
Oracle® Database
Application Developer’s Guide - Expression Filter

10g Release 1 (10.1)

Part No. B10821-01

December 2003

Oracle Database Application Developer’s Guide - Expression Filter, 10g Release 1 (10.1)

Part No. B10821-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Aravind Yalamanchi

Contributors: William Beauregard, Dieter Gawlick, Helen Grembowicz, Deborah Owens, and
Jagannathan Srinivasan

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, PL/SQL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

List of ExamplesList of Figures

Send Us Your Comments .. xi

Preface... xiii

Audience .. xiii
Documentation Accessibility .. xiii
Related Documentation .. xiv
Conventions.. xiv

1 Oracle Expression Filter Concepts

1.1 What Is Expression Filter?.. 1-1
1.1.1 Expression Filter Usage Scenarios ... 1-2
1.2 Introduction to Expressions ... 1-3
1.2.1 Defining Attribute Sets.. 1-5
1.2.2 Defining Expression Columns ... 1-7
1.2.3 Inserting, Updating, and Deleting Expressions... 1-10
1.3 Applying the SQL EVALUATE Operator ... 1-10
1.4 Evaluation Semantics.. 1-13
1.5 Granting and Revoking Privileges.. 1-13
1.6 Error Messages... 1-14

2 Indexing Expressions

2.1 Concepts of Indexing Expressions .. 2-1

iv

2.2 Indexable Predicates ... 2-2
2.3 Index Representation .. 2-2
2.4 Index Processing .. 2-4
2.5 Predicate Table Query... 2-6
2.6 Index Creation and Tuning .. 2-6
2.7 Index Usage .. 2-10
2.8 Index Storage and Maintenance .. 2-10

3 Expressions with XPath Predicates

3.1 Using XPath Predicates in Expressions .. 3-1
3.2 Indexing XPath Predicates ... 3-3
3.2.1 Indexable XPath Predicates... 3-3
3.2.2 Index Representation ... 3-4
3.2.3 Index Processing... 3-5
3.2.4 Index Tuning for XPath Predicates.. 3-6

4 Expression Filter Internal Objects

4.1 Attribute Set Object Type ... 4-1
4.2 Expression Validation Trigger... 4-2
4.3 Expression Filter Index Objects ... 4-2
4.4 Expression Filter System Triggers... 4-2

5 Using Expression Filter with Utilities

5.1 Bulk Loading of Expression Data.. 5-1
5.2 Exporting and Importing Tables, Users, and Databases ... 5-3
5.2.1 Exporting and Importing Tables Containing Expression Columns 5-3
5.2.2 Exporting a User Owning Attribute Sets .. 5-4
5.2.3 Exporting a Database Containing Attribute Sets... 5-4

6 SQL Operators and Statements

EVALUATE .. 6-2

ALTER INDEX REBUILD... 6-5

ALTER INDEX RENAME TO.. 6-7

v

CREATE INDEX .. 6-8

DROP INDEX... 6-12

7 Object Types

EXF$ATTRIBUTE .. 7-2

EXF$ATTRIBUTE_LIST.. 7-3

EXF$INDEXOPER ... 7-4

EXF$TABLE_ALIAS.. 7-6

EXF$XPATH_TAG .. 7-7

EXF$XPATH_TAGS.. 7-9

8 Management Procedures Using the DBMS_EXPFIL Package

ADD_ELEMENTARY_ATTRIBUTE Procedure ... 8-3

ADD_FUNCTIONS Procedure ... 8-5

ASSIGN_ATTRIBUTE_SET Procedure .. 8-7

BUILD_EXCEPTIONS_TABLE Procedure .. 8-9

CLEAR_EXPRSET_STATS Procedure.. 8-10

COPY_ATTRIBUTE_SET Procedure .. 8-11

CREATE_ATTRIBUTE_SET Procedure ... 8-12

DEFAULT_INDEX_PARAMETERS Procedure.. 8-14

DEFAULT_XPINDEX_PARAMETERS Procedure... 8-16

DEFRAG_INDEX Procedure ... 8-19

DROP_ATTRIBUTE_SET Procedure.. 8-20

GET_EXPRSET_STATS Procedure ... 8-21

GRANT_PRIVILEGE Procedure ... 8-22

INDEX_PARAMETERS Procedure... 8-24

REVOKE_PRIVILEGE Procedure ... 8-27

UNASSIGN_ATTRIBUTE_SET Procedure.. 8-29

VALIDATE_EXPRESSIONS Procedure ... 8-30

XPINDEX_PARAMETERS Procedure ... 8-32

vi

9 Expression Filter Views

9.1 USER_EXPFIL_ASET_FUNCTIONS View.. 9-2
9.2 USER_EXPFIL_ATTRIBUTES View ... 9-2
9.3 USER_EXPFIL_ATTRIBUTE_SETS View .. 9-3
9.4 USER_EXPFIL_DEF_INDEX_PARAMS View .. 9-3
9.5 USER_EXPFIL_EXPRESSION_SETS View .. 9-3
9.6 USER_EXPFIL_EXPRSET_STATS View .. 9-4
9.7 USER_EXPFIL_INDEX_PARAMS View.. 9-5
9.8 USER_EXPFIL_INDEXES View .. 9-6
9.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View... 9-6
9.10 USER_EXPFIL_PRIVILEGES View... 9-7

A Managing Expressions Defined on One or More Database Tables

B Application Examples

C Installing Oracle Expression Filter

Index

vii

List of Examples

1–1 Defining an Attribute Set From an Existing Object Type.. 1-5
1–2 Defining an Attribute Set Incrementally.. 1-6
1–3 Adding User-Defined Functions to an Attribute Set ... 1-7
1–4 Inserting an Expression into the Consumer Table ... 1-10
1–5 Inserting an Expression That References a User-Defined Function 1-10

viii

List of Figures

1–1 Expression Datatype ... 1-9
2–1 Conceptual Predicate Table ... 2-3
3–1 Conceptual Predicate Table with XPath Predicates ... 3-5

ix

List of Tables

6–1 Expression Filter Index Creation and Usage Statements... 6-1
8–1 DBMS_EXPFIL Procedures .. 8-1
9–1 Expression Filter Views .. 9-1

x

xi

Send Us Your Comments

Oracle Database Application Developer’s Guide - Expression Filter, 10g Release 1 (10.1)

Part No. B10821-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

� Electronic mail: nedc-doc_us@oracle.com
� FAX: 603.897.3825 Attn: Expression Filter Documentation
� Postal service:

Oracle Corporation
Expression Filter Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please provide your name and contact information.

If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

Oracle Database Application Developer’s Guide - Expression Filter provides usage and
reference information about Expression Filter, a feature of Oracle Database that
stores, indexes, and evaluates conditional expressions in relational tables.

Audience
Application developers and DBAs can save time and labor by using Oracle
Expression Filter to store and evaluate large sets of conditional expressions in the
database. Conditional expressions can describe business rules and interests in
expected data for applications involving personalized information distribution,
demand analysis, and task assignment.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The

xiv

conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Related Documentation
Refer to the following documentation for information about related products:

� Oracle Database SQL Reference

� Oracle Database Utilities

� Oracle Database Error Messages

� Oracle Database Performance Tuning Guide

� Oracle XML DB Developer's Guide

� Oracle Database Application Developer's Guide - Object-Relational Features

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
document. The following table describes those conventions and provides examples
of their use.

xv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements.

Enter sqlplus to open SQL*Plus.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

xvi

Oracle Expression Filter Concepts 1-1

1
Oracle Expression Filter Concepts

Oracle Expression Filter is a feature of Oracle Database that allows application
developers to store, index, and evaluate conditional expressions (expressions) in
one or more columns of a relational table. Expressions are a useful way to describe
interests in expected data.

Expression Filter matches incoming data with expressions stored in a column to
identify rows of interest. It can also derive complex relationships by matching data
in one table with expressions in a second table. Expression Filter simplifies SQL
queries; allows expressions to be inserted, updated, and deleted without changing
the application; and enables reuse of conditional expressions in business rules by
separating them from the application and storing them in the database.
Applications involving information distribution, demand analysis, and task
assignment can benefit from Expression Filter.

1.1 What Is Expression Filter?
Expression Filter provides a datatype, operator, and indextype to store, evaluate,
and index expressions that describe an interest in a data item or piece of
information. Expressions are stored in a column of a user table. Expression Filter
matches expressions in a column with a data item passed by a SQL statement or
with data stored in one or more tables, and evaluates each expression to be true or
false. Optionally, expressions can be indexed when using the Enterprise Edition of
Oracle Database. Expression Filter includes the following elements:

� Expression datatype: A virtual datatype created through a constraint placed on
a VARCHAR2 column in a user table that stores expressions.

� EVALUATE operator: An operator that evaluates expressions for each data item.

� Administrative utilities: A set of utilities that validate expressions and suggest
optimal index structure.

What Is Expression Filter?

1-2 Oracle Database Application Developer’s Guide - Expression Filter

� Expression indexing: Enhances performance of the EVALUATE operator for
large expression sets. Expression indexing is available in Oracle Database
Enterprise Edition.

1.1.1 Expression Filter Usage Scenarios
The following sections are examples of how you can use Expression Filter.

Match Incoming Data with Conditional Expressions
Expression Filter can match incoming data with conditional expressions stored in
the database to identify rows of interest. For example, consider an application that
matches buyers and sellers of cars. A table called Consumer includes a column
called BUYER_PREFERENCES with an Expression datatype. The BUYER_
PREFERENCES column stores an expression for each consumer that describes the
kind of car the consumer wants to purchase, including make, model, year, mileage,
color, options, and price. Data about cars for sale is included with the EVALUATE
operator in the SQL WHERE clause. The SQL EVALUATE operator matches the
incoming car data with the expressions to find prospective buyers.

The SQL EVALUATE operator also enables batch processing of incoming data. Data
can be stored in a table called CARS and matched with expressions stored in the
CONSUMER table using a join between the two tables.

The SQL EVALUATE operator saves time by matching a set of expressions with
incoming data and enabling large expression sets to be indexed for performance.
This saves labor by allowing expressions to be inserted, updated, and deleted
without changing the application and providing a results set that can be
manipulated in the same SQL statement, for instance to order or group results. In
contrast, a procedural approach stores results in a temporary table that must be
queried for further processing, and those expressions cannot be indexed.

Maintain Complex Table Relationships
Expression Filter can convey N-to-M (many-to-many) relationships between tables.
Using the previous example:

� A car may be of interest to one or more buyers.

� A buyer may be interested in one or more cars.

� A seller may be interested in one or more buyers.

To answer questions about these relationships, the incoming data about cars is
stored in a table called CARS with an Expression column (column of Expression
datatype) called SELLER_PREFERENCES. The CONSUMERS table includes a column

Introduction to Expressions

Oracle Expression Filter Concepts 1-3

called BUYER_PREFERENCES. The SQL EVALUATE operator can answer questions
such as:

� What cars are of interest to each consumer?

� What buyers are of interest to each seller?

� What demand exists for each car? This can help to determine optimal pricing.

� What unsatisfied demand is there? This can help to determine inventory
requirements.

This declarative approach saves labor. No action is needed if changes are made to
the data or the expressions. Compare this to the traditional approach where a
mapping table is created to store the relationship between the two tables. A trigger
must be defined to recompute the relationships and to update the mapping table if
the data or expressions change. In this case, new data must be compared to all
expressions, and a new expression must be compared to all data.

Application Attributes
Expression Filter is a good fit for applications where the data has the following
attributes:

� A large number of data items exists to be evaluated.

� Each data item has structured data attributes, for example VARCHAR,
NUMBER, DATE, XMLTYPE.

� Incoming data is evaluated by a significant number of unique and persistent
queries containing expressions.

� The expression (in SQL WHERE clause format) describes an interest in incoming
data items.

� The expressions compare attributes to values using relational operators (=, !=, <,
>, and so on).

1.2 Introduction to Expressions
Expressions describe interests in an item of data. Expressions are stored in a column
of a user table and compared, using the SQL EVALUATE operator, to incoming data
items specified in a SQL WHERE clause or to a table of data. Expressions are
evaluated as true or false or return a null value if an expression does not exist for a
row.

Introduction to Expressions

1-4 Oracle Database Application Developer’s Guide - Expression Filter

An expression describes interest in an item of data using one or more variables,
known as elementary attributes. An expression can also include literals, Oracle
supplied functions, user-defined functions, and table aliases. A valid expression
consists of one or more simple conditions called predicates. The predicates in the
expression are linked by the logical operators AND and OR. Expressions must adhere
to the SQL WHERE clause format. (For more information about the SQL WHERE
clause, see Oracle Database SQL Reference.) An expression is not required to use all
the defined elementary attributes; however, the incoming data must provide a value
for every elementary attribute. Null is an acceptable value.

For example, the following expression includes the UPPER Oracle supplied function
and captures the interest of a user in a car (the data item) with the model, price, and
year as elementary attributes.

UPPER(Model) = 'TAURUS' and Price < 20000 and Year > 2000

Expressions are stored in a column of a user table with an Expression datatype. The
values stored in a column of this type are constrained to be expressions. (See
Section 1.2.2.) A user table can have one or more Expression columns. A query to
display the contents of an Expression column displays the expressions in string
format.

You insert, update, and delete expressions using standard SQL. A group of
expressions that are stored in a single column is called an expression set and shares
a common set of elementary attributes. This set of elementary attributes plus any
functions used in the expressions are the metadata for the expression set. This
metadata is referred to as the attribute set. The attribute set consists of the
elementary attribute names and their datatypes and any functions used in the
expressions. The attribute set is used by the Expression column to validate changes
and additions to the expression set. An expression stored in the Expression column
can use only the elementary attribute and functions defined in the corresponding
attribute set. Expressions cannot contain subqueries.

Expression Filter provides the DBMS_EXPFIL package which contains procedures
to manage the expression data.

There are four basic steps to create and use an Expression column:

1. Define an attribute set. See Section 1.2.1.

2. Define an Expression column in a user table. See Section 1.2.2.

3. Insert expressions in the table. See Section 1.2.3.

4. Apply the SQL EVALUATE operator to compare expressions to incoming data
items. See Section 1.3.

Introduction to Expressions

Oracle Expression Filter Concepts 1-5

The remaining sections in this chapter guide you through this procedure.

1.2.1 Defining Attribute Sets
A special form of an Oracle object type is used to create an attribute set. (For more
information about object types, see Oracle Database Application Developer's Guide -
Object-Relational Features.)

The attribute set defines the elementary attributes for an expression set. It implicitly
allows all Oracle supplied SQL functions to be valid references in the expression set.
If the expression set refers to a user-defined function, it must be explicitly added to
the attribute set. An elementary attribute in an attribute set can refer to data stored
in another database table using table alias constructs. One or more or all elementary
attributes in an attribute set can be table aliases. If an elementary attribute is a table
alias, the value assigned to the elementary attribute is a ROWID from the
corresponding table. For more information about table aliases, see Appendix A.

You can create an attribute set using one of two approaches:

� Use an existing object type to create an attribute set with the same name as the
object type. This approach is most appropriate to use when the attribute set
does not contain any table alias elementary attributes. You use the CREATE_
ATTRIBUTE_SET procedure of the DBMS_EXPFIL package. See Example 1–1.

� Individually add elementary attributes to an existing attribute set. Expression
Filter automatically creates an object type to encapsulate the elementary
attributes and gives it the same name as the attribute set. This approach is most
appropriate to use when the attribute set contains one or more elementary
attributes defined as table aliases. You use the ADD_ELEMENTARY_
ATTRIBUTE procedure of the DBMS_EXPFIL package. See Example 1–2.

If the expressions refer to user-defined functions, you must add the functions to the
corresponding attribute set, using the ADD_FINCTIONS procedure of the DBMS_
EXPFIL package. See Example 1–3.

Attribute Set Examples
Example 1–1 shows how to use an existing object type to create an attribute set. It
uses the CREATE_ATTRIBUTE_SET procedure.

Example 1–1 Defining an Attribute Set From an Existing Object Type

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,

Introduction to Expressions

1-6 Oracle Database Application Developer’s Guide - Expression Filter

 Price NUMBER,
 Mileage NUMBER);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

For more information about the CREATE_ATTRIBUTE_SET procedure, see
"CREATE_ATTRIBUTE_SET Procedure" in Chapter 8.

Example 1–2 shows how to create an attribute set Car4Sale and how to define the
variables one at a time. It uses the CREATE_ATTRIBUTE_SET and ADD_
ELEMENTARY_ATTRIBUTE procedures.

Example 1–2 Defining an Attribute Set Incrementally

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Model',
 attr_type => 'VARCHAR2(20)');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Year',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Price',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Mileage',
 attr_type => 'NUMBER');
END;
/

For more information about the ADD_ELEMENTARY_ATTRIBUTE procedure, see
"ADD_ELEMENTARY_ATTRIBUTE Procedure" in Chapter 8.

Introduction to Expressions

Oracle Expression Filter Concepts 1-7

If the expressions refer to user-defined functions, you must add the functions to the
corresponding attribute set. Example 1–3 shows how to add user-defined functions,
using the ADD_FUNCTIONS procedure, to an attribute set.

Example 1–3 Adding User-Defined Functions to an Attribute Set

CREATE or REPLACE FUNCTION HorsePower(Model VARCHAR2, Year VARCHAR2)
 return NUMBER is
BEGIN
-- Derive HorsePower from other relational tables uisng Model and Year values.--
 return 200;
END HorsePower;
/

CREATE or REPLACE FUNCTION CrashTestRating(Model VARCHAR2, Year VARCHAR2)
 return NUMBER is
BEGIN
-- Derive CrashTestRating from other relational tables using Model --
-- and Year values. --
 return 5;
END CrashTestRating;
/

BEGIN
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'HorsePower');
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'CrashTestRating');
END;
/

For more information about the ADD_FUNCTIONS procedure, see "ADD_
FUNCTIONS Procedure" in Chapter 8.

To drop an attribute set, you use the DROP_ATTRIBUTE_SET procedure. For more
information, see "DROP_ATTRIBUTE_SET Procedure" in Chapter 8.

1.2.2 Defining Expression Columns
Expression is a virtual datatype. Assigning an attribute set to a VARCHAR2 column
in a user table creates an Expression column. The attribute set determines which
elementary attributes and user-defined functions can be used in the expression set.
An attribute set can be used to create multiple columns of Expression datatype in

Introduction to Expressions

1-8 Oracle Database Application Developer’s Guide - Expression Filter

the same table and in other tables in the same schema. Note that an attribute set in
one schema cannot be associated with a column in another schema.

To create an Expression column:

1. Add a VARCHAR2 column to a table or create a table with the VARCHAR2
column. An existing VARCHAR2 column in a user table can also be used for this
purpose. The following example creates a table with a VARCHAR2 column,
Interest, that will be used with an attribute set:

CREATE TABLE Consumer (CId NUMBER,
 Zipcode NUMBER,
 Phone VARCHAR2(12),
 Interest VARCHAR2(200));

2. Assign an attribute set to the column, using the ASSIGN_ATTRIBUTE_SET
procedure. The following example assigns an attribute set to a column named
Interest in a table called Consumer:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (
 attr_set => 'Car4Sale',
 expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

For more information about the ASSIGN_ATTRIBUTE_SET procedure, see
"ASSIGN_ATTRIBUTE_SET Procedure" in Chapter 8.

Figure 1–1 is a conceptual image of consumers' interests (in trading cars) being
captured in a Consumer table.

Introduction to Expressions

Oracle Expression Filter Concepts 1-9

Figure 1–1 Expression Datatype

To remove an attribute set from a column, you use the UNASSIGN_ATTRIBUTE_
SET procedure of the DBMS_EXPFIL package. See "UNASSIGN_ATTRIBUTE_SET
Procedure" in Chapter 8.

To drop an attribute set not being used for any expression set, you use the DROP_
ATTRIBUTE_SET procedure of the DBMS_EXPFIL package. See "DROP_
ATTRIBUTE_SET Procedure" in Chapter 8.

To copy an attribute set across schemas, you use the COPY_ATTRIBUTE_SET
procedure of the DBMS_EXPFIL package. See "COPY_ATTRIBUTE_SET Procedure"
in Chapter 8.

Elementary Attributes
Model VARCHAR2(30)
Price NUMBER
Mileage NUMBER
Year NUMBER

Oracle Supplied Functions
UPPER
LOWER
. . .

User-Defined Functions
CrashTestRating
HorsePower

Attribute Set: Car4Sale

CId Zipcode Phone Interest

1

2

3

..

32611

03060

03060

..

917 768 4633

603 983 3463

603 484 7013

..

Model = 'Taurus' and Price < 15000
and Mileage < 25000

Model = 'Mustang' and Year > 1999
and Price < 20000

HorsePower(Model, Year) > 200
and Price < 20000

..

Consumer Table

Applying the SQL EVALUATE Operator

1-10 Oracle Database Application Developer’s Guide - Expression Filter

1.2.3 Inserting, Updating, and Deleting Expressions
You use standard SQL to insert, update, and delete expressions. When an
expression is inserted or updated, it is checked for correct syntax and constrained to
use the elementary attributes and functions specified in the corresponding attribute
set. An error message is returned if the expression is not correct. For more
information about evaluation semantics, see Section 1.4.

Example 1–4 shows how to insert an expression (the consumer's interest in trading
cars, which is depicted in Figure 1–1) into the Consumer table using the SQL
INSERT statement.

Example 1–4 Inserting an Expression into the Consumer Table

INSERT INTO Consumer VALUES (1, 32611, '917 768 4633',
 'Model=''Taurus'' and Price < 15000 and Mileage < 25000');
INSERT INTO Consumer VALUES (2, 03060, '603 983 3464',
 'Model=''Mustang'' and Year > 1999 and Price < 20000');

If an expression refers to a user-defined function, the function must be added to the
corresponding attribute set (as shown in Example 1–3). Example 1–5 shows how to
insert an expression with a reference to a user-defined function, HorsePower, into
the Consumer table.

Example 1–5 Inserting an Expression That References a User-Defined Function

INSERT INTO Consumer VALUES (3, 03060, '603 484 7013',
 'HorsePower(Model, Year) > 200 and Price < 20000');

Expression data can be loaded into an Expression column using SQL*Loader. For
more information about bulk loading, see Section 5.1.

1.3 Applying the SQL EVALUATE Operator
You use the SQL EVALUATE operator in the WHERE clause of a SQL statement to
compare stored expressions to incoming data items. The SQL EVALUATE operator
returns 1 for an expression that matches the data item and 0 for an expression that
does not match. For any null values stored in the Expression column, the SQL
EVALUATE operator returns NULL.

The SQL EVALUATE operator has two arguments: the name of the column storing
the expressions and the data item to which the expressions are compared. In the
data item argument, values must be provided for all elementary attributes in the
attribute set associated with the Expression column. Null is an acceptable value.

Applying the SQL EVALUATE Operator

Oracle Expression Filter Concepts 1-11

The data item can be specified either as string-formatted name-value pairs or as an
AnyData instance.

In the following example, the query returns a row from the Consumer table if the
expression in the Interest column evaluates to true for the data item:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest, <data item>) = 1;

Data Item Formatted as a String
If the values of all the elementary attributes in the attribute set can be represented as
readable values, such as those stored in VARCHAR, DATE, and NUMBER datatypes
and the constructors formatted as a string, then the data item can be formatted as a
string:

Operator Form

EVALUATE (VARCHAR2, VARCHAR2)
 returns NUMBER;

Example

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000'
) = 1;

If a data item does not require a constructor for any of its elementary attribute
values, then a list of values provided for the data item can be formatted as a string
(name-value pairs) using two getVarchar methods (a STATIC method and a
MEMBER method) in the object type associated with the attribute set. The STATIC
method formats the data item without creating the object instance. The MEMBER
method can be used if the object instance is already available.

The STATIC and MEMBER methods are implicitly created for the object type and can
be used as shown in the following example:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar('Mustang', -- STATIC getVarchar API --
 2000,
 18000,
 22000)

Applying the SQL EVALUATE Operator

1-12 Oracle Database Application Developer’s Guide - Expression Filter

) = 1;

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale('Mustang',
 2000,
 18000,
 22000).getVarchar() -- MEMBER getVarchar() API --
) = 1;

Data Item Formatted as an AnyData Instance
Any data item can be formatted using an AnyData instance. AnyData is an Oracle
supplied object type that can hold instances of any Oracle datatype, both Oracle
supplied and user-defined. For more information, see Oracle Database Application
Developer's Guide - Object-Relational Features.

Operator Form

EVALUATE (VARCHAR2, AnyData)
 returns NUMBER;

An instance of the object type capturing the corresponding attribute set is converted
into an AnyData instance using the AnyData's convertObject method. Using the
previous example, the data item can be passed to the SQL EVALUATE operator by
converting the instance of the Car4Sale object type into AnyData, as shown in the
following example:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 AnyData.convertObject(
 Car4Sale('Mustang',
 2000,
 18000,
 22000))
) = 1;

A data item formatted as an AnyData instance is converted back into the original
object before the expressions are evaluated. To avoid the cost of object type
conversions, string-formatted data items are recommended whenever possible.

For the syntax of the SQL EVALUATE operator, see "EVALUATE" in Chapter 6. For
additional examples of the SQL EVALUATE operator, see Appendix B.

Granting and Revoking Privileges

Oracle Expression Filter Concepts 1-13

1.4 Evaluation Semantics
When an expression is inserted or updated, Expression Filter validates the syntax
and ensures that the expression refers to valid elementary attributes and functions
associated with the attribute set. The SQL EVALUATE operator evaluates
expressions using the privileges of the owner of the table that stores the expressions.
For instance, if an expression includes a reference to a user-defined function, during
its evaluation, the function is executed with the privileges of the owner of the table.
References to schema objects with no schema extensions are resolved in the table
owner's schema.

An expression that refers to a user-defined function may become invalid if the
function is modified or dropped. An invalid expression causes the SQL statement
evaluating the expression to fail. To recover from this error, replace the missing or
modified function with the original function.

The Expression Validation utility is used to verify an expression set. It identifies
expressions that have become invalid since they were inserted, perhaps due to a
change made to a user-defined function or table. This utility collects references to
the invalid expressions in an exception table. If an exception table is not provided,
the utility fails when it encounters the first invalid expression in the expression set.

The following commands collect references to invalid expressions found in the
Consumer table. The BUILD_EXCEPTIONS_TABLE procedure creates the
exception table, InterestExceptions, in the current schema. The VALIDATE_
EXPRESSIONS procedure validates the expressions and stores the invalid
expressions in the InterestExceptions table.

BEGIN
 DBMS_EXPFIL.BUILD_EXCEPTIONS_TABLE (exception_tab => 'InterestExceptions');

 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'Consumer',
 expr_col => 'Interest',
 exception_tab => 'InterestExceptions');
END;
/

For more information, see "BUILD_EXCEPTIONS_TABLE Procedure" and
"VALIDATE_EXPRESSIONS Procedure", both in Chapter 8.

1.5 Granting and Revoking Privileges
A user requires SELECT privileges on a table storing expressions to evaluate them.
The SQL EVALUATE operator evaluates expressions using the privileges of the

Error Messages

1-14 Oracle Database Application Developer’s Guide - Expression Filter

owner of the table that stores the expressions. The privileges of the user issuing the
query are not considered.

Expressions can be inserted, updated, and deleted by the owner of the table. Others
must have INSERT and UPDATE privileges for the table, and they must have
INSERT EXPRESSION and UPDATE EXPRESSION privileges for a specific
Expression column in the table to be able to make modifications to it.

In the following example, the owner of the Consumer table grants expression
privileges, using the GRANT_PRIVILEGE procedure, on the Interest column to a
user named Andy:

BEGIN
 DBMS_EXPFIL.GRANT_PRIVILEGE (expr_tab => 'Consumer',
 expr_col => 'Interest',
 priv_type => 'INSERT EXPRESSION',
 to_user => 'Andy');
END;
/

To revoke privileges, use the REVOKE_PRIVILEGE procedure.

For more information about granting and revoking privileges, see "GRANT_
PRIVILEGE Procedure" and "REVOKE_PRIVILEGE Procedure" in Chapter 8.

1.6 Error Messages
The Expression Filter error message numbers are in the range of 38401 to 38600. The
error messages are documented in Oracle Database Error Messages.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser's find in page feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Indexing Expressions 2-1

2
Indexing Expressions

An index can be defined on a column storing expressions to quickly find
expressions that evaluate to true for a data item. This is most helpful when a large
expression set is evaluated for a data item. The SQL EVALUATE operator determines
whether or not to use the index based on its access cost. The indextype, Expression
Filter, is used to create and maintain indexes.

If an Expression column is not indexed, the SQL EVALUATE operator builds a
dynamic query for each expression stored in the column and executes it using the
values passed in as the data item.

This chapter describes the basic approach to indexing including index
representation (Section 2.3), index processing (Section 2.4), and user commands for
creating and tuning indexes (Section 2.6).

2.1 Concepts of Indexing Expressions
Expressions in a large expression set tend to have certain commonalities in their
predicates. An Expression Filter index, defined on an expression set, groups
predicates by their commonalities to reduce processing costs. For example, in the
case of two predicates with a common left-hand side, such as Year=1998 and
Year=1999, in most cases, the falseness or trueness of one predicate can be
determined based on the outcome of the other predicate. The left-hand side of a
predicate includes arithmetic expressions containing one or more elementary
attributes and user-defined functions, for example, HORSEPOWER(model, year).

Note: Expression indexing is available only in Oracle Database
Enterprise Edition.

Indexable Predicates

2-2 Oracle Database Application Developer’s Guide - Expression Filter

An operator and a constant on the right-hand side (RHS) completes the predicate,
for example, HORSEPOWER(model, year)>=150.

An Expression Filter index defined on a set of expressions takes advantage of the
logical relationships between multiple predicates by grouping them based on the
commonality of their left-hand sides. These left-hand sides are arithmetic
expressions that consist of one or more elementary attributes and user-defined
functions, for example, HORSEPOWER(model,year). In the expression set, these
left-hand sides appear in the predicates along with an operator and a constant on
the right-hand side (RHS), for example, HORSEPOWER(model,year)>=150.

2.2 Indexable Predicates
The predicates that can be indexed with the Expression Filter indexing mechanism
include any predicate with a constant on the right-hand side that uses one of the
following predicate operators: =, !=, >, <, >=, <=, BETWEEN, IS NULL, IS NOT
NULL, LIKE, and NVL.

The predicates that cannot be indexed are preserved in their original form and they
are evaluated by value substitution in the last stage of expression evaluation. Some
of the predicates that cannot be indexed include:

� Predicates with a variable on the right-hand side.

� IN list predicates.

� LIKE predicates with a leading wild-card character.

� Duplicate predicates in an expression with the same left-hand side. At most,
two predicates with a duplicate left-hand side, for example Year>1995 and
Year<2000, can be indexed if the index is configured for BETWEEN operators.
See the section about EXF$INDEXOPER in Chapter 7.

2.3 Index Representation
The Expression Filter index uses persistent database objects internally to maintain
the index information for an expression set. The grouping information for all the
predicates in an expression set is captured in a relational table called the predicate
table. Typically, the predicate table contains one row for each expression in the
expression set. An expression containing one or more disjunctions (two simple
expressions joined by OR) is converted into a disjunctive-normal form (disjunction
of conjunctions), and each disjunction in this normal form is treated as a separate
expression with the same identifier as the original expression. The predicate table
contains one row for each such disjunction.

Index Representation

Indexing Expressions 2-3

The Expression Filter index can be tuned for better performance by identifying the
most-common left-hand sides of the predicates (or discriminating predicate groups)
in the expression set. The owner of the expression set (or the table storing
expressions) can identify the predicate’s left-hand sides or automate this process by
collecting statistics on the expression set. For each common left-hand side, a
predicate group is formed with all the corresponding predicates in the expression
set. For example, if predicates with Model, Price, and HorsePower(Model,
Year) attributes are common in the expression set, three predicate groups are
formed for these attributes. The predicate table captures the predicate grouping
information as shown in Figure 2–1.

Figure 2–1 Conceptual Predicate Table

For each predicate group, the predicate table has two columns: one to store the
operator of the predicate and the other to store the constant on the right-hand side
of the predicate. For a predicate in an expression, its operator and the right-hand
side constant are stored under the corresponding columns of the predicate group.
The predicates that do not fall into one of the preconfigured groups are preserved in
their original form and stored in a VARCHAR2 column of the predicate table as
sparse predicates. (For the example in Figure 2–1, the predicates on Mileage and
Year fall in this category.) The predicates with IN lists and the predicates with a

G1 G2 G3

RId Op RHS Sparse_predicateOpOp RHSRHS

r1

r3

r2

..

=

= <

>

<

<

15000

20000

200

Mileage < 25000

Year > 1999

Taurus

Mustang

20000

Predicate table for the expressions stored in
the Interest column of the Consumer table

G1 - Predicate Group 1 with predicates on 'Model'
G2 - Predicate Group 2 with predicates on 'Price'
G3 - Predicate Group 3 with predicates on 'HorsePower(Model, Year)'
Op - Predicate Operator
RHS - Constant right side of the predicate
Rid - Identifier of the row storing the corresponding expression
in the CONSUMER table

Empty cells indicate NULL values.

Index Processing

2-4 Oracle Database Application Developer’s Guide - Expression Filter

varying right-hand side (not a constant) are implicitly treated as sparse predicates.
Native indexes are created on the predicate table as described in Section 2.4.

2.4 Index Processing
To evaluate a data item for a set of expressions, the left-hand side of each predicate
group is computed and its value is compared with the corresponding constants
stored in the predicate table using an appropriate operator. For example, using the
predicate table, if HORSEPOWER('TAURUS',2001) returns 153, then the predicates
satisfying this value are those interested in horsepower equal to 153 or those
interested in horsepower greater than a value that is below 153, and so on. If the
operators and right-hand side constants of the previous group are stored in the G3_
OP and G3_RHS columns of the predicate table (in Figure 2–1), then the following
query on the predicate table identifies the rows that satisfy this group of predicates:

SELECT Rid FROM predicate_table WHERE
 G3_OP = '=' AND G3_RHS = :rhs_val or
 G3_OP = '>' AND G3_RHS < :rhs_val or
 ...
-- where :rhs_val is the value from the computation of the left-hand side --

Expression Filter uses similar techniques for less than (<), greater than or equal to
(>=), less than or equal to (<=), not equal to (!=, <>), LIKE, IS NULL, and IS NOT
NULL predicates. Predicates with the BETWEEN operator are divided into two
predicates with greater than or equal to and less than or equal to operators.
Duplicate predicate groups can be configured for a left-hand side if it frequently
appears more than once in a single expression, for example, Year >= 1996 and
Year <= 2000.

The WHERE clause (shown in the previous query) is repeated for each predicate
group in the predicate table, and the predicate groups are all joined by conjunctions.
When the complete query (shown in the following example) is issued on the
predicate table, it returns the row identifiers for the expressions that evaluate to true
with all the predicates in the preconfigured groups. For these resulting expressions,
the corresponding sparse predicates that are stored in the predicate table are
evaluated using dynamic queries to determine if an expression is true for a
particular data item.

SELECT Rid, Sparse_predicate FROM predicate_table
 WHERE --- predicates in group 1
 (G1_OP IS NULL OR --- no predicate involving this LHS
 ((:g1_val IS NOT NULL AND
 (G1_OP = '=' AND G1_RHS = :g1_val or

Index Processing

Indexing Expressions 2-5

 G1_OP = '>' AND G1_RHS < :g1_val or
 G1_OP = '<' AND G1_RHS > :g1_val or
 ...) or
 (:g1_val IS NULL AND G1_OP = 'IS NULL')))

 AND --- predicates in group 2
 (G2_OP IS NULL OR
 ((:g2_val IS NOT NULL AND
 (G2_OP = '=' AND G2_RHS = :g2_val or
 G2_OP = '>' AND G2_RHS < :g2_val or
 G2_OP = '<' AND G2_RHS > :g2_val or
 ...) or
 (:g2_val IS NULL AND G2_OP = 'IS NULL')))
 AND
...

For efficient execution of the predicate table query (shown previously),
concatenated bitmap indexes are created on the {Operator, RHS constant}
columns of selected groups. These groups are identified either by user specification
or from the statistics about the frequency of the predicates (belonging to a group) in
the expression set. With the indexes defined on preconfigured predicate groups, the
predicates from an expression set are divided into three classes:

1. Indexed predicates: Predicates that belong to a subset of the preconfigured
predicate groups that are identified as most discriminating. Bitmap indexes are
created for these predicate groups; thus, these predicates are also called indexed
predicates. The previous query performs range scans on the corresponding
index to evaluate all the predicates in a group and returns the expressions that
evaluate to true with just that predicate. Similar scans are performed on the
bitmap indexes of other indexed predicates, and the results from these index
scans are combined using BITMAP AND operations to determine all the
expressions that evaluate to true with all the indexed predicates. This enables
multiple predicate groups to be filtered simultaneously using one or more
bitmap indexes.

2. Stored predicates: Predicates that belong to groups that are not indexed. These
predicates are captured in the corresponding {Operator, RHS constant}
columns of the predicate table, with no bitmap indexes defined on them. For all
the expressions that evaluate to true with the indexed predicates, the previous
query compares the values of the left-hand sides of these predicate groups with
those stored in the predicate table. Although bitmap indexes are created for a
selected number of groups, the optimizer may choose not to use one or more
indexes based on their access cost. Those groups are treated as stored predicate

Predicate Table Query

2-6 Oracle Database Application Developer’s Guide - Expression Filter

groups. The query issued on the predicate table remains unchanged for a
different choice of indexes.

3. Sparse predicates: Predicates that do not belong to any of the preconfigured
predicate groups. For expressions that evaluate to true for all the predicates in
the indexed and stored groups, sparse predicates (if any) are evaluated last. If
the expressions with sparse predicates evaluate to true, they are considered true
for the data item.

Optionally, you can specify the common operators that appear with predicates on
the left-hand side and reduce the number of range scans performed on the bitmap
index. In the previous example, the Model attribute commonly appears in equality
predicates, and the Expression Filter index can be configured to check only for
equality predicates while processing the indexed predicate groups. Sparse
predicates along with any other form of predicate on the Model attribute are
processed and evaluated at the same time.

2.5 Predicate Table Query
Once the predicate groups for an expression set are determined, the structure of the
predicate table and the query to be issued on the predicate table are fixed. The
choice of indexed or stored predicate groups does not change the query. As part of
Expression Filter index creation, the predicate table query is determined and a
function is dynamically generated for this query. The same query (with bind
variables) is used for any data item passed in for the expression set evaluation. This
ensures that the predicate table query is compiled once and reused for evaluating
any number of data items.

2.6 Index Creation and Tuning
The cost of evaluating a predicate in an expression set depends on the group to
which it belongs. The index for an expression set can be tuned by identifying the
appropriate predicate groups as the index parameters.

The steps involved in evaluating the predicates in an indexed predicate group are:

� One-time computation of the left-hand side of the predicate group

� One or more range scans on the bitmap indexes using the computed value

The steps involved in evaluating the predicates in a stored predicate group are:

� One-time computation of the left-hand side of the predicate group

Index Creation and Tuning

Indexing Expressions 2-7

� Comparison of the computed value with the operators and the right-hand side
constants of all the predicates remaining in the working set (after filtering,
based on indexed predicates)

The steps involved in evaluating the predicates in a sparse predicate group are:

� Parse the subexpression representing the sparse predicates for all the
expressions remaining in the working set.

� Evaluate the subexpression through substitution of data values (using a
dynamic query).

Creating an Index from Default Parameters
In a schema, an attribute set can be used for one or more expression sets, and you
can configure the predicate groups for these expression sets by associating the
default index parameters with the attribute set. The (discriminating) predicate
groups can be chosen with the knowledge of commonly occurring left-hand sides
and their selectivity for the expected data.

The following command uses the DBMS_EXPFIL.DEFAULT_INDEX_
PARAMETERS procedure to configure default index parameters with the
Car4Sale attribute set:

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS('Car4Sale',
 exf$attribute_list (
 exf$attribute (attr_name => 'Model', --- LHS for predicate group
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'), --- indexed predicate group
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE') --- stored predicate group
)
);
END;
/

For an expression set, create the Expression Filter index as follows:

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

Index Creation and Tuning

2-8 Oracle Database Application Developer’s Guide - Expression Filter

The index derives all its parameters from the defaults (Model, Price, and
HorsePower(Model, Year)) associated with the corresponding attribute set. If
the defaults are not specified, it implicitly uses all the scalar elementary attributes
(Model, Year,Price, and Mileage) in the attribute set as its stored and indexed
attributes.

You can fine-tune the default parameters derived from the attribute set for each
expression set by using the PARAMETERS clause when you create the index or by
associating index parameters directly with the expression set. The following
CREATE INDEX statement with the PARAMETERS clause configures the index with
an additional stored predicate:

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS exfsys.ExpFilter
 PARAMETERS ('ADD TO DEFAULTS STOREATTRS (CrashTestRating(Model, Year))');

For more information about creating indexes from default parameters, see
"DEFAULT_INDEX_PARAMETERS Procedure" in Chapter 8 and "CREATE INDEX"
in Chapter 6.

Creating an Index from Exact Parameters
If there is a need to fine-tune the index parameters for each expression set
associated with the common attribute set, you can assign the exact index
parameters directly to the expression set, using the DBMS_EXPFIL.INDEX_
PARAMETERS procedure.

The following commands copy the index parameters from the defaults and then
fine-tune them for the given expression set. An expression filter index created for
the expression set uses these parameters to configure its indexed and stored
predicate groups.

BEGIN
 -- Derive index parameters from defaults --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list => null,
 operation => 'DEFAULT');

 -- Fine-tune the parameters by adding another stored attribute --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list =>
 exf$attribute_list (
 exf$attribute (

Index Creation and Tuning

Indexing Expressions 2-9

 attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

For more information about creating indexes from exact parameters, see "INDEX_
PARAMETERS Procedure" in Chapter 8 and "CREATE INDEX" in Chapter 6.

See Chapter 3 for a discussion on indexing expressions with XPath predicates.

Creating an Index from Statistics
If a representative set of expressions is already stored in the table, the owner of the
table can automate the index tuning process by collecting statistics on the
expression set, using the DBMS_EXPFIL.GET_EXPRSET_STATS procedure, and
creating the index from these statistics, as shown in the following example:

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS TOP 4 INDEXATTRS TOP 2');

For the previous index, four stored attributes are chosen based on the frequency of
the corresponding predicate left-hand sides in the expression set, and out of these
four attributes, the top two are chosen as indexed attributes. When a TOP n clause is
used, any defaults associated with the corresponding attribute set are ignored. The
attributes chosen for an index can be viewed by querying the USER_EXPFIL_
PREDTAB_ATTRIBUTES view.

For more information about creating indexes from statistics, see "GET_EXPRSET_
STATS Procedure" in Chapter 8 and "CREATE INDEX" in Chapter 6.

Index Usage

2-10 Oracle Database Application Developer’s Guide - Expression Filter

2.7 Index Usage
A query using the SQL EVALUATE operator on an Expression column can force the
use of the index defined on such a column with an optimizer hint. (See the Oracle
Database Performance Tuning Guide.) In other cases, the optimizer determines the cost
of the Expression Filter index-based scan and compares it with the cost of alternate
execution plans.

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar('Mustang',2000,18000,22000)) = 1 and
 Consumer.Zipcode BETWEEN 03060 and 03070;

For the previous query, if the Consumer table has an Expression Filter index
defined on the Interest column and a native index defined on the Zipcode
column, the optimizer chooses the appropriate index based on their selectivity and
their access cost. In the current release, the selectivity and the cost of Expression
Filter indexes are set as domain index defaults, and they are not computed for the
expression set.

You can use the EXPLAIN PLAN statement to see if the optimizer picked the
Expression Filter index for a query.

2.8 Index Storage and Maintenance
The Expression Filter index uses persistent database objects to maintain the index
on a column storing expressions. All these secondary objects are created in the
schema in which the Expression Filter index is created. There are three types of
secondary objects for each Expression Filter index, and they use the following
naming conventions:

� Conventional table called the predicate table: EXF$PTAB_n

� One or more indexes on the predicate table: EXF$PTAB_n_IDX_m

� Package called the Access Function package: EXF$AFUN_n

To ensure the expression evaluation is valid, a table with an Expression column and
the Expression Filter index on the Expression column should belong to the same
schema. A user with CREATE INDEX privileges on a table cannot create an
Expression Filter index unless the user is the owner of the table. By default, the
predicate table is created in the user's default tablespace. You can specify an
alternate storage clause for the predicate table when you create the index by using
the PREDSTORAGE parameter clause. (See the section about the CREATE INDEX

Index Storage and Maintenance

Indexing Expressions 2-11

statement in Chapter 6.) The indexes on the predicate table are always created in the
same tablespace as the predicate table.

An Expression Filter index created for an Expression column is automatically
maintained to reflect any changes made to the expressions (with the SQL INSERT,
UPDATE, or DELETE statements or SQL*Loader). The bitmap indexes defined on the
predicate table could become fragmented when a large number of expressions are
modified, added to the set, or deleted. You can rebuild these indexes online to
reduce the fragmentation using the DBMS_EXPFIL.DEFRAG_INDEX procedure, as
shown in the following example:

BEGIN
 DBMS_EXPFIL.DEFRAG_INDEX (idx_name => 'InterestIndex');
END;
/

See "DEFRAG_INDEX Procedure" in Chapter 8 for more information about this
procedure.

You can rebuild the complete Expression Filter index offline by using the ALTER
INDEX ... REBUILD statement. This is useful when the index is marked
UNUSABLE following a table maintenance operation. When the default index
parameters associated with an attribute set are modified, they can be incorporated
into the existing indexes using the ALTER INDEX ... REBUILD statement with
the DEFAULT parameter clause. See the section about ALTER INDEX REBUILD
statement in Chapter 6.

Index Storage and Maintenance

2-12 Oracle Database Application Developer’s Guide - Expression Filter

Expressions with XPath Predicates 3-1

3
Expressions with XPath Predicates

The expressions stored in a column of a table may contain XPath predicates defined
on XMLType attributes. This section describes an application for XPath predicates
using the Car4Sale example introduced in Chapter 1. For this purpose, the
information published for each car going on sale includes a Details attribute in
addition to the Model, Price, Mileage, and Year attributes. The Details
attribute contains additional information about the car in XML format as shown in
the following example:

<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>
 <memory>64MB</memory>
 </GPS>
 </accessory>
</details>

A sample predicate on the Details attribute is extract(Details,
'//stereo[@make="Koss"]') IS NOT NULL. This predicate can be combined
with one or more predicates on other XML or non-XML attributes.

3.1 Using XPath Predicates in Expressions
Using the Oracle supplied XMLType datatype, users can apply XPath predicates on
XML documents within a standard SQL WHERE clause of a query. These predicates
use operators such as EXTRACT and EXISTSNODE on an instance of the XMLType
datatype to process an XPath expression for the XML instance. For more
information, see Oracle Database SQL Reference and Oracle XML DB Developer's Guide.

Using XPath Predicates in Expressions

3-2 Oracle Database Application Developer’s Guide - Expression Filter

To allow XPath predicates in an expression set, the corresponding attribute set
should be created with an attribute of sys.XMLType datatype, as shown in the
following example:

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER,
 Details sys.XMLType);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

The expression sets using this attribute set can include predicates on the XMLType
attribute, as shown in the following example:

Model='Taurus' and Price < 15000 and Mileage < 25000 AND
 extract(Details, '//stereo[@make="Koss"]') IS NOT NULL

 -- or --

Model='Taurus' and Price < 15000 and Mileage < 25000 AND
 existsNode(Details, '//stereo[@make="Koss"]') = 1

Now, a set of expressions stored in the Interest column of the Consumer table
can be processed for a data item by passing an instance of XMLType for the
Details attribute along with other attribute values to the EVALUATE operator:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000,
 Details=>sys.XMLType(''<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>

Indexing XPath Predicates

Expressions with XPath Predicates 3-3

 <memory>64MB</memory>
 </GPS>
 </accessory>
 </details>'')'
) = 1;

The previous query identifies all the rows with expressions that are true based on
their XPath and non-XPath predicates.

3.2 Indexing XPath Predicates
To process a large set of XPath predicates in an expression set efficiently, the
Expression Filter index defined for the expression set can be configured for the
XPath predicates (in addition to some simple predicates). The Expression Filter
indexes use the commonalities in the XPath expressions to efficiently compare them
to a data item. These commonalities are based on the positions and the values for
the XML elements and attributes appearing in the XPath expressions.

The indexable constructs in an XPath expression are the levels (or positions) of XML
elements, the values for text nodes in XML elements, the positions of XML
attributes, and the values for XML attributes. For this purpose, an XPath predicate
is treated as a combination of positional and value filters on XML elements and
attributes appearing in an XML document. For example, the following XPath
expression can be deciphered as a set of checks on the XML document. The list
following the example explains those checks.

extract(Details, '//stereo[@make="Koss" and /*/*/GPS/memory[text()="64MB"]]')
 IS NOT NULL

1. Level (position) of stereo element is 1 or higher.

2. The stereo element appearing at level 1 or higher has a make attribute.

3. The value for stereo element's make attribute is Koss.

4. The GPS element appears at level 3.

5. The memory element appears at level 4.

6. The memory element has a text node with a value of 64MB.

3.2.1 Indexable XPath Predicates
The Expression Filter index does not support some constructs in an XPath predicate.
Therefore, the XPath predicate is always included in the sparse predicates and

Indexing XPath Predicates

3-4 Oracle Database Application Developer’s Guide - Expression Filter

evaluated during last phase of expression filtering. For more information about
sparse predicates, see Section 2.4.

A positional filter for an Expression Filter index can be configured from any XML
element or attribute. A value filter can only be configured from equality predicates
on XML attributes and text nodes in XML elements. XPath predicates that are
indexed in an expression set must use either the EXTRACT or the EXISTSNODE
operator with a positive test on the return value. For example extract(Details,
'//stereo[@make="Koss"]') IS NOT NULL can be indexed, but a similar
predicate with an IS NULL check on the return value cannot be indexed.

Some of the XPath constructs that cannot be indexed by the Expression Filter
include:

� Inequality or range predicates in the node test. For example, the predicate on
the stereo element's make attribute cannot be indexed in the following XPath
predicate:

extract(Details, '//stereo[@make!="Koss"]') IS NOT NULL

� Disjunctions in the node test. For example, the predicates on the stereo
element's make attribute cannot be indexed in the following XPath predicate:

extract(Details, '//stereo[@make="Koss" or @make="Bose"]') IS NOT NULL

� Node tests using XML functions other than text(). For example, the predicate
using the XML function, position, cannot be indexed.

extract(Details, '//accessory/stereo[position()=3]') IS NOT NULL

However, the text() function in the following example can be a value filter on
the stereo element:

extract(Details, '//accessory/stereo[text()="CD"]') IS NOT NULL

� Duplicate references to an XML element or an attribute within a single XPath
expression. For example, if the stereo element appears in an XPath expression
at two different locations, only the last occurrence is indexed, and all other
references are processed during sparse predicate evaluation.

3.2.2 Index Representation
The Expression Filter index can be configured to process the XPath predicates
efficiently by using the most discriminating XML elements and attributes as
positional and value filters. Each one forms a predicate group for the expression set.

Indexing XPath Predicates

Expressions with XPath Predicates 3-5

For the purpose of indexing XPath predicates, the predicate table structure
described in Section 2.3 is extended to include two columns for each XML tag. For
an XML tag configured as positional filter, these columns capture the relative and
absolute positions of the tag in various XPath predicates. For an XML tag
configured as value filter, these columns capture the constants appearing with the
tag in the node tests and their relational operators. (Only equality operators are
indexed in this release.)

Figure 3–1 shows the predicate table structure for the index configured with the
following XML tags:

� XML attribute stereo@make as value filter. (Predicate Group 4 - G4)

� XML element stereo as positional filter. (Predicate Group 5 - G5)

� Text node of the XML element memory as value filter. (Predicate Group 6 - G6)

This image can be viewed as an extension of the predicate table shown in
Figure 2–1. The partial row shown in the predicate table captures the following
XPath predicate:

extract(Details, '//stereo[@make="Koss" and /*/*/GPS/memory[text()="64MB"]]')
 IS NOT NULL

Figure 3–1 Conceptual Predicate Table with XPath Predicates

3.2.3 Index Processing
The XPath predicates captured in the predicate table are compared to an XML
document that is included in the data item passed to the EVALUATE operator. The
positions and values of the XML tags used in the index are computed for the XML
document, and these are compared with the values stored in the corresponding
columns of the predicate table. Assuming that the relational operators and the
right-hand-side constants for the value filter on stereo@make attribute are stored
in G4_OP and G4_RHS columns of the predicate table (Figure 3.1), the following
query on the predicate table identifies the rows that satisfy this check for an XML
document:

SELECT Rid FROM predicate_table

Rid . . . G4 G5 G6
OpPos RHS

Sparse Predicate
OpOp RHS

r1 = Koss 64 MB1>= = extract(. . .) is not null and . . .

Indexing XPath Predicates

3-6 Oracle Database Application Developer’s Guide - Expression Filter

 WHERE G4_OP = '=' AND
 G4_RHS in (SELECT column_value FROM TABLE (:G4ValuesArray))

For the previous query, the values for all the occurrences of the stereo@make
attribute in the given XML document are represented as a VARRAY and bound to
the :G4ValuesArray variable.

Similarly, assuming that the position constraints and the absolute levels (positions)
of the stereo element are stored in the G5_OP and G5_POS columns of the
predicate table, the following query identifies all the rows that satisfy these
positional checks for an XML document:

SELECT Rid FROM predicate_table
 WHERE (G5_OP = '=' AND --- absolute position check --
 G5_POS in (SELECT column_value FROM table (:G5PosArray))) OR
 (G5_OP = '>=' AND --- relative position check --
 G5_POS <= SELECT max(column_value) FROM table (:G5PosArray)))

For the previous query, the :G5PosArray contains the levels for all the occurrences
of the stereo element in the XML document. These checks on each predicate
group can be combined with the checks on other (XPath and non-XPath) predicate
groups to form a complete predicate table query. A subset of the XML tags can be
identified as the most selective predicate groups, and they can be configured as the
indexed predicate groups (See Section 2.4). Bitmap indexes are created for the
selective predicate groups, and these indexes are used along with indexes defined
for other indexed predicate groups to efficiently process the predicate table query.

3.2.4 Index Tuning for XPath Predicates
The most discriminating XML tags in a set of XPath predicates are classified as
positional filters and value filters. A value filter is considered discriminating if node
tests using the XML tag are selective enough to match only a subset of XML
documents. Similarly, a positional filter is considered discriminating if the tag
appears at different levels or does not appear in all XML documents, and thus
match only a subset of them.

The XPath positional and value filters can be further mapped to indexed predicate
groups or stored predicate groups. PL/SQL procedures are provided to configure
an Expression Filter index with these parameters. For an attribute set consisting of
two or more XMLType attributes, the XML tags can be associated with each of these
attributes

The XPath index parameters for a set of expressions are considered part of the index
parameter, and they can be assigned to an attribute set or an expression set (the

Indexing XPath Predicates

Expressions with XPath Predicates 3-7

column storing the expressions). The index parameters assigned to the attribute set
act as defaults and are shared across all the expression sets associated with the
attribute set.

A few XPath index parameters can be assigned to an XMLType attribute of an
attribute set using the DMBS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS
procedure, as shown in the following example:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details', --- XMLType attribute
 xptag_list => --- Tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- null => positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)') --- value filter
)
);
END;
/

Note that a missing or null value for the tag_type argument configures the XML
tag as a positional filter.

For more information about assigning XPath index parameters, see "DEFAULT_
XPINDEX_PARAMETERS Procedure" in Chapter 8.

By default, the previous XPath index parameters are used for any index created on
an expression set that is associated with the Car4Sale attribute set.

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

Unlike simple index parameters, the XPath index parameters cannot be fine-tuned
for an expression set when the index is created. However, you can achieve this by
associating index parameters directly with the expression set using the DBMS_
EXPFIL.INDEX_PARAMETERS and DBMS_EXPFIL.XPINDEX_PARAMETERS
procedures and then creating the index, as shown in the following example:

Indexing XPath Predicates

3-8 Oracle Database Application Developer’s Guide - Expression Filter

BEGIN
 -- Derive the index parameters including XPath index params from defaults --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list => null,
 operation => 'DEFAULT');

 -- fine-tune the XPath index parameters by adding another Tag --
 DBMS_EXPFIL.XPINDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 xmlt_attr => 'Details',
 xptag_list =>
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => null)),
 operation => 'ADD');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

For more information, see "INDEX_PARAMETERS Procedure" and "XPINDEX_
PARAMETERS Procedure" in Chapter 8.

Once the index is created on a column storing the expressions, a query with the
EVALUATE operator can process a large set of XPath and non-XPath predicates for a
data item efficiently:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000,
 Details=>sys.XMLType(''<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>
 <memory>64MB</memory>
 </GPS>

Indexing XPath Predicates

Expressions with XPath Predicates 3-9

 </accessory>
 </details>'')'
) = 1;

Expression Filter index tuning based on XPath statistics is not supported in the
current release.

Indexing XPath Predicates

3-10 Oracle Database Application Developer’s Guide - Expression Filter

Expression Filter Internal Objects 4-1

4
Expression Filter Internal Objects

The Expression Filter feature uses schema objects to maintain an Expression column
in a user table. Most of these objects are created in the schema of the table with the
Expression column. These objects are created with the EXF$ prefix and are
maintained using the Expression Filter APIs. The user should not modify these
objects.

4.1 Attribute Set Object Type
The Expression Filter maintains the concept of an attribute set through an object
type with a matching name. The object type used for an attribute set may not
contain any user methods, and it should not be an evolved type (with the use of
ALTER TYPE command). If the attribute set is not created from an existing object
type, Expression Filter creates the object type with the matching name and
maintains it throughout the life of the attribute set. It also generates functions for
the object type for data item management, dynamic expression evaluation, and
expression type checking.

In addition to the object type, Expression Filter creates a nested table type of the
object type in the same schema. This nested table type uses a namespace EXF$NTT_
n, and it is used internally for the expression validation.

The object type created for the attribute set can be used to create a table storing the
corresponding data items. Such tables could include a column of the object type or
the table itself could be created from the object type. These tables can be joined with
the table storing expressions. This is shown in the following example using the
application example in Chapter 1:

-- a table of type --
CREATE TABLE CarInventory OF Car4Sale;

INSERT INTO CarInventory VALUES ('Mustang',2000, 18000, 22000);

Expression Validation Trigger

4-2 Oracle Database Application Developer’s Guide - Expression Filter

INSERT INTO CarInventory VALUES ('Mustang',2000, 18000, 22000);
INSERT INTO CarInventory VALUES ('Taurus',1997, 14000, 24500);

SELECT * FROM Consumer, CarInventory Car WHERE
 EVALUATE (Consumer.Interest, Car.getVarchar()) = 1;

-- table with the object type column --
CREATE TABLE CarStock (CarId NUMBER, Details Car4Sale);

INSERT INTO CarStock VALUES (1, Car4Sale('Mustang',2000, 18000, 22000));
INSERT INTO CarStock VALUES (2, Car4Sale('Mustang',2000, 18000, 22000));
INSERT INTO CarStock VALUES (3, Car4Sale('Taurus',1997, 14000, 24500));

SELECT * FROM Consumer, CarStock Car WHERE
 EVALUATE (Consumer.Interest, Car.Details.getVarchar()) = 1;

You should not modify the object type used to maintain an attribute set with the
ALTER TYPE or CREATE OR REPLACE TYPE commands. System triggers are used
to restrict you from modifying these objects.

4.2 Expression Validation Trigger
When an Expression column is created by assigning an attribute set to a VARCHAR2
column in a user table, a BEFORE ROW trigger is created on the table. This trigger is
used to invoke the expression validation routines when a new expression is added
or an existing expression is modified. This trigger is always created in the EXFSYS
schema, and it uses the EXF$VALIDATE_n namespace.

4.3 Expression Filter Index Objects
The Expression Filter index defined for a column is maintained using database
objects created in the schema in which the index is created. These are described in
Section 2.8.

4.4 Expression Filter System Triggers
Expression Filter uses system triggers to manage the integrity of the system. These
include system triggers to restrict the user from dropping an object type created by
an attribute set, to drop the attribute set and associated metadata when the user is
dropped with a CASCADE option, and to maintain the Expression Filter dictionary
through DROP and ALTER operations on the table with one or more Expression
columns. These triggers are created in the EXFSYS schema.

Using Expression Filter with Utilities 5-1

5
Using Expression Filter with Utilities

This chapter describes the use of SQL*Loader and Data Pump Export/Import
utilities in the presence of one or more Expression columns.

5.1 Bulk Loading of Expression Data
Bulk loading can import large amounts of ASCII data into an Oracle database. You
use the SQL*Loader utility to bulk load data.

For SQL*Loader operations, the expression data is treated as strings loaded into a
VARCHAR2 column of a database table. The data file can hold the expression data in
any format allowed for VARCHAR2 data, and the control file can refer to the column
storing expressions as a column of a VARCHAR2 datatype.

A sample control file used to load a few rows into the Consumer table is shown in
the following example:

LOAD DATA
INFILE *
INTO TABLE Consumer
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(CId, Zipcode, Phone, Interest)
BEGINDATA
1,32611,"917 768 4633","Model='Taurus' and Price < 15000 and Mileage < 25000"
2,03060,"603 983 3464","Model='Mustang' and Year > 1999 and Price < 20000"
3,03060,"603 484 7013","HorsePower(Model, Year) > 200 and Price < 20000"

The data loaded into an Expression column is automatically validated using the
attribute set associated with the column. This validation is done by the BEFORE
ROW trigger defined on the column storing expressions. Therefore, a direct load
cannot be used when the table has one or more Expression columns.

Bulk Loading of Expression Data

5-2 Oracle Database Application Developer’s Guide - Expression Filter

If an Expression Filter index is defined on the column storing expressions, it is
automatically maintained during the SQL*Loader operations.

To achieve faster bulk loads, the expression validation can be bypassed by following
these steps:

1. Drop any Expression Filter indexes defined on Expression columns in the table:

DROP INDEX InterestIndex;

2. Convert the Expression columns back into VARCHAR2 columns by unassigning
the attribute sets, using the UNASSIGN_ATTRIBUTE_SET procedure:

BEGIN
 DBMS_EXPFIL.UNASSIGN_ATTRIBUTE_SET (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

3. Perform the bulk load operation. Because the Expression columns are converted
to VARCHAR2 columns in the previous step, a direct load is possible in this step.

4. Convert the VARCHAR2 columns with expression data into Expression columns
by assigning a value of TRUE for the force argument of the ASSIGN_
ATTRIBUTE_SET procedure:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (
 attr_set => 'Car4Sale',
 expr_tab => 'Consumer',
 expr_col => 'Interest',
 force => 'TRUE');
END;
/

5. To avoid runtime validation errors, the expressions in the table can be validated
using the DBMS_EXPFIL.VALIDATE_EXPRESSIONS procedure:

BEGIN
 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

6. Re-create the indexes on the Expression columns.

Exporting and Importing Tables, Users, and Databases

Using Expression Filter with Utilities 5-3

5.2 Exporting and Importing Tables, Users, and Databases
A table with one or more Expression columns can be exported and imported back to
the same database or a different Oracle database. If a table with Expression columns
is being imported into an Oracle database, ensure Expression Filter is installed.

5.2.1 Exporting and Importing Tables Containing Expression Columns
When a table with one or more Expression columns is exported, the corresponding
attribute set definitions, along with their object type definitions, are placed in the
export dump file. An attribute set definition placed in the dump file includes its
default index parameters and the list of approved user-defined functions. However,
definitions for the user-defined functions are not placed in the export dump file.

While importing a table with one or more Expression columns from the export
dump file, the attribute set creation may fail if a matching attribute set exists in the
destination schema. If the attribute set is defined with one or more (embedded)
object typed attributes, these types should exist in the database importing the
attribute set. While importing the default index parameters and user-defined
function list, the import driver continues the import process if it encounters missing
dependent objects. For example, if the function HorsePower does not exist in the
schema importing the Consumer table, the import of the table and the attribute set
proceeds without errors. However, the corresponding entries in the Expression
Filter dictionary display null values for object type or output datatype fields, an
indication the import process was incomplete.

When the Expression Filter index defined on an Expression column is exported, all
its metadata is placed in the export dump file. This metadata includes a complete
list of stored and indexed attributes configured for the index. During import, this
list is used. The attributes are not derived from the default index parameters. If one
or more stored attributes use object references (functions) that are not valid in the
schema importing the index, the index creation fails with an error. However, the
index metadata is preserved in the Expression Filter dictionary.

A table imported incompletely due to broken references to dependent schema
objects (in the function list, default index parameters list, and exact index
parameters list) may cause runtime errors during subsequent expression evaluation
or expression modifications (through DML). Import of such tables can be completed
from a SQL*Plus session by resolving all the broken references. Running the
Expression Validation utility (DBMS_EXPFIL.VALIDATE_EXPRESSIONS
procedure) can identify errors in the expression metadata and the expressions. You
can create any missing objects identified by this utility and repeat the process until

Exporting and Importing Tables, Users, and Databases

5-4 Oracle Database Application Developer’s Guide - Expression Filter

all the errors in the expression set are resolved. Then, you can recover the
Expression Filter index with the ALTER INDEX ... REBUILD statement.

5.2.2 Exporting a User Owning Attribute Sets
In addition to exporting tables and indexes defined in the schema, export of a user
places the definitions for attribute sets that are not associated with any Expression
column into the export dump file. All the restrictions that apply to the export of
tables also apply to the export of a user.

5.2.3 Exporting a Database Containing Attribute Sets
During a database export, attribute set definitions are placed in the export file along
with all other objects. The contents of EXFSYS schema are excluded from the
database export.

SQL Operators and Statements 6-1

6
SQL Operators and Statements

This chapter provides reference information about the SQL EVALUATE operator and
SQL statements used to index expression data. Table 6–1 lists the statements and
their descriptions. For complete information about SQL statements, see Oracle
Database SQL Reference.

Table 6–1 Expression Filter Index Creation and Usage Statements

Statement Description

EVALUATE Matches an expression set with a given data item or table
of data items

ALTER INDEX REBUILD Rebuilds an Expression Filter index

ALTER INDEX RENAME TO Changes the name of an Expression Filter index

CREATE INDEX Creates an Expression Filter index on a column storing
expressions

DROP INDEX Drops an Expression Filter index

EVALUATE

6-2 Oracle Database Application Developer’s Guide - Expression Filter

EVALUATE

The EVALUATE operator is used in the WHERE clause of a SQL statement to compare
stored expressions to incoming data items.

The expressions to be evaluated are stored in an Expression column, which is
created by assigning an attribute set to a VARCHAR2 column in a user table.

Format
EVALUATE (expression_column, <dataitem>)

<dataitem> := <varchar_dataitem> | <anydata_dataitem>
<varchar_dataitem> := attribute_name => attribute_value
 {, attribute_name => attribute_value}
<anydata_dataitem> := AnyData.convertObject(attribute_set_instance)

Keywords and Parameters

expression_column
Name of the column storing the expressions.

attribute_name
Name of an attribute from the corresponding attribute set.

attribute_value
Value for the attribute.

attribute_set_instance
Instance of the object type associated with the corresponding attribute set.

Returns
The EVALUATE operator returns a 1 for an expression that matches the data item,
and returns a 0 for an expression that does not match the data item. For any null
values stored in the Expression column, the EVALUATE operator returns NULL.

Usage Notes
The EVALUATE operator can be used in the WHERE clause of a SQL statement. When
an Expression Filter index is defined on a column storing expressions, the
EVALUATE operator on such column may use the index for the expression set

EVALUATE

SQL Operators and Statements 6-3

evaluation based on its usage cost. The EVALUATE operator can be used as a join
predicate between a table storing expressions and a table storing the corresponding
data items.

If the values of all elementary attributes in the attribute set can be represented as
readable values, such as those stored in VARCHAR, DATE, and NUMBER datatypes
and the constructors formatted as a string, then the data item can be formatted as a
string of attribute name-value pairs. If a data item does not require a constructor for
any of its elementary attribute values, then a list of values provided for the data
item can be formatted as a string of name-value pairs using two getVarchar
methods (a STATIC method and a MEMBER method) in the object type associated
with the attribute set.

Any data item can be formatted using an AnyData instance. An attribute set with
one or more binary typed attributes must use the AnyData form of the data item.

See "Applying the SQL EVALUATE Operator" on page 1-10 for more information
about the EVALUATE operator.

Related views: USER_EXPFIL_ATTRIBUTE_SETS, USER_EXPFIL_ATTRIBUTES,
and USER_EXPFIL_EXPRESSION_SETS

Examples
The following query uses the VARCHAR form of the data item generated by the
getVarchar() function:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale('Mustang',
 2000,
 18000,
 22000).getVarchar()
) = 1;

For the previous query, the data item can be passed in the AnyData form with the
following syntax:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 AnyData.convertObject (
 Car4Sale ('Mustang',
 2000,
 18000,
 22000)
)) = 1;

EVALUATE

6-4 Oracle Database Application Developer’s Guide - Expression Filter

When a large set of data items are stored in a table, the table storing expressions can
be joined with the table storing data items with the following syntax:

SELECT i.CarId, c.CId, c.Phone
FROM Consumer c, Inventory i
WHERE
 EVALUATE (c.Interest,
 Car4Sale(i.Model, i.Year, i.Price, i.Mileage).getVarchar()) = 1
ORDER BY i.CarId;

ALTER INDEX REBUILD

SQL Operators and Statements 6-5

ALTER INDEX REBUILD

The ALTER INDEX REBUILD statement rebuilds an Expression Filter index created
on a column storing expressions. The Expression Filter index DOMIDX_OPSTATUS
status in the USER_INDEXES view must be VALID for the rebuild operation to
succeed.

Format
ALTER INDEX [schema_name.]index_name REBUILD
 [PARAMETERS ('DEFAULT')]

Keywords and Parameters

DEFAULT
The list of stored and indexed attributes for the Expression Filter index being rebuilt
are derived from the default index parameters associated with the corresponding
attribute set.

Usage Notes
When the ALTER INDEX ... REBUILD statement is issued without a
PARAMETERS clause, the Expression Filter index is rebuilt using the current list of
stored and indexed attributes. This statement can also be used for indexes that
failed during IMPORT operation due to missing dependent objects.

The default index parameters associated with an attribute set can be modified
without affecting the existing Expression Filter indexes. These indexes can be rebuilt
to use the new set of defaults by using the DEFAULT parameter with the ALTER
INDEX ... REBUILD statement. Index parameters assigned to the expression set
are cleared when an index is rebuilt using the defaults.

The bitmap indexes defined for the indexed attributes of an Expression Filter index
get fragmented as the expressions stored in the corresponding column are
frequently modified (using INSERT, UPDATE, or DELETE operations). Rebuilding
those indexes could improve the performance of the query using the EVALUATE
operator. The bitmap indexes can be rebuilt online using the DBMS_
EXPFIL.DEFRAG_INDEX procedure.

See "Index Storage and Maintenance" on page 2-10 for more information about
rebuilding indexes.

ALTER INDEX REBUILD

6-6 Oracle Database Application Developer’s Guide - Expression Filter

Related views: USER_EXPFIL_INDEXES and USER_EXPFIL_PREDTAB_
ATTRIBUTES

Examples
The following statement rebuilds the index using its current parameters:

ALTER INDEX InterestIndex REBUILD;

The following statement rebuilds the index using the default index parameters
associated with the corresponding attribute set:

ALTER INDEX InterestIndex REBUILD PARAMETERS('DEFAULT');

ALTER INDEX RENAME TO

SQL Operators and Statements 6-7

ALTER INDEX RENAME TO

The ALTER INDEX RENAME TO statement renames an Expression Filter index.

Format
ALTER INDEX [schema_name.]index_name RENAME TO new_index_name;

Keywords and Parameters
None.

Usage Notes
None.

Examples
The following statement renames the index:

ALTER INDEX InterestIndex RENAME TO ExprIndex;

CREATE INDEX

6-8 Oracle Database Application Developer’s Guide - Expression Filter

CREATE INDEX

The CREATE INDEX statement creates an Expression Filter index for a set of
expressions stored in a column. The column being indexed should be configured to
store expressions (with an attribute set assigned to it), and the index should be
created in the same schema as the table (storing expressions).

Format
CREATE INDEX [schema_name.]index_name ON
[schema_name.].table_name (column_name) INDEXTYPE IS EXFSYS.EXPFILTER
[PARAMETERS (' <parameters_clause> ') ...;
<parameters_clause>:= [ADD TO DEFAULTS | REPLACE DEFAULTS]
 [<storeattrs_clause>] [<indexattrs_clause>][<predstorage_clause>]
<storeattrs_clause> := STOREATTRS [(attr1, attr2, ..., attrx) | TOP n]
<indexattrs_clause> := INDEXATTRS [(attr1, attr2, ..., attry) | TOP m]
<predstorage_clause> := PREDSTORAGE (<storage_clause>)

Keywords and Parameters

EXFSYS.EXPFILTER
The name of the index type that implements the Expression Filter index.

ADD TO DEFAULTS
When this parameter is specified, the attributes listed in the STOREATTRS and
INDEXATTRS clauses are added to the defaults associated with the corresponding
attribute set. This is the default behavior.

REPLACE DEFAULTS
When this parameter is specified, the index is created using only the list of stored
and indexed attributes specified after this clause. In this case, the default index
parameters associated with the corresponding attribute set are ignored.

STOREATTRS
Parameter to list the stored attributes for the Expression Filter index.

INDEXATTRS
Parameter to list the indexed attributes for the Expression Filter index.

CREATE INDEX

SQL Operators and Statements 6-9

TOP
This parameter can be used for both STOREATTRS and INDEXATTRS clauses only
when expression set statistics are collected. (See the section about GET_EXPRSET_
STATS Procedure in Chapter 8.) The number after the TOP parameter indicates the
number of (the most-frequent) attributes to be stored or indexed for the Expression
Filter index.

PREDSTORAGE
Storage clause for the predicate table. See Oracle Database SQL Reference for the
<storage_clause> definition.

Usage Notes
When the index parameters are directly assigned to an expression set (column
storing expressions), the PARAMETERS clause in the CREATE INDEX statement
cannot contain STOREATTRS or INDEXATTRS clauses. In this case, the Expression
Filter index is always created using the parameters associated with the expression
set. (See the "INDEX_PARAMETERS Procedure" and "XPINDEX_PARAMETERS
Procedure" sections in Chapter 8 and the "USER_EXPFIL_INDEX_PARAMS View"
in Chapter 9.)

When the PARAMETERS clause is not used with the CREATE INDEX statement and
the index parameters are not assigned to the expression set, the default index
parameters associated with the corresponding attribute set are used for the
Expression Filter index. If the default index parameters list is empty, all the scalar
attributes defined in the attribute set are stored and indexed in the predicate table.

For an Expression Filter index, all the indexed attributes are also stored. So, the list
of stored attributes is derived from those listed in the STOREATTRS clause and
those listed in the INDEXATTRS clause. If REPLACE DEFAULTS clause is not
specified, this list is merged with the default index parameters associated with the
corresponding attribute set.

If the REPLACE DEFAULTS clause is not specified, the list of indexed attributes for
an Expression Filter index is derived from the INDEXATTRS clause and the default
index parameters associated with the corresponding attribute set. If this list is
empty, the system picks at most 10 stored attributes and indexes them.

If an attribute is listed in the PARAMETERS clause as well as the default index
parameters, its stored versus indexed property is decided by the PARAMETERS
clause specification.

Predicate statistics for the expression set should be available to use the TOP clause
in the parameters of the CREATE INDEX statement. (See the "GET_EXPRSET_

CREATE INDEX

6-10 Oracle Database Application Developer’s Guide - Expression Filter

STATS Procedure" in Chapter 8 for more information.) When the TOP clause is used
for the STOREATTRS parameter, the INDEXATTRS parameter (if specified) should
also use the TOP clause. Also, the number specified for the TOP clause of the
INDEXATTRS parameter should be less than or equal to the one specified for the
STOREATTRS parameter. When a TOP clause is used, REPLACE DEFAULTS usage is
implied. That is, the stored and indexed attributes are picked solely based on the
predicate statistics available in the dictionary.

The successful creation of the Expression Filter index creates a predicate table, one
or more bitmap indexes on the predicate table, and a package with access functions
in the same schema as the base table. By default the predicate table and its indexes
are created in the user default tablespace. Alternate tablespace and other storage
parameters for the predicate table can be specified using the PREDSTORAGE clause.
The indexes on the predicate table are always created in the same tablespace as the
predicate table.

See Chapter 2 for information about indexing expressions.

Related views: USER_EXPFIL_INDEXES, USER_EXPFIL_INDEX_PARAMETERS,
USER_EXPFIL_DEF_INDEX_PARAMS, USER_EXPFIL_EXPRSET_STATS, and
USER_EXPFIL_PREDTAB_ATTRIBUTES

Examples
When index parameters are not directly assigned to the expression set, you can
create an Expression Filter index using the default index parameters specified for
the corresponding attribute set as follows:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER;

You can create an index with one additional stored attribute using the following
statement:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS (CrashTestRating(Model, Year))
 PREDSTORAGE (tablespace tbs_1) ');

You can specify the complete list of stored and indexed attributes for an index with
the following statement:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('REPLACE DEFAULTS
 STOREATTRS (Model, CrashTestRating(Model, Year))
 INDEXATTRS (Model, Year, Price)
 PREDSTORAGE (tablespace tbs_1) ');

CREATE INDEX

SQL Operators and Statements 6-11

The TOP clause can be used in the parameters clause when statistics are computed
for the expression set. These statistics are accessible from the USER_EXPFIL_
EXPRSET_STATS view.

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS TOP 4 INDEXATTRS TOP 3');

DROP INDEX

6-12 Oracle Database Application Developer’s Guide - Expression Filter

DROP INDEX

The DROP INDEX statement drops an Expression Filter index.

Format
DROP INDEX [schema_name.]index_name;

Keyword and Parameters
None.

Usage Notes
Dropping an Expression Filter index automatically drops all the secondary objects
maintained for the index. These objects include a predicate table, one or more
indexes on the predicate table, and an access function package.

Examples

DROP INDEX InterestIndex;

Object Types 7-1

7
Object Types

The Expression Filter feature is supplied with a set of predefined types and public
synonyms for these types. Most of these types are used for configuring index
parameters with the Expression Filter procedural APIs. The EXF$TABLE_ALIAS
type is used to support expressions defined on one or more database tables.

All the values and names passed to the types defined in this chapter are not case
sensitive. To preserve the case, you use double quotation marks around the values.

EXF$ATTRIBUTE

7-2 Oracle Database Application Developer’s Guide - Expression Filter

EXF$ATTRIBUTE

The EXF$ATTRIBUTE type is used to handle stored and indexed attributes for the
Expression Filter indexes.

Attributes

Usage Notes
The EXF$ATTRIBUTE type is used to specify the stored and indexed attributes for
an Expression Filter index using the DBMS_EXPFIL.DEFAULT_INDEX_
PARAMETERS procedure. When values for attr_oper and attr_indexed fields
are omitted during EXF$ATTRIBUTE instantiation, it is considered a stored attribute
with a default value for common operators (EXF$INDEXOPER('all')).

Examples
A stored attribute with no preference on the list of common operators is represented
as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)')

An indexed attribute is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_indexed => 'TRUE')

An indexed attribute with a list of common operators is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'TRUE')

Name Datatype Description

attr_name VARCHAR2(350) The arithmetic expression that constitutes the
stored or indexed attribute.

attr_oper EXF$INDEXOPER The list of common operators in the predicates
with the attribute. Default value:
EXF$INDEXOPER('all')

attr_
indexed

VARCHAR2(5) TRUE if the attribute is indexed, else FALSE.
Default value: FALSE.

EXF$ATTRIBUTE_LIST

Object Types 7-3

EXF$ATTRIBUTE_LIST

The EXF$ATTRIBUTE_LIST type is defined as follows:

CREATE or REPLACE TYPE exf$attribute_list as VARRAY(490) of exf$attribute;

Attributes
None.

Usage Notes
The EXF$ATTRIBUTE_LIST type is used to specify a list of stored and indexed
attributes while configuring the index parameters. (Also see the "DEFAULT_
INDEX_PARAMETERS Procedure" in Chapter 8 for more information.)

Examples
A list of stored and indexed attributes can be represented as follows:

exf$attribute_list (
 exf$attribute (attr_name => 'Model',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE')
)

EXF$INDEXOPER

7-4 Oracle Database Application Developer’s Guide - Expression Filter

EXF$INDEXOPER

The EXF$INDEXOPER type is used to specify the list of common operators in
predicates with a stored or an indexed attribute.

The EXF$INDEXOPER type is defined as follows:

CREATE or REPLACE TYPE exfsys.exf$indexoper as VARRAY(20) of VARCHAR2(15);

The values for the EXF$INDEXOPER array are expected to be from the list in the
following table:

Attributes
None.

Usage Notes
A value of ALL for one of the EXF$INDEXOPER items implies that all the simple
operators (=,>,<,>=,<=,!=, IS NULL, IS NOT NULL) are common in the predicates

Value Predicate Description

= Equality predicates

> Greater than predicates

< Less than predicates

>= Greater than or equal to predicates

<= Less than or equal to predicates

!= or <> or ^= Not equal to predicates

IS NULL IS NULL predicates

IS NOT NULL IS NOT NULL predicates

ALL All the operators listed in this table starting with the equality
predicate through the IS NOT NULL predicate

NVL Predicates with NVL (equality) operator

LIKE Predicates with LIKE operator

BETWEEN BETWEEN predicates

EXF$INDEXOPER

Object Types 7-5

with an attribute. This value can be used along with one or more complex operators
(NVL, LIKE and BETWEEN).

A predicate with a BETWEEN operator is treated as two predicates with binary
operators, one with '>=' operator and another with '<=' operator. By default, only
one of these operators is indexed, and the other operator is evaluated by value
substitution. However, if predicates with the BETWEEN operator are common for an
attribute (stored or indexed), both the binary operators resulting from the BETWEEN
operator can be indexed by specifying BETWEEN in the EXF$INDEXOPER VARRAY.
However, because this uses additional space in the predicate table, this operator
should be used only when majority of predicates with an attribute use the BETWEEN
operator.

When the LIKE operator is chosen as one of the common operators for an attribute,
LIKE predicates on that attributes are indexed. Indexing a LIKE operator is
beneficial only if the VARCHAR2 constant on the right-hand side of the predicate
does not lead with a wild-card character. For example, indexing a LIKE operator
will filter the following predicates efficiently:

company LIKE 'General%'
company LIKE 'Proctor%'

But, the following predicates are evaluated as sparse predicates in the last stage:

company LIKE '%Electric'
company LIKE "%Gamble'

Examples
An attribute with a list of common operators is represented as follows:

exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<=', 'between'),
 attr_indexed => 'TRUE')

EXF$TABLE_ALIAS

7-6 Oracle Database Application Developer’s Guide - Expression Filter

EXF$TABLE_ALIAS

A table alias is a special form of elementary attribute that can be included in the
attribute set. These attributes are used to manage expressions defined on one or
more database tables.

Attributes

Usage Notes
The concept of a table alias attribute is captured in the Expression Filter dictionary
and the corresponding attribute in the attribute set's object type is created with a
VARCHAR2 datatype. (Also see Appendix A and "ADD_ELEMENTARY_
ATTRIBUTE Procedure" in Chapter 8.)

Examples
For a set of expressions defined on database tables, the corresponding table alias
attributes are configured as follows:

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'EMP',
 tab_alias => exf$table_alias('SCOTT.EMP'));
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'DEPT',
 tab_alias => exf$table_alias('DEPT'));
END;
/

The Expression column using the previous attribute set can store expressions of
form EMP.JOB = 'Clerk' and EMP.NAME = 'Joe', where JOB and NAME are
the names of the columns in the SCOTT.EMP table.

Name Datatype Description

table_name VARCHAR2(70) Name of the table with a possible schema extension.

EXF$XPATH_TAG

Object Types 7-7

EXF$XPATH_TAG

The EXF$XPATH_TAG type is used to configure an XML element or an XML
attribute for indexing a set of XPath predicates.

Attributes

Usage Notes
EXF$XPATH_TAG type is used to configure an XML element or an attribute as a
positional or a value filter for an Expression Filter index (see Chapter 3). An
instance of the EXF$XPATH_TAG type with NULL value for tag_type configures
the XML tag as a positional filter. In the current release, the only other possible
values for the tag_type attribute are strings (CHAR or VARCHAR) and such tags are
configured as value filters. By default, all positional filters are indexed and the
value filters are not indexed. This behavior can be overridden by setting a TRUE or
FALSE value for the tag_indexed attribute accordingly.

Examples
An XML element can be configured as a positional filter and be indexed using the
following instance of the EXF$XPATH_TAG type.

exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => null) --- positional filter

Name Datatype Description

tag_name VARCHAR2(70) Name of the XML element or attribute. The name for an
XML attribute is formatted as:
<ElementName>@<AttributeName>.

tag_indexed VARCHAR2(5) TRUE if XML tag is indexed; otherwise FALSE.

Default:

TRUE if the tag is a positional filter.

FALSE if the tag is a value filter.

tag_type VARCHAR2(30) Datatype for the value in the case of value filter. NULL
for positional filters.

EXF$XPATH_TAG

7-8 Oracle Database Application Developer’s Guide - Expression Filter

An XML attribute can be configured as a value filter and be indexed using the
following type instance.

exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE', --- indexed predicate group
 tag_type => 'VARCHAR(15)') --- value filter

EXF$XPATH_TAGS

Object Types 7-9

EXF$XPATH_TAGS

A type used to specify a list of XML tags while configuring the Expression Filter
index parameters. This type is defined as follows:

CREATE or REPLACE TYPE exf$xpath_tags as VARRAY(490) of exf$xpath_tag;

Attributes
None.

Usage Notes
EXF$XPATH_TAGS type is used to specify a list of XML tags while configuring the
Expression Filter index parameters. (See "DEFAULT_XPINDEX_PARAMETERS
Procedure" in Chapter 8.)

Examples
A list of XML tags configured as positional and value filters can be represented as
follows:

exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)') --- value filter
)

EXF$XPATH_TAGS

7-10 Oracle Database Application Developer’s Guide - Expression Filter

Management Procedures Using the DBMS_EXPFIL Package 8-1

8
Management Procedures Using the DBMS_

EXPFIL Package

The Expression Filter DBMS_EXPFIL package contains all the procedures used to
manage attribute sets, expression sets, expression indexes, optimizer statistics, and
privileges. Table 8–1 describes the procedures in the DBMS_EXPFIL package. These
procedures are further described in this chapter.

All the values and names passed to the procedures defined in the DBMS_EXPFIL
package are not case sensitive, unless otherwise mentioned. To preserve the case,
you use double quotation marks around the values.

Table 8–1 DBMS_EXPFIL Procedures

Procedure Description

ADD_ELEMENTARY_
ATTRIBUTE

Adds the specified attribute to the attribute set.

ADD_FUNCTIONS Adds a function, type, or package to the approved list of
functions with an attribute set.

ASSIGN_ATTRIBUTE_
SET

Assigns an attribute set to a column storing expressions.

BUILD_EXCEPTIONS_
TABLE

Creates an exception table to hold references to invalid
expressions.

CLEAR_EXPRSET_STATS Clears the predicate statistics for an expression set.

COPY_ATTRIBUTE_SET Makes a copy of the attribute set.

CREATE_ATTRIBUTE_
SET

Creates an attribute set.

DEFAULT_INDEX_
PARAMETERS

Assigns default index parameters to an attribute set.

8-2 Oracle Database Application Developer’s Guide - Expression Filter

DEFAULT_XPINDEX_
PARAMETERS

Assigns default XPath index parameters to an attribute set.

DEFRAG_INDEX Rebuilds the bitmap indexes online to reduce fragmentation.

DROP_ATTRIBUTE_SET Drops an unused attribute set.

GET_EXPRSET_STATS Collects predicate statistics for an expression set.

GRANT_PRIVILEGE Grants an expression DML privilege to a user.

INDEX_PARAMETERS Assigns index parameters to an expression set.

REVOKE_PRIVILEGE Revokes an expression DML privilege from a user.

UNASSIGN_ATTRIBUTE_
SET

Breaks the association between a column storing expressions
and the attribute set.

VALIDATE_
EXPRESSIONS

Validates expression metadata and the expressions stored in a
column.

XPINDEX_PARAMETERS Assigns XPath index parameters to an expression set.

Table 8–1 DBMS_EXPFIL Procedures

Procedure Description

ADD_ELEMENTARY_ATTRIBUTE Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-3

ADD_ELEMENTARY_ATTRIBUTE Procedure

This procedure adds the specified attribute to the attribute set.

Format
procedure ADD_ELEMENTARY_ATTRIBUTE (
 attr_set IN VARCHAR2, --- attr set name
 attr_name IN VARCHAR2, --- attr name
 attr_type IN VARCHAR2); --- attr type

--- or

procedure ADD_ELEMENTARY_ATTRIBUTE (
 attr_set IN VARCHAR2, --- attr set name
 attr_name IN VARCHAR2, --- table alias (name)
 tab_alias IN exf$table_alias); --- table alias for

Arguments

attr_set
Name of the attribute set to which this attribute is added.

attr_name
Name of the elementary attribute to be added. No two attributes in a set can have
the same name.

attr_type
Datatype of the attribute. This argument accepts any standard SQL datatype or the
name of an object type that is accessible to the current user.

tab_alias
The type that identifies the database table to which the attribute is aliased.

Usage Notes
This procedure adds an elementary attribute to an attribute set. If the attribute set
was originally created from an existing object type, then additional attributes
cannot be added.

One or more, or all elementary attributes in an attribute set can be table aliases. If an
elementary attribute is a table alias, then the value assigned to the elementary

ADD_ELEMENTARY_ATTRIBUTE Procedure

8-4 Oracle Database Application Developer’s Guide - Expression Filter

attribute is a ROWID from the corresponding table. An attribute set with one or
more table alias attributes cannot be created from an existing object type. For more
information about table aliases, see Appendix A.

Elementary attributes cannot be added to an attribute set that is already assigned to
a column storing expressions.

See "Defining Attribute Sets" on page 1-5 for more information about adding
elementary attributes.

Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_
ATTRIBUTES.

Examples
The following commands add two elementary attributes to an attribute set:

BEGIN
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'HRREP',
 attr_type => 'VARCHAR2(30)');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE (
 attr_set => 'HRAttrSet',
 attr_name => 'DEPT',
 tab_alias => exf$table_alias('DEPT'));
END;
/

ADD_FUNCTIONS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-5

ADD_FUNCTIONS Procedure

This procedure adds a user-defined function, package, or type representing a set of
functions to the attribute set.

Format
PROCEDURE ADD_FUNCTIONS (
 attr_set IN VARCHAR2, --- attr set name
 funcs_name IN VARCHAR2); --- function/package/type name

Arguments

attr_set
Name of the attribute set to which the functions are added.

funcs_name
Name of a function, package, or type (representing a function set) or its synonyms.

Usage Notes
By default, an attribute set implicitly allows references to all Oracle supplied SQL
functions for use by the expression set. If the expression set refers to a user-defined
function, the expression set must be explicitly added to the attribute set.

The ADD_FUNCTIONS procedure adds a user-defined function or a package (or
type) representing a set of functions to the attribute set. Any new or modified
expressions are validated using this list.

The function or the package name can be specified with a schema extension. If a
function name is specified without a schema extension, only such references in the
expression set are considered valid. The expressions in a set can be restricted to use
a synonym to a function or a package by adding the corresponding synonym to the
attribute set. This preserves the portability of the expression set to other schemas.

See "Defining Attribute Sets" on page 1-5 for more information about adding
functions to an attribute set.

Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_ASET_
FUNCTIONS

ADD_FUNCTIONS Procedure

8-6 Oracle Database Application Developer’s Guide - Expression Filter

Examples
The following commands add two functions to the attribute set:

BEGIN
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'HorsePower');
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'Scott.CrashTestRating');
END;
/

ASSIGN_ATTRIBUTE_SET Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-7

ASSIGN_ATTRIBUTE_SET Procedure

This procedure assigns an attribute set to a VARCHAR2 column in a user table to
create an Expression column.

Format
PROCEDURE ASSIGN_ATTRIBUTE_SET (
 attr_set IN VARCHAR2, --- attr set name
 expr_tab IN VARCHAR2, --- name of the table
 expr_col IN VARCHAR2, --- exp column in the table
 force IN VARCHAR2 --- to use existing expressions
 default 'FALSE');

Arguments

attr_set
The name of the attribute set.

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

force
Argument used to trust the existing expressions in a table (and skip validation).

Usage Notes
The ASSIGN_ATTRIBUTE_SET procedure assigns an attribute set to a VARCHAR2
column in a user table to create an Expression column. The attribute set contains the
elementary attribute names and their datatypes and any functions used in the
expressions. The attribute set is used by the Expression column to validate changes
and additions to the expression set.

An attribute set can be assigned only to a table column in the same schema as the
attribute set. An attribute set can be assigned to one or more table columns.
Assigning an attribute set to a column storing expressions implicitly creates
methods for the associated object type. For this operation to succeed, the object type
cannot have any dependent objects before the attribute set is assigned.

ASSIGN_ATTRIBUTE_SET Procedure

8-8 Oracle Database Application Developer’s Guide - Expression Filter

By default, the column should not have any expressions at the time of association.
However, if the values in the column are known to be valid expressions, you can
use a value of 'TRUE' for the force argument to assign the attribute set to a
column containing expressions.

See "Defining Expression Columns" on page 1-7 for more information about adding
elementary attributes.

Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_
EXPRESSION_SETS

Examples
The following command assigns the attribute set to a column storing expressions.
The expression set should be empty at the time of association.

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (attr_set => 'Car4Sale',
 expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

BUILD_EXCEPTIONS_TABLE Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-9

BUILD_EXCEPTIONS_TABLE Procedure

This procedure creates the exception table, used in validation, in the current
schema.

Format
PROCEDURE BUILD_EXCEPTIONS_TABLE (
 exception_tab IN VARCHAR2); -- exception table to be created --

Arguments

exception_tab
Name of the exception table.

Usage Notes
The expressions stored in a table column can be validated using the VALIDATE_
EXPRESSIONS procedure. During expression validation, you can optionally
provide the name of the exception table in which the references to the invalid
expressions are stored. The BUILD_EXCEPTIONS_TABLE procedure creates the
exception table in the current schema.

See "Evaluation Semantics" on page 1-13 and "VALIDATE_EXPRESSIONS
Procedure" on page 8-30 for more information.

Related view: USER_TABLES

Examples
The following command creates the exception table, InterestExceptions, in the
current schema:

BEGIN
 DBMS_EXPFIL.BUILD_EXCEPTIONS_TABLE (
 exception_tab => 'InterestExceptions');
END;
/

CLEAR_EXPRSET_STATS Procedure

8-10 Oracle Database Application Developer’s Guide - Expression Filter

CLEAR_EXPRSET_STATS Procedure

This procedure clears the predicate statistics for the expression set stored in a table
column.

Format
PROCEDURE CLEAR_EXPRSET_STATS (
 expr_tab IN VARCHAR2, --- table storing expression set
 expr_col IN VARCHAR2); --- column in the table with set

Arguments

exp_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

Usage Notes
This procedure clears the predicate statistics for the expression set stored in a table
column. See also "GET_EXPRSET_STATS Procedure" on page 8-21 for information
about gathering the statistics.

Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_EXPRSET_
STATS

Examples
The following command clears the predicate statistics for the expression set stored
in Interest column of the Consumer table:

BEGIN
 DBMS_EXPFIL.CLEAR_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

COPY_ATTRIBUTE_SET Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-11

COPY_ATTRIBUTE_SET Procedure

This procedure copies an attribute set along with its user-defined function list and
default index parameters to another set.

Format
PROCEDURE COPY_ATTRIBUTE_SET (
 from_set IN VARCHAR2, --- name of an existing att set
 to_set IN VARCHAR2); --- new set name

Arguments

from_set
Name of an existing attribute set to be copied.

to_set
Name of the new attribute set.

Usage Notes
A schema-extended name can be used for the from_set argument to copy an
attribute set across schemas. The user issuing the command must have EXECUTE
privileges for the object type associated with the original attribute set. The user
must ensure that any references to schema objects (user-defined functions, tables,
and embedded objects) are valid in the new schema.

The default index parameters and the user-defined function list of the new set can
be changed independent of the original set.

Related views: ALL_EXPFIL_ATTRIBUTE_SETS and ALL_EXPFIL_ATTRIBUTES.

Examples
The following command makes a copy of the Car4Sale attribute set:

BEGIN
 DBMS_EXPFIL.COPY_ATTRIBUTE_SET (from_set => 'Car4Sale',
 to_set => 'Vehicle');
END;
/

CREATE_ATTRIBUTE_SET Procedure

8-12 Oracle Database Application Developer’s Guide - Expression Filter

CREATE_ATTRIBUTE_SET Procedure

This procedure creates an empty attribute set or an attribute set with a complete set
of elementary attributes derived from an object type with a matching name.

Format
PROCEDURE CREATE_ATTRIBUTE_SEt (
 attr_set IN VARCHAR2, --- attr set name
 from_type IN VARCHAR2 --- object type for attributes
 default 'NO');

Arguments

attr_set
The name of the attribute set to be created.

from_type
YES, if the attributes for the attribute set should be derived from an existing object
type.

Usage Notes
The object type used for an attribute set cannot contain any user methods, and it
should not be an evolved type (with the use of ALTER TYPE command). This object
type should not have any dependent objects at the time of the attribute set creation.
If the attribute set is not derived from an existing object type, this procedure creates
an object type with a matching name.

An attribute set with one or more table alias attributes cannot be derived from an
object type. For this purpose, create an empty attribute set and add one elementary
attribute at a time using the DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE
procedure. (See Appendix A for more information.)

See "Defining Attribute Sets" on page 1-5 and "ADD_ELEMENTARY_ATTRIBUTE
Procedure" on page 8-3 for more information.

Related views: USER_EXPFIL_ATTRIBUTE_SET and USER_EXPFIL_ATTRIBUTES.

CREATE_ATTRIBUTE_SET Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-13

Examples
The following commands create an attribute set with all the required elementary
attributes derived from the Car4Sale type:

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

Assuming that the Car4Sale type does not exist, the attribute set can be created
from scratch as shown in the following example:

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Model',
 attr_type => 'VARCHAR2(20)');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Year',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Price',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Mileage',
 attr_type => 'NUMBER');
END;
/

DEFAULT_INDEX_PARAMETERS Procedure

8-14 Oracle Database Application Developer’s Guide - Expression Filter

DEFAULT_INDEX_PARAMETERS Procedure

This procedure assigns default index parameters to an attribute set. It also adds or
drops a partial list of stored and indexed attributes to or from the default list
associated with the attribute list.

Format
PROCEDURE DEFAULT_INDEX_PARAMETERS (
 attr_set IN VARCHAR2, --- attribute set name
 attr_list IN EXF$ATTRIBUTE_LIST,
 --- stored and indexed attributes
 operation IN VARCHAR2 --- to ADD or DROP
 default 'ADD');

Arguments

attr_set
The name of the attribute set.

attr_list
An instance of EXF$ATTRIBUTE_LIST with a partial list of (default) stored and
indexed attributes for an Expression Filter index.

operation
The operation to be performed on the list of index parameters. Default value: ADD.
Valid values: ADD and DROP.

Usage Notes
Existing Expression Filter indexes are not modified when the default parameters for
the corresponding attribute set are changed. The new index defaults are used when
a new Expression Filter index is created and when an existing index is rebuilt. (See
ALTER INDEX REBUILD in Chapter 6 for more information about rebuilding
indexes.)

See "Creating an Index from Default Parameters" on page 2-7 for more information
about assigning default index parameters to an attribute set.

Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_DEF_
INDEX_PARAMS

DEFAULT_INDEX_PARAMETERS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-15

Examples
The following command adds the specified stored and indexed attributes to the
attribute set's default index parameters list:

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERs(
 attr_set => 'Car4Sale',
 attr_list => exf$attribute_list (
 exf$attribute (attr_name => 'Model',
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE'),
 exf$attribute (attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

The following command drops the CrashTestRating(Model, Year) attribute
(stored or indexed) from the previous list.

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 attr_list => exf$attribute_list (
 exf$attribute (attr_name => 'CrashTestRating(Model, Year)')),
 operation => 'DROP');
END;
/

DEFAULT_XPINDEX_PARAMETERS Procedure

8-16 Oracle Database Application Developer’s Guide - Expression Filter

DEFAULT_XPINDEX_PARAMETERS Procedure

This procedure adds (or drops) a partial list of XPath parameters to the default
index parameters associated with the attribute set.

Format
PROCEDURE DEFAULT_XPINDEX_PARAMETERS (
 attr_set IN VARCHAR2, --- attribute set name
 xmlt_attr IN VARCHAR2, --- XMLType attrubue name
 xptag_list IN EXF$XPATH_TAGS,
 --- XPath tags for index
 operation IN VARCHAR2 --- to ADD or DROP
 default 'ADD');

Arguments

attr_set
The name of the attribute set.

xmlt_attr
The name of the attribute with the XMLType datatype.

xptag_list
An instance of EXF$XPATH_TAGS type with a partial list of XML elements and
attributes to be configured for the Expression Filter index.

operation
The operation to be performed on the list of index parameters. Default value: ADD.
Valid values: ADD and DROP.

Usage Notes
The attribute set used for an expression set may have one or more XML type
attributes (defined with XMLType datatype) and the corresponding expressions
may contain XPath predicates on these attributes. The Expression Filter index
created for the expression set can be tuned to process these XPath predicates
efficiently by using some XPath-specific index parameters (in addition to some
non-XPath index parameters).

The DEFAULT_XPINDEX_PARAMETERS procedure adds (or drops) a partial list of
XPath parameters to the default index parameters associated with the attribute set.

DEFAULT_XPINDEX_PARAMETERS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-17

The XPath parameters are assigned to a specific XMLType attribute in the attribute
set and this information can be viewed using the USER_EXPFIL_DEF_INDEX_
PARAMS view. The DEFAULT_INDEX_PARAMETERS procedure and the
DEFAULT_XPINDEX_PARAMETERS procedure can be used independent of each
other. They maintain a common list of default index parameters for the attribute set.

See "Index Tuning for XPath Predicates" on page 3-6 for more information about
XPath parameters to the default index parameters of an attribute set. See also
"DEFAULT_INDEX_PARAMETERS Procedure" on page 8-14 for more information
about default index parameters.

Related views: USER_EXPFIL_ATTRIBUTES and USER_EXPFIL_DEF_INDEX_
PARAMS.

Examples
The following command adds the specified XML tags to the default index
parameters list along with their preferences such as positional or value filter and
indexed or stored predicate group:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details',
 xptag_list => --- XPath tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)'), --- value filter
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => null)
)
);
END;

Note: The values assigned to the tag_name argument of
exf$xpath_tag type are case sensitive.

DEFAULT_XPINDEX_PARAMETERS Procedure

8-18 Oracle Database Application Developer’s Guide - Expression Filter

/

The following command drops the stereo@make tag from the default index
parameters:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details',
 xptag_list => --- XPath tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make')
),
 operation => 'DROP'
);
END;
/

DEFRAG_INDEX Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-19

DEFRAG_INDEX Procedure

This procedure rebuilds the bitmap indexes online and thus reduces the
fragmentation.

Format
PROCEDURE DEFRAG_INDEX (
 idx_name IN VARCHAR2); --- expfil index to defrag

Arguments

idx_name
The name of the Expression Filter index.

Usage Notes
The bitmap indexes defined for the indexed attributes of an Expression Filter index
become fragmented as additions and updates are made to the expression set. The
DEFRAG_INDEX procedure rebuilds the bitmap indexes online and thus reduces
the fragmentation.

Indexes can be defragmented when the expression set is being modified. However,
you should schedule defragmentation when the workload is relatively light.

See "Index Storage and Maintenance" on page 2-10 for more information about
rebuilding indexes.

Related views: USER_EXPFIL_INDEXES and USER_INDEXES.

Examples
The following command is issued to defragment the bitmap indexes associated with
the Expression Filter index:

BEGIN
 DBMS_EXPFIL.DEFRAG_INDEX (idx_name => 'InterestIndex');
END;
/

DROP_ATTRIBUTE_SET Procedure

8-20 Oracle Database Application Developer’s Guide - Expression Filter

DROP_ATTRIBUTE_SET Procedure

This procedure drops an attribute set not being used for any expression set.

Format
PROCEDURE DROP_ATTRIBUTE_SET (
 attr_set IN VARCHAR2); --- attr set name

Arguments

attr_set
The name of the attribute set to be dropped.

Usage Notes
The DROP_ATTRIBUTE_SET procedure drops an attribute set not being used for
any expression set. If the attribute set was initially created from an existing object
type, the object type remains after dropping the attribute set. Otherwise, the object
type is dropped with the attribute set.

Related views: USER_EXPFIL_ATTRIBUTE_SETS and USER_EXPFIL_
EXPRESSION_SETS.

Examples
Assuming that the attribute set is not used by an Expression column, the following
command drops the attribute set:

BEGIN
 DBMS_EXPFIL.DROP_ATTRIBUTE_SET(attr_set => 'Car4Sale');
END;
/

GET_EXPRSET_STATS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-21

GET_EXPRSET_STATS Procedure

This procedure computes the predicate statistics for an expression set and stores
them in the expression filter dictionary.

Format
PROCEDURE GET_EXPRSET_STATS (
 expr_tab IN VARCHAR2, --- table storing expression set
 expr_col IN VARCHAR2); --- column in the table with set

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

Usage Notes
When a representative set of expressions are stored in a table column, you can use
predicate statistics for those expressions to configure the corresponding Expression
Filter index (using the TOP parameters clause). The GET_EXPRSET_STATS
procedure computes the predicate statistics for an expression set and stores them in
the expression filter dictionary.

See "Creating an Index from Statistics" on page 2-9 for more information about
using predicate statistics.

Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_EXPRSET_
STATS.

Examples
The following command computes the predicate statistics for the expressions stored
in the Interest column of the Consumer table:

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

GRANT_PRIVILEGE Procedure

8-22 Oracle Database Application Developer’s Guide - Expression Filter

GRANT_PRIVILEGE Procedure

This procedure grants privileges on one or more Expression columns to other users.

Format
PROCEDURE GRANT_PRIVILEGE (
 expr_tab IN VARCHAR2, --- table w/ the expr column
 expr_col IN VARCHAR2, --- column storing the expressions
 priv_type IN VARCHAR2, --- type of priv to be granted
 to_user IN VARCHAR2); --- user to which the priv is
 --- granted

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

priv_type
Types of the privilege to be granted. Valid values: INSERT EXPRESSION, UPDATE
EXPRESSION, ALL

to_user
User to which the privilege is granted.

Usage Notes
The SQL EVALUATE operator evaluates expressions with the privileges of the owner
of the table that stores the expressions. The privileges of the user issuing the query
are not considered. The owner of the table can insert, update, and delete
expressions. Other users must have INSERT and UPDATE privileges for the table
and INSERT EXPRESSION and UPDATE EXPRESSION privilege for a specific
Expression column in the table.

Using the GRANT_PRIVILEGE procedure, the owner of the table can grant INSERT
EXPRESSION or UPDATE EXPRESSION privileges on one or more Expression
columns to other users. Both the privileges can be granted to a user by specifying
ALL for the privilege type.

GRANT_PRIVILEGE Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-23

See "REVOKE_PRIVILEGE Procedure" on page 8-27 and "Granting and Revoking
Privileges" on page 1-13 for more information about granting and revoking
privileges.

Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_
PRIVILEGES.

Examples
The owner of Consumer table can grant INSERT EXPRESSION privileges to user
SCOTT with the following command. User SCOTT should also have INSERT
privileges on the table so that he can add new expressions to the set.

BEGIN
 DBMS_EXPFIL.GRANT_PRIVILEGE (expr_tab => 'Consumer',
 expr_col => 'Interest',
 priv_type => 'INSERT EXPRESSION',
 to_user => 'SCOTT');
END;
/

INDEX_PARAMETERS Procedure

8-24 Oracle Database Application Developer’s Guide - Expression Filter

INDEX_PARAMETERS Procedure

This procedure fine-tunes the index parameters for each expression set before index
creation.

Format
PROCEDURE INDEX_PARAMETERS (
 expr_tab IN VARCHAR2, --- table with expr column
 expr_col IN VARCHAR2, --- column storing expressions
 attr_list IN EXF$ATTRIBUTE_LIST,
 operation IN VARCHAR2 --- type of operation
 default 'ADD');

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

attr_list
An instance of EXF$ATTRIBUTE_LIST with a partial list of stored and indexed
attributes.

operation
The operation to be performed on the list of index parameters. Default value: ADD.
Valid values: ADD, DROP, DEFAULT, and CLEAR.

Usage Notes
An attribute set can be used by multiple expression sets stored in different columns
of user tables. By default, the index parameters associated with the attribute set are
used to define an Expression Filter index on an expression set. If you need to
fine-tune the index for each expression set, you can specify a small list of the index
parameters in the PARAMETERS clause of the CREATE INDEX statement. However,
when an Expression Filter index uses a large number of index parameters or if the
index is configured for XPath predicates, fine-tuning the parameters with the
CREATE INDEX statement is not possible.

INDEX_PARAMETERS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-25

The INDEX_PARAMETERS procedure fine-tunes the index parameters for each
expression set before index creation. This procedure can be used to copy the
defaults from the corresponding attribute set and selectively add (or drop)
additional index parameters for the expression set. (You use the XPINDEX_
PARAMETERS procedure to add and drop XPath index parameters.) The
Expression Filter index defined for an expression set with a non-empty list of index
parameters always uses these parameters. The INDEX_PARAMETERS procedure
cannot be used when the Expression Filter index is already defined for the column
storing expressions.

The operations allowed with this procedure include:

� Deriving the current list of default index parameters (including any
XPath-specific parameters) from the corresponding attribute set and assigning
them to the specified expression set (a value of DEFAULT for the operation
argument).

� Adding (or dropping) one or more attributes to (or from) the current list of
parameters assigned to the expression set (values of ADD or DROP for the
operation argument).

� Clearing the index parameters assigned to the expression set. This enables the
user to start using default parameters or tune the parameters from scratch (a
value of CLEAR for the operation argument).

See "Creating an Index from Exact Parameters" on page 2-8 and "XPINDEX_
PARAMETERS Procedure" on page 8-32 for more information.

Related views: USER_EXPFIL_EXPRESSION_SETS, USER_EXPFIL_DEF_INDEX_
PARAMETERS and USER_EXPFIL_INDEX_PARAMETERS.

Examples
The following command synchronizes the expression set's index parameters with
the defaults associated with the corresponding attribute set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',

Note: This procedure is useful only when an attribute set is shared
across multiple expression sets. In all other cases, the defaults
assigned to the attribute set can be tuned for the expression set
using it.

INDEX_PARAMETERS Procedure

8-26 Oracle Database Application Developer’s Guide - Expression Filter

 expr_col => 'Interest',
 attr_list => null,
 operation => 'DEFAULT');
END;
/

The following command adds a stored attribute to the expression set's index
parameters.

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list =>
 exf$attribute_list (
 exf$attribute (
 attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

The following command clears the index parameters associated with the expression
set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list => null,
 operation => 'CLEAR');
END;
/

A subsequent index creation will use the default index parameters assigned to the
corresponding attribute set.

REVOKE_PRIVILEGE Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-27

REVOKE_PRIVILEGE Procedure

This procedure revokes an expression privilege previously granted by the owner.

Format
PROCEDURE REVOKE_PRIVILEGE (
 expr_tab IN VARCHAR2, --- table with the expr column
 expr_col IN VARCHAR2, --- column storing the expression
 priv_type IN VARCHAR2, --- type of privilege to be revoked
 from_user IN VARCHAR2); --- user from which the priv is
 --- revoked

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

priv_type
Type of privilege to be revoked.

from_user
User from which the privilege is revoked.

Usage Notes
The REVOKE_PRIVILEGE procedure revokes an expression privilege previously
granted by the owner.

See "GRANT_PRIVILEGE Procedure" on page 8-22 and "Granting and Revoking
Privileges" on page 1-13 for more information about granting and revoking
privileges.

Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_
PRIVILEGES.

REVOKE_PRIVILEGE Procedure

8-28 Oracle Database Application Developer’s Guide - Expression Filter

Examples
The following command revokes the INSERT EXPRESSION privilege on the
Interest column of the Consumer table from user SCOTT:

BEGIN
 DBMS_EXPFIL.REVOKE_PRIVILEGE (expr_tab => 'Consumer',
 expr_col => 'Interest',
 priv_type => 'INSERT EXPRESSION',
 from_user => 'SCOTT');
END;
/

UNASSIGN_ATTRIBUTE_SET Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-29

UNASSIGN_ATTRIBUTE_SET Procedure

This procedure unassigns an attribute set from a column storing expressions.

Format
PROCEDURE UNASSIGN_ATTRIBUTE_SET (
 expr_tab IN VARCHAR2, --- table with expr. column
 expr_col IN VARCHAR2); --- column storing expr. set

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

Usage Notes
A column of an expression datatype can be converted back to a VARCHAR2 type by
unassigning the attribute set. You can unassign an attribute set from a column
storing expressions if an Expression Filter index is not defined on the column.

See "ASSIGN_ATTRIBUTE_SET Procedure" on page 8-7 for information about
assigning attribute sets.

Related views: USER_EXPFIL_EXPRESSION_SETS and USER_EXPFIL_INDEXES.

Examples
The following command unassigns the attribute set previously assigned to the
Interest column of the Consumer table. (See Section 5.1.)

BEGIN
 DBMS_EXPFIL.UNASSIGN_ATTRIBUTE_SET (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

VALIDATE_EXPRESSIONS Procedure

8-30 Oracle Database Application Developer’s Guide - Expression Filter

VALIDATE_EXPRESSIONS Procedure

This procedure validates all the expressions in a set.

Format
PROCEDURE VALIDATE_EXPRESSIONS (
 expr_tab IN VARCHAR2, --- expressions table
 expr_col IN VARCHAR2, --- column storing expressions
 exception_tab IN VARCHAR2 --- exception table
 default null);

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

exception_tab
Name of the exception table. This table is created using the BUILD_EXCEPTIONS_
TABLE procedure.

Usage Notes
The expressions stored in a table may have references to schema objects like
user-defined functions and tables. When these schema objects are dropped or
modified, the expressions could become invalid and the subsequent evaluation
(query with EVALUATE operator) could fail.

The VALIDATE_EXPRESSIONS procedure validates all the expressions in a set. By
default, the expression validation utility fails on the first expression that is invalid.
Optionally, the caller can pass an exception table to store references to all the invalid
expressions. In addition to validating expressions in the set, this procedure validates
the parameters (stored and indexed attributes) of the associated index and the
approved list of user-defined functions. Any errors in the index parameters or the
user-defined function list are immediately reported to the caller.

See "Evaluation Semantics" on page 1-13 and "BUILD_EXCEPTIONS_TABLE
Procedure" on page 8-9 for more information.

VALIDATE_EXPRESSIONS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-31

Related views: USER_EXPFIL_EXPRESSION_SETS, USER_EXPFIL_ASET_
FUNCTIONS, and USER_EXPFIL_PREDTAB_ATTRIBUTES.

Examples
The following command validates the expressions stored in the Interest column
of the Consumer table.

BEGIN
 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

XPINDEX_PARAMETERS Procedure

8-32 Oracle Database Application Developer’s Guide - Expression Filter

XPINDEX_PARAMETERS Procedure

This procedure is used in conjunction with the INDEX_PARAMETERS procedure to
fine-tune the XPath-specific index parameters for each expression set.

Format
PROCEDURE XPINDEX_PARAMETERS (
 expr_tab IN VARCHAR2, --- table with expr column
 expr_col IN VARCHAR2, --- column storing expressions
 xmlt_attr IN VARCHAR2, --- XMLType attrubue name
 xptag_list IN EXF$XPATH_TAGS,
 operation IN VARCHAR2 --- to ADD or DROP
 default 'ADD');

Arguments

expr_tab
The table storing the expression set.

expr_col
The column in the table that stores the expressions.

xmlt_attr
The name of the attribute with the XMLType datatype.

xptag_list
An instance of EXF$XPATH_TAGS type with a partial list of XML elements and
attributes.

operation
The operation to be performed on the list of index parameters. Default value: ADD.
Valid values: ADD or DROP.

Usage Notes
When an attribute set is shared by multiple expression sets, the INDEX_
PARAMETERS procedure can be used to tune the simple (non-XPath) index
parameters for each expression set. The XPINDEX_PARAMETERS procedure is
used in conjunction with the INDEX_PARAMETERS procedure to fine-tune the
XPath-specific index parameters for each expression set.

XPINDEX_PARAMETERS Procedure

Management Procedures Using the DBMS_EXPFIL Package 8-33

See also "INDEX_PARAMETERS Procedure" on page 8-24 and "Index Tuning for
XPath Predicates" on page 3-6 for more information.

Related views: USER_EXPFIL_ATTRIBUTES, USER_EXPFIL_DEF_INDEX_
PARAMS, and USER_EXPFIL_INDEX_PARAMS.

Examples
The following command synchronizes the expression set's index parameters (XPath
and non-XPath) with the defaults associated with the corresponding attribute set:

BEGIN
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list => null,
 operation => 'DEFAULT');
END;
/

The following command adds an XPath-specific index parameter to the expression
set:

BEGIN
 DBMS_EXPFIL.XPINDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 xmlt_attr => 'Details',
 xptag_list =>
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => null)),
 operation => 'ADD');
END;
/

Note: The values assigned to the tag_name argument of
exf$xpath_tag type are case-sensitive.

XPINDEX_PARAMETERS Procedure

8-34 Oracle Database Application Developer’s Guide - Expression Filter

Expression Filter Views 9-1

9
Expression Filter Views

The Expression Filter metadata can be viewed using the Expression Filter views
defined with a xxx_EXPFIL prefix, where xxx can be USER or ALL. These views are
read-only to the users and are created and maintained by the Expression Filter
procedures.

 Table 9–1 lists the names of the views and their descriptions.

Table 9–1 Expression Filter Views

View Name Description

USER_EXPFIL_ASET_FUNCTIONS List of functions and packages approved for the
attribute set.

USER_EXPFIL_ATTRIBUTES List of elementary attributes of the attribute set.

USER_EXPFIL_ATTRIBUTE_SETS List of attribute set.

USER_EXPFIL_DEF_INDEX_PARAMS List of default index parameters.

USER_EXPFIL_EXPRESSION_SETS List of expression sets.

USER_EXPFIL_EXPRSET_STATS List of predicate statistics for the expression sets.

USER_EXPFIL_INDEX_PARAMS List of index parameters assigned to the
expression set.

USER_EXPFIL_INDEXES List of expression filter indexes.

USER_EXPFIL_PREDTAB_ATTRIBUTES List of stored and indexed attributes for the
indexes.

USER_EXPFIL_PRIVILEGES List of all the expression privileges of the current
user.

USER_EXPFIL_ASET_FUNCTIONS View

9-2 Oracle Database Application Developer’s Guide - Expression Filter

9.1 USER_EXPFIL_ASET_FUNCTIONS View
This view lists all the functions and packages that are allowed in the expressions
using a particular attribute set. This view is defined with the columns described in
the following table:

9.2 USER_EXPFIL_ATTRIBUTES View
This view lists all the elementary attributes of the attribute sets defined in the user's
schema. This view is defined with the columns described in the following table:

Column Name Datatype Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set.

UDF_NAME VARCHAR2 Name of the user-defined function or package (or type)
as specified by the user (with or without schema
extension).

OBJECT_OWNER VARCHAR2 Owner of the function or package (or type).

OBJECT_NAME VARCHAR2 Name of the function or package (or type).

OBJECT_TYPE VARCHAR2 Type of the object at the time the object was added to
the attribute set:

� Function: If the object is a function

� Package: If the object is a package

� Type: If the object is a type

� Embedded type: If the object is a type that is
implicitly added to the function list as the type is
used by one of the elementary attributes in the set.

� Synonym: Synonym to a function or package or
type.

Column Name Datatype Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set.

ATTRIBUTE VARCHAR2 Name of the elementary attribute.

DATA_TYPE VARCHAR2 Datatype of the attribute.

ASSOCIATED_
TABLE

VARCHAR2 Name of the corresponding table for the table alias
attribute. Null for all other types of attributes.

USER_EXPFIL_EXPRESSION_SETS View

Expression Filter Views 9-3

9.3 USER_EXPFIL_ATTRIBUTE_SETS View
This view lists the attribute sets defined in the user's schema. This view is defined
with the column described in the following table:

9.4 USER_EXPFIL_DEF_INDEX_PARAMS View
This view lists the default index parameters (stored and indexed attributes)
associated with the attribute sets defined in the user's schema. This view is defined
with the columns described in the following table:

9.5 USER_EXPFIL_EXPRESSION_SETS View
This view lists the expression sets defined in the user's schema. This view is defined
with the columns described in the following table:

Column Name Datatype Description

ATTRIBUTE_
SET_NAME

VARCHAR2 Name of the attribute set.

Column Name Datatype Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set.

ATTRIBUTE VARCHAR2 Name of the stored attribute.

DATA_TYPE VARCHAR2 Datatype of the attribute.

ELEMENTARY VARCHAR2 YES, if the attribute is also the elementary attribute of
the attribute set; otherwise, NO.

INDEXED VARCHAR2 YES, if the stored attribute is also the indexed attribute;
otherwise, NO.

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute.

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag.

Column Name Datatype Description

EXPR_TABLE VARCHAR2 Name of the table storing expressions.

USER_EXPFIL_EXPRSET_STATS View

9-4 Oracle Database Application Developer’s Guide - Expression Filter

9.6 USER_EXPFIL_EXPRSET_STATS View
This view lists the predicate statistics for the expression sets in the user's schema.
This view is defined with the columns described in the following table:

EXPR_COLUMN VARCHAR2 Name of the column (in the table) storing expressions.

ATTRIBUTE_SET VARCHAR2 Name of the corresponding attribute set.

LAST_ANALYZED DATE Date on which the predicate statistics for this
expression set were recently computed. Null if statistics
were not collected.

NUM_
EXPRESSIONS

NUMBER Number of expressions in the set when the set was last
analyzed.

PREDS_PER_EXPR NUMBER Average number of predicates for each expression
(when last analyzed).

NUM_SPARSE_
PREDS

NUMBER Number of sparse predicates in the expression set
(when last analyzed).

Column Name Datatype Description

EXPR_TABLE VARCHAR2 Name of the table storing expressions.

EXPR_COLUMN VARCHAR2 Name of the column (in the table) storing expressions.

ATTRIBUTE_EXP VARCHAR2 The arithmetic expression that represents a common
LHS in the predicates of the expression set.

PCT_OCCURRENCE NUMBER Percentage occurrence of the attribute in the expression
set.

PCT_EQ_OPER NUMBER Percentage of predicates (of the attribute) with equality
(=) operator.

PCT_LT_OPER NUMBER Percentage of predicates (of the attribute) with the less
than (<) operator.

PCT_GT_OPER NUMBER Percentage of predicates (of the attribute) with the
greater than (>) operator.

PCT_LTEQ_OPER NUMBER Percentage of predicates (of the attribute) with the less
than or equal to (<=) operator.

PCT_GTEQ_OPER NUMBER Percentage of predicates (of the attribute) with the
greater than or equal to (>=) operator.

Column Name Datatype Description

USER_EXPFIL_INDEX_PARAMS View

Expression Filter Views 9-5

9.7 USER_EXPFIL_INDEX_PARAMS View
This view lists the index parameters associated with the expression sets defined in
the user's schema. This view is defined with the columns described in the following
table:

PCT_NEQ_OPER NUMBER Percentage of predicates (of the attribute) with the not
equal to (!=) operator.

PCT_NUL_OPER NUMBER Percentage of predicates (of the attribute) with the IS
NULL operator.

PCT_NNUL_OPER NUMBER Percentage of predicates (of the attribute) with the IS
NOT NULL operator.

PCT_BETW_OPER NUMBER Percentage of predicates (of the attribute) with the
BETWEEN operator.

PCT_NVL_OPER NUMBER Percentage of predicates (of the attribute) with the NVL
operator.

PCT_LIKE_OPER NUMBER Percentage of predicates (of the attribute) with the
LIKE operator.

Column Name Datatype Description

EXPSET_TABLE VARCHAR2 Name of the table storing the expressions.

EXPSET_COLUMN VARCHAR2 Name of the column storing the expressions.

ATTRIBUTE VARCHAR2 Name of the stored attribute.

DATA_TYPE VARCHAR2 Datatype of the attribute.

ELEMENTARY VARCHAR2 YES if the attribute is also the elementary attribute of
the attribute set; otherwise, NO.

INDEXED VARCHAR2 YES if the stored attribute is also the indexed attribute;
otherwise, NO.

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute.

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag.

Column Name Datatype Description

USER_EXPFIL_INDEXES View

9-6 Oracle Database Application Developer’s Guide - Expression Filter

9.8 USER_EXPFIL_INDEXES View
This view lists the Expression Filter indexes defined in the user's schema. This view
is defined with the columns described in the following table:

9.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View
This view shows the exact list of stored and indexed attributes used for expression
filter indexes in the user's schema. This view is defined with the columns described
in the following table:

Column Name Datatype Description

INDEX_NAME VARCHAR2 Name of the index.

PREDICATE_
TABLE

VARCHAR2 Name of the predicate table used for the index.

ACCESS_FUNC_
PACKAGE

VARCHAR2 Name of the package that defines the functions with
queries on the predicate table.

ATTRIBUTE_SET VARCHAR2 Name of the corresponding attribute set.

EXPRESSION_
TABLE

VARCHAR2 Name of the table on which the index is defined.

EXPRESSION_
COLUMN

VARCHAR2 Name of the column on which the index is defined.

STATUS VARCHAR2 Index status:

� VALID: Index was created successfully.

� FAILED: Index build failed, and it should be
dropped and re-created.

� FAILED RBLD: Index build or rebuild failed, and it
can be rebuilt using the ALTER INDEX REBUILD
statement.

Column Name Datatype Description

INDEX_NAME VARCHAR2 Name of the index.

ATTRIBUTE_ID NUMBER Attribute identifier (unique for an index).

ATTRIBUTE_
ALIAS

VARCHAR2 Alias given to the stored attribute.

USER_EXPFIL_PRIVILEGES View

Expression Filter Views 9-7

9.10 USER_EXPFIL_PRIVILEGES View
This view lists the privileges of the current user on expression sets belonging to
other schemas and the privileges of other users on the expression sets owned by the
current user. This view is defined with the columns described in the following table:

SUBEXPRESSION VARCHAR2 The arithmetic expression that represents the stored
attribute (also the LHS of predicates in the set).

DATA_TYPE VARCHAR2 Derived datatype for the stored attribute.

INDEXED VARCHAR2 YES, if the stored attribute is also the indexed attribute;
otherwise, NO.

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute.

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag.

XPTAG_TYPE VARCHAR2 Type of the XML tag:

XML ELEMENT or XML ATTRIBUTE

XPFILTER_TYPE VARCHAR2 Type of filter configured for the XML tag:
POSITIONAL or [CHAR|INT|DATE] VALUE

Column Name Datatype Description

EXPSET_OWNER VARCHAR2 Owner of the expression set.

EXPSET_TABLE VARCHAR2 Name of the table storing expressions.

EXPSET_COLUMN VARCHAR2 Name of the column storing the expressions.

GRANTEE VARCHAR2 Grantee of the privilege.

INSERT_PRIV VARCHAR2 Y if the grantee has the INSERT EXPRESSION
privilege on the expression set; otherwise, N.

UPDATE_PRIV VARCHAR2 Y if the grantee has the UPDATE EXPRESSION
privilege on the expression set; otherwise, N.

Column Name Datatype Description

USER_EXPFIL_PRIVILEGES View

9-8 Oracle Database Application Developer’s Guide - Expression Filter

Managing Expressions Defined on One or More Database Tables A-1

A
Managing Expressions Defined on One or

More Database Tables

An Expression column can store expressions defined on one or more database
tables. These expressions use special elementary attributes called table aliases. The
elementary attributes are created using the EXF$TABLE_ALIAS type, and the name
of the attribute is treated as the alias to the table specified through the EXF$TABLE_
ALIAS type.

For example, there is a set of expressions defined on a transient variable HRMGR and
two database tables, SCOTT.EMP and SCOTT.DEPT.

hrmgr='Greg' and emp.job='SALESMAN' and emp.deptno = dept.deptno and
 dept.loc = 'CHICAGO'

The attribute set for this type of expression is created as shown in the following
example:

BEGIN
 -- Create the empty Attribute Set --
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET('hrdb');

 -- Add elementary attributes to the Attribute Set --
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','hrmgr','VARCHAR2(20)');

 -- Define elementary attributes of EXF$TABLE_ALIAS type --
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','emp',
 EXF$TABLE_ALIAS('scott.emp'));
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','dept',
 EXF$TABLE_ALIAS('scott.dept'));
END;
/

A-2 Oracle Database Application Developer’s Guide - Expression Filter

The table HRInterest stores the expressions defined for this application. The
Expression column in this table is configured as shown in the following example:

CREATE TABLE HRInterest (SubId number, Interest VARCHAR2(100));

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET('hrdb','HRInterest','Interest');
END;
/
-- insert the rows with expressions into the HRInterest table --

The expressions that use one or more table alias attributes can be indexed similar to
those not using the table alias attributes. For example, the following CREATE
INDEX statement configures stored and indexed attributes for the index defined on
the Expression column:

CREATE INDEX HRIndex ON HRInterest (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS (emp.job, dept.loc, hrmgr)
 INDEXATTRS (emp.job, hrmgr)');

When the expression is evaluated, the values for the attributes defined as table
aliases are passed by assigning the ROWIDs from the corresponding tables. The
expressions stored in the HRInterest table can be evaluated for the data (rows)
stored in EMP and DEPT tables (and a value of HRMGR) with the following query:

SELECT empno, job, sal, loc, SubId, Interest
 FROM emp, dept, HRInterest
 WHERE emp.deptno = dept.deptno AND
 EVALUATE(Interest, hrdb.getVarchar('Greg',emp.rowid,dept.rowid)) = 1;

Additional predicates can be added to the previous query if the expressions are
evaluated only for a subset of rows in the EMP and DEPT tables:

SELECT empno, job, sal, loc, SubId, Interest
 FROM emp, dept, HRInterest
 WHERE emp.deptno = dept.deptno AND
 emp.sal > 1400 AND
 EVALUATE(Interest, hrdb.getVarchar('Greg',emp.rowid,dept.rowid)) = 1;

Application Examples B-1

B
Application Examples

This appendix describes examples of applications using the Expression Filter.

Active Application
In an active database system, the server performs some actions when certain criteria
are met. For example, an application could monitor changes to data in a database
table and react to these changes accordingly.

Consider the Car4Sale application described in Chapter 1. In this application, the
Consumer table stores the information about consumers interested in buying used
cars. In addition to the Consumer table described in Chapter 1, assume that there is
an Inventory table that stores information about all the used cars available for
sale, as defined in the following example:

CREATE TABLE Inventory (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER);

Now, you can design the application such that the system reacts to any changes
made to the data in the Inventory table, by defining a row trigger on the table:

CREATE TRIGGER activechk AFTER insert OR update ON Inventory
 FOR EACH ROW
 DECLARE
 cursor c1 (ditem VARCHAR2) is
 SELECT CId, Phone FROM Consumer WHERE EVALUATE (Interest, ditem) = 1;
 ditem VARCHAR2(200);
 BEGIN
 ditem := Car4Sale.getVarchar(:new.Model, :new.Year, :new.Price, :new.Mileage);

 for cur in c1(ditem) loop
 DBMS_OUTPUT.PUT_LINE(' For Model '||:new.Model||' Call '||cur.CId||

B-2 Oracle Database Application Developer’s Guide - Expression Filter

 ' @ '||cur.Phone);
 end loop;
END;
/

This trigger evaluates the expressions for every row inserted (or updated) into the
Inventory table and prints a message if a consumer is interested in the car. An
Expression Filter index on the Interest column can speed up the query on the
Consumer table.

Batch Evaluation of Expressions
To evaluate a set of expressions for a batch of data items, you can perform a simple
join of the table storing data items and the table storing expressions. You can join
the Consumer table with the Inventory table to determine the interest in each car,
as shown in the following example:

SELECT DISTINCT Inventory.Model, count(*) as Demand
 FROM Consumer, Inventory
 WHERE EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar(Inventory.Model,
 Inventory.Year,
 Inventory.Price,
 Inventory.Mileage)) = 1
 GROUP BY Inventory.Model
 ORDER BY Demand DESC;

The EVALUATE operator's join semantics can also be used to maintain complex
N-to-M (many-to-many) relationships between data stored in multiple tables.

Resource Management
Consider an application that manages IT support resources based on the
responsibilities (or duties) and the workload of each representative. In this
application, the responsibilities of the representatives are captured as expressions
defined using variables such as the priority of the problem, organization, and the
environment.

Create a table named ITResource to store information about all the available
representatives, as shown in the following example:

-- Create the object type and the attribute set for ticket description --
CREATE OR REPLACE TYPE ITTicket AS OBJECT (
 Priority NUMBER,
 Environment VARCHAR2(10),
 Organization VARCHAR2(10));

Application Examples B-3

/
BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'ITTicket',
 from_type => 'Yes');
END;
/

-- Table storing expressions --
CREATE TABLE ITResource (RId NUMBER,
 Duties VARCHAR2(100));

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET(attr_set => 'ITTicket',
 expr_tab => 'ITResource',
 expr_col => 'Duties');
END;
/

INSERT INTO ITResource (RId, Duties) VALUES
 (1, 'Priority <= 2 and Environment = ''NT'' and Organization =
 ''Research''');

INSERT INTO ITResource (RId, Duties) VALUES
 (2, 'Priority = 1 and (Environment = ''UNIX'' or Environment = ''LINUX'')
 and Organization = ''APPS''');

Create a table named ITProblem to store the problems filed, as shown in the
following example:

CREATE TABLE ITProblem (PId NUMBER,
 Description ITTicket,
 AssignedTo NUMBER);

The AssignedTo column in the ITProblem table stores the identifier of the
representative handling the problem.

Now, use the following UPDATE statement to assign all the previously unassigned
problems to capable IT representatives:

UPDATE ITProblem p SET AssignedTo =
 (SELECT RId FROM ITResource r
 WHERE EVALUATE(r.Duties, p.Description.getVarchar()) = 1
 and rownum < 2)
 WHERE AssignedTo IS NULL;

B-4 Oracle Database Application Developer’s Guide - Expression Filter

The previous UPDATE operation can benefit from an Expression Filter index
defined on the Duties column of the Resource table.

Installing Oracle Expression Filter C-1

C
Installing Oracle Expression Filter

Expression Filter provides a SQL schema and PL/SQL and Java packages that are
used to store, retrieve, update, and query collections of expressions in an Oracle
database.

Expression Filter is installed automatically with Oracle Database 10g Standard
Edition and Oracle Database 10g Enterprise Edition. It is supplied as a set of
PL/SQL packages, a Java package, a set of dictionary tables, and catalog views. All
these objects are created in a dedicated schema named EXFSYS.

The script to install the Expression Filter is named catexf.sql and is found in the
$ORACLE_HOME/rdbms/admin/directory. This script should be executed from a
SQL*Plus session while connected as SYSDBA. Expression Filter can be uninstalled
using the catnoexf.sql script in the same directory.

The Expression Filter functionality is the same in the Standard and Enterprise
Editions. Support for indexing expressions is available only in the Enterprise
Edition because it requires bitmap index support.

During installation of the Oracle database, a demonstration script is installed for the
Expression Filter feature. The script exfdemo.sql is located in the $ORACLE_
HOME/rdbms/demo/ directory.

C-2 Oracle Database Application Developer’s Guide - Expression Filter

Index-1

Index
A
ADD_ELEMENTARY_ATTRIBUTE

procedure, 1-5, 1-6, 8-3
ADD_FUNCTIONS procedure, 1-7, 8-5
ALTER INDEX REBUILD statement, 6-5
ALTER INDEX RENAME TO, 6-7
AnyData, 1-12
application examples, B-1

active application, B-1
batch evaluation, B-2
resource management, B-2

ASSIGN_ATTRIBUTE_SET procedure, 1-8, 5-2, 8-7
attribute sets

automatically creating, 1-5
copying, 1-9
creating with an existing object type, 1-5
dropping, 1-7, 1-9, 8-20
examples, 1-5
unassigning, 1-9

B
BUILD_EXCEPTIONS_TABLE procedure, 1-13, 8-9
bulk loading, 5-1

bypassing validation, 5-2
bypassing validation, 5-2

C
CLEAR_EXPRSET_STATS procedure, 8-10
conditional expressions

See expressions
COPY_ATTRIBUTE_SET procedure, 1-9, 8-11

CREATE INDEX statement, 2-7, 6-8
CREATE_ATTRIBUTE_SET procedure, 1-5, 8-12

D
data item

formatted as AnyData, 1-12
formatted as name/value pair, 1-11
formatted as string, 1-11

database
exporting, 5-4

DBMS_EXPFIL package, 1-4
ADD_ELEMENTARY_ATTRIBUTE, 8-3
ADD_FUNCTIONS, 8-5
ASSIGN_ATTRIBUTE_SET, 8-7
BUILD_EXCEPTIONS_TABLE, 8-9
CLEAR_EXPRSET_STATS, 8-10
COPY_ATTRIBUTE_SET, 8-11
CREATE_ATTRIBUTE_SET, 8-12
DEFAULT_INDEX_PARAMETERS, 8-14
DEFAULT_XPINDEX_PARAMETERS, 8-16
DEFRAG_INDEX, 8-19
DROP_ATTRIBUTE_SET, 8-20
GET_EXPRSET_STATS, 8-21
GRANT_PRIVILEGE, 1-14, 8-22
INDEX_PARAMETERS, 8-24
REVOKE_PRIVILEGE, 1-14, 8-27
UNASSIGN_ATTRIBUTE_SET, 8-29
VALIDATE_EXPRESSIONS, 8-30
XPINDEX_PARAMETERS, 8-32

DEFAULT_INDEX_PARAMETERS
procedure, 2-7, 8-14

DEFAULT_XPINDEX_PARAMETERS
procedure, 3-7, 8-16

Index-2

DEFRAG_INDEX procedure, 2-11, 8-19
DROP INDEX statement, 6-12
DROP_ATTRIBUTE_SET procedure, 1-7, 1-9, 8-20

E
elementary attributes, 1-4
error messages, 1-14
EVALUATE operator, 1-10, 6-2

arguments, 1-10
EXF$ATTRIBUTE object type, 7-2
EXF$ATTRIBUTE_LIST object type, 7-3
EXF$INDEXOPER object type, 7-4
EXF$TABLE_ALIAS object type, 7-6
EXF$VALIDATE_n namespace, 4-2
EXF$XPATH_TAG object type, 7-7
EXF$XPATH_TAGS object type, 7-9
exporting

a database, 5-4
tables, 5-3
users, 5-4

Expression column, 1-4, 1-8
creating, 1-4

Expression datatype, 1-4, 1-7
creating a column of, 1-8

Expression Filter
active application example, B-1
batch evaluation example, B-2
configuring to process XPath predicates, 3-4
demonstration script, C-1
installation of, C-1
internal objects, 4-1
overview, 1-1
resource management example, B-2
system triggers, 4-2
usage scenarios, 1-2
utilities, 5-1

expression sets, 1-4
allowing XPath predicates in, 3-2

Expression Validation utility, 1-13
expressions, 1-4

defined on one or more tables, A-1
definition, 1-3
deleting, 1-10
indexing, 2-1

inserting, 1-10
updating, 1-10
valid, 1-4
with XPath predicates, 3-1

F
fragmentation of indexes, 2-11
functions

adding to attribute sets, 1-7, 8-5

G
GET_EXPRSET_STATS procedure, 2-9, 8-21
getVarchar methods

MEMBER, 1-11
STATIC, 1-11

GRANT_PRIVILEGE procedure, 1-14, 8-22

I
importing

tables, 5-3
INDEX_PARAMETERS procedure, 2-8, 3-7, 8-24
indexed predicates, 2-5
indexes

creating for expression set, 2-7, 6-8
creating from default parameters, 2-7
creating from exact parameters, 2-8
creating from statistics, 2-9
defragmenting, 2-11
dropping, 5-2, 6-12
maintaining, 2-10
processing, 2-4
processing for XPath predicates, 3-5
rebuilding, 2-11, 6-5
storing, 2-10
tuning, 2-3, 2-6
tuning for XPath predicates, 3-6
usage, 2-10

indexing, 2-1
and database objects, 2-10
predicates, 2-2
XPath predicates, 3-3

INSERT EXPRESSION privilege, 1-14

Index-3

INSERT privilege, 1-14
internal objects, 4-1

L
loading expression data, 5-1

M
metadata

expression set, 1-4

O
object types

AnyData, 1-12
attribute set, 4-1

P
predicate operators, 2-2
predicate table, 2-2, 2-10

querying, 2-6
predicates

evaluating, 2-6
evaluating in a sparse predicate group, 2-7
evaluating in a stored predicate group, 2-6
evaluating in an indexed predicate group, 2-6
indexable, 2-2
indexed, 2-5
sparse, 2-3, 2-6
stored, 2-5
XPath, 3-1

privileges
granting, 1-13, 8-22
revoking, 1-13, 8-27

R
REVOKE_PRIVILEGE procedure, 1-14, 8-27

S
secondary objects, 2-10
SELECT privileges, 1-13
sparse predicates, 2-6

SQL*Loader, 5-1
stored predicates, 2-5
system triggers, 4-2

T
table aliases, A-1
tables

exporting, 5-3
importing, 5-3

triggers, 4-2
system, 4-2
validation, 4-2

U
UNASSIGN_ATTRIBUTE_SET procedure, 1-9, 5-2,

8-29
UPDATE EXPRESSION privilege, 1-14
UPDATE privilege, 1-14
USER_EXPFIL_ASET_FUNCTIONS view, 9-2
USER_EXPFIL_ATTRIBUTE_SETS view, 9-3
USER_EXPFIL_ATTRIBUTES view, 9-2
USER_EXPFIL_DEF_INDEX_PARAMS view, 9-3
USER_EXPFIL_EXPRESSION_SETS view, 9-3
USER_EXPFIL_EXPRSET_STATS view, 9-4
USER_EXPFIL_INDEX_PARAMS view, 9-5
USER_EXPFIL_INDEXES view, 9-6
USER_EXPFIL_PREDTAB_ATTRIBUTES view, 9-6
USER_EXPFIL_PRIVILEGES view, 9-7
users

exporting, 5-4

V
VALIDATE_EXPRESSIONS procedure, 1-13, 5-2,

8-30
validation semantics, 1-13
validation trigger, 4-2

X
XMLType datatype, 3-1
XPath parameters

adding to attribute list, 8-16

Index-4

dropping from attribute list, 8-16
XPath predicates, 3-1

configuring Expression Filter for, 3-4
indexable, 3-3

XPINDEX_PARAMETERS procedure, 8-32

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Oracle Expression Filter Concepts
	1.1� What Is Expression Filter?
	1.1.1� Expression Filter Usage Scenarios

	1.2� Introduction to Expressions
	1.2.1� Defining Attribute Sets
	1.2.2� Defining Expression Columns
	1.2.3� Inserting, Updating, and Deleting Expressions

	1.3� Applying the SQL EVALUATE Operator
	1.4� Evaluation Semantics
	1.5� Granting and Revoking Privileges
	1.6� Error Messages

	2 Indexing Expressions
	2.1� Concepts of Indexing Expressions
	2.2� Indexable Predicates
	2.3� Index Representation
	2.4� Index Processing
	2.5� Predicate Table Query
	2.6� Index Creation and Tuning
	2.7� Index Usage
	2.8� Index Storage and Maintenance

	3 Expressions with XPath Predicates
	3.1� Using XPath Predicates in Expressions
	3.2� Indexing XPath Predicates
	3.2.1� Indexable XPath Predicates
	3.2.2� Index Representation
	3.2.3� Index Processing
	3.2.4� Index Tuning for XPath Predicates

	4 Expression Filter Internal Objects
	4.1� Attribute Set Object Type
	4.2� Expression Validation Trigger
	4.3� Expression Filter Index Objects
	4.4� Expression Filter System Triggers

	5 Using Expression Filter with Utilities
	5.1� Bulk Loading of Expression Data
	5.2� Exporting and Importing Tables, Users, and Databases
	5.2.1� Exporting and Importing Tables Containing Expression Columns
	5.2.2� Exporting a User Owning Attribute Sets
	5.2.3� Exporting a Database Containing Attribute Sets

	6 SQL Operators and Statements
	EVALUATE
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	7 Object Types
	EXF$ATTRIBUTE
	EXF$ATTRIBUTE_LIST
	EXF$INDEXOPER
	EXF$TABLE_ALIAS
	EXF$XPATH_TAG
	EXF$XPATH_TAGS

	8 Management Procedures Using the DBMS_ EXPFIL Package
	ADD_ELEMENTARY_ATTRIBUTE Procedure
	ADD_FUNCTIONS Procedure
	ASSIGN_ATTRIBUTE_SET Procedure
	BUILD_EXCEPTIONS_TABLE Procedure
	CLEAR_EXPRSET_STATS Procedure
	COPY_ATTRIBUTE_SET Procedure
	CREATE_ATTRIBUTE_SET Procedure
	DEFAULT_INDEX_PARAMETERS Procedure
	DEFAULT_XPINDEX_PARAMETERS Procedure
	DEFRAG_INDEX Procedure
	DROP_ATTRIBUTE_SET Procedure
	GET_EXPRSET_STATS Procedure
	GRANT_PRIVILEGE Procedure
	INDEX_PARAMETERS Procedure
	REVOKE_PRIVILEGE Procedure
	UNASSIGN_ATTRIBUTE_SET Procedure
	VALIDATE_EXPRESSIONS Procedure
	XPINDEX_PARAMETERS Procedure

	9 Expression Filter Views
	9.1� USER_EXPFIL_ASET_FUNCTIONS View
	9.2� USER_EXPFIL_ATTRIBUTES View
	9.3� USER_EXPFIL_ATTRIBUTE_SETS View
	9.4� USER_EXPFIL_DEF_INDEX_PARAMS View
	9.5� USER_EXPFIL_EXPRESSION_SETS View
	9.6� USER_EXPFIL_EXPRSET_STATS View
	9.7� USER_EXPFIL_INDEX_PARAMS View
	9.8� USER_EXPFIL_INDEXES View
	9.9� USER_EXPFIL_PREDTAB_ATTRIBUTES View
	9.10� USER_EXPFIL_PRIVILEGES View

	A Managing Expressions Defined on One or More Database Tables
	B Application Examples
	C Installing Oracle Expression Filter
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

