ORACLE

Oracle® Database
Globalization Support Guide

10g Release 1 (10.1)
Part No. B10749-01

December 2003

Oracle Database Globalization Support Guide, 10g Release 1 (10.1)
Part No. B10749-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.
Primary Author: Cathy Baird

Contributors: Dan Chiba, Winson Chu, Claire Ho, Gary Hua, Simon Law, Geoff Lee, Peter Linsley,
Qianrong Ma, Keni Matsuda, Meghna Mehta, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute,
Ying Wu, Peter Wallack, Chao Wang, Huaging Wang, Simon Wong, Michael Yau, Jianping Yang, Qin Yu,
Tim Yu, Weiran Zhang, Yan Zhu

Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle8, Oracle8i, Oracle9i, SQL*Plus, PL/SQL,
Pro*C/C++, and Pro*COBOL are trademarks or registered trademarks of Oracle Corporation. Other
names may be trademarks of their respective owners.

Contents

SENA US YOUT COMIMEBNTES oo ettt e et et e e e ee e e et e e et e e seseeeseeeeeseseeens XV
o S - o3 = P Xvii
What's New in Globalization SUPPOIT 2 ... XXVii

1 Overview of Globalization Support

Globalization SUPPOIt AFCRITECTUIEoo.oiuiiiieeeeee e 1-2
(o Tor=1 LI BT U= W] o T 5. 1=] 1 o T S 1-2
Architecture to Support Multilingual Applications.........cccccovvieieiineieicee e 1-3
Using Unicode in a Multilingual Database.............cccciiiiiiiiiiiiiie e 1-5

Globalization SUPPOIt FEATUIES.........oiiiiiece bbbttt 1-5
(=T o B E=To [T B] o] o L0 o AP PPV P OV ROPRRPRPN 1-6
IR a1 Te] 5 18] o] o o] i ST 1-7
Date and TimMe FOIMALScccviiiiie ettt sttt se e re e snenee e es 1-7
Monetary and NUMEIIC FOIMALS......c.ccoiiiiieiiieieieee sttt sr et esne s re e e 1-7
CAlBNAAIS FEALUIE ..ottt bbb bt e bbbt s et et be b et e sbeneas 1-8
LINQUISTIC SOTTING. ...ttt bbbt bbbt 1-8
(1T 1= Tod (T g T=1 S]] o] o [0] o AP RS 1-8
CRAraCIEr SEMANTICSeviieiie ettt bbb b b et e et st et et e bt et e sbesbesbeneas 1-8
Customization of Locale and Calendar Data...........cc.ccocvviviierenenie e 1-9
L8]] oo Lo [T U] o] o o] o OSSR 1-9

Choosing a Character Set

Character SEt ENCOAINGcoviiiiieiiieiete ettt ettt sr et r et sr et sb et eb e ene e 2-2
What is an Encoded CharacCter SEU?..........ccoviiriiiieieneenee e 2-2
Which Characters Are ENCOOBAY.........coiiiiiiece e 2-3
What Characters Does a Character SEt SUPPOIT?........ccoeireiineiiieinee e 2-5
How are Characters ENCOAEA?..........ccoiiiiiiie et 2-9
Naming Convention for Oracle Character SetS...........ccccovivveiv i 2-11

LeNGN SEMEANTICS ...t bbb et et bt 2-12

Choosing an Oracle Database Character Set ..o 2-14
Current and Future Language REQUITEMENTS..........ccoiiiriiiiinene e 2-16
Client Operating System and Application Compatibilityccoooiiiiiiiii 2-16
Character Set Conversion Between Clients and the Server.........ccooviiiiiiniinviieens 2-17
Performance Implications of Choosing a Database Character Setcccocooeeiiiinnne. 2-17
Restrictions on Database Character SEtS ..o 2-18
Choosing a National CharaCter SEt.........cccvierireieiccee e ees 2-19
Summary of SUPPOIted DatatyPES.......cccoiirerierieieie e 2-19

Changing the Character Set After Database Creation ..o 2-20

Monolingual Database SCENAIIO........cccvviiiiieriree e e e ere e eneas 2-20
Character Set Conversion in a Monolingual SCenario..........c.ccocevveveiiene s, 2-21

Multilingual Database SCENAITOS.cciiiiiriiiieiee e 2-23
Restricted MuUltilingual SUPPOIT........cooiiiieieec e 2-24
Unrestricted Multilingual SUPPOTT..........coiiiiiiii s 2-25

Setting Up a Globalization Support Environment

SEHING NLS ParamELErS.....cc.voiiiie ettt et e et e st e st e sbe e b e saeentesaeesreanees 3-2
Choosing a Locale with the NLS_LANG Environment Variableccccoooiiniiiiinens 3-5
Specifying the Value 0f NLS _LANG ... 3-7
Overriding Language and Territory SPecifiCations..........ccccoverininiieneneeeees e 3-8
LOCAIE VAITANTS ...ttt ettt bbb et e et e en e e s e e s e e st ebesbeseesbeneas 3-9
Should the NLS_LANG Setting Match the Database Character Set?...........cccccecevevvevennnn, 3-10
NLS Database PAFQMETEIScuiiiiiirieiiitiie sttt bbb bbb et e et ebesbesbesne s 3-11
NLS Data DICtIONAIY VIBWSc..cuiiiiiieiiiieiinieisieses ettt 3-11
NLS Dynamic Performance VIBWS.........ccueieueieieeeeiesiese e seste e seessesie e ssesesseessessassessessens 3-11
OCINISGELINTO() FUNCLIONc.viiiiiece ettt sre s 3-12
Language and Territory PArameters.ttt 3-12

NLS_LANGUAGE........ci i 3-12

NLS TERRITORY ..ottt ettt ettt ettt st e be s be s be st et et e st e b e st e e ensebeeresaeabearas 3-15
Date and Time PArameterscccceviiieie ettt sttt e e eneere s e snesrenrenes 3-20
(D13 o] 1 g T L £ TSSO PPI 3-20
THMIE FOIMIALS.oiciicice ettt e et e st e et e e be et e abeeebeeaeestesaeesteeseesteeseesraens 3-24
(O 1 [=Ta o - gl 1= T 111 L0] o =TSSR 3-27
(O 1= gl F= Vi o T T L £ S RS 3-27
NLS CALENDAR ...ttt ettt st ettt st st e sttt e st e e e eteetesaeebeatas 3-30
NUMEriC and LISt PAramMEterscccocvieiiieccieeee ettt resnesrenne s 3-31
N[0T g LT ol o] T USSP 3-31
NLS NUMERIC CHARACTERS ..ottt ettt sttt sttt ve s 3-32
NLS_LIST SEPARATOR ...ttt sttt sttt te st sttt st e e sa e esae e enaanesreanesnenes 3-33
MONELANY PAIAIMELEISoiiiiiii ittt e e s e e be e asbeebe e asbeenbeenrbe s 3-33
CUITENCY FOMMALS ..ottt ettt sre s 3-34
NLS _CURRENCY ...ttt ettt te sttt e et e e ense e aneaneereaneaneneas 3-34
NLS ISO _CURRENC Y ..ottt sttt sttt st et eeneebaeteabeateenas 3-35
NLS DUAL CURRENCY ...ttt ettt ettt sttt e e etaetesaeabearas 3-37
(O] =Tod [0] o] o To it B 0] gt 1 1 T=T8 =L U1 o SR RSSTS PSSR 3-39
NLS MONETARY_CHARACTERS ..ottt sttt re e 3-40
NLS CREDIT .ottt ettt be et et e b e et e s be st e s be st e st et e st e s ensebeebesbeebearas 3-40
INLS DEBIT oietiiiiieeiet ettt s e e et et e st e b et et e st e e e e e e st en s e neaneaneerennennenes 3-40
(I g [o UL 1] ol Yo il ooV U =] (=] SR 3-41
INLS SORT ...ttt ettt ettt ettt reete b e e beebe et e ebesbe et e s beste st enbesbesseneebeebesbeebeatas 3-41
I T O Y | OSSP 3-42
Character Set CoONVErsioN PAramMeterc.ccveiiiieiiiiece ettt 3-43
NLS NCHAR CONVY _EXCP ...ttt ettt sttt e et avaeve b v aras 3-43
[T aTo Lo T =T o T A oS 3-44
NLS LENGTH_SEMANTICS. ..ottt sttt st baete e ve e 3-44

Datetime Datatypes and Time Zone Support

Overview of Datetime and Interval Datatypes and Time Zone SUPpPOrtccccccevneenenene. 4-2
Datetime and INterval DatatyPeS.........ccoviriiiiirieiriee ettt 4-2
(D=] gL = = o 1S 4-3
INTEIVAL DATATYPES ...ttt bbb bbb ettt besb b b 4-12
Datetime and Interval Arithmetic and COMPAriSONScccccoiieiinirinenineneeee e 4-14

vi

Datetime and Interval ArithmMELICcocuviiiiii e 4-14

Datetime COMPATISONScuiiiiiiitiietiiet ettt bbbttt bbb 4-15
Explicit Conversion of Datetime DatatyPes........cccovivvirierieiirinresesese e e e sees 4-16
Datetime SQL FUNCLIONScoiii ettt e st et et e ensesaeeneesreannas 4-16
Datetime and Time Zone Parameters and Environment Variables...........ccococooiiiiiiiinine 4-18
Datetime FOrmat PAramMELersc.cociiiiiiiriiisiese et 4-18
Time Zone ENVIroNmMent Variables ... 4-19
Daylight Saving Time SeSSION PArametercccoeoiirieniineiseesieesiee e 4-20
ChooSiNg @ TIME ZONE FIlEocv i renre s 4-20
Setting the Database TiME ZONEccciveiiiieicceee ettt sra e sre s 4-23
Setting the SESSION TIME ZONEccoiiiiii bbb 4-24
Converting Time Zones With the AT TIME ZONE ClauSec..cccovvrevereneisieeeseee e 4-25
Support for Daylight SAVING TIME ..o 4-26
Examples: The Effect of Daylight Saving Time on Datetime Calculations 4-26

Linguistic Sorting and String Searching

Overview of Oracle’s Sorting Capabilities ... 5-2
LR aTo =T 1= 1o £ P 5-2
USING LINQUISTIC SOMS.....iiiiiiiiiicice ettt ettt e se e ste e e steasaesteeaestaeeenreens 5-3
MonNoliNGUAl LINQUISTIC SOMTS.....c..ciiiiiieicieiicie ettt 5-3
Multilingual LINQUISTIC SOMSccuiiiiieiiceese et sne s 5-4
MuUltilinQUal SOFtING LEVEIS.......ccvei ettt 5-5
LINQUISTIC SOMT FEATUIESoviiiiiiiitiiet itttk bttt 5-7
BASE LELLEIS ... e 5-7
Lol lo] =1 o] Ll @ o P - Tod (= PSS 5-7
CoNtracting CRATACTEIS ..ottt 5-8
SN T=T gL [T o @1 g T Lo Tox (= 5-8
CoNteXt-SENSITIVE CRAFACTETSciiiiiiii et 5-8
CanoniCal EQUIVAIENCEooiiiicc s 5-9
ReVErse SECONAAIY SOMTINGviiiviieieieiceee et e e e e ere e e nesrenrs 5-10
Character Rearrangement for Thai and Laotian Charactersccccccevvvievvcccin e, 5-10
SPPECTAI LBTEETS.eetiiecteeet ettt b et b et b bbbt bt bt r e n e ene e 5-10
Special CombINAtION LELIEISccvcv i 5-10
SPECial UPPEICASE LEILEIS ...ttt bbbt 5-11
SPECIal LOWEICASE LETLEIS.c.eiviieiieciiietestee ettt ene e 5-11

Case-Insensitive and Accent-Insensitive LiNQUIStiC SOIMScccoccvveiivicccccccceece e, 5-11

Examples of Case-Insensitive and Accent-Insensitive SOrSccocvevererencieinccccenee 5-14
Specifying a Case-Insensitive or Accent-INSensitive SOrt..........cccoceveverevcieeiesin e 5-15
LinQUISTIC SOMt EXAMPIES ..ottt 5-17
USING LINQUISTIC TNOEXESoiiiiiiiitiieti ettt ettt 5-19
Linguistic Indexes for Multiple LangUAaQEScccoervereirieie e e 5-20
Requirements for Using LINQUISTIC INAEXESccueiiiiiiiiiie e e 5-20
Searching LINQUISTIC STIINGS. ..ottt 5-22
SQL Regular Expressions in a Multilingual ENVIironment..........ccccoovivieneiercneiesie s 5-22
Character Range '[X-y]” in Regular EXPreSSiONS. ... 5-23
Collation Element Delimiter '[. .]" in Regular EXPressions...........ccoeoveinennensenseneennens 5-23
Character Class '[: :]' in Regular EXPreSSiONS..........ccooviviirieieninieseseseseseeseeeeseseesesessesnens 5-24
Equivalence Class '[= =]" in Regular EXPressions........cccoiiiiiiinene e 5-24
Examples: Regular EXPreSSIONS.........ciiiiiiiiiieireeiseee sttt 5-24

Supporting Multilingual Databases with Unicode

OVEIrVIEW OF UNICOUE ...ttt sttt be st sttt 6-2
WAL IS UNICOOR? ...ttt sb et bbbkt e et ne et b b e sb s e b 6-2
SUPPIEMENTANY CRAFACTEIS.......iiiiieeiee ettt sb bbb 6-3
UNICOAE ENCOTINGS. ...ttt ettt b bbbt bbbt 6-3
(O] = Tod [SHSISTUT o] oLo] o ol (o] 10T o Too Lo L= 2SS 6-5
Implementing a Unicode Solution in the Database............cccooiiiiiiiiiiiinccee 6-6
Enabling Multilingual Support with Unicode Databases.............cccoeineiineinennenseneeee 6-7
Enabling Multilingual Support with Unicode Datatypes..........ccccvrevirieriereeieerisiesesesesennens 6-8
How to Choose Between a Unicode Database and a Unicode Datatype Solution............ 6-10
Comparing Unicode Character Sets for Database and Datatype Solutions....................... 6-12
UNICOAE CASE STUAIES. ... cuiiiiiiitiieie ettt ettt se bbbt e et e b e 6-15
Designing Database Schemas to Support Multiple Languages........ccocooeeirieniinencnenen 6-17
Specifying Column Lengths for Multilingual Data..............c.cccoeiiiiniiniieeeseeee 6-18
Storing Data in Multiple LANQUAGES.........coveiveiiieiiisie s snens 6-18
Storing Documents in Multiple Languages in LOB Datatypesc.ccccooeverieiieinieniennens 6-20
Creating Indexes for Searching Multilingual Document Contents..........ccccoceeverveneenen 6-21

Programming with Unicode

Overview of Programming With UNiCOTE............ccoiiiiiiiiiieee e 7-2

Vii

viii

Database Access Product Stack and UNICOE...........ccuoovvuiiiiiiii it 7-2

SQL and PL/SQL Programming With UNICOEcccoiiiiiiiiiiiii e 7-4
SQL NCHAR DALALYIES ...cveeeeiieeieiieesiesieesieseesieeseesteeseesseessesseeseesseeseesseessessesssessesssesssessesssesseenes 7-5
Implicit Datatype Conversion Between NCHAR and Other Datatypescccceorienennns 7-7
Exception Handling for Data Loss During Datatype CONVersioN...........cccoeovveieneniiennennas 7-7
Rules for Implicit Datatype CONVEISION..........ccvciviiieeiri e siese e re e sre e s 7-8
SQL Functions for UNicode DAtatYPescoerveieieiiieinienestcsie st 7-9
Other SQL FUNCHIONS ..ottt ettt s b et st sttt s e neenennas 7-11
(0 1] ToloTo [oI]] gV N I =T = SR 7-11
Using the UTL_FILE Package with NCHAR Dataccccccooviiiiiieiisecc e 7-12

OCI Programming With UNICOOE............ccoiiiiiiiiiicc e 7-13
OCIENnvNIsCreate() Function for Unicode Programmingccccocvevveeveneneneseeineiesesnnnns 7-14
OCI Unicode COaE CONVEISIONciuiiiiriiiiinieiiesieieie ettt sttt st sr bt se et se e ebe e 7-15
When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OClcccccceveiivvveieenene, 7-18
Binding and Defining SQL CHAR Datatypes in OCIccccoovvvnineiineneieseeeeese s 7-19
Binding and Defining SQL NCHAR Datatypes in OClccocoviiineiineieieeeeseeeeiee 7-20
Binding and Defining CLOB and NCLOB Unicode Data in OClc.ccccocecvneineicnennnn. 7-21

Pro*C/C++ Programming With UNICOOE.........ccccoeieiciiecccese e 7-22
Pro*C/C++ Data Conversion iN UNICOOEccooiiiiiiiieiiiene e 7-22
Using the VARCHAR Datatype in Pro*C/CH ... 7-23
Using the NVARCHAR Datatype in Pro*C/CH+ ... 7-24
Using the UVARCHAR Datatype in Pro*C/CH ..o 7-24

JDBC Programming With UNICOTEcccoiiiiiiiiiiiii e 7-25
Binding and Defining Java Strings to SQL CHAR Datatypes.........ccccocevvrerereeeeieniennsnnnns 7-26
Binding and Defining Java Strings to SQL NCHAR Datatypes...........ccoceoeieieeiininienenennn. 7-27
Using the SQL NCHAR Datatypes Without Changing the Codeccccccvviiniiiieenen. 7-28
Data ConVErsioN iN JDBC ...ttt 7-29
Using oracle.sql.CHAR in Oracle ODJECt TYPESccviiririiiieie e 7-31
Restrictions on Accessing SQL CHAR Data With JDBCcccccoiiiiennineeeeee e 7-34

ODBC and OLE DB Programming With UNICOdec..ccoviiviiiivienine e 7-37
Unicode-Enabled Drivers in ODBC and OLE DB...........ccocoiiiiiiiinie e 7-37
OCI Dependency iN UNICOOEc.oovciiiiiieirieiiteisie ettt 7-37
ODBC and OLE DB Code Conversion in UNICOAEccoeirrirriinniineieseiesie e 7-38
ODBC UNICOOE DALALYPIESccvirviiieitiitesie sttt ettt sb bt et ebe e 7-40
OLE DB UNICOUE DATALYPESeveveeeierieiisieiisieiesieeste ettt ettt see e snes s sne e sne e b eneseene e 7-40

AADI O A CCESS ...ttt ettt ettt et e e e e e e e e e e b e e e e s et e e e i b et e e e s e b r b e e e e e e abe e e e e e abbreeeeeaare 7-41

XML Programming With UNICOOEccoiriiiiiiiiiiiee e 7-41
Writing an XML File in Unicode With JaVa...........cccooveviiiiiiiiinic e 7-42
Reading an XML File in Unicode With Java............cccocoviiiiii e 7-43
Parsing an XML Stream in Unicode With JaVa...........c.cccviiniiniiiiniieeesees 7-44

Oracle Globalization Development Kit

Overview of the Oracle Globalization Development Kit.........ccccocoiiiiiniiieiieeese 8-2
Designing a Global Internet APPLICAtIONc.ccvoviiiiii e 8-2
Deploying a Monolingual Internet APpliCation ... 8-3
Deploying a Multilingual Internet APPLCAtiONcccoiiiiiiiinir s 8-5
Developing a Global Internet APPlICatioN...........ccov i 8-7
LoCale DEterMINALIONcoiiiiiiiie bbb ettt ettt be b b e 8-8
LOCAIE AWVAIENESScveiiietieieeie ettt sttt sttt ettt b ettt e b e ebe s besbesb e be st et e st e s e seeneabeabesbeereneees 8-9
Localizing the CONTENT ..o e ere e 8-10
Getting Started with the Globalization Development Kit..........ccocooiiiiiiiiiiiiiiee 8-10
GDK Application Framework fOr J2EE ... 8-12
Making the GDK Framework Available to J2EE Applications.........cccccoceveveveircieniesinennn, 8-15
Integrating Locale Sources into the GDK FrameworkKccccovveieiiive i 8-16
Getting the User Locale From the GDK FrameworkK...........ccocccieiieineinennseee e 8-17
Implementing Locale Awareness Using the GDK Localizer.........cc.ccocvvvveveieveiecvsinsininnns 8-19
Defining the Supported Application Locales in the GDK ..o, 8-20
Handling Non-ASCII Input and Output in the GDK Framework............ccccoccoviiicnnennas 8-21
Managing Localized Content in the GDK.........cccccieiieiicicieic e 8-24
GDK JAVA AP ..ottt ettt ettt s b s etk b et b n bttt nnenen 8-26
Oracle Locale Information in the GDK ... 8-27
Oracle Locale Mapping in the GDK ... sne s 8-28
Oracle Character Set Conversion (JDK 1.4 and Later) inthe GDKccccccovvevvvicieenne, 8-29
Oracle Date, Number, and Monetary Formats in the GDK...........ccccoooeiiniieiniiicneiee 8-30
Oracle Binary and Linguistic Sorts in the GDK ..o 8-31
Oracle Language and Character Set Detection in the GDKcccocvvviviviie v, 8-32
Oracle Translated Locale and Time Zone Names in the GDK.........ccccoeiiiiniiiiiiiieie 8-34
Using the GDK for E-Mail Programs.........ccoccceiiieiesiese st 8-35
The GDK Application Configuration File ... 8-36
1OCAIE-CRAISET-TMAD ...ttt ettt nb et b et eb et r et eb e en e 8-37

10

PAGE-CRAISEL ...ttt bbb bbb ettt er e 8-38

APPHCALION-TOCAIES ...ttt 8-38
10CAIE-AETErMIUNE-TUIE ..ot e 8-39
10CAIE-PArAMETEI-NAIME ..ottt bbb ettt b e be b 8-40
MESSAGE-DUNAIES ...ttt et 8-41
UET-FEWETTE-TUIE ..ottt sttt st r e nne 8-42
Example: GDK Application Configuration File ... 8-43
GDK for Java Supplied Packages and ClIasSeS..........ccveiiiiiieiinenineisesese e 8-44
OFACIEILBNLICSA ... b e ae e 8-45
(o] Tod LT I R o 1= AP UO TSSO PR PSPPI 8-45
OFACIEILBN.SEIVIEE ...ttt b et sbe e 8-45
OFACIEILBNEEXE. . .veeicee bbbttt et b bbbt b e b b e b 8-45
OFACIEILBN.UTHL ... bbbttt sb e 8-46
GDK for PL/SQL SUPPHIEd PaCKAGES.cccceriiiiriciirieiesieiesiee ettt 8-46
DK EFTON IMBSSAJES ... e vveiieiiee it eeesieeseesiee e staestestees e sseesesseenseaseesteaneesaeaneesaeesaesteesaesseensensaensensennes 8-47

SQL and PL/SQL Programming in a Global Environment

Locale-Dependent SQL Functions with Optional NLS Parametersccccocevevveeveivnivsnsennn, 9-2
Default Values for NLS Parameters in SQL FUNCLIONS..........cccccoovveviiieii e 9-3
Specifying NLS Parameters in SQL FUNCLIONS ..ot 9-3
Unacceptable NLS Parameters in SQL FUNCLIONSccooviiieienenee e 9-5

Other Locale-Dependent SQL FUNCLIONSccooiiiiiiiiinese st 9-5
The CONVERT FUNCHION ..ottt sttt sttt sne bt e 9-6
SQL Functions for Different Length SEMantics........ccocooiiviiiiiiiinin e 9-6
LIKE Conditions for Different Length Semantics...........cccocoviiiiiiiicic v, 9-8
Character Set SQL FUNCLIONS.........ooci it 9-8
THe NLSSORT FUNCHION. ...c.ciiiiiiiiiceei e bbbttt 9-9

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment........ 9-13
SQL Date FOrMAt IMASKSc.oiuiiiiiiiiiie ettt ene e 9-13
Calculating Week NUMBETSoov it 9-13
SQL NUMETIC FOrMAat MASKS.........ecieiieieiice sttt sre s 9-14
Loading External BFILE Data into LOB COIUMNSccoiiiiiiiiieineee e 9-14

OCI Programming in a Global Environment
USING the OCT NLS FUNCLIONSoiiiiiitiieiiieiieisiesi ettt 10-2

11

12

Specifying Character SEtS iN OCI e 10-2

Getting Locale INformation iN OCH ..ot 10-3
Mapping Locale Information Between Oracle and Other Standards.............ccccceeveivvivinnnns 10-4
Manipulating StrinNgS IN OCHcoiiiiie et 10-4
Classifying Characters iN OCl. ..ot 10-7
Converting Character Sets iN OCH ... 10-7
OCI MEeSSAQING FUNCHIONS.......coiiiiieiiicie sttt e et este et esteebeaaeesaeaneesreaneas 10-8
IMSGEN UTHTITY ..ottt 10-8
Character Set Migration
Overview of Character Set MIgration...........cccoviiiiiiiiii s 11-2
DAta TIUNCALIONoviitiiiitiicie ettt ettt ettt se et sb et b e sbe e be e ebe e et e 11-2
Character Set CONVEISION ISSUEBScouiiiieieiieiieic ettt sttt be e sne s 11-4
Changing the Database Character Set of an Existing Databasecccccoceveveieiiiiiininnnne 11-7
Migrating Character Data Using a Full Export and Import........ccccocevevevereicccicece e, 11-8
Migrating a Character Set Using the CSALTER SCHPLcccooiiininiineieeeeeeesee 11-8
Migrating Character Data Using the CSALTER Script and Selective Imports................ 11-10
Migrating to NCHAR DatatyPeScccviueruirieieieeieisie e se ettt ste e sae e aessesessesnsssesses 11-10
Migrating Version 8 NCHAR Columns to Oracle9i and Later...........ccccccevvvvevevvenieennenn, 11-11
Changing the National CharacCter SEt...........cccviiriiiiiiii s 11-12
Migrating CHAR Columns to NCHAR COIUMNScoviviviiiivcsene e 11-12
Tasks to Recover Database Schema After Character Set Migrationcccccceeviviieiennns 11-16
Character Set Scanner Utilities
The Language and Character Set File SCANNEer...........coooviieii e 12-2
Syntax of the LCSSCAN COMMANGcociiiiiiiiiiiiniiisiesesee et 12-2
Examples: Using the LCSSCAN COMMANGccccocoviiiiviinnnie e seeseese e 12-4
Getting Command-Line Help for the Language and Character Set File Scanner............. 12-4
Supported Languages and Character SEtS...........coiiiiiineeee e 12-5
LCSCCAN EITOFr IMESSAQESveveeeesiieieeriesieesiesteeeesseassesseessessesssessesssesssssseessesseessesseessesesssesnees 12-5
The Database CharaCter SEt SCANNENccooviiiiiiee et 12-6
Conversion Tests 0N CharaCter DAtaccoeviieirinieiiiese e 12-7
Scan Modes in the Database Character Set SCANNETccovoviiiiiinnee s 12-7
FUTT DAADASE SCAN......c.oiiiiiitiitiie ettt bbb bbb bbbttt et beebe b e b e 12-7
L0 TT g Tox- 1 o USSP UPTT RPN 12-8

Xi

13

Xii

=1 o] (ST 17 | o [T 12-8

Installing and Starting the Database Character Set SCanner ... 12-8
Access Privileges for the Database Character Set SCANNEerc.ccocvevevevercrereereee e 12-8
Installing the Database Character Set SCANNErccccevveieiie s 12-8
Starting the Database Character SEt SCANNET ..o 12-9
Creating the Database Character Set Scanner Parameter File...........ccccocvivviivenciciicnennas 12-10
Getting Online Help for the Database Character Set Scanner............cccocveeeieneiciniinnnns 12-10

Database Character Set Scanner Parameters ..o 12-11

Database Character Set Scanner Sessions: EXamMPIEScccoovvivivviininvieniene s 12-22
Full Database SCan: EXAMPIES.........ccciiiiiiiiii e 12-22
USEE SCAN: EXAMIPIES. ..ottt 12-23
Single Table Scan: EXAMPIESccvoi i e neeneas 12-24

Database Character Set SCANNEr REPOITScc.oiviiiiiiiiiieiiee e 12-25
Database Scan SUMMAary REPOITcooiiiiiiiciesiet s 12-25
Database Scan Individual EXCEPLION REPOIT........ccocvvviiiirieir e 12-33

How to Handle Convertible or Lossy Data in the Data Dictionaryccccccooevvviveninennenn, 12-36

Storage and Performance Considerations in the Database Character Set Scanner............ 12-38
Storage Considerations for the Database Character Set SCanner..........c.ccoceveveveveieeieennns 12-38
Performance Considerations for the Database Character Set Scannerccccccceeeneee. 12-39
Recommendations and Restrictions for the Database Character Set Scanner 12-40

Database Character Set Scanner CSALTER SCHIPLcccooiveiiieiierrsese e 12-41
Checking Phase of the CSALTER SCIIPL.......c.cocoiiiiiiiiiiiiree e 12-42
Updating Phase of the CSALTER SCIPL......ccoiiiiiiiiee e 12-43

Database Character Set SCANNET VIBWScoooiiiiiiiiieeneenee et 12-44
CSMVBCOLUMNS ...ttt ettt sttt ettt st sb b e s be e b et neeeens 12-44
CSMVBCONSTRAINTS ..o ciee ettt ettt st ss ettt st sesbe s b e e be e stens 12-45
CSMVBERRORS ...ttt ettt ettt bbbt bbbt b 12-46
CSMVBINDEXESootiiiteete ettt ettt sttt s b et bbb ne st 12-46
CSMVBTABLES ..ottt sttt b et b e st b re b ne e 12-47

Database Character Set Scanner Error MESSAQES........covciveveieierieseseseseseseseessenseseesseeesenseens 12-47

Customizing Locale

Overview of the Oracle Locale Builder ULtycccooviviiv i 13-2
Configuring Unicode Fonts for the Oracle Locale Builder............cccoovveiiiievvcccin e, 13-2
The Oracle Locale Builder User INTErface. ..o 13-3

Oracle Locale Builder Windows and Dialog BOXES.........ccevviiivieiiei i 13-4

Creating a New Language Definition with the Oracle Locale Builderc.ccccoeovneinnnnn. 13-8
Creating a New Territory Definition with the Oracle Locale Builderccccovevvevennnne. 13-11
Customizing TimMe ZONE Data............ccoiiieiiiicie et 13-17
Customizing Calendars with the NLS Calendar ULilityc.cccovinniniiniiiiieen 13-17
Displaying a Code Chart with the Oracle Locale Buildercc.ccocoovvvvvvieievcicisecneen, 13-18
Creating a New Character Set Definition with the Oracle Locale Builder.......................... 13-22
Character Sets with User-Defined CharaCters............ccooviieieiiiiniiie e 13-23
Oracle Character Set Conversion ArchiteCture ... 13-24
UNICOAE 3.2 PrIVALE USE ATBAcuiiuiiiiiiiiie ettt bbbttt 13-25
User-Defined Character Cross-References Between Character Sets.........ccoceeeveieiennnne. 13-25
Guidelines for Creating a New Character Set from an Existing Character Set................ 13-25
Example: Creating a New Character Set Definition with the Oracle Locale Builder 13-26
Creating a New Linguistic Sort with the Oracle Locale Builder..........c.cccooeiieiiiciinnn 13-32
Changing the Sort Order for All Characters with the Same Diacriticccccceveeveenene. 13-35
Changing the Sort Order for One Character with a Diacriticc..ccccovveevveciic e, 13-38
Generating and INStalling NLB FIlES ... 13-40
TranspOortable NLB Data...........ccccvviviiiiiii ettt st se e enesresnennens 13-42

Locale Data

IS 0 1 T Vo =SSR A-2
TraNSIAtEA IMIESSAQES.ecuveivieeiiiteeie ettt sttt e sttt e s e e e st e e e st e e st e st e et e eaeebesseesteaseesteanaesteeseesteeseesreans A-4
B =]) 0] =SSP PR TR A-6
CRATACLEE SES ...t bbbtk et bbb bbbt ettt A-7
Asian Language CharaCter SELS........coiiiciiiie i esre s A-8
European Language CharaCler SETS........ooii i A-10
Middle Eastern Language Character SELS.......ccieieiciiiieie e A-16
UNIVErsal CRAraCEE SETS..........ciiiiiiieieiieie ettt sb e A-19
Character Set CONVEIrSION SUPPOIT.......ciiiiiiiiieirieisesie et A-19
SUDSELS ANA SUPEISELS ...oviiiii it siese ettt sttt se et e e e e e eneeseeneanenresnenrens A-20
Language and Character Set Detection SUPPOIt.........ccccviiiiiiiienenene e e A-23
LINQUISTIC SOTTS......cuiiittieeteit ettt bbb bbbt b et bbb bbb A-25
L= 1 [=T 0 T - TS V) 1= 0 1SRRI A-28
TIME ZONE INAMIES ...ttt b e b bbbt bt bt b eb e b e ne e e e s e e se e e e st ebeebeabeebenbes A-30
ODSOIEtE LOCAIE DALAc.eoviiieiieiie ettt bbb sttt n e neebestesbesne A-37

Xiii

Updates to the Oracle Language and Territory Definition Files ... A-37

ODbSOlete LINQUISTIC SOITScuivciiieiiieciiit ettt A-38
CIS Is No Longer the Default Territory When the Language is RUSSIAN...........ccccceeei. A-38
YUGOSLAVIA Is a Deprecated TEITIOIYcccooiieiieiiiieieieieeseeestese e A-38
New Names for Obsolete Character SEtScoviieiireiineire e A-38
AL24UTFFSS Character Set DeSUPPOITEd........cccccviviriereiieicieese s A-40
Bengali Language Definition Deprecatedccocoeiiiiieieiiiciceneeese s A-40
Czechoslovakia Territory Definition Deprecated ... A-40
B Unicode Character Code Assignments
UNICOAE COOE RANGESccueieiiieeiiiteiiit ettt bbbt bt bbbttt ettt B-2
L I I3 = oo Yo 1 o Vo P B-3
(O c 3 = Voo T [o o SRS B-3
Glossary
Index

Xiv

Send Us Your Comments

Oracle Database Globalization Support Guide, 10g Release 1 (10.1)
Part No. B10749-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op1l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

This manual describes describes Oracle globalization support for the database. It
explains how to set up a globalization support environment, choose and migrate a
character set, customize locale data, do linguistic sorting, program in a global
environment, and program with Unicode.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

Xvii

Audience

Oracle Database Globalization Support Guide is intended for database administrators,
system administrators, and database application developers who perform the
following tasks:

« Setup a globalization support environment
« Choose, analyze, or migrate character sets

« Sort data linguistically

» Customize locale data

« Write programs in a global environment

« Use Unicode

To use this document, you need to be familiar with relational database concepts,
basic Oracle server concepts, and the operating system environment under which
you are running Oracle.

Organization

xviii

This document contains:

Chapter 1, "Overview of Globalization Support"

This chapter contains an overview of globalization and Oracle’s approach to
globalization.

Chapter 2, "Choosing a Character Set"
This chapter describes how to choose a character set.

Chapter 3, "Setting Up a Globalization Support Environment"
This chapter contains sample scenarios for enabling globalization capabilities.

Chapter 4, "Datetime Datatypes and Time Zone Support"

This chapter describes Oracle’s datetime and interval datatypes, datetime SQL
functions, and time zone support.

Chapter 5, "Linguistic Sorting and String Searching”
This chapter describes linguistic sorting.

Chapter 6, "Supporting Multilingual Databases with Unicode”
This chapter describes Unicode considerations for databases.

Chapter 7, "Programming with Unicode"
This chapter describes how to program in a Unicode environment.

Chapter 8, "Oracle Globalization Development Kit"
This chapter describes the Globalization Development Kit.

Chapter 9, "SQL and PL/SQL Programming in a Global Environment"
This chapter describes globalization considerations for SQL programming.

Chapter 10, "OCI Programming in a Global Environment"
This chapter describes globalization considerations for OCI programming.

Chapter 11, "Character Set Migration"
This chapter describes character set conversion issues and character set migration.

Chapter 12, "Character Set Scanner Utilities"

This chapter describes how to use the Character Set Scanner utility to analyze
character data.

Chapter 13, "Customizing Locale"

This chapter explains how to use the Oracle Locale Builder utility to customize
locales. It also contains information about time zone files and customizing calendar
data.

Appendix A, "Locale Data"
This chapter describes the languages, territories, character sets, and other locale

data supported by the Oracle server.

Appendix B, "Unicode Character Code Assignments”
This chapter lists Unicode code point values.

Glossary
The glossary contains definitions of globalization support terms.

Xix

Related Documentation

For more information, see these Oracle resources:

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com menbershi p/index. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.conm docunentation/index. htn

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning Example

Bold

XX

Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Convention Meaning Example

Italics Italic typeface indicates book titles or Oracle Database Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVBER
nonospace elements supplied by the system. Such column.
(fixed-w dth) elementsinclude parameters, privileges, .
font datatypes, RMAN keywords, SQL EOAL(J;IESE gsﬁnzjsntge database by using the
keywords, SQL*Plus or utility commands, '
packages and methods, as well as Query the TABLE_NAME column in the USER _

system-supplied column names, database TABLES data dictionary view.

?(l):)ljsgts and structures, usernames, and Use the DBVE_STATS.GENERATE_STATS

procedure.
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names, . e .
(fixed-w dth) andsample user-supplied elements. Such The password is specified in the or apwd file.
font elements include computer and database Back up the datafiles and control files in the

names, net service names, and connect / di sk1/ or acl e/ dbs directory.
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values. Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

The depart nment _i d, depar t ment _narne,
and | ocati on_i d columns are in the
hr . depart nent s table.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUti | class implements these

methods.
| ower case Lowercase italic monospace font You can specify the par al | el _cl ause.
IIT:)?lOISCaCE represents placeholders or variables. Run Uol d_r el ease. SQL where ol d_
(fi xeg- wi dt h) r el ease refers to the release you installed
font prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE usernanme = ' M GRATE ;

The following table describes typographic conventions used in code examples and
provides examples of their use.

XXi

Convention Meaning Example

[] Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of { ENABLE | DI SABLE}
which is required. Do not enter the
braces.

A vertical bar represents a choice of two { ENABLE | DI SABLE}

or more options within brackets or braces. [COWPRESS | NOCOVPRESS]
Enter one of the options. Do not enter the

vertical bar.

Horizontal ellipsis points indicate either:

. That we have omitted parts of the CREATE TABLE ... AS subquery;

code that are not directly related to

the examp|e SELECT col 1, col2, ... , coln FROM
. | ;
« That you can repeat a portion of the enployees
code
Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFI LE;
have omitted several lines of code not NANVE

directly related to the example. ...

[fsl/dbs/tbs_01. dbf
/fs1/dbs/thbs_02. dbf

[fsl/dbs/tbs_09. dbf
9 rows sel ected.

Other notation You must enter symbols other than acct bal NUMBER(11, 2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) : = 3;
points as shown.

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password
variables for which you must supply DB_NAME = dat abase_name

particular values.

UPPERCASE Uppercase typeface indicates elements SELECT | ast_name, enployee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish S| ECT * FROM USER TABLES;
them from terms you define. Unlessterms ppop TABLE hr . enpl oyees:
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

XXii

Convention Meaning Example

| ower case Lowercase typeface indicates SELECT | ast _nane, enployee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names sql pl us hr/ hr
of tables, columns, or files. CREATE USER nj ones | DENTI FI ED BY ty3MJ;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory File and directory names are not case c:\winnt"\"systenB2 is the same as
names sensitive. The following special characters C:\ W NNT\ SYSTEM32

are not allowed: left angle bracket (<),

right angle bracket (>), colon (), double

quotation marks (), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

C\> Represents the Windows command C:\oracl e\ or adat a>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (*). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

XXili

Convention

Meaning

Example

Special characters

HOVE_NAVE

ORACLE_HOME
and ORACLE _
BASE

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HQOVE directory. For
Windows NT, the default location was
C:\ or ant for Windows NT.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HQOME directory. There is a
top level directory called ORACLE_BASE
that by defaultis C: \ or acl e. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:.\ or acl e\ or ann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

C.\>exp scott/tiger TABLES=enp
QUERY=\""WHERE j ob=" SALESMAN and

sal <1600\"

C:\>i np SYSTEM password FROMUSER=scot t
TABLES=(enp, dept)

C\> net start Oracl eHOVE_NAMETNSLI st ener

Go to the ORACLE_BASE\ ORACLE
HOVE\ r dbns\ admi n directory.

XXiV

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http:// ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXV

XXVi

What’s New in Globalization Support ?

This section describes new features of globalization support and provides pointers
to additional information.

Unicode 3.2 Support
This release supports Unicode 3.2.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Accent-Insensitive and Case-Insensitive Linguistic Sorts and Queries

Oracle provides linguistic sorts and queries that use information about base
letter, accents, and case to sort character strings.This release enables you to
specify a sort or query on the base letters only (accent-insensitive) or on the
base letters and the accents (case-insensitive).

See Also: "Linguistic Sort Features" on page 5-7

Character Set Scanner Utilities Enhancements
The Database Character Set Scanner and Converter now supports object types.

The new LCSD parameter enables the Database Character Set Scanner (CSSCAN)
to perform language and character set detection on the data cells categorized by
the LCSDATA parameter. The Database Character Set Scanner reports have also
been enhanced.

XXVii

Database Character Set Scanner CSALTER Script
The CSALTER script is a DBA tool for special character set migration.

The Language and Character Set File Scanner Utility

The Language and Character Set File Scanner (LCSSCAN) is a high-performance,
statistically based utility for determining the character set and language for
unspecified plain file text.

See Also: Chapter 12, "Character Set Scanner Utilities"

Globalization Development Kit

The Globalization Development Kit (GDK) simplifies the development process
and reduces the cost of developing Internet applications that will support a
global multilingual market. GDK includes APIs, tools, and documentation that
address many of the design, development, and deployment issues encountered
in the creation of global applications. GDK lets a single program work with text
in any language from anywhere in the world. It enables you to build a complete
multilingual server application with little more effort than it takes to build a
monolingual server application.

See Also: Chapter 8, "Oracle Globalization Development Kit"

Regular Expressions

This release supports POSIX-compliant regular expressions to enhance search
and replace capability in programming environments such as UNIX and Java.
In SQL, this new functionality is implemented through new functions that are
regular expression extensions to existing SQL functions such as LI KE,

REPLACE, and | NSTR. This implementation supports multilingual queries and
is locale-sensitive.

See Also: "SQL Regular Expressions in a Multilingual
Environment" on page 5-22

Displaying Code Charts for Unicode Character Sets

Oracle Locale Builder can display code charts for Unicode character sets.

See Also: "Displaying a Code Chart with the Oracle Locale
Builder" on page 13-18

XXViii

Locale Variants

In previous releases, Oracle defined language and territory definitions separately.
This resulted in the definition of a territory being independent of the language
setting of the user. In this release, some territories can have different date, time,
number, and monetary formats based on the language setting of a user. This type of
language-dependent territory definition is called a locale variant.

See Also: "Locale Variants" on page 3-9

Transportable NLB Data

NLB files that are generated on one platform can be transported to another platform
by, for example, FTP. The transported NLB files can be used the same way as the
NLB files that were generated on the original platform. This is convenient because
locale data can be modified on one platform and copied to other platforms.

See Also: "Transportable NLB Data" on page 13-42

NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTI CSis now supported as an environment variable.

See Also: "NLS_LENGTH_SEMANTICS" on page 3-44

Implicit Conversion Between CLOB and NCLOB Datatypes

Implicit conversion between CLOB and NCLOB datatypes is now supported.

See Also: "Choosing a National Character Set" on page 2-19

Updates to the Oracle Language and Territory Definition Files

Changes have been made to the content in some of the language and territory
definition files in Oracle Database 10g.

See Also: "Obsolete Locale Data" on page A-37

XXiX

XXX

1

Overview of Globalization Support

This chapter provides an overview of Oracle globalization support. It includes the
following topics:

« Globalization Support Architecture

« Globalization Support Features

Overview of Globalization Support 1-1

Globalization Support Architecture

Globalization Support Architecture

Oracle's globalization support enables you to store, process, and retrieve data in
native languages. It ensures that database utilities, error messages, sort order, and
date, time, monetary, numeric, and calendar conventions automatically adapt to any
native language and locale.

In the past, Oracle’s globalization support capabilities were referred to as National
Language Support (NLS) features. National Language Support is a subset of
globalization support. National Language Support is the ability to choose a national
language and store data in a specific character set. Globalization support enables
you to develop multilingual applications and software products that can be
accessed and run from anywhere in the world simultaneously. An application can
render content of the user interface and process data in the native users’ languages
and locale preferences.

Locale Data on Demand

Oracle's globalization support is implemented with the Oracle NLS Runtime
Library (NLSRTL). The NLS Runtime Library provides a comprehensive suite of
language-independent functions that allow proper text and character processing
and language convention manipulations. Behavior of these functions for a specific
language and territory is governed by a set of locale-specific data that is identified
and loaded at runtime.

The locale-specific data is structured as independent sets of data for each locale that
Oracle supports. The data for a particular locale can be loaded independent of other
locale data. The advantages of this design are as follows:

« You can manage memory consumption by choosing the set of locales that you
need.

« You can add and customize locale data for a specific locale without affecting
other locales.

Figure 1-1 shows that locale-specific data is loaded at runtime. In this example,
French data and Japanese data are loaded into the multilingual database, but
German data is not.

1-2 Oracle Database Globalization Support Guide

Globalization Support Architecture

Figure 1-1 Loading Locale-Specific Data to the Database

Multilingual
Database
A <
7 Qf)
O N
(o) N
o % B

German French Japanese
Data Data Data

The locale-specific data is stored in the $ORACLE_HOVE/ nl s/ dat a directory. The
ORA NLS10 environment variable should be defined only when you need to change
the default directory location for the locale-specific datafiles, for example when the
system has multiple Oracle homes that share a single copy of the locale-specific
datafiles.

A boot file is used to determine the availability of the NLS objects that can be
loaded. Oracle supports both system and user boot files. The user boot file gives
you the flexibility to tailor what NLS locale objects are available for the database.
Also, new locale data can be added and some locale data components can be
customized.

See Also: Chapter 13, "Customizing Locale"

Architecture to Support Multilingual Applications

The database is implemented to enable multitier applications and client/server
applications to support languages for which the database is configured.

The locale-dependent operations are controlled by several parameters and
environment variables on both the client and the database server. On the database
server, each session started on behalf of a client may run in the same or a different

Overview of Globalization Support 1-3

Globalization Support Architecture

locale as other sessions, and have the same or different language requirements
specified.

The database has a set of session-independent NLS parameters that are specified
when the database is created. Two of the parameters specify the database character
set and the national character set, an alternate Unicode character set that can be
specified for NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the
character set that is used to store text data in the database. Other parameters, like
language and territory, are used to evaluate check constraints.

If the client session and the database server specify different character sets, then the
database converts character set strings automatically.

From a globalization support perspective, all applications are considered to be
clients, even if they run on the same physical machine as the Oracle instance. For
example, when SQL*Plus is started by the UNIX user who owns the Oracle software
from the Oracle home in which the RDBMS software is installed, and SQL*Plus
connects to the database through an adapter by specifying the ORACLE_SI D
parameter, SQL*Plus is considered a client. Its behavior is ruled by client-side NLS
parameters.

Another example of an application being considered a client occurs when the
middle tier is an application server. The different sessions spawned by the
application server are considered to be separate client sessions.

When a client application is started, it initializes the client NLS environment from
environment settings. All NLS operations performed locally are executed using
these settings. Examples of local NLS operations are:

« Display formatting in Oracle Developer applications
« User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The
new session initializes its NLS environment from NLS instance parameters specified
in the initialization parameter file. These settings can be subsequently changed by
an ALTER SESSI ON statement. The statement changes only the session NLS
environment. It does not change the local client NLS environment. The session NLS
settings are used to process SQL and PL/SQL statements that are executed on the
server. For example, use an ALTER SESSI ON statement to set the NLS_LANGUAGE
initialization parameter to Italian:

ALTER SESSI ON SET NLS_LANGUACE=Ital i an;

Enter a SELECT statement:

1-4 Oracle Database Globalization Support Guide

Globalization Support Features

SQL> SELECT | ast_name, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see results similar to the following:

LAST_NAME HI RE_DATE SALARY
Sciarra 30- SET- 97 962.5
Ur man 07- MAR- 98 975
Popp 07-DI G99 862.5

Note that the month name abbreviations are in Italian.

Immediately after the connection has been established, if the NLS_LANG
environment setting is defined on the client side, then an implicit ALTER SESSI ON
statement synchronizes the client and session NLS environments.

See Also:

« Chapter 10, "OCI Programming in a Global Environment"

« Chapter 3, "Setting Up a Globalization Support Environment"

Using Unicode in a Multilingual Database

Unicode is a universal encoded character set that enables you to store information
in any language, using a single character set. Unicode provides a unique code value
for every character, regardless of the platform, program, or language.

Unicode has the following advantages:
« It simplifies character set conversion and linguistic sort functions
« Itimproves performance compared with native multibyte character sets

« It supports the Unicode datatype based on the Unicode standard

See Also:
« Chapter 6, "Supporting Multilingual Databases with Unicode"
« Chapter 7, "Programming with Unicode"

« "Enabling Multilingual Support with Unicode Datatypes" on
page 6-8

Globalization Support Features

Oracle's standard features include:

Overview of Globalization Support 1-5

Globalization Support Features

« Language Support

« Territory Support

« Date and Time Formats

« Monetary and Numeric Formats

« Calendars Feature

« Linguistic Sorting

« Character Set Support

« Character Semantics

« Customization of Locale and Calendar Data

« Unicode Support

Language Support

The database enables you to store, process, and retrieve data in native languages.
The languages that can be stored in a database are all languages written in scripts
that are encoded by Oracle-supported character sets. Through the use of Unicode
databases and datatypes, the Oracle database supports most contemporary
languages.

Additional support is available for a subset of the languages. The database knows,
for example, how to display dates using translated month names or how to sort text
data according to cultural conventions.

When this manual uses the term language support, it refers to the additional
language-dependent functionality (for example, displaying dates or sorting text),
not to the ability to store text of a specific language.

For some of the supported languages, Oracle provides translated error messages
and a translated user interface of the database utilities.

See Also:
« Chapter 3, "Setting Up a Globalization Support Environment"

« "Languages" on page A-2 for a complete list of Oracle language
names and abbreviations

« "Translated Messages" on page A-4 for a list of languages into
which Oracle messages are translated

1-6 Oracle Database Globalization Support Guide

Globalization Support Features

Territory Support

The database supports cultural conventions that are specific to geographical
locations. The default local time format, date format, and numeric and monetary
conventions depend on the local territory setting. Setting different NLS parameters
allows the database session to use different cultural settings. For example, you can
set the euro (EUR) as the primary currency and the Japanese yen (JPY) as the
secondary currency for a given database session even when the territory is defined
as AMERI CA.

See Also:

« Chapter 3, "Setting Up a Globalization Support Environment"

« "Territories" on page A-6 for a list of territories that are
supported by the Oracle server

Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled
in local formats. For example, in the United Kingdom, the date is displayed using
the DD- MON- YYYY format, while Japan commonly uses the YYYY- Mt DD format.

Time zones and daylight saving support are also available.

See Also:

« Chapter 3, "Setting Up a Globalization Support Environment"
« Chapter 4, "Datetime Datatypes and Time Zone Support"

« Oracle Database SQL Reference

Monetary and Numeric Formats

Currency, credit, and debit symbols can be represented in local formats. Radix
symbols and thousands separators can be defined by locales. For example, in the
US, the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the
amount $1,234 has different meanings in different countries.

See Also: Chapter 3, "Setting Up a Globalization Support
Environment"

Overview of Globalization Support 1-7

Globalization Support Features

Calendars Feature

Many different calendar systems are in use around the world. Oracle supports
seven different calendar systems: Gregorian, Japanese Imperial, ROC Official
(Republic of China), Thai Buddha, Persian, English Hijrah, and Arabic Hijrah.

See Also:
« Chapter 3, "Setting Up a Globalization Support Environment"

« "Calendar Systems" on page A-28 for a list of supported
calendars

Linguistic Sorting

Oracle provides linguistic definitions for culturally accurate sorting and case
conversion. The basic definition treats strings as sequences of independent
characters. The extended definition recognizes pairs of characters that should be
treated as special cases.

Strings that are converted to upper case or lower case using the basic definition
always retain their lengths. Strings converted using the extended definition may
become longer or shorter.

See Also: Chapter 5, "Linguistic Sorting and String Searching"

Character Set Support

Oracle supports a large number of single-byte, multibyte, and fixed-width encoding
schemes that are based on national, international, and vendor-specific standards.

See Also:
« Chapter 2, "Choosing a Character Set"

« "Character Sets" on page A-7 for a list of supported character
sets

Character Semantics

Oracle provides character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths in terms of characters instead
of bytes.

See Also: "Length Semantics" on page 2-12

1-8 Oracle Database Globalization Support Guide

Globalization Support Features

Customization of Locale and Calendar Data

You can customize locale data such as language, character set, territory, or linguistic
sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

See Also:
» Chapter 13, "Customizing Locale"

» "Customizing Calendars with the NLS Calendar Utility" on
page 13-17

Unicode Support

You can store Unicode characters in an Oracle database in two ways:

« You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR datatypes.

= You can support multilingual data in specific columns by using Unicode
datatypes. You can store Unicode characters into columns of the SQL NCHAR
datatypes regardless of how the database character set has been defined. The
NCHAR datatype is an exclusively Unicode datatype.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Overview of Globalization Support 1-9

Globalization Support Features

1-10 Oracle Database Globalization Support Guide

2

Choosing a Character Set

This chapter explains how to choose a character set. It includes the following topics:

Character Set Encoding

Length Semantics

Choosing an Oracle Database Character Set
Changing the Character Set After Database Creation
Monolingual Database Scenario

Multilingual Database Scenarios

Choosing a Character Set 2-1

Character Set Encoding

Character Set Encoding

When computer systems process characters, they use numeric codes instead of the
graphical representation of the character. For example, when the database stores the
letter A, it actually stores a numeric code that is interpreted by software as the letter.
These numeric codes are especially important in a global environment because of
the potential need to convert data between different character sets.

This section includes the following topics:

« Whatis an Encoded Character Set?

« Which Characters Are Encoded?

« What Characters Does a Character Set Support?
« How are Characters Encoded?

= Naming Convention for Oracle Character Sets

What is an Encoded Character Set?

You specify an encoded character set when you create a database. Choosing a
character set determines what languages can be represented in the database. It also
affects:

« How you create the database schema

« How you develop applications that process character data
« How the database works with the operating system

« Performance

« Storage required when storing character data

A group of characters (for example, alphabetic characters, ideographs, symbols,
punctuation marks, and control characters) can be encoded as a character set. An
encoded character set assigns unique numeric codes to each character in the
character repertoire. The numeric codes are called code points or encoded values.
Table 2-1 shows examples of characters that have been assigned a hexadecimal code
value in the ASCII character set.

Table 2-1 Encoded Characters in the ASCII Character Set

Character Description Hexadecimal Code Value

! Exclamation Mark 21

2-2 Oracle Database Globalization Support Guide

Character Set Encoding

Table 2-1 Encoded Characters in the ASCII Character Set (Cont.)

Character Description Hexadecimal Code Value
Number Sign 23
$ Dollar Sign 24
1 Number 1 31
2 Number 2 32
3 Number 3 33
A Uppercase A 41
B Uppercase B 42
C Uppercase C 43
a Lowercase a 61
b Lowercase b 62
c Lowercase ¢ 63

The computer industry uses many encoded character sets. Character sets differ in
the following ways:

The number of characters available

The available characters (the character repertoire)

The scripts used for writing and the languages they represent
The code values assigned to each character

The encoding scheme used to represent a character

Oracle supports most national, international, and vendor-specific encoded character
set standards.

See Also: "Character Sets" on page A-7 for a complete list of
character sets that are supported by Oracle

Which Characters Are Encoded?

The characters that are encoded in a character set depend on the writing systems
that are represented. A writing system can be used to represent a language or group
of languages.Writing systems can be classified into two categories:

Phonetic Writing Systems

Choosing a Character Set 2-3

Character Set Encoding

« ldeographic Writing Systems
This section also includes the following topics:
« Punctuation, Control Characters, Numbers, and Symbols

« Writing Direction

Phonetic Writing Systems

Phonetic writing systems consist of symbols that represent different sounds
associated with a language. Greek, Latin, Cyrillic, and Devanagari are all examples
of phonetic writing systems based on alphabets. Note that alphabets can represent
more than one language. For example, the Latin alphabet can represent many
Western European languages such as French, German, and English.

Characters associated with a phonetic writing system can typically be encoded in
one byte because the character repertoire is usually smaller than 256 characters.

Ideographic Writing Systems

Ideographic writing systems consist of ideographs or pictographs that represent the
meaning of a word, not the sounds of a language. Chinese and Japanese are
examples of ideographic writing systems that are based on tens of thousands of
ideographs. Languages that use ideographic writing systems may also use a
syllabary. Syllabaries provide a mechanism for communicating additional phonetic
information. For instance, Japanese has two syllabaries: Hiragana, normally used
for grammatical elements, and Katakana, normally used for foreign and
onomatopoeic words.

Characters associated with an ideographic writing system typically are encoded in
more than one byte because the character repertoire has tens of thousands of
characters.

Punctuation, Control Characters, Numbers, and Symbols

In addition to encoding the script of a language, other special characters need to be
encoded:

« Punctuation marks such as commas, periods, and apostrophes
« Numbers
« Special symbols such as currency symbols and math operators

« Control characters such as carriage returns and tabs

2-4 Oracle Database Globalization Support Guide

Character Set Encoding

Writing Direction

Most Western languages are written left to right from the top to the bottom of the
page. East Asian languages are usually written top to bottom from the right to the
left of the page, although exceptions are frequently made for technical books
translated from Western languages. Arabic and Hebrew are written right to left
from the top to the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right
to left, numbers within the sentence are written left to right. For example, "I wrote
32 books" would be written as "skoob 32 etorw I". Regardless of the writing
direction, Oracle stores the data in logical order. Logical order means the order that
is used by someone typing a language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

What Characters Does a Character Set Support?

Different character sets support different character repertoires. Because character
sets are typically based on a particular writing script, they can support more than
one language. When character sets were first developed, they had a limited
character repertoire. Even now there can be problems using certain characters
across platforms. The following CHAR and VARCHAR characters are represented in
all Oracle database character sets and can be transported to any platform:

« Uppercase and lowercase English characters A through Z and a through z
« Arabic digits 0 through 9

« Thefollowing punctuation marks: % ‘' () *+-,./\:;<>=1 &~{}|"?$+#

@ " []
« The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is
supported in the database character set that you have chosen.

Setting the NLS_LANG parameter properly is essential to proper data conversion.
The character set that is specified by the NLS _LANG parameter should reflect the
setting for the client operating system. Setting NLS_LANG correctly enables proper
conversion from the client operating system character encoding to the database
character set. When these settings are the same, Oracle assumes that the data being
sent or received is encoded in the same character set as the database character set,
so no validation or conversion is performed. This can lead to corrupt data if
conversions are necessary.

Choosing a Character Set 2-5

Character Set Encoding

During conversion from one character set to another, Oracle expects client-side data
to be encoded in the character set specified by the NLS _LANG parameter. If you put
other values into the string (for example, by using the CHR or CONVERT SQL
functions), then the values may be corrupted when they are sent to the database
because they are not converted properly. If you have configured the environment
correctly and if the database character set supports the entire repertoire of character
data that may be input into the database, then you do not need to change the
current database character set. However, if your enterprise becomes more global
and you have additional characters or new languages to support, then you may
need to choose a character set with a greater character repertoire. Oracle
Corporation recommends that you use Unicode databases and datatypes in these
cases.

See Also:
« Chapter 6, "Supporting Multilingual Databases with Unicode"

« Oracle Database SQL Reference for more information about the
CHR and CONVERT SQL functions

« "Displaying a Code Chart with the Oracle Locale Builder" on
page 13-18

ASCII Encoding

Table 2-2 shows how the ASCII character is encoded. Row and column headings
denote hexadecimal digits. To find the encoded value of a character, read the
column number followed by the row number. For example, the code value of the
character A is 0x41.

Table 2-2 7-Bit ASCII Character Set

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P p
1 SOH DC1 | 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 c s c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U u
6 ACK SYN & 6 F v f v
7 BEL ETB 7 G W g w

2-6 Oracle Database Globalization Support Guide

Character Set Encoding

Table 2-2 7-Bit ASCII Character Set (Cont.)

-0
BS
TAB
LF
VT
FF
CR
SO
sl

Tm g O W P> © ®

1
CAN
EM
SuUB
ESC
FS
GS
RS
usS

2 3 4 5 7
(8 X X
) 9 | Y y
* J Z z
+ ; K [{
, < L \ |
- = M] }
> N n ~
/ ? O DEL

Character sets have evolved to meet the needs of users around the world. New

character sets have been created to support languages besides English. Typically,
these new character sets support a group of related languages based on the same

script. For example, the 1ISO 8859 character set series was created to support
different European languages. Table 2-3 shows the languages that are supported by

the 1SO 8859 character sets.

Choosing a Character Set

2-7

Character Set Encoding

Table 2-3 SO 8859 Character Sets

Standard Languages Supported

1SO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

1SO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

1SO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

1SO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

1SO 8859-6 Arabic

1SO 8859-7 Greek

1SO 8859-8 Hebrew

1SO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

1SO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

1SO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

1SO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician, German,
Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic, Norwegian,
Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

1SO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,

Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)

Character sets evolved and provided restricted multilingual support. They were
restricted in the sense that they were limited to groups of languages based on
similar scripts. More recently, universal character sets have been regarded as a more
useful solution to multilingual support. Unicode is one such universal character set
that encompasses most major scripts of the modern world. The Unicode character
set supports more than 94,000 characters.

2-8 Oracle Database Globalization Support Guide

Character Set Encoding

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode”

How are Characters Encoded?

Different types of encoding schemes have been created by the computer industry.
The character set you choose affects what kind of encoding scheme is used. This is
important because different encoding schemes have different performance
characteristics. These characteristics can influence your database schema and
application development. The character set you choose uses one of the following
types of encoding schemes:

« Single-Byte Encoding Schemes
« Multibyte Encoding Schemes

Single-Byte Encoding Schemes

Single-byte encoding schemes are efficient. They take up the least amount of space
to represent characters and are easy to process and program with because one
character can be represented in one byte. Single-byte encoding schemes are
classified as one of the following:

« 7-bit encoding schemes

Single-byte 7-bit encoding schemes can define up to 128 characters and
normally support just one language. One of the most common single-byte
character sets, used since the early days of computing, is ASCII (American
Standard Code for Information Interchange).

« 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often
support a group of related languages. One example is ISO 8859-1, which
supports many Western European languages. Figure 2-1 shows the ISO 8859-1
8-bit encoding scheme.

Choosing a Character Set 2-9

Character Set Encoding

Figure 2-1 SO 8859-1 8-Bit Encoding Scheme

0 1 z 3 4 5 6 7 A E C D E F
O NUL DLE SP © @ P * p MNBSP° A B & &
1 S0H DC1 | 1 A& Q a a = & B4 A
2 sTX DC2 " 2 B R b r ¢ z A 0O 4 b
3 ETX DC3 # 3 C s ¢ s f = A 0 4 &
4 EOT DC4 % 4 D T d t = S S o B
5 ENQ MNAK % 5 E U e u ¥ wooA D a5
6 ACK SYN & 6 F v f v | T & 0 =& &
7 BEL ETB ° 7 G W g w8 C x ¢ =
8 BS CAN 8 H % h x 7 . E @ & o
9 HT EM)] g I ¥ 1 y @ 1 E U & U
4 NL SUB ¢ .1z i oz =& o E 0 & 0
B ¥T ESC + ;K [kf o« » B0 & 0
C NP FS < LN 1T 1 - wm o Io0odu
D CR GS - = m 1 m 3 - v I% 9§
E S0 RS > N A on e ®* I p i b
FsI Us / ? 0 _ o DEL S SR T B

Multibyte Encoding Schemes

Multibyte encoding schemes are needed to support ideographic scripts used in
Asian languages like Chinese or Japanese because these languages use thousands of
characters. These encoding schemes use either a fixed number or a variable number
of bytes to represent each character.

« Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a
fixed number of bytes. The number of bytes is at least two in a multibyte
encoding scheme.

« Variable-width multibyte encoding schemes

A variable-width encoding scheme uses one or more bytes to represent a single
character. Some multibyte encoding schemes use certain bits to indicate the
number of bytes that represents a character. For example, if two bytes is the
maximum number of bytes used to represent a character, then the most
significant bit can be used to indicate whether that byte is a single-byte
character or the first byte of a double-byte character.

« Shift-sensitive variable-width multibyte encoding schemes

2-10 Oracle Database Globalization Support Guide

Character Set Encoding

Some variable-width encoding schemes use control codes to differentiate
between single-byte and multibyte characters with the same code values. A
shift-out code indicates that the following character is multibyte. A shift-in code
indicates that the following character is single-byte. Shift-sensitive encoding
schemes are used primarily on IBM platforms. Note that ISO-2022 character sets
cannot be used as database character sets, but they can be used for applications
such as a mail server.

Naming Convention for Oracle Character Sets
Oracle uses the following naming convention for Oracle character set names:
<regi on><nunber of bits used to represent a character><standard character set nane>[S| C
The parts of the names in angle brackets are concatenated. The optional S or Cis

used to differentiate character sets that can be used only on the server (S) or only on
the client (C).

Note: Use the server character set (S) on the Macintosh platform.
The Macintosh client character sets are obsolete. On EBCDIC
platforms, use the server character set (S) on the server and the
client character set (C) on the client.

Note: UTF8 and UTFE are exceptions to the naming convention.

Table 2-4 shows examples of Oracle character set names.

Table 2-4 Examples of Oracle Character Set Names

Number of

Oracle Bits Used to Standard
Character Set Represent a Character Set
Name Description Region Character Name
US7ASCII U.S. 7-bit ASCII US 7 ASCII
WES8ISO8859P1 Western WE (Western 8 1SO8859 Part 1

European 8-bit Europe)

1SO 8859 Part 1

Choosing a Character Set 2-11

Length Semantics

Table 2-4 Examples of Oracle Character Set Names (Cont.)

Number of

Oracle Bits Used to Standard
Character Set Represent a Character Set
Name Description Region Character Name
JA16SJIS Japanese 16-bit JA 16 SJIS

Shifted Japanese

Industrial

Standard

Length Semantics

In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multibyte character sets, a character or code point consists of
one or more bytes. Calculating the number of characters based on byte lengths can
be difficult in a variable-width character set. Calculating column lengths in bytes is
called byte semantics, while measuring column lengths in characters is called
character semantics.

Character semantics were introduced in Oracle9i. Character semantics is useful for
defining the storage requirements for multibyte strings of varying widths. For
example, in a Unicode database (AL32UTF8), suppose that you need to define a
VARCHAR2 column that can store up to five Chinese characters together with five
English characters. Using byte semantics, this column requires 15 bytes for the
Chinese characters, which are three bytes long, and 5 bytes for the English
characters, which are one byte long, for a total of 20 bytes. Using character
semantics, the column requires 10 characters.

The following expressions use byte semantics:
« VARCHAR2(20 BYTE)
« SUBSTRB(string, 1, 20)

Note the BYTE qualifier in the VARCHARZ expression and the B suffix in the SQL
function name.

The following expressions use character semantics:

« VARCHAR2(10 CHAR)

« SUBSTR(string, 1, 10)

Note the CHAR qualifier in the VARCHAR2 expression.

2-12 Oracle Database Globalization Support Guide

Length Semantics

The NLS_LENGTH_SEMANTI CS initialization parameter determines whether a new
column of character datatype uses byte or character semantics. The default value of
the parameter is BYTE. The BYTE and CHAR qualifiers shown in the VARCHAR2
definitions should be avoided when possible because they lead to mixed-semantics
databases. Instead, set NLS_LENGTH_SENMANTI CSin the initialization parameter file
and define column datatypes to use the default semantics based on the value of
NLS_LENGTH_SEMANTI CS.

Byte semantics is the default for the database character set. Character length
semantics is the default and the only allowable kind of length semantics for NCHAR
datatypes. The user cannot specify the CHAR or BYTE qualifier for NCHAR
definitions.

Consider the following example:

CREATE TABLE enpl oyees
(enpl oyee_i d NUVBER(4)
, last_nanme NVARCHAR2(10)
, job_id NVARCHAR2(9)
, manager _i d NUVBER(4)
, hire_date DATE
, salary NUMBER(7,2)
, department _id NUVBER(2)

When the NCHAR character set is AL16UTF16, | ast _nan®e can hold up to 10
Unicode code points. When the NCHAR character set is AL16UTF16, | ast _nane can
hold up to 20 bytes.

Figure 2-2 shows the number of bytes needed to store different kinds of characters
in the UTF-8 character set. The ASCII characters requires one byte, the Latin and
Greek characters require two bytes, the Asian character requires three bytes, and the
supplementary character requires four bytes of storage.

Choosing a Character Set 2-13

Choosing an Oracle Database Character Set

Figure 2-2 Bytes of Storage for Different Kinds of Characters

ASCII
Latin

ASCII
Asian
Supplementary character
ASCII
Latin
‘ Greek

I
{[=[4 [a[6]]

Characters |C |a

[AR S
| | \ \ ~ N - _ - _
Byte Storage |63|C3| 91|74 |E4|BA|oc|Fo|op |84 |oE|64|c3|B6|D0| A4
for UTF-8 Ll I
T | | | | | |

1 2 1 3 4 1 2 2
byte bytes byte bytes bytes byte bytes bytes

See Also:

"SQL Functions for Different Length Semantics" on page 9-6 for
more information about the SUBSTR and SUBSTRB functions

"Length Semantics" on page 3-44 for more information about
the NLS_LENGTH_SEMANTI CS initialization parameter

Chapter 6, "Supporting Multilingual Databases with Unicode"
for more information about Unicode and the NCHAR datatype

Oracle Database SQL Reference for more information about the
SUBSTRB and SUBSTR functions and the BYTE and CHAR
qualifiers for character datatypes

Choosing an Oracle Database Character Set

Oracle uses the database character set for:

Data stored in SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG)
Identifiers such as table names, column names, and PL/SQL variables

Entering and storing SQL and PL/SQL source code

2-14 Oracle Database Globalization Support Guide

Choosing an Oracle Database Character Set

The character encoding scheme used by the database is defined as part of the
CREATE DATABASE statement. All SQL CHAR datatype columns (CHAR, CLOB,
VARCHARZ, and LONG) , including columns in the data dictionary, have their data
stored in the database character set. In addition, the choice of database character set
determines which characters can name objects in the database. SQL NCHAR datatype
columns (NCHAR, NCLOB, and NVARCHAR?) use the national character set.

Note: CLOB data is stored in a format that is compatible with
UCS-2 if the database character set is multibyte. If the database
character set is single-byte, then CLOB data is stored in the
database character set.

After the database is created, you cannot change the character sets, with some
exceptions, without re-creating the database.

Consider the following questions when you choose an Oracle character set for the
database:

« What languages does the database need to support now?

« What languages does the database need to support in the future?
« Isthe character set available on the operating system?

« What character sets are used on clients?

« How well does the application handle the character set?

« What are the performance implications of the character set?

= What are the restrictions associated with the character set?

The Oracle character sets are listed in "Character Sets" on page A-7. They are named
according to the languages and regions in which they are used. Some character sets
that are named for a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

« Check national, international, or vendor product documentation or standards
documents

« Use Oracle Locale Builder
This section contains the following topics:

» Current and Future Language Requirements

Choosing a Character Set 2-15

Choosing an Oracle Database Character Set

« Client Operating System and Application Compatibility

« Character Set Conversion Between Clients and the Server

« Performance Implications of Choosing a Database Character Set
= Restrictions on Database Character Sets

« Choosing a National Character Set

« Summary of Supported Datatypes

See Also:
« "UCS-2 Encoding" on page 6-4
« "Choosing a National Character Set" on page 2-19

« "Changing the Character Set After Database Creation” on
page 2-20

« Appendix A, "Locale Data"

« Chapter 13, "Customizing Locale"

Current and Future Language Requirements

Several character sets may meet your current language requirements. Consider
future language requirements when you choose a database character set. If you
expect to support additional languages in the future, then choose a character set
that supports those languages to prevent the need to migrate to a different character
set later.

Client Operating System and Application Compatibility

The database character set is independent of the operating system because Oracle
has its own globalization architecture. For example, on an English Windows
operating system, you can create and run a database with a Japanese character set.
However, when an application in the client operating system accesses the database,
the client operating system must be able to support the database character set with
appropriate fonts and input methods. For example, you cannot insert or retrieve
Japanese data on the English Windows operating system without first installing a
Japanese font and input method. Another way to insert and retrieve Japanese data
is to use a Japanese operating system remotely to access the database server.

2-16 Oracle Database Globalization Support Guide

Choosing an Oracle Database Character Set

Character Set Conversion Between Clients and the Server

If you choose a database character set that is different from the character set on the
client operating system, then the Oracle database can convert the operating system
character set to the database character set. Character set conversion has the
following disadvantages:

« Potential data loss
« Increased overhead

Character set conversions can sometimes cause data loss. For example, if you are
converting from character set A to character set B, then the destination character set
B must have the same character set repertoire as A. Any characters that are not
available in character set B are converted to a replacement character. The
replacement character is often specified as a question mark or as a linguistically
related character. For example, & (a with an umlaut) may be converted to a. If you
have distributed environments, then consider using character sets with similar
character repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers several times
before the data reaches the client. The database character set should always be a
superset or equivalent of the native character set of the client's operating system.
The character sets used by client applications that access the database usually
determine which superset is the best choice.

If all client applications use the same character set, then that character set is usually
the best choice for the database character set. When client applications use different
character sets, the database character set should be a superset of all the client
character sets. This ensures that every character is represented when converting
from a client character set to the database character set.

See Also: Chapter 11, "Character Set Migration”

Performance Implications of Choosing a Database Character Set

For best performance, choose a character set that avoids character set conversion
and uses the most efficient encoding for the languages desired. Single-byte
character sets result in better performance than multibyte character sets, and they
also are the most efficient in terms of space requirements. However, single-byte
character sets limit how many languages you can support.

Choosing a Character Set 2-17

Choosing an Oracle Database Character Set

Restrictions on Database Character Sets

ASCIlI-based character sets are supported only on ASCII-based platforms. Similarly,
you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In
order to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is
native to the platform. Therefore, it is not possible to use a fixed-width, multibyte
character set as the database character set. Currently, only the AL16UTF16 character
set cannot be used as a database character set.

Restrictions on Character Sets Used to Express Names

Table 2-5 lists the restrictions on the character sets that can be used to express
names.

Table 2-5 Restrictions on Character Sets Used to Express Names

Variable

Name Single-Byte Width Comments

column names Yes Yes -

schema objects Yes Yes -

comments Yes Yes -

database link names Yes No -

database names Yes No -

file names (datafile, log file, control Yes No -

file, initialization parameter file)

instance names Yes No -

directory names Yes No -

keywords Yes No Can be expressed in English ASCII or EBCDIC
characters only

Recovery Manager file names Yes No -

rollback segment names Yes No The ROLLBACK_SEGVENTS parameter does not
support NLS

stored script names Yes Yes -

tablespace names Yes No -

2-18 Oracle Database Globalization Support Guide

Choosing an Oracle Database Character Set

For a list of supported string formats and character sets, including LOB data (LOB,
BLOB, CLOB, and NCLOB), see Table 2-7 on page 2-20.

Choosing a National Character Set

A national character set is an alternate character set that enables you to store
Unicode character data in a database that does not have a Unicode database
character set. Other reasons for choosing a national character set are:

« The properties of a different character encoding scheme may be more desirable
for extensive character processing operations

« Programming in the national character set is easier

SQL NCHAR, NVARCHARZ, and NCLOB datatypes have been redefined to support
Unicode data only. You can use either the UTF8 or the AL 16UTF16 character set.
The default is AL16UTF16.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Summary of Supported Datatypes

Table 2-6 lists the datatypes that are supported for different encoding schemes.

Table 2-6 SQL Datatypes Supported for Encoding Schemes

Datatype Single Byte Multibyte Non-Unicode Multibyte Unicode
CHAR Yes Yes Yes
VARCHAR2 Yes Yes Yes
NCHAR No No Yes
NVARCHAR2 No No Yes
BLCB Yes Yes Yes
CLOB Yes Yes Yes
LONG Yes Yes Yes
NCLCB No No Yes

Note: BLOBs process characters as a series of byte sequences.
The data is not subject to any NLS-sensitive operations.

Choosing a Character Set 2-19

Changing the Character Set After Database Creation

Table 27 lists the SQL datatypes that are supported for abstract datatypes.

Table 2—-7 Abstract Datatype Support for SQL Datatypes

Abstract Datatype CHAR NCHAR BLOB CLOB NCLOB
Object Yes Yes Yes Yes Yes
Collection Yes Yes Yes Yes Yes

You can create an abstract datatype with the NCHAR attribute as follows:

SQL> CREATE TYPE tpl AS OBJECT (a NCHAR(10));
Type created.

SQL> CREATE TABLE t1 (a tpl);

Tabl e creat ed.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for more information about objects and
collections

Changing the Character Set After Database Creation

You may wish to change the database character set after the database has been
created. For example, you may find that the number of languages that need to be
supported in your database has increased. In most cases, you need to do a full
export/import to properly convert all data to the new character set. However, if,
and only if, the new character set is a strict superset of the current character set,
then it is possible to use the ALTER DATABASE CHARACTER SET statement to
expedite the change in the database character set.

See Also:

» Chapter 11, "Character Set Migration"

« Oracle Database Upgrade Guide for more information about
exporting and importing data

« Oracle Database SQL Reference for more information about the
ALTER DATABASE CHARACTER SET statement

Monolingual Database Scenario

The simplest example of a database configuration is a client and a server that run in
the same language environment and use the same character set. This monolingual

2-20 Oracle Database Globalization Support Guide

Monolingual Database Scenario

scenario has the advantage of fast response because the overhead associated with
character set conversion is avoided. Figure 2-3 shows a database server and a client
that use the same character set. The Japanese client and the server both use the
JAL16EUC character set.

Figure 2-3 Monolingual Database Scenario

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

You can also use a multitier architecture. Figure 2-4 shows an application server
between the database server and the client. The application server and the database
server use the same character set in a monolingual scenario. The server, the
application server, and the client use the JA16EUC character set.

Figure 2-4 Multitier Monolingual Database Scenario

Japanese
Server
(JA16EUC))
Application 'Ja
Server
(JA16EUC)

Character Set Conversion in a Monolingual Scenario

Character set conversion may be required in a client/server environment if a client
application resides on a different platform than the server and if the platforms do
not use the same character encoding schemes. Character data passed between client
and server must be converted between the two encoding schemes. Character
conversion occurs automatically and transparently through Oracle Net.

Choosing a Character Set 2-21

Monolingual Database Scenario

You can convert between any two character sets. Figure 2-5 shows a server and one
client with the JA16EUC Japanese character set. The other client uses the JA16SJIS
Japanese character set.

Figure 2-5 Character Set Conversion

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

Character
Conversion

Windows :IZ

(JA16SJIS)

When a target character set does not contain all of the characters in the source data,
replacement characters are used. If, for example, a server uses US7TASCII and a
German client uses WE8ISO8859P1, then the German character B3 is replaced with ?
and a is replaced with a.

Replacement characters may be defined for specific characters as part of a character
set definition. When a specific replacement character is not defined, a default
replacement character is used. To avoid the use of replacement characters when
converting from a client character set to a database character set, the server
character set should be a superset of all the client character sets.

Figure 2-6 shows that data loss occurs when the database character set does not
include all of the characters in the client character set. The database character set is
US7ASCII. The client’s character set is WEBMSWIN1252, and the language used by
the client is German. When the client inserts a string that contains 3, the database
replaces 3 with ?, resulting in lost data.

2-22 Oracle Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2-6 Data Loss During Character Conversion

American
Database

Server
(US7ASCII)

Character
Conversion

B

German :IZ

Windows
(WEBMSWIN1252)

If German data is expected to be stored on the server, then a database character set
that supports German characters should be used for both the server and the client
to avoid data loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set,
conversion can introduce noticeable overhead. Carefully evaluate your situation
and choose character sets to avoid conversion as much as possible.

Multilingual Database Scenarios

Multilingual support can be restricted or unrestricted. This section contains the
following topics:

« Restricted Multilingual Support
« Unrestricted Multilingual Support

Choosing a Character Set 2-23

Multilingual Database Scenarios

Restricted Multilingual Support

Some character sets support multiple languages because they have related writing
systems or scripts. For example, the WE8ISO8859P1 Oracle character set supports
the following Western European languages:

Catalan
Danish
Dutch
English
Finnish
French
German
Icelandic
Italian
Norwegian
Portuguese
Spanish
Swedish

These languages all use a Latin-based writing script.

When you use a character set that supports a group of languages, your database has
restricted multilingual support.

Figure 2-7 shows a Western European server that used the WE8ISO8850P1 Oracle
character set, a French client that uses the same character set as the server, and a
German client that uses the WEBDEC character set. The German client requires
character conversion because it is using a different character set than the server.

2-24 Oracle Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2-7 Restricted Multilingual Support

(WESISO8859P1)

Western
European
Server

Character
Conversion

French :IZ German :IZ

(WES8ISO8859P1) (WESDEC)

Unrestricted Multilingual Support

If you need unrestricted multilingual support, then use a universal character set
such as Unicode for the server database character set. Unicode has two major
encoding schemes:

UTF-16: Each character is either 2 or 4 bytes long.
UTF-8: Each character takes 1 to 4 bytes to store.

The database provides support for UTF-8 as a database character set and both
UTF-8 and UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character
set introduces very little overhead.

Conversion between UTF-8 and any multibyte character set has some overhead.
There is no data loss from conversion with the following exceptions:

Some multibyte character sets do not support user-defined characters during
character set conversion to and from UTF-8.

Some Unicode characters are mapped to more than character in another
character set. For example, one Unicode character is mapped to three characters

Choosing a Character Set 2-25

Multilingual Database Scenarios

in the JA16SJIS character set. This means that a round-trip conversion may not
result in the original JA16SJIS character.

Figure 2-8 shows a server that uses the AL32UTF8 Oracle character set that is based
on the Unicode UTF-8 character set.

Figure 2-8 Unrestricted Multilingual Support Scenario in a Client/Server
Configuration

=

French
Client
(WE8IS08859P1)

German
Client
(WE8DEC)

Character Character
Conversion Conversion

Unicode
Database
(AL32UTF8)

Character Character
Conversion Conversion

Japanese &2 Japanese &2
Client Client
(JA1BEUC) (JA16SJIS)

There are four clients:

= A French client that uses the WE8ISO8859P1 Oracle character set
» A German client that uses the WEBDEC character set

« Alapanese client that uses the JA1I6EUC character set

2-26 Oracle Database Globalization Support Guide

Multilingual Database Scenarios

« AlJapanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server, but there is no
data loss because AL32UTF8 is a universal character set. If the German client tries to
retrieve data from one of the Japanese clients, then all of the Japanese characters in
the data are lost during the character set conversion.

Figure 2-9 shows a Unicode solution for a multitier configuration.

Figure 2-9 Multitier Unrestricted Multilingual Support Scenario in a Multitier
Configuration

French
Client

Browser

German
Client

Unicode (UTF-8)
Database
(AL32UTF8)
Application I%
S

erver
(UTF-8)

°

o

o
o

H

Japanese
(UTF-8) Client

Browser

The database, the application server, and each client use the AL32UTF8 character
set. This eliminates the need for character conversion even though the clients are
French, German, and Japanese.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Choosing a Character Set 2-27

Multilingual Database Scenarios

2-28 Oracle Database Globalization Support Guide

3

Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the
following topics:

« Setting NLS Parameters

« Choosing a Locale with the NLS_LANG Environment Variable
« NLS Database Parameters

« Language and Territory Parameters

« Date and Time Parameters

« Calendar Definitions

« Numeric and List Parameters

« Monetary Parameters

« Linguistic Sort Parameters

» Character Set Conversion Parameter

« Length Semantics

Setting Up a Globalization Support Environment 3-1

Setting NLS Parameters

Setting NLS Parameters

NLS parameters determine the locale-specific behavior on both the client and the
server. NLS parameters can be specified in the following ways:

« Asinitialization parameters on the server

You can include parameters in the initialization parameter file to specify a
default session NLS environment. These settings have no effect on the client
side; they control only the server's behavior. For example:

NLS_TERRI TORY = "CZECH REPUBLI C'

« Asenvironment variables on the client

You can use NLS environment variables, which may be platform-dependent, to
specify locale-dependent behavior for the client and also to override the default
values set for the session in the initialization parameter file. For example, on a
UNIX system:

% setenv NLS_SORT FRENCH

« With the ALTER SESSI ONstatement

NLS parameters that are set in an ALTER SESSI ON statement can be used to
override the default values that are set for the session in the initialization
parameter file or set by the client with environment variables.

ALTER SESSI ON SET NLS_SORT = FRENCH

See Also: Oracle Database SQL Reference for more information
about the ALTER SESSI ON statement

« In SQL functions

NLS parameters can be used explicitly to hardcode NLS behavior within a SQL
function. This practice overrides the default values that are set for the session in
the initialization parameter file, set for the client with environment variables, or
set for the session by the ALTER SESSI ON statement. For example:

TO CHAR(hi redate, ' DD MON YYYY', 'nls_date_| anguage = FRENCH)

See Also: Oracle Database SQL Reference for more information
about SQL functions, including the TO_CHAR function

3-2 Oracle Database Globalization Support Guide

Setting NLS Parameters

Table 3-1 shows the precedence order of the different methods of setting NLS
parameters. Higher priority settings override lower priority settings. For example, a
default value has the lowest priority and can be overridden by any other method.

Table 3-1 Methods of Setting NLS Parameters and Their Priorities

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSI ON statement

3 Set as an environment variable

4 Specified in the initialization parameter file
5 Default

Table 3-2 lists the available NLS parameters. Because the SQL function NLS
parameters can be specified only with specific functions, the table does not show
the SQL function scope.

Table 3-2 NLS Parameters

Scope:

| = Initialization Parameter File
E = Environment Variable

Parameter Description Default A = ALTER SESSION

NLS_ CALENDAR Calendar system Gregorian I,E, A

NLS _COwP SQL, PL/SQL operator Bl NARY ILE A

comparison

NLS CREDI T Credit accounting symbol Derived from E
NLS TERRI TORY

NLS_CURRENCY Local currency symbol Derived from ILE A
NLS _TERRI TORY

NLS_DATE_FORNAT Date format Derived from I,E, A
NLS TERRI TORY

NLS DATE_LANGUAGE Language for day and Derived from ILE, A

month names

NLS DEBI T Debit accounting symbol

NLS LANGUAGE

Derived from
NLS_TERRI TORY

Setting Up a Globalization Support Environment

3-3

Setting NLS Parameters

Table 3-2 NLS Parameters (Cont.)

Parameter

Description

Default

Scope:

| = Initialization Parameter File
E = Environment Variable
A = ALTER SESSION

NLS_| SO CURRENCY

NLS LANG

See Also: "Choosing a
Locale with the NLS_LANG
Environment Variable" on

page 3-5
NLS_LANGUAGE

NLS_LENGTH_SENMANTI CS
NLS_LI ST_SEPARATCOR

NLS_MONETARY
CHARACTERS

NLS_NCHAR CONV_EXCP

NLS NUVERI C_
CHARACTERS

NLS_SORT

NLS_TERRI TORY

NLS_TI MESTAMP_FORVAT

NLS TI MESTAMP TZ_

FORVAT

NLS_DUAL_CURRENCY

ISO international currency

symbol

Language, territory,

character set

Language

How strings are treated

Character that separates

items in a list

Monetary symbol for
dollar and cents (or their

equivalents)

Reports data loss during a
character type conversion

Decimal character and

group separator

Character sort sequence

Territory

Timestamp

Timestamp with time zone

Dual currency symbol

Derived from
NLS_TERRI TORY

AVERI CAN_
AVERI CA.
US7ASCI |

Derived from
NLS_LANG

BYTE

Derived from
NLS_TERRI TORY

Derived from
NLS TERRI TORY

FALSE

Derived from
NLS_TERRI TORY

Derived from
NLS LANGUAGE

Derived from
NLS LANG

Derived from
NLS_TERRI TORY

Derived from
NLS_TERRI TORY

Derived from
NLS_TERRI TORY

ILE A

3-4 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

Choosing a Locale with the NLS_LANG Environment Variable

A locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANGenvironment parameter is the simplest way to
specify locale behavior for Oracle software. It sets the language and territory used
by the client application and the database server. It also sets the client’s character
set, which is the character set for data entered or displayed by a client program.

NLS_LANG:Is set as a local environment variable on UNIX platforms. NLS_LANGis
set in the registry on Windows platforms.

The NLS_LANG parameter has three components: language, territory, and character
set. Specify it in the following format, including the punctuation:

NLS _LANG = | anguage_territory. charset

For example, if the Oracle Installer does not populate NLS _LANG then its value by
default is AVERI CAN_AMERI CA. US7ASCI | . The language is AVERI CAN, the
territory is AMERI CA, and the character set is US7ASCI | .

Each component of the NLS_LANG parameter controls the operation of a subset of
globalization support features:

« language

Specifies conventions such as the language used for Oracle messages, sorting,
day names, and month names. Each supported language has a unique name; for
example, AVERI CAN, FRENCH, or GERVAN. The language argument specifies
default values for the territory and character set arguments. If the language is
not specified, then the value defaults to AVERI CAN.

« territory

Specifies conventions such as the default date, monetary, and numeric formats.
Each supported territory has a unique name; for example, AVERI CA, FRANCE,
or CANADA. If the territory is not specified, then the value is derived from the
language value.

« charset

Specifies the character set used by the client application (normally the Oracle
character set that corresponds to the user's terminal character set or the OS
character set). Each supported character set has a unique acronym, for example,
US7ASCI |, \E8I SC8859P1, WESDEC, WESIMBW N1252, or JA16EUC. Each
language has a default character set associated with it.

Setting Up a Globalization Support Environment 3-5

Choosing a Locale with the NLS_LANG Environment Variable

Note: All components of the NLS_LANGdefinition are optional;
any item that is not specified uses its default value. If you specify
territory or character set, then you must include the preceding
delimiter [underscore () for territory, period (.) for character set].
Otherwise, the value is parsed as a language name.

For example, to set only the territory portion of NLS_LANG, use the
following format: NLS_LANG=_JAPAN

The three components of NLS_LANGcan be specified in many combinations, as in
the following examples:

NLS_LANG = AMERI CAN_AMERI CA. VESIVBW N1252
NLS_LANG = FRENCH_CANADA. V\E8I SCB8859P1
NLS_LANG = JAPANESE_JAPAN. JA16EUC

Note that illogical combinations can be set but do not work properly. For example,
the following specification tries to support Japanese by using a Western European
character set:

NLS_LANG = JAPANESE_JAPAN. VIESI SO8859P1

Because the WE8ISO8859P1 character set does not support any Japanese characters,
you cannot store or display Japanese data if you use this definition for NLS _LANG
The rest of this section includes the following topics:

« Specifying the Value of NLS_LANG

« Overriding Language and Territory Specifications

« Locale Variants

See Also:

« Appendix A, "Locale Data" for a complete list of supported
languages, territories, and character sets

« Your operating system documentation for information about
additional globalization settings that may be necessary for your
platform

3-6 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

Specifying the Value of NLS _LANG

Set NLS_LANGas an environment variable. For example, in a UNIX operating
system C-shell session, you can specify the value of NLS_LANGDby entering a
statement similar to the following:

% setenv NLS_LANG FRENCH_FRANCE. VE8I SCB859P1
Because NLS LANG s an environment variable, it is read by the client application at

startup time. The client communicates the information defined by NLS_LANGto the
server when it connects to the database server.

The following examples show how date and number formats are affected by the
NLS_LANG parameter.

Example 3-1 Setting NLS_LANG to American_America.WE8ISO8859P1

Set NLS LANGso that the language is AVERI CAN, the territory is AVERI CA, and the
Oracle character set is WE8| SOB859P1.:

% setenv NLS_LANG Anerican_Aneri ca. WE8| SOB859P1

Enter a SELECT statement:
SQL> SELECT | ast_name, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see results similar to the following:

LAST_NAMVE H RE_DATE SALARY
Sciarra 30- SEP- 97 962.5
Ur man 07- MAR- 98 975
Popp 07- DEC 99 862.5

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANGso that the language is FRENCH, the territory is FRANCE, and the
Oracle character set is WE8I SOB859P1.:

% setenv NLS_LANG French_France. V8| SC8859P1

Then the query shown in Example 3-1 returns the following output:

LAST_NAME H RE_DAT SALARY
Sciarra 30/ 09/ 97 962, 5
Ur man 07/ 03/ 98 975

Setting Up a Globalization Support Environment 3-7

Choosing a Locale with the NLS_LANG Environment Variable

Popp 07/12/99 862, 5

Note that the date format and the number format have changed. The numbers have
not changed, because the underlying data is the same.

Overriding Language and Territory Specifications

The NLS_LANG parameter sets the language and territory environment used by
both the server session (for example, SQL command execution) and the client
application (for example, display formatting in Oracle tools). Using this parameter
ensures that the language environments of both the database and the client
application are automatically the same.

The language and territory components of the NLS LANG parameter determine the
default values for other detailed NLS parameters, such as date format, numeric
characters, and linguistic sorting. Each of these detailed parameters can be set in the
client environment to override the default values if the NLS_LANG parameter has
already been set.

If the NLS_LANG parameter is not set, then the server session environment remains
initialized with values of NLS_LANGUAGE, NLS_TERRRI TCRY, and other NLS
instance parameters from the initialization parameter file. You can modify these
parameters and restart the instance to change the defaults.

You might want to modify the NLS environment dynamically during the session. To
do so, you can use the ALTER SESSI ON statement to change NLS_LANGUAGE, NLS
TERRI TORY, and other NLS parameters.

Note: You cannot modify the setting for the client character set
with the ALTER SESSI ON statement.

The ALTER SESSI ON statement modifies only the session environment. The local
client NLS environment is not modified, unless the client explicitly retrieves the
new settings and modifies its local environment.

See Also:

« "Overriding Default Values for NLS_ LANGUAGE and NLS
TERRITORY During a Session" on page 3-18

« Oracle Database SQL Reference

3-8 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

Locale Variants

Before Oracle Database 10g Release 1 (10.1), Oracle defined language and territory
definitions separately. This resulted in the definition of a territory being
independent of the language setting of the user. In Oracle Database 10g Release 1
(10.1), some territories can have different date, time, number, and monetary formats
based on the language setting of a user. This type of language-dependent territory
definition is called a locale variant.

For the variant to work properly, both NLS_TERRI TORY and NLS_L ANGUAGE must
be specified. For example, if NLS_LANGUAGE is specified as DUTCHand NLS_
TERRI TORY is not set, then the territory behavior is THE NETHERLANDS. If NLS
TERRI TORY is set to BELA UMand NLS_LANGUACE is not set or it is set to DUTCH,
then date, time, number, and monetary formats are based on DUTCH behavior. By
contrast, if NLS_TERRI TORY is set to BELA UMand NLS_LANGUAGE is set to
FRENCH, then date, time, number, and monetary formats are based on FRENCH
behavior.

Table 3-3 shows the territories that have been enhanced to support variations.
Default territory behaviors are noted. They occur when NLS_LANGUAGE is not
specified.

Table 3-3 Oracle Locale Variants

Oracle Territory Oracle Language
BELG UM DUTCH (default)
BELG UM FRENCH

BELGE UM GERMVAN

CANADA FRENCH (default)
CANADA ENGLI SH

DJI BOUTI FRENCH (default)
DJl BOUTI ARABI C

FI NLAND FI NLAND (default)
FI NLAND SWEDI SH

HONG KONG TRADI TI ONAL CHI NESE (default)
HONG KONG ENGLI SH

I NDI A ENGLI SH (default)

Setting Up a Globalization Support Environment 3-9

Choosing a Locale with the NLS_LANG Environment Variable

Table 3-3 Oracle Locale Variants (Cont.)

Oracle Territory Oracle Language
I NDI A ASSAMESE

I NDI A BANGLA

I NDI A GUIJARATI

I NDI A HI NDI

I NDI A KANNADA

I NDI A MALAYALAM

I NDI A MARATHI

I NDI A ORI YA

I NDI A PUNJ ABI

I NDI A TAM L

I NDI A TELUGU
LUXEMBOURG GERVAN (default)
LUXEMBOURG FRENCH

S| NGAPORE ENGLI SH (default)
S| NGAPORE MALAY

S| NGAPORE SI MPLI FI ED CHI NESE
SI NGAPORE TAM L

SW TZERLAND GERMAN (default)
SW TZERLAND FRENCH

SW TZERLAND | TALI AN

Should the NLS_LANG Setting Match the Database Character Set?

The NLS_LANGcharacter set should reflect the setting of the operating system
character set of the client. For example, if the database character set is AL32UTF8
and the client is running on a Windows operating system, then you should not set
AL32UTF8 as the client character set in the NLS_LANG parameter because there are
no UTF-8 WIN32 clients. Instead the NLS _LANGsetting should reflect the code page
of the client. For example, on an English Windows client, the code page is 1252. An
appropriate setting for NLS_LANGis AMERI CAN_AVMERI CA. WESVBW N1252.

3-10 Oracle Database Globalization Support Guide

NLS Database Parameters

Setting NLS_LANG correctly allows proper conversion from the client operating
system character set to the database character set. When these settings are the same,
Oracle assumes that the data being sent or received is encoded in the same
character set as the database character set, so no validation or conversion is
performed. This can lead to corrupt data if the client code page and the database
character set are different and conversions are necessary.

See Also: Oracle Database Installation Guide for Windows for more
information about commonly used values of the NLS_LANG
parameter in Windows

NLS Database Parameters

When a new database is created during the execution of the CREATE DATABASE
statement, the NLS-related database configuration is established. The current NLS
instance parameters are stored in the data dictionary along with the database and
national character sets. The NLS instance parameters are read from the initialization
parameter file at instance startup.

You can find the values for NLS parameters by using:
« NLS Data Dictionary Views

« NLS Dynamic Performance Views

« OCINIsGetlInfo() Function

NLS Data Dictionary Views

Applications can check the session, instance, and database NLS parameters by
guerying the following data dictionary views:

« NLS_SESSI ON_PARANMETERS shows the NLS parameters and their values for
the session that is querying the view. It does not show information about the
character set.

« NLS_ | NSTANCE PARAMETERS shows the current NLS instance parameters that
have been explicitly set and the values of the NLS instance parameters.

« NLS DATABASE PARAMETERS shows the values of the NLS parameters for the
database. The values are stored in the database.

NLS Dynamic Performance Views
Applications can check the following NLS dynamic performance views:

Setting Up a Globalization Support Environment 3-11

Language and Territory Parameters

« VSNLS _VALI D_VALUES lists values for the following NLS parameters: NLS
LANGUAGE, NLS_SORT, NLS_TERRI TORY, NLS_ CHARACTERSET

« VSNLS_PARAMETERS shows current values of the following NLS parameters:
NLS_CALENDAR, NLS_CHARACTERSET, NLS_CURRENCY, NLS_DATE_FORNVAT,
NLS_DATE_LANGUAGE, NLS | SO _CURRENCY, NLS_LANGUAGE, NLS _

NUMERI C_CHARACTERS, NLS_SORT, NLS_TERRI TORY, NLS_NCHAR _
CHARACTERSET, NLS_COWP, NLS_LENGTH_SEMANTI CS, NLS_NCHAR_CONV_
EXP, NLS_TI MESTAMP_FORMAT, NLS_TI MESTAMP_TZ_FORMAT, NLS_TI ME_
FORMAT, NLS_TI ME_TZ_FORNMAT

See Also: Oracle Database Reference

OCINIsGetInfo() Function

User applications can query client NLS settings with the OCl Nl sGet | nf o()
function.

See Also: "Getting Locale Information in OCI" on page 10-3 for
the description of OCI NIl sGet | nf o()

Language and Territory Parameters

This section contains information about the following parameters:
« NLS_LANGUAGE
« NLS_TERRITORY

NLS_LANGUAGE

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSI| ON
Default value Derived from NLS_LANG

Range of values Any valid language name

NLS LANGUAGE specifies the default conventions for the following session
characteristics:

3-12 Oracle Database Globalization Support Guide

Language and Territory Parameters

. Language for server messages

« Language for day and month names and their abbreviations (specified in the
SQL functions TO_CHARand TO_DATE)

« Symbols for equivalents of AM, PM, AD, and BC. (A.M., PM., A.D., and B.C.
are valid only if NLS_LANGUAGE is set to AVERI CAN.)

« Default sorting sequence for character data when ORDER BY is specified.
(GROUP BY uses a binary sort unless ORDER BY is specified.)

« Writing direction
« Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS LANGUAGE in the initialization parameter file is the
default for all sessions in that instance. For example, to specify the default session
language as French, the parameter should be set as follows:

NLS_LANGUAGE = FRENCH

Consider the following server message:
ORA-00942: table or view does not exist

When the language is French, the server message appears as follows:

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the
$ORACLE_HOVE/ pr oduct _nane/ nesg directory, or the equivalent for your
operating system. Multiple versions of these files can exist, one for each supported
language, using the following filename convention:

<product _i d><| anguage_abbr ev>. M5B

For example, the file containing the server messages in French is called or af . nsb,
because ORA is the product ID (<pr oduct _i d>) and F is the language abbreviation
(<I anguage_abbr ev>) for French. The pr oduct _nane isr dbns, soitisin the
$ORACLE_HOVE/ r dbns/ nesg directory.

If NLS_LANGis specified in the client environment, then the value of NLS_
LANGUACGE in the initialization parameter file is overridden at connection time.

Messages are stored in these files in one specific character set, depending on the
language and the operating system. If this character set is different from the
database character set, then message text is automatically converted to the database
character set. If necessary, it is then converted to the client character set if the client

Setting Up a Globalization Support Environment 3-13

Language and Territory Parameters

character set is different from the database character set. Hence, messages are
displayed correctly at the user's terminal, subject to the limitations of character set
conversion.

The language-specific binary message files that are actually installed depend on the
languages that the user specifies during product installation. Only the English
binary message file and the language-specific binary message files specified by the
user are installed.

The default value of NLS_LANGUAGE may be specific to the operating system. You
can alter the NLS_LANGUAGE parameter by changing its value in the initialization
parameter file and then restarting the instance.

See Also: Your operating system-specific Oracle documentation
for more information about the default value of NLS_LANGUAGE

All messages and text should be in the same language. For example, when you run
an Oracle Developer application, the messages and boilerplate text that you see
originate from three sources:

« Messages from the server
« Messages and boilerplate text generated by Oracle Forms
« Messages and boilerplate text generated by the application

NLS LANGUACE determines the language used for the first two kinds of text. The
application is responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NLS_LANGUAGE to
different values.

Example 3-3 NLS_LANGUAGE=ITALIAN
Use the ALTER SESSI ONstatement to set NLS LANGUAGE to Italian:

ALTER SESSI ON SET NLS_LANGUAGE=I tal i an;

Enter a SELECT statement:
SQL> SELECT | ast_name, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see results similar to the following:
LAST_NAMVE H RE_DATE SALARY

Sciarra 30- SET- 97 962.5

3-14 Oracle Database Globalization Support Guide

Language and Territory Parameters

Ur man 07- MAR- 98 975
Popp 07-DI G- 99 862.5

Note that the month name abbreviations are in Italian.

See Also: "Overriding Default Values for NLS_ LANGUAGE and
NLS_TERRITORY During a Session" on page 3-18 for more
information about using the ALTER SESSI ON statement

Example 3-4 NLS_LANGUAGE=GERMAN
Use the ALTER SESSI ON statement to change the language to German:

SQL> ALTER SESSI ON SET NLS_LANGUAGE=Ger nan;

Enter the same SELECT statement:
SQL> SELECT | ast_name, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see results similar to the following:

LAST_NAME H RE_DATE SALARY
Sciarra 30- SEP- 97 962.5
Ur man 07- MAR- 98 975
Popp 07- DEZ- 99 862. 5

Note that the language of the month abbreviations has changed.

NLS_TERRITORY

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSI| ON
Default value Derived from NLS_LANG

Range of values Any valid territory name

NLS_ TERRI TORY specifies the conventions for the following default date and
numeric formatting characteristics:

« Date format

Setting Up a Globalization Support Environment 3-15

Language and Territory Parameters

« Decimal character and group separator
« Local currency symbol

« ISO currency symbol

« Dual currency symbol

« First day of the week

« Credit and debit symbols

« ISO week flag

« List separator

The value specified for NLS_TERRI TORY in the initialization parameter file is the
default for the instance. For example, to specify the default as France, the parameter
should be set as follows:

NLS_TERRI TORY = FRANCE
When the territory is FRANCE, numbers are formatted using a comma as the
decimal character.

You can alter the NLS_TERRI TORY parameter by changing the value in the
initialization parameter file and then restarting the instance. The default value of
NLS_ TERRI TORY can be specific to the operating system.

If NLS_LANGi s specified in the client environment, then the value of NLS
TERRI TORY in the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS TERRI TORY value in an ALTER SESSI ON statement. Modifying NLS

TERRI TORY resets all derived NLS session parameters to default values for the new
territory.

To change the territory to France during a session, issue the following ALTER
SESSI ON statement:

ALTER SESSI ON SET NLS_TERRI TCRY = France;

The following examples show behavior that results from different settings of NLS_
TERRI TORY and NLS_LANGUAGE.

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA
Enter the following SELECT statement:

SQL> SELECT TO CHAR(sal ary,'L99®99D99') sal ary FROM enpl oyees;

3-16 Oracle Database Globalization Support Guide

Language and Territory Parameters

When NLS_TERRI TORY is set to AVERI CAand NLS LANGUAGE is set to AVERI CAN,
results similar to the following should appear:

$24, 000. 00
$17, 000. 00
$17, 000. 00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSI ON statement to change the territory to Germany:

ALTER SESSI ON SET NLS_TERRI TORY = Ger nany;

Session al tered.

Enter the same SELECT statement as before:

SQL> SELECT TO CHAR(sal ary,'L99®99D99') sal ary FROM enpl oyees;

You should see results similar to the following:

€24. 000, 00
€17. 000, 00
€17. 000, 00

Note that the currency symbol has changed from $ to €. The numbers have not
changed because the underlying data is the same.

See Also: "Overriding Default Values for NLS_ LANGUAGE and
NLS_TERRITORY During a Session" on page 3-18 for more
information about using the ALTER SESSI ON statement

Example 3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSI ON statement to change the language to German:

ALTER SESSI ON SET NLS_LANGUAGE = German;
Sitzung wurde geédndert.

Note that the server message now appears in German.

Enter the same SELECT statement as before:

Setting Up a Globalization Support Environment 3-17

Language and Territory Parameters

SQL> SELECT TO CHAR(sal ary,'L99(999D99') sal ary FROM enpl oyees;

You should see the same results as in Example 3-6:

€24. 000, 00
€17. 000, 00
€17. 000, 00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA
Use an ALTER SESSI ON statement to change the territory to America:

ALTER SESSI ON SET NLS_TERRI TORY = Anmeri ca;

Sitzung wurde geéndert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO CHAR(sal ary,'L99®99D99') sal ary FROM enpl oyees;

You should see output similar to the following:

$24, 000. 00
$17, 000. 00
$17, 000. 00

Note that the currency symbol changed from € to $ because the territory changed
from Germany to America.

Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session

Default values for NLS_LANGUACE and NLS_TERRI TORY and default values for
specific formatting parameters can be overridden during a session by using the
ALTER SESSI ON statement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WESDEC

Set the NLS_LANGenvironment variable so that the language is Italian, the territory
is Italy, and the character set is WESDEC:

% setenv NLS LANG Italian_Italy. WEBDEC

Enter a SELECT statement:

3-18 Oracle Database Globalization Support Guide

Language and Territory Parameters

SQL> SELECT | ast_name, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see output similar to the following:

LAST_NAME HI RE_DATE SALARY
Sciarra 30- SET- 97 962, 5
Ur man 07- MAR- 98 975
Popp 07-DI G99 862, 5

Note the language of the month abbreviations and the decimal character.

Example 3-10 Change Language, Date Format, and Decimal Character
Use ALTER SESSI ON statements to change the language, the date format, and the

decimal character:
SQL> ALTER SESSI ON SET NLS_LANGUAGE=ger nan;

Session wurde gedndert.
SQ> ALTER SESSI ON SET NLS_DATE_FORVAT=' DD. MON. YY" ;
Session wurde geédndert.
SQL> ALTER SESSI ON SET NLS_NUMERI C_CHARACTERS='.,"';
Sessi on wurde geéndert.

Enter the SELECT statement shown in Example 3-9:

SQL> SELECT | ast_nane, hire_date, ROUND(sal ary/8,2) salary FROM enpl oyees;

You should see output similar to the following:

LAST_NAME HI RE_DATE SALARY
Sciarra 30. SEP. 97 962.5
Ur man 07. MAR 98 975
Popp 07. DEZ. 99 862.5

Note that the language of the month abbreviations is German and the decimal

character is a period.

The behavior of the NLS_LANGenvironment variable implicitly determines the
language environment of the database for each session. When a session connects to

Setting Up a Globalization Support Environment 3-19

Date and Time Parameters

a database, an ALTER SESSI ON statement is automatically executed to set the
values of the database parameters NLS _LANGUAGE and NLS_TERRI TORY to those
specified by the | anguage andt errit ory arguments of NLS_LANG If NLS_LANG
is not defined, then no implicit ALTER SESSI ON statement is executed.

When NLS_LANG s defined, the implicit ALTER SESSI ON is executed for all
instances to which the session connects, for both direct and indirect connections. If
the values of NLS parameters are changed explicitly with ALTER SESSI ON during a
session, then the changes are propagated to all instances to which that user session
is connected.

Date and Time Parameters

Date Formats

Oracle enables you to control the display of date and time. This section contains the
following topics:

« Date Formats

« Time Formats

Different date formats are shown in Table 3—4.

Table 3-4 Date Formats

Country Description Example
Estonia dd.mm.yyyy 28.02.2003
Germany dd-mm-rr 28-02-03
Japan rr-mm-dd 03-02-28
UK dd-mon-rr 28-Feb-03
us dd-mon-rr 28-Feb-03

This section includes the following parameters:
« NLS_DATE_FORMAT
« NLS_DATE_LANGUAGE

3-20 Oracle Database Globalization Support Guide

Date and Time Parameters

NLS_DATE_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSI ON

Default value Derived from NLS_TERRI TORY

Range of values Any valid date format mask

The NLS_DATE_FORMAT parameter defines the default date format to use with the
TO_CHARand TO_DATE functions. The NLS_TERRI TORY parameter determines the
default value of NLS_DATE_FORVAT. The value of NLS_DATE_FORMAT can be any
valid date format mask. For example:

NLS DATE _FORMAT = "MMV DDY YYYY"
To add string literals to the date format, enclose the string literal with double

guotes. Note that when double quotes are included in the date format, the entire
value must be enclosed by single quotes. For example:

NLS_DATE_FORMAT = '"Date: "MV DD/ YYYY

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include
the following line in the initialization parameter file:

NLS_DATE _FORMAT = "DD RM YYYY"

Enter the following SELECT statement:
SELECT TO_CHAR(SYSDATE) currdate FROM dual ;

You should see the following output if today’s date is February 12, 1997:

12 11 1997

The value of NLS_DATE_FORMAT is stored in the internal date format. Each format
element occupies two bytes, and each string occupies the number of bytes in the
string plus a terminator byte. Also, the entire format mask has a two-byte

Setting Up a Globalization Support Environment 3-21

Date and Time Parameters

terminator. For example, "MM/DD/YY" occupies 14 bytes internally because there
are three format elements (month, day, and year), two 3-byte strings (the two
slashes), and the two-byte terminator for the format mask. The format for the value
of NLS_DATE_FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by:

« Changing its value in the initialization parameter file and then restarting the
instance

« Usingan ALTER SESSI ONSET NLS _DATE_FORMAT statement

See Also: Oracle Database SQL Reference for more information
about date format elements and the ALTER SESSI ON statement

If a table or index is partitioned on a date column, and if the date format specified
by NLS_DATE_FORMAT does not specify the first two digits of the year, then you
must use the TO_DATE function with a 4-character format mask for the year.

For example:
TO DATE(' 11-j an-1997', 'dd-non-yyyy')

See Also: Oracle Database SQL Reference for more information
about partitioning tables and indexes and using TO_DATE

NLS_DATE_LANGUAGE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Default value Derived from NLS_LANGUAGE

Range of values Any valid language name

The NLS_DATE_LANGUAGE parameter specifies the language for the day and month
names produced by the TO CHARand TO _DATE functions. NLS_DATE LANGUAGE
overrides the language that is specified implicitly by NLS LANGUAGE. NLS DATE _
LANGUAGE has the same syntax as the NLS LANGUAGE parameter, and all
supported languages are valid values.

3-22 Oracle Database Globalization Support Guide

Date and Time Parameters

NLS DATE LANGUAGE also determines the language used for:

« Month and day abbreviations returned by the TO CHARand TO_DATE
functions

« Month and day abbreviations used by the default date format (NLS_DATE _
FORNAT)

« Abbreviations for AM, PM, AD, and BC

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names
Set the date language to French:

ALTER SESSI ON SET NLS_DATE_LANGUAGE = FRENCH

Enter a SELECT statement:
SELECT TO CHAR(SYSDATE, 'Day:Dd Mnth yyyy') FROM dual ;

You should see output similar to the following:
TO_CHAR(SYSDATE, ' DAY: DDMONTHYYYY')

Vendredi : 07 Décembre 2001

When numbers are spelled in words using the TO_CHAR function, the English
spelling is always used. For example, enter the following SELECT statement:
SQL> SELECT TO CHAR(TO DATE(' 12- Cct-2001'), " Day: ddspth Month') FROM dual ;

You should see output similar to the following:
TO_CHAR(TO_DATE(' 12- OCT-2001"), ' DAY: DDSPTHVONTH)

Vendredi: twelfth Cctobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS DATE _LANGUAGE. Enter the
following SELECT statement:

SELECT TO CHAR(SYSDATE, 'Dy:dd Mn yyyy') FROM dual;

You should see output similar to the following:
TO_CHAR(SYSDATE, ' DY: DDMO

Setting Up a Globalization Support Environment 3-23

Date and Time Parameters

Ve: 07 Dec 2001

Example 3-14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS DATE _
LANGUAGCE. For example, if the default date format is DD- MON- YYYY, then insert a
date as follows:

I NSERT I NTO tabl enanme VALUES (' 12-Fév-1997');

See Also: Oracle Database SQL Reference

Time Formats
Different time formats are shown in Table 3-5.

Table 3-5 Time Formats

Country Description Example
Estonia hh24:mi:ss 13:50:23
Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

(O8] hh:mi:ssxff am 1:50:23.555 PM

This section contains information about the following parameters:
« NLS_TIMESTAMP_FORMAT
« NLS_TIMESTAMP_TZ_FORMAT

See Also: Chapter 4, "Datetime Datatypes and Time Zone
Support”

NLS_TIMESTAMP_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSI ON

Default value Derived from NLS_TERRI TORY

3-24 Oracle Database Globalization Support Guide

Date and Time Parameters

Property Description

Range of values Any valid datetime format mask

NLS_TI MESTAMP_FORNMAT defines the default date format for the TI MESTAMP and
TI MESTAMP W TH LOCAL TI ME ZONE datatypes. The following example shows a
value for NLS Tl MESTAMP_FORMAT:

NLS_TI MESTAMP_FORMAT = " YYYY-MW DD HH M : SS. FF

Example 3-15 Timestamp Format
SQL> SELECT TO TI MESTAMP(' 11- nov-2000 01:00: 00. 336", 'dd-non-yyyy hh:m:ss.ff")

FROM dual ;
You should see output similar to the following:
TO_TI MESTAMP(' 11- NOV-200001: 00: 00. 336" , ' DD- MON- YYYYHH: M : SS. FF')

11-NOv-00 01:00: 00. 336000000

You can specify the value of NLS_TI MESTAMP_FORMAT by setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

You can also alter the value of NLS_TI MESTAMP_FORVMAT by:

» Changing its value in the initialization parameter file and then restarting the
instance

« Using the ALTERSESSI ONSET NLS Tl MESTAMP_FCRVAT statement
See Also: Oracle Database SQL Reference for more information

about the TO_TI MESTAMP function and the ALTER SESSI ON
statement

NLS_TIMESTAMP_TZ_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSI ON

Default value Derived from NLS_TERRI TORY

Setting Up a Globalization Support Environment 3-25

Date and Time Parameters

Property Description

Range of values Any valid datetime format mask

NLS Tl MESTAMP_TZ FORMAT defines the default date format for the TI MESTAMP
and TI MESTAMP W TH LOCAL Tl ME ZONE datatypes. It is used with the TO_
CHARand TO_TI MESTAMP_TZ functions.

You can specify the value of NLS TI MESTAMP_TZ FORMAT by setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT
The format value must be surrounded by quotation marks. For example:

NLS_TI MESTAMP_TZ_FORVAT = " YYYY-MM DD HH M : SS. FF TZH TZM
The following example of the TO_TI MESTAMP_TZ function uses the format value
that was specified for NLS_TI MESTAMP_TZ_FORVAT:

SQL> SELECT TO_TI MESTAMP_TZ(' 2000- 08-20, 05:00: 00.55 Americal/Los_Angel es',
"yyyy-mmdd hh:m:ss.ff TZR) FROM dual ;

You should see output similar to the following:
TO_TI MESTAVMP_TZ(' 2000- 08- 20, 05: 00: 00. 55AMERI CA/ LOS_ANGELES', ' YYYY- M\ DDHH: M

20- AUG 00 05: 00: 00. 550000000 AM ANMERI CA/ LOS_ANGELES

You can change the value of NLS_TI MESTAMP_TZ_ FORMAT by:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using the ALTER SESSI ON statement.

3-26 Oracle Database Globalization Support Guide

Calendar Definitions

Calendar Definitions

See Also:

This section includes the following topics:

Calendar Formats

Oracle Database SQL Reference for more information about the
TO_TI MESTAMP_TZ function and the ALTER SESSI ON
statement

"Choosing a Time Zone File" on page 4-20 for more information

about time zones

Calendar Formats
NLS CALENDAR

The following calendar information is stored for each territory:

First Day of the Week

First Calendar Week of the Year

Number of Days and Months in a Year

First Year of Era

First Day of the Week

Some cultures consider Sunday to be the first day of the week. Others consider
Monday to be the first day of the week. A German calendar starts with Monday, as

shown in Table 3-6.

Table 3-6 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So
- - - - - - 1
2 3 4 5 6 7 8
9 10 1 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

Setting Up a Globalization Support Environment 3-27

Calendar Definitions

Table 3-6 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So

30 3 - - - - -

The first day of the week is determined by the NLS TERRI TORY parameter.

See Also: "NLS_TERRITORY" on page 3-15

First Calendar Week of the Year

Some countries use week numbers for scheduling, planning, and bookkeeping.
Oracle supports this convention. In the 1SO standard, the week number can be
different from the week number of the calendar year. For example, 1st Jan 1988 is in
ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on
a Sunday.

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the ISO week that
includes January 1 is the last week of the previous year, because most of the
days in the week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the 1ISO
week is the first week of the new year, because most of the days in the week
belong to the new year.

To support the ISO standard, Oracle provides the IW date format element. It returns
the ISO week number.

Table 3—-7 shows an example in which January 1 occurs in a week that has four or
more days in the first calendar week of the year. The week containing January 1 is
the first ISO week of 1998.

Table 3—-7 First ISO Week of the Year: Example 1, January 1998

Mo Tu Wwe Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 11 Second 1SO week of 1998
12 13 14 15 16 17 18 Third 1SO week of 1998
19 20 21 22 23 24 25 Fourth ISO week of 1998
26 27 28 29 30 31 - Fifth 1SO week of 1998

3-28 Oracle Database Globalization Support Guide

Calendar Definitions

Table 3-8 shows an example in which January 1 occurs in a week that has three or
fewer days in the first calendar week of the year. The week containing January 1 is
the 53rd 1SO week of 1998, and the following week is the first ISO week of 1999.

Table 3-8 First ISO Week of the Year: Example 2, January 1999

Mo Tu We Th Fr Sa Su ISO Week

- - - - 1 2 3 Fifty-third 1ISO week of 1998
4 5 6 7 8 9 10 First ISO week of 1999

11 12 13 14 15 16 17 Second ISO week of 1999

18 19 20 21 22 23 24 Third ISO week of 1999

25 26 27 28 29 30 31 Fourth ISO week of 1999

The first calendar week of the year is determined by the NLS_TERRI TORY
parameter.

See Also: "NLS_TERRITORY" on page 3-15

Number of Days and Months in a Year
Oracle supports six calendar systems in addition to Gregorian, the default:

« Japanese Imperial—uses the same number of months and days as Gregorian,
but the year starts with the beginning of each Imperial Era

« ROC Official—uses the same number of months and days as Gregorian, but the
year starts with the founding of the Republic of China

« Persian—has 31 days for each of the first six months. The next five months have
30 days each. The last month has either 29 days or 30 days (leap year).

« Thai Buddha—uses a Buddhist calendar

« Arabic Hijrah—has 12 months with 354 or 355 days

« English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS CALENDAR parameter.

See Also: "NLS_CALENDAR" on page 3-30

First Year of Era
The Islamic calendar starts from the year of the Hegira.

Setting Up a Globalization Support Environment 3-29

Calendar Definitions

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For
example, 1998 is the tenth year of the Heisei era. It should be noted, however, that
the Gregorian system is also widely understood in Japan, so both 98 and Heisei 10
can be used to represent 1998.

NLS_CALENDAR

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Default value Gregorian

Range of values Any valid calendar format name

Many different calendar systems are in use throughout the world. NLS_CALENDAR
specifies which calendar system Oracle uses.

NLS_ CALENDAR can have one of the following values:

Arabic Hijrah
English Hijrah
Gregorian
Japanese Imperial
Persian
ROC Official (Republic of China)
Thai Buddha
See Also: Appendix A, "Locale Data" for a list of calendar

systems, their default date formats, and the character sets in which
dates are displayed

Example 3-17 NLS_CALENDAR='English Hijrah’
Set NLS CALENDARto English Hijrah.
SQ> ALTER SESSI ON SET NLS_CALENDAR='English Hjrah’;

Enter a SELECT statement to display SYSDATE:

3-30 Oracle Database Globalization Support Guide

Numeric and List Parameters

SELECT SYSDATE FROM dual ;

You should see output similar to the following:
SYSDATE

24 Ramadan 1422

Numeric and List Parameters
This section includes the following topics:
= Numeric Formats
« NLS_NUMERIC_CHARACTERS
« NLS_LIST_SEPARATOR

Numeric Formats

The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know
whether numbers are entered with a period or a comma as the decimal character
(234.00 or 234,00). Similarly, applications must be able to display numeric
information in the format expected at the client site.

Examples of numeric formats are shown in Table 3-9.

Table 3-9 Examples of Numeric Formats

Country Numeric Formats
Estonia 1234 567,89
Germany 1.234.567,89
Japan 1,234,567.89
UK 1,234,567.89
us 1,234,567.89

Numeric formats are derived from the setting of the NLS_TERRI TORY parameter,
but they can be overridden by the NLS NUMERI C_CHARACTERS parameter.

See Also: "NLS_TERRITORY" on page 3-15

Setting Up a Globalization Support Environment 3-31

Numeric and List Parameters

NLS_NUMERIC_CHARACTERS

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Default value Default decimal character and group separator for a particular
territory

Range of values Any two valid numeric characters

This parameter specifies the decimal character and group separator. The group
separator is the character that separates integer groups to show thousands and
millions, for example. The group separator is the character returned by the G
number format mask. The decimal character separates the integer and decimal parts
of a number. Setting NLS_NUMERI C_CHARACTERS overrides the values derived
from the setting of NLS_TERRI TORY.

Any character can be the decimal character or group separator. The two characters
specified must be single-byte, and the characters must be different from each other.
The characters cannot be any numeric character or any of the following characters:
plus (+), hyphen (-), less than sign (<), greater than sign (>). Either character can be
a space.

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period,
define NLS _NUMERI C_CHARACTERS as follows:

ALTER SESSI ON SET NLS_NUMERI C_CHARACTERS = ", .";

SQL statements can include numbers represented as numeric or text literals.
Numeric literals are not enclosed in quotes. They are part of the SQL language
syntax and always use a dot as the decimal character and never contain a group

separator. Text literals are enclosed in single quotes. They are implicitly or explicitly
converted to numbers, if required, according to the current NLS settings.

The following SELECT statement formats the number 4000 with the decimal
character and group separator specified in the ALTER SESSI ON statement:

SELECT TO CHAR(4000, '9(999D99') FROM dual ;

You should see output similar to the following:

3-32 Oracle Database Globalization Support Guide

Monetary Parameters

4,000, 00

You can change the default value of NLS_NUMERI C_CHARACTERS by:

« Changing the value of NLS_NUMERI C_CHARACTERS in the initialization
parameter file and then restart the instance

« Using the ALTER SESSI ON statement to change the parameter's value during a
session

See Also: Oracle Database SQL Reference for more information
about the ALTER SESSI ONstatement

NLS_LIST_SEPARATOR

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRI TORY
Range of values Any valid character

NLS LI ST_SEPARATOR specifies the character to use to separate values in a list of
values (usually , or. or; or:).Its default value is derived from the value of NLS_
TERRI TORY. For example, a list of numbers from 1 to 5 can be expressed as 1,2,3,4,5
or1.2.3.450r1;2;3;4;5 or 1:2:3:4:5.

The character specified must be single-byte and cannot be the same as either the
numeric or monetary decimal character, any numeric character, or any of the
following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),
period (.).

Monetary Parameters
This section includes the following topics:
« Currency Formats
« NLS_CURRENCY

Setting Up a Globalization Support Environment 3-33

Monetary Parameters

« NLS_ISO_CURRENCY

« NLS_DUAL_CURRENCY

« NLS_MONETARY_CHARACTERS
« NLS_CREDIT

« NLS_DEBIT

Currency Formats

Different currency formats are used throughout the world. Some typical ones are
shown in Table 3-10.

Table 3-10 Currency Format Examples

Country Example
Estonia 1 234,56 kr
Germany 1.234,56€
Japan ¥1,234.56
UK £1,234.56
us $1,234.56

NLS_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Default value Derived from NLS_TERRI TORY

Range of values Any valid currency symbol string

NLS CURRENCY specifies the character string returned by the L number format
mask, the local currency symbol. Setting NLS CURRENCY overrides the setting
defined implicitly by NLS TERRI TORY.

3-34 Oracle Database Globalization Support Guide

Monetary Parameters

Example 3-19 Displaying the Local Currency Symbol
Connect to the sample order entry schema:

SQL> connect oe/ oe
Connect ed.

Enter a SELECT statement similar to the following:

SQL> SELECT TO CHAR(order_total, 'L099(999D99') "total" FROM orders
WHERE order _id > 2450;

You should see output similar to the following:

$078, 279.
$006, 653.
$014, 087.
$010, 474.
$012, 589.
$000, 129.
$003, 878.
$021, 586.

You can change the default value of NLS_CURRENCY by:

« Changing its value in the initialization parameter file and then restarting the

instance

« Using an ALTER SESSI ON statement

See Also:

NLS_ISO_CURRENCY

Oracle Database SQL Reference for more information
about the ALTER SESSI ON statement

Property

Description

Parameter type

Parameter scope

Default value

Range of values

String

Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Derived from NLS_TERRI TORY
Any valid string

Setting Up a Globalization Support Environment 3-35

Monetary Parameters

NLS_| SO_CURRENCY specifies the character string returned by the C number
format mask, the ISO currency symbol. Setting NLS | SO_CURRENCY overrides the
value defined implicitly by NLS_TERRI TORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer
to US dollars or Australian dollars. ISO specifications define unique currency
symbols for specific territories or countries. For example, the 1ISO currency symbol
for the US dollar is USD. The ISO currency symbol for the Australian dollar is AUD.

More ISO currency symbols are shown in Table 3-11.

Table 3-11 ISO Currency Examples

Country Example
Estonia 1234 567,89 EEK
Germany 1.234.567,89 EUR
Japan 1,234,567.89 JPY
UK 1,234,567.89 GBP
usS 1,234,567.89 USD

NLS | SO _CURRENCY has the same syntax as the NLS_TERRI TORY parameter, and
all supported territories are valid values.

Example 3-20 Setting NLS_ISO_CURRENCY

This example assumes that you are connected as oe/ oe in the sample schema.

To specify the 1ISO currency symbol for France, set NLS_| SO_CURRENCY as follows:
ALTER SESSI ON SET NLS_| SO CURRENCY = FRANCE;

Enter a SELECT statement:

SQL> SELECT TO CHAR(order _total, 'C099®399D99') "TOTAL" FROM orders
WHERE custoner _id = 146;

You should see output similar to the following:

EUR017, 848. 20
EUR027, 455. 30
EUR029, 249. 10
EUR013, 824. 00

3-36 Oracle Database Globalization Support Guide

Monetary Parameters

EUR000, 086. 00

You can change the default value of NLS_| SO _CURRENCY by:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using an ALTER SESSI ON statement

See Also: Oracle Database SQL Reference for more information
about the ALTER SESSI ON statement

NLS_DUAL_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environmental variable, ALTER
SESSI ON, and SQL functions

Default value Derived from NLS_TERRI TORY

Range of values Any valid symbol

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined
implicitly by NLS_TERRI TCORY.

NLS_DUAL_CURRENCY was introduced to support the euro currency symbol during
the euro transition period. Table 3-12 lists the character sets that support the euro
symbol.

Table 3-12 Character Sets that Support the Euro Symbol

Hexadecimal Code Value of

Character Set Name Description the Euro Symbol
D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German 9F
DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 5A
S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish 5A
ISEBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 9F
FSEBCDIC1147 EBCDIC Code Page 1147 8-bit French oF
WESPC858 IBM-PC Code Page 858 8-bit West European DF
WEB8ISO8859P15 1SO 8859-15 West European A4

Setting Up a Globalization Support Environment 3-37

Monetary Parameters

Table 3-12 Character Sets that Support the Euro Symbol (Cont.)

Character Set Name

Description

Hexadecimal Code Value of
the Euro Symbol

EESMSWIN1250
CL8MSWIN1251
WESMSWIN1252
EL8MSWIN1253
WESEBCDIC1047E
WESEBCDIC1140
WESEBCDIC1140C
WESEBCDIC1145
WESEBCDIC1146
WESEBCDIC1148
WESEBCDIC1148C
EL81SO8859P7
IW8MSWIN1255
AR8BMSWIN1256
TR8MSWIN1254
BLT8MSWIN1257
VN8MSWIN1258
THSTISASCII
AL32UTF8

UTF8

AL16UTF16

UTFE
ZHT16HKSCS

ZHS32GB18030
WEB8BS2000E

MS Windows Code Page 1250 8-bit East European
MS Windows Code Page 1251 8-bit Latin/Cyrillic
MS Windows Code Page 1252 8-bit West European
MS Windows Code Page 1253 8-bit Latin/Greek
Latin 1/0Open Systems 1047

EBCDIC Code Page 1140 8-bit West European
EBCDIC Code Page 1140 Client 8-bit West European
EBCDIC Code Page 1145 8-bit West European
EBCDIC Code Page 1146 8-bit West European
EBCDIC Code Page 1148 8-bit West European
EBCDIC Code Page 1148 Client 8-bit West European
I1SO 8859-7 Latin/Greek

MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic
MS Windows Code Page 1254 8-bit Turkish

MS Windows Code Page 1257 Baltic

MS Windows Code Page 1258 8-bit Vietnamese
Thai Industrial 620-2533 - ASCII 8-bit

Unicode 3.2 UTF-8 Universal character set
CESU-8

Unicode 3.2 UTF-16 Universal character set
UTF-EBCDIC encoding of Unicode 3.0

MS Windows Code Page 950 with Hong Kong
Supplementary Character Set

GB18030-2000
Siemens EBCDIC.DF.04 8-bit West European

80

88

80

80

9F

9F

9F

9F

9F

9F

9F

A4

80

80

80

80

80

80
E282AC
E282AC
20AC
CA4653
A3El

A2E3
9F

3-38 Oracle Database Globalization Support Guide

Monetary Parameters

Oracle Support for the Euro

Twelve members of the European Monetary Union (EMU) have adopted the euro as
their currency. Setting NLS_TERRI TORY to correspond to a country in the EMU
(Awustria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,
the Netherlands, Portugal, and Spain) results in the default values for NLS_
CURRENCY and NLS_DUAL_ CURRENCY being set to EUR

During the transition period (1999 through 2001), Oracle support for the euro was
provided in Oracle8i and later as follows:

« NLS_CURRENCY was defined as the primary currency of the country
« NLS | SO CURRENCY was defined as the ISO currency code of a given territory

« NLS DUAL_CURRENCY was defined as the secondary currency symbol (usually
the euro) for a given territory

Beginning with Oracle9i release 2 (9.2), the value of NLS_| SO _CURRENCY results in
the ISO currency symbol being set to EUR for EMU member countries who use the
euro. For example, suppose NLS_| SO_CURRENCY is set to FRANCE. Enter the
following SELECT statement:

SELECT TO CHAR(TOTAL, ' C099(999D99') "TOTAL" FROM orders WHERE cust oner _i d=585;

You should see output similar to the following:

EURL2. 673, 49

Customers who must retain their obsolete local currency symbol can override the
default for NLS_DUAL_CURRENCY or NLS_CURRENCY by defining them as
parameters in the initialization file on the server and as environment variables on
the client.

Note: NLS_ LANGmust also be set on the client for NLS
CURRENCY or NLS_DUAL _CURRENCY to take effect.

It is not possible to override the ISO currency symbol that results from the value of
NLS | SO CURRENCY.

Setting Up a Globalization Support Environment 3-39

Monetary Parameters

NLS_MONETARY_CHARACTERS

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRI TORY
Range of values Any valid character

NLS MONETARY_CHARACTERS specifies the character that separates groups of
numbers in monetary expressions. For example, when the territory is America, the
thousands separator is a comma, and the decimal separator is a period.

NLS_CREDIT
Property Description
Parameter type String
Parameter scope Environment variable
Default value Derived from NLS_TERRI TORY
Range of values Any string, maximum of 9 bytes (not including null)

NLS_ CREDI T sets the symbol that displays a credit in financial reports. The default
value of this parameter is determined by NLS_TERRI TORY. For example, a space is

a valid value of NLS_CREDI T.

This parameter can be specified only in the client environment.

It can be retrieved through the OCl Get NI sl nf o() function.

NLS DEBIT
Property Description
Parameter type String
Parameter scope Environment variable
Default value Derived from NLS_TERRI TORY

3-40 Oracle Database Globalization Support Guide

Linguistic Sort Parameters

Property Description

Range of values Any string, maximum or 9 bytes (not including null)

NLS DEBI T sets the symbol that displays a debit in financial reports. The default
value of this parameter is determined by NLS_TERRI TCRY. For example, a minus
sign (-) is a valid value of NLS_DEBI T.

This parameter can be specified only in the client environment.
It can be retrieved through the OCl Get NI sl nf o() function.

Linguistic Sort Parameters

NLS_SORT

You can choose how to sort data by using linguistic sort parameters.
This section includes the following topics:

« NLS SORT

« NLS_COMP

See Also: Chapter 5, "Linguistic Sorting and String Searching"

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER
SESSI ON, and SQL functions

Default value Derived from NLS_LANGUAGE

Range of values Bl NARY or any valid linguistic sort name

NLS_ SORT specifies the type of sort for character data. It overrides the default value
that is derived from NLS _LANGUAGE.

The syntax of NLS_SORT is:
NLS _SORT = BINARY | sort_nane

Bl NARY specifies a binary sort. sort _nane specifies a linguistic sort sequence.

Setting Up a Globalization Support Environment 3-41

Linguistic Sort Parameters

The value of NLS_SORT affects the following SQL operations: WHERE, START W TH,
I N/ QUT, BETWEEN, CASE WHEN, HAVI NG ORDER BY. All other SQL operators make
comparisons in binary mode only.

Example 3-21 Setting NLS_SORT
To specify the German linguistic sort sequence, set NLS_SORT as follows:

NLS_SORT = Gernan

Note: When the NLS SORT parameter is set to Bl NARY, the
optimizer can, in some cases, satisfy the ORDER BY clause without
doing a sort by choosing an index scan.

When NLS_SORT is set to a linguistic sort, a sort is needed to satisfy
the ORDER BY clause if there is no linguistic index for the linguistic
sort specified by NLS SORT.

If a linguistic index exists for the linguistic sort specified by NLS
SORT, then the optimizer can, in some cases, satisfy the ORDER BY
clause without doing a sort by choosing an index scan.

You can alter the default value of NLS_SORT by doing one of the following:

« Changing its value in the initialization parameter file and then restarting the
instance

« Using an ALTER SESSI ON statement

See Also:
« Chapter 5, "Linguistic Sorting and String Searching"

« Oracle Database SQL Reference for more information about the
ALTER SESSI ON statement

« "Linguistic Sorts" on page A-25 for a list of linguistic sort names

NLS_COMP

Property Description

Parameter type String

3-42 Oracle Database Globalization Support Guide

Character Set Conversion Parameter

Property Description

Parameter scope Initialization parameter, environment variable, and ALTER
SESSI ON

Default value Bl NARY

Range of values Bl NARY or ANSI

The value of NLS _CQOWP affects the following SQL operations: WHERE, START W TH,
I N QUT, BETVEEN, CASE WHEN, HAVI NG ORDER BY. All other SQL operators make
comparisons in binary mode only.

You can use NLS COVP to avoid the cumbersome process of using the NLSSORT
function in SQL statements when you want to perform a linguistic comparison
instead of a binary comparison. When NLS_COMP is set to ANSI , SQL operations
perform a linguistic comparison based on the value of NLS SORT.

Set NLS _COWVP to ANSI as follows:

ALTER SESSI ON SET NLS _COWP = ANSI;

When NLS_COWP is set to ANSI , a linguistic index improves the performance of the
linguistic comparison.

To enable a linguistic index, use the following syntax:

CREATE I NDEX i ON t (NLSSORT(col, ' NLS SORT=FRENCH));

See Also:
« "Using Linguistic Sorts" on page 5-3

« "Using Linguistic Indexes" on page 5-19

Character Set Conversion Parameter
This section includes the following topic:
« NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP

Property Description

Parameter type String

Setting Up a Globalization Support Environment 3-43

Length Semantics

Property Description

Parameter scope Initialization parameter, ALTER SESSI ON, ALTER SYSTEM
Default value FALSE

Range of values TRUE or FALSE

NLS NCHAR_CONV_EXCP determines whether an error is reported when there is
data loss during an implicit or explicit character type conversion between
NCHAR/NVARCHAR data and CHAR/VARCHAR? data. The default value results in no
error being reported.

See Also: Chapter 11, "Character Set Migration" for more
information about data loss during character set conversion

Length Semantics
This section includes the following topic:
« NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

Property Description

Parameter type String

Parameter scope Environment variable, initialization parameter, ALTER
SESSI ON, and ALTER SYSTEM

Default value BYTE

Range of values BYTE or CHAR

By default, the character datatypes CHAR and VARCHAR? are specified in bytes, not
characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes
for storing character data.

This works well if the database character set uses a single-byte character encoding
scheme because the number of characters is the same as the number of bytes. If the
database character set uses a multibyte character encoding scheme, then the
number of bytes no longer equals the number of characters because a character can
consist of one or more bytes. Thus, column widths must be chosen with care to

3-44 Oracle Database Globalization Support Guide

Length Semantics

allow for the maximum possible number of bytes for a given number of characters.
You can overcome this problem by switching to character semantics when defining
the column size.

NLS LENGTH_SEMANTI CS enables you to create CHAR, VARCHARZ2, and LONG
columns using either byte or character length semantics. NCHAR, N\VARCHAR2, CLOB,
and NCLOB columns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with
existing applications.

NLS LENGTH_SEMANTI CS does not apply to tables in SYS and SYSTEM The data
dictionary always uses byte semantics.

Note that if the NLS_LENGTH_SEMANTI CS environment variable is not set on the
client, then the client session defaults to the value for NLS _LENGTH_SEMANTI CS on
the database server. This enables all client sessions on the network to have the same
NLS LENGTH_SEMANTI CS behavior. Setting the environment variable on an
individual client enables the server initialization parameter to be overridden for
that client.

See Also:
« "Length Semantics" on page 2-12

» Oracle Database Concepts for more information about length
semantics

Setting Up a Globalization Support Environment 3-45

Length Semantics

3-46 Oracle Database Globalization Support Guide

A

Datetime Datatypes and Time Zone Support

This chapter includes the following topics:

Overview of Datetime and Interval Datatypes and Time Zone Support
Datetime and Interval Datatypes

Datetime and Interval Arithmetic and Comparisons

Datetime SQL Functions

Datetime and Time Zone Parameters and Environment Variables
Choosing a Time Zone File

Setting the Database Time Zone

Converting Time Zones With the AT TIME ZONE Clause

Setting the Session Time Zone

Support for Daylight Saving Time

Datetime Datatypes and Time Zone Support 4-1

Overview of Datetime and Interval Datatypes and Time Zone Support

Overview of Datetime and Interval Datatypes and Time Zone Support

Businesses conduct transactions across time zones. Oracle’s datetime and interval
datatypes and time zone support make it possible to store consistent information
about the time of events and transactions.

Note: This chapter describes Oracle datetime and interval
datatypes. It does not attempt to describe ANSI datatypes or other
kinds of datatypes except when noted.

Datetime and Interval Datatypes

The datetime datatypes are DATE, TI MESTAMP, TI MESTAMP W TH TI ME ZONE,
and TI MESTAMP W TH LOCAL TI ME ZONE. Values of datetime datatypes are
sometimes called datetimes.

The interval datatypes are | NTERVAL YEAR TO MONTHand | NTERVAL DAY TO
SECOND. Values of interval datatypes are sometimes called intervals.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. The fields that apply to all Oracle datetime and
interval datatypes are:

= YEAR

= MONTH

« DAY

= HOUR

= MNUTE
= SECOND

TI MESTAMP W TH TI ME ZONE also includes these fields:
. TI MEZONE_HOUR

« TIMEZONE_M NUTE

. TIMEZONE_REG ON

« TI MEZONE_ABBR

4-2 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

TI MESTAMP W TH LOCAL TI ME ZONE does not store time zone information, but
you can see local time zone information in output if the TZH: TZMor TZR TZD
format elements are specified.

The following sections describe the datetime datatypes and interval datatypes in
more detail:

« Datetime Datatypes

« Interval Datatypes

See Also: Oracle Database SQL Reference for the valid values of the
datetime and interval fields. Oracle Database SQL Reference also
contains information about format elements.

Datetime Datatypes

This section includes the following topics:

« DATE Datatype

« TIMESTAMP Datatype

« TIMESTAMP WITH TIME ZONE Datatype

« TIMESTAMP WITH LOCAL TIME ZONE Datatype
« Inserting Values into Datetime Datatypes

« Choosing a TIMESTAMP Datatype

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and humber datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a date value by:
« Specifying the date value as a literal

« Converting a character or numeric value to a date value with the TO_DATE
function

A date can be specified as an ANSI date literal or as an Oracle date value.

An ANSI date literal contains no time portion and must be specified in exactly the
following format:

Datetime Datatypes and Time Zone Support 4-3

Datetime and Interval Datatypes

DATE ' YYYY- Mt DD

The following is an example of an ANSI date literal:
DATE ' 1998-12- 25’

Alternatively, you can specify an Oracle date value as shown in the following
example:

TO_DATE(' 1998- DEC- 25 17:30", " YYYY- MON-DD HH24: M, " NLS_DATE_LANGUAGE=AMERI CAN)

The default date format for an Oracle date value is derived from the NLS _DATE _
FORMAT and NLS_DATE_LANGUACE initialization parameters. The date format in
the example includes a two-digit number for the day of the month, an abbreviation
of the month name, the last two digits of the year, and a 24-hour time designation.
The specification for NLS DATE LANGUAGE is included because 'DEC is not a valid
value for MONin all locales.

Oracle automatically converts character values that are in the default date format
into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight. If you specify a date value without a date, then the default date is the first
day of the current month.

Oracle DATE columns always contain fields for both date and time. If your queries
use a date format without a time portion, then you must ensure that the time fields
in the DATE column are set to midnight. You can use the TRUNC (date) SQL function
to ensure that the time fields are set to midnight, or you can make the query a test of
greater than or less than (<, <=, >=, or >) instead of equality or inequality (=or! =) .
Otherwise, Oracle may not return the query results you expect.

See Also:

« Oracle Database SQL Reference for more information about the
DATE datatype

« "NLS_DATE_FORMAT" on page 3-21
« "NLS_DATE_LANGUAGE" on page 3-22

« Oracle Database SQL Reference for more information about
literals, format elements such as MM and the TO_DATE function

4-4 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

TIMESTAMP Datatype

The TI MESTAMP datatype is an extension of the DATE datatype. It stores year,
month, day, hour, minute, and second values. It also stores fractional seconds,
which are not stored by the DATE datatype.

Specify the TI MESTAMP datatype as follows:
TI MESTAMP [(fractional _seconds_precision)]
fractional _seconds_preci si on is optional and specifies the number of digits

in the fractional part of the SECOND datetime field. It can be a number in the range 0
to 9. The default is 6.

For example,’ 26- JUN- 02 09: 39: 16. 78" shows 16.78 seconds. The fractional
seconds precision is 2 because there are 2 digits in '78’.

You can specify the TI MESTANP literal in a format like the following:
TI MESTAMP ’ YYYY- MM DD HH24: M : SS. FF

Using the example format, specify TI MESTAMP as a literal as follows:
TI MESTAMP ' 1997-01-31 09: 26: 50. 12
The value of NLS_TI MESTAMP_FORNMAT initialization parameter determines the
timestamp format when a character string is converted to the TI MESTAMP datatype.
NLS_DATE_LANGUAGE determines the language used for character data such as
MON.

See Also:

« Oracle Database SQL Reference for more information about the
Tl MESTAMP datatype

. "NLS_TIMESTAMP_FORMAT" on page 3-24
. "NLS_DATE_LANGUAGE" on page 3-22

TIMESTAMP WITH TIME ZONE Datatype

TI MESTAMP W TH TI ME ZONE is a variant of TI MESTAMP that includes a time
zone offset or time zone region name in its value. The time zone offset is the
difference (in hours and minutes) between local time and UTC (Coordinated
Universal Time, formerly Greenwich Mean Time). Specify the TI MESTAVP W TH
TI ME ZONE datatype as follows:

TI MESTAWP [(fractional _seconds_precision)] WTH TI ME ZONE

Datetime Datatypes and Time Zone Support 4-5

Datetime and Interval Datatypes

fractional _seconds_preci si on isoptional and specifies the number of digits
in the fractional part of the SECOND datetime field.

You can specify TI MESTAMP W TH TI ME ZONE as a literal as follows:
TI MESTAMP ' 1997-01- 31 09: 26: 56. 66 +02: 00’

Two TI MESTAMP W TH TI ME ZONE values are considered identical if they
represent the same instant in UTC, regardless of the TI ME ZONE offsets stored in
the data. For example, the following expressions have the same value:

TI MESTAWP * 1999-01- 15 8:00: 00 -8: 00’
TI MESTAWP * 1999-01-15 11:00: 00 -5: 00’

You can replace the UTC offset with the TZR (time zone region) format element. The
following expression specifies US/ Paci f i ¢ for the time zone region:

TI MESTAWMP ’ 1999- 01- 15 8:00: 00 US/ Paci fic’

To eliminate the ambiguity of boundary cases when the time switches from
Standard Time to Daylight Saving Time, use both the TZR format element and the
corresponding TZD format element. The TZD format element is an abbreviation of
the time zone region with Daylight Saving Time information included. Examples
are PST for US/Pacific standard time and PDT for US/Pacific daylight time.The
following specification ensures that a Daylight Saving Time value is returned:

TI MESTAWP * 1999- 10-29 01:30: 00 US/ Pacific PDT’

If you do not add the TZD format element, and the datetime value is ambiguous,
then Oracle returns an error if you have the ERROR_ON_OVERLAP_TI ME session
parameter set to TRUE. If ERROR_ON_OVERLAP_TI ME is set to FALSE (the default
value), then Oracle interprets the ambiguous datetime as Standard Time.

The default date format for the TI| MESTAMP W TH Tl ME ZONE datatype is
determined by the value of the NLS_TI MESTAMP_TZ_FORMAT initialization
parameter.

4-6 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

See Also:

« Oracle Database SQL Reference for more information about the
TI MESTAMP W TH TI ME ZONE datatype

« "TIMESTAMP Datatype" on page 4-5 for more information
about fractional seconds precision

« "Support for Daylight Saving Time" on page 4-26
« "NLS_TIMESTAMP_TZ_FORMAT" on page 3-25

« Oracle Database SQL Reference for more information about
format elements

« Oracle Database SQL Reference for more information about
setting the ERROR_ON_OVERLAP_TI ME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TI MESTAMP W TH LOCAL TI ME ZONE is another variant of TI MESTAMP. It differs
from TI MESTAMP W TH Tl ME ZONE as follows: data stored in the database is
normalized to the database time zone, and the time zone offset is not stored as part
of the column data. When users retrieve the data, Oracle returns it in the users’ local
session time zone. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time, formerly Greenwich
Mean Time).

Specify the TI MESTAMP W TH LOCAL TI ME ZONE datatype as follows:
TI MESTAWP [(fractional _seconds_precision)] WTH LOCAL TI ME ZONE

fractional _seconds_preci si on isoptional and specifies the number of digits
in the fractional part of the SECOND datetime field.

There is no literal for TI MESTAMP W TH LOCAL TI ME ZONE, but TI MESTAMP
literals and TI MESTAMP W TH Tl ME ZONE literals can be inserted into a
TI MESTAMP W TH LOCAL TI ME ZONE column.

The default date format for TI| NESTAMP W TH LOCAL Tl ME ZONE is determined
by the value of the NLS_TI MESTAMP_FORNVAT initialization parameter.

Datetime Datatypes and Time Zone Support 4-7

Datetime and Interval Datatypes

See Also:

« Oracle Database SQL Reference for more information about the
TI MESTAMP W TH LOCAL TI ME ZONE datatype

« "TIMESTAMP Datatype" on page 4-5 for more information
about fractional seconds precision

« "NLS_TIMESTAMP_FORMAT" on page 3-24

Inserting Values into Datetime Datatypes
You can insert values into a datetime column in the following ways:

« Insert a character string whose format is based on the appropriate NLS format
value

« Insertaliteral
« Insert a literal for which implicit conversion is performed
« Usethe TO_TI MESTAMP, TO_TI MESTAMP_TZ, or TO_DATE SQL function

The following examples show how to insert data into datetime datatypes.

Example 4-1 Inserting Data into a DATE Column
Set the date format.

SQL> ALTER SESSI ON SET NLS_DATE_FORMAT=' DD- MON- YYYY HH24: M : SS';
Create atable t abl e_dt with columnsc_idandc_dt.Thec_i dcolumn is of

NUMBER datatype and helps to identify the method by which the data is entered.
The c_dt column is of DATE datatype.

SQL> CREATE TABLE table dt (c_id NUMBER c_dt DATE);

Insert a date as a character string.
SQL> I NSERT INTO tabl e_dt VALUES(1, ’'01-JAN-2003');

Insert the same date as a DATE literal.
SQL> | NSERT INTO tabl e_dt VALUES(2, DATE ’'2003-01-01');

Insert the date as a TI MESTAMP literal. Oracle drops the time zone information.
SQL> | NSERT | NTO tabl e_dt VALUES(3, TIMESTAMP '2003-01-01 00:00:00 US/ Pacific’');

4-8 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

Insert the date with the TO_DATE function.
SQL> I NSERT I NTO tabl e_dt VALUES(4, TO DATE(’ 01-JAN-2003', ' DD MON-YYYY'));

Display the data.
SQL> SELECT * FROM table dt;

1 01- JAN-2003 00: 00: 00
2 01- JAN-2003 00: 00: 00
3 01- JAN-2003 00: 00: 00
4 01- JAN- 2003 00: 00: 00

Example 4-2 Inserting Data into a TIMESTAMP Column
Set the timestamp format.

SQL> ALTER SESSI ON SET NLS_TI MESTAMP_FORMAT=" DD- MON- YY HH: M : SSXFF' ;
Create atablet abl e_t s withcolumnsc_idandc_ts.Thec_idcolumn is of

NUMBER datatype and helps to identify the method by which the data is entered.
The c_t s column is of TI MESTAMP datatype.

SQL> CREATE TABLE table_ts(c_id NUMBER, c_ts TI MESTAWP);

Insert a date and time as a character string.
SQL> INSERT INTO table_ts VALUES(1, ’'01-JAN-2003 2:00:00);

Insert the same date and time as a TI| MESTAMP literal.
SQL> I NSERT INTO tabl e _ts VALUES(2, TIMESTAMP ’2003-01-01 2:00:00');
Insert the same date and time as a TI| MESTAMP W TH Tl ME ZONE literal. Oracle

converts it to a TI MESTAMP value, which means that the time zone information is
dropped.

SQL> I NSERT INTO table_ts VALUES(3, TI MESTAWP ' 2003-01-01 2:00:00 -08:00");

Display the data.
SQ.> SELECT * FROM table ts;

CID CTS
1 01- JAN-03 02: 00: 00. 000000 AM
2 01- JAN-03 02: 00: 00. 000000 AM

Datetime Datatypes and Time Zone Support 4-9

Datetime and Interval Datatypes

3 01- JAN-03 02: 00: 00. 000000 AM

Note that the three methods result in the same value being stored.

Example 4-3 Inserting Data into the TIMESTAMP WITH TIME ZONE Datatype
Set the timestamp format.

SQL> ALTER SESSI ON SET NLS_TI MESTAMP__TZ_FORMAT=' DD- MON-RR HH M : SSXFF AM TZR';

Set the time zone to’ - 07: 00 .
SQ.> ALTER SESSI ON SET TI ME_ZONE="-7:00";
Create atablet abl e_t st z withcolumnsc_idandc_tstz.Thec_idcolumnis

of NUMBER datatype and helps to identify the method by which the data is entered.
The c_t st z column is of TI MESTAMP W TH TI ME ZONE datatype.

SQL> CREATE TABLE table tstz (c_id NUVBER c_tstz TIMESTAMP WTH TI ME ZONE) ;

Insert a date and time as a character string.
SQL> INSERT INTO table_tstz VALUES(1, '01-JAN 2003 2:00: 00 AM -07:00');
Insert the same date and time as a TI| MESTAMP literal. Oracle converts it to a

TI MESTAMP W TH Tl ME ZONE literal, which means that the session time zone is
appended to the TI MESTAMP value.

SQL> I NSERT I NTO table_tstz VALUES(2, TIMESTAWP ’2003-01-01 2:00: 00):

Insert the same date and time as a TI| MESTAMP W TH Tl ME ZONE literal.
SQL> INSERT INTO table_tstz VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -8:00");

Display the data.
SQ.> SELECT * FROM tabl e tstz;

CID C TSTZ

1 01- JAN-03 02: 00. 00: 000000 AM - 07: 00
2 01- JAN-03 02: 00: 00. 000000 AM - 07: 00
3 01- JAN-03 02: 00: 00. 000000 AM - 08: 00

Note that the time zone is different for method 3, because the time zone information
was specified as part of the TI MESTAMP W TH TI ME ZONE literal.

4-10 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

Example 4-4 Inserting Data into the TIMESTAMP WITH LOCAL TIME ZONE Datatype

Consider data that is being entered in Denver, Colorado, U.S.A., whose time zone is
UTC-7.

SQL> ALTER SESSI ON SET TI ME_ZONE=' 07: 00’ ;
Create atabletabl e_tsltz withcolumnsc_idandc_tsltz. Thec_idcolumn
is of NUMBER datatype and helps to identify the method by which the data is

entered. Thec_t sl tz columnisof TI MESTAMP W TH LOCAL TI ME ZONE
datatype.

SQL> CREATE TABLE table_tsltz (c_id NUMBER, c_tsltz TIMESTAW® WTH LOCAL TI ME ZONE);

Insert a date and time as a character string.
SQL> I NSERT INTO tabl e tsltz VALUES(1, '01-JAN-2003 2:00:00');

Insert the same dataas a TI| MESTAMP W TH LOCAL Tl ME ZONE literal.
SQL> INSERT INTO table_tsltz VALUE(2, TIMESTAMP ’'2003-01-01 2:00:00');
Insert the same dataasa TI| MESTAMP W TH Tl ME ZONE literal. Oracle converts

the datatoa TI MESTAMP W TH LOCAL Tl ME ZONE value. This means the time
zone that is entered (- 08: 00) is converted to the session time zone value (- 07: 00).

SQL> I NSERT INTO table_tsltz VALUES(3, TIMESTAWP ' 2003-01-01 2:00:00 -08:00");

Display the data.
SQL> SELECT * FROMtable_tsltz;

CID C TSLTZ
1 01- JAN-03 02. 00. 00. 000000 AM
2 01- JAN-03 02. 00. 00. 000000 AM
3 01- JAN-03 03. 00. 00. 000000 AM

Note that the information that was entered as UTC-8 has been changed to the local
time zone, changing the hour from 2 to 3.

See Also: "Datetime SQL Functions" on page 4-16 for more
information about the TO_TI MESTAMP or TO_TI MESTAMP_TZ SQL
functions

Datetime Datatypes and Time Zone Support 4-11

Datetime and Interval Datatypes

Choosing a TIMESTAMP Datatype

Use the TI MESTAMP datatype when you need a datetime value without locale
information. For example, you can store information about the times when workers
punch a timecard in and out of their assembly line workstations. The TI MESTAMP
datatype uses 7 or 11 bytes of storage.

Use the TI MESTAMP W TH Tl ME ZONE datatype when the application is used
across time zones. Consider a banking company with offices around the world. It
records a deposit to an account at 11 a.m. in London and a withdrawal of the same
amount from the account at 9 a.m. in New York. The money is in the account for
four hours. Unless time zone information is stored with the account transactions, it
appears that the account is overdrawn from 9 a.m. to 11 a.m.

The TI MESTAMP W TH Tl ME ZONE datatype requires 13 bytes of storage, or two
more bytes of storage than the TI MESTAMP and TI MESTAMP W TH LOCAL TI ME
ZONE datatypes because it stores time zone information.The time zone is stored as
an offset from UTC or as a time zone region name. The data is available for display
or calculations without additional processing. A TI MESTAMP W TH TI ME ZONE
column cannot be used as a primary key. If an index is created on a TI MESTAMP

W TH TI ME ZONE column, it becomes a function-based index.

The TI MESTAMP W TH LOCAL Tl ME ZONE datatype stores the timestamp
without time zone information. It normalizes the data to the database time zone
every time the data is sent to and from a client. It requires 11 bytes of storage.

The TI MESTAMP W TH LOCAL TI ME ZONE datatype is appropriate when the
original time zone is of no interest, but the relative times of events are important.
Consider the transactions described in the previous banking example. Suppose the
data is recorded using the TI MESTAMP W TH LOCAL Tl ME ZONE datatype. If the
database time zone of the bank is set to Asi a/ Hong_Kong, then an employee in
Hong Kong who displays the data would see that the deposit was made at 1900 and
the withdrawal was made at 2300. If the same data is displayed in London, it would
show that the deposit was made at 1100 and the withdrawal was made at 1500. The
four-hour difference is preserved, but the actual times are not, making it impossible
to tell whether the transactions were done during business hours.

Interval Datatypes

Interval datatypes store time durations. They are used primarily with analytic
functions. For example, you can use them to calculate a moving average of stock
prices. You must use interval datatypes to determine the values that correspond to a
particular percentile. You can also use interval datatypes to update historical tables.

4-12 Oracle Database Globalization Support Guide

Datetime and Interval Datatypes

This section includes the following topics:
« INTERVAL YEAR TO MONTH Datatype
« INTERVAL DAY TO SECOND Datatype
« Inserting Values into Interval Datatypes
See Also: Oracle Data Warehousing Guide for more information

about analytic functions, including moving averages (and inverse
percentiles

INTERVAL YEAR TO MONTH Datatype

| NTERVAL YEAR TO MONTHstores a period of time using the YEAR and MONTH
datetime fields. Specify | NTERVAL YEAR TO MONTH as follows:

| NTERVAL YEAR [(year _precision)] TO MONTH
year _pr eci si on is the number of digits in the YEAR datetime field. Accepted
values are 0 to 9. The default value of year _pr eci si onis 2.

Interval values can be specified as literals. There are many ways to specify interval
literals.The following is one example of specifying an interval of 123 years and 2
months.The year precision is 3.

I NTERVAL ' 123-2" YEAR(3) TO MONTH
See Also: Oracle Database SQL Reference for more information

about specifying interval literals with the | NTERVAL YEAR TO
MONTH datatype

INTERVAL DAY TO SECOND Datatype

| NTERVAL DAY TO SECONDstores a period of time in terms of days, hours,
minutes, and seconds. Specify this datatype as follows:

I NTERVAL DAY [(day_precision)] TO SECOND [(fractional _seconds_preci sion)]

day_pr eci si on is the number of digits in the DAY datetime field. Accepted values
are 0to 9. The default is 2.

fractional _seconds_preci si on is the number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Datetime Datatypes and Time Zone Support 4-13

Datetime and Interval Arithmetic and Comparisons

The following is one example of specifying an interval of 4 days, 5 hours, 12
minutes, 10 seconds, and 222 thousandths of a second. The fractional second
precision is 3.

INTERVAL "4 5:12:10.222' DAY TO SECOND(3)

Interval values can be specified as literals. There are many ways to specify interval
literals.

See Also: Oracle Database SQL Reference for more information
about specifying interval literals with the | NTERVAL DAY TO
SECOND datatype

Inserting Values into Interval Datatypes
You can insert values into an interval column in the following ways:

« Insertan interval as a literal. For example:
I NSERT I NTO tabl el VALUES (I NTERVAL '4-2" YEAR TO MONTH);

This statement inserts an interval of 4 years and 2 months.

Oracle recognizes literals for other ANSI interval types and converts the values
to Oracle interval values.

« Use the NUMIODSI NTERVAL, NUMITOYM NTERVAL, TO _DSI NTERVAL, and TO _
YM NTERVAL SQL functions.

See Also: "Datetime SQL Functions" on page 4-16

Datetime and Interval Arithmetic and Comparisons
This section includes the following topics:
« Datetime and Interval Arithmetic
« Datetime Comparisons

« Explicit Conversion of Datetime Datatypes

Datetime and Interval Arithmetic

You can perform arithmetic operations on date (DATE), timestamp (TI MESTANP,
TI MESTAMP W TH Tl ME ZONE, and TI MESTAMP W TH LOCAL TI ME ZONE) and
interval (I NTERVAL DAY TO SECONDand | NTERVAL YEAR TO MONTH) data.

4-14 Oracle Database Globalization Support Guide

Datetime and Interval Arithmetic and Comparisons

You can maintain the most precision in arithmetic operations by using a timestamp
datatype with an interval datatype.

You can use NUMBER constants in arithmetic operations on date and timestamp
values. Oracle internally converts timestamp values to date values before doing
arithmetic operations on them with NUMBER constants. This means that information
about fractional seconds is lost during operations that include both date and
timestamp values. Oracle interprets NUVBER constants in datetime and interval
expressions as number of days.

Each DATE value contains a time component. The result of many date operations
includes a fraction. This fraction means a portion of one day. For example, 1.5 days
is 36 hours. These fractions are also returned by Oracle built-in SQL functions for
common operations on DATE data. For example, the built-in MONTHS BETWEEN
SQL function returns the number of months between two dates. The fractional
portion of the result represents that portion of a 31-day month.

Oracle performs all timestamp arithmetic in UTC time. For TI MESTAVP W TH
LOCAL TI ME ZONE data, Oracle converts the datetime value from the database
time zone to UTC and converts back to the database time zone after performing the
arithmetic. For TI MESTAMP W TH Tl ME ZONE data, the datetime value is always
in UTC, so no conversion is necessary.

See Also:

« Oracle Database SQL Reference for detailed information about
datetime and interval arithmetic operations

« "Datetime SQL Functions" on page 4-16 for information about
which functions cause implicit conversion to DATE

Datetime Comparisons

When you compare date and timestamp values, Oracle converts the data to the
more precise datatype before doing the comparison. For example, if you compare
data of TI MESTAMP W TH TI ME ZONE datatype with data of TI MESTAMP
datatype, Oracle converts the TI MESTAMP data to TI MESTAMP W TH Tl ME ZONE,
using the session time zone.

The order of precedence for converting date and timestamp data is as follows:
1. DATE

2. Tl MESTAMP

3. TIMESTAMP WTH LOCAL TI ME ZONE

Datetime Datatypes and Time Zone Support 4-15

Datetime SQL Functions

4. TIMESTAMP WTH TI ME ZONE

For any pair of datatypes, Oracle converts the datatype that has a smaller number in
the preceding list to the datatype with the larger number.

Explicit Conversion of Datetime Datatypes

If you want to do explicit conversion of datetime datatypes, use the CAST SQL
function. You can explicitly convert DATE, TI MESTAMP, TI MESTAMP W TH TI ME
ZONE, and TI MESTAMP W TH LOCAL TI ME ZONE to another datatype in the list.

See Also: Oracle Database SQL Reference

Datetime SQL Functions

Datetime functions operate on date (DATE), timestamp (TI MESTAVP, TI MESTAMP
W TH TI ME ZONE, and TI MESTAMP W TH LOCAL TI ME ZONE) and interval
(I NTERVAL DAY TO SECOND, | NTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE datatype. If you
provide a timestamp value as their argument, then Oracle internally converts the
input type to a DATE value. Oracle does not perform internal conversion for the
ROUND and TRUNC functions.

Table 4-1 shows the datetime functions that were designed for the Oracle DATE
datatype. For more detailed descriptions, refer to Oracle Database SQL Reference.

Table 4-1 Datetime Functions Designed for the DATE Datatype

Function Description

ADD_MONTHS Returns the date d plus n months

LAST_DAY Returns the last day of the month that contains dat e
MONTHS _BETWEEN Returns the number of months between dat el and dat e2
NEW TI ME Returns the date and time in zone2 time zone when the date

and time in zonel time zone are dat e.

Note: This function takes as input only a limited number of
time zones. You can have access to a much greater number of
time zones by combining the FROM_TZ function and the
datetime expression.

NEXT_DAY Returns the date of the first weekday named by char thatis
later than dat e

4-16 Oracle Database Globalization Support Guide

Datetime SQL Functions

Table 4-1 Datetime Functions Designed for the DATE Datatype (Cont.)

Function Description

ROUND (date) Returns dat e rounded to the unit specified by the f nt format
model

TRUNC (date) Returns dat e with the time portion of the day truncated to the

unit specified by the f nt format model

Table 4-2 describes additional datetime functions. For more detailed descriptions,
refer to Oracle Database SQL Reference.

Table 4-2 Additional Datetime Functions

Datetime Function Description

CURRENT_DATE Returns the current date in the session time zone in a value in
the Gregorian calendar, of the DATE datatype

CURRENT_TI MESTAMP Returns the current date and time in the session time zone as a
TI MESTAMP W TH TI ME ZONE value

DBTI MEZONE Returns the value of the database time zone. The value is a
time zone offset or a time zone region name.

EXTRACT (datetime) Extracts and returns the value of a specified datetime field
from a datetime or interval value expression

FROM TZ Converts a TI MESTAMP value at a time zone to a TI MESTAMP
W TH Tl ME ZONE value

LOCALTI MESTAMP Returns the current date and time in the session time zone in a
value of the TI MESTAMP datatype

NUMTODSI NTERVAL Converts number n to an | NTERVAL DAY TO SECOND literal

NUMTOYM NTERVAL Converts number n to an | NTERVAL YEAR TO MONTH literal

SESSI ONTI MEZONE Returns the value of the current session’s time zone

SYS EXTRACT _UTC Extracts the UTC from a datetime with time zone offset

SYSDATE Returns the date and time of the operating system on which

the database resides, taking into account the time zone of the
database server’s operating system that was in effect when the
database was started.

SYSTI MESTAWP Returns the system date, including fractional seconds and time
zone of the system on which the database resides

Datetime Datatypes and Time Zone Support 4-17

Datetime and Time Zone Parameters and Environment Variables

Table 4-2 Additional Datetime Functions (Cont.)

Datetime Function

Description

TO_CHAR (datetime)

Converts a datetime or interval value of DATE, TI MESTAMP,
TI MESTAMP W TH TI ME ZONE, or TI MESTAMP W TH
LOCAL TI ME ZONE datatype to a value of VARCHAR2
datatype in the format specified by the f nt date format.

TO_DSI NTERVAL

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of | NTERVAL DAY TO
SECOND datatype

TO_NCHAR (datetime)

Converts a datetime or interval value of DATE, TI MESTAMP,
TI MESTAMP W TH TI ME ZONE, TI MESTAMP W TH LOCAL
TI ME ZONE, | NTERVAL MONTH TO YEAR or | NTERVAL
DAY TO SECOND datatype from the database character set to
the national character set.

TO_TI MESTAWP

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of TI MESTAMP datatype

TO TI MESTAVP_TZ

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of the TI MESTAMP W TH
TI ME ZONE datatype

TO_YM NTERVAL

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of the | NTERVAL YEAR TO
MONTH datatype

TZ_OFFSET Returns the time zone offset that corresponds to the entered
value, based on the date that the statement is executed
See Also: Oracle Database SQL Reference

Datetime and Time Zone Parameters and Environment Variables

This section includes the following topics:

. Datetime Format Parameters

= Time Zone Environment Variables

« Daylight Saving Time Session Parameter

Datetime Format Parameters

Table 4-3 contains the names and descriptions of the datetime format parameters.

4-18 Oracle Database Globalization Support Guide

Datetime and Time Zone Parameters and Environment Variables

Table 4-3 Datetime Format Parameters

Parameter Description

NLS_DATE_FORVAT Defines the default date format to use with the TO_CHAR
and TO _DATE functions

NLS Tl MESTAVP_FORVAT Defines the default timestamp format to use with the TO_
CHAR and TO_TI MESTAMP functions

NLS_TI MESTAMP_TZ_FORVAT Defines the default timestamp with time zone format to
use with the TO_ CHARand TO_TI MESTAMP_TZ functions

Their default values are derived from NLS_TERRI TORY.

You can specify their values by setting them in the initialization parameter file. You
can specify their values for a client as client environment variables.

You can also change their values by changing their value in the initialization
parameter file and then restarting the instance.

To change their values during a session, use the ALTER SESSI ON statement.

See Also:

« "Date and Time Parameters" on page 3-20 for more information,
including examples

« "NLS_DATE_FORMAT" on page 3-21
« "NLS_TIMESTAMP_FORMAT" on page 3-24
« "NLS_TIMESTAMP_TZ_FORMAT" on page 3-25

Time Zone Environment Variables
The time zone environment variables are:

« ORA _TZFI LE, which specifies the Oracle time zone file used by the database

« ORA SDTZ, which specifies the default session time zone

See Also:
« "Choosing a Time Zone File" on page 4-20

= "Setting the Session Time Zone" on page 4-24

Datetime Datatypes and Time Zone Support 4-19

Choosing a Time Zone File

Daylight Saving Time Session Parameter

ERROR_ON_OVERLAP_TI ME is a session parameter that determines how Oracle
handles an ambiguous datetime boundary value. Ambiguous datetime values can
occur when the time changes between Daylight Saving Time and standard time.

The possible values are TRUE and FALSE. When ERROR_ON_OVERLAP_TI ME is
TRUE, then an error is returned when Oracle encounters an ambiguous datetime
value. When ERROR_ON_OVERLAP_TI ME is FALSE, then ambiguous datetime
values are assumed to be standard time. The default value is FALSE.

See Also: "Support for Daylight Saving Time" on page 4-26

Choosing a Time Zone File

The Oracle time zone files contain the valid time zone names. The following
information is also included for each time zone:

« Offset from Coordinated Universal Time (UTC)
« Transition times for Daylight Saving Time
« Abbreviations for standard time and Daylight Saving Time

Two time zone files are included in the Oracle home directory. The default time
zone file, SORACLE_HOVE/ or acor e/ zonei nf o/ ti mezone. dat, contains the
most commonly used time zones. More time zones are included in $ORACLE _
HOVE/ or acor e/ zonei nfo/ ti mezl rg. dat.

To use the larger time zone file, complete the following tasks:
1. Shut down the database.

2. Setthe ORA_TZFI LE environment variable to the full path name of the
ti mezlrg. dat file.

3. Restart the database.

Oracle’s time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/.Oracle’s time zone data may not reflect the
most recent data available at this site.

You can obtain a list of time zone names and time zone abbreviations from the time
zone file that is installed with your database by entering the following statement:

SELECT tzname, tzabbrev FROM v$timezone_nanes;

4-20 Oracle Database Globalization Support Guide

Choosing a Time Zone File

For the default time zone file, this statement results in output similar to the

following:

AfricalCairo
AfricalCairo
AfricalCairo
Africal Tripoli
Africal Tripoli
Africal Tripoli
Africal Tripoli

W SU
W SU
WSU
WSU
WSU
WSU
W SU
W SU
WSU
VEET

VET

VET

622 rows sel ected.

TZABBREV

CEST
EET

LMr

MVST
MDST

MBD
MBK
EET
EEST
LMr
VEST
VEET

There are 3 time zone abbreviations associated with the Africa/ZCairo time zone and
4 abbreviations associated with the Africa/Tripoli time zone. The following table
shows the time zone abbreviations and their meanings.

Time Zone Abbreviation Meaning

LMT
EET
EEST
CET
CEST

Local Mean Time

Eastern Europe Time

Eastern Europe Summer Time
Central Europe Time

Central Europe Summer Time

Datetime Datatypes and Time Zone Support 4-21

Choosing a Time Zone File

Note that an abbreviation can be associated with more than one time zone. For
example, EET is associated with both Africa/Cairo and Africa/Tripoli, as well as
time zones in Europe.

If you want a list of time zones without repeating the time zone name for each
abbreviation, use the following query:

SELECT UNI QUE t zname FROM v$tinezone_nanes;

For the default file, this results in output similar to the following:

AfricalCairo
Africal Tripoli
Areri cal Adak
Arer i cal Anchor age

US/ Mount ai n

US/ Pacific

US/ Paci fic_New
US/ Sanpa

W SU

The default time zone file contains more than 180 unique time zone names. The
large time zone file has more than 350 unique time zone names.

Note: If you use the larger time zone file, it is not practical to
return to the smaller time zone file because the database may
contain data with time zones that are not part of the smaller time
zone file.

See Also:
« "Customizing Time Zone Data" on page 13-17

« "Time Zone Names" on page A-30 for a list of valid Oracle time
zone names

4-22 Oracle Database Globalization Support Guide

Setting the Database Time Zone

Setting the Database Time Zone

Set the database time zone when the database is created by using the SET Tl ME_
ZONE clause of the CREATE DATABASE statement. If you do not set the database
time zone, it defaults to the time zone of the server’s operating system.

The time zone may be set to an absolute offset from UTC or to a named region. For
example, to set the time zone to an offset from UTC, use a statement similar to the
following:

CREATE DATABASE db01
SET TI ME_ZONE=" - 05: 00" ;

The range of valid offsets is -12:00 to +14:00.
To set the time zone to a named region, use a statement similar to the following:
CREATE DATABASE db01

SET TI ME_ZONE=" Eur ope/ London’ ;

Note: The database time zone is relevant only for TI MESTAMP
W TH LOCAL TI ME ZONE columns. Oracle Corporation
recommends that you set the database time zone to UTC (0:00) to
avoid data conversion and improve performance when data is
transferred among databases. This is especially important for
distributed databases, replication, and exporting and importing.

You can change the database time zone by using the SET Tl ME_ZONE clause of the
ALTER DATABASE statement. For example:

ALTER DATABASE SET TI ME_ZONE=' 05: 00’ ;
ALTER DATABASE SET TI ME_ZONE=' Eur ope/ London’ ;

The ALTER DATABASE SET Tl ME_ZONE statement returns an error if the database
contains a table with a TI| MESTAMP W TH LOCAL Tl ME ZONE column and the
column contains data.

The change does not take effect until the database has been shut down and
restarted.

You can find out the database time zone by entering the following query:
SELECT dbti mezone FROM dual ;

Datetime Datatypes and Time Zone Support 4-23

Setting the Session Time Zone

Setting the Session Time Zone

You can set the default session time zone with the ORA_SDTZ environment variable.
When users retrieve TI MESTAMP W TH LOCAL Tl ME ZONE data, Oracle returns it
in the users’ session time zone. The session time zone also takes effect when a

TI MESTAMP value is converted to the TI MESTAMP W TH Tl ME ZONE or

TI MESTAMP W TH LOCAL TI ME ZONE datatype.

Note: Setting the session time zone does not affect the value
returned by the SYSDATE and SYSTI MESTAMP SQL function.
SYSDATE returns the date and time of the operating system on
which the database resides, taking into account the time zone of the
database server’s operating system that was in effect when the
database was started.

The ORA_SDTZ environment variable can be set to the following values:
« Operating system local time zone (OS_TZ')

« Database time zone (DB_TZ')

« Absolute offset from UTC (for example,’ - 05: 00’)

« Time zone region name (for example,’ Eur ope/ London’)

To set ORA_SDTZ, use statements similar to one of the following in a UNIX
environment (C shell):

% setenv ORA_SDTZ ' OS_TZ
% setenv ORA SDTZ 'DB TZ
% setenv ORA SDTZ ' -05: 00’
% setenv ORA _SDTZ ' Eur ope/ London’

You can change the time zone for a specific SQL session with the SET Tl ME_ZONE
clause of the ALTER SESSI ON statement.

Tl ME_ZONE can be set to the following values:

« Default local time zone when the session was started (I ocal)
« Database time zone (dbt i mezone)

« Absolute offset from UTC (for example,’ +10: 00’)

« Time zone region name (for example,’ Asi a/ Hong_Kong’)
Use ALTER SESSI ON statements similar to the following:

4-24 Oracle Database Globalization Support Guide

Converting Time Zones With the AT TIME ZONE Clause

ALTER SESSI ON SET TI ME_ZONE=l ocal ;

ALTER SESSI ON SET TI ME_ZONE=dbt i nezone;
ALTER SESSI ON SET TI ME_ZONE=' +10: 00’ ;

ALTER SESSI ON SET TI ME_ZONE=’ Asi a/ Hong_Kong’ ;

You can find out the current session time zone by entering the following query:
SELECT sessi onti nezone FROM dual ;

Converting Time Zones With the AT TIME ZONE Clause
A datetime SQL expression can be one of the following:
= A datetime column
« A compound expression that yields a datetime value

A datetime expression can include an AT LOCAL clause or an AT Tl ME ZONE
clause. If you include an AT LOCAL clause, then the result is returned in the current
session time zone. If you include the AT TI ME ZONE clause, then use one of the
following settings with the clause:

« Time zone offset: The string ’(+| -) HH: MM specifies a time zone as an offset
from UTC. For example,’ - 07: 00’ specifies the time zone that is 7 hours
behind UTC. For example, if the UTC time is 11:00 a.m., then the time in the
'-07: 00" time zone is 4:00 a.m.

« DBTI MEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

« SESSI ONTI MEZONE: Oracle uses the session time zone established by default or
in the most recent ALTER SESSI ON statement.

« Time zone region name: Oracle returns the value in the time zone indicated by
the time zone region name. For example, you can specify Asi a/ Hong_Kong.

= Anexpression: If an expression returns a character string with a valid time zone
format, then Oracle returns the input in that time zone. Otherwise Oracle
returns an error.

The following example converts the datetime value in the Amer i ca/ New_Yor k
time zone to the datetime value in the Amer i ca/ Los_Angel es time zone.

Example 4-5 Converting a Datetime Value to Another Time Zone

SELECT FROM TZ(CAST(TO DATE(’ 1999- 12-01 11: 00: 00’ ,
"YYYY- MV DD HH M :SS') AS TINESTAMP), ' Aneri ca/ New York')

Datetime Datatypes and Time Zone Support 4-25

Support for Daylight Saving Time

AT TIME ZONE ' Anerical Los_Angel es’ "West Coast Time"
FROM DUAL;

West Coast Tine

01- DEC-99 08. 00. 00. 000000 AM AMERI CA/ LOS_ANGELES

See Also: Oracle Database SQL Reference

Support for Daylight Saving Time

Oracle automatically determines whether Daylight Saving Time is in effect for a
specified time zone and returns the corresponding local time. The datetime value is
usually sufficient for Oracle to determine whether Daylight Saving Time is in effect
for a specified time zone. The periods when Daylight Saving Time begins or ends
are boundary cases. For example, in the Eastern region of the United States, the time
changes from 01:59:59 a.m. to 3:00:00 a.m. when Daylight Saving Time goes into
effect. The interval between 02:00:00 and 02:59:59 a.m. does not exist. Values in that
interval are invalid. When Daylight Saving Time ends, the time changes from
02:00:00 a.m. to 01:00:01 a.m. The interval between 01:00:01 and 02:00:00 a.m. is
repeated. Values from that interval are ambiguous because they occur twice.

To resolve these boundary cases, Oracle uses the TZRand TZD format elements. TZR
represents the time zone region in datetime input strings. Examples are

’Aust ral i a/ Nort h’,’UTC, and ’Si ngapor e’. TZDrepresents an abbreviated form
of the time zone region with Daylight Saving Time information. Examples are 'PST’
for US/Pacific standard time and 'PDT’ for US/Pacific daylight time. To see a list of
valid values for the TZRand TZD format elements, query the TZNAME and
TZABBREV columns of the V$TI MEZONE_NAMES dynamic performance view.

The rest of this section contains the following topic:

« Examples: The Effect of Daylight Saving Time on Datetime Calculations

See Also: "Time Zone Names" on page A-30 for a list of valid time
zones

Examples: The Effect of Daylight Saving Time on Datetime Calculations

The TI MESTAMP datatype does not accept time zone values and does not calculate
Daylight Saving Time.

The TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH LOCAL TI ME ZONE
datatypes have the following behavior:

4-26 Oracle Database Globalization Support Guide

Support for Daylight Saving Time

« If atime zone region is associated with the datetime value, then the database
server knows the Daylight Saving Time rules for the region and uses the rules
in calculations.

« Daylight Saving Time is not calculated for regions that do not use Daylight
Saving Time.

The rest of this section contains examples that use datetime datatypes. The
examples use the gl obal _or der s table. It contains the or der dat el column of
TI MESTAMP datatype and the or der dat e2 column of TI MESTAMP W TH TI MVE
ZONE datatype. The gl obal _or der s table is created as follows:

CREATE TABLE gl obal _orders (orderdatel TIMESTAVP(O),
orderdate2 TI MESTAMP(0) WTH TI ME ZONE);
I NSERT | NTO gl obal _orders VALUES ('28-QOCT-00 11:24:54 PM,
' 28- OCT-00 11:24:54 PM Anerical New_York');

Example 4-6 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
TIME ZONE and TIMESTAMP

SELECT orderdatel + INTERVAL '8 HOUR orderdate2 + I NTERVAL '8 HOUR
FROM gl obal _orders;

The following output results:
ORDERDATEL+I NTERVAL' 8’ HOUR ORDERDATE2+| NTERVAL' 8’ HOUR

29- CCT-00 07.24.54.000000 AM 29- OCT- 00 06.24.54. 000000 AM AVERI CA/ NEW YORK

This example shows the effect of adding 8 hours to the columns. The time period
includes a Daylight Saving Time boundary (a change from Daylight Saving Time to
standard time). The or der dat el column is of TI MESTAMP datatype, which does
not use Daylight Saving Time information and thus does not adjust for the change
that took place in the 8-hour interval. The TI MESTAMP W TH TI ME ZONE datatype
does adjust for the change, so the or der dat e2 column shows the time as one hour
earlier than the time shown in the or der dat el column.

Note: If you have created a gl obal _or der s table for the
previous examples, then drop the gl obal _or der s table before
you try Example 4-7 through Example 4-8.

Datetime Datatypes and Time Zone Support 4-27

Support for Daylight Saving Time

Example 4-7 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
LOCAL TIME ZONE and TIMESTAMP

The TI MESTAMP W TH LOCAL Tl ME ZONE datatype uses the value of TI ME_
ZONE that is set for the session environment. The following statements set the value
of the TI ME_ZONE session parameter and create an or der s table. The gl obal _

or der s table has one column of TI MESTAMP datatype and one column of

TI MESTAMP W TH LOCAL TI ME ZONE datatype.

ALTER SESSI ON SET TI ME_ZONE=" Aneri ca/ New_York’;
CREATE TABLE gl obal _orders (orderdatel TIMESTAVP(O),
orderdate2 TI MESTAMP(0) W TH LOCAL TIME ZONE);
I NSERT I NTO gl obal _orders VALUES (’'28-COCT-00 11:24:54 PM,
' 28-CCT-00 11:24:54 PM);

Add 8 hours to both columns.
SELECT orderdatel + INTERVAL '8 HOUR, orderdate2 + |NTERVAL '8 HOUR
FROM gl obal _orders;

Because a time zone region is associated with the datetime value for or der dat e2,
the Oracle server uses the Daylight Saving Time rules for the region. Thus the
output is the same as in Example 4-6. There is a one-hour difference between the
two calculations because Daylight Saving Time is not calculated for the TI MESTAMP
datatype, and the calculation crosses a Daylight Saving Time boundary.

Example 4-8 Daylight Saving Time Is Not Calculated for Regions That Do Not Use
Daylight Saving Time

Set the time zone region to UTC. UTC does not use Daylight Saving Time.
ALTER SESSI ON SET TI ME_ZONE=' UTC ;

Truncate the gl obal _or der s table.
TRUNCATE TABLE gl obal _orders;

Insert values into the gl obal _or der s table.

I NSERT | NTO gl obal _orders VALUES ('28-COCT-00 11:24:54 PM,
TI MESTAMP ' 2000- 10- 28 23:24:54 ');
Add 8 hours to the columns.

SELECT orderdatel + | NTERVAL '8 HOUR, orderdate2 + |NTERVAL '8 HOUR
FROM gl obal _orders;

The following output results.

4-28 Oracle Database Globalization Support Guide

Support for Daylight Saving Time

ORDERDATEL+| NTERVAL’ 8" HOUR ORDERDATE2+| NTERVAL' 8’ HOUR

29- OCT-00 07.24.54.000000000 AM 29- OCT-00 07.24.54.000000000 AM UTC

The times are the same because Daylight Saving Time is not calculated for the UTC
time zone region.

Datetime Datatypes and Time Zone Support 4-29

Support for Daylight Saving Time

4-30 Oracle Database Globalization Support Guide

D

Linguistic Sorting and String Searching

This chapter explains sorting and searching for strings in an Oracle environment. It
contains the following topics:

« Overview of Oracle’s Sorting Capabilities

« Using Binary Sorts

« Using Linguistic Sorts

« Linguistic Sort Features

« Using Linguistic Indexes

« Case-Insensitive and Accent-Insensitive Linguistic Sorts
« Searching Linguistic Strings

« SQL Regular Expressions in a Multilingual Environment

Linguistic Sorting and String Searching 5-1

Overview of Oracle’s Sorting Capabilities

Overview of Oracle’s Sorting Capabilities

Different languages have different sort orders. In addition, different cultures or
countries that use the same alphabets may sort words differently. For example, in
Danish, £ is after Z, while Y and Uare considered to be variants of the same letter.

Sort order can be case-sensitive or case-insensitive. Case refers to the condition of
being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase
glyph for a, the lowercase glyph.

Sort order can ignore or consider diacritics. A diacritic is a mark near or through a
character or combination of characters that indicates a different sound than the
sound of the character without the diacritic. For example, the cedilla (,) in f acade
is a diacritic. It changes the sound of c.

Sort order can be phonetic or it can be based on the appearance of the character. For
example, sort order can be based on the number of strokes in East Asian
ideographs. Another common sorting issue is combining letters into a single
character. For example, in traditional Spanish, ch is a distinct character that comes
after ¢, which means that the correct order is: cerveza, colorado, cheremoya. This
means that the letter ¢ cannot be sorted until Oracle has checked whether the next
letter is an h.

Oracle provides the following types of sorts:
« Binary sort

« Monolingual linguistic sort

« Multilingual linguistic sort

These sorts achieve a linguistically correct order for a single language as well as a
sort based on the multilingual ISO standard (ISO 14651), which is designed to
handle many languages at the same time.

Using Binary Sorts

One way to sort character data is based on the numeric values of the characters
defined by the character encoding scheme. This is called a binary sort. Binary sorts
are the fastest type of sort. They produce reasonable results for the English alphabet
because the ASCII and EBCDIC standards define the letters A to Z in ascending
numeric value.

5-2 Oracle Database Globalization Support Guide

Using Linguistic Sorts

Note: Inthe ASCII standard, all uppercase letters appear before
any lowercase letters. In the EBCDIC standard, the opposite is true:
all lowercase letters appear before any uppercase letters.

When characters used in other languages are present, a binary sort usually does not
produce reasonable results. For example, an ascending ORDER BY query returns the
character strings ABC, ABZ, BCD, ABC, when A has a higher numeric value than B in
the character encoding scheme. A binary sort is not usually linguistically
meaningful for Asian languages that use ideographic characters.

Using Linguistic Sorts

To produce a sort sequence that matches the alphabetic sequence of characters,
another sort technique must be used that sorts characters independently of their
numeric values in the character encoding scheme. This technique is called a
linguistic sort. A linguistic sort operates by replacing characters with numeric
values that reflect each character’s proper linguistic order.

Oracle offers two kinds of linguistic sorts: monolingual and multilingual.
This section includes the following topics:

« Monolingual Linguistic Sorts

« Multilingual Linguistic Sorts

« Multilingual Sorting Levels

« Linguistic Sort Examples

Monolingual Linguistic Sorts

Oracle compares character strings in two steps for monolingual sorts. The first step
compares the major value of the entire string from a table of major values. Usually,
letters with the same appearance have the same major value. The second step
compares the minor value from a table of minor values. The major and minor
values are defined by Oracle. Oracle defines letters with diacritic and case
differences as having the same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a
character. The Unicode code point is a 16-bit binary value that represents a
character.

Linguistic Sorting and String Searching 5-3

Using Linguistic Sorts

Table 5-1 illustrates sample values for sorting a, A, &, A, and b.

Table 5-1 Sample Glyphs and Their Major and Minor Sort Values

Glyph Major Value Minor Value
a 15 5

A 15 10

a 15 15

A 15 20

b 20 5

See Also: "Overview of Unicode" on page 6-2

Multilingual Linguistic Sorts

Oracle provides multilingual linguistic sorts so that you can sort data in more than
one language in one sort. This is useful for regions or languages that have complex
sorting rules and for multilingual databases. Oracle Database 10g supports all of the
sort orders defined by previous releases.

For Asian language data or multilingual data, Oracle provides a sorting mechanism
based on the ISO 14651 standard and the Unicode 3.2 standard. Chinese characters
are ordered by the number of strokes, PinYin, or radicals.

In addition, multilingual sorts can handle canonical equivalence and
supplementary characters. Canonical equivalence is a basic equivalence between
characters or sequences of characters. For example, ¢ is equivalent to the
combination of ¢ and , . Supplementary characters are user-defined characters or
predefined characters in Unicode 3.2 that require two code points within a specific
code range. You can define up to 1.1 million code points in one multilingual sort.

For example, Oracle supports a monolingual French sort (FRENCH), but you can
specify a multilingual French sort (FRENCH_M). _Mrepresents the 1ISO 14651
standard for multilingual sorting. The sorting order is based on the GENERI C_M
sorting order and can sort diacritical marks from right to left. Oracle Corporation
recommends using a multilingual linguistic sort if the tables contain multilingual
data. If the tables contain only French, then a monolingual French sort may have
better performance because it uses less memory:. It uses less memory because fewer
characters are defined in a monolingual French sort than in a multilingual French
sort. There is a tradeoff between the scope and the performance of a sort.

5-4 Oracle Database Globalization Support Guide

Using Linguistic Sorts

See Also:
« "Canonical Equivalence" on page 5-9

« "Supplementary Characters" on page 6-3

Multilingual Sorting Levels
Oracle evaluates multilingual sorts at three levels of precision:

« Primary Level Sorts
« Secondary Level Sorts

« Tertiary Level Sorts

Primary Level Sorts

A primary level sort distinguishes between base letters, such as the difference
between characters a and b. It is up to individual locales to define whether a is
before b, b is before a, or if they are equal. The binary representation of the
characters is completely irrelevant. If a character is an ignorable character, then it is
assigned a primary level order (or weight) of zero, which means it is ignored at the
primary level. Characters that are ignorable on other levels are given an order of
zero at those levels.

For example, at the primary level, all variations of bat come before all variations of
bet . The variations of bat can appear in any order, and the variations of bet can
appear in any order:

Bat
bat
BAT
BET
Bet
bet

See Also: "Ignorable Characters" on page 5-7

Secondary Level Sorts

A secondary level sort distinguishes between base letters (the primary level sort)
before distinguishing between diacritics on a given base letter. For example, the
character A differs from the character A only because it has a diacritic. Thus, Aand A
are the same on the primary level because they have the same base letter (A) but
differ on the secondary level.

Linguistic Sorting and String Searching 5-5

Using Linguistic Sorts

The following list has been sorted on the primary level (r esunme comes before
r esunes) and on the secondary level (strings without diacritics come before strings
with diacritics):

resune
r ésumg
Résumé
Resunes
r esunes
r ésumés

Tertiary Level Sorts

A tertiary level sort distinguishes between base letters (primary level sort),
diacritics (secondary level sort), and case (upper case and lower case). It can also
include special characters such as +, -, and *.

The following are examples of tertiary level sorts:

« Characters a and A are equal on the primary and secondary levels but different
on the tertiary level because they have different cases.

« Characters & and A are equal on the primary level and different on the
secondary and tertiary levels.

« The primary and secondary level orders for the dash character - is 0. That is, it
is ignored on the primary and secondary levels. If a dash is compared with
another character whose primary level order is nonzero, for example, u, then no
result for the primary level is available because u is not compared with
anything. In this case, Oracle finds a difference between - and u only at the
tertiary level.

The following list has been sorted on the primary level (r esunme comes before
r esumres) and on the secondary level (strings without diacritics come before strings
with diacritics) and on the tertiary level (lower case comes before upper case):

resune
Resune
r ésumg
Résumé
r esunes
Resunes
r ésumes
Résumés

5-6 Oracle Database Globalization Support Guide

Linguistic Sort Features

Linguistic Sort Features

Base Letters

This section contains information about different features that a linguistic sort can
have:

« Base Letters

« lgnorable Characters

« Contracting Characters

« Expanding Characters

» Context-Sensitive Characters
« Canonical Equivalence

« Reverse Secondary Sorting

» Character Rearrangement for Thai and Laotian Characters
« Special Letters

« Special Combination Letters
« Special Uppercase Letters

« Special Lowercase Letters

You can customize linguistic sorts to include the desired characteristics.

See Also: Chapter 13, "Customizing Locale"

Base letters are defined in a base letter table, which maps each letter to its base
letter. For example, a, A, &, and A all map to a, which is the base letter. This concept
is particularly relevant for working with Oracle Text.

See Also: Oracle Text Reference

Ignorable Characters

Some characters can be ignored in a linguistic sort. These characters are called
ignorable characters. There are two kinds of ignorable characters: diacritics and
punctuation.

Examples of ignorable diacritics are:

« 7, sothatrol e is treated the same asr ol e

Linguistic Sorting and String Searching 5-7

Linguistic Sort Features

« The umlaut, so that nai ve is treated the same as nai ve

An example of an ignorable punctuation character is the dash character - . If it is
ignored, thennul ti -1 i ngual can be treated that same asnul tili ngual and
e- mai | can be treated the same as ermai | .

Contracting Characters

Sorting elements usually consist of a single character, but in some locales, two or
more characters in a character string must be considered as a single sorting element
during sorting. For example, in traditional Spanish, the string ch is composed of
two characters. These characters are called contracting characters in multilingual
linguistic sorting and special combination letters in monolingual linguistic sorting.

Do not confuse a composed character with a contracting character. A composed
character like & can be decomposed into a and ' , each with their own encoding. The
difference between a composed character and a contracting character is that a
composed character can be displayed as a single character on a terminal, while a
contracting character is used only for sorting, and its component characters must be
rendered separately.

Expanding Characters

In some locales, certain characters must be sorted as if they were character strings.
An example is the German character 3 (sharp s). It is sorted exactly the same as the
string SS. Another example is that 6 sorts as if it were oe, after od and before of .
These characters are known as expanding characters in multilingual linguistic
sorting and special letters in monolingual linguistic sorting. Just as with
contracting characters, the replacement string for an expanding character is
meaningful only for sorting.

Context-Sensitive Characters

In Japanese, a prolonged sound mark that resembles an em dash —represents a
length mark that lengthens the vowel of the preceding character. The sort order
depends on the vowel that precedes the length mark. This is called context-sensitive
sorting. For example, after the character ka, the —ength mark indicates a long a
and is treated the same as a, while after the character ki , the —ength mark
indicates a long i and is treated the same as i . Transliterating this to Latin
characters, a sort might look like this:

kaa
ka— -- kaa and ka—are the sane

5-8 Oracle Database Globalization Support Guide

Linguistic Sort Features

kai -- kai follows ka- because i is after a
kia -- kia follows kai because i is after a
kii -- kii follows kia because i is after a
ki— ~-- kii and ki—are the sane

Canonical Equivalence

Canonical equivalence is an attribute of a multilingual sort and describes how
equivalent code point sequences are sorted. If canonical equivalence is applied in a
particular linguistic sort, then canonically equivalent strings are treated as equal.

One Unicode code point can be equivalent to a sequence of base letter code points
plus diacritic code points. This is called the Unicode canonical equivalence. For
example, & equals its base letter a and an umlaut. A linguistic flag, CANONI CAL _
EQUI VALENCE=TRUE, indicates that all canonical equivalence rules defined in
Unicode 3.2 need to be applied in a specific linguistic sort. Oracle-defined linguistic
sorts include the appropriate setting for the canonical equivalence flag.You can set
the flag to FALSE to speed up the comparison and ordering functions if all the data
is in its composed form.

For example, consider the following strings:

« aa (a umlaut followed by a)

« a b (afollowed by umlaut followed by b)

« &ac (a umlaut followed by c)

If CANONI CAL__EQUI VALENCE=FAL SE, then the sort order of the strings is:
a'b

aa

ac

This occurs because a comes before & if canonical equivalence is not applied.
If CANONI CAL_EQUI VALENCE=TRUE, then the sort order of the strings is:
aa

a'b

ac

This occurs because & and a” are treated as canonically equivalent.

You can use Oracle Locale Builder to view the setting of the canonical equivalence
flag in existing multilingual sorts. When you create a customized multilingual sort
with Oracle Locale Builder, you can set the canonical equivalence flag as desired.

Linguistic Sorting and String Searching 5-9

Linguistic Sort Features

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 13-32 for more information about setting the

canonical equivalence flag

Reverse Secondary Sorting

In French, sorting strings of characters with diacritics first compares base letters
from left to right, but compares characters with diacritics from right to left. For
example, by default, a character with a diacritic is placed after its unmarked variant.
Thus Edi t comes before Edi t in a French sort. They are equal on the primary level,
and the secondary order is determined by examining characters with diacritics from
right to left. Individual locales can request that the characters with diacritics be
sorted with the right-to-left rule. Set the REVERSE SECONDARY linguistic flag to

TRUE to enable reverse secondary sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 13-32 for more information about setting the

reverse secondary flag

Character Rearrangement for Thai and Laotian Characters

In Thai and Lao, some characters must first change places with the following
character before sorting. Normally, these types of character are symbols
representing vowel sounds, and the next character is a consonant. Consonants and
vowels must change places before sorting. Set the SWAP_W TH_NEXT linguistic flag

for all characters that must change places before sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 13-32 for more information about setting the

SWAP_W TH_NEXT flag

Special Letters
Special letters is a term used in monolingual sorts. They are called expanding

characters in multilingual sorts.

See Also: "Expanding Characters" on page 5-8

Special Combination Letters
Special combination letters is the term used in monolingual sorts. They are called
contracting letters in multilingual sorts.

5-10 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

See Also: "Contracting Characters” on page 5-8

Special Uppercase Letters

One lowercase letter may map to multiple uppercase letters. For example, in
traditional German, the uppercase letters for 3 are SS.

These case conversions are handled by the NLS UPPER, NLS LOVER, and NLS

I NI TCAP SQL functions, according to the conventions established by the linguistic
sort sequence. The UPPER, LOVER, and | NI TCAP SQL functions cannot handle these
special characters.

The NLS_UPPER SQL function returns all uppercase characters from the same
character set as the lowercase string. The following example shows the result of the
NLS UPPER function when NLS_SORT is set to XGERVAN:

SELECT NLS_UPPER (' grofRe’) "Uppercase" FROM DUAL;

See Also: Oracle Database SQL Reference

Special Lowercase Letters

Oracle supports special lowercase letters. One uppercase letter may map to multiple
lowercase letters. An example is the Turkish uppercase | becoming a small, dotless
il

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Operation inside an Oracle database is always sensitive to the case and the accents
(diacritics) of the characters. Sometimes you may need to perform case-insensitive
or accent-insensitive comparisons and sorts.

In previous versions of the database, case-insensitive queries could be achieved by
using the NLS_UPPER and NLS_LOWER SQL functions. The functions change the
case of strings based on a specific linguistic sort definition. This enables you to
perform case-insensitive searches regardless of the language being used. For
example, create a table called t est 4 as follows:

SQL> CREATE TABLE test4(word VARCHARZ(12));
SQL> | NSERT I NTO test4 VALUES(’ GROSSE);

Linguistic Sorting and String Searching 5-11

Case-Insensitive and Accent-Insensitive Linguistic Sorts

SQ.> I NSERT I NTO test4 VALUES(' GrofRe’);
SQL> I NSERT I NTO test4 VALUES(' groRe’);
SQL> SELECT * FROM test4;

Perform a case-sensitive search for GROSSE as follows:
SQL> SELECT word FROM test4 WHERE wor d=" GROSSE' ;

Perform a case-insensitive search for GROSSE using the NLS_UPPER function:

SELECT word FROM test4
WHERE NLS_UPPER(word, ' NLS_SORT = XGERMAN) = ' GROSSE ;

Using NLS_UPPERand NLS LOWER functions can be cumbersome because they
need to be hard-coded into the application logic. A partial solution was introduced
in Oracle9i Release 2 (9.2). It uses the GENERI C_BASELETTER linguistic sort. The
GENERI C_BASELETTER sort groups all characters together based on their base
letter values. This is achieved by ignoring their case and diacritic differences.

The following example shows a GENERI C_BASELETTER query. First create a table
called t est 5:

CREATE TABLE test5(product VARCHAR2(20));
I NSERT | NTO test5 VALUES(' DATABASE');
I NSERT | NTO test5 VALUES(' dat dbase’);
I NSERT I NTO test5 VALUES(' dat abase’);
I NSERT I NTO test5 VALUES(' Dat abase’)

SELECT product FROMtest5;

PRODUCT

5-12 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

DATABASE
dat &base
dat abase
Dat abase
Select dat abase fromt est 5, using the default binary sort:

SELECT product FROMtest5 WHERE product =’ dat abase’;

dat abase

Set NLS_CQOVP to ANSI to perform a linguistic sort based on the value of NLS_SORT:
ALTER SESSI ON SET NLS_COWP=ANSI ;

Set NLS_SORT to GENERI C_BASELETTER:
ALTER SESSI ON SET NLS_SORT=GENERI C_BASELETTER;

Again select dat abase fromt est 5:

SELECT * FROM test5 WHERE product =" dat abase’ ;

DATABASE
dat abase
dat abase
Dat abase

Note that all of the rows of t est 5 are selected.

The GENERI C_BASELETTER sort defines the base letters of the underlying
characters. Hence it simulates the behavior of a case-insensitive and
accent-insensitive linguistic sort. However, the GENERI C_BASELETTER search is
not a linguistically sensitive search because it is not based on any specific language.

In Oracle Database 10g, Oracle provides case-insensitive and accent-insensitive
options for linguistic sorts.

Oracle provides the following types of monolingual and multilingual linguistic
sorts:

Linguistic Sorting and String Searching 5-13

Case-Insensitive and Accent-Insensitive Linguistic Sorts

« Linguistic sorts that use information about base letters, diacritics, punctuation,
and case. These are the standard monolingual and multilingual linguistic sorts
that are described in "Using Linguistic Sorts" on page 5-3.

« Linguistic sorts that use information about base letters, diacritics, and
punctuation. This type of sort is called case-insensitive.

« Linguistic sorts that use information about base letters only. This type of sort is
called accent-insensitive. (Accent is another word for diacritic.) An
accent-insensitive sort is always case-insensitive as well.

The rest of this section contains the following topics:
« Examples of Case-Insensitive and Accent-Insensitive Sorts

« Specifying a Case-Insensitive or Accent-Insensitive Sort

See Also:
« "NLS_SORT" on page 3-41
« "NLS_COMP" on page 3-42

Examples of Case-Insensitive and Accent-Insensitive Sorts
The following examples show:

« A sort that uses information about base letters, diacritics, punctuation, and case
« A case-insensitive sort

« An accent-insensitive sort

Example 5-1 Linguistic Sort Using Base Letters, Diacritics, Punctuation, and Case
Information

The following list has been sorted using information about base letters, diacritics,
punctuation, and case:

bl ackbird
Bl ackbird
bl ack bird
bl ack-bird
Bl ack-bird
bl &ckbird
bl ackbird

5-14 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Example 5-2 Case-Insensitive Linguistic Sort

The following list has been sorted using information about base letters, diacritics,
and punctuation, ignoring case:

Bl ackbi rd
bl ackbird
bl ackbird
bl ackbird
bl ack bird
bl ack-bird
Bl ack-bird

bl ack- bi r d and Bl ack- bi r d have the same value in the sort, because the only
different between them is case. They could appear interchanged in the list.
Blackbird and blackbird also have the same value in the sort and could appear
interchanged in the list.

Example 5-3 Accent-Insensitive Linguistic Sort

The following list has been sorted using information about base letters only. No
information about diacritics, punctuation, or case has been used.

bl ackbird
bl ackbird
bl ackbird
Bl ackbird
Bl ackBird
Bl ack-bird
Bl ack bird

Specifying a Case-Insensitive or Accent-Insensitive Sort

Use the NLS_SORT session parameter to specify a case-insensitive or
accent-insensitive sort:

« Append _Cl to an Oracle sort name for a case-insensitive sort.

« Append _Al to an Oracle sort name for an accent-insensitive and
case-insensitive sort.

For example, you can set NLS_SORT to the following types of values:

FRENCH M Al
XGERVAN CI

Linguistic Sorting and String Searching 5-15

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Binary sorts can also be case-insensitive or accent-insensitive. When you specify
Bl NARY_Cl as a value for NLS_SORT, it designates a sort that is accent-sensitive
and case-insensitive. Bl NARY_Al designates an accent-insensitive and
case-insensitive binary sort. You may want to use a binary sort if the binary sort
order of the character set is appropriate for the character set you are using.

For example, with the NLS_LANGenvironment variable set to AVERI CAN_
AMERI CA. VIEE8] SOB859P1, create a table called t est 1 and populate it as follows:

SQL> CREATE TABLE testl (letter VARCHAR2(10));
SQL> I NSERT I NTO test1 VALUES(' &');

SQL> I NSERT INTO test1l VALUES(' a’
SQL> I NSERT INTO test1l VALUES(' A
SQL> I NSERT INTO test1l VALUES(' Z
SQ.> SELECT * FROMtest1;

);
)
)

The default value of NLS_SORT is Bl NARY. Use the following statement to do a
binary sort of the characters in table t est 1:

SELECT * FROM test1 ORDER BY letter;

To change the value of NLS_SORT, enter a statement similar to the following:
ALTER SESSI ON SET NLS_SORT=BI NARY_CI ;

The following table shows the sort orders that result from setting NLS_SORT to
Bl NARY, Bl NARY_Cl , and Bl NARY_Al| .

BINARY BINARY_CI BINARY_AI
A a a

z A a

a Z

a a Z

5-16 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

When NLS_SORT=BI NARY, uppercase letters come before lowercase letters. Letters
with diacritics appear last.

When the sort considers diacritics but ignores case (Bl NARY_Cl), the letters with
diacritics appear last.

When both case and diacritics are ignored (Bl NARY_Al), & is sorted with the other
characters whose base letter is a. All the characters whose base letter is a occur
before z.

You can use binary sorts for better performance when the character set is US7TASCII
or another character set that has the same sort order as the binary sorts.

The following table shows the sort orders that result from German sorts for the
table.

GERMAN GERMAN_CI GERMAN_AI

a a a
A A a
a a

4 4 4

A German sort places lowercase letters before uppercase letters, and & occurs before
Z. When the sort ignores both case and diacritics (GERMAN_Al), & appears with the
other characters whose base letter is a.

Linguistic Sort Examples

The examples in this section demonstrate a binary sort, a monolingual sort, and a
multilingual sort. To prepare for the examples, create and populate a table called
t est 2. Enter the following statements:

SQL> CREATE TABLE test2 (nanme VARCHAR2(20));
SQ.> I NSERT INTO test2 VALUES('Diet’);

SQL> INSERT INTO test2 VALUES(’ A voir’);
SQL> I NSERT | NTO test2 VALUES(' Freizeit');

Example 5-4 Binary Sort
The ORDER BY clause uses a binary sort.

SQ.> SELECT * FROM test2 ORDER BY nane;

Linguistic Sorting and String Searching 5-17

Case-Insensitive and Accent-Insensitive Linguistic Sorts

You should see the following output:

Di et

Frei zeit

A voir

Note that a binary sort results in A voi r being at the end of the list.

Example 5-5 Monolingual German Sort

Use the NLSSORT function with the NLS_SORT parameter set to ger nman to obtain a
German sort.

SQL> SELECT * FROM test2 ORDER BY NLSSCRT(nanme, 'NLS SORT=gernan’);

You should see the following output:
A voir

Di et

Freizeit

Note that A voi r is at the beginning of the list in a German sort.

Example 5-6 Comparing a Monolingual German Sort to a Multilingual Sort

Insert the character string shown in Figure 5-1 into t est . It is a Dwith a crossbar
followed by A.

Figure 5-1 Character String

bn

Perform a monolingual German sort by using the NLSSORT function with the NLS_
SORT parameter set to ger man.

SQL> SELECT * FROM test2 ORDER BY NLSSORT(name, 'NLS_SORT=german’);

The output from the German sort shows the new character string last in the list of
entries because the characters are not recognized in a German sort.

Perform a multilingual sort by entering the following statement:
SQL> SELECT * FROM test2 ORDER BY NLSSORT(name, ' NLS SORT=generic_m);

The output shows the new character string after Di et , following ISO sorting rules.

5-18 Oracle Database Globalization Support Guide

Using Linguistic Indexes

See Also:
« "The NLSSORT Function” on page 9-9

« "NLS_SORT" on page 3-41 for more information about setting
and changing the NLS_SORT parameter

Using Linguistic Indexes

Linguistic sorting is language-specific and requires more data processing than
binary sorting. Using a binary sort for ASCII is accurate and fast because the binary
codes for ASCII characters reflect their linguistic order. When data in multiple
languages is stored in the database, you may want applications to sort the data
returned from a SELECT. . . ORDER BY statement according to different sort
sequences depending on the language. You can accomplish this without sacrificing
performance by using linguistic indexes. Although a linguistic index for a column
slows down inserts and updates, it greatly improves the performance of linguistic
sorting with the ORDER BY clause.

You can create a function-based index that uses languages other than English. The
index does not change the linguistic sort order determined by NLS_SORT. The index
simply improves the performance. The following statement creates an index based
on a German sort:

CREATE TABLE ny_tabl e(name VARCHAR(20) NOT NULL)
/*NOT NULL ensures that the index is used */
CREATE | NDEX nl s_index ON ny_tabl e (NLSSORT(nane, 'NLS_SORT = German'));

After the index has been created, enter a SELECT statement similar to the following:

SELECT * FROM ny_t abl e ORDER BY nane;

It returns the result much faster than the same SELECT statement without an index.
The rest of this section contains the following topics:
« Linguistic Indexes for Multiple Languages

« Requirements for Using Linguistic Indexes

See Also:
« Oracle Database Concepts

« Oracle Database SQL Reference for more information about
function-based indexes

Linguistic Sorting and String Searching 5-19

Using Linguistic Indexes

Linguistic Indexes for Multiple Languages
There are three ways to build linguistic indexes for data in multiple languages:

Build a linguistic index for each language that the application supports. This
approach offers simplicity but requires more disk space. For each index, the
rows in the language other than the one on which the index is built are collated
together at the end of the sequence. The following example builds linguistic
indexes for French and German.

CREATE | NDEX french_i ndex ON enpl oyees (NLSSORT(enployee_ id, 'NLS_
SORT=FRENCH)) ;
CREATE | NDEX german_i ndex ON enpl oyees (NLSSORT(enployee_id, 'NLS_
SORT=GERMAN)) ;

Oracle chooses the index based on the NLS_SORT session parameter or the
arguments of the NLSSORT function specified in the ORDER BY clause. For
example, if the NLS_SORT session parameter is set to FRENCH, then Oracle uses
french_i ndex. When it is set to GERVAN, Oracle uses ger man_i ndex.

Build a single linguistic index for all languages. This requires a language
column (LANG_COL in "Example: Setting Up a French Linguistic Index" on
page 5-21) to be used as a parameter of the NLSSORT function. The language
column contains NLS_LANGUAGE values for the data in the column on which
the index is built. The following example builds a single linguistic index for
multiple languages. With this index, the rows with the same values for NLS
LANGUAGE are sorted together.

CREATE INDEX i ON 't (NLSSORT(col, 'NLS_SORT=' || LANG COL)):
Queries choose an index based on the argument of the NLSSORT function
specified in the ORDER BY clause.

Build a single linguistic index for all languages using one of the multilingual
linguistic sorts such as GENERI C_Mor FRENCH_M These indexes sort characters
according to the rules defined in ISO 14651. For example:

CREATE INDEX i on t (NLSSORT(col, 'NLS_SORT=GENERIC M);

See Also: "Multilingual Linguistic Sorts" on page 5-4 for more
information about Unicode sorts

Requirements for Using Linguistic Indexes
The following are requirements for using linguistic indexes:

5-20 Oracle Database Globalization Support Guide

Using Linguistic Indexes

« Set NLS_SORT Appropriately

« Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT
NULL

This section also includes:

« Example: Setting Up a French Linguistic Index

Set NLS_SORT Appropriately

The NLS_SORT parameter should indicate the linguistic definition you want to use
for the linguistic sort. If you want a French linguistic sort order, then NLS_SORT
should be set to FRENCH. If you want a German linguistic sort order, then NLS
SORT should be set to GERVAN.

There are several ways to set NLS_SORT. You should set NLS_SORT as a client
environment variable so that you can use the same SQL statements for all
languages. Different linguistic indexes can be used when NLS_SORT is set in the
client environment.

See Also: "NLS_SORT" on page 3-41

Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT
NULL

When you want to use the ORDER BY col umm_nane clause with a column that
has a linguistic index, include a WHERE clause like the following:

WHERE NLSSORT(col utm_name) 1S NOT NULL

This WHERE clause is not necessary if the column has already been defined as a NOT
NULL column in the schema.

Example: Setting Up a French Linguistic Index

The following example shows how to set up a French linguistic index. You may
want to set NLS_SORT as a client environment variable instead of using the ALTER
SESSI ON statement.

ALTER SESSI ON SET NLS_SORT=' FRENCH ;

ALTER SESSI ON SET OPTI M ZER_MCDE = FI RST_ROWS;

CREATE | NDEX test idx ON test3(NLSSORT(col, 'NLS_SORT=FRENCH));
SELECT * FROM test3 ORDER BY col;

ALTER SESSI ON SET NLS COVP=ANSI ;

SELECT * FROM test3 WHERE col > 'JJJ';

Linguistic Sorting and String Searching 5-21

Searching Linguistic Strings

Searching Linguistic Strings

Searching and sorting are related tasks. Organizing data and processing it in a
linguistically meaningful order is necessary for proper business processing.
Searching and matching data in a linguistically meaningful way depends on what
sort order is applied. For example, searching for all strings greater than c and less
than f produces different results depending on the value of NLS_SORT. In a ASCII
binary sort the search finds any strings that start with d or e but excludes entries
that begin with upper case D or E or accented e with a diacritic, such as é. Applying
an accent-insensitive binary sort returns all strings that start with d, D, and
accented e, such as E or &. Applying the same search with NLS_SORT set to
XSPANI SH also returns strings that start with ch, because ch is treated as a
composite character that sorts between ¢ and d in traditional Spanish. This chapter
discusses the kinds of sorts that Oracle offers and how they affect string searches by
SQL and SQL regular expressions.

See Also:
« "Linguistic Sort Features" on page 5-7

« "SQL Regular Expressions in a Multilingual Environment” on
page 5-22

SQL Regular Expressions in a Multilingual Environment

Regular expressions provide a powerful method of identifying patterns of strings
within a body of text. Usage ranges from a simple search for a string such as San
Franci sco to the more complex task of extracting all URLSs to a task like finding
all words whose every second character is a vowel. SQL and PL/SQL support
regular expressions in Oracle Database 10g.

Traditional regular expression engines were designed to address only English text.
However, regular expression implementations can encompass a wide variety of
languages with characteristics that are very different from western European text.
Oracle’s implementation of regular expressions is based on the Unicode Regular
Expression Guidelines. The REGEXP SQL functions work with all character sets that
are supported as database character sets and national character sets. Moreover,
Oracle enhances the matching capabilities of the POSIX regular expression
constructs to handle the unique linguistic requirements of matching multilingual
data.

Oracle enhancements of the linguistic-sensitive operators are described in the
following sections:

5-22 Oracle Database Globalization Support Guide

SQL Regular Expressions in a Multilingual Environment

« Character Range ’[x-y]’ in Regular Expressions

« Collation Element Delimiter ’[. .]’ in Regular Expressions
« Character Class '[: :]’ in Regular Expressions

« Equivalence Class ’[= =]’ in Regular Expressions

« Examples: Regular Expressions

See Also:

« Oracle Database Application Developer's Guide - Fundamentals for
more information about regular expression syntax

« Oracle Database SQL Reference for more information about
REGEX SQL functions

Character Range ’'[x-y]’ in Regular Expressions

According to the POSIX standard, a range in a regular expression includes all
collation elements between the start point and the end point of the range in the
linguistic definition of the current locale. Therefore, ranges in regular expressions
are meant to be linguistic ranges, not byte value ranges, because byte value ranges
depend on the platform, and the end user should not be expected to know the
ordering of the byte values of the characters. The semantics of the range expression
must be independent of the character set. This implies that a range such as [a- d]
includes all the letters between a and d plus all of those letters with diacritics, plus
any special case collation element such as ch in Traditional Spanish that is sorted as
one character.

Oracle interprets range expressions as specified by the NLS_SORT parameter to
determine the collation elements covered by a given range. For example:

Expr essi on: [a-d]e
NLS_SORT: Bl NARY

Does not match: cherenoya
NLS_SORT: XSPANI SH

Mat ches: >>che<<r enpya

Collation Element Delimiter ’[. .]’ in Regular Expressions

This construct is introduced by the POSIX standard to separate collating elements.
A collating element is a unit of collation and is equal to one character in most cases.
However, the collation sequence in some languages may define two or more
characters as a collating element. The historical regular expression syntax does not

Linguistic Sorting and String Searching 5-23

SQL Regular Expressions in a Multilingual Environment

allow the user to define ranges involving multicharacter collation elements. For
example, there was no way to define a range from a to ch because ch was
interpreted as two separate characters.

By using the collating element delimiter [. .], you can separate a multicharacter
collation element from other elements. For example, the range from a to ch can be
writtenas[a-[.ch.]].Itcan also be used to separate single-character collating
elements. If youuse[. .] toenclose a multicharacter sequence that is not a
defined collating element, then it is considered as a semantic error in the regular
expression. For example, [. ab.] is considered invalid if ab is not a defined
multicharacter collating element.

Character Class '[: :]’ in Regular Expressions

In English regular expressions, the range expression can be used to indicate a
character class. For example, [a- z] can be used to indicate any lowercase letter.
However, in non-English regular expressions, this approach is not accurate unless a
is the first lowercase letter and z is the last lowercase letter in the collation sequence
of the language.

The POSIX standard introduces a new syntactical element to enable specifying
explicit character classes in a portable way. The [: :] syntax denotes the set of
characters belonging to a certain character class. The character class definition is
based on the character set classification data.

Equivalence Class '[= =] in Regular Expressions

Oracle also supports equivalence classes through the [= =] syntax as
recommended by the POSIX standard. A base letter and all of the accented versions
of the base constitute an equivalence class. For example, the equivalence class

[=a=] matches a as well as &. The current implementation does not support
matching of Unicode composed and decomposed forms for performance reasons.
For example, & (a umlaut) does not match 'a followed by umlaut’.

Examples: Regular Expressions
The following examples show regular expression matches.

Example 5-7 Case-Insensitive Match Using the NLS_SORT Value

Case sensitivity in an Oracle regular expression match is determined at two levels:
the NLS_SORT initialization parameter and the runtime match option. The REGEXP
functions inherit the case-sensitivity behavior from the value of NLS _SORT by

5-24 Oracle Database Globalization Support Guide

SQL Regular Expressions in a Multilingual Environment

default. The value can also be explicitly overridden by the runtime match option
"¢’ (case sensitive) or’ i’ (case insensitive).

Expression: catal og(ue)?
NLS_SORT: GENERIC_ M C
Mat ches:

>>Cat al og<<

>>cat al ogue<<

>>CATALOCR<

Oracle SQL syntax:

SQ.> ALTER SESSI ON SET NLS SORT="CGENERIC M CI " ;
SQL> SELECT col FROMtest WHERE REGEXP_LIKE(col,’ catal og(ue)?'):

Example 5-8 Case Insensitivity Overridden by the Runtime Match Option

Expression: catal og(ue)?
NLS_SORT: GENERIC_M Cl
Match option: 'c’
Mat ches:

>>cat al ogue<<
Does not match:

Catal og

CATALOG

Oracle SQL syntax:

SQL> ALTER SESSI ON SET NLS_SORT="GENERIC M Cl’;
SQL> SELECT col FROMtest WHERE REGEXP_LIKE(col,’ catal og(ue)?,’'c’);

Example 5-9 Matching with the Collation Element Operator [..]

Expression: [*-a-[.ch.]]+
Mat ches:

>>driver<<
Does not match:

cab

Oracle SQL syntax:

SQL> SELECT col FROMtest WHERE REGEXP_LIKE(col,’[*-a-[.ch.]]+);

Example 5-10 Matching with the Character Class Operator [::]

This expression looks for 6-character strings with lowercase characters. Note that
accented characters are matched as lowercase characters.

Linguistic Sorting and String Searching 5-25

SQL Regular Expressions in a Multilingual Environment

Expression: [[:lower:]]{6}
Dat abase character set: WE8I SO1559P1
Mat ches:

>>maitre<<

>>mobi | e<<

>>pdj ar 0<<

>>zur lick<<

Oracle SQL syntax:
SQL> SELECT col FROM test WHERE REGEXP_LIKE(col, ' [[:lower:]]{6}");

Example 5-11 Matching with the Base Letter Operator [==]

Expression: r[[=e=]]sun{[=e=]]
Mat ches:

>>r esune<<

>>r ésUnMB<<

>>r ésune<<

>>r esung<<

Oracle SQL syntax:
SQL> SELECT col FROMtest WHERE REGEXP_LIKE(col,r[[=e=]]suni[e]]’);

See Also:

« Oracle Database Application Developer's Guide - Fundamentals for
more information about regular expression syntax

« Oracle Database SQL Reference for more information about
REGEX SQL functions

5-26 Oracle Database Globalization Support Guide

6

Supporting Multilingual Databases with

Unicode

This chapter illustrates how to use Unicode in an Oracle database environment. It
includes the following topics:

Overview of Unicode

What is Unicode?

Implementing a Unicode Solution in the Database
Unicode Case Studies

Designing Database Schemas to Support Multiple Languages

Supporting Multilingual Databases with Unicode 6-1

Overview of Unicode

Overview of Unicode

Dealing with many different languages in the same application or database has
been complicated and difficult for a long time. To overcome the limitations of
existing character encodings, several organizations began working on the creation
of a global character set in the late 1980s. The need for this became even greater
with the development of the World Wide Web in the mid-1990s. The Internet has
changed how companies do business, with an emphasis on the global market that
has made a universal character set a major requirement. A global character set
needs to fulfill the following conditions:

« Contain all major living scripts
« Support legacy data and implementations

« Besimple enough that a single implementation of an application is sufficient for
worldwide use

A global character set should also have the following capabilities:
« Support multilingual users and organizations

» Conform to international standards

« Enable worldwide interchange of data

This global character set exists, is in wide use, and is called Unicode.

What is Unicode?

Unicode is a universal encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors.
Many operating systems and browsers now support Unicode. Unicode is required
by standards such as XML, Java, JavaScript, LDAP, and WML. It is also
synchronized with the ISO/IEC 10646 standard.

Oracle Corporation started supporting Unicode as a database character set in
version 7. In Oracle Database 10g, Unicode support has been expanded. Oracle
Database 10g supports Unicode 3.2.

See Also: http://ww. uni code. or g for more information
about the Unicode standard

6-2 Oracle Database Globalization Support Guide

What is Unicode?

This section contains the following topics:
« Supplementary Characters
« Unicode Encodings

« Oracle’s Support for Unicode

Supplementary Characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes
to encode each character. This allowed 65,536 characters to be represented.
However, more characters need to be supported, especially additional CIK
ideographs that are important for the Chinese, Japanese, and Korean markets.

Unicode 3.2 defines supplementary characters to meet this need. It uses two 16-bit
code points (also known as supplementary characters) to represent a single
character. This enables an additional 1,048,576 characters to be defined. The
Unicode 3.2 standard defines 45,960 supplementary characters.

Adding supplementary characters increases the complexity of Unicode, but it is less
complex than managing several different encodings in the same configuration.

Unicode Encodings

Unicode 3.2 encodes characters in different ways: UTF-8, UCS-2, and UTF-16.
Conversion between different Unicode encodings is a simple bit-wise operation that
is defined in the Unicode standard.

This section contains the following topics:

« UTF-8 Encoding

« UCS-2 Encoding

« UTF-16 Encoding

« Examples: UTF-16, UTF-8, and UCS-2 Encoding

UTF-8 Encoding

UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character
set is available in UTF-8 with the same code point values. One Unicode character
can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the
European scripts are represented in either 1 or 2 bytes. Characters from most Asian

Supporting Multilingual Databases with Unicode 6-3

What is Unicode?

scripts are represented in 3 bytes. Supplementary characters are represented in 4
bytes.

UTF-8 is the Unicode encoding supported on UNIX platforms and used for HTML
and most Internet browsers. Other environments such as Windows and Java use
UCS-2 encoding.

The benefits of UTF-8 are as follows:

« Compact storage requirement for European scripts because it is a strict superset
of ASCII

« Ease of migration between ASCII-based characters sets and UTF-8

See Also:
« "Supplementary Characters" on page 6-3

« Table B-2, "Unicode Character Code Ranges for UTF-8
Character Codes" on page B-2

UCS-2 Encoding

UCS-2 is a fixed-width, 16-bit encoding. Each character is 2 bytes. UCS-2 is the
Unicode encoding used by Java and Microsoft Windows NT 4.0. UCS-2 supports
characters defined for Unicode 3.0, so there is no support for supplementary
characters.

The benefits of UCS-2 over UTF-8 are as follows:
« More compact storage for Asian scripts because all characters are two bytes
« [Faster string processing because characters are fixed-width

« Better compatibility with Java and Microsoft clients

See Also: "Supplementary Characters” on page 6-3

UTF-16 Encoding

UTF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is an extension of
UCS-2 because it supports the supplementary characters that are defined in
Unicode 3.2 by using two UCS-2 code points for each supplementary character.
UTF-16 is a strict superset of UCS-2.

One character can be either 2 bytes or 4 bytes in UTF-16. Characters from European
and most Asian scripts are represented in 2 bytes. Supplementary characters are

6-4 Oracle Database Globalization Support Guide

What is Unicode?

represented in 4 bytes. UTF-16 is the main Unicode encoding used by Microsoft
Windows 2000.

The benefits of UTF-16 over UTF-8 are as follows:

« More compact storage for Asian scripts because most of the commonly used
Asian characters are represented in two bytes.

« Better compatibility with Java and Microsoft clients

See Also:
« "Supplementary Characters" on page 6-3

« Table B-1, "Unicode Character Code Ranges for UTF-16
Character Codes" on page B-2

Examples: UTF-16, UTF-8, and UCS-2 Encoding

Figure 6-1 shows some characters and their character codes in UTF-16, UTF-8, and
UCS-2 encoding. The last character is a treble clef (a music symbol), a
supplementary character that has been added to the Unicode 3.2 standard.

Figure 6-1 UTF-16, UTF-8, and UCS-2 Encoding Examples

Character | UTF-16 UTF-8 UCs-2
A 0041 41 | 0041
C 0063 63 | 0063
) O0F6 C3B6 | OOF6
2] 4E9C E4 BA9C | 4E9C
éy D834 DD1E FO 9D 84 9E | N/A

Oracle’s Support for Unicode

Oracle Corporation started supporting Unicode as a database character set in
version 7. Table 6-1 summarizes the Unicode character sets supported by the Oracle
database server.

Supporting Multilingual Databases with Unicode 6-5

Implementing a Unicode Solution in the Database

Table 6-1 Unicode Character Sets Supported by the Oracle Database Server

Character Set

Supported in
RDBMS
Release

Unicode
Encoding

Unicode
Version

Database
Character Set

National
Character Set

AL24UTFFSS
UTF8

UTFE

AL32UTF8

AL16UTF16

7.2-8i
8.0 - 10g

8.0 - 10g

9i - 10g

9i - 10g

UTF-8
UTF-8

UTF-EBCDIC

UTF-8

UTF-16

11

For Oracle
release 8.0
through Oracle8i
release 8.1.6: 2.1

For Oracle8i
release 8.1.7 and
later: 3.0

For Oracle8i
releases 8.0
through 8.1.6: 2.1

For Oracle8i
release 8.1.7 and
later: 3.0

Oracle9i, Release
1: 3.0

Oracle9i, Release
2:3.1

Oracle Database
10g, Release 1:
3.2

Oracle9i, Release
1: 3.0

Oracle9i, Release
2:3.1

Oracle Database
10g, Release 1:
3.2

Yes

Yes

Yes

Yes

No

No

Yes (Oracle9i
and Oracle
Database 10g

only)

No

No

Yes

Implementing a Unicode Solution in the Database

You can store Unicode characters in an Oracle database in two ways.

6-6 Oracle Database Globalization Support Guide

You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG) .

Implementing a Unicode Solution in the Database

If you prefer to implement Unicode support incrementally or if you need to support
multilingual data only in certain columns, then you can store Unicode data in either
the UTF-16 or UTF-8 encoding form in SQL NCHAR datatypes (NCHAR, NVARCHARZ,
and NCLOB). The SQL NCHAR datatypes are called Unicode datatypes because they
are used only for storing Unicode data.

Note: You can combine a Unicode database solution with a
Unicode datatype solution.

The following sections explain how to use the two Unicode solutions and how to
choose between them:

« Enabling Multilingual Support with Unicode Databases
« Enabling Multilingual Support with Unicode Datatypes
« How to Choose Between a Unicode Database and a Unicode Datatype Solution

« Comparing Unicode Character Sets for Database and Datatype Solutions

Enabling Multilingual Support with Unicode Databases

The database character set specifies the encoding to be used in the SQL CHAR
datatypes as well as the metadata such as table names, column names, and SQL
statements. A Unicode database is a database with a UTF-8 character set as the
database character set. There are three Oracle character sets that implement the
UTF-8 encoding. The first two are designed for ASClI-based platforms while the
third one should be used on EBCDIC platforms.

« AL32UTF8

The AL32UTF8 character set supports the latest version of the Unicode
standard. It encodes characters in one, two, or three bytes. Supplementary
characters require four bytes. It is for ASCll-based platforms.

« UTF8

The UTF8 character set encodes characters in one, two, or three bytes. It is for
ASCIlI-based platforms.

The UTF8 character set has supported Unicode 3.0 since Oracle8i release 8.1.7
and will continue to support Unicode 3.0 in future releases of the Oracle
database server. Although specific supplementary characters were not assigned
code points in Unicode until version 3.1, the code point range was allocated for

Supporting Multilingual Databases with Unicode 6-7

Implementing a Unicode Solution in the Database

supplementary characters in Unicode 3.0. If supplementary characters are
inserted into a UTF8 database, then it does not corrupt the data in the database.
The supplementary characters are treated as two separate, user-defined
characters that occupy 6 bytes. Oracle Corporation recommends that you switch
to AL32UTRFS8 for full support of supplementary characters in the database
character set.

« UTFE

The UTFE character set is for EBCDIC platforms. It is similar to UTF8 on ASCII
platforms, but it encodes characters in one, two, three, and four bytes.
Supplementary characters are converted as two 4-byte characters.

Example 6-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE
statement and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sanpl e
CONTROLFI LE REUSE
LOGFI LE
GROUP 1 ('diskx:logl.log, 'disky:logl.log") SIZE 50K,
GROUP 2 ('diskx:log2.1o0g", 'disky:log2.10g") SIZE 50K
MAXLOGFI LES 5
MAXLOGHI STORY 100
MAXDATAFI LES 10
MAXI NSTANCES 2
ARCHI VELOG
CHARACTER SET AL32UTF8
NATI ONAL CHARACTER SET AL16UTF16
DATAFI LE
"di skl:df 1. dbf’ AUTOEXTEND ON,
"di sk2: df 2. dbf’ AUTOEXTEND ON NEXT 10M MAXSI ZE UNLI M TED
DEFAULT TEMPORARY TABLESPACE tenp_ts
UNDO TABLESPACE undo_t's
SET TIME_ZONE =’ +02: 00’ ;

Note: Specify the database character set when you create the
database.

Enabling Multilingual Support with Unicode Datatypes

An alternative to storing Unicode data in the database is to use the SQL NCHAR
datatypes (NCHAR, NVARCHAR, NCLOB). You can store Unicode characters into

6-8 Oracle Database Globalization Support Guide

Implementing a Unicode Solution in the Database

columns of these datatypes regardless of how the database character set has been
defined. The NCHAR datatype is a Unicode datatype exclusively. In other words, it
stores data encoded as Unicode.

In releases before Oracle9i, the NCHAR datatype supported fixed-width Asian
character sets that were designed to provide higher performance. Examples of
fixed-width character sets are JAL6SJISFIXED and ZHT32EUCFIXED. No Unicode
character set was supported as the national character set before Oracle9i.

You can create a table using the NVARCHAR2 and NCHAR datatypes. The column
length specified for the NCHAR and NVARCHARZ2 columns is always the number of
characters instead of the number of bytes:

CREATE TABLE product _i nformation
(product _id NUMBER(6)
, product _name NVARCHAR2(100)
, product _description VARCHAR2(1000));

The encoding used in the SQL NCHAR datatypes is the national character set
specified for the database. You can specify one of the following Oracle character sets
as the national character set:

« ALI6UTF16

This is the default character set for SQL NCHAR datatypes. The character set
encodes Unicode data in the UTF-16 encoding. It supports supplementary
characters, which are stored as four bytes.

« UTF8

When UTF8 is specified for SQL NCHAR datatypes, the data stored in the SQL
datatypes is in UTF-8 encoding.

You can specify the national character set for the SQL NCHAR datatypes when you
create a database using the CREATE DATABASE statement with the NATI ONAL
CHARACTER SET clause. The following statement creates a database with
WEB8ISO8859P1 as the database character set and AL16UTF16 as the national
character set.

Example 6-2 Creating a Database with a National Character Set

CREATE DATABASE sanpl e
CONTRCLFI LE REUSE
LOGFI LE
GROUP 1 (' diskx:logl.log, 'disky:logl.log") SIZE 50K,
GROUP 2 ('diskx:log2.1o0g", 'disky:log2.10g") SIZE 50K

Supporting Multilingual Databases with Unicode 6-9

Implementing a Unicode Solution in the Database

MAXLOGFI LES 5

MAXLOGHI STORY 100

VAXDATAFI LES 10

MAXI NSTANCES 2

ARCHI VELGG

CHARACTER SET WESI SC8859P1

NATI ONAL CHARACTER SET AL16UTF16
DATAFI LE

" di sk1: df 1. dbf’ AUTOCEXTEND ON,

" di sk2: df 2. dbf’ AUTOEXTEND ON NEXT 10M MAXSI ZE UNLI M TED
DEFAULT TEMPORARY TABLESPACE tenp_ts
UNDO TABLESPACE undo_t s
SET TIME_ZONE = ' +02: 00’ ;

How to Choose Between a Unicode Database and a Unicode Datatype Solution

To choose the right Unicode solution for your database, consider the following
guestions:

« Programming environment: What are the main programming languages used
in your applications? How do they support Unicode?

« Ease of migration: How easily can your data and applications be migrated to
take advantage of the Unicode solution?

« Performance: How much performance overhead are you willing to accept in
order to use Unicode in the database?

« Type of data: Is your data mostly Asian or European? Do you need to store
multilingual documents into LOB columns?

« Type of applications: What type of applications are you implementing: a
packaged application or a customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a
Unicode datatype solution. The final decision largely depends on your exact
environment and requirements. This section contains the following topics:

« When Should You Use a Unicode Database?
=« When Should You Use Unicode Datatypes?

When Should You Use a Unicode Database?
Use a Unicode database in the situations described in Table 6-2.

6-10 Oracle Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 6-2 Using a Unicode Database

Situation

Explanation

You need easy code
migration for Java or
PL/SQL.

You have evenly
distributed multilingual
data.

Your SQL statements and
PL/SQL code contain
Unicode data.

You want to store
multilingual documents in
BLOB format and use
Oracle Text for content
searching.

If your existing application is mainly written in Java and PL/SQL and your main
concern is to minimize the code changes required to support multiple languages,
then you may want to use a Unicode database solution. If the datatypes used to
stored data remain as SQL CHAR datatypes, then the Java and PL/SQL code that
accesses these columns does not need to change.

If the multilingual data is evenly distributed in existing schema tables and you are
not sure which tables contain multilingual data, then you should use a Unicode
database because it does not require you to identify the kind of data that is stored
in each column.

You must use a Unicode database. SQL statements and PL/SQL code are
converted into the database character set before being processed. If the SQL
statements and PL/SQL code contain characters that cannot be converted to the
database character set, then those characters are lost. A common place to use
Unicode data in a SQL statement is in a string literal.

You must use a Unicode database. The BLOB data is converted to the database
character set before being indexed by Oracle Text. If your database character set is
not UTF8, then data are lost when the documents contain characters that cannot be
converted to the database character set.

When Should You Use Unicode Datatypes?
Use Unicode datatypes in the situations described in Table 6-3.

Table 6-3 Using Unicode Datatypes

Situation

Explanation

You want to add
multilingual support
incrementally.

You want to build a
packaged application.

If you want to add Unicode support to the existing database without migrating the
character set, then consider using Unicode datatypes to store Unicode data. You
can add columns of the SQL NCHAR datatypes to existing tables or new tables to
support multiple languages incrementally.

If you are building a packaged application to sell to customers, then you may want
to build the application using SQL NCHAR datatypes. The SQL NCHAR datatype is a
reliable Unicode datatype in which the data is always stored in Unicode, and the
length of the data is always specified in UTF-16 code units. As a result, you need to
test the application only once. The application will run on customer databases
with any database character set.

Supporting Multilingual Databases with Unicode 6-11

Implementing a Unicode Solution in the Database

Table 6-3 Using Unicode Datatypes (Cont.)

Situation Explanation

You want better If performance is your main concern, then consider using a single-byte database
performance with character set and storing Unicode data in the SQL NCHAR datatypes. Databases
single-byte database that use a multibyte database character set such as UTF8 have a performance
character sets. overhead.

You require UTF-16 If your applications are written in Visual C/C++ or Visual Basic running on
support in Windows Windows, then you may want to use the SQL NCHAR datatypes. You can store
clients. UTF-16 data in SQL NCHAR datatypes in the same way that you store it in the

wechar _t buffer in Visual C/C++ and st r i ng buffer in Visual Basic. You can
avoid buffer overflow in client applications because the length of the wchar _t
and st ri ng datatypes match the length of the SQL NCHAR datatypes in the
database.

Note: You can use a Unicode database with Unicode datatypes.

Comparing Unicode Character Sets for Database and Datatype Solutions

Oracle provides two solutions to store Unicode characters in the database: a
Unicode database solution and a Unicode datatype solution. After you select the
Unicode database solution, the Unicode datatype solution or a combination of both,
determine the character set to be used in the Unicode database or the Unicode
datatype.

Table 6-4 contains advantages and disadvantages of different character sets for a
Unicode database solution. The Oracle character sets that can be Unicode database
character sets are AL32UTF8, UTF8, and UTFE.

6-12 Oracle Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 6-4 Character Set Advantages and Disadvantages for a Unicode Database Solution

Database

Character Set Advantages Disadvantages

AL32UTF8 « Supplementary characters are = You cannot specify the length of SQL CHAR
stored in 4 bytes, there is no data types in number of UCS-2 code points for
conversion when supplementary supplementary characters. Supplementary
characters are retrieved and characters are treated as one code point rather
inserted if the client setting is than the standard two code points.
UTF-8. « The binary order for SQL CHAR columns is

« The storage for supplementary different from the binary order of SQL NCHAR
characters requires less disk space columns when the data consists of
in AL32UTF8 than in UTFS8. supplementary characters. As a result, CHAR
columns and NCHAR columns do not always
have the same sort for identical strings.

UTF8 =« You can specify the length of SQL |« Supplementary characters are stored as 6
CHAR types in number of UCS-2 bytes instead of the 4 bytes defined by
code points. Unicode 3.2. As a result, Oracle has to convert

. The binary order of the SQL CHAR g:ttt?r:‘oristﬁgrplzl?gmentary characters if the client

columns is always the same as the 9 '
binary order of the SQL NCHAR
columns when the data consists
of the same supplementary
characters. As a result, CHAR
columns and NCHAR columns
have the same sort for identical
strings.

UTFE « Thisisthe only Unicode character |« Supplementary character are stored as 8 bytes

set for the EBCDIC platform.

You can specify the length of SQL
CHAR types in number of UCS-2
code points.

The binary order of the SQL CHAR
columns is always the same as the
binary order of the SQL NCHAR
columns when the data consists
of the same supplementary
characters. As a result, CHAR
columns and NCHAR columns
have the same sort for identical
strings.

(two 4-byte sequences) instead of the 5 bytes
defined by the Unicode standard. As a result,
Oracle has to convert data for those
supplementary characters.

UTFE is not a standard encoding in the
Unicode standard. As a result, clients
requiring standard UTF-8 encoding must
convert data from UTFE to the standard
encoding when data is retrieved and inserted.

Supporting Multilingual Databases with Unicode 6-13

Implementing a Unicode Solution in the Database

Table 6-5 contains advantages and disadvantages of different character sets for a
Unicode datatype solution. The Oracle character sets that can be national character
sets are AL16UTF16 and UTF8. The default is AL16UTF16.

Table 6-5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution

National
Character Set Advantages Disadvantages
AL16UTF16 « Asian data in AL16UTF16 is usually « European ASCII data requires more
more compact than in UTF8. As a result, disk space to store in AL16UTF16 than
you save disk space and have less disk in UTF8. If most of your data is
1/0 when most of the multilingual data European data, then it uses more disk
stored in the database is Asian data. space than if it were UTF8 data.
« Itisusually faster to process strings « The maximum lengths for NCHAR and
encoded in the AL16UTF16 character set NVARCHARZ are 1000 and 2000
than strings encoded in UTF8 because characters, which is less than the
Oracle processes most characters in an lengths for NCHAR (2000) and
AL16UTF16 encoded string as NVARCHAR2 (4000) in UTFS8.
fixed-width characters.
« The maximum length limits for the
NCHAR and NVARCHAR2 columns are
1000 and 2000 characters, respectively.
Because the data is fixed-width, the
lengths are guaranteed.
UTF8 « European data in UTF8 is usually more = Asian data requires more disk space to

compact than in AL16UTF16. As a result,
you save disk space and have better
response time when most of the
multilingual data stored in the database
is European data.

The maximum lengths for the NCHAR and
NVARCHAR2 columns are 2000 and 4000
characters respectively, which is more
than those for NCHAR (1000) and
NVARCHARZ (2000) in AL16UTF16.
Although the maximum lengths of the
NCHAR and NVARCHAR2 columns are
larger in UTF8, the actual storage size is
still bound by the byte limits of 2000 and
4000 bytes, respectively. For example,
you can store 4000 UTF8 characters in an
NVARCHAR2 column if all the characters
are single byte, but only 4000/3
characters if all the characters are three
bytes.

store in UTF8 than in AL16UTF16. If
most of your data is Asian data, then
disk space usage is not less efficient
than when the character set is
AL16UTF16.

« Although you can specify larger
length limits for NCHAR and
NVARCHAR, you are not guaranteed to
be able to insert the number of
characters specified by these limits.
This is because UTF8 allows
variable-width characters.

« Itisusually slower to process strings
encoded in UTF8 than strings encoded
in AL16UTF16 because UTF8 encoded
strings consist of variable-width
characters.

6-14 Oracle Database Globalization Support Guide

Unicode Case Studies

Unicode Case Studies

This section describes typical scenarios for storing Unicode characters in an Oracle
database:

Example 6-3, "Unicode Solution with a Unicode Database"
Example 6-4, "Unicode Solution with Unicode Datatypes"

Example 6-5, "Unicode Solution with a Unicode Database and Unicode
Datatypes"

Example 6-3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and
French support in the next release of the application. They would like to add
Japanese support at a later time. The company currently has the following system
configuration;

The existing database has a database character set of US7ASCI|I.

All character data in the existing database is composed of ASCII characters.
PL/SQL stored procedures are used in the database.

The database is around 300 GB.

There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set
because of the following reasons:

The database is very large and the scheduled downtime is short. Fast migration
of the database to Unicode is vital. Because the database is in US7ASCI|, the
easiest and fastest way of enabling the database to support Unicode is to switch
the database character set to UTF8 by issuing the ALTER DATABASE statement.
No data conversion is required because US7ASCI|I is a subset of UTF8.

Because most of the code is written in Java and PL/SQL, changing the database
character set to UTF8 is unlikely to break existing code. Unicode support is
automatically enabled in the application.

Because the application supports French, German, and Japanese, there are few
supplementary characters. Both AL32UTF8 and UTF8 are suitable.

Supporting Multilingual Databases with Unicode 6-15

Unicode Case Studies

Example 6-4 Unicode Solution with Unicode Datatypes

A European company that runs its applications mainly on Windows platforms
wants to add new Windows applications written in Visual C/C++. The new
applications will use the existing database to support Japanese and Chinese
customer names. The company currently has the following system configuration:

« The existing database has a database character set of WE81SO8859P1.

« All character data in the existing database is composed of Western European
characters.

= The database is around 50 GB.

A typical solution is take the following actions:

« Use NCHAR and NVARCHARZ datatypes to store Unicode characters
« Keep WEB8ISO8859P1 as the database character set

« Use AL16UTF16 as the national character set

The reasons for this solution are:

« Migrating the existing database to a Unicode database required data conversion
because the database character set is WE8ISO8859P1 (a Latin-1 character set),
which is not a subset of UTF8. As a result, there would be some overhead in
converting the data to UTF8.

« The additional languages are supported in new applications only. They do not
depend on the existing applications or schemas. It is simpler to use the Unicode
datatype in the new schema and keep the existing schemas unchanged.

= Only customer name columns require Unicode support. Using a single NCHAR
column meets the customer’s requirements without migrating the entire
database.

« Because the languages to be supported are mostly Asian languages,
AL16UTF16 should be used as the national character set so that disk space is
used more efficiently.

« The lengths of the SQL NCHAR datatypes are defined as number of characters.
This is the same as the way they are treated when using wchar _t strings in
Windows C/C++ programs. This reduces programming complexity.

« Existing applications using the existing schemas are unaffected.

6-16 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

Example 6-5 Unicode Solution with a Unicode Database and Unicode Datatypes

A Japanese company wants to develop a new Java application. The company
expects that the application will support as many languages as possible in the long
run.

« Inorder to store documents as is, the company decided to use the BLOB
datatype to store documents of multiple languages.

« The company may also want to generate UTF-8 XML documents from the
relational data for business-to-business data exchange.

« The back-end has Windows applications written in C/C++ using ODBC to
access the Oracle database.

In this case, the typical solution is to create a Unicode database using AL32UTF8 as
the database character set and use the SQL NCHAR datatypes to store multilingual
data. The national character set should be set to AL16UTF16. The reasons for this
solution are as follows:

« When documents of different languages are stored BLOB format, Oracle Text
requires the database character set to be one of the UTF-8 character sets.
Because the applications may retrieve relational data as UTF-8 XML format
(where supplementary characters are stored as four bytes), AL32UTF8 should
be used as the database character set to avoid data conversion when UTF-8 data
is retrieved or inserted.

« Because applications are new and written in both Java and Windows C/C++,
the company should use the SQL NCHAR datatype for its relational data. Both
Java and Windows support the UTF-16 character datatype, and the length of a
character string is always measured in the number of characters.

« If most of the data is for Asian languages, then AL16UTF16 should be used
with the SQL NCHAR datatypes because AL16UTF16 offers better performance
and storage efficiency.

Designing Database Schemas to Support Multiple Languages

In addition to choosing a Unicode solution, the following issues should be taken
into consideration when the database schema is designed to support multiple
languages:

« Specifying Column Lengths for Multilingual Data
« Storing Data in Multiple Languages

Supporting Multilingual Databases with Unicode 6-17

Designing Database Schemas to Support Multiple Languages

« Storing Documents in Multiple Languages in LOB Datatypes

« Creating Indexes for Searching Multilingual Document Contents

Specifying Column Lengths for Multilingual Data

When you use NCHAR and NVARCHAR2 datatypes for storing multilingual data, the
column size specified for a column is defined in number of characters. (The number
of characters means the number of Unicode code units.) Table 6-6 shows the
maximum size of the NCHAR and NVARCHARZ datatypes for the AL16UTF16 and
UTF8 national character sets.

Table 6-6 Maximum Datatype Size

Maximum Column Size of Maximum Column Size of

National Character Set NCHAR Datatype NVARCHAR2 Datatype
AL16UTF16 1000 characters 2000 characters
UTF8 2000 bytes 4000 bytes

When you use CHAR and VARCHAR? datatypes for storing multilingual data, the
maximum length specified for each column is, by default, in number of bytes. If the
database needs to support Thai, Arabic, or multibyte languages such as Chinese
and Japanese, then the maximum lengths of the CHAR, VARCHAR, and VARCHAR2
columns may need to be extended. This is because the number of bytes required to
encode these languages in UTF8 or AL32UTF8 may be significantly larger than the
number of bytes for encoding English and Western European languages. For
example, one Thai character in the Thai character set requires 3 bytes in UTF8 or
AL32UTF8. In addition, the maximum column lengths for CHAR, VARCHAR, and
VARCHAR? datatypes are 2000 bytes, 4000 bytes, and 4000 bytes respectively. If
applications need to store more than 4000 bytes, then they should use the CLOB
datatype.

Storing Data in Multiple Languages

The Unicode character set includes characters of most written languages around the
world, but it does not contain information about the language to which a given
character belongs. In other words, a character such as & does not contain
information about whether it is a French or German character. In order to provide
information in the language a user desires, data stored in a Unicode database
should accompany the language information to which the data belongs.

6-18 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

There are many ways for a database schema to relate data to a language. The
following sections provide different approaches:

« Store Language Information with the Data

« Select Translated Data Using Fine-Grained Access Control

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language
column (I anguage_i d) of CHAR or VARCHAR2 datatype to the product table to
identify the language of the corresponding product information. This enables
applications to retrieve the information in the desired language. The possible values
for this language column are the 3-letter abbreviations of the valid NLS_LANGUAGE
values of the database.

See Also: Appendix A, "Locale Data" for a list of NLS _LANGUAGE
values and their abbreviations

You can also create a view to select the data of the current language. For example:
ALTER TABLE scott. product _information add (|anguage_i d VARCHAR2(50)):

CREATE OR REPLACE VI EW product AS
SELECT product _i d, product_name
FROM product _i nformati on
WHERE | anguage_id = sys_context (' USERENV' , ' LANG);

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERE clause.
when you add a WHERE clause as a fine-grained access policy to a table or view,
Oracle automatically appends the WHERE clause to any SQL statements on the table
at run time so that only those rows satisfying the WHERE clause can be accessed.

You can use this feature to avoid specifying the desired language of an user in the
VWHERE clause in every SELECT statement in your applications. The following
VWHERE clause limits the view of a table to the rows corresponding to the desired
language of a user:

WHERE | anguage_id = sys_context (' userenv', 'LANG)

Specify this WHERE clause as a fine-grained access policy for pr oduct _
i nf or mat i on as follows:

Supporting Multilingual Databases with Unicode 6-19

Designing Database Schemas to Support Multiple Languages

create function funcl (sch varchar2 , obj varchar2)
return varchar2(100);

begin

return 'language_id = sys_context(’'userenv'’, "'LANG')’;
end

/

DBMS_RLS. ADD PCLICY (' scott’, 'product_information’, 'lang_policy’, ’scott’,
"funcl, 'select’);

Then any SELECT statement on the pr oduct _i nf or mat i on table automatically
appends the WHERE clause.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information about fine-grained access
control

Storing Documents in Multiple Languages in LOB Datatypes

You can store documents in multiple languages in CLOB, NCLOB, or BLOB datatypes
and set up Oracle Text to enable content search for the documents.

Data in CLOB columns is stored in a format that is compatible with UCS-2 when the
database character set is multibyte, such as UTF8 or AL32UTF8. This means that the
storage space required for an English document doubles when the data is
converted. Storage for an Asian language document in a CLOB column requires less
storage space than the same document in a LONGcolumn using UTF8, typically
around 30% less, depending on the contents of the document.

Documents in NCLOB format are also stored in a proprietary format that is
compatible with UCS-2 regardless of the database character set or national character
set. The storage space requirement is the same as for CLOB data. Document contents
are converted to UTF-16 when they are inserted into a NCLOB column. If you want
to store multilingual documents in a non-Unicode database, then choose NCLOB.
However, content search on NCLOB is not yet supported.

Documents in BLOB format are stored as they are. No data conversion occurs
during insertion and retrieval. However, SQL string manipulation functions (such
as LENGTH or SUBSTR) and collation functions (such as NLS_SORT and ORDER BY)
cannot be applied to the BLOB datatype.

Table 6-7 lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB
datatypes when storing documents:

6-20 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

Table 6-7 Comparison of LOB Datatypes for Document Storage

Datatypes Advantages Disadvantages
CLOB « Content search support « Depends on database character set
« String manipulation support « Data conversion is necessary for
insertion

NCLOB .

BLOB .

« Cannot store binary documents

Independent of database character set « No content search support
String manipulation support « Data conversion is necessary for
insertion

« Cannot store binary documents
Independent of database character set « No string manipulation support
Content search support
No data conversion, data stored as is

Can store binary documents such as Microsoft
Word or Microsoft Excel

Creating Indexes for Searching Multilingual Document Contents

Oracle Text enables you to build indexes for content search on multilingual
documents stored in CLOB format and BLOB format. It uses a language-specific lexer
to parse the CLOB or BLOB data and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a
language-specific lexer for each row, based on a language column. This section
describe the high level steps to create indexes for documents in multiple languages.
It contains the following topics:

« Creating Multilexers
« Creating Indexes for Documents Stored in the CLOB Datatype
« Creating Indexes for Documents Stored in the BLOB Datatype

See Also: Oracle Text Reference

Creating Multilexers

The first step in creating the multilexer is the creation of language-specific lexer
preferences for each language supported. The following example creates English,
German, and Japanese lexers with PL/SQL procedures:

Supporting Multilingual Databases with Unicode 6-21

Designing Database Schemas to Support Multiple Languages

ctx_ddl.create_preference(' english_lexer', 'basic_|lexer')
ctx_ddl.set_attribute('english_lexer',"index_themes','yes")
ctx_ddl.create_preference(' german_| exer', 'basic_|exer')

ctx_ddl.set _attribute(' german_|l exer',' conposite','german')
ctx_ddl.set_attribute(' german_l exer','alternate_spelling','german');
ctx_ddl .set_attribute(' german_|l exer',' m xed_case',"'yes")
ctx_ddl.create_preference('japanese_l exer', 'JAPANESE VGRAM LEXER)

After the language-specific lexer preferences are created, they need to be gathered
together under a single multilexer preference. First, create the multilexer preference,
using the MULTI _LEXER object:

ctx_ddl.create_preference(' gl obal _lexer", ' multi_lexer")

Now add the language-specific lexers to the multilexer preference using the add_
sub_| exer call:

ctx_ddl . add_sub_l| exer(' gl obal | exer', 'german', 'german_| exer"')
ctx_ddl . add_sub_l exer(' gl obal _| exer', 'japanese', 'japanese_lexer');
ctx_ddl . add_sub_l| exer (' gl obal | exer', "default','english_|exer");

This nominates the ger man_| exer preference to handle German documents, the
j apanese_| exer preference to handle Japanese documents, and the engl i sh_
| exer preference to handle everything else, using DEFAULT as the language.

Creating Indexes for Documents Stored in the CLOB Datatype

The multilexer decides which lexer to use for each row based on a language column
in the table. This is a character column that stores the language of the document in a
text column. Use the Oracle language name to identify the language of a document

in this column. For example, if you use the CLOB datatype to store your documents,
then add the language column to the table where the documents are stored:

CREATE TABLE gl obal doc

(doc_id NUMBER PRI MARY KEY
| anguage VARCHAR2(30),
t ext CLOB);

To create an index for this table, use the multilexer preference and specify the name
of the language column:

CREATE | NDEX gl obal x ON gl obal doc(t ext)
i ndextype |'S ctxsys. context
paraneters ('l exer

gl obal _| exer
| anguage

6-22 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

col umm
| anguage');

Creating Indexes for Documents Stored in the BLOB Datatype

In addition to the language column, the character set and format columns must be
added in the table where the documents are stored. The character set column stores
the character set of the documents using the Oracle character set names. The format
column specifies whether a document is a text or binary document. For example,
the CREATE TABLE statement can specify columns called char act er set and
format:

CREATE TABLE gl obal doc (
doc_id NUVBER PRI MARY KEY,
| anguage VARCHAR2(30) ,
charact erset VARCHAR2(30),
f or mat VARCHAR2(10) ,
text BLOB

);

You can put word-processing or spreadsheet documents into the table and specify
bi nary in the f or mat column. For documents in HTML, XML and text format,
you can put them into the table and specify t ext in the f or mat column.

Because there is a column in which to specify the character set, you can store text
documents in different character sets.

When you create the index, specify the names of the format and character set
columns:

CREATE | NDEX gl obal x ON gl obal doc(text)
i ndextype is ctxsys.context
paranmeters ('filter inso_filter
| exer gl obal _| exer
| anguage col um | anguage
format colum format
charset colum characterset');

You can use the charset _filter ifall documents are in text format. The
charset _filter converts data from the character set specified in the char set
column to the database character set.

Supporting Multilingual Databases with Unicode 6-23

Designing Database Schemas to Support Multiple Languages

6-24 Oracle Database Globalization Support Guide

v

Programming with Unicode

This chapter describes how to use Oracle’s database access products with Unicode.
It contains the following topics:

Overview of Programming with Unicode

SQL and PL/SQL Programming with Unicode
OCI Programming with Unicode

Pro*C/C++ Programming with Unicode

JDBC Programming with Unicode

ODBC and OLE DB Programming with Unicode
XML Programming with Unicode

Programming with Unicode 7-1

Overview of Programming with Unicode

Overview of Programming with Unicode

Oracle offers several database access products for inserting and retrieving Unicode
data. Oracle offers database access products for commonly used programming
environments such as Java and C/C++. Data is transparently converted between
the database and client programs, which ensures that client programs are
independent of the database character set and national character set. In addition,
client programs are sometimes even independent of the character datatype, such as
NCHAR or CHAR, used in the database.

To avoid overloading the database server with data conversion operations, Oracle
always tries to move them to the client side database access products. In a few
cases, data must be converted in the database, which affects performance. This
chapter discusses details of the data conversion paths.

Database Access Product Stack and Unicode

Oracle Corporation offers a comprehensive set of database access products that
allow programs from different development environments to access Unicode data
stored in the database. These products are listed in Table 7-1.

Table 7-1 Oracle Database Access Products

Programming
Environment Oracle Database Access Products

C/C++ Oracle Call Interface (OCI)
Oracle Pro*C/C++
Oracle ODBC driver
Oracle Provider for OLE DB
Oracle Data Provider for .NET

Java Oracle JDBC OCI or thin driver
Oracle server-side thin driver
Oracle server-side internal driver

PL/SQL Oracle PL/SQL and SQL

Visual Basic/C# Oracle ODBC driver
Oracle Provider for OLE DB

Figure 7-1 shows how the database access products can access the database.

7-2 Oracle Database Globalization Support Guide

Overview of Programming with Unicode

Figure 7-1 Oracle Database Access Products

- Visual _Basi(; Programs

. \éEScnpt using ADO C/C++ Programs

. ASP Java Programs

- OLE DB

-ODBC *

- Oracle Data Provider Pro*C/C++

for .NET JBBC
Oracle Call Interface (OCI) Thin

Oracle
Net

A Oracle

SQL
[l

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side
database access products use. It provides a flexible way for C/C++ programs to
access Unicode data stored in SQL CHAR and NCHAR datatypes. Using OCI, you can
programmatically specify the character set (UTF-8, UTF-16, and others) for the data
to be inserted or retrieved. It accesses the database through Oracle Net.

Oracle Net on TCP/IP

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It
uses OCI’s Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL
CHAR and NCHAR datatypes.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs
running on Windows platforms to access Unicode data stored in SQL CHAR and
NCHAR datatypes of the database. It provides UTF-16 data access by implementing
the SQLMWCHAR interface specified in the ODBC standard specification.

The Oracle Provider for OLE DB enables C/C++, Visual Basic, and VBScript
programs running on Windows platforms to access Unicode data stored in SQL
CHAR and NCHAR datatypes. It provides UTF-16 data access through wide string
OLE DB datatypes.

The Oracle Data Provider for .NET enables programs running in any .NET
programming environment on Windows platforms to access Unicode data stored in
SQL CHAR and NCHAR datatypes. It provides UTF-16 data access through Unicode
datatypes.

Programming with Unicode 7-3

SQL and PL/SQL Programming with Unicode

Oracle JDBC drivers are the primary Java programmatic interface for accessing an
Oracle database. Oracle provides the following JDBC drivers:

« The JDBC OCI driver that is used by Java applications and requires the OCI
library

« The JDBC thin driver, which is a pure Java driver that is primarily used by Java
applets and supports the Oracle Net protocol over TCP/IP

« The JDBC server-side thin driver, a pure Java driver used inside Java stored
procedures to connect to another Oracle server

« The JDBC server-side internal driver that is used inside the Oracle server to
access the data in the database

All drivers support Unicode data access to SQL CHAR and NCHAR datatypes in the
database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on
behalf of client-side programs such as OCI and server-side PL/SQL stored
procedures. They allow PL/SQL programs to declare CHAR, VARCHAR2, NCHAR, and
NVARCHAR? variables and to access SQL CHAR and NCHAR datatypes in the
database.

The following sections describe how each of the database access products supports
Unicode data access to an Oracle database and offer examples for using those
products:

« SQL and PL/SQL Programming with Unicode

« OCI Programming with Unicode

« Pro*C/C++ Programming with Unicode

« JDBC Programming with Unicode

« ODBC and OLE DB Programming with Unicode

SQL and PL/SQL Programming with Unicode

SQL is the fundamental language with which all programs and users access data in
an Oracle database either directly or indirectly. PL/SQL is a procedural language
that combines the data manipulating power of SQL with the data processing power
of procedural languages. Both SQL and PL/SQL can be embedded in other
programming languages. This section describes Unicode-related features in SQL
and PL/SQL that you can deploy for multilingual applications.

7-4 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

This section contains the following topics:

« SQL NCHAR Datatypes

« Implicit Datatype Conversion Between NCHAR and Other Datatypes
« Exception Handling for Data Loss During Datatype Conversion

« Rules for Implicit Datatype Conversion

« SQL Functions for Unicode Datatypes

« Other SQL Functions

« Unicode String Literals

« Using the UTL_FILE Package with NCHAR Data

See Also:
« Oracle Database SQL Reference
« PL/SQL User's Guide and Reference

SQL NCHAR Datatypes
There are three SQL NCHAR datatypes:

« The NCHAR Datatype
« The NVARCHAR?2 Datatype
« The NCLOB Datatype

The NCHAR Datatype

When you define a table column or a PL/SQL variable as the NCHAR datatype, the
length is always specified as the number of characters. For example, the following
statement creates a column with a maximum length of 30 characters:

CREATE TABLE tabl el (col uml NCHAR(30));

The maximum number of bytes for the column is determined as follows:

maxi mum nunber of bytes = (maxi num nunber of characters) x (maxi mum nunber of
bytes for each character)

For example, if the national character set is UTF8, then the maximum byte length is
30 characters times 3 bytes for each character, or 90 bytes.

Programming with Unicode 7-5

SQL and PL/SQL Programming with Unicode

The national character set, which is used for all NCHAR datatypes, is defined when
the database is created. The national character set can be either UTF8 or
AL16UTF16. The default is AL16UTF16.

The maximum column size allowed is 2000 characters when the national character
set is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to the
maximum byte limit of 2000. The two size constraints must be satisfied at the same
time. In PL/SQL, the maximum length of NCHAR data is 32767 bytes. You can define
an NCHAR variable of up to 32767 characters, but the actual data cannot exceed
32767 bytes. If you insert a value that is shorter than the column length, then Oracle
pads the value with blanks to whichever length is smaller: maximum character
length or maximum byte length.

Note: UTF8 may affect performance because it is a variable-width
character set. Excessive blank padding of NCHAR fields decreases
performance. Consider using the NVARCHAR datatype or changing
to the AL16UTF16 character set for the NCHAR datatype.

The NVARCHAR?2 Datatype

The NVARCHAR2 datatype specifies a variable length character string that uses the
national character set. When you create a table with an NVARCHAR2 column, you
specify the maximum number of characters for the column. Lengths for NVARCHAR2
are always in units of characters, just as for NCHAR. Oracle subsequently stores each
value in the column exactly as you specify it, if the value does not exceed the
column’s maximum length. Oracle does not pad the string value to the maximum
length.

The maximum column size allowed is 4000 characters when the national character
set is UTF8 and 2000 when it is AL16UTF16. The maximum length of an
NVARCHAR2 column in bytes is 4000. Both the byte limit and the character limit
must be met, so the maximum number of characters that is actually allowed in an
NVARCHAR2 column is the number of characters that can be written in 4000 bytes.

In PL/SQL, the maximum length for an NVARCHARZ variable is 32767 bytes. You
can define NVARCHAR?2 variables up to 32767 characters, but the actual data cannot
exceed 32767 bytes.

The following statement creates a table with one NVARCHAR2 column whose
maximum length in characters is 2000 and maximum length in bytes is 4000.

CREATE TABLE tabl e2 (col utm2 NVARCHAR2(2000));

7-6 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

The NCLOB Datatype

NCLOB is a character large object containing Unicode characters, with a maximum
size of 4 gigabytes. Unlike the BLOB datatype, the NCLOB datatype has full
transactional support so that changes made through SQL, the DBM5_L OB package,
or OCI participate fully in transactions. Manipulations of NCLOB value can be
committed and rolled back. Note, however, that you cannot save an NCLOB locator
in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

NCLOB values are stored in the database in a format that is compatible with UCS-2,
regardless of the national character set. Oracle translates the stored Unicode value
to the character set requested on the client or on the server, which can be
fixed-width or variable-width. When you insert data into an NCLOB column using a
variable-width character set, Oracle converts the data into a format that is
compatible with UCS-2 before storing it in the database.

See Also: Oracle Database Application Developer®s Guide - Large
Objects for more information about the NCLOB datatype

Implicit Datatype Conversion Between NCHAR and Other Datatypes

Oracle supports implicit conversions between SQL NCHAR datatypes and other
Oracle datatypes, such as CHAR, VARCHAR2, NUMBER, DATE, ROW D, and CLOB. Any
implicit conversions for CHAR and VARCHAR2 datatypes are also supported for SQL
NCHAR datatypes. You can use SQL NCHAR datatypes the same way as SQL CHAR
datatypes.

Type conversions between SQL CHAR datatypes and SQL NCHAR datatypes may
involve character set conversion when the database and national character sets are
different. Padding with blanks may occur if the target data is either CHAR or NCHAR

See Also: Oracle Database SQL Reference

Exception Handling for Data Loss During Datatype Conversion

Data loss can occur during datatype conversion when character set conversion is
necessary. If a character in the source character set is not defined in the target
character set, then a replacement character is used in its place. For example, if you
try to insert NCHAR data into a regular CHAR column and the character data in
NCHAR (Unicode) form cannot be converted to the database character set, then the
character is replaced by a replacement character defined by the database character
set. The NLS_NCHAR_CONV_EXCRP initialization parameter controls the behavior of
data loss during character type conversion. When this parameter is set to TRUE, any

Programming with Unicode 7-7

SQL and PL/SQL Programming with Unicode

SQL statements that result in data loss return an ORA- 12713 error and the
corresponding operation is stopped. When this parameter is set to FALSE, data loss

is not reported and the unconvertible characters are replaced with replacement
characters. The default value is TRUE. This parameter works for both implicit and
explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHAR and NCHAR
datatypes, the LOSSY_CHARSET _CONVERSI ON exception is raised for both implicit
and explicit conversion.

Rules for Implicit Datatype Conversion

In some cases, conversion between datatypes is possible in only one direction. In
other cases, conversion in both directions is possible. Oracle defines a set of rules for
conversion between datatypes. Table 7-2 contains the rules for conversion between
datatypes.

Table 7-2 Rules for Conversion Between Datatypes

Statement Rule
| NSERT/UPDATE Values are converted to the datatype of the target database column.
statement

SELECT | NTOstatement

Variable assignments

Parameters in SQL and
PL/SQL functions

Concatenation | |
operation or CONCAT
function

SQL CHAR or NCHAR
datatypes and NUVBER
datatype

SQL CHAR or NCHAR
datatypes and DATE
datatype

Data from the database is converted to the datatype of the target variable.

Values on the right of the equal sign are converted to the datatype of the target
variable on the left of the equal sign.

CHAR, VARCHARZ2, NCHAR, and NVARCHARZ are loaded the same way. An argument
with a CHAR, VARCHAR2, NCHAR or NVARCHAR?2 datatype is compared to a formal
parameter of any of the CHAR, VARCHAR2, NCHAR or NVARCHAR? datatypes. If the
argument and formal parameter datatypes do not match exactly, then implicit
conversions are introduced when data is copied into the parameter on function
entry and copied out to the argument on function exit.

If one operand is a SQL CHAR or NCHAR datatype and the other operand is a
NUMBER or other non-character datatype, then the other datatype is converted to
VARCHAR2 or NVARCHAR2. For concatenation between character datatypes, see
"SQL NCHAR datatypes and SQL CHAR datatypes" on page 7-9.

Character value is converted to NUVBER datatype

Character value is converted to DATE datatype

7-8 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Table 7-2 Rules for Conversion Between Datatypes (Cont.)

Statement

Rule

SQL CHAR or NCHAR
datatypes and ROWN D
datatype

SQL NCHAR and SQL CHAR
datatypes

SQL CHAR or NCHAR
datatypes and NUVBER
datatype

SQL CHAR or NCHAR
datatypes and DATE
datatype

SQL CHAR or NCHAR
datatypes and ROWN D
datatype

SQL NCHAR datatypes and
SQL CHAR datatypes

Character datatypes are converted to ROW D datatype

Character values are converted to NUVBER datatype

Character values are converted to NUVBER datatype

Character values are converted to DATE datatype

Character values are converted to ROA D datatype

Comparisons between SQL NCHAR datatypes and SQL CHAR datatypes are more
complex because they can be encoded in different character sets.

When CHAR and VARCHAR?2 values are compared, the CHAR values are converted
to VARCHAR? values.

When NCHAR and NVARCHAR? values are compared, the NCHAR values are
converted to NVARCHAR2 values.

When there is comparison between SQL NCHAR datatypes and SQL CHAR
datatypes, character set conversion occurs if they are encoded in different
character sets. The character set for SQL NCHAR datatypes is always Unicode and
can be either UTF8 or AL16UTF16 encoding, which have the same character
repertoires but are different encodings of the Unicode standard. SQL CHAR
datatypes use the database character set, which can be any character set that
Oracle supports. Unicode is a superset of any character set supported by Oracle, so
SQL CHAR datatypes can always be converted to SQL NCHAR datatypes without
data loss.

SQL Functions for Unicode Datatypes

SQL NCHAR datatypes can be converted to and from SQL CHAR datatypes and other
datatypes using explicit conversion functions. The examples in this section use the
table created by the following statement:

CREATE TABLE customers
(id NUMBER nane NVARCHAR2(50), address NVARCHAR2(200), birthdate DATE);

Programming with Unicode 7-9

SQL and PL/SQL Programming with Unicode

Example 7-1 Populating the Customer Table Using the TO_NCHAR Function

The TO_NCHAR function converts the data at run time, while the N function converts
the data at compilation time.

I NSERT | NTO custonmers VALUES (1000,
TO_NCHAR(' John Smith'), N 500 Oracle Parkway', sysdate);

Example 7-2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of nanme from characters in the national
character set to characters in the database character set before selecting them
according to the LI KE clause:

SELECT name FROM custoners WHERE TO _CHAR(nane) LIKE ' %6ni6 ;

You should see the following output:

John Smith

Example 7-3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHAR or CHAR data can be passed as
parameters for the TO_DATE function. The datatypes can mixed because they are
converted at run time.

DECLARE

ndat estring NVARCHAR2(20) := N 12- SEP-1975';

BEG N

SELECT narme into ndstr FROM custoners

VHERE (birthdate)> TO DATE(ndatestring, ' DD MON-YYYY', N NLS_DATE_LANGUAGE =
AMERI CAN) ;

END;

As demonstrated in Example 7-3, SQL NCHAR data can be passed to explicit
conversion functions. SQL CHAR and NCHAR data can be mixed together when using
multiple string parameters.

See Also: Oracle Database SQL Reference for more information
about explicit conversion functions for SQL NCHAR datatypes

7-10 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Other SQL Functions

Most SQL functions can take arguments of SQL NCHAR datatypes as well as mixed
character datatypes. The return datatype is based on the type of the first argument.
If a non-string datatype like NUVBER or DATE is passed to these functions, then it is
converted to VARCHAR2. The following examples use the cust onmer table created in
"SQL Functions for Unicode Datatypes” on page 7-9.

Example 7-4 INSTR Function
SELECT INSTR(narme, N Sm, 1, 1) FROM custoners;

Example 7-5 CONCAT Function
SELECT CONCAT(nane,id) FROM custoners;

i dis converted to N\VARCHAR?2 and then concatenated with nane.

Example 7-6 RPAD Function
SELECT RPAD(nane, 100,' ') FROM custoners;

The following output results:
RPAD(NAME, 100, " ")

John Smith

Space character ' ' is converted to the corresponding character in the NCHAR
character set and then padded to the right of nane until the total display length
reaches 100.

See Also: Oracle Database SQL Reference

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:
« Puta prefix N before a string literal that is enclosed with single quote marks.

This explicitly indicates that the following string literal is an NCHAR string
literal. For example, N 12- SEP- 1975’ is an NCHAR string literal.

« Mark a string literal with single quote marks. Because Oracle supports implicit
conversions to SQL NCHAR datatypes, a string literal is converted to a SQL
NCHAR datatype wherever necessary.

Programming with Unicode 7-11

SQL and PL/SQL Programming with Unicode

Note: When a string literal is included in a query and the query is
submitted through a client-side tool such as SQL*Plus, all the
gueries are encoded in the client’s character set and then converted
to the server’s database character set before processing. Therefore,
data loss can occur if the string literal cannot be converted to the
server database character set.

Use the NCHR(n) SQL function, which returns a unit of character code in the
national character set, which is AL16UTF16 or UTF8. The result of
concatenating several NCHR(n) functions is N\VARCHAR? data. In this way, you
can bypass the client and server character set conversions and create an
NVARCHAR? string directly. For example, NCHR(32) represents a blank
character.

Because NCHR(n) is associated with the national character set, portability of the
resulting value is limited to applications that run in the national character set. If
this is a concern, then use the UNI STR function to remove portability
limitations.

Use the UNI STR(’st ri ng’) SQL function. UNI STR(’st ri ng’) converts a string
to the national character set. To ensure portability and to preserve data, include
only ASCII characters and Unicode encoding in the following form: \ xxxx,
where xxxx is the hexadecimal value of a character code value in UTF-16
encoding format. For example, UNI STR(' G 0061ry') represents' Gary" .
The ASCII characters are converted to the database character set and then to the
national character set. The Unicode encoding is converted directly to the
national character set.

The last two methods can be used to encode any Unicode string literals.

Using the UTL_FILE Package with NCHAR Data

The UTL_FI LE package was enhanced in Oracle9i to handle Unicode national
character set data. The following functions and procedures were added:

FOPEN_NCHAR

This function opens a file in Unicode for input or output, with the maximum
line size specified. With this function, you can read or write a text file in
Unicode instead of in the database character set.

GET_LI NE_NCHAR

7-12 Oracle Database Globalization Support Guide

OCI Programming with Unicode

This procedure reads text from the open file identified by the file handle and
places the text in the output buffer parameter. With this procedure, you can
read a text file in Unicode instead of in the database character set.

PUT_NCHAR

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this procedure, you can write a text file in
Unicode instead of in the database character set.

PUT_LI NE_NCHAR

This procedure writes the text string stored in the buffer parameter to the open
file identified by the file handle. With this procedure, you can write a text file in
Unicode instead of in the database character set.

PUTF_NCHAR

This procedure is a formatted PUT_NCHAR procedure. With this procedure, you
can write a text file in Unicode instead of in the database character set.

See Also: PL/SQL Packages and Types Reference for more
information about the UTL_FI LE package

OCI Programming with Unicode

OCl is the lowest-level API for accessing a database, so it offers the best possible
performance. When using Unicode with OCI, consider these topics:

OCIEnvNIsCreate() Function for Unicode Programming

OCI Unicode Code Conversion

When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
Binding and Defining SQL CHAR Datatypes in OCI

Binding and Defining SQL NCHAR Datatypes in OCI

Binding and Defining CLOB and NCLOB Unicode Data in OCI

See Also: Chapter 10, "OCI Programming in a Global
Environment"

Programming with Unicode 7-13

OCI Programming with Unicode

OCIEnvNIsCreate() Function for Unicode Programming

The OCI EnvN sCr eat e() function is used to specify a SQL CHAR character set
and a SQL NCHAR character set when the OCI environment is created. It is an
enhanced version of the OCl EnvCr eat e() function and has extended arguments
for two character set IDs. The OCI_UTF16ID UTF-16 character set ID replaces the
Unicode mode introduced in Oracle9i release 1 (9.0.1). For example:

OCl Env *envhp;

status = OCl EnvN sCreat e((OCl Env **) &envhp,

(ub4)o0,

void *)O0,
*
*

void **)0,
ub2) OCl _UTF161 D, /* Metadata and SQL CHAR character set */
ub2) OCl _UTF161 D /* SQL NCHAR character set */);

The Unicode mode, in which the OCI_UTF16 flag is used with the
OCl EnvCr eat e() function, is deprecated.

When OCI_UTF16ID is specified for both SQL CHAR and SQL NCHAR character sets,
all metadata and bound and defined data are encoded in UTF-16. Metadata
includes SQL statements, user names, error messages, and column names. Thus, all
inherited operations are independent of the NLS_L ANGsetting, and all metatext
data parameters (t ext *) are assumed to be Unicode text datatypes (ut ext *) in
UTF-16 encoding.

To prepare the SQL statement when the OCl Env() function is initialized with the
OCI_UTF16ID character set ID, call the OCI St nt Pr epar e() function with a

(ut ext *) string. The following example runs on the Windows platform only. You
may need to change wchar _t datatypes for other platforms.

const wchar _t sqlstr[] = L"SELECT * FROM ENAME=: enane";

OCl Stnt* stnthp;
sts = QOCl Handl eAl | oc(envh, (void **)&stnthp, OCl _HTYPE STMI, O,
NULL) ;
status = OCl StntPrepare(stnthp, errhp, (const text*)sqlstr,
wesl en(sql str),
OCl _NTV_SYNTAX, OCl _DEFAULT);

7-14 Oracle Database Globalization Support Guide

OCI Programming with Unicode

To bind and define data, you do not have to set the OCl _ATTR_CHARSET | D
attribute because the OCl Env() function has already been initialized with UTF-16
character set IDs. The bind variable names must be also UTF-16 strings.

[* Inserting Unicode data */
OCl Bi ndByName(stnt hpl, &bndlp, errhp, (const text*)L":enane",
(sh4)wesl en(L": enane"),

(void *) ename, sizeof(enane), SQT_STR, (void
*) & nsnane_i nd,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *)O,
OCl _DEFAULT) ;
OCl AttrSet((void *) bndlp, (ub4) OCI _HTYPE BIND, (void *)
&ename_col _|en,

(ub4) 0, (ub4)OCl _ATTR_MAXDATA_SI ZE, errhp);

/* Retrieving Unicode data */
OCl Def i neByPos (stnthp2, &dfnlp, errhp, (ub4)l, (void *)enane,
(sb4)sizeof (enane), SQT_STR, (void *)0, (ub2 *)0,
(ub2*)0,
(ub4) OCl _DEFAULT) ;

The OCI Execut e() function performs the operation.

See Also: "Specifying Character Sets in OCI" on page 10-2

OCI Unicode Code Conversion

Unicode character set conversions take place between an OCI client and the
database server if the client and server character sets are different. The conversion
occurs on either the client or the server depending on the circumstances, but usually
on the client side.

Data Integrity

You can lose data during conversion if you call an OCI API inappropriately. If the
server and client character sets are different, then you can lose data when the
destination character set is a smaller set than the source character set. You can avoid
this potential problem if both character sets are Unicode character sets (for example,
UTF8 and AL16UTF16).

When you bind or define SQL NCHAR datatypes, you should set the OCl _ ATTR _

CHARSET _FORMattribute to SQLCS _NCHAR. Otherwise, you can lose data because
the data is converted to the database character set before converting to or from the
national character set. This occurs only if the database character set is not Unicode.

Programming with Unicode 7-15

OCI Programming with Unicode

OCI Performance Implications When Using Unicode

Redundant data conversions can cause performance degradation in your OCI
applications. These conversions occur in two cases:

« When you bind or define SQL CHAR datatypes and set the OCl _ATTR_
CHARSET _FORMattribute to SQLCS NCHAR, data conversions take place from
client character set to the national database character set, and from the national
character set to the database character set. No data loss is expected, but two
conversions happen, even though it requires only one.

« When you bind or define SQL NCHAR datatypes and do not set OCI _ATTR _
CHARSET_FORM data conversions take place from client character set to the
database character set, and from the database character set to the national
database character set. In the worst case, data loss can occur if the database
character set is smaller than the client’s.

To avoid performance problems, you should always set OCl _ ATTR_CHARSET _
FORMcorrectly, based on the datatype of the target columns. If you do not know the
target datatype, then you should set the OCI _ ATTR_CHARSET _FORMattribute to
SQLCS_NCHARwhen binding and defining.

Table 7-3 contains information about OCI character set conversions.

Table 7-3 OCI Character Set Conversions

OCI_ATTR_ Datatypes of the
Datatypes for CHARSET_ Target Column in

OCI Client Buffer FORM the Database Conversion Between Comments
ut ext SQLCS_ CHAR, UTF-16 and database No unexpected data loss
IMPLICIT VARCHAR2, character set in OCI
CLOB
ut ext SQLCS NCHAR, UTF-16 and national No unexpected data loss

NCHAR NVARCHAR2, character set in OCI
NCLOB
ut ext SQLCS CHAR, UTF-16 and national No unexpected data loss,
NCHAR VARCHARZ, character set in OCI but may degrade
CLOB performance because the

7-16 Oracle Database Globalization Support Guide

National character set and
database character set in

database server

conversion goes through
the national character set

OCI Programming with Unicode

Table 7-3 OCI Character Set Conversions (Cont.)

OCI_ATTR_ Datatypes of the
Datatypes for CHARSET_ Target Column in

OCI Client Buffer FORM the Database Conversion Between Comments
ut ext SQLCS NCHAR, UTF-16 and database Data loss may occur if
IMPLICIT NVARCHAR?2, character set in OCI the database character set
NCLOB is not Unicode

Database character set and
national character set in
database server

t ext SQLCS_ CHAR, NLS_LANGcharacter set No unexpected data loss
IMPLICIT VARCHAR?, and database character set
CLOB in OCI
t ext SQLCS_ NCHAR, NLS_LANGcharacter set No unexpected data loss
NCHAR NVARCHAR2, NCLOB and national character set
in OClI
t ext SQLCS CHAR, NLS_LANGcharacter set No unexpected data loss,
NCHAR VARCHAR2, and national character set but may degrade
CLOB in OCI performance because the

conversion goes through

National character set and the national character set

database character set in
database server

t ext SQLCS NCHAR, NLS_LANGcharacter set Data loss may occur
IMPLICIT NVARCHAR2, NCLOB and database character set because the conversion
in OCI goes through the

Database character set and database character set

national character set in
database server

OCI Unicode Data Expansion

Data conversion can result in data expansion, which can cause a buffer to overflow.
For binding operations, you need to set the OCl _ATTR_MAXDATA_SI ZE attribute to
a large enough size to hold the expanded data on the server. If this is difficult to do,
then you need to consider changing the table schema. For defining operations,
client applications need to allocate enough buffer space for the expanded data. The
size of the buffer should be the maximum length of the expanded data. You can
estimate the maximum buffer length with the following calculation:

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes for each character in the client
character set.

Programming with Unicode 7-17

OCI Programming with Unicode

This method is the simplest and quickest way, but it may not be accurate and can
waste memory. It is applicable to any character set combination. For example, for
UTF-16 data binding and defining, the following example calculates the client
buffer:

ub2 csid = OCl _UTF16l D,
oratext *selstmt = "SELECT enane FROM enp";
counter = 1;

OCl St nt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char*)selstnt),
OCl _NTV_SYNTAX, OCl _DEFAULT);
OCl St nt Execute (svchp, stnthp, errhp, (ub4)0, (ub4)O0,
(CONST OClI Snapshot *) 0, (OCl Snapshot *) 0,
OCl _DESCRI BE_ONLY) ;
OCl Parantet (stnthp, OCl _HTYPE_STMI, errhp, &myparam (ub4)counter);
OCl AttrGet ((void*)myparam (ub4)OCl _DTYPE_PARAM (voi d*)&col _wi dth,
(ub4*)0, (ub4)OC _ATTR DATA_SI ZE, errhp);

maxenanel en = (col _width + 1) * sizeof (utext);
cbuf = (utext*)nalloc(maxenanel en);

OCl Def i neByPos(stnthp, &dfnp, errhp, (ub4)1, (void *)cbuf,
(sb4) maxenamel en, SQLT_STR, (void *)0, (ub2 *)O,
(ub2*)0, (ub4)OCl _DEFAULT);
OCl AttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (ub4)OClI _ATTR CHARSET_ID, errhp);
OCl Stnt Fetch(stnthp, errhp, 1, OCl _FETCH NEXT, OCl _DEFAULT);

When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI

You can use UTF8 and AL32UTF8 by setting NLS _LANGfor OCI client applications.
If you do not need supplementary characters, then it does not matter whether you
choose UTF8 or AL32UTF8. However, if your OCI applications might handle
supplementary characters, then you need to make a decision. Because UTF8 only
supports characters of up to three bytes, no supplementary character can be
represented in UTF8. In AL32UTF8, one supplementary character is represented in
one code point, totalling four bytes.

Do not set NLS LANGto AL16UTF16, because AL16UTF16 is the national character
set for the server. If you need to use UTF-16, then you should specify the client
character set to OCl _UTF161 D, using the OCl Att r Set () function when binding
or defining data.

7-18 Oracle Database Globalization Support Guide

OCI Programming with Unicode

Binding and Defining SQL CHAR Datatypes in OCI

To specify a Unicode character set for binding and defining data with SQL CHAR
datatypes, you may need to call the OCl At t r Set () function to set the appropriate
character set ID after OCl Bi nd() or OCl Defi ne() APIs. There are two typical
cases:

Call OCI Bi nd() or OClI Def i ne() followed by OClI At t r Set () to specify
UTF-16 Unicode character set encoding. For example:

ub2 csid = OCl _UTF16I D;
utext enane[100]; /* enough buffer for ENAME */

/* Inserting Unicode data */

OCl Bi ndByName(stnthpl, &bndlp, errhp, (oratext*)":ENAME",

(sb4)strlen((char *)":ENAME"), (void *) enane, sizeof(enanme),
SQLT_STR, (void *)& nsname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) O,
(ub4 *)0, OCI _DEFAULT);

void *) bndlp, (ub4) OCI _HTYPE BIND, (void *) &csid,

ub4) 0, (ub4)OC _ATTR CHARSET_I D, errhp);

void *) bndlp, (ub4) OCI _HTYPE_BIND, (void *) &enane_col _|en,
ub4) 0, (ub4)OCl _ATTR_MAXDATA SI ZE, errhp);

OCl At t r Set (

QOCl At t r Set (

—~ o~ o~ —

/* Retrieving Unicode data */
OCl Def i neByPos (stnthp2, &dfnlp, errhp, (ub4)1, (void *)enane,
(sb4)sizeof (ename), SQLT_STR, (void *)0, (ub2 *)O,
(ub2*)0, (ub4)OCl _DEFAULT);
OCl AttrSet((void *) dfnlp, (ub4) OCI _HTYPE DEFINE, (void *) &csid,
(ub4) 0, (ub4)OCl _ATTR CHARSET_ID, errhp);

If bound buffers are of the ut ext datatype, then you should add a cast (t ext *)
when OClI Bi nd() or OCl Def i ne() is called. The value of the OCl _ATTR _
MAXDATA_SI ZE attribute is usually determined by the column size of the
server character set because this size is only used to allocate temporary buffer
space for conversion on the server when you perform binding operations.

Call OCI Bi nd() or OCl Def i ne() with the NLS_LANG character set specified
as UTF8 or AL32UTFS.

UTF8 or AL32UTF8 can be set in the NLS_LANGenvironment variable. You call
OCI Bi nd() and OCI Def i ne() in exactly the same manner as when you are
not using Unicode. Set the NLS_LANGenvironment variable to UTF8 or
AL32UTF8 and run the following OCI program:

Programming with Unicode 7-19

OCI Programming with Unicode

oratext ename[100]; /* enough buffer size for ENAME */

[* Inserting Unicode data */
OCl Bi ndByName(stnthpl, &bndlp, errhp, (oratext*)":ENAME",
(sh4)strlen((char *)":ENAME"), (void *) enane, sizeof(enane),
SQLT_STR, (void *)& nsnanme_ind, (ub2 *) 0, (ub2 *) 0,
(ub4) 0, (ub4 *)0, OCl _DEFAULT):
OCl AttrSet((void *) bndlp, (ub4) OCI _HTYPE_BIND, (void *) &enane_col _|en,
(ub4) 0, (ub4)OCI ATTR MAXDATA S| ZE, errhp);

/* Retrieving Unicode data */

OCl Def i neByPos (stnthp2, &dfnlp, errhp, (ub4)l, (void *)enane,
(sb4)sizeof (ename), SQLT_STR (void *)0, (ub2 *)0, (ub2*)0,
(ub4) OCl _DEFAULT);

Binding and Defining SQL NCHAR Datatypes in OCI

Oracle Corporation recommends that you access SQL NCHAR datatypes using
UTF-16 binding or defining when using OCI. Beginning with Oracle9i, SQL NCHAR
datatypes are Unicode datatypes with an encoding of either UTF8 or AL16UTF16.
To access data in SQL NCHAR datatypes, set the OCl _ATTR_CHARSET_FORM
attribute to SQLCS_NCHAR between binding or defining and execution so that it
performs an appropriate data conversion without data loss. The length of data in
SQL NCHAR datatypes is always in the number of Unicode code units.

The following program is a typical example of inserting and fetching data against
an NCHAR data column:

ub2 csid = OCl _UTF16l D,
ubl cform = SQLCS NCHAR,
utext ename[100]; /* enough buffer for ENAME */

/* Inserting Unicode data */
OCl Bi ndByName(stnthpl, &bndlp, errhp, (oratext*)":ENAME",
(sh4)strlen((char *)":ENAME"), (void *) enane,
sizeof (enane), SQT_STR, (void *)& nsname_ind, (ub2 *) O,
(ub2 *) 0, (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCl AttrSet((void *) bndlp, (ub4) OCl _HTYPE BIND, (void *) &cform (ub4) O,
(ub4) OCl _ATTR_CHARSET_FORM errhp);
OCl AttrSet((void *) bndlp, (ub4) OCI _HTYPE BIND, (void *) &csid, (ub4) 0,
(ub4) OCl _ATTR CHARSET_I D, errhp);
OCl AttrSet((void *) bndlp, (ub4) OCI _HTYPE BIND, (void *) &enanme_col _| en,

7-20 Oracle Database Globalization Support Guide

OCI Programming with Unicode

(ub4) 0, (ub4)OCl ATTR MAXDATA SIZE, errhp);

/* Retrieving Unicode data */

OCl Def i neByPos (stnthp2, &dfnlp, errhp, (ub4)1, (void *)enane,
(sb4)si zeof (ename), SQLT_STR (void *)0, (ub2 *)0, (ub2*)0,
(ub4) OCl _DEFAULT);

void *) dfnlp, (ub4) OCI _HTYPE_DEFINE, (void *) &csid, (ub4) O,

ub4) OCl _ATTR CHARSET_I D, errhp);

void *) dfnlp, (ub4) OCl _HTYPE DEFINE, (void *) &cform (ub4) 0,

ub4) OCl _ATTR_CHARSET_FORM errhp);

OCl At tr Set (

OCI At t r Set (

—~ o~ o~ —

Binding and Defining CLOB and NCLOB Unicode Data in OCI

In order to write (bind) and read (define) UTF-16 data for CLOB or NCLOB columns,
the UTF-16 character set ID must be specified as OCl LobW it e() and

OCl LobRead() . When you write UTF-16 data into a CLOB column, call

OCl LobWite() asfollows:

ub2 csid = OCl _UTF16I D;

err = OClLobWite (ctx->svchp, ctx->errhp, |obp, &ntp, offset, (void *) buf,
(ub4) BUFSIZE, OCI _ONE_PIECE, (void *)O,
(sb4 (*)()) 0, (ub2) csid, (ubl) SQLCS_IMPLICIT);

The ant p parameter is the data length in number of Unicode code units. The
of f set parameter indicates the offset of data from the beginning of the data
column. The csi d parameter must be set for UTF-16 data.

To read UTF-16 data from CLOB columns, call OClI LobRead() as follows:

ub2 csid = OCl _UTF16I D;

err = OCl LobRead(ct x->svchp, ctx->errhp, |obp, &antp, offset, (void *) buf,
(ub4)BUFSI ZE , (void *) 0, (sb4 (*)()) 0, (ub2)csid,
(ubl) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code units. Note
one Unicode supplementary character is counted as two code units, because the
encoding is UTF-16. After binding or defining a LOB column, you can measure the
data length stored in the LOB column using OCl LobGet Lengt h() . The returning
value is the data length in the number of code units if you bind or define as UTF-16.

err = OCl LobGet Lengt h(ct x->svchp, ctx->errhp, |obp, & enp);

Programming with Unicode 7-21

Pro*C/C++ Programming with Unicode

If you are using an NCLOB, then you must set OCI _ ATTR_CHARSET_FORMto
SQLCS_NCHAR.

Pro*C/C++ Programming with Unicode

Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or
from the database:

Using the VARCHAR Pro*C/C++ datatype or the native C/C++t ext datatype, a
program can access Unicode data stored in SQL CHAR datatypes of a UTF8 or
AL32UTF8 database. Alternatively, a program could use the C/C++ native

t ext type.

Using the UVARCHAR Pro*C/C++ datatype or the native C/C++ ut ext
datatype, a program can access Unicode data stored in NCHAR datatypes of a
database.

Using the NVARCHAR Pro*C/C++ datatype, a program can access Unicode data
stored in NCHAR datatypes. The difference between UVARCHAR and NVARCHAR
in a Pro*C/C++ program is that the data for the UVARCHAR datatype is stored in
a ut ext buffer while the data for the NVARCHAR datatype is stored in at ext
datatype.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded
SQL text must be encoded in the character set specified in the NLS_LANG
environment variable.

This section contains the following topics:

Pro*C/C++ Data Conversion in Unicode

Using the VARCHAR Datatype in Pro*C/C++
Using the NVARCHAR Datatype in Pro*C/C++
Using the UVARCHAR Datatype in Pro*C/C++

Pro*C/C++ Data Conversion in Unicode

Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that
instructs OCI which conversion path should be taken based on the datatypes used
in a Pro*C/C++ program. Table 7-4 illustrates the conversion paths:

7-22 Oracle Database Globalization Support Guide

Pro*C/C++ Programming with Unicode

Table 7-4 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Datatype SQL Datatype Conversion Path

VARCHAR or t ext CHAR NLS_LANGcharacter set to and from the database
character set happens in OCI

VARCHAR or t ext NCHAR NLS LANGcharacter set to and from database character

set happens in OCI

Database character set to and from national character set
happens in database server

NVARCHAR NCHAR NLS_LANGcharacter set to and from national character
set happens in OCI
NVARCHAR CHAR NLS LANGcharacter set to and from national character

set happens in OCI

National character set to and from database character set
in database server

UVARCHAR or ut ext NCHAR UTF-16 to and from the national character set happens in
OocClI

UVARCHAR or ut ext CHAR UTF-16 to and from national character set happens in
OcCl

National character set to database character set happens
in database server

Using the VARCHAR Datatype in Pro*C/C++

The Pro*C/C++ VARCHAR datatype is preprocessed to a struct with al engt h field
and t ext buffer field. The following example uses the C/C++ t ext native
datatype and the VARCHAR Pro*C/C++ datatypes to bind and define table columns.

#include <sql ca. h>
mai n()

{

/* Change to STRING dat at ype: */

EXEC ORACLE OPTI ON (CHAR_MAP=STRING ;

text ename[20] ; /* unsigned short type */
varchar address[50] ; [* Pro*C/ C++ varchar type */

EXEC SQL SELECT enane, address INTO :enane, :address FROM enp;

/* ename is NULL-term nated */
printf(L"ENAMVE = %, ADDRESS = % *s\n", enane, address.len, address.arr);

Programming with Unicode 7-23

Pro*C/C++ Programming with Unicode

}

When you use the VARCHAR datatype or native t ext datatype in a Pro*C/C++
program, the preprocessor assumes that the program intends to access columns of
SQL CHAR datatypes instead of SQL NCHAR datatypes in the database. The
preprocessor generates C/C++ code to reflect this fact by doing a bind or define
using the SQLCS | MPLI CI T value for the OCl _ ATTR_CHARSET _FORMattribute. As
a result, if a bind or define variable is bound to a column of SQL NCHAR datatypes
in the database, then implicit conversion occurs in the database server to convert
the data from the database character set to the national database character set and
vice versa. During the conversion, data loss occurs when the database character set
is a smaller set than the national character set.

Using the NVARCHAR Datatype in Pro*C/C++

The Pro*C/C++ NVARCHAR datatype is similar to the Pro*C/C++ VARCHAR
datatype. It should be used to access SQL NCHAR datatypes in the database. It tells
Pro*C/C++ preprocessor to bind or define a text buffer to the column of SQL NCHAR
datatypes. The preprocessor specifies the SQLCS _NCHAR value for the OCl _ATTR _
CHARSET_FORMattribute of the bind or define variable. As a result, no implicit
conversion occurs in the database.

If the NVARCHAR buffer is bound against columns of SQL CHAR datatypes, then the
data in the NVARCHAR buffer (encoded in the NLS LANGcharacter set) is converted
to or from the national character set in OCI, and the data is then converted to the
database character set in the database server. Data can be lost when the NLS_LANG
character set is a larger set than the database character set.

Using the UVARCHAR Datatype in Pro*C/C++

The UVARCHAR datatype is preprocessed to a struct with al engt h field and ut ext
buffer field. The following example code contains two host variables, enanme and
addr ess. The enan®e host variable is declared as a ut ext buffer containing 20
Unicode characters. The addr ess host variable is declared as a uvar char buffer
containing 50 Unicode characters. The | en and ar r fields are accessible as fields of
a struct.

#incl ude <sql ca. h>
#include <sqglucs2. h>

mai n()

{

7-24 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

/* Change to STRING dat at ype: */

EXEC ORACLE OPTI ON (CHAR_MAP=STRING ;

utext enane[20] ; /* unsigned short type */
uvar char address[50] ; /* Pro*C C++ uvarchar type */

EXEC SQL SELECT enane, address INTO :enane, :address FROM enp;
/* ename is NULL-terminated */
wprintf(L"ENAVE = %, ADDRESS = % *s\n", enane, address.]|en,
address.arr);

When you use the UVARCHAR datatype or native ut ext datatype in Pro*C/C++
programs, the preprocessor assumes that the program intends to access SQL NCHAR
datatypes. The preprocessor generates C/C++ code by binding or defining using
the SQLCS_NCHARvalue for OCl _ATTR_CHARSET FORMattribute. As a result, if a
bind or define variable is bound to a column of a SQL NCHAR datatype, then an
implicit conversion of the data from the national character set occurs in the database
server. However, there is no data lost in this scenario because the national character
set is always a larger set than the database character set.

JDBC Programming with Unicode

Oracle provides the following JDBC drivers for Java programs to access character
data in an Oracle database:

« The JDBC OCI driver

« The JDBC thin driver

« The JDBC server-side internal driver
=« The JDBC server-side thin driver

Java programs can insert or retrieve character data to and from columns of SQL
CHAR and NCHAR datatypes. Specifically, JDBC enables Java programs to bind or
define Java strings to SQL CHAR and NCHAR datatypes. Because Java’s stri ng
datatype is UTF-16 encoded, data retrieved from or inserted into the database must
be converted from UTF-16 to the database character set or the national character set
and vice versa. JDBC also enables you to specify the PL/SQL and SQL statements in
Java strings so that any non-ASCII schema object names and string literals can be
used.

At database connection time, JDBC sets the server NLS_LANGUAGE and NLS_
TERRI TORY parameters to correspond to the locale of the Java VM that runs the

Programming with Unicode 7-25

JDBC Programming with Unicode

JDBC driver. This operation ensures that the server and the Java client communicate
in the same language. As a result, Oracle error messages returned from the server
are in the same language as the client locale.

This section contains the following topics:

« Binding and Defining Java Strings to SQL CHAR Datatypes

« Binding and Defining Java Strings to SQL NCHAR Datatypes

« Using the SQL NCHAR Datatypes Without Changing the Code
« Data Conversion in JDBC

« Using oracle.sql.CHAR in Oracle Object Types

« Restrictions on Accessing SQL CHAR Data with JDBC

Binding and Defining Java Strings to SQL CHAR Datatypes

Oracle JDBC drivers allow you to access SQL CHAR datatypes in the database
using Java string bind or define variables. The following code illustrates how to
bind a Java string to a CHAR column.

int enployee_id = 12345;

String | ast_name = "Joe";

PreparedStatement pstnt = conn. prepareStatement ("I NSERT I NTO' +
"enmpl oyees (last_name, enployee_id) VALUES (?, ?2)");

pstnt.setString(1l, |ast_nane);

pstnt.setint(2, enployee_id);

pstnt. execute(); /* execute to insert into first row */
enpl oyee_id += 1; /* next enpl oyee nunber */
| ast _name = "\ uFF2A\ uFF4F\ uFF45"; /* Unicode characters in nane */

pstnt.setString(l, |ast_nane);
pstnt.setInt(2, enployee_id);
pstnt.execute(); /* execute to insert into second row */

You can define the target SQL columns by specifying their datatypes and lengths.
When you define a SQL CHAR column with the datatype and the length, JDBC uses
this information to optimize the performance of fetching SQL CHAR data from the
column. The following is an example of defining a SQL CHAR column.

Oracl ePreparedStat ement pstnt = (Oracl ePreparedSt at enent)
conn. prepar eSt at ement (" SELECT enane, enpno from enp");

pst nt. defi neCol umType(1, Types. VARCHAR, 3);

pstnt. defi neCol umType(2, Types. | NTEGER) ;

Resul t Set rest = pstnt.executeQuery();

7-26 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

String name = rset.getString(1);
int id=reset.getlnt(2);

You need to cast Pr epar edSt at enent to Or acl ePr epar edSt at enent to call
def i neCol umType() . The second parameter of def i neCol utmType() is the
datatype of the target SQL column. The third parameter is the length in number of
characters.

Binding and Defining Java Strings to SQL NCHAR Datatypes

For binding or defining Java string variables to SQL NCHAR datatypes, Oracle
provides an extended Pr epar edSt at ement which has the set For mOf Use()
method through which you can explicitly specify the target column of a bind
variable to be a SQL NCHAR datatype. The following code illustrates how to bind a
Java string to an NCHAR column.

int enployee_id = 12345;
String last_name = "Joe"
oracl e.jdbc. Oracl ePreparedSt at enent pstnt =
(oracle.jdbc. Oracl ePreparedSt at ement)
conn. prepar eSt at ement ("I NSERT | NTO enpl oyees (| ast_nane, enpl oyee_id)
VALUES (2, 29"
pst nt. set For X Use(1, oracle.jdbc. Oracl ePreparedStat enent. FORM NCHAR) ;
pstnt.setString(1l, |ast_nane);
pstnt.setint(2, enployee_id);

pstnt. execute(); /* execute to insert into first row */
enpl oyee_id += 1; /* next enpl oyee nunber */
| ast _name = "\ uFF2A\ uFF4F\ uFF45"; /* Unicode characters in nane */

pstnt.setString(l, |ast_nane);
pstnt.setint(2, enployee_id);
pstnt. execute(); /* execute to insert into second row */

You can define the target SQL NCHAR columns by specifying their datatypes, forms
of use, and lengths. JDBC uses this information to optimize the performance of
fetching SQL NCHAR data from these columns. The following is an example of
defining a SQL NCHAR column.

Oracl ePreparedStat enent pstnt = (Oracl ePreparedSt at enent)
conn. prepareSt at ement (" SELECT enane, enpno from enp");
pstnt . defi neCol umType(1, Types. VARCHAR, 3,
O acl ePreparedSt at ement . FORM_NCHAR) ;
pst nt. def i neCol umType(2, Types. | NTEGER) ;
Resul t Set rest = pstnt.executeQuery();
String name = rset.getString(1l);

Programming with Unicode 7-27

JDBC Programming with Unicode

int id =reset.getlnt(2);

To define a SQL NCHAR column, you need to specify the datatype that is equivalent
to a SQL CHAR column in the first argument, the length in number of characters in
the second argument, and the form of use in the fourth argument of

defi neCol umType().

You can bind or define a Java string against an NCHAR column without explicitly
specifying the form of use argument. This implies the following:

« If you do not specify the argument in the set St ri ng() method, then JDBC
assumes that the bind or define variable is for the SQL CHAR column. As a
result, it tries to convert them to the database character set. When the data gets
to the database, the database implicitly converts the data in the database
character set to the national character set. During this conversion, data can be
lost when the database character set is a subset of the national character set.
Because the national character set is either UTF8 or AL16UTF16, data loss
would happen if the database character set is not UTF8 or AL32UTFS8.

« Because implicit conversion from SQL CHAR to SQL NCHAR datatypes happens
in the database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHAR datatypes
but specify the form of use argument, then performance of the database is
degraded. However, data should not be lost because the national character set is
always a larger set than the database character set.

Using the SQL NCHAR Datatypes Without Changing the Code

A global flag has been introduced in the Oracle JDBC drivers for customers to tell
whether the form of use argument should be specified by default in a Java
application. This flag has the following purposes:

« Existing applications accessing the SQL CHAR datatypes can be migrated to
support the SQL NCHAR datatypes for worldwide deployment without
changing a line of code.

« Applications do not need to call the set For nT Use() method when binding
and defining a SQL NCHAR column. The application code can be made neutral
and independent of the datatypes being used in the backend database. With this
flag, applications can be easily switched from using SQL CHAR or SQL NCHAR.

The global flag is specified in the command line that invokes the Java application.
The syntax of specifying this flag is as follows:

7-28 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

java -Doracle.jdbc. def aul t NChar=true <application class>

With this flag specified, the Oracle JDBC drivers assume the presence of the form of
use argument for all bind and define operations in the application.

If you have a database schema that consists of both the SQL CHAR and SQL NCHAR
columns, then using this flag may have some performance impact when accessing
the SQL CHAR columns because of implicit conversion done in the database server.

See Also: "Data Conversion in JDBC" on page 7-29 for more
information about the performance impact of implicit conversion

Data Conversion in JDBC

Because Java strings are always encoded in UTF-16, JDBC drivers transparently
convert data from the database character set to UTF-16 or the national character set.
The conversion paths taken are different for the JDBC drivers:

« Data Conversion for the OCI Driver
« Data Conversion for Thin Drivers

« Data Conversion for the Server-Side Internal Driver

Data Conversion for the OCI Driver

For the OCI driver, the SQL statements are always converted to the database
character set by the driver before it is sent to the database for processing. When the
database character set is neither US7ASCII nor WE8ISO8859P1, the driver converts
the SQL statements to UTF-8 first in Java and then to the database character set in C.
Otherwise, it converts the SQL statements directly to the database character set. For
Java string bind or define variables, Table 7-5 summarizes the conversion paths
taken for different scenarios.

Table 7-5 OCI Driver Conversion Path

Form of Use

SQL Datatype Conversion Path

Const . CHAR
(Defaul t)

Const . CHAR
(Defaul t)

CHAR Java string to and from database character set happens in the JDBC
driver

NCHAR Java string to and from database character set happens in the JDBC
driver.

Data in the database character set to and from national character set
happens in the database server

Programming with Unicode 7-29

JDBC Programming with Unicode

Table 7-5 OCI Driver Conversion Path (Cont.)

Form of Use SQL Datatype Conversion Path

Const . NCHAR NCHAR Java string to and from national character set happens in the JDBC
driver

Const . NCHAR CHAR Java string to and from national character set happens in the JDBC
driver

Data in national character set to and from database character set
happens in the database server

Data Conversion for Thin Drivers

SQL statements are always converted to either the database character set or to
UTF-8 by the driver before they are sent to the database for processing. When the
database character set is either US7ASCII or WE8ISO8859P1, the driver converts the
SQL statement to the database character set. Otherwise, the driver converts the SQL
statement to UTF-8 and notifies the database that a SQL statement requires further
conversion before being processed. The database, in turn, converts the SQL
statements from UTF-8 to the database character set. The database, in turn, converts
the SQL statement to the database character set. For Java string bind and define
variables, the conversion paths shown in Table 7-6 are taken for the thin driver.

Table 7-6 Thin Driver Conversion Path

Database
Form of Use SQL Datatype Character Set Conversion Path
Const . CHAR CHAR US7ASCII or Java string to and from the database character
(Defaul t) WE8ISO8859P1 set happens in the thin driver
Const . CHAR NCHAR US7ASCII or Java string to and from the database character
(Defaul t) WE8ISO8859P1 set happens in the thin driver.
Data in the database character set to and from
the national character set happens in the
database server
Const . CHAR CHAR non-ASCII and Java string to and from UTF-8 happens in the
(Defaul t) non-WES8ISO8859P1 thin driver.
Data in UTF-8 to and from the database
character set happens in the database server
Const . CHAR NCHAR non-ASCIl and Java string to and from UTF-8 happens in the
(Defaul t) non-WEB8ISO8859P1 thin driver.

Data in UTF-8 to and from national character
set happens in the database server

7-30 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

Table 7-6 Thin Driver Conversion Path (Cont.)

Form of Use

Database
SQL Datatype Character Set Conversion Path

Const . NCHAR

Const . NCHAR

CHAR Java string to and from the national character
set happens in the thin driver.

Data in the national character set to and from
the database character set happens in the
database server

NCHAR Java string to and from the national character
set happens in the thin driver

Data Conversion for the Server-Side Internal Driver

All data conversion occurs in the database server because the server-side internal
driver works inside the database.

Using oracle.sgl.CHAR in Oracle Object Types

JDBC drivers support Oracle object types. Oracle objects are always sent from
database to client as an object represented in the database character set or national
character set. That means the data conversion path in "Data Conversion in JDBC" on
page 7-29 does not apply to Oracle object access. Instead, the or acl e. sql . CHAR
class is used for passing SQL CHAR and SQL NCHAR data of an object type from the
database to the client.

This section includes the following topics:
« oracle.sql.CHAR
« Accessing SQL CHAR and NCHAR Attributes with oracle.sql. CHAR

oracle.sql.CHAR

The or acl e. sql . CHARclass has a special functionality for conversion of character
data. The Oracle character set is a key attribute of the or acl e. sql . CHARclass. The
Oracle character set is always passed in when an or acl e. sql . CHAR object is
constructed. Without a known character set, the bytes of data in the

oracl e. sgl . CHAR object are meaningless.

The or acl e. sql . CHARCclass provides the following methods for converting
character data to strings:

« getString()

Programming with Unicode 7-31

JDBC Programming with Unicode

Converts the sequence of characters represented by the or acl e. sql . CHAR
object to a string, returning a Java string object. If the character set is not
recognized, then get St ri ng() returnsa SQLExcept i on.

toString()

Identical to get St ri ng(), except that if the character set is not recognized,
thent oSt ri ng() returns a hexadecimal representation of the
oracl e. sgl . CHAR data and does not returns a SQLExcept i on.

get Stri ngW t hRepl acenent ()

Identical to get St ri ng() , except that a default replacement character replaces
characters that have no Unicode representation in the character set of this

or acl e. sgl . CHAR object. This default character varies among character sets,
but it is often a question mark.

You may want to construct an or acl e. sql . CHAR object yourself (to pass into a
prepared statement, for example). When you construct an or acl e. sql . CHAR
object, you must provide character set information to the or acl e. sql . CHAR object
by using an instance of the or acl e. sql . Char act er Set class. Each instance of
the or acl e. sql . Char act er Set class represents one of the character sets that
Oracle supports.

Complete the following tasks to construct an or acl e. sql . CHAR object:

1.

Create a Char act er Set instance by calling the static Char act er Set . make()
method. This method creates the character set class. It requires as input a valid
Oracle character set (Or acl el d) . For example:

int Oracleld = CharacterSet.JAL6SJI S CHARSET; // this is character set 832
Charact er Set nycharset = CharacterSet. nake(Oracleld);

Each character set that Oracle supports has a unique predefined Or acl el d.
The Or acl el d can always be referenced as a character set specified as
Oracl e_character _set name_ CHARSET where Or acl e_char acter _
set _nane is the Oracle character set.

Construct an or acl e. sql . CHAR object. Pass to the constructor a string (or the
bytes that represent the string) and the Char act er Set object that indicates
how to interpret the bytes based on the character set. For example:

String mystring = "teststring";

oracl e.sql. CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

7-32 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

The or acl e. sqgl . CHARclass has multiple constructors: they can take a string,
a byte array, or an object as input along with the Char act er Set object. In the
case of a string, the string is converted to the character set indicated by the

Char act er Set object before being placed into the or acl e. sql . CHAR object.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data between
the server character set and the client character set.

Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR
The following is an example of an object type created using SQL:

CREATE TYPE person_type AS OBJECT (nane VARCHAR2(30), address NVARCHAR(256), age
NUMVBER) ;
CREATE TABLE enpl oyees (id NUMBER, person PERSON TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person inplenent Sql Data
{

oracl e. sql . CHAR nane;

oracl e. sql . CHAR addr ess;

oracl e. sql . NUMBER age;

/1 Sqgl Data interfaces

get Sql Type() {...}

writeSql (Sgl Qutput streamy {...}

readSql (Sql I nput stream String sqltype) {...}
}

The or acl e. sql . CHARCclass is used here to map to the NAME attributes of the
Oracle object type, which is of VARCHARZ2 datatype. JDBC populates this class with
the byte representation of the VARCHAR2 data in the database and the

Char act er Set object corresponding to the database character set. The following
code retrieves a per son object from the enpl oyees table:

TypeMap map = ((Oracl eConnection) conn). get TypeMap();
map. put (" PERSON_TYPE", O ass. forName("person"));
conn. set TypeMap(map) ;

ResultSet rs = stnt.executeQuery("SELECT PERSON FROM EMPLOYEES");
rs.next();
person p = (person) rs.getChject(1);

Programming with Unicode 7-33

JDBC Programming with Unicode

oracl e.sql. CHAR sgl _nanme = p. nane;

oracl e. sql . CHAR sql _addr ess=p. addr ess;

String java_name = sql _name.getString();
String java_address = sql _address.getString();

The get St ri ng() method of the or acl e. sgl . CHAR class converts the byte array
from the database character set or national character set to UTF-16 by calling
Oracle's Java data conversion classes and returning a Java string. For the

rs. get oj ect (1) call to work, the Sql Dat a interface has to be implemented in
the class per son, and the Typenmap map has to be set up to indicate the mapping of
the object type PERSON_TYPE to the Java class.

Restrictions on Accessing SQL CHAR Data with JDBC

This section contains the following topics:
« SQL CHAR Data Size Restriction With the JDBC Thin Driver

« Character Integrity Issues in a Multibyte Database Environment

SQL CHAR Data Size Restriction With the JDBC Thin Driver

If the database character set is neither ASCII (US7ASCII) nor ISO Latinl
(WE8IS08859P1), then the JDBC thin driver must impose size restrictions for SQL
CHAR bind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The JDBC thin driver checks SQL CHAR bind sizes when a set XXX() method
(except for the set Char act er St r ean() method) is called. If the data size exceeds
the size restriction, then the driver returns a SQL exception (SQLExcept i on:

Data size bigger than max size for this type")fromthe set XXX()
call. This limitation is necessary to avoid the chance of data corruption when
conversion of character data occurs and increases the length of the data. This
limitation is enforced in the following situations:

» Using the JDBC thin driver
« Using binds (not defines)
« Using SQL CHAR datatypes

« Connecting to a database whose character set is neither ASCII (US7ASCII) nor
ISO Latinl (WE8ISO8859P1)

When the database character set is neither US7ASCII nor WE8ISO8859P1, the JDBC
thin driver converts Java UTF-16 characters to UTF-8 encoding bytes for SQL CHAR

7-34 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

binds. The UTF-8 encoding bytes are then transferred to the database, and the
database converts the UTF-8 encoding bytes to the database character set encoding.

This conversion to the character set encoding can result in an increase in the
number of bytes required to store the data. The expansion factor for a database
character set indicates the maximum possible expansion in converting from UTF-8
to the character set. If the database character set is either UTF8 or AL32UTF8, then
the expansion factor (exp_f act or) is 1. Otherwise, the expansion factor is equal to
the maximum character size (measured in bytes) in the database character set.

Table 7-7 shows the database size limitations for SQL CHAR data and the JDBC thin
driver size restriction formulas for SQL CHAR binds. Database limits are in bytes.
Formulas determine the maximum allowed size of the UTF-8 encoding in bytes.

Table 7-7 Maximum SQL CHAR Bind Sizes

Maximum Bind Size Formula for Determining the Maximum Bind Size, Measured
Datatype Allowed by Database in UTF-8 Bytes
CHAR 2000 bytes 4000/ exp_factor
VARCHAR2 4000 bytes 4000/ exp_fact or
LONG 231- 1 bytes (2% - 1)/exp_factor

The formulas guarantee that after the data is converted from UTF-8 to the database
character set, the size of the data does not exceed the maximum size allowed in the
database.

The number of UTF-16 characters that can be supported is determined by the
number of bytes for each character in the data. All ASCII characters are one byte
long in UTF-8 encoding. Other character types can be two or three bytes long.

Table 7-8 lists the expansion factors of some common server character sets. It also
shows the JDBC thin driver maximum bind sizes for CHAR and VARCHAR2 data for
each character set.

Table 7-8 Expansion Factor and Maximum Bind Size for Common Server Character Sets

JDBC Thin Driver Maximum Bind Size for SQL

Server Character Set Expansion Factor CHAR Data, Measured in UTF-8 Bytes

WESDEC

1 4000 bytes

Programming with Unicode 7-35

JDBC Programming with Unicode

Table 7-8 Expansion Factor and Maximum Bind Size for Common Server Character Sets (Cont.)

JDBC Thin Driver Maximum Bind Size for SQL

Server Character Set Expansion Factor CHAR Data, Measured in UTF-8 Bytes
JA16SI1S 2 2000 bytes
JA16EUC 3 1333 bytes
AL32UTF8 1 4000 bytes

Character Integrity Issues in a Multibyte Database Environment

Oracle JDBC drivers perform character set conversions as appropriate when
character data is inserted into or retrieved from the database. The drivers convert
Unicode characters used by Java clients to Oracle database character set characters,
and vice versa. Character data that makes a round trip from the Java Unicode
character set to the database character set and back to Java can suffer some loss of
information. This happens when multiple Unicode characters are mapped to a
single character in the database character set. An example is the Unicode full-width
tilde character (OxFF5E) and its mapping to Oracle's JA16SJIS character set. The
round-trip conversion for this Unicode character results in the Unicode character
0x301C, which is a wave dash (a character commonly used in Japan to indicate
range), not a tilde.

Figure 7-2 shows the round-trip conversion of the tilde character.
Figure 7-2 Character Integrity

Oracle database
Character Set
Java Unicode (JA16SJIS) Java Unicode

0x301C - <

: < ;
/ : 0x8160 L—p , 0x301C

OXFF5E - _ OXFF5E

7-36 Oracle Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the
ambiguity in character mapping specification on different operating systems.
Fortunately, this problem affects only a small number of characters in a small
number of Oracle character sets such as JA16SJIS, JAI6EUC, ZHT16BIG5, and
KO16KS5601. The workaround is to avoid making a full round-trip with these
characters.

ODBC and OLE DB Programming with Unicode

You should use the Oracle ODBC driver or Oracle Provider for OLE DB to access
the Oracle server when using a Windows platform. This section describes how these
drivers support Unicode. It includes the following topics:

« Unicode-Enabled Drivers in ODBC and OLE DB
« OCI Dependency in Unicode

» ODBC and OLE DB Code Conversion in Unicode
« ODBC Unicode Datatypes

« OLE DB Unicode Datatypes

« ADO Access

Unicode-Enabled Drivers in ODBC and OLE DB

Oracle’s ODBC driver and Oracle Provider for OLE DB can handle Unicode data
properly without data loss. For example, you can run a Unicode ODBC application
containing Japanese data on English Windows if you install Japanese fonts and an
input method editor for entering Japanese characters.

Oracle provides ODBC and OLE DB products for Windows platforms only. For
Unix platforms, contact your vendor.

OCI Dependency in Unicode

OCI Unicode binding and defining features are used by the ODBC and OLE DB
drivers to handle Unicode data. OCI Unicode data binding and defining features
are independent from NLS_LANG This means Unicode data is handled properly,
irrespective of the NLS_LANGsetting on the platform.

See Also: "OCI Programming with Unicode” on page 7-13

Programming with Unicode 7-37

ODBC and OLE DB Programming with Unicode

ODBC and OLE DB Code Conversion in Unicode

In general, no redundant data conversion occurs unless you specify a different
client datatype from that of the server. If you bind Unicode buffer SQ._C WCHAR
with a Unicode data column like NCHAR, for example, then ODBC and OLE DB
drivers bypass it between the application and OCI layer.

If you do not specify datatypes before fetching, but call SQLCGet Dat a with the client
datatypes instead, then the conversions in Table 7-9 occur.

Table 7-9 ODBC Implicit Binding Code Conversions

Datatypes of the

Datatypes of ODBC Target Column in the

Client Buffer Database Fetch Conversions Comments
SQL_C WCHAR CHAR, [If the database character setis No unexpected data loss
VARCHAR2 a subset of the NLS LANG
' = May degrade
CLOB character set, then the .
conversions occur in the performance .'f database
followina order: character set is a subset
9 : of the NLS_LANG
« Database character set character set
« NLS LANG
« UTF-16 in OCI
« UTF-16in ODBC
SQL_C CHAR CHAR, If database character set is a No unexpected data loss
VARCHARZ, subset of NLS_LANGcharacter
CLOB set: May degrade

Database character set to NLS_
LANGin OCI

If database character set is
NOT a subset of NLS LANG
character set:

Database character set,
UTF-16, to NLS_LANG

character set in OCl and ODBC

performance if database
character set is not a
subset of NLS_LANG
character set

7-38

You must specify the datatype for inserting and updating operations.

The datatype of the ODBC client buffer is given when you call SQ_Get Dat a but not
immediately. Hence, SQLFet ch does not have the information.

Oracle Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Because the ODBC driver guarantees data integrity, if you perform implicit
bindings, then redundant conversion may result in performance degradation. Your
choice is the trade-off between performance with explicit binding or usability with
implicit binding.

OLE DB Code Conversions

Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting,
updating, and fetching data. The conversion algorithm for determining the
intermediate character set is the same as the implicit binding cases of ODBC.

Table 7-10 OLE DB Implicit Bindings

Datatypes of the
Datatypes of OLE_ Target Columninthe In-Binding and Out-Binding

DB Client Buffer Database

Conversions

Comments

DBTYPE_WCHAR CHAR,
VARCHARZ,
CLOB

DBTYPE_CHAR CHAR,
VARCHARZ,
CLOB

If database character set is a
subset of the NLS_LANGcharacter
set:

Database character set to and from
NLS_LANGcharacter set in OCI.
NLS_LANGcharacter setto UTF-16
in OLE DB

If database character set is NOT a
subset of NLS_LANGcharacter set:

Database character set to and from
UTF-16 in OCI

If database character set is a
subset of the NLS_LANGcharacter
set:

Database character set to and from
NLS_LANGin OCI

If database character set is not a
subset of NLS_LANGcharacter set:

Database character set to and from
UTF-16 in OCI. UTF-16 to NLS _
LANGcharacter set in OLE DB

No unexpected data loss

May degrade performance if
database character set is a
subset of NLS LANG
character set

No unexpected data loss

May degrade performance if
database character set is not
asubset of NLS_LANG
character set

Programming with Unicode 7-39

ODBC and OLE DB Programming with Unicode

ODBC Unicode Datatypes

In ODBC Unicode applications, use SQL\WCHAR to store Unicode data. All standard
Windows Unicode functions can be used for SQLWCHAR data manipulations. For
example, wesl en counts the number of characters of SQLWCHAR data:

SQLWCHAR sql Stmt[] = L"sel ect enane from enp";
len = weslen(sql Stnt);

Microsoft’s ODBC 3.5 specification defines three Unicode datatype identifiers for
the SQL_C_WCHAR SQL_C_W/ARCHAR, and SQL_W.ONGVARCHAR clients; and three
Unicode datatype identifiers for servers SQL_WCHAR, SQL_ W/ARCHAR, and SQ._
W_ONGVARCHAR

For binding operations, specify datatypes for both client and server using

SQLBi ndPar arret er. The following is an example of Unicode binding, where the
client buffer Nare indicates that Unicode data (SQL_C WCHAR) is bound to the first
bind variable associated with the Unicode column (SQL_WCHAR):

SQLBi ndPar anet er (St at enent Handl e, 1, SQL_PARAM | NPUT, SQ._C WCHAR
SQL_WCHAR, NanelLen, 0, (SQ.PO NTER)Narme, 0, &Nane);

Table 7-11 represents the datatype mappings of the ODBC Unicode datatypes for
the server against SQL NCHAR datatypes.

Table 7-11 Server ODBC Unicode Datatype Mapping

ODBC Datatype Oracle Datatype
SQL_WCHAR NCHAR
SQL_WARCHAR NVARCHAR2
SQL_W.ONGVARCHAR NCLOB

According to ODBC specifications, SQ._ WCHAR, SQL_ WARCHAR, and SQL_
W.ONGVARCHAR are treated as Unicode data, and are therefore measured in the
number of characters instead of the number of bytes.

OLE DB Unicode Datatypes

OLE DB offers the wchar _t , BSTR, and OLESTR datatypes for a Unicode C client.
In practice, wchar _t is the most common datatype and the others are for specific
purposes. The following example assigns a static SQL statement:

wehar _t *sqgl Stmt = OLESTR("SELECT enane FROM emp");

7-40 Oracle Database Globalization Support Guide

XML Programming with Unicode

ADO Access

The OLESTR macro works exactly like an "L" modifier to indicate the Unicode
string. If you need to allocate Unicode data buffer dynamically using OLESTR, then
use the | Mal | oc allocator (for example, CoTaskMenAl | oc). However, using
OLESTRis not the normal method for variable length data; use wchar _t * instead
for generic string types. BSTRIis similar. It is a string with a length prefix in the
memory location preceding the string. Some functions and methods can accept only
BSTR Unicode datatypes. Therefore, BSTR Unicode string must be manipulated
with special functions like SysAl | ocSt ri ng for allocation and SysFreeSt ri ng
for freeing memory.

Unlike ODBC, OLE DB does not allow you to specify the server datatype explicitly.
When you set the client datatype, the OLE DB driver automatically performs data
conversion if necessary.

Table 7-12 illustrates OLE DB datatype mapping.

Table 7-12 OLE DB Datatype Mapping

OLE DB Datatype Oracle Datatype
DBTYPE_WCHAR NCHAR or NVARCHAR2

If DBTYPE_BSTRis specified, then it is assumed to be DBTYPE_WCHAR because both
are Unicode strings.

ADO is a high-level API to access database with the OLE DB and ODBC drivers.
Most database application developers use the ADO interface on Windows because
it is easily accessible from Visual Basic, the primary scripting language for Active
Server Pages (ASP) for the Internet Information Server (I1S). To OLE DB and ODBC
drivers, ADO is simply an OLE DB consumer or ODBC application. ADO assumes
that OLE DB and ODBC drivers are Unicode-aware components; hence, it always
attempts to manipulate Unicode data.

XML Programming with Unicode

XML support of Unicode is essential for software development for global markets
so that text information can be exchanged in any language. Unicode uniformly
supports almost every character and language, which makes it much easier to
support multiple languages within XML. To enable Unicode for XML within an
Oracle database, the character set of the database must be UTF-8. By enabling

Programming with Unicode 7-41

XML Programming with Unicode

Unicode text handling in your application, you acquire a basis for supporting any
language. Every XML document is Unicode text and potentially multilingual,
unless it is guaranteed that only a known subset of Unicode characters will appear
on your documents. Thus Oracle recommends that you enable Unicode for XML.
Unicode support comes with Java and many other modern programming
environments.

This section includes the following topics:
« Writing an XML File in Unicode with Java
« Reading an XML File in Unicode with Java

« Parsing an XML Stream in Unicode with Java

Writing an XML File in Unicode with Java

A common mistake in reading and writing XML files is using the Reader and
Wit er classes for character input and output. Using Reader and Wi t er for
XML files should be avoided because it requires character set conversion based on
the default character encoding of the runtime environment.

For example, using Fi | eW i t er class is not safe because it converts the document
to the default character encoding. The output file can suffer from a parsing error or
data loss if the document contains characters that are not available in the default
character encoding.

UTF-8 is popular for XML documents, but UTF-8 is not usually the default file
encoding for Java. Thus using a Java class that assumes the default file encoding can
cause problems.

The following example shows how to avoid these problems:
inport java.io.*;

inport oracle.xn . parser.v2. *;

public class |18nSaf eXM.FileWitingSanple

{
public static void main(String[] args) throws Exception
{
/I create a test docunent
XM.Docurment doc = new XM.Docunent();

doc. setVersion("1.0");
doc. appendChi | d(doc. createComent ("This is a test enpty docunment."));
doc. appendChi | d(doc. creat eEl ement ("root"));

7-42 Oracle Database Globalization Support Guide

XML Programming with Unicode

Il create a file
File file = newFile("nyfile.xm");

Il create a binary output streamto wite to the file just created
Fi | eQut put Stream fos = new FileCQutputStreanm(file);

[l create a Witer that converts Java character streamto UTF-8 stream
Qutput StreamWiter osw = new QutputStreanmWiter(fos, "UTF8");

Il buffering for efficiency
Witer w = new BufferedWiter(osw);

Il create a PrintWiter to adapt to the printing method
PrintWiter out = new PrintWiter(w);

Il print the docunent to the file through the connected objects
doc.print(out);

Reading an XML File in Unicode with Java

Do not read XML files as text input. When reading an XML document stored in a
file system, use the parser to automatically detect the character encoding of the
document. Avoid using a Reader class or specifying a character encoding on the
input stream. Given a binary input stream with no external encoding information,
the parser automatically figures out the character encoding based on the byte order
mark and encoding declaration of the XML document. Any well-formed document
in any supported encoding can be successfully parsed using the following sample
code:

inport java.io.*;
inport oracle.xn . parser.v2. *;

public class |18nSaf eXM.Fi | eReadi ngSanpl e

{
public static void main(String[] args) throws Exception
{
Il create an instance of the xm file
File file =new File("nyfile.xm");

Il create a binary input stream
Fi | el nput Stream fis = newFilelnputStrean(file);

Programming with Unicode 7-43

XML Programming with Unicode

Il buffering for efficiency
Buf f eredl nput Stream in = new Bufferedl nput Stream(fis);

/'l get an instance of the parser
DOVPar ser parser = new DOWParser ();

Il parse the xm file
parser.parse(in);

Parsing an XML Stream in Unicode with Java

When the source of an XML document is not a file system, the encoding
information is usually available before reading the document. For example, if the
input document is provided in the form of a Java character stream or Reader, its
encoding is evident and no detection should take place. The parser can begin
parsing a Reader in Unicode without regard to the character encoding.

The following is an example of parsing a document with external encoding
information:

inport java.io.*;

inport java.net.*;

inport org.xm .sax.*;
inport oracle.xn . parser.v2. *;

public class |18nSaf eXM.St r eanReadi ngSanpl e
{

public static void main(String[] args) throws Exception

{

Il create an instance of the xm file
URL wurl = new URL("http://myhost/nydocunent.xm");

Il create a connection to the xm document
URLConnection conn = url.openConnection();

/1 get an input stream
InputStream is = conn.getlnputStrean);

Il buffering for efficiency
Buf f eredl nput Stream bis = new BufferedlnputStrean(is);

/* figure out the character encoding here */
/* a typical source of encoding information is the content-type header */

7-44 Oracle Database Globalization Support Guide

XML Programming with Unicode

/* we assune it is found to be utf-8 in this exanple */

String charset = "utf-8";

Il create an InputSource for UTF-8 stream
I nput Source in = new I nputSource(bhis);
i n.set Encodi ng(charset);

/'l get an instance of the parser
DOVPar ser parser = new DOWParser ();

Il parse the xm stream
parser.parse(in);

Programming with Unicode 7-45

XML Programming with Unicode

7-46 Oracle Database Globalization Support Guide

8

Oracle Globalization Development Kit

This chapter includes the following sections:

« Overview of the Oracle Globalization Development Kit
« Designing a Global Internet Application

« Developing a Global Internet Application

« Getting Started with the Globalization Development Kit
« GDK Application Framework for J2EE

« GDKJava API

« The GDK Application Configuration File

« GDK for Java Supplied Packages and Classes

« GDK for PL/SQL Supplied Packages

« GDK Error Messages

Oracle Globalization Development Kit 8-1

Overview of the Oracle Globalization Development Kit

Overview of the Oracle Globalization Development Kit

Designing and developing a globalized application can be a daunting task even for
the most experienced developers. This is usually caused by lack of knowledge and
the complexity of globalization concepts and APls. Application developers who
write applications using the Oracle database need to understand the Globalization
Support architecture of the database, including the properties of the different
character sets, territories, languages and linguistic sort definitions. They also need
to understand the globalization functionality of their middle-tier programming
environment, and find out how it can interact and synchronize with the locale
model of the database. Finally, to develop a globalized Internet application, they
need to design and write code that is capable of simultaneously supporting
multiple clients running on different operating systems with different character sets
and locale requirements.

Oracle Globalization Development Kit (GDK) simplifies the development process
and reduces the cost of developing Internet applications that will be used to
support a global environment.

This release of the GDK includes comprehensive programming APIs for both Java
and PL/SQL, code samples, and documentation that address many of the design,
development, and deployment issues encountered while creating global
applications.

The GDK mainly consists of two parts: GDK for Java and GDK for PL/SQL. GDK
for Java provides globalization support to Java applications. GDK for PL/SQL
provides globalization support to the PL/SQL programming environment. The
features offered in GDK for Java and GDK for PL/SQL are not identical.

Designing a Global Internet Application

There are two architectural models for deploying a global Web site or a global
Internet application, depending on your globalization and business requirements.
Which model to deploy affects how the Internet application is developed and how
the application server is configured in the middle-tier. The two models are:

« Multiple instances of monolingual Internet applications

Internet applications that support only one locale in a single binary are
classified as monolingual applications. A locale refers to a national language
and the region in which the language is spoken. For example, the primary
language of the United States and Great Britain is English. However, the two
territories have different currencies and different conventions for date formats.

8-2 Oracle Database Globalization Support Guide

Designing a Global Internet Application

Therefore, the United States and Great Britain are considered to be two different
locales.

This level of globalization support is suitable for customers who want to
support one locale for each instance of the application. Users need to have
different entry points to access the applications for different locales. This model
is manageable only if the number of supported locales is small.

« Single instance of a multilingual application

Internet applications that support multiple locales simultaneously in a single
binary are classified as multilingual applications. This level of globalization
support is suitable for customers who want to support several locales in an
Internet application simultaneously. Users of different locale preferences use the
same entry point to access the application.

Developing an application using the monolingual model is very different from
developing an application using the multilingual model. The Globalization
Development Kit consists of libraries, which can assist in the development of
global applications using either architectural model.

The rest of this section includes the following topics:
« Deploying a Monolingual Internet Application

« Deploying a Multilingual Internet Application

Deploying a Monolingual Internet Application

Deploying a global Internet application with multiple instances of monolingual
Internet applications is shown in Figure 8-1.

Oracle Globalization Development Kit 8-3

Designing a Global Internet Application

Figure 8-1 Monolingual Internet Application Architecture

Browsers Application Server Customer
Database

Server A

15088591 ngﬁg'gt?gﬁ' WESMSWINL252
English Locale .
English]2 Application Server

Locale Instance 1

Application Server
Instance 2

Shift-JIS Monolingual
Application: HE .J.A|.6_S‘1|§ ________ .
Japanese Locale
Japanese :IE

Locale

Oracle

Unicode
Server B Database

1S0-8859-8 ngﬁ'c'gt%ﬁ' IWBMSWIN1255 g
Hebrew Locale
Hebrew :IE Application Server

Locale Instance 3

HTTP ——
Oracle Net == ="

Each application server is configured for the locale that it serves. This deployment
model assumes that one instance of an Internet application runs in the same locale
as the application in the middle tier.

The Internet applications access a back-end database in the native encoding used
for the locale. The following are advantages of deploying monolingual Internet
applications:

« The support of the individual locales is separated into different servers so that
multiple locales can be supported independently in different locations and that
the workload can be distributed accordingly. For example, customers may want

8-4 Oracle Database Globalization Support Guide

Designing a Global Internet Application

to support Western European locales first and then support Asian locales such
as Japanese (Japan) later.

The complexity required to support multiple locales simultaneously is avoided.
The amount of code to write is significantly less for a monolingual Internet
application than for a multilingual Internet application.

The following are disadvantages of deploying monolingual Internet applications:

Extra effort is required to maintain and manage multiple servers for different
locales. Different configurations are required for different application servers.

The minimum number of application servers required depends on the number
of locales the application supports, regardless of whether the site traffic will
reach the capacity provided by the application servers.

Load balancing for application servers is limited to the group of application
servers for the same locale.

More QA resources, both human and machine, are required for multiple
configurations of application servers. Internet applications running on different
locales must be certified on the corresponding application server configuration.

It is not designed to support multilingual content. For example, a web page
containing Japanese and Arabic data cannot be easily supported in this model.

As more and more locales are supported, the disadvantages quickly outweigh the
advantages. With the limitation and the maintenance overhead of the monolingual
deployment model, this deployment architecture is suitable for applications that
support only one or two locales.

Deploying a Multilingual Internet Application

Multilingual Internet applications are deployed to the application servers with a
single application server configuration that works for all locales. Figure 8-2 shows
the architecture of a multilingual Internet application.

Oracle Globalization Development Kit 8-5

Designing a Global Internet Application

Figure 8-2 Multilingual Internet Application Architecture

Browsers Customer
Database

1SO-8859-1

English :IZ

Locale

Shift-JIS

Server

% Multilingual
Japanese Application with Unicode

P W (Ao Oracle
Locale Dynamic Locale

nic L Unicode
Switching Database

UTF-8

Hebrew :IZ

Locale

Application Server
Instance

UTF-8

HTTP —

% Oracle Net = ==+
Thai

Locale

To support multiple locales in a single application instance, the application may
need to do the following:

« Dynamically detect the locale of the users and adapt to the locale by
constructing HTML pages in the language and cultural conventions of the
locale

« Process character data in Unicode so that data in any language can be
supported. Character data can be entered by users or retrieved from back-end
databases.

8-6 Oracle Database Globalization Support Guide

Developing a Global Internet Application

« Dynamically determine the HTML page encoding (or character set) to be used
for HTML pages and convert content from Unicode to the page encoding and
the reverse.

The following are major advantages of deploying multilingual Internet application:

« Using asingle application server configuration for all application servers
simplifies the deployment configuration and hence reduces the cost of
maintenance.

« Performance tuning and capacity planning do not depend on the number of
locales supported by the Web site.

« Introducing additional locales is relatively easy. No extra machines are
necessary for the new locales.

« Testing the application across different locales can be done in a single testing
environment.

« This model can support multilingual content within the same instance of the
application. For example, a web page containing Japanese, Chinese, English and
Arabic data can be easily supported in this model.

The disadvantage of deploying multilingual Internet applications is that it requires
extra coding during application development to handle dynamic locale detection
and Unicode, which is costly when only one or two languages need to be
supported.

Deploying multilingual Internet applications is more appropriate than deploying
monolingual applications when Web sites support multiple locales.

Developing a Global Internet Application

Building an Internet application that supports different locales requires good
development practices.

For multilingual Internet applications, the application itself must be aware of the
user's locale and be able to present locale-appropriate content to the user. Clients
must be able to communicate with the application server regardless of the client's
locale. The application server then communicates with the database server,
exchanging data while maintaining the preferences of the different locales and
character set settings. One of the main considerations when developing a
multilingual internet application is to be able to dynamically detect, cache, and
provide the appropriate contents according to the user's preferred locale.

Oracle Globalization Development Kit 8-7

Developing a Global Internet Application

For monolingual Internet applications, the locale of the user is always fixed and
usually follows the default locale of the runtime environment. Hence the locale
configuration is much simpler.

The following sections describe some of the most common issues that developers
encounter when building a global Internet application:

« Locale Determination
« Locale Awareness

« Localizing the Content

Locale Determination

To be locale-aware or locale-sensitive, Internet applications need to be able to
determine the preferred locale of the user.

Monolingual applications always serve users with the same locale, and that locale
should be equivalent to the default runtime locale of the corresponding
programming environment.

Multilingual applications can determine a user locale dynamically in three ways.
Each method has advantages and disadvantages, but they can be used together in
the applications to complement each other. The user locale can be determined in the
following ways:

« Based on the user profile information from a LDAP directory server such as the
Oracle Internet Directory or other user profile tables stored inside the database

The schema for the user profile should include preferred locale attribute to
indicate the locale of a user. This way of determining a locale user does not
work if a user has not been logged on before.

« Based on the default locale of the browser

Get the default ISO locale setting from a browser. The default ISO locale of the
browser is sent through the Accept-Language HTTP header in every HTTP
request. If the Accept-Language header is NULL, then the desired locale should
default to English. The drawback of this approach is that the Accept-Language
header may not be a reliable source of information for the locale of a user.

« Based on user selection

Allow users to select a locale from a list box or from a menu, and switch the
application locale to the one selected.

8-8 Oracle Database Globalization Support Guide

Developing a Global Internet Application

The Globalization Development Kit provides an application framework that enables
you to use these locale determination methods declaratively.

See Also: "Getting Started with the Globalization Development
Kit" on page 8-10

Locale Awareness

To be locale-aware or locale-sensitive, Internet applications need to determine the
locale of a user. After the locale of a user is determined, applications should:

« Construct HTML content in the language of the locale
« Use the cultural conventions implied by the locale

Locale-sensitive functions, such as date, time, and monetary formatting, are built
into various programming environments such as Java and PL/SQL. Applications
may use them to format the HTML pages according to the cultural conventions of
the locale of a user. A locale is represented differently in different programming
environments. For example, the French (Canada) locale is represented in different
environments as follows:

« Inthe ISO standard, it is represented by f r - CAwhere f r is the language code
defined in the ISO 639 standard and CA is the country code defined in the ISO
3166 standard.

« InJava, it is represented as a Java locale object constructed with f r, the ISO
language code for French, as the language and CA, the ISO country code for
Canada, as the country. The Java locale name isf r _CA.

« InPL/SQL and SQL, it is represented mainly by the NLS LANGUAGE and NLS _
TERRI TORY session parameters where the value of the NLS_L ANGUAGE
parameter is equal to CANADI AN FRENCH and the value of the NLS
TERRI TORY parameter is equal to CANADA.

If you write applications for more than one programming environment, then locales
must be synchronized between environments. For example, Java applications that
call PL/SQL procedures should map the Java locales to the corresponding NLS
LANGUAGE and NLS_TERRI TORY values and change the parameter values to match
the user's locale before calling the PL/SQL procedures.

The Globalization Development Kit for Java provides a set of Java classes to ensure
consistency on locale-sensitive behaviors with Oracle databases.

Oracle Globalization Development Kit 8-9

Getting Started with the Globalization Development Kit

Localizing the Content

For the application to support a multilingual environment, it must be able to
present the content in the preferred language and in the locale convention of the
user. Hard-coded user interface text must first be externalized from the application,
together with any image files, so that they can be translated into the different
languages supported by the application. The translation files then must be staged in
separate directories, and the application must be able to locate the relevant content
according to the user locale setting. Special application handling may also be
required to support a fallback mechanism, so that if the user-preferred locale is not
available, then the next most suitable content is presented. For example, if Canadian
French content is not available, then it may be suitable for the application to switch
to the French files instead.

Getting Started with the Globalization Development Kit

The Globalization Development Kit (GDK) for Java provides a J2EE application
framework and Java APIs to develop globalized Internet applications using the best
globalization practices and features designed by Oracle. It reduces the complexities
and simplifies the code that Oracle developers require to develop globalized Java
applications.

GDK for Java complements the existing globalization features in J2EE. Although the
J2EE platform already provides a strong foundation for building globalized
applications, its globalization functionalities and behaviors can be quite different
from Oracle's functionalities. GDK for Java provides synchronization of
locale-sensitive behaviors between the middle-tier Java application and the
database server.

GDK for PL/SQL contains a suite of PL/SQL packages that provide additional
globalization functionalities for applications written in PL/SQL.

Figure 8-3 shows the major components of the GDK and how they are related to
each other. User applications run on the J2EE container of Oracle Application Server
in the middle tier. GDK provides the application framework that the J2EE
application uses to simplify coding to support globalization. Both the framework
and the application call the GDK Java API to perform locale-sensitive tasks. GDK
for PL/SQL offers PL/SQL packages that help to resolve globalization issues
specific to the PL/SQL environment.

8-10 Oracle Database Globalization Support Guide

Getting Started with the Globalization Development Kit

Figure 8-3 GDK Components

Client-Tier
Browser

Request

Middle-Tier Server-Tier
Application Database

Oracle Application Server

—= 3
Containers for J2EE

<+“—>

I%Response
—>

The

J2EE User
Application

<+

GDK
Framework for J2EE

¢ {

GDK - Java API

!
<>

functionalities offered by GDK for Java can be divided into two categories:

The GDK application framework for J2EE provides the globalization framework
for building J2EE-based Internet application. The framework encapsulates the
complexity of globalization programming, such as determining user locale,
maintaining locale persistency, and processing locale information. It consists of
a set of Java classes through which applications can gain access to the
framework. These associated Java classes enable applications to code against
the framework so that globalization behaviors can be extended declaratively.

The GDK Java API offers development support in Java applications and
provides consistent globalization operations as provided in Oracle database
servers. The APl is accessible and is independent of the GDK framework so that

Oracle Globalization Development Kit 8-11

GDK Application Framework for J2EE

standalone Java applications and J2EE applications that are not based on the
GDK framework are able to access the individual features offered by the Java
API. The features provided in the Java APl include data and number
formatting, sorting, and handling character sets in the same way as the Oracle
Database.

Note: The GDK Java API is certified with JDK versions 1.3 and
later with the following exception: The character set conversion
classes depend on the j ava. ni 0. char set package, which is
available in JDK 1.4 and later.

GDK for Java is contained in two files: or ai 18n. j ar and or ai 18n-1 csd. j ar.
The files are shipped with the Oracle database. If the application using the GDK is
not hosted on the same machine as the database, then the GDK files must be copied
to the application server and included into the CLASSPATH to run your application.
You do not need to install the Oracle Database into your application server to be
able to run the GDK inside your Java application. GDK is a pure Java library that
runs on every platform. The Oracle client parameters NLS_LANGand ORACLE _
HQOVE are not required.

GDK Application Framework for J2EE

GDK for Java provides the globalization framework for middle-tier J2EE
applications. The framework encapsulates the complexity of globalization
programming, such as determining user locale, maintaining locale persistency, and
processing locale information. This framework minimizes the effort required to
make Internet applications global-ready. The GDK application framework is shown
in Figure 8-4.

8-12 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

Figure 8-4 GDK Application Framework for J2EE

1Request Response

GDK Framework for J2EE

'.I_
GDK . z Servl et Request W apper Servl et ResponseW apper
Configuration | S
File =
p— o o
—_— Q . o
— = Local i zer o
p— S 0
& £
o} o
o o &
x J2EE User Application

t § 08

GDK Java API

The main Java classes composing the framework are as follows:

Appl i cati onCont ext provides the globalization context of an application.
The context information includes the list of supported locales and the rule for
determining user-preferred locale. The context information is obtained from the
GDK application configuration file for the application.

The set of Local eSour ce classes can be plugged into the framework. Each
Local eSour ce class implements the Local eSour ce interface to get the locale
from the corresponding source. Oracle bundles several Local eSour ce classes
in GDK. For example, the DBLocal eSour ce class obtains the locale
information of the current user from a database schema. You can also write a
customized Local eSour ce class by implementing the same Local eSour ce
interface and plugging it into the framework.

Servl et Request W apper and Ser vl et ResponseW apper are the main
classes of the GDK Servlet filter that transforms HTTP requests and HTTP
responses. Ser vl et Request W apper instantiates a Local i zer object for
each HTTP request based on the information gathered from the

Appl i cati onCont ext and Local eSour ce objects and ensures that forms

Oracle Globalization Development Kit 8-13

GDK Application Framework for J2EE

parameters are handled properly. Ser vl et ResponseW apper controls how
HTTP response should be constructed.

Local i zer is the all-in-one object that exposes the important functions that are
sensitive to the current user locale and application context. It provides a
centralized set of methods for you to call and make your applications behave
appropriately to the current user locale and application context.

The GDK Java API is always available for applications to enable finer control of
globalization behavior.

The GDK application framework simplifies the coding required for your
applications to support different locales. When you write a J2EE application
according to the application framework, the application code is independent of
what locales the application supports, and you control the globalization support in
the application by defining it in the GDK application configuration file. There is no
code change required when you add or remove a locale from the list of supported
application locales.

The following list gives you some idea of the extent to which you can define the
globalization support in the GDK application configuration file:

You can add and remove a locale from the list of supported locales.
You can change the way the user locale is determined.

You can change the HTML page encoding of your application.

You can specify how the translated resources can be located.

You can plug a new Local eSour ce object into the framework and use it to
detect a user locale.

This section includes the following topics:

Making the GDK Framework Available to J2EE Applications
Integrating Locale Sources into the GDK Framework

Getting the User Locale From the GDK Framework
Implementing Locale Awareness Using the GDK Localizer
Defining the Supported Application Locales in the GDK
Handling Non-ASCII Input and Output in the GDK Framework
Managing Localized Content in the GDK

8-14 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

Making the GDK Framework Available to J2EE Applications

The behavior of the GDK application framework for J2EE is controlled by the GDK
application configuration file, gdkapp. xm . The application configuration file
allows developers to specify the behaviors of globalized applications in one
centralized place. One application configuration file is required for each J2EE
application using the GDK. The gdkapp. xnl file should be placed in the

. I VEEB- | NF directory of the J2EE environment of the application. The file dictates
the behavior and the properties of the GDK framework and the application that is
using it. It contains locale mapping tables, character sets of content files, and
globalization parameters for the configuration of the application. The application
administrator can modify the application configuration file to change the
globalization behavior in the application, without needing to change the programs
and to recompile them.

See Also: "The GDK Application Configuration File" on page 8-36

For a J2EE application to use the GDK application framework defined by the
corresponding GDK application configuration file, the GDK Servlet filter and the
GDK context listener must be defined in the web. xm file of the application. The
web. xm file should be modified to include the following at the beginning of the
file:

<web- app>
<I-- Add GDK filter that is called after the authentication -->

<filter>
<filter-name>gdkfilter</filter-nane>
<filter-class>oracle.il8n.servlet.filter.ServlietFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>gdkfilter</filter-nane>
<url-pattern>*.jsp</url-pattern>
</filter-mappi ng>

<I'-- Include the &K context |istener -->
<|istener>

<l istener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
</listener>

</ web- app>

Examples of the gdkapp. xm and web. xm files can be found in the SORACLE
HOVE/ nl s/ gdk/ deno directory.

Oracle Globalization Development Kit 8-15

GDK Application Framework for J2EE

The GDK application framework supports Servlet container version 2.3 and later. It
uses the Servlet filter facility for transparent globalization operations such as
determining the user locale and specifying the character set for content files. The
Appl i cati onCont ext Li st ener instantiates GDK application parameters
described in the GDK application configuration file. The Ser vl et Fi | t er
overrides the request and response objects with a GDK request

(Ser vl et Request W apper) and response (Ser vl et ResponseW apper) objects,
respectively.

If other application filters used in the application also override the same methods,
then the filter in the GDK framework may return incorrect results. For example, if
get Local e returns en_US, but the result is overridden by other filters, then the
result of the GDK locale detection mechanism is affected. All of the methods that
are being overridden in the filter of the GDK framework are documented in Oracle
Globalization Development Kit Java APl Reference. Be aware of potential conflicts when
using other filters together with the GDK framework.

Integrating Locale Sources into the GDK Framework

Determining the user’s preferred locale is the first step in making an application
global-ready. The locale detection offered by the J2EE application framework is
primitive. It lacks the method that transparently retrieves the most appropriate user
locale among locale sources. It provides locale detection by the HTTP language
preference only, and it cannot support a multilevel locale fallback mechanism. The
GDK application framework provides support for predefined locale sources to
complement J2EE. In a web application, several locale sources are available.

Table 8-1 summarizes locale sources that are provided by the GDK.

Table 8-1 Locale Resources Provided by the GDK

Locale

Description

HTTP language preference Locales included in the HTTP protocol as a value of Accept - Language. This is

User input locale

set at the web browser level. A locale fallback operation is required if the
browser locale is not supported by the application.

Locale specified by the user from a menu or a parameter in the HTTP protocol

User profile locale preference Locale preference stored in the database as part of the user profiles

from database

Application default locale A locale defined in the GDK application configuration file. This locale is defined

as the default locale for the application. Typically, this is used as a fallback locale
when the other locale sources are not available.

8-16 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

See Also: "The GDK Application Configuration File" on page 8-36
for information about the GDK multilevel locale fallback
mechanism

The GDK application framework provides seamless support for predefined locale
sources, such as user input locale, HTTP language preference, user profile locale
preference in the database, and the application default locale. You can incorporate
the locale sources to the framework by defining them under the

<l ocal e-det er mi ne-r ul e>tag in the GDK application configuration file as
follows:

<l ocal e-det ermi ne-rul e>

<l ocal e- sour ce>oracl e. i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- sour ce>

<l ocal e-sour ce>oracl e.i 18n. servl et. | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>
</l ocal e-deterni ne-rul e>

Custom locale sources, such as locale preference from an LDAP server, can be easily
implemented and integrated into the GDK framework. You need to implement the
Local eSour ce interface and specify the corresponding implementation class
under the <l ocal e- det er mi ne-r ul e> tag in the same way as the predefined
locale sources were specified.

The Local eSour ce implementation not only retrieves the locale information from
the corresponding source to the framework but also updates the locale information
to the corresponding source when the framework tells it to do so. Locale sources
can be read-only or read/write, and they can be cacheable or noncacheable. The
GDK framework initiates updates only to read/write locale sources and caches the
locale information from cacheable locale sources. Examples of custom locale sources
can be found in the $ORACLE_HOWVE/ nl s/ gdk/ deno directory.

See Also: Oracle Globalization Development Kit Java APl Reference
for more information about implementing a Local eSour ce

Getting the User Locale From the GDK Framework

The GDK offers automatic locale detection to determine the current locale of the
user. For example, the following code retrieves the current user locale in Java. It
uses a Local e object explicitly.

Local e loc = request. getLocal e();

The get Local e() method returns the Local e that represents the current locale.
This is similar to invoking the Ht t pSer vl et Request . get Local e() method in
JSP or Java Servlet code. However, the logic in determining the user locale is

Oracle Globalization Development Kit 8-17

GDK Application Framework for J2EE

different, because multiple locale sources are being considered in the GDK
framework.

Alternatively, you can geta Local i zer object that encapsulates the Local e object
determined by the GDK framework. For the benefits of using the Local i zer
object, see "Implementing Locale Awareness Using the GDK Localizer” on

page 8-19.

Local i zer localizer = ServletHel per.getLocalizerlnstance(request);
Local e loc = localizer.getLocal e();

The locale detection logic of the GDK framework depends on the locale sources
defined in the GDK application configuration file. The names of the locale sources
are registered in the application configuration file. The following example shows
the locale determination rule section of the application configuration file. It
indicates that the user-preferred locale can be determined from either the LDAP
server or from the HTTP Accept - Language header. The LDAPUser Schena locale
source class should be provided by the application. Note that all of the locale source
classes have to be extended from the Local eSour ce abstract class.

<l ocal e-det er nmi ne-rul e>

<l ocal e- sour ce>LDAPUser Schema</ | ocal e- sour ce>

<l ocal e- source>or acl e.i 18n. | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>
</l ocal e-det erm ne-rul e>

For example, when the user is authenticated in the application and the user locale
preference is stored in an LDAP server, then the LDAPUser Schena class connects
to the LDAP server to retrieve the user locale preference. When the user is
anonymous, then the Ht t pAccept Language class returns the language preference
of the web browser.

The cache is maintained for the duration of a HTTP session. If the locale source is
obtained from the HTTP language preference, then the locale information is passed
to the application in the HTTP Accept - Language header and not cached. This
enables flexibility so that the locale preference can change between requests. The
cache is available in the HTTP session.

The GDK framework exposes a method for the application to overwrite the locale
preference information persistently stored in locale sources such as the LDAP server
or the user profile table in the database. This method also resets the current locale
information stored inside the cache for the current HTTP session. The following is
an example of overwriting the preferred locale using the st or e command.

<i nput type="hi dden"
name="<%appct x. get Par anet er Nane(Local eSour ce. Par anet er . COWAND) %"

8-18 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

val ue="store">

To discard the current locale information stored inside the cache, the cl ean
command can be specified as the input parameter. The following table shows the
list of commands supported by the GDK:

Command Functionality

store Updates user locale preferences in the available locale sources
with the specified locale information. This command is ignored
by the read-only locale sources.

cl ean Discards the current locale information in the cache

Note that the GDK parameter names can be customized in the application
configuration file to avoid name conflicts with other parameters used in the
application.

Implementing Locale Awareness Using the GDK Localizer

The Local i zer object obtained from the GDK application framework is an
all-in-one globalization object that provides access to functions that are commonly
used in building locale awareness in your applications. In addition, it provides
functions to get information about the application context, such as the list of
supported locales. The Local i zer object simplifies and centralizes the code
required to build consistent locale awareness behavior in your applications.

Theoracl e.i 18n. servl et package contains the Local i zer class. You can get
the Localizer instance as follows:

Local i zer | c = ServletHel per.getLocalizerlnstance(request);

The Local i zer object encapsulates the most commonly used locale-sensitive
information determined by the GDK framework and exposes it as locale-sensitive
methods. This object includes the following functionalities pertaining to the user
locale:

« Format date in long and short formats

« Format numbers and currencies

« Getcollation key value of a string

« Get locale data such as language, country and currency names

« Get locale data to be used for constructing user interface

Oracle Globalization Development Kit 8-19

GDK Application Framework for J2EE

« Getatranslated message from resource bundles

« Get text formatting information such as writing direction
« Encode and decode URLs

« Get the common list of time zones and linguistic sorts

For example, when you want to display a date in your application, you may want to
call the Local i zer. format Dat e() or Local i zer. f or mat eDat eTi me()
methods. When you want to determine the writing direction of the current locale,
you can call the Local i zer.get WitingDirection() and

Local i zer. get Al i gnrent () to determine the value used in the <DI R> tag and
<ALI GN\> tag respectively.

The Local i zer object also exposes methods to enumerate the list of supported
locales and their corresponding languages and countries in your applications.

The Local i zer object actually makes use of the classes in the GDK Java API to
accomplish its tasks. These classes includes, but are not limited to, the following:
O aDat eFor mat , O aNurber For mat , Or aCol | at or, Or aLocal el nf o,
oracle.i18n.util.Local eMapper,oracl e.i 18n. net. URLEncoder, and
oracl e.i 18n. net . URLDecoder.

The Local i zer object simplifies the code you need to write for locale awareness. It
maintains caches of the corresponding objects created from the GDK Java API so
that the calling application does not need to maintain these objects for subsequent
calls to the same objects. If you require more than the functionality the Local i zer
object can provide, then you can always call the corresponding methods in the GDK
Java API directly.

See Also: Oracle Globalization Development Kit Java APl Reference
for detailed information about the Local i zer object

Defining the Supported Application Locales in the GDK

The number of locales and the names of the locales that an application needs to
support are based on the business requirements of the application. The names of the
locales that are supported by the application are registered in the application
configuration file. The following example shows the application locales section of
the application configuration file. It indicates that the application supports German
(de), Japanese (j a), and English for the US (en- US), with English defined as the
default fallback application locale.

<application-1|ocal es>
<l ocal e>de</ I ocal e>

8-20 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

<l ocal e>j a</ | ocal e>
<l ocal e defaul t="yes">en-US</| ocal e>
</ application-local es>

When the GDK framework detects the user locale, it verifies whether the locale that
is returned is one of the supported locales in the application configuration file. The
verification algorithm is as follows:

1. Retrieve the list of supported application locales from the application
configuration file.

2. Check whether the locale that was detected is included in the list. If it is
included in the list, then use this locale as the current client's locale.

3. Ifthere is a variant in the locale that was detected, then remove the variant and
check whether the resulting locale is in the list. For example, de_DE_EUROhas a
EUROvariant. Remove the variant so that the resulting locale is de_DE.

4. If the locale includes a country code, then remove the country code and check
whether the resulting locale is in the list. For example, de_DE has a country
code of DE. Remove the country code so that the resulting locale is de.

5. If the detected locale does not match any of the locales in the list, then use the
default locale that is defined in the application configuration file as the client
locale.

By performing steps 3 and 4, the application can support users with the same
language requirements but with different locale settings than those defined in the
application configuration file. For example, the GDK can support de- AT (the
Austrian variant of German), de- CH (the Swiss variant of German), and de- LU (the
Luxembourgian variant of German) locales.

The locale fallback detection in the GDK framework is similar to that of the Java
Resource Bundle, except that it is not affected by the default locale of the Java VM.
This exception occurs because the Application Default Locale can be used during
the GDK locale fallback operations.

If the application-locales section is omitted from the application configuration file,
then the GDK assumes that the common locales, which can be returned from the
OralLocal el nf 0. get CormopnLocal es method, are supported by the application.

Handling Non-ASCII Input and Output in the GDK Framework

The character set (or character encoding) of an HTML page is a very important
piece of information to a browser and an Internet application. The browser needs to

Oracle Globalization Development Kit 8-21

GDK Application Framework for J2EE

interpret this information so that it can use correct fonts and character set mapping
tables for displaying pages. The Internet applications need to know so they can
safely process input data from a HTML form based on the specified encoding.

The page encoding can be translated as the character set used for the locale to which
an Internet application is serving. In order to correctly specify the page encoding for
HTML pages without using the GDK framework, Internet applications must:

1. Determine the desired page input data character set encoding for a given locale.

2. Specify the corresponding encoding name for each HTTP request and HTTP
response.

Applications using the GDK framework can ignore these steps. No application code
change is required. The character set information is specified in the GDK
application configuration file. At runtime, the GDK automatically sets the character
sets for the request and response objects. The GDK framework does not support the
scenario where the incoming character set is different from that of the outgoing
character set.

The GDK application framework supports the following scenarios for setting the
character sets of the HTML pages:

« Asingle local character set is dedicated to the whole application. This is
appropriate for a monolingual Internet application. Depending on the
properties of the character set, it may be able to support more than one
language. For example, most Western European languages can be served by
1SO-8859-1.

« Unicode UTF-8 is used for all contents regardless of the language. This is
appropriate for a multilingual application that uses Unicode for deployment.

« The native character set for each language is used. For example, English
contents are represented in 1ISO-8859-1, and Japanese contents are represented
in Shift_JIS. This is appropriate for a multilingual Internet application that uses
a default character set mapping for each locale. This is useful for applications
that need to support different character sets based on the user locales. For
example, for mobile applications that lack Unicode fonts or Internet browsers
that cannot fully support Unicode, the character sets must to be determined for
each request.

The character set information is specified in the GDK application configuration file.
The following is an example of setting UTF-8 as the character set for all the
application pages.

<page- char set >UTF- 8</ page- char set >

8-22 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

The page character set information is used by the Ser vl et Request W apper class,
which sets the proper character set for the request object. It is also used by the

Cont ent Type HTTP header specified in the Ser vl et ResponseW apper class for
output when instantiated. If page- char set is set to AUTO- CHARSET, then the
character set is assumed to be the default character set for the current user locale.
Set page- char set to AUTO- CHARSET as follows:

<page- char set >AUTO- CHARSET</ page- char set >

The default mappings are derived from the Local eMapper class, which provides
the default IANA character set for the locale name in the GDK Java API.

Table 8-2 lists the mappings between the common ISO locales and their IANA
character sets.

Table 8-2 Mapping Between Common ISO Locales and IANA Character Sets

ISO Locale NLS_LANGUAGE Value NLS_TERRITORY Value IANA Character Set
ar-SA ARABIC SAUDI ARABIA WINDOWS-1256
de-DE GERMAN GERMANY WINDOWS-1252
en-US AMERICAN AMERICA WINDOWS-1252
en-GB ENGLISH UNITED KINGDOM WINDOWS-1252
el GREEK GREECE WINDOWS-1253
es-ES SPANISH SPAIN WINDOWS-1252
fr FRENCH FRANCE WINDOWS-1252
fr-CA CANADIAN FRENCH CANADA WINDOWS-1252
iw HEBREW ISRAEL WINDOWS-1255
ko KOREAN KOREA EUC-KR
ja JAPANESE JAPAN SHIFT_JIS
it ITALIAN ITALY WINDOWS-1252
pt PORTUGUESE PORTUGAL WINDOWS-1252
pt-BR BRAZILIAN BRAZIL WINDOWS-1252
PORTUGUESE
tr TURKISH TURKEY WINDOWS-1254
nl DUTCH THE NETHERLANDS WINDOWS-1252

Oracle Globalization Development Kit 8-23

GDK Application Framework for J2EE

Table 8-2 Mapping Between Common ISO Locales and IANA Character Sets (Cont.)

ISO Locale NLS LANGUAGE Value NLS TERRITORY Value IANA Character Set
zh SIMPLIFIED CHINESE CHINA GBK
zh-TW TRADITIONAL CHINESE TAIWAN BIG5

The locale to character set mapping in the GDK is also be customized. To override
the default mapping defined in the GDK Java API, a locale-to-character-set
mapping table can be specified in the application configuration file.

<l ocal e- char set - naps>
<l ocal e- char set >
<l ocal e>j a</ | ocal e><char set >EUC- JP</ char set >
</l ocal e-charset >
</l ocal e-char set - maps>

The previous example shows that for locale Japanese (j a), the GDK changes the
default character set from SHIFT_JIS to EUC-JP.

See Also: "Oracle Locale Information in the GDK" on page 8-27

Managing Localized Content in the GDK

This section includes the following topics:
« Managing Localized Content in JSPs and Java Servlets

« Managing Localized Content in Static Files

Managing Localized Content in JSPs and Java Servlets

Resource bundles enable access to localized contents at runtime in J2SE.
Translatable strings within Java servlets and Java Server Pages (JSPs) are
externalized into Java resource bundles so that these resource bundles can be
translated independently into different languages. The translated resource bundles
carry the same base class names as the English bundles, using the Java locale name
as the suffix.

To retrieve translated data from the resource bundle, the get Bundl e() method
must be invoked for every request.

<% Local e user_| ocal e=request. get Local e();
Resour ceBundl e rb=Resour ceBundl e. get Bundl e("resource", user _| ocal e); %
<% rb.getString("Velcone") %

8-24 Oracle Database Globalization Support Guide

GDK Application Framework for J2EE

The GDK framework simplifies the retrieval of text strings from the resource
bundles. Local i zer . get Message() is a wrapper to the resource bundle.

<% Local i zer. get Message ("Wl cone") %

Instead of specifying the base class name as get Bundl e() in the application, you
can specify the resource bundle in the application configuration file, so that the
GDK automatically instantiates a Resour ceBundl e object when a translated text
string is requested.

<nessage- bundl es>
<resource-bundl e nane="def aul t">resour ce</resour ce- bundl e>
</ message- bundl es>

Multiple resource bundles can be specified in the configuration file. To access a
nondefault bundle, specify the nane parameter in the get Message method.

Managing Localized Content in Static Files

For a application, which supports only one locale, the URL that has a suffix of
/i ndex. ht m typically takes the user to the starting page of the application.

In a globalized application, contents in different languages are usually stored
separately, and it is common for them to be staged in different directories or with
different file names based on the language or the country name. This information is
then used to construct the URLSs for localized content retrieval in the application.

The following examples illustrate how to retrieve the French and Japanese versions
of the index page. Their suffixes are as follows:

[fr/index. htm
/jalindex. htm

By using therew i t eURL() method, the GDK framework handles the logic to
locate the translated files from the corresponding language directories. The

Servl et Hel per.rewiteURL() method rewrites a URL based on the rules
specified in the application configuration file. This method is used to determine the
correct location where the localized content is staged.

The following is an example of the JSP code:

<img src="<%"Servl et Hel per.rewiteURL("i mage/ wel cone. j pg", request)%">
<a href="<%"Servl et Hel per.rewiteURL("htn /wel come.htm ", request)%">

The URL rewrite definitions are defined in the GDK application configuration file:

<url-rewite-rule fallback="yes">

Oracle Globalization Development Kit 8-25

GDK Java API

<pattern>(.*)/(a-zA-Z0-9_\]+.)$</pattern>
<resul t >$1/ $A/ $2</resul t >
<furl-rewite-rule>

The pattern section defined in the rewrite rule follow the regular expression
conventions. The result section supports the following special variables for
replacing:

« 3$L is used to represent the ISO 639 language code part of the current user locale
« 3$Crepresents the ISO 3166 country code

« SArepresents the entire locale string, where the 1ISO 639 language code and ISO
3166 country code are connected with an underscore character (_)

= $1to $9 represent the matched substrings

For example, if the current user locale is j a, then the URL for the wel cone. j pg
image file is rewritten as i nage/ j a/ wel con®e. j pg, and wel cone. ht nl is
changedtoht m /j a/ wel cone. htm .

Both Ser vl et Hel per.rewiteURL()andLocal i zer. get Message() methods
perform consistent locale fallback operations in the case where the translation files
for the user locale are not available. For example, if the online help files are not
available for the es_MXlocale (Spanish for Mexico), but the es (Spanish for Spain)
files are available, then the methods will select the Spanish translated files as the
substitute.

GDK Java API

Java's globalization functionalities and behaviors are not the same as those offered
in the database. For example, J2SE supports a set of locales and character sets that
are different from Oracle’s locales and character sets. This inconsistency can be
confusing for users when their application contains data that is formatted based on
2 different conventions. For example, dates that are retrieved from the database are
formatted using Oracle conventions, (such as number and date formatting and
linguistic sort ordering), but the static application data are typically formatted using
Java locale conventions. Java’s globalization functionalities can also be different
depending on the version of the JDK that the application runs on.

Before Oracle Database 10g, when an application was required to incorporate
Oracle globalization features, it had to make connections to the database server and
issue SQL statements. Such operations make the application complicated and
generate more network connections to the database server.

8-26 Oracle Database Globalization Support Guide

GDK Java API

The GDK Java API extends Oracle's database globalization features to the middle
tier. By enabling applications to perform globalization logic such as Oracle date and
number formatting and linguistic sorting in the middle tier, the GDK Java API
allows developers to eliminate expensive programming logic in the database, hence
improving the overall application performance by reducing the database load in the
database server and the unnecessary network traffic between the application tier
and the database server.

The GDK Java API also offers advance globalization functionalities, such as
language and character set detection, and the enumeration of common locale data
for a territory or a language (for example, all time zones supported in Canada).
These are globalization features that are not available in most programming
platforms. Without the GDK Java API, developers must write business logic to
handle them inside an application.

The following are the key functionalities of the GDK Java API:

« Oracle Locale Information in the GDK

« Oracle Locale Mapping in the GDK

« Oracle Character Set Conversion (JDK 1.4 and Later) in the GDK
« Oracle Date, Number, and Monetary Formats in the GDK

« Oracle Binary and Linguistic Sorts in the GDK

« Oracle Language and Character Set Detection in the GDK

« Oracle Translated Locale and Time Zone Names in the GDK

« Using the GDK for E-Mail Programs

Oracle Locale Information in the GDK

Oracle locale definitions, which include languages, territories, linguistic sorts, and
character sets, are exposed in the GDK Java API. The naming convention that
Oracle uses may also be different from other vendors. Although many of these
names and definitions follow industry standards, some are Oracle-specific, tailored
to meet special customer requirements.

O aLocal el nf o is an Oracle locale class that includes language, territory, and
collator objects. It provides a method for applications to retrieve a collection of
locale-related objects for a given locale, for example, a full list of the Oracle
linguistic sorts available in the GDK, the local time zones defined for a given
territory, or the common languages used in a particular territory.

Oracle Globalization Development Kit 8-27

GDK Java API

The following are examples of using the Or aLocal el nf o class:

[l Al Territories supported by GDK
String[] avterr = OralLocal el nfo. getAvail abl eTerritories();

/'l Local TimeZones for a given Territory

Oralocal el nfo ol oc = Oralocal el nfo. getlnstance("English", "Canada");
Ti meZone[] loctz = ol oc. get Local Ti meZones();

Oracle Locale Mapping in the GDK

The GDK Java API provides the Local eMapper class. It maps equivalent locales
and character sets between Java, IANA, ISO, and Oracle. A Java application may
receive locale information from the client that is specified in Oracle’s locale name or
an IANA character set name. The Java application must be able to map to an
equivalent Java locale or Java encoding before it can process the information
correctly.

The following is an example of using the Local eMapper class.

/1 Mapping fromJava locale to Oracle | anguage and Oracle territory
Local e locale = new Local e("it", "IT");

String oralLang = Local eMapper. get OraLanguage(l ocal e);

String oraTerr = Local eMapper.getOraTerritory(locale);

/1 From Oracl e | anguage and Oracle territory to Java Local e

| ocal e
| ocal e

Local eMapper . get JavalLocal e(" AVERI CAN', " AVERI CA") ;
Local eMapper . get JavalLocal e(" TRADI TONAL CHI NESE", "");

/!l FromI|ANA & Java to Oracle Character set

String ocsl = Local eMapper. get OraChar act er Set (

Local eMapper. | ANA, "1 SO 8859-1");
Local eMapper . get OraChar act er Set (

Local eMapper. JAVA, "1S08859_1");

String ocs2

The Local eMapper class can also return the most commonly used e-mail character
set for a specific locale on both Windows and UNIX platforms. This is useful when
developing Java applications that need to process e-mail messages.

See Also: "Using the GDK for E-Mail Programs" on page 8-35

8-28 Oracle Database Globalization Support Guide

GDK Java API

Oracle Character Set Conversion (JDK 1.4 and Later) in the GDK

The GDK Java API contains a set of character set conversion classes APIs that
enable users to perform Oracle character set conversions. Although Java JDK is
already equipped with classes that can perform conversions for many of the
standard character sets, they do not support Oracle-specific character sets and
Oracle's user-defined character sets.

In JDK 1.4, J2SE introduced an interface for developers to extend Java's character
sets. The GDK Java API provides implicit support for Oracle's character sets by
using this plug-in feature. You can access the J2SE API to obtain Oracle-specific
behaviors.

Figure 8-5 shows that the GDK character set conversion tables are plugged into
J2SE in the same way as the Java character set tables. With this pluggable
framework of J2SE, the Oracle character set conversions can be used in the same
way as other Java character set conversions.

Figure 8-5 Oracle Character Set Plug-In

J2SE
Runtime

Java character set GDK character set
conversion table conversion table

Because the j ava. ni 0. char set Java package is not available in JDK versions
before 1.4, you must install JDK 1.4 or later to use Oracle's character set plug-in
feature.

The GDK character conversion classes support all Oracle character sets including
user-defined characters sets. It can be used by Java applications to properly convert
to and from Java's internal character set, UTF-16.

Oracle's character set names are proprietary. To avoid potential conflicts with Java's
own character sets, all Oracle character set names have an X- ORACLE- prefix for all
implicit usage through Java's API.

The following is an example of Oracle character set conversion;

Oracle Globalization Development Kit 8-29

GDK Java API

/] Converts the Chinese character "three" fromUCS2 to JA16SJIS

String str = "\u4e09";
byte[] barr = str.getBytes("x-oracle-JAL16SJIS");

Like other Java character sets, the character set facility in

j ava. ni 0. charset. Char set isalso application to all of the Oracle character
sets. For example, if you wish to check whether the specified character set is a
superset of another character set, then you can use the Char set . cont ai ns
method as follows:

Charset csl = Charset.forName("x-oracl e-US7ASCI | ");

Charset c¢s2 = Charset. forName("x-oracl e- WEBW NDOAS1252") ;

[l true if WESWNDOWS1252 is the superset of US7ASCII, otherwi se false.
bool ean osc = c¢s2.contains(csl);

For a Java application that is using the JDBC driver to communicate with the
database, the JDBC driver provides the necessary character set conversion between
the application and the database. Calling the GDK character set conversion
methods explicitly within the application is not required. A Java application that
interprets and generates text files based on Oracle’s character set encoding format is
an example of using Oracle character set conversion classes.

Oracle Date, Number, and Monetary Formats in the GDK

The GDK Java API provides formatting classes that support date, number, and
monetary formats using Oracle conventions for Java applications in the
oracl e.i 18n. t ext package.

New locale formats introduced in Oracle Database 10g, such as the short and long
date, number, and monetary formats, are also exposed in these format classes.

The following are examples of Oracle date, Oracle number, and Oracle monetary
formatting:

/1 Cbtain the current date and tine in the default Oracle LONG format for
/1 the local e de_DE (German_Cer many)

Local e | ocal e = new Local e("de", "DE");
OraDat eFormat odf =
Or aDat eFor mat . get Dat eTi nel nst ance(Or aDat eFor mat . LONG, | ocal e) ;

/1 Obtain the numeric val ue 1234567.89 using the default nunber format
/I for the Locale en_IN (English_India)

8-30 Oracle Database Globalization Support Guide

GDK Java API

| ocal e = new Local e("en", "IN");
O aNunber For mat onf = OraNumber For mat . get Nunber | nst ance(| ocal e) ;
String nm = onf.formt(new Doubl e(1234567. 89));

/1 Qbtain the nonetary val ue 1234567.89 using the default currency
/1 format for the Locale en_US (American_Anerica)

| ocal e = new Local e("en", "US");

onf = OraNunber For mat . get Currencyl nstance(l ocal e);
nm = onf. format (new Doubl e(1234567. 89));

Oracle Binary and Linguistic Sorts in the GDK

Oracle provides support for binary, monolingual, and multilingual linguistic sorts
in the database. In Oracle Database 10g, these sorts have been expanded to provide
case-insensitive and accent-insensitive sorting and searching capabilities inside the
database. By using the Or aCol | at or class, the GDK Java API enables Java
applications to sort and search for information based on the latest Oracle binary and
linguistic sorting features, including case-insensitive and accent-insensitive options.

Normalization can be an important part of sorting. The composition and
decomposition of characters are based on the Unicode Standard, so sorting also
depends on the Unicode standard. Because each version of the JDK may support a
different version of the Unicode Standard, the GDK provides an Or aNor mal i zer
class based on the Unicode 3.2 standard. It contains methods to perform
composition.

The sorting order of a binary sort is based on the Oracle character set that is being
used. Except for the UTFE character set, the binary sorts of all Oracle character sets
are supported in the GDK Java API. The only linguistic sort that is not supported in
the GDK Java API is JAPANESE, but a similar and more accurate sorting result can
be achieved by using JAPANESE_M.

The following are examples of string comparisons and string sorting:

/] conpares strings using XGERVAN

"abcSS";
"abc\ uOODF";

private static String sl
private static String s2

String cname = "XGERMAN';
OraCol lator ocol = OraCol | ator. getlnstance(cnane);
int ¢ = ocol.conpare(sl, s2);

Oracle Globalization Development Kit 8-31

GDK Java API

/] sorts strings using GENERIC M

private static String[] source =

new String[]
{

"Hochgeschwi ndi gkei t sdrucker",

"Bi | dschi r nf u\ uOODF",

" Skj er mhengsel ",

"Dl MM de Mem uOOF3ria",

"M uO0F3dul o SDRAM com ECC',

b

chame = "CENERIC M';
ocol = OraColl ator. getlnstance(cnane);
List result = getCollationKeys(source, ocol);

private static List getCollationKeys(String[] source, OraCollator ocol)

{
List karr = new ArraylList(source.length);
for (int i =0; i < source.length; ++i)
{
karr. add(ocol . get Col | ati onKey(source[i]));
}

Col I ections.sort(karr); // sorting operation
return karr;

Oracle Language and Character Set Detection in the GDK

The Oracle Language and Character Set Detection Java classes in the GDK Java API
provide a high performance, statistically based engine for determining the character
set and language for unspecified text. It can automatically identify language and
character set pairs, from throughout the world. With each text, the language and
character set detection engine sets up a series of probabilities, each probability
corresponding to a language and character set pair. The most probable pair
statistically identifies the dominant language and character set.

The purity of the text submitted affects the accuracy of the language and character
set detection. Only plain text strings are accepted, so any tagging needs to be
stripped before hand. The ideal case is literary text with almost no foreign words or
grammatical errors. Text strings that contain a mix of languages or character sets, or

8-32 Oracle Database Globalization Support Guide

GDK Java API

nonnatural language text like addresses, phone numbers, and programming
language code may yield poor results.

The LCSDet ect or class can detect the language and character set of a byte array, a
character array, a string, and an | nput St r eamclass. It can take the entire input for
sampling or only portions of the input for sampling, when the length or both the
offset and the length are supplied. For each input, up to three potential language
and character set pairs can be returned by the LCSDet ect or class. They are always
ranked in sequence, with the pair with the highest probability returned first.

See Also: "Language and Character Set Detection Support” on
page A-23 for a list of supported language and character set pairs

The following are examples of using the LCSDetector class to enable language and
character set detection:

[l This exanple detects the character set of a plain text file "foo.txt" and
/'l then appends the detected |1SO character set name to the name of the text file

LCSDet ect or | csd = new LCSDetector();

File oldfile = new File("foo.txt");

Fi | el nput Stream in = new FilelnputStrean{ol dfile);
| csd. detect(in);

String charset =
File newfile =
ol dfile.renameTo(newfile);

| csd. get Resul t (). get | ANAChar act er Set () ;
new File("foo."+charset+".txt");

/1 This exanpl e shows how to use the LCSDector class to detect the |anguage and
[l character set of a byte array

int of fset = 0;

LCSDet ect or led = new LCSDetector();
/* loop through the entire byte array */
while (true)

{

bytes_read = | ed.detect(byte_input, offset, 1024);
if (bytes_ read == -1)

br eak;
of fset += bytes_read,;

}
LCSDResul t Set res = led.getResult();

[* print the detection results with close ratios */
Systemout.println("the best guess ");

Oracle Globalization Development Kit 8-33

GDK Java API

Systemout. println("Langauge " + res.get OraLanguage());
Systemout. println("CharacterSet " + res.getOaCharacterSet());

i nt high_hit = res.getH HitPairs();
if (high_hit >=2)
{
Systemout. println("the second best guess ");
Systemout. println("Langauge " + res. get OraLanguage(2));
Systemout. println("CharacterSet " +res.getOraCharacterSet(2));
1
if (high_hit >=3)
{
Systemout.printin("the third best guess ");
Systemout. println("Langauge " + res.get OralLanguage(3));
Systemout. println("CharacterSet " +res.get O aCharacterSet(3));
1

Oracle Translated Locale and Time Zone Names in the GDK

All of the Oracle language names, territory names, character set names, linguistic
sort names, and time zone names have been translated into 27 languages including
English. They are readily available for inclusion into the user applications, and they
provide consistency for the display names across user applications in different
languages. Or aDi spl ayLocal el nf o is a utility class that provides the translations
of locale and attributes. The translated names are useful for presentation in user
interface text and for drop-down selection boxes. For example, a native French
speaker prefers to select from a list of time zones displayed in French than in
English.

The following is an example of using Or aDi spl ayLocal el nf o to return a list of
time zones supported in Canada, using the French translation names:

Oralocal el nfo ol oc = Oralocal el nfo. get | nstance(" CANADI AN FRENCH', " CANADA");
OrabDi spl ayLocal el nfo odl oc = OrabDi spl ayLocal el nfo. get I nstance(ol oc);

Ti meZone[] loctzs = ol oc. get Local eTi meZones();

String [] disptz = new string [loctzs.length];

for (int i=0; i<loctzs.length; ++i)

disptz [i]= odl oc. get Di spl ayTi mneZone(l octzs[i]);

8-34 Oracle Database Globalization Support Guide

GDK Java API

Using the GDK for E-Mail Programs

You can use the GDK Local eMapper class to retrieve the most commonly used
e-mail character set. Call Local eMapper . get | ANAChar Set Fr onLocal e, passing
in the locale object. The return value is an array of character set names. The first
character set returned is the most commonly used e-mail character set.

The following is an example of sending an e-mail message containing Simplified
Chinese data in GBK:

inport oracle.il8n.util.Local eMapper;
inport java.util.Date;

inport java.util.Locale;

inport java.util.Properties;

inport javax.mail.Message;

inport javax.mail.Session;

inport javax.mail.Transport;

inport javax.mail.internet.InternetAddress;
inport javax.mil.internet.M meMessage;
inport javax.mail.internet.MmelUility;

/**

* Emai|l send operation sanple

*

* javac -classpath orai18n.jar:j2ee.jar Email Sanpl eText.|ava
* java -classpath .:orail8n.jar:j2ee.jar Enmail Sanpl eText

*/
public class Email Sanpl eText
{
public static void main(String[] args)
{
send("l ocal host", /1 smtp host name
"your . addr ess@our - conpany. cont', /1 fromenuil address
"You", /1 fromdisplay enail
"sonmebody @one- conpany. cont, /] to email address
"Subj ect test zh CN', /'l subject
"Content “4E02 from Text email", // body
new Local e("zh", "CN') /'l user locale
);
}

public static void send(String sntp, String fronEmail, String fronDi spNane,
String toEmail, String subject, String content, Locale |ocale

)

{
Il get the list of common enmil character sets
final String[] charset = Local eMapper. get | ANAChar Set From_ocal e(Local eMapper.

Oracle Globalization Development Kit 8-35

The GDK Application Configuration File

EMAI L_W NDOWS,

| ocal e

}
}

I

) .

pick the first one for the emmil encoding

final String contentType = "text/plain; charset=" + charset[0];
try

{

}

Properties props = System getProperties();
props. put ("mail.sntp.host", sntp);
Il here, set username / password if necessary
Session session = Session. get Defaul t1nstance(props, null);
M nmeMessage m neMessage = new M meMessage(session);
m meMessage. set Fronm(new | nt ernet Address(fronEmail, fronD spNane,
charset [0]
)
);
m meMessage. set Reci pi ent s(Message. Reci pi ent Type. TO, toEmail);

m meMessage. set Subj ect (M meltility. encodeText (subject, charset[0], "Q'));

/'l body

m meMessage. set Cont ent (content, content Type);

m meMessage. set Header (" Cont ent - Type", content Type);

m meMessage. set Header (" Cont ent - Tr ansf er - Encodi ng", "8bit");
m meMessage. set Sent Dat e(new Date());

Transport. send(nm neMessage) ;

catch (Exception e)

{
}

e.printStackTrace();

The GDK Application Configuration File

The GDK application configuration file dictates the behavior and the properties of
the GDK application framework and the application that is using it. It contains
locale mapping tables and parameters for the configuration of the application. One

configuration file is required for each application.

The gdkapp. xm application configuration file is a XML document. This file
resides in the . / VEB- | NF directory of the J2EE environment of the application.

The following sections describe the contents and the properties of the application

configuration file in detail:

8-36 Oracle Database Globalization Support Guide

The GDK Application Configuration File

« locale-charset-map

« page-charset

« application-locales

« locale-determine-rule

« locale-parameter-name
« message-bundles

« url-rewrite-rule

« Example: GDK Application Configuration File

locale-charset-map

This section enables applications to override the mapping from default language to
character set provided by the GDK. This mapping is used when the
page- char set is set to AUTO- CHARSET.

For example, for the en locale, the default GDK character set is wi ndows- 1252.
However, if the application requires | SO 8859- 1, this can be specified as follows:

<l ocal e- char set - maps>
<l ocal e- char set >
<l ocal e>en</1| ocal e>
<char set > SO_8859- 1</ char set >
</l ocal e-charset >
</l ocal e- char set - maps>

The locale name is comprised of the language code and the country code, and they
should follow the ISO naming convention as defined in ISO 639 and ISO 3166,
respectively. The character set name follows the IANA convention.

Optionally, the user-agent parameter can be specified in the mapping table to
distinguish different clients.

<l ocal e-char set >
<l ocal e>en, de</ | ocal e>
<user - agent >*Mozi | | & 4. 0</ user - agent >
<char set >| SO 8859- 1</ char set >

</l ocal e-charset >

The previous example shows that if the user - agent value in the HTTP header
starts with Mozi | | a/ 4. 0 (which indicates older version of web clients) for English
(en) and German (de) locales, then the GDK sets the character set to 1SO-8859-1.

Oracle Globalization Development Kit 8-37

The GDK Application Configuration File

page-charset

Multiple locales can be specified in a comma-delimited list.

See Also: "page-charset" on page 8-38

This tag section defines the character set of the application pages. If this is explicitly
set to a given character set, then all pages use this character set. The character set
name must follow the IANA character set convention.

<page- char set >UTF- 8</ page- char set >

However, if the page- char set is set to AUTO- CHARSET, then the character set is
based on the default character set of the current user locale. The default character
set is derived from the locale to character set mapping table specified in the
application configuration file.

If the character set mapping table in the application configuration file is not
available, then the character set is based on the default locale name to IANA
character set mapping table in the GDK. Default mappings are derived from
OraLocal el nf o class.

See Also:
« "locale-charset-map" on page 8-37

« "Handling Non-ASCII Input and Output in the GDK
Framework" on page 8-21

application-locales

This tag section defines a list of the locales supported by the application.

<application-1|ocal es>
<l ocal e defaul t="yes">en-US</| ocal e>
<l ocal e>de</ | ocal e>
<l ocal e>zh- CN\</ | ocal e>

</ application-local es>

If the language component is specified with the * country code, then all locale
names with this language code qualify. For example, if de- * (the language code for
German) is defined as one of the application locales, then this supports de- AT

(Ger man- Austria), de (German-Germany), de- LU (German-Luxembourg), de- CH
(German-Switzerland), and even irregular locale combination such as de- CN

8-38 Oracle Database Globalization Support Guide

The GDK Application Configuration File

(German-China). However, the application can be restricted to support a predefined
set of locales.

It is recommended to set one of the application locales as the default application
locale (by specifying def aul t =" yes") so that it can be used as a fall back locale for
customers who are connecting to the application with an unsupported locale.

locale-determine-rule

This section defines the order in which the preferred user locale is determined. The
locale sources should be specified based on the scenario in the application. This
section includes the following scenarios:

Scenario 1: The GDK framework uses the accept language at all times.

<l ocal e-sour ce>oracl e.i 18n. servl et. | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>

Scenario 2: By default, the GDK framework uses the accept language. After the
user specifies the locale, the locale is used for further operations.

<l ocal e-sour ce>oracl e.i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- sour ce>
<l ocal e-sour ce>oracl e.i 18n. servl et. | ocal esour ce. HTTPAccept Language</ | ocal e- sour ce>

Scenario 3: By default, the GDK framework uses the accept language. After the
user is authenticated, the GDK framework uses the database locale source. The
database locale source is cached until the user logs out. After the user logs out,
the accept language is used again.

<db- | ocal e- source
dat a- sour ce- nane="j dbc/ Or acl eCor eDS"
| ocal e- sour ce-tabl e="cust ormer "
user - col um="cust omer _enai | "
user-key="userid"
| anguage- col um="nl s_| anguage"
territory-colum="nls_territory"
ti nmezone-col um="ti nezone"
>oracl e.i18n.servlet.|ocal esource. DBLocal eSour ce</ db-1 ocal e- sour ce>
<l ocal e-source>oracl e.i 18n. servl et. | ocal esour ce. H t pAccept Language</ | ocal e- sour ce>

Note that Scenario 3 includes the predefined database locale source,

DBLocal eSour ce. It enables the user profile information to be specified in the
configuration file without writing a custom database locale source. In the
example, the user profile table is called " cust orer " . The columns are
"“customer_email","nls_| anguage","nls_territory",and

"ti mezone". They store the unique e-mail address, the Oracle name of the
preferred language, the Oracle name of the preferred territory, and the time

Oracle Globalization Development Kit 8-39

The GDK Application Configuration File

zone ID of a customer. The user - key is a mandatory attribute that specifies the
attribute name used to pass the user ID from the application to the GDK
framework.

Scenario 4: The GDK framework uses the accept language in the first page.
When the user inputs a locale, it is cached and used until the user logs into the
application. After the user is authenticated, the GDK framework uses the
database locale source. The database locale source is cached until the user logs
out. After the user logs out, the accept language is used again or the user input
is used if the user inputs a locale.

<l ocal e- sour ce>den. Dat abaseLocal eSour ce</ | ocal e- sour ce>
<l ocal e-sour ce>oracl e. i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- sour ce>
<l ocal e- source>oracl e.i 18n. servl et. | ocal esour ce. Ht t pAccept Language</ | ocal e- sour ce>

Note that Scenario 4 uses the custom database locale source. If the user profile
schema is complex, such as user profile information separated into multiple
tables, then the custom locale source should be provided by the application.
Examples of custom locale sources can be found in the $ORACLE

HOVE/ nl s/ gdk/ deno directory.

locale-parameter-name

The tag defines the name of the locale parameters that are used in the user input so
that the current user locale can be passed between requests.

Table 8-3 shows the parameters used in the GDK framework.

Table 8-3 Locale Parameters Used in the GDK Framework

Default Parameter Name Value

| ocal e I1SO locale where ISO 639 language code and ISO 3166 country code are
connected with an underscore (_).or a hyphen (-). For example, zh_CN for
Simplified Chinese used in China

| anguage Oracle language name. For example, AMERI CAN for American English

territory Oracle territory name. For example, SPAI N

ti mezone Timezone name. For example, Aner i can/ Los_Angel es

i so-currency

1SO 4217 currency code. For example, EUR for the euro

dat e- f or mat

Date format pattern mask. For example, DD_MON_RRRR

| ong- dat e- f or mat

Long date format pattern mask. For example, DAY- YYY- M\ DD

date-ti nme-formt

Date and time format pattern mask. For example, DD- MON- RRRR HH24: M : SS

8-40 Oracle Database Globalization Support Guide

The GDK Application Configuration File

Table 8-3 Locale Parameters Used in the GDK Framework (Cont.)

Default Parameter Name Value

| ong-date-time-format Long date and time format pattern mask. For example, DAY YYYY- M DD
HH12: M : SS AM

time-format Time format pattern mask. For example, HH: M : SS

nunber - f or nat Number format. For example, 9G39G390D00

currency-format Currency format. For example, L9G99G990D00

linguistic-sorting Linguistic sort order name. For example, JAPANESE Mfor Japanese multilingual
sort

char set Character set. For example, WVE81 SC8859P15

writing-direction Writing direction string. For example, LTR for left-to-right writing direction or

RTL for right-to-left writing direction

command GDK command. For example, st or e for the update operation

The parameter names are used in either the parameter in the HTML form or in the
URL.

message-bundles

This tag defines the base class names of the resource bundles used in the
application. The mapping is used in the Local i zer . get Message method for
locating translated text in the resource bundles.

<nessage- bundl es>

<resour ce- bundl e>Messages</ r esour ce- bundl e>

<resour ce- bundl e name="new esour ce" >NewMessages</r esour ce- bund| e>
</ message- bundl es>

If the name attribute is not specified or if it is specified as name="def aul t " to the
<r esour ce- bundl e> tag, then the corresponding resource bundle is used as the
default message bundle. To support more than one resource bundle in an
application, resource bundle names must be assigned to the nondefault resource
bundles. The nondefault bundle names must be passed as a parameter of the

get Message method.

For example:

Local i zer loc = ServletHel per.getLocalizerlnstance(request);
String transl atedMessage = | oc. get Message("Hel 1 0");

Oracle Globalization Development Kit 8-41

The GDK Application Configuration File

String transl at edMessage2 = | oc. get Message("Worl d", "new esource");

url-rewrite-rule

This tag is used to control the behavior of the URL rewrite operations. The rewriting
rule is a regular expression.

<url-rewrite-rule fallback="no">
<pattern>(.*)/(["]+)$</pattern>
<resul t>$1/ $L/ $2</resul t >

<lurl-rewite-rule>

See Also: "Managing Localized Content in the GDK" on page 8-24

If the localized content for the requested locale is not available, then it is possible for
the GDK framework to trigger the locale fallback mechanism by mapping it to the
closest translation locale. By default the fallback option is turned off. This can be
turned on by specifying f al | back="yes".

For example, suppose an application supports only the following translations: en,
de, andj a, and en is the default locale of the application. If the current application
locale is de- US, then it falls back to de. If the user selects zh- TWas its application
locale, then it falls back to en.

A fallback mechanism is often necessary if the number of supported application
locales is greater than the number of the translation locales. This usually happens if
multiple locales share one translation. One example is Spanish. The application may
need to support multiple Spanish-speaking countries and not just Spain, with one
set of translation files.

Multiple URL rewrite rules can be specified by assigning the name attribute to
nondefault URL rewrite rules. To use the nondefault URL rewrite rules, the name
must be passed as a parameter of the rewrite URL method. For example:

<ing src="<%ServletHel per.rewiteURL("images/wel come.gif", request) %">
<img src="<%ServletHel per.rewiteURL("US.gif", "flag", request) %">

The first rule changes the " i mages/ wel cone. gi f " URL to the localized welcome
image file. The second rule named " f | ag" changes the " US. gi f " URL to the
user’s country flag image file. The rule definition should be as follows:

<url-rewite-rule fallback="yes">
<pattern>(.*)/(["]+)$</pattern>
<resul t >$1/ $L/ $2</resul t >

<lurl-rewite-rul e>

8-42 Oracle Database Globalization Support Guide

The GDK Application Configuration File

<url-rewite-rule name="flag">

<pattern>US. gif/pattern>
<resul t >$C. gi f</resul t >

<lurl-rewite-rul e>

Example: GDK Application Configuration File

This section contains an example of an application configuration file with the
following application properties:

The application supports the following locales: Arabic (ar), Greek (el), English
(en), German (de), French (f r), Japanese (j a) and Simplified Chinese for China

(zh- CN).
English is the default application locale.
The page character set for the j a locale is always UTF-8.

The page character set for the en and de locales when using an Internet
Explorer client iswi ndows- 1252.

The page character set for the en, de, and f r locales on other web browser
clientsisi so- 8859- 1.

The page character sets for all other locales are the default character set for the
locale.

The user locale is determined by the following order: user input locale and then
Accept - Language.

The localized contents are stored in their appropriate language subfolders. The
folder names are derived from the 1SO 639 language code. The folders are
located in the root directory of the application. For example, the Japanese file
for / shop/ wel cone. j pg isstored in/j a/ shop/ wel cone. j pg.

<?xm version="1.0" encodi ng="utf-8"?>

<gdkapp

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchemaLocat i on="gdkapp. xsd" >

- Language to Character set mapping -->

<l ocal e- char set - maps>

<l ocal e- char set >
<l ocal e>j a</| ocal e>
<char set >UTF- 8</ char set >
</l ocal e- char set >
<l ocal e-charset >
<l ocal e>en, de</ | ocal e>
<user-agent > Mozilla\/[0-9\.]+ (conmpatible; MSIE [*;]+; \)</user-agent>

Oracle Globalization Development Kit 8-43

GDK for Java Supplied Packages and Classes

<char set >W NDOW6- 1252</ char set >
</l ocal e-charset >
<l ocal e- char set >
<l ocal e>en, de, fr</| ocal e>
<char set >| SO 8859- 1</ char set >
</l ocal e-char set >
</l ocal e- char set - maps>

<!-- Application Configurations -->
<page- char set >AUTO- CHARSET</ page- char set >
<application-local es>
<l ocal e>ar</| ocal e>
<l ocal e>de</| ocal e>
<l ocal e>fr</l ocal e>
<l ocal e>j a</| ocal e>
<l ocal e>el </l ocal e>
<l ocal e default="yes">en</|ocal e>
<l ocal e>zh- C\</ | ocal e>
</ appl i cation-1|ocal es>
<l ocal e-det erm ne-rul e>
<l ocal e- sour ce>oracl e. i 18n. servl et. | ocal esour ce. User | nput </ | ocal e- sour ce>
<l ocal e-sour ce>oracl e.i 18n. servl et. | ocal esour ce. Ht t pAccept Language</ | ocal e- source>
</l ocal e-det erm ne-rul e>
<l-- URL rewiting rule -->
<url-rewite-rule fallback="no">
<pattern>(.*)/ ([~]+) $</pattern>
<resul t >/ $L/ $1/ $2</resul t >
<lurl-rewite-rule>
</ gdkapp>

GDK for Java Supplied Packages and Classes
Oracle Globalization Services for Java contains the following packages:
« oracle.il8n.lcsd
« oracle.il8n.net
« oracle.il8n.servlet
« oracle.il8n.text

« oracle.il8n.util

See Also: Oracle Globalization Development Kit Java APl Reference

8-44 Oracle Database Globalization Support Guide

GDK for Java Supplied Packages and Classes

oracle.i18n.lcsd

Package or acl e. i 18n. | csd provides classes to automatically detect and
recognize language and character set based on text input. Language is based on
ISO; encoding is based on IANA or Oracle character sets. It includes the following
classes:

oracle.il8n.net

LCSDet ect or : Contains methods to automatically detect and recognize
language and character set based on text input.

LCSDResul t Set : The LCSDResul t Set class is for storing the result generated
by LCSDet ect or. Methods in this class can be used to retrieve specific
information from the result.

Package or acl e. i 18n. net provides Internet-related data conversions for
globalization. It includes the following classes:

Char Ent i t yRef er ence: A utility class to escape or unescape a string into
character reference or entity reference form

Char Ent i t yRef er ence. For m A form parameter class that specifies the
escaped form

oracle.il8n.servlet

Package or acl e. i 18n. Ser vl et enables JSP and JavaServlet to have automatic
locale support and also returns the localized contents to the application. It includes
the following classes:

oracle.il8n.text

Appl i cati onCont ext : An application context class that governs application
scope operation in the framework

Local i zer: An all-in-one object class that enables access to the most
commonly used globalization information

Ser vl et Hel per : A delegate class that bridges between Java servlets and
globalization objects

Package or acl e. i 18n. t ext provides general text data globalization support. It
includes the following classes:

Oracle Globalization Development Kit 8-45

GDK for PL/SQL Supplied Packages

oracle.i18n.util

OraCol | ati onKey: A class which represents a St ri ng under certain rules of
a specific Or aCol | at or object

O aCol | at or : A class to perform locale-sensitive string comparison, including
linguistic collation and binary sorting

O aDat eFor mat : An abstract class to do formatting and parsing between
datetime and string locale. It supports Oracle datetime formatting behavior.

Or aDeci mal For mat : A concrete class to do formatting and parsing between
number and string locale. It supports Oracle number formatting behavior.

Or aDeci mal For mat Synbol : A class to maintain Oracle format symbols used
by Oracle number and currency formatting

O aNunber For mat : An abstract class to do formatting and parsing between
number and string locale. It supports Oracle number formatting behavior.

Or aSi mpl eDat eFor mat : A concrete class to do formatting and parsing
between datetime and string locale. It supports Oracle datetime formatting
behavior.

Package or acl e. i 18n. uti | provides general utilities for globalization support. It
includes the following classes:

Local eMapper : Provides mappings between Oracle locale elements and
equivalent locale elements in other vendors and standards

O abDi spl ayLocal el nf o: A translation utility class that provides the
translations of locale and attributes

O aLocal el nf o: An Oracle locale class that includes the language, territory,
and collator objects

OraSQLUt i | : An Oracle SQL Utility class that includes some useful methods of
dealing with SQL

GDK for PL/SQL Supplied Packages

The GDK for PL/SQL includes the following PL/SQL packages:

UTL_I 18N
UTL_LMS

8-46 Oracle Database Globalization Support Guide

GDK Error Messages

UTL_| 18Nis a set of PL/SQL services that help developers to build globalized
applications. The UTL_| 18N PL/SQL package provides the following functions:

« String conversion functions for various datatypes

« Escape and unescape sequences for predefined characters and multibyte
characters used by HTML and XML documents

« Functions that map between Oracle, Internet Assigned Numbers Authority
(IANA), ISO, and e-mail application character sets, languages, and territories

« A function that returns the Oracle character set name from an Oracle language
name

UTL_LMS retrieves and formats error messages in different languages.

See Also: PL/SQL Packages and Types Reference

GDK Error Messages
GDK-03001 Invalid or unsupported sorting rule
Cause: An invalid or unsupported sorting rule name was specified.

Action: Choose a valid sorting rule name and check the Globalization Support
Guide for the list of sorting rule names.

GDK-03002 The functional-driven sort is not supported.
Cause: A functional-driven sorting rule name was specified.

Action: Choose a valid sorting rule name and check the Globalization Support
Guide for the list of sorting rule names.

GDK-03003 The linguistic data file is missing.

Cause: A valid sorting rule was specified, but the associated data file was not
found.

Action: Make sure the GDK jar files are correctly installed in the Java
application.

GDK-03005 Binary sort is not available for the specified character set .
Cause: Binary sorting for the specified character set is not supported.

Action: Check the Globalization Support Guide for a character set that
supports binary sort.

GDK-03006 The comparison strength level setting is invalid.

Oracle Globalization Development Kit 8-47

GDK Error Messages

Cause: An invalid comparison strength level was specified.

Action: Choose a valid comparison strength level from the list -- PRIMARY,
SECONDARY or TERTIARY.

GDK-03007 The composition level setting is invalid.
Cause: An invalid composition level setting was specified.

Action: Choose a valid composition level from the list -- NO_COMPOSITION
or CANONICAL_COMPOSITION.

GDK-04001 Cannot map Oracle character to Unicode
Cause: The program attempted to use a character in the Oracle character set
that cannot be mapped to Unicode.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a
valid replacement character.

GDK-04002 Cannot map Unicode to Oracle character

Cause: The program attempted to use an Unicode character that cannot be
mapped to a character in the Oracle character set.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a
valid replacement character.

GDK-05000 A literal in the date format is too large.
Cause: The specified string literal in the date format was too long.

Action: Use a shorter string literal in the date format.

GDK-05001 The date format is too long for internal buffer.
Cause: The date format pattern was too long.

Action: Use a shorter date format pattern.

GDK-05002 The Julian date is out of range.
Cause: An illegal date range was specified.

Action: Make sure that date is in the specified range 0 - 3439760.

GDK-05003 Failure in retrieving date/time
Cause: Thisis an internal error.

Action: Contact Oracle Support Services.

8-48 Oracle Database Globalization Support Guide

GDK Error Messages

GDK-05010 Duplicate format code found

Cause: The same format code was used more than once in the format pattern.

Action: Remove the redundant format code.

GDK-05011 The Julian date precludes the use of the day of the year.
Cause: Both the Julian date and the day of the year were specified.

Action: Remove either the Julian date or the day of the year.

GDK-05012 The year may only be specified once.
Cause: The year format code appeared more than once.

Action: Remove the redundant year format code.

GDK-05013 The hour may only be specified once.
Cause: The hour format code appeared more than once.

Action: Remove the redundant hour format code.

GDK-05014 The AM/PM conflicts with the use of A.M./P.M.
Cause: AM/PM was specified along with A.M./P.M.

Action: Use either AM/PM or A.M./P.M; do not use both.

GDK-05015 The BC/AD conflicts with the use of B.C./A.D.
Cause: BC/AD was specified along with B.C./A.D.

Action: Use either BC/AD or B.C./A.D.; do not use both.

GDK-05016 Duplicate month found
Cause: The month format code appeared more than once.

Action: Remove the redundant month format code.

GDK-05017 The day of the week may only be specified once.
Cause: The day of the week format code appeared more than once.

Action: Remove the redundant day of the week format code.

GDK-05018 The HH24 precludes the use of meridian indicator.
Cause: HH24 was specified along with the meridian indicator.

Action: Use either the HH24 or the HH12 with the meridian indicator.

GDK-05019 The signed year precludes the use of BC/AD.
Cause: The signed year was specified along with BC/AD.

Oracle Globalization Development Kit

8-49

GDK Error Messages

Action: Use either the signed year or the unsigned year with BC/AD.

GDK-05020 A format code cannot appear in a date input format.
Cause: A format code appeared in a date input format.

Action: Remove the format code.

GDK-05021 Date format not recognized
Cause: An unsupported format code was specified.

Action: Correct the format code.

GDK-05022 The era format code is not valid with this calendar.
Cause: An invalid era format code was specified for the calendar.

Action: Remove the era format code or use anther calendar that supports the
era.

GDK-05030 The date format pattern ends before converting entire input string.
Cause: An incomplete date format pattern was specified.

Action: Rewrite the format pattern to cover the entire input string.

GDK-05031 The year conflicts with the Julian date.
Cause: An incompatible year was specified for the Julian date.

Action: Make sure that the Julian date and the year are not in conflict.

GDK-05032 The day of the year conflicts with the Julian date.
Cause: An incompatible day of year was specified for the Julian date.

Action: Make sure that the Julian date and the day of the year are not in
conflict.

GDK-05033 The month conflicts with the Julian date.
Cause: An incompatible month was specified for the Julian date.

Action: Make sure that the Julian date and the month are not in conflict.

GDK-05034 The day of the month conflicts with the Julian date.
Cause: An incompatible day of the month was specified for the Julian date.

Action: Make sure that the Julian date and the day of the month are not in
conflict.

GDK-05035 The day of the week conflicts with the Julian date.
Cause: An incompatible day of the week was specified for the Julian date.

8-50 Oracle Database Globalization Support Guide

GDK Error Messages

Action: Make sure that the Julian date and the day of week are not in conflict.

GDK-05036 The hour conflicts with the seconds in the day.
Cause: The specified hour and the seconds in the day were not compatible.

Action: Make sure the hour and the seconds in the day are not in conflict.

GDK-05037 The minutes of the hour conflicts with the seconds in the day.

Cause: The specified minutes of the hour and the seconds in the day were not
compatible.

Action: Make sure the minutes of the hour and the seconds in the day are not
in conflict.

GDK-05038 The seconds of the minute conflicts with the seconds in the day.

Cause: The specified seconds of the minute and the seconds in the day were
not compatible.

Action: Make sure the seconds of the minute and the seconds in the day are not
in conflict.

GDK-05039 Date not valid for the month specified
Cause: An illegal date for the month was specified.

Action: Check the date range for the month.

GDK-05040 Input value not long enough for the date format
Cause: Too many format codes were specified.

Action: Remove unused format codes or specify a longer value.

GDK-05041 A full year must be between -4713 and +9999, and not be 0.
Cause: An illegal year was specified.

Action: Specify the year in the specified range.

GDK-05042 A quarter must be between 1 and 4.
Cause: Cause: An illegal quarter was specified.

Action: Action: Make sure that the quarter is in the specified range.

GDK-05043 Not a valid month
Cause: An illegal month was specified.

Action: Make sure that the month is between 1 and 12 or has a valid month
name.

Oracle Globalization Development Kit 8-51

GDK Error Messages

GDK-05044 The week of the year must be between 1 and 52.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK-05045 The week of the month must be between 1 and 5.
Cause: An illegal week of the month was specified.

Action: Make sure that the week of the month is in the specified range.

GDK-05046 Not a valid day of the week
Cause: An illegal day of the week was specified.

Action: Make sure that the day of the week is between 1 and 7 or has a valid
day name.

GDK-05047 A day of the month must be between 1 and the last day of the month.
Cause: An illegal day of the month was specified.

Action: Make sure that the day of the month is in the specified range.

GDK-05048 A day of year must be between 1 and 365 (366 for leap year).
Cause: An illegal day of the year was specified.

Action: Make sure that the day of the year is in the specified range.

GDK-05049 An hour must be between 1 and 12.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05050 An hour must be between 0 and 23.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05051 A minute must be between 0 and 59.
Cause: Cause: An illegal minute was specified.

Action: Action: Make sure the minute is in the specified range.

GDK-05052 A second must be between 0 and 59.
Cause: An illegal second was specified.

Action: Make sure the second is in the specified range.

GDK-05053 A second in the day must be between 0 and 86399.

8-52 Oracle Database Globalization Support Guide

GDK Error Messages

Cause: An illegal second in the day was specified.
Action: Make sure second in the day is in the specified range.

GDK-05054 The Julian date must be between 1 and 5373484.
Cause: An illegal Julian date was specified.

Action: Make sure that the Julian date is in the specified range.

GDK-05055 Missing AM/A.M. or PM/P.M.
Cause: Neither AM/A.M. nor PM/P.M. was specified in the format pattern.

Action: Specify either AM/A.M. or PM/P.M.

GDK-05056 Missing BC/B.C. or AD/A.D.
Cause: Neither BC/B.C. nor AD/A.D. was specified in the format pattern.

Action: Specify either BC/B.C. or AD/A.D.

GDK-05057 Not a valid time zone
Cause: An illegal time zone was specified.

Action: Specify a valid time zone.

GDK-05058 Non-numeric character found

Cause: A non-numeric character was found where a numeric character was
expected.

Action: Make sure that the character is a numeric character.

GDK-05059 Non-alphabetic character found

Cause: A non-alphabetic character was found where an alphabetic was
expected.

Action: Make sure that the character is an alphabetic character.

GDK-05060 The week of the year must be between 1 and 53.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK-05061 The literal does not match the format string.

Cause: The string literals in the input were not the same length as the literals in
the format pattern (with the exception of the leading whitespace).

Action: Correct the format pattern to match the literal. If the "FX" modifier has
been toggled on, the literal must match exactly, with no extra whitespace.

Oracle Globalization Development Kit 8-53

GDK Error Messages

GDK-05062 The numeric value does not match the length of the format item.
Cause: The numeric value did not match the length of the format item.

Action: Correct the input date or turn off the FX or FM format modifier. When
the FX and FM format codes are specified for an input date, then the number of
digits must be exactly the number specified by the format code. For example, 9
will not match the format code DD but 09 will.

GDK-05063 The year is not supported for the current calendar.
Cause: An unsupported year for the current calendar was specified.

Action: Check the Globalization Support Guide to find out what years are
supported for the current calendar.

GDK-05064 The date is out of range for the calendar.
Cause: The specified date was out of range for the calendar.

Action: Specify a date that is legal for the calendar.

GDK-05065 Invalid era
Cause: An illegal era was specified.

Action: Make sure that the era is valid.

GDK-05066 The datetime class is invalid.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05067 The interval is invalid.
Cause: An invalid interval was specified.

Action: Specify a valid interval.

GDK-05068 The leading precision of the interval is too small.

Cause: The specified leading precision of the interval was too small to store the
interval.

Action: Increase the leading precision of the interval or specify an interval with
a smaller leading precision.

GDK-05069 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05070 The specified intervals and datetimes were not mutually comparable.

8-54 Oracle Database Globalization Support Guide

GDK Error Messages

Cause: The specified intervals and datetimes were not mutually comparable.

Action: Specify a pair of intervals or datetimes that are mutually comparable.

GDK-05071 The number of seconds must be less than 60.
Cause: The specified number of seconds was greater than 59.

Action: Specify a value for the seconds to 59 or smaller.

GDK-05072 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05073 The leading precision of the interval was too small.

Cause: The specified leading precision of the interval was too small to store the

interval.

Action: Increase the leading precision of the interval or specify an interval with

a smaller leading precision.

GDK-05074 An invalid time zone hour was specified.
Cause: The hour in the time zone must be between -12 and 13.

Action: Specify a time zone hour between -12 and 13.

GDK-05075 An invalid time zone minute was specified.
Cause: The minute in the time zone must be between 0 and 59.

Action: Specify a time zone minute between 0 and 59.

GDK-05076 An invalid year was specified.
Cause: A year must be at least -4713.

Action: Specify a year that is greater than or equal to -4713.

GDK-05077 The string is too long for the internal buffer.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05078 The specified field was not found in the datetime or interval.
Cause: The specified field was not found in the datetime or interval.

Action: Make sure that the specified field is in the datetime or interval.

GDK-05079 An invalid hh25 field was specified.

Oracle Globalization Development Kit

8-55

GDK Error Messages

Cause: The hh25 field must be between 0 and 24.
Action: Specify an hh25 field between 0 and 24.

GDK-05080 An invalid fractional second was specified.
Cause: The fractional second must be between 0 and 999999999.

Action: Specify a value for fractional second between 0 and 999999999.

GDK-05081 An invalid time zone region ID was specified.
Cause: The time zone region ID specified was invalid.

Action: Contact Oracle Support Services.

GDK-05082 Time zone region name not found
Cause: The specified region name cannot be found.

Action: Contact Oracle Support Services.

GDK-05083 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05084 Internal formatting error
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05085 Invalid object type
Cause: An illegal object type was specified.

Action: Use a supported object type.

GDK-05086 Invalid date format style
Cause: An illegal format style was specified.

Action: Choose a valid format style.

GDK-05087 A null format pattern was specified.
Cause: The format pattern cannot be null.

Action: Provide a valid format pattern.

GDK-05088 Invalid number format model
Cause: An illegal number format code was specified.

Action: Correct the number format code.

8-56 Oracle Database Globalization Support Guide

GDK Error Messages

GDK-05089 Invalid number
Cause: An invalid number was specified.

Action: Correct the input.

GDK-05090 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-0509 Datetime/interval internal error
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05098 Too many precision specifiers

Cause: Extra data was found in the date format pattern while the program
attempted to truncate or round dates.

Action: Check the syntax of the date format pattern.

GDK-05099 Bad precision specifier
Cause: An illegal precision specifier was specified.

Action: Use a valid precision specifier.

GDK-05200 Missing WE8ISO8859P1 data file
Cause: The character set data file for WE8ISO8859P1 was not installed.

Action: Make sure the GDK jar files are installed properly in the Java
application.

GDK-05201 Failed to convert to a hexadecimal value
Cause: An invalid hexadecimal string was included in the HTML/XML data.
Action: Make sure the string includes the hexadecimal character in the form of
&X[0-9A-Fa-f]+;.

GDK-05202 Failed to convert to a decimal value
Cause: An invalid decimal string was found in the HTML/XML data.
Action: Make sure the string includes the decimal character in the form of
&[0-9]+;.

GDK-05203 Unregistered character entity
Cause: An invalid character entity was found in the HTML/XML data.

Oracle Globalization Development Kit 8-57

GDK Error Messages

Action: Use a valid character entity value in HTML/XML data. See
HTML/XML standards for the registered character entities.

GDK-05204 Invalid Quoted-Printable value
Cause: An invalid Quoted-Printable data was found in the data.

Action: Make sure the input data has been encoded in the proper
Quoted-Printable form.

GDK-05205 Invalid MIME header format
Cause: An invalid MIME header format was specified.

Action: Check RFC 2047 for the MIME header format. Make sure the input data
conforms to the format.

GDK-05206 Invalid numeric string
Cause: An invalid character in the form of %FF was found when a URL was
being decoded.

Action: Make sure the input URL string is valid and has been encoded
correctly; %FF needs to be a valid hex number.

GDK-05207 Invalid class of the object, key, in the user-defined locale to charset
mapping"
Cause: The class of key object in the user-defined locale to character set
mapping table was not java.util.Locale.

Action: When you construct the Map object for the user-defined locale to
character set mapping table, specify java.util.Locale for the key object.

GDK-05208 Invalid class of the object, value, in the user-defined locale to charset
mapping
Cause: The class of value object in the user-defined locale to character set
mapping table was not java.lang.String.

Action: When you construct the Map object for the user-defined locale to
character set mapping table, specify java.lang.String for the value object.

GDK-05209 Invalid rewrite rule

Cause: An invalid regular expression was specified for the match pattern in the
rewrite rule.

Action: Make sure the match pattern for the rewriting rule uses a valid regular
expression.

8-58 Oracle Database Globalization Support Guide

GDK Error Messages

GDK-05210 Invalid character set
Cause: An invalid character set name was specified.

Action: Specify a valid character set name.

GDK-0521 Default locale not defined as a supported locale
Cause: The default application locale was not included in the supported locale
list.

Action: Include the default application locale in the supported locale list or
change the default locale to the one that is in the list of the supported locales.

GDK-05212 The rewriting rule must be a String array with three elements.
Cause: The rewriting rule parameter was not a String array with three
elements.

Action: Make sure the rewriting rule parameter is a String array with three
elements. The first element represents the match pattern in the regular
expression, the second element represents the result pattern in the form
specified in the JavaDoc of ServletHelper.rewriteURL, and the third element
represents the Boolean value "True" or "False" that specifies whether the locale
fallback operation is performed or not.

GDK-05213 Invalid type for the class of the object, key, in the user-defined
parameter name mapping
Cause: The class of key object in the user-defined parameter name mapping
table was not java.lang.String.
Action: When you construct the Map object for the user-defined parameter
name mapping table, specify java.lang.String for the key object.

GDK-05214 The class of the object, value, in the user-defined parameter name
mapping, must be of type \"java.lang.String\".
Cause: The class of value object in the user-defined parameter name mapping
table was not java.lang.String.

Action: When you construct the Map object for the user-defined parameter
name mapping table, specify java.lang.String for the value object.

GDK-05215 Parameter name must be in the form [a-z][a-z0-9]*.
Cause: An invalid character was included in the parameter name.

Action: Make sure the parameter name is in the form of [a-z][a-z0-9]*.

Oracle Globalization Development Kit 8-59

GDK Error Messages

GDK-05216 The attribute \"var\" must be specified if the attribute \"scope\" is
set.
Cause: Despite the attribute "scope" being set in the tag, the attribute "var" was
not specified.

Action: Specify the attribute "var" for the name of variable.

GDK-05217 The \"param\" tag must be nested inside a \"message\" tag.
Cause: The "param" tag was not nested inside a "message" tag.

Action: Make sure the tag "param"” is inside the tag "message".

GDK-05218 Invalid \"scope\" attribute is specified.
Cause: An invalid "scope" value was specified.

Action: Specify a valid scope as either "application,” "session," "request," or

npageu.

GDK-05219 Invalid date format style
Cause: The specified date format style was invalid.

Action: Specify a valid date format style as either "default,” "short,” or "long"

GDK-05220 No corresponding Oracle character set exists for the IANA character
set.

Cause: An unsupported IANA character set name was specified.

Action: Specify the IANA character set that has a corresponding Oracle
character set.

GDK-05221 Invalid parameter name
Cause: An invalid parameter name was specified in the user-defined parameter
mapping table.

Action: Make sure the specified parameter name is supported. To get the list of
supported parameter names, call LocaleSource.Parameter.toArray.

GDK-05222 Invalid type for the class of the object, key, in the user-defined
message bundle mapping.

Cause: The class of key object in the user-defined message bundle mapping
table was not "java.lang.String."

Action: When you construct the Map object for the user-defined message
bundle mapping table, specify java.lang.String for the key object.

8-60 Oracle Database Globalization Support Guide

GDK Error Messages

GDK-05223 Invalid type for the class of the object, value, in the user-defined
message bundle mapping
Cause: The class of value object in the user-defined message bundle mapping
table was not "java.lang.String."

Action: When you construct the Map object for the user-defined message
bundle mapping table, specify java.lang.String for the value object.

GDK-05224 Invalid locale string
Cause: An invalid character was included in the specified ISO locale names in
the GDK application configuration file.

Action: Make sure the ISO locale names include only valid characters. A
typical name format is an 1SO 639 language followed by an ISO 3166 country
connected by a dash character; for example, "en-US" is used to specify the locale
for American English in the United States.

GDK-06001 LCSDetector profile not available
Cause: The specified profile was not found.

Action: Make sure the GDK jar files are installed properly in the Java
application.

GDK-06002 Invalid IANA character set name or no corresponding Oracle name
found
Cause: The IANA character set specified was either invalid or did not have a
corresponding Oracle character set.

Action: Check that the IANA character is valid and make sure that it has a
corresponding Oracle character set.

GDK-06003 Invalid 1SO language name or no corresponding Oracle name found
Cause: The ISO language specified was either invalid or did not have a
corresponding Oracle language.

Action: Check to see that the ISO language specified is either invalid or does
not have a corresponding Oracle language.

GDK-06004 A character set filter and a language filter cannot be set at the same
time.

Cause: A character set filter and a language filter were set at the same time in a
LCSDetector object.

Action: Set only one of the two -- character set or language.

Oracle Globalization Development Kit 8-61

GDK Error Messages

GDK-06005 Reset is necessary before LCSDetector can work with a different data

source.
Cause: The reset method was not invoked before a different type of data source

was used for a LCSDetector object.
Action: Call LCSDetector.reset to reset the detector before switching to detect
other types of data source.

ORA-17154 Cannot map Oracle character to Unicode
Cause: The Oracle character was either invalid or incomplete and could not be
mapped to an Unicode value.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a

valid replacement character.

ORA-17155 Cannot map Unicode to Oracle character
Cause: The Unicode character did not have a counterpart in the Oracle
character set.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a

valid replacement character.

8-62 Oracle Database Globalization Support Guide

9

SQL and PL/SQL Programming in a Global
Environment

This chapter contains information useful for SQL programming in a globalization
support environment. It includes the following topics:

« Locale-Dependent SQL Functions with Optional NLS Parameters
« Other Locale-Dependent SQL Functions

« Miscellaneous Topics for SQL and PL/SQL Programming in a Global
Environment

SQL and PL/SQL Programming in a Global Environment 9-1

Locale-Dependent SQL Functions with Optional NLS Parameters

Locale-Dependent SQL Functions with Optional NLS Parameters

All SQL functions whose behavior depends on globalization support conventions
allow NLS parameters to be specified. These functions are:

TO CHAR

TO DATE
TO_NUVBER
NLS_UPPER
NLS_LOAER
NLS_I NI TCAP
NLSSORT

Explicitly specifying the optional NLS parameters for these functions enables the
functions to be evaluated independently of the session’s NLS parameters. This
feature can be important for SQL statements that contain numbers and dates as
string literals.

For example, the following query is evaluated correctly if the language specified for
dates is AVERI CAN:

SELECT | ast_name FROM enpl oyees WHERE hire_date > '01- JAN-1999';

Such a query can be made independent of the current date language by using a
statement similar to the following:

SELECT | ast _name FROM enpl oyees
VWHERE hire_date > TO DATE(' 01- JAN-1999',' DD- MON- YYYY',
' NLS_DATE_LANGUAGE = AMERI CAN) ;

In this way, SQL statements that are independent of the session language can be
defined where necessary. Such statements are necessary when string literals appear
in SQL statements in views, CHECK constraints, or triggers.

Note: Only SQL statements that must be independent of the
session NLS parameter values should explicitly specify optional
NLS parameters in locale-dependent SQL functions. Using session
default values for NLS parameters in SQL functions usually results
in better performance.

All character functions support both single-byte and multibyte characters. Except
where explicitly stated, character functions operate character by character, rather
than byte by byte.

9-2 Oracle Database Globalization Support Guide

Locale-Dependent SQL Functions with Optional NLS Parameters

The rest of this section includes the following topics:
« Default Values for NLS Parameters in SQL Functions
« Specifying NLS Parameters in SQL Functions

« Unacceptable NLS Parameters in SQL Functions

Default Values for NLS Parameters in SQL Functions

When SQL functions evaluate views and triggers, default values from the current
session are used for the NLLS function parameters. When SQL functions evaluate
CHECK constraints, they use the default values that were specified for the NLS
parameters when the database was created.

Specifying NLS Parameters in SQL Functions
NLS parameters are specified in SQL functions as follows:

" paraneter = val ue'

For example:
" NLS_DATE_LANGUAGE = AMERI CAN

The following NLS parameters can be specified in SQL functions:

NLS_DATE_LANGUAGE
NLS_NUVERI C_CHARACTERS
NLS_CURRENCY

NLS_| SO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_SORT

Table 9-1 shows which NLS parameters are valid for specific SQL functions.

Table 9-1 SQL Functions and Their Valid NLS Parameters

SQL Function Valid NLS Parameters
TO DATE NLS DATE_LANGUAGE
NLS_CALENDAR

SQL and PL/SQL Programming in a Global Environment 9-3

Locale-Dependent SQL Functions with Optional NLS Parameters

Table 9-1 SQL Functions and Their Valid NLS Parameters (Cont.)

SQL Function Valid NLS Parameters
TO_NUMBER NLS_NUMERI C_CHARACTERS
NLS_CURRENCY

NLS_DUAL_CURRENCY
NLS_| SO CURRENCY

TO CHAR NLS DATE_LANGUAGE
NLS_NUVERI C_CHARACTERS
NLS_CURRENCY
NLS_| SO CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

TO_NCHAR NLS DATE_LANGUAGE
NLS_NUVERI C_CHARACTERS
NLS_CURRENCY
NLS_| SO CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS UPPER NLS SORT
NLS LOVER NLS_ SORT
NLS | NI TCAP NLS_SORT
NLSSORT NLS_SORT

The following examples show how to use NLS parameters in SQL functions:
TO DATE (' 1-JAN-99', ' DD MONYY',
‘nl s_date_|l anguage = American')

TO CHAR (hire_date, ' DD/ MON YYYY',
"nls_date_| anguage = French')

TO CHAR (SYSDATE, ' DD/ MON YYYY',
"nl s_date_| anguage=""Tradi tional Chinese'’ ")

TO NUMBER (' 13.000, 00", '99(999D99",
"nls_numeric_characters ="'',.""")

TO CHAR (salary, '9G®99D99L', 'nls_nuneric_characters ="'",.""
nls_currency = ""EUR"'")

TO CHAR (sal ary, '9(99D99C , 'nls_nuneric_characters ="'".,""

9-4 Oracle Database Globalization Support Guide

Other Locale-Dependent SQL Functions

nls_iso_currency = Japan')
NLS UPPER (last_name, 'nls_sort = Swiss')

NLSSORT (last_nanme, 'nls_sort = German')

Note: In some languages, some lowercase characters correspond
to more than one uppercase character or vice versa. As a result, the
length of the output from the NLS UPPER, NLS LOWER, and NLS
I NI TCAP functions can differ from the length of the input.

See Also: "Special Uppercase Letters" on page 5-11 and "Special
Lowercase Letters" on page 5-11

Unacceptable NLS Parameters in SQL Functions

The following NLS parameters are not accepted in SQL functions except for
NLSSORT:

. NLS_LANGUAGE
. NLS TERRI TORY
. NLS_DATE_FORMAT

NLS_DATE_FORNMAT and NLS_TERRI TORY_FORMAT are not accepted as parameters
because they can interfere with required format masks. A date format must always
be specified if an NLS parameter isin a TO_CHAR or TO _DATE function. As a result,
NLS_DATE_FORMAT and NLS_TERRI TORY_FORMAT are not valid NLS parameters
for the TO_CHAR or TO_DATE functions. IF you specify NLS_DATE_FORMAT or NLS_
TERRI TORY_FORMAT in the TO_CHAR or TO_DATE function, then an error is
returned.

NLS_LANGUACE can interfere with the session value of NLS_DATE_LANGUAGE. If
you specify NLS LANGUACE in the TO_CHAR function, for example, then its value is
ignored if it differs from the session value of NLS_DATE_LANGUAGE.

Other Locale-Dependent SQL Functions

This section includes the following topics:
« The CONVERT Function

SQL and PL/SQL Programming in a Global Environment 9-5

Other Locale-Dependent SQL Functions

« SQL Functions for Different Length Semantics

« LIKE Conditions for Different Length Semantics
« Character Set SQL Functions

« The NLSSORT Function

The CONVERT Function

The CONVERT function enables conversion of character data between character sets.

The CONVERT function converts the binary representation of a character string in
one character set to another. It uses exactly the same technique as conversion
between database and client character sets. Hence, it uses replacement characters
and has the same limitations.

See Also: "Character Set Conversion Between Clients and the
Server" on page 2-17

The syntax for CONVERT is as follows:
CONVERT(char, dest_char_set[, source_char_set])
char is the value to be converted. sour ce_char _set is the source character set
and dest _char _set is the destination character set. If the sour ce_char _set
parameter is not specified, then it defaults to the database character set.

See Also:

« Oracle Database SQL Reference for more information about the
CONVERT function

« "Character Set Conversion Support” on page A-19 for character
set encodings that are used only for the CONVERT function

SQL Functions for Different Length Semantics

Oracle provides SQL functions that work in accordance with different length
semantics. There are three groups of such SQL functions: SUBSTR, LENGTH, and
I NSTR. Each function in a group is based on a different kind of length semantics
and is distinguished by the character or number appended to the function name.
For example, SUBSTRB is based on byte semantics.

9-6 Oracle Database Globalization Support Guide

Other Locale-Dependent SQL Functions

The SUBSTR functions return a requested portion of a substring. The LENGTH
functions return the length of a string. The | NSTR functions search for a substring
in a string.

The SUBSTR functions calculate the length of a string differently. Table 9-1
summarizes the calculation methods.

Table 9-2 How the SUBSTR Functions Calculate the Length of a String

Function

Calculation Method

SUBSTR

SUBSTRB
SUBSTR2

SUBSTR4

SUBSTRC

Calculates the length of a string in characters based on the length semantics associated with
the character set of the datatype. For example, AL32UTF8 characters are calculated in UCS-4
characters. UTF8 and AL16UTF16 characters are calculated in UCS-2 characters. A
supplementary character is counted as one character in AL32UTF8 and as two characters in
UTF8 and AL16UTF16. Because VARCHAR and NVARCHAR may use different character sets,
SUBSTR may give different results for different datatypes even if two strings are identical. If
your application requires consistency, then use SUBSTR2 or SUBSTR4 to force all semantic
calculations to be UCS-2 or UCS-4, respectively.

Calculates the length of a string in bytes

Calculates the length of a string in UCS-2 characters, which is compliant with Java strings and
Windows client environments. Characters are represented in UCS-2 or 16-bit Unicode values.
Supplementary characters are counted as two characters.

Calculates the length of a string in UCS-4 characters. Characters are represented in UCS-4 or
32-bit Unicode values. Supplementary characters are counted as one character.

Calculates the length of a string in Unicode composed characters. Supplementary characters
and composed characters are counted as one character.

The LENGTHand | NSTR functions calculate string length in the same way,
according to the character or number added to the function name.

The following examples demonstrate the differences between SUBSTR and
SUBSTRB on a database whose character set is AL32UTF8.

For the string Fu3bal | , the following statement returns a substring that is 4
characters long, beginning with the second character:

SELECT SUBSTR (' FuBball', 2 , 4) SUBSTR FROM dual ;

SUBS

uBba

For the string Fu3bal |, the following statement returns a substring 4 bytes long,
beginning with the second byte:

SQL and PL/SQL Programming in a Global Environment 9-7

Other Locale-Dependent SQL Functions

SELECT SUBSTRB (' FuBball', 2 , 4) SUBSTRB FROM dual ;

SuB

uBh
See Also: Oracle Database SQL Reference for more information
about the SUBSTR, LENGTH, and | NSTR functions

LIKE Conditions for Different Length Semantics

The LI KE conditions specify a test that uses pattern-matching. The equality
operator (=) exactly matches one character value to another, but the LI KE
conditions match a portion of one character value to another by searching the first
value for the pattern specified by the second.

LI KE calculates the length of strings in characters using the length semantics
associated with the input character set. The LI KE2, LI KE4, and LI KEC conditions
are summarized in Table 9-3.

Table 9-3 LIKE Conditions

Function Description

LI KE2 Use when characters are represented in UCS-2 semantics. A supplementary
character is considered as two characters.

LI KE4 Use when characters are represented in UCS-4 semantics. A supplementary
character is considered as one character.

LI KEC Use when characters are represented in Unicode complete character semantics. A

composed character is treated as one character.

There is no LI KEB condition.

Character Set SQL Functions

Two SQL functions, NLS CHARSET NAME and NLS CHARSET | D, can convert
between character set ID numbers and character set names. They are used by
programs that need to determine character set ID humbers for binding variables
through OCI.

Another SQL function, NLS CHARSET DECL_LEN, returns the length of an NCHAR
column.

This section includes the following topics:

9-8 Oracle Database Globalization Support Guide

Other Locale-Dependent SQL Functions

« Converting from Character Set Number to Character Set Name
« Converting from Character Set Name to Character Set Number

« Returning the Length of an NCHAR Column

See Also: Oracle Database SQL Reference

Converting from Character Set Number to Character Set Name

The NLS_CHARSET_NAME(n) function returns the name of the character set
corresponding to ID number n. The function returns NULL if n is not a recognized
character set ID value.

Converting from Character Set Name to Character Set Number

NLS_CHARSET_| D(t ext) returns the character set ID corresponding to the name
specified by t ext . t ext is defined as a run-time VARCHARZ2 quantity, a character
set name. Values for t ext can be NLSRTL names that resolve to character sets that
are not the database character set or the national character set.

If the value CHAR_CS is entered for t ext , then the function returns the ID of the
server's database character set. If the value NCHAR CS is entered for t ext , then the
function returns the ID of the server's national character set. The function returns
NULL if t ext is not a recognized name.

Note: The value fort ext must be entered in uppercase
characters.

Returning the Length of an NCHAR Column

NLS CHARSET DECL_LEN(BYTECNT, CSI D) returns the declaration length of a
column in number of characters. BYTECNT is the byte length of the column. CSI Dis
the character set ID of the column.

The NLSSORT Function

The NLSSORT function enables you to use any linguistic sort for an ORDER BY
clause. It replaces a character string with the equivalent sort string used by the
linguistic sort mechanism so that sorting the replacement strings produces the
desired sorting sequence. For a binary sort, the sort string is the same as the input
string.

SQL and PL/SQL Programming in a Global Environment 9-9

Other Locale-Dependent SQL Functions

The Kkind of linguistic sort used by an ORDER BY clause is determined by the NLS _
SORT session parameter, but it can be overridden by explicitly using the NLSSORT
function.

Example 9-1 specifies a German sort with the NLS_SORT session parameter.

Example 9-1 Specifying a German Sort with the NLS_SORT Session Parameter

ALTER SESSI ON SET NLS_SORT = GERMAN;
SELECT * FROM tabl el
ORDER BY col uml;

Example 9-2 Specifying a French Sort with the NLSSORT Function

This example first sets the NLS_SORT session parameter to German, but the
NLSSORT function overrides it by specifying a French sort.

ALTER SESSI ON SET NLS_SORT = GERMAN;
SELECT * FROM tabl el
ORDER BY NLSSORT(col urm1, ' NLS_SORT=FRENCH):

The WHERE clause uses binary comparison rather than linguistic comparison by
default, but this can be overridden by using the NLSSORT function in the WHERE
clause.

Example 9-3 Making a Linguistic Comparison with the WHERE Clause

ALTER SESSI ON SET NLS_COWP = ANSI;

SELECT * FROM tabl el

WHERE NLSSORT(col urm1, ' NLS_SORT=FRENCH) >
NLSSORT(col umm2, ' NLS_SORT=FRENCH) ;

Setting the NLS_COWP session parameter to ANSI causes the NLS _SORT value to be
used in the WHERE clause.

The rest of this section contains the following topics:

« NLSSORT Syntax

« Comparing Strings in a WHERE Clause

« Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE
Clause

« Controlling an ORDER BY Clause

9-10 Oracle Database Globalization Support Guide

Other Locale-Dependent SQL Functions

NLSSORT Syntax
There are four ways to use NLSSORT:

« NLSSORT(), which relies on the NLS_SORT parameter
« NLSSORT(col umml, 'NLS SORT=xxxx')

» NLSSORT(col uml, ' NLS_LANG=xxxx"')

» NLSSORT(col uml, ' NLS LANGUAGE=XXXX")

The NLS_LANG parameter of the NLSSORT function is not the same as the NLS_
LANGclient environment setting. In the NLSSORT function, NLS_LANGspecifies the
abbreviated language name, such as US for American or PL for Polish. For example:

SELECT * FROM tabl el
ORDER BY NLSSORT(col umnl, 'NLS LANG=PL');

Comparing Strings in a WHERE Clause

NLSSORT enables applications to perform string matching that follows alphabetic
conventions. Normally, character strings in a WHERE clause are compared by using
the binary values of the characters. One character is considered greater than another
character if it has a greater binary value in the database character set. Because the
sequence of characters based on their binary values might not match the alphabetic
sequence for a language, such comparisons may not follow alphabetic conventions.
For example, if a column (col unm1) contains the values ABC, ABZ, BCD, and ABC
in the 1SO 8859-1 8-bit character set, then the following query returns both BCD and
ABC because A has a higher numeric value than B:

SELECT col uml FROM tabl el WHERE columl > 'B';

In German, A is sorted alphabetically before B, but in Swedish, A is sorted after Z.
Linguistic comparisons can be made by using NLSSORT in the WHERE clause:
WHERE NLSSORT(col) conparison_operator NLSSORT(conparison_string)

Note that NLSSORT must be on both sides of the comparison operator. For example:
SELECT col um1 FROM t abl el WHERE NLSSORT(col urml) > NLSSORT('B');

If a German linguistic sort has been set, then the statement does not return strings
beginning with A because A comes before B in the German alphabet. If a Swedish

linguistic sort has been set, then strings beginning with A are returned because A
comes after Z in the Swedish alphabet.

SQL and PL/SQL Programming in a Global Environment 9-11

Other Locale-Dependent SQL Functions

Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause

Comparison in the WHERE clause or PL/SQL blocks is binary by default. Using the
NLSSORT function for linguistic comparison can be tedious, especially when the
linguistic sort has already been specified in the NLS_SORT session parameter. You
can use the NLS_COWVP parameter to indicate that the comparisons in a WHERE
clause or in PL/SQL blocks must be linguistic according to the NLS SORT session
parameter.

Note: The NLS_COWP parameter does not affect comparison
behavior for partitioned tables. String comparisons that are based
on a VALUES LESS THAN partition are always binary.

See Also: "NLS_COMP" on page 3-42

Controlling an ORDER BY Clause

If a linguistic sort is in use, then ORDER BY clauses use an implicit NLSSORT on
character data. The sort mechanism (linguistic or binary) for an ORDER BY clause is
transparent to the application. However, if the NLSSORT function is explicitly
specified in an ORDER BY clause, then the implicit NLSSORT is not done.

If a linguistic sort has been defined by the NLS_SORT session parameter, then an
ORDER BY clause in an application uses an implicit NLSSORT function. If you
specify an explicit NLSSORT function, then it overrides the implicit NLSSORT
function.

When the sort mechanism has been defined as linguistic, the NLSSORT function is
usually unnecessary in an ORDER BY clause.

When the sort mechanism either defaults or is defined as binary, then a query like
the following uses a binary sort:

SELECT | ast _name FROM enpl oyees
ORDER BY | ast _nane;

A German linguistic sort can be obtained as follows:

SELECT | ast _name FROM enpl oyees
ORDER BY NLSSORT(| ast_name, 'NLS_SORT = GERMAN);

See Also: "Using Linguistic Sorts" on page 5-3

9-12 Oracle Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

Miscellaneous Topics for SQL and PL/SQL Programming in a Global
Environment

This section contains the following topics:

« SQL Date Format Masks

« Calculating Week Numbers

« SQL Numeric Format Masks

« Loading External BFILE Data into LOB Columns

See Also: Oracle Database SQL Reference for a complete description
of format masks

SQL Date Format Masks

Several format masks are provided with the TO_CHAR, TO_DATE, and TO_NUMBER
functions.

The RM(Roman Month) format element returns a month as a Roman numeral. You
can specify either upper case or lower case by using RMor r m For example, for the
date 7 Sep 1998, DD- r m YYYY returns 07-i x- 1998 and DD- RM YYYY returns
07-1X-1998.

Note that the MONand DY format masks explicitly support month and day
abbreviations that may not be three characters in length. For example, the
abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",
respectively.

Calculating Week Numbers

The week numbers returned by the W\format mask are calculated according to the
following algorithm: i nt (dayCf Year +6) / 7. This algorithm does not follow the
ISO standard (2015, 1992-06-15).

To support the 1SO standard, the | Wformat element is provided. It returns the ISO
week number. In addition, the I, 1 Y, 1 YY, and | YYY format elements, equivalent in
behavior to the Y, YY, YYY, and YYYY format elements, return the year relating to the
ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from
the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

SQL and PL/SQL Programming in a Global Environment 9-13

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

week always starts on a Monday and ends on a Sunday. The week number is
determined according the following rules:

« IfJanuary 1 falls on a Friday, Saturday, or Sunday, then the week including
January 1 is the last week of the previous year, because most of the days in the
week belong to the previous year.

« IfJanuary 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the
week is the first week of the new year, because most of the days in the week
belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to
Sunday, January 6, 1991, is in week 1. Thus, the ISO week number and year for
December 31, 1990, is 1, 1991. To get the 1SO week number, use the | Wformat mask
for the week number and one of the | Y formats for the year.

SQL Numeric Format Masks
Several additional format elements are provided for formatting numbers:

Element Description Purpose

D Decimal Returns the decimal point character

G Group Returns the group separator

L Local currency Returns the local currency symbol

C International currency Returns the ISO currency symbol

RN Roman numeral Returns the number as its Roman numeral equivalent

For Roman numerals, you can specify either upper case or lower case, using RN or
r n, respectively. The number being converted must be an integer in the range 1 to
3999.

Loading External BFILE Data into LOB Columns

The DBM5_LOB PL/SQL package can load external BFI LE data into LOB columns.
Previous releases of Oracle did not perform character set conversion before loading
the binary data into CLOB or NCLOB columns. Thus the BFI LE data had to be in the
same character set as the database or national character set to work properly. The
APIs that were introduced in Oracle9i Release 2 (9.2) allow the user to specify the
character set ID of the BFI LE data by using a new parameter. The APIs convert the
data from the specified BFI LE character set into the database character set for the

9-14 Oracle Database Globalization Support Guide

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

CLOB datatype or the national character set for the NCLOB datatype. The loading
takes place on the server because BFI LE data is not supported on the client.

« Use DBVS_LOB. LOADBLOBFROVFI LE to load BLOB columns.
« Use DBVS_LOB. LOADCLOBFROVFI LE to load CLOB and NCLOB columns.

See Also:
« PL/SQL Packages and Types Reference
« Oracle Database Application Developer's Guide - Large Objects

SQL and PL/SQL Programming in a Global Environment 9-15

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

9-16 Oracle Database Globalization Support Guide

10

OCI Programming in a Global Environment

This chapter contains information about OCI programming in a global
environment. It includes the following topics:

« Using the OCI NLS Functions

« Specifying Character Sets in OCI

« Getting Locale Information in OCI

« Mapping Locale Information Between Oracle and Other Standards
« Manipulating Strings in OCI

« Classifying Characters in OCI

« Converting Character Sets in OCI

« OCI Messaging Functions

« Imsgen Utility

OCI Programming in a Global Environment 10-1

Using the OCI NLS Functions

Using the OCI NLS Functions
Many OCI NLS functions accept one of the following handles:
« The environment handle
= The user session handle

The OCI environment handle is associated with the client NLS environment and
initialized with the client NLS environment variables. This environment does not
change when ALTER SESSI ON statements are issued to the server. The character set
associated with the environment handle is the client character set.

The OCI session handle is associated with the server session environment. Its NLS
settings change when the session environment is modified with an ALTER SESSI ON
statement. The character set associated with the session handle is the database
character set.

Note that the OCI session handle does not have any NLS settings associated with it
until the first transaction begins in the session. SELECT statements do not begin a
transaction.

See Also: Oracle Call Interface Programmer*s Guide for detailed
information about the OCI NLS functions

Specifying Character Sets in OCI

Use the OCI EnvNl sCr eat e function to specify client-side database and national
character sets when the OCI environment is created.This function allows users to
set character set information dynamically in applications, independent of the NLS
LANGand NLS_NCHAR initialization parameter settings. In addition, one application
can initialize several environment handles for different client environments in the
same server environment.

Any Oracle character set ID except AL16UTF16 can be specified through the

OCl EnvNl sCr eat e function to specify the encoding of metadata, SQL CHAR data,
and SQL NCHAR data. Use OCl _UTF16I Din the OCl EnvNl sCr eat e function to
specify UTF-16 data.

See Also: Oracle Call Interface Programmer's Guide for more
information about the OCl EnvNl sCr eat e function

10-2 Oracle Database Globalization Support Guide

Getting Locale Information in OCI

Getting Locale Information in OCI

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application complies with a user's
locale setting and cultural conventions. For example, when the locale is set to
German, users expect to see day and month names in German.

You can use the OCl Nl sGet | nf o() function to retrieve the following locale
information:

Days of the week (translated)
Abbreviated days of the week (translated)
Month names (translated)
Abbreviated month names (translated)
Yes/no (translated)

AM/PM (translated)

AD/BC (translated)

Numeric format

Debit/credit

Date format

Currency formats

Default language

Default territory

Default character set

Default linguistic sort

Default calendar

Table 10-1 summarizes OCI functions that return locale information.

Table 10-1 OCI Functions That Return Locale Information

Function Description

OCINIsGetInfo() Returns locale information. See preceding text.

OCINIsCharSetNameTold() Returns the Oracle character set ID for the specified Oracle character set
name

OCINIsCharSetldToName() Returns the Oracle character set name from the specified character set ID

OCINIsNumericlnfoGet() Returns specified numeric information such as maximum character size

OCINIsEnvironmentVariableGet() Returns the character set ID from NLS_LANGor the national character set
ID from NLS_NCHAR

OCI Programming in a Global Environment 10-3

Mapping Locale Information Between Oracle and Other Standards

See Also: Oracle Call Interface Programmer*s Guide

Mapping Locale Information Between Oracle and Other Standards

The OCI Nl sNaneMap function maps Oracle character set names, language names,
and territory names to and from Internet Assigned Numbers Authority (IANA) and
International Organization for Standardization (ISO) names.

Manipulating Strings in OCl
Two types of data structures are supported for string manipulation:
« Native character strings
« Wide character strings

Native character strings are encoded in native Oracle character sets. Functions that
operate on native character strings take the string as a whole unit with the length of
the string calculated in bytes. Wide character (wchar) string functions provide more
flexibility in string manipulation. They support character-based and string-based
operations with the length of the string calculated in characters.

The wide character datatype is Oracle-specific and should not be confused with the
wchar _t datatype defined by the ANSI/ZISO C standard. The Oracle wide character
datatype is always 4 bytes in all platforms, while the size of wchar _t depends on
the implementation and the platform. The Oracle wide character datatype
normalizes native characters so that they have a fixed width for easy processing.
This guarantees no data loss for round-trip conversion between the Oracle wide
character format and the native character format.

String manipulation can be classified as followings:

« Conversion of strings between native character format and wide character
format

« Character classifications

« Case conversion

« Calculations of display length

« General string manipulation, such as comparison, concatenation, and searching

Table 10-2 summarizes the OCI string manipulation functions.

10-4 Oracle Database Globalization Support Guide

Manipulating Strings in OCI

Note: The functions and descriptions in Table 10-2 that refer to
multibyte strings apply to native character strings.

Table 10-2 OCI String Manipulation Functions

Function

Description

OCl Mul t i Byt eToW deChar ()
OCl Mul ti Byt el nSi zeToW deChar ()
OCl W deChar ToMul ti Byt e()

OCl W deChar | nSi zeToMul ti Byt e()
OCl W deChar ToLower ()

OCl W deChar ToUpper ()

OCl W deChar Strcnp()

OCl W deChar St rncnp()

OCl W deChar Strcat ()

OCl W deChar Strncat ()

OCl W deChar Strchr ()

OCl WdeChar Strrchr()

OCl W deChar Strcpy()

Converts an entire null-terminated string into the wchar format
Converts part of a string into the wchar format

Converts an entire null-terminated wide character string into a
multibyte string

Converts part of a wide character string into the multibyte format

Converts the wehar character specified by we into the
corresponding lowercase character if it exists in the specified locale.
If no corresponding lowercase character exists, then it returns wc
itself.

Converts the wchar character specified by we into the
corresponding uppercase character if it exists in the specified locale.
If no corresponding uppercase character exists, then it returns we
itself.

Compares two wide character strings by binary, linguistic, or
case-insensitive comparison method

Similar to OCl W deChar St r cnp() . Compares two wide character
strings by binary, linguistic, or case-insensitive comparison
methods. At most | enl bytes form str 1, and | en2 bytes form
str2.

Appends a copy of the string pointed to by wsr cst r. Then it
returns the number of characters in the resulting string.

Appends a copy of the string pointed to by wsr cst r. Then it
returns the number of characters in the resulting string. At most n
characters are appended.

Searches for the first occurrence of we in the string pointed to by
wst r. Then it returns a pointer to the wchar if the search is
successful.

Searches for the last occurrence of we in the string pointed to by
wst r

Copies the wchar string pointed to by wsr cst r into the array
pointed to by wdst st r. Then it returns the number of characters
copied.

OCI Programming in a Global Environment 10-5

Manipulating Strings in OCI

Table 10-2 OCI String Manipulation Functions (Cont.)

Function

Description

OCl W deChar Strncpy()

OCl WdeChar Strlen()

OCl W deChar St r CaseConver si on()

OCl W deChar Di spl ayLengt h()
OCl W deChar Mul ti byt eLengt h()
OCl Mul ti ByteStrcnp()

OCl Mul ti Byt eStrncnp()

OCl Mul ti ByteStrcat ()

OCl Mul ti ByteStrncat ()

OCl Mul ti ByteStrcpy()

OCl Mul ti ByteStrncpy()

OCl Mul tiByteStrlen()
OCl Mul ti Byt eSt rnDi spl ayLengt h()

OCl Mul ti Byt eSt r CaseConver si on()

Copies the wchar string pointed to by wsr cst r into the array
pointed to by wdst st r. Then it returns the number of characters
copied. At most n characters are copied from the array.

Computes the number of characters in the wchar string pointed to
by wst r and returns this number

Converts the wide character string pointed to by wsr cst r into the
case specified by a flag and copies the result into the array pointed
to by wdst st r

Determines the number of column positions required for we in
display

Determines the number of bytes required for we in multibyte
encoding

Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods

Compares two multibyte strings by binary, linguistic, or
case-insensitive comparison methods. At most | enl bytes form
strlandl en2 bytes form str 2.

Appends a copy of the multibyte string pointed to by srcstr

Appends a copy of the multibyte string pointed to by srcstr. At
most n bytes from sr cstr are appended to dst str

Copies the multibyte string pointed to by sr cstr into an array
pointed to by dst st r. It returns the number of bytes copied.

Copies the multibyte string pointed to by sr cst r into an array
pointed to by dst st r. It returns the number of bytes copied. At
most n bytes are copied from the array pointed to by srcst r to the
array pointed to by dst str.

Returns the number of bytes in the multibyte string pointed to by
str

Returns the number of display positions occupied by the complete
characters within the range of n bytes

Converts part of a string from one character set to another

See Also:

Oracle Call Interface Programmer’s Guide

10-6 Oracle Database Globalization Support Guide

Converting Character Sets in OCI

Classifying Characters in OCI

Table 10-3 shows the OCI character classification functions.

Table 10-3 OCI Character Classification Functions

Function

Description

OCl W deChar | sAl num()
OCl W deChar | sAl pha()
OCl W deCharlsCntrl ()
OCl W deCharlsDigit()
OCl W deChar | sGraph()
OCl W deChar | sLower ()
OCl W deChar |l sPrint()
OCl W deChar | sPunct ()
OCl W deChar | sSpace()
OCl W deChar | sUpper ()
OCl W deChar | sXdi git()
OCl W deChar | sSi ngl eByt e()

Tests whether the wide character is an alphabetic letter or decimal digit
Tests whether the wide character is an alphabetic letter
Tests whether the wide character is a control character
Tests whether the wide character is a decimal digit

Tests whether the wide character is a graph character

Tests whether the wide character is a lowercase letter

Tests whether the wide character is a printable character
Tests whether the wide character is a punctuation character
Tests whether the wide character is a space character

Tests whether the wide character is an uppercase character
Tests whether the wide character is a hexadecimal digit

Tests whether we is a single-byte character when converted into multibyte

See Also: Oracle Call Interface Programmer’s Guide

Converting Character Sets in OCI

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible without data loss.

Table 10-4 summarizes the OCI character set conversion functions.

Table 10-4 OCI Character Set Conversion Functions

Function

Description

OClI Char Set ToUni code()

QOCl Uni codeToChar Set ()

Converts a multibyte string pointed to by sr c to
Unicode into the array pointed to by dst

Converts a Unicode string pointed to by sr ¢ to
multibyte into the array pointed to by dst

OCI Programming in a Global Environment 10-7

OCI Messaging Functions

Table 10-4 OCI Character Set Conversion Functions (Cont.)

Function Description

OCI NI sChar Set Convert () Converts a string from one character set to another

OClI Char Set Conver si onl sRepl acenment Used() Indicates whether replacement characters were used for
characters that could not be converted in the last
invocation of OCI NI sChar Set Convert () or
OCl Uni codeToChar Set ()

See Also:
« Oracle Call Interface Programmer’s Guide

« "OCI Programming with Unicode" on page 7-13

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to
retrieve their own messages as well as Oracle messages.

Table 10-5 summarizes the OCI messaging functions.

Table 10-5 OCI Messaging Functions

Function Description
OCl MessageOpen() Opens a message handle in a language pointed to by hndl
OCl MessageGet () Retrieves a message with message number identified by msgno. If the

buffer is not zero, then the function copies the message into the buffer
specified by msgbuf .

OCl Messaged ose() Closes a message handle pointed to by nsgh and frees any memory
associated with this handle

See Also: Oracle Data Cartridge Developer's Guide

Imsgen Utility

Purpose

The | nsgen utility converts text-based message files (. nsg) into binary format
(. meb) so that Oracle messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

10-8 Oracle Database Globalization Support Guide

Imsgen Utility

Syntax
LMSGEN text _file product facility [language]

text _fil eisamessage text file.
pr oduct is the name of the product.
facil ity isthe name of the facility.

| anguage is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

Text Message Files
Text message files must follow these guidelines:

« Linesthatstart with/ and// are treated as internal comments and are ignored.

« To tag the message file with a specific language, include a line similar to the
following:

CHARACTER_SET_NAME= Japanese_Japan. JAL6EUC

« Each message contains 3 fields:

message_number, warning_| evel, nessage_t ext

The message number must be unique within a message file.
The warning level is not currently used. Use 0.
The message text cannot be longer than 511 bytes.

The following is an example of an Oracle message text file:

| Copyright (c) 2001 by the Oracle Corporation. Al rights reserved.
| This is a test us7ascii nessage file

CHARACTER SET_NAME= aneri can_anerica. us7ascii

/

00000, 00000, "Export terninated unsuccessfully\n"

00003, 00000, "no storage definition found for segnent(%u, %u)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the | nsgen parameters:

OCI Programming in a Global Environment 10-9

Imsgen Utility

Parameter Value

pr oduct $HOVE/ my Appl i cati on
facility inmp

| anguage AVERI CAN

text_file i mpus. nsg

The text message file is found in the following location:

$HOVE/ my App/ nesg/ i mpus. nsg

One of the lines in the text message file is:
00128,2, "Duplicate entry % found in %"

The | msgen utility converts the text message file (i mpus. nsg) into binary format,
resulting in a file called i npus. nsb:

% | msgen i mpus. nsg $HOVE/ nyAppl i cation i np AMVERI CAN

The following output results:

Cenerating nessage file inpus.nmsg -->
[home/ scot t/ nyAppl i cati on/ mesg/ i npus. nsb

NLS Binary Message File Generation Wility: Version 10.1.0.0.0 -Production
Copyright (c) Oracle Corporation 1979, 2003. Al rights reserved.

CORE 10.1.0.0.0 Producti on

10-10 Oracle Database Globalization Support Guide

11

Character Set Migration

This chapter discusses character set conversion and character set migration. It
includes the following topics:

« Overview of Character Set Migration
« Changing the Database Character Set of an Existing Database
« Migrating to NCHAR Datatypes

« Tasks to Recover Database Schema After Character Set Migration

Character Set Migration 11-1

Overview of Character Set Migration

Overview of Character Set Migration

Choosing the appropriate character set for your database is an important decision.
When you choose the database character set, consider the following factors:

« The type of data you need to store
« The languages that the database needs to accommodate now and in the future

« The different size requirements of each character set and the corresponding
performance implications

A related topic is choosing a new character set for an existing database. Changing
the database character set for an existing database is called character set migration.
When you migrate from one database character set to another you must choose an
appropriate character set. You should also plan to minimize data loss from the
following sources:

=« Data Truncation

« Character Set Conversion Issues

See Also: Chapter 2, "Choosing a Character Set”

Data Truncation

When the database is created using byte semantics, the sizes of the CHAR and
VARCHARZ datatypes are specified in bytes, not characters. For example, the
specification CHAR(20) in a table definition allows 20 bytes for storing character
data. When the database character set uses a single-byte character encoding scheme,
no data loss occurs when characters are stored because the number of characters is
equivalent to the number of bytes. If the database character set uses a multibyte
character set, then the number of bytes no longer equals the number of characters
because a character can consist of one or more bytes.

During migration to a new character set, it is important to verify the column widths
of existing CHAR and VARCHAR2 columns because they may need to be extended to

support an encoding that requires multibyte storage. Truncation of data can occur if
conversion causes expansion of data.

Table 11-1 shows an example of data expansion when single-byte characters
become multibyte characters through conversion.

11-2 Oracle Database Globalization Support Guide

Overview of Character Set Migration

Table 11-1 Single-Byte and Multibyte Encoding

Character WE8SMSWIN 1252 Encoding AL32UTF8 Encoding
a E4 C3 A4

F6 C3B6
© A9 C2 A9

80 E2 82 AC

The first column of Table 11-1 shows selected characters. The second column shows
the hexadecimal representation of the characters in the WESMSWIN1252 character
set. The third column shows the hexadecimal representation of each character in the
AL32UTF8 character set. Each pair of letters and numbers represents one byte. For
example, & (a with an umlaut) is a single-byte character (E4) in WESMSWIN1252,
but it becomes a two-byte character (C3 A4) in AL32UTF8. Also, the encoding for
the euro symbol expands from one byte (80) to three bytes (E2 82 AQC).

If the data in the new character set requires storage that is greater than the
supported byte size of the datatypes, then you need to change your schema. You
may need to use CLOB columns.

See Also: "Length Semantics" on page 2-12

Additional Problems Caused by Data Truncation
Data truncation can cause the following problems:

« Inthe database data dictionary, schema object names cannot exceed 30 bytes in
length. You must rename schema objects if their names exceed 30 bytes in the
new database character set. For example, one Thai character in the Thai national
character set requires 1 byte. In AL32UTFS8, it requires 3 bytes. If you have
defined a table whose name is 11 Thai characters, then the table name must be
shortened to 10 or fewer Thai characters when you change the database
character set to AL32UTFS8.

« If existing Oracle usernames or passwords are created based on characters that
change in size in the new character set, then users will have trouble logging in
because of authentication failures after the migration to a new character set.
This occurs because the encrypted usernames and passwords stored in the data
dictionary may not be updated during migration to a new character set. For
example, if the current database character set is WESBMSWIN1252 and the new
database character set is AL32UTF8, then the length of the username scétt (o

Character Set Migration 11-3

Overview of Character Set Migration

with an umlaut) changes from 5 bytes to 6 bytes. In AL32UTF8, scott can no
longer log in because of the difference in the username. Oracle Corporation
recommends that usernames and passwords be based on ASCII characters. If
they are not, then you must reset the affected usernames and passwords after
migrating to a new character set

Note: Encrypted usernames and passwords stored in the data
dictionary are not updated when migration is accomplished with
the ALTER DATABASE method, but they are updated if the
migration is accomplished with the Import and Export utilities.

« When CHAR data contains characters that expand after migration to a new
character set, space padding is not removed during database export by default.
This means that these rows will be rejected upon import into the database with
the new character set. The workaround is to set the BLANK_TRI MM NG
initialization parameter to TRUE before importing the CHAR data.

See Also: Oracle Database Reference for more information about the
BLANK _TRI MM NGinitialization parameter

Character Set Conversion Issues
This section includes the following topics:

« Replacement Characters that Result from Using the Export and Import Utilities

« Invalid Data That Results from Setting the Client’s NLS_LANG Parameter
Incorrectly

Replacement Characters that Result from Using the Export and Import Utilities

The Export and Import utilities can convert character sets from the original
database character set to the new database character set. However, character set
conversions can sometimes cause data loss or data corruption. For example, if you
are migrating from character set A to character set B, then the destination character
set B should be a superset of character set A. The destination character, B, is a
superset if it contains all the characters defined in character set A. Characters that
are not available in character set B are converted to replacement characters, which
are often specified as ? or ¢, or as a character that is related to the unavailable
character. For example, & (a with an umlaut) can be replaced by a. Replacement
characters are defined by the target character set.

11-4 Oracle Database Globalization Support Guide

Overview of Character Set Migration

Note: There is an exception to the requirement that the destination
character set B should be a superset of character set A. If your data
contains no characters that are in character set A but are not in
character set B, then the destination character set does not need to
be a superset of character set A to avoid data loss or data
corruption.

Figure 11-1 shows an example of a character set conversion in which the copyright
and euro symbols are converted to ? and & is converted to a.

Figure 11-1 Replacement Characters in Character Set Conversion

Character Set Character Set
A B

a a€—

b b

C Cc

€ ? €

©

To reduce the risk of losing data, choose a destination character set with a similar
character repertoire. Migrating to Unicode can be an attractive option because
AL32UTF8 contains characters from most legacy character sets.

Invalid Data That Results from Setting the Client’s NLS_LANG Parameter
Incorrectly

Another character set migration scenario that can cause the loss of data is migrating
a database that contains invalid data. Invalid data usually occurs in a database
because the NLS_LANG parameter is not set properly on the client. The NLS_LANG
value should reflect the client operating system code page. For example, in an
English Windows environment, the code page is WESMSWIN1252. When the NLS_
LANG parameter is set properly, the database can automatically convert incoming
data from the client operating system. When the NLS_LANG parameter is not set
properly, then the data coming into the database is not converted properly. For

Character Set Migration 11-5

Overview of Character Set Migration

example, suppose that the database character set is AL32UTF8, the client is an
English Windows operating system, and the NLS_LANG ssetting on the client is
AL32UTF8. Data coming into the database is encoded in WESBMSWIN1252 and is
not converted to AL32UTF8 data because the NLS _LANGsetting on the client
matches the database character set. Thus Oracle assumes that no conversion is
necessary, and invalid data is entered into the database.

This can lead to two possible data inconsistency problems. One problem occurs
when a database contains data from a character set that is different from the
database character set but the same code points exist in both character sets. For
example, if the database character set is WE8ISO8859P1 and the NLS_LANG setting
of the Chinese Windows NT client is SI MPLI FI ED CHI NESE _

CHI NA. VIE8] SOB859P1, then all multibyte Chinese data (from the ZHS16GBK
character set) is stored as multiples of single-byte WE8ISO8859P1 data. This means
that Oracle treats these characters as single-byte WE8ISO8859P1 characters. Hence
all SQL string manipulation functions such as SUBSTR or LENGTH are based on
bytes rather than characters. All bytes constituting ZHS16GBK data are legal
WES8ISO8859P1 codes. If such a database is migrated to another character set such
as AL32UTF8, then character codes are converted as if they were in WE8ISO8859P1.
This way, each of the two bytes of a ZHS16GBK character are converted separately,
yielding meaningless values in AL32UTF8. Figure 11-2 shows an example of this
incorrect character set replacement.

Figure 11-2 Incorrect Character Set Replacement

Database Server

(WEBISO8859P1) Simplified Chinese

Windows NT
(WE8ISO8859P1)

< -3

1 0xB1 i_OxEDE < { OXB1ED :

The second possible problem is having data from mixed character sets inside the
database. For example, if the data character set is WESMSWIN1252, and two
separate Windows clients using German and Greek are both using
WEBMSWIN1252 as the NLS_LANGcharacter set, then the database contains a

11-6 Oracle Database Globalization Support Guide

Changing the Database Character Set of an Existing Database

mixture of German and Greek characters. Figure 11-3 shows how different clients
can use different character sets in the same database.

Figure 11-3 Mixed Character Sets

Database Server
(WEBMSWIN1252)

/ Coa] ok \

German Windows Greek Windows

For database character set migration to be successful, both of these cases require

manual intervention because Oracle cannot determine the character sets of the data
being stored.Incorrect data conversion can lead to data corruption, so perform a full
backup of the database before attempting to migrate the data to a new character set.

Changing the Database Character Set of an Existing Database

Database character set migration has two stages: data scanning and data
conversion. Before you change the database character set, you need to identify
possible database character set conversion problems and truncation of data. This
step is called data scanning.

Data scanning identifies the amount of effort required to migrate data into the new
character encoding scheme before changing the database character set. Some

Character Set Migration 11-7

Changing the Database Character Set of an Existing Database

examples of what may be found during a data scan are the number of schema
objects where the column widths need to be expanded and the extent of the data
that does not exist in the target character repertoire. This information helps to
determine the best approach for converting the database character set.

Incorrect data conversion can lead to data corruption, so perform a full backup of
the database before attempting to migrate the data to a new character set.

There are three approaches to converting data from one database character set to
another if the database does not contain any of the inconsistencies described in
"Character Set Conversion Issues" on page 11-4. A description of methods to
migrate databases with such inconsistencies is out of the scope of this
documentation. For more information, contact Oracle Consulting Services for
assistance.

The approaches are:

« Migrating Character Data Using a Full Export and Import

» Migrating a Character Set Using the CSALTER Script

« Migrating Character Data Using the CSALTER Script and Selective Imports

See Also: Chapter 12, "Character Set Scanner Ultilities" for more
information about data scanning

Migrating Character Data Using a Full Export and Import

In most cases, a full export and import is recommended to properly convert all data
to a new character set. It is important to be aware of data truncation issues, because
columns with character datatypes may need to be extended before the import to
handle an increase in size. Existing PL/SQL code should be reviewed to ensure that
all byte-based SQL functions such as LENGTHB, SUBSTRB, and | NSTRB, and
PL/SQL CHAR and VARCHARZ2 declarations are still valid.

See Also: Oracle Database Utilities for more information about the
Export and Import utilities

Migrating a Character Set Using the CSALTER Script

The CSALTER script is part of the Database Character Set Scanner utility. The
CSALTER script is the most straightforward way to migrate a character set, but it
can be used only under special circumstances: the database character set itself and
all of its schema data must be a strict subset of the new character set. The new
character set is a strict superset of the current character set if:

11-8 Oracle Database Globalization Support Guide

Changing the Database Character Set of an Existing Database

« Each and every character in the current character set is available in the new
character set.

« Each and every character in the current character set has the same code point
value in the new character set. For example, many character sets are strict
supersets of US7ASCII.

With the strict superset criteria in mind, only the metadata is converted to the new
character set by the CSALTER script, with the following exception; the CSALTER
script performs data conversion only on CLOB columns in the data dictionary and
sample schemas that have been created by Oracle. CLOB columns that users have
created may need to be handled separately. Beginning with Oracle9i, some internal
fields in the data dictionary and sample schemas are stored in CLOB columns.
Customers may also store data in CLOB fields. When the database character set is
multibyte, then CLOB data is stored in a format that is compatible with UCS-2 data.
When the database character set is single-byte, then CLOB data is stored using the
database character set. Because the CSALTER script converts data only in CLOB
columns in the data dictionary and sample schemas that were created by Oracle,
any other CLOB columns that are created must be first exported and then dropped
from the schema before the CSALTER script can be run.

To change the database character set, perform the following steps:

1. Shut down the database, using either a SHUTDOWN | MVEDI ATE or a SHUTDOVWN
NORMAL statement.

2. Do afull backup of the database, because the CSALTER script cannot be rolled
back.

3. Start up the database.
4. Run the Database Character Set Scanner utility.
CSSCAN / AS SYSDBA FULL=Y...

5. Run the CSALTER script.

@ACSALTER. PLB NORVAL
SHUTDOM | MVEDI ATE; -- or SHUTDOAN NORMAL,
STARTUP;

Character Set Migration 11-9

Migrating to NCHAR Datatypes

See Also:

« "Migrating Character Data Using the CSALTER Script and
Selective Imports” on page 11-10

« Appendix A, "Locale Data" for a list of all superset character
sets

« "Database Character Set Scanner CSALTER Script" on
page 12-41

Using the CSALTER Script in an Oracle Real Application Clusters Environment

In an Oracle Real Application Clusters environment, ensure that no other Oracle
background processes are running, with the exception of the background processes
associated with the instance through which a user is connected, before attempting
to issue the CSALTER script. With DBA privileges, use the following SQL statement
to verify that no other Oracle background processes are running:

SELECT SID, SERIAL#, PROGRAM FROM V$SESSI ON;

Set the CLUSTER DATABASE initialization parameter to FALSE to allow the
character set change to be completed. Reset it to TRUE after the character set has
been changed.

Migrating Character Data Using the CSALTER Script and Selective Imports

Another approach to migrating character data is to perform selective exports
followed by rescanning and running the CSALTER script. This approach is most
common when the subset character set is single-byte and the migration is to a
multibyte character set. In this scenario, user-created CLOBs must be converted
because the encoding changes from the single- byte character set to a
UCS-2-compatible format which Oracle uses for storage of CLOBs regardless of the
multibyte encoding. The Database Character Set Scanner identifies these columns as
convertible. It is up to the user to export these columns and then drop them from
the schema, rescan, and, if the remaining data is clean, run the CSALTER script.
When these steps have been completed, then import the CLOB columns to the
database to complete migration.

Migrating to NCHAR Datatypes

Beginning with Oracle9i, data that is stored in columns of the NCHAR datatypes is
stored exclusively in a Unicode encoding regardless of the database character set.

11-10 Oracle Database Globalization Support Guide

Migrating to NCHAR Datatypes

This allows users to store Unicode in a database that does not use Unicode as the
database character set.

This section includes the following topics:

« Migrating Version 8 NCHAR Columns to Oracle9i and Later
« Changing the National Character Set

« Migrating CHAR Columns to NCHAR Columns

Migrating Version 8 NCHAR Columns to Oracle9i and Later

In the version 8 database, Oracle introduced a national character datatype (NCHAR)
that allows a second, alternate character set in addition to the database character
set. The NCHAR datatypes support several fixed-width Asian character sets that
were introduced to provide better performance when processing Asian character
data.

Beginning with Oracle9i, the SQL NCHAR datatypes are limited to Unicode character
set encoding (UTF8 and AL16UTF16). Any other version 8 character sets that were
available for the NCHAR datatype, including Asian character sets such as
JA16SJISFIXED are no longer supported.

The steps for migrating existing NCHAR, NVARCHAR2, and NCLOB columns to NCHAR
datatypes in Oracle9i and later are as follows:

1. Export all NCHAR columns from the version 8 or Oracle8i database.
2. Drop the NCHAR columns.

3. Upgrade the database to the later release.

4. Import the NCHAR columns into the upgraded database.

The migration utility can also convert version 8 and Oracle8i NCHAR columns to
NCHAR columns in later releases. A SQL NCHAR upgrade script called

ut | nchar. sql is supplied with the migration utility. Run it at the end of the
database migration to convert version 8 and Oracle8i NCHAR columns to the NCHAR
columns in later releases. After the script has been executed, the data cannot be
downgraded. The only way to move back to version 8 or Oracle8i is to drop all
NCHAR columns, downgrade the database, and import the old NCHAR data from a
previous version 8 or Oracle8i export file. Ensure that you have a backup (export
file) of version 8 or Oracle8i NCHAR data, in case you need to downgrade your
database in the future.

Character Set Migration 11-11

Migrating to NCHAR Datatypes

See Also:

« Oracle Database Utilities for a description of export and import
procedures

» Oracle Database Upgrade Guide for NCHAR migration information

Changing the National Character Set

To change the national character set, use the ALTER DATABASE NATI ONAL
CHARACTER SET statement. The syntax of the statement is as follows:

ALTER DATABASE [db_name] NATI ONAL CHARACTER SET new NCHAR character_set;

db_nane is optional. The character set name should be specified without quotes.

You can issue the ALTER DATABASE CHARACTER SET and ALTER DATABASE
NATI ONAL CHARACTER SET statements together if desired.

You can use the n_swi t ch. sqgl script, located in $ORACLE_HOVE/ r dbns/ admi n,
to convert the national character set between UTF8 and AL16UTF16. Runitin
RESTRI CTED mode.

See Also: Oracle Database SQL Reference for the syntax of the
ALTER DATABASE NATI ONAL CHARACTER SET statement

Migrating CHAR Columns to NCHAR Columns

You can change a column’s datatype definition using the following methods:
« The ALTER TABLE MODI FY statement
« Online table redefinition

The ALTER TABLE MODI FY statement has the following advantages over online
table redefinition:

« Easier to use
« Fewver restrictions

Online table redefinition has the following advantages over the ALTER TABLE
MODI FY statement:

« Faster for columns with a large amount of data
« Can migrate several columns at one time

« Table is available for DML during most of the migration process

11-12 Oracle Database Globalization Support Guide

Migrating to NCHAR Datatypes

« Avoids table fragmentation, which saves space and allows faster access to data.
« Can be used for migration from the CLOB datatype to the NCLOB datatype
This section contains the following topics:

« Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to
NCHAR Columns

« Using Online Table Redefinition to Migrate a Large Table to Unicode

Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to
NCHAR Columns

The ALTER TABLE MODI FY statement can be used to change table column
definitions from the CHAR datatypes to NCHAR datatypes. It also converts all of the
data in the column from the database character set to the NCHAR character set. The
syntax of the ALTER TABLE MODI FY statement is as follows:

ALTER TABLE tabl e_name MODI FY (col um_name dat atype);

If indexes have been built on the migrating column, then dropping the indexes can
improve the performance of the ALTER TABLE MODI FY statement because indexes
are updated when each row is updated.

The maximum column lengths for NCHAR and NVARCHAR2 columns are 2000 and
4000 bytes. When the NCHAR character set is AL16UTF16, the maximum column
lengths for NCHAR and NVARCHAR2 columns are 1000 and 2000 characters, which
are 2000 and 4000 bytes. If this size limit is violated during migration, then consider
changing the column to the NCLOB datatype instead.

Note: CLOB columns cannot be migrated to NCLOB columns using
the ALTER TABLE MODI FY statement. Use online table
redefinition to change a column from the CLOB datatype to the

NCL OB datatype.

See Also: "Using Online Table Redefinition to Migrate a Large
Table to Unicode" on page 11-13

Using Online Table Redefinition to Migrate a Large Table to Unicode

It takes significant time to migrate a large table with a large number of rows to
Unicode datatypes. During the migration, the column data is unavailable for both
reading and updating. Online table redefinition can significantly reduce migration

Character Set Migration 11-13

Migrating to NCHAR Datatypes

time. Using online table redefinition also allows the table to be accessible to DML
during most of the migration time.

Perform the following tasks to migrate a table to Unicode datatypes using online
table redefinition:

1.

Use the DBMS_REDEFI NI TI ON. CAN_REDEF_TABLE PL/SQL procedure to
verify that the table can be redefined online. For example, to migrate the
scott.emp table, enter the following command:

DBMS_REDEFI NI TI ON. CAN_REDEF_TABLE(’ scott’,’enp’);

Create an empty interim table in the same schema as the table that is to be
redefined. Create it with NCHAR datatypes as the attributes. For example,
enter a statement similar to the following:

CREATE TABLE i nt _enp(
enpno NUMBER(4),
enane NVARCHAR2(10),
j ob NVARCHAR2(9),
mgr NUVBER(4),
hi redat e DATE,
sal NUMBER(7, 2),
dept no NUMBER(2),
org NVARCHAR2(10));

Start the online table redefinition. Enter a command similar to the following:

DBMS_REDEFI NI TI ON. START_REDEF_TABLE(’ scott’,
emp’,

"int_enp’,

" enpno enpno,
to_nchar(enane) enane,
to_nchar(job) job,

ngr ngr,

hiredate hiredate,

sal sal,

dept no dept no,
to_nchar(org) org');

If you are migrating CLOB columns to NCLOB columns, then use the TO_NCLOB
SQL conversion function instead of the TO_NCHAR SQL function.

Create triggers, indexes, grants, and constraints on the interim table. Referential
constraints that apply to the interim table (the interim table is a parent or child
table of the referential constraint) must be created in DI SABLED mode. Triggers

11-14 Oracle Database Globalization Support Guide

Migrating to NCHAR Datatypes

that are defined on the interim table are not executed until the online table
redefinition process has been completed.

You can synchronize the interim table with the original table. If many DML
operations have been applied to the original table since the online redefinition
began, then execute the DBVMS_REDEFI NI TI ON. SYNC | NTERI M _TABLE
procedure. This reduces the time required for the DBV5

REDEFI NI TI ON. FI NI SH REDEF_TABLE procedure. Enter a command similar
to the following:

DBMS_REDEFI NI TI ON. SYNC_| NTERI M_TABLE(' scott’, 'enp’, 'int_enp’);
Execute the DBMS_REDEFI NI TI ON. FI NI SH_REDEF_TABLE procedure. Enter a
command similar to the following:

DBMS_REDEFI NI TI ON. RI NIl SH REDEF_TABLE(’ scott’, 'enp’, ’int_enp’);

When this procedure has been completed, the following conditions are true:

« The original table is redefined so that it has all the attributes, indexes,
constraints, grants, and triggers of the interim table.

« The referential constraints that apply to the interim table apply to the
redefined original table.

Drop the interim table. Enter a statement similar to the following:
DROP TABLE int_enp;

The results of the online table redefinition tasks are as follows:

The original table is migrated to Unicode columns.

The triggers, grants, indexes, and constraints defined on the interim table after
the START_REDEF TABLE subprogram and before the FI Nl SH REDEF _TABLE
subprogram are defined for the redefined original table. Referential constraints
that apply to the interim table now apply to the redefined original table and are
enabled.

The triggers, grants, indexes, and constraints defined on the original table
before redefinition are transferred to the interim table and are dropped when
you drop the interim table. Referential constraints that applied to the original
table before redefinition were applied to the interim table and are now disabled.

PL/SQL procedures and cursors that were defined on the original table before
redefinition are invalidated. They are automatically revalidated the next time
they are used. Revalidation may fail because the table definition has changed.

Character Set Migration 11-15

Tasks to Recover Database Schema After Character Set Migration

See Also: Oracle Database Administrator's Guide for more
information about online table redefinition

Tasks to Recover Database Schema After Character Set Migration

You may need to perform additional tasks to recover a migrated database schema to
its original state. Consider the issues described in Table 11-2.

Table 11-2 Issues During Recovery of a Migrated Database Schema
Issue Description
Indexes When table columns are changed from CHAR datatypes to NCHAR datatypes by the ALTER

Constraints
Triggers

Replication

Binary order

TABLE MODI FY statement, indexes that are built on the columns are changed automatically
by the database. This slows down performance for the ALTER TABLE MODI FY statement.
If you drop indexes before issuing the ALTER TABLE MODI FY statement, then re-create
them after migration.

If you disable constraints before migration, then re-enable them after migration.
If you disable triggers before migration, then re-enable them after migration.

If the columns that are migrated to Unicode datatypes are replicated across several sites,
then the changes should be executed at the master definition site. Then they are propagated
to the other sites.

The migration from CHAR datatypes to NCHAR datatypes involves character set conversion if
the database and NCHAR data have different character sets. The binary order of the same
data in different encodings can be different. This affects applications that rely on binary
order.

11-16 Oracle Database Globalization Support Guide

12

Character Set Scanner Utilities

The character set scanner utilities are tools for detecting and verifying valid and
invalid data. The Language and Character Set File Scanner supports text files, while
the Database Character Set Scanner scans data inside the database.

This chapter introduces the Language and Character Set File Scanner and the
Database Character Set Scanner. The topics in this chapter include:

« The Language and Character Set File Scanner

« The Database Character Set Scanner

« Scan Modes in the Database Character Set Scanner

« Installing and Starting the Database Character Set Scanner

« Database Character Set Scanner Parameters

« Database Character Set Scanner Sessions: Examples

« Database Character Set Scanner Reports

« How to Handle Convertible or Lossy Data in the Data Dictionary
« Storage and Performance Considerations in the Database Character Set Scanner
« Database Character Set Scanner CSALTER Script

« Database Character Set Scanner Views

« Database Character Set Scanner Error Messages

Character Set Scanner Utilities 12-1

The Language and Character Set File Scanner

The Language and Character Set File Scanner

The Language and Character Set File Scanner (LCSSCAN) is a high-performance,
statistically based utility for determining the language and character set for
unknown file text. It can automatically identify a wide variety of language and
character set pairs. With each text, the language and character set detection engine
sets up a series of probabilities, each probability corresponding to a language and
character set pair. The most statistically probable pair identifies the dominant
language and character set.

The purity of the text affects the accuracy of the language and character set
detection. Only plain text files are accepted, so markup tags must be stripped before
using the Language and Character Set File Scanner. The ideal case is literary text of
one single language with no spelling or grammatical errors. These types of text may
require 100 characters of data or more and can return results with a very high factor
of confidence. On the other hand, some technical documents can require longer
segments before they are recognized. Documents that contain a mix of languages or
character sets or text like addresses, phone numbers, or programming language
code may Yyield poor results. For example, if a document has both French and
German embedded, then the accuracy of guessing either language successfully is
statistically reduced. If a document has a lot of numeric data like addresses and
telephone numbers, then the accuracy of guessing is compromised.

This section includes the following topics:

« Syntax of the LCSSCAN Command

« Examples: Using the LCSSCAN Command

« Getting Command-Line Help for the Language and Character Set File Scanner
« Supported Languages and Character Sets

« LCSCCAN Error Messages

Syntax of the LCSSCAN Command

12-2

Start the Language and Character Set File Scanner with the LCSSCAN command. Its
syntax is as follows:

LCSSCAN [RESULTS=nunber] [BEG N=nunber] [END=number] FILE=file_name

The parameters are described in the rest of this section.

Oracle Database Globalization Support Guide

The Language and Character Set File Scanner

RESULTS
The RESULTS parameter is optional.

Property Description

Default value 1

Minimum value 1

Maximum value 3

Purpose The number of language and character set pairs that are

returned. They are listed in order of probability. The
comparative weight of the first choice cannot be quantified. The
recommended value for this parameter is the default value of 1.

BEGIN
The BEA N parameter is optional.

Property Description

Default value 1

Minimum value 1

Maximum value Number of bytes in file

Purpose The byte of the input file where LCSSCAN begins the scanning

process. The default value is the first byte of the input file.

END
The END parameter is optional.

Property Description

Default value End of file

Minimum value 3

Maximum value Number of bytes in file

Purpose The last byte of the input file that LCSSCAN scans. The default

value is the last byte of the input file.

FILE
The FI LE parameter is required.

Character Set Scanner Utilities 12-3

The Language and Character Set File Scanner

Property Description
Default value None
Purpose Specifies the name of a text file to be scanned

Examples: Using the LCSSCAN Command

Example 12-1 Specifying Only the File Name in the LCSSCAN Command
LCSSCAN FI LE=exanpl e. t xt

In this example, the entire exanpl e. t xt file is scanned because the BEG Nand
END parameters have not been specified. One language and character set pair will
be returned because the RESULTS parameter has not been specified.

Example 12-2 Specifying the RESULTS and BEGIN Parameters for LCSSCAN
LCSSCAN RESULTS=2 BEG N=50 FI LE=exanpl e. t xt

The scanning process starts at the 50th byte of the file and continues to the end of
the file. Two language and character set pairs will be returned.

Example 12-3 Specifying the RESULTS and END Parameters for LCSSCAN
LCSSCAN RESULTS=3 END=100 FI LE=exanpl e. t xt

The scanning process starts at the beginning of the file and ends at the 100th byte of
the file. Three language and character set pairs will be returned.

Example 12-4 Specifying the BEGIN and END Parameters for LCSSCAN
LCSSCAN BEG N=50 END=100 FI LE=exanpl e. t xt

The scanning process starts at the 50th byte and ends at the 100th byte of the file.
One language and character set pair will be returned because the RESULTS
parameter has not been specified.

Getting Command-Line Help for the Language and Character Set File Scanner

To obtain a summary of the Language and Character Set File Scanner parameters,
enter the following command:

LCSSCAN HELP=y

12-4 Oracle Database Globalization Support Guide

The Language and Character Set File Scanner

The resulting output shows a summary of the Language and Character Set Scanner
parameters.

Supported Languages and Character Sets
The Language and Character Set File Scanner supports several character sets for
each language.

When the binary values for a language match two or more encodings that have a
subset/superset relationship, the subset character set is returned. For example, if
the language is German and all characters are 7-bit, then US7ASCI|I is returned
instead of WEBMSWIN1252, WE8ISO8859P15, or WE8ISO8859P1.

When the character set is determined to be UTF-8, the Oracle character set UTF8 is
returned by default unless 4-byte characters (supplementary characters) are
detected within the text. If 4-byte characters are detected, then the character set is
reported as AL32UTF8.

See Also: "Language and Character Set Detection Support” on
page A-23 for a list of supported languages and character sets

LCSCCAN Error Messages

LCD-00001 An unknown error occured.
Cause: An error occurred accessing an internal structure.

Action: Report this error to Oracle Support.

LCD-00002 NLS data could not be loaded.
Cause: An error occurred accessing $ORACLE_HOVE/ nl s/ dat a.

Action: Check to make sure $ORACLE_HOME/ nl s/ dat a exists and is
accessible. If not found check $ORA_NLS10 directory.

LCD-00003 An error occurred while reading the profile file.
Cause: An error occurred accessing $ORACLE _HOVE/ nl s/ dat a.

Action: Check to make sure $SORACLE_HOME/ nl s/ dat a exists and is
accessible. If not found check $ORA_NLS10 directory.

LCD-00004 The beginning or ending offset has been set incorrectly.
Cause: The beginning and ending offsets must be an integer greater than 0.

Action: Change the offset to a positive number.

Character Set Scanner Utilities 12-5

The Database Character Set Scanner

LCD-00005 The ending offset has been set incorrectly.
Cause: The ending offset must be greater than the beginning offset.

Action: Change the ending offset to be greater than the beginning offset.

LCD-00006 An error occurred when opening the input file.
Cause: The file was not found or could not be opened.

Action: Check the name of the file specified. Make sure the full file name is
specified and that the file is not in use.

LCD-00007 The beginning offset has been set incorrectly.
Cause: The beginning offset must be less than the number of bytes in the file.

Action: Check the size of the file and specify a smaller beginning offset.

LCD-00008 No result was returned.
Cause: Not enough text was inputted to produce a result.

Action: A larger sample of text needs to be inputted to produce a reliable
result.

The Database Character Set Scanner

The Database Character Set Scanner assesses the feasibility of migrating an Oracle
database to a new database character set. The Database Character Set Scanner
checks all character data in the database and tests for the effects and problems of
changing the character set encoding. A summary report is generated at the end of
the scan that shows the scope of work required to convert the database to a new
character set.

Based on the information in the summary report, you can decide on the most
appropriate method to migrate the database's character set. The methods are:

« Export and Import utilities
« CSALTERSscript
« CSALTERSscript with Export and Import utilities on selected tables

12-6 Oracle Database Globalization Support Guide

Scan Modes in the Database Character Set Scanner

Note: If the Database Character Set Scanner reports conversion
exceptions, then these problems must be fixed before using any of
the described methods. This may involve further data analysis and
modifying the problem data to eliminate those exceptions. In
extreme cases, both the database and the application might need to
be modified. Oracle Corporation recommends you contact Oracle
Consulting Services for services in database character set migration.

See Also: "Changing the Database Character Set of an Existing
Database" on page 11-7

Conversion Tests on Character Data

The Database Character Set Scanner reads the character data and tests for the
following conditions on each data cell:

Do character code points of the data cells change when converted to the new
character set?

Can the data cells be successfully converted to the new character set?

Will the post-conversion data fit into the current column size?

The Database Character Set Scanner reads and tests for data in CHAR, VARCHARZ,
LONG, CLOB, NCHAR, NVARCHAR2, NCLOB and VARRAY columns. The Database
Character Set Scanner does not perform post-conversion column size testing for
LONG, CLOB, and NCLOB columns.

Scan Modes in the Database Character Set Scanner

The Database Character Set Scanner provides three modes of database scan:

Full Database Scan

Full Database Scan
User Scan

Table Scan

The Database Character Set Scanner reads and verifies the character data of all
tables belonging to all users in the database including the data dictionary (such as
SYS and SYSTEMusers), and it reports on the effects of the simulated migration to

Character Set Scanner Utilities 12-7

Installing and Starting the Database Character Set Scanner

the new database character set. It scans all schema objects including stored
packages, procedures and functions, and object definitions stored as part of the data
dictionary.

To understand the feasibility of migrating your database to a new database
character set, you need to perform a full database scan.

User Scan
The Database Character Set Scanner reads and verifies character data of all tables
belonging to the specified user and reports on the effects on the tables of changing
the character set.

Table Scan

The Database Character Set Scanner reads and verifies the character data of the
specified tables, and reports the effects on the tables of changing the character set.

Installing and Starting the Database Character Set Scanner

This section describes how to install and start the Database Character Set Scanner. It
includes the following topics:

« Access Privileges for the Database Character Set Scanner

« Installing the Database Character Set Scanner

« Starting the Database Character Set Scanner

« Creating the Database Character Set Scanner Parameter File

« Getting Online Help for the Database Character Set Scanner

Access Privileges for the Database Character Set Scanner

To use the Database Character Set Scanner, you must have DBA privileges on the
Oracle database.

Installing the Database Character Set Scanner

Before using the Database Character Set Scanner, you must run the csni nst . sql
script on the database that you plan to scan. The csmi nst . sgl script needs to be
run only once. The script performs the following tasks to prepare the database for
scanning:

12-8 Oracle Database Globalization Support Guide

Installing and Starting the Database Character Set Scanner

« Creates a user named CSM G

« Assigns the necessary privileges to CSM G

« Assigns the default tablespace to CSM G

« Connectsas CSM G

« Creates the Character Set Scanner system tables under CSM G

The SYSTEMtablespace is assigned to CSM Gby default. Ensure that there is
sufficient storage space available in the SYSTEMtablespace before scanning the
database. The amount of space required depends on the type of scan and the nature
of the data in the database.

See Also: "Storage and Performance Considerations in the
Database Character Set Scanner” on page 12-38

You can modify the default tablespace for CSM Gby editing the csni nst . sql
script. Modify the following statement in csmi nst . sgl to assign the preferred
tablespace to CSM Gas follows:

ALTER USER csmi g DEFAULT TABLESPACE t abl espace_nane;

On UNIX platforms, run csmi nst . sql using these commands and SQL statement:

% cd $ORACLE_HOVE/ r dbrs/ adni n
% sql pl us "systenl manager as sysdba"
SQL> START csninst . sql

Starting the Database Character Set Scanner

You can start the Database Character Set Scanner from the command line by one of
these methods:

« Using the Database Character Set Scanner parameter file
CSSCAN user nane/ passwor d PARFI LE=fi | e_nane

« Using the command line to specify parameter values. For example:
CSSCAN user nanme/ password FULL=y TOCHAR=al 32ut f 8 ARRAY=10240 PROCESS=3

« Using an interactive session

CSSCAN user nane/ passwor d

Character Set Scanner Utilities 12-9

Installing and Starting the Database Character Set Scanner

In an interactive session, the Database Character Set Scanner prompts you for
the values of the following parameters:

FULL/ TABLE/ USER
TOCHAR

ARRAY

PROCESS

If you want to specify other parameters, then use the Database Character Set
Parameter file or specify the parameter values in the CSSCAN command.

Creating the Database Character Set Scanner Parameter File

The Database Character Set Scanner parameter file enables you to specify Database
Character Set Scanner parameters in a file where they can be easily modified or
reused. Create a parameter file using a text editor.

Use one of the following formats to specify parameters in the Database Character
Set Scanner parameter file:

par anet er _name=val ue
par anet er _name=(val uel, value2, ...)

You can add comments to the parameter file by preceding them with the pound
sign (#). All characters to the right of the pound sign are ignored.

The following is an example of a parameter file:

USERI D=syst eni manager

USER=HR # scan HR tabl es

TOCHAR=al 32ut f 8

ARRAY=4096000

PROCESS=2 # use two concurrent scan processes
FEEDBACK=1000

See Also: "Database Character Set Scanner Parameters" on
page 12-11

Getting Online Help for the Database Character Set Scanner

The Database Character Set Scanner provides online help. Enter the following
command:

CSSCAN HELP=Y

12-10 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

The resulting output shows a summary of the Database Character Set Scanner
parameters.

Database Character Set Scanner Parameters

The following table shows a summary of parameters for the Database Character Set
Scanner. The rest of this section contains detailed descriptions of the parameters.

Parameter Default Prompt Description

USERI D - yes Username/password

FULL N yes Scan entire database

USER - yes Owner of the tables to be scanned

TABLE - yes List of tables to scan

EXCLUDE - no List of tables to exclude

TOCHAR - yes New database character set name

FROMCHAR - no Current database character set name

TONCHAR - no New national character set name

FROWNCHAR - no Current national character set name

ARRAY 102400 yes Size of array fetch buffer

PROCESS 1 yes Number of concurrent scan processes

MAXBLOCKS - no The maximum number of blocks that can be in a table without the table
being split

CAPTURE N no Capture convertible data

SUPPRESS - no Maximum number of exceptions logged for each table

FEEDBACK - no Report progress every n rows

BOUNDARI ES - no List of column size boundaries for summary report

LASTRPT N no Generate report of the previous database scan

LOG scan no Base file name for report files

PARFI LE - no Parameter file name

PRESERVE N no Preserve existing scan results

LCSD N no Enable language and character set detection

Character Set Scanner Utilities 12-11

Database Character Set Scanner Parameters

Parameter Default Prompt Description
LCSDDATA LOSSY no Define the scope of the language and character set detection
HELP N no Show help screen
ARRAY
Property Description
Default value 102400
Minimum value 4096
Maximum value Unlimited
Purpose Specifies the size in bytes of the array buffer used to fetch data.

The size of the array buffer determines the number of rows
fetched by the Database Character Set Scanner at any one time.

The following formula estimates the number of rows fetched at one time for a given
table:

rows fetched =
(ARRAY value) / [(sumof all the CHAR and VARCHAR2 col umm sizes) + (nunber of CLOB col ums
* 4000) + (number of VARRAY col urms * 4000)]

For example, suppose table A contains two CHAR columns (5 bytes and 10 bytes),
two VARCHAR2 columns (100 bytes and 200 bytes), and one CLOB column. If
ARRAY=102400 (the default), then the number of rows fetched is calculated as
follows:

102400/[5 + 10 + 100 + 200 + (1*4000) + (0%4000)] = 23.7
The Database Character Set Scanner can fetch 23 rows of data at one time from table
A.

If the sum in the denominator exceeds the value of the ARRAY parameter, then the
Database Character Set Scanner fetches only one row at a time. Tables with LONG
columns are fetched only one row at a time.

This parameter affects the duration of a database scan. In general, the larger the size
of the array buffer, the shorter the duration time. Each scan process allocates the
specified size of array buffer.

12-12 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

BOUNDARIES
Property Description
Default value None

Purpose

Specifies the list of column boundary sizes that are used for an
application data conversion summary report. This parameter is
used to locate the distribution of the application data for the
CHAR, VARCHARZ2, NCHAR, and NVARCHAR2 datatypes.

For example, if you specify a BOUNDARI ES value of (10, 100, 1000), then the
application data conversion summary report produces a breakdown of the CHAR
data into the following groups by their column length, CHAR(1. . 10),

CHAR(11..100) and CHAR(101. . 1000) . The behavior is the same for the
VARCHARZ2, NCHAR, and NVARCHAR2 datatypes.

CAPTURE

Property Description
Default value N

Range of values YorN

Purpose

Indicates whether to capture the information on the individual
convertible rows as well as the default or storing the exception
rows. The convertible rows information is written to the
CSMBERROCRS table if the CAPTURE parameter is set to Y. This
information can be used to deduce which records need to be
converted to the target character set by using export and import
processes on selected tables. When CAPTURE=Y, performance
may be affected and more storage space may be required.

EXCLUDE

Property

Description

Default value

Purpose

None

Specifies the names of the tables to be excluded from the scan

Character Set Scanner Utilities 12-13

Database Character Set Scanner Parameters

When this parameter is specified, the Database Character Set Scanner excludes the
specified tables from the scan. You can specify the following when you specify the
name of the table:

« schemanane specifies the name of the user’s schema from which to exclude the
table

« tabl enane specifies the name of the table or tables to be excluded

For example, the following command scans all of the tables that belong to the hr
sample schema except for the enpl oyees and depart nent s tables:

CSSCAN syst enf manager USER=HR EXCLUDE=(HR. EMPLOYEES , HR. DEPARTMENTS) ...

FEEDBACK

Property Description

Default value None

Minimum value 100

Maximum value 100000

Purpose Specifies that the Database Character Set Scanner should display
a progress meter in the form of a dot for every N number of rows
scanned

For example, if you specify FEEDBACK=1000, then the Database Character Set
Scanner displays a dot for every 1000 rows scanned. The FEEDBACK value applies
to all tables being scanned. It cannot be set for individual tables.

FROMCHAR

Property Description

Default value None

Purpose Specifies the current character set name for CHAR, VARCHAR2,

LONG and CLOB datatypes in the database. By default, the
Database Character Set Scanner assumes the character set for
these datatypes to be the database character set.

Use this parameter to override the default database character set definition for
CHAR, VARCHAR2, LONG, and CLOB data in the database.

12-14 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

FROMNCHAR
Property Description
Default value None

Purpose

Specifies the current national database character set name for
NCHAR, NVARCHAR2, and NCL OB datatypes in the database. By
default, the Database Character Set Scanner assumes the
character set for these datatypes to be the database national
character set.

Use this parameter to override the default database character set definition for
NCHAR, NVARCHAR2, and NCLOB data in the database.

FULL

Property Description
Default value N

Range of values YorN

Purpose

Indicates whether to perform the full database scan (that is, to
scan the entire database including the data dictionary). Specify
FULL=Y to scan in full database mode.

See Also:

"Scan Modes in the Database Character Set Scanner"” on

page 12-7 for more information about full database scans

HELP

Property Description
Default value N

Range of values YorN

Purpose

Displays a help message with the descriptions of the Database
Character Set Scanner parameters

See Also:

"Getting Online Help for the Database Character Set

Scanner” on page 12-10

Character Set Scanner Utilities 12-15

Database Character Set Scanner Parameters

LASTRPT

Property Description
Default value N

Range of values YorN

Purpose

Indicates whether to regenerate the Database Character Set
Scanner reports based on statistics gathered from the previous
database scan

If LASTRPT=Y is specified, then the Database Character Set Scanner does not scan
the database, but creates the report files using the information left by the previous
database scan session instead.

If LASTRPT=Y is specified, then only the USERI D, BOUNDARI ES, and LOG

parameters take effect.

LCSD

Property Description
Default value N

Range of values YorN

Purpose

Indicates whether to apply language and character set detection
during scanning

If LCSD=Y is specified, then the Database Character Set Scanner (CSSCAN) performs
language and character set detection on the data cells categorized by the LCSDATA
parameter. The accuracy of the detection depends greatly on the size and the quality
of the text being analyzed. The ideal case is literary text of one single language with
no spelling or grammatical errors. Data cells that contain a mixture of languages or
character sets or text such as addresses and names can yield poor results. When
CSSCAN cannot determine the most likely language and character set, it may return
up to three most likely languages and character sets for each cell. In some cases it
may return none. CSSCAN i gnor es any data cells with less than 10 bytes of data
and returns UNKNOWN for their language and character set.

The language and character set detection is a statistically-based technology, so its
accuracy varies depending on the quality of the input data. The goal is to provide
CSSCAN users with additional information about unknown data inside the

12-16 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

database. It is important for CSSCAN users to review the detection results and the
data itself before migrating the data to another character set.

Note that language and character set detection can affect the performance of the
Database Character Set Scanner, depending on the amount of data that is being
analyzed.

See Also: "The Language and Character Set File Scanner” on

page 12-2

LCSDDATA

Property Description

Default value LOSSY

Range of values LOSSY, TRUNCATI ON, CONVERTI BLE, CHANGELESS, ALL

Purpose Specifies the scope of the language and character set detection.
The default is to apply the detection to only the LOSSY data
cells.

This parameter takes effect only when LCSD=Y is specified. For example, if LCSD=Y
and LCSDATA=LOSSY, CONVERTI BLE, then the Database Character Set Scanner
tries to detect the character sets and languages of the data cells that are either
LOSSY or CONVERTI BLE. Data that is classified as CHANGELESS and TRUNCATI ON
will not be processed. Setting LCSDATA=ALL results in language and character set
detection for all data cells scanned in the current session.

After language and character set detection has been applied to CONVERTI BLE and
TRUNCATI ON data cells, some data cells may change from their original
classification to LOSSY. This occurs when the character set detection process
determines that the character set of these data cells is not the character set specified
in the FROMCHAR parameter.

LOG
Property Description
Default value scan

Character Set Scanner Utilities 12-17

Database Character Set Scanner Parameters

Property Description

Purpose Specifies a base file name for the following Database Character
Set Scanner report files:

« Database Scan Summary Report file, whose extension is
Ltxt

« Individual Exception Report file, whose extension is . err
« Screen log file, whose extension is . out

By default, the Database Character Set Scanner generates the three text files,
scan. t xt,scan. err,and scan. out in the current directory.

MAXBLOCKS

Property Description

Default value None

Minimum value 1000

Maximum value Unlimited

Purpose Specifies the maximum block size for each table, so that large

tables can be split into smaller chunks for the Database
Character Set Scanner to process

For example, if the MAXBLOCKS parameter is set to 1000, then any tables that are
greater than 1000 blocks in size are divided into n chunks, where
n=CEl L(t abl e bl ock si ze/ 1000).

Dividing large tables into smaller pieces is beneficial only when the number of
processes set with PROCESS is greater than 1. If the MAXBLOCKS parameter is not
set, then the Database Character Set Scanner attempts to split up large tables based
on its own optimization rules.

PARFILE

Property Description

Default value None

Purpose Specifies the name for a file that contains a list of Database

Character Set Scanner parameters

12-18 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

See Also: "Starting the Database Character Set Scanner"” on
page 12-9

PRESERVE

Property Description

Default value N

Range of values YorN

Purpose

Indicates whether to preserve the statistics gathered from the
previous scan session

If PRESERVE=Y is specified, then the Database Character Set Scanner preserves all
of the statistics from the previous scan. It adds (if PRESERVE=Y) or overwrites (if
PRESERVE=N) the new statistics for the tables being scanned in the current scan

request.

PROCESS

Property Description
Default value 1
Minimum value 1
Maximum value 32

Purpose Specifies the number of concurrent scan processes to utilize for
the database scan

SUPPRESS

Property Description

Default value
Minimum value
Maximum value

Purpose

Unset (results in unlimited number of rows)
0
Unlimited

Specifies the maximum number of data exceptions being logged
for each table

Character Set Scanner Utilities 12-19

Database Character Set Scanner Parameters

The Database Character Set Scanner inserts information into the CSMPERRORS table
when an exception is found in a data cell. The table grows depending on the
number of exceptions reported.

This parameter is used to suppress the logging of individual exception information
after a specified number of exceptions are inserted for each table. For example, if
SUPPRESS is set to 100, then the Database Character Set Scanner records a
maximum of 100 exception records for each table.

See Also: "Storage Considerations for the Database Character Set
Scanner" on page 12-38

TABLE

Property Description

Default value None

Purpose Specifies the names of the tables to scan

You can specify the following when you specify the name of the table:

« schemanane specifies the name of the user’s schema from which to scan the
table

« tabl enane specifies the name of the table or tables to be scanned

For example, the following command scans the enpl oyees and depart nent s
tables in the HR sample schema:

CSSCAN syst enf manager TABLE=(HR. EMPLOYEES, HR. DEPARTMENTS)

TOCHAR

Property Description

Default value None

Purpose Specifies a target database character set name for the CHAR,

VARCHARZ2, LONG, and CLOB data

12-20 Oracle Database Globalization Support Guide

Database Character Set Scanner Parameters

TONCHAR

Property Description

Default value None

Purpose Specifies a target database character set name for the NCHAR,

NVARCHAR2, and NCLOB data

If you do not specify a value for TONCHAR, then the Database Character Set Scanner
does not scan NCHAR, NVARCHAR2, and NCLOB data.

USER

Property Description

Default value None

Purpose Specifies the owner of the tables to be scanned

If the USER parameter is specified, then the Database Character Set Scanner scans all
tables belonging to the specified owner. For example, the following statement scans
all tables belonging to HR:

CSSCAN syst enf manager USER=hr ...

USERID

Property Description

Default value None

Purpose Specifies the username and password (and optional connect

string) of the user who scans the database. If you omit the
password, then the Database Character Set Scanner prompts you
for it

The following formats are all valid:

user nane/ passwor d

user nane/ passwor d@onnect _string
user name

user name@onnect _string

Character Set Scanner Utilities 12-21

Database Character Set Scanner Sessions: Examples

Database Character Set Scanner Sessions: Examples

The following examples show you how to use the command-line and parameter-file
methods for the Full Database, User, and Table scan modes.

Full Database Scan: Examples

The following examples show how to scan the full database to see the effects of
migrating it to AL32UTF8. This example assumes that the current database
character set is WE8ISO8859P1.

Example: Parameter-File Method

% csscan systeni manager parfile=param txt

The par am t xt file contains the following information:

full =y
tochar=al 32utf8
array=4096000
process=4

Example: Command-Line Method
% csscan system manager full=y tochar=al 32utf8 array=4096000 process=4

Database Character Set Scanner Messages

The scan. out file shows which tables were scanned. The default file name for the
report can be changed by using the LOG parameter.

See Also: "LOG" on page 12-17

Dat abase Character Set Scanner v2.0 : Release 10.1.0.0.0 - Production
(c) Copyright 2003 Oracle Corporation. Al rights reserved.
Connected to:

Oracl e Database 10g Enterprise Edition Rel ease 10.1.0.0.0

Wth the Partitioning and Oracle Data Mning options

JServer Release 10.1.0.0.0 - Devel opnent

Enurerating tables to scan...

. process 1 scanning SYS. SOURCES[AAAABHAABAAAAIQAAA]

12-22 Oracle Database Globalization Support Guide

Database Character Set Scanner Sessions: Examples

process 2 scanni ng SYS. TAB$[AAAAACAABAAAAADAAA]
process 2 scanni ng SYS. CLUS[AAAAACAABAAAAADAAA]
process 2 scanning SYS. | COL$[AAAAACAABAAAAADAAA]
process 2 scanning SYS. COL$[AAAAACAABAAAAADAAA]
process 1 scanni ng SYS. | ND$[AAAAACAABAAAAADAAA]
process 1 scanning SYS. TYPE_M SC$[AAAAACAABAAAAAQAAA]
1

process 1 scanni ng SYS. LOB$[AAAAACAABAAAAADAAA]

. process 1 scanning | X AQs_ORDERS QUEUETABLE G
process 2 scanning | X. AQs_ORDERS QUEUETABLE |

Creating Database Scan Summary Report. ..
Creating Individual Exception Report...

Scanner terminated successfully.

User Scan: Examples

The following example shows how to scan the user tables to see the effects of
migrating them to AL32UTF8. This example assumes the current database character
set is US7ASCII, but the actual data stored is in Western European WESBMSWIN1252
encoding.

Example: Parameter-File Method
% csscan systenf manager parfile=paramtxt

The par am t xt file contains the following information:

user =hr

fronthar =we8msw n1252
tochar=al 32utf 8
array=4096000
process=1

Example: Command-Line Method

% csscan system manager user=hr fronthar=we8msw n1252 tochar=al 32utf8
array=4096000 process=1

Character Set Scanner Utilities 12-23

Database Character Set Scanner Sessions: Examples

Database Character Set Scanner Messages
The scan. out file shows which tables were scanned.

Dat abase Character Set Scanner v2.0: Release 10.1.0.0 - Production
(c) Copyright 2003 Oracle Corporation. Al rights reserved.

Connected to:

Oracl e Database 10g Enterprise Edition Rel ease 10.1.0.0 - Production
Wth the bjects option

PL/ SQL Rel ease 10.1.0.0 - Production

Enurerating tables to scan...

process 1 scanning HR JOBS
process 1 scanning HR DEPARTMENTS
process 1 scanning HR JOB_H STORY
process 1 scanning HR EMPLOYEES

Creating Database Scan Summary Report...
Creating Individual Exception Report...

Scanner termnated successfully.

Single Table Scan: Examples

The following example shows how to scan a single table to see the effects of
migrating it to WESBMSWIN1252. This example assumes the current database
character set is in US7ASCII. Language and character set detection is performed on
the LOSSY data cells.

Example: Parameter-File Method
% csscan systen manager parfile=param txt

The par am t xt file contains the following information:

t abl e=hr. enpl oyees
t ochar =we8mswi n1252
array=4096000
process=1
suppress=100

| csd=y

12-24 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

Example: Command-Line Method

% csscan systen manager tabl e=hr. enpl oyees tochar=we8nswi n1252 array=4096000
process=1 supress=100 | csd=y

Database Character Set Scanner Messages
The scan. out file shows which tables were scanned.

Dat abase Character Set Scanner v2.0: Release 10.1.0.0 - Production
(c) Copyright 2003 Oracle Corporation. Al rights reserved.

Connected to:

Oracl e Database 10g Enterprise Edition Release 10.1.0.0 - Production
Wth the bjects option

PL/ SQ. Rel ease 10.1.0.0 - Production

. process 1 scanning HR EMPLOYEES
Creating Database Scan Summary Report...
Creating |ndividual Exception Report...

Scanner terninated successfully.

Database Character Set Scanner Reports
The Database Character Set Scanner generates two reports for each scan:
« Database Scan Summary Report
« Database Scan Individual Exception Report

The Database Scan Summary Report is found in the scan. t xt file. The Database
Scan Individual Exception Report is found in the scan. err file.

The default file names for the reports can be changed by using the LOG parameter.
See Also: "LOG" on page 12-17

Database Scan Summary Report

The scan. t xt file contains the Database Scan Summary Report. The following
output is an example of the report header. This section contains the time when each
process of the scan was performed.

Character Set Scanner Utilities 12-25

Database Character Set Scanner Reports

Dat abase Scan Summary Report

Tinme Started : 2002-12-16 20:35:56
Time Conpl eted: 2002-12-16 20:37:31

Process ID Time Started Ti me Conpl et ed

1 2002-12-16 20:36:07 2002-12-16 20:37:30
2 2002-12-16 20:36:07 2002-12-16 20:37:30

The report consists of the following sections:

«» Database Size

« Database Scan Parameters

« Scan Summary

«» Data Dictionary Conversion Summary

« Application Data Conversion Summary

« Application Data Conversion Summary Per Column Size Boundary
« Distribution of Convertible Data Per Table

« Distribution of Convertible Data Per Column
« Indexes To Be Rebuilt

« Truncation Due To Character Semantics

The information available for each section depends on the type of scan and the
parameters you select.

Database Size

This section reports on the current database size as well as identifying the amount
of potential data expansion after the character set migration.

The following output is an example.

Tabl espace Used Free Tot al Expansi on
SYSTEM 206. 63M 143. 38M 350. 00M 588. 00K
SYSAUX 8. 25M 131. 75M 140. 00M . 00K
Tot al 214.88M 275. 13M 490. 00M 588. 00K

12-26 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

The size of the largest CLOB is 57370 bytes

Database Scan Parameters

This section describes the parameters selected and the type of scan you chose. The

following output is an example.

Par anet er Val ue

CSSCAN Ver si on v2.0

| nstance Nane r dbns06

Dat abase Version 10.1.0.0.0
Scan type Ful | dat abase
Scan CHAR data? YES

Dat abase character set V\E8I SO8859P1
FROVCHAR VE8| SO8859P1
TOCHAR AL32UTF8
Scan NCHAR dat a? NO

Array fetch buffer size 102400

Nunber of processes 2

Capture convertible data? NO
Charset Language Detections Yes
Charset Language Paraneter LOSSY

Scan Summary

This section indicates the feasibility of the database character set migration. There
are two basic criteria that determine the feasibility of the character set migration of
the database. One is the condition of the data dictionary and the other is the
condition of the application data.

See Also:
page 12-41

"Database Character Set Scanner CSALTER Script" on

The Scan Summary section consists of two status lines: one line reports on the data
dictionary, and the other line reports on the application data.

The following is sample output from the Scan Summary:

Al'l character type data in the data dictionary are convertible to the new character set
Sone character type application data are not convertible to the new character set

Table 12-1 shows the types of status that can be reported for the data dictionary and
application data.

Character Set Scanner Utilities 12-27

Database Character Set Scanner Reports

Table 12-1 Possible Status of the Data Dictionary and Application Data

Data Dictionary Status Application Data Status

All character-type data in the data dictionary remains All character-type application data remains the same
the same in the new character set. in the new character set.

All character-type data in the data dictionary is All character-type application data is convertible to the
convertible to the new character set. new character set.

Some character-type data in the data dictionary is not Some character-type application data is not convertible
convertible to the new character set. to the new character set.

When all data remains the same in the new character set, it means that the encoding
values of the original character set are identical in the target character set. For
example, ASCII data is stored using the same binary values in both WE8ISO8859P1
and AL32 UTFS8. In this case, the database character set can be migrated using the
CSALTER script.

If all the data is convertible to the new character set, then the data can be safely
migrated using the Export and Import utilities. However, the migrated data will
have different encoding values in the target character set.

See Also:

« "Database Scan Individual Exception Report" on page 12-33 for
more information about non-convertible data

« "Migrating a Character Set Using the CSALTER Script" on
page 11-8

« "Migrating Character Data Using a Full Export and Import" on
page 11-8

Data Dictionary Conversion Summary

This section contains the statistics about the conversion of the data in the data
dictionary. The number of data cells with each type of status are reported by
datatype. The data dictionary conversion summary is available only when a full
database scan is performed.

Table 12-2 describes the possible types of status of a data cell.

Table 12-2 Possible Status of Data

Status Description

Changel ess Data remains the same in the new character set

12-28 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

Table 12-2 Possible Status of Data (Cont.)

Status Description

Converti bl e Datacan be successfully converted to the new character set
Truncation Data will be truncated if conversion takes place

Lossy Character data will be lost if conversion takes place

The following output is an example.

Dat at ype Changel ess Convertible Truncation Lossy
VARCHAR2 1, 214,557 0 0 0
CHAR 967 0 0 0
LONG 88, 657 0 0 0
CLOB 138 530 0 0
VARRAY 18 0 0 0
Tot al 1, 304, 337 530 0 0
Total in percentage 99. 959% 0.041% 0. 000% 0. 000%

The data dictionary can be safely migrated using the CSALTER script.

If the number of data cells recorded in the Converti bl e, Truncati on, and
Lossy columns are zero, then no data conversion is required to migrate the data
dictionary from the FROMCHAR character set to the TOCHAR character set.

If the numbers in the Tr uncat i on and Lossy columns are zero and some numbers
in the Converti bl e columns are not zero, then all data in the data dictionary is
convertible to the new character set. However, it is dangerous to convert the data in
the data dictionary without understanding their impact on the database. The
CSALTER script can convert some of the convertible cells in the data dictionary. The
message that follows the conversion summary table indicates whether this
conversion can be supported by the CSALTER script.

If the numbers in the Lossy column are not zero, then there is data in the data
dictionary that is not convertible. Therefore, it is not feasible to migrate the current
database to the new character because the export and import process cannot convert
the data into the new character set. For example, you might have a table name with
invalid characters or a PL/SQL procedure with a comment line that includes data
that cannot be mapped to the new character set. These changes to schema objects
must be corrected manually before migration to a new character set.

If the numbers in the Tr uncat i on column are not zero, then the export and import
process would truncate the data.

Character Set Scanner Utilities 12-29

Database Character Set Scanner Reports

See Also:

« "Database Character Set Scanner CSALTER Script” on

page 12-41

« "How to Handle Convertible or Lossy Data in the Data

Dictionary" on page 12-36

Application Data Conversion Summary

This section contains the statistics on conversion summary of the application data.

The number of data cells with each type of status are reported by datatype.

Table 12-2 describes the types of status that can be reported.

The following output is an example.

Convertible

Truncation

Dat at ype Changel ess
VARCHAR2 37, 757
CHAR 6, 404
LONG 4
CLOB 23
VARRAY 319
Tot al 44,507
Total in percentage 99. 946%

Application Data Conversion Summary Per Column Size Boundary
This section contains the conversion summary of the CHAR and VARCHAR2

0.051%

application data. The number of data cells with each type of status are reported by

column size boundaries specified by the BOUNDARI ES parameter. Table 12-2
describes the possible types of status.

This information is available only when the BOUNDARI ES parameter is specified.

The following output is an example.

Convertible

Truncation

Dat at ype Changel ess
VARCHAR2(1. . 30) 28,702
VARCHAR2(31. . 4000) 9,055
CHAR(1. . 30) 6, 404
CHAR(31. . 4000) 0
Tot al 44,161

12-30 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

Distribution of Convertible Data Per Table

This section shows how Converti bl e, Truncat i on, and Lossy data are
distributed within the database. The statistics are reported by table. If the list
contains only a few rows, then the Converti bl e data is localized. If the list
contains many rows, then the Converti bl e data occurs throughout the database.

The following output is an example.

USER. TABLE Convertible Truncation Lossy
HR. EMPLOYEES 1 0 0
CE. CUSTOVERS 2 0 0
PM ONLI NE_MEDI A 13 0 0
PM PRI NT_MEDI A 7 0 1
SYS. EXTERNAL_TAB$ 1 0 0
SYS. METASTYLESHEET 80 0 0

Distribution of Convertible Data Per Column

This section shows how Converti bl e, Truncat i on, and Lossy data are
distributed within the database. The statistics are reported by column. The
following output is an example.

USER. TABLE| COLUWN Convertible Truncation Lossy
HR. EMPLOYEES] FI RST_NAME 1
CE. CUSTOVERS| CUST_EMAI L 1
CE. CUSTOVERS| CUST_FI RST_NAME 1
PM ONLI NE_MEDI A| SYS_NC00042% 6
PM ONLI NE_MEDI A SYS_NC00062% 7
PM PRI NT_MEDI A| AD_FI NALTEXT 3
PM PRI NT_MEDI A AD_SOURCETEXT 4
SYS. EXTERNAL_TABS$| PARAM CLCB 1
SYS. METASTYLESHEET| STYLESHEET 80

Indexes To Be Rebuilt

This generates a list of all the indexes that are affected by the database character set
migration. These can be rebuilt after the data has been imported. The following
output is an example.

USER. I NDEX on USER. TABLE(COLUWN)

HR EMP_NAME_| X on HR EMPLOYEES(FI RST_NANE)
HR EMP_NAME | X on HR EMPLOYEES(LAST NAME)
OE. CUST_EMAI L_I X on OE. CUSTOVERS(CUST_EMAI L)

Character Set Scanner Utilities 12-31

Database Character Set Scanner Reports

Truncation Due To Character Semantics

This section applies only to columns that are defined using character semantics. The
Truncation Due to Character Semantics section identifies the number of data cells
that would be truncated if they were converted to the target character set (for
example, by the SQL CONVERT function or another inline conversion process) before
the database character set is updated with the CSALTER script. If the data
conversion occurs after the database character set is changed, then this section can
be ignored.

For example, a VARCHAR2(5 char) column in a WEBMSWIN1252 database can
store up to 5 characters, using 5 bytes. When these characters are migrated to
AL32UTF8, the same 5 characters can expand to as much as 15 bytes in length.
Because the physical byte limits allocated for the column are determined by the
current database character set, this column must be manually expanded to 15 bytes
before the data can be converted in the target character set. Alternatively, you can
apply the character set conversion to this column after the database character set
has been changed. Then the same VARCHAR2(5 char) definition will
automatically allocate 15 bytes, and no special handling is required.

The following output is an example of the Truncation Due To Character Semantics
section of the report.

USER. TABLE| COLUWN Truncati on

HR. EMPLOYEES| FI RST_NANE 1

Character Set Detection Result

This section appears when the language and character set detection is turned on by
the LCSD parameter. It displays a list of character sets detected by the Database
Character Set Scanner. The character sets are ordered by occurrence. NUVBER refers
to the number of data cells.

The following output is an example of the Character Set Detection Result section.

CHARACTER SET NUVBER PERCENTAGE
VESMBW N1252 38 97. 436%
UNKNOWN 1 2.564%

12-32 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

Language Detection Result

This section appears when the language and character set detection is turned by the
LCSD parameter. It displays a list of the languages detected by the Database
Character Set Scanner. The languages are ordered by occurrence.

The following output is an example of the Language Detection Result Section.

LANGUACGE NUMBER PERCENTAGE
ENGLI SH 36 92. 308%
FRENCH 2 5.128%
UNKNOWN 1 2.564%

Database Scan Individual Exception Report

The scan.err file contains the Individual Exception Report. It consists of the
following summaries:

« Database Scan Parameters
» Data Dictionary Individual Exceptions

« Application Data Individual Exceptions

Database Scan Parameters

This section describes the parameters and the type of scan chosen. The following

output is an example.

Par anet er Val ue

CSSCAN Ver si on v2.0

| nstance Name r dbns06

Dat abase Version 10.1.0.0.0
Scan type Ful | dat abase
Scan CHAR data? YES

Dat abase character set VE8I SO8859P1
FROMCHAR V\E8| SCB859P1
TOCHAR AL32UTF8
Scan NCHAR data? NO

Array fetch buffer size 102400
Nunber of processes 2

Capture convertible data? NO

Charset Language Detection Yes

Charset Language Paraneter LOSSY

Character Set Scanner Utilities 12-33

Database Character Set Scanner Reports

Data Dictionary Individual Exceptions

This section reports on whether data dictionary data is convertible or has
exceptions. There are two types of exceptions:

« exceed colum size
« | ossy conversion

The following output is an example for a data dictionary that contains convertible

data.
User . SYS
Table : OBJ$
Col um: NAME
Type : VARCHAR2(30)
Nunber of Exceptions : 0
Max Post Conversion Data Size: 30
RON D Exception Type Size Cell Data(first 30 bytes)
AAAAASAABAAAI KLAAQ convertibl e Auftrage
See Also:

« "Application Data Individual Exceptions" on page 12-34 for
more information about exceptions

« "How to Handle Convertible or Lossy Data in the Data
Dictionary" on page 12-36

Application Data Individual Exceptions

This report identifies the data with exceptions so that this data can be modified if
necessary.

There are two types of exceptions:
« exceed colum size

The column size should be extended if the maximum column width has been
surpassed. Otherwise, data truncation occurs.

« | ossy conversion

12-34 Oracle Database Globalization Support Guide

Database Character Set Scanner Reports

The data must be corrected before migrating to the new character set.
Otherwise the invalid characters are converted to a replacement character.
Replacement characters are usually specified as ? or ¢, or as a character that is
linguistically similar to the source character.

The following is an example of an individual exception report that illustrates some
possible problems when changing the database character set from WE8ISO8859P1
to AL32UTFS8.

User: USERL
Table: TEST
Col um: NAME

Type: VARCHAR2(10)
Nunber of Exceptions: 2
Max Post Conversion Data Size: 11

RON D Exception Type Size Cell Data(first 30 bytes)

AAAA2f AAFAABIWQAAg exceed col umm si ze 11 Ahrenfel dt
AAAA2f AAFAABIWQAAU | 0ssy conver sion oracl ég™
AAAA2f AAFAABIWQAAU exceed col umm si ze 11 6racl ég™

The values Ahr enf el dt and 6r acl €8™ exceed the column size (10 bytes) because
each of the characters A, 6, &, and & occupies one byte in WE8ISO8859P1 but two
bytes in AL32UTF8. The value 6r acl €8™ has lossy conversion to AL32UTF8
because the trademark sign ™ (code 153) is not a valid WE8ISO8859P1 character. It
is a WEBMSWIN1252 character, which is a superset of WE8ISO8859P1.

You can view the data that has an exception by issuing a SELECT statement:
SELECT name FROM userl.test WHERE ROW D=" AAAA2f AAFAABIWQAAL' ;

You can modify the data that has the exception by issuing an UPDATE statement:

UPDATE userl.test SET name = 'Oracle8 ™™
WHERE ROW D=" AAAA2f AAFAABIWQAAU' ;

If the language and character set detection option is enabled, then CSSCAN attempts
to provide the most probable languages and character sets for the data cells
specified by the LCSDDATA parameter.

The following is an example of an Individual Exception Report that illustrates
language and character set detection results for lossy data cells when changing the
database character set from US7ASCII to AL32UTF8.

Character Set Scanner Utilities 12-35

How to Handle Convertible or Lossy Data in the Data Dictionary

User: USER2
Table: TEST
Col um: NAME

Type: VARCHAR2(30)
Nunber of Exceptions: 2
Max Post Conversion Data Size: 11

RON D Exception Type Size Cel| Data(first 30 bytes) Language & Character Set

AAAA2f AAFAABIWQAAL | ossy conversion Cest francais (French, UTF8)

AAAA2f AAFAABIWQAAU | ossy conver sion Coéitaliana (Italian, WEBMSW N1252)
See Also:

« "Data Truncation" on page 11-2

« "Character Set Conversion Issues" on page 11-4

How to Handle Convertible or Lossy Data in the Data Dictionary

Unlike modifying user application data, updating and changing the contents of
data dictionary tables directly is not supported. Updating the system tables without
understanding the internal dependencies can lead to database corruption.

If the data dictionary is convertible, then the data cells are encoded in the
FROMCHAR character set. Two common scenarios for the existence of convertible
data in the data dictionary are:

« CLOBdata in the data dictionary

For single-byte character sets, CLOB data is stored in the database character set
encoding. For multibyte character sets, CLOB data is stored in an internal Oracle
format which is compatible with UCS-2. For example, the byte representation of
the string 'ABC stored inside a VARCHAR2 column in a US7ASCII database
remains unchanged when migrated to AL32UTF8. The same string stored
inside a CLOB column doubles in size and is stored completely differently.
When migrating from a single-byte character set to a multibyte character set,
CLOB data is never CHANGEL ESS.

« Migrating a database to a character set that is a superset in the sense that it
contains all of the characters of the original character set, but the binary values
of some characters is not the same in the two character sets

This is similar to user application data whose data cells need to be manually
converted to the new character set. A common cause of this is that the user 's

12-36 Oracle Database Globalization Support Guide

How to Handle Convertible or Lossy Data in the Data Dictionary

object definitions (such as table names, column names, package names and
package bodies) were created using non-ASCII characters. These are typically
characters or symbols that are part of the user's native language.

The easiest approach to migrating convertible data dictionary data is to create a
new database in the target character set and then re-create all of the data dictionary
and schema definitions by exporting and importing. However, this method means
creating a new database.

If you want to migrate the existing database instead of building a new one, then the
CSALTERSscript is the simplest way to migrate convertible CLOB data inside the
data dictionary and to change the existing database character set to the target
character set.

See Also: "Database Character Set Scanner CSALTER Script" on
page 12-41

For data dictionary CONVERTI BLE data cells that are not CLOB data, you must find
the schema objects containing the convertible data. Then you can choose to do one
of the following:

« Amend the object definitions (such as removing non-ASCII characters from
comments inside a package body) so that the data cells become CHANGELESS

« Drop these objects from the database schema altogether and then re-create them
after the database character set has been migrated to the target character set

LOSSY dictionary data cells require further examination of the data dictionary to see
whether the current FROMCHAR character set is the actual character set of the
database. If it is, you have to correct these object definitions (such as removing the
offending characters from comments inside a package body) so that the data cells
become CHANGELESS and they can be migrated safely to the target character set.

Three SQL scripts are included with the Database Character Set Scanner to help
users to locate the CONVERTI BLE and LOSSY data cells in the data dictionary:

« analyze source. sql
« analyze histgrm sql
« analyze rule.sql

The scripts are stored in the $ORACLE_HOME/ nl s/ csscan/ sqgl directory. They
perform SQL SELECT operations on the SYS. SOURCES, SYS. H STGRM5 and

SYS. RULES data dictionary tables so that the offending data dictionary objects can
be identified.

Character Set Scanner Utilities 12-37

Storage and Performance Considerations in the Database Character Set Scanner

The following example shows output from the anal yze_sour ce. sql script:
SQL> @ORACLE_HOWE/ nl s/ csscan/ sqgl / anal yze_sour ce. sql

Tabl e: SYS. SOURCE$
Error: CONVERTI BLE DATA

no rows selected

Tabl e: SYS. SOURCE$
Error: EXCEPTI ONAL DATA

OMER OBJECT_NAME OBJECT_TYPE EXCEPTI ONAL

Storage and Performance Considerations in the Database Character Set
Scanner

This section describes storage and performance issues in the Database Character Set
Scanner. It contains the following topics:

« Storage Considerations for the Database Character Set Scanner
« Performance Considerations for the Database Character Set Scanner

« Recommendations and Restrictions for the Database Character Set Scanner

Storage Considerations for the Database Character Set Scanner

This section describes the size and the growth of the Database Character Set
Scanner's system tables, and explains the approach to maintain them. There are
three system tables that can increase rapidly depending on the nature of the data
stored in the database.

You may want to assign a large tablespace to the user CSM Gby amending the
csminst. sql script. By default, the SYSTEMtablespace is assigned to the user
CSM G

This section includes the following topics:
=« CSMS$TABLES

« CSM$COLUMNS

= CSMS$ERRORS

12-38 Oracle Database Globalization Support Guide

Storage and Performance Considerations in the Database Character Set Scanner

CSMS$TABLES

The Database Character Set Scanner enumerates all tables that need to be scanned
into the CSMPTABLES table.

You can look up the number of tables (to get an estimate of how large CSMBTABLES
can become) in the database by issuing the following SQL statement:

SELECT COUNT(*) FROM DBA TABLES;

CSM$COLUMNS

The Database Character Set Scanner stores statistical information for each column
scanned into the CSMSCOLUMNS table.

You can look up the number of character type columns (to get an estimate of how
large CSMBCOLUMNS can become) in the database by issuing the following SQL
statement:

SELECT COUNT(*) FROM DBA_TAB_COLUWNS
WHERE DATA TYPE IN (' CHAR , ' VARCHAR2', 'LONG, 'CLOB', ' VARRAY'):

CSMS$ERRORS

When exceptions are detected with cell data, the Database Character Set Scanner
inserts individual exception information into the CSMBERRORS table. This
information then appears in the Individual Exception Report and facilitates
identifying records to be modified if necessary.

If your database contains a lot of data that is signaled as Except i onal or
Converti bl e (when the parameter CAPTURE=Y is set), then the CSMBERRCRS
table can grow very large. You can prevent the CSMBERRORS table from growing
unnecessarily large by using the SUPPRESS parameter.

The SUPPRESS parameter applies to all tables. The Database Character Set Scanner
suppresses inserting individual Except i onal information after the specified
number of exceptions is inserted. Limiting the number of exceptions to be recorded
may not be useful if the exceptions are spread over different tables.

Performance Considerations for the Database Character Set Scanner
This section describes how to increase performance when scanning the database.

Character Set Scanner Utilities 12-39

Storage and Performance Considerations in the Database Character Set Scanner

Using Multiple Scan Processes

If you plan to scan a relatively large database, for example, over 50GB, then you
might want to consider using multiple scan processes. This shortens the duration of
database scans by using hardware resources such as CPU and memory available on
the machine. A guideline for determining the number of scan processes to use is to
set the number equal to the CPU_COUNT initialization parameter.

Setting the Array Fetch Buffer Size

The Database Character Set Scanner fetches multiple rows at a time when an array
fetch is allowed. You can usually improve performance by letting the Database
Character Set Scanner use a bigger array fetch buffer. Each process allocates its own
fetch buffer.

Suppressing Exception and Convertible Log

The Database Character Set Scanner inserts individual Except i onal and
Converti bl e (when CAPTURE=Y) information into the CSMBERRORS table. In
general, insertion into the CSMBERRCRS table is more costly than data fetching. If
your database has a lot of data that is signaled as Except i onal or Converti bl e,
then the Database Character Set Scanner issues many insert statements, causing
performance degradation. Oracle Corporation recommends setting a limit on the
number of exception rows to be recorded using the SUPPRESS parameter.

Recommendations and Restrictions for the Database Character Set Scanner

All the character-based data in CHAR, VARCHAR2, LONG, CLOB, and VARRAY
columns are stored in the database character set, which is specified with the
CREATE DATABASE statement when the database is first created. However, in some
configurations, it is possible to store data in a different character set from the
database character set either intentionally or unintentionally. This happens most
often when the NLS _LANGcharacter set is the same as the database character set,
because in such cases Oracle sends and receives data as is, without any conversion
or validation. It can also happen if one of the two character sets is a superset of the
other, in which case many of the code points appear as if they were not converted.
For example, if NLS_LANGis set to WE8ISO8859P1 and the database character set is
WEBMSWIN1252, then all code points except the range 128-159 are preserved
through the client/server conversion.

The same binary code point value can be used to represent different characters
between the different character sets. Most European character sets share liberal use
of the 8-bit range to encode native characters, so it is very possible for a cell to be

12-40 Oracle Database Globalization Support Guide

Database Character Set Scanner CSALTER Script

reported as convertible but for the wrong reasons. When you set the FROMCHAR
parameter, the assumption is that all character data is encoded in that character set,
but the Database Character Set Scanner may not be able to accurately determine its
validity.

For example, this can occur when the Database Character Set Scanner is used with
the FROMCHAR parameter set to WESBMSWIN1252. This single-byte character set
encodes a character in every available code point so that no matter what data is
being scanned, the scanner always identifies a data cell as being available in the
source character set.

Scanning Database Containing Data Not in the Database Character Set

If a database contains data that is not in the database character set, but it is encoded
in another character set, then the Database Character Set Scanner can perform a
scan if the FROMCHAR parameter specifies the encoded character set.

Scanning Database Containing Data from two or more Character Sets

If a database contains data from more than one character set, then the Database
Character Set Scanner cannot accurately test the effects of changing the database
character set by a single scan. If the data can be divided into separate tables, one for
each character set, then the Database Character Set Scanner can perform multiple
table scans to verify the validity of the data.

For each scan, use a different value of the FROMCHAR parameter to tell the Database
Character Set Scanner to treat all target columns in the table as if they were in the
specified character set.

Database Character Set Scanner CSALTER Script

The CSALTERSsscript is a DBA tool for special character set migration. Similar to the
obsolete ALTER DATABASE CHARACTER SET SQL statement, CSALTER should be
used when the migration is from an existing character set that is a proper subset of
the new database character set. CSALTER should be used only by the system
administrator. System administrators must run the Database Character Set Scanner
first to confirm that the proper conditions exist for running CSALTER. Also, the
database must be backed up before running CSALTER

To run the CSALTER script, start SQL*Plus and connect to the database whose
character set is to be migrated. Note that the Database Character Set Scanner must
be run before the CSALTER script.Then enter the following command:

sql pl us> @ACSALTER. PLB nor nal

Character Set Scanner Utilities 12-41

Database Character Set Scanner CSALTER Script

The CSALTER script includes the following phases:

Checking Phase of the CSALTER Script
Updating Phase of the CSALTER Script

Checking Phase of the CSALTER Script
In the checking phase, the CSALTER script performs the following tasks:

1.

It checks whether the user login is SYS. Only user SYS is allowed to run the
script.

It checks whether a full database scan has been previously run within the last 7
days. If a full database scan has not been previously run, then the script stops
and reports an error. It is the DBA's responsibility to ensure that no one updates
the database between the times the full database scan and the CSALTER script
are run.

It checks whether the new character set is a superset of the existing character
set. If the new character set is not a superset of the existing one, then the script
stops and reports that the CSALTER script cannot be completed.

It checks whether CLOB columns in the data dictionary that were created by
Oracle are changeless or convertible. Convertible CLOB columns occur when
migrating from a single-byte character set to a multibyte character set. If there
are any lossy cells found in CLOB columns in the data dictionary, then the script
stops. The lossy CLOB columns may need to be specially handled; contact
Oracle Support Services for more information.

Any table that belongs to the following schemas is considered to be part of the
data dictionary:

SYS
SYSTEM
CTXSYS

DI P

DVBYS
EXFSYS
LBACSYS
MDSYS
ORDPLUG NS
ORDSYS

SI | NFORMIN_SCHEMA

12-42 Oracle Database Globalization Support Guide

Database Character Set Scanner CSALTER Script

XDB

5. It checks whether all CLOB columns in the Sample Schemas created by Oracle
are changeless or convertible. Convertible CLOB columns occur when migrating
from a single-byte character set to a multibyte character set. The tables that
belong to the following schemas are part of the Sample Schemas:

HR
CE
SH
PM

6. It checks whether the CLOB dataype is the only datatype that contains
convertible data in the data dictionary and Sample Schemas. It checks that all
other users’ tables have no convertible data for all datatypes including the CLOB
datatype. Because the CSALTER script is meant to be run only when the current
database is a proper subset of the new database, all data should be changeless
with the possible exception of the CLOB data. When migrating from a
single-byte character set to a multibyte character set, user-created CLOB data
requires conversion and must first be exported and deleted from the schema.
The database must be rescanned in order to run the CSALTER script. Cells of all
other datatypes that are reported to be convertible or subject to truncation must
be corrected before the Database Character Set Scanner is rerun.

See Also:
« "Subsets and Supersets" on page A-20

« "Migrating a Character Set Using the CSALTER Script" on
page 11-8 for more information about the CSALTER script and
CLOB data

Updating Phase of the CSALTER Script

After the CSALTER script confirms that every CLOB in the data dictionary passes the
checks described in "Checking Phase of the CSALTER Script" on page 12-42, the
CSALTER script performs the conversion. After all CLOB data in the data dictionary
and the Sample Schemas have been updated, the script commits the change and
saves the information in the CSMPTABLES view. After all CLOB data in the data
dictionary have been updated, the CSALTER script updates the database metadata
to the new character set. The entire migration process is then completed.

Character Set Scanner Utilities 12-43

Database Character Set Scanner Views

The CSALTER script is resumable. If the update of the database to the new character
set fails at any time, then the DBA must shut down and restart the database and
rerun the CSALTER script before doing anything else. Because the updated
information is already saved in the CSMPTABLES view, the script will not update
the CLOB data in the data dictionary tables twice. The process of migration is simply
resumed to finish the update of the database to the new character set.

If the CSALTER script fails, then use the following method to resume the update:

1.

From the SQL*Plus session where the CSALTER script was run, enter the
following command immediately:

SHUTDOMAN ABORT

Start up the database without mounting it, because CSALTER requires an open
database.

START NOMOUNT

Run the CSALTER script:
@ACSALTER. PLB NORVAL

Shut down the database with either the | MVEDI ATE or the NORMAL option.
Start up the database.

Database Character Set Scanner Views

The Database Character Set Scanner uses the following views:

CSMV$COLUMNS

CSMV$COLUMNS
CSMV$CONSTRAINTS
CSMV$ERRORS
CSMVS$INDEXES
CSMVS$TABLES

This view contains statistical information about columns that were scanned.

12-44 Oracle Database Globalization Support Guide

Database Character Set Scanner Views

Column Name Datatype NULL Description
OMER_| D NUMBER NOT NULL Userid of the table owner
OMNER_NAME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_I D NUMBER NOT NULL Object ID of the table
TABLE_NAMVE VARCHAR2(30) NOT NULL Object name of the table
COLUMNLI D NUVBER NOT NULL Column ID
COLUMNLI NTI D NUMBER NOT NULL Internal column ID (for abstract datatypes)
COLUWN_NAMVE VARCHAR2(30) NOT NULL Column name
COLUWN_TYPE VARCHAR2(9) NOT NULL Column datatype
TOTAL_RONS NUMBER NOT NULL Number of rows in this table
NULL_ROWS NUMBER NOT NULL Number of NULL data cells
CONV_RONS NUMBER NOT NULL Number of data cells that need to be converted
ERROR_ROWS NUMBER NOT NULL Number of data cells that have exceptions
EXCEED_S| ZE_RONS NUMBER NOT NULL Number of data cells that have exceptions
DATA_LOSS_ROWS NUMBER - Number of data cells that undergo lossy conversion
MAX_POST_CONVERT_SI ZE NUMBER - Maximum post-conversion data size
CSMV$CONSTRAINTS

This view contains statistical information about columns that were scanned.
Column Name Datatype NULL Description
OMER_| D NUMBER NOT NULL Userid of the constraint owner
OMNER_NAME VARCHAR2(30) NOT NULL User name of the constraint owner
CONSTRAI NT_I D NUMBER NOT NULL Object ID of the constraint
CONSTRAI NT_NAMVE VARCHAR2(30) NOT NULL Object name of the constraint
CONSTRAI NT_TYPE# NUVBER NOT NULL Constraint type number
CONSTRAI NT_TYPE VARCHAR2(11) NOT NULL Constraint type name
TABLE_I D NUMBER NOT NULL Object ID of the table
TABLE_NAME VARCHAR2(30) NOT NULL Object name of the table
CONSTRAI NT_RI D NUMBER NOT NULL Root constraint ID

Character Set Scanner Utilities 12-45

Database Character Set Scanner Views

Column Name Datatype NULL Description
CONSTRAI NT_LEVEL NUMBER NOT NULL Constraint level
CSMV$ERRORS
This view contains individual exception information for cell data and object
definitions.
Column Name Datatype NULL Description
OMER_| D NUMBER NOT NULL Userid of the table owner
OMNER_NANME VARCHAR2(30) NOT NULL User name of the table owner
TABLE_I D NUMBER NOT NULL Object ID of the table
TABLE_NAMVE VARCHAR2(30) - Object name of the table
COLUMNLI D NUVBER - Column ID
COLUMNLI NTI D NUMBER - Internal column ID (for abstract datatypes)
COLUWN_NAMVE VARCHAR2(30) - Column name
DATA_ROW D VARCHAR2(1000) - The rowid of the data
COLUWN_TYPE VARCHAR2(9) - Column datatype of object type
ERROR_TYPE VARCHAR2(11) - Type of error encountered
CSMVSINDEXES
This view contains individual exception information for indexes.
Column Name Datatype NULL Description
| NDEX_OWNER_| D NUMBER NOT NULL Userid of the index owner
| NDEX_OWNER_NAME VARCHAR2(30) NOT NULL User name of the index owner
| NDEX_| D NUMBER NOT NULL Object ID of the index
| NDEX_NAME VARCHAR2(30) - Object name of the index
| NDEX_STATUS# NUVBER - Status number of the index
| NDEX_STATUS VARCHAR2(8) - Status of the index
TABLE_OMNER | D NUMBER - Userid of the table owner
TABLE_OWNER_NAME VARCHAR2(30) - User name of the table owner

12-46 Oracle Database Globalization Support Guide

Database Character Set Scanner Error Messages

Column Name Datatype NULL Description

TABLE_ | D NUMBER - Object ID of the table

TABLE_NAMVE VARCHAR2(30) - Object name of the table

COLUMNLI D NUMBER - Column ID

COLUMNLI NTI D NUMBER - Internal column ID (for abstract datatypes)
COLUWN_NAMVE VARCHAR2(30) - Column name

CSMV$TABLES

This view contains information about database tables to be scanned. The Database
Character Set Scanner enumerates all tables to be scanned into this view.

Column Name Datatype NULL Description

OMER_| D NUMBER NOT NULL Userid of the table owner

OMNER_NAME VARCHAR2(30) NOT NULL User name of the table owner

TABLE_I D NUMBER - Object ID of the table

TABLE_NAME VARCHAR2(30) - Object name of the table

M N_ROW D VARCHAR2(18) - Minimum rowid of the split range of the table
MAX_ROW D VARCHAR2(18) - Maximum rowid of the split range of the table
BLOCKS NUMBER - Number of blocks in the split range
SCAN_COLUWNS NUVBER - Number of columns to be scanned
SCAN_ROWS NUMBER - Number of rows to be scanned

SCAN_START VARCHAR2(8) - Time table scan started

SCAN_END VARCHAR2(8) - Time table scan completed

Database Character Set Scanner Error Messages

CSS-00101 failed to release memory

The Database Character Set Scanner has the following error messages:

CSS-00100 failed to allocate memory size of number

Cause: An attempt was made to allocate memory with size 0 or bigger than the
maximum size.

Action: This is an internal error. Contact Oracle Support Services.

Character Set Scanner Utilities 12-47

Database Character Set Scanner Error Messages

Cause: An attempt was made to release memory with an invalid pointer.
Action: This is an internal error. Contact Oracle Support Services.

CSS-00102 failed to release memory, null pointer given
Cause: An attempt was made to release memory with a null pointer.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00105 failed to parse BOUNDARIES parameter
Cause: BOUNDARI ES parameter was specified in an invalid format.

Action: Refer to the manual for the correct syntax.

CSS-00106 failed to parse SPLIT parameter
Cause: SPLI T parameter was specified in an invalid format.

Action: Refer to the documentation for the correct syntax.

CSS-00107 Character set migration utility schem not installed
Cause: CSMBVERSI ONtable not found in the database.

Action: Run CSM NST. SQL on the database.

CSS-00108 Character set migration utility schema not compatible
Cause: Incompatible CSMB* tables found in the database.

Action: Run CSM NST. SQL on the database.

CSS-00110 failed to parse userid
Cause: USERI D parameter was specified in an invalid format.

Action: Refer to the documentation for the correct syntax.

CSS-00111 failed to get RDBMS version
Cause: Failed to retrieve the value of the Version of the database.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00112 database version not supported
Cause: The database version is older than release 8.0.5.0.0.

Action: Upgrade the database to release 8.0.5.0.0 or later. Then try again.

CSS-00113 user %s is not allowed to access data dictionary
Cause: The specified user cannot access the data dictionary.

12-48 Oracle Database Globalization Support Guide

Database Character Set Scanner Error Messages

Action: Set O7_DI CTI ONARY_ACCESSI BI LI TY parameter to TRUE, or use
SYS user.

CSS-00114 failed to get database character set name

Cause: Failed to retrieve value of NLS_CHARACTERSET or NLS NCHAR _
CHARACTERSET parameter from NLS DATABASE PARANMETERS view.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00115 invalid character set name %s
Cause: The specified character set is not a valid Oracle character set.

Action: Retry with a valid Oracle character set name.

CSS-00116 failed to reset NLS LANG/NLS_NCHAR parameter

Cause: Failed to force NLS_LANGcharacter set to be the same as the database
character set.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00117 failed to clear previous scan log
Cause: Failed to delete all rows from CSMb* tables.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00118 failed to save command parameters
Cause: Failed to insert rows into CSMBPARAMETERS table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00119 failed to save scan start time
Cause: Failed to insert a row into CSMPARANVETERS table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00120 failed to enumerate tables to scan
Cause: Failed to enumerate tables to scan into CSMPTABLES table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00121 failed to save scan complete time
Cause: Failed to insert a row into CSMSPARAMETERS table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00122 failed to create scan report

Character Set Scanner Utilities 12-49

Database Character Set Scanner Error Messages

Cause: Failed to create database scan report.
Action: This is an internal error. Contact Oracle Support Services.

CSS-00123 failed to check if user %s exist

Cause: SELECT statement that checks if the specified user exists in the
database failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00124 user %s not found
Cause: The specified user does not exist in the database.

Action: Check the user name.

CSS-00125 failed to check if table %s.%s exist

Cause: SELECT statement that checks if the specified table exists in the
database failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00126 table %s.%s not found
Cause: The specified table does not exist in the database.

Action: Check the user name and table name.

CSS-00127 user %s does not have DBA privilege

Cause: The specified user does not have DBA privileges, which are required to
scan the database.

Action: Choose a user with DBA privileges.

CSS-00128 failed to get server version string
Cause: Failed to retrieve the version string of the database.

Action: None.

CSS-00130 failed to initialize semaphore
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00131 failed to spawn scan process %d
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

12-50 Oracle Database Globalization Support Guide

Database Character Set Scanner Error Messages

CSS-00132 failed to destroy semaphore
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00133 failed to wait semaphore
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00134 failed to post semaphore
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00140 failed to scan table (tid=%d, oid=%d)
Cause: Data scan on specified table failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00141 failed to save table scan start time
Cause: Failed to update a row in the CSMBTABLES table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00142 failed to get table information

Cause: Failed to retrieve various information from userID and object ID of the
table.

Action: This is an internal error. Contact Oracle Support Services.
CSS-00143 failed to get column attributes

Cause: Failed to retrieve column attributes of the table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00144 failed to scan table %s.%s
Cause: Data scan on specified table failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00145 failed to save scan result for columns
Cause: Failed to insert rows into CSMbCOLUMNS table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00146 failed to save scan result for table

Character Set Scanner Utilities 12-51

Database Character Set Scanner Error Messages

Cause: Failed to update a row of CSMPTABLES table.
Action: This is an internal error. Contact Oracle Support Services.

CSS-00147 unexpected data truncation

Cause: Scanner allocates the exactly same size of memory as the column byte
size for fetch buffer, resulting in unexpected data truncation.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00150 failed to enumerate table
Cause: Failed to retrieve the specified table information.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00151 failed to enumerate user tables
Cause: Failed to enumerate all tables that belong to the specified user.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00152 failed to enumerate all tables
Cause: Failed to enumerate all tables in the database.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00153 failed to enumerate character type columns

Cause: Failed to enumerate all CHAR, VARCHAR2, LONG, and CLOB columns of
tables to scan.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00154 failed to create list of tables to scan
Cause: Failed to enumerate the tables into CSMsTABLES table.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00155 failed to split tables for scan
Cause: Failed to split the specified tables.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00156 failed to get total number of tables to scan
Cause: SELECT statement that retrieves the number of tables to scan failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00157 failed to retrieve list of tables to scan

12-52 Oracle Database Globalization Support Guide

Database Character Set Scanner Error Messages

Cause: Failed to read all table IDs into the scanner memory.
Action: This is an internal error. Contact Oracle Support Services.

CSS-00158 failed to retrieve index defined on column
Cause: SELECT statement that retrieves index defined on the column failed.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00160 failed to open summary report file
Cause: FILE OPEN function returned error.
Action: Check if you have create/write privilege on the disk and check if the
file name specified for the LOG parameter is valid.

CSS-00161 failed to report scan elapsed time
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00162 failed to report database size information
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00163 failed to report scan parameters
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00164 failed to report scan summary
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00165 failed to report conversion summary
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00166 failed to report convertible data distribution
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00167 failed to open exception report file
Cause: FILE OPEN function returned error.

Character Set Scanner Utilities 12-53

Database Character Set Scanner Error Messages

Action: Check if you have create/write privilege on the disk and check if the
file name specified for LOG parameter is valid.

CSS-00168 failed to report individual exceptions
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00170 failed to retrieve size of tablespace %
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00171 failed to retrieve free size of tablespace %s
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00172 failed to retrieve total size of tablespace %s
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00173 failed to retrieve used size of the database
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00174 failed to retrieve free size of the database
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00175 failed to retrieve total size of the database
Cause: Unknown.

Action: This is an internal error. Contact Oracle Support Services.

CSS-00176 failed to enumerate user tables in bitmapped tablespace
Cause: Failed to enumerate tables in bitmapped tablespace.

Action: This is an internal error. Contact Oracle Support Services.

12-54 Oracle Database Globalization Support Guide

13

Customizing Locale

This chapter shows how to customize locale data. It includes the following topics:

Overview of the Oracle Locale Builder Utility

Creating a New Language Definition with the Oracle Locale Builder
Creating a New Territory Definition with the Oracle Locale Builder
Displaying a Code Chart with the Oracle Locale Builder

Creating a New Character Set Definition with the Oracle Locale Builder
Creating a New Linguistic Sort with the Oracle Locale Builder

Generating and Installing NLB Files

Customizing Locale 13-1

Overview of the Oracle Locale Builder Utility

Overview of the Oracle Locale Builder Utility

The Oracle Locale Builder offers an easy and efficient way to customize locale data.
It provides a graphical user interface through which you can easily view, modify,
and define locale-specific data. It extracts data from the text and binary definition
files and presents them in a readable format so that you can process the information
without worrying about the formats used in these files.

The Oracle Locale Builder manages four types of locale definitions: language,
territory, character set, and linguistic sort. It also supports user-defined characters
and customized linguistic rules. You can view definitions in existing text and binary
definition files and make changes to them or create your own definitions.

This section contains the following topics:
« Configuring Unicode Fonts for the Oracle Locale Builder
« The Oracle Locale Builder User Interface

« Oracle Locale Builder Windows and Dialog Boxes

Configuring Unicode Fonts for the Oracle Locale Builder

The Oracle Locale Builder uses Unicode characters in many of its functions. For
example, it shows the mapping of local character code points to Unicode code
points. Oracle Locale Builder depends on the local fonts that are available on the
operating system where the characters are rendered. Therefore, Oracle Corporation
recommends that you use a Unicode font to fully support the Oracle Locale Builder.
If a character cannot be rendered with your local fonts, then it will probably be
displayed as an empty box.

Font Configuration on Windows

There are many Windows Tr ueType and OpenType fonts that support Unicode.
Oracle Corporation recommends using the Arial Unicode MS font from Microsoft,
because it includes about 51,000 glyphs and supports most of the characters in
Unicode 3.2.

After installing the Unicode font, add the font to the Java Runtime

font. properti es file so it can be used by the Oracle Locale Builder. The
font. properti es fileis located in the $JAVAHOVE/ j r e/ | i b directory. For
example, for the Arial Unicode MS font, add the following entries to the
font. properti es file:

di al og. n=Arial Uni code M5, DEFAULT_CHARSET
di al ogi nput. n=Arial Uni code M5, DEFAULT_CHARSET

13-2 Oracle Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

serif.n=Arial Unicode M5, DEFAULT CHARSET
sansserif.n=Arial Unicode M5, DEFAULT CHARSET

n is the next available sequence number to assign to the Arial Unicode MS font in
the font list. Java Runtime searches the font mapping list for each virtual font and
use the first font available on your system.

After you edit the f ont . properti es file, restart the Oracle Locale Builder.

See Also: Sun’s internationalization Web site for more
information about the f ont . properti es file

Font Configuration on Other Platforms

There are fewer choices of Unicode fonts for non-Windows platforms than for
Windows platforms. If you cannot find a Unicode font with satisfactory character
coverage, then use multiple fonts for different languages. Install each font and add
the font entries into the f ont . properti es file using the steps described for the
Windows platform.

For example, to display Japanese characters on Sun Solaris using the font

ri coh- hg m ncho, add entries to the existing f ont . properti es file in
$IJAVAHOVE/ | i b inthe di al og, di al ogi nput,serif,and sansseri f sections.
For example:

serif.plain.3=-ricoh-hg mncho |-nmediumr-nornal--*-9%l-*-*-m*-jisx0201. 1976-0

Note: Depending on the operating system locale, the
locale-specific f ont . properti es file might be used. For example,
if the current operating system locale isj a_JP. eucJP on Sun
Solaris, then f ont . properti es. j a may be used.

See Also: Your operating system documentation for more
information about available fonts

The Oracle Locale Builder User Interface

Ensure that the ORACLE_HOME parameter is set before starting Oracle Locale
Builder.

In the UNIX operating system, start the Oracle Locale Builder by changing into the
$ORACLE_HOWVE/ nl s/ | bui | der directory and issuing the following command:

Customizing Locale 13-3

Overview of the Oracle Locale Builder Utility

% . /1 buil der

In a Windows operating system, start the Oracle Locale Builder from the Start menu
as follows: Start > Programs > Oracle-OraHome10 > Configuration and Migration
Tools > Locale Builder. You can also start it from the DOS prompt by entering the
Y%ORACLE_HOVE% nl s\ | bui | der directory and executing the | bui | der . bat
command.

When you start the Oracle Locale Builder, the screen shown in Figure 13-1 appears.

Figure 13-1 Oracle Locale Builder Utility

Edit Tools Help

Oracle Lacale Builder is a convenient toal for
ORACLE LOCALE BUILDER

customizing locale data definitions.
Use Oracle Locale Builder to wiew ar create:

- Languages, including local month and day
names, writing directions, etc.

- Territories, including calendar convention,
date and time formats, numhber and monetary

systems, etc.

- Character Sets, including character set type,
character mappings and classifications, ete.

- Linguistic Sorts, including collation arder,

special collation rules, etc.
SOFTWARE POWERS THE INTERNET =

Copyright {c) 2000, 2003 Cracle Corpaoration. All Rights Reserved.

Filename: Nang Category: Mane | Mame: Mane

Oracle Locale Builder Windows and Dialog Boxes

Before using Oracle Locale Builder for a specific task, you should become familiar
with tab pages and dialog boxes that include the following:

13-4 Oracle Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

« Existing Definitions Dialog Box
« Session Log Dialog Box

« Preview NLT Tab Page

« Open File Dialog Box

Note: Oracle Locale Builder includes online help.

Existing Definitions Dialog Box

When you choose New Language, New Territory, New Character Set, or New
Linguistic Sort, the first tab page that you see is labelled General. Click Show
Existing Definitions to see the Existing Definitions dialog box.

The Existing Definitions dialog box enables you to open locale objects by name. If
you know a specific language, territory, linguistic sort (collation), or character set
that you want to start with, then click its displayed name. For example, you can
open the AMERI CAN language definition file as shown in Figure 13-2.

Figure 13—2 Existing Definitions Dialog Box

LanguageilD) Language Abhraviation Tarritory (D)

- |ALGERIAZ?) B
ARABIC(31) B —|AMERICACT) 24
ASSAMESE(SS) EN AUSTRALIAED)
BANGLAISS) Ch AUSTRIA(SE)

RE MGA | 1{4) “cs R HERS N2 RY -
1] | on at | K I
Territory Abbreviation Character Set{ID) Linguistic Sortf|D)

AE “ |AL1BUTF1B(Z000) & |SRABICE21) =

AT | ALZ4UTFFSS(B7 0 - ARABIC_AB_MATCHEZ)

ALl ALI2UTFB(E73) &RABIC_AB)_SORTIE1)

BD ARSADOSTI0(SST) ARABIC_MATCH(E

BE ARBANOSTIOTISOT T ASC T ER =

R wt | | 3 1] [>

Corresponding File Name: [200001.nlb
Open | Close }

Choosing AMERI CAN opens the | x00001. nl b file. An NLB file is a binary file that
contains the settings for a specific language, territory, character set, or linguistic
sort.

Language and territory abbreviations are for reference only and cannot be opened.

Customizing Locale 13-5

Overview of the Oracle Locale Builder Utility

Session Log Dialog Box

Choose Tools > View Log to see the Session Log dialog box. The Session Log dialog
box shows what actions have been taken in the current session. Click Save Log to
keep a record of all changes. Figure 13-3 shows an example of a session log.

Figure 13-3 Session Log Dialog Box

|*

=====Mew Character Set Definition

---Added row [0x30, ,W30] into Character Data table

-—-Added row [0x31,,W31] into Character Data table

---Deleted row [0x30, ,W30] from Character Data tahle

---Wodified row 1 frorm [0x31, ,W31] to [0x33, w33 in Character Data table
=====5gvad asx22712.nlt

=====Qpened x31001.000

---Deleted codepoint w0032 frorm Unicode Collation Rules sequence

---Inserted codepoint w0032 at primary level difference after codepointw005a in Unico

---Deleted codepoint w0058 frorn Unicode Collation Rules sequence

---inserted codepoint w0058 at tertiary level difference after cc-dlenc-intchDSa in Llnicog™

4 r
Save Log...)I Q.)I

Preview NLT Tab Page

The NLT file is an XML file with the file extension . nl t that shows the settings for
a specific language, territory, character set, or linguistic sort. The Preview NLT tab
page presents a readable form of the file so that you can see whether the changes
you have made look correct. You cannot modify the NLT file from the Preview NLT
tab page. You must use the specific elements of the Oracle Locale Builder to modify
the NLT file.

Figure 13-4 shows an example of the Preview NLT tab page for a user-defined
language called AVERI CAN FRENCH.

13-6 Oracle Database Globalization Support Guide

Overview of the Oracle Locale Builder Utility

Figure 13-4 Previewing the NLT File

File Edit Tools Help

Preview MLT

=]--

Copyright (£) 1996 - 2003 by Oracle Corporation. All Rinhts Reserved.)
*5

#

MAME

x003ed.nit

#DESCRIPTION

Language definition for AMERICAR FREMCH

#MNOTES

#

-—

=IDOCTYPE MLEDATA SYSTEM "l dtd"=

=MLSDATA=

“LANGUAGE=
<WVERSION=3.0.0.0.0=WERSION=

=|NF Q=

=Mame=AMERICAN FREMNCH=/Marmeas=
=|d=1001=ild=
=DefaultTerritoryld=4=DefaultTerritaryld=

= = L

s W S S T
L =2 N R = L e

Filename Q. Category: Language Mame: AMERICAN FREMCH

Open File Dialog Box

You can see the Open File dialog box by choosing File > Open > By File Name.
Then choose the NLB file that you want to modify or use as a template. An NLB file
is a binary file with the file extension . nl b that contains the binary equivalent of
the information in the NLT file. Figure 13-5 shows the Open File dialog box with
the | x00001. nl b file selected. The Preview pane shows that this NLB file is for the
AMERI CAN language.

Customizing Locale 13-7

Creating a New Language Definition with the Oracle Locale Builder

Figure 13-5 Open File Dialog Box

Files: @ @

-

[wooonz.nib — Language:
[kD0003.nlb
D Ix00004.nlk
D Ix00005.nlk
[00006 .nik
[&00007.nlb =

AMERICAN

File Marne: |IxDDDD1.nIb

[Preview

Creating a New Language Definition with the Oracle Locale Builder

This section shows how to create a new language based on French. This new
language is called AVERI CAN FRENCH. First, open FRENCH from the Existing
Definitions dialog box. Then change the language name to AVERI CAN FRENCH and
the Language Abbreviation to AF in the General tab page. Retain the default values
for the other fields. Figure 13-6 shows the resulting General tab page.

13-8 Oracle Database Globalization Support Guide

Creating a New Language Definition with the Oracle Locale Builder

Figure 13-6 Language General Information

File Edit Tools Help

Genaral

Language Marme: |AMERICAN FREMCH

Language 1D: |1DE|1

Language Abhreviation: |AF

Default Territary: |FRANCE

Default ASCI Character Set: |WE8I808859F’1

Default Ebcdic Character Set: |WE8EEICDIC1 047

Default Linguistic Definition: |FRENCH

Show Existing DEﬂniTiDnS...]

gory: Language | Mame: FRENCH Status: Editing
The following restrictions apply when choosing names for locale objects such as
languages:
« Names must contain only ASCII characters
« Names must start with a letter
« Language, territory, and character set names cannot contain underscores

The valid range for the Language ID field for a user-defined language is 1,000 to
10,000. You can accept the value provided by Oracle Locale Builder or you can
specify a value within the range.

Customizing Locale 13-9

Creating a New Language Definition with the Oracle Locale Builder

Note: Only certain ID ranges are valid values for user-defined
LANGUAGE, TERRI TORY, CHARACTER SET, MONOLI NGUAL
COLLATI ON, and MULTI LI NGUAL COLLATI ONdefinitions. The
ranges are specified in the sections of this chapter that concern each
type of user-defined locale object.

Figure 13-7 shows how to set month names using the Month Names tab page.

Figure 13—-7 Month Names Tab Page

File Edit Tools Help

Month Mames

W Yes Mo {or non-applicable)

(Capitalize initial letter of maonth names?

Full Month Mames Abbreviated Month Mames

Manth 01: |janvier jan

Month 02: [février fery

Maonth 03 mars mar

mManth 04: |avril A

Manth 05 mai mai

Maonth 06: |juin jun

Manth 07 |juillet jul

Month 08: 200t aou

Month 09: |septembre sep

Maonth 10: octobre oct

Maonth 11: \novembre R

Month 12: (décembre dec

Category: Language | Mame: FRENCH Status: Editing

All names are shown as they appear in the NLT file. If you choose Yes for
capitalization, then the month names are capitalized in your application, but they
do not appear capitalized in the Month Names tab page.

13-10 Oracle Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 13-8 shows the Day Names tab page.
Figure 13-8 Day Names Tab Page

File Edit Tools Help

Day Mames

F:apitalize initial letter of day names?

® YeS Mo (or non-applicable)

Full Day Mames Ahhreviated Day Mames

Sunday; dimanche

Manday: lundi

Tuesday: mardi

Wednesday: |mercradi

Thursday: jeudi

Friday: vendred

Saturday: samedi

Category: Language | Mame: FRENCZH Status: Editing

You can choose day names for your user-defined language. All names are shown as
they appear in the NLT file. If you choose Yes for capitalization, then the day names
are capitalized in your application, but they do not appear capitalized in the Day
Names tab page.

Creating a New Territory Definition with the Oracle Locale Builder

This section shows how to create a new territory called REDWOOD SHORES and use
RS as a territory abbreviation. The new territory is not based on an existing territory
definition.

Customizing Locale 13-11

Creating a New Territory Definition with the Oracle Locale Builder

The basic tasks are as follows:
« Assign a territory name
« Choose formats for the calendar, numbers, date and time, and currency

Figure 13-9 shows the General tab page with REDWOOD SHORES specified as the
Territory Name, 1001 specified as the Territory ID, and RS specified as the
Territory Abbreviation.

Figure 13-9 General Tab Page for Territories

File Edit Tools Help

General

Tertitory Marre: |REDWOOD SHORES

Territory D |1DD1

Territory Ahbreviation: |RS

Territory Wariation |

Show Existing Definitions...

Filename: Lintitled Category: Territory | Mame: Mone Status: Editing

The valid range for Territory ID for a user-defined territory is 1000 to 10000.

Figure 13-10 shows settings for calendar formats in the Calendar tab page.

13-12 Oracle Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 13-10 Choosing Calendar Formats

File Edit Tools Help
Calendar

First day of a calendar week

" 8un " Mon W Tue o Wed " Thu " Fri

rirstweek of a calendar year

w [S0\Week (first maore than hal-full week) " Mon-150 Weelk first full weelk)

Calendar Sample:

Filename: Lintitled Category. Territory Mame: Mone Status: Editing

Tuesday is set as the first day of the week, and the first week of the calendar year is
set as an 1SO week. The screen displays a sample calendar.

See Also:

« "Calendar Formats" on page 3-27 for more information about
choosing the first day of the week and the first week of the
calendar year

« "Customizing Calendars with the NLS Calendar Utility" on

page 13-17 for information about customizing calendars
themselves

Figure 13-11 shows the Date&Time tab page.

Customizing Locale 13-13

Creating a New Territory Definition with the Oracle Locale Builder

Figure 13-11 Choosing Date and Time Formats

File Edit Tools Help

Date&Time

Short Date Format: IDD-MM-W

Short Date Sample: [28-07-03

Shart Time Farmat: IHH24:MI:SS

Short Time Sarmple: [14:14:54

Cormhbined short date&time sample

28-07-03 14:14:54

Oracle Date Format: IDD-MM-W

Oracle Date Sample: [28-07-03

Long Date Format: Imea\,r, Manth dd, wwyy

Long Date Sample: [Monday, July 28, 2003

TimeStamp Timezone Format: |

TimeStamp Timezone Sample:

Filename; Untitled Category: Territory | Mame: Mone Status: Editing

When you choose a format from a list, Oracle Locale Builder displays an example of
the format. In this case, the Short Date Format is set to DD- MM YY. The Short Time
Format is set to HH24: M : SS. The Oracle Date Format is set to DD- MM YY. The
Long Date Format is setto f nDay, Month dd, yyyy. The TimeStamp Timezone
Format is not set.

You can also enter your own formats instead of using the selection from the
drop-down menus.

See Also:
« "Date Formats" on page 3-20
« "Time Formats" on page 3-24

« "Customizing Time Zone Data" on page 13-17

13-14 Oracle Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

Figure 13-12 shows the Number tab page.

Figure 13-12 Choosing Number Formats

File Edit Tools Help

Decimal Symhal: I

Megative Sign Location: w =100 « 100-

Murmeric Group Separatar: I

Mumber Grouping:

Mumber Sample

-1,234.12

List Separator: I H

Measurement Systerm:

Founding Indicator évalue greater than which to round up):

Rounding Sample

104 is rounded to 10 and 105 is rounded to 11

2 Untitled Category: Tertitory | Mame: Mone Status: Editing .

A period has been chosen for the Decimal Symbol. The Negative Sign Location is
specified to be on the left of the number. The Numeric Group Separator is a
comma. The Number Grouping is specified as 3 digits. The List Separator is a
comma. The Measurement System is metric. The Rounding Indicator is 4.

You can enter your own values instead of using values in the lists.

When you choose a format from a list, Oracle Locale Builder displays an example of
the format.

See Also: "Numeric Formats" on page 3-31

Customizing Locale 13-15

Creating a New Territory Definition with the Oracle Locale Builder

Figure 13-13 shows settings for currency formats in the Monetary tab page.
Figure 13-13 Choosing Currency Formats

File Edit Tools Help

Local Currency Symbol;

Alternative Currency Syrmhbal:

Currency Presentation:

Cecimal Symbaol:

Group Separatar:

Maonetary Mumhber Grauping:

Monetary Precision:

Cradit Symbol:

Cebit Symbol:

Credit: +% 1,234.123 ‘ Debit: - $ 1,234.123 ‘

International Currency Separator:[H

International Currency Syrmboal: [USD [:]

1,234 USD

ilename: Lintitled Category: Territory | Mame: Mone Status: Editing

The Local Currency Symbol is set to $. The Alternative Currency Symbol is the
euro symbol. The Currency Presentation shows one of several possible sequences
of the local currency symbol, the debit symbol, and the number. The Decimal
Symbol is the period. The Group Separator is the comma. The Monetary Number
Grouping is 3. The Monetary Precision, or number of digits after the decimal
symbol, is 3. The Credit Symbol is +. The Debit Symbol is - . The International
Currency Separator is a blank space, so it is not visible in the field. The
International Currency Symbol (ISO currency symbol) is USD. Oracle Locale
Builder displays examples of the currency formats you have selected.

You can enter your own values instead of using the lists.

13-16 Oracle Database Globalization Support Guide

Creating a New Territory Definition with the Oracle Locale Builder

See Also: "Currency Formats" on page 3-34

The rest of this section contains the following topics:
» Customizing Time Zone Data

« Customizing Calendars with the NLS Calendar Utility

Customizing Time Zone Data

The time zone files contain the valid time zone names. The following information is
included for each time zone:

« Offset from Coordinated Universal Time (UTC)
« Transition times for daylight savings time

« Abbreviations for standard time and daylight savings time. The abbreviations
are used with the time zone names.

Two time zone files are included in the Oracle home directory. The default file is
oracor e/ zonei nf o/ ti mezone. dat . More time zones are included in
oracor e/ zonei nfo/ ti mezlrg. dat.

See Also: "Choosing a Time Zone File" on page 4-20 for more
information about the contents of the time zone files and how to
install the larger time zone file

Customizing Calendars with the NLS Calendar Utility

Oracle supports several calendars. All of them are defined with data derived from
Oracle’s globalization support, but some of them may require the addition of ruler
eras or deviation days in the future. To add this information without waiting for a
new release of the Oracle database server, you can use an external file that is
automatically loaded when the calendar functions are executed.

Calendar data is first defined in a text file. The text definition file must be converted
into binary format. You can use the NLS Calendar Utility (I xegen) to convert the
text definition file into binary format.

The name of the text definition file and its location are hard-coded and depend on
the platform. On UNIX platforms, the file name is | xecal . nl t. Itis located in the
$ORACLE_HQOVE/ nl s/ deno directory. A sample text definition file is included in
the directory.

Customizing Locale 13-17

Displaying a Code Chart with the Oracle Locale Builder

The | xegen utility produces a binary file from the text definition file. The name of
the binary file is also hard-coded and depends on the platform. On UNIX platforms,
the name of the binary file is | xecal . nl b. The binary file is generated in the same
directory as the text file and overwrites an existing binary file.

After the binary file has been generated, it is automatically loaded during system
initialization. Do not move or rename the file.

Invoke the calendar utility from the command line as follows:

% | xegen

See Also:

« Operating system documentation for the location of the files on
your system

« "Calendar Systems" on page A-28

Displaying a Code Chart with the Oracle Locale Builder

You can display and print the code charts of character sets with the Oracle Locale
Builder. From the opening screen for Oracle Locale Builder, choose File > New >
Character Set. Figure 13-14 shows the resulting screen.

13-18 Oracle Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder

Figure 13-14 General Tab Page for Character Sets

File Edit Tools Help

General

Character Set Mame: |

Character Sat ID:

IS0 Character Set ID: |

Base CharacterSetID:l

Showy Existing Deﬂnitiuns...]

___FiIEﬂ arne: Untitled Category: Character Set | Mame: Mong Status: Editing

Click Show Existing Definitions. Highlight the character set you wish to display.
Figure 13-15 shows the Existing Definitions combo box with US7ASCII highlighted.

Figure 13-15 Choosing US7ASCII in the Existing Definitions Dialog Box

Character Set{|D)

TREPCEST(15E) =
US1ETSTFIXED(1001)

US7ASCIIT)

US8B52000(221)
USBICLE2Z7T)

USBPCA37(4) L~

Carresponding File Name: 120001, nlb
Cpen) Close)

Customizing Locale 13-19

Displaying a Code Chart with the Oracle Locale Builder

Click Open to choose the character set. Figure 13-16 shows the General tab page
when US7ASCII has been chosen.

Figure 13-16 General Tab Page When US7ASCII Has Been Chosen

File Edit Tools Help

General

Character Set Mame: |USTASCII

Character Set 1D

IS0 Character Set D |31

Base Character SetID:l

Show Existing DEﬂnitiDnS...]

Shae
TASCI

Category: Character Set | Mame: US

Click the Character Data Mapping tab. Figure 13-17 shows the Character Data
Mapping tab page for US7ASCII.

13-20 Oracle Database Globalization Support Guide

Displaying a Code Chart with the Oracle Locale Builder

Figure 13-17 Character Data Mapping Tab Page for US7ASCII

File Edit Tools Help

LacalChar Value Unicade Yalue
woodd
woode
wno4af
wWno0s0
w051
Wwnos2

om0 =z =

wnas4
wass
wiase
waasy
wiass

X £ <|C

LocalChar Walue Glyph Unicode Value
w0053

ey J ol aclify) Delete) Search J

View CodeChart

Category: Character Set | Marne: LUSTASCI

Click View CodeChart. Figure 13-18 shows the code chart for US7ASCII.

Customizing Locale 13-21

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 13-18 US7ASCII Code Chart

Oad Ozad Oaa sl Oar Oxad Oae Oeaf 0z b1 0z b3 =
() * + , - / 0 1 2 3
a002s a002e a002a a00sh a0z a00z2d a0ze 00 0030 0031 RAIlEY) 0033
x4 0xh3 Oz T 0xhd it] Ozbha Ozbh e 0zbd Ozdhe Ozdbf
4 5 6 7 8 9 : = = > 9
004 0035 0036 LAY a00zg RAlE] a003a a003h 03 a003d a03e 003t
Ozl Ozl Oz O3 Ozd Qs Ozt Oy Ozt Oz Qs Ok
(e A B c D E F G H I J K
0040 0041 0042 0043 0044 0045 004G 0047 a004s 0049 RAlEEY 004
Qe Ozoed Qe Ozt 0zxedd 0xdl Oxd2 Ond3 Ozedd Oxds Oxdd 0xd?
L M N o P Q R b T u Y W
04 a004d al04e 004t a00s0 0051 0052 0053 0054 0055 005G a00sT
s 0mde Ozda g Ozde 0mdd e Omdf Ozl Ozl Oz O3
X Y Z [by] A B : a b c
a00sg 0059 a005a 005k 05 a00sd al05e 005t a00a0 0061 0062 0063
Ozt Ozes Ozt Oxe? Ozt Ozl O Ok Qe Oxted. Oztee Oyef
d e f z h i j k 1 m n 0
0064 0065 0066 0067 a006s 0069 a00Ga 006k a0 a006d al0de 006t
0zl 0l i] i 2] Ot i] i] 07 i] i Onfa i)
p q r s t u v W x v z {
aoTn 007l 00T 00T 0074 007s 007E 00Ty a007s 00Ty 007a 007h
O 0 e 0
007 a007d a007Te a007e
1]

Freviols Fane Mext Fane Print Page J

It shows the encoded value of each character in the local character set, the glyph
associated with each character, and the Unicode value of each character in the local
character set.

If you want to print the code chart, then click Print Page.

Creating a New Character Set Definition with the Oracle Locale Builder

You can customize a character set to meet specific user needs. You can extend an
existing encoded character set definition. User-defined characters are often used to
encode special characters that represent the following:

« Proper names

« Historical Han characters that are not defined in an existing character set
standard

13-22 Oracle Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Vendor-specific characters

New symbols or characters that you define

This section describes how Oracle supports user-defined characters. It includes the
following topics:

Character Sets with User-Defined Characters

Oracle Character Set Conversion Architecture

Unicode 3.2 Private Use Area

User-Defined Character Cross-References Between Character Sets
Guidelines for Creating a New Character Set from an Existing Character Set

Example: Creating a New Character Set Definition with the Oracle Locale
Builder

Character Sets with User-Defined Characters

User-defined characters are typically supported within East Asian character sets.
These East Asian character sets have at least one range of reserved code points for
user-defined characters. For example, Japanese Shift-JIS preserves 1880 code points
for user-defined characters. They are shown in Table 13-1.

Table 13-1 Shift JIS User-Defined Character Ranges

Number of Code

Japanese Shift JIS User-Defined Character Range Points
F040-FO7E, FO80-FOFC 188
F140-F17E, F180-F1FC 188
F240-F27E, F280-F2FC 188
F340-F37E, F380-F3FC 188
F440-FATE, F480-FAFC 188
F540-F57E, F580-F5FC 188
FF640-F67E, F680-F6FC 188
F740-F77E, F780-F7FC 188
F840-F87E, F880-F8FC 188
F940-F97E, F980-FI9FC 188

Customizing Locale 13-23

Creating a New Character Set Definition with the Oracle Locale Builder

The Oracle character sets listed in Table 13-2 contain predefined ranges that support
user-defined characters.

Table 13-2 Oracle Character Sets with User-Defined Character Ranges

Number of Code Points Available for User-Defined

Character Set Name Characters
JA16DBCS 4370
JA16EBCDIC930 4370
JA16SJIS 1880
JA16SJISYEN 1880
KO16DBCS 1880
KO16MSWIN949 1880
ZHS16DBCS 1880
ZHS16GBK 2149
ZHT16DBCS 6204
ZHT16MSWIN950 6217

Oracle Character Set Conversion Architecture

The code point value that represents a particular character can vary among different
character sets. A Japanese kanji character is shown in Figure 13-19.

Figure 13-19 Japanese Kanji Character

[

The following table shows how the character is encoded in different character sets.

Unicode JA16SJIS JA16EUC JA16DBCS
Encoding Encoding Encoding Encoding
4E9C 889F BOA1 4867

In Oracle, all character sets are defined in terms of Unicode 3.2 code points. That is,
each character is defined as a Unicode 3.2 code value. Character conversion takes
place transparently to users by using Unicode as the intermediate form. For

13-24 Oracle Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

example, when a JA16SJIS client connects to a JAI6EUC database, the character
shown in Figure 13-19 has the code point value 889F when it is entered from the
JA16SIJIS client. It is internally converted to Unicode (with code point value 4E9C)
and then converted to JA16EUC (code point value BOAL).

Unicode 3.2 Private Use Area
Unicode 3.2 reserves the range E000-F8FF for the Private Use Area (PUA). The PUA
is intended for private use character definition by end users or vendors.

User-defined characters can be converted between two Oracle character sets by
using Unicode 3.2 PUA as the intermediate form, the same as standard characters.

User-Defined Character Cross-References Between Character Sets

Cross-references between different character sets are required when registering
user-defined characters across operating systems. Cross-references ensure that the
user-defined characters can be converted correctly across the different character
sets.

For example, when registering a user-defined character on both a Japanese Shift-JIS
operating system and a Japanese IBM Host operating system, you may want to
assign the F040 code point on the Shift-JIS operating system and the 6941 code point
on the IBM Host operating system for this character so that Oracle can map this
character correctly between the character sets JA16SJIS and JA16DBCS.

User-defined character cross-reference information can be found by viewing the
character set definitions using the Oracle Locale Builder. For example, you can
determine that both the Shift-JIS UDC value F040 and the IBM Host UDC value
6941 are mapped to the same Unicode PUA value E000.

See Also: Appendix B, "Unicode Character Code Assignments"

Guidelines for Creating a New Character Set from an Existing Character Set

By default, the Oracle Locale Builder generates the next available character set ID
for you. You can also choose your own character set ID. Use the following format
for naming character set definition NLT files:

| x2dddd. nl t

dddd is the 4-digit character set ID in hex.

When you modify a character set, observe the following guidelines:

Customizing Locale 13-25

Creating a New Character Set Definition with the Oracle Locale Builder

« Do not remap existing characters.
« All character mappings must be unique.

« New characters should be mapped into the Unicode private use range e000 to
fAff. (Note that the actual Unicode 3.2 private use range is e000-f8ff. However,
Oracle reserves f500-f8ff for its own private use.)

« No line in the character set definition file can be longer than 80 characters.

Note: When you create a new multibyte character set from an
existing character set, use an 8-bit or multibyte character set as the
original character set.

If you derive a new character set from an existing Oracle character set, then Oracle
Corporation recommends using the following character set naming convention:

<Oracl e_charact er _set _name><or gani zat i on_nane>EXT<ver si on>

For example, if a company such as Sun Microsystems adds user-defined characters
to the JA16EUC character set, then the following character set name is appropriate:

JA16EUCSUNVEXT1

The character set name contains the following parts:
« JAL16EUC s the character set name defined by Oracle

« SUNWrepresents the organization name (company stock trading abbreviation
for Sun Microsystems)

« EXT specifies that this character set is an extension to the JA16EUC character set

« 1 specifies the version

Example: Creating a New Character Set Definition with the Oracle Locale Builder

This section shows how to create a new character set called MYCHARSET with
10001 for its Character Set ID. The example uses the WE8ISO8859P1 character set
and adds 10 Chinese characters.

Figure 13-20 shows the General tab page for MYCHARSET.

13-26 Oracle Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 13-20 General Tab Page for MYCHARSET

File Edit Tools Help

General

Character Set Mame: |MYCHARSET

Character et 10 |1uuu1

IS0 Character Set ID: |

Base CharacterSetID:l

Showy Existing Definitions...

Category: Character Set ame: YWES I8P Status: Editing

Click Show Existing Definitions and choose the WE8ISO8859P1 character set from
the Existing Definitions dialog box.

The ISO Character Set ID and Base Character Set ID fields are optional. The Base
Character Set ID is used for inheriting values so that the properties of the base
character set are used as a template. The Character Set ID is automatically
generated, but you can override it. The valid range for a user-defined character set
ID is 8000 to 8999 or 10000 to 20000.

Note: If you are using Pro*COBOL, then choose a character set ID
between 8000 and 8999.

The 1SO Character Set ID field remains blank for user-defined character sets.

Customizing Locale 13-27

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 13-21 shows the Type Specification tab page.
Figure 13-21 Type Specification Tab Page

File Edit Tools Help

Type Specifi...

~Character Set Category

w ASCI_BASED " EBCDIC_BASED " FIXED_WIDTH

~Addtional Flag
[~ DISPLAY [~ SHIFT [BYTE_UMIQLE

~Special Characters (When FIKED _WIDTH is sef)
LocalChar Walue Glyph

Fad Character:

Underscore Character:

Percent Character:

~Shift Characters (When SHIFT iz set)

LacalChar WYalue

Shift Out:

Shift In:

1 hit fhen DISPLAY is set)

CHRELE I ERILEE

Filename: [x2001f.nlb Category: Character Set | Mame: WEBISO08859P 1 Status: Editing

The Character Set Category is ASCl | _BASED. The BYTE_UNIQUE button is
checked.

When you have chosen an existing character set, the fields for the Type
Specification tab page should already be set to appropriate values. You should keep
these values unless you have a specific reason for changing them. If you need to
change the settings, then use the following guidelines:

« FIXED_WIDTH is used to identify character sets whose characters have a
uniform length.

13-28 Oracle Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

« BYTE_UNIQUE means that the single-byte range of code points is distinct from
the multibyte range. The code in the first byte indicates whether the character is
single-byte or multibyte. An example is JAI6EUC.

« DISPLAY identifies character sets that are used only for display on clients and
not for storage. Some Arabic, Devanagari, and Hebrew character sets are
display character sets.

« SHIFT is used for character sets that require extra shift characters to distinguish
between single-byte characters and multibyte characters.

See Also: "Variable-width multibyte encoding schemes" on
page 2-10 for more information about shift-in and shift-out
character sets

Figure 13-22 shows how to add user-defined characters.

Customizing Locale 13-29

Creating a New Character Set Definition with the Oracle Locale Builder

Figure 13-22 Importing User-Defined Character Data

File Edit Tools Help

Unicode Yalue

WL00f
005
W00
| W00f7
Alt+F4 L00fS

g YW00f9
WI0Ofa
w00k
WI00fc
"0 0fd
WI0Ofe

!m part.. User-Defined Characters Data. .

LacalChar Yalue Glyph LInicode “alue
y WID0fF

Tleny M odify Delete Search
J))) J

Yiew CodeChart

___Filen ame: k20011 nlk Category: Character Set Harme: 4P Status: Editing

Open the Character Data Mapping tab page. Highlight the character that you want
to add characters after in the character set. In this example, the Oxf f local character
value is highlighted.

You can add one character at a time or use a text file to import a large number of
characters. In this example, a text file is imported. The first column is the local
character value. The second column is the Unicode value. The file contains the
following character values:

88a2 963f
88a3 54c0
88a4 611b
88a5 6328
88a6 59f6
88a7 9022

13-30 Oracle Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder

88a8 8475
88a9 83lc
88aa 7a50
88ab 60aa

Choose File > Import > User-Defined Characters Data.

Figure 13-23 shows that the imported characters are added after Oxf f in the
character set.

Figure 13-23 New Characters in the Character Set

File Edit Tools Help

LocalChar Walue Unicode Value

w00fe
OxfT y W07

Ox88a3
Ox88a4
Ox88a5
Ox88a6
Ox88a7
Ox88a8
Ox88a9
Ox88a3
Ox88ak

w4co
BTk
E328
WIS ETE
w9022
w34 7s
Ww3dic
w7ag0
welas

ol 8 B W AT A A A0 E

| LocalChar Yalue Glyph LInicode Yalue
OxB8a2 pa] WE3f

(New)(Add]li Modify j(Delete)(gearch)

Category: Character Set Marme: WESI! QP Status: Editing

Customizing Locale 13-31

Creating a New Linguistic Sort with the Oracle Locale Builder

Creating a New Linguistic Sort with the Oracle Locale Builder

This section shows how to create a new multilingual linguistic sort called MY_
GENERI C_Mwith a collation ID of 10001. The GENERI C_Mlinguistic sort is used as
the basis for the new linguistic sort. Figure 13-24 shows how to begin.

Figure 13-24 General Tab Page for Collation

File Edit Tools Help

General

Collation Name: |MY_GENERIC_M

Collation ID; |1nuu1

Show Existing Definitions...

Defined Collation Flag
(P CANOMNICAL_EQUNALENCE [REVERSE_SECONDARY [SWaAR_WWMITH_MNEXT

_Filename: 1x31001.nlb Category: Multilingual Linguistic .. | Marne: GENERIC_M Status: Editing

Settings for the flags are automatically derived. SWAP_WITH_NEXT is relevant for
Thai and Lao sorts. REVERSE_SECONDARY is for French sorts. CANONICAL _
EQUIVALENCE determines whether canonical rules are used. In this example,
CANONICAL_EQUIVALENCE is checked.

The valid range for Collation ID (sort ID) for a user-defined sort is 1000 to 2000 for
monolingual collation and 10000 to 11000 for multilingual collation.

13-32 Oracle Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

See Also:

« Figure 13-28, "Canonical Rules Dialog Box" for more
information about canonical rules

« Chapter 5, "Linguistic Sorting and String Searching"
Figure 13-25 shows the Unicode Collation Sequence tab page.
Figure 13-25 Unicode Collation Sequence Tab Page

File Edit Tools Help

Unicode Colla..

é—Tertiary

p0034 4
—udf14 4
w2477 {4
—w248h 4
—e2463 @
—w2074 ¢
—2084
—w0664
—x06f4
3024
-Secondary
é—Ter‘[iaw

w0035 &
wif1s &
J Modify J Faste J[Search | FuIIVieWJ

Category: Multilingual Linguistic ... | Mame: GEMERIC M Status: Editing

This example customizes the linguistic sort by moving digits so that they sort after
letters. Complete the following steps:

Customizing Locale 13-33

Creating a New Linguistic Sort with the Oracle Locale Builder

1. Highlight the Unicode value that you want to move. In Figure 13-25, the
\ x0034 Unicode value is highlighted. Its location in the Unicode Collation
Sequence is called a node.

2. Click Cut. Select the location where you want to move the node.

3. Click Paste. Clicking Paste opens the Paste Node dialog box, shown in
Figure 13-26.

Figure 13-26 Paste Node Dialog Box

Would you like to paste the node after or before the selected node?

® ffter " Before

Set Collation Level Difference Between New Mode And Selected Mode

® Primary " Secondary " Tertiary

Paste Codepoint Yalue: Ww0034

Ok)} CANCEL)

4. The Paste Node dialog box enables you to choose whether to paste the node
after or before the location you have selected. It also enables you to choose the
level (Primary, Secondary, or Tertiary) of the node in relation to the node that
you want to paste it next to.

Select the position and the level at which you want to paste the node.
In Figure 13-26, the After button and the Primary button are selected.
5. Click OK to paste the node.
Use similar steps to move other digits to a position after the letters a through z.

Figure 13-27 shows the resulting Unicode Collation Sequence tab page after the
digits 0 through 4 have been moved to a position after the letters a through z.

13-34 Oracle Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 13-27 Unicode Collation Sequence After Modification

File Edit Tools Help

Unicode Colla..

H-D—Secondary
é—Tertiary
—w07a z
—wiffoa =z
—w24bs (2]
—w24ed @
—wd05a £
—uffla 2
—w2124 &
—w2128 3
—w24cf @
031 1
—w0032 2
—a033 3
003 4

Search)(Fullyiew)

| Category: Multilingual Linguistic .. | Mame: GENERIC_M Status: Editing

The rest of this section contains the following topics:
« Changing the Sort Order for All Characters with the Same Diacritic
« Changing the Sort Order for One Character with a Diacritic

Changing the Sort Order for All Characters with the Same Diacritic

This example shows how to change the sort order for characters with diacritics. You
can do this by changing the sort for all characters containing a particular diacritic or
by changing one character at a time. This example changes the sort of each
characters with a circumflex (for example,) to be after the same character
containing a tilde.

Customizing Locale 13-35

Creating a New Linguistic Sort with the Oracle Locale Builder

Verify the current sort order by choosing Tools > Canonical Rules. This opens the
Canonical Rules dialog box, shown in Figure 13-28.

Figure 13-28 Canonical Rules Dialog Box

FreComposed Form Glyph Decomposed Form Glyph
W00fa G w007 5W0301 u+ -
WI0Ofh d W00y Swo202 u+" =
w169 b w007 Sw0203 u+
FreComposed Farm Glyph Decomposed Farm Glyph
[By, A ol cdify, Delete Search...
Ok

Figure 13-28 shows how characters are decomposed into their canonical
equivalents and their current sorting orders. For example, 0 is represented as u plus
N

See Also: Chapter 5, "Linguistic Sorting and String Searching" for
more information about canonical rules

In the Oracle Locale Builder collation window (shown in Figure 13-24), click the
Non-Spacing Characters tab. If you use the Non-Spacing Characters tab page, then
changes for diacritics apply to all characters. Figure 13-29 shows the Non-Spacing
Characters tab page.

13-36 Oracle Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 13-29 Changing the Sort Order for All Characters with the Same Diacritic

File Edit Tools Help

Mon-Spaci...

& Removal Confirmation

Are you sure you want
to remove the node
w030 from the collation

w0303 sequence?
w0342 7
w0308 °
w0344
—w030b 7
w0303 7
w0307

© Modif | cut | Pasie | Seamh | Fullview |

Categary: Multilingual Linguistic ... Mame: GENERIC_M Status: Editing

Select the circumflex and click Cut. Click Yes in the Removal Confirmation dialog
box. Select the tilde and click Paste. Choose After and Secondary in the Paste Node
dialog box and click OK.

Figure 13-30 illustrates the new sort order.

Customizing Locale 13-37

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 13-30 The New Sort Order for Characters with the Same Diacritic

Edit Tools Help

Man-Spaci...

w0307
%0338/
w0327
w0378
w0304

Add) Modity) Paste) Search) FuIIVieWJ

___Filen ame: k31001 .nlk Category: Multilingual Linguistic .. | Mame: GENERIC_M Status: Editing

Changing the Sort Order for One Character with a Diacritic

To change the order of a specific character with a diacritic, insert the character
directly into the appropriate position. Characters with diacritics do not appear in
the Unicode Collation Sequence tab page, so you cannot cut and paste them into
the new location.

This example changes the sort order for & so that it sorts after Z.

Select the Unicode Collation tab. Highlight the character, Z, that you want to put &
next to. Click Add. The Insert New Node dialog box appears, as shown in
Figure 13-31.

13-38 Oracle Database Globalization Support Guide

Creating a New Linguistic Sort with the Oracle Locale Builder

Figure 13-31 Changing the Sort Order of One Character with a Diacritic

File Edit Tools Help

Unicode Colla..

Wif2g Y
wldce W)
N Al /& Insert New Node
—w028f v
S-Secondary
é—Ter‘[iaw

Set Collation Level Difference Betwaen Mew Mode And Selected Made
':‘ocU‘Ibél "
® Primary Secondary o Terdiary
WO1b3 Y

ould you like to insert the new node after or hefore the selected node?
i After i Befare

%Secondaw Codepoint Yalue |‘J€DDB4

é—Tertiary

—w07a z Ok) Cancel)
—udfba =z
~w24bs (2]
—w2ded @

it vl

Cut || Faste | Seah | Fulview |

Category: Multilingual Linguistic .. Mame: GENERIC_M Status: Editing

Choose After and Primary in the Insert New Node dialog box. Enter the Unicode
code point value of &. The code point value is \ x00e4. Click OK.

Figure 13-32 shows the resulting sort order.

Customizing Locale 13-39

Generating and Installing NLB Files

Figure 13-32 New Sort Order After Changing a Single Character

File Edit Tools Help

Unicode Colla..

é—Ter‘[iaw
':‘ocU‘Ibél "
Wwi1b3
S-Secondary
é—Tertiary
—wl07a z
—wffoa =z
—24b5 (2)
—w24ed (@
—w005a £
—uffla Z
—w2124 I
—w2128 §
—w24cf (@

J Search J Fullignm J

___Filen ame: k31001 .nlk Category: Multilingual Linguistic .. | Mame: GENERIC_M Status: Editing

Generating and Installing NLB Files

After you have defined a new language, territory, character set, or linguistic sort,
generate new NLB files from the NLT files.

1. As the user who owns the files (typically user or acl e), back up the NLS
installation boot file (I xOboot . nl b) and the NLS system boot file
(I x1boot . nl b) in the ORA_NLS10 directory. On a UNIX platform, enter
commands similar to the following:

% setenv ORA_NLS10 $ORACLE_HOVE/ nl s/ data
% cd $ORA_NLS10

%cp -p | x0boot.nlb |x0boot.nlb.orig
%cp -p | xlboot.nlb Ixlboot.nlb.orig

13-40 Oracle Database Globalization Support Guide

Generating and Installing NLB Files

Note that the - p option preserves the timestamp of the original file.

2. In Oracle Locale Builder, choose Tools > Generate NLB or click the Generate
NLB icon in the left side bar.

3. Click Browse to find the directory where the NLT file is located. The location
dialog box is shown in Figure 13-33.

Figure 13-33 Location Dialog Box

Please enter the pathname where the nlt files are located:

Directory: |-::‘-rrrynlt Browse..,

oK J CANCEL)

Do not try to specify an NLT file. Oracle Locale Builder generates an NLB file
for each NLT file.

4. Click OK to generate the NLB files.

Figure 13-34 illustrates the final notification that you have successfully
generated NLB files for all NLT files in the directory.

Figure 13-34 NLB Generation Success Dialog Box

HLE generation has
completed successfully! For
the changes to take effect,
please copy the newly-
generated nlb files and the

updated hoot file to your
QORA_MLS10 directory.

5. Copy thel x1boot . nl b file into the path that is specified by the ORA NLS10
environment variable. For example, on a UNIX platform, enter a command
similar to the following:

% cp /directory_nanme/ | xlboot.nl b $ORA NLS10/| x1lboot. nl b

Customizing Locale 13-41

Transportable NLB Data

6. Copy the new NLB files into the ORA_NLS10 directory. For example, on a UNIX
platform, enter commands similar to the following:

%cp /directory_nanme/lx22710.nl b $ORA NLS10
%cp /directory_name/lx52710. nl b $ORA NLS10

Note: Oracle Locale Builder generates NLB files in the directory
where the NLT files reside.

7. Restart the database to use the newly created locale data.

8. To use the new locale data on the client side, exit the client and re-invoke the
client after installing the NLB files.

See Also: "Locale Data on Demand" on page 1-2 for more
information about the ORA_NLS10 environment variable

Transportable NLB Data

NLB files that are generated on one platform can be transported to another platform
by, for example, FTP. The transported NLB files can be used the same way as the
NLB files that were generated on the original platform. This is convenient because
locale data can be modified on one platform and copied to other platforms. Note
that you must copy all of the NLB files from one platform to another, not just the
files that have been modified. Also note that "Generating and Installing NLB Files"
on page 13-40 is performed the same way as in previous releases. NLB files that are
generated on a Solaris platform can be copied by FTP to a Windows platform and
provide the same functionality there.

Different binary formats (such as 32-bit, 64-bit, big-endian, little-endian, ASCII, and
EBCDIC) are processed during NLB loading in a manner that is transparent to the
user.

13-42 Oracle Database Globalization Support Guide

A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data
supported by the Oracle server. It includes these topics:

Languages

Translated Messages

Territories

Character Sets

Language and Character Set Detection Support
Linguistic Sorts

Calendar Systems

Time Zone Names

Obsolete Locale Data

You can obtain information about character sets, languages, territories, and sorting
orders by querying the V$NLS_VALI D_VALUES dynamic performance view.

See Also: Oracle Database Reference for more information about the
data that can be returned by this view

Locale Data A-1

Languages

Languages

Languages inTable A-1 provide support for locale-sensitive information such as the
following:

Day and month names and their abbreviations
Symbols for equivalent expressions for A.M., PM., A.D., and B.C.

Default sorting sequence for character data when the ORDER BY SQL clause is
specified

Writing direction (left to right or right to left)

Affirmative and negative response strings (for example, YES and NO)

By using Unicode databases and datatypes, you can store, process, and retrieve data
for almost all contemporary languages, including many that do not appear in
Table A-1.

Table A-1 Oracle Supported Languages

Language
Language Name Abbreviation Default Sort
AMERICAN us binary
ARABIC ar ARABIC
ASSAMESE as binary
AZERBAIJANI az AZERBAIJANI
BANGLA bn binary
BRAZILIAN PORTUGUESE ptb WEST_EUROPEAN
BULGARIAN bg BULGARIAN
CANADIAN FRENCH frc CANADIAN FRENCH
CATALAN ca CATALAN
CROATIAN hr CROATIAN
CYRILLIC KAZAKH ckk GENERIC_M
CYRILLIC SERBIAN csr GENERIC_M
CYRILLIC UZBEK cuz GENERIC_M
CZECH cs CZECH
DANISH dk DANISH

A-2 Oracle Database Globalization Support Guide

Table A-1 Oracle Supported Languages (Cont.)

Language Name

Language
Abbreviation

Default Sort

DUTCH
EGYPTIAN
ENGLISH
ESTONIAN
FINNISH
FRENCH
GERMAN DIN
GERMAN
GREEK
GUJARATI
HEBREW
HINDI
HUNGARIAN
ICELANDIC
INDONESIAN
ITALIAN
JAPANESE
KANNADA
KOREAN

LATIN AMERICAN SPANISH
LATIN SERBIAN

LATIN UZBEK
LATVIAN
LITHUANIAN
MACEDONIAN
MALAY

nl
€g
gb
et
sf

f
din

el

DUTCH
ARABIC
binary
ESTONIAN
FINNISH
FRENCH
GERMAN
GERMAN
GREEK

binary
HEBREW
binary
HUNGARIAN
ICELANDIC
INDONESIAN
WEST_EUROPEAN
binary

binary

binary
SPANISH
binary
GENERIC_M
LATVIAN
LITHUANIAN
binary
MALAY

Locale Data A-3

Translated Messages

Table A-1 Oracle Supported Languages (Cont.)

Language
Language Name Abbreviation Default Sort
MALAYALAM ml binary
MARATHI mr binary
MEXICAN SPANISH esm WEST_EUROPEAN
NORWEGIAN n NORWEGIAN
ORIYA or binary
POLISH pl POLISH
PORTUGUESE pt WEST_EUROPEAN
PUNJABI pa binary
ROMANIAN ro ROMANIAN
RUSSIAN ru RUSSIAN
SIMPLIFIED CHINESE zhs binary
SLOVAK sk SLOVAK
SLOVENIAN sl SLOVENIAN
SPANISH e SPANISH
SWEDISH S SWEDISH
TAMIL ta binary
TELUGU te binary
THAI th THAI_DICTIONARY
TRADITIONAL CHINESE zht binary
TURKISH tr TURKISH
UKRAINIAN uk UKRAINIAN
VIETNAMESE vn VIETNAMESE

Translated Messages

Oracle error messages have been translated into the languages which are listed in
Table A-2.

A-4 Oracle Database Globalization Support Guide

Translated Messages

Table A—2 Oracle Supported Messages

Name Abbreviation
ARABIC ar
BRAZILIAN PORTUGUESE ptb
CATALAN ca
CZECH cs
DANISH dk
DUTCH nl
FINNISH sf
FRENCH f
GERMAN d
GREEK el
HEBREW iw
HUNGARIAN hu
ITALIAN i
JAPANESE ja
KOREAN ko
NORWEGIAN n
POLISH pl
PORTUGUESE pt
ROMANIAN ro
RUSSIAN ru
SIMPLIFIED CHINESE zhs
SLOVAK sk
SPANISH e
SWEDISH S
THAI th
TRADITIONAL CHINESE zht
TURKISH tr

Locale Data

A-5

Territories

Territories

Table A-3 lists the territories supported by the Oracle server.

Table A—3 Oracle Supported Territories

Name Name Name
ALGERIA HONG KONG PERU

- - PHILIPPINES
AMERICA HUNGARY POLAND
AUSTRALIA ICELAND PORTUGAL
AUSTRIA INDIA PUERTO RICO
BAHRAIN INDONESIA QATAR
BANGLADESH IRAQ ROMANIA

- - RUSSIA
BELGIUM IRELAND SAUDI ARABIA
- - SERBIA AND MONTENEGRO
BRAZIL ISRAEL SINGAPORE
BULGARIA ITALY SLOVAKIA
CANADA JAPAN SLOVENIA
CATALONIA JORDAN SOMALIA
CHILE KAZAKHSTAN SOUTH AFRICA
CHINA KOREA SPAIN
ARGENTINA - -

AZERBAIJAN KUWAIT SUDAN
COLOMBIA LATVIA SWEDEN
COSTARICA LEBANON SWITZERLAND
CROATIA LIBYA SYRIA

CYPRUS LITHUANIA TAIWAN
CZECH REPUBLIC LUXEMBOURG THAILAND

DENMARK

A-6 Oracle Database Globalization Support Guide

THE NETHERLANDS

Character Sets

Table A—3 Oracle Supported Territories (Cont.)

Name Name Name

DJIBOUTI MALAYSIA TUNISIA
ECUADOR - -

EGYPT MAURITANIA TURKEY

EL SALVADOR MEXICO UKRAINE
ESTONIA MOROCCO UNITED ARAB EMIRATES
FINLAND NEW ZEALAND UNITED KINGDOM
FRANCE NICARAGUA UZBEKISTAN

FYR MACEDONIA - VENEZUELA
GUATEMALA NORWAY VIETNAM
GERMANY OMAN YEMEN

GREECE PANAMA -

Character Sets

Oracle-supported character sets are listed in the following sections according to
three broad language groups.

« Asian Language Character Sets

« European Language Character Sets

« Middle Eastern Language Character Sets

In addition, common subset/superset combinations are listed.

Note that some character sets may be listed under multiple language groups
because they provide multilingual support. For instance, Unicode spans the Asian,
European, and Middle Eastern language groups because it supports most of the
major scripts of the world.

The comment section indicates the type of encoding used:

SB = Single-byte encoding
MB = Multibyte encoding
FIXED = Fixed-width multibyte encoding

Locale Data A-7

Character Sets

As mentioned in Chapter 3, "Setting Up a Globalization Support Environment”, the
type of encoding affects performance, so use the most efficient encoding that meets
your language needs. Also, some encoding types can only be used with certain data
types. For instance, the AL16UTF16 character set can only be used as an NCHAR
character set, and not as a database character set.

Also documented in the comment section are other unique features of the character
set that may be important to users or your database administrator. For example, the
information includes whether the character set supports the euro currency symbol,
whether user-defined characters are supported, and whether the character set is a
strict superset of ASCII. (You can use the ALTER DATABASE CHARACTER SET
statement to migrate from the US7ASCII character set to a character set that is a
strict superset of ASCII.)

The following is the key for the comment column of the character set tables:

EURO: euro symbol supported

UDC: user-defined characters supported
ASCII: strict superset of ASCII

MB: multibyte

SB: single-byte

Oracle does not document individual code page layouts. For specific details about a
particular character set, its character repertoire, and code point values, you can use
Oracle Locale Builder may be used. Otherwise, you should refer to the actual
national, international, or vendor-specific standards.

See Also: Chapter 13, "Customizing Locale"

Asian Language Character Sets

Table A4 lists the Oracle character sets that can support Asian languages. The list is
alphabetical by description.

Table A—4 Asian Language Character Sets

Name Description Comments
BNS8BSCII Bangladesh National Code 8-bit BSCI|I SB, ASCII
ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII
ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB, ASCII
JA16EUC EUC 24-bit Japanese MB, ASCII

A-8 Oracle Database Globalization Support Guide

Character Sets

Table A—4 Asian Language Character Sets (Cont.)

Name Description Comments
JA16EUCTILDE The same as JAL6EUC except for the way that the wave dash MB, ASCII
and the tilde are mapped to and from Unicode.
JA16EUCYEN EUC 24-bit Japanese with "\' mapped to the Japanese yen MB
character
ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII
ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC
ZHS32GB18030 GB18030-2000 MB, ASCII, EURO
ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII
JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC
JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC
KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC
ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC
ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC
JA16VMS JVMS 16-bit Japanese MB, ASCII
KO16KSC5601 KSC5601 16-bit Korean MB, ASCII
KO16KSCCS KSCCS 16-bit Korean MB, ASCII
ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB
JA16MACSIIS Mac client Shift-JIS 16-bit Japanese MB
TH8MACTHAI Mac Client 8-bit Latin/Thai SB
TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII
TH8TISEBCDICS Thai Industrial Standard 620-2533-EBCDIC Server 8-bit SB

KO16MSWIN949
ZHT16HKSCS

ZHT16MSWIN950
VN8MSWIN1258
INS8ISCII

JA16SJIS

MS Windows Code Page 949 Korean

MS Windows Code Page 950 with Hong Kong Supplementary
Character Set HKSCS-2001 (character set conversion to and from

Unicode is based on Unicode 3.0)

MS Windows Code Page 950 Traditional Chinese
MS Windows Code Page 1258 8-bit Vietnamese
Multiple-Script Indian Standard 8-bit Latin/Indian Languages

Shift-JIS 16-bit Japanese

MB, ASCII, UDC
MB, ASCII, EURO

MB, ASCII, UDC
SB, ASCII, EURO
SB, ASCII

MB, ASCII, UDC

Locale Data A-9

Character Sets

Table A—4 Asian Language Character Sets (Cont.)

Name Description Comments
JA16SJISTILDE The same as JA16SJIS except for the way that the wave dash and MB, ASCII, UDC
the tilde are mapped to and from Unicode.
JAL16SJISYEN Shift-JIS 16-bit Japanese with "\" mapped to the Japanese yen MB, UDC
character
ZHT32SO0PS SOPS 32-bit Traditional Chinese MB, ASCII
ZHT16DBT Taiwan Taxation 16-bit Traditional Chinese MB, ASCII
THSTISASCII Thai Industrial Standard 620-2533 - ASCII 8-bit SB, ASCII, EURO
THSTISEBCDIC Thai Industrial Standard 620-2533 - EBCDIC 8-bit SB
ZHT32TRIS TRIS 32-bit Traditional Chinese MB, ASCII
AL16UTF16 See "Universal Character Sets" on page A-19 for details MB, EURO, FIXED
AL32UTF8 See "Universal Character Sets" on page A-19 for details MB, ASCII, EURO
UTF8 See "Universal Character Sets" on page A-19 for details MB, ASCII, EURO
UTFE See "Universal Character Sets" on page A-19 for details MB, EURO
VNB8VN3 VN3 8-bit Viethamese SB, ASCII

European Language Character Sets

Table A-5 lists the Oracle character sets that can support European languages. The
list is alphabetical by description.

Table A-5 European Language Character Sets

Name Description Comments
US7ASCII ASCII 7-bit American SB, ASCII
SF7ASCII ASCII 7-bit Finnish SB
YUGT7ASCII ASCII 7-bit Yugoslavian SB
RUSBESTA BESTA 8-bit Latin/Cyrillic SB, ASCII
EL8GCOS7 Bull EBCDIC GCOS7 8-bit Greek SB
WES8GCOS7 Bull EBCDIC GCOS?7 8-bit West European SB
EL8DEC DEC 8-bit Latin/Greek SB
TR7DEC DEC VT100 7-bit Turkish SB

A-10 Oracle Database Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
TR8DEC DEC 8-bit Turkish SB, ASCII
WESDEC DEC 8-bit West European SB, ASCII
D7DEC DEC VT100 7-bit German SB

F7DEC DEC VT100 7-bit French SB

S7TDEC DEC VT100 7-bit Swedish SB
E7DEC DEC VT100 7-bit Spanish SB
NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

I7DEC DEC VT100 7-bit Italian SB
NL7DEC DEC VT100 7-bit Dutch SB
CH7DEC DEC VT100 7-bit Swiss (German/French) SB
SF7DEC DEC VT100 7-bit Finnish SB
WESDG DG 8-bit West European SB, ASCII
WESEBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB
WESEBCDIC37 EBCDIC Code Page 37 8-bit West European SB
D8EBCDIC273 EBCDIC Code Page 27371 8-bit Austrian German SB
DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB
SBEBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB
IBEBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB
WESEBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB
WESEBCDIC285 EBCDIC Code Page 285 8-bit West European SB
WEBEBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB
WESEBCDIC1140 EBCDIC Code Page 1140 8-bit West European SB, EURO
WESEBCDIC1140C EBCDIC Code Page 1140 Client 8-bit West European SB, EURO
WESEBCDIC1145 EBCDIC Code Page 1145 8-bit West European SB, EURO
WESEBCDIC1146 EBCDIC Code Page 1146 8-bit West European SB, EURO
WESEBCDIC1148 EBCDIC Code Page 1148 8-bit West European SB, EURO
WESEBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European SB, EURO

Locale Data A-11

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
FSEBCDIC297 EBCDIC Code Page 297 8-bit French SB
WESEBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB
WESEBCDIC500 EBCDIC Code Page 500 8-bit West European SB
EESEBCDIC870 EBCDIC Code Page 870 8-bit East European SB
EESEBCDIC870C EBCDIC Code Page 870 Client 8-bit East European SB
EESEBCDIC870S EBCDIC Code Page 870 Server 8-bit East European SB
WESEBCDIC871 EBCDIC Code Page 871 8-bit Icelandic SB
ELSEBCDIC875 EBCDIC Code Page 875 8-bit Greek SB
ELSEBCDIC875R EBCDIC Code Page 875 Server 8-bit Greek SB
CL8EBCDIC1025 EBCDIC Code Page 1025 8-bit Cyrillic SB
CL8EBCDIC1025C EBCDIC Code Page 1025 Client 8-bit Cyrillic SB
CL8EBCDIC1025R EBCDIC Code Page 1025 Server 8-bit Cyrillic SB
CL8EBCDIC1025S EBCDIC Code Page 1025 Server 8-bit Cyrillic SB
CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB
TRBEBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual SB
BLT8EBCDIC1112S EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB
DSEBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO
DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO
S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO
ISEBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO
FSEBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO
CL8EBCDIC1158 EBCDIC Code Page 1158 8-bit Cyrillic SB
CL8EBCDIC1158R EBCDIC Code Page 1158 Server 8-bit Cyrillic SB
EECBEUROASCI EEC Targon 35 ASCI West European/Greek SB
EECB8EUROPA3 EEC EUROPAS 8-bit West European/Greek SB

A-12 Oracle Database Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
LABPASSPORT German Government Printer 8-bit All-European Latin SB, ASCII
WESHP HP LaserJet 8-bit West European SB
WEBROMANS HP Roman8 8-bit West European SB, ASCII
HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII
HUSABMOD Hungarian 8-bit Special AB Mod SB, ASCII
ELS8EBCDIC423R IBM EBCDIC Code Page 423 for RDBMS server-side SB
LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII
US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII
BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII
EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII
EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB
LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII
LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII
BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII
WESPC850 IBM-PC Code Page 850 8-bit West European SB, ASCII
EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII
EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII
RUB8PCB855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
WESPC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO
WESPC860 IBM-PC Code Page 860 8-bit West European SB. ASCII
1IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII
CDN8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII
N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII
RUBPC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII
EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII
LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII

Locale Data A-13

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
US8ICL ICL EBCDIC 8-bit American SB
WESICL ICL EBCDIC 8-bit West European SB
WES8ISOICLUK ICL special version 1SO8859-1 SB
WEB8ISO8859P1 ISO 8859-1 West European SB, ASCII
EE81SO8859P2 1SO 8859-2 East European SB, ASCII
SE81SO8859P3 1SO 8859-3 South European SB, ASCII
NEE8ISO8859P4 I1SO 8859-4 North and North-East European SB, ASCII
CL81SO8859P5 I1SO 8859-5 Latin/Cyrillic SB, ASCII
AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

EL8ISO8859P7
IW81S0O8859P8

1ISO 8859-7 Latin/Greek
1SO 8859-8 Latin/Hebrew

SB, ASCII, EURO
SB, ASCII

NE8ISO8859P10 1SO 8859-10 North European SB, ASCII
BLT81SO8859P13 1SO 8859-13 Baltic SB, ASCII
CEL8I1S08859P14 I1SO 8859-13 Celtic SB, ASCII
WE8ISO8859P15 ISO 8859-15 West European SB, ASCII, EURO
LA8ISO6937 I1SO 6937 8-bit Coded Character Set for Text Communication SB, ASCI|
CL8ISOIR111 ISOIR111 Cyrillic SB

IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB

CL8KOI8U KOI8 Ukrainian Cyrillic SB

WESEBCDIC1047E

Latin 1/0Open Systems 1047

SB, EBCDIC, EURO

WESEBCDIC924 Latin 9 EBCDIC 924 SB, EBCDIC
BLT8CP921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic SB, ASCII
LV8PC8LR Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII
ARSARABICMAC Mac Client 8-bit Latin/Arabic SB
EESMACCE Mac Client 8-bit Central European SB
EEBMACCROATIAN Mac Client 8-bit Croatian SB
WESMACROMANS Mac Client 8-bit Extended Roman8 West European SB

A-14 Oracle Database Globalization Support Guide

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
EL8BMACGREEK Mac Client 8-bit Greek SB
ISSMACICELANDIC Mac Client 8-bit Icelandic SB
CLS8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB
TR8MACTURKISH Mac Client 8-bit Turkish SB
TRBMACTURKISHS Mac Server 8-bit Turkish SB, ASCII
ARBARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
EESMACCES Mac Server 8-bit Central European SB, ASCII
EEBMACCROATIANS Mac Server 8-bit Croatian SB, ASCII
WESMACROMANS8S Mac Server 8-bit Extended Roman8 West European SB, ASCII
CL8BMACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII
ELSMACGREEKS Mac Server 8-bit Greek SB, ASCII
ISSMACICELANDICS Mac Server 8-bit Icelandic SB
BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII
LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII
ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EESMSWIN1250
CL8MSWIN1251
WESMSWIN1252
EL8MSWIN1253
TR8MSWIN1254
BLT8MSWIN1257
WESNCRA4970
WESNEXTSTEP
CL8KOI8R
US8BS2000
DK8BS2000
F8BS2000

MS Windows Code Page 1250 8-bit East European
MS Windows Code Page 1251 8-bit Latin/Cyrillic
MS Windows Code Page 1252 8-bit West European
MS Windows Code Page 1253 8-bit Latin/Greek
MS Windows Code Page 1254 8-bit Turkish

MS Windows Code Page 1257 8-bit Baltic

NCR 4970 8-bit West European

NeXTSTEP PostScript 8-bit West European
RELCOM Internet Standard 8-bit Latin/Cyrillic
Siemens 9750-62 EBCDIC 8-bit American

Siemens 9750-62 EBCDIC 8-bit Danish

Siemens 9750-62 EBCDIC 8-bit French

SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII, EURO
SB, ASCII

SB, ASCII

SB, ASCII

SB

SB

SB

Locale Data A-15

Character Sets

Table A-5 European Language Character Sets (Cont.)

Name Description Comments
D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB
DK7SIEMENS9780X Siemens 97801797808 7-bit Danish SB
F7SIEMENS9780X Siemens 97801/97808 7-bit French SB
D7SIEMENS9780X Siemens 97801/97808 7-bit German SB
I7SIEMENS9780X Siemens 97801797808 7-bit Italian SB
N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB
E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB
S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

EE8BS2000 Siemens EBCDIC.DF.04 8-bit East European SB

WES8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

WES8BS2000E Siemens EBCDIC.DF.04 8-bit West European SB, EURO
CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

WES8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB

CE8BS2000 Siemens EBCDIC.DF.04 8-bit Celtic SB

AL16UTF16 See "Universal Character Sets" on page A-19 for details MB, EURO, FIXED
AL32UTF8 See "Universal Character Sets" on page A-19 for details MB, ASCII, EURO
UTF8 See "Universal Character Sets" on page A-19 for details MB, ASCII, EURO
UTFE See "Universal Character Sets" on page A-19 for details MB, EURO

Middle Eastern Language Character Sets

Table A-6 lists the Oracle character sets that can support Middle Eastern languages.

The list is alphabetical by description.

A-16 Oracle Database Globalization Support Guide

Character Sets

Table A—6 Middle Eastern Character Sets

Name Description Comments
ARBAPTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII
ARBAPTECT715T APTEC 715 8-bit Latin/Arabic SB
ARBASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII
ARBASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII
ARBADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS710T Arabic MS-DOS 710 8-bit Latin/Arabic SB
ARBADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII
ARBADOS720T Arabic MS-DOS 720 8-bit Latin/Arabic SB
TR7DEC DEC VT100 7-bit Turkish SB
TR8DEC DEC 8-bit Turkish SB
WESEBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB
IWBEBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB
IWBEBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB
WESEBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB
IWBEBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB
ARBEBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB
ARBEBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB
TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB
TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB
ARBHPARABICST HP 8-bit Latin/Arabic SB
TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII
IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII
ARB8ISO8859P6 I1SO 8859-6 Latin/Arabic SB, ASCII
IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII
AZ8ISO8859PE ISO 8859-9 Latin Azerbaijani SB, ASCII
WE8ISO8859P9 1SO 8859-9 West European & Turkish SB, ASCII
LA8ISO6937 1SO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

Locale Data A-17

Character Sets

Table A—6 Middle Eastern Character Sets (Cont.)

Name Description Comments
IW71S960 Israeli Standard 960 7-bit Latin/Hebrew SB
IWBMACHEBREW Mac Client 8-bit Hebrew SB
ARBARABICMAC Mac Client 8-bit Latin/Arabic SB
ARSBARABICMACT Mac 8-bit Latin/Arabic SB
TR8EMACTURKISH Mac Client 8-bit Turkish SB
IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII
ARSARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII
TRBMACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254
IW8MSWIN1255
ARBMSWIN1256
INSISCII
AR8SMUSSAD768
ARBMUSSAD768T
ARSNAFITHAT711
ARSNAFITHAT711T
ARBNAFITHA721
ARSBNAFITHAT721T
ARBSAKHR706
ARBSAKHR707
ARBSAKHR707T
ARSBXBASIC
WE8BS2000L5
AL16UTF16
AL32UTF8

UTF8

UTFE

MS Windows Code Page 1254 8-bit Turkish
MS Windows Code Page 1255 8-bit Latin/Hebrew
MS Windows Code Page 1256 8-Bit Latin/Arabic

Multiple-Script Indian Standard 8-bit Latin/Indian Languages

Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic
Mussa'd Alarabi/2 768 8-bit Latin/Arabic

Nafitha Enhanced 711 Server 8-bit Latin/Arabic
Nafitha Enhanced 711 8-bit Latin/Arabic

Nafitha International 721 Server 8-bit Latin/Arabic
Nafitha International 721 8-bit Latin/Arabic

SAKHR 706 Server 8-bit Latin/Arabic

SAKHR 707 Server 8-bit Latin/Arabic

SAKHR 707 8-bit Latin/Arabic

XBASIC 8-bit Latin/Arabic

Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish
See "Universal Character Sets" on page A-19 for details
See "Universal Character Sets" on page A-19 for details
See "Universal Character Sets" on page A-19 for details

See "Universal Character Sets" on page A-19 for details

SB, ASCII, EURO
SB, ASCII, EURO
SB. ASCII, EURO
SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB

SB, ASCII

SB, ASCII

SB

SB

SB

MB, EURO, FIXED
MB, ASCII, EURO
MB, ASCII, EURO
MB, EURO

A-18 Oracle Database Globalization Support Guide

Character Sets

Universal Character Sets

Table A-7 lists the Oracle character sets that provide universal language support.
They attempt to support all languages of the world, including, but not limited to,
Asian, European, and Middle Eastern languages.

Table A—7 Universal Character Sets

Name Description Comments
AL16UTF16 Unicode 3.2 UTF-16 Universal character set MB, EURO, FIXED
AL32UTF8 Unicode 3.2 UTF-8 Universal character set MB, ASCII, EURO
UTF8 Unicode 3.0 UTF-8 Universal character set, CESU-8 compliant MB, ASCII, EURO
UTFE EBCDIC form of Unicode 3.0 UTF-8 Universal character set MB, EURO

(UTF-EBCDIC)

Note: CESU-8 defines an encoding scheme for Unicode that is
identical to UTF-8 except for its representation of supplementary
characters. In CESU-8, supplementary characters are represented as
six-byte sequences that result from the transformation of each
UTF-16 surrogate code unit into an eight-bit form that is similar to
the UTF-8 transformation, but without first converting the input
surrogate pairs to a scalar value. See Unicode Technical Report #26.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Character Set Conversion Support

The following character set encodings are supported for conversion only. They
cannot be used as the database or national character set:

AL16UTF16LE
1ISO2022-CN
1SO2022-JP
1ISO2022-KR
HZ-GB-2312

You can use these character sets as the sour ce_char _set ordest _char _set in
the CONVERT function.

Locale Data A-19

Character Sets

See Also:

« Oracle Database SQL Reference for more information about the
CONVERT function

« "The CONVERT Function” on page 9-6

Subsets and Supersets

Table A-8 lists common subset/superset relationships.

Table A—8 Subset-Superset Pairs

Subset Superset
ARSADOST710 ARSADOS710T
ARBADOS720 ARBADOS720T
ARBADOS720T ARBADOS720
ARBAPTECT715 ARBAPTECT715T
ARBARABICMACT ARBARABICMAC
ARB8ISO8859P6 ARBASMO708PLUS
ARB8ISO8859P6 ARBASMO8X
ARBMUSSAD768 ARBMUSSAD768T
ARBMUSSAD768T AR8BMUSSAD768

ARSBNAFITHAT711
ARBNAFITHA721
ARBSAKHR707
ARSSAKHR707T
BLT8CP921
BLT8CP921
D7DEC
D7SIEMENS9780X
DK7SIEMENS9780X
I7DEC
I7TSIEMENS9780X

ARSNAFITHA711T
ARSNAFITHAT721T
ARBSAKHR707T
ARBSAKHR707
BLT8ISO8859P13
LT8MSWIN921
D7SIEMENS9780X
D7DEC
N7SIEMENS9780X
I7SIEMENS9780X
IWBEBCDIC424

A-20 Oracle Database Globalization Support Guide

Character Sets

Table A-8 Subset-Superset Pairs (Cont.)

Subset Superset
IWBEBCDIC424 IWBEBCDIC1086
KO16KSC5601 KO16MSWIN949

LT8MSWIN921
LT8MSWIN921
N7SIEMENS9780X
US7ASCII
UTF8

WESDEC
WESDEC
WEBS8ISO8859P1
WE81SO8859P9
WESNCR4970
WESBNCR4970
WEB8PC850
ZHS16GBK

BLT8ISO8859P13
BLT8CP921
DK7SIEMENS9780X
See Table A-9, "US7ASCII Supersets".
AL32UTF8

TR8DEC
WE8SNCR4970
WE8MSWIN1252
TR8MSWIN1254
TR8DEC

WESDEC
WEBPC858
ZHS32GB18030

US7ASCII is a special case because so many other character sets are supersets of it.
Table A-9 lists supersets for US7ASCII.

Table A-9 US7ASCII Supersets

Supersets Supersets Supersets

- EESBMACCES NEES8ISO8859P4
AL32UTF8 EESBMACCROATIANS RUSBESTA
ARSADOST710 EES8MSWIN1250 RUBPCB855
ARSADOST710T EE8PC852 RUBPCB866
ARBADOS720 EL8DEC SE81SO8859P3
ARBADOST720T EL8ISO8859P7 TH8MACTHAIS
ARBAPTECT715 EL8BMACGREEKS TH8TISASCII

Locale Data A-21

Character Sets

Table A-9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
ARSAPTEC715T EL8MSWIN1253 TR8DEC
ARSARABICMACS EL8PC437S TR8MACTURKISHS
ARBASMO708PLUS EL8PC851 TR8BMSWIN1254
ARBASMO8X EL8PC869 TR8PC857
ARBHPARABICST ET8MSWIN923 US8PC437
ARB8ISO8859P6 HUSBABMOD UTF8
AR8MSWIN1256 HU8CWI2 VN8MSWIN1258
ARSMUSSAD768 INSISCII VNB8VN3
AR8MUSSAD768T IS8PC861 WESDEC
ARSBNAFITHAT711 IW81SO8859P8 WESDG
ARSNAFITHATILT IWBMACHEBREWS WES8ISO8859P1
ARBNAFITHAT21 IWBMSWIN1255 WES8ISO8859P15
ARSBNAFITHAT721T IW8PC1507 WE8ISO8859P9
ARSSAKHR706 JAL6EUC WESMACROMANSS
ARBSAKHR707 JA16SJIS WE8MSWIN1252
ARBSAKHR707T - WESNCR4970
AZB8ISO8859PE - -

BGSMSWIN - WESNEXTSTEP
BG8PC437S JA16VMS WESPC850
BLT8CP921 KO16KSC5601 WEBPC858
BLT81SO8859P13 KO16KSCCS WEBPCB860
BLT8MSWIN1257 KO16MSWIN949 WESROMANS
BLT8PC775 - ZHS16CGB231280
BN8BSCII LA8ISO6937 ZHS16GBK
CDNB8PC863 LA8BPASSPORT ZHT16BIG5
CEL8ISO8859P14 LT8MSWIN921 ZHT16CCDC
CL8ISO8859P5 LT8PC772 ZHT16DBT

A-22 Oracle Database Globalization Support Guide

Language and Character Set Detection Support

Table A-9 US7ASCII Supersets (Cont.)

Supersets Supersets Supersets
CL8KOI8R LT8PC774 ZHT16HKSCS
CL8KOI8U LV8PC1117 ZHT16MSWIN950
CL8ISOIR111 LV8BPCSLR ZHT32EUC
CL8BMACCYRILLICS LV8RST104090 ZHT32S0PS
CL8MSWIN1251 N8PC865 ZHT32TRIS
EE81SO8859P2 NE8ISO8859P10 ZHS32GB18030

Language and Character Set Detection Support

Table A-10 displays the languages and character sets that are supported by the
language and character set detection in the Character Set Scanner utilities (CSSCAN
and LCSSCAN) and the Globalization Development Kit (GDK).

Each language has several character sets that can be detected.

When the binary values for a language match two or more encodings that have a
subset/superset relationship, the subset character set is returned. For example, if
the language is German and all characters are 7-bit, then US7ASCI|I is returned
instead of WEBMSWIN1252, WE8ISO8859P15, or WE8ISO8859P1.

When the character set is determined to be UTF-8, the Oracle character set UTF8 is
returned by default unless 4-byte characters (supplementary characters) are
detected within the text. If 4-byte characters are detected, then the character set is
reported as AL32UTF8.

Table A-10 Languages and Character Sets Supported by CSSCAN, LCSSCAN, and GDK

Language Character Sets

Arabic AL16UTF16, AL32UTF8, AR8ISO8859P6, ARBMSWIN1256, UTF8

Bulgarian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8MSWIN1251, UTF8

Catalan AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Croatian AL16UTF16, AL32UTF8, EE8ISO8859P2, EEBMSWIN1250, UTF8

Czech AL16UTF16, AL32UTF8, EE8ISO8859P2, EEBMSWIN1250, UTF8

Danish AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WESISO8859P15,

WEBMSWIN1252

Locale Data A-23

Language and Character Set Detection Support

Table A-10 Languages and Character Sets Supported by CSSCAN, LCSSCAN, and GDK (Cont.)

Language Character Sets

Dutch AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

English AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WEBMSWIN1252

Estonian AL16UTF16, AL32UTF8, NEE8IOS8859P4, UTF8

Finnish AL16UTF16, AL32UTF8, US7TASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

French AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WEBMSWIN1252

German AL16UTF16, AL32UTF8, US7TASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Greek AL16UTF16, AL32UTF8, EL81SO8859P7, ELBMSWIN1253, UTF8

Hebrew AL16UTF16, AL32UTF8, IW81SO8859P8, IWBMSWIN1255, UTF8

Hungarian AL16UTF16, AL32UTF8, EE8ISO8859P2, EEBMSWIN1250, UTF8

Italian AL16UTF16, AL32UTF8, US7TASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Japanese AL16UTF16, AL32UTF8, 1SO2022-JP, JA16EUC, JA16SJIS, UTF8

Korean AL16UTF16, AL32UTF8, 1S02022-KR, KO16KSC5601, KO16MSWIN949, UTF8

Malay AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Norwegian AL16UTF16, AL32UTF8, US7TASCII, UTF8, WE8ISO8859P1, WESISO8859P15,
WEBMSWIN1252

Polish AL16UTF16, AL32UTF8, EE8ISO8859P2, EEBMSWIN1250, UTF8

Portuguese AL16UTF16, AL32UTF8, US7TASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Romanian AL16UTF16, AL32UTF8, EE8ISO8859P2, EESMSWIN1250, UTF8

Russian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8KOI8R, CL8MSWIN1251, UTF8

Simplified Chinese

AL16UTF16, AL32UTF8, HZ-GB-2312, UTF8, ZHS16GBK, ZHS16CGB231280

Slovak

AL16UTF16, AL32UTF8, EE8ISO8859P2, EEBMSWIN1250, UTF8

Spanish

AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WESISO8859P15,
WESMSWIN1252

A-24 Oracle Database Globalization Support Guide

Linguistic Sorts

Table A-10 Languages and Character Sets Supported by CSSCAN, LCSSCAN, and GDK (Cont.)

Language Character Sets

Swedish AL16UTF16, AL32UTF8, USTASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WESMSWIN1252

Thai AL16UTF16, AL32UTF8, TH8TISASCII, UTF8

Traditional Chinese

AL16UTF16, AL32UTF8, UTF8, ZHT16MSWIN950

Turkish

AL16UTF16, AL32UTF8, TRBMSWIN1254, UTF8, WE8ISO8859P9

Linguistic Sorts

Oracle offers two kinds of linguistic sorts, monolingual and multilingual. In
addition, monolingual sorts can be extended to handle special cases. These special
cases (represented with a prefix X) typically mean that the characters are sorted
differently from their ASCII values. For example,ch and | | are treated as a single
character in XSPANISH.

All of the linguistic sorts can be also be performed as case-insensitive or
accent-insensitive by appending _Cl or _Al to the linguistic sort name.

Table A-11 lists the monolingual linguistic sorts supported by the Oracle server.

See Also: Table A-1, "Oracle Supported Languages" on page A-2
for a list of the default sort for each language

Table A-11 Monolingual Linguistic Sorts

Basic Name Extended Name Special Cases

ARABIC - -
ARABIC_MATCH - -
ARABIC_ABIJ_SORT - -
ARABIC_ABJ_MATCH - -

ASCII7 - -

AZERBAIJANI XAZERBAIJANI i, I, lowercase i without dot,
uppercase | with dot

BENGALI - -

BIG5 - -

Locale Data A-25

Linguistic Sorts

Table A-11 Monolingual Linguistic Sorts (Cont.)

Basic Name

Extended Name

Special Cases

BINARY
BULGARIAN
CATALAN
CROATIAN
CZECH

CZECH_PUNCTUATION

DANISH
DUTCH
EBCDIC
EEC_EURO
EEC_EUROPA3
ESTONIAN
FINNISH
FRENCH
GERMAN
GERMAN_DIN
GBK

GREEK
HEBREW
HKSCS
HUNGARIAN

ICELANDIC
INDONESIAN
ITALIAN
LATIN
LATVIAN

XCATALAN
XCROATIAN
XCZECH

XCZECH_
PUNCTUATION

XDANISH
XDUTCH

XFRENCH
XGERMAN
XGERMAN_DIN

XHUNGARIAN

A-26 Oracle Database Globalization Support Guide

&, AE, R
D,L,N,d,I,n,B
ch, CH, Ch, 3
ch,CH, Ch, R

AR A &
ij, 1

R
B,&06,uA0U

cs, gy, ny, sz, ty, zs, B, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

Linguistic Sorts

Table A—12 Multilingual LInguistic Sorts

Table A-11 Monolingual Linguistic Sorts (Cont.)

Basic Name

Extended Name

Special Cases

LITHUANIAN
MALAY
NORWEGIAN
POLISH
PUNCTUATION
ROMANIAN
RUSSIAN

SLOVAK
SLOVENIAN
SPANISH
SWEDISH

SWISS

TURKISH
UKRAINIAN
UNICODE_BINARY
VIETNAMESE
WEST_EUROPEAN

XPUNCTUATION

XSLOVAK
XSLOVENIAN
XSPANISH
XSWISS
XTURKISH

XWEST_EUROPEAN

dz, DZ, Dz, B (caron)
R
ch,Il,CH, Ch, LL, LI

R

Table A-12 lists the multilingual linguistic sorts available in Oracle. All of them
include GENERIC_M (an ISO standard for sorting Latin-based characters) as a base.
Multilingual linguistic sorts are used for a specific primary language together with
Latin-based characters. For example, KOREAN_M sorts Korean and Latin-based
characters, but it does not collate Chinese, Thai, or Japanese characters.

Sort Name Description

CANADIAN_M Canadian French sort supports reverse secondary, special expanding characters
DANISH_M Danish sort supports sorting lowercase characters before uppercase characters
FRENCH_M French sort supports reverse sort for secondary

Locale Data A-27

Calendar Systems

Table A—12 Multilingual LInguistic Sorts (Cont.)

Sort Name Description

GENERIC_M Generic sorting order which is based on 1SO14651 and Unicode canonical
equivalence rules but excluding compatible equivalence rules

JAPANESE_M Japanese sort supports SJIS character set order and EUC characters which are not
included in SJIS

KOREAN_M Korean sort: Hangul characters are based on Unicode binary order. Hanja
characters based on pronunciation order. All Hangul characters are before Hanja
characters

SPANISH_M Traditional Spanish sort supports special contracting characters

THAI_M Thai sort supports swap characters for some vowels and consonants

SCHINESE_RADICAL_M

SCHINESE_STROKE_M

SCHINESE_PINYIN_M
TCHINESE_RADICAL_M

TCHINESE_STROKE_M

Simplified Chinese sort based on radical as primary order and number of strokes
order as secondary order

Simplified Chinese sort uses number of strokes as primary order and radical as
secondary order

Simplified Chinese PinYin sorting order

Traditional Chinese sort based on radical as primary order and number of strokes
order as secondary order

Traditional Chinese sort uses number of strokes as primary order and radical as
secondary order. It supports supplementary characters.

Calendar Systems

See Also: Chapter 5, "Linguistic Sorting and String Searching"

By default, most territory definitions use the Gregorian calendar system. Table A-13
lists the other calendar systems supported by the Oracle server.

A-28 Oracle Database Globalization Support Guide

Calendar Systems

Table A-13 Supported Calendar Systems

Character Set Used

Name Default Date Format For Default Date Format
Japanese Imperial EEYYMMDD JA16EUC

ROC Official EEyymmdd ZHT32EUC

Thai Buddha dd month EE yyyy THB8TISASCII

Persian DD Month YYYY ARBASMO8X

Arabic Hijrah DD Month YYYY ARB8ISO8859P6

English Hijrah DD Month YYYY AR8ISO8859P6

Figure A-1 shows how March 27, 1998 appears in Japanese Imperial.

Figure A-1 Japanese Imperial Example

Locale Data A-29

Time Zone Names

Time Zone Names

Table A-14 shows the time zone names from the large time zone file.

Table A-14 Time Zone Names

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
Africa/Algiers No Australia/Perth Yes
Africa/Cairo Yes Australia/Queensland Yes
Africa/Casablanca No Australia/South Yes
Africa/Ceuta No Australia/Sydney Yes
Africa/Djibouti No Australia/Tasmania Yes
Africa/Freetown No Australia/Victoria Yes
Africa/Johannesburg No Australia/West Yes
Africa/Khartoum No Australia/Yancowinna Yes
Africa/Mogadishu No Brazil/Acre Yes
Africa/Nairobi No Brazil/DeNoronha Yes
Africa/Nouakchott No Brazil/East Yes
Africa/Tripoli Yes Brazil/West Yes
Africa/Tunis No CET Yes
Africa/Windhoek No CST Yes
America/Adak Yes CST6CDT Yes
America/Anchorage Yes Canada/Atlantic Yes
America/Anguilla No Canada/Central Yes
America/Araguaina No Canada/East-Saskatchewan Yes
America/Aruba No Canada/Eastern Yes
AmericaZAsuncion No Canada/Mountain Yes
America/Atka Yes Canada/Newfoundland Yes
America/Belem No Canada/Pacific Yes
America/Boa_Vista No Canada/Saskatchewan Yes

A-30 Oracle Database Globalization Support Guide

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
America/Bogota No Canada/Yukon Yes
America/Boise No Chile/Continental Yes
America/Buenos_Aires No Chile/Easterlsland Yes
America/Cambridge_Bay No Cuba Yes
America/Cancun No EET Yes
America/Caracas No EST Yes
America/Cayenne No EST5EDT Yes
America/Cayman No Egypt Yes
America/Chicago Yes Eire Yes
America/Chihuahua No Etc/GMT Yes
America/Costa_Rica No Etc/GMT+0 Yes
America/Cuiaba No Etc/GMT+1 Yes
America/Curacao No Etc/GMT+10 Yes
America/Dawson No Etc/GMT+11 Yes
America/Dawson_Creek No Etc/GMT+12 Yes
America/Denver Yes Etc/GMT+2 Yes
America/Detroit Yes Etc/GMT+3 Yes
America/Edmonton Yes Etc/GMT+4 Yes
America/El_Salvador No Etc/GMT+5 Yes
America/Ensenada Yes Etc/GMT+6 Yes
America/Fort_Wayne Yes Etc/GMT+7 Yes
America/Fortaleza No Etc/GMT+8 Yes
America/Godthab No Etc/GMT+9 Yes
America/Goose_Bay No Etc/GMT-0 Yes
America/Grand_Turk No Etc/GMT-1 Yes
America/Guadeloupe No Etc/GMT-10 Yes

Locale Data A-31

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time

Time Zone Name Zone File? Time Zone Name Zone File?
America/Guatemala No Etc/GMT-11 Yes
America/Guayaquil No - -
America/Halifax Yes Etc/GMT-12 Yes
America/Havana Yes Etc/GMT-13 Yes
America/Indiana/Indianapolis Yes Etc/GMT-2 Yes
America/Indiana/Knox No Etc/GMT-3 Yes
America/Indiana/Marengo No Etc/GMT-4 Yes
America/Indiana/\Vevay No Etc/GMT-5 Yes
America/Indianapolis Yes Etc/GMT-6 Yes
America/Inuvik No Etc/GMT-7 Yes
America/lqaluit No Etc/GMT-8 Yes
America/Jamaica Yes Etc/GMT-9 Yes
America/Juneau No Etc/GMTO Yes
America/Knox_IN No Etc/Greenwich Yes
America/La_Paz No Europe/ Amsterdam No
America/Lima No Europe/Athens No
America/Los_Angeles Yes Europe/Belfast No
America/Louisville No Europe/Belgrade No
America/Maceio No Europe/Berlin No
America/Managua No Europe/Bratislava No
America/Manaus Yes Europe/Brussels No
America/Martinique No Europe/Bucharest No
America/Mazatlan Yes Europe/Budapest No
America/Mexico_City Yes Europe/Copenhagen No
America/Miquelon No Europe/Dublin Yes
America/Montevideo No Europe/Gibraltar No

A-32 Oracle Database Globalization Support Guide

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time

Time Zone Name Zone File? Time Zone Name Zone File?
America/Montreal Yes Europe/Helsinki No
America/Montserrat No Europe/Istanbul Yes
America/New_York Yes Europe/Kaliningrad No
America/Nome No Europe/Kiev No
America/Noronha Yes Europe/Lisbon Yes
America/Panama No Europe/Ljubljana No
America/Phoenix Yes Europe/London Yes

- - Europe/Luxembourg No
America/Porto_Velho No Europe/Madrid No
America/Puerto_Rico No Europe/Minsk No
America/Rankin_Inlet No Europe/Monaco No
America/Regina Yes Europe/Moscow Yes
America/Rio_Branco Yes - -
America/Santiago Yes Europe/Oslo No
America/Sao_Paulo Yes Europe/Paris No
America/Scoresbysund No Europe/Prague No
America/Shiprock Yes Europe/Riga No
America/St_Johns Yes Europe/Rome No
America/St_Thomas No Europe/Samara No
America/Swift_Current No Europe/San_Marino No
America/Tegucigalpa No Europe/Sarajevo No
America/Thule No Europe/Simferopol No
America/Thunder_Bay No Europe/Skopje No
America/Tijuana Yes Europe/Sofia No
America/Tortola No Europe/Stockholm No
America/Vancouver Yes Europe/Tallinn No

Locale Data A-33

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
America/Virgin No Europe/Tirane No
America/Whitehorse Yes Europe/Vatican No
America/Winnipeg Yes Europe/Vienna No
America/ Yellowknife No Europe/Vilnius No
Arctic/Longyearbyen No Europe/Warsaw Yes
Asia/Aden No Europe/Zagreb No
Asia/Almaty No Europe/Zurich No
Asia/Amman No GB Yes
Asia/Anadyr No GB-Eire Yes
Asia/Aqtau No GMT Yes
Asia/Agtobe No GMT+0 Yes
Asia/Baghdad No GMT-0 Yes
Asia/Bahrain No GMTO Yes
Asia/Baku No Greenwich Yes
Asia/Bangkok No HST Yes
Asia/Beirut No Hongkong Yes
Asia/Bishkek No Iceland Yes
Asia/Calcutta Yes Indian/Chagos No
Asia/Chungking No Indian/Christmas No
Asia/Dacca No Indian/Cocos No
Asia/Damascus No Indian/Mayotte No
Asia/Dubai No Indian/Reunion No
Asia/Gaza No Iran Yes
Asia/Harbin No Israel Yes
Asia/Hong_Kong Yes Jamaica Yes
Asia/Irkutsk No Japan Yes

A-34 Oracle Database Globalization Support Guide

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
Asia/Istanbul Yes Kwajalein Yes
Asia/Jakarta No Libya Yes
Asia/Jayapura No MET Yes
Asia/Jerusalem Yes MST Yes
Asia/Kabul No MST7MDT Yes
Asia/Kamchatka No Mexico/BajaNorte Yes
Asia/Karachi No Mexico/BajaSur Yes
Asia/Kashgar No Mexico/General Yes
Asia/Krasnoyarsk No NZ Yes
Asia/Kuala_Lumpur No NZ-CHAT Yes
Asia/Kuching No Navajo Yes
Asia/Kuwait No PRC Yes
Asia/Macao No PST Yes
Asia/Magadan No PST8PDT Yes
Asia/Manila No Pacific/Auckland Yes
Asia/Muscat No Pacific/Chatham Yes
Asia/Nicosia No Pacific/Easter Yes
Asia/Novosibirsk No Pacific/Fakaofo No
Asia/Omsk No Pacific/Fiji No
Asia/Qatar No Pacific/ Gambier No
Asia/Rangoon No Pacific/Guam No
Asia/Riyadh Yes Pacific/Honolulu Yes
Asia/Saigon No Pacific/Johnston No
Asia/Seoul Yes Pacific/Kiritimati No
Asia/Shanghai Yes Pacific/Kwajalein Yes
Asia/Singapore Yes Pacific/Marquesas No

Locale Data A-35

Time Zone Names

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
Asia/Taipei Yes Pacific/Midway No
Asia/Tashkent No Pacific/Niue No
Asia/Thilisi No Pacific/Norfolk No
Asia/Tehran Yes Pacific/Noumea No
Asia/Tel_Aviv Yes Pacific/Pago_Pago Yes
Asia/Tokyo Yes Pacific/Pitcairn No
Asia/Ujung_Pandang No Pacific/Rarotonga No
Asia/Urumqi No Pacific/Saipan No
Asia/Vladivostok No Pacific/Samoa Yes
Asia/ Yakutsk No Pacific/Tahiti No
Asia/ Yekaterinburg No Pacific/Tongatapu No
Asia/Yerevan No Pacific/Wake No
Atlantic/Azores No Pacific/Wallis No
Atlantic/Bermuda No Poland Yes
Atlantic/Canary No Portugal Yes
Atlantic/Faeroe No ROC Yes
Atlantic/Madeira No ROK Yes
Atlantic/Reykjavik Yes Singapore Yes
Atlantic/St_Helena No Turkey Yes
Atlantic/Stanley No US/Alaska Yes
Australia/ACT Yes US/Aleutian Yes
Australia/Adelaide Yes US/Arizona Yes
Australia/Brisbane Yes UsS/Central Yes
Australia/Broken_Hill Yes US/East-Indiana Yes
Australia/Canberra Yes US/Eastern Yes
Australia/Darwin Yes US/Hawaii Yes

A-36 Oracle Database Globalization Support Guide

Obsolete Locale Data

Table A-14 Time Zone Names (Cont.)

Is It in the Is It in the
Default Time Default Time
Time Zone Name Zone File? Time Zone Name Zone File?
Australia/Hobart Yes US/Indiana-Starke No
AustraliaZLHI Yes US/Michigan Yes
AustraliaZLindeman Yes US/Mountain Yes
Australia/Lord_Howe Yes US/Pacific Yes
Australia/Melbourne Yes US/Pacific-New Yes
Australia/NSW Yes US/Samoa Yes
Australia/North Yes uTC No
- - W-SU Yes
- - WET Yes

See Also: "Choosing a Time Zone File" on page 4-20

Obsolete Locale Data

This section contains information about obsolete linguistic sorts, character sets,
languages, and territories.

Updates to the Oracle Language and Territory Definition Files

Changes have been made to the content in some of the language and territory
definition files in Oracle Database 10g. These updates are necessary to correct the
legacy definitions which no longer meet the local conventions in some of the Oracle
supported languages and territories. These changes include modifications to the
currency symbols, month names, and group separators. One example is the local
currency symbol for Brazil. This has been updated from Cr $ to R$ in Oracle
Database 10g.

Please refer to the "Oracle Language and Territory definition changes" table
documented in the $ORACLE_HOVE/ nl s/ dat a/ ol d/ dat a_changes. ht nl file
for a detailed list of the changes.

Oracle Database 10g customers should review their existing application code and to
make sure that the correct cultural conventions that are defined in Oracle Database

Locale Data A-37

Obsolete Locale Data

10g are being used. For customers who may not be able to make the necessary code
changes to support their applications, Oracle offers Oracle9i backward
compatibility by shipping a set of Oracle9i locale definition files with Oracle
Database 10g. Please refer to the README. t xt file in the $ORACLE

HOME/ nl s/ dat a/ ol d directory for more information.

Oracle Corporation strongly recommends that customers use the Oracle Database
10g locale definition files; Oracle9i locale definition files will be desupported in a
future release.

Obsolete Linguistic Sorts

Table A-15 contains linguistic sorts that have been desupported in Oracle Database
10g.

Table A—15 Obsolete Linguistic Sorts in Oracle Database 10g

Obsolete Sort Name Replacement Sort
THAI_TELEPHONE THAI_M
THAI_DICTIONARY THAI_M
CANADIAN_FRENCH CANADIAN_M
JAPANESE JAPANESE_M

CIS Is No Longer the Default Territory When the Language is RUSSIAN

RUSSI A has been added as a territory in OracleDatabase 10g. It is the default
territory when the language is RUSSI AN. The CI S territory, which was the default
territory in previous releases when the language was RUSSI AN, is supported for
backward compatibility.

YUGOSLAVIA Is a Deprecated Territory

YUGOSLAVI Ais a deprecated territory in Oracle Database 10g. Use SERBI A AND
MONTENEGRO instead.

New Names for Obsolete Character Sets

Before Oracle release 7.2, when a character set was renamed, the old name was
usually supported along with the new name for several releases after the change.
Beginning with release 7.2, the old names are no longer supported.

A-38 Oracle Database Globalization Support Guide

Obsolete Locale Data

Table A-16 lists the affected character sets. If you reference any of these character
sets in your code, then replace them with their new name.

Table A-16 New Names for Obsolete Character Sets

Old Name New Name
AL24UTFSS UTF8, AL32UTF8
ARBMSAWIN ARBMSWIN1256

CL8EBCDIC875S
EL8EBCDICS875S
JVMS

JEUC

SIIS

JDBCS

KSC5601

KDBCS
CGB2312-80

CNS 11643-86
JAL6EUCFIXED
ZHS32EUCFIXED
ZHS16GBKFIXED
JA16DBCSFIXED
KO16DBCSFIXED
ZHS16DBCSFIXED
ZHS16CGB231280FIXED
ZHT16DBCSFIXED
KO16KSC5601FIXED
JAL16SJISFIXED
ZHT16BIG5FIXED
ZHT32TRISFIXED

CL8EBCDIC875R
ELS8EBCDIC875R
JAL6VMS
JAL16EUC
JA16SJIS
JA16DBCS
KO16KSC5601
KO16DBCS
ZHS16CGB231280
ZHT32EUC

None.
None.
None.

None.

None

None.

None.

None

None.
None.
None.

None.

Replaced by new national character set.
Replaced by new national character set.
Replaced by new national character set.
Replaced by new national character set.
. Replaced by new national character set.
Replaced by new national character set.
Replaced by new national character set.
. Replaced by new national character set.
Replaced by new national character set.
Replaced by new national character set.
Replaced by new national character set.

Replaced by new national character set.

UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.
UTF8 and AL16UTF16.

Locale Data A-39

Obsolete Locale Data

Character set CLBMSWINDOW?31 has been desupported. The newer character set
CL8MSWIN1251 is actually a duplicate of CLBMSWINDOWS31 and includes some
characters omitted from the earlier version. Change any usage of
CL8MSWINDOWS31 to CL8MSWIN1251 instead.

AL24UTFFSS Character Set Desupported

The Unicode Character Set AL24UTFFSS was desupported in Oracle9i.
AL24UTFFSS was introduced in version 7 as the Unicode character set supporting
UTF-8 encoding scheme based on the Unicode standard 1.1, which is now obsolete.
In Oracle Database 10g, Oracle offers the Unicode database character set AL32UTFS8,
which is based on Unicode 3.2, and UTF8, which is based on Unicode 3.0.

The migration path for an existing AL24UTFFSS database is to upgrade to UTF8
prior to upgrading to Oracle9i. As with all migrations to a new database character
set, Oracle Corporation recommends that you use the Character Set Scanner for
data analysis before attempting to migrate your existing database character set to
UTFS8.

See Also: Chapter 12, "Character Set Scanner Utilities"

Bengali Language Definition Deprecated

Oracle’s Bengali language definition is not compatible with Unicode standards.
Oracle recommends that customers use the Bangla language definition instead.
Bangla was introduced in Oracle9i Database Release 1 (9.0.1).

The Bengali language definition is supported in Oracle Database 10g Release 1
(10.1), but it may be desupported in a future release.

Czechoslovakia Territory Definition Deprecated

Oracle recommends that customers use either Czech Republic or Slovakia territory
definitions in Oracle Database 10g Release 1 (10.1). The Czechoslovakia territory
definition is supported in Oracle Database 10g Release 1 (10.1), but it may be
desupported in a future release.

A-40 Oracle Database Globalization Support Guide

B

Unicode Character Code Assignments

This appendix offers an introduction to Unicode character assignments. This
appendix contains:

« Unicode Code Ranges
« UTF-16 Encoding
« UTF-8 Encoding

Unicode Character Code Assignments B-1

Unicode Code Ranges

Unicode Code Ranges

Table B-1 contains code ranges that have been allocated in Unicode for UTF-16
character codes.

Table B—1 Unicode Character Code Ranges for UTF-16 Character Codes

Types of Characters First 16 Bits Second 16 Bits
ASCII 0000-007F -
European (except ASCII), Arabic, Hebrew 0080-07FF -
lindic, Thai, certain symbols (such as the euro symbol), Chinese, 0800-0FFF -
Japanese, Korean 1000 - CEEF
D000 - D7FF
F900 - FFFF
Private Use Area #1 E000 - EFFF -
F000 - F8FF

Supplementary characters: Additional Chinese, Japanese, and Korean D800 - D8BF DCO00 - DFFF
characters; historic characters; musical symbols; mathematical symbols o ~~ SABE DCOO - DEEF

DACO - DB7F DCO00 - DFFF

Private Use Area #2 DB80 - DBBF DCO0 - DFFF
DBCO - DBFF DCO00 - DFFF

Table B-2 contains code ranges that have been allocated in Unicode for UTF-8
character codes.

Table B—2 Unicode Character Code Ranges for UTF-8 Character Codes

Types of Characters First Byte Second Byte Third Byte Fourth Byte
ASCII 00 - 7F - - -
European (except ASCII), Arabic, C2-DF 80 - BF - -
Hebrew
Indic, Thai, certain symbols (such as EO A0 - BF 80 - BF -
the euro symbol), Chinese, Japanese,
Korean El-EC 80 - BF 80 - BF
ED 80 - 9F 80 - BF
EF A4 - BF 80 - BF

B-2 Oracle Database Globalization Support Guide

UTF-8 Encoding

Table B—2 Unicode Character Code Ranges for UTF-8 Character Codes (Cont.)

Types of Characters First Byte Second Byte Third Byte Fourth Byte
Private Use Area #1 EE 80 - BF 80 - BF -

EF 80 - A3 80 - BF
Supplementary characters: Additional FO 90 - BF 80 - BF 80 - BF

Chinese, Japanese, and Korean

characters; historic characters; musical F1-F2 80-BF 80-BF 80-BF
symbols; mathematical symbols F3 80 - AF 80 - BF 80 - BF
Private Use Area #2 F3 BO - BF 80 - BF 80 - BF

F4 80 - 8F 80 - BF 80 - BF

Note: Blank spaces represent nonapplicable code assignments.
Character codes are shown in hexadecimal representation.

UTF-16 Encoding

As shown in Table B-1, UTF-16 character codes for some characters (Additional
Chinese/Japanese/Korean characters and Private Use Area #2) are represented in
two units of 16-bits. These are supplementary characters. A supplementary
character consists of two 16-bit values. The first 16-bit value is encoded in the range
from 0xD800 to 0XxDBFF. The second 16-bit value is encoded in the range from
0xDCO00 to OxDFFF. With supplementary characters, UTF-16 character codes can
represent more than one million characters. Without supplementary characters,
only 65,536 characters can be represented. Oracle’s AL16UTF16 character set
supports supplementary characters.

See Also: "Supplementary Characters" on page 6-3

UTF-8 Encoding
The UTF-8 character codes in Table B-2 show that the following conditions are true:
« ASCII characters use 1 byte
« European (except ASCII), Arabic, and Hebrew characters require 2 bytes

« Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols
such as the euro symbol require 3 bytes

Unicode Character Code Assignments B-3

UTF-8 Encoding

« Characters in the Private Use Area #1 require 3 bytes
« Supplementary characters require 4 bytes
« Characters in the Private Use Area #2 require 4 bytes

Oracle’s AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte values.
Oracle’s UTF8 character set supports 1-byte, 2-byte, and 3-byte values, but not
4-byte values.

B-4 Oracle Database Globalization Support Guide

Glossary

accent

A mark that changes the sound of a character. Because the common meaning of
accent is associated with the stress or prominence of the character’s sound, the
preferred word in Oracle Database Globalization Support Guide is diacritic.

See also diacritic.

accent-insensitive linguistic sort
A linguistic sort that uses information only about base letters, not diacritics or case.

See also linguistic sort, base letter, diacritic, case.

AL16UTF16

The default Oracle character set for the SQL NCHAR data type, which is used for
the national character set. It encodes Unicode data in the UTF-16 encoding.

See also national character set.

AL32UTF8

An Oracle character set for the SQL CHAR data type, which is used for the database
character set. It encodes Unicode data in the UTF-8 encoding.

See also database character set.

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit
character set for English. ASCII includes the letters A-Z and a-z, as well as digits,
punctuation symbols, and control characters. The Oracle character set name is
US7ASCII.

Glossary-1

Glossary-2

base letter
A character without diacritics. For example, the base letter for a, A, &, and Ais a

See also diacritic.

binary sorting
Ordering character strings based on their binary coded values.

byte semantics
Treatment of strings as a sequence of bytes.

See also character semantics and length semantics.

canonical equivalence

A basic equivalence between characters or sequences of characters. For example, ¢
is equivalent to the combination of ¢ and , . They cannot be distinguished when
they are correctly rendered.

case

Refers to the condition of being uppercase or lowercase. For example, in a Latin
alphabet, Ais the uppercase glyph for a, the lowercase glyph.

case conversion
Changing a character from uppercase to lowercase or vice versa.

case-insensitive linguistic sort
A linguistic sort that uses information about base letters and diacritics but not case.

See also base letter, case, diacritic, linguistic sort.

character

A character is an abstract element of text. A character is different from a glyph,
which is a specific representation of a character. For example, the first character of
the English upper-case alphabet can be displayed as A, A, A, and so on. These forms
are different glyphs that represent the same character. A character, a character code,
and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in
computer memory as a number. The number is called the encoding or the character
code. The character code for the first character of the English uppercase alphabet is

0x41 in the ASCII encoding scheme. The character code is Oxcl in the EBCDIC
encoding scheme.

You must choose a font to display or print the character. The available fonts depend
on which encoding scheme is being used. The character can be printed or displayed
as A A, or A, for example. The forms are different glyphs that represent the same
character.

See also character code and glyph.

character code

A character code is a number that represents a specific character. The number
depends on the encoding scheme. For example, the character code of the first
character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme,
but it is Oxcl in the EBCDIC encoding scheme.

See also character.

character semantics
Treatment of strings as a sequence of characters.

See also byte semantics and length semantics.

character set

A collection of elements that represent textual information for a specific language or
group of languages. One language can be represented by more than one character
set.

A character set does not always imply a specific character encoding scheme. A
character encoding scheme is the assignment of a character code to each character in
a character set.

In this manual, a character set usually does imply a specific character encoding
scheme. Therefore, a character set is the same as an encoded character set in this
manual.

character set migration

Changing the character set of an existing database.

character string
An ordered group of characters.

A character string can also contain no characters. In this case, the character string is
called a null string. The number of characters in a null string is 0 (zero).

Glossary-3

Glossary-4

character classification

Character classification information provides details about the type of character
associated with each character code. For example, a character can uppercase,
lowercase, punctuation, or control character.

character encoding scheme

A rule that assigns numbers (character codes) to all characters in a character set.
Encoding scheme, encoding method, and encoding also mean character encoding
scheme.

client character set

The encoded character set used by the client. A client character set can differ from
the server character set. The server character set is called the database character set.
If the client character set is different from the database character set, then character
set conversion must occur.

See also database character set.

code point

The numeric representation of a character in a character set. For example, the code
point of Ain the ASCII character set is 0x41. The code point of a character is also
called the encoded value of a character.

See also Unicode code point.

code unit

The unit of encoded text for processing and interchange. The size of the code unit
varies depending on the character encoding scheme. In most character encodings, a
code unit is 1 byte. Important exceptions are UTF-16 and UCS-2, which use 2-byte
code units, and wide character, which uses 4 bytes.

See also character encoding scheme.

collation

Ordering of character strings according to rules about sorting characters that are
associated with a language in a specific locale. Also called linguistic sort.

See also linguistic sort, monolingual linguistic sort, multilingual linguistic sort,
accent-insensitive linguistic sort, case-insensitive linguistic sort.

data scanning

The process of identifying potential problems with character set conversion and
truncation of data before migrating the database character set.

database character set

The encoded character set that is used to store text in the database. This includes
CHAR, VARCHARZ, LONG, and fixed-width CLOB column values and all SQL and
PL/SQL text.

diacritic
A mark near or through a character or combination of characters that indicates a

different sound than the sound of the character without the diacritical mark. For
example, the cedillain f agcade is a diacritic. It changes the sound of c.

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded
character sets used mostly on IBM systems.

encoded character set

A character set with an associated character encoding scheme. An encoded
character set specifies the number (character code) that is assigned to each character.

See also character encoding scheme.

encoded value

The numeric representation of a character in a character set. For example, the code
point of Ain the ASCII character set is 0x41. The encoded value of a character is also
called the code point of a character.

font

An ordered collection of character glyphs that provides a graphical representation
of characters in a character set.

globalization

The process of making software suitable for different linguistic and cultural
environments. Globalization should not be confused with localization, which is the
process of preparing software for use in one specific locale.

Glossary-5

Glossary-6

glyph

A glyph (font glyph) is a specific representation of a character. A character can have
many different glyphs. For example, the first character of the English uppercase
alphabet can be printed or displayed as A, A, A, and so on. These forms are different
glyphs that represent the same character.

See also character.

ideograph

A symbol that represents an idea. Chinese is an example of an ideographic writing
system.

ISO

International Organization for Standards. A worldwide federation of national
standards bodies from 130 countries. The mission of ISO is to develop and promote
standards in the world to facilitate the international exchange of goods and services.

ISO 8859
A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also
known as ISO Latinl), and is used for Western European languages.

ISO 14651

A multilingual linguistic sort standard that is designed for almost all languages of
the world.

See also multilingual linguistic sort.

ISO/IEC 10646

A universal character set standard that defines the characters of most major scripts
used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC
10646-1:1993. ISO/IEC 10646 has two formats: UCS-2 is a 2-byte fixed-width format,
and UCS-4 is a 4-byte fixed-width format. There are three levels of implementation,
all relating to support for composite characters:

« Level 1 requires no composite character support.

« Level 2 requires support for specific scripts (including most of the Unicode
scripts such as Arabic and Thai).

« Level 3 requires unrestricted support for composite characters in all languages.

ISO currency

The 3-letter abbreviation used to denote a local currency, based on the 1SO 4217
standard. For example, USD represents the United States dollar.

ISO Latinl

The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128
characters that include the most common Latin characters used in Western Europe.
The Oracle character set name is WE8ISO8859P1.

See also 1SO 8859.

length semantics

Length semantics determines how you treat the length of a character string. The
length can be treated as a sequence of characters or bytes.

See also character semantics and byte semantics.

linguistic index
An index built on a linguistic sort order.

linguistic sort

A ordering of strings based on requirements from a locale instead of the binary
representation of the strings.

See also multilingual linguistic sort and monolingual linguistic sort.

locale

A collection of information about the linguistic and cultural preferences from a
particular region. Typically, a locale consists of language, territory, character set,
linguistic, and calendar information defined in NLS data files.

localization

The process of providing language-specific or culture-specific information for
software systems. Translation of an application's user interface is an example of
localization. Localization should not be confused with globalization, which is the
making software suitable for different linguistic and cultural environments.

monolingual linguistic sort

An Oracle sort that has two levels of comparison for strings. Most European
languages can be sorted with a monolingual sort, but it is inadequate for Asian
languages.

Glossary-7

See also multilingual linguistic sort.

monolingual support
Support for only one language.

multibyte
Two or more bytes.

When character codes are assigned to all characters in a specific language or a
group of languages, one byte (8 bits) can represent 256 different characters. Two
bytes (16 bits) can represent up to 65,536 different characters. Two bytes are not
enough to represent all the characters for many languages. Some characters require
3 or 4 bytes.

One example is the UTF8 Unicode encoding. In UTF8, there are many 2-byte and
3-byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000
characters. Some character encoding schemes that are used in Taiwan use 4 bytes to
encode characters.

See also single byte.

multibyte character

A character whose character code consists of two or more bytes under a certain
character encoding scheme.

Note that the same character may have different character codes under different
encoding schemes. Oracle cannot tell whether a character is a multibyte character
without knowing which character encoding scheme is being used. For example,
Japanese Hankaku-Katakana (half-width Katakana) characters are one byte in the
JA16SJIS encoded character set, two bytes in JAI6EUC, and three bytes in UTF8.

See also single-byte character.

multibyte character string
A character string that consists of one of the following:

= No characters (called a null string)
« One or more single-byte characters

« A mixture of one or more single-byte characters and one or more multibyte
characters

« One or more multibyte characters

Glossary-8

multilingual linguistic sort

An Oracle sort that uses evaluates strings on three levels. Asian languages require a
multilingual linguistic sort even if data exists in only one language. Multilingual
linguistic sorts are also used when data exists in several languages.

national character set

An alternate character set from the database character set that can be specified for
NCHAR, NVARCHAR2, and NCLOB columns. National character sets are in Unicode
only.

NLB files

Binary files used by the Locale Builder to define locale-specific data. They define all
of the locale definitions that are shipped with a specific release of the Oracle
database server. You can create user-defined NLB files with Oracle Locale Builder.

See also Oracle Locale Builder and NLT files.

NLS

National Language Support. NLS allows users to interact with the database in their
native languages. It also allows applications to run in different linguistic and
cultural environments. The term is somewhat obsolete because Oracle supports
global users at one time.

NLSRTL

National Language Support Runtime Library. This library is responsible for
providing locale-independent algorithms for internationalization. The
locale-specific information (that is, NLSDATA) is read by the NLSRTL library
during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are
in text, you can view the contents.

null string
A character string that contains no characters.

Oracle Locale Builder

A GUI utility that offers a way to view, modify, or define locale-specific data. You
can also create your own formats for language, territory, character set, and linguistic
sort.

Glossary-9

Glossary-10

replacement character

A character used during character conversion when the source character is not
available in the target character set. For example, ? is often used as Oracle's default
replacement character.

restricted multilingual support

Multilingual support that is restricted to a group of related languages.Western
European languages can be represented with 1SO 8859-1, for example. If
multilingual support is restricted, then Thai could not be added to the group.

SQL CHAR datatypes
Includes CHAR, VARCHAR, VARCHAR2, CLOB, and LONG datatypes.

SQL NCHAR datatypes
Includes NCHAR, NVARCHAR, NVARCHAR2, and NCL OB datatypes.

script

A collection of related graphic symbols that are used in a writing system. Some
scripts can represent multiple languages, and some languages use multiple scripts.
Example of scripts include Latin, Arabic, and Han.

single byte
One byte. One byte usually consists of 8 bits. When character codes are assigned to

all characters for a specific language, one byte (8 bits) can represent 256 different
characters.

See also multibyte.

single-byte character

A single-byte character is a character whose character code consists of one byte
under a specific character encoding scheme. Note that the same character may have
different character codes under different encoding schemes. Oracle cannot tell
which character is a single-byte character without knowing which encoding scheme
is being used. For example, the euro currency symbol is one byte in the
WE8BMSWIN1252 encoded character set, two bytes in AL16UTF16, and three bytes
in UTF8.

See also multibyte character.

single-byte character string

A single-byte character string is a character string that consists of one of the
following:

« No character (called a null string)

« One or more single-byte characters

supplementary characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes
to encode each character. This allowed 65,536 characters to be represented.
However, more characters need to be supported because of the large number of
Asian ideograms.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit
code units (also known as surrogate pairs) to represent a single character. This
allows an additional 1,048,576 characters to be defined. The Unicode 3.1 standard
added the first group of 44,944 supplementary characters.

surrogate pairs
See also supplementary characters.

syllabary

Provide a mechanism for communicating phonetic information along with the
ideographic characters used by languages such as Japanese.

UCs-2

A 1993 ISO/IEC standard character set. It is a fixed-width, 16-bit Unicode character
set. Each character occupies 16 bits of storage. The ISO Latin1 characters are the first
256 code points, so it can be viewed as a 16-bit extension of ISO Latin1.

ucs-4

A fixed-width, 32-bit Unicode character set. Each character occupies 32 bits of
storage. The UCS-2 characters are the first 65,536 code points in this standard, so it
can be viewed as a 32-bit extension of UCS-2. This is also sometimes referred to as
1SO-10646.

Unicode

Unicode is a universal encoded character set that allows you information from any
language to be stored by using a single character set. Unicode provides a unique
code value for every character, regardless of the platform, program, or language.

Glossary-11

Glossary-12

Unicode database
A database whose database character set is UTF-8.

Unicode code point

A value in the Unicode codespace, which ranges from 0 to 0x10FFFF. Unicode
assigns a unique code point to every character.

Unicode datatype

A SQL NCHAR datatype (NCHAR, NVARCHAR2, and NCLOB). You can store Unicode
characters in columns of these datatypes even if the database character set is not
Unicode.

unrestricted multilingual support

The ability to use as many languages as desired. A universal character set, such as
Unicode, helps to provide unrestricted multilingual support because it supports a
very large character repertoire, encompassing most modern languages of the world.

UTFE

A Unicode 3.0 UTF-8 Oracle database character set with 6-byte supplementary
character support. It is used only on EBCDIC platforms.

UTF8

The UTF8 Oracle character set encodes characters in one, two, or three bytes. It is
for ASCII-based platforms. The UTF8 character set supports Unicode 3.0. Although
specific supplementary characters were not assigned code points in Unicode until
version 3.1, the code point range was allocated for supplementary characters in
Unicode 3.0. Supplementary characters are treated as two separate, user-defined
characters that occupy 6 bytes.

UTF-8

The 8-bit encoding of Unicode. It is a variable-width encoding. One Unicode
character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters
from the European scripts are represented in either 1 or 2 bytes. Characters from
most Asian scripts are represented in 3 bytes. Supplementary characters are
represented in 4 bytes.

UTF-16

The 16-bit encoding of Unicode. It is an extension of UCS-2 and supports the
supplementary characters defined in Unicode 3.1 by using a pair of UCS-2 code
points. One Unicode character can be 2 bytes or 4 bytes in UTF-16 encoding.

Characters (including ASCII characters) from European scripts and most Asian
scripts are represented in 2 bytes. Supplementary characters are represented in 4
bytes.

wide character

A fixed-width character format that is useful for extensive text processing because it
allows data to be processed in consistent, fixed-width chunks. Wide characters are
intended to support internal character processing.

Glossary-13

Glossary-14

Symbols

$ORACLE_HOME/nls/data directory, 1-3

$ORACLE_HOME/oracore/zoneinfo/timezirg.dat
time zone file, 4-20

$ORACLE_HOME/oracore/zoneinfo/timezone.dat
time zone file, 4-20

Numerics

7-bit encoding schemes, 2-9
8-bit encoding schemes, 2-9

A

abbreviations
languages, A-2

abstract datatype
creating as NCHAR, 2-20
accent, 5-14
accent-insensitive linguistic sort, 5-11
ADCS script

migrating character sets in Real Application
Clusters, 11-10
ADD_MONTHS SQL function, 4-16
ADO interface and Unicode, 7-41
AL16UTF16 character set, 6-6, A-19
AL24UTFFSS character set, 6-6
AL32UTF8 character set, 6-6, 6-7, A-19
ALTER DATABASE CHARACTER SET
statement, 11-10
ALTER DATABASE NATIONAL CHARACTER
SET statement, 11-10, 11-12
ALTER SESSION statement

Index

SET NLS_CURRENCY clause, 3-35, 3-37
SET NLS_LANGUAGE clause, 3-18
SET NLS_NUMERIC_CHARACTERS
clause, 3-33
SET NLS_TERRITORY clause, 3-18
ALTER TABLE MODIFY statement
migrating from CHAR to NCHAR, 11-12,11-13
analyse_histgrm.sql script, 12-37
analyse_rule.sql script, 12-37
analyse_source.sql script, 12-37
application-locales, 8-38
Arial Unicode MS font, 13-2
array parameter
Database Character Set Scanner, 12-12
ASCIl encoding, 2-6
AT LOCAL clause, 4-25
AT TIME ZONE clause, 4-25

B

base letter, 5-7
base letters, 5-5
BFILE data
loading into LOBs, 9-14
binary sort, 5-2
example, 5-17
binary sorts
case-insensitive and accent-insensitive, 5-16
binding and defining CLOB and NCLOB data in
OClI, 7-21
binding and defining SQL CHAR datatypes in
OCl, 7-19
binding and defining SQL NCHAR datatypes in
OCl, 7-20

Index-1

BLANK_TRIMMING parameter, 11-4
BLOBs

creating indexes, 6-23
boundaries parameter

Database Character Set Scanner, 12-13
byte semantics, 2-12, 3-44

C

C number format mask, 3-36
Calendar Utility, 13-17
calendars
customizing, 13-17
parameter, 3-27
supported, A-28
canonical equivalence, 5-4,5-9
capture parameter
Database Character Set Scanner, 12-13
case, 5-2
case-insensitive linguistic sort, 5-11
CESU-8 compliance, A-19
changing the national character set, 11-12
CHAR columns
migrating to NCHAR columns, 11-12
character data
converting with CONVERT SQL function, 9-6
character data conversion
database character set, 11-8
character data scanning
before character set migration, 11-7
character rearrangement, 5-10
character repertoire, 2-3
character semantics, 2-12, 3-44
character set
changing after database creation, 2-20
conversion, 2-17,13-24
customizing, 13-22
data loss during conversion, 2-17
detecting with Globalization Development
Kit, 8-32
encoding, 2-2
national, 2-19, 6-9, 7-6
character set conversion
between OCI client and database server, 7-15
parameters, 3-43

Index-2

character set definition
customizing, 13-26
guidelines for editing files, 13-25
naming files, 13-25
character set migration
CSALTER script, 11-8
identifying character data conversion
problems, 11-7
postmigration tasks, 11-16
scanning character data, 11-7
character sets
AL16UTF16, 6-6
AL24UTFFSS, 6-6
AL32UTF8, 6-6
Asian, A-8
choosing, 11-2
choosing a character set for a Unicode
database, 6-12
choosing a national character set, 6-14
conversion, 2-21,9-6
conversion using OCI, 10-7
data loss, 11-4
European, A-10
ISO 8859 series, 2-7
Middle Eastern, A-16
migrating and the data dictionary, 12-36
migration, 11-2
naming, 2-11
restrictions on character sets used to express
names, 2-18
supersets and subsets, A-20
supported, A-7
supporting different character repertoires, 2-5
universal, A-19
UTFE, 6-6
character type conversion
error reporting, 3-44

characters
available in all Oracle database character
sets, 2-5

context-sensitive, 5-8
contracting, 5-8
user-defined, 13-23
choosing a character set, 11-2
choosing between a Unicode database and Unicode

datatypes, 6-10

client operating system

character set compatibility with

applications, 2-16

CLOB and NCLOB data

binding and defining in OCI, 7-21
CLOBs

creating indexes, 6-22
code chart

displaying and printing, 13-18
code point, 2-2
collation

customizing, 13-32
compatibility

client operating system and application character

sets, 2-16
composed characters, 5-8
context-sensitive characters, 5-8
contracting characters, 5-8
contracting letters, 5-10
control characters, encoding, 2-4
conversion

between character set ID number and character

set name, 9-8

CONVERT SQL function, 9-6

character sets, A-19
convert time zones, 4-25
convertible data

data dictionary, 12-36
converting character data

CONVERT SQL function, 9-6
converting character data between character

sets, 9-6

Coordinated Universal Time, 4-5,4-7
creating a database with Unicode datatypes, 6-8
creating a Unicode database, 6-8
CSALTER script, 11-8,11-10

checking phase, 12-42

running, 12-41

updating phase, 12-43
CSM$COLUMNS table, 12-39
CSMS$ERRORS table, 12-39
CSMS$TABLES table, 12-39
CSMIG user, 12-9
csminst.sql script

running, 12-9
CSMV$COLUMNS view, 12-44
CSMV$CONSTRAINTS view, 12-45
CSMVS$ERROR view, 12-46
CSMVSINDEXES view, 12-46
CSMVS$TABLES view, 12-47
currencies

formats, 3-34
CURRENT_DATE SQL function, 4-17
CURRENT_TIMESTAMP SQL function, 4-17
customizing time zone data, 13-17

D

data conversion
in Pro*C/C++, 7-22
OClI driver, 7-29
ODBC and OLE DB drivers, 7-38
thin driver, 7-30
Unicode Java strings, 7-29
data dictionary
changing character sets, 12-36
convertible or lossy data, 12-36
data dictionary views
NLS DATABASE_PARAMETERS, 3-11
NLS_INSTANCE_PARAMETERS, 3-11
NLS_SESSION_PARAMETER, 3-11
data expansion
during data conversion, 7-17
data expansion during character set
migration, 11-2
data expansion during conversion
JDBC thin driver, 7-35
data inconsistencies causing data loss, 11-6
data loss
caused by data inconsistencies, 11-6
during character set migration, 11-4
during OCI Unicode character set
conversion, 7-15
from mixed character sets, 11-7
data loss during character set conversion, 2-17
data loss during datatype conversion
exceptions, 7-7
data truncation, 11-2
restrictions, 11-3

Index-3

database character set
character data conversion, 11-8
choosing, 2-14
compatibility between client operating system

and applications, 2-16

performance, 2-17

Database Character Set Scanner, 12-14
analyse_histgrm.sql script, 12-37
analyse_rule.sqgl script, 12-37
analyse_source.sql script, 12-37
array parameter, 12-12
boundaries parameter, 12-13
capture parameter, 12-13
CSM$COLUMNS table, 12-39
CSMS$ERRORS table, 12-39
CSMS$TABLES table, 12-39
CSMV$COLUMNS view, 12-44
CSMV$CONSTRAINTS view, 12-45
CSMV$ERROR view, 12-46
CSMVS$INDEXES view, 12-46
CSMVS$TABLES view, 12-47
Database Scan Summary Report, 12-25
error messages, 12-47
exclude parameter, 12-13
feedback parameter, 12-14
fromnchar parameter, 12-15
full parameter, 12-15
help parameter, 12-15
Individual Exception Report, 12-33
invoking, 12-9
lastrpt parameter, 12-16, 12-18
maxblocks parameter, 12-18
online help, 12-10
performance, 12-39
preserve parameter, 12-19
restrictions, 12-40
scan modes, 12-7
suppress parameter, 12-20
table parameter, 12-20
tochar parameter, 12-20
user parameter, 12-21
userid parameter, 12-21
views, 12-44

Database Character Set Scanner utility, 12-6

Database Scan Summary Report, 12-25

Index-4

database schemas
designing for multiple languages, 6-17
database time zone, 4-23
datatype conversion
data loss and exceptions, 7-7
implicit, 7-8
SQL functions, 7-9
datatypes
abstract, 2-19
DATE, 4-3
datetime, 4-2
inserting values into datetime datatypes, 4-8
inserting values into interval datatypes, 4-14
interval, 4-2,4-12
INTERVAL DAY TO SECOND, 4-13
INTERVAL YEAR TO MONTH, 4-13
supported, 2-19
TIMESTAMP, 4-5
TIMESTAMP WITH LOCAL TIME ZONE, 4-7
TIMESTAMP WITH TIME ZONE, 4-5
date and time parameters, 3-20
DATE datatype, 4-3
date formats, 3-20, 3-21, 9-13
and partition bound expressions, 3-22
dates
ISO standard, 3-28, 9-13
NLS_DATE_LANGUAGE parameter, 3-23
datetime datatypes, 4-2
inserting values, 4-8
datetime format parameters, 4-18
Daylight Saving Time
Oracle support, 4-26
daylight saving time session parameter, 4-20
days
format element, 3-24
language of names, 3-23
DB_TZ database time zone, 4-24
DBMS_LOB PL/SQL package, 9-14
DBMS_LOB.LOADBLOBFROMFILE
procedure, 9-15
DBMS_LOB.LOADCLOBFROMFILE
procedure, 9-15
DBMS_REDEFINITION.CAN_REDEF _TABLE
procedure, 11-14
DBTIMEZONE SQL function, 4-17

dest_char_set parameter, A-19
detecting language and character sets

Globalization Development Kit, 8-32
detection

supported languages and character sets, A-23
diacritic, 5-2
dynamic performance views
V$NLS PARAMETERS, 3-12
V$NLS_VALID_VALUES, 3-12
E
encoding
control characters, 2-4
ideographic writing systems, 2-4
numbers, 2-4
phonetic writing systems, 2-4
punctuation, 2-4
symbols, 2-4
encoding schemes
7-bit, 2-9
8-bit, 2-9
fixed-width, 2-10
multibyte, 2-10
shift-sensitive variable-width, 2-10
shift-sensitive variable-width multibyte, 2-10

single-byte, 2-9
variable-width, 2-10
environment variables
ORA_SDTZ, 4-19,4-24
ORA_TZFILE, 4-19
error messages
languages, A-4
translation, A-4
ERROR_ON_OVERLAP_TIME session
parameter, 4-20
euro
Oracle support, 3-39
exclude parameter
Database Character Set Scanner, 12-13
expanding characters, 5-10
characters
expanding, 5-8
EXTRACT (datetime) SQL function, 4-17

F

feedback parameter

Database Character Set Scanner, 12-14
fixed-width multibyte encoding schemes, 2-10
fonts

Unicode, 13-2

Unicode for UNIX, 13-3

Unicode for Windows, 13-2
format elements, 9-14

C, 914

D, 9-14

day, 3-24

G, 9-14

Iw, 9-14

Y, 9-14

L, 9-14

month, 3-24

RM, 9-13

RN, 9-14
format masks, 3-32,9-13
formats

currency, 3-34

date, 3-21,4-19

numeric, 3-31

time, 3-24
FROM_TZ SQL function, 4-17
fromchar parameter, 12-14

Database Character Set Scanner, 12-14
fromnchar parameter

Database Character Set Scanner, 12-15
full parameter

Database Character Set Scanner, 12-15

G

GDK
application configuration file, 8-15

GDK application configuration file, 8-36
example, 8-43

GDK application framework for J2EE, 8-12

GDK components, 8-10

GDK error messages, 8-47

GDK Java API, 8-26

GDK Java supplied packages and classes, 8-44

Index-5

GDK Localizer object, 8-19
gdkapp.xml application configuration file, 8-36
gdkapp.xml GDK application configuration
file, 8-15
GENERIC_BASELETTER linguistic sort, 5-12
getString() method, 7-31
getStringWithReplacement() method, 7-32
Globalization Develoopment Kit
Java API, 8-26
Globalization Development Kit, 8-2
application configuration file, 8-36
character set conversion, 8-29
components, 8-10
defining supported application locales, 8-20
e-mail programs, 8-35
error messages, 8-47
framework, 8-12
integrating locale sources, 8-16
Java supplied packages and classes, 8-44
locale detection, 8-17
Localizer object, 8-19
managing localized content in static files, 8-25
managing strings in JSPs and Java servlets, 8-24
non_ASCII input and output in an HTML
page, 8-21
Oracle binary and linguistic sorts, 8-31
Oracle date, number, and monetary
formats, 8-30
Oracle language and character set
detection, 8-32
Oracle locale information, 8-27
Oracle locale mapping, 8-28
Oracle translated locale and time zone
names, 8-34
supported locale resources, 8-16
globalization features, 1-5
globalization support
architecture, 1-2
Greenwich Mean Time, 4-5,4-7
guessing the language or character set, 12-2

H

help parameter
Database Character Set Scanner, 12-15

Index-6

IANA character sets
mapping with ISO locales, 8-23
ideographic writing systems, encoding, 2-4
ignorable characters, 5-7
implicit datatype conversion, 7-8
indexes
creating for documents stored as CLOBs, 6-22
creating for multilingual document search, 6-21
creating indexes for documents stored as
BLOBs, 6-23
partitioned, 9-12
Individual Exception Report, 12-33
initialization parameters
NLS_DATE_FORMAT, 4-19
NLS_TIMESTAMP_FORMAT, 4-19
NLS_TIMESTAMP_TZ_FORMAT, 4-19
INSTR SQL function, 7-11
INSTR SQL functions, 9-6, 9-7
Internet application
locale determination, 8-8
monolingual, 8-2, 8-3
multilingual, 8-3, 8-5
interval datatypes, 4-2,4-12
inserting values, 4-14
INTERVAL DAY TO SECOND datatype, 4-13
INTERVAL YEAR TO MONTH datatype, 4-13
ISO 8859 character sets, 2-7
ISO locales
mapping with IANA character sets, 8-23
I1SO standard
date format, 9-13
ISO standard date format, 3-28, 9-13
ISO week number, 9-13
IW format element, 9-14
Y format element, 9-14

J

Java

Unicode data conversion, 7-29
Java strings

binding and defining in Unicode, 7-26
JDBC drivers

form of use argument, 7-28
JDBC OCI driver
and Unicode, 7-4
JDBC programming
Unicode, 7-25
JDBC Server Side internal driver
and Unicode, 7-4
JDBC Server Side thin driver
and Unicode, 7-4
JDBC thin driver
and Unicode, 7-4
data expansion during conversion, 7-35
SQL CHAR data size restriction, 7-34

L
language
detecting with Globalization Development
Kit, 8-32

language abbreviations, A-2
Language and Character Set File Scanner, 12-2
language definition
customizing, 13-8
overriding, 3-8
language support, 1-6
languages
error messages, A-4
languages and character sets
supported by LCSSCAN, A-23
LAST_DAY SQL function, 4-16
lastrpt parameter
Database Character Set Scanner, 12-16, 12-18
LCSCCAN
error messages, 12-5
LCSSCAN, 12-2
supported languages and character sets, 12-5,
A-23
LCSSCAN command
BEGIN parameter, 12-3
END parameter, 12-3
examples, 12-4
FILE parameter, 12-3
HELP parameter, 12-4
online help, 12-4
RESULTS parameter, 12-3

syntax, 12-2
length semantics, 2-12, 3-44
LENGTH SQL functions, 9-6,9-7
LIKE conditions in SQL statements, 9-8
LIKE2 SQL condition, 9-8
LIKE4 SQL condition, 9-8
LIKEC SQL condition, 9-8
linguistic sort
accent-insensitive, 5-11
BINARY, 5-16
BINARY_AI, linguistic sort
BINARY_CI, 5-16
case-insensitive, 5-11
list of defaults, A-2
linguistic sort definitions
supported, A-25
linguistic sorts
controlling, 9-12
customizing, 13-32
characters with diacritics, 13-35, 13-38
GENERIC_BASELETTER, 5-12
levels, 5-5
parameters, 3-41
list parameter, 3-31
Imsgen utility, 10-8
loading external BFILE data into LOBs, 9-14
LOBs
loading external BFILE data, 9-14
storing documents in multiple languages, 6-20
locale, 3-5
locale dependencies, 3-9
locale detection
Globalization Development Kit, 8-17
locale information
mapping between Oracle and other
standards, 10-4
locale of Internet application
determining, 8-8
locale variant, 3-9
locale-charset-map, 8-37
locale-determine-rule, 8-39
LocaleMapper class, 8-35
locale-parameter-name, 8-40
LOCALTIMESTAMP SQL function, 4-17
lossy data

Index-7

data dictionary, 12-36
Ixegen utility, 13-18

M

maxblocks parameter
Database Character Set Scanner, 12-18
message-bundles, 8-41
migrating a character set
CSALTER script, 11-8
migrating character sets in Real Application
Clusters, 11-10
migration

CHAR columns to NCHAR columns, 11-12

character sets, 11-2
to NCHAR datatypes, 11-10

version 8 NCHAR columns to Oracle9i and

later, 11-11
mixed character sets
causing data loss, 11-7
monetary parameters, 3-33
monolingual Internet application, 8-3
monolingual linguistic sort
example, 5-18
monolingual linguistic sorts
supported, A-25
months
format element, 3-24
language of names, 3-23
MONTHS_BETWEEN SQL function, 4-16
multibyte encoding schemes, 2-10
fixed-width, 2-10
shift-sensitive variable-width, 2-10
variable-width, 2-10
multilexers
creating, 6-21
multilingual data
specifying column lengths, 6-18
multilingual document search
creating indexes, 6-21
multilingual Internet application, 8-5
multilingual linguistic sort
example, 5-18
multilingual linguistic sorts
supported, A-27

Index-8

multilingual support
restricted, 2-24
unrestricted, 2-25
multiple languages
designing database schemas, 6-17
storing data, 6-18
storing documents in LOBs, 6-20

N

N SQL function, 7-10
national character set, 2-19, 6-9, 7-6
before Oracle9i, 6-9
NCHAR
creating abstract datatype, 2-20
NCHAR columns

migrating from version 8 to Oracle%i and

later, 11-11
NCHAR datatype, 7-5
migrating, 11-10
migration, 11-11
NCHR SQL function, 7-12
NCLOB datatype, 7-7
NEW_TIME SQL function, 4-16
NEXT_DAY SQL function, 4-16
NLB data
transportable, 13-42
NLB file, 13-5
NLB files, 13-2
generating and installing, 13-40
NLS Calendar Utility, 13-17
NLS parameters
default values in SQL functions, 9-3
list, 3-3
setting, 3-2
specifying in SQL functions, 9-3
unacceptable in SQL functions, 9-5
NLS Runtime Library, 1-2
NLS_CALENDAR parameter, 3-30

NLS_CHARSET_DECL_LEN SQL function,

NLS_CHARSET_ID SQL function, 9-9
NLS_CHARSET_NAME SQL function,
NLS_COMP parameter, 3-42,9-12
NLS_CREDIT parameter, 3-40
NLS_CURRENCY parameter, 3-34

9-9

9-9

NLS_DATABASE_PARAMETERS data dictionary
view, 3-11
NLS_DATE_FORMAT initialization
parameter, 4-19
NLS_DATE_FORMAT parameter, 3-21
NLS_DATE_LANGUAGE parameter, 3-22
NLS_DEBIT parameter, 3-40
NLS_DUAL_CURRENCY parameter, 3-37
NLS_INITCAP SQL function, 5-11, 9-2
NLS_INSTANCE_PARAMETERS data dictionary
view, 3-11
NLS_ISO_CURRENCY parameter, 3-35
NLS_LANG parameter, 3-5
choosing a locale, 3-5
client setting, 3-10
examples, 3-7
OCl client applications, 7-18
specifying, 3-7
UNIX client, 3-10
Windows client, 3-10
NLS_LANGUAGE parameter, 3-12
NLS_LENGTH_SEMANTICS parameter, 2-13
NLS_LIST_SEPARATOR parameter, 3-43
NLS_LOWER SQL function, 5-11,9-2
NLS_MONETARY_CHARACTERS
parameter, 3-40
NLS_NCHAR_CONV_EXCP parameter, 3-43
NLS_NUMERIC_CHARACTERS parameter, 3-32
NLS_SESSION_PARAMETERS data dictionary
view, 3-11
NLS_SORT parameter, 3-41,5-21
NLS_TERRITORY parameter, 3-15
NLS_TIMESTAMP_FORMAT initialization
parameter, 4-19
NLS_TIMESTAMP_FORMAT parameter
parameters
NLS_TIMESTAMP_FORMAT, 3-25, 3-26
NLS_TIMESTAMP_TZ_FORMAT initialization
parameter, 4-19
NLS_UPPER SQL function, 5-11, 5-12, 9-2
NLSRTL, 1-2
NLSSORT SQL function, 9-2,9-9
syntax, 9-11
NLT files, 13-2
numbers, encoding, 2-4

numeric formats, 3-31

SQL masks, 9-14
numeric parameters, 3-31
NUMTODSINTERVAL SQL function, 4-17
NUMTOYMINTERVAL SQL function, 4-17
NVARCHAR datatype

Pro*C/C++, 7-24
NVARCHAR?2 datatype, 7-6

@)
obsolete locale data, A-38
OcClI
binding and defining CLOB and NCLOB data in

ocCl, 7-21
binding and defining SQL NCHAR
datatypes, 7-20

setting the character set, 10-2

SQL CHAR datatypes, 7-19
OClI and Unicode, 7-3
OCI character set conversion, 7-16

data loss, 7-15

performance, 7-16
OCI client applications

using Unicode character sets, 7-18
OCI data conversion

data expansion, 7-17
OCI_ATTR_CHARSET_FORM attribute, 7-15
OCI_ATTR_MAXDATA_SIZE attribute, 7-17
OCI_UTF16ID character set ID, 7-14
OCIBind() function, 7-19
OCICharSetConversionlsReplacementUsed(), 10-8
OCICharSetConvert(), 10-8
OCICharsetToUnicode(), 10-7
OClIDefine() function, 7-19
OCIEnvNIsCreate(), 7-14,10-2
OClILobRead() function, 7-21
OCILobWrite() function, 7-21
OCIMessageClose(), 10-8
OCIMessageGet(), 10-8
OCIMessageOpen(), 10-8
OCIMultiBytelnSizeToWideChar(), 10-5
OCIMultiByteStrCaseConversion(), 10-6
OCIMultiByteStrcat(), 10-6
OCIMultiByteStrcmp(), 10-6

Index-9

OCIMultiByteStrcpy(), 10-6
OCIMultiByteStrlen(), 10-6
OCIMultiByteStrncat(), 10-6
OCIMultiByteStrncmp(), 10-6
OCIMultiByteStrncpy(), 10-6
OCIMultiByteStrnDisplayLength(), 10-6
OCIMultiByteToWideChar(), 10-5
OCINIsCharSetldToName(), 10-3
OCINIsCharSetNameTold(), 10-3
OCINIsEnvironmentVariableGet(), 10-3
OCINIsGetInfo(), 10-3
OCINIsNameMap(), 10-4
OCINIsNumericinfoGet(), 10-3
OClUnicodeToCharset(), 10-7
OCIWideCharDisplayLength(), 10-6
OCIWideCharInSizeToMultiByte(), 10-5
OCIWideCharlsAlnum(), 10-7
OCIWideCharlsAlpha(), 10-7
OCIWideCharlsCntrl(), 10-7
OCIWideCharlsDigit(), 10-7
OCIWideCharlsGraph(), 10-7
OCIWideCharlsLower(), 10-7
OCIWideCharlsPrint(), 10-7
OCIWideCharlsPunct(), 10-7
OCIWideCharlsSingleByte(), 10-7
OCIWideCharlsSpace(), 10-7
OCIWideCharlsUpper(), 10-7
OCIWideCharlsXdigit(), 10-7
OCIWideCharMultibyteLength(), 10-6
OCIWideCharStrCaseConversion(), 10-6
OCIWideCharStrcat(), 10-5
OCIWideCharStrchr(), 10-5
OCIWideCharStrcmp(), 10-5
OCIWideCharStrcpy(), 10-5
OCIWideCharStrlen(), 10-6
OCIWideCharStrncat(), 10-5
OCIWideCharStrncmp(), 10-5
OCIWideCharStrncpy(), 10-6
OCIWideCharStrrchr(), 10-5
OCIWideCharToLower(), 10-5
OCIWideCharToMultiByte(), 10-5
OCIWideCharToUpper(), 10-5
ODBC Unicode applications, 7-40
OLE DB Unicode datatypes, 7-40
online table redefinition

Index-10

migrating from CHAR to NCHAR, 11-12,11-13
operating system
character set compatibility with
applications, 2-16
ORA_NLSI10 environment variable, 1-3
ORA_SDTZ environment variable, 4-19, 4-24
ORA _TZFILE environment variable, 4-19
Oracle Call Interface and Unicode, 7-3
Oracle Data Provide for .NET and Unicode, 7-3
Oracle Language and Character Set Detection Java
classes, 8-32
Oracle Locale Builder
choosing a calendar format, 13-12
choosing currency formats, 13-16
choosing date and time formats, 13-13
displaying code chart, 13-18
Existing Definitions dialog box, 13-5
fonts, 13-2,13-3
Open File dialog box, 13-7
Preview NLT screen, 13-6
restrictions on names for locale objects, 13-9
Session Log dialog box, 13-6
starting, 13-3
Oracle ODBC driver and Unicode, 7-3
Oracle OLE DB driver and Unicode, 7-3
Oracle Pro*C/C++ and Unicode, 7-3
oracle.il8n.lcsd package, 8-45
oracle.il8n.net package, 8-45
oracle.il8n.Servlet package, 8-45
oracle.il8n.text package, 8-45
oracle.il8n.util package, 8-46
oracle.sql.CHAR class
character set conversion, 7-31
getString() method, 7-31
getStringWithReplacement() method, 7-32
toString() method, 7-32
ORDER BY clause, 9-12
OS_TZ local operating system time zone, 4-24
overriding language and territory definitions, 3-8

P

page-charset, 8-38
parameters
BLANK_TRIMMING, 11-4

calendar, 3-27

character set conversion, 3-43
linguistic sorts, 3-41

methods of setting, 3-3
monetary, 3-33
NLS_CALENDAR, 3-30

NLS _COMP, 3-42

NLS CREDIT, 3-40
NLS_CURRENCY, 3-34

NLS _DATE_FORMAT, 3-21
NLS DATE_LANGUAGE, 3-22
NLS_DEBIT, 3-40

NLS DUAL_CURRENCY, 3-37
NLS ISO_CURRENCY, 3-35
NLS LANG, 3-5
NLS_LANGUAGE, 3-12
NLS_LIST_SEPARATOR, 3-43

NLS_MONETARY_CHARACTERS, 3-40

NLS NCHAR_CONV_EXCP, 3-43
NLS NUMERIC_CHARACTERS, 3-32
NLS _SORT, 3-41
NLS_TERRITORY, 3-15
numeric, 3-31
setting, 3-2
time and date, 3-20
time zone, 3-25, 3-26
partitioned
indexes, 9-12
tables, 9-12
performance
choosing a database character set, 2-17
during OCI Unicode character set
conversion, 7-16
phonetic writing systems, encoding, 2-4
PL/SQL and SQL and Unicode, 7-4
preserve parameter
Database Character Set Scanner, 12-19
primary level sort, 5-5
Private Use Area, 13-25
Pro*C/C++
data conversion, 7-22
NVARCHAR datatype, 7-24
UVARCHAR datatype, 7-24
VARCHAR datatype, 7-23
punctuation, encoding, 2-4

R

Real Application Clusters

database character set migration, 11-10
REGEXP SQL functions, 5-22
regular expressions

character class, 5-24

character range, 5-23

collation element delimiter, 5-23

equivalence class, 5-24

examples, 5-24

multilingual environment, 5-22
replacement characters

CONVERT SQL function, 9-6
restricted multilingual support, 2-24
restrictions

data truncation, 11-3

passwords, 11-3

space padding during export, 11-4

usernames, 11-3
reverse secondary sorting, 5-10
ROUND (date) SQL function, 4-17
RPAD SQL function, 7-11

S

scan modes
Database Character Set Scanner, 12-7
full database scan, 12-7
single table scan, 12-8
user tables scan, 12-8
scan.err file, 12-25
scan.out file, 12-22, 12-24, 12-25
scan.txt file, 12-25
searching multilingual documents, 6-21
searching string, 5-22
secondary level sort, 5-5
session parameters
ERROR_ON_OVERLAP, 4-20
session time zone, 4-24
SESSIONTIMEZONE SQL function, 4-17
setFormOfUse() method, 7-28
shift-sensitive variable-width multibyte encoding
schemes, 2-10
single-byte encoding schemes, 2-9

Index-11

sorting
reverse secondary, 5-10

specifying nondefault linguistic sorts, 3-41, 3-43

source_char_set parameter, A-19
space padding
during export, 11-4
special combination letters, 5-8, 5-10
special letters, 5-8, 5-10
special lowercase letters, 5-11
special uppercase letters, 5-11
SQL CHAR datatypes, 2-14
OocClI, 7-19
SQL conditions
LIKE2, 9-8
LIKE4, 9-8
LIKEC, 9-8
SQL functions
ADD_MONTH, 4-16
CONVERT, 9-6
CURRENT_DATE, 4-17
CURRENT_TIMESTAMP, 4-17
datatype conversion, 7-9
DBTIMEZONE, 4-17
default values for NLS parameters, 9-3
EXTRACT (datetime), 4-17
FROM_TZz, 4-17
INSTR, 7-11, 9-6, 9-7
LAST_DAY, 4-16
LENGTH, 9-6,9-7
LOCALTIMESTAMP, 4-17
MONTHS_BETWEEN, 4-16
N, 7-10
NCHR, 7-12
NEW_TIME, 4-16
NEXT_DAY, 4-16
NLS CHARSET_DECL_LEN, 9-9
NLS CHARSET_ID, 9-9
NLS CHARSET_NAME, 9-9
NLS_INITCAP, 5-11,9-2
NLS_LOWER, 5-11,9-2
NLS_UPPER, 5-11,5-12,9-2
NLSSORT, 9-2,9-9
NUMTODSINTERVAL, 4-17
NUMTOYMINTERVAL, 4-17
ROUND (date), 4-17

Index-12

RPAD, 7-11
SESSIONTIMEZONE, 4-17
specifying NLS parameters, 9-3
SUBSTR, 9-6, 9-7
SUBSTR2, 9-7
SUBSTR4, 9-7
SUBSTRB, 9-7
SUBSTRC, 9-7
SYS_EXTRACT_UTC, 4-17
SYSDATE, 4-17
SYSTIMESTAMP, 4-17
TO_CHAR, 9-2
TO_CHAR (datetime), 4-18
TO_DATE, 7-10,9-2
TO_DSINTERVAL, 4-18
TO_NCHAR, 7-10
TO_NUMBER, 9-2
TO_TIMESTAMP, 4-18
TO_TIMESTAMP_TZ, 4-18
TO_YMINTERVAL, 4-18
TRUNC (date), 4-17
TZ_OFFSET, 4-18
unacceptable NLS parameters, 9-5
UNISTR, 7-12
SQL NCHAR datatypes
binding and defining in OCI, 7-20
SQL statements
LIKE conditions, 9-8
strict superset, 6-3
string comparisons
WHERE clause, 9-11
string literals

Unicode, 7-11
string manipulation using OCI, 10-4
strings

searching, 5-22
SUBSTR SQL function, 9-7
SUBSTR SQL functions, 9-6, 9-7

SUBSTR, 9-7

SUBSTR2, 9-7

SUBSTR4, 9-7

SUBSTRB, 9-7

SUBSTRC, 9-7
SUBSTR4 SQL function, 9-7
SUBSTRB SQL function, 9-7

SUBSTRC SQL function, 9-7 time zone names, 4-20

superset, strict, 6-3 time zone parameters, 3-25, 3-26
supersets and subsets, A-20 time zones
supplementary characters, 5-4, 6-3 converting, 4-25
linguistic sort support, A-28 customizing, 13-17
supported datatypes, 2-19 TIMESTAMP datatype, 4-5
supported territories, A-6 when to use, 4-12
suppress parameter TIMESTAMP datatypes
Database Character Set Scanner, 12-20 choosing, 4-12
surrogate pairs, 6-3 timestamp format, 3-25
syllabary, 2-4 TIMESTAMP WITH LOCAL TIME ZONE
symbols, encoding, 2-4 datatype, 4-7
SYS_EXTRACT_UTC SQL function, 4-17 when to use, 4-12
SYSDATE SQL function, 4-17 TIMESTAMP WITH TIME ZONE datatype, 4-5
effect of session time zone, 4-24 when to use, 4-12
SYSTIMESTAMP SQL function, 4-17 timezlrg.dat file, 13-17
timezone.dat file, 13-17
T TO_CHAR (datetime) SQL function, 4-18
TO_CHAR SQL function, 9-2
table parameter default date format, 3-21, 4-19
Database Character Set Scanner, 12-20 format masks, 9-13
tables group separator, 3-32
partitioned, 9-12 language for dates, 3-22
territory spelling of days and months, 3-23
dependencies, 3-9 TO_DATE SQL function, 7-10, 9-2
territory definition, 3-15 default date format, 3-21, 4-19
customizing, 13-11 format masks, 9-13
overriding, 3-8 language for dates, 3-22
territory support, 1-7, A-6 spelling of days and months, 3-23
territory variant, 3-9 TO_DSINTERVAL SQL function, 4-18
tertiary level sort, 5-6 TO_NCHAR SQL function, 7-10
Thai and Laotian character rearrangement, 5-10 TO_NUMBER SQL function, 9-2
tilde, 7-36 format masks, 9-13
time and date parameters, 3-20 TO_TIMESTAMP SQL function, 4-18
time zone TO_TIMESTAMP_TZ SQL function, 4-18
database, 4-23 TO_YMINTERVAL SQL function, 4-18
effect on SYSDATE SQL function, 4-24 tochar parameter
session, 4-24 Database Character Set Scanner, 12-20
time zone abbreviations, 4-20 toString() method, 7-32
time zone data transportable NLB data, 13-42
source, 4-20 TRUNC (date) SQL function, 4-17
time zone environment variables, 4-19 TZ_OFFSET SQL function, 4-18
time zone file TZABBREV, 4-20
choosing, 4-20 TZNAME, 4-20
default, 4-20

Index-13

UCS-2 encoding, 6-4
Unicode, 6-2

binding and defining Java strings, 7-26

character code assignments, B-2

character set conversion between OCI client and
database server, 7-15

code ranges for UTF-16 characters, B-2

code ranges for UTF-8 characters, B-2

data conversion in Java, 7-29

JDBC OCl driver, 7-4

JDBC programming, 7-25

JDBC Server Side internal driver, 7-4

JDBC Server Side thin driver, 7-4

JDBC thin driver, 7-4

ODBC and OLE DB programming, 7-37

Oracle Call Interface, 7-3

Oracle Data Provide for .NET, 7-3

Oracle ODBC driver, 7-3

Oracle OLE DB driver, 7-3

Oracle Pro*C/C++, 7-3

Oracle support, 6-5

parsing an XML stream with Java, 7-44

PL/SQL and SQL, 7-4

Private Use Area, 13-25

programming, 7-2

reading an XML file with Java, 7-43

string literals, 7-11

UCS-2 encoding, 6-4

UTF-16 encoding, 6-4

UTF-8 encoding, 6-3

writing an XML file with Java, 7-42

XML programming, 7-41

Unicode database, 6-7

case study, 6-15

choosing a character set, 6-12

using with Unicode datatypes (case study), 6-17
when to use, 6-10

Unicode datatypes, 6-8

case study, 6-16

choosing a national character set, 6-14

using with a Unicode database (case
study), 6-17

when to use, 6-11

Index-14

Unicode encoding, 6-3
Unicode fonts, 13-2
Unicode mode, 7-14
UNISTR SQL function, 7-12
unrestricted multilingual support, 2-25
url-rewrite-rule, 8-42
US7ASCII
supersets, A-21
user parameter
Database Character Set Scanner, 12-21
user-defined characters, 13-23
adding to a character set definition, 13-30
cross-references between character sets, 13-25
userid parameter
Database Character Set Scanner, 12-21
UTC, 4-5,4-7
UTF-16 encoding, 6-4, B-3
UTF8 character set, 6-7, A-19
UTF-8 encoding, 6-3, B-3
UTFE character set, 6-6, 6-8, A-19
UTL_FILE package, using with NCHAR, 7-12
UTL_I18N PL/SQL package, 8-47
UTL_LMS PL/SQL package, 8-47
UVARCHAR datatype
Pro*C/C++, 7-24

\Y,

V$NLS_PARAMETERS dynamic performance
view, 3-12
V$NLS_VALID_VALUES dynamic performance
view, 3-12
VARCHAR datatype
Pro*C/C++, 7-23
variable-width multibyte encoding schemes, 2-10
version 8 NCHAR columns
migrating to Oracle%i and later, 11-11

W

wave dash, 7-36
WHERE clause
string comparisons, 9-11

X

XML
parsing in Unicode with Java, 7-44
reading in Unicode with Java, 7-43
writing in Unicode with Java, 7-42
XML programming
Unicode, 7-41

Index-15

Index-16

	Contents
	Send Us Your Comments
	Preface
	What’s New in Globalization Support ?
	1 Overview of Globalization Support
	Globalization Support Architecture
	Locale Data on Demand
	Architecture to Support Multilingual Applications
	Using Unicode in a Multilingual Database

	Globalization Support Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars Feature
	Linguistic Sorting
	Character Set Support
	Character Semantics
	Customization of Locale and Calendar Data
	Unicode Support

	2 Choosing a Character Set
	Character Set Encoding
	What is an Encoded Character Set?
	Which Characters Are Encoded?
	Phonetic Writing Systems
	Ideographic Writing Systems
	Punctuation, Control Characters, Numbers, and Symbols
	Writing Direction

	What Characters Does a Character Set Support?
	ASCII Encoding

	How are Characters Encoded?
	Single-Byte Encoding Schemes
	Multibyte Encoding Schemes

	Naming Convention for Oracle Character Sets

	Length Semantics
	Choosing an Oracle Database Character Set
	Current and Future Language Requirements
	Client Operating System and Application Compatibility
	Character Set Conversion Between Clients and the Server
	Performance Implications of Choosing a Database Character Set
	Restrictions on Database Character Sets
	Restrictions on Character Sets Used to Express Names

	Choosing a National Character Set
	Summary of Supported Datatypes

	Changing the Character Set After Database Creation
	Monolingual Database Scenario
	Character Set Conversion in a Monolingual Scenario

	Multilingual Database Scenarios
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	3 Setting Up a Globalization Support Environment
	Setting NLS Parameters
	Choosing a Locale with the NLS_LANG Environment Variable
	Specifying the Value of NLS_LANG
	Overriding Language and Territory Specifications
	Locale Variants
	Should the NLS_LANG Setting Match the Database Character Set?

	NLS Database Parameters
	NLS Data Dictionary Views
	NLS Dynamic Performance Views
	OCINlsGetInfo() Function

	Language and Territory Parameters
	NLS_LANGUAGE
	NLS_TERRITORY
	Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session

	Date and Time Parameters
	Date Formats
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE

	Time Formats
	NLS_TIMESTAMP_FORMAT
	NLS_TIMESTAMP_TZ_FORMAT

	Calendar Definitions
	Calendar Formats
	First Day of the Week
	First Calendar Week of the Year
	Number of Days and Months in a Year
	First Year of Era

	NLS_CALENDAR

	Numeric and List Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS
	NLS_LIST_SEPARATOR

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	Oracle Support for the Euro
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Linguistic Sort Parameters
	NLS_SORT
	NLS_COMP

	Character Set Conversion Parameter
	NLS_NCHAR_CONV_EXCP

	Length Semantics
	NLS_LENGTH_SEMANTICS

	4 Datetime Datatypes and Time Zone Support
	Overview of Datetime and Interval Datatypes and Time Zone Support
	Datetime and Interval Datatypes
	Datetime Datatypes
	DATE Datatype
	TIMESTAMP Datatype
	TIMESTAMP WITH TIME ZONE Datatype
	TIMESTAMP WITH LOCAL TIME ZONE Datatype
	Inserting Values into Datetime Datatypes
	Choosing a TIMESTAMP Datatype

	Interval Datatypes
	INTERVAL YEAR TO MONTH Datatype
	INTERVAL DAY TO SECOND Datatype
	Inserting Values into Interval Datatypes

	Datetime and Interval Arithmetic and Comparisons
	Datetime and Interval Arithmetic
	Datetime Comparisons
	Explicit Conversion of Datetime Datatypes

	Datetime SQL Functions
	Datetime and Time Zone Parameters and Environment Variables
	Datetime Format Parameters
	Time Zone Environment Variables
	Daylight Saving Time Session Parameter

	Choosing a Time Zone File
	Setting the Database Time Zone
	Setting the Session Time Zone
	Converting Time Zones With the AT TIME ZONE Clause
	Support for Daylight Saving Time
	Examples: The Effect of Daylight Saving Time on Datetime Calculations

	5 Linguistic Sorting and String Searching
	Overview of Oracle’s Sorting Capabilities
	Using Binary Sorts
	Using Linguistic Sorts
	Monolingual Linguistic Sorts
	Multilingual Linguistic Sorts
	Multilingual Sorting Levels
	Primary Level Sorts
	Secondary Level Sorts
	Tertiary Level Sorts

	Linguistic Sort Features
	Base Letters
	Ignorable Characters
	Contracting Characters
	Expanding Characters
	Context-Sensitive Characters
	Canonical Equivalence
	Reverse Secondary Sorting
	Character Rearrangement for Thai and Laotian Characters
	Special Letters
	Special Combination Letters
	Special Uppercase Letters
	Special Lowercase Letters

	Case-Insensitive and Accent-Insensitive Linguistic Sorts
	Examples of Case-Insensitive and Accent-Insensitive Sorts
	Specifying a Case-Insensitive or Accent-Insensitive Sort
	Linguistic Sort Examples

	Using Linguistic Indexes
	Linguistic Indexes for Multiple Languages
	Requirements for Using Linguistic Indexes
	Set NLS_SORT Appropriately
	Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT NULL
	Example: Setting Up a French Linguistic Index

	Searching Linguistic Strings
	SQL Regular Expressions in a Multilingual Environment
	Character Range ’[x-y]’ in Regular Expressions
	Collation Element Delimiter ’[. .]’ in Regular Expressions
	Character Class ’[: :]’ in Regular Expressions
	Equivalence Class ’[= =]’ in Regular Expressions
	Examples: Regular Expressions

	6 Supporting Multilingual Databases with Unicode
	Overview of Unicode
	What is Unicode?
	Supplementary Characters
	Unicode Encodings
	UTF-8 Encoding
	UCS-2 Encoding
	UTF-16 Encoding
	Examples: UTF-16, UTF-8, and UCS-2 Encoding

	Oracle’s Support for Unicode

	Implementing a Unicode Solution in the Database
	Enabling Multilingual Support with Unicode Databases
	Enabling Multilingual Support with Unicode Datatypes
	How to Choose Between a Unicode Database and a Unicode Datatype Solution
	When Should You Use a Unicode Database?
	When Should You Use Unicode Datatypes?

	Comparing Unicode Character Sets for Database and Datatype Solutions

	Unicode Case Studies
	Designing Database Schemas to Support Multiple Languages
	Specifying Column Lengths for Multilingual Data
	Storing Data in Multiple Languages
	Store Language Information with the Data
	Select Translated Data Using Fine-Grained Access Control

	Storing Documents in Multiple Languages in LOB Datatypes
	Creating Indexes for Searching Multilingual Document Contents
	Creating Multilexers
	Creating Indexes for Documents Stored in the CLOB Datatype
	Creating Indexes for Documents Stored in the BLOB Datatype

	7 Programming with Unicode
	Overview of Programming with Unicode
	Database Access Product Stack and Unicode

	SQL and PL/SQL Programming with Unicode
	SQL NCHAR Datatypes
	The NCHAR Datatype
	The NVARCHAR2 Datatype
	The NCLOB Datatype

	Implicit Datatype Conversion Between NCHAR and Other Datatypes
	Exception Handling for Data Loss During Datatype Conversion
	Rules for Implicit Datatype Conversion
	SQL Functions for Unicode Datatypes
	Other SQL Functions
	Unicode String Literals
	Using the UTL_FILE Package with NCHAR Data

	OCI Programming with Unicode
	OCIEnvNlsCreate() Function for Unicode Programming
	OCI Unicode Code Conversion
	Data Integrity
	OCI Performance Implications When Using Unicode
	OCI Unicode Data Expansion

	When the NLS_LANG Character Set is UTF8 or AL32UTF8 in OCI
	Binding and Defining SQL CHAR Datatypes in OCI
	Binding and Defining SQL NCHAR Datatypes in OCI
	Binding and Defining CLOB and NCLOB Unicode Data in OCI

	Pro*C/C++ Programming with Unicode
	Pro*C/C++ Data Conversion in Unicode
	Using the VARCHAR Datatype in Pro*C/C++
	Using the NVARCHAR Datatype in Pro*C/C++
	Using the UVARCHAR Datatype in Pro*C/C++

	JDBC Programming with Unicode
	Binding and Defining Java Strings to SQL CHAR Datatypes
	Binding and Defining Java Strings to SQL NCHAR Datatypes
	Using the SQL NCHAR Datatypes Without Changing the Code
	Data Conversion in JDBC
	Data Conversion for the OCI Driver
	Data Conversion for Thin Drivers
	Data Conversion for the Server-Side Internal Driver

	Using oracle.sql.CHAR in Oracle Object Types
	oracle.sql.CHAR
	Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

	Restrictions on Accessing SQL CHAR Data with JDBC
	SQL CHAR Data Size Restriction With the JDBC Thin Driver
	Character Integrity Issues in a Multibyte Database Environment

	ODBC and OLE DB Programming with Unicode
	Unicode-Enabled Drivers in ODBC and OLE DB
	OCI Dependency in Unicode
	ODBC and OLE DB Code Conversion in Unicode
	OLE DB Code Conversions

	ODBC Unicode Datatypes
	OLE DB Unicode Datatypes
	ADO Access

	XML Programming with Unicode
	Writing an XML File in Unicode with Java
	Reading an XML File in Unicode with Java
	Parsing an XML Stream in Unicode with Java

	8 Oracle Globalization Development Kit
	Overview of the Oracle Globalization Development Kit
	Designing a Global Internet Application
	Deploying a Monolingual Internet Application
	Deploying a Multilingual Internet Application

	Developing a Global Internet Application
	Locale Determination
	Locale Awareness
	Localizing the Content

	Getting Started with the Globalization Development Kit
	GDK Application Framework for J2EE
	Making the GDK Framework Available to J2EE Applications
	Integrating Locale Sources into the GDK Framework
	Getting the User Locale From the GDK Framework
	Implementing Locale Awareness Using the GDK Localizer
	Defining the Supported Application Locales in the GDK
	Handling Non-ASCII Input and Output in the GDK Framework
	Managing Localized Content in the GDK
	Managing Localized Content in JSPs and Java Servlets
	Managing Localized Content in Static Files

	GDK Java API
	Oracle Locale Information in the GDK
	Oracle Locale Mapping in the GDK
	Oracle Character Set Conversion (JDK 1.4 and Later) in the GDK
	Oracle Date, Number, and Monetary Formats in the GDK
	Oracle Binary and Linguistic Sorts in the GDK
	Oracle Language and Character Set Detection in the GDK
	Oracle Translated Locale and Time Zone Names in the GDK
	Using the GDK for E-Mail Programs

	The GDK Application Configuration File
	locale-charset-map
	page-charset
	application-locales
	locale-determine-rule
	locale-parameter-name
	message-bundles
	url-rewrite-rule
	Example: GDK Application Configuration File

	GDK for Java Supplied Packages and Classes
	oracle.i18n.lcsd
	oracle.i18n.net
	oracle.i18n.servlet
	oracle.i18n.text
	oracle.i18n.util

	GDK for PL/SQL Supplied Packages
	GDK Error Messages

	9 SQL and PL/SQL Programming in a Global Environment
	Locale-Dependent SQL Functions with Optional NLS Parameters
	Default Values for NLS Parameters in SQL Functions
	Specifying NLS Parameters in SQL Functions
	Unacceptable NLS Parameters in SQL Functions

	Other Locale-Dependent SQL Functions
	The CONVERT Function
	SQL Functions for Different Length Semantics
	LIKE Conditions for Different Length Semantics
	Character Set SQL Functions
	Converting from Character Set Number to Character Set Name
	Converting from Character Set Name to Character Set Number
	Returning the Length of an NCHAR Column

	The NLSSORT Function
	NLSSORT Syntax
	Comparing Strings in a WHERE Clause
	Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause
	Controlling an ORDER BY Clause

	Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
	SQL Date Format Masks
	Calculating Week Numbers
	SQL Numeric Format Masks
	Loading External BFILE Data into LOB Columns

	10 OCI Programming in a Global Environment
	Using the OCI NLS Functions
	Specifying Character Sets in OCI
	Getting Locale Information in OCI
	Mapping Locale Information Between Oracle and Other Standards
	Manipulating Strings in OCI
	Classifying Characters in OCI
	Converting Character Sets in OCI
	OCI Messaging Functions
	lmsgen Utility
	Text Message Files
	Example: Creating a Binary Message File from a Text Message File

	11 Character Set Migration
	Overview of Character Set Migration
	Data Truncation
	Additional Problems Caused by Data Truncation

	Character Set Conversion Issues
	Replacement Characters that Result from Using the Export and Import Utilities
	Invalid Data That Results from Setting the Client’s NLS_LANG Parameter Incorrectly

	Changing the Database Character Set of an Existing Database
	Migrating Character Data Using a Full Export and Import
	Migrating a Character Set Using the CSALTER Script
	Using the CSALTER Script in an Oracle Real Application Clusters Environment

	Migrating Character Data Using the CSALTER Script and Selective Imports

	Migrating to NCHAR Datatypes
	Migrating Version 8 NCHAR Columns to Oracle9i and Later
	Changing the National Character Set
	Migrating CHAR Columns to NCHAR Columns
	Using the ALTER TABLE MODIFY Statement to Change CHAR Columns to NCHAR Columns
	Using Online Table Redefinition to Migrate a Large Table to Unicode

	Tasks to Recover Database Schema After Character Set Migration

	12 Character Set Scanner Utilities
	The Language and Character Set File Scanner
	Syntax of the LCSSCAN Command
	Examples: Using the LCSSCAN Command
	Getting Command-Line Help for the Language and Character Set File Scanner
	Supported Languages and Character Sets
	LCSCCAN Error Messages

	The Database Character Set Scanner
	Conversion Tests on Character Data

	Scan Modes in the Database Character Set Scanner
	Full Database Scan
	User Scan
	Table Scan

	Installing and Starting the Database Character Set Scanner
	Access Privileges for the Database Character Set Scanner
	Installing the Database Character Set Scanner
	Starting the Database Character Set Scanner
	Creating the Database Character Set Scanner Parameter File
	Getting Online Help for the Database Character Set Scanner

	Database Character Set Scanner Parameters
	Database Character Set Scanner Sessions: Examples
	Full Database Scan: Examples
	Example: Parameter-File Method
	Example: Command-Line Method
	Database Character Set Scanner Messages

	User Scan: Examples
	Example: Parameter-File Method
	Example: Command-Line Method
	Database Character Set Scanner Messages

	Single Table Scan: Examples
	Example: Parameter-File Method
	Example: Command-Line Method
	Database Character Set Scanner Messages

	Database Character Set Scanner Reports
	Database Scan Summary Report
	Database Size
	Database Scan Parameters
	Scan Summary
	Data Dictionary Conversion Summary
	Application Data Conversion Summary
	Application Data Conversion Summary Per Column Size Boundary
	Distribution of Convertible Data Per Table
	Distribution of Convertible Data Per Column
	Indexes To Be Rebuilt
	Truncation Due To Character Semantics
	Character Set Detection Result
	Language Detection Result

	Database Scan Individual Exception Report
	Database Scan Parameters
	Data Dictionary Individual Exceptions
	Application Data Individual Exceptions

	How to Handle Convertible or Lossy Data in the Data Dictionary
	Storage and Performance Considerations in the Database Character Set Scanner
	Storage Considerations for the Database Character Set Scanner
	CSM$TABLES
	CSM$COLUMNS
	CSM$ERRORS

	Performance Considerations for the Database Character Set Scanner
	Using Multiple Scan Processes
	Setting the Array Fetch Buffer Size
	Suppressing Exception and Convertible Log

	Recommendations and Restrictions for the Database Character Set Scanner
	Scanning Database Containing Data Not in the Database Character Set
	Scanning Database Containing Data from two or more Character Sets

	Database Character Set Scanner CSALTER Script
	Checking Phase of the CSALTER Script
	Updating Phase of the CSALTER Script

	Database Character Set Scanner Views
	CSMV$COLUMNS
	CSMV$CONSTRAINTS
	CSMV$ERRORS
	CSMV$INDEXES
	CSMV$TABLES

	Database Character Set Scanner Error Messages

	13 Customizing Locale
	Overview of the Oracle Locale Builder Utility
	Configuring Unicode Fonts for the Oracle Locale Builder
	Font Configuration on Windows
	Font Configuration on Other Platforms

	The Oracle Locale Builder User Interface
	Oracle Locale Builder Windows and Dialog Boxes
	Existing Definitions Dialog Box
	Session Log Dialog Box
	Preview NLT Tab Page
	Open File Dialog Box

	Creating a New Language Definition with the Oracle Locale Builder
	Creating a New Territory Definition with the Oracle Locale Builder
	Customizing Time Zone Data
	Customizing Calendars with the NLS Calendar Utility

	Displaying a Code Chart with the Oracle Locale Builder
	Creating a New Character Set Definition with the Oracle Locale Builder
	Character Sets with User-Defined Characters
	Oracle Character Set Conversion Architecture
	Unicode 3.2 Private Use Area
	User-Defined Character Cross-References Between Character Sets
	Guidelines for Creating a New Character Set from an Existing Character Set
	Example: Creating a New Character Set Definition with the Oracle Locale Builder

	Creating a New Linguistic Sort with the Oracle Locale Builder
	Changing the Sort Order for All Characters with the Same Diacritic
	Changing the Sort Order for One Character with a Diacritic

	Generating and Installing NLB Files
	Transportable NLB Data

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets
	Character Set Conversion Support
	Subsets and Supersets

	Language and Character Set Detection Support
	Linguistic Sorts
	Calendar Systems
	Time Zone Names
	Obsolete Locale Data
	Updates to the Oracle Language and Territory Definition Files
	Obsolete Linguistic Sorts
	CIS Is No Longer the Default Territory When the Language is RUSSIAN
	YUGOSLAVIA Is a Deprecated Territory
	New Names for Obsolete Character Sets
	AL24UTFFSS Character Set Desupported
	Bengali Language Definition Deprecated
	Czechoslovakia Territory Definition Deprecated

	B Unicode Character Code Assignments
	Unicode Code Ranges
	UTF-16 Encoding
	UTF-8 Encoding

	Glossary
	Index

