
Oracle® Database
Heterogeneous Connectivity Administrator’s Guide

10g Release 1 (10.1)

Part No. B10764-01

December 2003

Oracle Database Heterogeneous Connectivity Administrator’s Guide, 10g Release 1 (10.1)

Part No. B10764-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved.

Primary Author: Cathy Baird

Contributors: Hermann Baer, Jacco Draaijer, Vira Goorah, Govind Lakkoju, Kishan Peyetti

Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, Oracle8i, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

Audience .. xii
Organization.. xii
Related Documentation .. xiv
Conventions.. xiv
Documentation Accessibility ... xix

What’s New in Heterogeneous Connectivity? ... xxi

HS_CALL_NAME Initialization Parameter... xxi

1 Introduction

The Information Integration Challenge ... 1-2
How Oracle Addresses Synchronous Information Integration ... 1-2
Benefits of Oracle’s Solution for Synchronous Information Integration 1-4

Remote Data Can Be Accessed Transparently ... 1-5
There is No Unnecessary Data Duplication.. 1-5
SQL Statements Can Query Several Different Databases... 1-5
Oracle’s Application Development and End User Tools Can Be Used 1-6
Users Can Talk to a Remote Database in its Own Language... 1-6
iii

2 The Role of the Heterogeneous Services Component

Heterogeneous Connectivity Process Architecture .. 2-2
Heterogeneous Services Agents ... 2-2
Types of Heterogeneous Services Agents .. 2-3

Oracle Transparent Gateways... 2-3
Generic Connectivity Agents .. 2-4

Heterogeneous Services Components... 2-4
Transaction Service... 2-4
SQL Service.. 2-5

Configuring Heterogeneous Services.. 2-5
Data Dictionary Translations .. 2-6
Heterogeneous Services Initialization Parameters .. 2-6
Capabilities .. 2-6

The Heterogeneous Services Data Dictionary... 2-7
Classes and Instances ... 2-7
Data Dictionary Views ... 2-8

Gateway Process Flow.. 2-9

3 Features of Oracle Transparent Gateways and Generic Connectivity

SQL and PL/SQL Support ... 3-2
Heterogeneous Replication ... 3-2
Pass-Through SQL .. 3-5

Using the DBMS_HS_PASSTHROUGH Package .. 3-5
Considering the Implications of Using Pass-Through SQL ... 3-6
Executing Pass-Through SQL Statements ... 3-6

Result Set Support .. 3-13
Result Set Support In Non-Oracle Systems... 3-14
Heterogeneous Services Support for Result Sets ... 3-15

Data Dictionary Translations .. 3-16
Datetime Datatypes .. 3-18
Two-Phase Commit Protocol... 3-18
Piecewise Long .. 3-19
SQL*Plus DESCRIBE Command... 3-19
Constraints on SQL in a Distributed Environment ... 3-20

Resolving Remote and Heterogeneous References ... 3-20
iv

Resolving Important Restrictions... 3-20
Updates, Inserts, and Deletes.. 3-25

Using Oracle’s Optimizer with Heterogeneous Services.. 3-26
Example: Using Index and Table Statistics ... 3-26
Example: Remote Join Optimization ... 3-28
Optimizer Restrictions for Non-Oracle Access .. 3-30

4 Using Heterogeneous Services Agents

Setting Up Access to Non-Oracle Systems .. 4-2
Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents............. 4-2
Step 2: Create the Database Link to the Non-Oracle System ... 4-3
Step 3: Test the Connection ... 4-4

Setting Initialization Parameters ... 4-5
Name and Location of Heterogeneous Services Initialization Parameter File 4-5
Syntax for Initialization Parameter Settings ... 4-5
Gateway Initialization Parameters... 4-6

Optimizing Data Transfers Using Bulk Fetch ... 4-7
Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches 4-8
Controlling the Array Fetch Between Oracle Database Server and Agent 4-9
Controlling the Array Fetch Between Agent and Non-Oracle Server 4-9
Controlling the Reblocking of Array Fetches ... 4-9

Registering Agents ... 4-10
Enabling Agent Self-Registration ... 4-10
Disabling Agent Self-Registration.. 4-14

Oracle Database Server SQL Construct Processing ... 4-14
Executing User-Defined Functions on a Non-Oracle Database ... 4-15
Using Synonyms ... 4-17
Copying Data from the Oracle Database Server to the Non-Oracle Database System....... 4-18
Copying Data from the Non-Oracle Database System to the Oracle Database Server....... 4-19
Heterogeneous Services Data Dictionary Views .. 4-20

Understanding the Types of Views ... 4-20
Understanding the Sources of Data Dictionary Information ... 4-21
Using the General Views ... 4-22
Using the Transaction Service Views... 4-23
Using the SQL Service Views.. 4-24
v

Using the Heterogeneous Services Dynamic Performance Views .. 4-25
Determining Which Agents Are Running on a Host .. 4-26
Determining the Open Heterogeneous Services Sessions .. 4-26
Determining the Heterogeneous Services Parameters .. 4-27

5 Multithreaded Agents

Why Use Multithreaded Agents?... 5-2
The Challenge of Dedicated Agent Architecture ... 5-2
The Advantage of Multithreading ... 5-2

Multithreaded Agent Architecture .. 5-3
The Monitor Thread .. 5-5
Dispatcher Threads .. 5-5
Task Threads.. 5-6

Administering Multithreaded Agents .. 5-6
Agent Control Utility (agtctl) Commands .. 5-7
Using Single-Line Command Mode... 5-8
Using Shell Mode Commands .. 5-11
Configuration Parameters for Multithreaded Agent Control .. 5-12

6 Performance Tips

Optimizing Heterogeneous Distributed SQL Statements .. 6-2
Optimizing Performance of Distributed Queries... 6-2

7 Generic Connectivity

What Is Generic Connectivity?... 7-2
Types of Agents... 7-2
Generic Connectivity Architecture... 7-2
SQL Execution ... 7-5
Datatype Mapping.. 7-5
Generic Connectivity Restrictions .. 7-5

Supported Oracle SQL Statements and Functions ... 7-6
Configuring Generic Connectivity Agents .. 7-7

Creating the Initialization File .. 7-7
Editing the Initialization File... 7-7
vi

Setting Initialization Parameters for an ODBC-based Data Source 7-9
Setting Initialization Parameters for an OLE DB-based Data Source 7-11

ODBC Connectivity Requirements... 7-12
OLE DB (SQL) Connectivity Requirements .. 7-14
OLE DB (FS) Connectivity Requirements ... 7-15

OLE DB Interfaces for Data Providers to Expose .. 7-15
Data Source Properties... 7-17

A Heterogeneous Services Initialization Parameters

HS_CALL_NAME... A-3
HS_COMMIT_POINT_STRENGTH.. A-3
HS_DB_DOMAIN .. A-4
HS_DB_INTERNAL_NAME .. A-4
HS_DB_NAME.. A-5
HS_DESCRIBE_CACHE_HWM .. A-5
HS_FDS_CONNECT_INFO ... A-5

ODBC-Based Data Source on Windows.. A-6
ODBC-Based Data Source on UNIX .. A-6
OLE DB-Based Data Source (Windows NT Only)... A-6

HS_FDS_DEFAULT_SCHEMA_NAME... A-6
HS_FDS_SHAREABLE_NAME... A-7
HS_FDS_TRACE_LEVEL.. A-7
HS_LANGUAGE .. A-7

Character Sets.. A-8
Language.. A-8
Territory ... A-8

HS_LONG_PIECE_TRANSFER_SIZE ... A-9
HS_NLS_DATE_FORMAT ... A-9
HS_NLS_DATE_LANGUAGE ... A-10
HS_NLS_NCHAR... A-10
HS_NLS_NUMERIC_CHARACTER .. A-10
HS_NLS_TIMESTAMP_FORMAT ... A-11
HS_NLS_TIMESTAMP_TZ_FORMAT .. A-11
HS_OPEN_CURSORS ... A-12
HS_ROWID_CACHE_SIZE.. A-12
vii

HS_RPC_FETCH_REBLOCKING .. A-12
HS_RPC_FETCH_SIZE ... A-13
HS_TIME_ZONE ... A-14
IFILE ... A-14

B Datatype Mapping

Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface B-2
Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface B-3

C Data Dictionary Translation Support

Accessing the Non-Oracle Data Dictionary .. C-2
Heterogeneous Services Data Dictionary Views ... C-2
Views and Tables Supported by Generic Connectivity.. C-5

Data Dictionary Mapping... C-5
Generic Connectivity Data Dictionary Descriptions .. C-6

Index
viii

ix

Send Us Your Comments

Oracle Database Heterogeneous Connectivity Administrator’s Guide, 10g Release 1 (10.1)

Part No. B10764-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

This manual describes Oracle’s approach for information integration in a
heterogeneous environment. Specifically, it describes Oracle Transparent Gateways
and Generic Connectivity and is meant to be an administrator’s guide for these
Oracle products.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ ConventionsDocumentation Accessibility

■ Documentation Accessibility

xii

Audience
Oracle Database Heterogeneous Connectivity Administrator’s Guide is intended for the
following users:

■ Database administrators who want to administer distributed database systems
that involve Oracle to non-Oracle database links

■ Application developers who want to make use of the heterogeneous
connectivity functionality in the Oracle database server

■ Readers who want a high-level understanding of Oracle’s architecture for
heterogeneous connectivity and how it works.

To use this document, you should be familiar with the following information:

■ Relational database concepts and basic database or applications administration
as described in the following books:

– Oracle Database Concepts

– Oracle Database Administrator's Guide

– Oracle Database Application Developer's Guide - Fundamentals

■ The operating system environment under which database administrators are
running Oracle.

Organization
This document contains:

Chapter 1, "Introduction"
This chapter describes the challenges of operating in a heterogeneous environment.
Oracle recognizes these challenges and offers both synchronous and asynchronous
solutions that enable companies to easily operate in such an environment. The two
synchronous solutions, Oracle Transparent Gateways and Generic Connectivity, are
discussed this book.

Chapter 2, "The Role of the Heterogeneous Services Component"
Oracle’s synchronous solutions for operating in a heterogeneous environment are
Oracle Transparent Gateways and Generic Connectivity. The common component
of the Oracle database server for supporting these solutions is Heterogeneous
Services. This chapter describes the architecture and functionality of the

xiii

Heterogeneous Services component and its interaction with Oracle Transparent
Gateways and Generic Connectivity.

Chapter 3, "Features of Oracle Transparent Gateways and Generic
Connectivity"
This chapter describes the major features provided by Oracle Transparent Gateways
and Generic Connectivity.

Chapter 4, "Using Heterogeneous Services Agents"
This chapter explains how to use Heterogeneous Services agents.

Chapter 5, "Multithreaded Agents"
This chapter explains what multithreaded agents are, how they contribute to the
overall efficiency of a distributed database system, and how to administer
multithreaded agents.

Chapter 6, "Performance Tips"
This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

Chapter 7, "Generic Connectivity"
This chapter describes the configuration and usage of generic connectivity agents.

Appendix A, "Heterogeneous Services Initialization Parameters"
This appendix lists heterogeneous services initialization parameters and provides
instructions on how to set them.

Appendix B, "Datatype Mapping"
The tables in this appendix show how Oracle maps ANSI datatypes through ODBC
and OLE DB interfaces to supported Oracle datatypes when it is retrieving data
from a non-Oracle system.

Appendix C, "Data Dictionary Translation Support"
This appendix documents data dictionary translation support. It explains how to
access non-Oracle data dictionaries, lists heterogeneous services data dictionary
views, describes how to use supported views and tables, and explains data
dictionary mapping.

xiv

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database New Features

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/index.html

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

Thedepartment_id,department_name, and
location_id columns are in the
hr.departments table.

SettheQUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

RunUold_release.SQLwhereold_release
refers to the release you installed prior to
upgrading.

xvi

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECTcol1,col2,...,colnFROMemployees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

xvii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECTlast_name,employee_idFROMemployees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECTlast_name,employee_idFROMemployees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

Convention Meaning Example

xviii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>expscott/tigerTABLES=empQUERY=\"WHERE
job=’SALESMAN’ and sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

Convention Meaning Example

xix

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory. For
Windows NT, the default location was
C:\orant for Windows NT.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\orann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xx

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

xxi

What’s New in Heterogeneous
Connectivity?

This section describes new features in this release and provides pointers to
additional information.

HS_CALL_NAME Initialization Parameter
Use the HS_CALL_NAME initialization parameter to specify remote functions
that can be referenced by SQL statements.

See Also: "Executing User-Defined Functions on a Non-Oracle
Database" on page 4-15 and "HS_CALL_NAME" on page A-3

xxii

Introduction 1-1

1
Introduction

This chapter describes the challenges of operating in a heterogeneous environment.
Oracle recognizes these challenges and offers both synchronous and asynchronous
solutions that enable companies to easily operate in such an environment. The two
synchronous solutions, Oracle Transparent Gateways and Generic Connectivity, are
discussed this book.

This chapter contains these topics:

■ The Information Integration Challenge

■ How Oracle Addresses Synchronous Information Integration

■ Benefits of Oracle’s Solution for Synchronous Information Integration

See Also: For information about a specific Oracle Transparent
Gateway, please consult the Oracle documentation for that specific
gateway

The Information Integration Challenge

1-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

The Information Integration Challenge
Information integration is a challenge that affects many organizations. Many run
several different database systems. Each of these systems stores data and has a set
of applications that runs against it. This data is just bits and bytes on a file system -
and only a database can turn the bits and bytes of data into business information.
Integration and consolidation of all business information would allow an
organization to easily and quickly take advantage of the synergies inherent in
business information.

Consolidation of all data into one database system is often difficult. This is in large
part because many of the applications that run against one database may not have
an equivalent that runs against another. Until such time as migration to one
consolidated database system is made feasible, it is necessary for the various
heterogeneous database systems to work together.

There are several problems to overcome before such interoperability becomes
possible. The database systems can have different access interfaces, different
datatypes, different capabilities, and different ways of handling error conditions.
Even when one relational database is trying to access another relational database
the differences are significant. In such a situation, the common features of the
databases include data access through SQL, two-phase commit, and similar
datatypes.

However, there are significant differences as well. SQL dialects can be different, as
can transaction semantics. There can be some datatypes in one database that do not
exist in the other. The most significant area of difference is in the data dictionaries of
the two databases. Most data dictionaries contain similar information but the
information is structured for each in a completely different way. There are several
possible ways of overcoming this problem. In this book, we describe the approach
that Oracle has taken for synchronously accessing information from multiple
sources.

How Oracle Addresses Synchronous Information Integration
If a client program needs to access or modify data at several Oracle databases, it can
open connections to each of them. This approach, however, has several drawbacks.
Among them, are the following. If you want to join data from the databases, then
the client must contain logic that does that. If data integrity must be guaranteed,
then the client will need to contain transaction coordination logic.

Oracle provides another approach called distributed processing, where the client
connects to one Oracle database and shifts the burden of joining data and

How Oracle Addresses Synchronous Information Integration

Introduction 1-3

transaction coordination to that database. The database that the client program
connects to is called the local database. Any database other than this one is a remote
database. The client program can access objects at any of the remote databases using
database links. The Oracle query processor takes care of the joins and its transaction
engine takes care of the transaction coordination.

The approach that Oracle has taken to solving the heterogeneous connectivity
problem is to allow a non-Oracle system to be one of the remote nodes in the
previously described scenario. From the client’s point of view, the remote
non-Oracle system functions like a remote Oracle system. It will appear to
understand the same SQL dialect and to have the same data dictionary structure as
an Oracle system. Access to a non-Oracle system in this manner is done through a
component in the Oracle server called Heterogeneous Services.

The work done by the Heterogeneous Services component is, for the most part,
completely transparent to the end user. With only a few exceptions (these are noted
in later chapters), you are not required to do anything different to access a
non-Oracle system than is required for accessing an Oracle system. The
Heterogeneous Services component is used as the foundation for implementing
Oracle’s access to non-Oracle databases.

The following are two methods that Oracle uses for solving the challenges of
information sharing and integration in a heterogeneous environment. Because they
are both based on a foundation that is integrated into the database, they can exploit
all of the features of the database.

■ Oracle Transparent Gateways

An Oracle Transparent Gateway works in conjunction with the Heterogeneous
Services component of the Oracle Database server to access a particular,
commercially available, non-Oracle system for which that Oracle Transparent
Gateway has been designed. For example, you use the Oracle Transparent
Gateway for Sybase on Solaris to access a Sybase database operating on a Sun
Solaris platform.

Using an Oracle Transparent Gateway, you can access data anywhere in a
distributed database system without being required to know either the location
of the data, or how it is stored.

■ Generic Connectivity

Oracle provides a set of agents, containing only generic code, that interface with
the Heterogeneous Services component and comprise Generic Connectivity.
These agents require drivers to provide access to the non-Oracle systems.

Benefits of Oracle’s Solution for Synchronous Information Integration

1-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Oracle provides Generic Connectivity agents for ODBC and OLE DB that enable
you to use ODBC and OLE DB drivers to access non-Oracle databases.

The functionality of Generic Connectivity is more limited that of Oracle
Transparent Gateways.

Oracle also offers asynchronous information integration solutions that are
mentioned here, but that are not discussed in this book. Briefly, these solutions
include:

■ Oracle Streams

Oracle Streams enables the propagation of data, transactions and events in a
single data stream or queue, either within a database, or between multiple
databases. Not only can Oracle Streams capture, propagate, and apply changes
to data, it can also handle data structure changes (DDL) and user-defined
events. Changes can be captured and applied as is, or transformed at any point
in the capture, propagation, and apply processing.

■ Messaging Gateway

The messaging gateway enables communication between Oracle and other
non-Oracle message queuing.

■ Open System Interfaces

Oracle offers a number of open interfaces, such as OCI, JDBC, and ODBC, that
enable customers to use third party applications or to write their own client
applications to access the Oracle database.

Benefits of Oracle’s Solution for Synchronous Information Integration
Much of the processing power of Generic Connectivity and Transparent Gateways
is integrated into the database. This provides an efficient solution for information
integration that enables full exploitation of the power and features of the Oracle
database. This includes such features as powerful SQL parsing and distributed
optimization capabilities.

The following sections explore the benefits of Oracle’s approach to resolving the
challenges of a heterogeneous environment:

Note: The ODBC and OLE DB drivers that are required by
Generic Connectivity agents are not supplied by Oracle. Users
should obtain drivers from other vendors.

Benefits of Oracle’s Solution for Synchronous Information Integration

Introduction 1-5

■ Remote Data Can Be Accessed Transparently

■ There is No Unnecessary Data Duplication

■ SQL Statements Can Query Several Different Databases

■ Oracle’s Application Development and End User Tools Can Be Used

■ Users Can Talk to a Remote Database in its Own Language

Remote Data Can Be Accessed Transparently
Both Generic Connectivity and Oracle Transparent Gateways provide the ability to
transparently access data in non-Oracle databases from an Oracle environment. You
can create synonyms for the objects in a non-Oracle database and refer to them
without having to specify a physical location. This transparency eliminates the need
for application developers to customize their applications to access data from
different non-Oracle systems, thus decreasing development efforts and increasing
the mobility of the application.

Instead of requiring applications to interoperate with non-Oracle systems using
their native interfaces (which can result in intensive application-side processing),
applications can be built upon a consistent Oracle interface for both Oracle and
non-Oracle systems.

There is No Unnecessary Data Duplication
Generic Connectivity and Oracle Transparent Gateways provide applications direct
access to data in non-oracle databases. This eliminates the need to upload and
download large amounts of data to different locations, thus reducing data
duplication and saving disk storage space. Also, by eliminating this need to upload
and download large amounts of data there is a further benefit of a reduced risk for
unsynchronized or inconsistent data.

SQL Statements Can Query Several Different Databases
The Oracle database server accepts SQL statements that query data stored in several
different databases. The Oracle database server with the Heterogeneous Services
component processes the SQL statement and passes the appropriate SQL directly to
other Oracle databases and through gateways to non-Oracle databases. The Oracle
database server then combines the results and returns them to the client. This
enables a query to be processed so that it spans the non-Oracle database system,
other databases, and local and remote Oracle data.

Benefits of Oracle’s Solution for Synchronous Information Integration

1-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Oracle’s Application Development and End User Tools Can Be Used
Generic Connectivity and Oracle Transparent Gateways extend the range of
Oracle’s database and application development tools. Oracle has tools that increase
application development and user productivity by reducing prototype,
development, and maintenance time.

You are not required to develop new tools or learn how to use other tools to access
data stored in non-Oracle databases. Instead, you can access Oracle and non-Oracle
data with a single set of Oracle tools. These tools can run on remote machines
connected through Oracle Net to the Oracle database server.

Users Can Talk to a Remote Database in its Own Language
Oracle enables you to transparently access non-Oracle systems using Oracle SQL. In
some cases, however, it becomes necessary to use non-Oracle system SQL to access
the non-Oracle system. For such cases, Oracle has a pass-through feature that
enables you to bypass Oracle’s query processor and to talk to the remote database
in its own language

The Role of the Heterogeneous Services Component 2-1

2
The Role of the Heterogeneous Services

Component

Oracle’s synchronous solutions for operating in a heterogeneous environment are
Oracle Transparent Gateways and Generic Connectivity. The common component
of the Oracle database server for supporting these solutions is Heterogeneous
Services. This chapter describes the architecture and functionality of the
Heterogeneous Services component and its interaction with Oracle Transparent
Gateways and Generic Connectivity.

This chapter contains these topics:

■ Heterogeneous Connectivity Process Architecture

■ Heterogeneous Services Agents

■ Types of Heterogeneous Services Agents

■ Heterogeneous Services Components

■ Configuring Heterogeneous Services

■ The Heterogeneous Services Data Dictionary

■ Gateway Process Flow

Heterogeneous Connectivity Process Architecture

2-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Connectivity Process Architecture
At a high level, Oracle heterogeneous connectivity process architecture is structured
as shown in Figure 2–1.

Figure 2–1 Oracle Heterogeneous Connectivity Process Architecture

The Heterogeneous Services component in the Oracle database server talks to a
Heterogeneous Services agent process which, in turn, talks to the non-Oracle
system. We can conceptually divide the code into three parts:

■ The Heterogeneous Services component in the Oracle database server. Most of
the heterogeneous connectivity related processing is done in this module.

■ Agent generic code. This is code in the agent that is generic to all
Heterogeneous Services based products. This consists, for the most part, of code
to communicate with the database and multithreading support.

■ The driver. This is the module that communicates with the non-Oracle system.
It is used to map calls from the Heterogeneous Services external application
programming interface (API) onto the native API of the non-Oracle system and
it is non-Oracle system specific.

Heterogeneous Services Agents
A Heterogeneous Service agent is the process through which an Oracle server
connects to a non-Oracle system. This agent process that accesses a non-Oracle
system is called a gateway. Access to all gateways goes through the Heterogeneous
Services component in the Oracle server and all gateways contain the same
agent-generic code. Each gateway has a different driver linked in that maps the
Heterogeneous Services application programming interface (API) to the client API
of the non-Oracle system.

The agent process consists of two components. These are agent generic code and a
non-Oracle system-specific driver. An agent exists primarily to isolate the Oracle

Heterogenous
ServiceOracle Driver

Agent
Generic
Code

Remote
Database

Agent

Types of Heterogeneous Services Agents

The Role of the Heterogeneous Services Component 2-3

database server from third-party code. In order for a process to access the
non-Oracle system, the non-Oracle system client libraries have to be linked into it.
In the absence of the agent process, these libraries would have to be directly linked
into the Oracle database and problems in this code could cause the Oracle server to
go down. Having an agent process isolates the Oracle server from any problems in
third-party code so that even if a fatal error takes place, only the agent process will
end.

An agent can reside in the following places:

■ On the same machine as the non-Oracle system

■ On the same machine as the Oracle server

■ On a machine different from either of these two

Agent processes are usually started when a user session makes its first non-Oracle
system access through a database link. These connections are made using Oracle’s
remote data access software, Oracle Net Services, which enables both client/server
and server-server communication. The agent process continues to run until the user
session is disconnected or the database link is explicitly closed.

Multithreaded agents behave slightly differently. They have to be explicitly started
and shut down by a database administrator instead of automatically being spawned
by Oracle Net Services.

Types of Heterogeneous Services Agents
There are two types of Heterogeneous Services agents:

■ Oracle Transparent Gateways

■ Generic Connectivity Agents

Oracle Transparent Gateways
An Oracle Transparent Gateway is a gateway that is designed for accessing a
specific non-Oracle system. Oracle Corporation provides gateways to access several
commercially produced non-Oracle systems; many of these gateways have been
ported to several platforms. For example, an Oracle Transparent Gateway for
Sybase on Solaris is the Solaris port of a gateway designed to access Sybase
database systems.

See Also: Chapter 5, "Multithreaded Agents"

Heterogeneous Services Components

2-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

With Oracle Transparent Gateways, you can use an Oracle database server to access
data anywhere in a distributed database system without being required to know
either the location of the data or how it is stored. When the results of your queries
are returned to you by the Oracle database server, they are presented to you as if the
data stores from which they were taken all resided within a remote instance of an
Oracle distributed database.

Generic Connectivity Agents
In addition to Oracle Transparent Gateways for various non-Oracle database
systems, there is a set of agents that comprise the Oracle Generic Connectivity
feature. These agents contain only generic code and the customer is responsible for
providing the necessary drivers. Oracle has Generic Connectivity agents for ODBC
and OLE DB that enable you to use ODBC and OLEDB drivers to access non-Oracle
systems that have an ODBC or an OLE DB interface.

To access a specific non-Oracle system using Generic Connectivity agents, you must
configure an ODBC or OLE DB driver to the non-Oracle system. These drivers are
not provided by Oracle corporation. However, as long as Oracle Corporation
supports the ODBC and OLE DB protocols, you can use the Generic Connectivity
feature to access any non-Oracle system that can be accessed using an ODBC or
OLE DB driver.

Generic Connectivity agents have some limitations. Connections to a Generic
Connectivity agent can be made only for the local Oracle database server.
Functionality of these agents, especially when compared to the Oracle Transparent
Gateways, is limited.

Heterogeneous Services Components
This section discusses the components of Heterogeneous Services in the Oracle
database server. These components are:

■ Transaction Service

■ SQL Service

Transaction Service
The transaction service component of the Heterogeneous Services component
makes it possible for non-Oracle systems to be integrated into Oracle database

See Also: Chapter 7, "Generic Connectivity"

Configuring Heterogeneous Services

The Role of the Heterogeneous Services Component 2-5

server transactions and sessions. When you access a non-Oracle system for the first
time over a database link within your Oracle user session, you transparently set up
an authenticated session in the non-Oracle system. At the end of your Oracle user
session, the authenticated session in the non-Oracle database system is also closed.

Additionally, one or more non-Oracle systems can participate in an Oracle
distributed transaction. When an application commits a transaction, Oracle’s
two-phase commit protocol accesses the non-Oracle database system to coordinate
transparently the distributed transaction. Even in those cases where the non-Oracle
system does not support all aspects of Oracle two-phase commit protocol, Oracle
can (with some limitations) support distributed transactions with the non-Oracle
system.

SQL Service
The Structured Query Language (SQL) service handles the processing of all
SQL-related operations. The work done by the SQL service includes:

■ Mapping Oracle internal SQL-related calls to the Heterogeneous Services driver
application programing interface (API); this is in turn mapped by the driver to
the client API of the non-Oracle system

■ Translating SQL statements from Oracle’s SQL dialect to the SQL dialect of the
non-Oracle system

■ Translating queries that reference Oracle data dictionary tables to queries that
extract the necessary information from the non-Oracle system data dictionary

■ Converting data from non-Oracle system datatypes to Oracle datatypes and
back

■ Making up for missing functionality at the non-Oracle system by issuing
multiple queries to get the necessary data and doing post processing to get the
desired results

Configuring Heterogeneous Services
In the previous section, we described what the different heterogeneous components
do. These components consist entirely of generic code and, in order to work with so
many different non-Oracle systems, their behavior has to be configured. Each
gateway has configuration information stored in the driver module and this
information is uploaded to the server immediately after the connection to the
gateway has been established. We can divide this configuration information into
three parts:

Configuring Heterogeneous Services

2-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

■ Data Dictionary Translations

■ Heterogeneous Services Initialization Parameters

■ Capabilities

Data Dictionary Translations
Data dictionary translations are views on non-Oracle system data dictionary tables
that help Heterogeneous Services translate references to Oracle data dictionary
tables into queries needed to retrieve the equivalent information from the
non-Oracle system data dictionary.

Heterogeneous Services Initialization Parameters
Heterogeneous Services initialization parameters serve two functions.

■ They give the user a means of fine-tuning the gateway to optimize performance
and memory utilization for the gateway and the Heterogeneous Services
component.

■ They enable the user to tell the gateway (and, thereby, Heterogeneous Services)
how the non-Oracle system has been configured (for example what language
the non-Oracle system is running in). To put it another way, they give
Heterogeneous Services information about the configurable properties of the
non-Oracle system.

You can examine the Heterogeneous Services initialization parameters for a session
by querying the view V$HS_PARAMETER. Users can set initialization parameters in
gateway initialization files.

Capabilities
Capabilities tell Heterogeneous Services about the limitations of the non-Oracle
system (such as what types of SQL statements are and are not supported) and how
to map Oracle datatypes and SQL expressions to their non-Oracle system
equivalents. In other words, they tell Heterogeneous Services about the
non-configurable properties of the non-Oracle system. Capabilities cannot be
changed by the user.

See Also: Appendix C, "Data Dictionary Translation Support"

The Heterogeneous Services Data Dictionary

The Role of the Heterogeneous Services Component 2-7

The Heterogeneous Services Data Dictionary
As mentioned in the previous section, configuration information is uploaded from
an agent to the Heterogeneous Services component immediately after the
connection to the agent has been established. Because this information can be very
large in size, it is inefficient to do uploads on each connection. Therefore, the first
time an Oracle database talks to an agent, the configuration information is uploaded
and stored in Heterogeneous Services data dictionary tables and thereafter no
upload takes place until something at the agent changes (for example, if a patch is
applied or if the agent is upgraded to a new version).

Classes and Instances
Using Heterogeneous Services, a user can access several non-Oracle systems from a
single Oracle database. This is illustrated in Figure 2–2, which shows two
non-Oracle systems being accessed.

Figure 2–2 Accessing Multiple Non-Oracle Instances

Both agents upload configuration information, which is stored as part of the
Heterogeneous Services data dictionary information on the Oracle database server.

Although it is possible to store data dictionary information at one level of
granularity by having completely separate definitions in the Heterogeneous
Services data dictionary for each individual instance, this might lead to an
unnecessarily large amount of redundant data dictionary information. To avoid this,
Oracle organizes the Heterogeneous Services data dictionary by two levels of
granularity, called class and instance.

Agent

Agent

Non-Oracle System "X" instance

Non-Oracle System "Y" instance

Client Application

Oracle Server

The Heterogeneous Services Data Dictionary

2-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

A class pertains to a specific type of non-Oracle system. For example, you might
want to access the class of Sybase database systems with your Oracle database
server. An instance defines specializations within a class. For example, you might
want to access several separate instances within a Sybase database system. Each
class definition (one level of granularity) is shared by all the particular instances (a
second level of granularity) under that class. Further, instance information takes
precedence over class information, and class information takes precedence over
server-supplied defaults.

For example, suppose that the Oracle database server accesses three instances of
Sybase and two instances of Ingres II. Sybase and Ingres II each have their own
code, requiring separate class definitions for the Oracle database server to access
them. The Heterogeneous Services data dictionary therefore would contain two
class definitions, one for Sybase and one for Ingres II, with five instance definitions,
one for each instance being accessed by the Oracle database server.

Note that instance level capability and data dictionary information are session
specific and hence are not stored in the Heterogeneous Services data dictionary of
the Oracle database server. However, instance level initialization parameters can be
stored in the database.

Data Dictionary Views
The Heterogeneous Services data dictionary views contain the following kinds of
information:

■ Names of instances and classes uploaded into the Oracle data dictionary

■ Capabilities, including SQL translations, defined for each class or instance

■ Data Dictionary translations defined for each class or instance

■ Initialization parameters defined for each class or instance

You can access information from the Oracle data dictionary by using fixed views.
The views are categorized into three main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

See Also: Appendix C, "Data Dictionary Translation Support"

Gateway Process Flow

The Role of the Heterogeneous Services Component 2-9

Gateway Process Flow
Figure 2–3 shows a typical gateway process flow. The steps explain the sequence of
events that occurs when a client application queries the non-Oracle database system
database through the gateway.

Figure 2–3 Gateway Process Flow

1. The client application sends a query over Oracle Net to the Oracle database
server.

2. The Oracle database server sends the query over to the gateway using Oracle
Net.

3. For the first transaction in a session, the gateway logs into non-Oracle database
system using a username and password that is valid in the non-Oracle system.

4. The gateway converts the Oracle SQL statement into a SQL statement
understood by non-Oracle database system.

5. The gateway retrieves data using non-Oracle database system SQL statements.

O
ra

cl
e

S
er

ve
r

H
et

er
og

en
eo

us
 S

er
vi

ce
s

N
o

n
-O

ra
cl

e
S

ys
te

m

G
at

ew
ay

7

2

5

3

6

4

Oracle
Net

Oracle
Net

1 8

Oracle Net

Gateway Process Flow

2-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

6. The gateway converts retrieved data into a format compatible with the Oracle
database server.

7. The gateway returns query results to the Oracle database server, again using
Oracle Net Services.

8. The Oracle database server passes the query results to the client application by
using Oracle Net. The database link remains open until the gateway session is
finished or the database link is explicitly closed.

Features of Oracle Transparent Gateways and Generic Connectivity 3-1

3
Features of Oracle Transparent Gateways

and Generic Connectivity

This chapter describes the major features provided by Oracle Transparent Gateways
and Generic Connectivity. Descriptions of these features are contained in the
following topics:

■ SQL and PL/SQL Support

■ Heterogeneous Replication

■ Pass-Through SQL

■ Result Set Support

■ Data Dictionary Translations

■ Datetime Datatypes

■ Two-Phase Commit Protocol

■ Piecewise Long

■ SQL*Plus DESCRIBE Command

■ Constraints on SQL in a Distributed Environment

■ Using Oracle’s Optimizer with Heterogeneous Services

Note: These features may not be available in all Heterogeneous
Services based gateways. Not only must there be generic support
for these features, which Heterogeneous Services provides, but
there must also be support added to the driver for them. Please
consult your gateways documentation to determine if a particular
feature is supported for your gateway.

SQL and PL/SQL Support

3-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

SQL and PL/SQL Support
SQL statements are translated and datatypes are mapped according to capabilities.
PL/SQL calls are mapped to non-Oracle system stored procedures. In the case of
SQL statements, if functionality is missing at the remote system, then either a
simpler query is issued or the statement is broken up into multiple queries and the
desired results are obtained by post processing in the Oracle database.

Even though Heterogeneous Services can, for the most part, incorporate non-Oracle
systems into Oracle distributed sessions, there are several limitations to this. Some
of the generic limitations are:

■ There is no support for CONNECT BY clauses in SQL statements.

■ ROWID support is limited; consult individual gateway documentation for more
details. The Oracle Universal ROWID datatype is not supported in any gateway
that uses Heterogeneous Services.

■ LOBs, ADTs, and REFs are not supported.

■ Remote packages are not supported.

■ Remote stored procedures can have out arguments of type REF CURSOR but
not in or in-out objects.

■ Oracle Heterogeneous Services agents do not support shared database links.

Heterogeneous Replication
Data can be replicated between a non-Oracle system and an Oracle server using
materialized views.

Note: In addition to these generic limitations, each gateway can
have additional limitations. Please consult the gateway
documentation for individual gateways for a complete list of
limitations of the product.

Heterogeneous Replication

Features of Oracle Transparent Gateways and Generic Connectivity 3-3

Materialized views instantiate data captured from tables at the non-Oracle master
site at a particular point in time. This instant is defined by a refresh operation,
which copies this data to the Oracle server and synchronizes the copy on Oracle
with the master copy on the non-Oracle system. The "materialized" data is then
available as a view on the Oracle server.

Replication facilities provide mechanisms to schedule refreshes and to collect
materialized views into replication groups to facilitate their administration. Refresh
groups permit refreshing multiple materialized views just as if they were a single
object.

Heterogeneous replication support is necessarily limited to a subset of the full
Oracle-to-Oracle replication functionality:

■ Only the non-Oracle system can be the master site. This is because materialized
views can be created only on an Oracle server.

■ Materialized views must use complete refresh. This is because fast refresh
would require Oracle-specific functionality in the non-Oracle system.

■ Not all types of materialized views can be created to reference tables on a
non-Oracle system. Primary key and subquery materialized views are
supported, but rowid and object id materialized views are not supported. This
is because there is no SQL standard for the format and contents of rowids, and
non-Oracle systems do not implement Oracle objects.

Other restrictions apply to any access to non-Oracle data through Oracle's
Heterogeneous Services facilities. The most important of these are:

■ Non-Oracle datatypes in table columns mapped to a fixed view must be
compatible with (that is, have a mapping to or from) Oracle datatypes. This is
usually true for datatypes defined by ANSI SQL standards.

■ A subquery materialized view may not be able to use language features
restricted by individual non-Oracle systems. In many cases Heterogeneous
Services supports such language features by processing queries within the

Note: Starting with Oracle9i, Release 2, there is another means of
sharing information between databases. This functionality is called
Streams and includes the replication of information between Oracle
and non-Oracle databases.

For information about using Streams, see Oracle Streams Concepts
and Administration.

Heterogeneous Replication

3-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Oracle server, but occasionally the non-Oracle systems impose limitations that
cannot be diagnosed until Heterogeneous Services attempts to execute the
query.

The following examples illustrate basic setup and use of three materialized views to
replicate data from a non-Oracle system to an Oracle data store.

Example 1: Create materialized views for heterogeneous replication
This example creates three materialized views that are then used in succeeding
examples.

1. Create a primary key materialized view of table customer@remote_db.

 CREATE MATERIALIZED VIEW pk_mv REFRESH COMPLETE AS
 SELECT * FROM customer@remote_db WHERE "zip" = 94555;

2. Create a subquery materialized view of tables orders@remote_db and
customer@remote_db.

 CREATE MATERIALIZED VIEW sq_mv REFRESH COMPLETE AS
 SELECT * FROM orders@remote_db o WHERE EXISTS
 (SELECT c."c_id" FROM customer@remote_db c
 WHERE c."zip" = 94555 and c."c_id" = o."c_id");

3. Create a complex materialized view of data from multiple tables on remote_db.

 CREATE MATERIALIZED VIEW cx_mv
 REFRESH COMPLETE AS
 SELECT c."c_id", o."o_id"
 FROM customer@remote_db c,
 orders@remote_db o,
 order_line@remote_db ol
 WHERE c."c_id" = o."c_id"
 AND o."o_id" = ol."o_id";

Note: For the following examples, remote_db refers to the
non-Oracle system which you are accessing from your Oracle
database server.

Modify these examples for your environment. Do not try to execute
them as they are written.

Pass-Through SQL

Features of Oracle Transparent Gateways and Generic Connectivity 3-5

Example 2: Set up a refresh group for heterogeneous replication
BEGIN
 dbms_refresh.make('refgroup1',
 'pk_mv, sq_mv, cx_mv',
 NULL, NULL);
 END;
 /

Example 3: Force refresh of all 3 materialized views
BEGIN
 dbms_refresh.refresh('refgroup1');
END;
 /

Pass-Through SQL
The pass-through SQL feature enables you to send a statement directly to a
non-Oracle system without being interpreted by the Oracle server. This feature can
be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

This section contains the following topics:

■ Using the DBMS_HS_PASSTHROUGH Package

■ Considering the Implications of Using Pass-Through SQL

■ Executing Pass-Through SQL Statements

Using the DBMS_HS_PASSTHROUGH Package
You can execute pass-through SQL statements directly at the non-Oracle system
using the PL/SQL package DBMS_HS_PASSTHROUGH. Any statement executed with
this package is executed in the same transaction as standard SQL statements.

The DBMS_HS_PASSTHROUGH package is a virtual package. It conceptually resides
at the non-Oracle system. In reality, however, calls to this package are intercepted
by Heterogeneous Services and mapped onto one or more Heterogeneous Services
application programming interface (API) calls. The driver, in turn, maps these

See Also: Oracle Database Advanced Replication for a full
description of materialized views and replication facilities

Pass-Through SQL

3-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services API calls onto the API of the non-Oracle system. The client
application should invoke the procedures in the package through a database link in
exactly the same way as it would invoke a non-Oracle system stored procedure. The
special processing done by Heterogeneous Services is transparent to the user.

Considering the Implications of Using Pass-Through SQL
When you execute a pass-through SQL statement that implicitly commits or rolls
back a transaction in the non-Oracle system, the transaction is affected. For
example, some systems implicitly commit the transaction containing a data
definition language (DDL) statement. Because the Oracle database server is
bypassed, the Oracle database server is unaware of the commit in the non-Oracle
system. Consequently, the data at the non-Oracle system can be committed while
the transaction in the Oracle database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies
between the Oracle database server and the non-Oracle server can occur. This
situation results in global data inconsistency.

Note that if the application executes a regular COMMIT statement, the Oracle
database server can coordinate the distributed transaction with the non-Oracle
system. The statement executed with the pass-through facility is part of the
distributed transaction.

Executing Pass-Through SQL Statements
The following table shows the functions and procedures provided by the DBMS_HS_
PASSTHROUGH package that enable you to execute pass-through SQL statements.

See Also: PL/SQL Packages and Types Reference for more
information about this package

Procedure/Function Description

OPEN_CURSOR Opens a cursor

CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

BIND_VARIABLE Binds IN variables

BIND_OUT_VARIABLE Binds OUT variables

BIND_INOUT_VARIABLE Binds IN OUT variables

Pass-Through SQL

Features of Oracle Transparent Gateways and Generic Connectivity 3-7

Executing Non-Queries
Non-queries include the following statements and types of statements:

■ INSERT

■ UPDATE

■ DELETE

■ DDL

To execute non-query statements, use the EXECUTE_IMMEDIATE function. For
example, to execute a DDL statement at a non-Oracle system that you can access
using the database link salesdb, execute:

DECLARE
 num_rows INTEGER;

BEGIN
 num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@salesdb
 ('CREATE TABLE dept1 (n SMALLINT, loc CHARACTER(10))');
END;
/

The variable num_rows is assigned the number of rows affected by the execution.
For DDL statements, zero is returned. Note that you cannot execute a query with
EXECUTE_IMMEDIATE and you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL
statement multiple times with different values, reducing the number of times a SQL
statement needs to be parsed. For example, when you need to insert four rows in a
particular table, you can parse the SQL statement once and bind and execute the
SQL statement for each row. One SQL statement can have zero or more bind
variables.

To execute pass-through SQL statements with bind variables, you must:

EXECUTE_NON_QUERY Executes non-query

EXECUTE_IMMEDIATE Executes non-query without bind variables

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters

Procedure/Function Description

Pass-Through SQL

3-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

1. Open a cursor.

2. Parse the SQL statement at the non-Oracle system.

3. Bind the variables.

4. Execute the SQL statement at the non-Oracle system.

5. Close the cursor.

Figure 3–1 shows the flow diagram for executing non-queries with bind variables.

Figure 3–1 Flow Diagram for Non-Query Pass-Through SQL

Execute
non query

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

(optional)

Pass-Through SQL

Features of Oracle Transparent Gateways and Generic Connectivity 3-9

Using IN Bind Variables The syntax of the non-Oracle system determines how a
statement specifies a bind variable. For example, in Oracle you define bind variables
with a preceding colon. For example:

...
UPDATE emp
SET sal=sal*1.1
WHERE ename=:ename;
...

In this statement, ename is the bind variable. In non-Oracle systems, you may need
to specify bind variables with a question mark. For example:

...
UPDATE emp
SET sal=sal*1.1
WHERE ename= ?;
...

In the bind variable step, you must positionally associate host program variables (in
this case, PL/SQL) with each of these bind variables.

For example, to execute the preceding statement, you can use the following
PL/SQL program:

DECLARE
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@salesdb;
 DBMS_HS_PASSTHROUGH.PARSE@salesdb(c,
 'UPDATE emp SET SAL=SAL*1.1 WHERE ename=?');
 DBMS_HS_PASSTHROUGH.BIND_VARIABLE@salesdb(c,1,’JONES’);
 nr:=DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY@salesdb(c);
 DBMS_OUTPUT.PUT_LINE(nr||’ rows updated’);
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesdb(c);
END;
/

Using OUT Bind Variables In some cases, the non-Oracle system can also support OUT
bind variables. With OUT bind variables, the value of the bind variable is not known
until after the execution of the SQL statement.

Although OUT bind variables are populated after the SQL statement is executed, the
non-Oracle system must know that the particular bind variable is an OUT bind

Pass-Through SQL

3-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

variable before the SQL statement is executed. You must use the BIND_OUT_
VARIABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OUT bind
variable using the GET_VALUE procedure.

Using IN OUT Bind Variables A bind variable can be both an IN and an OUT variable.
This means that the value of the bind variable must be known before the SQL
statement is executed but can be changed after the SQL statement is executed.

For IN OUT bind variables, you must use the BIND_INOUT_VARIABLE procedure
to provide a value before the SQL statement is executed. After the SQL statement is
executed, you must use the GET_VALUE procedure to retrieve the new value of the
bind variable.

Executing Queries
The difference between queries and non-queries is that queries retrieve a result set
from a SELECT statement. The result set is retrieved by iterating over a cursor.

Figure 3–2 illustrates the steps in a pass-through SQL query. After the system parses
the SELECT statement, each row of the result set can be fetched with the FETCH_
ROW procedure. After the row is fetched, use the GET_VALUE procedure to retrieve
the select list items into program variables. After all rows are fetched, you can close
the cursor.

Pass-Through SQL

Features of Oracle Transparent Gateways and Generic Connectivity 3-11

Figure 3–2 Pass-Through SQL for Queries

You do not have to fetch all the rows. You can close the cursor at any time after
opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time,
Heterogeneous Services optimizes the round trips between the
Oracle server and the non-Oracle system by buffering multiple rows
and fetching from the non-Oracle data system in one round trip.

Fetch_row

Open
Cursor

Parse

Bind
Variable

(optional)

Close
Cursor

Get
Value

For each
row

For each
column

Result Set Support

3-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

The next example executes a query:

DECLARE
 val VARCHAR2(100);
 c INTEGER;
 nr INTEGER;
BEGIN
 c := DBMS_HS_PASSTHROUGH.OPEN_CURSOR@salesdb;
 DBMS_HS_PASSTHROUGH.PARSE@salesdb(c,
 'select ENAME
 from EMP
 where DEPTNO=10’);
 LOOP
 nr := DBMS_HS_PASSTHROUGH.FETCH_ROW@salesdb(c);
 EXIT WHEN nr = 0;
 DBMS_HS_PASSTHROUGH.GET_VALUE@salesdb(c, 1, val);
 DBMS_OUTPUT.PUT_LINE(val);
 END LOOP;
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@salesdb(c);
END;
/
After the SELECT statementhas been parsed, the rows are fetched and printed in a
loop until the function FETCH_ROW returns the value 0.

Result Set Support
Various relational databases allow stored procedures to return result sets. In other
words, stored procedures will be able to return one or more sets of rows.

Traditionally, database stored procedures worked exactly like procedures in any
high-level programming language. They had a fixed number of arguments which
could be of types in, out, or in-out. If a procedure had n arguments, it could
return at most n values as results. However, suppose that somebody wanted a
stored procedure to execute a query such as SELECT * FROM emp and return the
results. The emp table might have a fixed number of columns but there is no way of
telling, at procedure creation time, the number of rows it has. Because of this, no
traditional stored procedure can be created that can return the results of a such a
query. As a result, several relational database vendors added the capability of
returning results sets from stored procedures, but each kind of relational database
returns result sets from stored procedures in a different way.

Oracle has a datatype called a REF CURSOR. Like every other Oracle datatype, a
stored procedure can take this datatype as an in or out argument. In Oracle, a stored
procedure can return a result set in the following way. To return a result set, a stored

Result Set Support

Features of Oracle Transparent Gateways and Generic Connectivity 3-13

procedure must have an output argument of type REF CURSOR. It then opens a
cursor for a SQL statement and places a handle to that cursor in that output
parameter. The caller can then fetch from the REF CURSOR the same way as from
any other cursor.

Oracle can do a lot more than simply return result sets. REF CURSORs can be
passed as input arguments to PL/SQL routines to be passed back and forth between
client programs and PL/SQL routines or between several PL/SQL routines.

Result Set Support In Non-Oracle Systems
Several non-Oracle systems allow stored procedures to return result sets but do so
in completely different ways. Result sets are supported to some extent in DB2,
Sybase, Microsoft SQL Server, and Informix. Result set support in these databases is
based on one of the following two models.

Model 1
When creating a stored procedure, the user can explicitly specify the maximum
number of result sets that can be returned by that stored procedure. While
executing, the stored procedure can open anywhere from zero to its pre-specified
maximum number of result sets. After the execution of the stored procedure, a
client program can obtain handles to these result sets by using either an embedded
SQL directive or calling a client library function. After that the client program can
fetch from the result in the same way as from a regular cursor.

Model 2
In this model, there is no pre-specified limit to the number of result sets that can be
returned by a stored procedure. Both Model 1 and Oracle have a limit. For Oracle
the number of result sets returned by a stored procedure can be at most the number
of REF CURSOR out arguments; for Model 1, the upper limit is specified using a
directive in the stored procedure language. Another way that Model 2 differs from
Oracle and Model 1 is that they do not return a handle to the result sets but instead
place the entire result set on the wire when returning from a stored procedure. For
Oracle, the handle is the REF CURSOR out argument; for Model 1, it is obtained
separately after the execution of the stored procedure. For both Oracle and Model 1,
once the handle is obtained, data from the result set is obtained by doing a fetch on
the handle; we have a bunch of cursors open and can fetch in any order. In the case
of Model 2, however, all the data is already on the wire, with the result sets coming
in the order determined by the stored procedure and the output arguments of the
procedures coming at the end. So the whole of the first result set must be fetched,

Result Set Support

3-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

then the whole of the second one, until all of the results have been fetched. Finally,
the stored procedure out arguments must be fetched.

Heterogeneous Services Support for Result Sets
As can be seen in the preceding sections, result set support exists among non-Oracle
databases in a variety of forms. All of these have to be mapped onto the Oracle REF
CURSOR model. Due to the considerable differences in behavior among the various
non-Oracle systems, Heterogeneous Services result set support will have to behave
in one of two different ways depending on the non-Oracle system it is connected to.

Please note the following about Heterogeneous Services result set support:

■ Result set support is present in Heterogeneous Services generic code but in
order for the feature to work in a gateway, the driver has to implement it as
well. Not all drivers have implemented result set support and the customer
must check in his gateway-specific documentation to determine whether it is
supported in that gateway.

■ Heterogeneous Services will support REF CURSOR out arguments from stored
procedures. In and in-out arguments will not be supported.

■ The REF CURSOR out arguments will all be anonymous REF CURSORs. No
typed REF CURSORs are returned by Heterogeneous Services.

Cursor Mode
Oracle generally behaves such that each result set returned by the non-Oracle
system stored procedure is mapped by the driver to an out argument of type REF
CURSOR. The client program sees a stored procedure with several out arguments of
type REF CURSOR. After executing the stored procedure, the client program can
fetch from the REF CURSOR in exactly the same way as it would from a REF
CURSOR returned by an Oracle stored procedure. When connecting to the gateway
as described in Model 1, Heterogeneous Services will be in cursor mode.

Sequential Mode
In Oracle, there is a pre-specified maximum number of result sets that a particular
stored procedure can return. The number of result sets returned is at most the
number of REF CURSOR out arguments for the stored procedure. It can, of course,
return fewer result sets, but it can never return more.

For the system described in Model 2, there is no pre-specified maximum of result
sets that can be returned. In the case of Model 1, we know the maximum number of
result sets that a procedure can return, and the driver can return to Heterogeneous

Data Dictionary Translations

Features of Oracle Transparent Gateways and Generic Connectivity 3-15

Services a description of a stored procedure with that many REF CURSOR out
arguments. If, on execution of the stored procedure, fewer result sets than the
maximum are returned, then the other REF CURSOR out arguments will be set to
NULL.

Another problem for Model 2 database servers is that result sets have to be
retrieved in the order in which they were placed on the wire by the database. This
prevents Heterogeneous Services from running in cursor mode when connecting to
these databases. To access result sets returned by these stored procedures, you must
operate Heterogeneous Services in sequential mode.

In sequential mode, the procedure description returned by the driver contains the
following:

■ All the input arguments of the remote stored procedure

■ None of the output arguments

■ One out argument of type REF CURSOR (corresponding to the first result set
returned by the stored procedure)

The client fetches from this REF CURSOR and then calls the virtual package
function dbms_hs_result_set.get_next_result_set to get the REF
CURSOR corresponding to the next result set. This function call is repeated until all
result sets have been fetched. The last result set returned will actually be the out
arguments of the remote stored procedure.

The major limitations of sequential mode are as follows:

■ Result sets returned by a remote stored procedure have to be retrieved in the
order in which they were placed on the wire

■ On execution of a stored procedure, all result sets returned by a previously
executed stored procedure will be closed (regardless of whether the data has
been completely fetched or not).

Data Dictionary Translations
Most database systems have some form of data dictionary. A data dictionary is a
collection of information about the database objects that have been created by
various users of the system. For a relational database, a data dictionary is a set of
tables and views which contain information about the data in the database. This
information includes information on the users who are using the system and on the

See Also: Your gateway manual for more information about how
result sets are supported through the gateway

Data Dictionary Translations

3-16 Oracle Database Heterogeneous Connectivity Administrator’s Guide

objects that they have created (such as tables, views, triggers and so forth). For the
most part, all data dictionaries (regardless of the database system) contain the same
information but each database system organizes the information in a different way.

For example, the ALL_CATLOG Oracle data dictionary view gives a list of tables,
views, and sequences in the database. It has three columns: the first is called OWNER
and is the name of the owner of the object, the second is called TABLE_NAME and is
the name of the object, and the third is called TABLE_TYPE and is the type. This
field has value TABLE, VIEW, SEQUENCE and so forth depending on the object type.
However, in Sybase, the same information is stored in two tables called sysusers
and sysobjects whose column names are quite different than those of Oracle
ALL_CATALOG table. Additionally, in Oracle, the table type is a string with value
TABLE, VIEW and so forth but in Sybase it is a letter. For example, in Sybase, U
means user table, S means system table, V means view, and so forth.

If the client program wants information from the table ALL_CATALOG at Sybase,
then all it has to do is to send a query referencing ALL_CATALOG@database_link
to a gateway. Heterogeneous Services translates this query to the appropriate one
on systables and sends the translated query to Sybase.

SELECT SU."name" OWNER, SO."name" TABLE_NAME,
 DECODE(SO."type", ’U ’,’TABLE’, ’S ’, ’TABLE’, ’V ’, ’VIEW’)
TABLE_TYPE
FROM "dbo"."sysusers"@remote_db SU, "dbo"."sysobjects"@remote_db SO
WHERE SU."uid" = SO."uid" AND
 (SO."type" = ’V’ OR SO."type" = ’S’ OR SO."type" = ’U’);

To relay such a translation of a query on an Oracle data dictionary table to the
equivalent one on the non-Oracle system data dictionary table, Heterogeneous
Services needs data dictionary translations for that non-Oracle system. A data
dictionary translation is a view definition (essentially a select statement) over one or
more non-Oracle system data dictionary tables such that the view looks exactly like
the Oracle data dictionary table, with the same column names and the same
information formatting. A data dictionary translation need not be as simple as the
preceding example. Often the information needed is not found in one or two tables
but is scattered over many tables and the data dictionary translation is a complex
join over those tables.

In some cases, an Oracle data dictionary table does not have a translation because
the information needed does not exist at the non-Oracle system. In such cases, the
gateway can decide not to upload a translation at all or can resort to an alternative
approach called mimicking. If the gateway wants to mimic a data dictionary table
then it will let Heterogeneous Services know and Heterogeneous Services will

Two-Phase Commit Protocol

Features of Oracle Transparent Gateways and Generic Connectivity 3-17

obtain the description of the data dictionary table by querying the local database
but when asked to fetch data, it will report that no rows were selected.

Datetime Datatypes
Oracle has five datetime datatypes:

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

Heterogeneous Services generic code supports Oracle datetime datatypes in SQL
and stored procedures. Oracle does not support these datatypes in data dictionary
translations or queries involving data dictionary translations.

Even though Heterogeneous Services generic code supports this, support for a
particular gateway depends on whether or not the driver for that non-Oracle
system has implemented datetime support. Support even when the driver
implements it may be partial because of the limitations of the non-Oracle system.
Users should consult the documentation for their particular gateway on this issue.

The user must set the timestamp formats of the non-Oracle system in the gateway
initialization file. The parameters to set are HS_NLS_TIMESTAMP_FORMAT and HS_
NLS_TIMESTAMP_TZ_FORMAT. The user should also set the local time zone for the
non-Oracle system in the initialization file by setting HS_TIME_ZONE.

Two-Phase Commit Protocol
Heterogeneous Services provides the infrastructure for the implementation of the
two-phase commit mechanism. The extent to which this is supported depends on
the gateway, and the remote system. Please refer to individual gateway manuals for
more information.

See Also: Oracle Database SQL Reference for information on
datetime datatypes

See Also: Oracle Database Administrator's Guide for more
information about the two-phase commit protocol

Piecewise Long

3-18 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Piecewise Long
Earlier versions of gateways had limited support for the LONG datatype. LONG is an
Oracle datatype that can be used to store up to 2 gigabytes (GB) of character/raw
data (LONG RAW). These earlier versions restricted the amount of LONG data to 4
MB. This was because they would treat LONG data as a single piece. This led to
restrictions of memory and network bandwidth on the size of the data that could be
handled. Current gateways have extended the functionality to support the full 2 GB
of heterogeneous LONG data. They handle the data piecewise between the agent and
the Oracle server, thereby doing away with the large memory and network
bandwidth requirements.

There is a new Heterogeneous Services initialization parameter, HS_LONG_PIECE_
TRANSFER_SIZE, that can be used to set the size of the transferred pieces. For
example, let us consider fetching 2 GB of LONG data from a heterogeneous source. A
smaller piece size means less memory requirement, but more round trips to fetch all
the data. A larger piece size means fewer round trips, but more of a memory
requirement to store the intermediate pieces internally. Thus, the initialization
parameter can be used to tune a system for the best performance, that is, for the best
trade-off between round-trips and memory requirements. If the initialization
parameter is not set, the system defaults to a piece size of 64 KB.

SQL*Plus DESCRIBE Command
Until Oracle9i, you could not describe non-Oracle system objects using the
SQL*Plus DESCRIBE command. As of Oracle9i, functionality to do this has been
added to Heterogeneous Services. There are still some limitations. For example,
using Heterogeneous links, you still cannot describe packages, sequences,
synonyms, or types.

Note: This feature is not to be confused with piecewise operations
on LONG data on the client side. Piecewise fetch and insert
operations on the client side did work with the earlier versions of
the gateways, and continue to do so. The only difference on the
client side is that, where earlier versions of the gateways were able
to fetch only up to 4 megabytes (MB) of LONG data, now they can
fetch the entire 2 GB of LONG data. This is a significant
improvement, considering that 4 MB is only 0.2% of the datatype’s
full capacity.

Constraints on SQL in a Distributed Environment

Features of Oracle Transparent Gateways and Generic Connectivity 3-19

Constraints on SQL in a Distributed Environment
This section explains some of the constraints that exist on SQL in a distributed
environment. These constraints apply to distributed environments that involve
access to non-Oracle systems or remote Oracle databases.

This section contains the following topics:

■ Resolving Remote and Heterogeneous References

■ Resolving Important Restrictions

■ Updates, Inserts, and Deletes

Resolving Remote and Heterogeneous References

A statement can, with restrictions, be executed on any database node referenced in
the statement or the local node. If all objects referenced are resolved to a single,
referenced node, then Oracle attempts to execute a query at that node. You can force
execution at a referenced node by using the /*+ REMOTE_MAPPED */ or /*+
DRIVING_SITE */ hints. If a statement is forwarded to a different node than the
node where the statement was issued, then the statement is said to be remote
mapped.

The ways in which statements can, must, and cannot be remote mapped are subject
to specific rules or restrictions. If these rules are not all followed, then an error will
occur. As long as the statements issued are consistent with all these rules, the order
in which the rules are applied does not matter.

Different constraints exist when you are using SQL for remote mapping in a
distributed environment. This distributed environment can include remote Oracle
databases as well as non-Oracle databases that are accessed through Oracle
Transparent Gateways or Generic Connectivity agents.

Resolving Important Restrictions
The following section lists some of the different constraints that exist when you are
using SQL for remote mapping in a distributed environment.

Note: Many of the rules for heterogeneous access also apply to
remote references. For more information, please see the distributed
database section of the Oracle Database Administrator's Guide.

Constraints on SQL in a Distributed Environment

3-20 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Rule A: A data definition language statement cannot be remote
mapped.
In Oracle data definition language, the target object syntactically has no place for a
remote reference. Data definition language statements that contain remote
references are always executed locally. For Heterogeneous Services, this means it
cannot directly create database objects in a non-Oracle database using SQL.

However, there is an indirect way using pass-through SQL.

Consider the following example:

DECLARE
 num_rows INTEGER;
BEGIN
 num_rows := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@remote_db
 (
 ’create table x1 (c1 char, c2 int)’
);
END;
/

Rule B: INSERT, UPDATE and DELETE statements with a remote target
table must be remote mapped.
This rule is more restrictive for non-Oracle remote databases than for a remote
Oracle database. This is because the remote system cannot fetch data from the
originating Oracle database while executing DML statements targeting tables in a
non-Oracle system.

For example, to insert all local employees from the local emp table to a remote
Oracle emp1 table, use the following statement:

INSERT INTO emp@remote_db SELECT * FROM emp;

This statement is remote-mapped to the remote database. The remote-mapped
statement sent to the remote database contains a remote reference back to the
originating database for emp. Such a remote link received by the remote database is
called a callback link.

Note: In the examples that follow, remote_db refers to a remote
non-Oracle system while remote_oracle_db refers to a remote
Oracle server.

Constraints on SQL in a Distributed Environment

Features of Oracle Transparent Gateways and Generic Connectivity 3-21

If callback links are not supported by a particular gateway, then the previous
INSERT statements returns the following error:

ORA-02025: all tables in the SQL statement must be at the remote database

The workaround is to write a PL/SQL block:

DECLARE
CURSOR remote_insert IS SELECT * FROM emp;
BEGIN
 FOR rec IN remote_insert LOOP
 INSERT INTO emp@remote_db (empno, ename, deptno) VALUES (
 rec.empno,
 rec.ename,
 rec.deptno
);
 END loop;
END;
/

Another special case involves session specific SQL functions such as USER,
USERENV and SYSDATE. These functions may need to be executed at the originating
site. A remote mapped statement containing these functions will contain a callback
link. For a non-Oracle database where callbacks are not supported this could (by
default) result in a restriction error.

For example, consider the following statement:

DELETE FROM emp@remote_db WHERE hiredate > sysdate;

The statement returns the following error message:

ORA-02070: database REMOTE_DB does not support special functions in this context

This often must be resolved by replacing special functions with a bind variable:

DELETE FROM emp@remote_db WHERE hiredate > :1;

Note: Even though callback links are supported in generic
Heterogeneous Services, they may not be implemented in all
Heterogeneous Services agents. Please refer to your transparent
gateway documentation to determine if callback links work with
the transparent gateway that you are using.

Constraints on SQL in a Distributed Environment

3-22 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Rule C: Object features like tables with nested table columns, ADT
columns, Opaque columns or Ref Columns cannot be remote mapped.
Currently, these column types are not supported for heterogeneous access. Hence,
this limitation is not directly encountered.

Rule D: SQL statements containing operators and constructs that are
not supported at the remote site cannot be remote mapped.
Note that in our description of Rule B we already encountered special constructs
such as callback links and special functions as examples of this.

If the statement is a SELECT (or DML with the target table local) and none of the
remaining rules would require the statement to be remote mapped, then the
statement can still be executed by processing the query locally using the local SQL
engine and the remote select operation.

The remote SELECT operation is the operation to retrieve rows for remote table data
as opposed to other operations like full table scan and index access which retrieve
rows of local table data. The remote table scan has a SQL statement associated with
the operation. A full table scan of table emp1 is issued as SELECT * FROM emp1
(with the * expanded to the full column list). Access for indexes is converted back to
WHERE clause predicates. Also, filters that can be supported are passed down to the
WHERE clause of the remote row source.

You can check the SQL statement generated by the Oracle server by explaining the
statement and querying the OTHER column of the explain plan table for each
REMOTE operation.

For example consider the following statement:

SELECT COUNT(*) FROM emp@remote_db WHERE hiredate < sysdate;

The statement returns the following output:

COUNT(*)

 14
1 row selected.

See Also: Example: Using Index and Table Statistics for more
information on how to interpret explain plans with remote
references

Constraints on SQL in a Distributed Environment

Features of Oracle Transparent Gateways and Generic Connectivity 3-23

The remote table scan is:

SELECT hiredate FROM emp;

The predicate converted to a filter cannot be generated back and passed down to
the remote operation because sysdate is not supported by the remote_db or
evaluation rules. Thus sysdate must be executed locally.

Rule E: SQL statement containing a table expression cannot be remote
mapped.
This limitation is not directly encountered because table expressions are not
supported in the heterogeneous access module.

Rule F: If a SQL statement selects LONG data, then the statement must
be mapped to the node where the table containing the long resides.
For example, consider the following type of statement:

SELECT long1 FROM table_with_long@remote_db, dual;

This type of statement returns the following error message:

ORA-02025: all tables in the SQL statement must be at the remote database

This can be resolved by the following type of statement:

SELECT long1 FROM table_with_long@remote_db WHERE long_idx = 1;

Rule G: The statement must be mapped to the node on which the table
or tables with columns referenced in the FOR UPDATE OF clause
resides when the SQL statement is of form "SELECT...FOR UPDATE
OF..."
When the SQL statement is of the form SELECT...FOR UPDATE OF..., the
statement must be mapped to the node on which the table or tables with columns
referenced in the FOR UPDATE OF clause resides.

For example, consider the following statement:

Note: Because the remote table scan operation is only partially
related to the original query, the number of rows retrieved can be
significantly larger than expected and can have a significant impact
on performance.

Constraints on SQL in a Distributed Environment

3-24 Oracle Database Heterogeneous Connectivity Administrator’s Guide

SELECT ename FROM emp@remote_db WHERE hiredate < sysdate FOR UPDATE OF empno;

The statement returns the following error message:

ORA-02070: database REMOTE_DB does not support special functions in this context

Rule H: If the SQL statement contains a SEQUENCE or sequences,
then the statement must be mapped to the site where each sequence
resides.
This rule is not encountered for the heterogeneous access since remote non-Oracle
sequences are not supported. The restriction for remote non-Oracle access is already
present because of the callback link restriction.

Rule I: If the statement contains a user-defined operator or operators,
then the statement must be mapped to the node where each operator
is defined.
This rule is also already covered under the callback link restriction discussed in
Rule B.

Rule J: A statement containing duplicate bind variables cannot be
remote mapped.
The workaround for this restriction is to use unique bind variables and bind by
number.

Updates, Inserts, and Deletes
As with any remote update, whether non-Oracle or a previous remote update, if a
SQL update in an Oracle format is not supported, then an error is returned in the
following format:

ORA-2070: database ... does not support ... in this context.

You can perform DML to remote Oracle or non-Oracle target tables in an Oracle
format that is not supported by using PL/SQL. Declare a cursor that selects the
appropriate row and executes the update for each row selected. The row may need
to be unique, identified by selecting a primary key, or, if not available, a rowid.

Note: These restrictions do not apply to DML with a local target
object referencing non-Oracle or remote Oracle database objects.

Using Oracle’s Optimizer with Heterogeneous Services

Features of Oracle Transparent Gateways and Generic Connectivity 3-25

Consider the following example:

DECLARE
 CURSOR c1 IS SELECT empno FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND d.dname = 'SALES';
BEGIN
 FOR REC IN c1 LOOP
 UPDATE emp@remote_db SET comm = .1 * sal
 WHERE empno = rec.empno;
 END loop;
END;
/

Using Oracle’s Optimizer with Heterogeneous Services
Oracle’s optimizer can be used with Heterogeneous Services. Heterogeneous
Services collects certain table and index statistics information on the respective
non-Oracle system tables and passes this information back to the Oracle server. The
Oracle cost based optimizer uses this information when building the query plan.

There are several other optimizations that the cost based optimizer performs. The
most important ones are remote sort elimination and remote joins.

Example: Using Index and Table Statistics
Consider the following statement where you create a table in the Oracle database
with 10 rows:

CREATE TABLE T1 (C1 number);

Analyze the table by issuing the following SQL statement:

ANALYZE TABLE T1 COMPUTE STATISTICS;

Now create a table in the non-Oracle system with 1000 rows.

Issue the following SQL statement:

SELECT a.* FROM remote_t1@remote_db a, T1 b
 WHERE a.C1 = b.C1;

The Oracle optimizer issues the following SQL statement to the agent:

SELECT C1 FROM remote_t1@remote_db;

Using Oracle’s Optimizer with Heterogeneous Services

3-26 Oracle Database Heterogeneous Connectivity Administrator’s Guide

This fetches all of the 1000 rows from the non-Oracle system and performs the join
in the Oracle database.

Now, if we add a unique index on the column C1 in the table remote_t1, and issue
the same SQL statement again, the agent receives the following SQL statement for
each value of C1 in the local t1:

...
SELECT C1 FROM remote_t1@remote_db WHERE C1 = ?;
...

To verify the SQL execution plan, generate an explain plan for the SQL statement.
First load utlxplan in the admin directory.

Enter the following:

EXPLAIN PLAN FOR SELECT a.* FROM remote_t1@remote_db a, T1 b
 WHERE a.C1 = b.C1;

Execute the utlxpls utility script by entering the following statement.

@utlxpls

The operation remote indicates that remote SQL is being referenced.

To find out what statement is sent, enter the following statement:

SELECT ID, OTHER FROM PLAN_TABLE WHERE OPERATION = ’REMOTE’;

Example: Remote Join Optimization
The following is an example of the remote join optimization capability of the Oracle
database.

Note: ?is the bind parameter marker. Also, join predicates
containing bind variables generated by Oracle are generated only
for nested loop join methods.

Using Oracle’s Optimizer with Heterogeneous Services

Features of Oracle Transparent Gateways and Generic Connectivity 3-27

Consider the following example:

EXPLAIN PLAN FOR
SELECT e.ename, d.dname, f.ename, f.deptno FROM
 dept d,
 emp@remote_db e,
 emp@remote_db f
 WHERE e.mgr = f.empno
 AND e.deptno = d.deptno
 AND e.empno = f.empno;

@utlxpls

You should see output similar to the following:

PLAN_TABLE_OUTPUT
--

| Id | Operation | Name | Rows | Bytes | Cost
| Inst |IN-OUT|

| 0 | SELECT STATEMENT | | 2000 | 197K| 205 |
|* 1 | HASH JOIN | | 2000 | 197K|
205 |
| 2 | TABLE ACCESS FULL | DEPT | 21 | 462 | 2 |
|* 3 | HASH JOIN | | 2000 | 154K|
201 |
| 4 | REMOTE | | 2000 | 66000
| 52 |
| 5 | REMOTE | | 2000 | 92000
52

Note: The explain plan that uses tables from a non-Oracle system
can differ from similar statements with local or remote Oracle table
scans. This is because of the limitation on the statistics available to
Oracle for non-Oracle tables. Most importantly, column selectivity
is not available for non-unique indexes of non-Oracle tables.
Because of the limitation of the statistics available, the following
example is not necessarily what you encounter when doing remote
joins for yourself and is intended for illustration only.

Using Oracle’s Optimizer with Heterogeneous Services

3-28 Oracle Database Heterogeneous Connectivity Administrator’s Guide

PLAN_TABLE_OUTPUT
--

Query Block Name / Hint Alias (identified by operation id):

 1 - sel$1 / D
 2 - sel$1 / D
 3 - sel$1 / F
 4 - sel$1 / F
 5 - sel$1 / E

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT
--

 1 - access("E"."DEPTNO"="D"."DEPTNO")
 3 - access("E"."MGR"="F"."EMPNO" AND "E"."EMPNO"="F"."EMPNO")

Issue the following statement:

SET long 300
SELECT other FROM plan_table WHERE operation = ’REMOTE’;

You should see output similar to the following:

OTHER
--

SELECT "EMPNO","ENAME","DEPTNO" FROM "EMP"
SELECT "EMPNO","ENAME","MGR","DEPTNO" FROM "EMP"
SELECT "EMPNO","ENAME","DEPTNO" FROM "EMP"
SELECT "EMPNO","ENAME","MGR","DEPTNO" FROM "EMP"

Optimizer Restrictions for Non-Oracle Access
1. There are no column statistics for remote objects. This can result in poor

execution plans. Verify the execution plan and use hints to improve the plan.

Using Oracle’s Optimizer with Heterogeneous Services

Features of Oracle Transparent Gateways and Generic Connectivity 3-29

2. There is no optimizer hint to force a remote join. However, there is a remote
query block optimization that can be used to rewrite the query slightly in order
to get a remote join.

For instance, the earlier example can be rewritten to the form:

 SELECT v.ename, d.dname, d.deptno FROM dept d,
 (SELECT /*+ NO_MERGE */
 e.deptno deptno, e.ename ename emp@remote_db e, emp@remote_db f
 WHERE e.mgr = f.empno
 AND e.empno = f.empno;
)
 WHERE v.deptno = d.deptno;

This guarantees a remote join because it has been isolated in a nested query
with the NO_MERGE hint.

Using Oracle’s Optimizer with Heterogeneous Services

3-30 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Using Heterogeneous Services Agents 4-1

4
Using Heterogeneous Services Agents

This chapter explains how to use Heterogeneous Services (HS) agents. It contains
the following sections:

■ Setting Up Access to Non-Oracle Systems

■ Setting Initialization Parameters

■ Optimizing Data Transfers Using Bulk Fetch

■ Registering Agents

■ Oracle Database Server SQL Construct Processing

■ Executing User-Defined Functions on a Non-Oracle Database

■ Using Synonyms

■ Copying Data from the Oracle Database Server to the Non-Oracle Database
System

■ Copying Data from the Non-Oracle Database System to the Oracle Database
Server

■ Heterogeneous Services Data Dictionary Views

■ Using the Heterogeneous Services Dynamic Performance Views

Setting Up Access to Non-Oracle Systems

4-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Setting Up Access to Non-Oracle Systems
This section explains the generic steps to configure access to a non-Oracle system.

The steps for setting up access to a non-Oracle system are:

Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents

Step 2: Create the Database Link to the Non-Oracle System

Step 3: Test the Connection

Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents
To initiate a connection to the non-Oracle system, the Oracle server starts an agent
process through the Oracle Net listener. For the Oracle server to be able to connect
to the agent, you must:

1. Set up a Oracle Net service name for the agent that can be used by the Oracle
server. The Oracle Net service name descriptor includes protocol-specific
information needed to access the Oracle Net listener. The service name
descriptor must include the (HS=OK) clause to ensure the connection uses
Oracle Heterogeneous Services. The description of this service name is defined
in tnsnames.ora, the Oracle Names server, or in third-party name servers
using the Oracle naming adapter.

The following is a sample entry for service name in the tnsnames.ora file:

 Sybase_sales= (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun206)
 (PORT=1521)
)
 (CONNECT_DATA = (SERVICE_NAME=SalesDB)
)
 (HS = OK)
)

Note: The instructions for configuring your agent may differ
slightly from the following instructions. Please see the Installation
and User's Guide for your agent for more complete installation
information.

Setting Up Access to Non-Oracle Systems

Using Heterogeneous Services Agents 4-3

2. Set up the listener on the gateway to listen for incoming request from the Oracle
server and spawn Heterogeneous Services agents. Then, start the listener on the
gateway machine.

The following is a sample entry for the listener in listener.ora:

 LISTENER =
 (ADDRESS_LIST =
 (ADDRESS= (PROTOCOL=tcp)
 (HOST = dlsun206)
 (PORT = 1521)
)
)
 ...
 SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC = (SID_NAME=SalesDB)
 (ORACLE_HOME=/home/oracle/megabase/9.0.1)
 (PROGRAM=tg4mb80)
 (ENVS=LD_LIBRARY_PATH=non_oracle_system_lib_directory)
)
)

The value associated with the PROGRAM keyword defines the name of the agent
executable. The full path of the directory which contains the DLL that is loaded
by the Heterogeneous Services agent is specified by LD_LIBRARY_PATH.
Typically, you use SID_NAME to define the initialization parameter file for the
agent.

Step 2: Create the Database Link to the Non-Oracle System
To create a database link to the non-Oracle system, use the CREATE DATABASE
LINK statement. The service name that is used in the USING clause of the CREATE
DATABASE LINK statement is the Oracle Net service name.

See Also:

■ Oracle Net Services Administrator's Guide for more information
about configuring the Oracle Net listener and a net service
name for heterogeneous connectivity

■ "Administering Multithreaded Agents" on page 5-6 for
information about starting multithreaded agents

Setting Up Access to Non-Oracle Systems

4-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Use quotes with the username and password to avoid differences in case-sensitive
behavior between Oracle and non-Oracle databases. For example, enter a statement
like the following:

CREATE DATABASE LINK sales
CONNECT TO "sales1"
IDENTIFIED BY "Sales1"
USING ’Sybase_sales’;

Step 3: Test the Connection
To test the connection to the non-Oracle system, use the database link in a SQL or
PL/SQL statement. If the non-Oracle system is a SQL-based database, you can
execute a SELECT statement from an existing table or view using the database link.
For example:

SELECT * FROM product@sales
WHERE product_name like '%pencil%';

When you try to access the non-Oracle system for the first time, the Heterogeneous
Services agent uploads information into the Heterogeneous Services data
dictionary. The uploaded information includes:

Type of Data Explanation

Capabilities of the
non-Oracle system

For example, the agent specifies whether it can perform a join, or
a GROUP BY.

SQL translation
information

The agent specifies how to translate Oracle functions and
operators into functions and operators of the non-Oracle system.

Data dictionary
translations

To make the data dictionary information of the non-Oracle
system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into
tables and views of the non-Oracle system.

Note: Most agents upload information into the Oracle data
dictionary automatically the first time they are accessed. Some
agent vendors may provide scripts, however, that you must run on
the Oracle server.

See Also: Heterogeneous Services Data Dictionary Views on
page 4-20 and Appendix C, "Data Dictionary Translation Support"

Setting Initialization Parameters

Using Heterogeneous Services Agents 4-5

Setting Initialization Parameters
As mentioned in "Configuring Heterogeneous Services" on page 2-5, you can
configure the gateway using initialization parameters. This is done by creating an
initialization file and setting the desired parameters in this file

Heterogeneous Services initialization parameters are distinct from Oracle database
server initialization parameters. Heterogeneous Services initialization parameters
are set in the Heterogeneous Services initialization file and not in the Oracle
database server initialization parameter file (init.ora file). There is a
Heterogeneous Services initialization file for each gateway instance.

Name and Location of Heterogeneous Services Initialization Parameter File
The name of the file is initsid.ora, where sid is the Oracle system identifier
used for the gateway.

In the case of Generic Connectivity, the Heterogeneous Services initialization file is
located in the directory $ORACLE_HOME/hs/admin. In the case of Transparent
Gateways it is located in the directory $ORACLE_HOME/product_name/admin
where product_name is the name of the product. So, the Sybase gateway
initialization file is located in the directory $ORACLE_HOME/tg4sybs/admin.

Syntax for Initialization Parameter Settings
The initialization file contains a list of initialization parameter settings each of
which should be on a separate line. The syntax to set an initialization parameter is:

[set] [private] parameter = parameter_value

The set and private keywords are optional. If the set keyword is present then the
variable will also be set in the environment. If the private keyword is present, the
parameter will not be uploaded to the server. In general, it recommended that this
keyword not be used - unless the initialization parameter value contains sensitive
information (like a password) that should not be sent over the network from
gateway to Oracle server.

In the initialization parameter syntax, all keywords (SET, PRIVATE and IFILE) are
case insensitive. Initialization parameter names and values are case sensitive. Most
initialization parameters names are uppercase. String values for Heterogeneous
Services parameters must be lowercase. Exceptions to this rule are explicitly noted.

Another initialization file can be included in an Heterogeneous Services
initialization file by using the IFILE directive. The syntax for this is:

Setting Initialization Parameters

4-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

IFILE = path name for file to be included

Gateway Initialization Parameters
Gateway initialization parameters can be divided into two groups. One is a set of
generic initialization parameters that are common to all gateways and the other is a
set of initialization parameters that are specific to individual gateways. The
following list of generic initialization parameters are the only ones discussed in this
document:

HS_CALL_NAME
HS_COMMIT_POINT_STRENGTH
HS_DB_DOMAIN
HS_DB_INTERNAL_NAME
HS_DB_NAME
HS_DESCRIBE_CACHE_HWM
HS_FDS_CONNECT_INFO
HS_FDS_DEFAULT_SCHEMA_NAME
HS_FDS_SHAREABLE_NAME
HS_FDS_TRACE_LEVEL
HS_LANGUAGE
HS_LONG_PIECE_TRANSFER_SIZE
HS_NLS_DATE_FORMAT
HS_NLS_DATE_LANGUAGE
HS_NLS_NCHAR
HS_NLS_NUMERIC_CHARACTERS
HS_NLS_TIMESTAMP_FORMAT
HS_NLS_TIMESTAMP_TZ_FORMAT
HS_OPEN_CURSORS
HS_ROWID_CACHE_SIZE
HS_RPC_FETCH_REBLOCKING
HS_RPC_FETCH_SIZE
HS_TIME_ZONE

Do not use the PRIVATE keyword when setting any of these parameters. Doing that
would prevent the parameter from being uploaded to the server and could cause
errors in SQL processing. None of these parameters are required to be set in the
environment, so the SET keyword need not be used.

Optimizing Data Transfers Using Bulk Fetch

Using Heterogeneous Services Agents 4-7

Optimizing Data Transfers Using Bulk Fetch
When an application fetches data from a non-Oracle system using Heterogeneous
Services, data is transferred:

1. From the non-Oracle system to the agent process

2. From the agent process to the Oracle database server

3. From the Oracle database server to the application

Oracle optimizes all three data transfers, as illustrated in Figure 4–1.

See Also:

■ Appendix A, "Heterogeneous Services Initialization
Parameters" for descriptions of the generic Heterogeneous
Services initialization parameters

■ Individual gateway documentation for the list of initialization
parameters specific to a gateway

Optimizing Data Transfers Using Bulk Fetch

4-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Figure 4–1 Optimizing Data Transfers

This section contains the following topics:

■ Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

■ Controlling the Array Fetch Between Oracle Database Server and Agent

■ Controlling the Array Fetch Between Agent and Non-Oracle Server

■ Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
You can optimize data transfers between your application and the Oracle server by
using array fetches. See your application development tool documentation for
information about array fetching and how to specify the amount of data to be sent
or each network round trip.

Array fetch
with OCI/Pro*
or other tool

N
o

n
-O

ra
cl

e
S

ys
te

m

O
ra

cl
e

S
er

ve
r

A
ge

nt

Client

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

Optimizing Data Transfers Using Bulk Fetch

Using Heterogeneous Services Agents 4-9

Controlling the Array Fetch Between Oracle Database Server and Agent
When Oracle retrieves data from a non-Oracle system, the Heterogeneous Services
initialization parameter HS_RPC_FETCH_SIZE defines the number of bytes sent for
each fetch between the agent and the Oracle server. The agent fetches data from the
non-Oracle system until one of the following occurs:

■ It has accumulated the specified number of bytes to send back to the Oracle
database server.

■ The last row of the result set is fetched from the non-Oracle system.

Controlling the Array Fetch Between Agent and Non-Oracle Server
The initialization parameter HS_FDS_FETCH_ROWS determines the number of rows
to be retrieved from a non-Oracle system. Note that the array fetch must be
supported by the agent. See your agent-specific documentation to ensure that your
agent supports array fetching.

Controlling the Reblocking of Array Fetches
By default, an agent fetches data from the non-Oracle system until it has enough
data retrieved to send back to the server. That is, it keeps going until the number of
bytes fetched from the non-Oracle system is equal to or higher than the value of
HS_RPC_FETCH_SIZE. In other words, the agent reblocks the data between the
agent and the Oracle database server in sizes defined by the value of HS_RPC_
FETCH_SIZE.

When the non-Oracle system supports array fetches, you can immediately send the
data fetched from the non-Oracle system by the array fetch to the Oracle database
server without waiting until the exact value of HS_RPC_FETCH_SIZE is reached.
That is, you can stream the data from the non-Oracle system to the Oracle database
server and disable reblocking by setting the value of initialization parameter HS_
RPC_FETCH_REBLOCKING to OFF.

For example, assume that you set HS_RPC_FETCH_SIZE to 64 kilobytes (KB) and
HS_FDS_FETCH_ROWS to 100 rows. Assume that each row is approximately 600
bytes in size, so that the 100 rows are approximately 60 KB. When HS_RPC_FETCH_
REBLOCKING is set to ON, the agent starts fetching 100 rows from the non-Oracle
system.

Because there is only 60 KB of data in the agent, the agent does not send the data
back to the Oracle database server. Instead, the agent fetches the next 100 rows from

Registering Agents

4-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

the non-Oracle system. Because there is now 120 KB of data in the agent, the first 64
KB can be sent back to the Oracle database server.

Now there is 56 KB of data left in the agent. The agent fetches another 100 rows
from the non-Oracle system before sending the next 64 KB of data to the Oracle
database server. By setting the initialization parameter HS_RPC_FETCH_
REBLOCKING to OFF, the first 100 rows are immediately sent back to the Oracle
server.

Registering Agents
Registration is an operation through which Oracle stores information about an
agent in the data dictionary. Agents do not have to be registered. If an agent is not
registered, Oracle stores information about the agent in memory instead of in the
data dictionary; when a session involving an agent terminates, this information
ceases to be available.

Self-registration is an operation in which a database administrator sets an
initialization parameter that lets the agent automatically upload information into
the data dictionary. In release 8.0 of the Oracle database server, an agent could
determine whether to self-register. In Oracle9i and later, self-registration occurs only
when the HS_AUTOREGISTER initialization parameter is set to TRUE (default).

This section contains the following topics:

■ Enabling Agent Self-Registration

■ Disabling Agent Self-Registration

Enabling Agent Self-Registration
To ensure correct operation over heterogeneous database links, agent
self-registration automates updates to Heterogeneous Services configuration data
that describe agents on remote hosts. Agent self-registration is the default behavior.
If you do not want to use the agent self-registration feature, then set the
initialization parameter HS_AUTOREGISTER to FALSE.

Note: HS_AUTOREGISTER is an Oracle initialization parameter
that you set in the init.ora file; it is not a Heterogeneous Services
initialization parameter that is set in the gateway initialization file.

Registering Agents

Using Heterogeneous Services Agents 4-11

Both the server and the agent rely on three types of information to configure and
control operation of the Heterogeneous Services connection. These three sets of
information are collectively called HS configuration data:

Using Agent Self-Registration to Avoid Configuration Mismatches
HS configuration data is stored in the Oracle database server’s data dictionary.
Because the agent is possibly remote, and may therefore be administered separately,
several circumstances can lead to configuration mismatches between servers and
agents:

■ An agent can be newly installed on a separate machine so that the server has no
Heterogeneous Services data dictionary content to represent the agent’s HS
configuration data.

■ A server can be newly installed and lack the necessary HS configuration data
for existing agents and non-Oracle data stores.

■ A non-Oracle instance can be upgraded from an older version to a newer
version, requiring modification of the HS configuration data.

■ An Heterogeneous Services agent at a remote site can be upgraded to a new
version or patched, requiring modification of the HS configuration data.

■ A database administrator (DBA) at the non-Oracle site can change the agent
setup, possibly for tuning or testing purposes, in a manner which affects HS
configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in
all these scenarios. Specifically, agent self-registration enhances interoperability
between any Oracle database server and any Heterogeneous Services agent, if each

Heterogeneous
Services Configuration
Data Description

Heterogeneous Services
initialization parameters

Provide control over various connection-specific details of
operation.

Capability definitions Identify details like SQL language features supported by the
non-Oracle data source.

Data dictionary
translations

Map references to Oracle data dictionary tables and views into
equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 4-14

Registering Agents

4-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

is at least as recent as Version 8.0.3. The basic mechanism for this functionality is the
ability to upload HS configuration data from agents to servers.

Self-registration provides automatic updating of HS configuration data residing in
the Oracle database server data dictionary. This update ensures that the agent
self-registration uploads need to be done only once, on the initial use of a
previously unregistered agent. Instance information is uploaded on each
connection, not stored in the server data dictionary.

Understanding Agent Self-Registration
The Heterogeneous Services agent self-registration feature can:

■ Identify the agent and the non-Oracle data store to the Oracle database server

■ Permit agents to define Heterogeneous Services initialization parameters for
use both by the agent and connected Oracle servers

■ Upload capability definitions and data dictionary translations, if available, from
an Heterogeneous Services agent during connection initialization

The information required for agent self-registration is accessed in the server data
dictionary by using these agent-supplied names:

■ FDS_CLASS

■ FDS_CLASS_VERSION

FDS_CLASS and FDS_CLASS_VERSION FDS_CLASS and FDS_CLASS_VERSION are
defined by Oracle or by third-party vendors for each individual Heterogeneous
Services agent and version. Oracle Heterogeneous Services concatenates these
names to form FDS_CLASS_NAME, which is used as a primary key to access class
information in the server data dictionary.

Note: When both the server and the agent are release 8.1 or
higher, the upload of class information occurs only when the class
is undefined in the server data dictionary. Similarly, instance
information is uploaded only if the instance is undefined in the
server data dictionary.

See Also: "Heterogeneous Services Data Dictionary Views" on
page 4-20 to learn how to use the Heterogeneous Services data
dictionary views

Registering Agents

Using Heterogeneous Services Agents 4-13

FDS_CLASS should specify the type of non-Oracle data store to be accessed and
FDS_CLASS_VERSION should specify a version number for both the non-Oracle
data store and the agent that connects to it. Note that when any component of an
agent changes, FDS_CLASS_VERSION must also change to uniquely identify the
new release.

FDS_INST_NAME Instance-specific information can be stored in the server data
dictionary. The instance name, FDS_INST_NAME, is configured by the DBA who
administers the agent; how the DBA performs this configuration depends on the
specific agent in use.

The Oracle database server uses FDS_INST_NAME to look up instance-specific
configuration information in its data dictionary. Oracle uses the value as a primary
key for columns of the same name in these views:

■ FDS_INST_INIT

■ FDS_INST_CAPS

■ FDS_INST_DD

Server data dictionary accesses that use FDS_INST_NAME also use FDS_CLASS_
NAME to uniquely identify configuration information rows. For example, if you port
a database from class Sybase8.1.6 to class Sybase8.1.7, both databases can
simultaneously operate with instance name SCOTT and use separate sets of
configuration information.

Unlike class information, instance information is not automatically self-registered in
the server data dictionary.

■ If the server data dictionary contains instance information, it represents
DBA-defined setup details which fully define the instance configuration. No
instance information is uploaded from the agent to the server.

■ If the server data dictionary contains no instance information, any instance
information made available by a connected agent is uploaded to the server for
use in that connection. The uploaded instance data is not stored in the server
data dictionary.

Note: This information is uploaded when you initialize each
connection.

Oracle Database Server SQL Construct Processing

4-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Specifying HS_AUTOREGISTER
The Oracle database server initialization parameter HS_AUTOREGISTER enables or
disables automatic self-registration of Heterogeneous Services agents. Note that this
parameter is specified in the Oracle initialization parameter file, not the agent
initialization file. For example, you can set the parameter as follows:

HS_AUTOREGISTER = TRUE

When set to TRUE, the agent uploads information describing a previously unknown
agent class or a new agent version into the server’s data dictionary.

Oracle recommends that you use the default value for this parameter (TRUE), which
ensures that the server’s data dictionary content always correctly represents
definitions of class capabilities and data dictionary translations as used in
Heterogeneous Services connections.

Disabling Agent Self-Registration
To disable agent self-registration, set the HS_AUTOREGISTER initialization
parameter as follows:

HS_AUTOREGISTER = FALSE

Disabling agent self-registration entails that agent information is not stored in the
data dictionary. Consequently, the Heterogeneous Services data dictionary views
are not useful sources of information. Nevertheless, the Oracle server still requires
information about the class and instance of each agent. If agent self-registration is
disabled, the server stores this information in local memory.

Oracle Database Server SQL Construct Processing
The gateway rewrites SQL statements when the statements need to be translated or
post-processed.

For example, consider a program that requests the following from the non-Oracle
database:

SELECT "COL_A" FROM "test"@remote_db
 WHERE "COL_A" = INITCAP(’jones’);

See Also: Oracle Database Reference for a description of this
parameter

Executing User-Defined Functions on a Non-Oracle Database

Using Heterogeneous Services Agents 4-15

The non-Oracle database does not recognize INITCAP, so the Oracle database
server does a table scan of test and filters the results locally. The gateway rewrites
the SELECT statement as follows:

SELECT "COL_A" FROM "test"@remote_db;

The results of the query are sent to the gateway and are filtered by the Oracle
database server.

Consider the following UPDATE request:

UPDATE "test"@remote_db WHERE "COL_A" = INITCAP(’jones’);

In this case, the Oracle database server and the gateway cannot compensate for the
lack of support at the non-Oracle side, so an error is issued.

If you are performing operations on large amounts of data stored in the non-Oracle
database, keep in mind that some functions require data to be moved to the
integrating Oracle database server before processing can occur.

Executing User-Defined Functions on a Non-Oracle Database
You can execute user-defined functions in a remote non-Oracle database. For
example:

SELECT getdeptforemp@Remote_DB(7782) FROM dual;

In this example, the user issues a SELECT statement that executes a user-defined
function in the remote database that returns department information for employee
7782.

When the remote function resides in an Oracle database, then the Oracle database
automatically ensures that the remote function does not update any database state
(such as updating rows in a database or updating the PL/SQL package state). The
gateway cannot verify this when the remote function resides in a non-Oracle
database. Therefore, the user is responsible for ensuring that the user-defined
functions do not update the state in any database. Ensuring no updates to the
database is required to guarantee read consistency.

As a security measure, you must specify the functions that you want to execute
remotely and their owners in the HS_CALL_NAME parameter in the gateway-specific
initialization parameter file. For example:

HS_CALL_NAME = "owner1.A1, owner2.A2, "

Executing User-Defined Functions on a Non-Oracle Database

4-16 Oracle Database Heterogeneous Connectivity Administrator’s Guide

owner1 and owner2 are the remote function owner names. A1 and A2 are the
remote function names. You do not need to specify the remote function owner in the
SQL statement. By default, the remote function needs to reside in the schema that
the Transparent Gateway connects to. If this is not the case, then you must specify
the owner of the remote function in the SQL statement.

Some other examples of executing user-defined remote functions are: as follows:

■ A remote function in a subquery

The function uses the employee_id column data to retrieve the
department_id from the EMPLOYEES table in the remote database. The outer
query then determines all department numbers in the remote database that
match the returned list.

 SELECT * FROM departments@remotedb
 WHERE department_id IN
 (SELECT
 getdeptforemp@remotedb(employee_id)
 FROM employees@remotedb);

■ Applying a local function to the result of a user-defined remote function

This query returns the maximum salary of all employees on the remote
database.

 SELECT max(getsalforemp@remotedb(employee_id))
 FROM employees@remotedb;

■ A DML statement

The statement uses the output from a user-defined query in the remote database
to update the salary column with new salary information.

 UPDATE employee_history
 SET salary = emp_changed_salary@remote_db;

In these examples, the Oracle database passes the function name and owner to the
Transparent Gateway. The user-defined function is executed on the remote
database.

See Also: "HS_CALL_NAME" on page A-3

Using Synonyms

Using Heterogeneous Services Agents 4-17

Using Synonyms
You can provide complete data location transparency and network transparency by
using the synonym feature of the Oracle database server. When a synonym is
defined, you do not have to know the underlying table or network protocol. A
synonym can be public, which means that all Oracle users can refer to the synonym.
A synonym can also be defined as private, which means every Oracle user must
have a synonym defined to access the non-Oracle table.

The following statement creates a system wide synonym for the emp table in the
schema of user ORACLE in the Sybase database:

CREATE PUBLIC SYNONYM emp FOR "ORACLE"."EMP"@SYBS;

Example of a Distributed Query

The following statement joins data between the Oracle database server, an IBM DB2
database, and a Sybase database:

SELECT O.CUSTNAME, P.PROJNO, E.ENAME, SUM(E.RATE*P."HOURS")
 FROM ORDERS@DB2 O, EMP@ORACLE9 E, "PROJECTS"@SYBS P
 WHERE O.PROJNO = P."PROJNO"
 AND P."EMPNO" = E.EMPNO
 GROUP BY O.CUSTNAME, P."PROJNO", E.ENAME;
Through a combination of views and synonyms, using the following SQL
statements, the process of distributed queries is transparent to the user:

CREATE SYNONYM ORDERS FOR ORDERS@DB2;
CREATE SYNONYM PROJECTS FOR "PROJECTS"@SYBS;
CREATE VIEW DETAILS (CUSTNAME,PROJNO,ENAME,SPEND)
 AS
 SELECT O.CUSTNAME, P."PROJNO", E.ENAME, SUM(E.RATE*P."HOURS")
 SPEND
 FROM ORDERS O, EMP E, PROJECTS P
 WHERE O.PROJNO = P."PROJNO"
 AND P."EMPNO" = E.EMPNO
 GROUP BY O.CUSTNAME, P."PROJNO", E.ENAME;

See Also: Oracle Database Administrator's Guide for information
about synonyms

Note: Modify these examples for your environment. Do not try to
execute them as they are written.

Copying Data from the Oracle Database Server to the Non-Oracle Database System

4-18 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Use the following SQL statement to retrieve information from the data stores in one
statement:

SELECT * FROM DETAILS;

The statement retrieves the following table:

CUSTNAME PROJNO ENAME SPEND
-------- ------ ----- -----
ABC Co. 1 Jones 400
ABC Co. 1 Smith 180
XYZ Inc. 2 Jones 400
XYZ Inc. 2 Smith 180

Copying Data from the Oracle Database Server to the Non-Oracle
Database System

In Oracle9i, release 2 and later, Heterogeneous Services supports callback links. This
enables SQL statements like the following to be executed:

INSERT INTO table_name@dblink SELECT column_list FROM table_name;

Even though Heterogeneous Services supports the callback functionality, not all
gateways have implemented it. If the gateway that you are using has not
implemented this functionality, then the preceding INSERT statement returns the
following error message:

ORA-02025: All tables in the SQL statement must be at the remote database

For gateways that do not support callback links, you can use the SQL*Plus COPY
command. The syntax is as follows:

COPY FROM username/password@db_name -
INSERT destination_table -
USING query;
The following example selects all rows from the local Oracle emp table, inserts them
into the emp table on the non-Oracle database, and commits the transaction:

COPY FROM SCOTT/TIGER@inst1 -
 INSERT EMP@remote_db -
 USING SELECT * FROM EMP;

See Also: Your gateway documentation for information about
support for callback links

Copying Data from the Non-Oracle Database System to the Oracle Database Server

Using Heterogeneous Services Agents 4-19

The COPY command supports APPEND, CREATE, INSERT, and REPLACE options.
However, INSERT is the only option supported when copying to non-Oracle. The
SQL*Plus COPY command does not support copying to tables with lowercase table
names. Use the following PL/SQL syntax with lowercase table names:

DECLARE
 v1 oracle_table.column1%TYPE;
 v2 oracle_table.column2%TYPE;
 v3 oracle_table.column3%TYPE;
 .
 .
 .
 CURSOR cursor_name IS SELECT * FROM oracle_table;
BEGIN
 OPEN cursor_name;
 LOOP
 FETCH cursor_name INTO v1, v2, v3, ... ;
 EXIT WHEN cursor_name%NOTFOUND;
 INSERT INTO destination_table VALUES (v1, v2, v3, ...);
 END LOOP;

 CLOSE cursor_name;
END;
/

Copying Data from the Non-Oracle Database System to the Oracle
Database Server

The CREATE TABLE statement lets you copy data from a non-Oracle database to
the Oracle database server. To create a table on the local database and insert rows
from the non-Oracle table, use the following syntax:

CREATE TABLE table_name AS query;

The following example creates the table emp in the local Oracle database and inserts
the rows from the EMP table of the non-Oracle database:

CREATE TABLE table1 AS SELECT * FROM "EMP"@remote_db;

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command

Heterogeneous Services Data Dictionary Views

4-20 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Alternatively, you can use the SQL*Plus COPY command to copy data from the
non-Oracle database to the Oracle database server.

Heterogeneous Services Data Dictionary Views
You can use the Heterogeneous Services data dictionary views to access information
about Heterogeneous Services. This section addresses the following topics:

■ Understanding the Types of Views

■ Understanding the Sources of Data Dictionary Information

■ Using the General Views

■ Using the Transaction Service Views

■ Using the SQL Service Views

Understanding the Types of Views
The Heterogeneous Services data dictionary views, which all begin with the prefix
HS_, can be divided into four main types:

■ General views

■ Views used for the transaction service

■ Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.
Consequently, for most types of data there is a *_CLASS and an *_INST view.

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command

Table 4–1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS_BASE_CAPS SQL service All capabilities supported by Heterogeneous Services

HS_BASE_DD SQL service All data dictionary translation table names supported by
Heterogeneous Services

HS_CLASS_CAPS Transaction service,
SQL service

Capabilities for each class

HS_CLASS_DD SQL service Data dictionary translations for each class

Heterogeneous Services Data Dictionary Views

Using Heterogeneous Services Agents 4-21

Like all Oracle data dictionary tables, these views are read-only. Do not change the
content of any of the underlying tables.

Understanding the Sources of Data Dictionary Information
The values used for data dictionary content in any particular connection on a
Heterogeneous Services database link can come from any of the following sources,
in order of precedence:

■ Instance information uploaded by the connected Heterogeneous Services agent
at the start of the session. This information overrides corresponding content in
the Oracle data dictionary, but is never stored into the Oracle data dictionary.

■ Instance information stored in the Oracle data dictionary. This data overrides
any corresponding content for the connected class.

■ Class information stored in the Oracle data dictionary.

If the Oracle database server runs with the HS_AUTOREGISTER server initialization
parameter set to FALSE, then no information is stored automatically in the Oracle
data dictionary. The equivalent data is uploaded by the Heterogeneous Services
agent on a connection-specific basis each time a connection is made, with any
instance-specific information taking precedence over class information.

You can determine the values of Heterogeneous Services initialization parameters
by querying the VALUE column of the V$HS_PARAMETER view. Note that the VALUE
column of V$HS_PARAMETER truncates the actual initialization parameter value
from a maximum of 255 characters to a maximum of 64 characters, and it truncates

HS_CLASS_INIT General Initialization parameters for each class

HS_FDS_CLASS General Classes accessible from the Oracle server

HS_FDS_INST General Instances accessible from the Oracle server

Note: It is not possible to determine positively what capabilities
and what data dictionary translations are in use for a given session
due to the possibility that an agent can upload instance
information.

Table 4–1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

Heterogeneous Services Data Dictionary Views

4-22 Oracle Database Heterogeneous Connectivity Administrator’s Guide

the parameter name from a maximum of 64 characters to a maximum of 30
characters.

Using the General Views
The views that are common for all services are as follows:

For example, you can access multiple Sybase gateways from an Oracle database
server. After accessing the gateways for the first time, the information uploaded
into the Oracle database server could appear as follows:

SQL> SELECT * FROM hs_fds_class;

FDS_CLASS_NAME FDS_CLASS_COMMENTS FDS_CLASS_ID
--------------------- ------------------------------ ------------
Sybase816 Uses Sybase driver, R1.1 1
Sybase817 Uses Sybase driver, R1.2 21

Two classes are uploaded: a class that accesses Sybase816 and a class that accesses
Sybase817. The data dictionary in the Oracle database server now contains
capability information, SQL translations, and data dictionary translations for both
Sybase816 and Sybase817.

In addition to this information, the Oracle database server data dictionary also
contains instance information in the HS_FDS_INST view for each non-Oracle
system instance that is accessed.

Using the Transaction Service Views
When a non-Oracle system is involved in a distributed transaction, the transaction
capabilities of the non-Oracle system and the agent control whether it can
participate in distributed transactions. Transaction capabilities are stored in the HS_
CLASS_CAPS tables.

View Contains

HS_FDS_CLASS

HS_FDS_INST

Names of the instances and classes that are uploaded into the
Oracle data dictionary

HS_CLASS_INIT Information about the Heterogeneous Services initialization
parameters

Heterogeneous Services Data Dictionary Views

Using Heterogeneous Services Agents 4-23

The ability of the non-Oracle system and agent to support two-phase commit
protocols is specified by the 2PC type capability, which can specify one of the
following five types:

The transaction model supported by the driver and non-Oracle system can be
queried from Heterogeneous Services’ data dictionary view HS_CLASS_CAPS.

One of the capabilities is of the 2PC type:

SELECT cap_description, translation
FROM hs_class_caps
WHERE cap_description LIKE '2PC%'
AND fds_class_name LIKE 'SYBASE%';

CAP_DESCRIPTION TRANSLATION
-- -----------
2PC type (RO-SS-CC-PREP/2P-2PCC) CC

When the non-Oracle system and agent support distributed transactions, the
non-Oracle system is treated like any other Oracle server. When a failure occurs
during the two-phase commit protocol, the transaction is recovered automatically. If
the failure persists, the in-doubt transaction may need to be manually overridden
by the database administrator.

Type Capability

Read-only (RO) The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to write data.

Single-Site (SS) The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it cannot participate in the two-phase commit protocol.

Commit Confirm (CC) The non-Oracle system can participate in distributed transactions. It can participate
in the server’s two-phase commit protocol but only as the Commit Point Site. That
is, it cannot prepare data, but it can remember the outcome of a particular
transaction if asked by the global coordinator.

Two-Phase Commit The non-Oracle system can participate in distributed transactions. It can participate
in the server’s two-phase commit protocol, as a regular two-phase commit node, but
not as a Commit Point Site. That is, it can prepare data, but it cannot remember the
outcome of a particular transaction if asked to by the global coordinator.

Two-Phase Commit
Confirm

The non-Oracle system can participate in distributed transactions. It can participate
in the server’s two-phase commit protocol as a regular two-phase commit node or
as the Commit Point Site. That is, it can prepare data and it can remember the
outcome of a particular transaction if asked by the global coordinator.

Heterogeneous Services Data Dictionary Views

4-24 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Using the SQL Service Views
Data dictionary views that are specific for the SQL service contain information
about:

■ SQL capabilities and SQL translations of the non-Oracle data source

■ Data dictionary translations to map Oracle data dictionary views to the data
dictionary of the non-Oracle system

Using Views for Capabilities and Translations
The HS_*_CAPS data dictionary tables contain information about the SQL
capabilities of the non-Oracle data source and required SQL translations. These
views specify whether the non-Oracle data store or the Oracle database server
implements certain SQL language features. If a capability is turned off, then Oracle
does not send any SQL statements to the non-Oracle data source that require this
particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations
In order to make the non-Oracle system appear similar to an Oracle database server,
Heterogeneous Services connections map a limited set of Oracle data dictionary
views onto the non-Oracle system’s data dictionary. This mapping permits
applications to issue queries as if these views belonged to an Oracle data dictionary.
Data dictionary translations make this access possible. These translations are stored
in Heterogeneous Services views whose names are suffixed with _DD.

For example, the following SELECT statement transforms into a Sybase query that
retrieves information about emp tables from the Sybase data dictionary table:

SELECT * FROM USER_TABLES@remote_db
WHERE UPPER(TABLE_NAME)=’EMP’;

Data dictionary tables can be mimicked instead of translated. If a data dictionary
translation is not possible because the non-Oracle data source does not have the
required information in its data dictionary, Heterogeneous Services causes it to
appear as if the data dictionary table is available, but the table contains no
information.

Note: This section describes only a portion of the SQL
Service-related capabilities. Because you should never need to alter
these settings for administrative purposes, these capabilities are not
discussed here.

Using the Heterogeneous Services Dynamic Performance Views

Using Heterogeneous Services Agents 4-25

To retrieve information for which Oracle data dictionary views or tables are
translated or mimicked for the non-Oracle system, connect as user SYS and issue
the following query on the HS_CLASS_DD view:

SELECT DD_TABLE_NAME, TRANSLATION_TYPE
FROM HS_CLASS_DD
WHERE FDS_CLASS_NAME LIKE ‘SYBASE%’;

DD_TABLE_NAME T
----------------------------- -
ALL_ARGUMENTS M
ALL_CATALOG T
ALL_CLUSTERS T
ALL_CLUSTER_HASH_EXPRESSIONS M
ALL_COLL_TYPES M
ALL_COL_COMMENTS T
ALL_COL_PRIVS M
ALL_COL_PRIVS_MADE M
ALL_COL_PRIVS_RECD M
...

The translation type T specifies that a translation exists. When the translation type is
M, the data dictionary table is mimicked.

Using the Heterogeneous Services Dynamic Performance Views
The Oracle database server stores information about agents, sessions, and
parameter. You can use the dynamic performance views to access this information.
This section contains the following topics:

■ Determining Which Agents Are Running on a Host

■ Determining the Open Heterogeneous Services Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

See Also: Appendix C, "Data Dictionary Translation Support" for
a list of data dictionary views that are supported through
Heterogeneous Services mapping

Using the Heterogeneous Services Dynamic Performance Views

4-26 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Use this view to determine general information about the agents running on a
specified host. The following table shows the most relevant columns (for a
description of all the columns in the view, see Oracle Database Reference):

Determining the Open Heterogeneous Services Sessions
The following view shows which Heterogeneous Services sessions are open for the
Oracle database server:

The following table shows the most relevant columns (for an account of all the
columns in the view, see Oracle Database Reference):

View Purpose

V$HS_AGENT Identifies the set of Heterogeneous Services agents currently
running on a given host, using one row for each agent process.

Table 4–2 V$HS_AGENT

Column Description

AGENT_ID Oracle Net session identifier used for connections to agent (listener.ora SID)

MACHINE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS_ID The ID of the foreign data store class

FDS_INST_ID The instance name of the foreign data store

View Purpose

V$HS_SESSION Lists the sessions for each agent, specifying the database link
used.

Table 4–3 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

AGENT_ID Oracle Net session identifier used for connections to agent (listener.ora SID)

Using the Heterogeneous Services Dynamic Performance Views

Using Heterogeneous Services Agents 4-27

Determining the Heterogeneous Services Parameters
The following view shows which Heterogeneous Services parameters are set in the
Oracle database server:

The following table shows the most relevant columns (for an account of all the
columns in the view, see Oracle Database Reference):

Information about the database link that was used for establishing the distributed
connection, the startup time, and the set of initialization parameters used for the
session is also available.

All of the runtime information is derived from dynamically updated tables. The
Distributed Access Manager has a refresh capability available through the menu
and toolbar that allows users to rerun queries if necessary and update the data.
When the data is refreshed, the tool verifies that the set of registered agents remains
the same. If it is not, the global view is updated.

DB_LINK Server database link name used to access the agent NULL means that no database link is
used (for example, when using external procedures)

DB_LINK_OWNER Owner of the database link in DB_LINK

View Purpose

V$HS_PARAMETER Lists Heterogeneous Services parameters and values registered
in the Oracle database server.

Table 4–4 V$HS_SESSION

Column Description

HS_SESSION_ID Unique Heterogeneous Services session identifier

PARAMETER The name of the Heterogeneous Services parameter

VALUE The value of the Heterogeneous Services parameter

See Also: Oracle Enterprise Manager Administrator’s Guide and
online help for more information about the Distributed Access
Manager

Table 4–3 V$HS_SESSION

Column Description

Using the Heterogeneous Services Dynamic Performance Views

4-28 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Multithreaded Agents 5-1

5
Multithreaded Agents

This chapter explains what multithreaded agents are, how they contribute to the
overall efficiency of a distributed database system, and how to administer
multithreaded agents.

This chapter contains the following sections:

■ Why Use Multithreaded Agents?

■ Multithreaded Agent Architecture

■ Administering Multithreaded Agents

Note: Heterogeneous Services supports multithreaded agents,
however this functionality may not be available in all
Heterogeneous Services based gateways. In addition to the generic
support for multithreaded agents that Heterogeneous Services
provides, multithreaded agents support must be added to the
driver. Please refer to your transparent gateway documentation to
determine if the gateway you are using is certified to work as a
multithreaded agent.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information on how the extproc agent can be
configured to run in MTA mode

Why Use Multithreaded Agents?

5-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Why Use Multithreaded Agents?
This section explains how multithreaded agents contribute to the overall efficiency
of Heterogeneous Services and Oracle Transparent Gateways.

This section contains the following topics:

■ The Challenge of Dedicated Agent Architecture

■ The Advantage of Multithreading

The Challenge of Dedicated Agent Architecture
By default, a Heterogeneous Services agent is started up for each user session.
When a user session attempts to access a non-Oracle system by means of a
particular database link, an agent process is started up that is exclusively dedicated
to that user session and that database link. The agent process terminates only when
the user session ends or when the database link is closed. Separate agent processes
are started under the following conditions:

■ The same user session uses two different database links to connect to the same
non-Oracle system

■ Two different user sessions use the same database link to access the same
non-Oracle system.

This architecture has the disadvantage of potentially consuming an unnecessarily
large amount of system resources.

For example, suppose that there are several thousand user sessions simultaneously
accessing the same non-Oracle system. Because an agent process is started for each
one of them, there are several thousand agent processes running concurrently. The
agent processes are all running regardless of whether each individual agent process
is actually active at the moment or not. Because of this, agent processes and open
connections can consume a disproportionate amount of system resources without
any discernible benefit.

In the case of connections to the Oracle database server, this problem is addressed
by starting the server in shared server mode. Shared server mode allows database
connections to be shared by a small number of server processes.

The Advantage of Multithreading
The Oracle shared server architecture assumes that even when there are several
thousand user sessions currently open, only a small percentage of these connections
will be active at any given time. In shared server mode, there is a pool of shared

Multithreaded Agent Architecture

Multithreaded Agents 5-3

server processes. User sessions connect to dispatcher processes that place the tasks
requested by the user sessions on a queue. The tasks are picked up by the first
available shared server processes. The number of shared server processes is usually
considerably less that the number of user sessions.

Multithreaded Heterogeneous Services agents provide similar functionality for
connections to non-Oracle systems. The multithreaded agent architecture uses a
pool of shared agent threads. The tasks requested by the user sessions are put on a
queue and are picked up by the first available multithreaded agent thread. Because
only a small percentage of user connections are actually active at a given moment,
using a multithreaded architecture allows for more efficient use of system resources.

Multithreaded Agent Architecture
Multithreaded agents must be prestarted on a one for each system identifier (SID)
basis. This is done using the agent control utility agtctl. This utility is also used to
configure the agent and to shut down the agent.

Each TNS listener that is running on a system listens for incoming connection
requests for a set of SIDs. If the SID in an incoming Oracle Net connect string is one
of the SIDs that the listener is listening for, then that listener will process the
connection. Further, if a multithreaded agent has been started for the SID, then the
listener will pass the request to that agent.

In the architecture for multithreaded agents, each incoming connection request is
processed by means of the three different kinds of threads:

■ A single monitor thread

The monitor thread is responsible for the following:

– Maintaining communication with the listener

– Monitoring the load on the process

– Starting and stopping threads when required

■ Several dispatcher threads

The dispatcher threads are responsible for the following:

– Handling communication with the Oracle server

– Passing task requests on to the task threads

■ Several task threads

The task threads handle requests from the Oracle processes.

Multithreaded Agent Architecture

5-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

The multithreaded agent architecture is illustrated in Figure 5–1 where each request
issued by a user session is represented in by a separate type of arrow. There is no
representation of the monitor thread in this illustration, because that thread is
created once when the multithreaded agent is started and it creates and monitors
the other threads. Typically there are many more task threads than dispatcher
threads.

Figure 5–1 Multithreaded Agent Architecture

These three thread types roughly correspond to the Oracle multithreaded server’s
PMON, dispatcher and shared server processes respectively.

Non-Oracle
system

HS

Dispatcher
Thread 1

Task
Thread 2

Oracle
Server

User-Session
1

HS

Dispatcher
Thread 2

Task
Thread 3

Oracle
Server

User-Session
2

Agent
Process

Task
Thread 1

Multithreaded Agent Architecture

Multithreaded Agents 5-5

Each type of thread is discussed in more detail in the following sections:

■ The Monitor Thread

■ Dispatcher Threads

■ Task Threads

The Monitor Thread
When a multithreaded agent is started for a SID by the agent control utility, the
monitor thread is created. The monitor thread performs the following functions:

■ It creates the dispatcher and task threads.

■ It registers the dispatcher threads it has created with all the listeners that are
handling connections to this agent.

While the dispatcher for this SID is running, the listener does not start a new
process when it gets an incoming connection. Instead, the listener hands over
the connection to this same dispatcher.

■ It monitors the other threads and sends load information about the dispatcher
threads to all the listener processes handling connections to this agent.

This enables the listeners to hand over incoming connections to the least loaded
dispatcher.

■ It continues to monitors each of the threads it has created.

Dispatcher Threads
Dispatcher threads perform the following functions:

■ They accept incoming connections and task requests from Oracle servers.

Note: All requests from a user session go through the same
dispatcher thread, but can be serviced by different task threads. It is
also possible for several task threads to use the same connection to
the non-Oracle system.

See Also: Administering Multithreaded Agents on page 5-6 for
more information on how to start and stop multithreaded agents
using the agent control utility

Administering Multithreaded Agents

5-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

■ They place incoming requests on a queue for a task thread to pick up.

■ They send results of a request back to the server that issued the request.

Task Threads
Task threads perform the following functions:

■ They pick up requests from a queue.

■ They perform the necessary operations.

■ They place the results on a queue for a dispatcher to pick up.

Administering Multithreaded Agents
As discussed earlier, multithreaded Heterogeneous Services agents must be
prestarted on a one for each system identifier (SID) basis before any attempt is
made to connect to the non-Oracle system. Any agent not spawned in this fashion
will not function in multithreaded mode, and must be set up as described in
"Setting Up Access to Non-Oracle Systems" on page 4-2.

A multithreaded agent is started, stopped, and configured by an agent control
utility called agtctl, which works much like lsnrctl. However, unlike
lsnrctl, which reads a configuration file (listener.ora), agtctl takes
configuration information from the command line and writes it to a control file.

The following topics are discussed in this section:

■ Agent Control Utility (agtctl) Commands

■ Using Single-Line Command Mode

■ Using Shell Mode Commands

■ Configuration Parameters for Multithreaded Agent Control

Note: Once a user session establishes a connection with a
dispatcher, all requests from that user session will go to the same
dispatcher until the end of the user session.

Administering Multithreaded Agents

Multithreaded Agents 5-7

Agent Control Utility (agtctl) Commands
You start and stop agtctl, and create and maintain its control file, using the
commands shown in Table 5–1.

These commands can be issued in one of two ways:

■ You can issue commands from the UNIX (or DOS) shell.

This mode is called single-line command mode.

■ You can type agtctl and a "AGTCTL>" prompt appears. You then can type
commands from within the agtctl shell.

This mode is called shell mode.

The syntax and parameters for agtctl commands vary depending upon the mode
in which they are issued.

Table 5–1 Agent Control Utility Commands

Command Description

startup Starts a multithreaded agent

shutdown Stops a multithreaded agent

set Sets a configuration parameter for a multithreaded agent

unset Causes a parameter to revert to its default value

show Displays the value of a configuration parameter

delete Deletes the entry for a particular SID from the control file

exit Exits shell mode

help Lists available commands

Administering Multithreaded Agents

5-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Using Single-Line Command Mode
This section describes the use of agtctl commands. They are presented in
single-line command mode.

Setting Configuration Parameters for a Multithreaded Agent
You should set the configuration parameters for a multithreaded agent before you
start the agent. They determine how the agent will be configured. If a configuration
parameter is not specifically set, a default value is used. Configuration parameters
and their default values are shown in Table 5–2.

Use the set command to set multithreaded agent configuration parameters.

Syntax

agtctl set parameter parameter_value agent_sid

parameter is the parameter that you are setting.
parameter_value is the value being assigned to the parameter.
agent_sid is the SID that this agent will service. Must be specified for single-line
command mode.

Example

agtctl set max_dispatchers 5 salesDB

Note:

■ All commands are case sensitive.

■ The agent control utility puts its control file in either the
directory pointed to by the environment variable AGTCTL_
ADMIN or in the directory pointed to by the environment
variable TNS_ADMIN. Ensure that at least one of these
environment variables is set and that it points to a directory
that the agent has access to

■ If the Heterogeneous Services agent requires an environment
variable to be set, or if the ENVS parameter was used when
configuring the listener.ora entry for the agent working in
dedicated mode, then all required environment variables must
be set in the UNIX (or DOS) shell which runs the agtctl
utility.

Administering Multithreaded Agents

Multithreaded Agents 5-9

Starting a Multithreaded Agent
Use the startup command to start an agent in multithreaded mode.

Syntax

agtctl startup agent_name agent_sid

agent_name is the name of the agent. For example, extproc is an agent name.
agent_sid is the SID that this agent will service. Must be specified for single-line
command mode.

Example

agtctl startup extproc salesDB

Shutting Down a Multithreaded Agent
Use the shutdown command to stop a multithreaded agent. There are three forms
of shutdown.

■ Normal

This form of shutdown is the default. It causes agtctl will talk to the agent
and ask it to terminate itself gracefully. All sessions complete the operations
they are currently doing and then shutdown.

■ Immediate

In this form of shutdown, agtctl talks to the agent and tells it to terminate
immediately. The agent process exits immediately regardless of the state of
current sessions.

■ Abort

In this form of shutdown, agtctl does not talk to the agent at all. It just issues
a system call to kill the agent process.

Syntax

agtctl shutdown [immediate|abort] agent_sid

agent_sid is the SID which this agent will service. Must be specified for
single-line command mode.

Example

agtctl shutdown immediate salesDB

Administering Multithreaded Agents

5-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Examining the Value of Configuration Parameters
To examine the value of a configuration parameter use the show command.

Syntax

agtctl show parameter agent_sid

parameter is the parameter that you are examining.

Example

agtctl show max_dispatchers salesDB

Resetting a Configuration Parameter to Its Default Value
You can reset a configuration parameter to its default value using the unset
command.

Syntax

agtctl unset parameter agent_sid

parameter is the parameter that you are examining.
agent_sid is the SID which this agent will service. Must be specified for
single-line command mode.

Example

agtctl unset max_dispatchers salesDB

Deleting an Entry for a Specific SID from the Control File
The delete command deletes the entry for the specified SID from the control file.

Syntax

agtctl delete agent_sid

agent_sid is the SID entry to delete.

Example

agtctl delete salesDB

Administering Multithreaded Agents

Multithreaded Agents 5-11

Requesting Help
Use the help command to view a list of available commands for agtctl, or to see
the syntax for a particular command.

Syntax

agtctl help [command]

command is the command whose syntax you want to view.

Example

agtctl help set

Using Shell Mode Commands
In shell mode, you start agtctl by typing agtctl whereupon you will see an
"AGTCTL>" prompt. Thereafter, since you are issuing commands from within the
agtctl shell, you do not prefix the command string with the word agtctl.

Next, set the name of the agent SID that you are working with by entering the
following:

set agent_sid agent_sid

All commands issued after this are assumed to be for this particular SID until the
agent_sid value is changed. Unlike single-line command mode, you do not
specify agent_sid in the command string.

You can optionally set the language for error messages, to other than English, as
follows:

set language language

The commands themselves are the same as those for the single-line command
mode. To exit shell mode, type exit.

The following are examples of shell mode commands.

Example: Setting a Configuration Parameter
This example sets a new value for the shutdown_address configuration
parameter.

set shutdown_address (address=(protocol=ipc)(key=oraDBsalesDB))

Administering Multithreaded Agents

5-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Example: Starting a Multithreaded Agent
This example starts a multithreaded agent.

startup extproc

Configuration Parameters for Multithreaded Agent Control
The following table lists the configuration parameters for the agent control utility.

Table 5–2 Initialization Parameters for agtctl

Parameter Description Default Value

max_dispatchers Maximum number of
dispatchers

1

tcp_dispatchers Number of dispatchers
listening on tcp (the rest are
using ipc)

0

max_task_threads Number of task threads 2

max_sessions Maximum number of
sessions

5

listener_address Address on which the
listener is listening (needed
for registration)

(ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=PNPKEY))
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=oracle_sid))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521)))

Note: oracle_sid is the SID of the Oracle database.

shutdown_address Address on which the agent
should listen for shutdown
messages from agtctl

(ADDRESS=
 (PROTOCOL=IPC)
 (KEY=oracle_sid||agent_sid))

Notes:

■ agent_sid is the SID of the multithreaded agent.

■ || indicates that oracle_sid and agent_sid are
concatenated into one string.

Performance Tips 6-1

6
Performance Tips

This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

This chapter includes the following sections:

■ Optimizing Heterogeneous Distributed SQL Statements

■ Optimizing Performance of Distributed Queries

Optimizing Heterogeneous Distributed SQL Statements

6-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Optimizing Heterogeneous Distributed SQL Statements
When a SQL statement accesses data from non-Oracle systems, it is said to be a
heterogeneous distributed SQL statement. To optimize heterogeneous distributed
SQL statements, follow the same guidelines as for optimizing distributed SQL
statements that access Oracle databases only. However, you must consider that the
non-Oracle system usually does not support all the functions and operators that
Oracle supports.

The Oracle Transparent Gateways tell Oracle (at connect time) which functions and
operators they do support. If the non-Oracle data source does not support a
function or operator, then Oracle performs that function or operator. In this case,
Oracle obtains the data from the other data source and applies the function or
operator locally. This affects the way in which the SQL statements are decomposed
and can affect performance, especially if Oracle is not on the same machine as the
other data source.

Optimizing Performance of Distributed Queries
You can improve performance of distributed queries in several ways. These are:

■ Choose the best SQL statement.

In many cases, there are several SQL statements that can achieve the same
result. If all tables are on the same database, then the difference in performance
between these SQL statements might be minimal. But, if the tables are located
on different databases, then the difference in performance might be more
significant.

■ Use the query optimizer.

The query optimizer uses indexes on remote tables, considers more execution
plans than the rule-based optimizer, and generally gives better results. With the
query optimizer, performance of distributed queries is generally satisfactory.
Only on rare occasions is it necessary to change SQL statements, create views,
or use procedural code.

■ Use views.

In some situations, views can be used to improve performance of distributed
queries. For example:

– Joining several remote tables on the remote database

– Sending a different table through the network

Optimizing Performance of Distributed Queries

Performance Tips 6-3

■ Use procedural code.

On some rare occasions, it can be more efficient to replace a distributed query
by procedural code, such as a PL/SQL procedure or a precompiler program.
This option is mentioned here only for completeness, not because it is often
needed.

Optimizing Performance of Distributed Queries

6-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Generic Connectivity 7-1

7
Generic Connectivity

This chapter describes the configuration and usage of Generic Connectivity agents.

This chapter contains these topics:

■ What Is Generic Connectivity?

■ Supported Oracle SQL Statements and Functions

■ Configuring Generic Connectivity Agents

■ ODBC Connectivity Requirements

■ OLE DB (SQL) Connectivity Requirements

■ OLE DB (FS) Connectivity Requirements

What Is Generic Connectivity?

7-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

What Is Generic Connectivity?
Generic Connectivity is intended for low-end data integration solutions requiring
the ad hoc query capability to connect from an Oracle database server to non-Oracle
database systems.

Generic Connectivity is implemented as either a Heterogeneous Services ODBC
agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB
agent are included as part of your Oracle system. ODBC agents are supported on
Solaris, HP-UX, AIX, and Windows NT platforms. OLE DB agents are supported
only on the Windows NT platform.

Any data source compatible with the ODBC or OLE DB standards described in this
chapter can be accessed using a Generic Connectivity agent.

This section contains the following topics:

■ Types of Agents

■ Generic Connectivity Architecture

■ SQL Execution

■ Datatype Mapping

■ Generic Connectivity Restrictions

Types of Agents
Generic Connectivity is implemented as one of the following types of
Heterogeneous Services agents:

■ ODBC agent for accessing ODBC data providers

■ OLE DB agent for accessing OLE DB data providers that support SQL
processing—sometimes referred to as OLE DB (SQL)

■ OLE DB agent for accessing OLE DB data providers without SQL processing
support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use
in that user session of the database link to the non-Oracle system. The agent process
ends when the user session ends.

Generic Connectivity Architecture
To access the non-Oracle data store using Generic Connectivity, the agents work
with an ODBC or OLE DB driver. The Oracle database server provides support for

What Is Generic Connectivity?

Generic Connectivity 7-3

the ODBC or OLE DB driver interface. The driver that you use must be on the same
platform as the agent. The non-Oracle data stores can reside on the same machine as
the Oracle database server or on a different machine.

Oracle and Non-Oracle Systems on Separate Machines
Figure 7–1 shows an example of a configuration in which an Oracle and non-Oracle
database are on separate machines, communicating through a Heterogeneous
Services ODBC agent.

Figure 7–1 Oracle and Non-Oracle Systems on a Separate Machines

In this configuration:

1. A client connects to the Oracle database server through Oracle Net.

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent.

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

Non-Oracle
system

Network

Machine 2

Client

Oracle
Net

Machine 1

Non-Oracle
component

Oracle
Server

ODBC driver
manager

ODBC driver

Non-Oracle
system
client

HS

HS
ODBC
agent

Oracle
Net

What Is Generic Connectivity?

7-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

■ An ODBC driver

■ A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on the Same Machine
Figure 7–2 shows an example of a different configuration in which an Oracle and
non-Oracle database are on the same machine, again communicating through an
Heterogeneous Services ODBC agent.

Figure 7–2 Oracle and Non-Oracle Systems on the Same Machine

In this configuration:

1. A client connects to the Oracle database server through Oracle Net.

Client

Oracle
Net

Oracle
Net

Machine 1

Oracle
Server

Non-Oracle
system

HS

ODBC driver
manager

ODBC driver

HS
ODBC
agent

Non-Oracle
system
client

What Is Generic Connectivity?

Generic Connectivity 7-5

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent.

3. The agent communicates with the following non-Oracle components:

■ An ODBC driver manager

■ An ODBC driver

The driver then allows access to the non-Oracle data store.

SQL Execution
SQL statements sent using a Generic Connectivity agent are executed differently
depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB
(FS). For example, if a SQL statement involving tables is sent using an ODBC agent
for a file-based storage system, the file can be manipulated as if it were a table in a
relational database. The naming conventions used at the non-Oracle system can also
depend on whether you are using an ODBC or OLE DB agent.

Datatype Mapping
The Oracle database server maps the datatypes used in ODBC and OLE DB
compliant data sources to supported Oracle datatypes. When the results of a query
are returned, the Oracle database server converts the ODBC or OLE DB datatypes to
Oracle datatypes. For example, the ODBC datatype SQL_TIMESTAMP and the OLE
DB datatype DBTYPE_DBTIMESTAMP are converted to Oracle’s DATE datatype.

If a table contains a column whose datatype is not supported by Generic
Connectivity, then the column information is not returned to the Oracle server.

Generic Connectivity Restrictions
Generic Connectivity restrictions include:

■ A table including a BLOB column must have a separate column that serves as a
primary key.

■ BLOB and CLOB data cannot be read through passthrough queries.

Note: The ODBC driver may require non-Oracle client libraries
even if the non-Oracle database is located on the same machine.
Please refer to your ODBC driver documentation for information
about the requirements for the ODBC driver.

Supported Oracle SQL Statements and Functions

7-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

■ Updates or deletes that include unsupported functions within a WHERE clause
are not allowed.

■ Generic Connectivity does not support stored procedures.

■ Generic Connectivity agents cannot participate in distributed transactions; they
support single-site transactions only.

■ Generic Connectivity does not support multithreaded agents.

Supported Oracle SQL Statements and Functions
Generic Connectivity supports the following statements, but only if the ODBC or
OLE DB driver and non-Oracle system can execute them and the statements contain
supported Oracle SQL functions:

■ DELETE

■ INSERT

■ SELECT

■ UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle
system. Most Oracle functions have no equivalent function in this limited set.
Consequently, although post-processing is performed by the Oracle database server,
many Oracle functions are not supported by Generic Connectivity, possibly
impacting performance.

If an Oracle SQL function is not supported by Generic Connectivity, then this
function is not supported in DELETE, INSERT, or UPDATE statements. In SELECT
statements, these functions are evaluated by the Oracle database server and
post-processed after they are returned from the non-Oracle system.

If an unsupported function is used in a DELETE, INSERT, or UPDATE statement, it
generates this Oracle error:

ORA-02070: database db_link_name does not support function in this context

Generic Connectivity assumes that the following minimum set of SQL functions is
supported by the ODBC driver or OLE DB provider that is being used:

■ AVG(exp)

■ LIKE(exp)

■ COUNT(*)

Configuring Generic Connectivity Agents

Generic Connectivity 7-7

■ MAX(exp)

■ MIN(exp)

■ NOT

Configuring Generic Connectivity Agents
To implement Generic Connectivity on a non-Oracle data source, you must set the
agent parameters.

This section contains the following topics:

■ Creating the Initialization File

■ Editing the Initialization File

■ Setting Initialization Parameters for an ODBC-based Data Source

■ Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File
You must create and customize an initialization file for your Generic Connectivity
agent. Oracle Corporation supplies sample initialization files, inithsodbc.ora
for ODBC agents and inithsoledb.ora for OLE DB agents. The sample files are
stored in the $ORACLE_HOME/hs/admin directory.

To create an initialization file for an ODBC or OLE DB agent, copy the applicable
sample initialization file and rename the file to initHS_SID.ora, where HS_SID is
the system identifier you want to use for the instance of the non-Oracle system to
which the agent connects.

The HS_SID is also used to identify how to connect to the agent when you configure
the listener by modifying the listener.ora file. The HS_SID you add to the
listener.ora file must match the HS_SID in an initHS_SID.ora file, because
the agent spawned by the listener searches for a matching initHS_SID.ora file.
That is how each agent process gets its initialization information. When you copy
and rename your initHS_SID.ora file, ensure it remains in the $ORACLE_
HOME/hs/admin directory.

Editing the Initialization File
Customize the initHS_SID.ora file by setting the parameter values used for
Generic Connectivity agents to values appropriate for your system, agent, and

Configuring Generic Connectivity Agents

7-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

drivers. You must edit the initHS_SID.ora file to change the HS_FDS_CONNECT_
INFO initialization parameter. HS_FDS_CONNECT_INFO specifies the information
required for connecting to the non-Oracle system.

Set the parameter values as follows:

[SET][PRIVATE] parameter=value

[SET] and [PRIVATE] are optional keywords. If you do not specify either SET or
PRIVATE, then the parameter and value are simply used as an initialization
parameter for the agent.

SET specifies that in addition to being used as an initialization parameter, the
parameter value is set as an environment variable for the agent process.

PRIVATE specifies that the parameter value is private and not transferred to the
Oracle database server and does not appear in V$ tables or in an graphical user
interfaces.

SET PRIVATE specifies that the parameter value is set as an environment variable
for the agent process and is also private (not transferred to the Oracle database
server, not appearing in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that you are
specifying. See "Setting Initialization Parameters" on page 4-5 for a description of all
Heterogeneous Services parameters and their possible values. The parameter is
case-sensitive.

value is the value you want to specify for the Heterogeneous Services parameter.
The value is case-sensitive.

For example, to enable tracing for an agent, set the HS_FDS_TRACE_LEVEL
parameter as follows:

HS_FDS_TRACE_LEVEL=ON

Typically, most parameters are only needed as initialization parameters, so you do
not need to use SET or PRIVATE. Use SET for parameter values that the drivers or
non-Oracle system need as environment variables.

PRIVATE is only supported for the follow Heterogeneous Services parameters:

■ HS_FDS_CONNECT_INFO

See Also: "Setting Initialization Parameters" on page 4-5 for more
information on parameters

Configuring Generic Connectivity Agents

Generic Connectivity 7-9

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

You should only use PRIVATE for these parameters if the parameter value includes
sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source
The settings for the initialization parameters vary depending on the type of
operating system.

Setting Agent Parameters on Windows NT
Specify a file data source name (DSN) or a system DSN which has previously been
defined using the ODBC Driver Manager.

Specify the value as follows:

HS_FDS_CONNECT_INFO=dsn

Setting Parameters on NT: Example Assume a system DSN has been defined in the
Windows ODBC Data Source Administrator. In order to connect to this SQL Server
database through the gateway, the following line is required in initHS_SID.ora:

HS_FDS_CONNECT_INFO=sqlserver7

where sqlserver7 is the name of the system DSN defined in the Windows ODBC
Data Source Administrator.

The following procedure enables you to define a system DSN in the Windows
ODBC Data Source Administrator, version 3.5:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.

2. Select the system DSN tab to display the system data sources.

3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the
data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information
depending on the ODBC driver. For example, for SQL Server enter the SQL
Server machine.

Configuring Generic Connectivity Agents

7-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

7. Refer to your ODBC driver documentation and follow the prompts to complete
configuration of the DSN.

8. After creating the system DSN, click OK to exit the ODBC Data Source
Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT_INFO=dsn_value
HS_FDS_SHAREABLE_NAME=full_path_of_odbc_driver

If your ODBC driver requires an ODBC driver manager, then HS_FDS_
SHAREABLE_NAME should point to the location of the ODBC driver manager and
not to the ODBC driver.

HS_FDS_CONNECT_INFO is required for all platforms for an ODBC agent. HS_FDS_
SHAREABLE_NAME is required on UNIX platforms for an ODBC agent. Other
initialization parameters have defaults or are optional. You can use the default
values and omit the optional parameters, or you can specify the parameters with
values tailored for your installation.

Setting Parameters on UNIX: Example The following is an example of an odbc.ini file
that uses DataDirect Technologies SQLServer ODBC driver:

[ODBC Data Sources]
SQLServerWP=DataDirect 4.10 SQL Server Wire Protocol

[SQLServerWP]
Driver=/opt/odbc410/lib/ivmsss18.so
Description=DataDirect 4.10 SQL Server Wire Protocol
Database=oratst
LogonID=TKHOUSER

Note: The name entered for the DSN must match the value of the
parameter HS_FDS_CONNECT_INFO that is specified in initHS_
SID.ora.

Note: Before deciding to accept the default values or change them,
see "Setting Initialization Parameters" on page 4-5 for detailed
information on all the initialization parameters.

Configuring Generic Connectivity Agents

Generic Connectivity 7-11

Password=TKHOUSER
Address=sqlserver-pc,1433
QuotedId=No
AnsiNPW=No

[ODBC]
Trace=0
TraceFile=/opt/odbc410/odbctrace.out
TraceDll=/opt/odbc410/lib/odbctrac.so
InstallDir=/opt/odbc410
ConversionTableLocation=/opt/odbc410/tables
UseCursorLib=0

To configure the Generic Connectivity ODBC agent to use this driver, the following
lines are required in initHS_SID.ora:

HS_FDS_CONNECT_INFO=SQLServerWP
HS_FDS_SHAREABLE_NAME=/opt/odbc4/lib/libodbc.so
set ODBCINI=/opt/odbc/odbc.ini

Note that the set statements are optional as long as they are specified in the working
account. Each database has its own set statements.

The HS_FDS_CONNECT_INFO parameter value must match the ODBC data source
name in the odbc.ini file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:

SET|PRIVATE|SET PRIVATE HS_FDS_CONNECT_INFO="UDLFILE=data_link"

HS_FDS_CONNECT_INFO is required for an OLE DB agent. Other initialization
parameters have defaults or are optional. You can use the default values and omit
the optional parameters, or you can specify the parameters with values tailored for
your installation.

Note: If the parameter value includes an equal sign (=), then it
must be surrounded by quotation marks.

ODBC Connectivity Requirements

7-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

ODBC Connectivity Requirements
To use an ODBC agent, you must have an ODBC driver installed on the same
machine as the Oracle database server. On Windows NT, you must have an ODBC
driver manager also located on the same machine. The ODBC driver manager and
driver must meet the following requirements:

■ On Windows NT machines, a 32-bit ODBC driver that conforms to ODBC
version 2.5 is required.

■ On UNIX machines, a 32-bit ODBC driver which conforms to ODBC version 2.5
is required. If the ODBC driver works with an ODBC driver manager that
conforms to ODBC version 2.5, then the ODBC driver version can be 2.5 or
higher.

The ODBC driver and driver manager on Windows NT must conform to ODBC
application program interface (API) conformance Level 1 or higher. If the ODBC
driver or driver manager does not support multiple active ODBC cursors, then it
restricts the complexity of SQL statements that you can execute using Generic
Connectivity.

The ODBC driver you use must support all of the core SQL ODBC datatypes and
should support SQL grammar level SQL_92. The ODBC driver should also expose
the following ODBC APIs:

Note: Before deciding to accept the default values or change them,
see "Setting Initialization Parameters" on page 4-5 for detailed
information on all the initialization parameters.

See Also: Your ODBC driver documentation for dependencies on
an ODBC driver manager

Table 7–1 ODBC Functions

ODBC Function Comment

SQLAllocConnect -

SQLAllocEnv -

SQLAllocStmt -

SQLBindCol -

SQLBindParameter -

ODBC Connectivity Requirements

Generic Connectivity 7-13

SQLColumns -

SQLConnect -

SQLDescribeCol -

SQLDisconnect -

SQLDriverConnect -

SQLError -

SQLExecDirect -

SQLExecute -

SQLExtendedFetch Recommended if used by the non-Oracle system.

SQLFetch -

SQLForeignKeys Recommended if used by the non-Oracle system.

SQLFreeConnect -

SQLFreeEnv -

SQLFreeStmt -

SQLGetConnectOption -

SQLGetData -

SQLGetFunctions -

SQLGetInfo -

SQLGetTypeInfo -

SQLNumParams Recommended if used by the non-Oracle system.

SQLNumResultCols -

SQLParamData -

SQLPrepare -

SQLPrimaryKeys Recommended if used by the non-Oracle system.

SQLProcedureColumns Recommended if used by the non-Oracle system.

SQLProcedures Recommended if used by the non-Oracle system.

SQLPutData -

Table 7–1 ODBC Functions(Cont.)

ODBC Function Comment

OLE DB (SQL) Connectivity Requirements

7-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

OLE DB (SQL) Connectivity Requirements
These requirements apply to OLE DB data providers that have a SQL processing
capability and expose the OLE DB interfaces.

 Generic Connectivity passes the username and password to the provider when
calling IDBInitialize::Initialize().

OLE DB (SQL) connectivity requires that the data provider expose the following OLE
DB interfaces:

SQLRowCount -

SQLSetConnectOption -

SQLSetStmtOption -

SQLStatistics -

SQLTables -

SQLTransact Recommended if used by the non-Oracle system.

Table 7–2 OLE DB (SQL) Interfaces

Interface Methods Notes

IAccessor CreateAccessor,
ReleaseAccessor

-

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

-

ICommand Execute -

ICommandPrepare Prepare -

ICommandProperties SetProperties -

ICommandText SetCommandText -

ICommandWithParameters GetParameterInfo -

IDBCreateCommand CreateCommand -

IDBCreateSession CreateSession -

IDBInitialize Initialize -

Table 7–1 ODBC Functions(Cont.)

ODBC Function Comment

OLE DB (FS) Connectivity Requirements

Generic Connectivity 7-15

OLE DB (FS) Connectivity Requirements
These requirements apply to OLE DB data providers that do not have SQL
processing capabilities. If the provider exposes them, then OLE DB (FS) connectivity
uses OLE DB Index interfaces.

OLE DB Interfaces for Data Providers to Expose
OLE DB (FS) connectivity requires that the data provider expose the following OLE
DB interfaces:

IDBSchemaRowset GetRowset (tables, columns,
indexes; optionally also procedures,
procedure parameters)

-

IErrorInfo GetDescription, GetSource You can also use
IErrorLookup
with the
GetErrorDescri
ption method.

IErrorRecords GetErrorInfo -

ILockBytes (OLE) Flush, ReadAt, SetSize, Stat,
WriteAt

Required only if
BLOB datatypes are
used in the OLE
DB provider.

IRowset GetData, GetNextRows,
ReleaseRows, RestartPosition

-

IStream (OLE) Read, Seek, SetSize, Stat,
Write

-

ISupportErrorInfo InterfaceSupportsErrorInfo -

ITransactionLocal
(optional)

StartTransaction, Commit,
Abort

-

Table 7–3 OLE DB (FS) Interfaces

Interface Methods Notes

IAccessor CreateAccessor,
ReleaseAccessor

-

Table 7–2 OLE DB (SQL) Interfaces

Interface Methods Notes

OLE DB (FS) Connectivity Requirements

7-16 Oracle Database Heterogeneous Connectivity Administrator’s Guide

IColumnsInfo GetColumnsInfo (Command and
Rowset objects)

-

IOpenRowset OpenRowset -

IDBCreateSession CreateSession -

IRowsetChange DeleteRows, SetData,
InsertRow

-

IRowsetLocate GetRowsByBookmark -

IRowsetUpdate Update (optional) -

IDBInitialize Initialize, Uninitialize -

IDBSchemaRowset GetRowset (tables, columns,
indexes; optionally also procedures,
procedure parameters)

-

ILockBytes (OLE) Flush, ReadAt, SetSize, Stat,
WriteAt

Required only if BLOB
datatypes are used in
the OLE DB provider

IRowsetIndex SetRange Required only if
indexes are used in the
OLE DB provider

IErrorInfo GetDescription, GetSource You can use
IErrorLookup with
the
GetErrorDescripti
on method as well.

IErrorRecords GetErrorInfo -

IRowset GetData, GetNextRows,
ReleaseRows, RestartPosition

-

IStream (OLE) Read, Seek, SetSize, Stat, Write -

ITransactionLocal
(optional)

StartTransaction, Commit,
Abort

-

ISupportErrorInfo InterfaceSupportsErrorInfo -

ITableDefinition CreateTable, DropTable -

IDBProperties SetProperties -

Table 7–3 OLE DB (FS) Interfaces (Cont.)

Interface Methods Notes

OLE DB (FS) Connectivity Requirements

Generic Connectivity 7-17

Because OLE DB (FS) connectivity is generic, it can connect to a number of different
data providers that expose OLE DB interfaces. Every such data provider must meet
the certain requirements.

Data Source Properties
The OLE DB data source must support the following initialization properties:

■ DBPROP_INIT_DATASOURCE

■ DBPROP_AUTH_USERID

■ DBPROP_AUTH_PASSWORD

The OLE DB data source must also support the following rowset properties:

■ DBPROP_IRowsetChange = TRUE

■ DBPROP_UPDATABILITY = CHANGE+DELETE+INSERT

■ DBPROP_OWNUPDATEDELETE = TRUE

■ DBPROP_OWNINSERT = TRUE

■ DBPROP_OTHERUPDATEDELETE = TRUE

■ DBPROP_CANSCROLLBACKWARDS = TRUE

■ DBPROP_IRowsetLocate = TRUE

■ DBPROP_OTHERINSERT = FALSE

Note: The data provider must expose bookmarks. This enables
tables to be updated. Without bookmarks being exposed, the tables
are read-only.

Note: Required if the userid has been supplied in the security file

Note: Required if the userid and password have been supplied in
the security file

OLE DB (FS) Connectivity Requirements

7-18 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Heterogeneous Services Initialization Parameters A-1

A
Heterogeneous Services Initialization

Parameters

The Heterogeneous Services initialization parameter file contains configuration
settings stored as a text file.

This section contains the following topics:

■ HS_CALL_NAME

■ HS_COMMIT_POINT_STRENGTH

■ HS_DB_DOMAIN

■ HS_DB_INTERNAL_NAME

■ HS_DB_NAME

■ HS_DESCRIBE_CACHE_HWM

■ HS_FDS_CONNECT_INFO

■ HS_FDS_DEFAULT_SCHEMA_NAME

■ HS_FDS_SHAREABLE_NAME

■ HS_FDS_TRACE_LEVEL

■ HS_LANGUAGE

■ HS_LONG_PIECE_TRANSFER_SIZE

■ HS_NLS_DATE_FORMAT

■ HS_NLS_DATE_LANGUAGE

■ HS_NLS_NCHAR

■ HS_NLS_NUMERIC_CHARACTER

A-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

■ HS_NLS_TIMESTAMP_FORMAT

■ HS_NLS_TIMESTAMP_TZ_FORMAT

■ HS_OPEN_CURSORS

■ HS_ROWID_CACHE_SIZE

■ HS_RPC_FETCH_REBLOCKING

■ HS_RPC_FETCH_SIZE

■ HS_TIME_ZONE

■ IFILE

See Also:

■ "Setting Initialization Parameters" on page 4-5 contains
instructions for setting the Heterogeneous Services
initialization parameters

■ "Configuring Generic Connectivity Agents" on page 7-7
contains instructions for setting Heterogeneous Services
initialization parameters specific to Generic Connectivity

HS_COMMIT_POINT_STRENGTH

Heterogeneous Services Initialization Parameters A-3

HS_CALL_NAME

Specifies the remote functions that can be referenced in SQL statements. The value
is a list of remote functions and their owners, separated by semicolons, in the
following format:

owner_name.function_name

For example:

owner1.A1;owner2.A2;owner3.A3

If no owner name is specified for a remote function, then the default owner name is
the user name used to connect to the remote database (specified when the HS
database link is created).

The entries for the owner names and the function names are case-sensitive.

HS_COMMIT_POINT_STRENGTH

Specifies a value that determines the commit point site in a heterogeneous
distributed transaction. HS_COMMIT_POINT_STRENGTH is similar to COMMIT_
POINT_STRENGTH, described in the Oracle Database Reference.

Set HS_COMMIT_POINT_STRENGTH to a value relative to the importance of the site
that is the commit point site in a distributed transaction. The Oracle database server
or non-Oracle system with the highest commit point strength becomes the commit

Property Description

Default value None

Range of values Not applicable

See Also: "Executing User-Defined Functions on a Non-Oracle
Database" on page 4-15

Property Description

Default value 0

Range of values 0 to 255

HS_DB_DOMAIN

A-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

point site. To ensure that a non-Oracle system never becomes the commit point site,
set the value of HS_COMMIT_POINT_STRENGTH to zero.

HS_COMMIT_POINT_STRENGTH is important only if the non-Oracle system can
participate in the two-phase protocol as a regular two-phase commit partner and as
the commit point site. This is only the case if the transaction model is two-phase
commit confirm (2PCC).

HS_DB_DOMAIN

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOMAIN is
similar to DB_DOMAIN, described in the Oracle Database Reference. HS_DB_DOMAIN is
required if you use the Oracle Names server. HS_DB_NAME and HS_DB_DOMAIN
define the global name of the non-Oracle system.

HS_DB_INTERNAL_NAME

Specifies a unique hexadecimal number identifying the instance to which the
Heterogeneous Services agent is connected. This parameter’s value is used as part
of a transaction ID when global name services are activated. Specifying a nonunique
number can cause problems when two-phase commit recovery actions are necessary
for a transaction.

Property Description

Default value WORLD

Range of values 1 to 199 characters

Note: HS_DB_NAME and HS_DB_DOMAIN must combine to form a
unique address.

Property Description

Default value 01010101

Range of values 1 to 16 hexadecimal characters

HS_FDS_CONNECT_INFO

Heterogeneous Services Initialization Parameters A-5

HS_DB_NAME

Specifies a unique alphanumeric name for the data store given to the non-Oracle
system. This name identifies the non-Oracle system within the cooperative server
environment. HS_DB_NAME and HS_DB_DOMAIN define the global name of the
non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Specifies the maximum number of entries in the describe cache used by
Heterogeneous Services. This limit is known as the describe cache high water mark.
The cache contains descriptions of the mapped tables that Heterogeneous Services
reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, then increase the high water mark to
improve performance. Note that increasing the high water mark improves
performance at the cost of memory usage.

HS_FDS_CONNECT_INFO

Specifies the information needed to bind to the data provider, that is, the non-Oracle
system. For Generic Connectivity, you can bind to an ODBC-based data source or to

Property Description

Default value HO

Range of values 1 to 8 characters

Property Description

Default value 100

Range of values 1 to 4000

Property Description

Default value None

Range of values Not applicable

HS_FDS_DEFAULT_SCHEMA_NAME

A-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

an OLE DB-based data source. The information that you provide depends on the
platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using Generic Connectivity.

ODBC-Based Data Source on Windows
You can specify a file DSN (data source name) or a system DSN as follows:

HS_FDS_CONNECT_INFO=FILEDSN=dsn

ODBC-Based Data Source on UNIX
Use a DSN with the following format:

HS_FDS_CONNECT_INFO=dsn

OLE DB-Based Data Source (Windows NT Only)
Use a universal data link (UDL) with the following format:

HS_FDS_CONNECT_INFO="UDLFILE=data_link"

HS_FDS_DEFAULT_SCHEMA_NAME

Specifies a default value for the owner column that will be returned in the ddtrans,
when the value of the owner is null. For example:

HS_FDS_DEFAULT_SCHEMA_NAME = PUBLIC

Note: Whenever the parameter value includes an equal sign (=), it
must be enclosed in quotation marks.

Property Description

Default value None

Range of values Not applicable

HS_LANGUAGE

Heterogeneous Services Initialization Parameters A-7

HS_FDS_SHAREABLE_NAME

Specifies the full path name to the ODBC library. This parameter is required when
you are using Generic Connectivity to access data from an ODBC provider on a
UNIX machine. If your ODBC driver requires an ODBC driver manager, then HS_
FDS_SHAREABLE_NAME should point to the location of the ODBC driver manager
and not to the ODBC driver.

HS_FDS_TRACE_LEVEL

Specifies whether error tracing is enabled or disabled for Generic Connectivity.
Enable the tracing to see which error messages occur when you encounter
problems. The results are written to a Generic Connectivity log file, in the /log
directory under the $ORACLE_HOME directory.

HS_LANGUAGE

Provides Heterogeneous Services with character set, language, and territory
information of the non-Oracle data source. The value must use the following
format:

language[_territory.character_set]

Property Description

Default value None

Range of values Not applicable

Property Description

Default value OFF

Range of values ON or OFF

Property Description

Default value System-specific

Range of values Any valid language name (up to 255 characters)

HS_LANGUAGE

A-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Character Sets
Ideally, the character sets of the Oracle database server and the non-Oracle data
source are the same. If they are not the same, Heterogeneous Services attempts to
translate the character set of the non-Oracle data source to the Oracle database
character set, and back again. The translation can degrade performance. In some
cases, Heterogeneous Services cannot translate a character from one character set to
another.

Language
The language component of the HS_LANGUAGE initialization parameter determines:

■ Day and month names of dates

■ AD, BC, PM, and AM symbols for date and time

■ Default sorting mechanism

Note that Oracle does not determine the language for error messages for the generic
Heterogeneous Services messages (ORA-25000 through ORA-28000). These are
controlled by the session settings in the Oracle database server.

Territory
The territory clause specifies the conventions for day and week numbering, default
date format, decimal character and group separator, and ISO and local currency
symbols. Note that:

Note: The globalization support initialization parameters affect
error messages, the data for the SQL Service, and parameters in
distributed external procedures.

Note: The specified character set must be a superset of the
operating system character set on the platform where the agent is
installed.

Note: Use the HS_NLS_DATE_LANGUAGE initialization parameter
to set the day and month names, and the AD, BC, PM, and AM
symbols for dates and time independently from the language.

HS_NLS_DATE_FORMAT

Heterogeneous Services Initialization Parameters A-9

■ You can override the date format using the initialization parameter HS_NLS_
DATE_FORMAT.

■ The level of globalization support between the Oracle database server and the
non-Oracle data source depends on how the driver is implemented.

HS_LONG_PIECE_TRANSFER_SIZE

Sets the size of the piece of LONG data being transferred. A smaller piece size means
less memory requirement, but more round trips to fetch all the data. A larger piece
size means fewer round trips, but more of a memory requirement to store the
intermediate pieces internally. Thus, the initialization parameter can be used to tune
a system for the best performance, with the best trade-off between round trips and
memory requirements.

HS_NLS_DATE_FORMAT

Defines the date format for dates used by the target system. This parameter has the
same function as the NLS_DATE_FORMAT parameter for an Oracle database server.
The value of can be any valid date mask listed in the Oracle Database SQL Reference,
but must match the date format of the target system. For example, if the target
system stores the date February 14, 2001 as 2001/02/14, set the parameter to
yyyy/mm/dd. Note that characters must be lowercase.

Property Description

Default value 64 KB

Range of values Any value up to 2 GB

Property Description

Default value Value determined by HS_LANGUAGE parameter

Range of values Any valid date format mask (up to 255 characters)

HS_NLS_DATE_LANGUAGE

A-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

HS_NLS_DATE_LANGUAGE

Specifies the language used in character date values coming from the non-Oracle
system. Date formats can be language independent. For example, if the format is
dd/mm/yyyy, all three components of the character date are numbers. In the format
dd-mon-yyyy, however, the month component is the name abbreviated to three
characters. The abbreviation is very much language dependent. For example, the
abbreviation for the month April is "apr", which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the
non-Oracle system are in this format. Also, Heterogeneous Services sends character
date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Informs Heterogeneous Services of the value of the national character set of the
non-Oracle data source. This value is the non-Oracle equivalent to the NATIONAL
CHARACTER SET parameter setting in the Oracle CREATE DATABASE statement.
The HS_NLS_NCHAR value should be the character set ID of a character set
supported by the Oracle NLSRTL library.

HS_NLS_NUMERIC_CHARACTER

Property Description

Default value Value determined by HS_LANGUAGE parameter

Range of values Any valid NLS_LANGUAGE value (up to 255 characters)

Property Description

Default value Value determined by HS_LANGUAGE parameter

Range of values Any valid national character set (up to 255 characters)

See Also: HS_LANGUAGE on page A-7

Property Description

Default value Value determined by HS_LANGUAGE parameter

HS_NLS_TIMESTAMP_TZ_FORMAT

Heterogeneous Services Initialization Parameters A-11

Specifies the characters to use as the group separator and the decimal character. The
group separator separates integer groups (such as thousands, millions, and
billions). The decimal character separates the integer portion of a number from the
decimal portion.

HS_NLS_TIMESTAMP_FORMAT

Defines the timestamp format for dates used by the target system. This parameter
has the same function as the NLS_TIMESTAMP_FORMAT parameter for an Oracle
database server. The value of can be any valid timestamp mask listed in the Oracle
Database SQL Reference, but it must match the date format of the target system. Note
that characters must be lowercase. For example:

HS_NLS_TIMESTAMP_FORMAT = yyyy-mm-dd hh:mi:ss.ff

HS_NLS_TIMESTAMP_TZ_FORMAT

Defines the default timestamp with time zone format for the timestamp with time
zone format used by the target system. This parameter has the same function as the
NLS_TIMESTAMP_TZ_FORMAT parameter for an Oracle database server. The value
of can be any valid timestamp with time zone mask listed in the Oracle Database
SQL Reference, but must match the date format of the target system. Note that
characters must be lowercase. For example:

Range of values Any valid NLS_NUMERIC_CHARACTERS value (any two valid
numeric characters)

Property Description

Default value Derived from NLS_TERRITORY

Range of values Any valid datetime format mask

Property Description

Default value Derived from NLS_TERRITORY

Range of values Any valid datetime with time zone format mask

Property Description

HS_OPEN_CURSORS

A-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

HS_NLS_TIMESTAMP_TZ_FORMAT = yyyy-mm-dd hh:mi:ss.ff tzh:tzm

HS_OPEN_CURSORS

Defines the maximum number of cursors that can be open on one connection to a
non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database server.
Therefore, setting the same value as the OPEN_CURSORS initialization parameter in
the Oracle database server is recommended.

HS_ROWID_CACHE_SIZE

Specifies the size of the Heterogeneous Services cache containing the non-Oracle
system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs
needed to support the WHERE CURRENT OF clause in a SQL statement or a SELECT
FOR UPDATE statement.

When the cache is full, the first slot in the cache is reused, then the second, and so
on. Only the last HS_ROWID_CACHE_SIZE non-Oracle system ROWIDs are cached.

HS_RPC_FETCH_REBLOCKING

Property Description

Default value 50

Range of values 1 to the value of Oracle’s OPEN_CURSORS initialization parameter

Property Description

Default value 3

Range of values 1 to 32767

Property Description

Default value ON

Range of values OFF or ON

HS_RPC_FETCH_SIZE

Heterogeneous Services Initialization Parameters A-13

Controls whether Heterogeneous Services attempts to optimize performance of data
transfer between the Oracle database server and the Heterogeneous Services agent
connected to the non-Oracle data store.

The following values are possible:

■ OFF disables reblocking of fetched data so that data is immediately sent from
agent to server.

■ ON enables reblocking, which means that data fetched from the non-Oracle
system is buffered in the agent and is not sent to the Oracle database server
until the amount of fetched data is equal or higher than HS_RPC_FETCH_SIZE.
However, any buffered data is returned immediately when a fetch indicates that
no more data exists or when the non-Oracle system reports an error.

HS_RPC_FETCH_SIZE

Tunes internal data buffering to optimize the data transfer rate between the server
and the agent process.

Increasing the value can reduce the number of network round trips needed to
transfer a given amount of data, but also tends to increase data bandwidth and to
reduce response time or latency as measured between issuing a query and
completion of all fetches for the query. Nevertheless, increasing the fetch size can
increase latency for the initial fetch results of a query, because the first fetch results
are not transmitted until additional data is available.

After the gateway is installed and configured, you can use the gateway to access
non-Oracle database system data, pass non-Oracle database system commands
from applications to the non-Oracle database system database, perform distributed
queries, and copy data.

Property Description

Default value 4000

Range of values Decimal integer (byte count)

HS_TIME_ZONE

A-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

HS_TIME_ZONE

Specifies the default local time zone displacement for the current SQL session. The
format mask, [+|-]hh:mm, is specified to indicate the hours and minutes before or
after UTC (Coordinated Universal Time—formerly Greenwich Mean Time). For
example:

HS_TIME_ZONE = [+ | -] hh:mm

IFILE

Use IFILE to embed another initialization file within the current initialization file;
the value should be an absolute path and should not contain environment variables;
the three levels of nesting limit does not apply.

Property Description

Default value for
’[+|-]hh:mm’

Derived from NLS_TERRITORY

Range of values for
’[+|-]hh:mm’

Any valid datetime format mask

Property Description

Default value None

Range of values Valid parameter file names

See Also: IFILE in Oracle Database Reference

Datatype Mapping B-1

B
Datatype Mapping

Oracle maps the ANSI datatypes through ODBC and OLE DB interfaces to
supported Oracle datatypes. When the results of a query are returned, Oracle9i
converts the ODBC or OLE DB datatypes to Oracle datatypes.

The tables in this appendix show how Oracle maps ANSI datatypes through ODBC
and OLE DB interfaces to supported Oracle datatypes when it is retrieving data
from a non-Oracle system.

This appendix contains the following tables:

■ Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

■ Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

B-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC
Interface

Table B–1 maps ODBC datatypes into equivalent ANSI and Oracle datatypes. In
some cases equivalence to ANSI datatypes is not guaranteed to be exact because the
ANSI SQL standard delegates definition of numeric precision and maximum length
of character data to individual implementations. This table reflects a probable
mapping between ANSI and ODBC datatypes for a typical implementation of ANSI
SQL.

Table B–1 Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

ANSI ODBC Oracle

NUMERIC(19,0) SQL_BIGINT NUMBER(19,0)

N/A SQL_BINARY RAW

CHAR SQL_CHAR CHAR

DATE SQL_DATE DATE

DECIMAL(p,s) SQL_DECIMAL(p,s) NUMBER(p,s)

DOUBLE PRECISION SQL_DOUBLE FLOAT(49)

FLOAT SQL_FLOAT FLOAT(49)

INTEGER SQL_INTEGER NUMBER(10)

Note: It is possible under
some circumstance for the
INTEGER ANSI datatype to
map to Precision 38, but it
usually maps to Precision 10.

N/A SQL_LONGVARBINARY LONG RAW

N/A SQL_LONGVARCHAR LONG

Note: If an ANSI SQL
implementation defines a
large value for the maximum
length of VARCHAR data, then
it is possible that ANSI
VARCHAR will map to SQL_
LONGVARCHAR and Oracle
LONG. The same is true for
OLE DB DBTYPE_STRING
(long attribute).

REAL SQL_REAL FLOAT(23)

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

Datatype Mapping B-3

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB
Interface

SMALLINT SQL_SMALLINT NUMBER(5)

TIME SQL_TIME DATE

TIMESTAMP SQL_TIMESTAMP DATE

NUMERIC(3,0) SQL_TINYINT NUMBER(3)

VARCHAR SQL_VARCHAR VARCHAR

BOOLEAN SQL_BIT RAW(1)

Table B–2 Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB
Interface

ANSI OLE DB Oracle

NUMERIC(3,0) DBTYPE_UI1 NUMBER(3)

NUMERIC(3,0) DBTYPE_I1 NUMBER(3)

SMALLINT DBTYPE_UI2 NUMBER(5)

SMALLINT DBTYPE_I2 NUMBER(5)

NUMERIC(3,0) DBTYPE_BOOL NUMBER(5)

INTEGER DBTYPE_UI4 NUMBER(10)

INTEGER DBTYPE_I4 NUMBER(10)

NUMERIC(19,0) DBTYPE_UI8 NUMBER(19,0)

NUMERIC(19,0) DBTYPE_I8 NUMBER(19,0)

NUMERIC(p,s) DBTYPE_NUMERIC(p,s) NUMBER(p,s)

FLOAT DBTYPE_R4 FLOAT(23)

DOUBLE PRECISION DBTYPE_R8 FLOAT(49)

N/A DBTYPE_DECIMAL FLOAT(49)

VARCHAR DBTYPE_STR VARCHAR2

VARCHAR DBTYPE_WSTR VARCHAR2

Table B–1 Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

ANSI ODBC Oracle

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

B-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

NUMERIC(19,0) DBTYPE_CY NUMBER(19,0)

DATE DBTYPE_DBDATE DATE

TIME DBTYPE_DBTIME DATE

TIMESTAMP DBTYPE_TIMESTAMP DATE

N/A DBTYPE_BYTES RAW

N/A DBTYPE_BYTES (long
attribute)

LONG RAW

N/A DBTYPE_STRING (long
attribute)

LONG

Table B–2 Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB
Interface (Cont.)

ANSI OLE DB Oracle

Data Dictionary Translation Support C-1

C
Data Dictionary Translation Support

Data dictionary information is stored in the non-Oracle system as system tables and
is accessed through ODBC or OLE DB application programming interfaces (APIs).
This appendix documents data dictionary translation support. It explains how to
access non-Oracle data dictionaries, lists Heterogeneous Services data dictionary
views, describes how to use supported views and tables, and explains data
dictionary mapping.

This appendix contains the following topics:

■ Accessing the Non-Oracle Data Dictionary

■ Heterogeneous Services Data Dictionary Views

■ Views and Tables Supported by Generic Connectivity

Accessing the Non-Oracle Data Dictionary

C-2 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Accessing the Non-Oracle Data Dictionary
Accessing a non-Oracle data dictionary table or view is identical to accessing a data
dictionary in an Oracle database. You issue a SELECT statement specifying a
database link. The Oracle data dictionary view and column names are used to
access the non-Oracle data dictionary. Synonyms of supported views are also
acceptable.

For example, the following statement queries the data dictionary table ALL_USERS
to retrieve all users in the non-Oracle system:

SQL SELECT * FROM all_users@sid1;

When you issue a data dictionary access query, the ODBC or OLE DB agent:

1. Maps the requested table, view, or synonym to one or more ODBC or OLE DB
APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary
column names to their corresponding non-Oracle column names within the
query.

2. Sends the sequence of APIs to the non-Oracle system.

3. Possibly converts the retrieved non-Oracle data to give it the appearance of the
Oracle data dictionary table.

4. Passes the data dictionary information from the non-Oracle system table to
Oracle.

Heterogeneous Services Data Dictionary Views
Heterogeneous Services mapping supports the following list of data dictionary
views:

ALL_CATALOG
ALL_COL_COMMENTS
ALL_COL_PRIVS
ALL_COL_PRIVS_MADE
ALL_COL_PRIVS_RECD
ALL_CONSTRAINTS
ALL_CONS_COLUMNS

Note: The values returned when querying the Generic
Connectivity data dictionary may not be the same as the ones
returned by the Oracle SQL*Plus DESCRIBE command.

Heterogeneous Services Data Dictionary Views

Data Dictionary Translation Support C-3

ALL_DB_LINKS
ALL_DEF_AUDIT_OPTS
ALL_DEPENDENCIES
ALL_ERRORS
ALL_INDEXES
ALL_IND_COLUMNS
ALL_OBJECTS
ALL_SEQUENCES
ALL_MVIEWS
ALL_SOURCE
ALL_SYNONYMS
ALL_TABLES
ALL_TAB_COLUMNS
ALL_TAB_COMMENTS
ALL_TAB_PRIVS
ALL_TAB_PRIVS_MADE
ALL_TAB_PRIVS_RECD
ALL_TRIGGERS
ALL_USERS
ALL_VIEWS
AUDIT_ACTIONS
COLUMN_PRIVILEGES
DBA_CATALOG
DBA_COL_COMMENTS
DBA_COL_PRIVS
DBA_OBJECTS
DBA_ROLES
DBA_ROLE_PRIVS
DBA_SYS_PRIVS
DBA_TABLES
DBA_TAB_COLUMNS
DBA_TAB_COMMENTS
DBA_TAB_PRIVS
DBA_USERS
DICTIONARY
DICT_COLUMNS
DUAL
INDEX_STATS
PRODUCT_USER_PROFILE
RESOURCE_COST
ROLE_ROLE_PRIVS

Heterogeneous Services Data Dictionary Views

C-4 Oracle Database Heterogeneous Connectivity Administrator’s Guide

ROLE_SYS_PRIVS
ROLE_TAB_PRIVS
SESSION_PRIVS
SESSION_ROLES
TABLE_PRIVILEGES
USER_AUDIT_OBJECT
USER_AUDIT_SESSION
USER_AUDIT_STATEMENT
USER_AUDIT_TRAIL
USER_CATALOG
USER_CLUSTERS
USER_CLU_COLUMNS
USER_COL_COMMENTS
USER_COL_PRIVS
USER_COL_PRIVS_MADE
USER_COL_PRIVS_RECD
USER_CONSTRAINTS
USER_CONS_COLUMNS
USER_DB_LINKS
USER_DEPENDENCIES
USER_ERRORS
USER_EXTENTS
USER_FREE_SPACE
USER_INDEXES
USER_IND_COLUMNS
USER_OBJECTS
USER_OBJ_AUDIT_OPTS
USER_RESOURCE_LIMITS
USER_ROLE_PRIVS
USER_SEGMENTS
USER_SEQUENCES
USER_MVIEW_LOGS
USER_SOURCE
USER_SYNONYMS
USER_SYS_PRIVS
USER_TABLES
USER_TABLESPACES
USER_TAB_COLUMNS
USER_TAB_COMMENTS
USER_TAB_PRIVS
USER_TAB_PRIVS_MADE

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-5

USER_TAB_PRIVS_RECD
USER_TRIGGERS
USER_TS_QUOTAS
USER_USERS
USER_VIEWS

Views and Tables Supported by Generic Connectivity
Generic Connectivity supports only the views and tables shown in Table C–1.

If you use an unsupported view, then you receive an Oracle error message that no
rows were selected.

If you want to query data dictionary views using SELECT... FROM DBA_*, first
connect as Oracle user SYSTEM or SYS. Otherwise, you receive the following error
message:

ORA-28506: Parse error in data dictionary translation for %s stored in %s

Using Generic Connectivity, queries of the supported data dictionary tables and
views beginning with the characters ALL_ may return rows from the non-Oracle
system when you do not have access privileges for those non-Oracle objects. When
querying an Oracle database with the Oracle data dictionary, rows are returned only
for those objects you are permitted to access.

Data Dictionary Mapping
The tables in this section list Oracle data dictionary view names and the equivalent
ODBC or OLE DB APIs used.

Table C–1 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API

ALL_CATALOG SQLTables DBSCHEMA_CATALOGS

ALL_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

ALL_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

ALL_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

ALL_INDEXES SQLStatistics DBSCHEMA_STATISTICS

Views and Tables Supported by Generic Connectivity

C-6 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Generic Connectivity Data Dictionary Descriptions
The Generic Connectivity data dictionary tables and views provide this
information:

■ Name, datatype, and width of each column

ALL_OBJECTS SQLTables, SQLProcedures,
SQLStatistics

DBSCHEMA_TABLES, DBSCHEMA_
PROCEDURES, DBSCHEMA_
STATISTICS

ALL_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

ALL_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

ALL_TABLES SQLStatistics DBSCHEMA_STATISTICS

ALL_USERS SQLTables DBSCHEMA_TABLES

ALL_VIEWS SQLTables DBSCHEMA_TABLES

DICTIONARY SQLTables DBSCHEMA_TABLES

USER_CATALOG SQLTables DBSCHEMA_TABLES

USER_COL_COMMENTS SQLColumns DBSCHEMA_COLUMNS

USER_CONS_COLUMNS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_CONSTRAINTS SQLPrimaryKeys, SQLForeignKeys DBSCHEMA_PRIMARY_KEYS,
DBSCHEMA_FOREIGN_KEYS

USER_IND_COLUMNS SQLStatistics DBSCHEMA_STATISTICS

USER_INDEXES SQLStatistics DBSCHEMA_STATISTICS

USER_OBJECTS SQLTables, SQLProcedures,
SQLStatistics

DBSCHEMA_TABLES, DBSCHEMA_
PROCEDURES, DBSCHEMA_
STATISTICS

USER_TAB_COLUMNS SQLColumns DBSCHEMA_COLUMNS

USER_TAB_COMMENTS SQLTables DBSCHEMA_TABLES

USER_TABLES SQLStatistics DBSCHEMA_STATISTICS

USER_USERS SQLTables DBSCHEMA_TABLES

USER_VIEWS SQLTables DBSCHEMA_TABLES

Table C–1 Generic Connectivity Data Dictionary Mapping (Cont.)

View ODBC API OLE DB API

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-7

■ The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the
Oracle data dictionary tables and views. Any default value is shown to the right of
an item.

ALL_CATALOG

ALL_COL_COMMENTS

ALL_CONS_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE" or "VIEW" or SYNONYM

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME NOT NULL VARCHAR2(30) -

COMMENTS - VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

CONSTRAINT_NAME NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME - VARCHAR2(4000) -

POSITION - NUMBER -

Views and Tables Supported by Generic Connectivity

C-8 Oracle Database Heterogeneous Connectivity Administrator’s Guide

ALL_CONSTRAINTS

ALL_IND_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

CONSTRAINT_NAME NOT NULL VARCHAR2(30) -

CONSTRAINT_TYPE - VARCHAR2(1) "R" or "P"

TABLE_NAME NOT NULL VARCHAR2(30) -

SEARCH_CONDITION - LONG NULL

R_OWNER - VARCHAR2(30) -

R_CONSTRAINT_NAME - VARCHAR2(30) -

DELETE_RULE - VARCHAR2(9) "CASCADE" or "NO
ACTION" or "SET NULL"

STATUS - VARCHAR2(8) NULL

DEFERRABLE - VARCHAR2(14) NULL

DEFERRED - VARCHAR2(9) NULL

VALIDATED - VARCHAR2(13) NULL

GENERATED - VARCHAR2(14) NULL

BAD - VARCHAR2(3) NULL

RELY - VARCHAR2(4) NULL

LAST_CHANGE - DATE NULL

Name Null? Type Value

INDEX_OWNER NOT NULL VARCHAR2(30) -

INDEX_NAME NOT NULL VARCHAR2(30) -

TABLE_OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME - VARCHAR2(4000) -

COLUMN_POSITION NOT NULL NUMBER -

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-9

ALL_INDEXES

COLUMN_LENGTH NOT NULL NUMBER -

DESCEND - VARCHAR2(4) "DESC" or "ASC"

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

INDEX_NAME NOT NULL VARCHAR2(30) -

INDEX_TYPE - VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - CHAR(5) "TABLE"

UNIQUENESS - VARCHAR2(9) "UNIQUE" or "NONUNIQUE"

COMPRESSION - VARCHAR2(8) NULL

PREFIX_LENGTH - NUMBER 0

TABLESPACE_NAME - VARCHAR2(30) NULL

INI_TRANS - NUMBER 0

MAX_TRANS - NUMBER 0

INITIAL_EXTENT - NUMBER 0

NEXT_EXTENT - NUMBER 0

MIN_EXTENTS - NUMBER 0

MAX_EXTENTS - NUMBER 0

PCT_INCREASE - NUMBER 0

PCT_THRESHOLD - NUMBER 0

INCLUDE_COLUMNS - NUMBER 0

FREELISTS - NUMBER 0

FREELIST_GROUPS - NUMBER 0

PCT_FREE - NUMBER 0

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

LOGGING - VARCHAR2(3) NULL

BLEVEL - NUMBER 0

LEAF_BLOCKS - NUMBER 0

DISTINCT_KEYS - NUMBER

AVG_LEAF_BLOCKS_
PER_KEY

- NUMBER 0

AVG_DATA_BLOCKS_
PER_KEY

- NUMBER 0

CLUSTERING_
FACTOR

- NUMBER 0

STATUS - VARCHAR2(8) NULL

NUM_ROWS - NUMBER 0

SAMPLE_SIZE - NUMBER 0

LAST_ANALYZED - DATE NULL

DEGREE - VARCHAR2(40) NULL

INSTANCES - VARCHAR2(40) NULL

PARTITIONED - VARCHAR2(3) NULL

TEMPORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

SECONDARY - VARCHAR2(1) NULL

BUFFER_POOL - VARCHAR2(7) NULL

USER_STATS - VARCHAR2(3) NULL

DURATION - VARCHAR2(15) NULL

PCT_DIRECT_
ACCESS

- NUMBER 0

ITYP_OWNER - VARCHAR2(30) NULL

ITYP_NAME - VARCHAR2(30) NULL

PARAMETERS - VARCHAR2(1000) NULL

GLOBAL_STATS - VARCHAR2(3) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-11

ALL_OBJECTS

ALL_TAB_COLUMNS

DOMIDX_STATUS - VARCHAR2(12) NULL

DOMIDX_OPSTATUS - VARCHAR2(6) NULL

FUNCIDX_STATUS - VARCHAR2(8) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

OBJECT_NAME NOT NULL VARCHAR2(30) -

SUBOBJECT_NAME - VARCHAR2(30) NULL

OBJECT_ID NOT NULL NUMBER 0

DATA_OBJECT_ID - NUMBER 0

OBJECT_TYPE - VARCHAR2(18) "TABLE" or "VIEW" or
"SYNONYM" or "INDEX" or
"PROCEDURE"

CREATED NOT NULL DATE NULL

LAST_DDL_TIME NOT NULL DATE NULL

TIMESTAMP - VARCHAR2(19) NULL

STATUS - VARCHAR2(7) NULL

TEMPORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

SECONDARY - VARCHAR2(1) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME NOT NULL VARCHAR2(30) -

DATA_TYPE - VARCHAR2(106) -

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

ALL_TAB_COMMENTS

DATA_TYPE_MOD - VARCHAR2(3) NULL

DATA_TYPE_OWNER - VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER -

DATA_PRECISION - NUMBER -

DATA_SCALE - NUMBER -

NULLABLE - VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER -

DEFAULT_LENGTH - NUMBER 0

DATA_DEFAULT - LONG NULL

NUM_DISTINCT - NUMBER 0

LOW_VALUE - RAW(32) NULL

HIGH_VALUE - RAW(32) NULL

DENSITY - NUMBER 0

NUM_NULLS - NUMBER 0

NUM_BUCKETS - NUMBER 0

LAST_ANALYZED - DATE NULL

SAMPLE_SIZE - NUMBER 0

CHARACTER_SET_NAME - VARCHAR2(44) NULL

CHAR_COL_DEC_LENGTH - NUMBER 0

GLOBAL_STATS - VARCHAR2(3) NULL

USER_STATS - VARCHAR2(3) NULL

AVG_COL_LEN - NUMBER 0

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-13

ALL_TABLES

TABLE_TYPE - VARCHAR2(11) "TABLE" or "VIEW"

COMMENTS - VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLESPACE_NAME - VARCHAR2(30) NULL

CLUSTER_NAME - VARCHAR2(30) NULL

IOT_NAME - VARCHAR2(30) NULL

PCT_FREE - NUMBER 0

PCT_USED - NUMBER 0

INI_TRANS - NUMBER 0

MAX_TRANS - NUMBER 0

INITIAL_EXTENT - NUMBER 0

NEXT_EXTENT - NUMBER 0

MIN_EXTENTS - NUMBER 0

MAX_EXTENTS - NUMBER 0

PCT_INCREASE - NUMBER 0

FREELISTS - NUMBER 0

FREELIST_GROUPS - NUMBER 0

LOGGING - VARCHAR2(3) NULL

BACKED_UP - VARCHAR2(1) NULL

NUM_ROWS - NUMBER -

BLOCKS - NUMBER -

EMPTY_BLOCKS - NUMBER 0

AVG_SPACE - NUMBER 0

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

ALL_USERS

CHAIN_CNT - NUMBER 0

AVG_ROW_LEN - NUMBER 0

AVG_SPACE_FREELIST_BLOCKS - NUMBER 0

NUM_FREELIST_BLOCKS - NUMBER 0

DEGREE - VARCHAR2(10) NULL

INSTANCES - VARCHAR2(10) NULL

CACHE - VARCHAR2(5) NULL

TABLE_LOCK - VARCHAR2(8) NULL

SAMPLE_SIZE - NUMBER 0

LAST_ANALYZED - DATE NULL

PARTITIONED - VARCHAR2(3) NULL

IOT_TYPE - VARCHAR2(12) NULL

TEMPORARY - VARCHAR2(1) NULL

SECONDARY - VARCHAR2(1) NULL

NESTED - VARCHAR2(3) NULL

BUFFER_POOL - VARCHAR2(7) NULL

ROW_MOVEMENT - VARCHAR2(8) NULL

GLOBAL_STATS - VARCHAR2(3) NULL

USER_STATS - VARCHAR2(3) NULL

DURATION - VARHCAR2(15) NULL

SKIP_CORRUPT - VARCHAR2(8) NULL

MONITORING - VARCHAR2(3) NULL

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30) -

USER_ID NOT NULL NUMBER 0

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-15

ALL_VIEWS

DICTIONARY

USER_CATALOG

CREATED NOT NULL DATE NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

VIEW_NAME NOT NULL VARCHAR2(30) -

TEXT_LENGTH - NUMBER 0

TEXT NOT NULL LONG NULL

TYPE_TEXT_LENGTH - NUMBER 0

TYPE_TEXT - VARCHAR2(4000) NULL

OID_TEXT_LENGTH - NUMBER 0

OID_TEXT - VARCHAR2(4000) NULL

VIEW_TYPE_OWNER - VARCHAR2(30) NULL

VIEW_TYPE - VARCHAR2(30) NULL

Name Null? Type Value

TABLE_NAME - VARCHAR2(30) -

COMMENTS - VARCHAR2(4000) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE" or, "VIEW" or "SYNONYM"

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-16 Oracle Database Heterogeneous Connectivity Administrator’s Guide

USER_COL_COMMENTS

USER_CONS_COLUMNS

USER_CONSTRAINTS

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME NOT NULL VARCHAR2(30) -

COMMENTS - VARCHAR2(4000) NULL

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

CONSTRAINT_NAME NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME - VARCHAR2(4000) -

POSITION - NUMBER -

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

CONSTRAINT_NAME NOT NULL VARCHAR2(30) -

CONSTRAINT_TYPE - VARCHAR2(1) R or P

TABLE_NAME NOT NULL VARCHAR2(30) -

SEARCH_CONDITION - LONG NULL

R_OWNER - VARCHAR2(30) -

R_CONSTRAINT_NAME - VARCHAR2(30) -

DELETE_RULE - VARCHAR2(9) "CASCADE" or "NOACTION"
or "SET NULL"

STATUS - VARCHAR2(8) NULL

DEFERRABLE - VARCHAR2(14) NULL

DEFERRED - VARCHAR2(9) NULL

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-17

USER_IND_COLUMNS

USER_INDEXES

VALIDATED - VARCHAR2(13) NULL

GENERATED - VARCHAR2(14) NULL

BAD - VARCHAR2(3) NULL

RELY - VARCHAR2(4) NULL

LAST_CHANGE - DATE NULL

Name Null? Type Value

INDEX_NAME - VARCHAR2(30) -

TABLE_NAME - VARCHAR2(30) -

COLUMN_NAME - VARCHAR2(4000) -

COLUMN_POSITION - NUMBER -

COLUMN_LENGTH - NUMBER -

DESCEND - VARCHAR2(4) "DESC" or "ASC"

Name Null? Type Value

INDEX_NAME NOT NULL VARCHAR2(30) -

INDEX_TYPE - VARCHAR2(27) NULL

TABLE_OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE"

UNIQUENESS - VARCHAR2(9) "UNIQUE" or
"NONUNIQUE"

COMPRESSION - VARCHAR2(8) NULL

PREFIX_LENGTH - NUMBER 0

TABLESPACE_NAME - VARCHAR2(30) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-18 Oracle Database Heterogeneous Connectivity Administrator’s Guide

INI_TRANS - NUMBER 0

MAX_TRANS - NUMBER 0

INITIAL_EXTENT - NUMBER 0

NEXT_EXTENT - NUMBER 0

MIN_EXTENTS - NUMBER 0

MAX_EXTENTS - NUMBER 0

PCT_INCREASE - NUMBER 0

PCT_THRESHOLD - NUMBER 0

INCLUDE_COLUMNS - NUMBER 0

FREELISTS - NUMBER 0

FREELIST_GROUPS - NUMBER 0

PCT_FREE - NUMBER 0

LOGGING - VARCHAR2(3) NULL

BLEVEL - NUMBER 0

LEAF_BLOCKS - NUMBER 0

DISTINCT_KEYS - NUMBER -

AVG_LEAF_BLOCKS_PER_KEY - NUMBER 0

AVG_DATA_BLOCKS_PER_KEY - NUMBER 0

CLUSTERING_FACTOR - NUMBER 0

STATUS - VARCHAR2(8) NULL

NUM_ROWS - NUMBER 0

SAMPLE_SIZE - NUMBER 0

LAST_ANALYZED - DATE NULL

DEGREE - VARCHAR2(40) NULL

INSTANCES - VARCHAR2(40) NULL

PARTITIONED - VARCHAR2(3) NULL

TEMPORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-19

USER_OBJECTS

SECONDARY - VARCHAR2(1) NULL

BUFFER_POOL - VARCHAR2(7) NULL

USER_STATS - VARCHAR2(3) NULL

DURATION - VARHCAR2(15) NULL

PCT_DIRECT_ACCESS - NUMBER 0

ITYP_OWNER - VARCHAR2(30) NULL

ITYP_NAME - VARCHAR2(30) NULL

PARAMETERS - VARCHAR2(1000) NULL

GLOBAL_STATS - VARCHAR2(3) NULL

DOMIDX_STATUS - VARCHAR2(12) NULL

DOMIDX_OPSTATUS - VARCHAR2(6) NULL

FUNCIDX_STATUS - VARCHAR2(8) NULL

Name Null? Type Value

OBJECT_NAME - VARCHAR2(128) -

SUBOBJECT_NAME - VARCHAR2(30) NULL

OBJECT_ID - NUMBER 0

DATA_OBJECT_ID - NUMBER 0

OBJECT_TYPE - VARCHAR2(18) "TABLE" or "VIEW" or
"SYNONYM" or "INDEX" or
"PROCEDURE"

CREATED - DATE NULL

LAST_DDL_TIME - DATE NULL

TIMESTAMP - VARCHAR2(19) NULL

STATUS - VARCHAR2(7) NULL

TEMPORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-20 Oracle Database Heterogeneous Connectivity Administrator’s Guide

USER_TAB_COLUMNS

SECONDARY - VARCHAR2(1) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUMN_NAME NOT NULL VARCHAR2(30) -

DATA_TYPE - VARCHAR2(106) -

DATA_TYPE_MOD - VARCHAR2(3) NULL

DATA_TYPE_OWNER - VARCHAR2(30) NULL

DATA_LENGTH NOT NULL NUMBER -

DATA_PRECISION - NUMBER -

DATA_SCALE - NUMBER -

NULLABLE - VARCHAR2(1) "Y" or "N"

COLUMN_ID NOT NULL NUMBER -

DEFAULT_LENGTH - NUMBER NULL

DATA_DEFAULT - LONG NULL

NUM_DISTINCT - NUMBER NULL

LOW_VALUE - RAW(32) NULL

HIGH_VALUE - RAW(32) NULL

DENSITY - NUMBER 0

NUM_NULLS - NUMBER 0

NUM_BUCKETS - NUMBER 0

LAST_ANALYZED - DATE NULL

SAMPLE_SIZE - NUMBER 0

CHARACTER_SET_NAME - VARCHAR2(44) NULL

CHAR_COL_DECL_LENGTH - NUMBER 0

GLOBAL_STATS - VARCHAR2(3) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-21

USER_TAB_COMMENTS

USER_TABLES

USER_STATS - VARCHAR2(3) NULL

AVG_COL_LEN - NUMBER 0

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE" or "VIEW"

COMMENTS - VARCHAR2(4000) NULL

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLESPACE_NAME - VARCHAR2(30) NULL

CLUSTER_NAME - VARCHAR2(30) NULL

IOT_NAME - VARCHAR2(30) NULL

PCT_FREE - NUMBER 0

PCT_USED - NUMBER 0

INI_TRANS - NUMBER 0

MAX_TRANS - NUMBER 0

INITIAL_EXTENT - NUMBER 0

NEXT_EXTENT - NUMBER 0

MIN_EXTENTS - NUMBER 0

MAX_EXTENTS - NUMBER 0

PCT_INCREASE - NUMBER 0

FREELISTS - NUMBER 0

FREELIST_GROUPS - NUMBER 0

LOGGING - VARCHAR2(3) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

C-22 Oracle Database Heterogeneous Connectivity Administrator’s Guide

BACKED_UP - VARCHAR2(1) NULL

NUM_ROWS - NUMBER -

BLOCKS - NUMBER -

EMPTY_BLOCKS - NUMBER 0

AVG_SPACE - NUMBER 0

CHAIN_CNT - NUMBER 0

AVG_ROW_LEN - NUMBER 0

AVG_SPACE_FREELIST_BLOCKS - NUMBER 0

NUM_FREELIST_BLOCKS - NUMBER 0

DEGREE - VARCHAR2(10) NULL

INSTANCES - VARCHAR2(10) NULL

CACHE - VARCHAR2(5) NULL

TABLE_LOCK - VARCHAR2(8) NULL

SAMPLE_SIZE - NUMBER 0

LAST_ANALYZED - DATE NULL

PARTITIONED - VARCHAR2(3) NULL

IOT_TYPE - VARCHAR2(12) NULL

TEMPORARY - VARHCAR2(1) NULL

SECONDARY - VARCHAR2(1) NULL

NESTED - VARCHAR2(3) NULL

BUFFER_POOL - VARCHAR2(7) NULL

ROW_MOVEMENT - VARCHAR2(8) NULL

GLOBAL_STATS - VARCHAR2(3) NULL

USER_STATS - VARCHAR2(3) NULL

DURATION - VARCHAR2(15) NULL

SKIP_CORRUPT - VARCHAR2(8) NULL

MONITORING - VARCHAR2(3) NULL

Name Null? Type Value

Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-23

USER_USERS

USER_VIEWS

Name Null? Type Value

USERNAME NOT NULL VARCHAR2(30) -

USER_ID NOT NULL NUMBER 0

ACCOUNT_STATUS NOT NULL VARCHAR2(32) OPEN

LOCK_DATE - DATE NULL

EXPIRY_DATE - DATE NULL

DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL

TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL

CREATED NOT NULL DATE NULL

INITIAL_RSRC_CONSUMER_
GROUP

- VARCHAR2(30) NULL

EXTERNAL_NAME - VARCHAR2(4000) NULL

Name Null? Type Value

VIEW_NAME NOT NULL VARCHAR2(30) -

TEXT_LENGTH - NUMBER 0

TEXT - LONG NULL

TYPE_TEXT_LENGTH - NUMBER 0

TYPE_TEXT - VARCHAR2(4000) NULL

OID_TEXT_LENGTH - NUMBER 0

OID_TEXT - VARCHAR2(4000) NULL

VIEW_TYPE_OWNER - VARCHAR2(30) NULL

VIEW_TYPE - VARCHAR2(30) NULL

Views and Tables Supported by Generic Connectivity

C-24 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Index

A
agent control utility. See agtctl.
agents

Generic Connectivity, 2-4
Heterogeneous Services

architecture, 2-2
disabling self-registration, 4-14
registering, 4-10, 4-11, 4-12
types of agents, 2-3

multithreaded Heterogeneous Services, 5-1
specifying initialization parameters for, 4-3
Transparent Gateways, 2-3

agtctl, 5-3, 5-6
commands, 5-7
shell mode commands, 5-11
single-line command mode, 5-8

application development
Heterogeneous Services

controlling array fetches between non-Oracle
server and agent, 4-9

controlling array fetches between Oracle
server and agent, 4-9

controlling reblocking of array fetches, 4-9
DBMS_HS_PASSTHROUGH package, 3-5
pass-through SQL, 3-5
using bulk fetches, 4-7
using OCI for bulk fetches, 4-8

array fetches, 4-8
agents, 4-9

B
bind queries

executing using pass-through SQL, 3-11
BIND_INOUT_VARIABLE procedure, 3-7, 3-11
BIND_OUT_VARIABLE procedure, 3-6, 3-10
BIND_VARIABLE procedure, 3-6
buffers

multiple rows, 3-12
bulk fetches

optimizing data transfers using, 4-7

C
character sets

Heterogeneous Services, A-8
CLOSE_CURSOR function, 3-6
commit point site

commit point strength, A-3
configuring

Generic Connectivity, 7-7
Transparent Gateways, 4-2

copying data
from Oracle database server to SQL Server, 4-18
from SQL Server to Oracle database server, 4-19
INSERT statement, 4-19

D
data dictionary

contents with Generic Connectivity, C-5
mapping for Generic Connectivity, C-5
Oracle server name/SQL Server name, C-5
translation support for Generic

Connectivity, C-1
data dictionary views

Generic Connectivity, C-5
Index-1

Heterogeneous Services, 4-20, C-2
database links

heterogeneous systems, 4-3
date formats

Heterogeneous Services, A-9, A-11
DBMS_HS_PASSTHROUGH package, 3-5

list of functions and procedures, 3-6
describe cache high water mark

definition, A-5
dispatcher threads

multithreaded Heterogeneous Services
agents, 5-3, 5-5

distributed queries
optimizing performance, 6-2

drivers
ODBC, 7-12
OLE DB (FS), 7-15
OLE DB (SQL), 7-14

dynamic performance views
Heterogeneous Services, 4-25

determining open sessions, 4-26
determining which agents are on host, 4-26

E
EXECUTE_IMMEDIATE procedure, 3-7

restrictions, 3-7
EXECUTE_NON_QUERY procedure, 3-7

F
FDS_CLASS, 4-12
FDS_CLASS_VERSION, 4-12
FDS_INST_NAME, 4-13
FETCH_ROW procedure, 3-7

executing queries using pass-through SQL, 3-11
fetches

bulk, 4-7
optimizing round-trips, 3-12

G
gateways

how they work, 2-9
Generic Connectivity

architecture, 7-2
Oracle and non-Oracle on same machine, 7-4
Oracle and non-Oracle on separate

machines, 7-3
configuration, 7-7
creating initialization file, 7-7
data dictionary

translation support, C-1
defined, 1-3
definition, 7-2
DELETE statement, 7-6
editing initialization file, 7-7
Heterogeneous Services, 2-4
INSERT statement, 7-6
non-Oracle data dictionary access, C-2
ODBC connectivity requirements, 7-12
OLE DB (FS) connectivity requirements, 7-15
OLE DB (SQL) connectivity requirements, 7-14
restrictions, 7-5
setting parameters for ODBC source, 7-9

UNIX, 7-10
Windows NT, 7-9

setting parameters for OLE DB source, 7-11
SQL execution, 7-5
supported functions, 7-6
supported SQL syntax, 7-6
types of agents, 7-2
UPDATE statement, 7-6

generic connectivity
error tracing, A-7

GET_VALUE procedure, 3-7, 3-10, 3-11
globalization support

Heterogeneous Services, A-7
character set of non-Oracle source, A-10
date format, A-9
languages in character date values, A-10

H
heterogeneous distributed systems

accessing, 4-2
Heterogeneous Services

agent control utility (agtctl), 5-7
agent registration, 4-10

avoiding configuration mismatches, 4-11
Index-2

disabling, 4-14
enabling, 4-10
self-registration, 4-12

application development
controlling array fetches between non-Oracle

server and agent, 4-9
controlling array fetches between Oracle

server and agent, 4-9
controlling reblocking of array fetches, 4-9
DBMS_HS_PASSTHOUGH package, 3-5
pass-through SQL, 3-5
using bulk fetches, 4-7
using OCI for bulk fetches, 4-8

creating database links, 4-3
data dictionary views, 4-20, C-2

types, 4-20
understanding sources, 4-21
using general views, 4-22
using SQL service views, 4-24
using transaction service views, 4-23

defining maximum number of open
cursors, A-12

dynamic performance views, 4-25
V$HS_AGENT view, 4-26
V$HS_SESSION view, 4-26

Generic Connectivity
architecture, 7-2
creating initialization file, 7-7
definition, 7-2
editing initialization file, 7-7
non-Oracle data dictionary access, C-2
ODBC connectivity requirements, 7-12
OLE DB (FS) connectivity requirements, 7-15
OLE DB (SQL) connectivity

requirements, 7-14
restrictions, 7-5
setting parameters for ODBC source, 7-9
setting parameters for OLE DB source, 7-11
SQL execution, 7-5
supported functions, 7-6
supported SQL syntax, 7-6
supported tables, C-5
types of agents, 7-2

initialization parameters, 2-6, 4-5, 7-7, A-1
multithreaded agents, 5-1

optimizing data transfer, A-12
setting global name, A-5
setting up access using Transparent

Gateway, 4-2
setting up environment, 4-2
specifying cache high water mark, A-5
specifying cache size, A-12
specifying commit point strength, A-3
SQL service, 2-5
testing connections, 4-4
transaction service, 2-4
tuning internal data buffering, A-13
tuning LONG data transfer, A-9

HS_AUTOREGISTER initialization parameter
using to enable agent self-registration, 4-14

HS_BASE_CAPS view, 4-20
HS_BASE_DD view, 4-20
HS_CALL_NAME initialization parameter, A-3
HS_CLASS_CAPS view, 4-21
HS_CLASS_DD view, 4-21
HS_CLASS_INIT view, 4-21
HS_COMMIT_POINT_STRENGTH initialization

parameter, A-3
HS_DB_NAME initialization parameter, A-5
HS_DESCRIBE_CACHE_HWM initialization

parameter, A-5
HS_FDS_CLASS view, 4-21
HS_FDS_CONNECT_INFO initialization

parameter, A-5
specifying connection information, 7-8

HS_FDS_DEFAULT_SCHEMA_NAME
initialization parameter, A-6

HS_FDS_FETCH_ROWS initialization
parameter, 4-9

HS_FDS_INST view, 4-21
HS_FDS_SHAREABLE_NAME initialization

parameter, A-7
HS_FDS_TRACE_LEVEL initialization

parameter, A-7
enabling agent tracing, 7-8

HS_LANGUAGE initialization parameter, A-7
HS_LONG_PIECE_TRANSFER_SIZE initialization

parameter, A-9
HS_NLS_DATE_FORMAT initialization

parameter, A-9
Index-3

HS_NLS_DATE_LANGUAGE initialization
parameter, A-10

HS_NLS_NCHAR initialization parameter, A-10
HS_NLS_NUMERIC_CHARACTER initialization

parameter, A-10
HS_NLS_TIMESTAMP_FORMAT initialization

parameter, A-11
HS_NLS_TIMESTAMP_TZ_FORMAT initialization

parameter, A-11
HS_OPEN_CURSORS initialization

parameter, A-12
HS_ROWID_CACHE_SIZE initialization

parameter, A-12
HS_RPC_FETCH_REBLOCKING initialization

parameter, 4-9, A-12
HS_RPC_FETCH_SIZE initialization

parameter, 4-9, A-13
HS_TIME_ZONE initialization parameter, A-14

I
IFILE initialization parameter, A-14
information integration

benefits of Oracle solutions, 1-4
challenges, 1-2
Generic Connectivity, 1-3
how Oracle addresses, 1-2
Messaging Gateway, 1-4
Open System Interfaces, 1-4
Oracle Streams, 1-4
Oracle Transparent Gateways, 1-3

initialization parameters
Heterogeneous Services (HS), 2-6, 4-5, 7-7, A-1

initialization parameters (HS)
common to all gateways, 4-5
descriptions, A-1
Generic Connectivity, 7-7
purpose, 2-6

L
listeners, 4-2

M
Messaging Gateway

defined, 1-4
monitor thread

multithreaded Heterogeneous Services
agents, 5-3, 5-5

multiple rows
buffering, 3-12

multithreaded Heterogeneous Services agents
administering, 5-6
advantages, 5-2
agent control utility (agtctl), 5-7
architecture, 5-3
configuration parameters, 5-12
dispatcher threads, 5-3, 5-5
monitor thread, 5-3, 5-5
task threads, 5-3, 5-6

O
OCI

optimizing data transfers using, 4-8
ODBC agents

connectivity requirements, 7-12
functions, 7-12

ODBC connectivity
data dictionary mapping, C-5
ODBC driver, 7-12
requirements, 7-12
specifying connection information

UNIX, A-6
Windows NT, A-6

specifying path to library, A-7
OLE DB (FS) drivers, 7-15
OLE DB (SQL) drivers, 7-14
OLE DB agents

connectivity requirements, 7-14, 7-15
OLE DB connectivity

data dictionary mapping, C-5
setting connection information, A-6

OLE DB drivers
data provider requirements, 7-15
initialization properties, 7-17
rowset properties, 7-17
Index-4

Open System Interfaces
defined, 1-4

OPEN_CURSOR procedure, 3-6
Oracle database server

SQL construct processing, 4-14
Oracle Net Services listener, 2-3, 4-2
Oracle precompiler

optimizing data transfers using, 4-8
Oracle Streams

defined, 1-4
Oracle Transparent Gateways

defined, 1-3
optimizing SQL statements, 6-2

OUT bind variables, 3-10

P
PARSE procedure, 3-6
pass-through SQL

avoiding SQL interpretation, 3-5
executing statements, 3-6

non-queries, 3-7
queries, 3-11
with bind variables, 3-8
with IN bind variables, 3-9
with IN OUT bind variables, 3-11
with OUT bind variables, 3-10

implications of using, 3-6
overview, 3-5
restrictions, 3-6

Q
queries

pass-through SQL, 3-11

R
reblocking, 4-9
remote functions

referenced in SQL statements, A-3
rows

buffering multiple, 3-12

S
SELECT statement

accessing non-Oracle system, C-2
service names

specifying in database links, 4-3
SQL capabilities

data dictionary tables, 4-24
SQL service

data dictionary views, 2-8, 4-20
Heterogeneous Services, 2-5
views

Heterogeneous Services, 4-24
SQL statements

optimizing distributed, 6-2
Streams

using for heterogeneous connectivity, 3-3
Synonyms, 4-17

T
task threads

multithreaded Heterogeneous Services
agents, 5-3, 5-6

transaction service
Heterogeneous Services, 2-4
views

Heterogeneous Services, 4-23
transparent gateways

accessing Heterogeneous Services agents, 4-2
creating database links, 4-3
testing connections, 4-4

U
unsupported functions

Generic Connectivity, 7-6
user-defined functions

executing on non-Oracle database, 4-15

V
V$HS_AGENT view

determining which agents are on host, 4-26
V$HS_PARAMETER view

listing HS parameters, 4-27
Index-5

V$HS_SESSION view
determining open sessions, 4-26

variables
bind, 3-7
Index-6

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	The Information Integration Challenge
	How Oracle Addresses Synchronous Information Integration
	Benefits of Oracle’s Solution for Synchronous Information Integration
	Remote Data Can Be Accessed Transparently
	There is No Unnecessary Data Duplication
	SQL Statements Can Query Several Different Databases
	Oracle’s Application Development and End User Tools Can Be Used
	Users Can Talk to a Remote Database in its Own Language

	2 The Role of the Heterogeneous Services Component
	Heterogeneous Connectivity Process Architecture
	Heterogeneous Services Agents
	Types of Heterogeneous Services Agents
	Oracle Transparent Gateways
	Generic Connectivity Agents

	Heterogeneous Services Components
	Transaction Service
	SQL Service

	Configuring Heterogeneous Services
	Data Dictionary Translations
	Heterogeneous Services Initialization Parameters
	Capabilities

	The Heterogeneous Services Data Dictionary
	Classes and Instances
	Data Dictionary Views

	Gateway Process Flow

	3 Features of Oracle Transparent Gateways and Generic Connectivity
	SQL and PL/SQL Support
	Heterogeneous Replication
	Pass-Through SQL
	Using the DBMS_HS_PASSTHROUGH Package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements
	Executing Non-Queries
	Using Bind Variables: Overview
	Using IN Bind Variables
	Using OUT Bind Variables
	Using IN OUT Bind Variables

	Executing Queries

	Result Set Support
	Result Set Support In Non-Oracle Systems
	Model 1
	Model 2

	Heterogeneous Services Support for Result Sets
	Cursor Mode
	Sequential Mode

	Data Dictionary Translations
	Datetime Datatypes
	Two-Phase Commit Protocol
	Piecewise Long
	SQL*Plus DESCRIBE Command
	Constraints on SQL in a Distributed Environment
	Resolving Remote and Heterogeneous References
	Resolving Important Restrictions
	Updates, Inserts, and Deletes

	Using Oracle’s Optimizer with Heterogeneous Services
	Example: Using Index and Table Statistics
	Example: Remote Join Optimization
	Optimizer Restrictions for Non-Oracle Access

	4 Using Heterogeneous Services Agents
	Setting Up Access to Non-Oracle Systems
	Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents
	Step 2: Create the Database Link to the Non-Oracle System
	Step 3: Test the Connection

	Setting Initialization Parameters
	Name and Location of Heterogeneous Services Initialization Parameter File
	Syntax for Initialization Parameter Settings
	Gateway Initialization Parameters

	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Registering Agents
	Enabling Agent Self-Registration
	Using Agent Self-Registration to Avoid Configuration Mismatches
	Understanding Agent Self-Registration
	FDS_CLASS and FDS_CLASS_VERSION
	FDS_INST_NAME

	Specifying HS_AUTOREGISTER

	Disabling Agent Self-Registration

	Oracle Database Server SQL Construct Processing
	Executing User-Defined Functions on a Non-Oracle Database
	Using Synonyms
	Example of a Distributed Query

	Copying Data from the Oracle Database Server to the Non-Oracle Database System
	Copying Data from the Non-Oracle Database System to the Oracle Database Server
	Heterogeneous Services Data Dictionary Views
	Understanding the Types of Views
	Understanding the Sources of Data Dictionary Information
	Using the General Views
	Using the Transaction Service Views
	Using the SQL Service Views
	Using Views for Capabilities and Translations
	Using Views for Data Dictionary Translations

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open Heterogeneous Services Sessions
	Determining the Heterogeneous Services Parameters

	5 Multithreaded Agents
	Why Use Multithreaded Agents?
	The Challenge of Dedicated Agent Architecture
	The Advantage of Multithreading

	Multithreaded Agent Architecture
	The Monitor Thread
	Dispatcher Threads
	Task Threads

	Administering Multithreaded Agents
	Agent Control Utility (agtctl) Commands
	Using Single-Line Command Mode
	Setting Configuration Parameters for a Multithreaded Agent
	Syntax
	Example

	Starting a Multithreaded Agent
	Syntax
	Example

	Shutting Down a Multithreaded Agent
	Syntax
	Example

	Examining the Value of Configuration Parameters
	Syntax
	Example

	Resetting a Configuration Parameter to Its Default Value
	Syntax
	Example

	Deleting an Entry for a Specific SID from the Control File
	Syntax
	Example

	Requesting Help
	Syntax
	Example

	Using Shell Mode Commands
	Example: Setting a Configuration Parameter
	Example: Starting a Multithreaded Agent

	Configuration Parameters for Multithreaded Agent Control

	6 Performance Tips
	Optimizing Heterogeneous Distributed SQL Statements
	Optimizing Performance of Distributed Queries

	7 Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	Oracle and Non-Oracle Systems on Separate Machines
	Oracle and Non-Oracle Systems on the Same Machine

	SQL Execution
	Datatype Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements and Functions
	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Agent Parameters on Windows NT
	Setting Parameters on NT: Example

	Setting Agent Parameters on UNIX platforms
	Setting Parameters on UNIX: Example

	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	OLE DB (FS) Connectivity Requirements
	OLE DB Interfaces for Data Providers to Expose
	Data Source Properties

	A Heterogeneous Services Initialization Parameters
	HS_CALL_NAME
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	ODBC-Based Data Source on Windows
	ODBC-Based Data Source on UNIX
	OLE DB-Based Data Source (Windows NT Only)

	HS_FDS_DEFAULT_SCHEMA_NAME
	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_LANGUAGE
	Character Sets
	Language
	Territory

	HS_LONG_PIECE_TRANSFER_SIZE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_NLS_NUMERIC_CHARACTER
	HS_NLS_TIMESTAMP_FORMAT
	HS_NLS_TIMESTAMP_TZ_FORMAT
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE
	HS_TIME_ZONE
	IFILE

	B Datatype Mapping
	Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface
	Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

	C Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Heterogeneous Services Data Dictionary Views
	Views and Tables Supported by Generic Connectivity
	Data Dictionary Mapping
	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	Index

