false);
END;
/

In this example, the grant_option parameter in the GRANT_SYSTEM_PRIVILEGE 
procedure is set to false, which is the default setting. Therefore, the hr user 
cannot grant the CREATE_EVALUATION_CONTEXT_OBJ system privilege to other 
users or roles. If the grant_option parameter were set to true, then the hr user 
could grant this system privilege to other users.

Granting Object Privileges on an Evaluation Context, Rule Set, or Rule
You can use the GRANT_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM 
package to grant object privileges on a specific evaluation context, rule set, or rule. 
These privileges enable a user to alter or execute the specified object.

For example, to grant the hr user the privilege to both alter and execute a rule set 
named hr_capture_rules in the strmadmin schema, enter the following:

BEGIN 
  DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
    privilege    => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
    object_name  => 'strmadmin.hr_capture_rules',
    grantee      => 'hr', 
    grant_option => false);
END;
/

In this example, the grant_option parameter in the GRANT_OBJECT_PRIVILEGE 
procedure is set to false, which is the default setting. Therefore, the hr user 
cannot grant the ALL_ON_RULE_SET object privilege for the specified rule set to 
other users or roles. If the grant_option parameter were set to true, then the hr 
user could grant this object privilege to other users.



Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

Managing Rules and Rule-Based Transformations 12-17

Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules
You can use the REVOKE_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM 
package to revoke system privileges on evaluation contexts, rule sets, and rules.

For example, to revoke from the hr user the privilege to create an evaluation 
context in the user's own schema, enter the following while connected as a user who 
can grant privileges and alter users:

BEGIN 
  DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(
    privilege    => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
    revokee      => 'hr');
END;
/

Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule
You can use the REVOKE_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM 
package to revoke object privileges on a specific evaluation context, rule set, or rule. 

For example, to revoke from the hr user the privilege to both alter and execute a 
rule set named hr_capture_rules in the strmadmin schema, enter the 
following:

BEGIN 
  DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(
    privilege    => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
    object_name  => 'strmadmin.hr_capture_rules',
    revokee      => 'hr');
END;
/



Managing Rule-Based Transformations

12-18 Oracle Streams Concepts and Administration

Managing Rule-Based Transformations
In Streams, a rule-based transformation is any modification to an event that results 
when a rule in a positive rule set evaluates to TRUE. You use the 
SET_RULE_TRANSFORM_FUNCTION procedure in the DBMS_STREAMS_ADM 
package to add, alter, or remove a rule-based transformation for a rule. This 
procedure modifies the rule's action context to specify the rule-based 
transformation.

This section provides instructions for completing the following tasks:

� Creating a Rule-Based Transformation

� Altering a Rule-Based Transformation

� Removing a Rule-Based Transformation

Attention: Do not modify LONG, LONG RAW or LOB column data in 
an LCR. This includes rule-based transformation functions, DML 
handlers, and error handlers.

Note:

� There is no automatic locking mechanism for a rule's action 
context. Therefore, make sure an action context is not updated 
by two or more sessions at the same time.

� When you perform rule-based transformations on DDL LCRs, 
you probably need to modify the DDL text in the DDL LCR to 
match any other modification. For example, if the rule-based 
transformation changes the name of a table in the DDL LCR, 
then the rule-based transformation should change the table 
name in the DDL text in the same way.

� The transformation specified for a rule is performed only if the 
rule is in a positive rule set. If the rule is in the negative rule set 
for a capture process, propagation, apply process, or messaging 
client, then these Streams clients ignore the rule-based 
transformation.

See Also: "Rule-Based Transformations" on page 6-63



Managing Rule-Based Transformations

Managing Rules and Rule-Based Transformations 12-19

Creating a Rule-Based Transformation
A function in a rule-based transformation must have the following signature:

FUNCTION user_function (
   parameter_name   IN  SYS.AnyData)
RETURN SYS.AnyData;

Here, user_function stands for the name of the function and parameter_name 
stands for the name of the parameter passed to the function. The parameter passed 
to the function is a SYS.AnyData encapsulation of an event, and the function must 
return a SYS.AnyData encapsulation of an event.

The following steps outline the general procedure for creating a rule-based 
transformation:

1. Create a PL/SQL function that performs the transformation.
 

The following example creates a function called executive_to_management 
in the hr schema that changes the value in the department_name column of 
the departments table from Executive to Management. Such a 
transformation may be necessary if one branch in a company uses a different 
name for this department.

CONNECT hr/hr

Caution: Make sure the transformation function is deterministic. 
A deterministic function will always return the same value for any 
given set of input argument values, now and in the future. Also, 
make sure the transformation function does not raise any 
exceptions. Exceptions may cause a capture process, propagation, 
or apply process to become disabled, and you will need to correct 
the transformation function before the capture process, 
propagation, or apply process can proceed. Exceptions raised by a 
rule-based transformation for a messaging client may prevent the 
messaging client from dequeuing events.



Managing Rule-Based Transformations

12-20 Oracle Streams Concepts and Administration

CREATE OR REPLACE FUNCTION hr.executive_to_management(in_any IN SYS.AnyData) 
RETURN SYS.AnyData
IS
  lcr SYS.LCR$_ROW_RECORD;
  rc  NUMBER;
  ob_owner VARCHAR2(30);
  ob_name VARCHAR2(30);
  dep_value_anydata SYS.AnyData;
  dep_value_varchar2 VARCHAR2(30);
BEGIN
  -- Get the type of object
  -- Check if the object type is SYS.LCR$_ROW_RECORD
  IF in_any.GETTYPENAME='SYS.LCR$_ROW_RECORD' THEN
    -- Put the row LCR into lcr
    rc := in_any.GETOBJECT(lcr);
    -- Get the object owner and name
    ob_owner := lcr.GET_OBJECT_OWNER();
    ob_name := lcr.GET_OBJECT_NAME();
    -- Check for the hr.departments table
    IF ob_owner = 'HR' AND ob_name = 'DEPARTMENTS' THEN
      -- Get the old value of the department_name column in the LCR
      dep_value_anydata := lcr.GET_VALUE('old','DEPARTMENT_NAME');
      IF dep_value_anydata IS NOT NULL THEN
        -- Put the column value into dep_value_varchar2
        rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
        -- Change a value of Executive in the column to Management
        IF (dep_value_varchar2 = 'Executive') THEN
          lcr.SET_VALUE('OLD','DEPARTMENT_NAME',
            SYS.ANYDATA.CONVERTVARCHAR2('Management'));
        END IF;
      END IF;
      -- Get the new value of the department_name column in the LCR
      dep_value_anydata := lcr.GET_VALUE('new', 'DEPARTMENT_NAME', 'n');
      IF dep_value_anydata IS NOT NULL THEN
        -- Put the column value into dep_value_varchar2
        rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
        -- Change a value of Executive in the column to Management
        IF (dep_value_varchar2 = 'Executive') THEN
          lcr.SET_VALUE('new','DEPARTMENT_NAME',
            SYS.ANYDATA.CONVERTVARCHAR2('Management'));
        END IF;
      END IF;
    RETURN SYS.ANYDATA.CONVERTOBJECT(lcr);
    END IF;
  END IF;



Managing Rule-Based Transformations

Managing Rules and Rule-Based Transformations 12-21

RETURN in_any;
END;
/

2. Grant the Streams administrator EXECUTE privilege on the 
hr.executive_to_management function.

GRANT EXECUTE ON hr.executive_to_management TO strmadmin;

3. Create subset rules for DML operations on the hr.departments table. The 
subset rules will use the transformation created in Step 1.

Subset rules are not required to use rule-based transformations. This example 
uses subset rules to illustrate an action context with more than one name-value 
pair. This example creates subset rules for an apply process on a database 
named dbs1.net. These rules evaluate to TRUE when an LCR contains a DML 
change to a row with a location_id of 1700 in the hr.departments table. 
This example assumes that a SYS.AnyData queue named strm01_queue 
already exists in the database.

To create these rules, connect as the Streams administrator and run the 
following ADD_SUBSET_RULES procedure:

CONNECT strmadmin/strmadminpw

BEGIN 
  DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name               =>  'hr.departments',
  dml_condition            =>  'location_id=1700',

   streams_type  =>  'apply',
 streams_name  =>  'strm01_apply',

 queue_name  =>  'strm01_queue',
    include_tagged_lcr  =>  false,
    source_database          =>  'dbs1.net');
END;
/



Managing Rule-Based Transformations

12-22 Oracle Streams Concepts and Administration

4. Determine the names of the system-created rules by running the following 
query:

SELECT RULE_NAME, SUBSETTING_OPERATION FROM DBA_STREAMS_RULES 
  WHERE OBJECT_NAME='DEPARTMENTS' AND DML_CONDITION='location_id=1700';

This query displays output similar to the following:

RULE_NAME                      SUBSET
------------------------------ ------
DEPARTMENTS5                   INSERT
DEPARTMENTS6                   UPDATE
DEPARTMENTS7                   DELETE

Note:

� To create the rule and the rule set, the Streams administrator 
must have CREATE_RULE_SET_OBJ 
(or CREATE_ANYRULE_SET_OBJ) and CREATE_RULE_OBJ 
(or CREATE_ANY_RULE_OBJ) system privileges. You grant 
these privileges using the GRANT_SYSTEM_PRIVILEGE 
procedure in the DBMS_RULE_ADM package.

� This example creates the rule using the DBMS_STREAMS_ADM 
package. Alternatively, you can create a rule, add it to a rule set, 
and specify a rule-based transformation using the 
DBMS_RULE_ADM package. Oracle Streams Replication 
Administrator's Guide contains an example of this.

� The ADD_SUBSET_RULES procedure adds the subset rules to 
the positive rule set for the apply process.

Note: You also can obtain this information using the OUT 
parameters when you run ADD_SUBSET_RULES.



Managing Rule-Based Transformations

Managing Rules and Rule-Based Transformations 12-23

Because these are subset rules, two of them contain a non-NULL action context 
that performs an internal transformation:

� The rule with a subsetting condition of INSERT contains an internal 
transformation that converts updates into inserts if the update changes the 
value of the location_id column to 1700 from some other value. The 
internal transformation does not affect inserts.

� The rule with a subsetting condition of DELETE contains an internal 
transformation that converts updates into deletes if the update changes the 
value of the location_id column from 1700 to a different value. The 
internal transformation does not affect deletes.

In this example, you can confirm that the rules DEPARTMENTS5 and 
DEPARTMENTS7 have a non-NULL action context, and that the rule 
DEPARTMENTS6 has a NULL action context, by running the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A13
COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A27
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A26

SELECT 
    RULE_NAME,
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

This query displays output similar to the following:

Rule Name     Action Context Name         Action Context Value
------------- --------------------------- --------------------------
DEPARTMENTS5  STREAMS$_ROW_SUBSET         INSERT
DEPARTMENTS7  STREAMS$_ROW_SUBSET         DELETE

The DEPARTMENTS6 rule does not appear in the output because its action 
context is NULL.



Managing Rule-Based Transformations

12-24 Oracle Streams Concepts and Administration

5. Set the rule-based transformation for each subset rule by running the 
SET_RULE_TRANSFORM_FUNCTION procedure. This step runs this procedure 
for each rule and specifies hr.executive_to_management as the rule-based 
transformation function. Make sure no other users are modifying the action 
context at the same time.

BEGIN
  DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
    rule_name           => 'departments5',
    transform_function  => 'hr.executive_to_management');
  DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
    rule_name           => 'departments6',
    transform_function  => 'hr.executive_to_management');
  DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
    rule_name           => 'departments7',
    transform_function  => 'hr.executive_to_management');    
END;
/

Specifically, this procedure adds a name-value pair to each rule's action context 
that specifies the name STREAMS$_TRANSFORM_FUNCTION and a value that is 
a SYS.AnyData instance containing the name of the PL/SQL function that 
performs the transformation. In this case, the transformation function is 
hr.executive_to_management.

Now, if you run the query that displays the name-value pairs in the action 
context for these rules, each rule, including the DEPARTMENTS6 rule, shows the 
name-value pair for the rule-based transformation:

SELECT 
    RULE_NAME,
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

Note: The SET_RULE_TRANSFORM_FUNCTION does not verify 
that the specified transformation function exists. If the function 
does not exist, then an error is raised when a Streams process or job 
tries to invoke the transformation function.



Managing Rule-Based Transformations

Managing Rules and Rule-Based Transformations 12-25

This query displays output similar to the following:

Rule Name    Action Context Name         Action Context Value
------------ --------------------------- --------------------------
DEPARTMENTS5 STREAMS$_ROW_SUBSET         INSERT
DEPARTMENTS5 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management
DEPARTMENTS6 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management
DEPARTMENTS7 STREAMS$_ROW_SUBSET         DELETE
DEPARTMENTS7 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management

You also can view transformation functions using the 
DBA_STREAMS_TRANSFORM_FUNCTION data dictionary view.

Altering a Rule-Based Transformation
To alter a rule-based transformation, you either can edit the transformation function 
or run the SET_RULE_TRANSFORM_FUNCTION procedure to specify a different 
transformation function. This example runs the 
SET_RULE_TRANSFORM_FUNCTION procedure to specify a different transformation 
function. The SET_RULE_TRANSFORM_FUNCTION procedure modifies the action 
context of a specified rule to run a different transformation function. If you edit the 
transformation function itself, then you do not need to run this procedure.

This example alters a rule-based transformation for rule DEPARTMENTS5 by 
changing the transformation function from hr.execute_to_management to 
hr.executive_to_lead. This rule based transformation was added to the 
DEPARTMENTS5 rule in the example in "Creating a Rule-Based Transformation" on 
page 12-19.

In Streams, subset rules use name-value pairs in an action context to perform 
internal transformations that convert UPDATE operations into INSERT and DELETE 
operations in certain situations. Such a conversion is called a row migration. The 
SET_RULE_TRANSFORM_FUNCTION procedure preserves the name-value pairs that 
perform row migrations.

See Also: PL/SQL Packages and Types Reference for more 
information about the rule types used in this example

See Also: "Row Migration and Subset Rules" on page 6-27 for 
more information about row migration



Managing Rule-Based Transformations

12-26 Oracle Streams Concepts and Administration

Complete the following steps to alter a rule-based transformation:

1. You can view all of the name-value pairs in the action context of a rule by 
performing the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A30
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A26

SELECT 
    AC.NVN_NAME ACTION_CONTEXT_NAME, 
    AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  WHERE RULE_NAME = 'DEPARTMENTS5';

This query displays output similar to the following:

Action Context Name            Action Context Value
------------------------------ --------------------------
STREAMS$_ROW_SUBSET            INSERT
STREAMS$_TRANSFORM_FUNCTION    hr.executive_to_management

2. Run the SET_RULE_TRANSFORM_FUNCTION procedure to set the 
transformation function to executive_to_lead. In this example, it is 
assumed that the new transformation function is hr.executive_to_lead 
and that the strmadmin user has EXECUTE privilege on it.

Run the following procedure to set the rule-based transformation for rule 
DEPARTMENTS5 to hr.executive_to_lead:

BEGIN
  DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
    rule_name           => 'departments5',
    transform_function  => 'hr.executive_to_lead');
END;
/  

To ensure that the transformation function was altered properly, you can rerun 
the query in Step 1. You should alter the action context for the DEPARTMENTS6 
and DEPARTMENTS7 rules in a similar way to keep the three subset rules 
consistent.



Managing Rule-Based Transformations

Managing Rules and Rule-Based Transformations 12-27

Removing a Rule-Based Transformation
To remove a rule-based transformation from a rule, run the 
SET_RULE_TRANSFORM_FUNCTION procedure and specify NULL for the 
transformation function. Specifying NULL removes the name-value pair that 
specifies the rule-based transformation in the rule's action context. This example 
removes a rule-based transformation for rule DEPARTMENTS5. This rule-based 
transformation was added to the DEPARTMENTS5 rule in the example in "Creating a 
Rule-Based Transformation" on page 12-19.

In Streams, subset rules use name-value pairs in an action context to perform 
internal transformations that convert UPDATE operations into INSERT and DELETE 
operations in certain situations. Such a conversion is called a row migration. The 
SET_RULE_TRANSFORM_FUNCTION procedure preserves the name-value pairs that 
perform row migrations.

Run the following procedure to remove the rule-based transformation for rule 
DEPARTMENTS5:

BEGIN
  DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
    rule_name           => 'departments5',
    transform_function  => NULL);
END;
/

To ensure that the transformation function was removed, you can run the query in 
Step 1 on page 12-26. You should alter the action context for the DEPARTMENTS6 
and DEPARTMENTS7 rules in a similar way to keep the three subset rules consistent.

Note: The SET_RULE_TRANSFORM_FUNCTION does not verify 
that the specified transformation function exists. If the function 
does not exist, then an error is raised when a Streams process or job 
tries to invoke the transformation function.

See Also: "Row Migration and Subset Rules" on page 6-27 for 
more information about row migration

See Also: "Row Migration and Subset Rules" on page 6-27 for 
more information about row migration



Managing Rule-Based Transformations

12-28 Oracle Streams Concepts and Administration



Other Streams Management Tasks 13-1

13
Other Streams Management Tasks

This chapter provides instructions for performing full database export/import in a 
Streams environment. This chapter also provides instructions for removing a 
Streams configuration.

This chapter contains these topics:

� Performing Full Database Export/Import in a Streams Environment

� Removing a Streams Configuration

Each task described in this chapter should be completed by a Streams administrator 
that has been granted the appropriate privileges, unless specified otherwise.

See Also: "Configuring a Streams Administrator" on page 8-2



Performing Full Database Export/Import in a Streams Environment

13-2 Oracle Streams Concepts and Administration

Performing Full Database Export/Import in a Streams Environment
This section describes how to perform a full database export/import on a database 
that is running one or more Streams capture processes, propagations, or apply 
processes. These instructions pertain to a full database export/import where the 
import database and export database are running on different computers, and the 
import database replaces the export database. The global name of the import 
database and the global name of the export database must match. These instructions 
assume that both databases already exist. The export/import described in this 
section may be performed using Data Pump Export/Import utilities or the original 
Export/Import utilities.

Complete the following steps to perform a full database export/import on a 
database that is using Streams:

1. If the export database contains any destination queues for propagations from 
other databases, then disable each propagation job that propagates events to the 
export database. You can disable a propagation job using the 
DISABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

2. Make the necessary changes to your network configuration so that the database 
links used by the propagation jobs you disabled in Step 1 point to the computer 
running the import database.

To complete this step, you may need to re-create the database links used by 
these propagation jobs or modify your Oracle networking files at the databases 
that contain the source queues.

Note: If you want to add a database to an existing Streams 
environment, then do not use the instructions in this section. 
Instead, see Oracle Streams Replication Administrator's Guide.

See Also:

� Oracle Streams Replication Administrator's Guide for more 
information about export/import parameters that are relevant 
to Streams

� Oracle Database Utilities for more information about performing 
a full database export/import



Performing Full Database Export/Import in a Streams Environment

Other Streams Management Tasks 13-3

3. Notify all users to stop making data manipulation language (DML) and data 
definition language (DDL) changes to the export database, and wait until these 
changes have stopped.

4. Make a note of the current export database system change number (SCN). You 
can determine the current SCN using the GET_SYSTEM_CHANGE_NUMBER 
function in the DBMS_FLASHBACK package. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
  current_scn NUMBER;
BEGIN
  current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
      DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

In this example, assume that current SCN returned is 7000000. 

After completing this step, do not stop any capture process running on the 
export database. Step 7c instructs you to use the V$STREAMS_CAPTURE 
dynamic performance view to ensure that no DML or DDL changes were made 
to the database after Step 3. The information about a capture process in this 
view is reset if the capture process is stopped and restarted. 

For the check in Step 7c to be valid, this information should not be reset for any 
capture process. To prevent a capture process from stopping automatically, you 
may need to set the message_limit and time_limit capture process 
parameters to infinite if these parameters are set to another value for any 
capture process.

5. If any downstream capture processes are capturing changes that originated at 
the export database, then make sure the log file containing the SCN determined 
in Step 4 has been transferred to the downstream database and added to the 
capture process session. See "Monitoring a Streams Capture Process" on 
page 14-6 for queries that can determine this information.

6. If the export database is not running any apply processes, and is not 
propagating user-enqueued events, then start the full database export now. 
Make sure that the FULL export parameter is set to y so that the required 
Streams metadata is exported. 

If the export database is running one or more apply processes or is propagating 
user-enqueued events, then do not start the export and proceed to the next step.



Performing Full Database Export/Import in a Streams Environment

13-4 Oracle Streams Concepts and Administration

7. If the export database is the source database for changes captured by any 
capture processes, then complete the following steps for each capture process:

a. Wait until the capture process has scanned past the redo record that 
corresponds to the SCN determined in Step 4. You can view the SCN of the 
redo record last scanned by a capture process by querying the 
CAPTURE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE 
dynamic performance view. Make sure the value of 
CAPTURE_MESSAGE_NUMBER is greater than or equal to the SCN 
determined in Step 4 before you continue.

b. Monitor the Streams environment until the apply process at the destination 
database has applied all of the changes from the capture database. For 
example, if the name of the capture process is capture, the name of the 
apply process is apply, the global name of the destination database is 
dest.net, and the SCN value returned in Step 4 is 7000000, then run the 
following query at the capture database: 

CONNECT strmadmin/strmadminpw

SELECT cap.ENQUEUE_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE cap
  WHERE cap.CAPTURE_NAME = 'CAPTURE' AND
        cap.ENQUEUE_MESSAGE_NUMBER IN (
          SELECT DEQUEUED_MESSAGE_NUMBER
          FROM V$STREAMS_APPLY_READER@dest.net reader,
               V$STREAMS_APPLY_COORDINATOR@dest.net coord
          WHERE reader.APPLY_NAME = 'APPLY' AND
            reader.DEQUEUED_MESSAGE_NUMBER = reader.OLDEST_SCN_NUM AND
            coord.APPLY_NAME = 'APPLY' AND
            coord.LWM_MESSAGE_NUMBER = coord.HWM_MESSAGE_NUMBER AND
            coord.APPLY# = reader.APPLY#) AND
  cap.CAPTURE_MESSAGE_NUMBER >= 7000000;

When this query returns a row, all of the changes from the capture database 
have been applied at the destination database, and you can move on to the 
next step.

If this query returns no results for an inordinately long time, then make 
sure the Streams clients in the environment are enabled by querying the 
STATUS column in the DBA_CAPTURE view at the source database and the 
DBA_APPLY view at the destination database. You can check the status of 
the propagation by running the query in "Displaying the Schedule for a 
Propagation Job" on page 14-29. 



Performing Full Database Export/Import in a Streams Environment

Other Streams Management Tasks 13-5

If a Streams client is disabled, then try restarting it. If a Streams client will 
not restart, then troubleshoot the environment using the information in 
Chapter 15, "Troubleshooting a Streams Environment".

This query assumes that a database link accessible to the Streams 
administrator exists between the capture database and the destination 
database. If such a database link does not exist, then you can perform two 
separate queries at the capture database and destination database to 
determine the SCN values.

c. Verify that the enqueue message number of each capture process is less 
than or equal to the SCN determined in Step 4. You can view the enqueue 
message number for each capture process by querying the 
ENQUEUE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE 
dynamic performance view.

If the enqueue message number of each capture process is less than or equal 
to the SCN determined in Step 4, then proceed to Step 9. 

However, if the enqueue message number of any capture process is higher 
than the SCN determined in Step 4, then one or more DML or DDL changes 
were made after the SCN determined in Step 4, and these changes were 
captured and enqueued by a capture process. In this case, perform all of the 
steps in this section again, starting with Step 1 on page 13-2.

8. If any downstream capture processes captured changes that originated at the 
export database, then drop these downstream capture processes. You will 
re-create them in Step 14a.

9. If the export database has any propagation jobs that are propagating 
user-enqueued events, then disable these propagation jobs using the 
DISABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

10. If the export database is running one or more apply processes, or is propagating 
user-enqueued events, then start the full database export now. Make sure that 
the FULL export parameter is set to y so that the required Streams metadata is 
exported. If you already started the export in Step 6, then proceed to Step 11.

11. When the export is complete, transfer the export dump file to the computer 
running the import database.

Note: For this verification to be valid, each capture process must 
have been running uninterrupted since Step 4.



Performing Full Database Export/Import in a Streams Environment

13-6 Oracle Streams Concepts and Administration

12. Perform the full database import. Make sure that the 
STREAMS_CONFIGURATION and FULL import parameters are both set to y so 
that the required Streams metadata is imported. The default setting is y for the 
STREAMS_CONFIGURATION import parameter. Also, make sure no DML or 
DDL changes are made to the import database during the import.

13. If any downstream capture processes are capturing changes that originated at 
the database, then make the necessary changes so that log files are transferred 
from the import database to the downstream database. See "Preparing to Copy 
Redo Log Files for Downstream Capture" on page 9-6 for instructions.

14. Re-create downstream capture processes:

a. Re-create any downstream capture processes that you dropped in Step 8, if 
necessary. These dropped downstream capture processes were capturing 
changes that originated at the export database. Configure the re-created 
downstream capture processes to capture changes that originate at the 
import database.

b. Re-create downstream capture processes that were running in the export 
database in the import database, if necessary. If the export database had 
any downstream capture processes, then those downstream capture 
processes were not exported.

15. If any local or downstream capture processes will capture changes that 
originate at the database, then, at the import database, prepare the database 
objects whose changes will be captured for instantiation. See Oracle Streams 
Replication Administrator's Guide for information about preparing database 
objects for instantiation.

16. Let users access the import database, and shut down the export database.

17. Enable any propagation jobs you disabled in Steps 1 and 9.

18. If you reset the value of a message_limit or time_limit capture process 
parameter in Step 4, then, at the import database, reset these parameters to their 
original settings.

See Also: "Creating a Capture Process" on page 9-2 for 
information about creating a downstream capture process



Removing a Streams Configuration

Other Streams Management Tasks 13-7

Removing a Streams Configuration
You run the REMOVE_STREAMS_CONFIGURATION procedure in the 
DBMS_STREAMS_ADM package to remove a Streams configuration at the local 
database.

To remove the Streams configuration at the local database, run the following 
procedure:

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Attention: Running this procedure is dangerous. You should run 
this procedure only if you are sure you want to remove the entire 
Streams configuration at a database.

See Also: PL/SQL Packages and Types Reference for detailed 
information about the actions performed by the 
REMOVE_STREAMS_CONFIGURATION procedure



Removing a Streams Configuration

13-8 Oracle Streams Concepts and Administration



Monitoring a Streams Environment 14-1

14
Monitoring a Streams Environment

This chapter provides information about the static data dictionary views and 
dynamic performance views related to Streams. You can use these views to monitor 
your Streams environment. This chapter also illustrates example queries that you 
may want to use to monitor your Streams environment.

This chapter contains these topics:

� Summary of Streams Static Data Dictionary Views

� Summary of Streams Dynamic Performance Views

� Monitoring Streams Administrators and Other Streams Users

� Monitoring a Streams Capture Process

� Monitoring a SYS.AnyData Queue and Messaging

� Monitoring Streams Propagations and Propagation Jobs

� Monitoring a Streams Apply Process

� Monitoring Rules and Rule-Based Transformations

� Monitoring Compatibility in a Streams Environment

� Monitoring Streams Performance Using Statspack

Note: The Streams tool in the Oracle Enterprise Manager Console 
is also an excellent way to monitor a Streams environment. See the 
online help for the Streams tool for more information.



Summary of Streams Static Data Dictionary Views

14-2 Oracle Streams Concepts and Administration

Summary of Streams Static Data Dictionary Views
The following table lists the Streams static data dictionary views.

See Also:

� Oracle Database Reference for information about the data 
dictionary views described in this chapter

� Oracle Streams Replication Administrator's Guide for information 
about monitoring a Streams replication environment

Table 14–1 Streams Static Data Dictionary Views 

ALL_ Views DBA_ Views USER_ Views

ALL_APPLY DBA_APPLY N/A

ALL_APPLY_CONFLICT_COLUMNS DBA_APPLY_CONFLICT_COLUMNS N/A

ALL_APPLY_DML_HANDLERS DBA_APPLY_DML_HANDLERS N/A

ALL_APPLY_ENQUEUE DBA_APPLY_ENQUEUE N/A

ALL_APPLY_ERROR DBA_APPLY_ERROR N/A

ALL_APPLY_EXECUTE DBA_APPLY_EXECUTE N/A

N/A DBA_APPLY_INSTANTIATED_GLOBAL N/A

N/A DBA_APPLY_INSTANTIATED_OBJECTS N/A

N/A DBA_APPLY_INSTANTIATED_SCHEMAS N/A

ALL_APPLY_KEY_COLUMNS DBA_APPLY_KEY_COLUMNS N/A

ALL_APPLY_TABLE_COLUMNS DBA_APPLY_TABLE_COLUMNS N/A

ALL_APPLY_PARAMETERS DBA_APPLY_PARAMETERS N/A

ALL_APPLY_PROGRESS DBA_APPLY_PROGRESS N/A

ALL_CAPTURE DBA_CAPTURE N/A

ALL_CAPTURE_EXTRA_ATTRIBUTES DBA_CAPTURE_EXTRA_ATTRIBUTES N/A

ALL_CAPTURE_PARAMETERS DBA_CAPTURE_PARAMETERS N/A

ALL_CAPTURE_PREPARED_DATABASE DBA_CAPTURE_PREPARED_DATABASE N/A

ALL_CAPTURE_PREPARED_SCHEMAS DBA_CAPTURE_PREPARED_SCHEMAS N/A

ALL_CAPTURE_PREPARED_TABLES DBA_CAPTURE_PREPARED_TABLES N/A

ALL_EVALUATION_CONTEXT_TABLES DBA_EVALUATION_CONTEXT_TABLES USER_EVALUATION_CONTEXT_TABLES

ALL_EVALUATION_CONTEXT_VARS DBA_EVALUATION_CONTEXT_VARS USER_EVALUATION_CONTEXT_VARS

ALL_EVALUATION_CONTEXTS DBA_EVALUATION_CONTEXTS USER_EVALUATION_CONTEXTS



Summary of Streams Dynamic Performance Views

Monitoring a Streams Environment 14-3

Summary of Streams Dynamic Performance Views
The following list includes the Streams dynamic performance views

� V$BUFFERED_QUEUES

� V$BUFFERED_PUBLISHERS

� V$BUFFERED_SUBSCRIBERS

� V$RULE

� V$RULE_SET

� V$RULE_SET_AGGREGATE_STATS

� V$STREAMS_APPLY_COORDINATOR

� V$STREAMS_APPLY_READER

� V$STREAMS_APPLY_SERVER

� V$STREAMS_CAPTURE

ALL_PROPAGATION DBA_PROPAGATION N/A

N/A DBA_REGISTERED_ARCHIVED_LOG N/A

ALL_RULE_SET_RULES DBA_RULE_SET_RULES USER_RULE_SET_RULES

ALL_RULE_SETS DBA_RULE_SETS USER_RULE_SETS

ALL_RULES DBA_RULES USER_RULES

N/A DBA_STREAMS_ADMINISTRATOR N/A

ALL_STREAMS_GLOBAL_RULES DBA_STREAMS_GLOBAL_RULES N/A

ALL_STREAMS_MESSAGE_CONSUMERS DBA_STREAMS_MESSAGE_CONSUMERS N/A

ALL_STREAMS_MESSAGE_RULES DBA_STREAMS_MESSAGE_RULES N/A

ALL_STREAMS_NEWLY_SUPPORTED DBA_STREAMS_NEWLY_SUPPORTED N/A

ALL_STREAMS_RULES DBA_STREAMS_RULES

ALL_STREAMS_SCHEMA_RULES DBA_STREAMS_SCHEMA_RULES N/A

ALL_STREAMS_TABLE_RULES DBA_STREAMS_TABLE_RULES N/A

ALL_STREAMS_TRANSFORM_FUNCTION DBA_STREAMS_TRANSFORM_FUNCTION N/A

ALL_STREAMS_UNSUPPORTED DBA_STREAMS_UNSUPPORTED N/A

Table 14–1 Streams Static Data Dictionary Views (Cont.)

ALL_ Views DBA_ Views USER_ Views



Monitoring Streams Administrators and Other Streams Users

14-4 Oracle Streams Concepts and Administration

Monitoring Streams Administrators and Other Streams Users
The following sections contain queries that you can run to list Streams 
administrators and other users who allow access to remote Streams administrators:

� Listing Local Streams Administrators

� Listing Users Who Allow Access to Remote Streams Administrators

Listing Local Streams Administrators
You optionally can grant privileges to a local Streams administrator by running the 
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package. The 
DBA_STREAMS_ADMINISTRATOR data dictionary view only contains the local 
Streams administrators created with the grant_privileges parameter set to 
true when the GRANT_ADMIN_PRIVILEGE procedure was run for the user. If you 
created a Streams administrator using generated scripts and set the 
grant_privileges parameter to false when the GRANT_ADMIN_PRIVILEGE 
procedure was run for the user, then the DBA_STREAMS_ADMINISTRATOR data 
dictionary view does not list the user as a Streams administrator.

To list the local Streams administrators created with the grant_privileges 
parameter set to true when running the GRANT_ADMIN_PRIVILEGE procedure, 
run the following query:

COLUMN USERNAME HEADING 'Local Streams Administrator' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
  WHERE LOCAL_PRIVILEGES = 'YES';

Note: To collect elapsed time statistics in these dynamic 
performance views, set the TIMED_STATISTICS initialization 
parameter to true.

See Also: PL/SQL Packages and Types Reference for more 
information about configuring Streams administrators and other 
Streams users using the DBMS_STREAMS_AUTH package



Monitoring Streams Administrators and Other Streams Users

Monitoring a Streams Environment 14-5

Your output looks similar to the following:

Local Streams Administrator
------------------------------
STRMADMIN

The GRANT_ADMIN_PRIVILEGE may not have been run on a user who is a Streams 
administrator. Such administrators are not returned by the query in this section. 
Also, you may change the privileges for the users listed after the 
GRANT_ADMIN_PRIVILEGE procedure has been run for them. The 
DBA_STREAMS_ADMINISTRATOR view does not track these changes unless they are 
performed by the DBMS_STREAMS_AUTH package. For example, you may revoke 
the privileges granted by the GRANT_ADMIN_PRIVILEGE procedure for a particular 
user using the REVOKE SQL statement, but this user would be listed when you 
query the DBA_STREAMS_ADMINISTRATOR view. 

Oracle Corporation recommends using the REVOKE_ADMIN_PRIVILEGE procedure 
to revoke privileges from a user. When you revoke privileges from a user using this 
procedure, the user is removed from the DBA_STREAMS_ADMINISTRATOR view.

Listing Users Who Allow Access to Remote Streams Administrators
You can configure a user to allow access to remote Streams administrators by 
running the GRANT_REMOTE_ADMIN_ACCESS procedure in the 
DBMS_STREAMS_AUTH package. Such a user allows the remote Streams 
administrator to perform administrative actions in the local database using a 
database link. 

Typically, you configure such a user at a local source database if a downstream 
capture process captures changes originating at the local source database. The 
Streams administrator at a downstream capture database administers the source 
database using this connection.

See Also: "Configuring a Streams Administrator" on page 8-2



Monitoring a Streams Capture Process

14-6 Oracle Streams Concepts and Administration

To list the users who allow to remote Streams administrators, run the following 
query:

COLUMN USERNAME HEADING 'Users Who Allow Remote Access' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
  WHERE ACCESS_FROM_REMOTE = 'YES'; 

Your output looks similar to the following:

Users Who Allow Remote Access
------------------------------
STRMREMOTE

Monitoring a Streams Capture Process
The following sections contain queries that you can run to display information 
about a capture process:

� Displaying the Queue, Rule Sets, and Status of Each Capture Process

� Displaying General Information About Each Capture Process

� Displaying Information About Each Downstream Capture Process

� Displaying the Registered Redo Log Files for Each Capture Process

� Displaying the Redo Log Files That Will Never Be Needed by Any Capture 
Process

� Displaying SCN Values for Each Redo Log File Used by a Capture Process

� Displaying the Last Archived Redo Entry Available to Each Capture Process

� Listing the Parameter Settings for Each Capture Process

� Viewing the Extra Attributes Captured by Each Capture Process

� Determining the Applied SCN for All Capture Processes in a Database

� Determining Redo Log Scanning Latency for Each Capture Process

� Determining Event Enqueuing Latency for Each Capture Process

� Displaying Information About Rule Evaluations for Each Capture Process



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-7

Displaying the Queue, Rule Sets, and Status of Each Capture Process
You can display the following general information about each capture process in a 
database by running the query in this section: 

� The capture process name

� The name of the queue used by the capture process

� The name of the positive rule set used by the capture process

� The name of the negative rule set used by the capture process

� The status of the capture process, which may be ENABLED, DISABLED, or 
ABORTED

To display this general information about each capture process in a database, run 
the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, NEGATIVE_RULE_SET_NAME, STATUS 
   FROM DBA_CAPTURE;

Your output looks similar to the following: 

Capture         Capture                                         Capture
Process         Process         Positive        Negative        Process
Name            Queue           Rule Set        Rule Set        Status
--------------- --------------- --------------- --------------- ---------------
STRM01_CAPTURE  STRM01_QUEUE    RULESET$_25     RULESET$_36     ENABLED

If the status of a capture process is ABORTED, then you can query the 
ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data 
dictionary view to determine the error.

See Also:

� Chapter 2, "Streams Capture Process"

� Chapter 9, "Managing a Capture Process"



Monitoring a Streams Capture Process

14-8 Oracle Streams Concepts and Administration

Displaying General Information About Each Capture Process
The query in this section displays the following general information about each 
capture process in a database:

� The name of the capture process

� The process number (cnnn)

� The session identifier

� The serial number of the session

� The current state of the capture process, either INITIALIZING, WAITING FOR 
DICTONARY REDO, DICTIONARY INITIALIZATION, MINING, LOADING, 
CAPTURING CHANGES, WAITING FOR REDO, EVALUATING RULE, 
CREATING LCR, ENQUEUING MESSAGE, PAUSED FOR FLOW CONTROL, or 
SHUTTING DOWN 

� The total number of redo entries scanned

� The total number LCRs enqueued

To display this information for each capture process in a database, run the following 
query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A10
COLUMN PROCESS_NAME HEADING 'Capture|Process|Number' FORMAT A7
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A27
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo|Entries|Scanned' FORMAT 9999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 999999

See Also: "Is the Capture Process Enabled?" on page 15-2 for an 
example query that shows the error number and error message if a 
capture process is aborted



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-9

SELECT c.CAPTURE_NAME,
       SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME, 
       c.SID,
       c.SERIAL#, 
       c.STATE,
       c.TOTAL_MESSAGES_CAPTURED,
       c.TOTAL_MESSAGES_ENQUEUED 
  FROM V$STREAMS_CAPTURE c, V$SESSION s
  WHERE c.SID = s.SID AND
        c.SERIAL# = s.SERIAL#;

Your output looks similar to the following: 

           Capture         Session                                 Redo    Total
Capture    Process Session  Serial                              Entries     LCRs
Name       Number       ID  Number State                        Scanned Enqueued
---------- ------- ------- ------- --------------------------- -------- --------
CAPTURE       C001      15       9 CAPTURING CHANGES              14276       51

The number of redo entries scanned may be higher than the number of DML and 
DDL redo entries captured by a capture process. Only DML and DDL redo entries 
that are captured by a capture process are enqueued into the capture process queue. 
Also, the total LCRs enqueued includes LCRs that contain transaction control 
statements. These row LCRs contain directives such as COMMIT and ROLLBACK. 
Therefore, the total LCRs enqueued is a number higher than the number of row 
changes and DDL changes enqueued by a capture process.

Displaying Information About Each Downstream Capture Process
A downstream capture is a capture process runs on a database other than the source 
database. You can display the following general information about each 
downstream capture process in a database by running the query in this section: 

� The capture process name

� The source database of the changes captured by the capture process

� The name of the queue used by the capture process

See Also:

� "Row LCRs" on page 2-3 for more information about 
transaction control statements

� "Capture Process States" on page 2-30



Monitoring a Streams Capture Process

14-10 Oracle Streams Concepts and Administration

� The status of the capture process, which may be ENABLED, DISABLED, or 
ABORTED

� Whether the downstream capture process uses a database link to the source 
database for administrative actions

To display this information about each downstream capture process in a database, 
run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15
COLUMN USE_DATABASE_LINK HEADING 'Uses|Database|Link?' FORMAT A8

SELECT CAPTURE_NAME, 
       SOURCE_DATABASE, 
       QUEUE_NAME, 
       STATUS, 
       USE_DATABASE_LINK
   FROM DBA_CAPTURE
   WHERE CAPTURE_TYPE = 'DOWNSTREAM';

Your output looks similar to the following: 

Capture                         Capture         Capture         Uses
Process         Source          Process         Process         Database
Name            Database        Queue           Status          Link?
--------------- --------------- --------------- --------------- --------
STRM03_CAPTURE  DBS1.NET        STRM03_QUEUE    ENABLED         YES

In this case, the source database for the capture process is dbs1.net, but the local 
database running the capture process is not dbs1.net. Also, the capture process 
returned by this query uses a database link to the source database to perform 
administrative actions. The database link name is the same as the global name of the 
source database, which is dbs1.net in this case.

If the status of a capture process is ABORTED, then you can query the 
ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data 
dictionary view to determine the error.



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-11

Displaying the Registered Redo Log Files for Each Capture Process
You can display information about the archived redo log files that are registered for 
each capture process in a database by running the query in this section. This query 
displays information about these files for both local and downstream capture 
processes.

The query displays the following information for each registered archived redo log 
file: 

� The capture process name of a capture process that uses the file

� The source database of the file

� The sequence number of the file

� The name and location of the file at the local site

� Whether the file contains the beginning of a data dictionary build

� Whether the file contains the end of a data dictionary build

To display this information about each registered archive redo log file in a database, 
run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A20
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

See Also:

� "Local Capture and Downstream Capture" on page 2-17

� "Creating a Downstream Capture Process That Assigns Log 
Files Implicitly" on page 9-6

� "Is the Capture Process Enabled?" on page 15-2 for an example 
query that shows the error number and error message if a 
capture process is aborted



Monitoring a Streams Capture Process

14-12 Oracle Streams Concepts and Administration

SELECT r.CONSUMER_NAME,
       r.SOURCE_DATABASE,
       r.SEQUENCE#, 
       r.NAME, 
       r.DICTIONARY_BEGIN, 
       r.DICTIONARY_END 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;  

Your output looks similar to the following: 

Capture                                                  Dictionary Dictionary
Process         Source     Sequence Archived Redo Log    Build      Build
Name            Database     Number File Name            Begin      End
--------------- ---------- -------- -------------------- ---------- ----------
STRM02_CAPTURE  DBS2.NET         15 /orc/dbs/log/arch2_1 NO         NO
                                    _15_478347508.arc
STRM02_CAPTURE  DBS2.NET         16 /orc/dbs/log/arch2_1 NO         NO
                                    _16_478347508.arc 
STRM03_CAPTURE  DBS1.NET         45 /remote_logs/arch1_1 YES        YES
                                    _45_478347335.arc
STRM03_CAPTURE  DBS1.NET         46 /remote_logs/arch1_1 NO         NO
                                    _46_478347335.arc
STRM03_CAPTURE  DBS1.NET         47 /remote_logs/arch1_1 NO         NO
                                    _47_478347335.arc

Assume that this query was run at the dbs2.net database, and that 
strm02_capture is a local capture process, while strm03_capture is a 
downstream capture process. The source database for the strm03_capture 
downstream capture process is dbs1.net. This query shows the that there are two 
registered archived redo log files for strm02_capture and three registered 
archived redo log files for strm02_capture, and this query shows the name and 
location of each of these files in the local site's file system.

A capture process needs the redo log file that includes the required checkpoint 
SCN, and all subsequent redo log files. You can query the 
REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view 
to determine the required checkpoint SCN for a capture process. Redo log files prior 
to the redo log file that contains the required checkpoint SCN are no longer needed 
by the capture process. These redo log files may be stored offline if they are no 
longer needed for any other purpose. If you reset the start SCN for a capture 
process to a lower value in the future, then these redo log files may be needed.



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-13

Displaying the Redo Log Files That Will Never Be Needed by Any Capture Process
The DBA_LOGMNR_PURGED_LOG data dictionary view lists the redo log files that 
will never be needed by any capture process at the local database. These redo log 
files may be removed without affecting any existing capture process at the local 
database.

To display the redo log files that are no longer needed by any capture process, run 
the following query:

SELECT * FROM DBA_LOGMNR_PURGED_LOG;

Your output looks similar to the following:

FILE_NAME
--------------------------------------------------------------------
/private1/ARCHIVE_LOGS/1_6_262829418.dbf

Displaying SCN Values for Each Redo Log File Used by a Capture Process
You can display information about the SCN values for archived redo log files that 
are registered for each capture process in a database by running the query in this 
section. This query displays information the SCN values for these files for both local 
and downstream capture processes.

The query displays the following information for each registered archived redo log 
file: 

� The capture process name of a capture process that uses the file

� The name and location of the file at the local site

See Also:

� "The LogMiner Data Dictionary for a Capture Process" on 
page 2-34 for more information about data dictionary builds

� "Local Capture and Downstream Capture" on page 2-17

� "Creating a Downstream Capture Process That Assigns Log 
Files Implicitly" on page 9-6

� "ARCHIVELOG Mode and a Capture Process" on page 2-46

See Also: "ARCHIVELOG Mode and a Capture Process" on 
page 2-46



Monitoring a Streams Capture Process

14-14 Oracle Streams Concepts and Administration

� The lowest SCN value for the information contained in the redo log file

� The lowest SCN value for the next redo log file in the sequence

To display this information about each registered archive redo log file in a database, 
run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A35
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999
COLUMN NEXT_SCN HEADING 'Next SCN' FORMAT 99999999999

SELECT r.CONSUMER_NAME,
       r.NAME, 
       r.FIRST_SCN,
       r.NEXT_SCN 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;  

Your output looks similar to the following: 

Capture
Process         Archived Redo Log
Name            File Name               First SCN     Next SCN
--------------- -------------------- ------------ ------------
CAPTURE         /private1/ARCHIVE_LO       202088       202112
                GS/1_3_502628294.dbf

CAPTURE         /private1/ARCHIVE_LO       202112       203389
                GS/1_4_502628294.dbf

CAPTURE         /private1/ARCHIVE_LO       203389       230382
                GS/1_5_502628294.dbf

CAPTURE         /private1/ARCHIVE_LO       230382       235590
                GS/1_6_502628294.dbf

CAPTURE         /private1/ARCHIVE_LO       235590       256147
                GS/1_7_502628294.dbf



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-15

Displaying the Last Archived Redo Entry Available to Each Capture Process
For a local capture process, the last archived redo entry available is the last entry 
from the online redo log flushed to an archived log file. For a downstream capture 
process, the last archived redo entry available is the redo entry with the most recent 
SCN in the last archived log file added to the LogMiner session used by the capture 
process.

You can display the following information about the last redo entry that was made 
available to each capture process by running the query in this section:

� The name of the capture process

� The identification number of the LogMiner session used by the capture process

� The SCN of the last redo entry available for the capture process

� The time when the last redo entry became available for the capture process

The information displayed by this query is valid only for an enabled capture 
process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A20
COLUMN LOGMINER_ID HEADING 'LogMiner ID' FORMAT 9999
COLUMN AVAILABLE_MESSAGE_NUMBER HEADING 'Last Redo SCN' FORMAT 9999999999
COLUMN AVAILABLE_MESSAGE_CREATE_TIME HEADING 'Time of|Last Redo SCN'

SELECT CAPTURE_NAME,
       LOGMINER_ID,
       AVAILABLE_MESSAGE_NUMBER,
       TO_CHAR(AVAILABLE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') 
AVAILABLE_MESSAGE_CREATE_TIME
  FROM V$STREAMS_CAPTURE;

Your output looks similar to the following: 

Capture                                        Time of
Name                 LogMiner ID Last Redo SCN Last Redo SCN
-------------------- ----------- ------------- -----------------
STREAMS_CAPTURE                1        322953 11:33:20 10/16/03



Monitoring a Streams Capture Process

14-16 Oracle Streams Concepts and Administration

Listing the Parameter Settings for Each Capture Process
The following query displays the current setting for each capture process parameter 
for each capture process in a database:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN PARAMETER HEADING 'Parameter' FORMAT A20
COLUMN VALUE HEADING 'Value' FORMAT A20
COLUMN SET_BY_USER HEADING 'Set by User?' FORMAT A20

SELECT CAPTURE_NAME,
       PARAMETER, 
       VALUE,
       SET_BY_USER  
  FROM DBA_CAPTURE_PARAMETERS;

Your output looks similar to the following: 

Capture
Process
Name            Parameter            Value                Set by User?
--------------- -------------------- -------------------- --------------------
CAPTURE         DISABLE_ON_LIMIT     N                    NO
CAPTURE         MAXIMUM_SCN          INFINITE             NO
CAPTURE         MESSAGE_LIMIT        INFINITE             NO
CAPTURE         PARALLELISM          3                    YES
CAPTURE         STARTUP_SECONDS      0                    NO
CAPTURE         TIME_LIMIT           INFINITE             NO
CAPTURE         TRACE_LEVEL          0                    NO
CAPTURE         WRITE_ALERT_LOG      Y                    NO

Note: If the Set by User? column is NO for a parameter, then the 
parameter is set to its default value. If the Set by User? column is 
YES for a parameter, then the parameter may or may not be set to 
its default value.

See Also:

� "Capture Process Parameters" on page 2-47

� "Setting a Capture Process Parameter" on page 9-32



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-17

Viewing the Extra Attributes Captured by Each Capture Process
You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the 
DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more 
extra attributes from the redo log. The following query displays the extra attributes 
included in the LCRs captured by each capture process in the local database:

COLUMN CAPTURE_NAME HEADING 'Capture Process' FORMAT A20
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A15
COLUMN INCLUDE HEADING 'Include Attribute in LCRs?' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME, INCLUDE 
  FROM DBA_CAPTURE_EXTRA_ATTRIBUTES
  ORDER BY CAPTURE_NAME;

Your output looks similar to the following: 

Capture Process      Attribute Name  Include Attribute in LCRs?
-------------------- --------------- ------------------------------
STREAMS_CAPTURE      ROW_ID          NO
STREAMS_CAPTURE      SERIAL#         NO
STREAMS_CAPTURE      SESSION#        NO
STREAMS_CAPTURE      THREAD#         NO
STREAMS_CAPTURE      TX_NAME         YES
STREAMS_CAPTURE      USERNAME        NO

Based on this output, the capture process named streams_capture includes the 
transaction name (tx_name) in the LCRs that it captures, but this capture process 
does not include any other extra attributes in the LCRs that it captures.

Determining the Applied SCN for All Capture Processes in a Database
The applied system change number (SCN) for a capture process is the SCN of the 
most recent event dequeued by the relevant apply processes. All changes below this 
applied SCN have been dequeued by all apply processes that apply changes 
captured by the capture process.

See Also:

� "Extra Information in LCRs" on page 2-6

� "Managing Extra Attributes in Captured LCRs" on page 9-38

� PL/SQL Packages and Types Reference for more information about 
the INCLUDE_EXTRA_ATTRIBUTE procedure



Monitoring a Streams Capture Process

14-18 Oracle Streams Concepts and Administration

To display the applied SCN for all of the capture processes in a database, run the 
following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM DBA_CAPTURE;

Your output looks similar to the following: 

Capture Process Name           Applied SCN
------------------------------ -----------
CAPTURE_EMP                         177154

Determining Redo Log Scanning Latency for Each Capture Process
You can find the following information about each capture process by running the 
query in this section: 

� The redo log scanning latency, which specifies the number of seconds between 
the creation time of the most recent redo log event scanned by a capture process 
and the current time. This number may be relatively large immediately after 
you start a capture process. 

� The seconds since last recorded status, which is the number of seconds since a 
capture process last recorded its status

� The current capture process time, which is the latest time when the capture 
process recorded its status

� The event creation time, which is the time when the data manipulation 
language (DML) or data definition language (DDL) change generated the redo 
information for the most recently captured event 

The information displayed by this query is valid only for an enabled capture 
process.

Run the following query to determine the redo scanning latency for each capture 
process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Event|Creation Time' FORMAT 999999



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-19

SELECT CAPTURE_NAME,
       ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
       ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
       TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,       
       TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
  FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture    Latency               Current
Process         in Seconds Since Process           Event
Name       Seconds   Last Status Time              Creation Time
---------- ------- ------------- ----------------- -----------------
CAPTURE          4             4 12:04:13 03/01/02 12:04:13 03/01/02

The "Latency in Seconds" returned by this query is the difference between the 
current time (SYSDATE) and the "Event Creation Time." The "Seconds Since 
Last Status" returned by this query is the difference between the current time 
(SYSDATE) and the "Current Process Time."

Determining Event Enqueuing Latency for Each Capture Process
You can find the following information about each capture process by running the 
query in this section:

� The event enqueuing latency, which specifies the number of seconds between 
when an event was recorded in the redo log and when the event was enqueued 
by the capture process

� The event creation time, which is the time when the data manipulation 
language (DML) or data definition language (DDL) change generated the redo 
information for the most recently enqueued event

� The enqueue time, which is when the capture process enqueued the event into 
its queue

� The message number of the enqueued event

The information displayed by this query is valid only for an enabled capture 
process.



Monitoring a Streams Capture Process

14-20 Oracle Streams Concepts and Administration

Run the following query to determine the event capturing latency for each capture 
process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATE_TIME HEADING 'Event Creation|Time' FORMAT A20
COLUMN ENQUEUE_TIME HEADING 'Enqueue Time' FORMAT A20
COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Message|Number' FORMAT 999999

SELECT CAPTURE_NAME,
       (ENQUEUE_TIME-ENQUEUE_MESSAGE_CREATE_TIME)*86400 LATENCY_SECONDS, 
       TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME,
       TO_CHAR(ENQUEUE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_TIME,
       ENQUEUE_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE;

Your output looks similar to the following: 

Capture    Latency
Process         in Event Creation                            Message
Name       Seconds Time                 Enqueue Time          Number
---------- ------- -------------------- -------------------- -------
CAPTURE          0 10:56:51 03/01/02    10:56:51 03/01/02     253962

The "Latency in Seconds" returned by this query is the difference between the 
"Enqueue Time" and the "Event Creation Time."

Displaying Information About Rule Evaluations for Each Capture Process
You can display the following information about rule evaluation for each capture 
process by running the query in this section:

� The name of the capture process

� The number of events discarded during prefiltering since the capture process 
was last started. The capture process determined that these events definitely 
did not satisfy the capture process rule sets during prefiltering.

� The number of events kept during prefiltering since the capture process was 
last started. The capture process determined that these events definitely 
satisfied the capture process rule sets during prefiltering. Such events are 
converted into LCRs and enqueued into the capture process queue.

� The total number of prefilter evaluations since the capture process was last 
started.



Monitoring a Streams Capture Process

Monitoring a Streams Environment 14-21

� The number of undecided events after prefiltering since the capture process was 
last started. These events may or may not satisfy the capture process rule sets. 
Some of these events may be filtered out after prefiltering without requiring full 
evaluation while others require full evaluation to determine whether they 
satisfy the capture process rule sets.

� The number of full evaluations since the capture process was last started. Full 
evaluations may be expensive. Therefore, capture process performance is best 
when this number is relatively low.

The information displayed by this query is valid only for an enabled capture 
process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN TOTAL_PREFILTER_DISCARDED HEADING 'Prefilter|Events|Discarded' 
  FORMAT 9999999999
COLUMN TOTAL_PREFILTER_KEPT HEADING 'Prefilter|Events|Kept' FORMAT 9999999999
COLUMN TOTAL_PREFILTER_EVALUATIONS HEADING 'Prefilter|Evaluations' 
  FORMAT 9999999999
COLUMN UNDECIDED HEADING 'Undecided|After|Prefilter' FORMAT 9999999999
COLUMN TOTAL_FULL_EVALUATIONS HEADING 'Full|Evaluations' FORMAT 9999999999

SELECT CAPTURE_NAME,
       TOTAL_PREFILTER_DISCARDED,
       TOTAL_PREFILTER_KEPT,
       TOTAL_PREFILTER_EVALUATIONS,
       (TOTAL_PREFILTER_EVALUATIONS - 
         (TOTAL_PREFILTER_KEPT + TOTAL_PREFILTER_DISCARDED)) UNDECIDED,
       TOTAL_FULL_EVALUATIONS
  FROM V$STREAMS_CAPTURE;

Your output looks similar to the following: 

                  Prefilter   Prefilter               Undecided
Capture              Events      Events   Prefilter       After        Full
Name              Discarded        Kept Evaluations   Prefilter Evaluations
--------------- ----------- ----------- ----------- ----------- -----------
STREAMS_CAPTURE       68485           0       68570          85          27

The total number of prefilter evaluations equals the sum of the prefilter events 
discarded, the prefilter events kept, and the undecided events.

See Also: "Capture Process Rule Evaluation" on page 2-49



Monitoring a SYS.AnyData Queue and Messaging

14-22 Oracle Streams Concepts and Administration

Monitoring a SYS.AnyData Queue and Messaging
The following sections contain queries that you can run to display information 
about a SYS.AnyData queue:

� Displaying the SYS.AnyData Queues in a Database

� Viewing the Messaging Clients in a Database

� Viewing Message Notifications

� Determining the Consumer of Each User-Enqueued Event in a Queue

� Viewing the Contents of User-Enqueued Events in a Queue

Displaying the SYS.AnyData Queues in a Database
To display all of the SYS.AnyData queues in a database, run the following query:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN NAME HEADING 'Queue Name' FORMAT A28
COLUMN QUEUE_TABLE HEADING 'Queue Table' FORMAT A22
COLUMN USER_COMMENT HEADING 'Comment' FORMAT A15

SELECT q.OWNER, q.NAME, t.QUEUE_TABLE, q.USER_COMMENT
  FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
  WHERE t.OBJECT_TYPE = 'SYS.ANYDATA' AND
        q.QUEUE_TABLE = t.QUEUE_TABLE AND
        q.OWNER       = t.OWNER;

Your output looks similar to the following: 

Owner      Queue Name                   Queue Table            Comment
---------- ---------------------------- ---------------------- ---------------
SYS        AQ$_SCHEDULER$_JOBQTAB_E     SCHEDULER$_JOBQTAB     exception queue
SYS        SCHEDULER$_JOBQ              SCHEDULER$_JOBQTAB     Scheduler job q
                                                               ueue
SYS        AQ$_DIR$EVENT_TABLE_E        DIR$EVENT_TABLE        exception queue
SYS        DIR$EVENT_QUEUE              DIR$EVENT_TABLE
SYS        AQ$_DIR$CLUSTER_DIR_TABLE_E  DIR$CLUSTER_DIR_TABLE  exception queue
SYS        DIR$CLUSTER_DIR_QUEUE        DIR$CLUSTER_DIR_TABLE

See Also:

� Chapter 3, "Streams Staging and Propagation"

� Chapter 10, "Managing Staging and Propagation"



Monitoring a SYS.AnyData Queue and Messaging

Monitoring a Streams Environment 14-23

STRMADMIN  AQ$_STREAMS_QUEUE_TABLE_E    STREAMS_QUEUE_TABLE    exception queue
STRMADMIN  STREAMS_QUEUE                STREAMS_QUEUE_TABLE

An exception queue is created automatically when you create a SYS.AnyData 
queue.

Viewing the Messaging Clients in a Database
You can view the messaging clients in a database by querying the 
DBA_STREAMS_MESSAGE_CONSUMERS data dictionary view. The query in this 
section displays the following information about each messaging client:

� The name of the messaging client

� The queue used by the messaging client

� The positive rule set used by the messaging client

� The negative rule set used by the messaging client

Run the following query to view this information about messaging clients:

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A25
COLUMN QUEUE_OWNER HEADING 'Queue Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A18
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A11
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A11

SELECT STREAMS_NAME, 
       QUEUE_OWNER, 
       QUEUE_NAME, 
       RULE_SET_NAME, 
       NEGATIVE_RULE_SET_NAME 
  FROM DBA_STREAMS_MESSAGE_CONSUMERS;

Your output looks similar to the following:

Messaging                                               Positive    Negative
Client                    Queue Owne Queue Name         Rule Set    Rule Set
------------------------- ---------- ------------------ ----------- -----------
SCHEDULER_PICKUP          SYS        SCHEDULER$_JOBQ    RULESET$_8
SCHEDULER_COORDINATOR     SYS        SCHEDULER$_JOBQ    RULESET$_4
HR                        STRMADMIN  STREAMS_QUEUE      RULESET$_15

See Also: "Managing SYS.AnyData Queues" on page 10-2



Monitoring a SYS.AnyData Queue and Messaging

14-24 Oracle Streams Concepts and Administration

Viewing Message Notifications
You can configure a message notification to send a notification when a message that 
can be dequeued by a messaging client is enqueued into a queue. The notification 
can be sent to an email address, to an HTTP URL, or to a PL/SQL procedure. Run 
the following query to view the message notifications configured in a database:

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A10
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A20
COLUMN NOTIFICATION_TYPE HEADING 'Notification|Type' FORMAT A15
COLUMN NOTIFICATION_ACTION HEADING 'Notification|Action' FORMAT A25

SELECT STREAMS_NAME, 
       QUEUE_OWNER, 
       QUEUE_NAME, 
       NOTIFICATION_TYPE, 
       NOTIFICATION_ACTION 
  FROM DBA_STREAMS_MESSAGE_CONSUMERS
  WHERE NOTIFICATION_TYPE IS NOT NULL;

Your output looks similar to the following:

Messaging  Queue                      Notification    Notification
Client     Owner Queue Name           Type            Action
---------- ----- -------------------- --------------- -------------------------
OE         OE    NOTIFICATION_QUEUE   MAIL            mary.smith@mycompany.com

Determining the Consumer of Each User-Enqueued Event in a Queue
To determine the consumer for each user-enqueued event in a queue, query 
AQ$queue_table_name in the queue owner's schema, where 
queue_table_name is the name of the queue table. For example, to find the 
consumers of the user-enqueued events in the oe_q_table_any queue table, run 
the following query:

See Also: Chapter 3, "Streams Staging and Propagation" for more 
information about messaging clients

See Also: "Configuring a Messaging Client and Message 
Notification" on page 10-25



Monitoring a SYS.AnyData Queue and Messaging

Monitoring a Streams Environment 14-25

COLUMN MSG_ID HEADING 'Message ID' FORMAT 9999
COLUMN MSG_STATE HEADING 'Message State' FORMAT A13
COLUMN CONSUMER_NAME HEADING 'Consumer' FORMAT A30

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ANY;

Your output looks similar to the following: 

Message ID                       Message State Consumer
-------------------------------- ------------- ------------------------------
B79AC412AE6E08CAE034080020AE3E0A PROCESSED     OE
B79AC412AE6F08CAE034080020AE3E0A PROCESSED     OE
B79AC412AE7008CAE034080020AE3E0A PROCESSED     OE

Viewing the Contents of User-Enqueued Events in a Queue
In a SYS.AnyData queue, to view the contents of a payload that is encapsulated 
within a SYS.AnyData payload, you query the queue table using the 
Accessdata_type static functions of the SYS.AnyData type, where data_type 
is the type of payload to view.

For example, to view the contents of payload of type NUMBER in a queue with a 
queue table named oe_queue_table, run the following query as the queue 
owner:

SELECT qt.user_data.AccessNumber() "Numbers in Queue" 
  FROM strmadmin.oe_q_table_any qt;

Note: This query lists only user-enqueued events, not captured 
events.

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference for an example that enqueues messages into a 
SYS.AnyData queue

See Also: "Wrapping User Message Payloads in a SYS.AnyData 
Wrapper and Enqueuing Them" on page 10-20 for an example that 
enqueues the events shown in the queries in this section into a 
SYS.AnyData queue



Monitoring a SYS.AnyData Queue and Messaging

14-26 Oracle Streams Concepts and Administration

Your output looks similar to the following:

Numbers in Queue
----------------
              16

Similarly, to view the contents of a payload of type VARCHAR2 in a queue with a 
queue table named oe_q_table_any, run the following query:

SELECT qt.user_data.AccessVarchar2() "Varchar2s in Queue"
   FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following: 

Varchar2s in Queue
--------------------------------------------------------------------------------
Chemicals - SW

To view the contents of a user-defined datatype, you query the queue table using a 
custom function that you create. For example, to view the contents of a payload of 
oe.cust_address_typ, connect as the Streams administrator and create a 
function similar to the following:

CONNECT oe/oe

CREATE OR REPLACE FUNCTION oe.view_cust_address_typ(
in_any IN SYS.AnyData) 
RETURN oe.cust_address_typ
IS
  address   oe.cust_address_typ;
  num_var   NUMBER;
BEGIN
  IF (in_any.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
    num_var := in_any.GetObject(address);
    RETURN address;
  ELSE RETURN NULL;
  END IF;
END;
/

GRANT EXECUTE ON oe.view_cust_address_typ TO strmadmin;

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;



Monitoring Streams Propagations and Propagation Jobs

Monitoring a Streams Environment 14-27

Query the queue table using the function, as in the following example:

CONNECT strmadmin/strmadminpw

SELECT oe.view_cust_address_typ(qt.user_data) "Customer Addresses"
  FROM strmadmin.oe_q_table_any qt 
  WHERE qt.user_data.GetTypeName() = 'OE.CUST_ADDRESS_TYP';

Your output looks similar to the following: 

Customer Addresses(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
--------------------------------------------------------------------------------
CUST_ADDRESS_TYP('1646 Brazil Blvd', '361168', 'Chennai', 'Tam', 'IN')

Monitoring Streams Propagations and Propagation Jobs
The following sections contain queries that you can run to display information 
about propagations and propagation jobs:

� Determining the Source Queue and Destination Queue for Each Propagation

� Determining the Rule Sets for Each Propagation

� Displaying the Schedule for a Propagation Job

� Determining the Total Number of Events and Bytes Propagated by Each 
Propagation

Determining the Source Queue and Destination Queue for Each Propagation
You can determine the source queue and destination queue for each propagation by 
querying the DBA_PROPAGATION data dictionary view. This view contains 
information about each propagation whose source queue is at the local database.

For example, the following query displays the following information for a 
propagation named dbs1_to_dbs2:

� The source queue owner

� The source queue name

See Also:

� Chapter 3, "Streams Staging and Propagation"

� "Managing Streams Propagations and Propagation Jobs" on 
page 10-7



Monitoring Streams Propagations and Propagation Jobs

14-28 Oracle Streams Concepts and Administration

� The database that contains the source queue

� The destination queue owner

� The destination queue name

� The database link used by the propagation

COLUMN 'Source Queue' FORMAT A35
COLUMN 'Destination Queue' FORMAT A35

SELECT p.SOURCE_QUEUE_OWNER ||'.'|| 
       p.SOURCE_QUEUE_NAME ||'@'|| 
       g.GLOBAL_NAME "Source Queue", 
       p.DESTINATION_QUEUE_OWNER ||'.'|| 
       p.DESTINATION_QUEUE_NAME ||'@'|| 
       p.DESTINATION_DBLINK "Destination Queue"
  FROM DBA_PROPAGATION p, GLOBAL_NAME g;

Your output looks similar to the following:

Source Queue                        Destination Queue
----------------------------------- -----------------------------------
STRMADMIN.STREAMS_QUEUE@DBS1.NET    STRMADMIN.STREAMS_QUEUE@DBS2.NET
STRMADMIN.STRM02_QUEUE@DBS1.NET     STRMADMIN.STRM02_QUEUE@DBS2.NET

Determining the Rule Sets for Each Propagation
The following query displays the following information for each propagation:

� The propagation name

� The owner of the positive rule set for the propagation

� The name of the positive rule set used by the propagation

� The name of the negative rule set used by the propagation

� The name of the negative rule set used by the propagation

To display this general information about each propagation in a database, run the 
following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN RULE_SET_OWNER HEADING 'Positive|Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Positive Rule|Set Name' FORMAT A15
COLUMN NEGATIVE_RULE_SET_OWNER HEADING 'Negative|Rule Set|Owner' FORMAT A10
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative Rule|Set Name' FORMAT A15



Monitoring Streams Propagations and Propagation Jobs

Monitoring a Streams Environment 14-29

SELECT PROPAGATION_NAME, 
       RULE_SET_OWNER, 
       RULE_SET_NAME, 
       NEGATIVE_RULE_SET_OWNER, 
       NEGATIVE_RULE_SET_NAME
  FROM DBA_PROPAGATION;

Your output looks similar to the following:

                     Positive                   Negative
Propagation          Rule Set   Positive Rule   Rule Set   Negative Rule
Name                 Owner      Set Name        Owner      Set Name
-------------------- ---------- --------------- ---------- ---------------
STRM01_PROPAGATION   STRMADMIN  RULESET$_22     STRMADMIN  RULESET$_31

Displaying the Schedule for a Propagation Job
The query in this section displays the following information about the propagation 
schedule for a propagation job used by a propagation named dbs1_to_dbs2:

� The date and time when the propagation schedule started (or will start)

� The duration of the propagation job, which is the amount of time the job 
propagates events before restarting

� The latency of the propagation job, which is the maximum wait time to 
propagate a new message during the duration, when all other messages in the 
queue to the relevant destination have been propagated

� Whether or not the propagation job is enabled

� The name of the process that most recently executed the schedule

� The number of consecutive times schedule execution has failed, if any. After 16 
consecutive failures, a propagation job becomes disabled automatically.

Run this query at the database that contains the source queue:

COLUMN START_DATE HEADING 'Start Date'
COLUMN PROPAGATION_WINDOW HEADING 'Duration|in Seconds' FORMAT 99999
COLUMN NEXT_TIME HEADING 'Next|Time' FORMAT A8
COLUMN LATENCY HEADING 'Latency|in Seconds' FORMAT 99999
COLUMN SCHEDULE_DISABLED HEADING 'Status' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A8
COLUMN FAILURES HEADING 'Number of|Failures' FORMAT 99



Monitoring Streams Propagations and Propagation Jobs

14-30 Oracle Streams Concepts and Administration

SELECT TO_CHAR(s.START_DATE, 'HH24:MI:SS MM/DD/YY') START_DATE,
       s.PROPAGATION_WINDOW, 
       s.NEXT_TIME, 
       s.LATENCY,
       DECODE(s.SCHEDULE_DISABLED,
                'Y', 'Disabled',
                'N', 'Enabled') SCHEDULE_DISABLED,
       s.PROCESS_NAME,
       s.FAILURES
  FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
  WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2'
  AND p.DESTINATION_DBLINK = s.DESTINATION
  AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
  AND s.QNAME = p.SOURCE_QUEUE_NAME;

Your output looks similar to the following:

                    Duration Next        Latency                   Number of
Start Date        in Seconds Time     in Seconds Status   Process   Failures
----------------- ---------- -------- ---------- -------- -------- ---------
15:23:40 03/02/02                              5 Enabled  J002             0

This propagation job uses the default schedule for a Streams propagation job. That 
is, the duration and next time are both NULL, and the latency is five seconds. When 
the duration is NULL, the job propagates changes without restarting automatically. 
When the next time is NULL, the propagation job is running currently.

See Also:

� "Propagation Scheduling and Streams Propagations" on 
page 3-18 for more information about the default propagation 
schedule for a Streams propagation job

� "Is the Propagation Job Used by a Propagation Enabled?" on 
page 15-9 if the propagation job is disabled

� Oracle Streams Advanced Queuing User's Guide and Reference and 
Oracle Database Reference for more information about the 
DBA_QUEUE_SCHEDULES data dictionary view



Monitoring Streams Propagations and Propagation Jobs

Monitoring a Streams Environment 14-31

Determining the Total Number of Events and Bytes Propagated by Each Propagation
All propagation jobs from a source queue that share the same database link have a 
single propagation schedule. The query in this section displays the following 
information for each propagation:

� The name of the propagation

� The total time spent by the system executing the propagation schedule

� The total number of events propagated by the propagation schedule

� The total number of bytes propagated by the propagation schedule

Run the following query to display this information for each propagation with a 
source queue at the local database:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN TOTAL_TIME HEADING 'Total Time|Executing|in Seconds' FORMAT 999999
COLUMN TOTAL_NUMBER HEADING 'Total Events|Propagated' FORMAT 999999999
COLUMN TOTAL_BYTES HEADING 'Total Bytes|Propagated' FORMAT 9999999999999

SELECT p.PROPAGATION_NAME, s.TOTAL_TIME, s.TOTAL_NUMBER, s.TOTAL_BYTES 
  FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
  WHERE p.DESTINATION_DBLINK = s.DESTINATION
    AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
    AND s.QNAME = p.SOURCE_QUEUE_NAME;

Your output looks similar to the following: 

                     Total Time
Propagation           Executing Total Events    Total Bytes
Name                 in Seconds   Propagated     Propagated
-------------------- ---------- ------------ --------------
MULT3_TO_MULT1              351          872         875252
MULT3_TO_MULT2              596          872         875252

See Also: Oracle Streams Advanced Queuing User's Guide and 
Reference and Oracle Database Reference for more information about 
the DBA_QUEUE_SCHEDULES data dictionary view



Monitoring a Streams Apply Process

14-32 Oracle Streams Concepts and Administration

Monitoring a Streams Apply Process
The following sections contain queries that you can run to display information 
about an apply process:

� Determining the Queue, Rule Sets, and Status for Each Apply Process

� Displaying General Information About Each Apply Process

� Listing the Parameter Settings for Each Apply Process

� Displaying Information About Apply Handlers

� Displaying Information About the Reader Server for Each Apply Process

� Determining Capture to Dequeue Latency for an Event

� Displaying General Information About Each Coordinator Process

� Displaying Information About Transactions Received and Applied

� Determining the Capture to Apply Latency for an Event for Each Apply Process

� Displaying Information About the Apply Servers for Each Apply Process

� Displaying Effective Apply Parallelism for an Apply Process

� Viewing Rules That Specify a Destination Queue On Apply

� Viewing Rules That Specify No Execution On Apply

� Checking for Apply Errors

� Displaying Detailed Information About Apply Errors

Determining the Queue, Rule Sets, and Status for Each Apply Process
You can determine the following information for each apply process in a database 
by running the query in this section: 

� The apply process name

� The name of the queue used by the apply process

� The name of the positive rule set used by the apply process

See Also:

� Chapter 4, "Streams Apply Process"

� Chapter 11, "Managing an Apply Process"



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-33

� The name of the negative rule set used by the apply process

� The status of the apply process, either ENABLED, DISABLED, or ABORTED

To display this general information about each apply process in a database, run the 
following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Apply|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Apply|Process|Status' FORMAT A15

SELECT APPLY_NAME, 
       QUEUE_NAME, 
       RULE_SET_NAME, 
       NEGATIVE_RULE_SET_NAME,
       STATUS
  FROM DBA_APPLY;

Your output looks similar to the following:

Apply           Apply                                           Apply
Process         Process         Positive        Negative        Process
Name            Queue           Rule Set        Rule Set        Status
--------------- --------------- --------------- --------------- ---------------
STRM01_APPLY    STRM01_QUEUE    RULESET$_36                     ENABLED
APPLY_EMP       STREAMS_QUEUE   RULESET$_16                     DISABLED
APPLY           STREAMS_QUEUE   RULESET$_21     RULESET$_23     ENABLED

If the status of an apply process is ABORTED, then you can query the 
ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_APPLY data dictionary 
view to determine the error.

See Also: "Checking for Apply Errors" on page 14-48 to check for 
apply errors if the apply process status is ABORTED



Monitoring a Streams Apply Process

14-34 Oracle Streams Concepts and Administration

Displaying General Information About Each Apply Process
You can display the following general information about each apply process in a 
database by running the query in this section: 

� The apply process name

� The type of events applied by the apply process. An apply process may apply 
either events that were captured by a capture process or events that were 
enqueued by a user or application.

� The apply user

To display this general information about each apply process in a database, run the 
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN APPLY_CAPTURED HEADING 'Type of Events Applied' FORMAT A15
COLUMN APPLY_USER HEADING 'Apply User' FORMAT A30

SELECT APPLY_NAME, 
       DECODE(APPLY_CAPTURED,
              'YES', 'Captured',
              'NO',  'User-Enqueued') APPLY_CAPTURED,
       APPLY_USER
  FROM DBA_APPLY;

Your output looks similar to the following: 

Apply Process Name   Type of Events  Apply User
-------------------- --------------- ------------------------------
STRM01_APPLY         Captured        STRMADMIN
APPLY_OE             User-Enqueued   STRMADMIN
APPLY                Captured        HR

Listing the Parameter Settings for Each Apply Process
The following query displays the current setting for each apply process parameter 
for each apply process in a database:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15
COLUMN PARAMETER HEADING 'Parameter' FORMAT A20
COLUMN VALUE HEADING 'Value' FORMAT A20
COLUMN SET_BY_USER HEADING 'Set by User?' FORMAT A20



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-35

SELECT APPLY_NAME,
       PARAMETER, 
       VALUE,
       SET_BY_USER  
  FROM DBA_APPLY_PARAMETERS;

Your output looks similar to the following: 

Apply Process
Name            Parameter            Value                Set by User?
--------------- -------------------- -------------------- --------------------
STRM01_APPLY    COMMIT_SERIALIZATION FULL                 NO
STRM01_APPLY    DISABLE_ON_ERROR     Y                    YES
STRM01_APPLY    DISABLE_ON_LIMIT     N                    NO
STRM01_APPLY    MAXIMUM_SCN          INFINITE             NO
STRM01_APPLY    PARALLELISM          1                    NO
STRM01_APPLY    STARTUP_SECONDS      0                    NO
STRM01_APPLY    TIME_LIMIT           INFINITE             NO
STRM01_APPLY    TRACE_LEVEL          0                    NO
STRM01_APPLY    TRANSACTION_LIMIT    INFINITE             NO
STRM01_APPLY    WRITE_ALERT_LOG      Y                    NO

Displaying Information About Apply Handlers
This section contains queries that display information about apply process message 
handlers and error handlers.

Note: If the Set by User? column is NO for a parameter, then the 
parameter is set to its default value. If the Set by User? column is 
YES for a parameter, then the parameter may or may not be set to 
its default value.

See Also:

� "Apply Process Parameters" on page 4-19

� "Setting an Apply Process Parameter" on page 11-16



Monitoring a Streams Apply Process

14-36 Oracle Streams Concepts and Administration

Displaying All of the Error Handlers for Local Apply
When you specify a local error handler using the SET_DML_HANDLER procedure in 
the DBMS_APPLY_ADM package at a destination database, you either can specify 
that the handler runs for a specific apply process or that the handler is a general 
handler that runs for all apply processes in the database that apply changes locally 
when an error is raised by an apply process. A specific error handler takes 
precedence over a generic error handler. An error handler is run for a specified 
operation on a specific table.

To display the error handler for each apply process that applies changes locally in a 
database, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A10
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A30
COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15

SELECT OBJECT_OWNER, 
       OBJECT_NAME, 
       OPERATION_NAME, 
       USER_PROCEDURE,
       APPLY_NAME 
  FROM DBA_APPLY_DML_HANDLERS
  WHERE ERROR_HANDLER = 'Y'
  ORDER BY OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following: 

Table                                                      Apply Process
Owner Table Name Operation  Handler Procedure              Name
----- ---------- ---------- ------------------------------ --------------
HR    REGIONS    INSERT     "STRMADMIN"."ERRORS_PKG"."REGI
                            ONS_PK_ERROR"

Because Apply Process Name is NULL for the 
strmadmin.errors_pkg.regions_pk_error error handler, this handler is a 
general handler that runs for all of the local apply processes. 

See Also:

� "Event Processing with an Apply Process" on page 4-3

� Oracle Streams Replication Administrator's Guide for information 
about monitoring DML handlers and DDL handlers



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-37

Displaying the Message Handler for Each Apply Process
To display each message handler in a database, run the following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN MESSAGE_HANDLER HEADING 'Message Handler' FORMAT A20

SELECT APPLY_NAME, MESSAGE_HANDLER FROM DBA_APPLY
  WHERE MESSAGE_HANDLER IS NOT NULL;

Your output looks similar to the following: 

Apply Process Name   Message Handler
-------------------- --------------------
STRM03_APPLY         "HR"."MES_PROC"

Displaying the Precommit Handler for Each Apply Process
To display each precommit handler in a database, run the following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN PRECOMMIT_HANDLER HEADING 'Precommit Handler' FORMAT A30
COLUMN APPLY_CAPTURED HEADING 'Type of|Events|Applied' FORMAT A15

SELECT APPLY_NAME, 
       PRECOMMIT_HANDLER,
       DECODE(APPLY_CAPTURED,
              'YES', 'Captured',
              'NO',  'User-Enqueued') APPLY_CAPTURED
  FROM DBA_APPLY
  WHERE PRECOMMIT_HANDLER IS NOT NULL;

Your output looks similar to the following: 

                                                    Type of
                                                    Events
Apply Process Name   Precommit Handler              Applied
-------------------- ------------------------------ ---------------
STRM01_APPLY         "STRMADMIN"."HISTORY_COMMIT"   Captured

See Also: "Managing an Error Handler" on page 11-25

See Also: "Managing the Message Handler for an Apply Process" 
on page 11-17



Monitoring a Streams Apply Process

14-38 Oracle Streams Concepts and Administration

Displaying Information About the Reader Server for Each Apply Process
The reader server for an apply process dequeues events from the queue. The reader 
server is a parallel execution server that computes dependencies between LCRs and 
assembles events into transactions. The reader server then returns the assembled 
transactions to the coordinator, which assigns them to idle apply servers.

The query in this section displays the following information about the reader server 
for each apply process:

� The name of the apply process

� The type of events dequeued by the reader server, either captured LCRs or 
user-enqueued messages

� The name of the parallel execution server used by the reader server

� The current state of the reader server, either IDLE, DEQUEUE MESSAGES, or 
SCHEDULE MESSAGES

� The total number of events dequeued by the reader server since the last time the 
apply process was started

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN APPLY_CAPTURED HEADING 'Apply Type' FORMAT A22
COLUMN PROCESS_NAME HEADING 'Process|Name' FORMAT A7
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_MESSAGES_DEQUEUED HEADING 'Total Events|Dequeued' FORMAT 99999999

SELECT r.APPLY_NAME,
       DECODE(ap.APPLY_CAPTURED,
                'YES','Captured LCRS',
                'NO','User-enqueued messages','UNKNOWN') APPLY_CAPTURED,
       SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
       r.STATE,
       r.TOTAL_MESSAGES_DEQUEUED
       FROM V$STREAMS_APPLY_READER r, V$SESSION s, DBA_APPLY ap 
       WHERE r.SID = s.SID AND 
             r.SERIAL# = s.SERIAL# AND 
             r.APPLY_NAME = ap.APPLY_NAME;

See Also: "Managing the Precommit Handler for an Apply 
Process" on page 11-18



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-39

Your output looks similar to the following:

Apply Process                            Process                   Total Events
Name              Apply Type             Name    State                 Dequeued
----------------- ---------------------- ------- ----------------- ------------
APPLY_FROM_MULT2  Captured LCRS          P000    DEQUEUE MESSAGES          3803
APPLY_FROM_MULT1  Captured LCRS          P001    DEQUEUE MESSAGES          2754

Determining Capture to Dequeue Latency for an Event
The query in this section displays the following information about the last event 
dequeued by each apply process:

� The name of the apply process

� The latency. For captured events, the latency is the amount of time between 
when the event was created at a source database and when the event was 
dequeued by the apply process. For user-enqueued events, the latency is the 
amount of time between when the event enqueued at the local database and 
when the event was dequeued by the apply process.

� The event creation time. For captured events, the event creation time is the time 
when the data manipulation language (DML) or data definition language 
(DDL) change generated the redo information at the source database for the 
event. For user-enqueued events, the event creation time is the last time the 
event was enqueued. A user-enqueued event may be enqueued one or more 
additional times by propagation before it reaches an apply process.

� The time when the event was dequeued by the apply process

� The message number of the event that was last dequeued by the apply process

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN LATENCY HEADING 'Latency|in|Seconds' FORMAT 9999
COLUMN CREATION HEADING 'Event Creation' FORMAT A17
COLUMN LAST_DEQUEUE HEADING 'Last Dequeue Time' FORMAT A20
COLUMN DEQUEUED_MESSAGE_NUMBER HEADING 'Dequeued|Message Number' FORMAT 999999

See Also: "Reader Server States" on page 4-15



Monitoring a Streams Apply Process

14-40 Oracle Streams Concepts and Administration

SELECT APPLY_NAME,
     (DEQUEUE_TIME-DEQUEUED_MESSAGE_CREATE_TIME)*86400 LATENCY,
     TO_CHAR(DEQUEUED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY') CREATION,
     TO_CHAR(DEQUEUE_TIME,'HH24:MI:SS MM/DD/YY') LAST_DEQUEUE,
     DEQUEUED_MESSAGE_NUMBER  
  FROM V$STREAMS_APPLY_READER;

Your output looks similar to the following:

                  Latency
Apply Process          in                                              Dequeued
Name              Seconds Event Creation    Last Dequeue Time    Message Number
----------------- ------- ----------------- -------------------- --------------
APPLY_FROM_MULT1       36 10:56:51 02/27/03 10:57:27 02/27/03            253962
APPLY_FROM_MULT2       18 13:13:04 02/28/03 13:13:22 02/28/03            633043

Displaying General Information About Each Coordinator Process
A coordinator process gets transactions from the reader server and passes these 
transactions to apply servers. The coordinator process name is apnn, where nn is a 
coordinator process number.

The query in this section displays the following information about the coordinator 
process for each apply process:

� The apply process name

� The number of the coordinator in the process name (apnn)

� The session identifier of the coordinator's session

� The serial number of the coordinator's session

� The current state of the coordinator, either INITIALIZING, APPLYING, 
SHUTTING DOWN CLEANLY, or ABORTING

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN PROCESS_NAME HEADING 'Coordinator|Process|Name' FORMAT A11
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A21



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-41

SELECT c.APPLY_NAME,
       SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
       c.SID,
       c.SERIAL#,
       c.STATE
       FROM V$STREAMS_APPLY_COORDINATOR c, V$SESSION s
       WHERE c.SID = s.SID AND
             c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

                  Coordinator         Session
Apply Process     Process     Session  Serial
Name              Name             ID  Number State
----------------- ----------- ------- ------- ---------------------
APPLY_FROM_MULT1  A001             16       1 APPLYING
APPLY_FROM_MULT2  A002             18       1 APPLYING

Displaying Information About Transactions Received and Applied
The query in this section displays the following information about the transactions 
received, applied, and being applied by each apply process:

� The apply process name

� The total number of transactions received by the coordinator process since the 
apply process was last started

� The total number of transactions successfully applied by the apply process since 
the apply process was last started

� The number of transactions applied by the apply process that resulted in an 
apply error since the apply process was last started

� The total number of transactions currently being applied by the apply process

� The total number of transactions received by the coordinator process but 
ignored because the apply process had already applied the transactions since 
the apply process was last started

The information displayed by this query is valid only for an enabled apply process.

See Also: "Coordinator Process States" on page 4-16



Monitoring a Streams Apply Process

14-42 Oracle Streams Concepts and Administration

For example, to display this information for an apply process named apply, run the 
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A25
COLUMN TOTAL_RECEIVED HEADING 'Total|Trans|Received' FORMAT 99999999
COLUMN TOTAL_APPLIED HEADING 'Total|Trans|Applied' FORMAT 99999999
COLUMN TOTAL_ERRORS HEADING 'Total|Apply|Errors' FORMAT 9999
COLUMN BEING_APPLIED HEADING 'Total|Trans Being|Applied' FORMAT 99999999
COLUMN TOTAL_IGNORED HEADING 'Total|Trans|Ignored' FORMAT 99999999

SELECT APPLY_NAME,
       TOTAL_RECEIVED,
       TOTAL_APPLIED,
       TOTAL_ERRORS,
       (TOTAL_ASSIGNED - (TOTAL_ROLLBACKS + TOTAL_APPLIED)) BEING_APPLIED,
       TOTAL_IGNORED 
       FROM V$STREAMS_APPLY_COORDINATOR;

Your output looks similar to the following:

                              Total     Total  Total       Total     Total
                              Trans     Trans  Apply Trans Being     Trans
Apply Process Name         Received   Applied Errors     Applied   Ignored
------------------------- --------- --------- ------ ----------- ---------
APPLY_FROM_MULT1                 81        73      2           6         0
APPLY_FROM_MULT2                114        96      0          14         4

Determining the Capture to Apply Latency for an Event for Each Apply Process
This section contains two different queries that show the capture to apply latency 
for a particular event. That is, for captured events, these queries show the amount of 
time between when the event was created at a source database and when the event 
was applied by the apply process. One query uses the 
V$STREAMS_APPLY_COORDINATOR dynamic performance view, while the other 
uses the DBA_APPLY_PROGRESS static data dictionary view. 

Note: These queries assume that the apply process applies 
captured events, not user-enqueued events.



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-43

The following are the major differences between these two queries:

� The apply process must be enabled when you run the query on the 
V$STREAMS_APPLY_COORDINATOR view, while the apply process can be 
enabled or disabled when you run the query on the DBA_APPLY_PROGRESS 
view.

� The query on the V$STREAMS_APPLY_COORDINATOR view may show the 
latency for a more recent transaction than the query on the 
DBA_APPLY_PROGRESS view.

Both queries display the following information about an event applied by each 
apply process:

� The apply process name

� The capture to apply latency for the event

� The event creation time. For captured events, the event creation time is the time 
when the data manipulation language (DML) or data definition language 
(DDL) change generated the redo information at the source database for the 
event.

� The time when the event was applied by the apply process

� The message number of the event

Example V$STREAMS_APPLY_COORDINATOR Query for Latency
Run the following query to display the capture to apply latency using the 
V$STREAMS_APPLY_COORDINATOR view for an event for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Event Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN HWM_MESSAGE_NUMBER HEADING 'Applied|Message|Number' FORMAT 999999

SELECT APPLY_NAME,
     (HWM_TIME-HWM_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
     TO_CHAR(HWM_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY') 
        "Event Creation",
     TO_CHAR(HWM_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
     HWM_MESSAGE_NUMBER  
  FROM V$STREAMS_APPLY_COORDINATOR;



Monitoring a Streams Apply Process

14-44 Oracle Streams Concepts and Administration

Your output looks similar to the following:

                                                                         Applied
Apply Process                                                            Message
Name              Latency in Seconds Event Creation    Apply Time         Number
----------------- ------------------ ----------------- ----------------- -------
APPLY_FROM_MULT1                 781 14:05:29 02/28/03 14:18:30 02/28/03  638609
APPLY_FROM_MULT2                 381 13:13:04 02/28/03 13:19:25 02/28/03  633043

Example DBA_APPLY_PROGRESS Query for Latency
Run the following query to display the capture to apply latency using the 
DBA_APPLY_PROGRESS view for an event for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Event Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN APPLIED_MESSAGE_NUMBER HEADING 'Applied|Message|Number' FORMAT 999999

SELECT APPLY_NAME,
     (APPLY_TIME-APPLIED_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
     TO_CHAR(APPLIED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY') 
        "Event Creation",
     TO_CHAR(APPLY_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
     APPLIED_MESSAGE_NUMBER  
  FROM DBA_APPLY_PROGRESS;

Your output looks similar to the following:

                                                                         Applied
Apply Process                                                            Message
Name              Latency in Seconds Event Creation    Apply Time         Number
----------------- ------------------ ----------------- ----------------- -------
APPLY_FROM_MULT1                 219 14:05:23 02/28/03 14:09:02 02/28/03  638607
APPLY_FROM_MULT2                2641 12:29:21 02/28/03 13:13:22 02/28/03  617393

Displaying Information About the Apply Servers for Each Apply Process
An apply process can use one or more apply servers that apply LCRs to database 
objects as DML statements or DDL statements or pass the LCRs to their appropriate 
handlers. For non-LCR messages, the apply servers pass the events to the message 
handler. Each apply server is a parallel execution server.



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-45

The query in this section displays the following information about the apply servers 
for each apply process:

� The name of the apply process

� The process names of the parallel execution servers, in order

� The current state of each apply server, either IDLE, RECORD LOW-WATERMARK, 
ADD PARTITION, DROP PARTITION, EXECUTE TRANSACTION, WAIT COMMIT, 
WAIT DEPENDENCY, WAIT FOR NEXT CHUNK, or TRANSACTION CLEANUP. See 
V$STREAMS_APPLY_SERVER in the Oracle Database Reference for more 
information about these states.

� The total number of transactions assigned to each apply server since the last 
time the apply process was started. A transaction may contain more than one 
event.

� The total number of events applied by each apply server since the last time the 
apply process was started

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display information about the apply servers for each 
apply process:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A22
COLUMN PROCESS_NAME HEADING 'Process Name' FORMAT A12
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_ASSIGNED HEADING 'Total|Transactions|Assigned' FORMAT 99999999
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total|Events|Applied' FORMAT 99999999

SELECT r.APPLY_NAME,
       SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
       r.STATE,
       r.TOTAL_ASSIGNED, 
       r.TOTAL_MESSAGES_APPLIED
  FROM V$STREAMS_APPLY_SERVER R, V$SESSION S 
  WHERE r.SID = s.SID AND 
        r.SERIAL# = s.SERIAL# 
  ORDER BY r.SERVER_ID;



Monitoring a Streams Apply Process

14-46 Oracle Streams Concepts and Administration

Your output looks similar to the following:

                                                             Total     Total
                                                      Transactions    Events
Apply Process Name     Process Name State                 Assigned   Applied
---------------------- ------------ ----------------- ------------ ---------
APPLY                  P001         IDLE                        94      2141
APPLY                  P002         IDLE                        12       276
APPLY                  P003         IDLE                         0         0

Displaying Effective Apply Parallelism for an Apply Process
In some environments, an apply process may not use all of the apply servers 
available to it. For example, apply process parallelism may be set to five, but only 
three apply servers are ever used by the apply process. In this case, the effective 
apply parallelism is three.

The following query displays the effective apply parallelism for an apply process 
named apply:

SELECT COUNT(SERVER_ID) "Effective Parallelism"
  FROM V$STREAMS_APPLY_SERVER
  WHERE APPLY_NAME = 'APPLY' AND
        TOTAL_MESSAGES_APPLIED > 0;

Your output looks similar to the following:

Effective Parallelism
---------------------
                    2

This query returned two for the effective parallelism. If parallelism is set to three for 
the apply process named apply, then one apply server has not been used since the 
last time the apply process was started.

You can display the total number of events applied by each apply server by running 
the following query:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total Events Applied' FORMAT 999999

See Also: "Apply Server States" on page 4-16



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-47

SELECT SERVER_ID, TOTAL_MESSAGES_APPLIED 
  FROM V$STREAMS_APPLY_SERVER
  WHERE APPLY_NAME = 'APPLY'
  ORDER BY SERVER_ID;

Your output looks similar to the following:

Apply Server ID Total Events Applied
--------------- --------------------
              1                 2141
              2                  276
              3                    0

In this case, apply server 3 has not been used by the apply process since it was last 
started. If the parallelism setting for an apply process is higher than the effective 
parallelism for the apply process, then consider lowering the parallelism setting.

Viewing Rules That Specify a Destination Queue On Apply
You can specify a destination queue for a rule using the 
SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package. If an 
apply process has such a rule in its positive rule set, and an event satisfies the rule, 
then the apply process enqueues the event into the destination queue.

To view destination queue settings for rules, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN DESTINATION_QUEUE_NAME HEADING 'Destination Queue' FORMAT A30

SELECT RULE_OWNER, RULE_NAME, DESTINATION_QUEUE_NAME
  FROM DBA_APPLY_ENQUEUE;

Your output looks similar to the following:

Rule Owner      Rule Name       Destination Queue
--------------- --------------- ------------------------------
STRMADMIN       DEPARTMENTS17   "STRMADMIN"."STREAMS_QUEUE"

See Also:

� "Specifying Event Enqueues by Apply Processes" on page 11-21

� "Enqueue Destinations for Events During Apply" on page 6-52



Monitoring a Streams Apply Process

14-48 Oracle Streams Concepts and Administration

Viewing Rules That Specify No Execution On Apply
You can specify an execution directive for a rule using the SET_EXECUTE procedure 
in the DBMS_APPLY_ADM package. An execution directive controls whether an 
event that satisfies the specified rule is executed by an apply process. If an apply 
process has a rule in its positive rule set with NO for its execution directive, and an 
event satisfies the rule, then the apply process does not execute the event and does 
not send the event to any apply handler.

To view each rule with NO for its execution directive, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A20
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20

SELECT RULE_OWNER, RULE_NAME
  FROM DBA_APPLY_EXECUTE
  WHERE EXECUTE_EVENT = 'NO';

Your output looks similar to the following:

Rule Owner           Rule Name
-------------------- --------------------
STRMADMIN            DEPARTMENTS18

Checking for Apply Errors
To check for apply errors, run the following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A10
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN LOCAL_TRANSACTION_ID HEADING 'Local|Transaction|ID' FORMAT A11
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A20
COLUMN MESSAGE_COUNT HEADING 'Events in|Error|Transaction' FORMAT 99999999

See Also:

� "Specifying Execute Directives for Apply Processes" on 
page 11-23

� "Execution Directives for Events During Apply" on page 6-52



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-49

SELECT APPLY_NAME, 
       SOURCE_DATABASE, 
       LOCAL_TRANSACTION_ID, 
       ERROR_NUMBER,
       ERROR_MESSAGE,
       MESSAGE_COUNT
  FROM DBA_APPLY_ERROR;

If there are any apply errors, then your output looks similar to the following: 

Apply                 Local                                           Events in
Process    Source     Transaction                                         Error
Name       Database   ID          Error Number Error Message        Transaction
---------- ---------- ----------- ------------ -------------------- -----------
APPLY_FROM MULT3.NET  1.62.948            1403 ORA-01403: no data f           1
_MULT3                                         ound

APPLY_FROM MULT2.NET  1.54.948            1403 ORA-01403: no data f           1
_MULT2                                         ound

If there are apply errors, then you can either try to reexecute the transactions that 
encountered the errors, or you can delete the transactions. If you want to reexecute 
a transaction that encountered an error, then first correct the condition that caused 
the transaction to raise an error. 

If you want to delete a transaction that encountered an error, then you may need to 
resynchronize data manually if you are sharing data between multiple databases. 
Remember to set an appropriate session tag, if necessary, when you resynchronize 
data manually.

See Also:

� "The Error Queue" on page 4-22

� "Managing Apply Errors" on page 11-32

� Oracle Streams Replication Administrator's Guide for information 
about the possible causes of apply errors

� Oracle Streams Replication Administrator's Guide for more 
information about setting tag values generated by the current 
session



Monitoring a Streams Apply Process

14-50 Oracle Streams Concepts and Administration

Displaying Detailed Information About Apply Errors
This section contains SQL scripts that you can use to display detailed information 
about the error transactions in the error queue in a database. These scripts are 
designed to display information about LCR events, but you can extend them to 
display information about any non-LCR events used in your environment as well.

To use these scripts, complete the following steps:

1. Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View

2. Create a Procedure That Prints the Value in a SYS.AnyData Object

3. Create a Procedure That Prints a Specified LCR

4. Create a Procedure That Prints All the LCRs in the Error Queue

5. Create a Procedure that Prints All the Error LCRs for a Transaction

Step 1  Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View
The user who creates and runs the print_errors and print_transaction 
procedures described in the following sections must be granted explicit SELECT 
privilege on the DBA_APPLY_ERROR data dictionary view. This privilege cannot be 
granted through a role. Running the GRANT_ADMIN_PRIVILEGE procedure in the 
DBMS_STREAMS_AUTH package on a user grants this privilege to the user.

To grant this privilege to a user directly, complete the following steps:

1. Connect as an administrative user who can grant privileges.

2. Grant SELECT privilege on the DBA_APPLY_ERROR data dictionary view to the 
appropriate user. For example, to grant this privilege to the strmadmin user, 
run the following statement:

GRANT SELECT ON DBA_APPLY_ERROR TO strmadmin;

3. Grant EXECUTE privilege on the DBMS_APPLY_ADM package. For example, to 
grant this privilege to the strmadmin user, run the following statement:

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;

4. Connect to the database as the user to whom you granted the privilege in 
Step 2.

Note: These scripts display only the first 253 characters for 
VARCHAR2 values in LCR events.



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-51

Step 2  Create a Procedure That Prints the Value in a SYS.AnyData Object
The following procedure prints the value in a specified SYS.AnyData object for 
some selected datatypes. You may add more datatypes to this procedure if you 
wish.

CREATE OR REPLACE PROCEDURE print_any(data IN SYS.AnyData) IS
  tn  VARCHAR2(61);
  str VARCHAR2(4000);
  chr VARCHAR2(1000);
  num NUMBER;
  dat DATE;
  rw  RAW(4000);
  res NUMBER;
BEGIN
  IF data IS NULL THEN
    DBMS_OUTPUT.PUT_LINE('NULL value');
    RETURN;
  END IF;
  tn := data.GETTYPENAME();
  IF tn = 'SYS.VARCHAR2' THEN
    res := data.GETVARCHAR2(str);
    DBMS_OUTPUT.PUT_LINE(SUBSTR(str,0,253));
  ELSIF tn = 'SYS.CHAR' then
    res := data.GETCHAR(chr);
    DBMS_OUTPUT.PUT_LINE(SUBSTR(chr,0,253));
  ELSIF tn = 'SYS.VARCHAR' THEN
    res := data.GETVARCHAR(chr);
    DBMS_OUTPUT.PUT_LINE(chr);
  ELSIF tn = 'SYS.NUMBER' THEN
    res := data.GETNUMBER(num);
    DBMS_OUTPUT.PUT_LINE(num);
  ELSIF tn = 'SYS.DATE' THEN
    res := data.GETDATE(dat);
    DBMS_OUTPUT.PUT_LINE(dat);
  ELSIF tn = 'SYS.RAW' THEN
    -- res := data.GETRAW(rw);
    -- DBMS_OUTPUT.PUT_LINE(SUBSTR(DBMS_LOB.SUBSTR(rw),0,253));
    DBMS_OUTPUT.PUT_LINE('BLOB Value');
  ELSIF tn = 'SYS.BLOB' THEN
    DBMS_OUTPUT.PUT_LINE('BLOB Found');
  ELSE
    DBMS_OUTPUT.PUT_LINE('typename is ' || tn);
  END IF;
END print_any;
/



Monitoring a Streams Apply Process

14-52 Oracle Streams Concepts and Administration

Step 3  Create a Procedure That Prints a Specified LCR
The following procedure prints a specified LCR. It calls the print_any procedure 
created in "Create a Procedure That Prints the Value in a SYS.AnyData Object" on 
page 14-51.

CREATE OR REPLACE PROCEDURE print_lcr(lcr IN SYS.ANYDATA) IS
  typenm    VARCHAR2(61);
  ddllcr    SYS.LCR$_DDL_RECORD;
  proclcr   SYS.LCR$_PROCEDURE_RECORD;
  rowlcr    SYS.LCR$_ROW_RECORD;
  res       NUMBER;
  newlist   SYS.LCR$_ROW_LIST;
  oldlist   SYS.LCR$_ROW_LIST;
  ddl_text  CLOB;
  ext_attr  SYS.AnyData;
BEGIN
  typenm := lcr.GETTYPENAME();
  DBMS_OUTPUT.PUT_LINE('type name: ' || typenm);
  IF (typenm = 'SYS.LCR$_DDL_RECORD') THEN
    res := lcr.GETOBJECT(ddllcr);
    DBMS_OUTPUT.PUT_LINE('source database: ' || 
                         ddllcr.GET_SOURCE_DATABASE_NAME);
    DBMS_OUTPUT.PUT_LINE('owner: ' || ddllcr.GET_OBJECT_OWNER);
    DBMS_OUTPUT.PUT_LINE('object: ' || ddllcr.GET_OBJECT_NAME);
    DBMS_OUTPUT.PUT_LINE('is tag null: ' || ddllcr.IS_NULL_TAG);
    DBMS_LOB.CREATETEMPORARY(ddl_text, true);
    ddllcr.GET_DDL_TEXT(ddl_text);
    DBMS_OUTPUT.PUT_LINE('ddl: ' || ddl_text);    
    -- Print extra attributes in DDL LCR
    ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('serial#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
      END IF;
    ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('session#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
      END IF; 
    ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('thread#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
      END IF;   
    ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('tx_name');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());
      END IF;



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-53

    ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('username');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
      END IF;      
    DBMS_LOB.FREETEMPORARY(ddl_text);
  ELSIF (typenm = 'SYS.LCR$_ROW_RECORD') THEN
    res := lcr.GETOBJECT(rowlcr);
    DBMS_OUTPUT.PUT_LINE('source database: ' || 
                         rowlcr.GET_SOURCE_DATABASE_NAME);
    DBMS_OUTPUT.PUT_LINE('owner: ' || rowlcr.GET_OBJECT_OWNER);
    DBMS_OUTPUT.PUT_LINE('object: ' || rowlcr.GET_OBJECT_NAME);
    DBMS_OUTPUT.PUT_LINE('is tag null: ' || rowlcr.IS_NULL_TAG); 
    DBMS_OUTPUT.PUT_LINE('command_type: ' || rowlcr.GET_COMMAND_TYPE); 
    oldlist := rowlcr.GET_VALUES('old');
    FOR i IN 1..oldlist.COUNT LOOP
      IF oldlist(i) IS NOT NULL THEN
        DBMS_OUTPUT.PUT_LINE('old(' || i || '): ' || oldlist(i).column_name);
        print_any(oldlist(i).data);
      END IF;
    END LOOP;
    newlist := rowlcr.GET_VALUES('new', 'n');
    FOR i in 1..newlist.count LOOP
      IF newlist(i) IS NOT NULL THEN
        DBMS_OUTPUT.PUT_LINE('new(' || i || '): ' || newlist(i).column_name);
        print_any(newlist(i).data);
      END IF;
    END LOOP;
    -- Print extra attributes in row LCR
    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('row_id');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('row_id: ' || ext_attr.ACCESSUROWID());
      END IF;
    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('serial#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
      END IF;
    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('session#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
      END IF; 
    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('thread#');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
      END IF;   



Monitoring a Streams Apply Process

14-54 Oracle Streams Concepts and Administration

    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('tx_name');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());
      END IF;
    ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('username');
      IF (ext_attr IS NOT NULL) THEN
        DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
      END IF;          
  ELSE
    DBMS_OUTPUT.PUT_LINE('Non-LCR Message with type ' || typenm);
  END IF;
END print_lcr;
/

Step 4  Create a Procedure That Prints All the LCRs in the Error Queue
The following procedure prints all of the LCRs in all of the error queues. It calls the 
print_lcr procedure created in "Create a Procedure That Prints a Specified LCR" 
on page 14-52.

CREATE OR REPLACE PROCEDURE print_errors IS
  CURSOR c IS
    SELECT LOCAL_TRANSACTION_ID,
           SOURCE_DATABASE,
           MESSAGE_NUMBER,
           MESSAGE_COUNT,
           ERROR_NUMBER,
           ERROR_MESSAGE
      FROM DBA_APPLY_ERROR
      ORDER BY SOURCE_DATABASE, SOURCE_COMMIT_SCN;
  i      NUMBER;
  txnid  VARCHAR2(30);
  source VARCHAR2(128);
  msgno  NUMBER;
  msgcnt NUMBER;
  errnum NUMBER := 0;
  errno  NUMBER;
  errmsg VARCHAR2(255);
  lcr    SYS.AnyData;
  r      NUMBER;



Monitoring a Streams Apply Process

Monitoring a Streams Environment 14-55

BEGIN
  FOR r IN c LOOP
    errnum := errnum + 1;
    msgcnt := r.MESSAGE_COUNT;
    txnid  := r.LOCAL_TRANSACTION_ID;
    source := r.SOURCE_DATABASE;
    msgno  := r.MESSAGE_NUMBER;
    errno  := r.ERROR_NUMBER;
    errmsg := r.ERROR_MESSAGE;
DBMS_OUTPUT.PUT_LINE('*************************************************');
    DBMS_OUTPUT.PUT_LINE('----- ERROR #' || errnum);
    DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
    DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
    DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
    DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
    DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
    FOR i IN 1..msgcnt LOOP
      DBMS_OUTPUT.PUT_LINE('--message: ' || i);
        lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid);
        print_lcr(lcr);
    END LOOP;
  END LOOP;
END print_errors;
/

To run this procedure after you create it, enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_errors

Step 5  Create a Procedure that Prints All the Error LCRs for a Transaction
The following procedure prints all the LCRs in the error queue for a particular 
transaction. It calls the print_lcr procedure created in "Create a Procedure That 
Prints a Specified LCR" on page 14-52.

CREATE OR REPLACE PROCEDURE print_transaction(ltxnid IN VARCHAR2) IS
  i      NUMBER;
  txnid  VARCHAR2(30);
  source VARCHAR2(128);
  msgno  NUMBER;
  msgcnt NUMBER;
  errno  NUMBER;
  errmsg VARCHAR2(128);
  lcr    SYS.ANYDATA;



Monitoring Rules and Rule-Based Transformations

14-56 Oracle Streams Concepts and Administration

BEGIN
  SELECT LOCAL_TRANSACTION_ID,
         SOURCE_DATABASE,
         MESSAGE_NUMBER,
         MESSAGE_COUNT,
         ERROR_NUMBER,
         ERROR_MESSAGE
      INTO txnid, source, msgno, msgcnt, errno, errmsg
      FROM DBA_APPLY_ERROR
      WHERE LOCAL_TRANSACTION_ID =  ltxnid;
  DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
  DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
  DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
  DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
  DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
  FOR i IN 1..msgcnt LOOP
  DBMS_OUTPUT.PUT_LINE('--message: ' || i);
    lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid); -- gets the LCR
    print_lcr(lcr);
  END LOOP;
END print_transaction;
/

To run this procedure after you create it, pass it the local transaction identifier of a 
error transaction. For example, if the local transaction identifier is 1.17.2485, then 
enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_transaction('1.17.2485')

Monitoring Rules and Rule-Based Transformations
The following sections contain queries that you can run to display information 
about rules and rule-based transformations:

� Displaying All Rules Used by All Streams Clients

� Displaying the Streams Rules Used by a Specific Streams Client

� Displaying the Current Condition for a Rule

� Displaying Rule Conditions for Streams Rules That Have Been Modified

� Displaying the Evaluation Context for Each Rule Set

� Displaying Information About the Tables Used by an Evaluation Context



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-57

� Displaying Information About the Variables Used in an Evaluation Context

� Displaying All of the Rules in a Rule Set

� Displaying the Condition for Each Rule in a Rule Set

� Listing Each Rule that Contains a Specified Pattern in Its Condition

� Displaying Rule-Based Transformations

� Displaying Aggregate Statistics for All Rule Set Evaluations

� Displaying General Information About Rule Set Evaluations

� Determining the Resources Used by Evaluation of Each Rule Set

� Displaying Evaluation Statistics for a Rule

Displaying All Rules Used by All Streams Clients
Streams rules are rules created using the DBMS_STREAMS_ADM package or the 
Streams tool in the Oracle Enterprise Manager Console. Streams rules in the rule 
sets for a Streams client determine the behavior of the Streams client. Streams 
clients include capture processes, propagations, apply processes, and messaging 
clients. The rule sets for a Streams client also may contain rules created using the 
DBMS_RULE_ADM package, and these rules also determine the behavior of the 
Streams client.

For example, if a rule in the positive rule set for a capture process evaluates to TRUE 
for DML changes to the hr.employees table, then the capture process captures 
DML changes to this table. However, if a rule in the negative rule set for a capture 
process evaluates to TRUE for DML changes to the hr.employees table, then the 
capture process discards DML changes to this table.

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"

� Chapter 12, "Managing Rules and Rule-Based Transformations"

� "Modifying a Name-Value Pair in a Rule's Action Context" on 
page 12-8 for information about viewing a rule's action context



Monitoring Rules and Rule-Based Transformations

14-58 Oracle Streams Concepts and Administration

You query the following data dictionary views to display all rules in the rule sets for 
Streams clients, including Streams rules and rules created using the 
DBMS_RULE_ADM package:

� ALL_STREAMS_RULES

� DBA_STREAMS_RULES

In addition, these two views display the current rule condition for each rule and 
whether the rule condition has been modified.

The query in this section displays the following information about all of the rules 
used by Streams clients in a database:

� The name of each Streams client that uses the rule

� The type of each Streams client that uses the rule, either capture for capture 
process, propagation for propagation, apply for apply process, or dequeue for 
messaging client

� The name of the rule

� The type of rule set that contains the rule for the Streams client, either positive 
or negative

� For Streams rules, the Streams rule level, either global, schema, or table

� For Streams rules, the name of the schema for schema and table rules

� For Streams rules, the name of the table for table rules

� For Streams rules, the rule type, either DML or DDL

Run the following query to display this information:

COLUMN STREAMS_NAME HEADING 'Streams|Name' FORMAT A14
COLUMN STREAMS_TYPE HEADING 'Streams|Type' FORMAT A11
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN RULE_SET_TYPE HEADING 'Rule Set|Type' FORMAT A8
COLUMN STREAMS_RULE_TYPE HEADING 'Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-59

SELECT STREAMS_NAME, 
       STREAMS_TYPE,
       RULE_NAME,
       RULE_SET_TYPE,
       STREAMS_RULE_TYPE,
       SCHEMA_NAME,
       OBJECT_NAME,
       RULE_TYPE
  FROM DBA_STREAMS_RULES;

Your output looks similar to the following:        

                                                 Streams
Streams        Streams     Rule         Rule Set Rule    Schema Object      Rule
Name           Type        Name         Type     Level   Name   Name        Type
-------------- ----------- ------------ -------- ------- ------ ----------- ----
STRM01_CAPTURE CAPTURE     JOBS4        POSITIVE TABLE   HR     JOBS        DML
STRM01_CAPTURE CAPTURE     JOBS5        POSITIVE TABLE   HR     JOBS        DDL
DBS1_TO_DBS2   PROPAGATION HR18         POSITIVE SCHEMA  HR                 DDL
DBS1_TO_DBS2   PROPAGATION HR17         POSITIVE SCHEMA  HR                 DML
APPLY          APPLY       HR20         POSITIVE SCHEMA  HR                 DML
APPLY          APPLY       JOB_HISTORY2 NEGATIVE TABLE   HR     JOB_HISTORY DML
OE             DEQUEUE     RULE$_28     POSITIVE

This output provides the following information about the rules used by Streams 
clients in the database:

� The DML rule jobs4 and the DDL rule jobs5 are both table rules for the 
hr.jobs table in the positive rule set for the capture process 
strm01_capture.

� The DML rule hr17 and the DDL rule hr18 are both schema rules for the hr 
schema in the positive rule set for the propagation dbs1_to_dbs2.

� The DML rule hr20 is a schema rule for the hr schema in the positive rule set 
for the apply process apply.

� The DML rule job_history2 is a table rule for the hr schema in the negative 
rule set for the apply process apply.

� The rule rule$_28 is a messaging rule in the positive rule set for the 
messaging client oe.

The ALL_STREAMS_RULES and DBA_STREAMS_RULES views also contain 
information about the rule sets used by a Streams client, the current and original 
rule condition for Streams rules, whether the rule condition has been changed, the 



Monitoring Rules and Rule-Based Transformations

14-60 Oracle Streams Concepts and Administration

subsetting operation and DML condition for each Streams subset rule, the source 
database specified for each Streams rule, and information about the message type 
and message variable for Streams messaging rules.

The following data dictionary views also display Streams rules:

� ALL_STREAMS_GLOBAL_RULES

� DBA_STREAMS_GLOBAL_RULES

� ALL_STREAMS_MESSAGE_RULES

� DBA_STREAMS_MESSAGE_RULES

� ALL_STREAMS_SCHEMA_RULES

� DBA_STREAMS_SCHEMA_RULES

� ALL_STREAMS_TABLE_RULES

� DBA_STREAMS_TABLE_RULES

These views display Streams rules only. They do not display any manual 
modifications to these rules made by the DBMS_RULE_ADM package, nor do they 
display rules created using the DBMS_RULE_ADM package. In addition, these views 
can display the original rule condition for each rule only. They do not display the 
current rule condition for a rule if the rule condition was modified after the rule was 
created.

Displaying the Streams Rules Used by a Specific Streams Client
To determine which rules are in a rule set used by a particular Streams client, you 
can query the DBA_STREAMS_RULES data dictionary view. For example, suppose a 
database is running an apply process named strm01_apply. The following 
sections describe how to determine the rules in the positive rule set and negative 
rule set for this apply process.

Determining the Rules in the Positive Rule Set for a Streams Client
The following query displays all of the rules in the positive rule set for an apply 
process named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN STREAMS_RULE_TYPE HEADING 'Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6

See Also: "System-Created Rules" on page 6-7



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-61

COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
       RULE_NAME,
       STREAMS_RULE_TYPE,
       SCHEMA_NAME,
       OBJECT_NAME,
       RULE_TYPE,
       SOURCE_DATABASE,
       INCLUDE_TAGGED_LCR
  FROM DBA_STREAMS_RULES
  WHERE STREAMS_NAME  = 'STRM01_APPLY' AND
        RULE_SET_TYPE = 'POSITIVE';

If this query returns any rows, then the apply process applies LCRs containing 
changes that evaluate to true for the rules. 

Your output looks similar to the following: 

                           Streams                                    Apply
           Rule            Rule    Schema Object      Rule            Tagged
Rule Owner Name            Level   Name   Name        Type Source     LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN  HR20            SCHEMA  HR                 DML   DBS1.NET  NO
STRMADMIN  HR21            SCHEMA  HR                 DDL   DBS1.NET  NO

Assuming the rule conditions for the Streams rules returned by this query have not 
been modified, these results show that the apply process applies LCRs containing 
DML changes and DDL changes to the hr schema that originated at the dbs1.net 
database. The rules in the positive rule set that instruct the apply process to apply 
these LCRs are owned by the strmadmin user and are named hr20 and hr21. 
Also, the apply process applies an LCR that satisfies one of these rules only if the 
tag in the LCR is NULL.

If the rule condition for a Streams rule has been modified, then you must check the 
rule's current rule condition to determine the effect of the rule on a Streams client. 
Streams rules whose rule condition has been modified have NO for the 
SAME_RULE_CONDITION column.

See Also: "Displaying Rule Conditions for Streams Rules That 
Have Been Modified" on page 14-64



Monitoring Rules and Rule-Based Transformations

14-62 Oracle Streams Concepts and Administration

Determining the Rules in the Negative Rule Set for a Streams Client
The following query displays all of the rules in the negative rule set for an apply 
process named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A15
COLUMN STREAMS_RULE_TYPE HEADING 'Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
       RULE_NAME,
       STREAMS_RULE_TYPE,
       SCHEMA_NAME,
       OBJECT_NAME,
       RULE_TYPE,
       SOURCE_DATABASE,
       INCLUDE_TAGGED_LCR
  FROM DBA_STREAMS_RULES
  WHERE STREAMS_NAME  = 'APPLY' AND
        RULE_SET_TYPE = 'NEGATIVE';

If this query returns any rows, then the apply process discards LCRs containing 
changes that evaluate to true for the rules. 

Your output looks similar to the following: 

                           Streams                                    Apply
           Rule            Rule    Schema Object      Rule            Tagged
Rule Owner Name            Level   Name   Name        Type Source     LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN  JOB_HISTORY22   TABLE   HR     JOB_HISTORY DML  DBS1.NET   YES
STRMADMIN  JOB_HISTORY23   TABLE   HR     JOB_HISTORY DDL  DBS1.NET   YES

Assuming the rule conditions for the Streams rules returned by this query have not 
been modified, these results show that the apply process discards LCRs containing 
DML changes and DDL changes to the hr.job_history table that originated at 
the dbs1.net database. The rules in the negative rule set that instruct the apply 
process to discard these LCRs are owned by the strmadmin user and are named 
job_history22 and job_history23. Also, the apply process discards an LCR 
that satisfies one of these rules regardless of the value of the tag in the LCR.



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-63

If the rule condition for a Streams rule has been modified, then you must check the 
rule's current rule condition to determine the effect of the rule on a Streams client. 
Streams rules whose rule condition has been modified have NO for the 
SAME_RULE_CONDITION column.

Displaying the Current Condition for a Rule
If you know the name of a rule, then you can display its rule condition. For 
example, consider the rule returned by the query in "Displaying the Streams Rules 
Used by a Specific Streams Client" on page 14-60. The name of the rule is hr1, and 
you can display its condition by running the following query:

SET LONG  8000
SET PAGES 8000
SELECT RULE_CONDITION "Current Rule Condition"
  FROM DBA_STREAMS_RULES 
  WHERE RULE_NAME  = 'HR1' AND
        RULE_OWNER = 'STRMADMIN';

Your output looks similar to the following: 

Current Rule Condition
-----------------------------------------------------------------
(:dml.get_object_owner() = 'HR' and :dml.is_null_tag() = 'Y' and 
:dml.get_source_database_name() = 'DBS1.NET' )

See Also: "Displaying Rule Conditions for Streams Rules That 
Have Been Modified" on page 14-64

See Also:

� "Rule Condition" on page 5-2

� "System-Created Rules" on page 6-7



Monitoring Rules and Rule-Based Transformations

14-64 Oracle Streams Concepts and Administration

Displaying Rule Conditions for Streams Rules That Have Been Modified
It is possible to modify the rule condition of a Streams rule. These modifications 
may change the behavior of the Streams clients using the Streams rule. In addition, 
some modifications may degrade rule evaluation performance.

The following query displays the rule name, the original rule condition, and the 
current rule condition for each Streams rule whose condition has been modified:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A12
COLUMN ORIGINAL_RULE_CONDITION HEADING 'Original Rule Condition' FORMAT A33
COLUMN RULE_CONDITION HEADING 'Current Rule Condition' FORMAT A33

SET LONG  8000
SET PAGES 8000
SELECT RULE_NAME, ORIGINAL_RULE_CONDITION, RULE_CONDITION
  FROM DBA_STREAMS_RULES 
  WHERE SAME_RULE_CONDITION = 'NO';

Your output looks similar to the following: 

Rule Name    Original Rule Condition           Current Rule Condition
------------ --------------------------------- ---------------------------------
HR20         ((:dml.get_object_owner() = 'HR') ((:dml.get_object_owner() = 'HR')
              and :dml.is_null_tag() = 'Y' )    and :dml.is_null_tag() = 'Y' and
                                                :dml.get_object_name() != 'JOB_H
                                               ISTORY')

In this example, the output shows that the condition of the hr20 rule has been 
modified. Originally, this schema rule evaluated to true for all changes to the hr 
schema. The current modified condition for this rule evaluates to true for all 
changes to the hr schema, except for DML changes to the hr.job_history table.

Note: The query in this section only applies to Streams rules. It 
does not apply to rules created using the DBMS_RULE_ADM package 
because these rules always show NULL for the 
ORIGINAL_RULE_CONDITION column and NULL for the 
SAME_RULE_CONDITION column.

See Also:

� "Rule Condition" on page 5-2

� "System-Created Rules" on page 6-7



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-65

Displaying the Evaluation Context for Each Rule Set
The following query displays the default evaluation context for each rule set in a 
database:

COLUMN RULE_SET_OWNER HEADING 'Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30

SELECT RULE_SET_OWNER, 
       RULE_SET_NAME, 
       RULE_SET_EVAL_CONTEXT_OWNER,
       RULE_SET_EVAL_CONTEXT_NAME
  FROM DBA_RULE_SETS;

Your output looks similar to the following: 

Rule Set                        Eval Context
Owner      Rule Set Name        Owner        Eval Context Name
---------- -------------------- ------------ ------------------------------
STRMADMIN  RULESET$_2           SYS          STREAMS$_EVALUATION_CONTEXT
STRMADMIN  STRM02_QUEUE_R       STRMADMIN    AQ$_STRM02_QUEUE_TABLE_V
STRMADMIN  APPLY_OE_RS          STRMADMIN    OE_EVAL_CONTEXT
STRMADMIN  OE_QUEUE_R           STRMADMIN    AQ$_OE_QUEUE_TABLE_V
STRMADMIN  AQ$_1_RE             STRMADMIN    AQ$_OE_QUEUE_TABLE_V
SUPPORT    RS                   SUPPORT      EVALCTX
OE         NOTIFICATION_QUEUE_R OE           AQ$_NOTIFICATION_QUEUE_TABLE_V

Displaying Information About the Tables Used by an Evaluation Context
The following query displays information about the tables used by an evaluation 
context named evalctx, which is owned by the support user:

COLUMN TABLE_ALIAS HEADING 'Table Alias' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A40

See Also:

� "Rule Evaluation Context" on page 5-6

� "Evaluation Contexts Used in Streams" on page 6-45



Monitoring Rules and Rule-Based Transformations

14-66 Oracle Streams Concepts and Administration

SELECT TABLE_ALIAS,
       TABLE_NAME
  FROM DBA_EVALUATION_CONTEXT_TABLES
  WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
        EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

Table Alias          Table Name
-------------------- ----------------------------------------
PROB                 problems

Displaying Information About the Variables Used in an Evaluation Context
The following query displays information about the variables used by an evaluation 
context named evalctx, which is owned by the support user:

COLUMN VARIABLE_NAME HEADING 'Variable Name' FORMAT A15
COLUMN VARIABLE_TYPE HEADING 'Variable Type' FORMAT A15
COLUMN VARIABLE_VALUE_FUNCTION HEADING 'Variable Value|Function' FORMAT A20
COLUMN VARIABLE_METHOD_FUNCTION HEADING 'Variable Method|Function' FORMAT A20

SELECT VARIABLE_NAME,
       VARIABLE_TYPE,
       VARIABLE_VALUE_FUNCTION,
       VARIABLE_METHOD_FUNCTION
  FROM DBA_EVALUATION_CONTEXT_VARS
  WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
        EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

                                Variable Value       Variable Method
Variable Name   Variable Type   Function             Function
--------------- --------------- -------------------- --------------------
CURRENT_TIME    DATE            timefunc

See Also: "Rule Evaluation Context" on page 5-6

See Also: "Rule Evaluation Context" on page 5-6



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-67

Displaying All of the Rules in a Rule Set
The query in this section displays the following information about all of the rules in 
a rule set:

� The owner of the rule

� The name of the rule

� The evaluation context for the rule, if any. If a rule does not have an evaluation 
context, and no evaluation context is specified in the ADD_RULE procedure 
when the rule is added to a rule set, then it inherits the evaluation context of the 
rule set

� The evaluation context owner, if the rule has an evaluation context

For example, to display this information for each rule in a rule set named 
oe_queue_r that is owned by the user strmadmin, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A27
COLUMN RULE_EVALUATION_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A11

SELECT R.RULE_OWNER, 
       R.RULE_NAME, 
       R.RULE_EVALUATION_CONTEXT_NAME,
       R.RULE_EVALUATION_CONTEXT_OWNER
  FROM DBA_RULES R, DBA_RULE_SET_RULES RS 
  WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND 
  RS.RULE_SET_NAME = 'OE_QUEUE_R' AND 
  RS.RULE_NAME = R.RULE_NAME AND 
  RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following: 

                                                            Eval Contex
Rule Owner Rule Name            Eval Context Name           Owner
---------- -------------------- --------------------------- -----------
STRMADMIN  HR1                  STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN  APPLY_LCRS           STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN  OE_QUEUE$3
STRMADMIN  APPLY_ACTION



Monitoring Rules and Rule-Based Transformations

14-68 Oracle Streams Concepts and Administration

Displaying the Condition for Each Rule in a Rule Set
The following query displays the condition for each rule in a rule set named 
hr_queue_r that is owned by the user strmadmin:

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A45

SELECT R.RULE_OWNER, 
       R.RULE_NAME, 
       R.RULE_CONDITION
  FROM DBA_RULES R, DBA_RULE_SET_RULES RS 
  WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND 
  RS.RULE_SET_NAME = 'HR_QUEUE_R' AND 
  RS.RULE_NAME = R.RULE_NAME AND 
  RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following: 

Rule Owner      Rule Name       Rule Condition
--------------- --------------- ---------------------------------------------
STRMADMIN       APPLY_ACTION     hr.get_hr_action(tab.user_data) = 'APPLY'
STRMADMIN       APPLY_LCRS      :dml.get_object_owner() = 'HR' AND  (:dml.get
                                _object_name() = 'DEPARTMENTS' OR 
                                :dml.get_object_name() = 'EMPLOYEES')

STRMADMIN       HR_QUEUE$3      hr.get_hr_action(tab.user_data) != 'APPLY'

Listing Each Rule that Contains a Specified Pattern in Its Condition
To list each rule in a database that contains a specified pattern in its condition, you 
can query the DBMS_RULES data dictionary view and use the DBMS_LOB.INSTR 
function to search for the pattern in the rule conditions. For example, the following 
query lists each rule that contains the pattern 'HR' in its condition:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A30
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30

See Also:

� "Rule Condition" on page 5-2

� "System-Created Rules" on page 6-7



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-69

SELECT RULE_OWNER, RULE_NAME FROM DBA_RULES 
  WHERE DBMS_LOB.INSTR(RULE_CONDITION, 'HR', 1, 1) > 0;

Your output looks similar to the following: 

Rule Owner                     Rule Name
------------------------------ ------------------------------
STRMADMIN                      DEPARTMENTS4
STRMADMIN                      DEPARTMENTS5
STRMADMIN                      DEPARTMENTS6

Displaying Rule-Based Transformations
A rule-based transformation is any modification to an event that results when a rule 
in a positive rule set evaluates to TRUE. You specify a PL/SQL function that 
performs the modification. 

The following query displays each rule-based transformation specified in a 
database:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A20
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN TRANSFORM_FUNCTION_NAME HEADING 'Transformation Function' FORMAT A30

SELECT RULE_OWNER, RULE_NAME, TRANSFORM_FUNCTION_NAME
  FROM DBA_STREAMS_TRANSFORM_FUNCTION;

Your output looks similar to the following: 

Rule Owner           Rule Name            Transformation Function
-------------------- -------------------- ------------------------------
STRMADMIN            DEPARTMENTS17        hr.executive_to_management
STRMADMIN            DEPARTMENTS18        hr.executive_to_management
STRMADMIN            DEPARTMENTS19        hr.executive_to_management

Note: The transformation function name must be of type 
VARCHAR2. If it is not, then the value of 
TRANSFORM_FUNCTION_NAME is NULL. The VALUE_TYPE column 
in the DBA_STREAMS_TRANSFORM_FUNCTION view displays the 
type of the transform function name.



Monitoring Rules and Rule-Based Transformations

14-70 Oracle Streams Concepts and Administration

Displaying Aggregate Statistics for All Rule Set Evaluations
You can query the V$RULE_SET_AGGREGATE_STATS dynamic performance view 
to display statistics for all rule set evaluations since the database instance last 
started.

The query in this section contains the following information about rule set 
evaluations:

� The number of rule set evaluations

� The number of rule set evaluations that were instructed to stop on the first hit

� The number of rule set evaluations that were instructed to evaluate only simple 
rules

� The number of times a rule set was evaluated without issuing any SQL. 
Generally, issuing SQL to evaluate rules is more expensive than evaluating rules 
without issuing SQL.

� The number of centiseconds of CPU time used for rule set evaluation

� The number of centiseconds spent on rule set evaluation

� The number of SQL executions issued to evaluate a rule in a rule set

� The number of rule conditions processed during rule set evaluation

� The number of TRUE rules returned to the rules engine clients

� The number of MAYBE rules returned to the rules engine clients

� The number of times the following types of functions were called during rule 
set evaluation: variable value function, variable method function, and 
evaluation function

Run the following query to display this information:

COLUMN NAME HEADING 'Name of Statistic' FORMAT A55
COLUMN VALUE HEADING 'Value' FORMAT 999999999

SELECT NAME, VALUE FROM V$RULE_SET_AGGREGATE_STATS;

See Also:

� "Rule-Based Transformations" on page 6-63

� "Managing Rule-Based Transformations" on page 12-18



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-71

Your output looks similar to the following: 

Name of Statistic                                            Value
------------------------------------------------------- ----------
rule set evaluations (all)                                    5584
rule set evaluations (first_hit)                              5584
rule set evaluations (simple_rules_only)                      3675
rule set evaluations (SQL free)                               5584
rule set evaluation time (CPU)                                 179
rule set evaluation time (elapsed)                            1053
rule set SQL executions                                          0
rule set conditions processed                                11551
rule set true rules                                             10
rule set maybe rules                                           328
rule set user function calls (variable value function)         182
rule set user function calls (variable method function)      12794
rule set user function calls (evaluation function)            3857

Displaying General Information About Rule Set Evaluations
You can query the V$RULE_SET dynamic performance view to display general 
information about rule set evaluations since the database instance last started. The 
query in this section contains the following information about each rule set in a 
database:

� The owner of the rule set

� The name of the rule set

� The total number of evaluations of the rule set since the database instance last 
started

� The total number of times SQL was executed to evaluate rules since the 
database instance last started. Generally, issuing SQL to evaluate rules is more 
expensive than evaluating rules without issuing SQL.

� The total number of evaluations on the rule set that did not issue SQL to 
evaluate rules since the database instance last started

Note: A centisecond is one-hundredth of a second. Therefore, this 
output shows 1.79 seconds of CPU time and 10.53 seconds of 
elapsed time.



Monitoring Rules and Rule-Based Transformations

14-72 Oracle Streams Concepts and Administration

� The total number of TRUE rules returned to the rules engine clients using the 
rule set since the database instance last started

� The total number of MAYBE rules returned to the rules engine clients using the 
rule set since the database instance last started

Run the following query to display this information for each rule set in the 
database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A9
COLUMN NAME HEADING 'Rule Set|Name' FORMAT A11
COLUMN EVALUATIONS HEADING 'Total|Evaluations' FORMAT 999999
COLUMN SQL_EXECUTIONS HEADING 'SQL|Executions' FORMAT 999999
COLUMN SQL_FREE_EVALUATIONS HEADING 'SQL Free|Evaluations' FORMAT 999999
COLUMN TRUE_RULES HEADING 'True|Rules' FORMAT 999999
COLUMN MAYBE_RULES HEADING 'Maybe|Rules' FORMAT 999999

SELECT OWNER, 
       NAME, 
       EVALUATIONS,
       SQL_EXECUTIONS,
       SQL_FREE_EVALUATIONS,
       TRUE_RULES,
       MAYBE_RULES
  FROM V$RULE_SET;

Your output looks similar to the following: 

Rule Set  Rule Set          Total        SQL    SQL Free    True   Maybe
Owner     Name        Evaluations Executions Evaluations   Rules   Rules
--------- ----------- ----------- ---------- ----------- ------- -------
STRMADMIN RULESET$_18         403          0         403       0     200
STRMADMIN RULESET$_9         3454          0        3454       5      64

Determining the Resources Used by Evaluation of Each Rule Set
You can query the V$RULE_SET dynamic performance view to determine the 
resources used by evaluation of a rule set since the database instance last started. If 
a rule set was evaluated more than one time since the database instance last started, 
then some statistics are cumulative, including statistics for the amount of CPU time, 
evaluation time, and shared memory bytes used. 



Monitoring Rules and Rule-Based Transformations

Monitoring a Streams Environment 14-73

The query in this section contains the following information about each rule set in a 
database:

� The owner of the rule set

� The name of the rule set

� The total number of seconds of CPU time used to evaluate the rule set since the 
database instance last started

� The total number of seconds used to evaluate the rule set since the database 
instance last started

� The total number of shared memory bytes used to evaluate the rule set since the 
database instance last started

Run the following query to display this information for each rule set in the 
database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A15
COLUMN NAME HEADING 'Rule Set Name' FORMAT A15
COLUMN CPU_SECONDS HEADING 'Seconds|of CPU|Time' FORMAT 999999.999
COLUMN ELAPSED_SECONDS HEADING 'Seconds of|Evaluation|Time' FORMAT 999999.999
COLUMN SHARABLE_MEM HEADING 'Bytes|of Shared|Memory' FORMAT 999999999

SELECT OWNER, 
       NAME, 
       (CPU_TIME/100) CPU_SECONDS,
       (ELAPSED_TIME/100) ELAPSED_SECONDS,
       SHARABLE_MEM
  FROM V$RULE_SET;

Your output looks similar to the following: 

                                    Seconds  Seconds of      Bytes
Rule Set                             of CPU  Evaluation  of Shared
Owner           Rule Set Name          Time        Time     Memory
--------------- --------------- ----------- ----------- ----------
STRMADMIN       RULESET$_18            .840       8.550     444497
STRMADMIN       RULESET$_9             .700       1.750     444496



Monitoring Compatibility in a Streams Environment

14-74 Oracle Streams Concepts and Administration

Displaying Evaluation Statistics for a Rule
You can query the V$RULE dynamic performance view to display evaluation 
statistics for a particular rule since the database instance last started. The query in 
this section contains the following information about each rule set in a database:

� The total number of times the rule evaluated to TRUE since the database 
instance last started

� The total number of times the rule evaluated to MAYBE since the database 
instance last started

� The total number of evaluations on the rule that issued SQL since the database 
instance last started. Generally, issuing SQL to evaluate a rule is more expensive 
than evaluating the rule without issuing SQL.

For example, run the following query to display this information for the 
locations25 rule in the strmadmin schema:

COLUMN TRUE_RULES HEADING 'True Evaluations' FORMAT 999999
COLUMN MAYBE_RULES HEADING 'Maybe Evaluations' FORMAT 999999
COLUMN SQL_EVALUATIONS HEADING 'SQL Evaluations' FORMAT 999999

SELECT TRUE_HITS, MAYBE_HITS, SQL_EVALUATIONS 
  FROM V$RULE
  WHERE RULE_OWNER = 'STRMADMIN' AND
        RULE_NAME  = 'LOCATIONS25';

Monitoring Compatibility in a Streams Environment
The queries in the following sections show Streams compatibility for tables in the 
local database:

� Listing the Database Objects That Are Not Compatible With Streams

� Listing the Database Objects That Have Become Compatible With Streams 
Recently



Monitoring Compatibility in a Streams Environment

Monitoring a Streams Environment 14-75

Listing the Database Objects That Are Not Compatible With Streams
A database object is not compatible with Streams if a capture process cannot capture 
changes to the object. The query in this section displays the following information 
about objects that are not compatible with Streams:

� The object owner

� The object name

� The reason why the object is not compatible with Streams

� Whether capture processes automatically filter out changes to the object 
(AUTO_FILTERED column)

If capture processes automatically filter out changes to an object, then the rules sets 
used by the capture processes do not need to filter them out explicitly. For example, 
capture processes automatically filter out changes to materialized view logs. 
However, if changes to incompatible objects are not filtered out automatically, then 
the rule sets used by each capture process must filter them out to avoid errors. 

For example, if the rule sets for a capture process instruct the capture process to 
capture all of the changes made to a certain schema, but the query in this section 
shows that one object in this schema is not compatible with Streams, and that 
changes to the object are not filtered out automatically, then you can add a rule to 
the negative rule set for the capture process to filter out changes to the incompatible 
object.

The AUTO_FILTERED column only pertains to capture processes. Apply processes 
do not automatically filter out LCRs that encapsulate changes to objects that are not 
compatible with Streams, even if the AUTO_FILTERED column is YES for the object. 
Such changes may result in apply errors if they are dequeued by an apply process.

Run the following query to list the objects in the local database that are not 
compatible with Streams:

COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A30
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN AUTO_FILTERED HEADING 'Auto|Filtered?' FORMAT A9

SELECT OWNER, TABLE_NAME, REASON, AUTO_FILTERED FROM DBA_STREAMS_UNSUPPORTED;



Monitoring Compatibility in a Streams Environment

14-76 Oracle Streams Concepts and Administration

Your output looks similar to the following: 

Object                                                                 Auto
Owner    Object Name                    Reason                         Filtered?
-------- ------------------------------ ------------------------------ ---------
HR       MLOG$_COUNTRIES                materialized view log          YES
HR       MLOG$_DEPARTMENTS              materialized view log          YES
HR       MLOG$_EMPLOYEES                materialized view log          YES
HR       MLOG$_JOBS                     materialized view log          YES
HR       MLOG$_JOB_HISTORY              materialized view log          YES
HR       MLOG$_LOCATIONS                materialized view log          YES
HR       MLOG$_REGIONS                  materialized view log          YES
IX       AQ$_ORDERS_QUEUETABLE_G        IOT with overflow              NO
IX       AQ$_ORDERS_QUEUETABLE_H        unsupported column exists      NO
IX       AQ$_ORDERS_QUEUETABLE_I        unsupported column exists      NO
IX       AQ$_ORDERS_QUEUETABLE_S        AQ queue table                 NO
IX       AQ$_ORDERS_QUEUETABLE_T        AQ queue table                 NO
IX       ORDERS_QUEUETABLE              column with user-defined type  NO
OE       CATEGORIES_TAB                 column with user-defined type  NO
OE       CUSTOMERS                      column with user-defined type  NO
OE       PRODUCT_REF_LIST_NESTEDTAB     column with user-defined type  NO
OE       SUBCATEGORY_REF_LIST_NESTEDTAB column with user-defined type  NO
OE       WAREHOUSES                     column with user-defined type  NO
PM       ONLINE_MEDIA                   column with user-defined type  NO
PM       PRINT_MEDIA                    column with user-defined type  NO
PM       TEXTDOCS_NESTEDTAB             column with user-defined type  NO
SH       MVIEW$_EXCEPTIONS              unsupported column exists      NO
SH       SALES_TRANSACTIONS_EXT         external table                 NO

Notice that the AUTO_FILTERED column is YES for the oe.mlog$_orders 
materialized view log. Each capture process automatically filters out changes to this 
object, even if the rules sets for a capture process instruct the capture process to 
capture changes to the object.

Because the AUTO_FILTERED column is NO for the other objects listed in the 
example output, capture processes do not filter out changes to these objects 
automatically. If a capture process attempts to process LCRs for these unsupported 
objects, then the capture process raises an error. However, you can avoid these 
errors by configuring rules sets that instruct the capture process not to capture 
changes to these unsupported objects.



Monitoring Compatibility in a Streams Environment

Monitoring a Streams Environment 14-77

Listing the Database Objects That Have Become Compatible With Streams Recently
The query in this section displays the following information about database objects 
that have become compatible with Streams in a recent release of Oracle:

� The object owner

� The object name

� The reason why the object was not compatible with Streams in previous releases 
of Oracle

� The Oracle release in which the object became compatible with Streams

Run the following query to display this information for the local database:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A20
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN COMPATIBLE HEADING 'Compatible' FORMAT A10

SELECT OWNER, TABLE_NAME, REASON, COMPATIBLE FROM DBA_STREAMS_NEWLY_SUPPORTED;

Note: The results of the query in this section depend on the 
compatibility level of the database. More database objects are 
incompatible with Streams at lower compatibility levels. The 
COMPATIBLE initialization parameter controls the compatibility 
level of the database.

See Also:

� Chapter 6, "How Rules Are Used In Streams"

� Oracle Database Reference and Oracle Database Upgrade Guide for 
more information about the COMPATIBLE initialization 
parameter



Monitoring Compatibility in a Streams Environment

14-78 Oracle Streams Concepts and Administration

Your output looks similar to the following:

Owner      Object Name          Reason                         Compatible
---------- -------------------- ------------------------------ ----------
HR         COUNTRIES            IOT                            10.1
OUTLN      OL$                  unsupported column exists      10.1
SH         CAL_MONTH_SALES_MV   unsupported column exists      10.1
SH         FWEEK_PSCAT_SALES_MV unsupported column exists      10.1
SH         PLAN_TABLE           unsupported column exists      10.1

The COMPATIBLE column shows the minimum database compatibility for Streams 
to support the object. If the local database compatibility is equal to or higher than 
the value in the COMPATIBLE column for an object, then capture processes and 
apply processes can process changes to the object successfully. You control the 
compatibility of an Oracle database using the COMPATIBLE initialization parameter.

If your Streams environment includes databases that are running different versions 
of the Oracle database, then you can configure rules that use the GET_COMPATIBLE 
member function for LCRs to filter out LCRs that are not compatible with particular 
databases. These rules may be added to the rule sets of capture processes, 
propagations, and apply processes to filter out incompatible LCRs wherever 
necessary in a stream.

See Also:

� Oracle Database Reference and Oracle Database Upgrade Guide for 
more information about the COMPATIBLE initialization 
parameter

� "Rule Conditions That Instruct Streams Clients to Discard 
Unsupported LCRs" on page 6-56 for information about 
creating rules that use the GET_COMPATIBLE member function 
for LCRs

� "Listing the Database Objects That Are Not Compatible With 
Streams" on page 14-75 for more information about objects that 
are not compatible with Streams



Monitoring Streams Performance Using Statspack

Monitoring a Streams Environment 14-79

Monitoring Streams Performance Using Statspack
You can use the Statspack package to monitor performance statistics related to 
Streams. The most current instructions and information on installing and using the 
Statspack package are contained in the spdoc.txt file installed with your 
database. Refer to that file for Statspack information. On Unix systems, the file is 
located in the ORACLE_HOME/rdbms/admin directory. On Windows systems, the 
file is located in the ORACLE_HOME\rdbms\admin directory.



Monitoring Streams Performance Using Statspack

14-80 Oracle Streams Concepts and Administration



Troubleshooting a Streams Environment 15-1

15
Troubleshooting a Streams Environment

This chapter contains information about identifying and resolving common 
problems in a Streams environment.

This chapter contains these topics:

� Troubleshooting Capture Problems

� Troubleshooting Propagation Problems

� Troubleshooting Apply Problems

� Troubleshooting Problems with Rules and Rule-Based Transformations

� Checking the Trace Files and Alert Log for Problems

See Also: Oracle Streams Replication Administrator's Guide for 
more information about troubleshooting Streams replication 
environments



Troubleshooting Capture Problems

15-2 Oracle Streams Concepts and Administration

Troubleshooting Capture Problems
If a capture process is not capturing changes as expected, or if you are having other 
problems with a capture process, then use the following checklist to identify and 
resolve capture problems:

� Is the Capture Process Enabled?

� Is the Capture Process Current?

� Are Required Redo Log Files Missing?

� Is a Downstream Capture Process Waiting for Redo Log Files?

� Are You Trying to Configure Downstream Capture Using 
DBMS_STREAMS_ADM?

� Are More Actions Required for Downstream Capture without a Database Link?

Is the Capture Process Enabled?
A capture process captures changes only when it is enabled. You can check whether 
a capture process is enabled, disabled, or aborted by querying the DBA_CAPTURE 
data dictionary view.

For example, to check whether a capture process named CAPTURE is enabled, run 
the following query:

SELECT STATUS FROM DBA_CAPTURE WHERE CAPTURE_NAME = 'CAPTURE';

If the capture process is disabled, then your output looks similar to the following: 

STATUS
--------
DISABLED

If the capture process is disabled, then try restarting it. If the capture process is 
aborted, then you may need to correct an error before you can restart it successfully. 
To determine why the capture process aborted, query the DBA_CAPTURE data 
dictionary view or check the trace file for the capture process.

See Also:

� Chapter 2, "Streams Capture Process"

� Chapter 9, "Managing a Capture Process"

� "Monitoring a Streams Capture Process" on page 14-6



Troubleshooting Capture Problems

Troubleshooting a Streams Environment 15-3

The following query shows when the capture process aborted and the error that 
caused it to abort:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN STATUS_CHANGE_TIME HEADING 'Abort Time'
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT CAPTURE_NAME, STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
  FROM DBA_CAPTURE WHERE STATUS='ABORTED';

Is the Capture Process Current?
If a capture process has not captured recent changes, then the cause may be that the 
capture process has fallen behind. To check, you can query the 
V$STREAMS_CAPTURE dynamic performance view. If capture process latency is 
high, then you may be able to improve performance by adjusting the setting of the 
parallelism capture process parameter.

See Also:

� "Starting a Capture Process" on page 9-26

� "Checking the Trace Files and Alert Log for Problems" on 
page 15-27

� "Streams Capture Processes and Oracle Real Application 
Clusters" on page 2-27 for information about restarting a 
capture process in an Oracle Real Application Clusters 
environment

See Also:

� "Determining Redo Log Scanning Latency for Each Capture 
Process" on page 14-18

� "Determining Event Enqueuing Latency for Each Capture 
Process" on page 14-19

� "Capture Process Parallelism" on page 2-48

� "Setting a Capture Process Parameter" on page 9-32



Troubleshooting Capture Problems

15-4 Oracle Streams Concepts and Administration

Are Required Redo Log Files Missing?
When a capture process is started or restarted, it may need to scan redo log files that 
were generated before the log file that contains the start SCN. A capture process 
must scan these records to keep track of DDL changes to database objects. You can 
query the DBA_CAPTURE data dictionary view to determine the first SCN and start 
SCN for a capture process. Removing required redo log files before they are 
scanned by a capture process causes the capture process to abort and results in the 
following error in a capture process trace file: 

ORA-01291: missing logfile

If you see this error, then try restoring any missing redo log file and restarting the 
capture process. You can check the V$LOGMNR_LOGS dynamic performance view to 
determine the missing SCN range, and add the relevant redo log files. A capture 
process needs the redo log file that includes the required checkpoint SCN, and all 
subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN 
column in the DBA_CAPTURE data dictionary view to determine the required 
checkpoint SCN for a capture process. 

Is a Downstream Capture Process Waiting for Redo Log Files?
If a downstream capture process is not capturing changes, then it may be waiting 
for redo log files to scan. Redo log files may be registered implicitly or explicitly for 
a downstream capture process. If redo log files are registered implicitly, then, 
typically, log transport services transfers the redo log files from the source database 
to the downstream database. If redo log files are registered explicitly, then you must 
manually transfer the redo log files to the downstream database and register them 
with the downstream capture process. In either case, the downstream capture 
process can capture changes made to the source database only if the appropriate 
redo log files are registered with the downstream capture process.

You can query the V$STREAMS_CAPTURE dynamic performance view to determine 
whether a downstream capture process is waiting for a redo log file. For example, 
run the following query for a downstream capture process named 
strm05_capture:

SELECT STATE FROM V$STREAMS_CAPTURE WHERE CAPTURE_NAME='STRM05_CAPTURE';

See Also:

� "First SCN and Start SCN" on page 2-24

� "Displaying the Registered Redo Log Files for Each Capture 
Process" on page 14-11



Troubleshooting Capture Problems

Troubleshooting a Streams Environment 15-5

If the capture process state is either WAITING FOR DICTIONARY REDO or WAITING 
FOR REDO, then verify that the redo log files have been registered with the 
downstream capture process by querying the DBA_REGISTERED_ARCHIVED_LOG 
and DBA_CAPTURE data dictionary views. For example, the following query lists 
the redo log files currently registered with the strm05_capture downstream 
capture process:

COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 9999999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A30
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.SOURCE_DATABASE,
       r.SEQUENCE#, 
       r.NAME, 
       r.DICTIONARY_BEGIN, 
       r.DICTIONARY_END 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE c.CAPTURE_NAME = 'STRM05_CAPTURE' AND 
        r.CONSUMER_NAME = c.CAPTURE_NAME;

If this query does not return any rows, then no redo log files are registered with the 
capture process currently. If you configured log transport services to transfer redo 
log files from the source database to the downstream database for this capture 
process, then make sure log transport services is configured correctly. If log 
transport services is configured correctly, then run the ALTER SYSTEM ARCHIVE 
LOG CURRENT statement at the source database to archive a log file. If you did not 
configure log transport services to transfer the log files, then make sure the method 
you are using for log file transfer and registration is working properly. You can 
register log files explicitly using an ALTER DATABASE REGISTER LOGICAL 
LOGFILE statement.

Also, if you plan to use a downstream capture process to capture changes to 
historical data, then consider the following additional issues:

� Both the source database that generates the redo log files and the database that 
runs a downstream capture process must be Oracle Database 10g databases.

� The start of a data dictionary build must be present in the oldest redo log file 
added, and the capture process must be configured with a first SCN that 
matches the start of the data dictionary build.



Troubleshooting Capture Problems

15-6 Oracle Streams Concepts and Administration

� The database objects for which the capture process will capture changes must 
be prepared for instantiation at the source database, not at the downstream 
database. In addition, you cannot specify a time in the past when you prepare 
objects for instantiation. Objects are always prepared for instantiation at the 
current database SCN, and only changes to a database object that occurred after 
the object was prepared for instantiation can be captured by a capture process.

Are You Trying to Configure Downstream Capture Using DBMS_STREAMS_ADM?
You must use the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM 
package to create a downstream capture process. If you try to create a capture 
process using a procedure in the DBMS_STREAMS_ADM package and specify a 
source database name that does not match the global name of the local database, 
then Oracle returns the following error:

ORA-26678: Streams capture process must be created first

To correct the problem, use the CREATE_CAPTURE procedure in the 
DBMS_CAPTURE_ADM package to create the downstream capture process. 

If you are trying to create a local capture process using a procedure in the 
DBMS_STREAMS_ADM package, and you encounter this error, then make sure the 
database name specified in the source_database parameter of the procedure you 
are running matches the global name of the local database.

See Also:

� "Local Capture and Downstream Capture" on page 2-17

� Capture Process States on page 2-30

� "Creating a Downstream Capture Process That Assigns Log 
Files Implicitly" on page 9-6

� "Creating a Downstream Capture Process That Assigns Log 
Files Explicitly" on page 9-18

See Also: "Creating a Capture Process" on page 9-2



Troubleshooting Propagation Problems

Troubleshooting a Streams Environment 15-7

Are More Actions Required for Downstream Capture without a Database Link?
When downstream capture is configured with a database link, the database link can 
be used to perform operations at the source database and obtain information from 
the source database automatically. When downstream capture is configured 
without a database link, these actions must be performed manually, and the 
information must be obtained manually. If you do not complete these actions 
manually, then errors result when you try to create the downstream capture 
process.

Specifically, the following actions must be performed manually when you configure 
downstream capture without a database link:

� In certain situations, you must run the DBMS_CAPTURE_ADM.BUILD procedure 
at the source database to extract the data dictionary at the source database to 
the redo log before a capture process is created.

� You must prepare the source database objects for instantiation.

� You must obtain the first SCN for the downstream capture process and specify 
the first SCN using the first_scn parameter when you create the capture 
process with the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM 
package.

Troubleshooting Propagation Problems
If a propagation is not propagating changes as expected, then use the following 
checklist to identify and resolve propagation problems:

� Does the Propagation Use the Correct Source and Destination Queue?

� Is the Propagation Job Used by a Propagation Enabled?

� Are There Enough Job Queue Processes?

� Is Security Configured Properly for the SYS.AnyData Queue?

See Also: "Creating a Downstream Capture Process That Does 
Not Use a Database Link" on page 9-13



Troubleshooting Propagation Problems

15-8 Oracle Streams Concepts and Administration

Does the Propagation Use the Correct Source and Destination Queue?
If events are not appearing in the destination queue for a propagation as expected, 
then the propagation may not be configured to propagate events from the correct 
source queue to the correct destination queue. 

For example, to check the source queue and destination queue for a propagation 
named dbs1_to_dbs2, run the following query:

COLUMN SOURCE_QUEUE HEADING 'Source Queue' FORMAT A35
COLUMN DESTINATION_QUEUE HEADING 'Destination Queue' FORMAT A35

SELECT 
  p.SOURCE_QUEUE_OWNER||'.'||
    p.SOURCE_QUEUE_NAME||'@'||
    g.GLOBAL_NAME SOURCE_QUEUE, 
  p.DESTINATION_QUEUE_OWNER||'.'||
    p.DESTINATION_QUEUE_NAME||'@'||
    p.DESTINATION_DBLINK DESTINATION_QUEUE 
  FROM DBA_PROPAGATION p, GLOBAL_NAME g
  WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2';

Your output looks similar to the following: 

Source Queue                        Destination Queue
----------------------------------- -----------------------------------
STRMADMIN.STREAMS_QUEUE@DBS1.NET    STRMADMIN.STREAMS_QUEUE@DBS2.NET

If the propagation is not using the correct queues, then create a new propagation. 
You may need to remove the existing propagation if it is not appropriate for your 
environment.

See Also:

� Chapter 3, "Streams Staging and Propagation"

� Chapter 10, "Managing Staging and Propagation"

� "Monitoring Streams Propagations and Propagation Jobs" on 
page 14-27

See Also: "Creating a Propagation" on page 10-8



Troubleshooting Propagation Problems

Troubleshooting a Streams Environment 15-9

Is the Propagation Job Used by a Propagation Enabled?
For a propagation job to propagate events, the propagation schedule for the 
propagation job must be enabled. If events are not being propagated by a 
propagation as expected, then the propagation's propagation job schedule may not 
be enabled. 

You can find the following information about the schedule for a propagation job by 
running the query in this section: 

� The database link used to propagate events from the source queue to the 
destination queue 

� Whether the propagation schedule is enabled or disabled

� The job queue process used to propagate the last event

� The number of consecutive failures when execution of the propagation schedule 
was attempted. The schedule is disabled automatically if this number 
reaches 16.

� If there are any propagation errors, then the time of the last error 

� If there are any propagation errors, then the error message of the last error

For example, to check whether a propagation job used by a propagation named 
dbs1_to_dbs2 is enabled, run the following query:

COLUMN DESTINATION_DBLINK HEADING 'Destination|DB Link' FORMAT A15
COLUMN SCHEDULE_DISABLED HEADING 'Schedule' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A7
COLUMN FAILURES HEADING 'Number of|Failures' FORMAT 9999
COLUMN LAST_ERROR_TIME HEADING 'Last Error Time' FORMAT A15
COLUMN LAST_ERROR_MSG HEADING 'Last Error Message' FORMAT A18

SELECT p.DESTINATION_DBLINK,
       DECODE(s.SCHEDULE_DISABLED,
                'Y', 'Disabled',
                'N', 'Enabled') SCHEDULE_DISABLED,
       s.PROCESS_NAME,
       s.FAILURES,
       s.LAST_ERROR_TIME, 
       s.LAST_ERROR_MSG 
  FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
  WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2'
  AND p.DESTINATION_DBLINK = s.DESTINATION
  AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
  AND s.QNAME = p.SOURCE_QUEUE_NAME;



Troubleshooting Propagation Problems

15-10 Oracle Streams Concepts and Administration

If the schedule is enabled currently for the propagation job, then your output looks 
similar to the following: 

Destination                      Number of
DB Link         Schedule Process  Failures Last Error Time Last Error Message
--------------- -------- ------- --------- --------------- ------------------
DBS2.NET        Enabled  J001            0

If there is a problem, then try the following actions to correct it:

� If a propagation job is disabled, then you can enable it using the 
ENABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package, if 
you have not done so already. 

� If the propagation job is disabled, and you do not know why, then check the 
trace file for the process that last propagated an event. In the previous output, 
the process is J001.

� If the propagation job is enabled, but is not propagating events, then try 
unscheduling and scheduling the propagation job.

Are There Enough Job Queue Processes?
Propagation jobs use job queue processes to propagate events. Make sure the 
JOB_QUEUE_PROCESSES initialization parameter is set to 2 or higher in each 
database instance that runs propagations. It should be set to a value that is high 
enough to accommodate all of the jobs that run simultaneously.

See Also:

� "Enabling a Propagation Job" on page 10-11

� "Checking the Trace Files and Alert Log for Problems" on 
page 15-27

� "Unscheduling a Propagation Job" on page 10-13

� "Scheduling a Propagation Job" on page 10-12

� "Displaying the Schedule for a Propagation Job" on page 14-29



Troubleshooting Propagation Problems

Troubleshooting a Streams Environment 15-11

Is Security Configured Properly for the SYS.AnyData Queue?
SYS.AnyData queues are secure queues, and security must be configured properly 
for users to be able to perform operations on them. If you use the SET_UP_QUEUE 
procedure in the DBMS_STREAMS_ADM package to configure a secure 
SYS.AnyData queue, then an error is raised if the agent that SET_UP_QUEUE tries 
to create already exists and is associated with a user other than the user specified by 
queue_user in this procedure. In this case, rename or remove the existing agent 
using the ALTER_AQ_AGENT or DROP_AQ_AGENT procedure, respectively, in the 
DBMS_AQADM package. Next, retry SET_UP_QUEUE.

In addition, you may encounter one of the following errors if security is not 
configured properly for a SYS.AnyData queue:

� ORA-24093 AQ Agent not granted privileges of database user

� ORA-25224 Sender name must be specified for enqueue into secure queues

ORA-24093 AQ Agent not granted privileges of database user
Secure queue access must be granted to an AQ agent explicitly for both enqueue 
and dequeue operations. You grant the agent these privileges using the 
ENABLE_DB_ACCESS procedure in the DBMS_AQADM package.

See Also:

� "Setting Initialization Parameters Relevant to Streams" on 
page 8-6

� The description of propagation features in Oracle Streams 
Advanced Queuing User's Guide and Reference for more 
information about setting the JOB_QUEUE_PROCESSES 
initialization parameter when you use propagation jobs

� Oracle Database Reference for more information about the 
JOB_QUEUE_PROCESSES initialization parameter

� PL/SQL Packages and Types Reference for more information about 
job queues

See Also: "Secure Queues" on page 3-19



Troubleshooting Propagation Problems

15-12 Oracle Streams Concepts and Administration

For example, to grant an agent named explicit_dq privileges of the database 
user oe, run the following procedure:

BEGIN
  DBMS_AQADM.ENABLE_DB_ACCESS(
    agent_name  => 'explicit_dq',
    db_username => 'oe');
END;
/

To check the privileges of the agents in a database, run the following query:

SELECT AGENT_NAME "Agent", DB_USERNAME "User" FROM DBA_AQ_AGENT_PRIVS;

Your output looks similar to the following:

Agent                          User
------------------------------ ------------------------------
EXPLICIT_ENQ                   OE
APPLY_OE                       OE
EXPLICIT_DQ                    OE

ORA-25224 Sender name must be specified for enqueue into secure queues
To enqueue into a secure queue, the SENDER_ID must be set to an AQ agent with 
secure queue privileges for the queue in the message properties.

See Also: "Enabling a User to Perform Operations on a Secure 
Queue" on page 10-3 for a detailed example that grants privileges 
to an agent

See Also: "Wrapping User Message Payloads in a SYS.AnyData 
Wrapper and Enqueuing Them" on page 10-20 for an example that 
sets the SENDER_ID for enqueue



Troubleshooting Apply Problems

Troubleshooting a Streams Environment 15-13

Troubleshooting Apply Problems
If an apply process is not applying changes as expected, then use the following 
checklist to identify and resolve apply problems:

� Is the Apply Process Enabled?

� Is the Apply Process Current?

� Does the Apply Process Apply Captured Events or User-Enqueued Events?

� Is the Apply Process Queue Receiving the Events to Apply?

� Is a Custom Apply Handler Specified?

� Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?

� Are There Any Apply Errors in the Error Queue?

Is the Apply Process Enabled?
An apply process applies changes only when it is enabled. You can check whether 
an apply process is enabled, disabled, or aborted by querying the DBA_APPLY data 
dictionary view.

For example, to check whether an apply process named APPLY is enabled, run the 
following query:

SELECT STATUS FROM DBA_APPLY WHERE APPLY_NAME = 'APPLY';

If the apply process is disabled, then your output looks similar to the following: 

STATUS
--------
DISABLED

If the apply process is disabled, then try restarting it. If the apply process is aborted, 
then you may need to correct an error before you can restart it successfully. To 
determine why the apply process aborted, query the DBA_APPLY data dictionary 
view or check the trace files for the apply process.

See Also:

� Chapter 4, "Streams Apply Process"

� Chapter 11, "Managing an Apply Process"

� "Monitoring a Streams Apply Process" on page 14-32



Troubleshooting Apply Problems

15-14 Oracle Streams Concepts and Administration

The following query shows when the apply process aborted and the error that 
caused it to abort:

COLUMN APPLY_NAME HEADING 'APPLY|Process|Name' FORMAT A10
COLUMN STATUS_CHANGE_TIME HEADING 'Abort Time'
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME, STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
  FROM DBA_APPLY WHERE STATUS='ABORTED';

Is the Apply Process Current?
If an apply process has not applied recent changes, then the cause may be that the 
apply process has fallen behind. You can check apply process latency by querying 
the V$STREAMS_APPLY_COORDINATOR dynamic performance view. If apply 
process latency is high, then you may be able to improve performance by adjusting 
the setting of the parallelism apply process parameter.

See Also:

� "Starting an Apply Process" on page 11-10

� "Displaying Detailed Information About Apply Errors" on 
page 14-50

� "Checking the Trace Files and Alert Log for Problems" on 
page 15-27

� "Streams Apply Processes and Oracle Real Application 
Clusters" on page 4-13 for information about restarting an 
apply process in an Oracle Real Application Clusters 
environment

See Also:

� "Determining the Capture to Apply Latency for an Event for 
Each Apply Process" on page 14-42

� "Apply Process Parallelism" on page 4-19

� "Setting an Apply Process Parameter" on page 11-16



Troubleshooting Apply Problems

Troubleshooting a Streams Environment 15-15

Does the Apply Process Apply Captured Events or User-Enqueued Events?
An apply process can apply either captured events or user-enqueued events, but 
not both types of events. If an apply process is not applying events of a certain type, 
then it may be because the apply process was configured to apply the other type of 
events. You can check the type of events applied by an apply process by querying 
the DBA_APPLY data dictionary view.

For example, to check whether an apply process named APPLY applies captured or 
user-enqueued events, run the following query:

COLUMN APPLY_CAPTURED HEADING 'Type of Events Applied' FORMAT A25

SELECT DECODE(APPLY_CAPTURED,
                'YES', 'Captured',
                'NO',  'User-Enqueued') APPLY_CAPTURED
  FROM DBA_APPLY
  WHERE APPLY_NAME = 'APPLY';

If the apply process applies captured events, then your output looks similar to the 
following: 

Type of Events Applied
-------------------------
Captured

If an apply process is not applying the expected type of events, then you may need 
to create a new apply process to apply the events.

Is the Apply Process Queue Receiving the Events to Apply?
An apply process must receive events in its queue before it can apply these events. 
Therefore, if an apply process is applying captured events, then the capture process 
that captures these events must be enabled, and it must be configured properly. 
Similarly, if events are propagated from one or more databases before reaching the 
apply process, then each propagation must be enabled and must be configured 
properly. If a capture process or a propagation on which the apply process depends 
is not enabled or is not configured properly, then the events may never reach the 
apply process queue.

See Also:

� "Captured and User-Enqueued Events" on page 3-3

� "Creating a Capture Process" on page 9-2



Troubleshooting Apply Problems

15-16 Oracle Streams Concepts and Administration

The rule sets used by all Streams clients, including capture processes and 
propagations, determine the behavior of these Streams clients. Therefore, make sure 
the rule sets for any capture processes or propagations on which an apply process 
depends contain the correct rules. If the rules for these Streams clients are not 
configured properly, then the apply process queue may never receive the 
appropriate events. Also, an event travelling through a stream is the composition of 
all of the transformations done along the path. For example, if a capture process 
uses subset rules and performs row migration during capture of an event, and a 
propagation uses a rule-based transformation on the event to change the table 
name, then, when the event reaches an apply process, the apply process rules must 
account for these transformations.

In an environment where a capture process captures changes that are propagated 
and applied at multiple databases, you can use the following guidelines to 
determine whether a problem is caused by a capture process or a propagation on 
which an apply process depends, or the problem is caused by the apply process 
itself:

� If no other destination databases of a capture process are applying changes 
from the capture process, then the problem is most likely caused by the capture 
process or a propagation near the capture process. In this case, first make sure 
the capture process is enabled and configured properly, and then make sure the 
propagations nearest the capture process are enabled and configured properly.

� If other destination databases of a capture process are applying changes from 
the capture process, then the problem is most likely caused by the apply process 
itself or a propagation near the apply process. In this case, first make sure the 
apply process is enabled and configured properly, and then make sure the 
propagations nearest the apply process are enabled and configured properly.

See Also:

� "Troubleshooting Capture Problems" on page 15-2

� "Troubleshooting Propagation Problems" on page 15-7

� "Troubleshooting Problems with Rules and Rule-Based 
Transformations" on page 15-18



Troubleshooting Apply Problems

Troubleshooting a Streams Environment 15-17

Is a Custom Apply Handler Specified?
You can use PL/SQL procedures to handle events dequeued by an apply process in 
a customized way. These handlers include DML handlers, DDL handlers, 
precommit handlers, and message handlers. If an apply process is not behaving as 
expected, then check the handler procedures used by the apply process, and correct 
any flaws. You can find the names of these procedures by querying the 
DBA_APPLY_DML_HANDLERS and DBA_APPLY data dictionary views. You may 
need to modify a handler procedure or remove it to correct an apply problem.

Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?
If an apply process is not applying events, but there are events that satisfy the apply 
process rule sets in the apply process queue, then make sure the 
AQ_TM_PROCESSES initialization parameter is not set to zero at the destination 
database. If this parameter is set to zero, then unset this parameter or set it to a 
nonzero value and monitor the apply process to see if it begins to apply events.

The AQ_TM_PROCESSES initialization parameter controls time monitoring on 
queue messages and controls processing of messages with delay and expiration 
properties specified. In Oracle Database 10g, the database automatically controls 
these activities when the AQ_TM_PROCESSES initialization parameter is not set.

To determine whether there are captured events in a buffered queue, you can query 
the V$BUFFERED_QUEUES and V$BUFFERED_SUBSCRIBERS dynamic 
performance views. To determine whether there are user-enqueued events in a 
queue, you can query the queue table for the queue.

See Also:

� "Event Processing Options with an Apply Process" on page 4-4 
for general information about apply handlers

� Chapter 11, "Managing an Apply Process" for information 
about managing apply handlers

� "Displaying Information About Apply Handlers" on page 14-35 
for queries that display information about apply handlers



Troubleshooting Problems with Rules and Rule-Based Transformations

15-18 Oracle Streams Concepts and Administration

Are There Any Apply Errors in the Error Queue?
When an apply process cannot apply an event, it moves the event and all of the 
other events in the same transaction into the error queue. You should check for 
apply errors periodically to see if there are any transactions that could not be 
applied. You can check for apply errors by querying the DBA_APPLY_ERROR data 
dictionary view. Also, you can reexecute a particular transaction from the error 
queue or all of the transactions in the error queue.

Troubleshooting Problems with Rules and Rule-Based Transformations
If a capture process, a propagation, an apply process, or a messaging client is not 
behaving as expected, then the problem may be that rules or rule-based 
transformations for the Streams client are not configured properly. Use the 
following checklist to identify and resolve problems with rules and rule-based 
transformations:

� Are Rules Configured Properly for the Streams Client?

� Are the Rule-Based Transformations Configured Properly?

See Also:

� "Viewing the Contents of User-Enqueued Events in a Queue" 
on page 14-25

� Oracle Streams Replication Administrator's Guide for information 
about monitoring buffered queues

� Oracle Streams Advanced Queuing User's Guide and Reference for 
information about the AQ_TM_PROCESSES initialization 
parameter

See Also:

� "Checking for Apply Errors" on page 14-48

� "Managing Apply Errors" on page 11-32

See Also:

� Chapter 5, "Rules"

� Chapter 6, "How Rules Are Used In Streams"

� Chapter 12, "Managing Rules and Rule-Based Transformations"



Troubleshooting Problems with Rules and Rule-Based Transformations

Troubleshooting a Streams Environment 15-19

Are Rules Configured Properly for the Streams Client?
If a capture process, a propagation, an apply process, or a messaging client is 
behaving in an unexpected way, then the problem may be that the rules in either the 
positive or negative rule set for the Streams client are not configured properly. For 
example, if you expect a capture process to capture changes made to a particular 
table, but the capture process is not capturing these changes, then the cause may be 
that the rules in the rule sets used by the capture process do not instruct the capture 
process to capture changes to the table. 

You can check the rules for a particular Streams client by querying the 
DBA_STREAMS_RULES data dictionary view. If you use both positive and negative 
rule sets in your Streams environment, then it is important to know whether a rule 
returned by this view is in the positive or negative rule set for a particular Streams 
client. A Streams client performs an action, such as capture, propagation, apply, or 
dequeue, for events that satisfy its rule sets. In general, an event satisfies the rule 
sets for a Streams client if no rules in the negative rule set evaluate to TRUE for the 
event, and at least one rule in the positive rule set evaluates to TRUE for the event. 
"Rule Sets and Rule Evaluation of Events" on page 6-4 contains more detailed 
information about how an event satisfies the rule sets for a Streams client, including 
information about Streams client behavior when one or more rule sets are not 
specified. 

This section includes the following subsections:

� Checking for Schema and Global Rules

� Checking for Table Rules

� Checking for Subset Rules

� Checking for Message Rules

� Resolving Problems with Rules

See Also:

� "Monitoring Rules and Rule-Based Transformations" on 
page 14-56

� "Rule Sets and Rule Evaluation of Events" on page 6-4



Troubleshooting Problems with Rules and Rule-Based Transformations

15-20 Oracle Streams Concepts and Administration

Checking for Schema and Global Rules
Schema and global rules in the positive rule set for a Streams client instruct the 
Streams client to perform its task for all of the events relating to a particular schema 
or database, respectively. Schema and global rules in the negative rule set for a 
Streams client instruct the Streams client to discard all of the events relating to a 
particular schema or database, respectively. If a Streams client is not behaving as 
expected, then it may be because schema or global rules are not configured properly 
for the Streams client.

For example, suppose a database is running an apply process named 
strm01_apply, and you want this apply process to apply LCRs containing 
changes to the hr schema. If the apply process uses a negative rule set, then make 
sure there are no schema rules that evaluate to TRUE for this schema in the negative 
rule set. Such rules cause the apply process to discard LCRs containing changes to 
the schema. See "Determining the Rules in the Negative Rule Set for a Streams 
Client" on page 14-62 for an example of a query that shows such rules.

If the query returns any such rules, then the rules returned may be causing the 
apply process to discard changes to the schema. If this query returns no rows, then 
make sure there are schema rules in the positive rule set for the apply process that 
evaluate to TRUE for the schema. See "Determining the Rules in the Positive Rule 
Set for a Streams Client" on page 14-60 for an example of a query that shows such 
rules.

Checking for Table Rules
Table rules in the positive rule set for a Streams client instruct the Streams client to 
perform its task for the events relating to one or more particular tables. Table rules 
in the negative rule set for a Streams client instruct the Streams client to discard the 
events relating to one or more particular tables.

If a Streams client is not behaving as expected for a particular table, then it may be 
for one of the following reasons:

� One or more global rules in the rule sets for the Streams client instruct the 
Streams client to behave in a particular way for events relating to the table 
because the table is in a certain database. That is, a global rule in the negative 
rule set for the Streams client may instruct the Streams client to discard all 
events from the source database that contains the table, or a global rule in the 
positive rule set for the Streams client may instruct the Streams client to 
perform its task for all events from the source database that contains the table.



Troubleshooting Problems with Rules and Rule-Based Transformations

Troubleshooting a Streams Environment 15-21

� One or more schema rules in the rule sets for the Streams client instruct the 
Streams client to behave in a particular way for events relating to the table 
because the table is in a certain schema. That is, a schema rule in the negative 
rule set for the Streams client may instruct the Streams client to discard all 
events relating to database objects in the schema, or a schema rule in the 
positive rule set for the Streams client may instruct the Streams client to 
perform its task for all events relating to database objects in the schema.

� One or more table rules in the rule sets for the Streams client instruct the 
Streams client to behave in a particular way for events relating to the table.

If you are sure that no global or schema rules are causing the unexpected behavior, 
then you can check for table rules in the rule sets for a Streams client. For example, 
if you expect a capture process to capture changes to a particular table, but the 
capture process is not capturing these changes, then the cause may be that the rules 
in the positive and negative rule sets for the capture process do not instruct it to 
capture changes to the table. 

Suppose a database is running a capture process named strm01_capture, and 
you want this capture process to capture changes to the hr.departments table. If 
the capture process uses a negative rule set, then make sure there are no table rules 
that evaluate to TRUE for this table in the negative rule set. Such rules cause the 
capture process to discard changes to the table. See "Determining the Rules in the 
Negative Rule Set for a Streams Client" on page 14-62 for an example of a query that 
shows such rules.

If the query returns any such rules, then the rules returned may be causing the 
capture process to discard changes to the table. If this query returns no rules, then 
make sure there are one or more table rules in the positive rule set for the capture 
process that evaluate to TRUE for the table. See "Determining the Rules in the 
Positive Rule Set for a Streams Client" on page 14-60 for an example of a query that 
shows such rules.

See Also: "Checking for Schema and Global Rules" on page 15-20

See Also: "Table Rules Example" on page 6-20 for more 
information about specifying table rules



Troubleshooting Problems with Rules and Rule-Based Transformations

15-22 Oracle Streams Concepts and Administration

Checking for Subset Rules
A subset rule may be in the rule set used by a capture process, propagation, apply 
process, or messaging client. A subset rule evaluates to TRUE only if a DML 
operation contains a change to a particular subset of rows in the table. For example, 
to check for table rules that evaluate to TRUE for an apply process named 
strm01_apply when there are changes to the hr.departments table, run the 
following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A20
COLUMN DML_CONDITION HEADING 'Subset Condition' FORMAT A30

SELECT RULE_NAME, RULE_TYPE, DML_CONDITION
  FROM DBA_STREAMS_RULES
  WHERE STREAMS_NAME   = 'STRM01_APPLY' AND 
        STREAMS_TYPE   = 'APPLY' AND
        SCHEMA_NAME    = 'HR' AND
        OBJECT_NAME    = 'DEPARTMENTS';

Rule Name            Rule Type            Subset Condition
-------------------- -------------------- ------------------------------
DEPARTMENTS5         DML                  location_id=1700
DEPARTMENTS6         DML                  location_id=1700
DEPARTMENTS7         DML                  location_id=1700

Notice that this query returns any subset condition for the table in the 
DML_CONDITION column, which is labeled "Subset Condition" in the output. In this 
example, subset rules are specified for the hr.departments table. These subset 
rules evaluate to TRUE only if an LCR contains a change that involves a row where 
the location_id is 1700. So, if you expected the apply process to apply all 
changes to the table, then these subset rules cause the apply process to discard 
changes that involve rows where the location_id is not 1700.

Note: Subset rules should only reside in positive rule sets.

See Also:

� "Table Rules Example" on page 6-20 for more information about 
specifying subset rules

� "Row Migration and Subset Rules" on page 6-27



Troubleshooting Problems with Rules and Rule-Based Transformations

Troubleshooting a Streams Environment 15-23

Checking for Message Rules
A message rule may be in the rule set used by a propagation, apply process, or 
messaging client. Message rules only pertain to user-enqueued events of a specific 
message type, not captured events. A message rule evaluates to TRUE if a 
user-enqueued event in a queue is of the type specified in the message rule and 
satisfies the rule condition of the message rule.

If you expect a propagation, apply process, or messaging client to perform its task 
for certain user-enqueued events, but the Streams client is not performing its task 
for these events, then the cause may be that the rules in the positive and negative 
rule sets for the Streams client do not instruct it to perform its task for these events. 
Similarly, if you expect a propagation, apply process, or messaging client to discard 
certain user-enqueued events, but the Streams client is not discarding these events, 
then the cause may be that the rules in the positive and negative rule sets for the 
Streams client do not instruct it to discard these events.

For example, suppose you want a messaging client named oe to dequeue messages 
of type oe.user_msg that satisfy the following condition:

:"VAR$_2".OBJECT_OWNER = 'OE' AND  :"VAR$_2".OBJECT_NAME = 'ORDERS'

If the messaging client uses a negative rule set, then make sure there are no message 
rules that evaluate to TRUE for this message type in the negative rule set. Such rules 
cause the messaging client to discard these messages. For example, to determine 
whether there are any such rules in the negative rule set for the messaging client, 
run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A30

SELECT RULE_NAME, RULE_CONDITION 
  FROM DBA_STREAMS_RULES
  WHERE STREAMS_NAME       = 'OE' AND
        MESSAGE_TYPE_OWNER = 'OE' AND
        MESSAGE_TYPE_NAME  = 'USER_MSG' AND
        RULE_SET_TYPE      = 'NEGATIVE';

If this query returns any rules, then the rules returned may be causing the 
messaging client to discard messages. Examine the rule condition of the returned 
rules to determine whether these rules are causing the messaging client to discard 
the messages that it should be dequeuing. If this query returns no rules, then make 
sure there are message rules in the positive rule set for the messaging client that 
evaluate to TRUE for this message type and condition. 



Troubleshooting Problems with Rules and Rule-Based Transformations

15-24 Oracle Streams Concepts and Administration

For example, to determine whether there are any message rules that evaluate to 
TRUE for this message type in the positive rule set for the messaging client, run the 
following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A35
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35

SELECT RULE_NAME, RULE_CONDITION 
  FROM DBA_STREAMS_RULES 
  WHERE STREAMS_NAME       = 'OE' AND
        MESSAGE_TYPE_OWNER = 'OE' AND
        MESSAGE_TYPE_NAME  = 'USER_MSG' AND
        RULE_SET_TYPE      = 'POSITIVE';

If you have message rules that evaluate to TRUE for this message type in the 
positive rule set for the messaging client, then these rules are returned. In this case, 
your output looks similar to the following: 

Rule Name                           Rule Condition
----------------------------------- -----------------------------------
RULE$_3                             :"VAR$_2".OBJECT_OWNER = 'OE' AND
                                    :"VAR$_2".OBJECT_NAME = 'ORDERS'

Examine the rule condition for the rules returned to determine whether they 
instruct the messaging client to dequeue the proper messages. Based on these 
results, the messaging client named oe should dequeue messages of oe.user_msg 
type that satisfy condition shown in the output. In other words, no rule in the 
negative messaging client rule set discards these messages, and a rule exists in the 
positive messaging client rule set that evaluates to TRUE when the messaging client 
finds a message in its queue of the of oe.user_msg type that satisfies the rule 
condition. 

See Also:

� "Message Rule Example" on page 6-36 for more information 
about specifying message rules

� "Configuring a Messaging Client and Message Notification" on 
page 10-25 for an example that creates the rule discussed in this 
section



Troubleshooting Problems with Rules and Rule-Based Transformations

Troubleshooting a Streams Environment 15-25

Resolving Problems with Rules
If you determine that a Streams capture process, propagation, apply process, or 
messaging client is not behaving as expected because one or more rules must be 
added to the rule set for the Streams client, then you can use one of the following 
procedures in the DBMS_STREAMS_ADM package to add appropriate rules:

� ADD_GLOBAL_PROPAGATION_RULES

� ADD_GLOBAL_RULES

� ADD_SCHEMA_PROPAGATION_RULES

� ADD_SCHEMA_RULES

� ADD_SUBSET_PROPAGATION_RULES

� ADD_SUBSET_RULES

� ADD_TABLE_PROPAGATION_RULES

� ADD_TABLE_RULES

� ADD_MESSAGE_PROPAGATION_RULE 

� ADD_MESSAGE_RULE 

You can use the DBMS_RULE_ADM package to add customized rules, if necessary.

It is also possible that the Streams capture process, propagation, apply process, or 
messaging client is not behaving as expected because one or more rules should be 
altered or removed from a rule set.

If you have the correct rules, and the relevant events are still filtered out by a 
Streams capture process, propagation, or apply process, then check your trace files 
and alert log for a warning about a missing "multi-version data dictionary", which 
is a Streams data dictionary. The following information may be included in such 
warning messages:

� gdbnm:  Global name of the source database of the missing object

� scn:  SCN for the transaction that has been missed



Troubleshooting Problems with Rules and Rule-Based Transformations

15-26 Oracle Streams Concepts and Administration

If you find such messages, and you are using custom capture process rules or 
reusing existing capture process rules for a new destination database, then make 
sure you run the appropriate procedure to prepare for instantiation: 

� PREPARE_TABLE_INSTANTIATION

� PREPARE_SCHEMA_INSTANTIATION

� PREPARE_GLOBAL_INSTANTIATION

Also, make sure propagation is working from the source database to the destination 
database. Streams data dictionary information is propagated to the destination 
database and loaded into the dictionary at the destination database.

Are the Rule-Based Transformations Configured Properly?
A rule-based transformation is any user-defined modification to an event that 
results when a rule in a positive rule set evaluates to TRUE. A rule-based 
transformation is specified in the action context of a rule, and these action contexts 
contain a name-value pair with STREAMS$_TRANSFORM_FUNCTION for the name 
and a user-created function name for the value. This user-created function performs 
the transformation. If the user-created function contains any flaws, then unexpected 
behavior may result. 

If a Streams capture process, propagation, apply process, or messaging client is not 
behaving as expected, then check the rule-based transformation functions specified 
for the Streams client and correct any flaws. You can find the names of these 
functions by querying the DBA_STREAMS_TRANSFORM_FUNCTION data dictionary 
view. You may need to modify a transformation function or remove a rule-based 
transformation to correct the problem. Make sure the name of the function is spelled 
correctly.

Rule evaluation is done before a rule-based transformation. For example, if you 
have a transformation that changes the name of a table from emps to employees, 

See Also:

� "Altering a Rule" on page 12-7

� "Removing a Rule from a Rule Set" on page 12-14

� Oracle Streams Replication Administrator's Guide for more 
information about preparing database objects for instantiation

� "The Streams Data Dictionary" on page 2-45 for more 
information about the Streams data dictionary



Checking the Trace Files and Alert Log for Problems

Troubleshooting a Streams Environment 15-27

then make sure each rule using the transformation specifies the table name emps, 
rather than employees, in its rule condition.

Checking the Trace Files and Alert Log for Problems
Messages about each capture process, propagation job, and apply process are 
recorded in trace files for the database in which the process or propagation job is 
running. A local capture process runs on a source database, a downstream capture 
process runs on a downstream database, a propagation job runs on the database 
containing the source queue in the propagation, and an apply process runs on a 
destination database. These trace file messages can help you to identify and resolve 
problems in a Streams environment.

All trace files for background processes are written to the destination directory 
specified by the initialization parameter BACKGROUND_DUMP_DEST. The names of 
trace files are operating system specific, but each file usually includes the name of 
the process writing the file.

For example, on some operating systems, the trace file name for a process is 
sid_xxxxx_iiiii.trc, where:

� sid is the system identifier for the database

� xxxxx is the name of the process

� iiiii is the operating system process number

Also, you can set the write_alert_log parameter to y for both a capture process 
and an apply process. When this parameter is set to y, which is the default setting, 
the alert log for the database contains messages about why the capture process or 
apply process stopped.

See Also:

� "Displaying the Queue, Rule Sets, and Status of Each Capture 
Process" on page 14-7 for a query that displays the rule set used 
by a capture process

� "Displaying Rule-Based Transformations" on page 14-69 for a 
query that displays the rule-based transformation functions 
specified for the rules in a rule set

� "Managing Rule-Based Transformations" on page 12-18 for 
information about modifying or removing rule-based 
transformations



Checking the Trace Files and Alert Log for Problems

15-28 Oracle Streams Concepts and Administration

You can control the information in the trace files by setting the trace_level 
capture process or apply process parameter using the SET_PARAMETER procedure 
in the DBMS_CAPTURE_ADM and DBMS_APPLY_ADM packages.

Use the following checklist to check the trace files related to Streams:

� Does a Capture Process Trace File Contain Messages About Capture Problems?

� Do the Trace Files Related to Propagation Jobs Contain Messages About 
Problems?

� Does an Apply Process Trace File Contain Messages About Apply Problems?

Does a Capture Process Trace File Contain Messages About Capture Problems?
A capture process is an Oracle background process named cnnn, where nnn is the 
capture process number. For example, on some operating systems, if the system 
identifier for a database running a capture process is hqdb and the capture process 
number is 01, then the trace file for the capture process starts with hqdb_c001.

Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?
Each propagation uses a propagation job that depends on the job queue coordinator 
process and a job queue process. The job queue coordinator process is named 
cjqnn, where nn is the job queue coordinator process number, and a job queue 
process is named jnnn, where nnn is the job queue process number.

See Also:

� Oracle Database Administrator's Guide for more information 
about trace files and the alert log, and for more information 
about their names and locations

� PL/SQL Packages and Types Reference for more information about 
setting the trace_level capture process parameter and the 
trace_level apply process parameter

� Your operating system specific Oracle documentation for more 
information about the names and locations of trace files

See Also: "Displaying General Information About Each Capture 
Process" on page 14-8 for a query that displays the capture process 
number of a capture process



Checking the Trace Files and Alert Log for Problems

Troubleshooting a Streams Environment 15-29

For example, on some operating systems, if the system identifier for a database 
running a propagation job is hqdb and the job queue coordinator process is 01, then 
the trace file for the job queue coordinator process starts with hqdb_cjq01. 
Similarly, on the same database, if a job queue process is 001, then the trace file for 
the job queue process starts with hqdb_j001. You can check the process name by 
querying the PROCESS_NAME column in the DBA_QUEUE_SCHEDULES data 
dictionary view.

Does an Apply Process Trace File Contain Messages About Apply Problems?
An apply process is an Oracle background process named annn, where nnn is the 
apply process number. For example, on some operating systems, if the system 
identifier for a database running an apply process is hqdb and the apply process 
number is 001, then the trace file for the apply process starts with hqdb_a001.

An apply process also uses parallel execution servers. Information about an apply 
process may be recorded in the trace file for one or more parallel execution servers. 
The process name of a parallel execution server is pnnn, where nnn is the process 
number. So, on some operating systems, if the system identifier for a database 
running an apply process is hqdb and the process number is 001, then the trace file 
that may contain information about a parallel execution server used by an apply 
process starts with hqdb_p001.

See Also: "Is the Propagation Job Used by a Propagation 
Enabled?" on page 15-9 for a query that displays the job queue 
process used by a propagation job

See Also:

� "Displaying General Information About Each Coordinator 
Process" on page 14-40 for a query that displays the apply 
process number of an apply process

� "Displaying Information About the Reader Server for Each 
Apply Process" on page 14-38 for a query that displays the 
parallel execution server used by the reader server of an apply 
process

� "Displaying Information About the Apply Servers for Each 
Apply Process" on page 14-40 for a query that displays the 
parallel execution servers used by the apply servers of an apply 
process



Checking the Trace Files and Alert Log for Problems

15-30 Oracle Streams Concepts and Administration



Part III
   Example Environments and Applications

This part includes the following detailed examples:

� Chapter 16, "Single Database Capture and Apply Example"

� Chapter 17, "Rule-Based Application Example"





Single Database Capture and Apply Example 16-1

16
Single Database Capture and

Apply Example

This chapter illustrates an example of a single database that captures changes to a 
table, re-enqueues the captured changes into a queue, and then uses a DML handler 
during apply to insert a subset of the changes into a different table.

 This chapter contains these topics:

� Overview of the Single Database Capture and Apply Example

� Prerequisites

Note: The extended example is not included in the PDF version of 
this chapter, but it is included in the HTML version of the chapter.



Overview of the Single Database Capture and Apply Example

16-2 Oracle Streams Concepts and Administration

Overview of the Single Database Capture and Apply Example
The example in this chapter illustrates using Streams to capture and apply data 
manipulation language (DML) changes at a single database named cpap.net. 
Specifically, this example captures DML changes to the employees table in the hr 
schema, placing row logical change records (LCRs) into a queue named 
streams_queue. Next, an apply process dequeues these row LCRs from the same 
queue, re-enqueues them into this queue, and sends them to a DML handler. 

When the row LCRs are captured, they reside in the buffered queue and cannot be 
dequeued explicitly. After the row LCRs are re-enqueued during apply, they are 
available for explicit dequeue by an application. This example does not create the 
application that dequeues these row LCRs.

This example illustrates a DML handler that inserts records of deleted employees 
into a emp_del table in the hr schema. This example assumes that the emp_del 
table is used to retain the records of all deleted employees. The DML handler is 
used to determine if each row LCR contains a DELETE statement. When the DML 
handler finds a row LCR containing a DELETE statement, it converts the DELETE 
into an INSERT on the emp_del table and then inserts the row.

Figure 16–1 provides an overview of the environment.



Overview of the Single Database Capture and Apply Example

Single Database Capture and Apply Example 16-3

Figure 16–1 Single Database Capture and Apply Example

See Also:

� Chapter 2, "Streams Capture Process"

� "LCR Event Processing" on page 4-4 for more information 
about DML handlers

strmadmin.streams_queue

Capture Process

capture_emp

Oracle 
Database 
cpap.net Dequeue Row LCRs with 

DML Changes to the 
hr.employees Table

Enqueue DML 
changes to 
hr.employees 
Table

Apply Process

apply_emp

hr.emp_del Table 

Send row LCRs
to DML Handler

Insert Records for 
Employees Deleted 
from the hr.employees
Table

emp_dml_handler
PL/SQL Procedure

Re-enqueue All Events



Prerequisites

16-4 Oracle Streams Concepts and Administration

Prerequisites
The following prerequisites must be completed before you begin the example in this 
chapter.

� Set the following initialization parameters to the values indicated for all 
databases in the environment:

– Set the COMPATIBLE initialization parameter to 10.1.0 or higher.

– STREAMS_POOL_SIZE: Optionally set this parameter to an appropriate 
value. This parameter specifies the size of the Streams pool. The Streams 
pool contains captured events. In addition, the Streams pool is used for 
internal communications during parallel capture and apply. If 
STREAMS_POOL_SIZE is set to zero (the default), then Streams uses the 
shared pool. In this case, you may need to increase the size of the shared 
pool.

� Set the database to run in ARCHIVELOG mode. Any database producing 
changes that will be captured must run in ARCHIVELOG mode.

� This example creates a new user to function as the Streams administrator 
(strmadmin) and prompts you for the tablespace you want to use for this 
user's data. Before you start this example, either create a new tablespace or 
identify an existing tablespace for the Streams administrator to use. The 
Streams administrator should not use the SYSTEM tablespace.

See Also: "Setting Initialization Parameters Relevant to Streams" 
on page 8-6 for information about other initialization parameters 
that are important in a Streams environment

See Also: Oracle Database Administrator's Guide for information 
about running a database in ARCHIVELOG mode



Rule-Based Application Example 17-1

17
Rule-Based Application Example

This chapter illustrates a rule-based application that uses the Oracle rules engine.

The examples in this chapter are independent of Streams. That is, no Streams 
capture processes, propagations, apply processes, or messaging clients are clients of 
the rules engine in these examples, and no queues are used.

This chapter contains these topics:

� Overview of the Rule-Based Application

Note: The extended example is not included in the PDF version of 
this chapter, but it is included in the HTML version of the chapter.

See Also:

� Chapter 5, "Rules"

� Chapter 12, "Managing Rules and Rule-Based Transformations"

� "Monitoring Rules and Rule-Based Transformations" on 
page 14-56



Overview of the Rule-Based Application

17-2 Oracle Streams Concepts and Administration

Overview of the Rule-Based Application
Each example in this chapter creates a rule-based application that handles customer 
problems. The application uses rules to determine actions that must be completed 
based on the problem priority when a new problem is reported. For example, the 
application assigns each problem to a particular company center based on the 
problem priority.

The application enforces these rules using the rules engine. An evaluation context 
named evalctx is created to define the information surrounding a support 
problem. Rules are created based on the requirements described previously, and 
they are added to a rule set named rs.

The task of assigning problems is done by a user-defined procedure named 
problem_dispatch, which calls the rules engine to evaluate rules in the rule set 
rs and then takes appropriate action based on the rules that evaluate to TRUE.



Part IV
  Appendixes

This part includes the following appendix:

� Appendix A, "XML Schema for LCRs"

� Appendix B, "Online Database Upgrade and Maintenance With Streams"





XML Schema for LCRs A-1

A
XML Schema for LCRs

The XML schema described in this appendix defines the format of a logical change 
record (LCR).

This appendix contains this topic:

� Definition of the XML Schema for LCRs

The namespace for this schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr 

The schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd

This schema definition can be loaded into the database by connecting as SYS in 
SQL*Plus and executing the following file:

rdbms/admin/catxlcr.sql

The rdbms directory is in your Oracle home.



Definition of the XML Schema for LCRs

A-2 Oracle Streams Concepts and Administration

Definition of the XML Schema for LCRs
The following is the XML schema definition for LCRs:

'<schema xmlns="http://www.w3.org/2001/XMLSchema"
        targetNamespace="http://xmlns.oracle.com/streams/schemas/lcr"
        xmlns:lcr="http://xmlns.oracle.com/streams/schemas/lcr"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
          version="1.0"
        elementFormDefault="qualified">

  <simpleType name = "short_name">
    <restriction base = "string">
      <maxLength value="30"/>
    </restriction>
  </simpleType>

  <simpleType name = "long_name">
    <restriction base = "string">
      <maxLength value="4000"/>
    </restriction>
  </simpleType>

  <simpleType name = "db_name">
    <restriction base = "string">
      <maxLength value="128"/>
    </restriction>
  </simpleType>

  <!-- Default session parameter is used if format is not specified -->
  <complexType name="datetime_format">
    <sequence>
      <element name = "value" type = "string" nillable="true"/>
      <element name = "format" type = "string" minOccurs="0"
nillable="true"/>
    </sequence>
  </complexType>

  <complexType name="anydata">
    <choice>
      <element name="varchar2" type = "string" xdb:SQLType="CLOB"
                                                        nillable="true"/>



Definition of the XML Schema for LCRs

XML Schema for LCRs A-3

      <!-- Represent char as varchar2. xdb:CHAR blank pads upto 2000 bytes! -->
      <element name="char" type = "string" xdb:SQLType="CLOB"
                                                        nillable="true"/>
      <element name="nchar" type = "string" xdb:SQLType="NCLOB"
                                                        nillable="true"/>

      <element name="nvarchar2" type = "string" xdb:SQLType="NCLOB"
                                                        nillable="true"/>
      <element name="number" type = "double" xdb:SQLType="NUMBER"
                                                        nillable="true"/>
      <element name="raw" type = "hexBinary" xdb:SQLType="BLOB"
                                                        nillable="true"/>
      <element name="date" type = "lcr:datetime_format"/>
      <element name="timestamp" type = "lcr:datetime_format"/>
      <element name="timestamp_tz" type = "lcr:datetime_format"/>
      <element name="timestamp_ltz" type = "lcr:datetime_format"/>

      <!-- Interval YM should be as per format allowed by SQL -->
      <element name="interval_ym" type = "string" nillable="true"/>

      <!-- Interval DS should be as per format allowed by SQL -->
      <element name="interval_ds" type = "string" nillable="true"/>
      <element name="urowid" type = "string" xdb:SQLType="VARCHAR2"
                                                        nillable="true"/>
    </choice>
  </complexType>

  <complexType name="column_value">
    <sequence>
      <element name = "column_name" type = "lcr:long_name" nillable="false"/>
      <element name = "data" type = "lcr:anydata" nillable="false"/>
      <element name = "lob_information" type = "string" minOccurs="0"

nillable="true"/>
      <element name = "lob_offset" type = "nonNegativeInteger"
minOccurs="0"

nillable="true"/>
      <element name = "lob_operation_size" type = "nonNegativeInteger"
                                             minOccurs="0"
nillable="true"/>
      <element name = "long_information" type = "string" minOccurs="0"



Definition of the XML Schema for LCRs

A-4 Oracle Streams Concepts and Administration

nillable="true"/>
    </sequence>
  </complexType>

  <complexType name="extra_attribute">
    <sequence>
      <element name = "attribute_name" type = "lcr:short_name"/>
      <element name = "attribute_value" type = "lcr:anydata"/>
    </sequence>
  </complexType>

  <element name = "ROW_LCR">
    <complexType>
      <sequence>
        <element name = "source_database_name" type = "lcr:db_name"

nillable="false"/>
        <element name = "command_type" type = "string" nillable="false"/>
        <element name = "object_owner" type = "lcr:short_name"

nillable="false"/>
        <element name = "object_name" type = "lcr:short_name"

nillable="false"/>
        <element name = "tag" type = "hexBinary" xdb:SQLType="RAW" minOccurs="0" 
                                                           nillable="true"/>
        <element name = "transaction_id" type = "string" minOccurs="0" 
                                                           nillable="true"/>
        <element name = "scn" type = "double" xdb:SQLType="NUMBER" minOccurs="0"
                                                           nillable="true"/>
        <element name = "old_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "old_value" type="lcr:column_value" 
                                          maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
        <element name = "new_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "new_value" type="lcr:column_value" 
                                          maxOccurs = "unbounded"/>
            </sequence>
          </complexType>



Definition of the XML Schema for LCRs

XML Schema for LCRs A-5

        </element>
        <element name = "extra_attribute_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "extra_attribute_value"
                       type="lcr:extra_attribute"
                       maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>

  <element name = "DDL_LCR">
    <complexType>
      <sequence>
        <element name = "source_database_name" type = "lcr:db_name"
                                                        nillable="false"/>

        <element name = "command_type" type = "string" nillable="false"/>
        <element name = "current_schema" type = "lcr:short_name"
                                                        nillable="false"/>

        <element name = "ddl_text" type = "string" xdb:SQLType="CLOB"
                                                        nillable="false"/>

        <element name = "object_type" type = "string"
                                        minOccurs = "0" nillable="true"/>
        <element name = "object_owner" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "object_name" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "logon_user" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "base_table_owner" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "base_table_name" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
                                        minOccurs = "0" nillable="true"/>
        <element name = "transaction_id" type = "string"
                                        minOccurs = "0" nillable="true"/>
        <element name = "scn" type = "double" xdb:SQLType="NUMBER"
                                        minOccurs = "0" nillable="true"/>



Definition of the XML Schema for LCRs

A-6 Oracle Streams Concepts and Administration

        <element name = "extra_attribute_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "extra_attribute_value"
                       type="lcr:extra_attribute"
                       maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>
</schema>';



Online Database Upgrade and Maintenance With Streams B-1

B
Online Database Upgrade and Maintenance

With Streams

This appendix describes performing certain maintenance operations on an Oracle 
database with little or no down time. These maintenance operations include 
upgrading to a new version of the Oracle Database, migrating an Oracle Database 
to a different operating system or character set, upgrading user-created 
applications, and applying Oracle Database patches. The maintenance operations 
described in this appendix use the features of Oracle Streams to achieve little or no 
database down time.

This appendix contains these topics:

� Overview of Using Streams in the Database Maintenance Process

� Performing a Database Version Upgrade Using Streams

� Performing a Database Maintenance Operation Using Streams

� Finishing the Database Maintenance Operation



Overview of Using Streams in the Database Maintenance Process

B-2 Oracle Streams Concepts and Administration

Overview of Using Streams in the Database Maintenance Process
The following operations typically require substantial database down time:

� Upgrading the version of the database

� Migrating the database to a different operating system

� Migrating the database to a different character set

� Modifying database schema objects to support upgrades to user-created 
applications

� Applying an Oracle software patch

You can achieve these maintenance operations with little or no down time by using 
the features of Oracle Streams. To do so, you use Oracle Streams to configure a 
single source replication environment where the original database is the source 
database and a copy of the database is the destination database for the changes 
made at the source.

Specifically, you can use the following general steps to perform the maintenance 
operation while the database is online:

1. Create an empty destination database.

2. Configure an Oracle Streams single source replication environment where the 
original database is the source database and a copy of the database is the 
destination database for the changes made at the source.

3. Perform the maintenance operation on the destination database. During this 
time the original source database is available online.

4. Use Oracle Streams to apply the changes made at the source database to the 
destination database.

5. When the destination database has caught up with the changes made at the 
source database, take the source database offline and make the destination 
database available for applications and users.

The upgrade instructions in this appendix assume that all of the following 
statements are true for the database being upgraded:

� No DML or DDL statements that are not supported by Streams are run during 
the entire upgrade process.

� The database is not part of an existing Oracle Streams environment.

� The database is not part of an existing logical standby environment.



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-3

� The database is not part of an existing Advanced Replication environment.

� Job queue processes are not created, modified, or deleted during the upgrade 
process.

� There are no tables at the database that are master tables for materialized views 
in other databases.

� Any user-created queues are read-only during the upgrade process.

� No Oracle-supplied PL/SQL package subprograms are invoked during the 
upgrade process that modify both user data and dictionary metadata at the 
same time.

The following sections provide detailed instructions for completing one of the 
maintenance operations:

� "Performing a Database Version Upgrade Using Streams" on page B-3

� "Performing a Database Maintenance Operation Using Streams" on page B-14

Performing a Database Version Upgrade Using Streams
To use Streams for a database version upgrade, the database must be Oracle9i 
release 2 (9.2). Before you begin the database version upgrade, decide whether you 
want to use the original Export/Import utilities or the Recovery Manager (RMAN) 
utility to instantiate the destination database during the operation. The destination 
database will replace the existing database that is being upgraded.

Consider the following factors when you make this decision:

� If you use original Export/Import, then you can make the destination database 
an Oracle Database 10g database at the beginning of the operation. Therefore, 
you do not need to upgrade the destination database after the instantiation. 

� If you use RMAN, then the instantiation may be faster than original 
Export/Import, especially if the database is large, but the database version must 
be same for RMAN instantiation. Therefore, the destination database is an 
Oracle9i release 2 (9.2) database when it is instantiated. After the instantiation, 
you must upgrade the destination database.

Also, Oracle Corporation recommends that you do not use RMAN for 
instantiation in an environment where distributed transactions are possible. 
Doing so may cause in-doubt transactions that must be corrected manually.



Performing a Database Version Upgrade Using Streams

B-4 Oracle Streams Concepts and Administration

After you decide which utility you want to use for instantiation, complete the steps 
in the appropriate section:

� Performing a Database Version Upgrade Using Streams and Original 
Export/Import

� Performing a Database Version Upgrade Using Streams and RMAN

Performing a Database Version Upgrade Using Streams and Original Export/Import
Complete the following steps to perform a database version upgrade using 
Export/Import and Oracle Streams:

1. Create an empty Oracle Database 10g database. This database will be the 
destination database during the upgrade process. It may use a different 
operating system and character set than the source database that is being 
upgraded.

See the Oracle installation guide for your operating system if you need to install 
Oracle, and see Oracle Database Administrator's Guide for information about 
creating a database.

Make sure the destination database has a different global name than the source 
database. This example assumes that the global name of the source database is 
orcl.net and the global name of the destination database during the upgrade 
is stms.net. The global name of the destination database is changed when the 
destination database replaces the source database at the end of the upgrade 
process.

2. At the source database, make any database objects that were not supported by 
Streams in Oracle9i release 2 (9.2) read-only. In Oracle9i, Streams did not 
support tables with columns of the following datatypes: NCLOB, LONG, LONG 
RAW, BFILE, ROWID, and UROWID, and user-defined types (including object 
types, REFs, varrays, and nested tables). In addition, Streams did not support 
temporary tables, index-organized tables, or object tables. See Oracle9i Streams 
for complete information about unsupported database objects.

3. At the source database, configure a Streams administrator. See Oracle9i Streams
 for instructions. This example assumes that the name of the Streams 
administrator at the source database is strmadmin. This Streams administrator 
will be copied automatically to the destination database during instantiation.



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-5

4. While connected as an administrative user in SQL*Plus at the source database, 
specify database supplemental logging of primary keys or unique indexes (in 
the absence of primary keys) for all updates. For example:

CONNECT SYSTEM/MANAGER@orcl.net

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) 
COLUMNS; 

5. While connected as the Streams administrator in SQL*Plus at the source 
database, create a SYS.AnyData queue that will stage changes made to the 
source database during the upgrade process. For example:

CONNECT strmadmin/strmadminpw@orcl.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

6.  While connected as the Streams administrator in SQL*Plus at the source 
database, configure a local capture process that will capture all supported 
changes made to the source database and stage these changes in the queue 
created in Step 5. For example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type       => 'capture',
   streams_name       => 'capture',
   queue_name         => 'streams_queue',
   include_dml        => true,
   include_ddl        => true,
   include_tagged_lcr => true,
   source_database    => NULL);
END;
/

Do not start the capture process.

7. Instantiate the destination database using original Export/Import by 
completing the following steps:

a. At the source database command line, perform a full database export with 
the CONSISTENT export parameter set to y:

exp SYSTEM/password FULL=y FILE=instant.dmp GRANTS=y ROWS=y 
CONSISTENT=y



Performing a Database Version Upgrade Using Streams

B-6 Oracle Streams Concepts and Administration

b. If the source and destination databases are on different computer systems, 
then transfer the export dump file to the computer system running the 
destination database.

c. At the destination database command line in the directory that contains the 
dump file, perform a full database import with the 
STREAMS_INSTANTIATION import parameter set to y and the 
STREAMS_CONFIGURATION import parameters set to n:

imp SYSTEM/password FULL=y FILE=instant.dmp COMMIT=y 
LOG=import.log STREAMS_INSTANTIATION=y STREAMS_CONFIGURATION=n

See Oracle Database Utilities for information about performing an export/import 
using the original Export and Import utilities.

8. At the destination database, disable any imported jobs that modify data that 
will be replicated from the source database. Query the DBA_JOBS data 
dictionary view to list the jobs.

9. While connected as the Streams administrator in SQL*Plus at the destination 
database, remove the imported SYS.AnyData queue. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(

 queue_name            => 'strmadmin.streams_queue',
    cascade                 => false,
 drop_unused_queue_table => true);
END;
/

10.  While connected as the Streams administrator in SQL*Plus at the destination 
database, re-create the SYS.AnyData queue. This queue will stage changes 
propagated from the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

11. Configure your network and Oracle Net so that the source database can 
communicate with the destination database. See Oracle Net Services 
Administrator's Guide for instructions.



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-7

12. While connected as the Streams administrator in SQL*Plus at the source 
database, create a database link to the destination database. For example:

CONNECT strmadmin/strmadminpw@orcl.net

CREATE DATABASE LINK stms.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'stms.net';

13. While connected as the Streams administrator in SQL*Plus at the source 
database, create a propagation that propagates all changes from the source 
queue created in Step 5 to the destination queue created in Step 10. For 
example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(

streams_name            => 'orcl_to_stms',
source_queue_name       => 'strmadmin.streams_queue',
destination_queue_name  => 'strmadmin.streams_queue@stms.net', 
 include_dml           => true,
  include_ddl           => true,

    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/

14. While connected as the Streams administrator in SQL*Plus at the destination 
database, create an apply process that applies all changes in the queue created 
in Step 10. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',

streams_name       => 'apply',
queue_name         => 'strmadmin.streams_queue',
 include_dml      => true,
  include_ddl      => true,

    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/



Performing a Database Version Upgrade Using Streams

B-8 Oracle Streams Concepts and Administration

15. Complete the steps in "Finishing the Database Maintenance Operation" on 
page B-28.

Performing a Database Version Upgrade Using Streams and RMAN
Complete the following steps to perform a database version upgrade using 
Recovery Manager (RMAN) and Oracle Streams:

1. Create an empty Oracle9i release 2 (9.2) database. This database will be the 
destination database during the upgrade process. It may use a different 
operating system and character set than the source database that is being 
upgraded. Both the source database that is being upgraded and the destination 
database must be Oracle9i release 2 (9.2) databases when you start the upgrade 
process.

See the Oracle installation guide for your operating system if you need to install 
Oracle, and see Oracle9i Database Administrator's Guide for information about 
creating a database.

Make sure the destination database has a different global name than the source 
database. This example assumes that the global name of the source database is 
orcl.net and the global name of the destination database during the upgrade 
is updb.net. The global name of the destination database is changed when the 
destination database replaces the source database at the end of the upgrade 
process.

2. At the source database, make any database objects that were not supported by 
Streams in Oracle9i release 2 (9.2) read-only. In Oracle9i release 2 (9.2), Streams 
did not support tables with columns of the following datatypes: NCLOB, LONG, 
LONG RAW, BFILE, ROWID, and UROWID, and user-defined types (including 
object types, REFs, varrays, and nested tables). In addition, Streams did not 
support temporary tables, index-organized tables, or object tables. See Oracle9i 
Streams for complete information about unsupported database objects.

3. At the source database, configure a Streams administrator. See Oracle9i Streams
 for instructions. This example assumes that the name of the Streams 
administrator at the source database is strmadmin and that the global name of 
the source database is orcl.net.

4. While connected as an administrative user in SQL*Plus at the source database, 
specify database supplemental logging of primary keys and unique indexes (in 
the absence of primary keys) for all updates. For example:

CONNECT SYSTEM/MANAGER@orcl.net



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-9

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) 
COLUMNS; 

5. While connected as the Streams administrator in SQL*Plus at the source 
database, create a SYS.AnyData queue that will stage changes made to the 
source database during the upgrade process. For example:

CONNECT strmadmin/strmadminpw@orcl.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

6. While connected as the Streams administrator in SQL*Plus at the source 
database, configure a local capture process that will capture all supported 
changes made to the source database and stage these changes in the queue 
created in Step 5. For example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type       => 'capture',
   streams_name       => 'capture',
   queue_name         => 'streams_queue',
   include_dml        => true,
   include_ddl        => true,
   include_tagged_lcr => true,
   source_database    => NULL);
END;
/

Do not start the capture process.

7. Instantiate the destination database using RMAN DUPLICATE command by 
completing the following steps. These steps provide a general outline for using 
RMAN to duplicate a database. See the Oracle9i Recovery Manager User's Guide 
for detailed information about using RMAN.

a. Create a backup of the source database if one does not exist. RMAN 
requires a valid backup for duplication. In this example, create a backup of 
orcl.net if one does not exist.

b. While connected as an administrative user in SQL*Plus at the source 
database, determine the until SCN for the RMAN DUPLICATE command. 
For example:

CONNECT SYSTEM/MANAGER@orcl.net 



Performing a Database Version Upgrade Using Streams

B-10 Oracle Streams Concepts and Administration

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
  until_scn NUMBER;
BEGIN
  until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
      DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until 
SCN value is 439882. You will set the UNTIL SCN option to this value 
when you use RMAN to duplicate the database in Step e.

c. While connected as an administrative user in SQL*Plus at the source 
database, archive the current online redo log. For example:

CONNECT SYSTEM/MANAGER@orcl.net 

ALTER SYSTEM ARCHIVE LOG CURRENT;

d. Prepare your environment for database duplication, which includes 
preparing the destination database as an auxiliary instance for duplication. 
See the "Duplicating a Database with Recovery Manager" chapter in the 
Oracle9i Recovery Manager User's Guide for instructions. 

e. Use the RMAN DUPLICATE command to instantiate the source database at 
the destination database. You can use the UNTIL SCN clause to specify an 
SCN for the duplication. Use the until SCN determined in Step b for this 
clause. Archived redo logs must be available for the until SCN specified 
and for higher SCN values. Therefore, Step c archived the redo log 
containing the until SCN.

Make sure you use TO database_name in the DUPLICATE command to 
specify the name of the duplicate database. In this example, the duplicate 
database is stms.net. Therefore, the DUPLICATE command for this 
example includes TO stms.net.

The following is an example of an RMAN DUPLICATE command:

rman
RMAN> CONNECT TARGET SYS/change_on_install@orcl.net
RMAN> CONNECT AUXILIARY SYS/change_on_install@stms.net
RMAN> RUN
      { 
        SET UNTIL SCN 439882;



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-11

        ALLOCATE AUXILIARY CHANNEL updb DEVICE TYPE sbt; 
        DUPLICATE TARGET DATABASE TO updb 
        NOFILENAMECHECK;
      }

f. While connected as an administrative user in SQL*Plus at the destination 
database, use the ALTER SYSTEM statement to disable the RESTRICTED 
SESSION:

CONNECT SYSTEM/MANAGER 

ALTER SYSTEM DISABLE RESTRICTED SESSION;

8. At the destination database, disable any jobs that modify data that will be 
replicated from the source database. Query the DBA_JOBS data dictionary view 
to list the jobs.

9. While connected as an administrative user in SQL*Plus at the destination 
database, rename the database global name. After the RMAN DUPLICATE 
command, the destination database has the same global name as the source 
database. For example:

CONNECT SYSTEM/MANAGER 

ALTER DATABASE RENAME GLOBAL_NAME TO stms.net;

10. Configure your network and Oracle Net so that the source database and the 
destination database can communicate with each other. See Oracle Net Services 
Administrator's Guide for instructions.

11. Upgrade the destination database to Oracle Database 10g. See the Oracle 
Database Upgrade Guide for instructions.

12. At the destination database, connect as an administrator with SYSDBA privilege 
and run the following procedure:

CONNECT SYS/CHANGE_ON_INSTALL@stms.net AS SYSDBA

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Attention: Make sure you are connected to the destination 
database, not the source database, when you run this procedure 
because it removes the local Streams configuration.



Performing a Database Version Upgrade Using Streams

B-12 Oracle Streams Concepts and Administration

See PL/SQL Packages and Types Reference for more information about the 
REMOVE_STREAMS_CONFIGURATION procedure.

13. While connected as the Streams administrator in SQL*Plus at the destination 
database, create a database link to the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

CREATE DATABASE LINK orcl.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'orcl.net';

14. While connected as the Streams administrator in SQL*Plus at the destination 
database, set the instantiation SCN for the entire database and all of the 
database objects. The RMAN DUPLICATE command duplicates the database up 
to one less than the SCN value specified in the UNTIL SCN clause. Therefore, 
you should subtract one from the until SCN value that you specified when you 
ran the DUPLICATE command in Step 7e. In this example, the until SCN was set 
to 439882. Therefore, the instantiation SCN should be set to 439882 - 1, 
or 439881.

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
    source_database_name => 'orcl.net',
    instantiation_scn    => 439881,
    recursive            => true);
END;
/

15. While connected as the Streams administrator in SQL*Plus at the destination 
database, remove the imported SYS.AnyData queue. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(

 queue_name            => 'strmadmin.streams_queue',
    cascade                 => false,
 drop_unused_queue_table => true);
END;
/



Performing a Database Version Upgrade Using Streams

Online Database Upgrade and Maintenance With Streams B-13

16.  While connected as the Streams administrator in SQL*Plus at the destination 
database, re-create the SYS.AnyData queue. This queue will stage changes 
propagated from the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

17. While connected as the Streams administrator in SQL*Plus at the source 
database, create a database link to the destination database. For example:

CONNECT strmadmin/strmadminpw@orcl.net

CREATE DATABASE LINK stms.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'stms.net';

18. While connected as the Streams administrator in SQL*Plus at the source 
database, create a propagation that propagates all changes from the source 
queue created in Step 5 to the destination queue created in Step 10. For 
example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(

streams_name            => 'orcl_to_stms',
source_queue_name       => 'strmadmin.streams_queue',
destination_queue_name  => 'strmadmin.streams_queue@stms.net', 
 include_dml           => true,
  include_ddl           => true,

    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/

19. While connected as the Streams administrator in SQL*Plus at the destination 
database, create an apply process that applies all changes in the queue created 
in Step 10. For example:

CONNECT strmadmin/strmadminpw@stms.net



Performing a Database Maintenance Operation Using Streams

B-14 Oracle Streams Concepts and Administration

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',

streams_name       => 'apply',
queue_name         => 'strmadmin.streams_queue',
 include_dml      => true,
  include_ddl      => true,

    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/

20. Complete the steps in "Finishing the Database Maintenance Operation" on 
page B-28.

Performing a Database Maintenance Operation Using Streams
This section describes performing one of the following database maintenance 
operations on an Oracle Database 10g database:

� Migrating the database to a different operating system

� Migrating the database to a different character set

� Modifying database schema objects to support upgrades to user-created 
applications

� Applying an Oracle software patch

You can use Streams to achieve little or no downtime during one of these 
operations. During the operation, the source database is the existing database on 
which you are performing database maintenance. The destination database is the 
database that will replace the source database at the end of the operation.

Preparing for Upgrades to User-Created Applications
If you are upgrading user-created applications, then, typically, schema objects in the 
database change to support the upgraded applications. In Streams, row LCRs 
contain information about row changes that result from DML statements. A DML 
handler is a user procedure that processes row LCRs resulting from DML 
statements at a source database. A Streams apply process can pass row LCRs to a 
DML handler, and the DML handler can modify the row LCR to account for 
differences between a source database and a destination database.



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-15

The process for upgrading your user-created applications using Streams involves 
modifying and creating the schema objects at the destination database after 
instantiation. You can use one or more DML handlers at the destination database to 
process changes from the source database so that they apply to the modified 
schema objects correctly.

Before you begin the database maintenance operation, you should complete the 
following tasks to prepare your DML handlers:

� Learn about DML handlers. See "Event Processing Options with an Apply 
Process" on page 4-4.

� Determine the DML handlers you will need at your destination database. Your 
determination depends on the modifications to the schema objects required by 
your upgraded applications.

� Create the PL/SQL procedures that you will use for DML handlers during the 
database maintenance operation. See Oracle Streams Replication Administrator's 
Guide for information about creating the PL/SQL procedures.

Deciding Which Utility to Use for Instantiation
Before you begin the database maintenance operation, decide whether you want to 
use Export/Import utilities (Data Pump or original) or the Recovery Manager 
(RMAN) utility to instantiate the destination database during the operation. 
Consider the following factors when you make this decision:

� If you are migrating the database to a different operating system, then you must 
use Export/Import. The RMAN DUPLICATE command used for instantiation 
does not support migrating a database to a different operating system.

� If you are migrating the database to a character set, then you must use 
Export/Import. The RMAN DUPLICATE command used for instantiation does 
not support migrating a database to a different character set. 

� If RMAN is supported for the operation, then using RMAN for the instantiation 
may be faster than using Export/Import, especially if the database is large.

� Oracle Corporation recommends that you do not use RMAN for instantiation in 
an environment where distributed transactions are possible. Doing so may 
cause in-doubt transactions that must be corrected manually.



Performing a Database Maintenance Operation Using Streams

B-16 Oracle Streams Concepts and Administration

After you decide which utility you want to use for instantiation, complete the steps 
in the appropriate section:

� "Performing the Maintenance Operation Using Export/Import and Streams" on 
page B-16

� "Performing the Maintenance Operation Using RMAN and Streams" on 
page B-20

Performing the Maintenance Operation Using Export/Import and Streams
You may use Data Pump Export/Import or original Export/Import to instantiate 
the database during the database maintenance operation. Oracle Corporation 
recommends using Data Pump, and Data Pump may perform the instantiation 
faster than original Export/Import.

Complete the following steps to perform a maintenance operation using 
Export/Import and Oracle Streams:

1. Create an empty Oracle Database 10g database. This database will be the 
destination database during the maintenance operation. If you are migrating 
the database to a different operating system, then create the database on a 
computer system running this operating system. If you are migrating the 
database to a different character set, then create a database that uses the 
character set.

See the Oracle installation guide for your operating system if you need to install 
Oracle, and see Oracle Database Administrator's Guide for information about 
creating a database.

Make sure the destination database has a different global name than the source 
database. This example assumes that the global name of the source database is 
orcl.net and the global name of the destination database during the database 
maintenance operation is stms.net. The global name of the destination 
database is changed when the destination database replaces the source database 
at the end of the maintenance operation.

Note: The instructions in these sections assume that both the 
source database and the destination database are running Oracle 
Database 10g.



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-17

2. At the source database, make any database objects that were not supported by 
Streams in Oracle Database 10g read-only. See "Datatypes Captured" on 
page 2-8 and "Types of Changes Captured" on page 2-10 for information about 
unsupported objects.

3. At the source database, configure a Streams administrator. See "Configuring a 
Streams Administrator" on page 8-2 for instructions. This example assumes that 
the name of the Streams administrator at the source database is strmadmin. 
This Streams administrator will be copied automatically to the destination 
database during instantiation.

4. While connected as an administrative user in SQL*Plus at the source database, 
specify supplemental logging at the source database of primary keys or unique 
indexes (in the absence of primary keys) for all updates:

CONNECT SYSTEM/MANAGER@orcl.net

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA 
   (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

5. If you are upgrading user-created applications, then supplementally log any 
columns at the source database that will be involved in a DML handler at the 
destination database. These columns must be unconditionally logged at the 
source database. See Oracle Streams Replication Administrator's Guide for 
information about specifying unconditional supplemental log groups for these 
columns.

6. While connected as the Streams administrator in SQL*Plus at the source 
database, create a SYS.AnyData queue that will stage changes made to the 
source database during the maintenance operation. For example:

CONNECT strmadmin/strmadminpw@orcl.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

7.  While connected as the Streams administrator in SQL*Plus at the source 
database, configure a local capture process that will capture all supported 
changes made to the source database and stage these changes in the queue 
created in Step 6. For example:

CONNECT strmadmin/strmadminpw@orcl.net



Performing a Database Maintenance Operation Using Streams

B-18 Oracle Streams Concepts and Administration

BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type       => 'capture',
   streams_name       => 'capture',
   queue_name         => 'streams_queue',
   include_dml        => true,
   include_ddl        => true,
   include_tagged_lcr => true,
   source_database    => NULL);
END;
/

Do not start the capture process.

8. Instantiate the destination database using Oracle Data Pump or original 
Export/Import. See Oracle Streams Replication Administrator's Guide for 
instructions. In either case, make sure the following parameters are set to the 
appropriate values:

� Set the CONSISTENT export parameter to y.

� Set the STREAMS_CONFIGURATION import parameter to n.

� If you use original Export/Import, then set the STREAMS_INSTANTIATION 
import parameter to y. This parameter does not apply to Data Pump 
imports.

9. At the destination database, disable any imported jobs that modify data that 
will be replicated from the source database. Query the DBA_JOBS data 
dictionary view to list the jobs.

10. If you are applying a patch, then apply the patch now. Follow the instructions 
included with the patch.

11. While connected as the Streams administrator in SQL*Plus at the destination 
database, remove the imported SYS.AnyData queue. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(

 queue_name            => 'strmadmin.streams_queue',
    cascade                 => false,
 drop_unused_queue_table => true);
END;
/



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-19

12. While connected as the Streams administrator in SQL*Plus at the destination 
database, re-create the SYS.AnyData queue. This queue will stage changes 
propagated from the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

13. Configure your network and Oracle Net so that the source database can 
communicate with the destination database. See Oracle Net Services 
Administrator's Guide for instructions.

14. While connected as the Streams administrator in SQL*Plus at the source 
database, create a database link to the destination database. For example:

CONNECT strmadmin/strmadminpw@orcl.net

CREATE DATABASE LINK stms.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'stms.net';

15. While connected as the Streams administrator in SQL*Plus at the source 
database, create a propagation that propagates all changes from the source 
queue created in Step 5 to the destination queue created in Step 10. For 
example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(

streams_name            => 'orcl_to_stms',
source_queue_name       => 'strmadmin.streams_queue',
destination_queue_name  => 'strmadmin.streams_queue@stms.net', 
 include_dml           => true,
  include_ddl           => true,

    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/

16. While connected as the Streams administrator in SQL*Plus at the destination 
database, create an apply process that applies all changes in the queue created 
in Step 12. For example:

CONNECT strmadmin/strmadminpw@stms.net



Performing a Database Maintenance Operation Using Streams

B-20 Oracle Streams Concepts and Administration

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',

streams_name       => 'apply',
queue_name         => 'strmadmin.streams_queue',
 include_dml      => true,
  include_ddl      => true,

    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/

17. If you are upgrading user-created applications, then, at the destination 
database, complete the following steps:

a. Modify the schema objects in the database to support the upgraded 
user-applications.

b. Configure one or more DML handlers that modify row LCRs from the 
source database so that the apply process applies these row LCRs to the 
modified schema objects correctly. For example, if a column name was 
changed to support the upgraded user-created applications, then a DML 
handler should rename the column in a row LCR that involves the column.

See Oracle Streams Replication Administrator's Guide for information about 
configuring DML handlers.

18. Complete the steps in "Finishing the Database Maintenance Operation" on 
page B-28.

Performing the Maintenance Operation Using RMAN and Streams
You may use RMAN to instantiate the database during either of the following 
database maintenance operations:

� Modifying database schema objects to support upgrades to user-created 
applications

� Applying an Oracle software patch

However, if you are migrating the database to a different operating system or 
character set, then you must use Export/Import for instantiation.

See Also: "Performing the Maintenance Operation Using 
Export/Import and Streams" on page B-16 if you are migrating the 
database to a different operating system or character set



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-21

Complete the following steps to perform a database migration or apply a patch 
using RMAN and Oracle Streams:

1. Create an empty Oracle Database 10g database. This database will be the 
destination database during the database maintenance operation. Both the 
source database and the destination database must be Oracle Database 10g 
databases when you start the database maintenance operation.

See the Oracle installation guide for your operating system if you need to install 
Oracle, and see Oracle Database Administrator's Guide for information about 
creating a database.

Make sure the destination database has a different global name than the source 
database. This example assumes that the global name of the source database is 
orcl.net and the global name of the destination database during the database 
maintenance operation is stms.net. The global name of the destination 
database is changed when the destination database replaces the source database 
at the end of the maintenance operation.

2. At the source database, make any database objects that were not supported by 
Streams in Oracle Database 10g read-only. See "Datatypes Captured" on 
page 2-8 and "Types of Changes Captured" on page 2-10 for information about 
unsupported objects.

3. At the source database, configure a Streams administrator. See "Configuring a 
Streams Administrator" on page 8-2 for instructions. This example assumes that 
the name of the Streams administrator at the source database is strmadmin. 
This Streams administrator will be copied automatically to the destination 
database during instantiation.

4. While connected as an administrative user in SQL*Plus at the source database, 
specify supplemental logging at the source database of primary keys or unique 
indexes (in the absence of primary keys) for all updates:

CONNECT SYSTEM/MANAGER@orcl.net

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA 
   (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

5. If you are upgrading user-created applications, then supplementally log any 
columns at the source database that will be involved in a DML handler at the 
destination database. These columns must be unconditionally logged at the 
source database. See Oracle Streams Replication Administrator's Guide for 
information about specifying unconditional supplemental log groups for these 
columns.



Performing a Database Maintenance Operation Using Streams

B-22 Oracle Streams Concepts and Administration

6. While connected as the Streams administrator in SQL*Plus at the source 
database, create a SYS.AnyData queue that will stage changes made to the 
source database during the database maintenance operation. For example:

CONNECT strmadmin/strmadminpw@orcl.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

7. While connected as the Streams administrator in SQL*Plus at the source 
database, configure a local capture process that will capture all supported 
changes made to the source database and stage these changes in the queue 
created in Step 6. For example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type       => 'capture',
   streams_name       => 'capture',
   queue_name         => 'streams_queue',
   include_dml        => true,
   include_ddl        => true,
   include_tagged_lcr => true,
   source_database    => NULL);
END;
/

Do not start the capture process.

8. Instantiate the destination database using RMAN DUPLICATE command by 
completing the following steps. These steps provide a general outline for using 
RMAN to duplicate a database. See the Oracle Database Backup and Recovery 
Advanced User's Guide for detailed information about using RMAN.

a. Create a backup of the source database if one does not exist. RMAN 
requires a valid backup for duplication. In this example, create a backup of 
orcl.net if one does not exist.

b. While connected as an administrative user in SQL*Plus at the source 
database, determine the until SCN for the RMAN DUPLICATE command. 
For example:

CONNECT SYSTEM/MANAGER@orcl.net



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-23

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
  until_scn NUMBER;
BEGIN
  until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
      DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until 
SCN value is 748045. You will set the UNTIL SCN option to this value 
when you use RMAN to duplicate the database in Step e.

c. While connected as an administrative user in SQL*Plus at the source 
database, archive the current online redo log. For example:

CONNECT SYSTEM/MANAGER@orcl.net

ALTER SYSTEM ARCHIVE LOG CURRENT;

d. Prepare your environment for database duplication, which includes 
preparing the destination database as an auxiliary instance for duplication. 
See the Oracle Database Backup and Recovery Advanced User's Guide for 
instructions. 

e. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option 
to instantiate the source database at the destination database. The OPEN 
RESTRICTED option is required. This option enables a restricted session in 
the duplicate database by issuing the following SQL statement: ALTER 
SYSTEM ENABLE RESTRICTED SESSION. RMAN issues this statement 
immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. 
Use the until SCN determined in Step b for this clause. Archived redo logs 
must be available for the until SCN specified and for higher SCN values. 
Therefore, Step c archived the redo log containing the until SCN.

Make sure you use TO database_name in the DUPLICATE command to 
specify the name of the duplicate database. In this example, the duplicate 
database is stms.net. Therefore, the DUPLICATE command for this 
example includes TO stms.net.



Performing a Database Maintenance Operation Using Streams

B-24 Oracle Streams Concepts and Administration

The following is an example of an RMAN DUPLICATE command:

rman
RMAN> CONNECT TARGET SYS/change_on_install@orcl.net
RMAN> CONNECT AUXILIARY SYS/change_on_install@stms.net
RMAN> RUN
      { 
        SET UNTIL SCN 748045;
        ALLOCATE AUXILIARY CHANNEL mgdb DEVICE TYPE sbt; 
        DUPLICATE TARGET DATABASE TO mgdb 
        NOFILENAMECHECK
        OPEN RESTRICTED;
      }

f. While connected as an administrative user in SQL*Plus at the destination 
database, use the ALTER SYSTEM statement to disable the RESTRICTED 
SESSION:

CONNECT SYSTEM/MANAGER

ALTER SYSTEM DISABLE RESTRICTED SESSION;

9. At the destination database, connect as an administrator with SYSDBA privilege 
and run the following procedure:

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

See PL/SQL Packages and Types Reference for more information about the 
REMOVE_STREAMS_CONFIGURATION procedure.

10. At the destination database, disable any jobs that modify data that will be 
replicated from the source database. Query the DBA_JOBS data dictionary view 
to list the jobs.

11. While connected as an administrative user in SQL*Plus at the destination 
database, rename the database global name. After the RMAN DUPLICATE 
command, the destination database has the same global name as the source 
database. For example:

Attention: Make sure you are connected to the destination 
database, not the source database, when you run this procedure 
because it removes the local Streams configuration.



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-25

CONNECT SYSTEM/MANAGER

ALTER DATABASE RENAME GLOBAL_NAME TO stms.net;

12. Configure your network and Oracle Net so that the source database and 
destination databases can communicate with each other. See Oracle Net Services 
Administrator's Guide for instructions.

13. If you are applying a patch, then apply the patch now to the destination 
database. Follow the instructions included with the patch.

14. While connected as the Streams administrator in SQL*Plus at the destination 
database, create a database link to the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

CREATE DATABASE LINK orcl.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'orcl.net';

15. While connected as the Streams administrator in SQL*Plus at the destination 
database, set the instantiation SCN for the entire database and all of the 
database objects to the until SCN value determined in Step 8b. For example, if 
the until SCN value is 748045, then run the following procedure:

16. While connected as the Streams administrator in SQL*Plus at the destination 
database, set the instantiation SCN for the entire database and all of the 
database objects. The RMAN DUPLICATE command duplicates the database up 
to one less than the SCN value specified in the UNTIL SCN clause. Therefore, 
you should subtract one from the until SCN value that you specified when you 
ran the DUPLICATE command in Step 7e. In this example, the until SCN was set 
to 748045. Therefore, the instantiation SCN should be set to 748045 - 1, 
or 748044.

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
    source_database_name => 'orcl.net',
    instantiation_scn    => 748044,
    recursive            => true);
END;
/

17. While connected as the Streams administrator in SQL*Plus at the destination 
database, remove the imported SYS.AnyData queue. For example:



Performing a Database Maintenance Operation Using Streams

B-26 Oracle Streams Concepts and Administration

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(

 queue_name            => 'strmadmin.streams_queue',
    cascade                 => false,
 drop_unused_queue_table => true);
END;
/

18. While connected as the Streams administrator in SQL*Plus at the destination 
database, re-create the SYS.AnyData queue. This queue will stage changes 
propagated from the source database. For example:

CONNECT strmadmin/strmadminpw@stms.net

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

19. While connected as the Streams administrator in SQL*Plus at the source 
database, create a database link to the destination database. For example:

CONNECT strmadmin/strmadminpw@orcl.net

CREATE DATABASE LINK stms.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'stms.net';

20. While connected as the Streams administrator in SQL*Plus at the source 
database, create a propagation that propagates all changes from the source 
queue created in Step 6 to the destination queue created in Step 18. For 
example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(

streams_name            => 'orcl_to_stms',
source_queue_name       => 'strmadmin.streams_queue',
destination_queue_name  => 'strmadmin.streams_queue@stms.net', 
 include_dml           => true,
  include_ddl           => true,

    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/



Performing a Database Maintenance Operation Using Streams

Online Database Upgrade and Maintenance With Streams B-27

21. While connected as the Streams administrator in SQL*Plus at the destination 
database, create an apply process that applies all changes in the queue created 
in Step 18. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',

streams_name       => 'apply',
queue_name         => 'strmadmin.streams_queue',
 include_dml      => true,
  include_ddl      => true,

    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/

22. If you are upgrading user-created applications, then, at the destination 
database, complete the following steps:

a. Modify the schema objects in the database to support the upgraded 
user-applications.

b. Configure one or more DML handlers that modify row LCRs from the 
source database so that the apply process applies these row LCRs to the 
modified schema objects correctly. Row LCRs contain information about 
row changes that result from DML statements. For example, if a column 
name was changed to support the upgraded user-created applications, then 
a DML handler should rename the column in a row LCR that involves the 
column.

See Oracle Streams Replication Administrator's Guide for information about 
configuring DML handlers.

23. Complete the steps in "Finishing the Database Maintenance Operation" on 
page B-28.



Finishing the Database Maintenance Operation

B-28 Oracle Streams Concepts and Administration

Finishing the Database Maintenance Operation
Complete the following steps to finish the database maintenance operation:

1. While connected as the Streams administrator in SQL*Plus at the destination 
database, start the apply process. For example:

CONNECT strmadmin/strmadminpw@stms.net

BEGIN
  DBMS_APPLY_ADM.START_APPLY(
    apply_name  => 'apply');
END;
/

2. While connected as the Streams administrator in SQL*Plus at the source 
database, start the capture process. For example:

CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_CAPTURE_ADM.START_CAPTURE(
    capture_name  => 'capture');
END;
/

This step begins the process of replicating changes that were made to the source 
database during instantiation of the destination database.

3. Monitor the Streams environment until the apply process at the destination 
database has applied most of the changes from the source database. For 
example, if the name of the capture process is capture, and the name of the 
apply process is apply, then run the following query at the source database:

CONNECT strmadmin/strmadminpw@orcl.net

COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN LWM_MESSAGE_NUMBER HEADING 'Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.LWM_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_COORDINATOR@stms.net a
  WHERE CAPTURE_NAME = 'CAPTURE'
    AND APPLY_NAME   = 'APPLY';



Finishing the Database Maintenance Operation

Online Database Upgrade and Maintenance With Streams B-29

When the two SCN values returned by this query are nearly equal, most of the 
changes from the source database have been applied at the destination 
database, and you can move on to the next step. At this point in the process, the 
values returned by this query may never be equal because the source database 
still allows changes.

If this query returns no results, then make sure the Streams clients in the 
environment are enabled by querying the STATUS column in the DBA_CAPTURE 
view at the source database and the DBA_APPLY view at the destination 
database. You can check the status of the propagation by running the query in 
"Displaying the Schedule for a Propagation Job" on page 14-29. 

If a Streams client is disabled, then try restarting it. If a Streams client will not 
restart, then troubleshoot the environment using the information in Chapter 15, 
"Troubleshooting a Streams Environment".

4. While connected as the Streams administrator in SQL*Plus at the destination 
database, make sure there are no apply errors by running the following query:

CONNECT strmadmin/strmadminpw@stms.net

SELECT COUNT(*) FROM DBA_APPLY_ERROR;

If this query returns zero, then move on to the next step. If this query shows 
errors in the error queue, then resolve these errors before continuing. See 
"Managing Apply Errors" on page 11-32 for instructions.

5. Disconnect all applications and users from the source database.

6. While connected as an administrative user in SQL*Plus at the source database, 
restrict access to the database. For example:

CONNECT SYSTEM/MANAGER@orcl.net

ALTER SYSTEM ENABLE RESTRICTED SESSION;

7. While connected as an administrative user in SQL*Plus at the source database, 
repeat the query you ran in Step 3. When the two SCN values returned by the 
query are equal, all of the changes from the source database have been applied 
at the destination database, and you can move on to the next step.

8. While connected as the Streams administrator in SQL*Plus at the destination 
database, repeat the query you ran in Step 4. If this query returns zero, then 
move on to the next step. If this query shows errors in the error queue, then 
resolve these errors before continuing. See "Managing Apply Errors" on 
page 11-32 for instructions. 



Finishing the Database Maintenance Operation

B-30 Oracle Streams Concepts and Administration

9. Shut down the source database.

10. At the destination database, remove the Streams components that are no longer 
needed, including the SYS.AnyData queue, the apply process, supplemental 
logging specifications, and the Streams administrator. See the following 
sections for instructions:

� "Removing a SYS.AnyData Queue" on page 10-6

� "Dropping an Apply Process" on page 11-10

If you no longer need database supplemental logging, then connect as an 
administrative user in SQL*Plus at the destination database, and run the 
following statement to drop it:

CONNECT SYSTEM/MANAGER@stms.net

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA 
  (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

Also, the following statement drops a user named strmadmin:

DROP USER strmadmin CASCADE;

11. While connected as an administrative user in SQL*Plus at the destination 
database, change the global name of the database to match the source database. 
For example:

CONNECT SYSTEM/MANAGER@stms.net

ALTER DATABASE RENAME GLOBAL_NAME TO orcl.net;

12. At the destination database, enable any jobs that you disabled earlier.

13. Make the destination database available for applications and users. Redirect 
any applications and users that were connecting to the source database to the 
destination database. If necessary, reconfigure your network and Oracle Net so 
that systems that communicated with the source database now communicate 
with the destination database. See Oracle Net Services Administrator's Guide for 
instructions.



Index-1

Index
A
action contexts, 5-10

name-value pairs
adding, 12-10, 12-24, 12-26
altering, 12-8
removing, 12-11, 12-26

querying, 12-22
system-created rules, 6-50

ADD_GLOBAL_RULES procedure, 6-14
ADD_MESSAGE_RULE procedure, 10-27
ADD_PAIR member procedure, 12-8, 12-10, 12-24, 

12-26
ADD_RULE procedure, 5-8, 12-6
ADD_SCHEMA_PROPAGATION_RULES 

procedure, 6-18
ADD_SUBSCRIBER procedure, 10-3
ADD_SUBSET_PROPAGATION_RULES procedure

row migration, 6-27
ADD_SUBSET_RULES procedure, 6-12, 6-23

row migration, 6-27
ADD_TABLE_RULES procedure, 6-20
alert log

Oracle Streams entries, 15-27
ALTER_APPLY procedure

removing a rule set, 11-15
removing the message handler, 11-18
removing the precommit handler, 11-21
setting an apply user, 11-17
setting the message handler, 11-18
setting the precommit handler, 11-20
specifying a rule set, 11-11

ALTER_CAPTURE procedure
removing a rule set, 9-31
setting a capture user, 9-32
setting the first SCN, 9-34, 9-36
specifying a rule set, 9-27
specifying database link use, 9-37

ALTER_PROPAGATION procedure
removing the rule set, 10-18
specifying the rule set, 10-14

ALTER_PROPAGATION_SCHEDULE 
procedure, 10-12

ALTER_RULE procedure, 12-7
AnyData datatype

queues, 3-12, 10-20
creating, 10-2
dequeuing, 10-23
enqueuing, 10-20
monitoring, 14-22
removing, 10-6

wrapper for messages, 3-12, 10-20
application

upgrading
using Streams, B-14

applied SCN, 2-24, 14-17
apply forwarding, 3-8
apply handlers, 4-5
apply process, 4-1

apply forwarding, 3-8
apply handlers, 4-5

Java stored procedures, 4-11
apply servers, 4-14

states, 4-16



Index-2

apply user, 4-2
secure queues, 3-20
setting, 11-17

architecture, 4-14
automatic restart, 4-21
coordinator process, 4-14

states, 4-16
creating, 11-2
creation, 4-17
datatypes applied, 4-11
DDL handlers, 4-4
DML handlers, 4-4
dropping, 11-10
enqueuing events, 11-21

monitoring, 14-47
error handlers

creating, 11-25
monitoring, 14-36
setting, 11-30

error queue, 4-22
monitoring, 14-48, 14-50

events, 4-3
captured, 4-3
user-enqueued, 4-3

logical change records (LCRs), 4-4
managing, 11-1
message handlers, 4-4

monitoring, 14-37
removing, 11-18
setting, 11-18

monitoring, 14-32
apply handlers, 14-35
compatible tables, 14-74
latency, 14-39, 14-42
transactions, 14-41

non-LCR events, 4-7
options, 4-4
Oracle Real Application Clusters, 4-13
parallelism, 14-46
parameters, 4-19

commit_serialization, 4-20
disable_on_error, 4-21
disable_on_limit, 4-21
parallelism, 4-19

setting, 11-16
time_limit, 4-21
transaction_limit, 4-21

persistent status, 4-22
precommit handlers, 4-8

creating, 11-18
monitoring, 14-37
removing, 11-21
setting, 11-20

reader server, 4-14
states, 4-15

RESTRICTED SESSION, 4-12
row subsetting, 6-12

supplemental logging, 6-32
rule sets

removing, 11-15
specifying, 11-11

rules, 4-2, 6-2
adding, 11-12
removing, 11-14

specifying execution, 11-23
monitoring, 14-48

starting, 11-10
stopping, 11-10
trace files, 15-29
transformations

rule-based, 6-71
troubleshooting, 15-13

checking apply handlers, 15-17
checking event type, 15-15
checking status, 15-13
error queue, 15-18

AQ_TM_PROCESSES initialization parameter
Streams apply process, 15-17

ARCHIVELOG mode
capture process, 2-46, 8-11, 16-4

B
buffered queues, 3-16
BUILD procedure, 2-24, 2-34



Index-3

C
capture process, 2-1

applied SCN, 2-24, 14-17
architecture, 2-28
ARCHIVELOG mode, 2-46, 8-11, 16-4
automatic restart, 2-48
builder server, 2-29
capture user

secure queues, 3-20
setting, 9-32

captured events, 3-3
captured SCN, 2-24
changes captured, 2-10

DDL changes, 2-12
DML changes, 2-10
NOLOGGING keyword, 2-13
UNRECOVERABLE clause for 

SQL*Loader, 2-14
UNRECOVERABLE keyword, 2-13

checkpoints, 2-31
required checkpoint SCN, 2-46

creating, 9-2
creation, 2-32
datatypes captured, 2-8
DBID, 2-33, 9-3
downstream capture, 2-17

advantages, 2-21
creating, 9-2
database link, 2-22, 9-37
monitoring, 14-9
monitoring remote access, 14-5

dropping, 9-26
first SCN, 2-24

setting, 9-34, 9-36
global name, 2-33, 9-3
index-organized tables, 2-10
local capture, 2-17

advantages, 2-18
log transport services, 2-17
LogMiner, 2-31

multiple sessions, 2-31
LogMiner data dictionary, 2-34
managing, 9-1
maximum checkpoint SCN, 2-31, 2-37

monitoring, 14-6
applied SCN, 14-17
compatible tables, 14-74
downstream capture, 14-9
last redo entry, 14-15
latency, 14-18, 14-19
old log files, 14-13
registered log files, 14-11, 14-13
rule evaluations, 14-20

Oracle Real Application Clusters, 2-27
parameters, 2-47

disable_on_limit, 2-48
message_limit, 2-48
parallelism, 2-48
setting, 9-32
time_limit, 2-48

persistent status, 2-52
preparer servers, 2-29
preparing for, 8-11
reader server, 2-29
redo logs, 2-2

adding manually, 9-33
missing files, 15-4

required checkpoint SCN, 2-31
RESTRICTED SESSION, 2-26
rule evaluation, 2-49
rule sets

removing, 9-31
specifying, 9-27

rules, 2-7, 6-2
adding, 9-28
removing, 9-30

SGA_MAX_SIZE initialization parameter, 2-31
start SCN, 2-24
starting, 9-26
states, 2-30
stopping, 9-26
supplemental logging, 2-15

specifying, 9-33
SYS schema, 2-7, 2-10
SYSTEM schema, 2-7, 2-10
trace files, 15-28
transformations

rule-based, 6-67



Index-4

troubleshooting, 15-2
checking progress, 15-3
checking status, 15-2

captured SCN, 2-24
character sets

migrating
using Streams, B-14

COMPATIBLE initialization parameter, 8-6, 16-4
COMPATIBLE_10_1 function, 6-56
COMPATIBLE_9_2 function, 6-56
conditions

rules, 5-2
CREATE_APPLY procedure, 4-17, 11-2
CREATE_CAPTURE procedure, 2-32, 9-2, 9-5
CREATE_PROPAGATION procedure, 10-8
CREATE_RULE procedure, 12-4
CREATE_RULE_SET procedure, 12-3

D
database links

Oracle Streams, 8-11
database maintenance

using Streams, B-1
datatypes

applied, 4-11
captured, 2-8

DBA_APPLY view, 14-32, 14-34, 14-37, 14-38, 
14-44, 15-13, 15-15

DBA_APPLY_DML_HANDLERS view, 14-36
DBA_APPLY_ENQUEUE view, 14-47
DBA_APPLY_ERROR view, 14-48, 14-50, 14-54, 

14-55
DBA_APPLY_EXECUTE view, 14-48
DBA_APPLY_PARAMETERS view, 14-34
DBA_APPLY_PROGRESS view, 14-42
DBA_CAPTURE view, 14-7, 14-9, 14-11, 14-13, 

14-17, 15-2
DBA_CAPTURE_EXTRA_ATTRIBUTES 

view, 14-17
DBA_CAPTURE_PARAMETERS view, 14-16
DBA_EVALUATION_CONTEXT_TABLES 

view, 14-65
DBA_EVALUATION_CONTEXT_VARS 

view, 14-66

DBA_LOGMNR_PURGED_LOG view, 2-25, 2-46, 
14-13

DBA_PROPAGATION view, 14-27, 14-28, 14-29, 
14-31, 15-8, 15-9

DBA_QUEUE_SCHEDULES view, 14-29, 14-31, 
15-9

DBA_QUEUE_TABLES view, 14-22
DBA_QUEUES view, 14-22
DBA_REGISTERED_ARCHIVED_LOG 

view, 14-11, 14-13
DBA_RULE_SET_RULES view, 14-67, 14-68
DBA_RULE_SETS view, 14-65
DBA_RULES view, 14-67, 14-68
DBA_STREAMS_NEWLY_SUPPORTED 

view, 14-77
DBA_STREAMS_RULES view, 14-63, 15-19
DBA_STREAMS_TRANSFORM_FUNCTION 

view, 14-69
DBA_STREAMS_UNSUPPORTED view, 14-75
DBID (database identifier)

capture process, 2-33, 9-3
DBMS_APPLY_ADM package, 11-1
DBMS_CAPTURE_ADM package, 9-1
DBMS_PROPAGATION_ADM package, 10-1
DBMS_RULE package, 5-13, 17-1
DBMS_RULE_ADM package, 12-1, 12-2, 17-1
DBMS_STREAMS_ADM package, 6-7, 9-1, 10-1, 

11-1
apply process creation, 4-17
capture process creation, 2-32
creating a capture process, 9-2
creating a propagation, 10-8
creating an apply process, 11-2

DDL handlers, 4-4
DELETE_ALL_ERRORS procedure, 11-34
DELETE_ERROR procedure, 4-22, 11-33
DEQUEUE procedure, 10-23, 10-28
destination queue, 3-2
direct path load

capture processes, 2-14
directed networks, 3-7

apply forwarding, 3-8
queue forwarding, 3-8

DISABLE_DB_ACCESS procedure, 10-5



Index-5

DISABLE_PROPAGATION_SCHEDULE 
procedure, 10-18

DML handlers, 4-4
DROP_APPLY procedure, 11-10
DROP_CAPTURE procedure, 9-26
DROP_PROPAGATION procedure, 10-19
DROP_RULE procedure, 12-14
DROP_RULE_SET procedure, 12-14

E
ENABLE_DB_ACCESS procedure, 10-3
ENABLE_PROPAGATION_SCHEDULE 

procedure, 10-11
ENQUEUE procedure, 10-22, 10-27
error handlers

creating, 11-25
monitoring, 14-36
setting, 11-30
unsetting, 11-31

error queue, 4-22
apply process, 15-18
deleting errors, 11-33
executing errors, 11-32
monitoring, 14-48, 14-50

EVALUATE procedure, 5-13
evaluation contexts, 5-6

association with rule sets, 5-8
association with rules, 5-8
evaluation function, 5-9
object privileges

granting, 12-16
revoking, 12-17

system privileges
granting, 12-15
revoking, 12-17

user-created, 6-54, 6-63
variables, 5-7

event contexts
system-created rules, 6-50

events
apply process, 4-3
captured, 3-3
dequeue, 3-3
enqueue, 3-3

propagation, 3-5
user-enqueued, 3-3

EXECUTE member procedure, 11-28
EXECUTE_ALL_ERRORS procedure, 11-33
EXECUTE_ERROR procedure, 4-22, 11-32
explicit capture, 1-3
Export

Oracle Streams, 13-2

F
first SCN, 2-24

G
GET_COMMAND_TYPE member function, 11-28, 

14-52
GET_COMPATIBLE member function, 6-56
GET_DDL_TEXT member function, 14-52
GET_ERROR_MESSAGE function, 14-54, 14-55
GET_EXTRA_ATTRIBUTE member 

function, 14-52
GET_INFORMATION function, 11-28
GET_NEXT_HIT function, 5-13
GET_OBJECT_NAME member function, 11-28, 

12-19, 14-52
GET_OBJECT_OWNER member function, 12-19, 

14-52
GET_SOURCE_DATABASE_NAME member 

function, 14-52
GET_STREAMS_NAME function, 11-28
GET_VALUE member function

LCRs, 12-19
GET_VALUES member function, 11-28, 14-52
global name

capture process, 2-33, 9-3
GLOBAL_NAME view, 14-9, 15-8
GLOBAL_NAMES initialization parameter, 8-6, 

16-4
GRANT_ADMIN_PRIVILEGE procedure, 8-2
GRANT_OBJECT_PRIVILEGE procedure, 5-17
GRANT_REMOTE_ADMIN_ACCESS 

procedure, 9-9
GRANT_SYSTEM_PRIVILEGE procedure, 5-17



Index-6

H
high availability

Streams, 7-1
advantages, 7-3
apply, 7-11
best practices, 7-6
capture, 7-9
database links, 7-10
propagation, 7-11

I
implicit capture, 1-3
Import

Oracle Streams, 13-2
INCLUDE_EXTRA_ATTRIBUTE procedure, 2-6, 

9-38
index-organized tables

capture process, 2-10
initialization parameters

AQ_TM_PROCESSES
Streams apply process, 15-17

COMPATIBLE, 8-6
GLOBAL_NAMES, 8-6
JOB_QUEUE_PROCESSES, 8-6
LOG_ARCHIVE_DEST_n, 8-7
LOG_ARCHIVE_DEST_STATE_n, 8-7
OPEN_LINKS, 8-7
Oracle Streams, 8-6
PARALLEL_MAX_SERVERS, 8-7
PROCESSES, 8-8
REMOTE_ARCHIVE_ENABLE, 8-8
SESSIONS, 8-8
SGA_MAX_SIZE, 8-8
SHARED_POOL_SIZE, 8-8
STREAMS_POOL_SIZE, 3-16, 8-9
TIMED_STATISTICS, 8-10
UNDO_RETENTION, 8-10

instantiation
export/import

Data Pump and original, 2-16
in Streams, 2-15

interoperability
Streams, 14-77

IS_NULL_TAG member function, 14-52

J
job queue processes

propagation jobs, 3-17
JOB_QUEUE_PROCESSES initialization 

parameter, 8-6, 16-4
propagation, 15-10

L
LCRs. See logical change records
LOG_ARCHIVE_DEST_n initialization 

parameter, 8-7
LOG_ARCHIVE_DEST_STATE_n initialization 

parameter, 8-7
logical change records (LCRs), 2-2

apply process, 4-4
DDL LCRs, 2-5

rules, 6-22, 6-43
extra attributes, 2-6

managing, 9-38
monitoring, 14-17

getting compatibility information, 6-56
getting constraint, 11-28
getting information about, 12-19, 14-52
getting sender, 11-28
row LCRs, 2-3

getting list of column values, 11-28
rules, 6-15
setting list of column values, 11-28

XML schema, A-1
LogMiner

capture process, 2-31
multiple sessions, 2-31

M
maximum checkpoint SCN, 2-31, 2-37
message handlers, 4-4

monitoring, 14-37
messaging, 3-12, 10-20

AnyData queues, 10-20
dequeue, 10-25
enqueue, 10-25
messaging clients

managing, 10-25



Index-7

notifications
managing, 10-25

messaging client, 3-11
messaging client user

secure queues, 3-20
transformations

rule-based, 6-74
migrating

to different character set
using Streams, B-14

to different operating system
using Streams, B-14

monitoring
AnyData datatype queues, 14-22

event consumers, 14-24
viewing event contents, 14-25

apply process, 14-32
apply handlers, 14-35
compatible tables, 14-74
error handlers, 14-36
error queue, 14-48, 14-50
message handlers, 14-37

capture process, 14-6
applied SCN, 14-17
compatible tables, 14-74
latency, 14-18, 14-19
rule evaluations, 14-20

Oracle Streams, 14-1
performance, 14-79

propagation jobs, 14-27
propagations, 14-27
rule-based transformations, 14-69
rules, 14-56

N
new features, v-xxix
NOLOGGING mode

capture process, 2-13

O
OPEN_LINKS initialization parameter, 8-7
operating systems

migrating
using Streams, B-14

ORA-01291 error, 15-4
ORA-24093 error, 15-11
ORA-25224 error, 15-12
ORA-26678 error, 15-6
Oracle Enterprise Manager Console

Streams tool, 1-24
Oracle Real Application Clusters

interoperation with Oracle Streams, 2-27, 3-14, 
4-13

Oracle Streams
administrator

configuring, 8-2
monitoring, 14-4

alert log, 15-27
AnyData queues, 10-20
apply process, 4-1
capture process, 2-1
compatibility, 6-56, 14-74
data dictionary, 3-23, 4-18, 14-1
Data Pump, 2-16
database links, 8-11
database maintenance, B-1
directed networks, 3-7
example environments

single database, 16-1
Export utility, 2-16, 13-2
high availability, 7-1
Import utility, 2-16, 13-2
initialization parameters, 8-6, 16-4
instantiation, 2-15
interoperability, 14-77
logical change records (LCRs), 2-2

XML schema, A-1
LogMiner data dictionary, 2-34
messaging, 3-12, 10-20
messaging clients, 3-11
monitoring, 14-1



Index-8

network connectivity, 8-11
new features, v-xxix
overview, 1-2
packages, 1-22
preparing for, 8-1
propagation, 3-1

Oracle Real Application Clusters, 3-14
rules, 6-1

action context, 6-50
evaluation context, 6-11, 6-45
event context, 6-50
subset rules, 6-12, 6-23
system-created, 6-7

staging, 3-1
Oracle Real Application Clusters, 3-14

Streams data dictionary, 2-45
Streams pool, 3-16
Streams tool, 1-24
supplemental logging, 2-15
tags, 1-17
trace files, 15-27
transformations

rule-based, 6-63
troubleshooting, 15-1
upgrading online, B-3
user messages, 3-2

P
PARALLEL_MAX_SERVERS initialization 

parameter, 8-7
patches

applying
using Streams, B-14

precommit handlers, 4-8
creating, 11-18
monitoring, 14-37
removing, 11-21
setting, 11-20

privileges
Oracle Streams administrator, 8-2

monitoring, 14-4
rules, 5-17

PROCESSES initialization parameter, 8-8
propagation jobs, 3-17

altering, 10-12
disabling, 10-18
enabling, 10-11
job queue processes, 3-17
managing, 10-7
monitoring, 14-27
RESTRICTED SESSION, 3-19
scheduling, 3-18, 10-12
trace files, 15-28
troubleshooting, 15-7

checking status, 15-9
job queue processes, 15-10

unscheduling, 10-13
propagations, 3-1

architecture, 3-16
binary files, 3-11
buffered queues, 3-16
creating, 10-8
destination queue, 3-2
directed networks, 3-7
dropping, 10-19
ensured delivery, 3-6
managing, 10-7
monitoring, 14-27
queues, 3-5
rule sets

removing, 10-18
specifying, 10-14

rules, 3-5, 6-2
adding, 10-15
removing, 10-17

source queue, 3-2
transformations

rule-based, 6-69
troubleshooting, 15-7

checking queues, 15-8
security, 15-11



Index-9

Q
queue forwarding, 3-8
queues

AnyData, 3-12, 10-20
creating, 10-2
removing, 10-6

nontransactional, 3-22
secure, 3-19

disabling user access, 10-5
enabling user access, 10-3
users, 3-20

transactional, 3-22
typed, 3-12

R
RE$NV_LIST type, 5-13

ADD_PAIR member procedure, 12-8, 12-10, 
12-24, 12-26

REMOVE_PAIR member procedure, 12-8, 
12-11, 12-26, 12-27

redo logs
capture process, 2-2

re-enqueue
captured events, 16-1

REMOTE_ARCHIVE_ENABLE initialization 
parameter, 8-8

REMOVE_PAIR member procedure, 12-8, 12-11, 
12-26, 12-27

REMOVE_QUEUE procedure, 10-6
REMOVE_RULE procedure, 9-30, 10-17, 11-14, 

12-14
required checkpoint SCN, 2-31, 2-46
RESTRICTED SESSION system privilege

apply processes, 4-12
capture processes, 2-26
propagation jobs, 3-19

REVOKE_OBJECT_PRIVILEGE procedure, 5-17
REVOKE_SYSTEM_PRIVILEGE procedure, 5-17
row migration, 6-27
rule sets, 5-2

adding rules to, 12-6
creating, 12-3
dropping, 12-14

evaluation, 5-13
partial, 5-15

negative, 6-4
object privileges

granting, 12-16
revoking, 12-17

positive, 6-4
removing rules from, 12-14
system privileges

granting, 12-15
revoking, 12-17

rule-based transformations, 6-63
rules, 5-1

action contexts, 5-10
adding name-value pairs, 12-8, 12-10, 12-24, 

12-26
altering, 12-8
removing name-value pairs, 12-8, 12-11, 

12-26, 12-27
transformations, 6-63

ADD_RULE procedure, 5-8
altering, 12-7
apply process, 4-2, 6-2
capture process, 2-7, 6-2
components, 5-2
creating, 12-4
DBMS_RULE package, 5-13
DBMS_RULE_ADM package, 12-1
dropping, 12-14
EVALUATE procedure, 5-13
evaluation, 5-13

capture process, 2-49
iterators, 5-13
partial, 5-15

evaluation contexts, 5-6
evaluation function, 5-9
user-created, 6-63
variables, 5-7

event context, 5-13
example applications, 17-1
explicit variables, 5-7
implicit variables, 5-7
iterative results, 5-13
managing, 12-2
MAYBE rules, 5-13



Index-10

maybe_rules, 5-13
monitoring, 14-56
object privileges

granting, 12-16
revoking, 12-17

partial evaluation, 5-15
privileges, 5-17

managing, 12-15
propagations, 3-5, 6-2
rule conditions, 5-2, 6-20, 6-23

complex, 6-58
explicit variables, 5-7
finding patterns in, 14-68
implicit variables, 5-7
Streams compatibility, 6-56
types of operations, 6-55
undefined variables, 6-61
using NOT, 6-59
variables, 6-15

rule_hits, 5-13
simple rules, 5-4
subset, 6-23

querying for action context of, 12-22
querying for names of, 12-22

system privileges
granting, 12-15
revoking, 12-17

system-created, 6-1, 6-7
action context, 6-50
and_condition parameter, 6-44
DDL rules, 6-22, 6-43
DML rules, 6-15
evaluation context, 6-11, 6-45
event context, 6-50
global, 6-14
modifying, 12-13
row migration, 6-27
schema, 6-18
STREAMS$EVALUATION_CONTEXT, 6-11, 

6-45
subset, 6-12, 6-23
table, 6-20

troubleshooting, 15-18
TRUE rules, 5-13

user-created, 6-54
variables, 5-7

S
SCHEDULE_PROPAGATION procedure, 10-12
secure queues, 3-19

disabling user access, 10-5
enabling user access, 10-3
propagation, 15-11
Streams clients

users, 3-20
SESSIONS initialization parameter, 8-8
SET_DML_HANDLER procedure, 4-6

setting an error handler, 11-30
unsetting an error handler, 11-31

SET_ENQUEUE_DESTINATION procedure, 11-21
SET_EXECUTE procedure, 11-23
SET_MESSAGE_NOTIFICATION 

procedure, 10-28
SET_PARAMETER procedure

apply process, 11-16
capture process, 9-32

SET_RULE_TRANSFORM_FUNCTION 
procedure, 12-18

SET_UP_QUEUE procedure, 10-2
SET_VALUE member procedure

LCRs, 12-19
SET_VALUES member procedure, 11-28
SGA_MAX_SIZE initialization parameter, 2-31, 8-8
SHARED_POOL_SIZE initialization parameter, 8-8
source queue, 3-2
SQL*Loader

capture processes, 2-14
staging, 3-1

architecture, 3-16
buffered queues, 3-16
events, 3-3
management, 10-1
secure queues, 3-19

disabling user access, 10-5
enabling user access, 10-3

start SCN, 2-24
START_APPLY procedure, 11-10
START_CAPTURE procedure, 9-26



Index-11

Statspack
Oracle Streams, 14-79

STOP_APPLY procedure, 11-10
STOP_CAPTURE procedure, 9-26
Streams data dictionary, 2-45, 3-23, 4-18
Streams pool, 3-16
Streams. See Oracle Streams
Streams tool, 1-24
STREAMS$_EVALUATION_CONTEXT, 6-11, 6-45
STREAMS$_TRANSFORM_FUNCTION, 6-64
STREAMS_POOL_SIZE initialization 

parameter, 3-16, 8-9
supplemental logging

capture process, 2-15
row subsetting, 6-32
specifying, 9-33

SYS.AnyData. See Also AnyData datatype
system change numbers (SCN)

applied SCN for a capture process, 2-24, 14-17
captured SCN for a capture process, 2-24
first SCN for a capture process, 2-24
maximum checkpoint SCN for a capture 

process, 2-31
required checkpoint SCN for a capture 

process, 2-31
start SCN for a capture process, 2-24

T
tags, 1-17
TIMED_STATISTICS initialization parameter, 8-10
trace files

Oracle Streams, 15-27
transformations

Oracle Streams, 6-63
rule-based, 6-63

action context, 6-63
altering, 12-25
apply process, 6-71
capture process, 6-67
creating, 12-19
errors during apply, 6-73
errors during capture, 6-69

errors during dequeue, 6-75
errors during propagation, 6-71
managing, 12-18
messaging client, 6-74
multiple, 6-75
propagations, 6-69
removing, 12-27
STREAMS$_TRANSFORM_

FUNCTION, 6-64
troubleshooting, 15-26

troubleshooting
apply process, 15-13

checking apply handlers, 15-17
checking event type, 15-15
checking status, 15-13
error queue, 15-18

capture process, 15-2
checking progress, 15-3
checking status, 15-2

Oracle Streams, 15-1
propagation jobs, 15-7

checking status, 15-9
job queue processes, 15-10

propagations, 15-7
checking queues, 15-8
security, 15-11

rule-based transformations, 15-26
rules, 15-18

U
UNDO_RETENTION initialization parameter, 8-10
UNRECOVERABLE clause

SQL*Loader
capture process, 2-14

UNRECOVERABLE keyword
capture process, 2-13

UNSCHEDULE_PROPAGATION 
procedure, 10-13

upgrading
online using Streams, B-3

user messages, 3-2



Index-12

V
V$ARCHIVED_LOG view, 2-24
V$RULE view, 14-74
V$RULE_SET view, 14-71, 14-72
V$RULE_SET_AGGREGATE_STATS view, 14-70
V$SESSION view, 14-8, 14-38, 14-39, 14-40, 14-44
V$STREAMS_APPLY_COORDINATOR 

view, 4-16, 14-40, 14-41, 14-42
V$STREAMS_APPLY_READER view, 4-15, 14-38, 

14-39
V$STREAMS_APPLY_SERVER view, 4-16, 14-44, 

14-46
V$STREAMS_CAPTURE view, 2-30, 14-8, 14-15, 

14-18, 14-19, 14-20, 15-3

X
XML Schema

for LCRs, A-1


	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What's New in Oracle Streams?
	Streams Performance Improvements
	Streams Configuration and Manageability Enhancements
	Streams Replication Enhancements
	Streams Messaging Enhancements
	Rules Interface Enhancements

	Part I� Streams Concepts
	1 Introduction to Streams
	Overview of Streams
	What Can Streams Do?
	Capture Events at a Database
	Stage Events in a Queue
	Propagate Events From One Queue To Another
	Consume Events
	Other Capabilities of Streams

	What Are the Uses of Streams?
	Message Queuing
	Data Replication
	Event Management and Notification
	Data Warehouse Loading
	Data Protection


	Overview of the Capture Process
	Overview of Event Staging and Propagation
	Overview of Directed Networks
	Explicit Enqueue and Dequeue of Events

	Overview of the Apply Process
	Overview of the Messaging Client
	Overview of Automatic Conflict Detection and Resolution
	Overview of Rules
	Overview of Transformations
	Overview of Streams Tags
	Overview of Heterogeneous Information Sharing
	Overview of Oracle to Non-Oracle Data Sharing
	Overview of Non-Oracle to Oracle Data Sharing

	Example Streams Configurations
	Administration Tools for a Streams Environment
	Oracle-Supplied PL/SQL Packages
	DBMS_STREAMS_ADM Package
	DBMS_CAPTURE_ADM Package
	DBMS_PROPAGATION_ADM Package
	DBMS_APPLY_ADM Package
	DBMS_STREAMS_MESSAGING Package
	DBMS_RULE_ADM Package
	DBMS_RULE Package
	DBMS_STREAMS Package
	DBMS_STREAMS_AUTH Package
	DBMS_STREAMS_TABLESPACE_ADM

	Streams Data Dictionary Views
	Streams Tool in the Oracle Enterprise Manager Console


	2 Streams Capture Process
	The Redo Log and a Capture Process
	Logical Change Records (LCRs)
	Row LCRs
	DDL LCRs
	Extra Information in LCRs

	Capture Process Rules
	Datatypes Captured
	Types of Changes Captured
	Types of DML Changes Captured
	Types of DDL Changes Ignored by a Capture Process
	Other Types of Changes Ignored by a Capture Process
	NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
	UNRECOVERABLE Clause for Direct Path Loads

	Supplemental Logging in a Streams Environment
	Instantiation in a Streams Environment
	Local Capture and Downstream Capture
	Local Capture
	The Source Database Performs All Change Capture Actions
	Advantages of Local Capture

	Downstream Capture
	The Downstream Database Performs Most Change Capture Actions
	Advantages of Downstream Capture
	Optional Database Link from the Downstream Database to the Source Database
	Operational Requirements for Downstream Capture


	SCN Values Relating to a Capture Process
	Captured SCN and Applied SCN
	First SCN and Start SCN
	First SCN
	Start SCN
	Start SCN Must Be Greater Than or Equal to First SCN
	A Start SCN Setting That Is Prior to Preparation for Instantiation


	Streams Capture Processes and RESTRICTED SESSION
	Streams Capture Processes and Oracle Real Application Clusters
	Capture Process Architecture
	Capture Process Components
	Capture Process States
	Multiple Capture Processes in a Single Database
	Capture Process Checkpoints
	Capture Process Creation
	The LogMiner Data Dictionary for a Capture Process
	Scenario Illustrating Why a Capture Process Needs a LogMiner Data Dictionary
	Multiple Capture Processes for the Same Source Database

	First SCN and Start SCN Specifications During Capture Process Creation
	Non-NULL First SCN and NULL Start SCN for a Local or Downstream Capture Process
	Non-NULL First SCN and Non-NULL Start SCN for a Local or Downstream Capture Process
	NULL First SCN and Non-NULL Start SCN for a Local Capture Process
	NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process
	NULL First SCN and NULL Start SCN


	A New First SCN Value and Purged LogMiner Dictionary Information
	The Streams Data Dictionary
	ARCHIVELOG Mode and a Capture Process
	Capture Process Parameters
	Capture Process Parallelism
	Automatic Restart of a Capture Process

	Capture Process Rule Evaluation
	Persistent Capture Process Status Upon Database Restart


	3 Streams Staging and Propagation
	Introduction to Event Staging and Propagation
	Captured and User-Enqueued Events
	Event Propagation Between Queues
	Propagation Rules
	Ensured Event Delivery
	Directed Networks
	Queue Forwarding and Apply Forwarding
	Advantages of Queue Forwarding
	Advantages of Apply Forwarding


	Binary File Propagation

	Messaging Clients
	SYS.AnyData Queues and User Messages
	SYS.AnyData Queues and Oracle Real Application Clusters
	Streams Staging and Propagation Architecture
	Buffered Queues
	Propagation Jobs
	Propagation Scheduling and Streams Propagations
	Propagation Jobs and RESTRICTED SESSION

	Secure Queues
	Secure Queues and the SET_UP_QUEUE Procedure
	Secure Queues and Streams Clients

	Transactional and Nontransactional Queues
	Streams Data Dictionary for Propagations


	4 Streams Apply Process
	Introduction to the Apply Process
	Apply Process Rules
	Event Processing with an Apply Process
	Processing Captured and User-Enqueued Events with an Apply Process
	Event Processing Options with an Apply Process
	LCR Event Processing
	Apply the LCR Event Directly
	Call a User Procedure to Process the LCR Event

	Non-LCR User Message Processing
	Audit Commit Information for Events Using Precommit Handlers
	Commit Directives for Captured Events
	Transaction Boundaries for User-Enqueued Events

	Summary of Event Processing Options
	Considerations for Apply Handlers


	Datatypes Applied
	Streams Apply Processes and RESTRICTED SESSION
	Streams Apply Processes and Oracle Real Application Clusters
	Apply Process Architecture
	Apply Process Components
	Reader Server States
	Coordinator Process States
	Apply Server States

	Apply Process Creation
	Streams Data Dictionary for an Apply Process
	Apply Process Parameters
	Apply Process Parallelism
	Commit Serialization
	Automatic Restart of an Apply Process
	Stop or Continue on Error

	Persistent Apply Process Status Upon Database Restart
	The Error Queue


	5 Rules
	The Components of a Rule
	Rule Condition
	Variables in Rule Conditions
	Simple Rule Conditions

	Rule Evaluation Context
	Explicit and Implicit Variables
	Evaluation Context Association with Rule Sets and Rules
	Evaluation Function

	Rule Action Context

	Rule Set Evaluation
	Rule Set Evaluation Process
	Partial Evaluation

	Database Objects and Privileges Related to Rules
	Privileges for Creating Database Objects Related to Rules
	Privileges for Altering Database Objects Related to Rules
	Privileges for Dropping Database Objects Related to Rules
	Privileges for Placing Rules in a Rule Set
	Privileges for Evaluating a Rule Set
	Privileges for Using an Evaluation Context


	6 How Rules Are Used In Streams
	Overview of How Rules Are Used In Streams
	Rule Sets and Rule Evaluation of Events
	Streams Client With No Rule Set
	Streams Client With a Positive Rule Set Only
	Streams Client With a Negative Rule Set Only
	Streams Client With Both a Positive and a Negative Rule Set
	Streams Client With One or More Empty Rule Sets
	Summary of Rule Sets and Streams Client Behavior

	System-Created Rules
	Global Rules
	Global Rules Example
	System-Created Global Rules Avoid Empty Rule Conditions Automatically

	Schema Rules
	Schema Rule Example

	Table Rules
	Table Rules Example
	Apply All Row LCRs Related to the hr.locations Table
	Apply All DDL LCRs Related to the hr.countries Table
	Summary of Rules


	Subset Rules
	Subset Rules Example
	Row Migration and Subset Rules
	Row Migration During Capture
	Row Migration During Propagation
	Row Migration During Apply
	Row Migration During Dequeue by a Messaging Client

	Subset Rules and Supplemental Logging
	Guidelines for Using Subset Rules
	Use Capture Subset Rules When All Destinations Only Need a Subset of Changes
	Use Propagation or Apply Subset Rules When Some Destinations Need Subsets
	Make Sure the Table Where Subset Row LCRs Are Applied Is a Subset Table

	Restrictions for Subset Rules

	Message Rules
	Message Rule Example
	Dequeue User-Enqueued Events If region Is EUROPE and priority Is 1
	Send User-Enqueued Events to a Message Handler If region Is AMERICAS and priority Is 2
	Summary of Rules


	System-Created Rules and Negative Rule Sets
	Negative Rule Set Example
	Apply All DML Changes to the Tables in the hr Schema
	Discard Row LCRs Containing DML Changes to the hr.job_history Table
	Summary of Rules


	System-Created Rules with Added User-Defined Conditions

	Evaluation Contexts Used in Streams
	Evaluation Context for Global, Schema, Table, and Subset Rules
	Evaluation Contexts for Message Rules

	Streams and Event Contexts
	Streams and Action Contexts
	Purposes of Action Contexts in Streams
	Internal LCR Transformations in Subset Rules
	User-Defined Rule-Based Transformations
	Execution Directives for Events During Apply
	Enqueue Destinations for Events During Apply

	Make Sure Only One Rule Can Evaluate to TRUE for a Particular Rule Condition
	Action Context Considerations for Schema and Global Rules

	User-Created Rules, Rule Sets, and Evaluation Contexts
	User-Created Rules and Rule Sets
	Rule Conditions for Specific Types of Operations
	Rule Conditions That Instruct Streams Clients to Discard Unsupported LCRs
	Complex Rule Conditions
	Rule Conditions Using the NOT Logical Condition to Exclude Objects
	Rule Conditions Using the LIKE Condition

	Rule Conditions with Undefined Variables That Evaluate to NULL
	Examples of Undefined Variables That Result in TRUE Rules for Streams Clients
	Examples of Undefined Variables That Result in FALSE Rules for Streams Clients

	Avoid Using :dml and :ddl Variables as Function Parameters in Rule Conditions

	User-Created Evaluation Contexts

	Rule-Based Transformations
	Rule-Based Transformations and a Capture Process
	Rule-Based Transformation Errors During Capture

	Rule-Based Transformations and a Propagation
	Rule-Based Transformation Errors During Propagation

	Rule-Based Transformations and an Apply Process
	Rule-Based Transformation Errors During Apply Process Dequeue
	Apply Errors on Transformed Events

	Rule-Based Transformations and a Messaging Client
	Rule-Based Transformation Errors During Messaging Client Dequeue

	Multiple Rule-Based Transformations


	7 Streams High Availability Environments
	Overview of Streams High Availability Environments
	Protection from Failures
	Streams Replica Database
	Updates at the Replica Database
	Heterogeneous Platform Support
	Multiple Character Sets
	Mining the Online Redo Logs To Minimize Latency
	Greater Than Ten Copies Of Data
	Fast Failover
	Single Capture for Multiple Destinations

	When Not to Use Streams
	Application Maintained Copies

	Best Practices for Streams High Availability Environments
	Configuring Streams for High Availability
	Directly Connecting Every Database to Every Other Database
	Creating Hub and Spoke Configurations
	Configuring Oracle Real Application Clusters with Streams
	Local or Downstream Capture with Streams

	Recovering from Failures
	Automatic Capture Process Restart After a Failover
	Database Links Reestablishment After a Failover
	Propagation Job Restart After a Failover
	Automatic Apply Process Restart After a Failover




	Part II� Streams Administration
	8 Preparing a Streams Environment
	Configuring a Streams Administrator
	Setting Initialization Parameters Relevant to Streams
	Preparing a Database to Run a Streams Capture Process
	Configuring Network Connectivity and Database Links

	9 Managing a Capture Process
	Creating a Capture Process
	Creating a Local Capture Process
	Example of Creating a Local Capture Process Using DBMS_STREAMS_ADM
	Example of Creating a Local Capture Process Using DBMS_CAPTURE_ADM

	Creating a Downstream Capture Process That Assigns Log Files Implicitly
	Preparing to Copy Redo Log Files for Downstream Capture
	Creating a Downstream Capture Process That Uses a Database Link
	Creating a Downstream Capture Process That Does Not Use a Database Link

	Creating a Downstream Capture Process That Assigns Log Files Explicitly
	Creating a Local Capture Process with Non-NULL Start SCN

	Starting, Stopping, and Dropping a Capture Process
	Starting a Capture Process
	Stopping a Capture Process
	Dropping a Capture Process

	Managing the Rule Set for a Capture Process
	Specifying a Rule Set for a Capture Process
	Specifying a Positive Rule Set for a Capture Process
	Specifying a Negative Rule Set for a Capture Process

	Adding Rules to a Rule Set for a Capture Process
	Adding Rules to the Positive Rule Set for a Capture Process
	Adding Rules to the Negative Rule Set for a Capture Process

	Removing a Rule from a Rule Set for a Capture Process
	Removing a Rule Set for a Capture Process

	Setting a Capture Process Parameter
	Setting the Capture User for a Capture Process
	Specifying Supplemental Logging at a Source Database
	Adding an Archived Redo Log File to a Capture Process Explicitly
	Setting SCN Values for an Existing Capture Process
	Setting the First SCN for an Existing Capture Process
	Setting the Start SCN for an Existing Capture Process

	Specifying Whether Downstream Capture Uses a Database Link
	Managing Extra Attributes in Captured LCRs
	Including Extra Attributes in Captured LCRs
	Excluding Extra Attributes from Captured LCRs


	10 Managing Staging and Propagation
	Managing SYS.AnyData Queues
	Creating a SYS.AnyData Queue
	Enabling a User to Perform Operations on a Secure Queue
	Disabling a User from Performing Operations on a Secure Queue
	Removing a SYS.AnyData Queue

	Managing Streams Propagations and Propagation Jobs
	Creating a Propagation
	Example of Creating a Propagation Using DBMS_STREAMS_ADM
	Example of Creating a Propagation Using DBMS_PROPAGATION_ADM

	Enabling a Propagation Job
	Scheduling a Propagation Job
	Altering the Schedule of a Propagation Job
	Unscheduling a Propagation Job
	Specifying the Rule Set for a Propagation
	Specifying a Positive Rule Set for a Propagation
	Specifying a Negative Rule Set for a Propagation
	Adding Rules to the Rule Set for a Propagation
	Adding Rules to the Positive Rule Set for a Propagation
	Adding Rules to the Negative Rule Set for a Propagation

	Removing a Rule from the Rule Set for a Propagation
	Removing a Rule Set for a Propagation
	Disabling a Propagation Job
	Dropping a Propagation

	Managing a Streams Messaging Environment
	Wrapping User Message Payloads in a SYS.AnyData Wrapper and Enqueuing Them
	Dequeuing a Payload That Is Wrapped in a SYS.AnyData Payload
	Configuring a Messaging Client and Message Notification


	11 Managing an Apply Process
	Creating, Starting, Stopping, and Dropping an Apply Process
	Creating an Apply Process
	Examples of Creating an Apply Process Using DBMS_STREAMS_ADM
	Example That Creates an Apply Process for Captured Events Using DBMS_STREAMS_ADM
	Example That Creates an Apply Process for User-Enqueued Events Using DBMS_STREAMS_ADM

	Examples of Creating an Apply Process Using DBMS_APPLY_ADM
	Example That Creates Apply Process for Captured Events Using DBMS_APPLY_ADM
	Example That Creates an Apply Process for User-Enqueued Events Using DBMS_APPLY_ADM


	Starting an Apply Process
	Stopping an Apply Process
	Dropping an Apply Process

	Managing the Rule Set for an Apply Process
	Specifying the Rule Set for an Apply Process
	Specifying a Positive Rule Set for an Apply Process
	Specifying a Negative Rule Set for an Apply Process

	Adding Rules to the Rule Set for an Apply Process
	Adding Rules to the Positive Rule Set for an Apply Process
	Adding Rules to the Negative Rule Set for an Apply Process

	Removing a Rule from the Rule Set for an Apply Process
	Removing a Rule Set for an Apply Process

	Setting an Apply Process Parameter
	Setting the Apply User for an Apply Process
	Managing the Message Handler for an Apply Process
	Setting the Message Handler for an Apply Process
	Removing the Message Handler for an Apply Process

	Managing the Precommit Handler for an Apply Process
	Creating a Precommit Handler for an Apply Process
	Setting the Precommit Handler for an Apply Process
	Removing the Precommit Handler for an Apply Process

	Specifying Event Enqueues by Apply Processes
	Setting the Destination Queue for Events That Satisfy a Rule
	Removing the Destination Queue Setting for a Rule

	Specifying Execute Directives for Apply Processes
	Specifying That Events That Satisfy a Rule Are Not Executed
	Specifying That Events That Satisfy a Rule Are Executed

	Managing an Error Handler
	Creating an Error Handler
	Setting an Error Handler
	Unsetting an Error Handler

	Managing Apply Errors
	Retrying Apply Error Transactions
	Retrying a Specific Apply Error Transaction
	Retrying All Error Transactions for an Apply Process

	Deleting Apply Error Transactions
	Deleting a Specific Apply Error Transaction
	Deleting All Error Transactions for an Apply Process



	12 Managing Rules and Rule-Based Transformations
	Managing Rule Sets and Rules
	Creating a Rule Set
	Creating a Rule
	Creating a Rule Without an Action Context
	Creating a Rule With an Action Context

	Adding a Rule to a Rule Set
	Altering a Rule
	Changing a Rule's Condition
	Modifying a Name-Value Pair in a Rule's Action Context
	Adding a Name-Value Pair to a Rule's Action Context
	Removing a Name-Value Pair from a Rule's Action Context

	Modifying System-Created Rules
	Removing a Rule from a Rule Set
	Dropping a Rule
	Dropping a Rule Set

	Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
	Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules
	Granting Object Privileges on an Evaluation Context, Rule Set, or Rule
	Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules
	Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

	Managing Rule-Based Transformations
	Creating a Rule-Based Transformation
	Altering a Rule-Based Transformation
	Removing a Rule-Based Transformation


	13 Other Streams Management Tasks
	Performing Full Database Export/Import in a Streams Environment
	Removing a Streams Configuration

	14 Monitoring a Streams Environment
	Summary of Streams Static Data Dictionary Views
	Summary of Streams Dynamic Performance Views
	Monitoring Streams Administrators and Other Streams Users
	Listing Local Streams Administrators
	Listing Users Who Allow Access to Remote Streams Administrators

	Monitoring a Streams Capture Process
	Displaying the Queue, Rule Sets, and Status of Each Capture Process
	Displaying General Information About Each Capture Process
	Displaying Information About Each Downstream Capture Process
	Displaying the Registered Redo Log Files for Each Capture Process
	Displaying the Redo Log Files That Will Never Be Needed by Any Capture Process
	Displaying SCN Values for Each Redo Log File Used by a Capture Process
	Displaying the Last Archived Redo Entry Available to Each Capture Process
	Listing the Parameter Settings for Each Capture Process
	Viewing the Extra Attributes Captured by Each Capture Process
	Determining the Applied SCN for All Capture Processes in a Database
	Determining Redo Log Scanning Latency for Each Capture Process
	Determining Event Enqueuing Latency for Each Capture Process
	Displaying Information About Rule Evaluations for Each Capture Process

	Monitoring a SYS.AnyData Queue and Messaging
	Displaying the SYS.AnyData Queues in a Database
	Viewing the Messaging Clients in a Database
	Viewing Message Notifications
	Determining the Consumer of Each User-Enqueued Event in a Queue
	Viewing the Contents of User-Enqueued Events in a Queue

	Monitoring Streams Propagations and Propagation Jobs
	Determining the Source Queue and Destination Queue for Each Propagation
	Determining the Rule Sets for Each Propagation
	Displaying the Schedule for a Propagation Job
	Determining the Total Number of Events and Bytes Propagated by Each Propagation

	Monitoring a Streams Apply Process
	Determining the Queue, Rule Sets, and Status for Each Apply Process
	Displaying General Information About Each Apply Process
	Listing the Parameter Settings for Each Apply Process
	Displaying Information About Apply Handlers
	Displaying All of the Error Handlers for Local Apply
	Displaying the Message Handler for Each Apply Process
	Displaying the Precommit Handler for Each Apply Process

	Displaying Information About the Reader Server for Each Apply Process
	Determining Capture to Dequeue Latency for an Event
	Displaying General Information About Each Coordinator Process
	Displaying Information About Transactions Received and Applied
	Determining the Capture to Apply Latency for an Event for Each Apply Process
	Example V$STREAMS_APPLY_COORDINATOR Query for Latency
	Example DBA_APPLY_PROGRESS Query for Latency

	Displaying Information About the Apply Servers for Each Apply Process
	Displaying Effective Apply Parallelism for an Apply Process
	Viewing Rules That Specify a Destination Queue On Apply
	Viewing Rules That Specify No Execution On Apply
	Checking for Apply Errors
	Displaying Detailed Information About Apply Errors

	Monitoring Rules and Rule-Based Transformations
	Displaying All Rules Used by All Streams Clients
	Displaying the Streams Rules Used by a Specific Streams Client
	Determining the Rules in the Positive Rule Set for a Streams Client
	Determining the Rules in the Negative Rule Set for a Streams Client

	Displaying the Current Condition for a Rule
	Displaying Rule Conditions for Streams Rules That Have Been Modified
	Displaying the Evaluation Context for Each Rule Set
	Displaying Information About the Tables Used by an Evaluation Context
	Displaying Information About the Variables Used in an Evaluation Context
	Displaying All of the Rules in a Rule Set
	Displaying the Condition for Each Rule in a Rule Set
	Listing Each Rule that Contains a Specified Pattern in Its Condition
	Displaying Rule-Based Transformations
	Displaying Aggregate Statistics for All Rule Set Evaluations
	Displaying General Information About Rule Set Evaluations
	Determining the Resources Used by Evaluation of Each Rule Set
	Displaying Evaluation Statistics for a Rule

	Monitoring Compatibility in a Streams Environment
	Listing the Database Objects That Are Not Compatible With Streams
	Listing the Database Objects That Have Become Compatible With Streams Recently

	Monitoring Streams Performance Using Statspack

	15 Troubleshooting a Streams Environment
	Troubleshooting Capture Problems
	Is the Capture Process Enabled?
	Is the Capture Process Current?
	Are Required Redo Log Files Missing?
	Is a Downstream Capture Process Waiting for Redo Log Files?
	Are You Trying to Configure Downstream Capture Using DBMS_STREAMS_ADM?
	Are More Actions Required for Downstream Capture without a Database Link?

	Troubleshooting Propagation Problems
	Does the Propagation Use the Correct Source and Destination Queue?
	Is the Propagation Job Used by a Propagation Enabled?
	Are There Enough Job Queue Processes?
	Is Security Configured Properly for the SYS.AnyData Queue?
	ORA-24093 AQ Agent not granted privileges of database user
	ORA-25224 Sender name must be specified for enqueue into secure queues


	Troubleshooting Apply Problems
	Is the Apply Process Enabled?
	Is the Apply Process Current?
	Does the Apply Process Apply Captured Events or User-Enqueued Events?
	Is the Apply Process Queue Receiving the Events to Apply?
	Is a Custom Apply Handler Specified?
	Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?
	Are There Any Apply Errors in the Error Queue?

	Troubleshooting Problems with Rules and Rule-Based Transformations
	Are Rules Configured Properly for the Streams Client?
	Checking for Schema and Global Rules
	Checking for Table Rules
	Checking for Subset Rules
	Checking for Message Rules
	Resolving Problems with Rules

	Are the Rule-Based Transformations Configured Properly?

	Checking the Trace Files and Alert Log for Problems
	Does a Capture Process Trace File Contain Messages About Capture Problems?
	Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?
	Does an Apply Process Trace File Contain Messages About Apply Problems?



	Part III� Example Environments and Applications
	16 Single Database Capture and Apply�Example
	Overview of the Single Database Capture and Apply Example
	Prerequisites

	17 Rule-Based Application Example
	Overview of the Rule-Based Application


	Part IV� Appendixes
	A XML Schema for LCRs
	Definition of the XML Schema for LCRs

	B Online Database Upgrade and Maintenance With Streams
	Overview of Using Streams in the Database Maintenance Process
	Performing a Database Version Upgrade Using Streams
	Performing a Database Version Upgrade Using Streams and Original Export/Import
	Performing a Database Version Upgrade Using Streams and RMAN

	Performing a Database Maintenance Operation Using Streams
	Preparing for Upgrades to User-Created Applications
	Deciding Which Utility to Use for Instantiation
	Performing the Maintenance Operation Using Export/Import and Streams
	Performing the Maintenance Operation Using RMAN and Streams

	Finishing the Database Maintenance Operation


	Index

