ORACLE

Oracle® Database
Heterogeneous Connectivity Administrator's Guide

10g Release 1 (10.1)
Part No. B10764-01

December 2003

Oracle Database Heterogeneous Connectivity Administrator’s Guide, 10g Release 1 (10.1)
Part No. B10764-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved.

Primary Author: Cathy Baird

Contributors: Hermann Baer, Jacco Draaijer, Vira Goorah, Govind Lakkoju, Kishan Peyetti
Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, Oracle8i, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

SeNd US YOUTI COMIMENTS ...t iX
PIEIACE ... Xi
Y E o |1 o (o1 OSSOSO Xi
OFGANTZATION ...ttt b e bt b etk ekt e ekt s b bt e bt e bt e bt e bt eb et et et et e Xii
Related DOCUMENTALIONc.cviviieiiiiieeieee ettt Xiv
(070 01V /=T 011 o] o LTSS R USRS Xiv
Documentation ACCESSIDIITYcoviiiiiiii e XiX
What's New in Heterogeneous CONNECTIVITY? ..., XXi
HS_CALL_NAME Initialization Parameter.............coviniiiiineie e XXi

1 Introduction

The Information Integration ChalleNge..........c.ooiiiiiiiiin e 1-2
How Oracle Addresses Synchronous Information Integration............ccccccecevveiviininie i 1-2
Benefits of Oracle’s Solution for Synchronous Information Integrationc.ccccocveene. 1-4
Remote Data Can Be Accessed Transparently ... 1-5
There is No Unnecessary Data DUPliCAtioN...........c.cccovviiiiiic i 1-5
SQL Statements Can Query Several Different Databases...........ccoevereieieiciniencsesese e 1-5
Oracle’s Application Development and End User Tools Can Be Used...........cccccevvevvvnennnn. 1-6
Users Can Talk to a Remote Database in its OWn Language..........cceceevevvereeveieiesiesesnsennens 1-6

The Role of the Heterogeneous Services Component

Heterogeneous Connectivity Process ArchiteCture ... 2-2
HeterogeneouUS SEIVICES AQENTS ...ttt s se e s e e e e enesresresrenrn 2-2
Types of Heterogeneous SErvIiCeS AGENTScoiiiiiiiiieiere et 2-3
Oracle TranSPareNt GAEWAYS...........cvriirririiiiiiteeeie ettt sse ittt sb st et se bt snese e nnenes 2-3
GeNeric CONNECLIVITY AGENTSoiiii it a e re e nesrenrenes 2-4
Heterogeneous SErvices COMPONENTS.ot iiiiieiiieieeee ettt sttt ebe e sne e 2-4
TrANSACTION SEIVICE ... ittt ettt sttt st b et e et e et e st es e eseeneebesbenteneen 2-4
SQL SEIVICE ... ittt ettt ettt sttt ettt e et e et e et e et e b e e et e ebeeabesbeenbeebeesbesbeesbesbeesbeetbesbeeasenbeenrenreenes 2-5
Configuring HeterogenNEOUS SEIVICES.......ccvciiiieieieee sttt et re e e sreesae e e sreanees 2-5
Data Dictionary TranSIatioNSccocoiieiiiiiei e 2-6
Heterogeneous Services Initialization Parametersccoccvvvivvievenenieiesces e 2-6
CAPADIIITIES ... bbbttt e 2-6
The Heterogeneous Services Data DICtIONAIY.........c.ccvriiiiiiiiniieeeses s 2-7
ClaSSES AN INSTANCEScveieeieeiirieierieert ettt bbbttt benae bt neneens 2-7
Data DICLIONAIY VIBWSccueiiieiii ettt ettt ettt sttt e s te e s e teenb e be et e sneentesneenteanees 2-8
GateWaY ProCeSS FIOW.......c.ciiiiiieiii ettt 2-9

Features of Oracle Transparent Gateways and Generic Connectivity

SQL aNd PL/SQL SUPPOIT ...ttt sttt eb et se et sr et sn bbb ane e ene e 3-2
Heterogeneous REPIICALION ... ne e sre e 3-2
[Ll I T o 18 o] T L BSOSO 3-5
Using the DBMS_HS_PASSTHROUGH PaCKageccoeiriiiiriiirieeniei e 3-5
Considering the Implications of Using Pass-Through SQLcccccocvvivirenericiieinsiese e 3-6
Executing Pass-Through SQL StatementS..........cccccviieiiiic i 3-6
RESUIT ST SUPPOIT ...ttt bbb bbb bbb 3-13
Result Set Support In NON-Oracle SYSIEMS........cccviiiiiirecn e 3-14
Heterogeneous Services SUPPOIt for RESUIT SETS ... 3-15
Data Dictionary TranSIatioNS............coiiiiiiiiiii s 3-16
(LY = L LT DT U= 1Y/ o= 3-18
Two-Phase COMMIt PrOTOCON..........ccooiiiiiii i 3-18
PTECEWISE LONQ ...tttk bbbttt bbbt 3-19
SQL*Plus DESCRIBE COMMAN........cccoiiiiiiiieieereeieere ettt ettt saesbe e s be et sbeenbesraenbesreenns 3-19
Constraints on SQL in a Distributed ENVIrONMENt ... 3-20
Resolving Remote and Heterogeneous RETEFENCES ..o 3-20

Resolving IMportant RESTIICTIONS.......c..oiiiiiiiiieie e 3-20

Updates, INSerts, and DeIetes... ...t 3-25
Using Oracle’s Optimizer with Heterogeneous SErviCeS........ccoovivvivierininieieseeserese e 3-26
Example: Using Index and Table StatiStiCS. ... 3-26
Example: Remote JOin OPLIMIZAtIONccooiiiiiiiiieiciee et 3-28
Optimizer Restrictions for NON-Oracle ACCESSccoviviirieiiniie e 3-30

Using Heterogeneous Services Agents

Setting Up Access to0 NON-Oracle SYStEMScccveviiciciiese e 4-2
Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents............. 4-2
Step 2: Create the Database Link to the Non-Oracle System ..o 4-3
Step 3: Test the CONNECLIONocvvieicecee et sre s 4-4

Setting INItialiZation ParameEterS ... iieiiiicii ettt nr e re e 4-5
Name and Location of Heterogeneous Services Initialization Parameter File..................... 4-5
Syntax for Initialization Parameter SEttiNgScoovviiiiiiieiesese s 4-5
Gateway Initialization Parameters..........cccoiiiiii et 4-6

Optimizing Data Transfers Using BUlK FetCh ... 4-7
Using OCI, an Oracle Precompiler, or Another Tool for Array Fetchescccccocvvevviviennne 4-8
Controlling the Array Fetch Between Oracle Database Server and Agent.............ccceeue.ee. 4-9
Controlling the Array Fetch Between Agent and Non-Oracle Server ..o 4-9
Controlling the Reblocking of Array FEtCheS ..o 4-9

R Lo 1S (=T g T o Ao =] g SRS 4-10
Enabling Agent Self-RegiStration ...t 4-10
Disabling Agent Self-RegiStrationccccccvierieieeiecie e 4-14

Oracle Database Server SQL CoNnstruct ProCeSSIiNGcccccevviieiesieiieeie e esve e sre s 4-14

Executing User-Defined Functions on a Non-Oracle Databasecccccocoveiiiiicniciinnn 4-15

L0 YT Lo S5V (0] 017/ 0 PSS 4-17

Copying Data from the Oracle Database Server to the Non-Oracle Database System....... 4-18

Copying Data from the Non-Oracle Database System to the Oracle Database Server....... 4-19

Heterogeneous Services Data DICtionary VIEWSccccvovvviiriviieninene e 4-20
Understanding the TYPES OF VIBWSocuiiiiiiiieiiene e 4-20
Understanding the Sources of Data Dictionary Informationccocccvvneincinecnenn, 4-21
USING the GENEIFAl VIBWSociieiee ettt st e neeneerenre s 4-22
Using the Transaction SErVIiCe VIBWS.........cooiiiiie ittt 4-23
USING the SQL SEIVICE VIBWS.....c.oiuiiiiiiiiiiitiiete ettt 4-24

vi

Using the Heterogeneous Services Dynamic Performance VIeWsS...........cccoovvevveieiienecenenn, 4-25

Determining Which Agents Are RUNNING 0N & HOSEc..cviiiiiiiniicce e 4-26
Determining the Open Heterogeneous SErvices SESSIONSccvcvvvrerereneniereereeeeeeeseanens 4-26
Determining the Heterogeneous Services Parameters..........cccccovvvevevieeiecieeseseese s 4-27

Multithreaded Agents

Why Use Multithreaded AQENTS?.........coo it sre s 5-2
The Challenge of Dedicated Agent ArchiteCture ... 5-2
The Advantage of MUItItNreadingcccocevviieieieieccs e 5-2

Multithreaded Agent ArChITECIUNEcov i 5-3
The MONITOr TRFEAMceiiiiiie ettt sbe bt e 5-5
(DT ES] o F= 1 (o3 1= N I] =T o S 5-5
TASK TRFEAAS. ... e ettt b ettt sbe bt e 5-6

Administering Multithreaded AGENTS ..o e 5-6
Agent Control Utility (agtctl) COmMmandscccvevveieiiriiiese e 5-7
Using Single-Line Command MOUGE...........ccooiiiiiiiiie et 5-8
Using Shell Mode COMMANTS ..ot 5-11
Configuration Parameters for Multithreaded Agent Control..........ccccvevvevevcccciecnenn, 5-12

Performance Tips

Optimizing Heterogeneous Distributed SQL Statements..........ccccoeoevevereierieie e 6-2
Optimizing Performance of Distributed QUEIIES...........ccoooiiiiiiiniiee s 6-2

Generic Connectivity

What IS GeNEric CONNECLIVITY?.....ccoi ittt e sre s 7-2
TYPES OF AGEINTS. ...tttk b bbbk bbbt bbbt bbbt 7-2
Generic ConNectiVity ArChiteCtUIE.......ccv v e 7-2
1@ I ol U | A o o ISR 7-5
DAtatyPe MaPPING ... ccueieeieieeieriee ettt ettt et b et bbbt bbbt 7-5
Generic CoNNECtiVILY RESIIICIONScviiiieiicceeee e 7-5

Supported Oracle SQL Statements and FUNCLIONS...........cociiiiiiiiieie e 7-6

Configuring Generic CONNECTIVITY AGENTS ..o 7-7
Creating the INitialization File ... 7-7
Editing the INItialization File...........c.coiiiiii e e 7-7

Setting Initialization Parameters for an ODBC-based Data SOUrceccccccvvveveivesienen, 7-9

Setting Initialization Parameters for an OLE DB-based Data Sourceccccoeevvierennene 7-11
ODBC Connectivity REQUITEMENTS.......cccviiiiieiieiereeeee et ee e e e nesre e snens 7-12
OLE DB (SQL) Connectivity REQUIFEMENTScc.ooiiiiiiiiiincse e 7-14
OLE DB (FS) Connectivity REQUITEMENTScccoiiiiiiiiriiiriciriesieesies s 7-15

OLE DB Interfaces for Data Providers t0 EXPOSEcccccovviviininieienenenesesieeereseeesesesnens 7-15

Data SOUFCE PrOPEITIES.ocuiiiiitiiiiite ittt bbbttt b e b b e 7-17

Heterogeneous Services Initialization Parameters

HS CALL NAMEottt st sttt sttt st et et et esb e s e e seeseebeatesbeabestestestens A-3
HS_COMMIT _POINT_STRENGTH......ccooiii ittt A-3
[ST 7= T I 1 11 1N | N ST A-4
HS DB _INTERNAL NAME ..ottt sttt sttt reebesteabesbesre st are A-4
HS DB INAME ..ottt ettt et et e be s be et e s be st e st et et et entesbeseeneebeetesbesbesbesrestens A-5
HS DESCRIBE _CACHE_HWM ..ottt e nesnesrennennens A-5
HS FDS CONNECT _INFO ..ottt sttt sttt e e raate e sbesresresre A-5

ODBC-Based Data SOUICe 0N WINOOWS.........cccciiiririiinine e sre e sae e A-6

ODBC-Based Data SOUrce 0N UNIXccoovciiiiiiieese s A-6

OLE DB-Based Data Source (Windows NT ONIY)ccccoviiiiieiiiiieiecese e A-6
HS_FDS_DEFAULT_SCHEMA NAME.......cccoit ittt sse e s e v A-6
HS FDS SHAREABLE NAME.......co oottt sttt e snesrennennens A-7
HS FDS TRACE _LEVEL...ciciii ettt sttt ba et st sbe st sresne A-7
HS LANGUAGE ..ottt ettt ettt b et e sttt e st et e st esa e e e st ebeetesbesbesbesbeatens A-7

(O T Lo Tod (=T =1 £ A-8

(=T [0 10 F= T [T PRSP UPRRPRPN A-8

TOITTEONY etttk e bt bbb bbbt e bt eb et b bbbkt nb bt bt e nb bt nn bt an e A-8
HS LONG _PIECE_TRANSFER_SIZEcooi ottt A-9
HS NLS DATE FORMAT ..ottt sttt sttt sttt et s e e e neebeatestesbesbesrestens A-9
HS NLS DATE LANGUAGE ..ottt sttt sttt te e be vt e A-10
[ST A S N (O 1N S A-10
HS NLS NUMERIC CHARACTER ..ottt A-10
HS NLS TIMESTAMP_FORMAT ..ottt sttt sttt ebe vt e A-11
HS NLS TIMESTAMP_TZ FORMAT ..ottt re e sne e nne s A-11
HS _OPEN _CURSORS ...ttt sttt sttt st et eene et e beebeeaeere st e A-12
HS ROWID _CACHE_SIZE........oi ittt sttt sttt ebe vt e A-12

Vii

HS _RPC_FETCH_SIZE ...ttt bbbttt A-13
HS_TIME_ZONE ...ttt A-14
FEILE ..ottt bbb b bbbt b s A-14
B Datatype Mapping
Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface....................... B-2
Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface.................... B-3
C Data Dictionary Translation Support
Accessing the Non-Oracle Data DICIONAIYcccooiiiieiieieeeeee e C-2
Heterogeneous Services Data DICtionary VIEWScccccevvieieiiiinsn s e C-2
Views and Tables Supported by Generic CONNECLIVILY..........cccoiviiiriiiiiiie e C-5
Data DictioNary MapPiNg......cocovieiieiieieie ettt b e ebe et sr e et sn e sn e anas C-5
Generic Connectivity Data Dictionary DesCriptionsccccevveiveiviiisieninsiesiesieseseseseseeneenens C-6
Index

viii

Send Us Your Comments

Oracle Database Heterogeneous Connectivity Administrator’s Guide, 10g Release 1 (10.1)
Part No. B10764-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

This manual describes Oracle’s approach for information integration in a
heterogeneous environment. Specifically, it describes Oracle Transparent Gateways
and Generic Connectivity and is meant to be an administrator’s guide for these
Oracle products.

This preface contains these topics:

Audience

Organization

Related Documentation
ConventionsDocumentation Accessibility

Documentation Accessibility

Xi

Audience

Oracle Database Heterogeneous Connectivity Administrator’s Guide is intended for the
following users:

« Database administrators who want to administer distributed database systems
that involve Oracle to non-Oracle database links

« Application developers who want to make use of the heterogeneous
connectivity functionality in the Oracle database server

« Readers who want a high-level understanding of Oracle’s architecture for
heterogeneous connectivity and how it works.

To use this document, you should be familiar with the following information:

« Relational database concepts and basic database or applications administration
as described in the following books:

— Oracle Database Concepts
— Oracle Database Administrator's Guide
— Oracle Database Application Developer's Guide - Fundamentals

« The operating system environment under which database administrators are
running Oracle.

Organization

Xii

This document contains:

Chapter 1, "Introduction"

This chapter describes the challenges of operating in a heterogeneous environment.
Oracle recognizes these challenges and offers both synchronous and asynchronous

solutions that enable companies to easily operate in such an environment. The two

synchronous solutions, Oracle Transparent Gateways and Generic Connectivity, are
discussed this book.

Chapter 2, "The Role of the Heterogeneous Services Component”

Oracle’s synchronous solutions for operating in a heterogeneous environment are
Oracle Transparent Gateways and Generic Connectivity. The common component
of the Oracle database server for supporting these solutions is Heterogeneous
Services. This chapter describes the architecture and functionality of the

Heterogeneous Services component and its interaction with Oracle Transparent
Gateways and Generic Connectivity.

Chapter 3, "Features of Oracle Transparent Gateways and Generic
Connectivity"

This chapter describes the major features provided by Oracle Transparent Gateways
and Generic Connectivity.

Chapter 4, "Using Heterogeneous Services Agents"
This chapter explains how to use Heterogeneous Services agents.

Chapter 5, "Multithreaded Agents"

This chapter explains what multithreaded agents are, how they contribute to the
overall efficiency of a distributed database system, and how to administer
multithreaded agents.

Chapter 6, "Performance Tips"

This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

Chapter 7, "Generic Connectivity"
This chapter describes the configuration and usage of generic connectivity agents.

Appendix A, "Heterogeneous Services Initialization Parameters"

This appendix lists heterogeneous services initialization parameters and provides
instructions on how to set them.

Appendix B, "Datatype Mapping"

The tables in this appendix show how Oracle maps ANSI datatypes through ODBC
and OLE DB interfaces to supported Oracle datatypes when it is retrieving data
from a non-Oracle system.

Appendix C, "Data Dictionary Translation Support”

This appendix documents data dictionary translation support. It explains how to
access non-Oracle data dictionaries, lists heterogeneous services data dictionary
views, describes how to use supported views and tables, and explains data
dictionary mapping.

Xiii

Related Documentation

For more information, see these Oracle resources:

« Oracle Database Concepts

» Oracle Database Administrator's Guide

« Oracle Database Application Developer's Guide - Fundamentals
» Oracle Database New Features

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. conf
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com menbershi p/index. ht n

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e.com docunentation/index. htm

Conventions

Xiv

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
= Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Bold

Italics

UPPERCASE
nonospace
(fixed-wi dth)
font

| ower case
nonospace
(fixed-w dth)
font

| ower case
italic
nonospace
(fixed-wi dth)
f ont

Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUVBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

Thedepart nment _i d,depart nent _name, and

| ocati on_i d columns are in the
hr . depart ment s table.

Setthe QUERY_REWRI TE_ENABLEDinitialization

parameter tot r ue.
Connect as oe user.

The JRepUti | class implements these methods.

You can specify the par al | el _cl ause.

RunUol d_r el ease. SQLwhereol d_r el ease

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT user nane FROM dba_users WHERE usernane = ' M GRATE ;

XV

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DEQMAL (digits [, precision])
items. Do not enter the brackets.

{1} Braces enclose two or more items, one of {ENABLE | DO SABLE}

Other notation

Italics

XVi

which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

{ENABLE | D SABLE}
[GCOMPRESS | NOOOMPRESS]

CREATE TABLE ... AS subquery;

SEH ECTcol 1, col 2, ..., col n FROMenpl oyees;

SQ > SHECT NAME FROM VBDATAH LE;
NAME

/fsl/dbs/tbs_01. dof
/fs1/ dbs/ t bs_02. dbf

/%51 / dbs/ t bs_09. dbf
9 rows sel ect ed.

acctbal NUMBER(11, 2);
acct QONSTANT NMBER(4) @ = 3;

QO\NECT SYSTEM syst em passwor d
DB NAME = dat abase_nane

Convention Meaning Example

UPPERCASE Uppercase typeface indicates elements SH_ECTI ast _nane, enpl oyee_i dFROvVenpl oyees;
supplied by the system. We show these SH ECT * FROM USER TABLES,
terms in uppercase in order to distinguish pROP TABLE hr . enpl ayees;
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

| ower case Lowercase typeface indicates SELECTI ast _nane, enpl oyee_i dFROVenpl oyees;
programmatic elements that you supply. sql plus hr/ hr

For example, lowercase indicates names CREATE USER nj ones | DENTI FI ED BY t y3MD;
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory File and directory names are not case c:\winnt"\"systenB2 is the same as
names sensitive. The following special characters C \ WNNT\ SYSTEVB2

are not allowed: left angle bracket (<),

right angle bracket (>), colon (), double

quotation marks (), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

XVii

Convention

Meaning

Example

C\>

Special characters

HOMVE_NAMVE

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C \oracl e\ or adat a>

C \>expscott/ti ger TABLES=enpQERY=\ " WHERE
j ob=" SALESMAN and sal <1600\ "

C\>i np SYSTEM password FROMJSER=scot t
TABLES=(enp, dept)

C\> net start O acl eHOME_ NAMETNSLI st ener

xviii

Convention Meaning Example

ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE_
and ORACLE when you installed Oracle components, HOVE\ r dbns\ admi n directory.
BASE all subdirectories were located under a

top level ORACLE_HOVE directory. For

Windows NT, the default location was

C:\ or ant for Windows NT.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C: \ or acl e. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\ oracl e\ or ann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

htt p: // waw or acl e. cond accessi bi |ity/

Xix

XX

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

What’s New in Heterogeneous
Connectivity?

This section describes new features in this release and provides pointers to
additional information.

HS_CALL_NAME Initialization Parameter

Use the HS_CALL_NAME initialization parameter to specify remote functions
that can be referenced by SQL statements.

See Also: "Executing User-Defined Functions on a Non-Oracle
Database" on page 4-15 and "HS_CALL_NAME" on page A-3

XXi

XXii

1

Introduction

This chapter describes the challenges of operating in a heterogeneous environment.
Oracle recognizes these challenges and offers both synchronous and asynchronous

solutions that enable companies to easily operate in such an environment. The two

synchronous solutions, Oracle Transparent Gateways and Generic Connectivity, are
discussed this book.

This chapter contains these topics:

« The Information Integration Challenge

« How Oracle Addresses Synchronous Information Integration

« Benefits of Oracle’s Solution for Synchronous Information Integration
See Also: For information about a specific Oracle Transparent

Gateway, please consult the Oracle documentation for that specific
gateway

Introduction 1-1

The Information Integration Challenge

The Information Integration Challenge

Information integration is a challenge that affects many organizations. Many run
several different database systems. Each of these systems stores data and has a set
of applications that runs against it. This data is just bits and bytes on a file system -
and only a database can turn the bits and bytes of data into business information.
Integration and consolidation of all business information would allow an
organization to easily and quickly take advantage of the synergies inherent in
business information.

Consolidation of all data into one database system is often difficult. This is in large
part because many of the applications that run against one database may not have
an equivalent that runs against another. Until such time as migration to one
consolidated database system is made feasible, it is necessary for the various
heterogeneous database systems to work together.

There are several problems to overcome before such interoperability becomes
possible. The database systems can have different access interfaces, different
datatypes, different capabilities, and different ways of handling error conditions.
Even when one relational database is trying to access another relational database
the differences are significant. In such a situation, the common features of the
databases include data access through SQL, two-phase commit, and similar
datatypes.

However, there are significant differences as well. SQL dialects can be different, as
can transaction semantics. There can be some datatypes in one database that do not
exist in the other. The most significant area of difference is in the data dictionaries of
the two databases. Most data dictionaries contain similar information but the
information is structured for each in a completely different way. There are several
possible ways of overcoming this problem. In this book, we describe the approach
that Oracle has taken for synchronously accessing information from multiple
sources.

How Oracle Addresses Synchronous Information Integration

If a client program needs to access or modify data at several Oracle databases, it can
open connections to each of them. This approach, however, has several drawbacks.
Among them, are the following. If you want to join data from the databases, then
the client must contain logic that does that. If data integrity must be guaranteed,
then the client will need to contain transaction coordination logic.

Oracle provides another approach called distributed processing, where the client
connects to one Oracle database and shifts the burden of joining data and

1-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

How Oracle Addresses Synchronous Information Integration

transaction coordination to that database. The database that the client program
connects to is called the local database. Any database other than this one is a remote
database. The client program can access objects at any of the remote databases using
database links. The Oracle query processor takes care of the joins and its transaction
engine takes care of the transaction coordination.

The approach that Oracle has taken to solving the heterogeneous connectivity
problem is to allow a non-Oracle system to be one of the remote nodes in the
previously described scenario. From the client’s point of view, the remote
non-Oracle system functions like a remote Oracle system. It will appear to
understand the same SQL dialect and to have the same data dictionary structure as
an Oracle system. Access to a non-Oracle system in this manner is done through a
component in the Oracle server called Heterogeneous Services.

The work done by the Heterogeneous Services component is, for the most part,
completely transparent to the end user. With only a few exceptions (these are noted
in later chapters), you are not required to do anything different to access a
non-Oracle system than is required for accessing an Oracle system. The
Heterogeneous Services component is used as the foundation for implementing
Oracle’s access to non-Oracle databases.

The following are two methods that Oracle uses for solving the challenges of
information sharing and integration in a heterogeneous environment. Because they
are both based on a foundation that is integrated into the database, they can exploit
all of the features of the database.

« Oracle Transparent Gateways

An Oracle Transparent Gateway works in conjunction with the Heterogeneous
Services component of the Oracle Database server to access a particular,
commercially available, non-Oracle system for which that Oracle Transparent
Gateway has been designed. For example, you use the Oracle Transparent
Gateway for Sybase on Solaris to access a Sybase database operating on a Sun
Solaris platform.

Using an Oracle Transparent Gateway, you can access data anywhere in a
distributed database system without being required to know either the location
of the data, or how it is stored.

« Generic Connectivity

Oracle provides a set of agents, containing only generic code, that interface with
the Heterogeneous Services component and comprise Generic Connectivity.
These agents require drivers to provide access to the non-Oracle systems.

Introduction 1-3

Benefits of Oracle’s Solution for Synchronous Information Integration

Oracle provides Generic Connectivity agents for ODBC and OLE DB that enable
you to use ODBC and OLE DB drivers to access non-Oracle databases.

Note: The ODBC and OLE DB drivers that are required by
Generic Connectivity agents are not supplied by Oracle. Users
should obtain drivers from other vendors.

The functionality of Generic Connectivity is more limited that of Oracle
Transparent Gateways.

Oracle also offers asynchronous information integration solutions that are
mentioned here, but that are not discussed in this book. Briefly, these solutions
include:

Oracle Streams

Oracle Streams enables the propagation of data, transactions and events in a
single data stream or queue, either within a database, or between multiple
databases. Not only can Oracle Streams capture, propagate, and apply changes
to data, it can also handle data structure changes (DDL) and user-defined
events. Changes can be captured and applied as is, or transformed at any point
in the capture, propagation, and apply processing.

Messaging Gateway

The messaging gateway enables communication between Oracle and other
non-Oracle message queuing.

Open System Interfaces

Oracle offers a number of open interfaces, such as OCI, JDBC, and ODBC, that
enable customers to use third party applications or to write their own client
applications to access the Oracle database.

Benefits of Oracle’s Solution for Synchronous Information Integration

Much of the processing power of Generic Connectivity and Transparent Gateways
is integrated into the database. This provides an efficient solution for information
integration that enables full exploitation of the power and features of the Oracle
database. This includes such features as powerful SQL parsing and distributed
optimization capabilities.

The following sections explore the benefits of Oracle’s approach to resolving the
challenges of a heterogeneous environment:

1-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Benefits of Oracle’s Solution for Synchronous Information Integration

« Remote Data Can Be Accessed Transparently

« There is No Unnecessary Data Duplication

« SQL Statements Can Query Several Different Databases

« Oracle’s Application Development and End User Tools Can Be Used

« Users Can Talk to a Remote Database in its Own Language

Remote Data Can Be Accessed Transparently

Both Generic Connectivity and Oracle Transparent Gateways provide the ability to
transparently access data in non-Oracle databases from an Oracle environment. You
can create synonyms for the objects in a non-Oracle database and refer to them
without having to specify a physical location. This transparency eliminates the need
for application developers to customize their applications to access data from
different non-Oracle systems, thus decreasing development efforts and increasing
the mobility of the application.

Instead of requiring applications to interoperate with non-Oracle systems using
their native interfaces (which can result in intensive application-side processing),
applications can be built upon a consistent Oracle interface for both Oracle and
non-Oracle systems.

There is No Unnecessary Data Duplication

Generic Connectivity and Oracle Transparent Gateways provide applications direct
access to data in non-oracle databases. This eliminates the need to upload and
download large amounts of data to different locations, thus reducing data
duplication and saving disk storage space. Also, by eliminating this need to upload
and download large amounts of data there is a further benefit of a reduced risk for
unsynchronized or inconsistent data.

SQL Statements Can Query Several Different Databases

The Oracle database server accepts SQL statements that query data stored in several
different databases. The Oracle database server with the Heterogeneous Services
component processes the SQL statement and passes the appropriate SQL directly to
other Oracle databases and through gateways to non-Oracle databases. The Oracle
database server then combines the results and returns them to the client. This
enables a query to be processed so that it spans the non-Oracle database system,
other databases, and local and remote Oracle data.

Introduction 1-5

Benefits of Oracle’s Solution for Synchronous Information Integration

Oracle’s Application Development and End User Tools Can Be Used

Generic Connectivity and Oracle Transparent Gateways extend the range of
Oracle’s database and application development tools. Oracle has tools that increase
application development and user productivity by reducing prototype,
development, and maintenance time.

You are not required to develop new tools or learn how to use other tools to access
data stored in non-Oracle databases. Instead, you can access Oracle and non-Oracle
data with a single set of Oracle tools. These tools can run on remote machines
connected through Oracle Net to the Oracle database server.

Users Can Talk to a Remote Database in its Own Language

Oracle enables you to transparently access non-Oracle systems using Oracle SQL. In
some cases, however, it becomes necessary to use non-Oracle system SQL to access
the non-Oracle system. For such cases, Oracle has a pass-through feature that
enables you to bypass Oracle’s query processor and to talk to the remote database
in its own language

1-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

2

The Role of the Heterogeneous Services

Component

Oracle’s synchronous solutions for operating in a heterogeneous environment are
Oracle Transparent Gateways and Generic Connectivity. The common component
of the Oracle database server for supporting these solutions is Heterogeneous
Services. This chapter describes the architecture and functionality of the
Heterogeneous Services component and its interaction with Oracle Transparent
Gateways and Generic Connectivity.

This chapter contains these topics:

Heterogeneous Connectivity Process Architecture
Heterogeneous Services Agents

Types of Heterogeneous Services Agents
Heterogeneous Services Components
Configuring Heterogeneous Services

The Heterogeneous Services Data Dictionary

Gateway Process Flow

The Role of the Heterogeneous Services Component 2-1

Heterogeneous Connectivity Process Architecture

Heterogeneous Connectivity Process Architecture

At a high level, Oracle heterogeneous connectivity process architecture is structured
as shown in Figure 2-1.

Figure 2-1 Oracle Heterogeneous Connectivity Process Architecture

Agent
I I
Agent Remote
Oracle gg:sirggenous Generic Driver Database
Code

The Heterogeneous Services component in the Oracle database server talks to a
Heterogeneous Services agent process which, in turn, talks to the non-Oracle
system. We can conceptually divide the code into three parts:

« The Heterogeneous Services component in the Oracle database server. Most of
the heterogeneous connectivity related processing is done in this module.

« Agent generic code. This is code in the agent that is generic to all
Heterogeneous Services based products. This consists, for the most part, of code
to communicate with the database and multithreading support.

« Thedriver. This is the module that communicates with the non-Oracle system.
It is used to map calls from the Heterogeneous Services external application
programming interface (API) onto the native API of the non-Oracle system and
it is non-Oracle system specific.

Heterogeneous Services Agents

A Heterogeneous Service agent is the process through which an Oracle server
connects to a non-Oracle system. This agent process that accesses a non-Oracle
system is called a gateway. Access to all gateways goes through the Heterogeneous
Services component in the Oracle server and all gateways contain the same
agent-generic code. Each gateway has a different driver linked in that maps the
Heterogeneous Services application programming interface (API) to the client API
of the non-Oracle system.

The agent process consists of two components. These are agent generic code and a
non-Oracle system-specific driver. An agent exists primarily to isolate the Oracle

2-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Types of Heterogeneous Services Agents

database server from third-party code. In order for a process to access the
non-Oracle system, the non-Oracle system client libraries have to be linked into it.
In the absence of the agent process, these libraries would have to be directly linked
into the Oracle database and problems in this code could cause the Oracle server to
go down. Having an agent process isolates the Oracle server from any problems in
third-party code so that even if a fatal error takes place, only the agent process will
end.

An agent can reside in the following places:

« On the same machine as the non-Oracle system
« On the same machine as the Oracle server

« Onamachine different from either of these two

Agent processes are usually started when a user session makes its first non-Oracle
system access through a database link. These connections are made using Oracle’s
remote data access software, Oracle Net Services, which enables both client/server
and server-server communication. The agent process continues to run until the user
session is disconnected or the database link is explicitly closed.

Multithreaded agents behave slightly differently. They have to be explicitly started
and shut down by a database administrator instead of automatically being spawned
by Oracle Net Services.

See Also: Chapter 5, "Multithreaded Agents"

Types of Heterogeneous Services Agents
There are two types of Heterogeneous Services agents:
« Oracle Transparent Gateways

« Generic Connectivity Agents

Oracle Transparent Gateways

An Oracle Transparent Gateway is a gateway that is designed for accessing a
specific non-Oracle system. Oracle Corporation provides gateways to access several
commercially produced non-Oracle systems; many of these gateways have been
ported to several platforms. For example, an Oracle Transparent Gateway for
Sybase on Solaris is the Solaris port of a gateway designed to access Sybase
database systems.

The Role of the Heterogeneous Services Component 2-3

Heterogeneous Services Components

With Oracle Transparent Gateways, you can use an Oracle database server to access
data anywhere in a distributed database system without being required to know
either the location of the data or how it is stored. When the results of your queries
are returned to you by the Oracle database server, they are presented to you as if the
data stores from which they were taken all resided within a remote instance of an
Oracle distributed database.

Generic Connectivity Agents

In addition to Oracle Transparent Gateways for various non-Oracle database
systems, there is a set of agents that comprise the Oracle Generic Connectivity
feature. These agents contain only generic code and the customer is responsible for
providing the necessary drivers. Oracle has Generic Connectivity agents for ODBC
and OLE DB that enable you to use ODBC and OLEDB drivers to access non-Oracle
systems that have an ODBC or an OLE DB interface.

To access a specific non-Oracle system using Generic Connectivity agents, you must
configure an ODBC or OLE DB driver to the non-Oracle system. These drivers are
not provided by Oracle corporation. However, as long as Oracle Corporation
supports the ODBC and OLE DB protocols, you can use the Generic Connectivity
feature to access any non-Oracle system that can be accessed using an ODBC or
OLE DB driver.

Generic Connectivity agents have some limitations. Connections to a Generic
Connectivity agent can be made only for the local Oracle database server.
Functionality of these agents, especially when compared to the Oracle Transparent
Gateways, is limited.

See Also: Chapter 7, "Generic Connectivity"

Heterogeneous Services Components

This section discusses the components of Heterogeneous Services in the Oracle
database server. These components are;

« Transaction Service
« SQL Service

Transaction Service

The transaction service component of the Heterogeneous Services component
makes it possible for non-Oracle systems to be integrated into Oracle database

2-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Configuring Heterogeneous Services

SQL Service

server transactions and sessions. When you access a non-Oracle system for the first
time over a database link within your Oracle user session, you transparently set up
an authenticated session in the non-Oracle system. At the end of your Oracle user

session, the authenticated session in the non-Oracle database system is also closed.

Additionally, one or more non-Oracle systems can participate in an Oracle
distributed transaction. When an application commits a transaction, Oracle’s
two-phase commit protocol accesses the non-Oracle database system to coordinate
transparently the distributed transaction. Even in those cases where the non-Oracle
system does not support all aspects of Oracle two-phase commit protocol, Oracle
can (with some limitations) support distributed transactions with the non-Oracle
system.

The Structured Query Language (SQL) service handles the processing of all
SQL-related operations. The work done by the SQL service includes:

« Mapping Oracle internal SQL-related calls to the Heterogeneous Services driver
application programing interface (API); this is in turn mapped by the driver to
the client API of the non-Oracle system

« Translating SQL statements from Oracle’s SQL dialect to the SQL dialect of the
non-Oracle system

« Translating queries that reference Oracle data dictionary tables to queries that
extract the necessary information from the non-Oracle system data dictionary

« Converting data from non-Oracle system datatypes to Oracle datatypes and
back

« Making up for missing functionality at the non-Oracle system by issuing
multiple queries to get the necessary data and doing post processing to get the
desired results

Configuring Heterogeneous Services

In the previous section, we described what the different heterogeneous components
do. These components consist entirely of generic code and, in order to work with so
many different non-Oracle systems, their behavior has to be configured. Each
gateway has configuration information stored in the driver module and this
information is uploaded to the server immediately after the connection to the
gateway has been established. We can divide this configuration information into
three parts:

The Role of the Heterogeneous Services Component 2-5

Configuring Heterogeneous Services

« Data Dictionary Translations
« Heterogeneous Services Initialization Parameters

« Capabilities

Data Dictionary Translations

Data dictionary translations are views on non-Oracle system data dictionary tables
that help Heterogeneous Services translate references to Oracle data dictionary
tables into queries needed to retrieve the equivalent information from the
non-Oracle system data dictionary.

See Also: Appendix C, "Data Dictionary Translation Support”

Heterogeneous Services Initialization Parameters

Capabilities

Heterogeneous Services initialization parameters serve two functions.

« They give the user a means of fine-tuning the gateway to optimize performance
and memory utilization for the gateway and the Heterogeneous Services
component.

« They enable the user to tell the gateway (and, thereby, Heterogeneous Services)
how the non-Oracle system has been configured (for example what language
the non-Oracle system is running in). To put it another way, they give
Heterogeneous Services information about the configurable properties of the
non-Oracle system.

You can examine the Heterogeneous Services initialization parameters for a session
by querying the view V$HS_PARAMETER. Users can set initialization parameters in
gateway initialization files.

Capabilities tell Heterogeneous Services about the limitations of the non-Oracle
system (such as what types of SQL statements are and are not supported) and how
to map Oracle datatypes and SQL expressions to their non-Oracle system
equivalents. In other words, they tell Heterogeneous Services about the
non-configurable properties of the non-Oracle system. Capabilities cannot be
changed by the user.

2-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

The Heterogeneous Services Data Dictionary

The Heterogeneous Services Data Dictionary

As mentioned in the previous section, configuration information is uploaded from
an agent to the Heterogeneous Services component immediately after the
connection to the agent has been established. Because this information can be very
large in size, it is inefficient to do uploads on each connection. Therefore, the first
time an Oracle database talks to an agent, the configuration information is uploaded
and stored in Heterogeneous Services data dictionary tables and thereafter no
upload takes place until something at the agent changes (for example, if a patch is
applied or if the agent is upgraded to a new version).

Classes and Instances

Using Heterogeneous Services, a user can access several non-Oracle systems from a
single Oracle database. This is illustrated in Figure 2-2, which shows two
non-Oracle systems being accessed.

Figure 2-2 Accessing Multiple Non-Oracle Instances

Client Application |

/—l Agent |
I

| Non-Oracle System " X" -I—instance

\—l Agent |
I

| Non-Oracle System "Y" -I—instance

Oracle Server

Both agents upload configuration information, which is stored as part of the
Heterogeneous Services data dictionary information on the Oracle database server.

Although it is possible to store data dictionary information at one level of
granularity by having completely separate definitions in the Heterogeneous
Services data dictionary for each individual instance, this might lead to an
unnecessarily large amount of redundant data dictionary information. To avoid this,
Oracle organizes the Heterogeneous Services data dictionary by two levels of
granularity, called class and instance.

The Role of the Heterogeneous Services Component 2-7

The Heterogeneous Services Data Dictionary

A class pertains to a specific type of non-Oracle system. For example, you might
want to access the class of Sybase database systems with your Oracle database
server. An instance defines specializations within a class. For example, you might
want to access several separate instances within a Sybase database system. Each
class definition (one level of granularity) is shared by all the particular instances (a
second level of granularity) under that class. Further, instance information takes
precedence over class information, and class information takes precedence over
server-supplied defaults.

For example, suppose that the Oracle database server accesses three instances of
Sybase and two instances of Ingres Il. Sybase and Ingres Il each have their own
code, requiring separate class definitions for the Oracle database server to access
them. The Heterogeneous Services data dictionary therefore would contain two
class definitions, one for Sybase and one for Ingres Il, with five instance definitions,
one for each instance being accessed by the Oracle database server.

Note that instance level capability and data dictionary information are session
specific and hence are not stored in the Heterogeneous Services data dictionary of
the Oracle database server. However, instance level initialization parameters can be
stored in the database.

Data Dictionary Views

The Heterogeneous Services data dictionary views contain the following kinds of
information:

« Names of instances and classes uploaded into the Oracle data dictionary

« Capabilities, including SQL translations, defined for each class or instance
« Data Dictionary translations defined for each class or instance

« Initialization parameters defined for each class or instance

You can access information from the Oracle data dictionary by using fixed views.
The views are categorized into three main types:

« General views
« Views used for the transaction service

« Views used for the SQL service

See Also: Appendix C, "Data Dictionary Translation Support”

2-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Gateway Process Flow

Gateway Process Flow

Figure 2-3 shows a typical gateway process flow. The steps explain the sequence of
events that occurs when a client application queries the non-Oracle database system
database through the gateway.

Figure 2-3 Gateway Process Flow

:cziﬂ_
=

ONO

Oracle Net

1

[0)

3

i —2<— 0,

[} []

@ Oracle 2
= 3 Net >)

@©

sl
3 %----QOraCIe 5 @ e
o 9 a Net o o)
g <+ s
— [} o
o T @ 4

1. The client application sends a query over Oracle Net to the Oracle database
server.

2. The Oracle database server sends the query over to the gateway using Oracle
Net.

3. For the first transaction in a session, the gateway logs into non-Oracle database
system using a username and password that is valid in the non-Oracle system.

4. The gateway converts the Oracle SQL statement into a SQL statement
understood by non-Oracle database system.

5. The gateway retrieves data using non-Oracle database system SQL statements.

The Role of the Heterogeneous Services Component 2-9

Gateway Process Flow

6. The gateway converts retrieved data into a format compatible with the Oracle
database server.

7. The gateway returns query results to the Oracle database server, again using
Oracle Net Services.

8. The Oracle database server passes the query results to the client application by
using Oracle Net. The database link remains open until the gateway session is
finished or the database link is explicitly closed.

2-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

3

Features of Oracle Transparent Gateways

and Generic Connectivity

This chapter describes the major features provided by Oracle Transparent Gateways
and Generic Connectivity. Descriptions of these features are contained in the
following topics:

SQL and PL/SQL Support

Heterogeneous Replication

Pass-Through SQL

Result Set Support

Data Dictionary Translations

Datetime Datatypes

Two-Phase Commit Protocol

Piecewise Long

SQL*Plus DESCRIBE Command

Constraints on SQL in a Distributed Environment

Using Oracle’s Optimizer with Heterogeneous Services

Note: These features may not be available in all Heterogeneous
Services based gateways. Not only must there be generic support
for these features, which Heterogeneous Services provides, but
there must also be support added to the driver for them. Please
consult your gateways documentation to determine if a particular
feature is supported for your gateway.

Features of Oracle Transparent Gateways and Generic Connectivity 3-1

SQL and PL/SQL Support

SQL and PL/SQL Support

SQL statements are translated and datatypes are mapped according to capabilities.
PL/SQL calls are mapped to hon-Oracle system stored procedures. In the case of
SQL statements, if functionality is missing at the remote system, then either a
simpler query is issued or the statement is broken up into multiple queries and the
desired results are obtained by post processing in the Oracle database.

Even though Heterogeneous Services can, for the most part, incorporate non-Oracle
systems into Oracle distributed sessions, there are several limitations to this. Some
of the generic limitations are:

« There is no support for CONNECT BY clauses in SQL statements.

« ROWID support is limited; consult individual gateway documentation for more
details. The Oracle Universal ROWID datatype is not supported in any gateway
that uses Heterogeneous Services.

« LOBs, ADTs, and REFs are not supported.
« Remote packages are not supported.

« Remote stored procedures can have out arguments of type REF CURSOR but
noti nori n-out objects.

« Oracle Heterogeneous Services agents do not support shared database links.

Note: In addition to these generic limitations, each gateway can
have additional limitations. Please consult the gateway
documentation for individual gateways for a complete list of
limitations of the product.

Heterogeneous Replication

Data can be replicated between a non-Oracle system and an Oracle server using
materialized views.

3-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Heterogeneous Replication

Note: Starting with Oracle9i, Release 2, there is another means of

sharing information between databases. This functionality is called
Streams and includes the replication of information between Oracle
and non-Oracle databases.

For information about using Streams, see Oracle Streams Concepts
and Administration.

Materialized views instantiate data captured from tables at the non-Oracle master
site at a particular point in time. This instant is defined by a refresh operation,
which copies this data to the Oracle server and synchronizes the copy on Oracle
with the master copy on the non-Oracle system. The "materialized” data is then
available as a view on the Oracle server.

Replication facilities provide mechanisms to schedule refreshes and to collect
materialized views into replication groups to facilitate their administration. Refresh
groups permit refreshing multiple materialized views just as if they were a single
object.

Heterogeneous replication support is necessarily limited to a subset of the full
Oracle-to-Oracle replication functionality:

« Only the non-Oracle system can be the master site. This is because materialized
views can be created only on an Oracle server.

« Materialized views must use complete refresh. This is because fast refresh
would require Oracle-specific functionality in the non-Oracle system.

« Not all types of materialized views can be created to reference tables on a
non-Oracle system. Primary key and subquery materialized views are
supported, but rowid and object id materialized views are not supported. This
is because there is no SQL standard for the format and contents of rowids, and
non-Oracle systems do not implement Oracle objects.

Other restrictions apply to any access to non-Oracle data through Oracle's
Heterogeneous Services facilities. The most important of these are:

« Non-Oracle datatypes in table columns mapped to a fixed view must be
compatible with (that is, have a mapping to or from) Oracle datatypes. This is
usually true for datatypes defined by ANSI SQL standards.

« A subquery materialized view may not be able to use language features
restricted by individual non-Oracle systems. In many cases Heterogeneous
Services supports such language features by processing queries within the

Features of Oracle Transparent Gateways and Generic Connectivity 3-3

Heterogeneous Replication

Oracle server, but occasionally the non-Oracle systems impose limitations that
cannot be diagnosed until Heterogeneous Services attempts to execute the
query.
The following examples illustrate basic setup and use of three materialized views to
replicate data from a non-Oracle system to an Oracle data store.

Note: For the following examples, r enot e_db refers to the
non-Oracle system which you are accessing from your Oracle
database server.

Modify these examples for your environment. Do not try to execute
them as they are written.

Example 1: Create materialized views for heterogeneous replication

This example creates three materialized views that are then used in succeeding
examples.

1. Create a primary key materialized view of table cust oner @ enot e_db.

CREATE MATERI ALI ZED VI EW pk_mv REFRESH COVPLETE AS
SELECT * FROM cust omer @ enot e_db WHERE "zi p" = 94555;

2. Create a subquery materialized view of tables or der s@ enot e_db and
cust omer @ enot e_db.

CREATE MATERI ALI ZED VI EW sq_nv REFRESH COWPLETE AS
SELECT * FROM orders@enote_db o WHERE EXI STS
(SELECT c."c_id" FROM custoner @enmote_db ¢
WHERE c."zip" = 94555 and c."c_id" = o0."c_id");

3. Create a complex materialized view of data from multiple tables on r enot e_db.

CREATE MATERI ALl ZED VI EW cx_nv
REFRESH COVPLETE AS
SELECT c."c_id", o."o_id"
FROM cust omrer @ enot e_db c,
orders@enote_db o,
order _line@enote db ol
WHERE c."c_id" = o0."c_id"
AND o."o_id" =ol."o_id";

3-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Pass-Through SQL

Example 2: Set up arefresh group for heterogeneous replication

BEG N
dbms_refresh. make(' refgroupl',
"pk_nmv, sq_mv, cx_m/',
NULL, NULL);
END;
/

Example 3: Force refresh of all 3 materialized views

BEG N

dbns_refresh. refresh(' refgroupl');
END;
/

See Also: Oracle Database Advanced Replication for a full
description of materialized views and replication facilities

Pass-Through SQL

The pass-through SQL feature enables you to send a statement directly to a
non-Oracle system without being interpreted by the Oracle server. This feature can
be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

This section contains the following topics:

« Using the DBMS_HS PASSTHROUGH Package

« Considering the Implications of Using Pass-Through SQL
« Executing Pass-Through SQL Statements

Using the DBMS_HS PASSTHROUGH Package

You can execute pass-through SQL statements directly at the non-Oracle system
using the PL/SQL package DBMS_HS PASSTHROUGH. Any statement executed with
this package is executed in the same transaction as standard SQL statements.

The DBM5_HS PASSTHROUGH package is a virtual package. It conceptually resides
at the non-Oracle system. In reality, however, calls to this package are intercepted
by Heterogeneous Services and mapped onto one or more Heterogeneous Services
application programming interface (API) calls. The driver, in turn, maps these

Features of Oracle Transparent Gateways and Generic Connectivity 3-5

Pass-Through SQL

Heterogeneous Services API calls onto the API of the non-Oracle system. The client
application should invoke the procedures in the package through a database link in
exactly the same way as it would invoke a non-Oracle system stored procedure. The
special processing done by Heterogeneous Services is transparent to the user.

See Also: PL/SQL Packages and Types Reference for more
information about this package

Considering the Implications of Using Pass-Through SQL

When you execute a pass-through SQL statement that implicitly commits or rolls
back a transaction in the non-Oracle system, the transaction is affected. For
example, some systems implicitly commit the transaction containing a data
definition language (DDL) statement. Because the Oracle database server is
bypassed, the Oracle database server is unaware of the commit in the non-Oracle
system. Consequently, the data at the non-Oracle system can be committed while
the transaction in the Oracle database server is not.

If the transaction in the Oracle database server is rolled back, data inconsistencies
between the Oracle database server and the non-Oracle server can occur. This
situation results in global data inconsistency.

Note that if the application executes a regular COVMM T statement, the Oracle
database server can coordinate the distributed transaction with the non-Oracle
system. The statement executed with the pass-through facility is part of the
distributed transaction.

Executing Pass-Through SQL Statements

The following table shows the functions and procedures provided by the DBM5_HS
PASSTHROUGH package that enable you to execute pass-through SQL statements.

Procedure/Function Description
OPEN_CURSCR Opens a cursor
CLOSE_CURSOR Closes a cursor

PARSE Parses the statement

Bl ND_VARI ABLE Binds | Nvariables

Bl ND_QUT_VARI ABLE Binds OUT variables

Bl ND_| NOUT_VARI ABLE Binds | N QUT variables

3-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

Pass-Through SQL

Procedure/Function Description

EXECUTE_NON_QUERY Executes non-query

EXECUTE_| MVEDI ATE Executes non-query without bind variables

FETCH_ROW Fetches rows from query

GET_VALUE Retrieves column value from SELECT statement or
retrieves OUT bind parameters

Executing Non-Queries
Non-queries include the following statements and types of statements:

« | NSERT

« UPDATE
« DELETE
« DDL

To execute non-query statements, use the EXECUTE_| MVEDI ATE function. For
example, to execute a DDL statement at a non-Oracle system that you can access
using the database link sal esdb, execute:

DECLARE
num rows | NTEGER;

BEG N
num rows : = DBMS_HS PASSTHROUGH. EXECUTE_| MVEDI ATE@al esdb
(' CREATE TABLE dept1 (n SMALLINT, |oc CHARACTER(10))'):
END;
/

The variable num r ows is assigned the number of rows affected by the execution.
For DDL statements, zero is returned. Note that you cannot execute a query with
EXECUTE_| MVEDI ATE and you cannot use bind variables.

Using Bind Variables: Overview Bind variables allow you to use the same SQL
statement multiple times with different values, reducing the number of times a SQL
statement needs to be parsed. For example, when you need to insert four rows in a
particular table, you can parse the SQL statement once and bind and execute the
SQL statement for each row. One SQL statement can have zero or more bind
variables.

To execute pass-through SQL statements with bind variables, you must:

Features of Oracle Transparent Gateways and Generic Connectivity 3-7

Pass-Through SQL

Open a cursor.
Parse the SQL statement at the non-Oracle system.
Bind the variables.

Execute the SQL statement at the non-Oracle system.

o & w0 bdPRE

Close the cursor.

Figure 3-1 shows the flow diagram for executing non-queries with bind variables.

Figure 3-1 Flow Diagram for Non-Query Pass-Through SQL

Open
Cursor

l

Parse

—

Bind
Variable
(optional)

v

Execute
non query

—

Get
Value
(optional)

v

Close
Cursor

3-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Pass-Through SQL

Using IN Bind Variables The syntax of the non-Oracle system determines how a
statement specifies a bind variable. For example, in Oracle you define bind variables
with a preceding colon. For example:

UPDATE enp
SET sal =sal *1.1
WHERE enane=: enane;

In this statement, enane is the bind variable. In non-Oracle systems, you may need
to specify bind variables with a question mark. For example:

UPDATE enp
SET sal =sal *1.1
WHERE ename= ?,

In the bind variable step, you must positionally associate host program variables (in
this case, PL/SQL) with each of these bind variables.

For example, to execute the preceding statement, you can use the following
PL/SQL program:

DECLARE
¢ | NTEGER
nr | NTEGER;
BEG N
¢ := DBMS_HS_ PASSTHROUGH. OPEN_CURSOR@al esdb;
DBVS_HS PASSTHROUGH. PARSE@al esdb(c,

' UPDATE enp SET SAL=SAL*1.1 WHERE enane=?');
DBVS_HS PASSTHROUGH. BI ND_VARI ABLE@al esdb(c, 1, JONES');
nr: =DBMS_HS PASSTHROUGH. EXECUTE_NON_QUERY@al esdb(c);
DBVS_QUTPUT. PUT_LINE(nr||" rows updated');
DBVS_HS_PASSTHROUGH. CLOSE_CURSOR@al esdb(c);

END;
/

Using OUT Bind Variables In some cases, the non-Oracle system can also support QUT
bind variables. With OUT bind variables, the value of the bind variable is not known
until after the execution of the SQL statement.

Although QUT bind variables are populated after the SQL statement is executed, the
non-Oracle system must know that the particular bind variable is an OUT bind

Features of Oracle Transparent Gateways and Generic Connectivity 3-9

Pass-Through SQL

variable before the SQL statement is executed. You must use the Bl ND_QUT _
VARI ABLE procedure to specify that the bind variable is an OUT bind variable.

After the SQL statement is executed, you can retrieve the value of the OQUT bind
variable using the GET_VALUE procedure.

Using IN OUT Bind Variables A bind variable can be both an | Nand an OUT variable.
This means that the value of the bind variable must be known before the SQL
statement is executed but can be changed after the SQL statement is executed.

For I N QUT bind variables, you must use the Bl ND_| NOUT_VARI ABLE procedure
to provide a value before the SQL statement is executed. After the SQL statement is
executed, you must use the GET_VALUE procedure to retrieve the new value of the
bind variable.

Executing Queries

The difference between queries and non-queries is that queries retrieve a result set
from a SELECT statement. The result set is retrieved by iterating over a cursor.

Figure 3-2 illustrates the steps in a pass-through SQL query. After the system parses
the SELECT statement, each row of the result set can be fetched with the FETCH _
ROWprocedure. After the row is fetched, use the GET_VALUE procedure to retrieve
the select list items into program variables. After all rows are fetched, you can close
the cursor.

3-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

Pass-Through SQL

Figure 3-2 Pass-Through SQL for Queries

Open
Cursor

l

Parse

—

Bind
Variable
(optional)

'

v

Fetch_row

For each
row

—

For each
column Get

| Value

v

Close
Cursor

You do not have to fetch all the rows. You can close the cursor at any time after
opening the cursor, for example, after fetching a few rows.

Note: Although you are fetching one row at a time,
Heterogeneous Services optimizes the round trips between the
Oracle server and the non-Oracle system by buffering multiple rows
and fetching from the non-Oracle data system in one round trip.

Features of Oracle Transparent Gateways and Generic Connectivity 3-11

Result Set Support

The next example executes a query:

DECLARE
val VARCHAR2(100);
c | NTEGER;
nr | NTEGER;

BEG N

¢ := DBMS_HS PASSTHROUGH. OPEN_CURSOR@al esdb;
DBMS_HS_PASSTHROUGH. PARSE@ al esdb(c,
'sel ect ENAME
from EMP
where DEPTNO=10");
LOOP
nr := DBMS_HS PASSTHROUGH FETCH ROA@al esdb(c);
EXIT WHEN nr = 0;
DBVS_HS_PASSTHROUGH. GET_VALUE@al esdb(c, 1, val);
DBMS_OUTPUT. PUT LI NE(val);
END LOCP,
DBMS_HS_PASSTHROUGH. CLOSE_CURSOR@al esdb(c) ;
END;
/
After the SELECT statementhas been parsed, the rows are fetched and printed in a
loop until the function FETCH_ROWreturns the value 0.

Result Set Support

Various relational databases allow stored procedures to return result sets. In other
words, stored procedures will be able to return one or more sets of rows.

Traditionally, database stored procedures worked exactly like procedures in any
high-level programming language. They had a fixed number of arguments which
could be of typesi n, out , ori n- out . If a procedure had n arguments, it could
return at most n values as results. However, suppose that somebody wanted a
stored procedure to execute a query such as SELECT * FROM enp and return the
results. The enp table might have a fixed number of columns but there is no way of
telling, at procedure creation time, the number of rows it has. Because of this, no
traditional stored procedure can be created that can return the results of a such a
query. As a result, several relational database vendors added the capability of
returning results sets from stored procedures, but each kind of relational database
returns result sets from stored procedures in a different way.

Oracle has a datatype called a REF CURSOR. Like every other Oracle datatype, a
stored procedure can take this datatype as an in or out argument. In Oracle, a stored
procedure can return a result set in the following way. To return a result set, a stored

3-12 Oracle Database Heterogeneous Connectivity Administrator's Guide

Result Set Support

procedure must have an output argument of type REF CURSOR It then opens a
cursor for a SQL statement and places a handle to that cursor in that output
parameter. The caller can then fetch from the REF CURSOR the same way as from
any other cursor.

Oracle can do a lot more than simply return result sets. REF CURSORs can be
passed as input arguments to PL/SQL routines to be passed back and forth between
client programs and PL/SQL routines or between several PL/SQL routines.

Result Set Support In Non-Oracle Systems

Several non-Oracle systems allow stored procedures to return result sets but do so
in completely different ways. Result sets are supported to some extent in DB2,
Sybase, Microsoft SQL Server, and Informix. Result set support in these databases is
based on one of the following two models.

Model 1

When creating a stored procedure, the user can explicitly specify the maximum
number of result sets that can be returned by that stored procedure. While
executing, the stored procedure can open anywhere from zero to its pre-specified
maximum number of result sets. After the execution of the stored procedure, a
client program can obtain handles to these result sets by using either an embedded
SQL directive or calling a client library function. After that the client program can
fetch from the result in the same way as from a regular cursor.

Model 2

In this model, there is no pre-specified limit to the number of result sets that can be
returned by a stored procedure. Both Model 1 and Oracle have a limit. For Oracle
the number of result sets returned by a stored procedure can be at most the number
of REF CURSCOR out arguments; for Model 1, the upper limit is specified using a
directive in the stored procedure language. Another way that Model 2 differs from
Oracle and Model 1 is that they do not return a handle to the result sets but instead
place the entire result set on the wire when returning from a stored procedure. For
Oracle, the handle is the REF CURSOR out argument; for Model 1, it is obtained
separately after the execution of the stored procedure. For both Oracle and Model 1,
once the handle is obtained, data from the result set is obtained by doing a fetch on
the handle; we have a bunch of cursors open and can fetch in any order. In the case
of Model 2, however, all the data is already on the wire, with the result sets coming
in the order determined by the stored procedure and the output arguments of the
procedures coming at the end. So the whole of the first result set must be fetched,

Features of Oracle Transparent Gateways and Generic Connectivity 3-13

Result Set Support

then the whole of the second one, until all of the results have been fetched. Finally,
the stored procedure out arguments must be fetched.

Heterogeneous Services Support for Result Sets

As can be seen in the preceding sections, result set support exists among non-Oracle
databases in a variety of forms. All of these have to be mapped onto the Oracle REF
CURSOR model. Due to the considerable differences in behavior among the various
non-Oracle systems, Heterogeneous Services result set support will have to behave
in one of two different ways depending on the non-Oracle system it is connected to.

Please note the following about Heterogeneous Services result set support:

« Result set support is present in Heterogeneous Services generic code but in
order for the feature to work in a gateway, the driver has to implement it as
well. Not all drivers have implemented result set support and the customer
must check in his gateway-specific documentation to determine whether it is
supported in that gateway.

« Heterogeneous Services will support REF CURSOR out arguments from stored
procedures. | n and i n- out arguments will not be supported.

« The REF CURSOR out arguments will all be anonymous REF CURSORs. No
typed REF CURSORs are returned by Heterogeneous Services.

Cursor Mode

Oracle generally behaves such that each result set returned by the non-Oracle
system stored procedure is mapped by the driver to an out argument of type REF
CURSOR. The client program sees a stored procedure with several out arguments of
type REF CURSOR. After executing the stored procedure, the client program can
fetch from the REF CURSOR in exactly the same way as it would from a REF
CURSOR returned by an Oracle stored procedure. When connecting to the gateway
as described in Model 1, Heterogeneous Services will be in cursor mode.

Sequential Mode

In Oracle, there is a pre-specified maximum number of result sets that a particular
stored procedure can return. The number of result sets returned is at most the
number of REF CURSOR out arguments for the stored procedure. It can, of course,
return fewer result sets, but it can never return more.

For the system described in Model 2, there is no pre-specified maximum of result
sets that can be returned. In the case of Model 1, we know the maximum number of
result sets that a procedure can return, and the driver can return to Heterogeneous

3-14 Oracle Database Heterogeneous Connectivity Administrator's Guide

Data Dictionary Translations

Services a description of a stored procedure with that many REF CURSOR out
arguments. If, on execution of the stored procedure, fewer result sets than the
maximum are returned, then the other REF CURSOR out arguments will be set to
NULL.

Another problem for Model 2 database servers is that result sets have to be
retrieved in the order in which they were placed on the wire by the database. This
prevents Heterogeneous Services from running in cursor mode when connecting to
these databases. To access result sets returned by these stored procedures, you must
operate Heterogeneous Services in sequential mode.

In sequential mode, the procedure description returned by the driver contains the
following:

« All the input arguments of the remote stored procedure
= None of the output arguments

« Oneout argument of type REF CURSOR (corresponding to the first result set
returned by the stored procedure)

The client fetches from this REF CURSOR and then calls the virtual package
function dbns_hs _result _set.get next _result_ set togetthe REF
CURSOR corresponding to the next result set. This function call is repeated until all
result sets have been fetched. The last result set returned will actually be the out
arguments of the remote stored procedure.

The major limitations of sequential mode are as follows:

« Result sets returned by a remote stored procedure have to be retrieved in the
order in which they were placed on the wire

« On execution of a stored procedure, all result sets returned by a previously
executed stored procedure will be closed (regardless of whether the data has
been completely fetched or not).

See Also: Your gateway manual for more information about how
result sets are supported through the gateway

Data Dictionary Translations

Most database systems have some form of data dictionary. A data dictionary is a
collection of information about the database objects that have been created by
various users of the system. For a relational database, a data dictionary is a set of
tables and views which contain information about the data in the database. This
information includes information on the users who are using the system and on the

Features of Oracle Transparent Gateways and Generic Connectivity 3-15

Data Dictionary Translations

objects that they have created (such as tables, views, triggers and so forth). For the
most part, all data dictionaries (regardless of the database system) contain the same
information but each database system organizes the information in a different way.

For example, the ALL_CATLOG Oracle data dictionary view gives a list of tables,
views, and sequences in the database. It has three columns: the first is called OANER
and is the name of the owner of the object, the second is called TABLE _NAME and is
the name of the object, and the third is called TABLE_TYPE and is the type. This
field has value TABLE, VI EWSEQUENCE and so forth depending on the object type.
However, in Sybase, the same information is stored in two tables called sysuser s
and sysobj ect s whose column names are quite different than those of Oracle
ALL_CATALOGtable. Additionally, in Oracle, the table type is a string with value
TABLE, VI EWand so forth but in Sybase it is a letter. For example, in Sybase, U
means user table, S means system table, V means view, and so forth.

If the client program wants information from the table ALL_CATALOGat Sybase,
then all it has to do is to send a query referencing ALL_CATALOG@lat abase_| i nk
to a gateway. Heterogeneous Services translates this query to the appropriate one
on syst abl es and sends the translated query to Sybase.

SELECT SU. "nanme" OMER, SO "name" TABLE_NAME,

DECODE(SO. "type", "U ', TABLE, 'S ', "TABLE, 'V ', "VIEW)
TABLE_TYPE
FROM "dbo". "sysusers" @enote_db SU, "dbo"."sysobjects"@enmote_db SO
VWHERE SU. "uid" = SO "uid" AND

(SO "type" =’V OR SO "type" ='S OR SO "type" ='U);

To relay such a translation of a query on an Oracle data dictionary table to the
equivalent one on the non-Oracle system data dictionary table, Heterogeneous
Services needs data dictionary translations for that non-Oracle system. A data
dictionary translation is a view definition (essentially a select statement) over one or
more non-Oracle system data dictionary tables such that the view looks exactly like
the Oracle data dictionary table, with the same column names and the same
information formatting. A data dictionary translation need not be as simple as the
preceding example. Often the information needed is not found in one or two tables
but is scattered over many tables and the data dictionary translation is a complex
join over those tables.

In some cases, an Oracle data dictionary table does not have a translation because
the information needed does not exist at the non-Oracle system. In such cases, the
gateway can decide not to upload a translation at all or can resort to an alternative
approach called mimicking. If the gateway wants to mimic a data dictionary table
then it will let Heterogeneous Services know and Heterogeneous Services will

3-16 Oracle Database Heterogeneous Connectivity Administrator's Guide

Two-Phase Commit Protocol

obtain the description of the data dictionary table by querying the local database
but when asked to fetch data, it will report that no rows were selected.

Datetime Datatypes
Oracle has five datetime datatypes:
« Tl MESTAWVP
« TIMESTAWP WTH TI ME ZONE
« TIMESTAWMP W TH LOCAL TI ME ZONE
« | NTERVAL YEAR TO MONTH
« | NTERVAL DAY TO SECOND

Heterogeneous Services generic code supports Oracle datetime datatypes in SQL
and stored procedures. Oracle does not support these datatypes in data dictionary
translations or queries involving data dictionary translations.

Even though Heterogeneous Services generic code supports this, support for a
particular gateway depends on whether or not the driver for that non-Oracle
system has implemented datetime support. Support even when the driver
implements it may be partial because of the limitations of the non-Oracle system.
Users should consult the documentation for their particular gateway on this issue.

The user must set the timestamp formats of the non-Oracle system in the gateway
initialization file. The parameters to setare HS_NLS Tl MESTAMP_FORMAT and HS
NLS Tl MESTAMP_TZ FORMAT. The user should also set the local time zone for the
non-Oracle system in the initialization file by setting HS_TI ME_ZONE.

See Also: Oracle Database SQL Reference for information on
datetime datatypes

Two-Phase Commit Protocol

Heterogeneous Services provides the infrastructure for the implementation of the
two-phase commit mechanism. The extent to which this is supported depends on
the gateway, and the remote system. Please refer to individual gateway manuals for
more information.

See Also: Oracle Database Administrator’s Guide for more
information about the two-phase commit protocol

Features of Oracle Transparent Gateways and Generic Connectivity 3-17

Piecewise Long

Piecewise Long

Earlier versions of gateways had limited support for the LONGdatatype. LONGis an
Oracle datatype that can be used to store up to 2 gigabytes (GB) of character/raw
data (LONG RAW. These earlier versions restricted the amount of LONG data to 4
MB. This was because they would treat LONG data as a single piece. This led to
restrictions of memory and network bandwidth on the size of the data that could be
handled. Current gateways have extended the functionality to support the full 2 GB
of heterogeneous LONGdata. They handle the data piecewise between the agent and
the Oracle server, thereby doing away with the large memory and network
bandwidth requirements.

There is a new Heterogeneous Services initialization parameter, HS_LONG_PI ECE
TRANSFER_SI ZE, that can be used to set the size of the transferred pieces. For
example, let us consider fetching 2 GB of LONGdata from a heterogeneous source. A
smaller piece size means less memory requirement, but more round trips to fetch all
the data. A larger piece size means fewer round trips, but more of a memory
requirement to store the intermediate pieces internally. Thus, the initialization
parameter can be used to tune a system for the best performance, that is, for the best
trade-off between round-trips and memory requirements. If the initialization
parameter is not set, the system defaults to a piece size of 64 KB.

Note: This feature is not to be confused with piecewise operations
on LONGdata on the client side. Piecewise fetch and insert
operations on the client side did work with the earlier versions of
the gateways, and continue to do so. The only difference on the
client side is that, where earlier versions of the gateways were able
to fetch only up to 4 megabytes (MB) of LONG data, now they can
fetch the entire 2 GB of LONGdata. This is a significant
improvement, considering that 4 MB is only 0.2% of the datatype’s
full capacity.

SQL*Plus DESCRIBE Command

Until Oracle9i, you could not describe non-Oracle system objects using the
SQL*Plus DESCRI BE command. As of Oracle9i, functionality to do this has been
added to Heterogeneous Services. There are still some limitations. For example,
using Heterogeneous links, you still cannot describe packages, sequences,
synonyms, or types.

3-18 Oracle Database Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

Constraints on SQL in a Distributed Environment

This section explains some of the constraints that exist on SQL in a distributed
environment. These constraints apply to distributed environments that involve
access to non-Oracle systems or remote Oracle databases.

This section contains the following topics:
« Resolving Remote and Heterogeneous References
« Resolving Important Restrictions

« Updates, Inserts, and Deletes

Resolving Remote and Heterogeneous References

Note: Many of the rules for heterogeneous access also apply to
remote references. For more information, please see the distributed
database section of the Oracle Database Administrator’s Guide.

A statement can, with restrictions, be executed on any database node referenced in
the statement or the local node. If all objects referenced are resolved to a single,
referenced node, then Oracle attempts to execute a query at that node. You can force
execution at a referenced node by using the / *+ REMOTE_MAPPED */ or/*+

DRI VI NG_SI TE */ hints. If a statement is forwarded to a different node than the
node where the statement was issued, then the statement is said to be remote
mapped.

The ways in which statements can, must, and cannot be remote mapped are subject
to specific rules or restrictions. If these rules are not all followed, then an error will
occur. As long as the statements issued are consistent with all these rules, the order
in which the rules are applied does not matter.

Different constraints exist when you are using SQL for remote mapping in a
distributed environment. This distributed environment can include remote Oracle
databases as well as non-Oracle databases that are accessed through Oracle
Transparent Gateways or Generic Connectivity agents.

Resolving Important Restrictions

The following section lists some of the different constraints that exist when you are
using SQL for remote mapping in a distributed environment.

Features of Oracle Transparent Gateways and Generic Connectivity 3-19

Constraints on SQL in a Distributed Environment

Note: In the examples that follow, r enot e_db refers to a remote
non-Oracle system while r enot e_or acl e_db refers to a remote
Oracle server.

Rule A: A data definition language statement cannot be remote
mapped.

In Oracle data definition language, the target object syntactically has no place for a
remote reference. Data definition language statements that contain remote
references are always executed locally. For Heterogeneous Services, this means it
cannot directly create database objects in a non-Oracle database using SQL.

However, there is an indirect way using pass-through SQL.
Consider the following example:

DECLARE
num rows | NTEGER;
BEG N
numrows := DBMS_HS PASSTHROUGH. EXECUTE_| MVEDI ATE@ enot e_db

(

"create table x1 (cl char, c2 int)’
);
END;
/

Rule B: INSERT, UPDATE and DELETE statements with a remote target
table must be remote mapped.

This rule is more restrictive for non-Oracle remote databases than for a remote
Oracle database. This is because the remote system cannot fetch data from the
originating Oracle database while executing DML statements targeting tables in a
non-Oracle system.

For example, to insert all local employees from the local enp table to a remote
Oracle enp1 table, use the following statement:

| NSERT | NTO emp@ erot e_db SELECT * FROM enp;
This statement is remote-mapped to the remote database. The remote-mapped
statement sent to the remote database contains a remote reference back to the

originating database for enp. Such a remote link received by the remote database is
called a callback link.

3-20 Oracle Database Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

Note: Even though callback links are supported in generic
Heterogeneous Services, they may not be implemented in all
Heterogeneous Services agents. Please refer to your transparent
gateway documentation to determine if callback links work with
the transparent gateway that you are using.

If callback links are not supported by a particular gateway, then the previous
| NSERT statements returns the following error:

ORA-02025: all tables in the SQ. statenent nmust be at the renote database

The workaround is to write a PL/SQL block:

DECLARE
CURSOR remote_insert |'S SELECT * FROM enp;
BEG N
FOR rec IN renote_insert LOOP
I NSERT | NTO enp@ enot e_db (enpno, ename, deptno) VALUES (
rec. enpno,
rec. enane,
rec. dept no
);
END | oop;
END;
/

Another special case involves session specific SQL functions such as USER,
USERENV and SYSDATE. These functions may need to be executed at the originating
site. A remote mapped statement containing these functions will contain a callback
link. For a non-Oracle database where callbacks are not supported this could (by
default) result in a restriction error.

For example, consider the following statement:
DELETE FROM emp@ enot e_db WHERE hi redate > sysdate;

The statement returns the following error message:
ORA-02070: dat abase REMOTE_DB does not support special functions in this context

This often must be resolved by replacing special functions with a bind variable:
DELETE FROM emp@ enot e_db WHERE hiredate > :1;

Features of Oracle Transparent Gateways and Generic Connectivity 3-21

Constraints on SQL in a Distributed Environment

Rule C: Object features like tables with nested table columns, ADT
columns, Opaque columns or Ref Columns cannot be remote mapped.

Currently, these column types are not supported for heterogeneous access. Hence,
this limitation is not directly encountered.

Rule D: SQL statements containing operators and constructs that are
not supported at the remote site cannot be remote mapped.

Note that in our description of Rule B we already encountered special constructs
such as callback links and special functions as examples of this.

If the statement is a SELECT (or DML with the target table local) and none of the
remaining rules would require the statement to be remote mapped, then the
statement can still be executed by processing the query locally using the local SQL
engine and the remote sel ect operation.

The remote SELECT operation is the operation to retrieve rows for remote table data
as opposed to other operations like full table scan and index access which retrieve
rows of local table data. The remote table scan has a SQL statement associated with
the operation. A full table scan of table enpl is issued as SELECT * FROM enpl
(with the * expanded to the full column list). Access for indexes is converted back to
WHERE clause predicates. Also, filters that can be supported are passed down to the
VWHERE clause of the remote row source.

You can check the SQL statement generated by the Oracle server by explaining the
statement and querying the OTHER column of the explain plan table for each
REMOTE operation.

See Also: Example: Using Index and Table Statistics for more

information on how to interpret explain plans with remote
references

For example consider the following statement:

SELECT COUNT(*) FROM enmp@ enote_db WHERE hiredate < sysdate;

The statement returns the following output:

14
1 row sel ected.

3-22 Oracle Database Heterogeneous Connectivity Administrator's Guide

Constraints on SQL in a Distributed Environment

The remote table scan is:
SELECT hiredate FROM enp;
The predicate converted to a filter cannot be generated back and passed down to

the remote operation because sysdat e is not supported by the r enot e_db or
evaluation rules. Thus sysdat e must be executed locally.

Note: Because the remote table scan operation is only partially
related to the original query, the number of rows retrieved can be
significantly larger than expected and can have a significant impact
on performance.

Rule E: SQL statement containing a table expression cannot be remote
mapped.

This limitation is not directly encountered because table expressions are not
supported in the heterogeneous access module.

Rule F: If a SQL statement selects LONG data, then the statement must
be mapped to the node where the table containing the long resides.
For example, consider the following type of statement:

SELECT | ongl FROM table_with_l ong@enote_db, dual;

This type of statement returns the following error message:
ORA-02025: all tables in the SQL statenent nust be at the renpte database

This can be resolved by the following type of statement:
SELECT Iongl FROM table_with_| ong@enmote_db WHERE | ong_i dx = 1,

Rule G: The statement must be mapped to the node on which the table
or tables with columns referenced in the FOR UPDATE OF clause
resides when the SQL statement is of form "SELECT...FOR UPDATE
OF..."

When the SQL statement is of the form SELECT. . . FOR UPDATE OF. .., the
statement must be mapped to the node on which the table or tables with columns
referenced in the FOR UPDATE OF clause resides.

For example, consider the following statement:

Features of Oracle Transparent Gateways and Generic Connectivity 3-23

Constraints on SQL in a Distributed Environment

SELECT enanme FROM emp@ enote_db WHERE hiredate < sysdate FOR UPDATE OF enpno;

The statement returns the following error message:

ORA- 02070: dat abase REMOTE_DB does not support special functions in this context

Rule H: If the SQL statement contains a SEQUENCE or sequences,
then the statement must be mapped to the site where each sequence
resides.

This rule is not encountered for the heterogeneous access since remote non-Oracle

sequences are not supported. The restriction for remote non-Oracle access is already
present because of the callback link restriction.

Rule I: If the statement contains a user-defined operator or operators,
then the statement must be mapped to the node where each operator
is defined.

This rule is also already covered under the callback link restriction discussed in
Rule B.

Rule J: A statement containing duplicate bind variables cannot be
remote mapped.

The workaround for this restriction is to use unique bind variables and bind by
number.

Updates, Inserts, and Deletes

As with any remote update, whether non-Oracle or a previous remote update, if a
SQL update in an Oracle format is not supported, then an error is returned in the
following format:

ORA-2070: database ... does not support ... in this context.

Note: These restrictions do not apply to DML with a local target
object referencing non-Oracle or remote Oracle database objects.

You can perform DML to remote Oracle or non-Oracle target tables in an Oracle
format that is not supported by using PL/SQL. Declare a cursor that selects the
appropriate row and executes the update for each row selected. The row may need
to be unique, identified by selecting a primary key, or, if not available, a rowid.

3-24 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using Oracle’s Optimizer with Heterogeneous Services

Consider the following example:

DECLARE
CURSCR c1 IS SELECT enpno FROM enp e, dept d
VWHERE e. deptno = d.deptno
AND d.dnane = ' SALES';
BEG N
FOR REC IN c1 LOOP
UPDATE emp@enote_db SET coom= .1 * sal
WHERE enpno = rec. enpno;
END | oop;
END;
/

Using Oracle’s Optimizer with Heterogeneous Services

Oracle’s optimizer can be used with Heterogeneous Services. Heterogeneous
Services collects certain table and index statistics information on the respective
non-Oracle system tables and passes this information back to the Oracle server. The
Oracle cost based optimizer uses this information when building the query plan.

There are several other optimizations that the cost based optimizer performs. The
most important ones are remote sort elimination and remote joins.

Example: Using Index and Table Statistics

Consider the following statement where you create a table in the Oracle database
with 10 rows:

CREATE TABLE T1 (Cl nunber);

Analyze the table by issuing the following SQL statement:
ANALYZE TABLE T1 COWPUTE STATI STI CS;

Now create a table in the non-Oracle system with 1000 rows.
Issue the following SQL statement:

SELECT a.* FROMrenote_t1@enote_db a, Tl b
WHERE a.Cl = b. Cl;

The Oracle optimizer issues the following SQL statement to the agent:
SELECT C1 FROM renote_t 1@ enot e_db;

Features of Oracle Transparent Gateways and Generic Connectivity 3-25

Using Oracle’s Optimizer with Heterogeneous Services

This fetches all of the 1000 rows from the non-Oracle system and performs the join
in the Oracle database.

Nowy, if we add a unique index on the column C1 in the table r ennt e_t 1, and issue
the same SQL statement again, the agent receives the following SQL statement for
each value of C1 in the local t 1:

SELECT C1 FROMrenote t1@enote _db WHERE Cl = ?;

Note: ?is the bind parameter marker. Also, join predicates
containing bind variables generated by Oracle are generated only
for nested loop join methods.

To verify the SQL execution plan, generate an explain plan for the SQL statement.
First load ut | xpl an in the adm n directory.

Enter the following:

EXPLAIN PLAN FOR SELECT a.* FROM remnte_tl@enote _db a, T1 b
WHERE a.Cl = b. C1;

Execute the ut | xpl s utility script by entering the following statement.
@t xpls

The operation remote indicates that remote SQL is being referenced.
To find out what statement is sent, enter the following statement:
SELECT 1D, OTHER FROM PLAN TABLE WHERE OPERATI ON = ' REMOTE' ;

Example: Remote Join Optimization

The following is an example of the remote join optimization capability of the Oracle
database.

3-26 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using Oracle’s Optimizer with Heterogeneous Services

Note: The explain plan that uses tables from a non-Oracle system
can differ from similar statements with local or remote Oracle table
scans. This is because of the limitation on the statistics available to
Oracle for non-Oracle tables. Most importantly, column selectivity
is not available for non-unique indexes of non-Oracle tables.
Because of the limitation of the statistics available, the following
example is not necessarily what you encounter when doing remote
joins for yourself and is intended for illustration only.

Consider the following example:

EXPLAIN PLAN FOR
SELECT e. enane, d.dnane, f.ename, f.deptno FROM
dept d,
emp@enote_db e,
emp@enote_db f
WHERE e.ngr = f.enpno
AND e. deptno = d. deptno
AND e. enpno = f.enpno;

@it xpls

You should see output similar to the following:
PLAN_TABLE_QUTPUT

| Id | Operation | Name | Rows | Bytes | Cost
| I'nst |INQUT|

| 0 | SELECT STATEMENT | | 2000 | 197K 205 |
|* 1 | HASH JON | | 2000 | 197K

205 |

| 2 | TABLE ACCESS FULL | DEPT | 21 | 462 | 2|
[* 3 | HASH JON | | 2000 | 154K

201 |

| 4 | REMOTE | | 2000 | 66000

| 52 |

| 5 | REMOTE | | 2000 | 92000

| 52

Features of Oracle Transparent Gateways and Generic Connectivity 3-27

Using Oracle’s Optimizer with Heterogeneous Services

PLAN_TABLE_CUTPUT

- sel$1/
- sel $1 /
- sel $1 /
- sel $1 /
- sel$1/

g s wWwN -
mmT T O O

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

" . "DEPTNO'="D". " DEPTNO")
"OUMER'="F"."EMPNO' AND "E"."EMPNO'="F"."EMPNO')

1 - access("
3 - access("

E
E
Issue the following statement:

SET | ong 300
SELECT ot her FROM pl an_t abl e WHERE operation = ' REMOTE ;

You should see output similar to the following:

SELECT "EMPNO', "ENAME", " DEPTNO' FROM " EMP"
SELECT "EMPNO', "ENAME", "MGR', " DEPTNO' FROM " EMP"
SELECT "ENMPNO', "ENAME", " DEPTNO' FROM " EMP"
SELECT "EMPNO', "ENAME", "MGR', "DEPTNO" FROM " EMP"

Optimizer Restrictions for Non-Oracle Access

1. There are no column statistics for remote objects. This can result in poor
execution plans. Verify the execution plan and use hints to improve the plan.

3-28 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using Oracle’s Optimizer with Heterogeneous Services

There is no optimizer hint to force a remote join. However, there is a remote
guery block optimization that can be used to rewrite the query slightly in order
to get a remote join.

For instance, the earlier example can be rewritten to the form:

SELECT v. ename, d.dnane, d.deptno FROM dept d,
(SELECT /*+ NO MERGE */
e.deptno deptno, e.enane enane enp@enote_db e, emp@enote_db f
VHERE e.ngr = f.enpno
AND e. enpno = f.enpno;

)
WHERE v. deptno = d. dept no;

This guarantees a remote join because it has been isolated in a nested query
with the NO_MERGE hint.

Features of Oracle Transparent Gateways and Generic Connectivity 3-29

Using Oracle’s Optimizer with Heterogeneous Services

3-30 Oracle Database Heterogeneous Connectivity Administrator's Guide

A

Using Heterogeneous Services Agents

This chapter explains how to use Heterogeneous Services (HS) agents. It contains
the following sections:

Setting Up Access to Non-Oracle Systems

Setting Initialization Parameters

Optimizing Data Transfers Using Bulk Fetch

Registering Agents

Oracle Database Server SQL Construct Processing

Executing User-Defined Functions on a Non-Oracle Database
Using Synonyms

Copying Data from the Oracle Database Server to the Non-Oracle Database
System

Copying Data from the Non-Oracle Database System to the Oracle Database
Server

Heterogeneous Services Data Dictionary Views

Using the Heterogeneous Services Dynamic Performance Views

Using Heterogeneous Services Agents 4-1

Setting Up Access to Non-Oracle Systems

Setting Up Access to Non-Oracle Systems

This section explains the generic steps to configure access to a non-Oracle system.

Note: The instructions for configuring your agent may differ
slightly from the following instructions. Please see the Installation
and User's Guide for your agent for more complete installation
information.

The steps for setting up access to a non-Oracle system are:

Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents
Step 2: Create the Database Link to the Non-Oracle System

Step 3: Test the Connection

Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents

To initiate a connection to the non-Oracle system, the Oracle server starts an agent
process through the Oracle Net listener. For the Oracle server to be able to connect
to the agent, you must:

1. Setup a Oracle Net service name for the agent that can be used by the Oracle
server. The Oracle Net service name descriptor includes protocol-specific
information needed to access the Oracle Net listener. The service name
descriptor must include the (HS=OK) clause to ensure the connection uses
Oracle Heterogeneous Services. The description of this service name is defined
int nsnanes. or a, the Oracle Names server, or in third-party name servers
using the Oracle naming adapter.

The following is a sample entry for service name in the t nsnanes. or a file:

Sybase_sal es= (DESCRI PTI ON=
(ADDRESS=(PROTOCOL=t cp)

(HOST=dl sun206)

(PORT=1521)
)
(CONNECT_DATA = (SERVI CE_NAME=Sal esDB)
)
(

HS = OK)

4-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Setting Up Access to Non-Oracle Systems

Set up the listener on the gateway to listen for incoming request from the Oracle
server and spawn Heterogeneous Services agents. Then, start the listener on the
gateway machine.

The following is a sample entry for the listener in| i st ener. or a:

LI STENER =
(ADDRESS LI ST =
(ADDRESS= (PROTOCOL=t cp)
(HOST = dl sun206)
(PORT = 1521)

)

SID LI ST_LI STENER =
(SID_LIST =
(SID_DESC = (S| D_NAME=Sal esDB)
ORACLE_HOVE=/ hone/ or acl e/ megabase/ 9. 0. 1)
PROGRAM:t g4nh80)

ENVS=LD_LI BRARY_PATH=non_oracl e_system |ib_directory)

—_— e~ e~ —

)

The value associated with the PROGRAMkeyword defines the name of the agent
executable. The full path of the directory which contains the DLL that is loaded
by the Heterogeneous Services agent is specified by LD LI BRARY_PATH.
Typically, you use SI D_NAME to define the initialization parameter file for the
agent.

See Also:

« Oracle Net Services Administrator's Guide for more information
about configuring the Oracle Net listener and a net service
name for heterogeneous connectivity

« "Administering Multithreaded Agents" on page 5-6 for
information about starting multithreaded agents

Step 2: Create the Database Link to the Non-Oracle System

To create a database link to the non-Oracle system, use the CREATE DATABASE
LI NK statement. The service name that is used in the USI NGclause of the CREATE
DATABASE LI NK statement is the Oracle Net service name.

Using Heterogeneous Services Agents 4-3

Setting Up Access to Non-Oracle Systems

Use quotes with the username and password to avoid differences in case-sensitive
behavior between Oracle and non-Oracle databases. For example, enter a statement
like the following:

CREATE DATABASE LI NK sal es
CONNECT TO "sal esl"

| DENTI FI ED BY " Sal es1"

USI NG ' Sybase_sal es’;

Step 3: Test the Connection

To test the connection to the non-Oracle system, use the database link in a SQL or
PL/SQL statement. If the non-Oracle system is a SQL-based database, you can
execute a SELECT statement from an existing table or view using the database link.
For example:

SELECT * FROM product @al es
WHERE product _nanme |ike ' %encil %;

When you try to access the non-Oracle system for the first time, the Heterogeneous
Services agent uploads information into the Heterogeneous Services data
dictionary. The uploaded information includes:

Type of Data Explanation

Capabilities of the For example, the agent specifies whether it can perform a join, or

non-Oracle system a GROUP BY.

SQL translation The agent specifies how to translate Oracle functions and

information operators into functions and operators of the non-Oracle system.

Data dictionary To make the data dictionary information of the non-Oracle

translations system available just as if it were an Oracle data dictionary, the
agent specifies how to translate Oracle data dictionary tables into
tables and views of the non-Oracle system.

Note: Most agents upload information into the Oracle data
dictionary automatically the first time they are accessed. Some
agent vendors may provide scripts, however, that you must run on
the Oracle server.

See Also: Heterogeneous Services Data Dictionary Views on
page 4-20 and Appendix C, "Data Dictionary Translation Support"

4-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Setting Initialization Parameters

Setting Initialization Parameters

As mentioned in "Configuring Heterogeneous Services" on page 2-5, you can
configure the gateway using initialization parameters. This is done by creating an
initialization file and setting the desired parameters in this file

Heterogeneous Services initialization parameters are distinct from Oracle database
server initialization parameters. Heterogeneous Services initialization parameters
are set in the Heterogeneous Services initialization file and not in the Oracle
database server initialization parameter file (i ni t . or a file). Thereis a
Heterogeneous Services initialization file for each gateway instance.

Name and Location of Heterogeneous Services Initialization Parameter File

The name of the file isi ni t si d. or a, where si d is the Oracle system identifier
used for the gateway.

In the case of Generic Connectivity, the Heterogeneous Services initialization file is
located in the directory $ORACLE_HOME/ hs/ admi n. In the case of Transparent
Gateways it is located in the directory $ORACLE_HOVE/ pr oduct _nane/ adm n
where pr oduct _nare is the name of the product. So, the Sybase gateway
initialization file is located in the directory $ORACLE_HOVE/ t g4sybs/ admi n.

Syntax for Initialization Parameter Settings

The initialization file contains a list of initialization parameter settings each of
which should be on a separate line. The syntax to set an initialization parameter is:

[set] [private] parameter = paraneter_val ue

The set and private keywords are optional. If the set keyword is present then the
variable will also be set in the environment. If the private keyword is present, the
parameter will not be uploaded to the server. In general, it recommended that this
keyword not be used - unless the initialization parameter value contains sensitive
information (like a password) that should not be sent over the network from
gateway to Oracle server.

In the initialization parameter syntax, all keywords (SET, PRI VATE and | FI LE) are
case insensitive. Initialization parameter names and values are case sensitive. Most
initialization parameters names are uppercase. String values for Heterogeneous

Services parameters must be lowercase. Exceptions to this rule are explicitly noted.

Another initialization file can be included in an Heterogeneous Services
initialization file by using the | FI LE directive. The syntax for this is:

Using Heterogeneous Services Agents 4-5

Setting Initialization Parameters

| FILE = path name for file to be included

Gateway Initialization Parameters

Gateway initialization parameters can be divided into two groups. One is a set of
generic initialization parameters that are common to all gateways and the other is a
set of initialization parameters that are specific to individual gateways. The
following list of generic initialization parameters are the only ones discussed in this
document:

HS_CALL_NAME

HS_COMM T_POl NT_STRENGTH
HS_DB_DOMAI N

HS_DB_| NTERNAL_NAVE
HS_DB_NAME

HS_DESCRI BE_CACHE_HWWM
HS_FDS_CONNECT_| NFO
,_FDS_DEFAULT_SCHEMA_NANE
. FDS_SHAREABLE_NAME

. FDS_TRACE_LEVEL
 LANGUAGE

. LONG_PI ECE_TRANSFER_SI ZE
 NLS_DATE_FORMAT
 NLS_DATE_LANGUAGE

, NLS_NCHAR

R R RN R RN

pa
(0]
g
:
)
O
:
7
R

I%I%
z
n
=
7
z
g

5
pa
(0]
4
0
>
5
X
:

G0
<k
o<
08
79

HS_RPC_FETCH REBLOCKI NG
HS_RPC_FETCH_SI ZE
HS_TI ME_ZONE

Do not use the PRI VATE keyword when setting any of these parameters. Doing that
would prevent the parameter from being uploaded to the server and could cause
errors in SQL processing. None of these parameters are required to be set in the
environment, so the SET keyword need not be used.

4-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

Optimizing Data Transfers Using Bulk Fetch

See Also:

« Appendix A, "Heterogeneous Services Initialization
Parameters" for descriptions of the generic Heterogeneous
Services initialization parameters

« Individual gateway documentation for the list of initialization
parameters specific to a gateway

Optimizing Data Transfers Using Bulk Fetch

When an application fetches data from a non-Oracle system using Heterogeneous
Services, data is transferred:

1. From the non-Oracle system to the agent process
2. From the agent process to the Oracle database server
3. From the Oracle database server to the application

Oracle optimizes all three data transfers, as illustrated in Figure 4-1.

Using Heterogeneous Services Agents 4-7

Optimizing Data Transfers Using Bulk Fetch

Figure 4-1 Optimizing Data Transfers

Client

D

Array fetch
with OCI/Pro*
or other tool

| Agent

A
v
(]
| Non-Oracle System
[]

| Oracle Server

HS_RPC_FETCH_SIZE

HS_FDS_FETCH_ROWS

This section contains the following topics:

« Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

« Controlling the Array Fetch Between Oracle Database Server and Agent
« Controlling the Array Fetch Between Agent and Non-Oracle Server

« Controlling the Reblocking of Array Fetches

Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches

You can optimize data transfers between your application and the Oracle server by
using array fetches. See your application development tool documentation for
information about array fetching and how to specify the amount of data to be sent
or each network round trip.

4-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Optimizing Data Transfers Using Bulk Fetch

Controlling the Array Fetch Between Oracle Database Server and Agent

When Oracle retrieves data from a non-Oracle system, the Heterogeneous Services
initialization parameter HS_RPC_FETCH_SI ZE defines the number of bytes sent for
each fetch between the agent and the Oracle server. The agent fetches data from the
non-Oracle system until one of the following occurs:

« It has accumulated the specified number of bytes to send back to the Oracle
database server.

« The last row of the result set is fetched from the non-Oracle system.

Controlling the Array Fetch Between Agent and Non-Oracle Server

The initialization parameter HS FDS FETCH ROWS determines the number of rows
to be retrieved from a non-Oracle system. Note that the array fetch must be
supported by the agent. See your agent-specific documentation to ensure that your
agent supports array fetching.

Controlling the Reblocking of Array Fetches

By default, an agent fetches data from the non-Oracle system until it has enough
data retrieved to send back to the server. That is, it keeps going until the number of
bytes fetched from the non-Oracle system is equal to or higher than the value of
HS RPC _FETCH_SI ZE. In other words, the agent reblocks the data between the
agent and the Oracle database server in sizes defined by the value of HS_RPC _
FETCH_SI ZE.

When the non-Oracle system supports array fetches, you can immediately send the
data fetched from the non-Oracle system by the array fetch to the Oracle database
server without waiting until the exact value of HS_ RPC _FETCH_SI ZE is reached.
That is, you can stream the data from the non-Oracle system to the Oracle database
server and disable reblocking by setting the value of initialization parameter HS
RPC_FETCH_REBLOCKI NGto OFF.

For example, assume that you set HS RPC_FETCH_SI ZE to 64 kilobytes (KB) and
HS FDS FETCH ROWS to 100 rows. Assume that each row is approximately 600
bytes in size, so that the 100 rows are approximately 60 KB. When HS_ RPC FETCH
REBLOCKI NGis set to ON, the agent starts fetching 100 rows from the non-Oracle
system.

Because there is only 60 KB of data in the agent, the agent does not send the data
back to the Oracle database server. Instead, the agent fetches the next 100 rows from

Using Heterogeneous Services Agents 4-9

Registering Agents

the non-Oracle system. Because there is now 120 KB of data in the agent, the first 64
KB can be sent back to the Oracle database server.

Now there is 56 KB of data left in the agent. The agent fetches another 100 rows
from the non-Oracle system before sending the next 64 KB of data to the Oracle
database server. By setting the initialization parameter HS_RPC FETCH
REBLOCKI NGto OFF, the first 100 rows are immediately sent back to the Oracle
server.

Registering Agents

Registration is an operation through which Oracle stores information about an
agent in the data dictionary. Agents do not have to be registered. If an agent is not
registered, Oracle stores information about the agent in memory instead of in the
data dictionary; when a session involving an agent terminates, this information
ceases to be available.

Self-registration is an operation in which a database administrator sets an
initialization parameter that lets the agent automatically upload information into
the data dictionary. In release 8.0 of the Oracle database server, an agent could
determine whether to self-register. In Oracle9i and later, self-registration occurs only
when the HS_AUTOREQ STER initialization parameter is set to TRUE (default).

Note: HS_AUTCOREG STERis an Oracle initialization parameter
that you setin thei ni t. or afile; it is not a Heterogeneous Services
initialization parameter that is set in the gateway initialization file.

This section contains the following topics:
« Enabling Agent Self-Registration
« Disabling Agent Self-Registration

Enabling Agent Self-Registration

To ensure correct operation over heterogeneous database links, agent
self-registration automates updates to Heterogeneous Services configuration data
that describe agents on remote hosts. Agent self-registration is the default behavior.
If you do not want to use the agent self-registration feature, then set the
initialization parameter HS_AUTOREQ STERto FALSE.

4-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

Registering Agents

Both the server and the agent rely on three types of information to configure and
control operation of the Heterogeneous Services connection. These three sets of
information are collectively called HS configuration data:

Heterogeneous
Services Configuration
Data

Description

Heterogeneous Services
initialization parameters

Provide control over various connection-specific details of
operation.

Capability definitions

Identify details like SQL language features supported by the
non-Oracle data source.

Data dictionary
translations

Map references to Oracle data dictionary tables and views into
equivalents specific to the non-Oracle data source.

See Also: "Specifying HS_AUTOREGISTER" on page 4-14

Using Agent Self-Registration to Avoid Configuration Mismatches

HS configuration data is stored in the Oracle database server’s data dictionary.
Because the agent is possibly remote, and may therefore be administered separately,
several circumstances can lead to configuration mismatches between servers and
agents:

An agent can be newly installed on a separate machine so that the server has no
Heterogeneous Services data dictionary content to represent the agent’s HS

configuration data.

A server can be newly installed and lack the necessary HS configuration data
for existing agents and non-Oracle data stores.

A non-Oracle instance can be upgraded from an older version to a newer
version, requiring modification of the HS configuration data.

An Heterogeneous Services agent at a remote site can be upgraded to a new
version or patched, requiring modification of the HS configuration data.

A database administrator (DBA) at the non-Oracle site can change the agent
setup, possibly for tuning or testing purposes, in a manner which affects HS

configuration data.

Agent self-registration permits successful operation of Heterogeneous Services in
all these scenarios. Specifically, agent self-registration enhances interoperability
between any Oracle database server and any Heterogeneous Services agent, if each

Using Heterogeneous Services Agents 4-11

Registering Agents

is at least as recent as Version 8.0.3. The basic mechanism for this functionality is the
ability to upload HS configuration data from agents to servers.

Self-registration provides automatic updating of HS configuration data residing in
the Oracle database server data dictionary. This update ensures that the agent
self-registration uploads need to be done only once, on the initial use of a
previously unregistered agent. Instance information is uploaded on each
connection, not stored in the server data dictionary.

Understanding Agent Self-Registration
The Heterogeneous Services agent self-registration feature can:

« ldentify the agent and the non-Oracle data store to the Oracle database server

« Permit agents to define Heterogeneous Services initialization parameters for
use both by the agent and connected Oracle servers

« Upload capability definitions and data dictionary translations, if available, from
an Heterogeneous Services agent during connection initialization

Note: When both the server and the agent are release 8.1 or
higher, the upload of class information occurs only when the class
is undefined in the server data dictionary. Similarly, instance
information is uploaded only if the instance is undefined in the
server data dictionary.

The information required for agent self-registration is accessed in the server data
dictionary by using these agent-supplied names:

. FDS_CLASS
. FDS_CLASS VERSI ON

See Also: "Heterogeneous Services Data Dictionary Views" on
page 4-20 to learn how to use the Heterogeneous Services data
dictionary views

FDS_CLASS and FDS_CLASS_VERSION FDS_CLASS and FDS_CLASS_VERSI ONare
defined by Oracle or by third-party vendors for each individual Heterogeneous
Services agent and version. Oracle Heterogeneous Services concatenates these
names to form FDS_CLASS NAME, which is used as a primary key to access class
information in the server data dictionary.

4-12 Oracle Database Heterogeneous Connectivity Administrator's Guide

Registering Agents

FDS_CLASS should specify the type of non-Oracle data store to be accessed and
FDS_CLASS VERSI ONshould specify a version number for both the non-Oracle
data store and the agent that connects to it. Note that when any component of an
agent changes, FDS_CLASS VERSI ON must also change to uniquely identify the
new release.

Note: This information is uploaded when you initialize each
connection.

FDS_INST_NAME Instance-specific information can be stored in the server data
dictionary. The instance name, FDS_| NST_NAME, is configured by the DBA who
administers the agent; how the DBA performs this configuration depends on the
specific agent in use.

The Oracle database server uses FDS_| NST_NAME to look up instance-specific
configuration information in its data dictionary. Oracle uses the value as a primary
key for columns of the same name in these views:

. FDS INSTINT
. FDS_ | NST_CAPS
. FDS_ I NST_DD

Server data dictionary accesses that use FDS_| NST_NAME also use FDS_CLASS
NAME to uniquely identify configuration information rows. For example, if you port
a database from class Sybase8.1.6 to class Sybase8.1.7, both databases can
simultaneously operate with instance name SCOTT and use separate sets of
configuration information.

Unlike class information, instance information is not automatically self-registered in
the server data dictionary.

« Ifthe server data dictionary contains instance information, it represents
DBA-defined setup details which fully define the instance configuration. No
instance information is uploaded from the agent to the server.

« Ifthe server data dictionary contains no instance information, any instance
information made available by a connected agent is uploaded to the server for
use in that connection. The uploaded instance data is not stored in the server
data dictionary.

Using Heterogeneous Services Agents 4-13

Oracle Database Server SQL Construct Processing

Specifying HS_AUTOREGISTER

The Oracle database server initialization parameter HS_ AUTOREG STER enables or
disables automatic self-registration of Heterogeneous Services agents. Note that this
parameter is specified in the Oracle initialization parameter file, not the agent
initialization file. For example, you can set the parameter as follows:

HS_AUTCREG STER = TRUE

When set to TRUE, the agent uploads information describing a previously unknown
agent class or a new agent version into the server’s data dictionary.

Oracle recommends that you use the default value for this parameter (TRUE), which
ensures that the server’s data dictionary content always correctly represents
definitions of class capabilities and data dictionary translations as used in
Heterogeneous Services connections.

See Also: Oracle Database Reference for a description of this
parameter

Disabling Agent Self-Registration

To disable agent self-registration, set the HS_ AUTOREG STER initialization
parameter as follows:

HS_AUTCREG STER = FALSE

Disabling agent self-registration entails that agent information is not stored in the
data dictionary. Consequently, the Heterogeneous Services data dictionary views
are not useful sources of information. Nevertheless, the Oracle server still requires
information about the class and instance of each agent. If agent self-registration is
disabled, the server stores this information in local memory.

Oracle Database Server SQL Construct Processing

The gateway rewrites SQL statements when the statements need to be translated or
post-processed.

For example, consider a program that requests the following from the non-Oracle
database:

SELECT "COL_A" FROM "test" @envte_db
WHERE "COL_A" = | NI TCAP(’ j ones’);

4-14 Oracle Database Heterogeneous Connectivity Administrator's Guide

Executing User-Defined Functions on a Non-Oracle Database

The non-Oracle database does not recognize | NI TCAPR, so the Oracle database
server does a table scan of t est and filters the results locally. The gateway rewrites
the SELECT statement as follows:

SELECT "COL_A" FROM "test" @enot e_db;

The results of the query are sent to the gateway and are filtered by the Oracle
database server.

Consider the following UPDATE request:
UPDATE "test" @empte_db WHERE "COL_A" = | NI TCAP(’jones’);

In this case, the Oracle database server and the gateway cannot compensate for the
lack of support at the non-Oracle side, so an error is issued.

If you are performing operations on large amounts of data stored in the non-Oracle
database, keep in mind that some functions require data to be moved to the
integrating Oracle database server before processing can occur.

Executing User-Defined Functions on a Non-Oracle Database

You can execute user-defined functions in a remote non-Oracle database. For
example:

SELECT get dept f or enp@Renot e_DB(7782) FROM dual ;

In this example, the user issues a SELECT statement that executes a user-defined
function in the remote database that returns department information for employee
7782.

When the remote function resides in an Oracle database, then the Oracle database
automatically ensures that the remote function does not update any database state
(such as updating rows in a database or updating the PL/SQL package state). The
gateway cannot verify this when the remote function resides in a non-Oracle
database. Therefore, the user is responsible for ensuring that the user-defined
functions do not update the state in any database. Ensuring no updates to the
database is required to guarantee read consistency.

As a security measure, you must specify the functions that you want to execute
remotely and their owners in the HS_CALL_NAME parameter in the gateway-specific
initialization parameter file. For example:

HS CALL_NAME = "owner 1. Al, owner2. A2, "

Using Heterogeneous Services Agents 4-15

Executing User-Defined Functions on a Non-Oracle Database

owner 1 and owner 2 are the remote function owner names. A1 and A2 are the
remote function names. You do not need to specify the remote function owner in the
SQL statement. By default, the remote function needs to reside in the schema that
the Transparent Gateway connects to. If this is not the case, then you must specify
the owner of the remote function in the SQL statement.

Some other examples of executing user-defined remote functions are: as follows:
« Aremote function in a subquery

The function uses the enpl oyee_i d column data to retrieve the

depart ment _i d from the EMPLOYEES table in the remote database. The outer
guery then determines all department numbers in the remote database that
match the returned list.

SELECT * FROM depart ment s@ enot edb
WHERE department _id IN
(SELECT
get dept f or enp@ enot edb(enpl oyee_i d)
FROM enpl oyees@ enot edb) ;

« Applying a local function to the result of a user-defined remote function

This query returns the maximum salary of all employees on the remote
database.

SELECT max(get sal f orenp@ enot edb(enpl oyee_i d))
FROM enpl oyees@ enot edb;

« A DML statement

The statement uses the output from a user-defined query in the remote database
to update the salary column with new salary information.

UPDATE enpl oyee_hi story
SET sal ary = enp_changed_sal ary@ enot e_db;

In these examples, the Oracle database passes the function name and owner to the
Transparent Gateway. The user-defined function is executed on the remote
database.

See Also: "HS_CALL_NAME" on page A-3

4-16 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using Synonyms

Using Synonyms

You can provide complete data location transparency and network transparency by
using the synonym feature of the Oracle database server. When a synonym is
defined, you do not have to know the underlying table or network protocol. A
synonym can be public, which means that all Oracle users can refer to the synonym.
A synonym can also be defined as private, which means every Oracle user must
have a synonym defined to access the non-Oracle table.

The following statement creates a system wide synonym for the enp table in the
schema of user ORACLE in the Sybase database:

CREATE PUBLI C SYNONYM enp FOR "ORACLE". " EMP" @VYBS;

See Also: Oracle Database Administrator's Guide for information
about synonyms

Example of a Distributed Query

Note: Modify these examples for your environment. Do not try to
execute them as they are written.

The following statement joins data between the Oracle database server, an IBM DB2
database, and a Sybase database:

SELECT O CUSTNAME, P.PRQINO, E. ENAME, SUM E. RATE*P. "HOURS")
FROM ORDERS@B2 O, EMP@RACLE9 E, "PRQJIECTS' @YBS P
VHERE O PROINO = P."PRQAINO'
AND P."EMPNO' = E. EMPNO
CGROUP BY O CUSTNAME, P."PROINO', E.ENAME;
Through a combination of views and synonyms, using the following SQL
statements, the process of distributed queries is transparent to the user:

CREATE SYNONYM ORDERS FOR ORDERS@B?2;
CREATE SYNONYM PRQIECTS FOR " PROJECTS' @YBS;
CREATE VI EW DETAI LS (CUSTNAME, PROINO, ENAME, SPEND)
AS
SELECT O CUSTNAME, P."PROINO', E.ENAME, SUM E. RATE*P."HOURS")
SPEND
FROM ORDERS O, EMP E, PRQJECTS P
WHERE O PROINO = P. " PROINO'
AND P."EMPNC' = E. EMPNO
GROUP BY O CUSTNAME, P."PRQINO', E.ENAM;

Using Heterogeneous Services Agents 4-17

Copying Data from the Oracle Database Server to the Non-Oracle Database System

Use the following SQL statement to retrieve information from the data stores in one
statement:

SELECT * FROM DETAILS;

The statement retrieves the following table:

CUSTNAMVE PRQINO ENAME SPEND
ABC Co 1 Jones 400
ABC Co 1 Smth 180
XYZ Inc 2 Jones 400
XYZ Inc 2 Smith 180

Copying Data from the Oracle Database Server to the Non-Oracle
Database System

In Oracle9i, release 2 and later, Heterogeneous Services supports callback links. This
enables SQL statements like the following to be executed:

I NSERT | NTO t abl e_name@lbl i nk SELECT col um_list FROM tabl e_namne;

Even though Heterogeneous Services supports the callback functionality, not all
gateways have implemented it. If the gateway that you are using has not
implemented this functionality, then the preceding | NSERT statement returns the
following error message:

ORA-02025: All tables in the SQL statenent nust be at the renote database

See Also: Your gateway documentation for information about
support for callback links

For gateways that do not support callback links, you can use the SQL*Plus COPY
command. The syntax is as follows:

COPY FROM user nane/ passwor d@b_nane -

I NSERT destination_table -

USI NG query;

The following example selects all rows from the local Oracle enp table, inserts them
into the enp table on the non-Oracle database, and commits the transaction:

COPY FROM SCOTT/ TI GER@nst 1 -
| NSERT EMP@ enote_db -
USI NG SELECT * FROM EMNP,

4-18 Oracle Database Heterogeneous Connectivity Administrator's Guide

Copying Data from the Non-Oracle Database System to the Oracle Database Server

The COPY command supports APPEND, CREATE, | NSERT, and REPLACE options.
However, | NSERT is the only option supported when copying to non-Oracle. The
SQL*Plus COPY command does hot support copying to tables with lowercase table
names. Use the following PL/SQL syntax with lowercase table names:

DECLARE
vl oracle_tabl e.col uml% YPE;
v2 oracl e_tabl e. col um2%YPE;
v3 oracl e_tabl e. col um3%YPE;

CURSOR cursor_nanme |'S SELECT * FROM oracl e_t abl e;
BEG N
OPEN cursor _nane;
LooP
FETCH cursor _nanme INTO vl, v2, v3,
EXIT WHEN cur sor _name%NOTFOUND;
I NSERT | NTO destination_table VALUES (v1, v2, v3, ...);
END LOOP;

CLOSE cursor_nane;
END;
/

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command

Copying Data from the Non-Oracle Database System to the Oracle
Database Server

The CREATE TABLE statement lets you copy data from a non-Oracle database to
the Oracle database server. To create a table on the local database and insert rows
from the non-Oracle table, use the following syntax:

CREATE TABLE tabl e_nane AS query;

The following example creates the table enp in the local Oracle database and inserts
the rows from the EMP table of the non-Oracle database:

CREATE TABLE tablel AS SELECT * FROM "EMP" @ enot e_db;

Using Heterogeneous Services Agents 4-19

Heterogeneous Services Data Dictionary Views

Alternatively, you can use the SQL*Plus COPY command to copy data from the
non-Oracle database to the Oracle database server.

See Also: SQL*Plus User’s Guide and Reference for more
information about the COPY command

Heterogeneous Services Data Dictionary Views

You can use the Heterogeneous Services data dictionary views to access information
about Heterogeneous Services. This section addresses the following topics:

« Understanding the Types of Views

« Understanding the Sources of Data Dictionary Information
« Using the General Views

« Using the Transaction Service Views

« Using the SQL Service Views

Understanding the Types of Views

The Heterogeneous Services data dictionary views, which all begin with the prefix
HS , can be divided into four main types:

« General views

« Views used for the transaction service

« Views used for the SQL service

Most of the data dictionary views are defined for both classes and instances.
Consequently, for most types of data there isa* CLASS and an * _| NST view.

Table 4-1 Data Dictionary Views for Heterogeneous Services

View Type Identifies
HS BASE_CAPS SQL service All capabilities supported by Heterogeneous Services
HS_BASE_DD SQL service All data dictionary translation table names supported by
Heterogeneous Services
HS CLASS CAPS Transaction service, | Capabilities for each class
SQL service
HS_CLASS_DD SQL service Data dictionary translations for each class

4-20 Oracle Database Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

Table 4-1 Data Dictionary Views for Heterogeneous Services

View Type Identifies

HS CLASS INIT General Initialization parameters for each class
HS_FDS_CLASS General Classes accessible from the Oracle server
HS_FDS | NST General Instances accessible from the Oracle server

Like all Oracle data dictionary tables, these views are read-only. Do not change the
content of any of the underlying tables.

Understanding the Sources of Data Dictionary Information

The values used for data dictionary content in any particular connection on a
Heterogeneous Services database link can come from any of the following sources,

in order of precedence:

« Instance information uploaded by the connected Heterogeneous Services agent
at the start of the session. This information overrides corresponding content in
the Oracle data dictionary, but is never stored into the Oracle data dictionary.

« Instance information stored in the Oracle data dictionary. This data overrides
any corresponding content for the connected class.

« Class information stored in the Oracle data dictionary.

If the Oracle database server runs with the HS_ AUTOREQ STER server initialization
parameter set to FALSE, then no information is stored automatically in the Oracle
data dictionary. The equivalent data is uploaded by the Heterogeneous Services
agent on a connection-specific basis each time a connection is made, with any
instance-specific information taking precedence over class information.

Note: Itis not possible to determine positively what capabilities
and what data dictionary translations are in use for a given session
due to the possibility that an agent can upload instance

information.

You can determine the values of Heterogeneous Services initialization parameters
by querying the VALUE column of the V$HS_PARAMETER view. Note that the VALUE
column of V$HS_PARAMETER truncates the actual initialization parameter value
from a maximum of 255 characters to a maximum of 64 characters, and it truncates

Using Heterogeneous Services Agents 4-21

Heterogeneous Services Data Dictionary Views

the parameter name from a maximum of 64 characters to a maximum of 30
characters.

Using the General Views
The views that are common for all services are as follows:

View Contains

HS _FDS CLASS Names of the instances and classes that are uploaded into the
HS_FDS_| NST Oracle data dictionary

HS CLASS INIT Information about the Heterogeneous Services initialization

parameters

For example, you can access multiple Sybase gateways from an Oracle database
server. After accessing the gateways for the first time, the information uploaded
into the Oracle database server could appear as follows:

SQL> SELECT * FROM hs_fds_cl ass;

FDS_CLASS_NAME FDS_CLASS_COMVENTS FDS_CLASS | D
Sybase816 Uses Sybase driver, RL.1 1
Sybase817 Uses Sybase driver, RL.2 21

Two classes are uploaded: a class that accesses Sybase816 and a class that accesses
Sybase817. The data dictionary in the Oracle database server now contains
capability information, SQL translations, and data dictionary translations for both
Sybase816 and Sybase817.

In addition to this information, the Oracle database server data dictionary also
contains instance information in the HS_FDS_| NST view for each non-Oracle
system instance that is accessed.

Using the Transaction Service Views

When a non-Oracle system is involved in a distributed transaction, the transaction
capabilities of the non-Oracle system and the agent control whether it can
participate in distributed transactions. Transaction capabilities are stored in the HS_
CLASS_CAPS tables.

4-22 Oracle Database Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

The ability of the non-Oracle system and agent to support two-phase commit
protocols is specified by the 2PC type capability, which can specify one of the
following five types:

Type

Capability

Read-only (RO)

The non-Oracle system can only be queried with SQL SELECT statements.
Procedure calls are not allowed because procedure calls are assumed to write data.

Single-Site (SS)

The non-Oracle system can handle remote transactions but not distributed
transactions. That is, it cannot participate in the two-phase commit protocol.

Commit Confirm (CC) The non-Oracle system can participate in distributed transactions. It can participate

in the server’s two-phase commit protocol but only as the Commit Point Site. That
is, it cannot prepare data, but it can remember the outcome of a particular
transaction if asked by the global coordinator.

Two-Phase Commit The non-Oracle system can participate in distributed transactions. It can participate

in the server’s two-phase commit protocol, as a regular two-phase commit node, but
not as a Commit Point Site. That is, it can prepare data, but it cannot remember the
outcome of a particular transaction if asked to by the global coordinator.

Two-Phase Commit The non-Oracle system can participate in distributed transactions. It can participate

Confirm

in the server’s two-phase commit protocol as a regular two-phase commit node or
as the Commit Point Site. That is, it can prepare data and it can remember the
outcome of a particular transaction if asked by the global coordinator.

The transaction model supported by the driver and non-Oracle system can be
qgueried from Heterogeneous Services’ data dictionary view HS_CLASS CAPS.

One of the capabilities is of the 2PC type:

SELECT cap_description, translation
FROM hs_cl ass_caps

WHERE cap_description LIKE ' 2PC%
AND fds_class_name LIKE ' SYBASE% ;

CAP_DESCRI PTI ON TRANSLATI ON

2PC type (RO SS- CC- PREP/ 2P- 2PCC) cc

When the non-Oracle system and agent support distributed transactions, the
non-Oracle system is treated like any other Oracle server. When a failure occurs
during the two-phase commit protocol, the transaction is recovered automatically. If
the failure persists, the in-doubt transaction may need to be manually overridden
by the database administrator.

Using Heterogeneous Services Agents 4-23

Heterogeneous Services Data Dictionary Views

Using the SQL Service Views

Data dictionary views that are specific for the SQL service contain information
about:

« SQL capabilities and SQL translations of the non-Oracle data source

« Data dictionary translations to map Oracle data dictionary views to the data
dictionary of the non-Oracle system

Note: This section describes only a portion of the SQL
Service-related capabilities. Because you should never need to alter
these settings for administrative purposes, these capabilities are not
discussed here.

Using Views for Capabilities and Translations

The HS_* _CAPS data dictionary tables contain information about the SQL
capabilities of the non-Oracle data source and required SQL translations. These
views specify whether the non-Oracle data store or the Oracle database server
implements certain SQL language features. If a capability is turned off, then Oracle
does not send any SQL statements to the non-Oracle data source that require this
particular capability, but it still performs post-processing.

Using Views for Data Dictionary Translations

In order to make the non-Oracle system appear similar to an Oracle database server,
Heterogeneous Services connections map a limited set of Oracle data dictionary
views onto the non-Oracle system’s data dictionary. This mapping permits
applications to issue queries as if these views belonged to an Oracle data dictionary.
Data dictionary translations make this access possible. These translations are stored
in Heterogeneous Services views whose names are suffixed with _DD.

For example, the following SELECT statement transforms into a Sybase query that
retrieves information about enp tables from the Sybase data dictionary table:

SELECT * FROM USER TABLES@ et e_db
WHERE UPPER(TABLE_NAME) =’ ENP' ;

Data dictionary tables can be mimicked instead of translated. If a data dictionary
translation is not possible because the non-Oracle data source does not have the
required information in its data dictionary, Heterogeneous Services causes it to
appear as if the data dictionary table is available, but the table contains no
information.

4-24 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using the Heterogeneous Services Dynamic Performance Views

To retrieve information for which Oracle data dictionary views or tables are
translated or mimicked for the non-Oracle system, connect as user SYS and issue
the following query on the HS_CLASS DD view:

SELECT DD TABLE NAME, TRANSLATI ON TYPE
FROM HS_CLASS DD
WHERE FDS_CLASS NAME LI KE ‘ SYBASE% ;

DD_TABLE_NAME T
ALL_ARGUMENTS

ALL_CATALOG

ALL_CLUSTERS
ALL_CLUSTER HASH EXPRESSI ONS
ALL_COLL_TYPES
ALL_COL_COWVENTS
ALL_COL_PRIVS

ALL_COL_PRI VS _MADE
ALL_COL_PRI VS_RECD

=S A4 4Z

The translation type T specifies that a translation exists. When the translation type is
M the data dictionary table is mimicked.

See Also: Appendix C, "Data Dictionary Translation Support" for
a list of data dictionary views that are supported through
Heterogeneous Services mapping

Using the Heterogeneous Services Dynamic Performance Views

The Oracle database server stores information about agents, sessions, and
parameter. You can use the dynamic performance views to access this information.
This section contains the following topics:

« Determining Which Agents Are Running on a Host

« Determining the Open Heterogeneous Services Sessions

Determining Which Agents Are Running on a Host
The following view shows generation information about agents:

Using Heterogeneous Services Agents 4-25

Using the Heterogeneous Services Dynamic Performance Views

View Purpose

V$HS_AGENT Identifies the set of Heterogeneous Services agents currently
running on a given host, using one row for each agent process.

Use this view to determine general information about the agents running on a
specified host. The following table shows the most relevant columns (for a
description of all the columns in the view, see Oracle Database Reference):

Table 4-2 V$HS_AGENT

Column Description

AGENT_I D Oracle Net session identifier used for connections to agent (I i st ener. ora Sl D)
MACHI NE Operating system machine name

PROGRAM Program name of agent

AGENT_TYPE Type of agent

FDS_CLASS I D The ID of the foreign data store class

FDS INST I D The instance name of the foreign data store

Determining the Open Heterogeneous Services Sessions

The following view shows which Heterogeneous Services sessions are open for the
Oracle database server:

View Purpose
V$HS_SESSI ON Lists the sessions for each agent, specifying the database link
used.

The following table shows the most relevant columns (for an account of all the
columns in the view, see Oracle Database Reference):

Table 4-3 V$HS_SESSION

Column Description
HS SESSION_I D Unique Heterogeneous Services session identifier
AGENT_I D Oracle Net session identifier used for connections to agent (1 i st ener. ora Sl D)

4-26 Oracle Database Heterogeneous Connectivity Administrator's Guide

Using the Heterogeneous Services Dynamic Performance Views

Table 4-3 V$HS_SESSION

Column Description

DB LI NK Server database link name used to access the agent NULL means that no database link is
used (for example, when using external procedures)

DB_LI NK_OWNER Owner of the database link in DB_LI NK

Determining the Heterogeneous Services Parameters

The following view shows which Heterogeneous Services parameters are set in the
Oracle database server:

View Purpose

V$HS_PARAMETER Lists Heterogeneous Services parameters and values registered
in the Oracle database server.

The following table shows the most relevant columns (for an account of all the
columns in the view, see Oracle Database Reference):

Table 4-4 V$HS_SESSION

Column Description

HS SESSION_I D Unique Heterogeneous Services session identifier

PARAMVETER The name of the Heterogeneous Services parameter

VALUE The value of the Heterogeneous Services parameter

Information about the database link that was used for establishing the distributed
connection, the startup time, and the set of initialization parameters used for the
session is also available.

All of the runtime information is derived from dynamically updated tables. The
Distributed Access Manager has a refresh capability available through the menu
and toolbar that allows users to rerun queries if necessary and update the data.
When the data is refreshed, the tool verifies that the set of registered agents remains
the same. If it is not, the global view is updated.

See Also: Oracle Enterprise Manager Administrator’s Guide and
online help for more information about the Distributed Access
Manager

Using Heterogeneous Services Agents 4-27

Using the Heterogeneous Services Dynamic Performance Views

4-28 Oracle Database Heterogeneous Connectivity Administrator's Guide

D

Multithreaded Agents

This chapter explains what multithreaded agents are, how they contribute to the
overall efficiency of a distributed database system, and how to administer
multithreaded agents.

This chapter contains the following sections:
« Why Use Multithreaded Agents?

« Multithreaded Agent Architecture

« Administering Multithreaded Agents

Note: Heterogeneous Services supports multithreaded agents,
however this functionality may not be available in all
Heterogeneous Services based gateways. In addition to the generic
support for multithreaded agents that Heterogeneous Services
provides, multithreaded agents support must be added to the
driver. Please refer to your transparent gateway documentation to
determine if the gateway you are using is certified to work as a
multithreaded agent.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information on how the ext pr oc agent can be
configured to run in MTA mode

Multithreaded Agents 5-1

Why Use Multithreaded Agents?

Why Use Multithreaded Agents?

This section explains how multithreaded agents contribute to the overall efficiency
of Heterogeneous Services and Oracle Transparent Gateways.

This section contains the following topics:
« The Challenge of Dedicated Agent Architecture
« The Advantage of Multithreading

The Challenge of Dedicated Agent Architecture

By default, a Heterogeneous Services agent is started up for each user session.
When a user session attempts to access a non-Oracle system by means of a
particular database link, an agent process is started up that is exclusively dedicated
to that user session and that database link. The agent process terminates only when
the user session ends or when the database link is closed. Separate agent processes
are started under the following conditions:

« The same user session uses two different database links to connect to the same
non-Oracle system

« Two different user sessions use the same database link to access the same
non-Oracle system.

This architecture has the disadvantage of potentially consuming an unnecessarily
large amount of system resources.

For example, suppose that there are several thousand user sessions simultaneously
accessing the same non-Oracle system. Because an agent process is started for each
one of them, there are several thousand agent processes running concurrently. The
agent processes are all running regardless of whether each individual agent process
is actually active at the moment or not. Because of this, agent processes and open
connections can consume a disproportionate amount of system resources without
any discernible benefit.

In the case of connections to the Oracle database server, this problem is addressed
by starting the server in shared server mode. Shared server mode allows database
connections to be shared by a small number of server processes.

The Advantage of Multithreading

The Oracle shared server architecture assumes that even when there are several
thousand user sessions currently open, only a small percentage of these connections
will be active at any given time. In shared server mode, there is a pool of shared

5-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Multithreaded Agent Architecture

server processes. User sessions connect to dispatcher processes that place the tasks
requested by the user sessions on a queue. The tasks are picked up by the first
available shared server processes. The number of shared server processes is usually
considerably less that the number of user sessions.

Multithreaded Heterogeneous Services agents provide similar functionality for
connections to non-Oracle systems. The multithreaded agent architecture uses a
pool of shared agent threads. The tasks requested by the user sessions are put on a
gueue and are picked up by the first available multithreaded agent thread. Because
only a small percentage of user connections are actually active at a given moment,
using a multithreaded architecture allows for more efficient use of system resources.

Multithreaded Agent Architecture

Multithreaded agents must be prestarted on a one for each system identifier (SID)
basis. This is done using the agent control utility agt ct | . This utility is also used to
configure the agent and to shut down the agent.

Each TNS listener that is running on a system listens for incoming connection
requests for a set of SIDs. If the SID in an incoming Oracle Net connect string is one
of the SIDs that the listener is listening for, then that listener will process the
connection. Further, if a multithreaded agent has been started for the SID, then the
listener will pass the request to that agent.

In the architecture for multithreaded agents, each incoming connection request is
processed by means of the three different kinds of threads:

« Asingle monitor thread
The monitor thread is responsible for the following:
— Maintaining communication with the listener
— Monitoring the load on the process
— Starting and stopping threads when required
« Several dispatcher threads
The dispatcher threads are responsible for the following:
— Handling communication with the Oracle server
— Passing task requests on to the task threads
« Several task threads

The task threads handle requests from the Oracle processes.

Multithreaded Agents 5-3

Multithreaded Agent Architecture

The multithreaded agent architecture is illustrated in Figure 5-1 where each request
issued by a user session is represented in by a separate type of arrow. There is no
representation of the monitor thread in this illustration, because that thread is
created once when the multithreaded agent is started and it creates and monitors
the other threads. Typically there are many more task threads than dispatcher
threads.

Figure 5-1 Multithreaded Agent Architecture

User-Session User-Session

1 2
Oracle Oracle
Server Server
HS HS
1 .
Agent . .
gen -
Process v Vv v Vv
Dispatcher Dispatcher
Thread 1 Thread 2
' P
1 E .
v v Vv
Task Task Task
Thread 1 Thread 2 Thread 3

< --
P

Non-Oracle
system

These three thread types roughly correspond to the Oracle multithreaded server’s
PMON, dispatcher and shared server processes respectively.

5-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Multithreaded Agent Architecture

Note: All requests from a user session go through the same
dispatcher thread, but can be serviced by different task threads. It is
also possible for several task threads to use the same connection to
the non-Oracle system.

Each type of thread is discussed in more detail in the following sections:

The Monitor Thread
Dispatcher Threads
Task Threads
See Also: Administering Multithreaded Agents on page 5-6 for

more information on how to start and stop multithreaded agents
using the agent control utility

The Monitor Thread

When a multithreaded agent is started for a SID by the agent control utility, the
monitor thread is created. The monitor thread performs the following functions:

It creates the dispatcher and task threads.

It registers the dispatcher threads it has created with all the listeners that are
handling connections to this agent.

While the dispatcher for this SID is running, the listener does not start a new
process when it gets an incoming connection. Instead, the listener hands over
the connection to this same dispatcher.

It monitors the other threads and sends load information about the dispatcher
threads to all the listener processes handling connections to this agent.

This enables the listeners to hand over incoming connections to the least loaded
dispatcher.

It continues to monitors each of the threads it has created.

Dispatcher Threads

Dispatcher threads perform the following functions:

They accept incoming connections and task requests from Oracle servers.

Multithreaded Agents 5-5

Administering Multithreaded Agents

« They place incoming requests on a queue for a task thread to pick up.

« They send results of a request back to the server that issued the request.

Note: Once a user session establishes a connection with a
dispatcher, all requests from that user session will go to the same
dispatcher until the end of the user session.

Task Threads

Task threads perform the following functions;
« They pick up requests from a queue.
« They perform the necessary operations.

« They place the results on a queue for a dispatcher to pick up.

Administering Multithreaded Agents

As discussed earlier, multithreaded Heterogeneous Services agents must be
prestarted on a one for each system identifier (SID) basis before any attempt is
made to connect to the non-Oracle system. Any agent not spawned in this fashion
will not function in multithreaded mode, and must be set up as described in
"Setting Up Access to Non-Oracle Systems" on page 4-2.

A multithreaded agent is started, stopped, and configured by an agent control
utility called agt ct | , which works much like | snr ct | . However, unlike

I snrct 1, which reads a configuration file (I i st ener. ora), agt ct| takes
configuration information from the command line and writes it to a control file.

The following topics are discussed in this section:
« Agent Control Utility (agtctl) Commands

« Using Single-Line Command Mode

« Using Shell Mode Commands

« Configuration Parameters for Multithreaded Agent Control

5-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

Administering Multithreaded Agents

Agent Control Utility (agtctl) Commands

You start and stop agt ct | , and create and maintain its control file, using the
commands shown in Table 5-1.

Table 5-1 Agent Control Utility Commands

Command Description

startup Starts a multithreaded agent

shut down Stops a multithreaded agent

set Sets a configuration parameter for a multithreaded agent
unset Causes a parameter to revert to its default value

show Displays the value of a configuration parameter

del ete Deletes the entry for a particular SID from the control file
exit Exits shell mode

hel p Lists available commands

These commands can be issued in one of two ways:
= You can issue commands from the UNIX (or DOS) shell.
This mode is called single-line command mode.

« Youcantypeagtctl and a"AGICTL>" prompt appears. You then can type
commands from within the agt ct | shell.

This mode is called shell mode.

The syntax and parameters for agt ct | commands vary depending upon the mode
in which they are issued.

Multithreaded Agents 5-7

Administering Multithreaded Agents

Note:
« All commands are case sensitive.

« The agent control utility puts its control file in either the
directory pointed to by the environment variable AGTCTL _
ADM Nor in the directory pointed to by the environment
variable TNS_ADM N. Ensure that at least one of these
environment variables is set and that it points to a directory
that the agent has access to

« If the Heterogeneous Services agent requires an environment
variable to be set, or if the ENVS parameter was used when
configuring the | i st ener . or a entry for the agent working in
dedicated mode, then all required environment variables must
be set in the UNIX (or DOS) shell which runs the agt ct |
utility.

Using Single-Line Command Mode

This section describes the use of agt ct | commands. They are presented in
single-line command mode.

Setting Configuration Parameters for a Multithreaded Agent

You should set the configuration parameters for a multithreaded agent before you
start the agent. They determine how the agent will be configured. If a configuration
parameter is not specifically set, a default value is used. Configuration parameters
and their default values are shown in Table 5-2.

Use the set command to set multithreaded agent configuration parameters.

Syntax

agtctl set parameter paraneter_value agent_sid

par anet er is the parameter that you are setting.

par amet er _val ue is the value being assigned to the parameter.

agent _si d is the SID that this agent will service. Must be specified for single-line
command mode.

Example

agtctl set max_dispatchers 5 sal esDB

5-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Administering Multithreaded Agents

Starting a Multithreaded Agent
Use the st ar t up command to start an agent in multithreaded mode.

Syntax

agtctl startup agent_name agent_sid

agent _narme is the name of the agent. For example, ext pr oc is an agent name.
agent _si d is the SID that this agent will service. Must be specified for single-line
command mode.

Example

agtctl startup extproc salesDB

Shutting Down a Multithreaded Agent

Use the shut down command to stop a multithreaded agent. There are three forms
of shutdown.

« Normal

This form of shutdown is the default. It causes agt ct | will talk to the agent
and ask it to terminate itself gracefully. All sessions complete the operations
they are currently doing and then shutdown.

« Immediate

In this form of shutdown, agt ct | talks to the agent and tells it to terminate
immediately. The agent process exits immediately regardless of the state of
current sessions.

« Abort
In this form of shutdown, agt ct | does not talk to the agent at all. It just issues
a system call to kill the agent process.

Syntax

agtctl shutdown [imredi ate|abort] agent_sid

agent _si d is the SID which this agent will service. Must be specified for
single-line command mode.

Example

agtct! shutdown inmediate sal esDB

Multithreaded Agents 5-9

Administering Multithreaded Agents

Examining the Value of Configuration Parameters
To examine the value of a configuration parameter use the showcommand.

Syntax

agtctl show paraneter agent_sid

par amet er is the parameter that you are examining.

Example

agtctl show max_dispatchers sal esDB

Resetting a Configuration Parameter to Its Default Value

You can reset a configuration parameter to its default value using the unset
command.

Syntax

agtct! unset paraneter agent_sid

par aret er is the parameter that you are examining.
agent _si d is the SID which this agent will service. Must be specified for
single-line command mode.

Example

agtctl unset max_dispatchers sal esDB

Deleting an Entry for a Specific SID from the Control File
The del et e command deletes the entry for the specified SID from the control file.

Syntax

agtctl delete agent_sid
agent _si d is the SID entry to delete.

Example

agtctl delete salesDB

5-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

Administering Multithreaded Agents

Requesting Help
Use the hel p command to view a list of available commands for agt ct | , or to see

the syntax for a particular command.
Syntax

agtctl hel p [command]

conmand is the command whose syntax you want to view.

Example

agtctl help set

Using Shell Mode Commands

In shell mode, you start agt ct | by typing agt ct | whereupon you will see an
"AGTCTL>" prompt. Thereafter, since you are issuing commands from within the
agt ct | shell, you do not prefix the command string with the word agt ct | .

Next, set the name of the agent SID that you are working with by entering the
following:

set agent_sid agent_sid
All commands issued after this are assumed to be for this particular SID until the

agent _si d value is changed. Unlike single-line command mode, you do not
specify agent _si d in the command string.

You can optionally set the language for error messages, to other than English, as
follows:

set |language |anguage

The commands themselves are the same as those for the single-line command
mode. To exit shell mode, type exi t .

The following are examples of shell mode commands.

Example: Setting a Configuration Parameter

This example sets a new value for the shut down_addr ess configuration
parameter.

set shut down_address (address=(protocol =i pc) (key=oraDBsal esDB))

Multithreaded Agents 5-11

Administering Multithreaded Agents

Example: Starting a Multithreaded Agent
This example starts a multithreaded agent.

startup extproc

Configuration Parameters for Multithreaded Agent Control
The following table lists the configuration parameters for the agent control utility.

Table 5-2 Initialization Parameters for agtctl

Parameter Description Default Value
max_di spat chers Maximum number of 1
dispatchers
tcp_di spatchers Number of dispatchers 0
listening on tcp (the rest are
using ipc)
max_task_threads Number of task threads 2
nax_sessi ons Maximum number of 5
sessions
I'i stener_address Address on which the (ADDRESS LI ST=
listener is listening (needed (ADDRESS=
for registration) (PROTOCOL=I PC)
(KEY=PNPKEY))
(ADDRESS=
(PROTOCOL=I PC)
(KEY=0racl e_sid))
(ADDRESS=
(PROTOCOL=TCP)

(HOST=127.0. 0. 1)
(PORT=1521)))

Note: oracle_sid is the SID of the Oracle database.

shut down_address Address on which the agent (ADDRESS=
should listen for shutdown (PROTCCOL=I PC)
messages from agt ct | (KEY=or acl e_si d| | agent _si d))
Notes:

. agent_sid is the SID of the multithreaded agent.

. | | indicates that oracle_sid and agent_sid are
concatenated into one string.

5-12 Oracle Database Heterogeneous Connectivity Administrator's Guide

6

Performance Tips

This chapter explains how to optimize distributed SQL statements, how to use
partition views with Oracle Transparent Gateways, and how to optimize the
performance of distributed queries.

This chapter includes the following sections:
« Optimizing Heterogeneous Distributed SQL Statements

« Optimizing Performance of Distributed Queries

Performance Tips 6-1

Optimizing Heterogeneous Distributed SQL Statements

Optimizing Heterogeneous Distributed SQL Statements

When a SQL statement accesses data from non-Oracle systems, it is said to be a
heterogeneous distributed SQL statement. To optimize heterogeneous distributed
SQL statements, follow the same guidelines as for optimizing distributed SQL
statements that access Oracle databases only. However, you must consider that the
non-Oracle system usually does not support all the functions and operators that
Oracle supports.

The Oracle Transparent Gateways tell Oracle (at connect time) which functions and
operators they do support. If the non-Oracle data source does not support a
function or operator, then Oracle performs that function or operator. In this case,
Oracle obtains the data from the other data source and applies the function or
operator locally. This affects the way in which the SQL statements are decomposed
and can affect performance, especially if Oracle is not on the same machine as the
other data source.

Optimizing Performance of Distributed Queries
You can improve performance of distributed queries in several ways. These are:
« Choose the best SQL statement.

In many cases, there are several SQL statements that can achieve the same
result. If all tables are on the same database, then the difference in performance
between these SQL statements might be minimal. But, if the tables are located
on different databases, then the difference in performance might be more
significant.

« Use the query optimizer.

The query optimizer uses indexes on remote tables, considers more execution
plans than the rule-based optimizer, and generally gives better results. With the
guery optimizer, performance of distributed queries is generally satisfactory.
Only on rare occasions is it necessary to change SQL statements, create views,
or use procedural code.

« Use views.

In some situations, views can be used to improve performance of distributed
gueries. For example:

— Joining several remote tables on the remote database

— Sending a different table through the network

6-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Optimizing Performance of Distributed Queries

Use procedural code.

On some rare occasions, it can be more efficient to replace a distributed query
by procedural code, such as a PL/SQL procedure or a precompiler program.
This option is mentioned here only for completeness, not because it is often
needed.

Performance Tips 6-3

Optimizing Performance of Distributed Queries

6-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

v

Generic Connectivity

This chapter describes the configuration and usage of Generic Connectivity agents.

This chapter contains these topics:

What Is Generic Connectivity?

Supported Oracle SQL Statements and Functions
Configuring Generic Connectivity Agents

ODBC Connectivity Requirements

OLE DB (SQL) Connectivity Requirements

OLE DB (FS) Connectivity Requirements

Generic Connectivity 7-1

What Is Generic Connectivity?

What Is Generic Connectivity?

Generic Connectivity is intended for low-end data integration solutions requiring
the ad hoc query capability to connect from an Oracle database server to non-Oracle
database systems.

Generic Connectivity is implemented as either a Heterogeneous Services ODBC
agent or a Heterogeneous Services OLE DB agent. An ODBC agent and OLE DB
agent are included as part of your Oracle system. ODBC agents are supported on
Solaris, HP-UX, AlX, and Windows NT platforms. OLE DB agents are supported
only on the Windows NT platform.

Any data source compatible with the ODBC or OLE DB standards described in this
chapter can be accessed using a Generic Connectivity agent.

This section contains the following topics:
« Types of Agents

» Generic Connectivity Architecture

« SQL Execution

« Datatype Mapping

« Generic Connectivity Restrictions

Types of Agents

Generic Connectivity is implemented as one of the following types of
Heterogeneous Services agents:

« ODBC agent for accessing ODBC data providers

« OLE DB agent for accessing OLE DB data providers that support SQL
processing—sometimes referred to as OLE DB (SQL)

« OLE DB agent for accessing OLE DB data providers without SQL processing
support—sometimes referred to as OLE DB (FS)

Each user session receives its own dedicated agent process spawned by the first use
in that user session of the database link to the non-Oracle system. The agent process
ends when the user session ends.

Generic Connectivity Architecture

To access the non-Oracle data store using Generic Connectivity, the agents work
with an ODBC or OLE DB driver. The Oracle database server provides support for

7-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

What Is Generic Connectivity?

the ODBC or OLE DB driver interface. The driver that you use must be on the same
platform as the agent. The non-Oracle data stores can reside on the same machine as
the Oracle database server or on a different machine.

Oracle and Non-Oracle Systems on Separate Machines

Figure 7-1 shows an example of a configuration in which an Oracle and non-Oracle
database are on separate machines, communicating through a Heterogeneous
Services ODBC agent.

Figure 7-1 Oracle and Non-Oracle Systems on a Separate Machines

HS

Oracle
Net

Oracle

>
Oracle
HS
= Server ODBC
agent
Client e e

i ODBC driver '<_|

i manager 1

: ODBC driver :

i Non-Oracle : Network Non-Oracle

! system 3 Z system

1 client 3

Loimimimim et

Machine 1 Machine 2

i~ Non-Oracle
~.-- component

In this configuration:
1. Aclient connects to the Oracle database server through Oracle Net.

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent.

3. The agent communicates with the following non-Oracle components:

« An ODBC driver manager

Generic Connectivity 7-3

What Is Generic Connectivity?

« An ODBC driver
« A non-Oracle client application

This client connects to the non-Oracle data store through a network.

Oracle and Non-Oracle Systems on the Same Machine

Figure 7-2 shows an example of a different configuration in which an Oracle and
non-Oracle database are on the same machine, again communicating through an
Heterogeneous Services ODBC agent.

Figure 7-2 Oracle and Non-Oracle Systems on the Same Machine

HS

Oracle Oracle
T Z—»

HS

: ODBC
agent
Client B

i-ODBC driver-i < |

1 manager

E ODBC driver :

1
i
;.-._.-._.-._:
' Non-Oracle
1 system]
i client ;

L.-._.l_.-._-

Non-Oracle
system

Machine 1

In this configuration:

1. Aclient connects to the Oracle database server through Oracle Net.

7-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

What Is Generic Connectivity?

2. The Heterogeneous Services component of the Oracle database server connects
through Oracle Net to the Heterogeneous Services ODBC agent.

3. The agent communicates with the following non-Oracle components:
« An ODBC driver manager
« An ODBC driver

The driver then allows access to the non-Oracle data store.

Note: The ODBC driver may require non-Oracle client libraries
even if the non-Oracle database is located on the same machine.
Please refer to your ODBC driver documentation for information
about the requirements for the ODBC driver.

SQL Execution

SQL statements sent using a Generic Connectivity agent are executed differently
depending on the type of agent you are using: ODBC, OLE DB (SQL), or OLE DB
(FS). For example, if a SQL statement involving tables is sent using an ODBC agent
for a file-based storage system, the file can be manipulated as if it were a table in a
relational database. The naming conventions used at the non-Oracle system can also
depend on whether you are using an ODBC or OLE DB agent.

Datatype Mapping

The Oracle database server maps the datatypes used in ODBC and OLE DB
compliant data sources to supported Oracle datatypes. When the results of a query
are returned, the Oracle database server converts the ODBC or OLE DB datatypes to
Oracle datatypes. For example, the ODBC datatype SQ._TI MESTAMP and the OLE
DB datatype DBTYPE_DBTI MESTAMP are converted to Oracle’s DATE datatype.

If a table contains a column whose datatype is not supported by Generic
Connectivity, then the column information is not returned to the Oracle server.

Generic Connectivity Restrictions

Generic Connectivity restrictions include:

« Atable including a BLOB column must have a separate column that serves as a
primary key.

« BLOBand CLOB data cannot be read through passthrough queries.

Generic Connectivity 7-5

Supported Oracle SQL Statements and Functions

« Updates or deletes that include unsupported functions within a WHERE clause
are not allowed.

« Generic Connectivity does not support stored procedures.

« Generic Connectivity agents cannot participate in distributed transactions; they
support single-site transactions only.

« Generic Connectivity does not support multithreaded agents.

Supported Oracle SQL Statements and Functions

Generic Connectivity supports the following statements, but only if the ODBC or
OLE DB driver and non-Oracle system can execute them and the statements contain
supported Oracle SQL functions:

« DELETE
= | NSERT
« SELECT
« UPDATE

Only a limited set of functions are assumed to be supported by the non-Oracle
system. Most Oracle functions have no equivalent function in this limited set.
Consequently, although post-processing is performed by the Oracle database server,
many Oracle functions are not supported by Generic Connectivity, possibly
impacting performance.

If an Oracle SQL function is not supported by Generic Connectivity, then this
function is not supported in DELETE, | NSERT, or UPDATE statements. In SELECT
statements, these functions are evaluated by the Oracle database server and
post-processed after they are returned from the non-Oracle system.

If an unsupported function is used in a DELETE, | NSERT, or UPDATE statement, it
generates this Oracle error:

ORA- 02070: dat abase db_| i nk_nane does not support function in this context

Generic Connectivity assumes that the following minimum set of SQL functions is
supported by the ODBC driver or OLE DB provider that is being used:

« AV exp)
« LIKE(exp)
= COUNT(*)

7-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

Configuring Generic Connectivity Agents

« MAX(exp)
« MN(exp)
« NOT

Configuring Generic Connectivity Agents

To implement Generic Connectivity on a non-Oracle data source, you must set the
agent parameters.

This section contains the following topics:

« Creating the Initialization File

« Editing the Initialization File

« Setting Initialization Parameters for an ODBC-based Data Source

« Setting Initialization Parameters for an OLE DB-based Data Source

Creating the Initialization File

You must create and customize an initialization file for your Generic Connectivity
agent. Oracle Corporation supplies sample initialization files, i ni t hsodbc. ora
for ODBC agentsand i ni t hsol edb. or a for OLE DB agents. The sample files are
stored in the SORACLE_HOVE/ hs/ admi n directory.

To create an initialization file for an ODBC or OLE DB agent, copy the applicable
sample initialization file and rename the filetoi ni t HS_SI D. or a, where HS_SID is
the system identifier you want to use for the instance of the non-Oracle system to
which the agent connects.

The HS_SID is also used to identify how to connect to the agent when you configure
the listener by modifying the | i st ener . or a file. The HS_SID you add to the

I i stener. ora file must match the HS_SID inani ni t HS_SI D. or a file, because
the agent spawned by the listener searches for a matching i ni t HS_SI D. or a file.
That is how each agent process gets its initialization information. When you copy
and rename your i ni t HS_SI D. or a file, ensure it remains in the $ORACLE _

HOVE/ hs/ adni n directory.

Editing the Initialization File

Customize the i ni t HS_SI D. or a file by setting the parameter values used for
Generic Connectivity agents to values appropriate for your system, agent, and

Generic Connectivity 7-7

Configuring Generic Connectivity Agents

drivers. You must edit the i ni t HS_SI D. or a file to change the HS_FDS CONNECT _
I NFOinitialization parameter. HS_FDS_CONNECT_| NFOspecifies the information
required for connecting to the non-Oracle system.

See Also: "Setting Initialization Parameters" on page 4-5 for more
information on parameters

Set the parameter values as follows:
[SET] [PRI VATE] par anet er =val ue

[SET] and [PRI VATE] are optional keywords. If you do not specify either SET or
PRI VATE, then the parameter and value are simply used as an initialization
parameter for the agent.

SET specifies that in addition to being used as an initialization parameter, the
parameter value is set as an environment variable for the agent process.

PRI VATE specifies that the parameter value is private and not transferred to the
Oracle database server and does not appear in V$ tables or in an graphical user
interfaces.

SET PRI VATE specifies that the parameter value is set as an environment variable
for the agent process and is also private (not transferred to the Oracle database
server, not appearing in V$ tables or graphical user interfaces).

parameter is the Heterogeneous Services initialization parameter that you are
specifying. See "Setting Initialization Parameters" on page 4-5 for a description of all
Heterogeneous Services parameters and their possible values. The parameter is
case-sensitive.

value is the value you want to specify for the Heterogeneous Services parameter.
The value is case-sensitive.

For example, to enable tracing for an agent, set the HS FDS TRACE LEVEL
parameter as follows:

HS_FDS_TRACE_LEVEL=ON
Typically, most parameters are only needed as initialization parameters, so you do

not need to use SET or PRI VATE. Use SET for parameter values that the drivers or
non-Oracle system need as environment variables.

PRI VATE is only supported for the follow Heterogeneous Services parameters:
= HS_FDS CONNECT_I NFO

7-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Configuring Generic Connectivity Agents

. HS_FDS_SHAREABLE_NAVE
. HS_FDS_TRACE_LEVEL

You should only use PRI VATE for these parameters if the parameter value includes
sensitive information such as a username or password.

Setting Initialization Parameters for an ODBC-based Data Source

The settings for the initialization parameters vary depending on the type of
operating system.

Setting Agent Parameters on Windows NT

Specify a file data source name (DSN) or a system DSN which has previously been
defined using the ODBC Driver Manager.

Specify the value as follows:
HS FDS_CONNECT | NFO=dsn
Setting Parameters on NT: Example Assume a system DSN has been defined in the

Windows ODBC Data Source Administrator. In order to connect to this SQL Server
database through the gateway, the following line is required ini ni t HS_SI D. or a:

HS_FDS_CONNECT_| NFO=sql server 7

where sqgl ser ver 7 is the name of the system DSN defined in the Windows ODBC
Data Source Administrator.

The following procedure enables you to define a system DSN in the Windows
ODBC Data Source Administrator, version 3.5:

1. From the Start menu, choose Settings > Control Panel and select the ODBC
icon.

2. Select the system DSN tab to display the system data sources.
3. Click Add.

4. From the list of installed ODBC drivers, select the name of the driver that the
data source will use. For example, select SQL Server.

5. Click Finish.

6. Enter a name for the DSN and an optional description. Enter other information
depending on the ODBC driver. For example, for SQL Server enter the SQL
Server machine.

Generic Connectivity 7-9

Configuring Generic Connectivity Agents

Note: The name entered for the DSN must match the value of the
parameter HS_FDS_CONNECT_I| NFOthat is specified ini ni t HS_
S| D. or a.

7. Refer to your ODBC driver documentation and follow the prompts to complete
configuration of the DSN.

8. After creating the system DSN, click OK to exit the ODBC Data Source
Administrator.

Setting Agent Parameters on UNIX platforms
Specify a DSN and the path of the ODBC shareable library, as follows:

HS_FDS_CONNECT _I NFO=dsn_val ue
HS_FDS_SHAREABLE_NAME=ful | _pat h_of _odbc_dri ver

If your ODBC driver requires an ODBC driver manager, then HS_FDS _
SHAREABLE_NANME should point to the location of the ODBC driver manager and
not to the ODBC driver.

HS_FDS CONNECT I NFOis required for all platforms for an ODBC agent. HS_FDS _
SHAREABLE_ NAME is required on UNIX platforms for an ODBC agent. Other
initialization parameters have defaults or are optional. You can use the default
values and omit the optional parameters, or you can specify the parameters with
values tailored for your installation.

Note: Before deciding to accept the default values or change them,
see "Setting Initialization Parameters" on page 4-5 for detailed
information on all the initialization parameters.

Setting Parameters on UNIX: Example The following is an example of an odbc. i ni file
that uses DataDirect Technologies SQLServer ODBC driver:

[ODBC Data Sources]
SQLServer WP=Dat aDi rect 4.10 SQL Server Wre Protocol

[SQLSer ver WP

Driver=/opt/odbc410/lib/ivnessl8. so
Description=DataDirect 4.10 SQL Server Wre Protocol
Dat abase=or at st

Logonl D=TKHOUSER

7-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

Configuring Generic Connectivity Agents

Passwor d=TKHOUSER

Addr ess=sql server-pc, 1433
Quot edl d=No

Ansi NPWENo

[COBC]

Trace=0

TraceFi | e=/ opt/ 0odbc410/ odbct r ace. out

TraceDl | =/ opt/ odbc410/1i b/ odbctrac. so
Instal |l Dir=/opt/odbc4l0

Conver si onTabl eLocat i on=/ opt/ odbc410/ t abl es
UseCur sor Li b=0

To configure the Generic Connectivity ODBC agent to use this driver, the following
lines are required ini ni t HS_SI D. or a:

HS_FDS_CONNECT | NFO=SQLSer ver WP
HS_FDS SHAREABLE NAME=/ opt/odbc4/1i b/ i bodbc. so
set ODBCI NI =/ opt/ odbc/ odbc. i ni

Note that the set statements are optional as long as they are specified in the working
account. Each database has its own set statements.

The HS_FDS_CONNECT _I NFOparameter value must match the ODBC data source
name in the odbc. i ni file.

Setting Initialization Parameters for an OLE DB-based Data Source
You can only set these parameters on the Windows NT platform.

Specify a data link (UDL) that has previously been defined:
SET| PRI VATE| SET PRI VATE HS_FDS_CONNECT | NFO=" UDLFI LE=dat a_| i nk"

Note: If the parameter value includes an equal sign (=), then it
must be surrounded by quotation marks.

HS_FDS_CONNECT _I NFOis required for an OLE DB agent. Other initialization
parameters have defaults or are optional. You can use the default values and omit
the optional parameters, or you can specify the parameters with values tailored for
your installation.

Generic Connectivity 7-11

ODBC Connectivity Requirements

Note: Before deciding to accept the default values or change them,
see "Setting Initialization Parameters" on page 4-5 for detailed
information on all the initialization parameters.

ODBC Connectivity Requirements

To use an ODBC agent, you must have an ODBC driver installed on the same
machine as the Oracle database server. On Windows NT, you must have an ODBC
driver manager also located on the same machine. The ODBC driver manager and
driver must meet the following requirements:

« OnWindows NT machines, a 32-bit ODBC driver that conforms to ODBC
version 2.5 is required.

« On UNIX machines, a 32-bit ODBC driver which conforms to ODBC version 2.5
is required. If the ODBC driver works with an ODBC driver manager that
conforms to ODBC version 2.5, then the ODBC driver version can be 2.5 or
higher.

See Also: Your ODBC driver documentation for dependencies on
an ODBC driver manager

The ODBC driver and driver manager on Windows NT must conform to ODBC
application program interface (API) conformance Level 1 or higher. If the ODBC
driver or driver manager does not support multiple active ODBC cursors, then it
restricts the complexity of SQL statements that you can execute using Generic
Connectivity.

The ODBC driver you use must support all of the core SQL ODBC datatypes and
should support SQL grammar level SQL_92. The ODBC driver should also expose
the following ODBC APIs:

Table 7-1 ODBC Functions

ODBC Function Comment

SQLAI | ocConnect -

SQLAI | ocEnv -

SQLAI | ocSt nt -

SQLBi ndCol -

SQLBi ndPar anet er -

7-12 Oracle Database Heterogeneous Connectivity Administrator's Guide

ODBC Connectivity Requirements

Table 7-1 ODBC Functions(Cont.)

ODBC Function

Comment

SQLCol umms

SQLConnect

SQ.Descri beCol

SQLDi sconnect

SQLDri ver Connect

SQ.Error

SQLExecDi rect

SQLExecut e

SQLExt endedFet ch

Recommended if used by the non-Oracle system.

SQLFet ch

SQLFor ei gnKeys

Recommended if used by the non-Oracle system.

SQ_Fr eeConnect

SQLFr eeEnv

SQLFreeSt nt

SQLCGet Connect Opti on

SQLGet Dat a

SQLGet Functi ons

SQLCGet I nfo

SQLGet Typel nfo

SQLNunPar ans

Recommended if used by the non-Oracle system.

SQLNunResul t Col s

SQ.Par anDat a

SQLPrepare

SQLPri maryKeys

Recommended if used by the non-Oracle system.

SQLPr ocedur eCol ums

Recommended if used by the non-Oracle system.

SQLPr ocedur es

Recommended if used by the non-Oracle system.

SQLPut Dat a

Generic Connectivity 7-13

OLE DB (SQL) Connectivity Requirements

Table 7-1 ODBC Functions(Cont.)

ODBC Function Comment

SQLRowCount -

SQLSet Connect Option |-

SQLSet St nt Opt i on -

SQLStatistics -

SQLTabl es -

SQLTr ansact Recommended if used by the non-Oracle system.

OLE DB (SQL) Connectivity Requirements

These requirements apply to OLE DB data providers that have a SQL processing
capability and expose the OLE DB interfaces.

Generic Connectivity passes the username and password to the provider when
callingI DBl nitialize::Initialize().

OLE DB (SQL) connectivity requires that the data provider expose the following OLE
DB interfaces:

Table 7-2 OLE DB (SQL) Interfaces

Interface Methods Notes
| Accessor Cr eat eAccessor, -
Rel easeAccessor
I Col ummsl nfo Get Col ummsl| nf o (Command and -
Rowset objects)
| Command Execut e -
| CommandPr epar e Prepare -
| ConmandPr operti es Set Properti es -
| CommandText Set CommandText -
| CommandW t hPar anet er s Cet Par aneter|nfo -
| DBCr eat eConmand Cr eat eConmand -
| DBCr eat eSessi on Cr eat eSessi on -
IDBInitialize Initialize -

7-14 Oracle Database Heterogeneous Connectivity Administrator's Guide

OLE DB (FS) Connectivity Requirements

Table 7-2 OLE DB (SQL) Interfaces

Interface Methods Notes
| DBSchemaRows et Get Rowset (tables, columns, -
indexes; optionally also procedures,
procedure parameters)
IErrorinfo Get Descri pti on, Get Sour ce You can also use

| Er r or Lookup
with the

Get ErrorDescri
pti on method.

| Error Records

CetErrorinfo

| LockByt es (OLE)

Fl ush, ReadAt, Set Si ze, St at,
WiteAt

Required only if
BLOB datatypes are
used in the OLE
DB provider.

| Rowset

Cet Dat a, Get Next Rows,
Rel easeRows, Rest art Posi ti on

| St r eam(OLE)

Read, Seek, Set Si ze, St at
Wite

| SupportErrorlnfo

I nterfaceSupportsErrorlnfo

| Transacti onLocal
(optional)

Start Transacti on,Commi t,
Abor t

OLE DB (FS) Connectivity Requirements

These requirements apply to OLE DB data providers that do not have SQL
processing capabilities. If the provider exposes them, then OLE DB (FS) connectivity

uses OLE DB Index interfaces.

OLE DB Interfaces for Data Providers to Expose
OLE DB (FS) connectivity requires that the data provider expose the following OLE

DB interfaces:

Table 7-3 OLE DB (FS) Interfaces

Interface

Methods

Notes

| Accessor

Cr eat eAccessor,
Rel easeAccessor

Generic Connectivity 7-15

OLE DB (FS) Connectivity Requirements

Table 7-3 OLE DB (FS) Interfaces (Cont.)

Interface

Methods

Notes

| Col umsl nfo

Get Col ummsl| nf o (Conmand and
Rowset objects)

I OpenRowset

OpenRowset

| DBCr eat eSessi on

Cr eat eSessi on

| Rowset Change

Del et eRows, Set Dat a,
| nsert Row

| Rowset Locat e

Get Rows By Booknar k

| Rowset Updat e

Updat e (optional)

IDBInitialize

Initialize,Uninitialize

| DBSchemaRows et

Get Rowset (tables, columns,
indexes; optionally also procedures,
procedure parameters)

| LockByt es (OLE)

Fl ush, ReadAt , Set Si ze, St at ,
Wit eAt

Required only if BLOB
datatypes are used in
the OLE DB provider

| Rowset | ndex

Set Range

Required only if
indexes are used in the
OLE DB provider

|Errorlnfo

Get Descri pti on, Get Sour ce

You can use

| Err or Lookup with
the

Get Error Descripti
on method as well.

| Error Records

CetErrorinfo

| Rowset

Cet Dat a, Get Next Rows,
Rel easeRows, Rest art Posi ti on

| St r eam(OLE)

Read, Seek, Set Si ze,Stat ,Wite

| Transacti onLocal
(optional)

Start Transacti on, Comm t,
Abor t

| Support Errorl nfo

I nterfaceSupportsErrorinfo

| Tabl eDefinition

Creat eTabl e, DropTabl e

| DBPr operties

Set Properties

7-16 Oracle Database Heterogeneous Connectivity Administrator's Guide

OLE DB (FS) Connectivity Requirements

Because OLE DB (FS) connectivity is generic, it can connect to a number of different
data providers that expose OLE DB interfaces. Every such data provider must meet
the certain requirements.

Note: The data provider must expose bookmarks. This enables
tables to be updated. Without bookmarks being exposed, the tables
are read-only.

Data Source Properties
The OLE DB data source must support the following initialization properties:

DBPROP_| NI T_DATASOURCE
DBPROP_AUTH_USERI D

Note: Required if the userid has been supplied in the security file

DBPROP_AUTH_PASSWORD

Note: Required if the userid and password have been supplied in
the security file

The OLE DB data source must also support the following rowset properties:

DBPROP_I Rowset Change = TRUE
DBPROP_UPDATABI LI TY = CHANGE+DELETE+I NSERT
DBPROP_OWNUPDATEDELETE = TRUE

DBPROP_OWNI NSERT = TRUE
DBPROP_OTHERUPDATEDELETE = TRUE
DBPROP_CANSCROLLBACKWARDS = TRUE

DBPROP_I Rowset Locate = TRUE

DBPROP_OTHERI NSERT = FALSE

Generic Connectivity 7-17

OLE DB (FS) Connectivity Requirements

7-18 Oracle Database Heterogeneous Connectivity Administrator's Guide

A

Heterogeneous Services Initialization
Parameters

The Heterogeneous Services initialization parameter file contains configuration
settings stored as a text file.

This section contains the following topics:
« HS_CALL_NAME

« HS_COMMIT_POINT_STRENGTH

. HS DB _DOMAIN

. HS DB _INTERNAL_NAME

. HS DB _NAME

. HS DESCRIBE_CACHE_HWM

. HS FDS_CONNECT_INFO

. HS FDS DEFAULT _SCHEMA NAME
. HS FDS SHAREABLE_NAME

. HS_FDS _TRACE_LEVEL

« HS_LANGUAGE

. HS LONG_PIECE_TRANSFER_SIZE
« HS_NLS DATE_FORMAT

. HS NLS DATE_LANGUAGE

« HS NLS NCHAR

« HS_NLS NUMERIC_CHARACTER

Heterogeneous Services Initialization Parameters A-1

. HS_NLS_TIMESTAMP_FORMAT
. HS_NLS_TIMESTAMP_TZ_FORMAT
. HS_OPEN_CURSORS

. HS_ROWID_CACHE_SIZE

. HS_RPC_FETCH_REBLOCKING

. HS_RPC_FETCH_SIZE

. HS_TIME_ZONE

. IFILE

See Also:

« "Setting Initialization Parameters" on page 4-5 contains
instructions for setting the Heterogeneous Services
initialization parameters

« "Configuring Generic Connectivity Agents" on page 7-7
contains instructions for setting Heterogeneous Services
initialization parameters specific to Generic Connectivity

A-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_COMMIT_POINT_STRENGTH

HS_CALL_NAME

Property Description
Default value None
Range of values Not applicable

Specifies the remote functions that can be referenced in SQL statements. The value
is a list of remote functions and their owners, separated by semicolons, in the
following format:

owner _nane. function_nane

For example:
owner 1. Al; owner 2. A2; owner 3. A3
If no owner name is specified for a remote function, then the default owner name is

the user name used to connect to the remote database (specified when the HS
database link is created).

The entries for the owner names and the function names are case-sensitive.

See Also: "Executing User-Defined Functions on a Non-Oracle
Database" on page 4-15

HS_COMMIT_POINT _STRENGTH

Property Description
Default value 0
Range of values 0to 255

Specifies a value that determines the commit point site in a heterogeneous
distributed transaction. HS_ COVM T_PO NT_STRENGTH s similar to COW T _
PO NT_STRENGTH, described in the Oracle Database Reference.

Set HS_COWM T_PO NT_STRENGTH o a value relative to the importance of the site
that is the commit point site in a distributed transaction. The Oracle database server
or non-Oracle system with the highest commit point strength becomes the commit

Heterogeneous Services Initialization Parameters A-3

HS_DB_DOMAIN

point site. To ensure that a non-Oracle system never becomes the commit point site,
set the value of HS_COVWM T_PO NT_STRENGTHto zero.

HS_COWM T_PO NT_STRENGTH s important only if the non-Oracle system can
participate in the two-phase protocol as a regular two-phase commit partner and as
the commit point site. This is only the case if the transaction model is two-phase
commit confirm (2PCC).

HS_DB_DOMAIN
Property Description
Default value WORLD
Range of values 1 to 199 characters

Specifies a unique network sub-address for a non-Oracle system. HS_DB_DOVAI Nis
similar to DB_DQOVAI N, described in the Oracle Database Reference. HS_DB _DOVAI Nis
required if you use the Oracle Names server. HS_DB_NAME and HS_DB_DOVAI N
define the global name of the non-Oracle system.

Note: HS DB NAME and HS_ DB DOMAI N must combine to form a
unique address.

HS_DB_INTERNAL NAME

Property Description
Default value 01010101
Range of values 1 to 16 hexadecimal characters

Specifies a unique hexadecimal number identifying the instance to which the
Heterogeneous Services agent is connected. This parameter’s value is used as part
of a transaction ID when global name services are activated. Specifying a nonunique
number can cause problems when two-phase commit recovery actions are necessary
for a transaction.

A-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_FDS_CONNECT_INFO

HS_DB_NAME
Property Description
Default value HO
Range of values 1 to 8 characters

Specifies a unique alphanumeric name for the data store given to the non-Oracle
system. This name identifies the non-Oracle system within the cooperative server
environment. HS_DB_NAME and HS_DB_DOMAI N define the global name of the
non-Oracle system.

HS_DESCRIBE_CACHE_HWM

Property Description
Default value 100
Range of values 1 to 4000

Specifies the maximum number of entries in the describe cache used by
Heterogeneous Services. This limit is known as the describe cache high water mark.
The cache contains descriptions of the mapped tables that Heterogeneous Services
reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, then increase the high water mark to
improve performance. Note that increasing the high water mark improves
performance at the cost of memory usage.

HS_FDS_CONNECT_INFO

Property Description
Default value None
Range of values Not applicable

Specifies the information needed to bind to the data provider, that is, the non-Oracle
system. For Generic Connectivity, you can bind to an ODBC-based data source or to

Heterogeneous Services Initialization Parameters A-5

HS_FDS_DEFAULT_SCHEMA_NAME

an OLE DB-based data source. The information that you provide depends on the
platform and whether the data source is ODBC or OLE DB-based.

This parameter is required if you are using Generic Connectivity.

ODBC-Based Data Source on Windows
You can specify a file DSN (data source name) or a system DSN as follows:
HS_FDS_CONNECT_| NFO=FI LEDSN=dsn

ODBC-Based Data Source on UNIX
Use a DSN with the following format:
HS_FDS_CONNECT_| NFO=dsn

OLE DB-Based Data Source (Windows NT Only)

Use a universal data link (UDL) with the following format:
HS_FDS_CONNECT_I NFO=" UDLFI LE=dat a_I i nk"

Note: Whenever the parameter value includes an equal sign (=), it
must be enclosed in quotation marks.

HS_FDS_DEFAULT SCHEMA NAME

Property Description
Default value None
Range of values Not applicable

Specifies a default value for the owner column that will be returned in the ddtrans,
when the value of the owner is null. For example:

HS_FDS_DEFAULT_SCHEMA NAME = PUBLIC

A-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_LANGUAGE

HS_FDS_SHAREABLE_NAME

Property Description
Default value None
Range of values Not applicable

Specifies the full path name to the ODBC library. This parameter is required when
you are using Generic Connectivity to access data from an ODBC provider on a
UNIX machine. If your ODBC driver requires an ODBC driver manager, then HS_
FDS_SHAREABLE_NAME should point to the location of the ODBC driver manager
and not to the ODBC driver.

HS_FDS_TRACE LEVEL

Property Description
Default value OFF
Range of values ONor OFF

Specifies whether error tracing is enabled or disabled for Generic Connectivity.
Enable the tracing to see which error messages occur when you encounter
problems. The results are written to a Generic Connectivity log file, inthe /| og
directory under the $ORACLE_HOVE directory.

HS_LANGUAGE

Property Description
Default value System-specific
Range of values Any valid language name (up to 255 characters)

Provides Heterogeneous Services with character set, language, and territory
information of the non-Oracle data source. The value must use the following
format:

| anguage[_territory.character_set]

Heterogeneous Services Initialization Parameters A-7

HS_LANGUAGE

Note: The globalization support initialization parameters affect
error messages, the data for the SQL Service, and parameters in
distributed external procedures.

Character Sets

Ideally, the character sets of the Oracle database server and the non-Oracle data
source are the same. If they are not the same, Heterogeneous Services attempts to
translate the character set of the non-Oracle data source to the Oracle database
character set, and back again. The translation can degrade performance. In some
cases, Heterogeneous Services cannot translate a character from one character set to
another.

Note: The specified character set must be a superset of the
operating system character set on the platform where the agent is
installed.

Language
The language component of the HS_LANGUAGE initialization parameter determines:
« Day and month names of dates
« AD, BC, PM, and AM symbols for date and time
« Default sorting mechanism
Note that Oracle does not determine the language for error messages for the generic
Heterogeneous Services messages (ORA- 25000 through ORA- 28000). These are
controlled by the session settings in the Oracle database server.
Note: Usethe HS NLS DATE LANGUAGE initialization parameter
to set the day and month names, and the AD, BC, PM, and AM
symbols for dates and time independently from the language.
Territory

The territory clause specifies the conventions for day and week numbering, default
date format, decimal character and group separator, and 1SO and local currency
symbols. Note that:

A-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_NLS_DATE_FORMAT

« You can override the date format using the initialization parameter HS_NLS
DATE_FORMAT.

« The level of globalization support between the Oracle database server and the
non-Oracle data source depends on how the driver is implemented.

HS_LONG_PIECE_TRANSFER_SIZE

Property Description
Default value 64 KB
Range of values Any value up to 2 GB

Sets the size of the piece of LONGdata being transferred. A smaller piece size means
less memory requirement, but more round trips to fetch all the data. A larger piece
size means fewer round trips, but more of a memory requirement to store the
intermediate pieces internally. Thus, the initialization parameter can be used to tune
a system for the best performance, with the best trade-off between round trips and
memory requirements.

HS_NLS_DATE_FORMAT

Property Description
Default value Value determined by HS_LANGUAGE parameter
Range of values Any valid date format mask (up to 255 characters)

Defines the date format for dates used by the target system. This parameter has the
same function as the NLS_DATE_FORMAT parameter for an Oracle database server.
The value of can be any valid date mask listed in the Oracle Database SQL Reference,
but must match the date format of the target system. For example, if the target
system stores the date February 14, 2001 as 2001/ 02/ 14, set the parameter to
yyyy/ mi dd. Note that characters must be lowercase.

Heterogeneous Services Initialization Parameters A-9

HS_NLS_DATE_LANGUAGE

HS_NLS_DATE_LANGUAGE

Property Description
Default value Value determined by HS_L ANGUAGE parameter
Range of values Any valid NLS_LANGUACE value (up to 255 characters)

Specifies the language used in character date values coming from the non-Oracle
system. Date formats can be language independent. For example, if the format is
dd/ mml yyyy, all three components of the character date are numbers. In the format
dd- non- yyyy, however, the month component is the name abbreviated to three
characters. The abbreviation is very much language dependent. For example, the
abbreviation for the month April is "apr", which in French is "avr" (Avril).

Heterogeneous Services assumes that character date values fetched from the
non-Oracle system are in this format. Also, Heterogeneous Services sends character
date bind values in this format to the non-Oracle system.

HS_NLS_NCHAR

Property Description
Default value Value determined by HS_LANGUAGE parameter
Range of values Any valid national character set (up to 255 characters)

Informs Heterogeneous Services of the value of the national character set of the
non-Oracle data source. This value is the non-Oracle equivalent to the NATI ONAL
CHARACTER SET parameter setting in the Oracle CREATE DATABASE statement.
The HS_NLS NCHAR value should be the character set ID of a character set
supported by the Oracle NLSRTL library.

See Also: HS_LANGUAGE on page A-7

HS_NLS_NUMERIC_CHARACTER

Property Description

Default value Value determined by HS_L ANGUAGE parameter

A-10 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_NLS_TIMESTAMP_TZ_FORMAT

Property Description

Range of values Any valid NLS_NUMERI C_CHARACTERS value (any two valid
numeric characters)

Specifies the characters to use as the group separator and the decimal character. The
group separator separates integer groups (such as thousands, millions, and
billions). The decimal character separates the integer portion of a number from the
decimal portion.

HS_NLS_TIMESTAMP_FORMAT

Property Description
Default value Derived from NLS_TERRI TORY
Range of values Any valid datetime format mask

Defines the timestamp format for dates used by the target system. This parameter
has the same function as the NLS_TI MESTAMP_FORNMAT parameter for an Oracle
database server. The value of can be any valid timestamp mask listed in the Oracle
Database SQL Reference, but it must match the date format of the target system. Note
that characters must be lowercase. For example:

HS_NLS TI MESTAMP_FORMAT = yyyy-mmdd hh:mi:ss.ff

HS_NLS_TIMESTAMP_TZ_FORMAT

Property Description
Default value Derived from NLS_TERRI TORY
Range of values Any valid datetime with time zone format mask

Defines the default timestamp with time zone format for the timestamp with time
zone format used by the target system. This parameter has the same function as the
NLS_ TI MESTAMP_TZ_ FORMAT parameter for an Oracle database server. The value
of can be any valid timestamp with time zone mask listed in the Oracle Database
SQL Reference, but must match the date format of the target system. Note that
characters must be lowercase. For example:

Heterogeneous Services Initialization Parameters A-11

HS_OPEN_CURSORS

HS_NLS TI MESTAMP_TZ_FORMAT = yyyy-mmdd hh:mi:ss.ff tzh:tzm

HS_OPEN_CURSORS

Property Description
Default value 50
Range of values 1 to the value of Oracle’s OPEN_CURSORS initialization parameter

Defines the maximum number of cursors that can be open on one connection to a
non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database server.
Therefore, setting the same value as the OPEN_CURSORS initialization parameter in
the Oracle database server is recommended.

HS_ROWID_CACHE_SIZE

Property Description
Default value 3
Range of values 1to 32767

Specifies the size of the Heterogeneous Services cache containing the non-Oracle
system equivalent of ROWIDs. The cache contains non-Oracle system ROWIDs
needed to support the WHERE CURRENT OF clause in a SQL statement or a SELECT
FOR UPDATE statement.

When the cache is full, the first slot in the cache is reused, then the second, and so
on. Only the last HS_ROWN D_CACHE_SI ZE non-Oracle system ROWIDs are cached.

HS_RPC_FETCH_REBLOCKING

Property Description
Default value ON
Range of values OFF or ON

A-12 Oracle Database Heterogeneous Connectivity Administrator's Guide

HS_RPC_FETCH_SIZE

Controls whether Heterogeneous Services attempts to optimize performance of data
transfer between the Oracle database server and the Heterogeneous Services agent
connected to the non-Oracle data store.

The following values are possible:

« OFF disables reblocking of fetched data so that data is immediately sent from
agent to server.

« ONenables reblocking, which means that data fetched from the non-Oracle
system is buffered in the agent and is not sent to the Oracle database server
until the amount of fetched data is equal or higher than HS_ RPC _FETCH_SI ZE.
However, any buffered data is returned immediately when a fetch indicates that
no more data exists or when the non-Oracle system reports an error.

HS_RPC_FETCH_SIZE

Property Description
Default value 4000
Range of values Decimal integer (byte count)

Tunes internal data buffering to optimize the data transfer rate between the server
and the agent process.

Increasing the value can reduce the number of network round trips needed to
transfer a given amount of data, but also tends to increase data bandwidth and to
reduce response time or latency as measured between issuing a query and
completion of all fetches for the query. Nevertheless, increasing the fetch size can
increase latency for the initial fetch results of a query, because the first fetch results
are not transmitted until additional data is available.

After the gateway is installed and configured, you can use the gateway to access
non-Oracle database system data, pass non-Oracle database system commands
from applications to the non-Oracle database system database, perform distributed
gueries, and copy data.

Heterogeneous Services Initialization Parameters A-13

HS_TIME_ZONE

HS_TIME_ZONE
Property Description
Default value for Derived from NLS_TERRI TORY
[+]-]hh:mm’

IFILE

Range of values for ~ Any valid datetime format mask
[+1-Ihh:mm’

Specifies the default local time zone displacement for the current SQL session. The
format mask, [+]-]hh:mm, is specified to indicate the hours and minutes before or
after UTC (Coordinated Universal Time—formerly Greenwich Mean Time). For
example:

HS TIME_ZONE = [+ | -] hh:mm

Property Description

Default value None

Range of values Valid parameter file names

Use | FI LE to embed another initialization file within the current initialization file;
the value should be an absolute path and should not contain environment variables;
the three levels of nesting limit does not apply.

See Also: | FI LE in Oracle Database Reference

A-14 Oracle Database Heterogeneous Connectivity Administrator's Guide

B

Datatype Mapping

Oracle maps the ANSI datatypes through ODBC and OLE DB interfaces to
supported Oracle datatypes. When the results of a query are returned, Oracle9i
converts the ODBC or OLE DB datatypes to Oracle datatypes.

The tables in this appendix show how Oracle maps ANSI datatypes through ODBC
and OLE DB interfaces to supported Oracle datatypes when it is retrieving data
from a non-Oracle system.

This appendix contains the following tables:
« Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface
« Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

Datatype Mapping B-1

Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC
Interface

Table B-1 maps ODBC datatypes into equivalent ANSI and Oracle datatypes. In
some cases equivalence to ANSI datatypes is not guaranteed to be exact because the
ANSI SQL standard delegates definition of numeric precision and maximum length
of character data to individual implementations. This table reflects a probable
mapping between ANSI and ODBC datatypes for a typical implementation of ANSI
SQL.

Table B-1 Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

B-2 Oracle Database Heterogeneous Connectivity Administrator’'s Guide

ANSI

ODBC

Oracle

NUVERI C(19, 0)

N A

CHAR

DATE

DECI MAL(p, S)
DOUBLE PRECI SI ON
FLOAT

| NTEGER

N A
N A

REAL

SQL_BI G NT
SQL_BI NARY
SQL_CHAR
SQL_DATE
SQL_DECI MAL(p,)
SQL_DOUBLE
SQL_FLOAT

SQL_I NTEGER

SQL_LONGVARBI NARY
SQL_LONGVARCHAR

SQL_REAL

NUMBER(19, 0)
RAW

CHAR

DATE

NUVBER(p, s)
FLOAT(49)
FLOAT(49)

NUVBER(10)

Note: It is possible under
some circumstance for the

| NTEGER ANSI datatype to
map to Precision 38, but it
usually maps to Precision 10.

LONG RAW

LONG

Note: If an ANSI SQL
implementation defines a
large value for the maximum
length of VARCHAR data, then
it is possible that ANSI
VARCHAR will map to SQL_
LONGVARCHAR and Oracle
LONG The same is true for
OLE DB DBTYPE_STRI NG
(long attribute).

FLOAT(23)

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

Table B-1 Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface

ANSI oDBC Oracle
SMALLI NT SQL_SMALLI NT NUVBER(5)
TI VE SQL_TI ME DATE

TI MESTAMP SQL_TI MESTAWP DATE
NUMERI C(3, 0) SQL_TI NYI NT NUVBER(3)
VARCHAR SQL_VARCHAR VARCHAR
BOOLEAN SQL BIT RAW(1)

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB
Interface

Table B—2 Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB

Interface

ANSI OLE DB Oracle

NUMERI C(3, 0) DBTYPE_UI 1 NUVBER(3)
NUMVERI C(3, 0) DBTYPE_ | 1 NUVBER(3)
SMALLI NT DBTYPE_Ul 2 NUVBER(5)
SMALLI NT DBTYPE_| 2 NUVBER(5)
NUMERI C(3, 0) DBTYPE_BOOL NUMBER(5)

| NTEGER DBTYPE_Ul 4 NUVBER(10)

| NTEGER DBTYPE_I 4 NUVBER(10)
NUVERI C(19, 0) DBTYPE_Ul 8 NUMBER(19, 0)
NUVERI C(19, 0) DBTYPE_| 8 NUMBER(19, 0)

NUMVERI C(p, S)
FLOAT

DOUBLE PRECI SI ON
N A

VARCHAR

VARCHAR

DBTYPE_NUMERI C(p, S)
DBTYPE_R4

DBTYPE_RS
DBTYPE_DECI MAL
DBTYPE_STR
DBTYPE_WSTR

NUVBER(p, s)
FLOAT(23)
FLOAT(49)
FLOAT(49)
VARCHAR2
VARCHAR2

Datatype Mapping B-3

Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

Table B—2 Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB
Interface (Cont.)

ANSI OLE DB Oracle

NUMERI C(19, 0) DBTYPE_CY NUMBER(19, 0)

DATE DBTYPE_DBDATE DATE

TI ME DBTYPE_DBTI ME DATE

TI MESTAMP DBTYPE_TI MESTAMP DATE

N A DBTYPE_BYTES RAW

N A DBTYPE_BYTES (long LONG RAW
attribute)

N A DBTYPE_STRI NG (long LONG
attribute)

B-4 Oracle Database Heterogeneous Connectivity Administrator’'s Guide

C

Data Dictionary Translation Support

Data dictionary information is stored in the non-Oracle system as system tables and
is accessed through ODBC or OLE DB application programming interfaces (APIs).
This appendix documents data dictionary translation support. It explains how to
access non-Oracle data dictionaries, lists Heterogeneous Services data dictionary
views, describes how to use supported views and tables, and explains data
dictionary mapping.

This appendix contains the following topics:
« Accessing the Non-Oracle Data Dictionary
« Heterogeneous Services Data Dictionary Views

« Views and Tables Supported by Generic Connectivity

Data Dictionary Translation Support C-1

Accessing the Non-Oracle Data Dictionary

Accessing the Non-Oracle Data Dictionary

Accessing a non-Oracle data dictionary table or view is identical to accessing a data
dictionary in an Oracle database. You issue a SELECT statement specifying a
database link. The Oracle data dictionary view and column names are used to
access the non-Oracle data dictionary. Synonyms of supported views are also
acceptable.

For example, the following statement queries the data dictionary table ALL_USERS
to retrieve all users in the non-Oracle system:

SQL SELECT * FROM al | _users@i di;

When you issue a data dictionary access query, the ODBC or OLE DB agent:

1. Maps the requested table, view, or synonym to one or more ODBC or OLE DB
APIs (see "Data Dictionary Mapping"). The agent translates all data dictionary
column names to their corresponding non-Oracle column names within the
query.

2. Sends the sequence of APIs to the non-Oracle system.

3. Possibly converts the retrieved non-Oracle data to give it the appearance of the
Oracle data dictionary table.

4. Passes the data dictionary information from the non-Oracle system table to
Oracle.

Note: The values returned when querying the Generic
Connectivity data dictionary may not be the same as the ones
returned by the Oracle SQL*Plus DESCRI BE command.

Heterogeneous Services Data Dictionary Views

Heterogeneous Services mapping supports the following list of data dictionary
views:

ALL_CATALOG
ALL_COL_COMVENTS
ALL_COL_PRI VS
ALL_COL_PRI VS_MADE
ALL_COL_PRI VS_RECD
ALL_CONSTRAI NTS
ALL_CONS_COLUWNS

C-2 Oracle Database Heterogeneous Connectivity Administrator's Guide

Heterogeneous Services Data Dictionary Views

ALL_DB_LI NKS
ALL_DEF_AUDI T_OPTS
ALL_DEPENDENCI ES
ALL_ERRORS

ALL_| NDEXES

ALL_| ND_COLUWNS
ALL_OBJECTS
ALL_SEQUENCES
ALL_MWI EV8
ALL_SOURCE
ALL_SYNONYMS
ALL_TABLES
ALL_TAB_COLUWNS
ALL_TAB_COWVENTS
ALL_TAB_PRI VS
ALL_TAB_PRI VS_MADE
ALL_TAB_PRI VS_RECD
ALL_TRI GGERS
ALL_USERS

ALL_VI EV8

AUDI T_ACTI ONS
COLUMN_PRI VI LEGES
DBA_CATALOG
DBA_COL_COMMVENTS
DBA_COL_PRI VS
DBA_OBJECTS
DBA_ROLES
DBA_ROLE_PRI VS
DBA_SYS_PRI VS
DBA_TABLES
DBA_TAB_COLUWNS
DBA_TAB_COMMVENTS
DBA_TAB_PRI VS
DBA_USERS

DI CTI ONARY

DI CT_COLUWNS

DUAL

| NDEX_STATS
PRODUCT_USER_PROFI LE
RESOURCE_COST
ROLE_ROLE_PRI VS

Data Dictionary Translation Support

C-3

Heterogeneous Services Data Dictionary Views

ROLE_SYS_PRI VS
ROLE_TAB_PRI VS

SESSI ON_PRI VS

SESSI ON_ROLES
TABLE_PRI VI LEGES
USER_AUDI T_OBJECT
USER_AUDI T_SESSI ON
USER_AUDI T_STATEMENT
USER_AUDI T_TRAI L
USER_CATALOG
USER_CLUSTERS
USER_CLU_COLUWNS
USER_COL_COWMVENTS
USER_COL_PRI VS
USER_COL_PRI VS_MADE
USER_COL_PRI VS_RECD
USER_CONSTRAI NTS
USER_CONS_COLUWNS
USER DB_LI NKS
USER_DEPENDENC! ES
USER_ERRORS
USER_EXTENTS
USER_FREE_SPACE
USER_| NDEXES

USER_| ND_COLUMNS
USER_OBJECTS
USER_OBJ_AUDI T_OPTS
USER_RESOURCE_LI M TS
USER_ROLE_PRI VS
USER_SEGMVENTS
USER_SEQUENCES
USER_MVI EW LOGS
USER_SOURCE
USER_SYNONYMS
USER_SYS_PRI VS
USER_TABLES
USER_TABLESPACES
USER_TAB_COLUWNS
USER_TAB_COWMENTS
USER_TAB_PRI VS
USER_TAB_PRI VS_MADE

C-4 Oracle Database Heterogeneous Connectivity Administrator's Guide

Views and Tables Supported by Generic Connectivity

USER_TAB_PRI VS_RECD
USER_TRI GGERS
USER_TS_QUOTAS
USER_USERS

USER_VI EVWS

Views and Tables Supported by Generic Connectivity
Generic Connectivity supports only the views and tables shown in Table C-1.

If you use an unsupported view, then you receive an Oracle error message that no
rows were selected.

If you want to query data dictionary views using SELECT. . . FROM DBA *, first
connect as Oracle user SYSTEMor SYS. Otherwise, you receive the following error
message:

ORA-28506: Parse error in data dictionary translation for % stored in %
Using Generic Connectivity, queries of the supported data dictionary tables and
views beginning with the characters ALL_ may return rows from the non-Oracle
system when you do not have access privileges for those non-Oracle objects. When

guerying an Oracle database with the Oracle data dictionary, rows are returned only
for those objects you are permitted to access.

Data Dictionary Mapping

The tables in this section list Oracle data dictionary view names and the equivalent
ODBC or OLE DB APIs used.

Table C-1 Generic Connectivity Data Dictionary Mapping

View ODBC API OLE DB API
ALL_CATALOG SQL.Tabl es DBSCHEMA_CATALOGS
ALL_COL_COMVENTS SQ.Col ums DBSCHEMA_COLUMNS
ALL_CONS_COLUWNS SQLPri maryKeys, SQ.Forei gnKeys DBSCHENVA_PRI MARY_KEYS,
DBSCHEMA_FOREI GN_KEYS
ALL_CONSTRAI NTS SQLPri maryKeys, SQ.Forei gnKeys DBSCHEVA PRI MARY_KEYS,
DBSCHEVA_FOREI GN_KEYS
ALL_I ND_COLUWNS SQ Statistics DBSCHENMA_STATI STI CS
ALL_| NDEXES SQ Statistics DBSCHEMA_STATI STI CS

Data Dictionary Translation Support C-5

Views and Tables Supported by Generic Connectivity

Table C-1 Generic Connectivity Data Dictionary Mapping (Cont.)

View

ODBC API

OLE DB API

ALL_OBJECTS

SQL.Tabl es, SQLProcedures,
SQL.Statistics

DBSCHEMA TABLES, DBSCHEMA
PROCEDURES, DBSCHEMA
STATI STI CS

ALL_TAB_COLUWNS SQLCol urms DBSCHEMA COLUWNS
ALL_TAB_COWVENTS SQLTabl es DBSCHEMA TABLES
ALL_TABLES SQLStatistics DBSCHEMA_STATI STI CS
ALL_USERS SQLTabl es DBSCHEMA TABLES
ALL_VI EWS SQLTabl es DBSCHEMA TABLES

DI CTI ONARY SQLTabl es DBSCHEMA TABLES
USER_CATALOG SQLTabl es DBSCHEMA TABLES
USER_COL_COVVENTS SQLCol umms DBSCHEMA COLUWNS

USER_CONS_COLUMNS

SQLPri maryKeys, SQ.Forei gnKeys

DBSCHEMA_PRI MARY_KEYS,
DBSCHEMA_FOREI GN_KEYS

USER_CONSTRAI NTS

SQLPri maryKeys, SQ.Forei gnKeys

DBSCHEMA_PRI MARY_KEYS,
DBSCHEMA_FOREI GN_KEYS

USER_| ND_COLUWNS

SQLStatistics

DBSCHENA_STATI STI CS

USER | NDEXES

SQLStatistics

DBSCHENVA_STATI STI CS

USER_OBJECTS

SQLTabl es, SQLProcedures,
SQ.Statistics

DBSCHEVA TABLES, DBSCHEMA
PROCEDURES, DBSCHEMA
STATI STI CS

USER_TAB_COLUWNS SQLCol unms DBSCHEMA_COLUWNS
USER_TAB_COMVENTS SQLTabl es DBSCHEMA TABLES
USER TABLES SQLStati stics DBSCHEMA_STATI STI CS
USER_USERS SQLTabl es DBSCHEMA TABLES
USER VI EWS SQLTabl es DBSCHEMA TABLES

Generic Connectivity Data Dictionary Descriptions

The Generic Connectivity data dictionary tables and views provide this
information:

C-6 Oracle Database Heterogeneous Connectivity Administrator's Guide

Name, datatype, and width of each column

Views and Tables Supported by Generic Connectivity

« The contents of columns with fixed values

In the descriptions that follow, the values in the Null? column may differ from the
Oracle data dictionary tables and views. Any default value is shown to the right of

an item.

ALL_CATALOG

Name Null? Type Value

OMANER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE" or "VI EW or SYNONYM
ALL_COL_COMMENTS

Name Null? Type Value
OMNNER NOT NULL VARCHAR2(30) -
TABLE_NAME NOT NULL VARCHAR2(30) -
COLUMN_NAME NOT NULL VARCHAR2(30) -
COVMENTS - VARCHAR2(4000) NULL
ALL_CONS_COLUMNS

Name Null? Type Value
OMER NOT NULL VARCHAR2(30) -
CONSTRAI NT_NAME NOT NULL VARCHAR2(30) -
TABLE_NAME NOT NULL VARCHARZ2(30) -
COLUMN_NANE - VARCHAR2(4000) -

POSI TI ON - NUVBER -

Data Dictionary Translation Support

C-7

Views and Tables Supported by Generic Connectivity

ALL_CONSTRAINTS

Name Null? Type Value

OMNER NOT NULL VARCHAR2(30) -

CONSTRAI NT_NAME NOT NULL VARCHAR2(30) -

CONSTRAI NT_TYPE - VARCHAR2(1) "R' or"P"

TABLE_NAME NOT NULL VARCHAR2(30) -

SEARCH _CONDI TION - LONG NULL

R_OWNER - VARCHAR2(30) -

R_CONSTRAI NT_NAME - VARCHAR2(30) -

DELETE _RULE - VARCHAR2(9) " CASCADE" or " NO
ACTI ON' or " SET NULL"

STATUS - VARCHAR2(8) NULL

DEFERRABLE - VARCHAR2(14) NULL

DEFERRED - VARCHAR2(9) NULL

VAL| DATED - VARCHAR2(13) NULL

GENERATED - VARCHAR2(14) NULL

BAD - VARCHAR2(3) NULL

RELY - VARCHAR2(4) NULL

LAST_CHANGE - DATE NULL

ALL_IND_COLUMNS

Name Null? Type Value
| NDEX_OWKNER NOT NULL VARCHAR2(30) -
| NDEX_NAME NOT NULL VARCHAR2(30) -
TABLE_OWNER NOT NULL VARCHAR2(30) -
TABLE_NANE NOT NULL VARCHAR2(30) -
COLUWN_NAME - VARCHAR2(4000) -

COLUMN_PGsI TI ON NOT NULL NUMBER -

C-8 Oracle Database Heterogeneous Connectivity Administrator's Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
COLUMN_LENGTH NOT NULL NUMBER -
DESCEND - VARCHAR2(4) " DESC' or "ASC'
ALL_INDEXES

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30) -

| NDEX_NAVE NOT NULL VARCHAR2(30) -

| NDEX_TYPE - VARCHAR2(27) NULL
TABLE_OWNER NOT NULL VARCHAR2(30) -
TABLE_NAME NOT NULL VARCHAR2(30) -
TABLE_TYPE - CHAR(5) " TABLE"
UNI QUENESS - VARCHAR2(9) " UNI QUE" or " NONUNI QUE"
COVPRESSI ON - VARCHAR2(8) NULL
PREFI X_LENGTH - NUMBER 0
TABLESPACE_NAME - VARCHAR2(30) NULL

I NI _TRANS - NUMBER 0
MAX_TRANS - NUMBER 0

I NI TI AL_EXTENT - NUMBER 0
NEXT_EXTENT - NUMBER 0

M N_EXTENTS - NUMBER 0
MAX_EXTENTS - NUMBER 0

PCT_| NCREASE - NUMBER 0
PCT_THRESHOLD - NUMBER 0

I NCLUDE_CCOLUWNS - NUMBER 0
FREELI STS - NUMBER 0
FREEL| ST_GROUPS - NUMBER 0
PCT_FREE - NUMBER 0

Data Dictionary Translation Support

C-9

Views and Tables Supported by Generic Connectivity

Name Type Value
LOGG NG VARCHARZ2(3) NULL
BLEVEL NUMBER 0
LEAF_BLOCKS NUMBER 0

DI STI NCT_KEYS NUMBER

AVG_LEAF BLOCKS NUVBER 0
PER_KEY

AVG DATA BLOCKS NUMBER 0
PER_KEY

CLUSTERI NG_ NUMBER 0
FACTOR

STATUS VARCHAR?(8) NULL
NUM_ROWS NUMBER 0
SAMPLE_SI ZE NUMBER 0
LAST_ANALYZED DATE NULL
DEGREE VARCHAR2(40) NULL
I NSTANCES VARCHAR2(40) NULL
PARTI TI ONED VARCHAR2(3) NULL
TEMPORARY VARCHAR2(1) NULL
GENERATED VARCHAR2(1) NULL
SECONDARY VARCHAR2(1) NULL
BUFFER_POOL VARCHAR2(7) NULL
USER _STATS VARCHAR2(3) NULL
DURATI ON VARCHAR2(15) NULL
PCT_DI RECT_ NUMBER 0
ACCESS

| TYP_OMNER VARCHAR2(30) NULL
| TYP_NAMVE VARCHAR2(30) NULL
PARAVETERS VARCHAR2(1000) NULL
GLOBAL_STATS VARCHAR2(3) NULL

C-10 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value

DOM DX_STATUS - VARCHAR2(12) NULL

DOM DX_OPSTATUS - VARCHAR2(6) NULL

FUNCI DX_STATUS - VARCHARZ2(8) NULL

ALL_OBJECTS

Name Null? Type Value

OMNNER NOT NULL VARCHAR2(30) -

OBJECT_NAME NOT NULL VARCHAR2(30) -

SUBOBJECT_NAME - VARCHAR2(30) NULL

OBJECT_I D NOT NULL NUMBER 0

DATA OBJECT ID - NUMBER 0

OBJECT_TYPE - VARCHAR2(18) "TABLE" or "VI EW or
" SYNONYM' or " | NDEX" or
" PROCEDURE"

CREATED NOT NULL DATE NULL

LAST_DDL_TI ME NOT NULL DATE NULL

TI MESTAMP - VARCHAR2(19) NULL

STATUS - VARCHAR2(7) NULL

TEMPCORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

SECONDARY - VARCHAR2(1) NULL

ALL_TAB_COLUMNS

Name Null? Type Value

OWNER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

COLUWN_NAME NOT NULL VARCHAR2(30) -

DATA TYPE - VARCHAR2(106) -

Data Dictionary Translation Support

C-11

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
DATA TYPE_MOD - VARCHAR2(3) NULL
DATA TYPE_OWNER - VARCHAR2(30) NULL
DATA_LENGTH NOT NULL NUMBER -
DATA_PRECI SI ON - NUMBER -
DATA_SCALE - NUMBER -
NULLABLE - VARCHAR2(1) "Y' or "N'
COLUMNLI D NOT NULL NUMBER -
DEFAULT_LENGTH - NUMBER 0
DATA_DEFAULT - LONG NULL
NUM_DI STI NCT - NUMBER 0
LOW VALUE - RAW(32) NULL
H GH_VALUE - RAW 32) NULL
DENSI TY - NUMBER 0
NUM_NULLS - NUMBER 0
NUM_BUCKETS - NUMBER 0
LAST_ANALYZED - DATE NULL
SAMPLE_SI ZE - NUMBER 0
CHARACTER _SET_NAME - VARCHAR2(44) NULL
CHAR COL_DEC_LENGTH - NUVBER 0
GLOBAL_STATS - VARCHAR2(3) NULL
USER_STATS - VARCHARZ2(3) NULL
AVG_COL_LEN - NUMBER 0
ALL_TAB_COMMENTS

Name Null? Type Value

OMANER NOT NULL VARCHAR2(30) -

TABLE_NAME NOT NULL VARCHAR2(30) -

C-12 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
TABLE_TYPE - VARCHAR2(11) "TABLE" or "VI EW
COMMVENTS - VARCHAR2(4000) NULL
ALL_TABLES

Name Null? Type Value
OMANER NOT NULL VARCHAR2(30) -
TABLE_NAME NOT NULL VARCHAR2(30) -
TABLESPACE_NAME - VARCHAR2(30) NULL
CLUSTER_NAME - VARCHAR2(30) NULL
| OT_NAMVE - VARCHAR2(30) NULL
PCT_FREE - NUMBER 0
PCT_USED - NUMBER 0

I NI _TRANS - NUMBER 0
MAX_TRANS - NUMBER 0

I NI TI AL_EXTENT - NUMBER 0
NEXT_EXTENT - NUMBER 0

M N_EXTENTS - NUMBER 0
MAX_EXTENTS - NUVBER 0
PCT_I NCREASE - NUMBER 0
FREELI STS - NUMBER 0
FREELI ST_GROUPS - NUMBER 0
LOGG NG - VARCHAR2(3) NULL
BACKED_UP - VARCHAR?2(1) NULL
NUM_ROWS - NUMBER -
BLOCKS - NUMBER -
EMPTY_BLOCKS - NUMBER 0
AVG_SPACE - NUMBER 0

Data Dictionary Translation Support C-13

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
CHAI N_CNT - NUMBER 0
AVG_ROW LEN - NUMBER 0
AVG_SPACE_FREEL| ST_BLOCKS - NUMBER 0
NUM_FREELI ST_BLOCKS - NUMBER 0
DEGREE - VARCHAR2(10) NULL
I NSTANCES - VARCHAR2(10) NULL
CACHE - VARCHAR2(5) NULL
TABLE_LOCK - VARCHAR?(8) NULL
SAMPLE_SI ZE - NUMBER 0
LAST_ANALYZED - DATE NULL
PARTI TI ONED - VARCHAR2(3) NULL
| OT_TYPE - VARCHAR2(12) NULL
TEMPORARY - VARCHAR2(1) NULL
SECONDARY - VARCHAR2(1) NULL
NESTED - VARCHARZ2(3) NULL
BUFFER_POOL - VARCHAR2(7) NULL
ROW MOVEMENT - VARCHAR2(8) NULL
GLOBAL_STATS - VARCHARZ2(3) NULL
USER_STATS - VARCHAR2(3) NULL
DURATI ON - VARHCAR2(15) NULL
SKI P_CORRUPT - VARCHAR2(8) NULL
MONI TORI NG - VARCHAR2(3) NULL
ALL_USERS

Name Null? Type Value
USERNAMVE NOT NULL VARCHAR2(30) -
USER_|I D NOT NULL NUMBER 0

C-14 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
CREATED NOT NULL DATE NULL
ALL_VIEWS

Name Null? Type Value
OMNER NOT NULL VARCHAR2(30) -

VI EW NAME NOT NULL VARCHAR2(30) -
TEXT_LENGTH - NUMBER 0
TEXT NOT NULL LONG NULL
TYPE_TEXT_LENGTH - NUMBER 0
TYPE_TEXT - VARCHAR2(4000) NULL
O D_TEXT_LENGTH - NUMBER 0

Q D_TEXT - VARCHAR2(4000) NULL
VI EW TYPE_OMNNER - VARCHAR2(30) NULL
VI EW TYPE - VARCHAR2(30) NULL
DICTIONARY

Name Null? Type Value
TABLE_NAMVE - VARCHAR2(30) -
COMMVENTS - VARCHAR2(4000) NULL
USER_CATALOG

Name Null? Type Value

TABLE_NAME NOT NULL VARCHAR2(30) -

TABLE _TYPE - VARCHAR2(11) "TABLE" or," VI EW or " SYNONYM'

Data Dictionary Translation Support C-15

Views and Tables Supported by Generic Connectivity

USER_COL_COMMENTS

Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30) -
COLUMN_NAME NOT NULL VARCHAR2(30) -
COVMVENTS - VARCHAR2(4000) NULL

USER_CONS_COLUMNS

Name Null? Type Value
OWNER NOT NULL VARCHAR2(30) -
CONSTRAI NT_NAVE NOT NULL VARCHAR?(30) -
TABLE_NAME NOT NULL VARCHAR2(30) -
COLUMN_NAME - VARCHAR2(4000) -
POSI TI ON - NUMBER -

USER_CONSTRAINTS

Name Null? Type Value

OMNNER NOT NULL VARCHAR2(30) -

CONSTRAI NT_NAME NOT NULL VARCHAR2(30) -

CONSTRAI NT_TYPE - VARCHAR2(1) RorP
TABLE_NANE NOT NULL VARCHAR2(30) -
SEARCH_CONDI TION - LONG NULL
R_OWNER - VARCHAR2(30) -

R_CONSTRAI NT_NAME - VARCHAR2(30) -

DELETE _RULE - VARCHAR2(9) " CASCADE" or" NOACTI ON'

or" SET NULL"

STATUS - VARCHAR2(8) NULL
DEFERRABLE - VARCHAR2(14) NULL
DEFERRED - VARCHAR2(9) NULL

C-16 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value

VAL| DATED - VARCHAR2(13) NULL

GENERATED - VARCHAR2(14) NULL

BAD - VARCHAR2(3) NULL

RELY - VARCHAR2(4) NULL

LAST_CHANGE - DATE NULL

USER_IND_COLUMNS

Name Null? Type Value

| NDEX_NAVE - VARCHAR2(30) -

TABLE_NANME - VARCHAR2(30) -

COLUMN_NANE - VARCHAR2(4000) -

COLUMN_POSI Tl ON - NUVBER -

COLUMN_LENGTH - NUMBER -

DESCEND - VARCHAR2(4) "DESC' or "ASC'

USER_INDEXES

Name Null? Type Value

| NDEX_NAVE NOT NULL VARCHAR2(30) -

| NDEX_TYPE - VARCHAR2(27) NULL

TABLE_OMNER NOT NULL VARCHAR2(30) -

TABLE_NANE NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) " TABLE"

UNI QUENESS - VARCHARZ2(9) "UNI QUE" or
" NONUNI QUE"

COVPRESSI ON - VARCHAR2(8) NULL

PREFI X_LENGTH - NUMBER 0

TABLESPACE_NAVE - VARCHAR2(30) NULL

Data Dictionary Translation Support

C-17

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
I NI _TRANS - NUMBER 0
MAX_TRANS - NUMBER 0
I NI TI AL_EXTENT - NUMBER 0
NEXT_EXTENT - NUMBER 0
M N_EXTENTS - NUMBER 0
MAX_EXTENTS - NUMBER 0
PCT_| NCREASE - NUMBER 0
PCT_THRESHOLD - NUMBER 0
| NCLUDE_COLUWNS - NUVMBER 0
FREELI STS - NUMBER 0
FREEL| ST_GROUPS - NUMBER 0
PCT_FREE - NUMBER 0
LOGG NG - VARCHAR2(3) NULL
BLEVEL - NUMBER 0
LEAF_BLOCKS - NUMBER 0
DI STI NCT_KEYS - NUMBER -
AVG LEAF BLOCKS PER KEY - NUVBER 0
AVG DATA BLOCKS PER KEY - NUVBER 0
CLUSTERI NG_FACTOR - NUMBER 0
STATUS - VARCHAR2(8) NULL
NUM_ROWS - NUVMBER 0
SAMPLE_SI ZE - NUMBER 0
LAST_ANALYZED - DATE NULL
DEGREE - VARCHAR2(40) NULL
| NSTANCES - VARCHAR2(40) NULL
PARTI TI ONED - VARCHAR2(3) NULL
TEMPORARY - VARCHAR2(1) NULL
GENERATED - VARCHAR2(1) NULL

C-18 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value

SECONDARY - VARCHAR2(1) NULL

BUFFER_POCL - VARCHAR2(7) NULL

USER_STATS - VARCHAR2(3) NULL

DURATI ON - VARHCAR2(15) NULL

PCT_DI RECT_ACCESS - NUMBER 0

I TYP_OMNER - VARCHAR2(30) NULL

| TYP_NAMVE - VARCHAR2(30) NULL

PARAVETERS - VARCHAR2(1000) NULL

GLOBAL_STATS - VARCHARZ2(3) NULL

DOM DX_STATUS - VARCHAR2(12) NULL

DOM DX_OPSTATUS - VARCHARZ2(6) NULL

FUNCI DX_STATUS - VARCHARZ2(8) NULL

USER_OBJECTS

Name Null? Type Value

OBJECT_NAME - VARCHAR2(128) -

SUBOBJECT_NAME - VARCHAR2(30) NULL

OBJECT_ID - NUMVBER 0

DATA _OBJECT_ID - NUMBER 0

OBJECT_TYPE - VARCHAR2(18) "TABLE" or "VIEW or
" SYNONYM' or "I NDEX" or
" PROCEDURE"

CREATED - DATE NULL

LAST_DDL_TI ME - DATE NULL

TI MESTAMP - VARCHAR2(19) NULL

STATUS - VARCHAR2(7) NULL

TEMPORARY - VARCHAR2(1) NULL

GENERATED - VARCHAR2(1) NULL

Data Dictionary Translation Support

C-19

Views and Tables Supported by Generic Connectivity

Name Type Value

SECONDARY VARCHAR2(1) NULL
USER_TAB_COLUMNS

Name Null? Type Value
TABLE_NANE NOT NULL VARCHAR2(30) -
COLUMN_NAME NOT NULL VARCHAR2(30) -
DATA_TYPE - VARCHAR2(106) -
DATA TYPE_MOD - VARCHARZ2(3) NULL
DATA_TYPE_OMNER - VARCHAR2(30) NULL
DATA_LENGTH NOT NULL NUMBER -
DATA_PRECI SI ON - NUMBER -
DATA_SCALE - NUMBER -
NULLABLE - VARCHAR2(1) "Y" or"N'
COLUM\LI D NOT NULL NUMBER -
DEFAULT_LENGTH - NUMBER NULL
DATA_DEFAULT - LONG NULL
NUM_DI STI NCT - NUMBER NULL
LOW VALUE - RAW(32) NULL
HI GH_VALUE - RAW 32) NULL
DENSI TY - NUMBER 0
NUM_NULLS - NUMBER 0
NUM_BUCKETS - NUMBER 0
LAST_ANALYZED - DATE NULL
SAMPLE_SI ZE - NUMBER 0
CHARACTER _SET_NAME - VARCHAR2(44) NULL
CHAR_COL_DECL_LENGTH - NUMBER 0
GLOBAL_STATS - VARCHAR2(3) NULL

C-20 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
USER_STATS - VARCHAR2(3) NULL
AVG _COL_LEN - NUMBER 0
USER_TAB_COMMENTS

Name Null? Type Value
TABLE_NANMVE NOT NULL VARCHAR2(30) -

TABLE_TYPE - VARCHAR2(11) "TABLE" or" VI EW
COMMVENTS - VARCHAR2(4000) NULL

USER_TABLES

Name Null? Type Value
TABLE_NAME NOT NULL VARCHAR2(30) -
TABLESPACE_NAME - VARCHAR2(30) NULL
CLUSTER_NAME - VARCHAR2(30) NULL
| OT_NAME - VARCHAR2(30) NULL
PCT_FREE - NUMBER 0
PCT_USED - NUMBER 0
I NI _TRANS - NUMBER 0
MAX_TRANS - NUMBER 0
I NI TI AL_EXTENT - NUMBER 0
NEXT_EXTENT - NUMBER 0
M N_EXTENTS - NUMBER 0
MAX_EXTENTS - NUMBER 0
PCT_I NCREASE - NUMBER 0
FREELI STS - NUMBER 0
FREEL| ST_CGROUPS - NUMBER 0
LOGG NG - VARCHAR?(3) NULL

Data Dictionary Translation Support

C-21

Views and Tables Supported by Generic Connectivity

Name Null? Type Value
BACKED _UP - VARCHAR2(1) NULL
NUM_ROWS - NUMBER -
BLOCKS - NUMBER -
EMPTY_BLOCKS - NUMBER 0
AVG_SPACE - NUMBER 0
CHAI N_CNT - NUMBER 0
AVG _ROW LEN - NUMBER 0
AVG_SPACE FREEL| ST_BLOCKS - NUMBER 0
NUM_FREELI ST_BLOCKS - NUMBER 0
DEGREE - VARCHAR2(10) NULL
I NSTANCES - VARCHAR2(10) NULL
CACHE - VARCHAR2(5) NULL
TABLE_LOCK - VARCHAR2(8) NULL
SAVPLE_SI ZE - NUMBER 0
LAST_ANALYZED - DATE NULL
PARTI TI ONED - VARCHAR2(3) NULL
| OT_TYPE - VARCHAR2(12) NULL
TEMPCORARY - VARHCAR2(1) NULL
SECONDARY - VARCHAR2(1) NULL
NESTED - VARCHAR?(3) NULL
BUFFER_POOL - VARCHAR2(7) NULL
ROW_MOVEMENT - VARCHAR2(8) NULL
GLOBAL_STATS - VARCHAR2(3) NULL
USER_STATS - VARCHARZ2(3) NULL
DURATI ON - VARCHAR2(15) NULL
SKI P_CORRUPT - VARCHAR?(8) NULL
MONI TORI NG - VARCHAR2(3) NULL

C-22 Oracle Database Heterogeneous Connectivity Administrator’s Guide

Views and Tables Supported by Generic Connectivity

USER_USERS

Name Null? Type Value
USERNAME NOT NULL VARCHAR2(30) -
USER | D NOT NULL NUMBER 0
ACCOUNT_STATUS NOT NULL VARCHAR2(32) OPEN
LOCK_DATE - DATE NULL
EXPI RY_DATE - DATE NULL
DEFAULT_TABLESPACE NOT NULL VARCHAR2(30) NULL
TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30) NULL
CREATED NOT NULL DATE NULL
I NI TI AL_RSRC_CONSUMER _ - VARCHAR2(30) NULL
GROUP

EXTERNAL_NAME - VARCHAR2(4000) NULL
USER_VIEWS

Name Null? Type Value
VI EW NAMVE NOT NULL VARCHAR2(30) -
TEXT_LENGTH - NUMBER 0
TEXT - LONG NULL
TYPE_TEXT_LENGTH - NUMBER 0
TYPE_TEXT - VARCHAR2(4000) NULL
O D_TEXT_LENGTH - NUMBER 0

O D_TEXT - VARCHAR2(4000) NULL
VI EW TYPE_OWNER - VARCHAR2(30) NULL
VI EW TYPE - VARCHAR2(30) NULL

Data Dictionary Translation Support

C-23

Views and Tables Supported by Generic Connectivity

C-24 Oracle Database Heterogeneous Connectivity Administrator’s Guide

A

agent control utility. See agtctl.
agents
Generic Connectivity, 2-4
Heterogeneous Services
architecture, 2-2
disabling self-registration, 4-14
registering, 4-10, 4-11, 4-12
types of agents, 2-3
multithreaded Heterogeneous Services, 5-1
specifying initialization parameters for, 4-3
Transparent Gateways, 2-3
agtctl, 5-3,5-6
commands, 5-7
shell mode commands, 5-11
single-line command mode, 5-8
application development
Heterogeneous Services
controlling array fetches between non-Oracle
server and agent, 4-9
controlling array fetches between Oracle
server and agent, 4-9
controlling reblocking of array fetches, 4-9
DBMS_HS PASSTHROUGH package, 3-5
pass-through SQL, 3-5
using bulk fetches, 4-7
using OCI for bulk fetches, 4-8
array fetches, 4-8
agents, 4-9

B

bind queries

Index

executing using pass-through SQL, 3-11
BIND_INOUT_VARIABLE procedure, 3-7,3-11
BIND_OUT_VARIABLE procedure, 3-6, 3-10
BIND_VARIABLE procedure, 3-6
buffers

multiple rows, 3-12
bulk fetches

optimizing data transfers using, 4-7

C

character sets
Heterogeneous Services, A-8
CLOSE_CURSOR function, 3-6
commit point site
commit point strength, A-3
configuring
Generic Connectivity, 7-7
Transparent Gateways, 4-2
copying data
from Oracle database server to SQL Server, 4-18
from SQL Server to Oracle database server, 4-19
INSERT statement, 4-19

D

data dictionary
contents with Generic Connectivity, C-5
mapping for Generic Connectivity, C-5
Oracle server name/SQL Server name, C-5
translation support for Generic

Connectivity, C-1

data dictionary views

Generic Connectivity, C-5

Index-1

Heterogeneous Services, 4-20, C-2
database links
heterogeneous systems, 4-3
date formats
Heterogeneous Services, A-9, A-11
DBMS_HS PASSTHROUGH package, 3-5
list of functions and procedures, 3-6
describe cache high water mark
definition, A-5
dispatcher threads
multithreaded Heterogeneous Services
agents, 5-3,5-5
distributed queries
optimizing performance, 6-2
drivers
ODBC, 7-12
OLE DB (FS), 7-15
OLE DB (SQL), 7-14
dynamic performance views
Heterogeneous Services, 4-25
determining open sessions, 4-26
determining which agents are on host, 4-26

E

EXECUTE_IMMEDIATE procedure, 3-7
restrictions, 3-7
EXECUTE_NON_QUERY procedure, 3-7

F

FDS_CLASS, 4-12
FDS_CLASS_VERSION, 4-12
FDS_INST_NAME, 4-13
FETCH_ROW procedure, 3-7
executing queries using pass-through SQL, 3-11
fetches
bulk, 4-7
optimizing round-trips, 3-12

G

gateways
how they work, 2-9
Generic Connectivity

Index-2

architecture, 7-2
Oracle and non-Oracle on same machine, 7-4
Oracle and non-Oracle on separate
machines, 7-3
configuration, 7-7
creating initialization file, 7-7
data dictionary
translation support, C-1
defined, 1-3
definition, 7-2
DELETE statement, 7-6
editing initialization file, 7-7
Heterogeneous Services, 2-4
INSERT statement, 7-6
non-Oracle data dictionary access, C-2
ODBC connectivity requirements, 7-12
OLE DB (FS) connectivity requirements, 7-15
OLE DB (SQL) connectivity requirements, 7-14
restrictions, 7-5
setting parameters for ODBC source, 7-9
UNIX, 7-10
Windows NT, 7-9
setting parameters for OLE DB source, 7-11
SQL execution, 7-5
supported functions, 7-6
supported SQL syntax, 7-6
types of agents, 7-2
UPDATE statement, 7-6
generic connectivity
error tracing, A-7
GET_VALUE procedure, 3-7, 3-10, 3-11
globalization support
Heterogeneous Services, A-7
character set of non-Oracle source, A-10
date format, A-9
languages in character date values, A-10

H

heterogeneous distributed systems
accessing, 4-2
Heterogeneous Services
agent control utility (agtctl), 5-7
agent registration, 4-10
avoiding configuration mismatches, 4-11

disabling, 4-14
enabling, 4-10
self-registration, 4-12
application development
controlling array fetches between non-Oracle
server and agent, 4-9
controlling array fetches between Oracle
server and agent, 4-9
controlling reblocking of array fetches, 4-9
DBMS_HS PASSTHOUGH package, 3-5
pass-through SQL, 3-5
using bulk fetches, 4-7
using OCI for bulk fetches, 4-8
creating database links, 4-3
data dictionary views, 4-20, C-2
types, 4-20
understanding sources, 4-21
using general views, 4-22
using SQL service views, 4-24
using transaction service views, 4-23
defining maximum number of open
cursors, A-12
dynamic performance views, 4-25
V$HS_AGENT view, 4-26
V$HS_SESSION view, 4-26
Generic Connectivity
architecture, 7-2
creating initialization file, 7-7
definition, 7-2
editing initialization file, 7-7
non-Oracle data dictionary access, C-2
ODBC connectivity requirements, 7-12
OLE DB (FS) connectivity requirements, 7-15
OLE DB (SQL) connectivity
requirements, 7-14
restrictions, 7-5
setting parameters for ODBC source, 7-9
setting parameters for OLE DB source, 7-11
SQL execution, 7-5
supported functions, 7-6
supported SQL syntax, 7-6
supported tables, C-5
types of agents, 7-2
initialization parameters, 2-6, 4-5, 7-7, A-1
multithreaded agents, 5-1

optimizing data transfer, A-12
setting global name, A-5
setting up access using Transparent
Gateway, 4-2
setting up environment, 4-2
specifying cache high water mark, A-5
specifying cache size, A-12
specifying commit point strength, A-3
SQL service, 2-5
testing connections, 4-4
transaction service, 2-4
tuning internal data buffering, A-13
tuning LONG data transfer, A-9
HS_AUTOREGISTER initialization parameter
using to enable agent self-registration, 4-14
HS_BASE_CAPS view, 4-20
HS_BASE_DD view, 4-20
HS_CALL_NAME initialization parameter, A-3
HS_CLASS_CAPS view, 4-21
HS_CLASS_DD view, 4-21
HS_CLASS_INIT view, 4-21
HS_COMMIT_POINT_STRENGTH initialization
parameter, A-3
HS_DB_NAME initialization parameter, A-5
HS_DESCRIBE_CACHE_HWAM initialization
parameter, A-5
HS_FDS_CLASS view, 4-21
HS_FDS_CONNECT_INFO initialization
parameter, A-5
specifying connection information, 7-8
HS_FDS_DEFAULT_SCHEMA_NAME
initialization parameter, A-6
HS_FDS_FETCH_ROWS initialization
parameter, 4-9
HS_FDS_INST view, 4-21
HS_FDS_SHAREABLE_NAME initialization
parameter, A-7
HS FDS TRACE_LEVEL initialization
parameter, A-7
enabling agent tracing, 7-8
HS_LANGUAGE initialization parameter, A-7
HS_LONG_PIECE_TRANSFER_SIZE initialization
parameter, A-9
HS_NLS _DATE_FORMAT initialization
parameter, A-9

Index-3

HS_NLS_DATE_LANGUAGE initialization
parameter, A-10
HS_NLS_NCHAR initialization parameter, A-10
HS_NLS_NUMERIC_CHARACTER initialization
parameter, A-10
HS_NLS_TIMESTAMP_FORMAT initialization
parameter, A-11
HS_NLS_TIMESTAMP_TZ_FORMAT initialization
parameter, A-11
HS_OPEN_CURSORS initialization
parameter, A-12
HS_ROWID_CACHE_SIZE initialization
parameter, A-12
HS_RPC_FETCH_REBLOCKING initialization
parameter, 4-9, A-12
HS_RPC_FETCH_SIZE initialization
parameter, 4-9, A-13
HS_TIME_ZONE initialization parameter, A-14

IFILE initialization parameter, A-14
information integration
benefits of Oracle solutions, 1-4
challenges, 1-2
Generic Connectivity, 1-3
how Oracle addresses, 1-2
Messaging Gateway, 1-4
Open System Interfaces, 1-4
Oracle Streams, 1-4
Oracle Transparent Gateways, 1-3
initialization parameters
Heterogeneous Services (HS), 2-6, 4-5, 7-7, A-1
initialization parameters (HS)
common to all gateways, 4-5
descriptions, A-1
Generic Connectivity, 7-7
purpose, 2-6

L

listeners, 4-2

Index-4

M

Messaging Gateway
defined, 1-4
monitor thread
multithreaded Heterogeneous Services
agents, 5-3,5-5
multiple rows
buffering, 3-12
multithreaded Heterogeneous Services agents
administering, 5-6
advantages, 5-2
agent control utility (agtctl), 5-7
architecture, 5-3
configuration parameters, 5-12
dispatcher threads, 5-3,5-5
monitor thread, 5-3,5-5
task threads, 5-3,5-6

O

OcClI
optimizing data transfers using, 4-8
ODBC agents
connectivity requirements, 7-12
functions, 7-12
ODBC connectivity
data dictionary mapping, C-5
ODBC driver, 7-12
requirements, 7-12
specifying connection information
UNIX, A-6
Windows NT, A-6
specifying path to library, A-7
OLE DB (FS) drivers, 7-15
OLE DB (SQL) drivers, 7-14
OLE DB agents
connectivity requirements, 7-14,7-15
OLE DB connectivity
data dictionary mapping, C-5
setting connection information, A-6
OLE DB drivers
data provider requirements, 7-15
initialization properties, 7-17
rowset properties, 7-17

Open System Interfaces

defined, 1-4
OPEN_CURSOR procedure, 3-6
Oracle database server

SQL construct processing, 4-14
Oracle Net Services listener, 2-3, 4-2
Oracle precompiler

optimizing data transfers using, 4-8
Oracle Streams

defined, 1-4
Oracle Transparent Gateways
defined, 1-3

optimizing SQL statements, 6-2
OUT bind variables, 3-10

P

PARSE procedure, 3-6
pass-through SQL
avoiding SQL interpretation, 3-5
executing statements, 3-6
non-queries, 3-7
queries, 3-11
with bind variables, 3-8
with IN bind variables, 3-9
with IN OUT bind variables, 3-11
with OUT bind variables, 3-10
implications of using, 3-6
overview, 3-5
restrictions, 3-6

Q

queries
pass-through SQL, 3-11

R

reblocking, 4-9
remote functions

referenced in SQL statements, A-3
rows

buffering multiple, 3-12

S

SELECT statement

accessing non-Oracle system, C-2
service names

specifying in database links, 4-3
SQL capabilities

data dictionary tables, 4-24
SQL service

data dictionary views, 2-8, 4-20

Heterogeneous Services, 2-5

views

Heterogeneous Services, 4-24

SQL statements

optimizing distributed, 6-2
Streams

using for heterogeneous connectivity, 3-3
Synonyms, 4-17

T

task threads

multithreaded Heterogeneous Services

agents, 5-3,5-6

transaction service

Heterogeneous Services, 2-4

views

Heterogeneous Services, 4-23

transparent gateways

accessing Heterogeneous Services agents, 4-2

creating database links, 4-3

testing connections, 4-4

U

unsupported functions

Generic Connectivity, 7-6
user-defined functions

executing on non-Oracle database, 4-15

Vv

V$HS_AGENT view

determining which agents are on host, 4-26
V$HS_PARAMETER view

listing HS parameters, 4-27

Index-5

V$HS_SESSION view

determining open sessions, 4-26
variables

bind, 3-7

Index-6

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	The Information Integration Challenge
	How Oracle Addresses Synchronous Information Integration
	Benefits of Oracle’s Solution for Synchronous Information Integration
	Remote Data Can Be Accessed Transparently
	There is No Unnecessary Data Duplication
	SQL Statements Can Query Several Different Databases
	Oracle’s Application Development and End User Tools Can Be Used
	Users Can Talk to a Remote Database in its Own Language

	2 The Role of the Heterogeneous Services Component
	Heterogeneous Connectivity Process Architecture
	Heterogeneous Services Agents
	Types of Heterogeneous Services Agents
	Oracle Transparent Gateways
	Generic Connectivity Agents

	Heterogeneous Services Components
	Transaction Service
	SQL Service

	Configuring Heterogeneous Services
	Data Dictionary Translations
	Heterogeneous Services Initialization Parameters
	Capabilities

	The Heterogeneous Services Data Dictionary
	Classes and Instances
	Data Dictionary Views

	Gateway Process Flow

	3 Features of Oracle Transparent Gateways and Generic Connectivity
	SQL and PL/SQL Support
	Heterogeneous Replication
	Pass-Through SQL
	Using the DBMS_HS_PASSTHROUGH Package
	Considering the Implications of Using Pass-Through SQL
	Executing Pass-Through SQL Statements
	Executing Non-Queries
	Using Bind Variables: Overview
	Using IN Bind Variables
	Using OUT Bind Variables
	Using IN OUT Bind Variables

	Executing Queries

	Result Set Support
	Result Set Support In Non-Oracle Systems
	Model 1
	Model 2

	Heterogeneous Services Support for Result Sets
	Cursor Mode
	Sequential Mode

	Data Dictionary Translations
	Datetime Datatypes
	Two-Phase Commit Protocol
	Piecewise Long
	SQL*Plus DESCRIBE Command
	Constraints on SQL in a Distributed Environment
	Resolving Remote and Heterogeneous References
	Resolving Important Restrictions
	Updates, Inserts, and Deletes

	Using Oracle’s Optimizer with Heterogeneous Services
	Example: Using Index and Table Statistics
	Example: Remote Join Optimization
	Optimizer Restrictions for Non-Oracle Access

	4 Using Heterogeneous Services Agents
	Setting Up Access to Non-Oracle Systems
	Step 1: Configure Oracle Net Services to Access Heterogeneous Services Agents
	Step 2: Create the Database Link to the Non-Oracle System
	Step 3: Test the Connection

	Setting Initialization Parameters
	Name and Location of Heterogeneous Services Initialization Parameter File
	Syntax for Initialization Parameter Settings
	Gateway Initialization Parameters

	Optimizing Data Transfers Using Bulk Fetch
	Using OCI, an Oracle Precompiler, or Another Tool for Array Fetches
	Controlling the Array Fetch Between Oracle Database Server and Agent
	Controlling the Array Fetch Between Agent and Non-Oracle Server
	Controlling the Reblocking of Array Fetches

	Registering Agents
	Enabling Agent Self-Registration
	Using Agent Self-Registration to Avoid Configuration Mismatches
	Understanding Agent Self-Registration
	FDS_CLASS and FDS_CLASS_VERSION
	FDS_INST_NAME

	Specifying HS_AUTOREGISTER

	Disabling Agent Self-Registration

	Oracle Database Server SQL Construct Processing
	Executing User-Defined Functions on a Non-Oracle Database
	Using Synonyms
	Example of a Distributed Query

	Copying Data from the Oracle Database Server to the Non-Oracle Database System
	Copying Data from the Non-Oracle Database System to the Oracle Database Server
	Heterogeneous Services Data Dictionary Views
	Understanding the Types of Views
	Understanding the Sources of Data Dictionary Information
	Using the General Views
	Using the Transaction Service Views
	Using the SQL Service Views
	Using Views for Capabilities and Translations
	Using Views for Data Dictionary Translations

	Using the Heterogeneous Services Dynamic Performance Views
	Determining Which Agents Are Running on a Host
	Determining the Open Heterogeneous Services Sessions
	Determining the Heterogeneous Services Parameters

	5 Multithreaded Agents
	Why Use Multithreaded Agents?
	The Challenge of Dedicated Agent Architecture
	The Advantage of Multithreading

	Multithreaded Agent Architecture
	The Monitor Thread
	Dispatcher Threads
	Task Threads

	Administering Multithreaded Agents
	Agent Control Utility (agtctl) Commands
	Using Single-Line Command Mode
	Setting Configuration Parameters for a Multithreaded Agent
	Syntax
	Example

	Starting a Multithreaded Agent
	Syntax
	Example

	Shutting Down a Multithreaded Agent
	Syntax
	Example

	Examining the Value of Configuration Parameters
	Syntax
	Example

	Resetting a Configuration Parameter to Its Default Value
	Syntax
	Example

	Deleting an Entry for a Specific SID from the Control File
	Syntax
	Example

	Requesting Help
	Syntax
	Example

	Using Shell Mode Commands
	Example: Setting a Configuration Parameter
	Example: Starting a Multithreaded Agent

	Configuration Parameters for Multithreaded Agent Control

	6 Performance Tips
	Optimizing Heterogeneous Distributed SQL Statements
	Optimizing Performance of Distributed Queries

	7 Generic Connectivity
	What Is Generic Connectivity?
	Types of Agents
	Generic Connectivity Architecture
	Oracle and Non-Oracle Systems on Separate Machines
	Oracle and Non-Oracle Systems on the Same Machine

	SQL Execution
	Datatype Mapping
	Generic Connectivity Restrictions

	Supported Oracle SQL Statements and Functions
	Configuring Generic Connectivity Agents
	Creating the Initialization File
	Editing the Initialization File
	Setting Initialization Parameters for an ODBC-based Data Source
	Setting Agent Parameters on Windows NT
	Setting Parameters on NT: Example

	Setting Agent Parameters on UNIX platforms
	Setting Parameters on UNIX: Example

	Setting Initialization Parameters for an OLE DB-based Data Source

	ODBC Connectivity Requirements
	OLE DB (SQL) Connectivity Requirements
	OLE DB (FS) Connectivity Requirements
	OLE DB Interfaces for Data Providers to Expose
	Data Source Properties

	A Heterogeneous Services Initialization Parameters
	HS_CALL_NAME
	HS_COMMIT_POINT_STRENGTH
	HS_DB_DOMAIN
	HS_DB_INTERNAL_NAME
	HS_DB_NAME
	HS_DESCRIBE_CACHE_HWM
	HS_FDS_CONNECT_INFO
	ODBC-Based Data Source on Windows
	ODBC-Based Data Source on UNIX
	OLE DB-Based Data Source (Windows NT Only)

	HS_FDS_DEFAULT_SCHEMA_NAME
	HS_FDS_SHAREABLE_NAME
	HS_FDS_TRACE_LEVEL
	HS_LANGUAGE
	Character Sets
	Language
	Territory

	HS_LONG_PIECE_TRANSFER_SIZE
	HS_NLS_DATE_FORMAT
	HS_NLS_DATE_LANGUAGE
	HS_NLS_NCHAR
	HS_NLS_NUMERIC_CHARACTER
	HS_NLS_TIMESTAMP_FORMAT
	HS_NLS_TIMESTAMP_TZ_FORMAT
	HS_OPEN_CURSORS
	HS_ROWID_CACHE_SIZE
	HS_RPC_FETCH_REBLOCKING
	HS_RPC_FETCH_SIZE
	HS_TIME_ZONE
	IFILE

	B Datatype Mapping
	Mapping ANSI Datatypes to Oracle Datatypes Through an ODBC Interface
	Mapping ANSI Datatypes to Oracle Datatypes Through an OLE DB Interface

	C Data Dictionary Translation Support
	Accessing the Non-Oracle Data Dictionary
	Heterogeneous Services Data Dictionary Views
	Views and Tables Supported by Generic Connectivity
	Data Dictionary Mapping
	Generic Connectivity Data Dictionary Descriptions
	ALL_CATALOG
	ALL_COL_COMMENTS
	ALL_CONS_COLUMNS
	ALL_CONSTRAINTS
	ALL_IND_COLUMNS
	ALL_INDEXES
	ALL_OBJECTS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TABLES
	ALL_USERS
	ALL_VIEWS
	DICTIONARY
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CONS_COLUMNS
	USER_CONSTRAINTS
	USER_IND_COLUMNS
	USER_INDEXES
	USER_OBJECTS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TABLES
	USER_USERS
	USER_VIEWS

	Index

