ORACLE

Oracle® Text
Application Developer's Guide

10g Release 1 (10.1)
Part No. B10729-01

December 2003



Oracle Text Application Developer's Guide, 10g Release 1 (10.1)
Part No. B10729-01

Copyright © 2003 Oracle Corporation. All rights reserved.
Primary Author:  Colin McGregor

Contributors:  Omar Alonso, Shamim Alpha, Steve Buxton, Chung-Ho Chen, Jack Chen, Yun Cheng,
Michele Cyran, Paul Dixon, Mohammad Faisal, Roger Ford, Elena Huang, Garrett Kaminaga, Ji Sun
Kang, Ciya Liao, Wesley Lin, Bryn Llewellyn, Yasuhiro Matsuda, Valarie Moore, Takeshi Okawa, Gerda
Shank, Qunong Xiao, Steve Yang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Gist, Oracle Store, Oracle9i, PL/SQL, and SQL*Plus are trademarks
or registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.



Contents

SeNd US YOUT COMMEBNTES ..ottt en s XV
PRI AC . ...ttt ettt ettt ettt ettt ettt ettt XVii
YN [ 11T o1 TSR XVili
OFQANTZATION ...t b et bbbtk bbb b b e bbbt b et bt sttt XVil
Related DOCUMEBNTATION .......ooviiiiicei ettt et s e et e e s b e e st e s s be s st e s sbaessbessrbesraeesree s XiX
(000] 0 1V/=T 01 1 T0] o F- T TSR XX
Documentation ACCESSIDIITY .......coiiiiiiiiree b XXi

1 Oracle Text Application Development

VA = L @ T Vo] [ = SRS 1-1
Designing YOUr APPHICAtION........ccciiiie e e bt renre 1-1
Text Queries 0N DocuMENt COIECLIONS..........ccciiiiic e e e 1-2
Flowchart of Text Query APPLCAtION ... e 1-2
Queries on Catalog INfOrmMatioN ... 1-4
Flowchart for Catalog QuUery APPLICALION ..........coviiiiiiiiiiie e 1-5
DocUMENT ClasSIfiCAtION. ......ciciieie et re e e sresrenne e 1-6
DL LIS T=T: Vo] oY1 oV RSP 1-7
USING OFACIE TEXL ...ttt bbb bbb et e e s e et e bt et e beebesbenbeneen 1-8
Using the Oracle XML DB FrameWOrK ..........cccoeiiiiniiinieiesesse e 1-8
Combining Oracle Text features with Oracle XML DB.........cccccccevvvievieiieiecicesie e 1-9
Using the Text-0n-XML Method ... 1-9

Using the XML-0N-Text Method ... e 1-10



Getting Started with Oracle Text

Overview of Getting Started With Oracle TEXL.........cccieiiiiiiiiieee e 2-1

Creating an Oracle TEXE USEE .......cociiiiiieceieee et nesresrenresnen 2-1

Query Application QUICK TOUT ..ot 2-2

Building Web Applications with the Oracle Text Wizard.............ccccoevviinciniinciiciies 2-6

(O = Tod ST D LAY =1 [ o 1= S 2-6

Oracle TeXt WiIzard AAINS ..o 2-6

Oracle Text Wizard INStFUCTIONS .........covoiiieiiiiccccese et 2-6

Catalog Application QUICK TOUF .......cccueiiirieieieeceeese st e e re e sresresrennens 2-7

Classification Application QUICK TOUK .......c.ooiiiiiii e 2-10

Steps for Creating a Classification Application............cccooiiiiiiiine e, 2-11
Indexing

ADOUL Oracle TEXE INOEXES .....cuoeuiiiitiiiiiie ettt sttt sb et b et s e e ebesbeseesteneas 3-1

JLIDYZ =201 T - PSSRSO 3-1

Structure of the Oracle Text CONTEXT INAEX .....coooiiiiiiiiiiiiienieiee e 3-5

Merged Word and Theme INAEX ........cccoiiiiriiiiiieiseee e 3-5

The Oracle TexXt INAEXING PIrOCESS .....cccviivieriieieieeieees s ste et e e se e enesresresrens 3-5

DT U7 L (0] £ @ ][t PSS 3-6

FIITEN ODJECT ...ttt 3-6

RS- A0 =T @] o] 1= S 3-7

ey T O ] o] <o SRS 3-7

INAEXING ENGINE ..ottt bbbttt b e 3-7

Partitioned Tables and INAEXES..........cci i 3-7

Querying Partitioned Tables..........ccooiiiiiiiicc e 3-8

Creating an INAeX ONIINE ... 3-8

ooV 1 L= I g T (= q T o 3-8

INAEXING AN VIBWS ...ttt s et e st e et e ane e s beaneesbeenaesteeeesteesaenreens 3-9

Considerations FOI INAEXING ..ottt 3-9

LOCALION OF TEXL..... ittt bbbt bbb 3-10

SUPPOItEd COIUMN TYPES ..ttt bbbttt ene s 3-12

Storing Text in the TeXE TADIE ..o 3-12

StOring File Path NAMES ..o ere e 3-12

R3] (o [ Lo L SRR 3-13

Storing Associated Document INfOrmMation ............cccoeviiiiiniinine s 3-13



Format and Character SEt COIUMNS........c.coiiiiii e 3-13

Supported DOCUMENT FOIMALS ......cooiiiiirieiiieeesee e 3-13
SumMary of DATASTORE TYPES...cviiiiriiieieieeeeise e e sttt ne e sre s 3-14
Document Formats and FILEIING ......ccooveiiiiiiic et 3-14
NO FIltering fOr HTIML ...c.ooviiiiiii s 3-15
Filtering Mixed-Format COIUMNS .........ccoviiiiiiicesie e 3-15
L0101y (0] ¢ 0T 11 (=] ] T TSRS 3-15
Bypassing ROWS fOr INAEXING ....c.coveiiiiiiiiiiiitiiece e 3-15
DOCUMENT CRATACLEN SEL.......oiiviieiiieeieree ettt be e sbe e 3-16
Mixed Character SEt COIUMNS ..o s 3-16
DOCUMENT LANGUAGE ......ccviiiiiiiitisiiie st 3-16
Languages Features Outside BASIC_LEXER .......c.cccoovviviiinieiinenie e 3-16
Indexing Multi-language COIUMNS..........ccoii i 3-17
INdexing SPecial CRAraCTEIS. ........cceiiiiiie e 3-17
Printjoins CharaCler .......cccocviiee et e ne e re s 3-17
SKIPJOINS CRAIACTEE ...ttt ettt 3-17
O CRATACTETS........eieeice et bbbt r e ne bt 3-18
Case-Sensitive INdexing and QUETYING .......cocveieieierieie s sreie e e e sre e snens 3-18
Language SPECITIC FEATUIES .........oiiiiiire e 3-18
INAEXING THEMIES ...ttt ebe e 3-18
Base-Letter Conversion for Characters with Diacritical Marks............c.ccocoevvviennennn. 3-19
AREINALE SPEITING .....c.oiiii e 3-19
COMPOSITE WOTTS......c.eiiiiieiiiteiete ettt 3-19
Korean, Japanese, and Chinese INAEXiNg........ccoovevriiieiieninnierenese e 3-20
Fuzzy Matching and STEMIMING ......ccoooviiiicie e 3-20
Better Wildcard QUEry PerfOrmManCe ..o 3-21
Document SECLION SEAICHING .....ccviviiiiieree e re e enenes 3-21
StOPWOIrdS and STOPLNEMIES .....c.oiuiiiiieeeee et sre e 3-21
Multi-Language STOPIISTS .......ceiiiiiiice s 3-22
INAEX PEITOIMANCE ....oiiiiiiiie ettt et ettt 3-22
Query Performance and Storage of LOB COlUMNS ..........ccooviiiie i 3-22
1 aTe (=) QO =7 1A o] o RSO SOPRRSRPRPR 3-22
Procedure for Creating @ CONTEXT INAEX ...c..cveviieiiiiescse et 3-23
Creating PrefErENCES ..ot e s te s e ste b e nreenes 3-24
Datastore EXAMIPIES. ........ciiiiiiiei s 3-24



NULL_FILTER Example: Indexing HTML DOCUMENTS..........ccccvirineiienicieieeeceieiene 3-25

PROCEDURE_FILTER EXGMPIE ....ciiviiiiiiiciiicieiete ettt sttt 3-25
BASIC_LEXER Example: Setting Printjoins Characters..........ccccocvevvvvevevcvicisieinannns 3-26
MULTI_LEXER Example: Indexing a Multi-Language Table ..........ccccoeieiiiiiinnenn 3-26
BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing..................... 3-27
Creating Section Groups for Section SearcChing.........ccccoviviviivini s 3-28
Example: Creating HTIML SECLIONS.......ccoiiiieiieeeee e 3-28
Using StopwWords and STOPIISTS........coiiiiiiiiee e 3-28
MUulti-Language StOPLISES ....ecviiiiieiire et 3-29
Stopthemes and STOPCIASSES........couiiiiiieeee s 3-29
PL/SQL Procedures for Managing StOPlIStS .........ccccvreireinciiniinieeseeseese e 3-29

(1 4=T: L[ Lo =T 1T SRS 3-30
Creating @ CONTEXT INAEX......c.ciiiiiiiieieiieess ettt sttt sneesbe e sre s e sreennes 3-30
CONTEXT INdEX @Nd DIML......coviiiiiiiciiieiiee e sens 3-30
Default CONTEXT INdeX EXaMPIE.....ccccoiiieiecciee e 3-30
Custom CONTEXT Index Example: Indexing HTML Documents ..........cccccovevvenene. 3-31
Creating @ CTXCAT INAEX ...oviiiiieiirieereeie ettt ene e 3-32
CTXCAT INAEX AN DML....oiiiiiiiiiicee ettt 3-32
About CTXCAT Sub-Indexes and Their COSES........cccoiiiieiiiinenenee e 3-32
Creating CTXCAT SUD-INUEXES .......coiitiieiiiiei ettt 3-33
Creating CTXCAT INAEX ..vviiiiiire ettt e e e e neaneerenes 3-35
Creating @ CTXRULE INAEX ......coiiiiiiiee sttt 3-35
Create a Table Of QUETIES ......oiuiiiieieee et sne s 3-35
Create the CTXRULE INAEX .....oviiiiiiiiietieesesi e 3-36
Classifying @ DOCUMENT.........cccoiiiii ettt nae s 3-36
INAEX MAINTENANCE ..ot s ettt ettt be b et e be e et e st e s e eseeneetenreaee 3-37
VIEWING INAEX EFTOIS ...uvtiiiiiice ettt st sa e s e e eneeneerennennens 3-37
DroppinNg 8N TNAEX .....coiiiiiiiiiie ettt b b e et e et ebesbesbe b 3-37
ReSUMING FAIEA INAEX ......cviiiiiiiiiie e 3-38
Example: Resuming a Failed INAeX........cccoevveieiiiiiicicise s 3-38
REDUTTAING QN TNAEX ..ttt et e s te et e saeestesreesresnaestenreens 3-38
Example: Rebuilding and INAeX ... 3-39

(DI o] o] o [aTo Ir= W ad £=] (=1 (=] (o1 TSRS 3-39
EXAIMIPIE. ..ttt bbb bbbttt a bbb 3-39

Managing DML Operations for a CONTEXT INdeX..........cccoviiiiiiiiiiiiccccc 3-39



4

ViIiewing PendiNg DML ..ottt sre s 3-39

SYNCNIroNIZING The TNAEX ..o e 3-40
Setting Background DIML.........cccviiiiiiiiiiicceseee st 3-40
INAEX OPLIMIZATION ... bbb e sb ettt sb b sne 3-41
CONTEXT INAEX SIIUCTUTIE ...ttt sttt 3-41
INAEX Fragmentation.........ccccvvieiiiiieie et neene e snesnens 3-41
Document Invalidation and Garbage Collection...........c.ccccocv e 3-41
Single Token OPtIMIZALION .......ccciiiiiiiie e 3-42
Viewing Index Fragmentation and Garbage Data...........c..ccocevvrevercrcienieseciese e 3-42
Examples: Optimizing the INAeX.........cccoiiiiii e 3-42
Querying

OVEIVIEW OF QUETIES ...ttt et s e e e s e et e te e te s te e beste et e sneenteensenreanes 4-1
Querying WIith CONTAIUNS ...t 4-1
CONTAINS SQL EXAMPIE ..c.eiiiiiiisce et e sre e nnens 4-2
CONTAINS PLZSQL EXGMPIE.. .ottt sttt sne e s 4-2
Structured Query With CONTAINS ..o 4-3
QuEerying With CATSEARCH ..ottt sne s 4-3
CATSEARCH SQL QUETY ..ottt sttt ettt sttt st see e ssesessesesseessenens 4-4
CATSEARCH EXAMPIE ..ottt 4-4
QUENYING WIth MATCHES ..o et nre e 4-6
MATCHES SQL QUETY ...cvtiiiiiiieisieiete ettt bbbttt sttt 4-6
MATCHES PL/SQL EXAMPIE ...oviiciiicice et 4-8
WOrd and PRrase QUETIES ........oueiuiiieiieeie ittt sttt st be e s be e sba e s e sbeebesbsesbeeneesbesnnes 4-10
CONTAINS Phrase QUETIES ......ccceeiuiiieiiesiesiesee e etesteestesteessesteesesseesaesseessessaestessaessensenns 4-10
CATSEARCH Phrase QUETIES ....c.cooiierieriiieieieee sttt sttt sre e 4-10
QUETYING STOPWOIAS .....oviieieciiie ettt sttt e e e et e s eneeseaneenenrenrenrens 4-10
ABOUT QUENIES N TNEIMES .....cviiiieiiicie ettt e et e snsesre e e sreanees 4-11
QUETYING STOPTNEIMES ...t 4-11
QUETY EXPIESSIONS. ....ciiiiiiiieiiesiesie e steste ettt ettt te st e st e be e se e e s e e e e s eneeseaneenenrenrenrens 4-12
CONTAINS OPEBIALOIS ...ttt sttt sttt b et sre e sbe s bt e neesseeseesreestesreesresreens 4-12
CATSEARCH OPIALON.......ciiiiiiiiiierierie et 4-12
YN O o | I @ 01 =1 o] ST 4-13
Case-SensitiVe SEArCHING .........cooi i 4-13
WO QUETTES ...ttt ettt ettt sttt st et e et e e e s e s e e st ene et e ebeaneereneas 4-13

Vii



ABOUT QUETTES ...ttt sttt ettt ettt ste et et e s te s e e te e e e s te e aesteesbesteebeassesteaneesreenees 4-13

QUENY FEEADACK ..ottt 4-14
L@ T 1T VA =otq o] = o T = - U TSRS 4-14
UsiNg a TheSaurus iN QUEKIES ........c.viiieiiieeie st ste e ste st te et e st e esteesesaeestestaeseesnaestennaens 4-14
Document SECtioN SEAICRING.........ccciiiiiiiie e 4-15
(O [ To @ LU L=T oY =T 0 ] o] F= L1 T SR 4-15
QUETY REWIILE ...ttt et te e e s te e e e s te e beste e beaaeebeensenreeneenreanees 4-16
QUETY REIAXALION ...ttt etttk et nr bbbt b et eb e b en e ene e 4-16
L@ LU L=T oY I gV U =TT OSSR 4-17
PN (T g T LAY (ol e o [ T SO SS 4-18
AREINATIVE GFAMIMIA ...ttt ettt sttt e beste st e besae st et eseeseeneeseeresaeanens 4-18
QUETY ANAIYSIS....eiieieieiiceee ettt sttt e s e te st e ste st e e eene e e e e e eneeneeneaneerenrn 4-18
Other QUETY FEALUIES.........ccve e iie ettt ettt e e s te e e saeesbeensesteennenreannes 4-19
THEe CONTEXT GFAMIMIAT ......ciiieiieiiieeieee sttt st ese s e e st sbesbesbesbesbesbesbebesee e enseseeseaneeressenes 4-20
F N 1@ 10 N I 1T oSS 4-21
[IoTo | [or: I @ =] =1 o] £ J NSO U U TP TOTUTOURURURPRURTIN 4-21
SECLION SEANCNING ...viiitiicte ettt ekttt b bbbt b e en e ene e 4-22
Proximity Queries with NEAR and NEAR_ACCUM Operators ........ccccevevverververveiesnennnnns 4-22
Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators...........ccccceeveuene. 4-23
USING CTXCAT GFaMIMAI ...ttt sttt ettt et nnne 4-23
Stored QUETY EXPIESSIONS .....c.ccuviieieiiisiesiesiesie e stesiesaesae e eres e ssesrestestesreste e sneseseeseenaeseesesneenenses 4-23
Defining a Stored QUErY EXPreSSION ......cc.ooiiiiiiciieiieesie et 4-24
SQE EXAMIPIE ... 4-24
Calling PL/ZSQL Functions in CONTAINS ..o 4-25
Optimizing fOr RESPONSE TIMIE ....ccuiiiiiiiiiiie ettt ebe s 4-25
Other Factors that Influence Query ReSponse TIMEe ... 4-25
L1010 1) T TN o ) £ SRS 4-26
SQL Count Hits EXAMPIE ...ouoiiiiiieieee e 4-26
Counting Hits with a Structured PrediCate ... 4-26
PLZSQL Count HitS EXaMPIE ....ccviiieiiieeeee ettt sne 4-27
THE CTXCAT GFaMIMA ...ttt et ettt et b e bt b e besbesb e b e e et eneeb e e st abeebenbe e 4-27
Using CONTEXT Grammar With CATSEARCH ... 4-28

5 Document Presentation
Highlighting QUETY TEIMIS ..ottt 5-1

viii



=2 1o | 1 o LT 0T SRS 5-1

Theme HighlIgNTing ..o 5-1
CTX_DOC Highlighting ProCEAUIES ........cceeieeiicieice et sne s 5-2

[ [To| 0] [Te | gkl =d foTot=Te [T - OSSP 5-2
MAFKUP PrOCEAUIE ...ttt 5-2

FIIEE PrOCEAUIE ..ot bbbttt bt 5-4
CTX_DOC.POLICY_FILTER PrOCEAUIE ......ceeveiieiiiieisieieeie ettt 5-4
Obtaining Lists of Themes, Gists, and Theme SUMMAries.........ccccvoiiiririeneicniene e 5-4
LISES OF TREIMES ..ot b bbbttt bt 5-5
IN-IMEMOIY TREMIES ... et e b e e sreenes 5-5

RESUIL TADIE THEMES ...ttt be e see s 5-5

GiSt aNd ThEME SUMIMAIY .....ccuviiieiieieiereeeeee s a et e e e eneeresseanesresresrenrenes 5-6

L RV =T g ToT A €T ) SR 5-6

RESUIL TADIE GISTS ... et ettt sbe e b e 5-6

TREME SUMIMATY ..ottt sttt e e e e e ese e s e eseaneeneneenresrenes 5-7
Document Presentation and Highlighting ... 5-7
Highlighting EXAMPIE......cociii s 5-9
Document List of Themes EXaMPIE ......ccoovviieiiieieece s 5-10
GISE EXAMIPIE .o bbb b bbbttt b e e b 5-11

Document Classification

OVEIVIBW ..ttt h bt bbb et s et h e bt b £ bt e b e bt E e eh e e bt A b e s e e et et ehb e bt e bt e bt abenbenbesbenes 6-1
Classification APPLICATIONS. ...t 6-2
ClasSifiCatioN SOIUTIONS ..o bbbttt 6-3
RuUle-Based ClasSifICAtION...........c.oiiiieec et sn e 6-4
Rule-based Classification EXaMPIE .........ccooiiiiiiiiiiee e 6-4
CTXRULE Parameters and LIMiItations .........ccococeviniiennineieeseese e 6-8
SUPErVISEd ClasSITICAtION .........ooiiiiiiie ettt s 6-8
Decision Tree Supervised ClassifiCation ............cociiiiiiiiiiiiieee s 6-9
Decision Tree Supervised Classification EXample ........ccccocvoevvreiencncieieeecesie e 6-10
SVM-Based Supervised ClassifiCation............cccoiiiiiiiiiine e 6-13
SVM-Based Supervised Classification EXample ... 6-14
Unsupervised Classification (CIUSTENING) ......ccoevirereriiicisiese e 6-16
ClUSTENING EXAMPIE ...ttt sne s 6-17



7 Performance Tuning

Optimizing QUErIeS WiIth STAtISTICS........ccoiiiriiiiireee e 7-1
(00 ] | 1=Tox AT L0 ] = L 1) oS 7-2
EXAIMIPIE. ..t bbbt bbbttt b bbb 7-3
RE-COlIECTING STALISTICS ... .veviiviiceeiet ettt ane e 7-4
1= Lo S r= 1 ot S 7-4
Optimizing Queries for RESPONSE TIME.......coiiiiiiiire e 7-4
Other Factors that Influence Query ReSPONSE TIME.......ccoeiriiniiniiseseee s 7-5
Improved Response Time with FIRST_ROWS(n) for ORDER BY QUENIES.......cccvevvrivrennnns 7-5
About the FIRST_ROWS HiNE ..ot 7-6
Improved Response Time using Local Partitioned CONTEXT INdeX .......ccccocevrenneninennnn. 7-7
Range Search on Partition Key COlUMN.........ccoiiiiiiiiese e 7-7
ORDER BY Partition Key COlUMN ..ot 7-7
Improved Response Time with Local Partitioned Index for Order by Score ..........ccc.c..... 7-8
Optimizing Queries for TRroUGNPUL ..o s 7-9
CHOOSE and ALL ROWS MOGES.......ccccuiueiiirinirieininieietne ettt 7-9
FIRST_ROWS IMOOE ..ottt bbbttt bbb 7-9
=T 1 o S 7-9
PArallel QUETIES ..ottt ae et st e e te e ae e teeraesteeneesteenbesreenes 7-10
Tuning Queries with BIOCKIiNG OPerations...........ccccoiiiiiiiiieiieenee e 7-11
Frequently Asked Questions a About Query Performance..........ccoccocvvievenerereseseeescese e 7-12
What is QUENY PerfOrMaNCE? .......cceiiiiiiie ettt et e eene s 7-12
What is the fastest type Of tEXE QUEIY? ......cviiiiiiie e 7-12
Should I collect statistics 0N MY tabIES?.......cccevireieece s 7-13
How does the size of my data affeCct QUEries?...........cociiiiiiiiniic i 7-13
How does the format of my data affect QUEIIES? ........cccceiiiiiiiiiiice e 7-13
What is a functional versus an indexed l0OKUP?........ccoviiiiiieiiennin i 7-13
What tables are inVOIVed iN QUETIES? ..o 7-14
Does sorting the results slow a text-only QUEIY? ..o 7-14
How do | make a ORDER BY sCOre qUEry faster?........ccoviiviiiieneneniene e s eesese e 7-14
Which Memory Settings Affect QUEIYING? ......cc.ooveiiiiiiccce e 7-15
Does out of line LOB storage of wide base table columns improve performance? .......... 7-15
How can | make a CONTAINS query on more than one column faster? .............cccoe.ei. 7-15

Is it OK to have many exXpansions iN @ QUENY? .........ccoiiiiiiineiene s 7-16
How can local partition indexes NelP?..........coiiii e 7-17



Should I query iN Parallel? ..o 7-18

SHoUld I INAEX TNEMIES?....eiiiiieiie ettt n e besresne s 7-18
When should | use @ CTXCAT INAEX? ....ccuiiiiiiiiieiie sttt 7-18
When is a CTXCAT index NOT SUItable?.......c.ooiiiiii e 7-19
What optimizer hints are available, and what do they do? ..........cccccoiiiiiiiiiiiiines 7-19
Frequently Asked Questions About Indexing Performance.........ccccoovevvevieievcicisiesce e 7-19
How long should indeXing take? ... 7-19
Which index memory settings Should [ USE?..........ccciiiiiiiiniiieeeeeee e 7-20
How much disk overhead will indexing reqUIre?.........ccoovoovevvvvienieninseseneseseeeeeee s 7-21
How does the format of my data affect iNdexing? .......c.ccccooe v, 7-21
Can parallel indexing improve PerformMance?...........coierienieneieneie e 7-21
How can | improve index performance for creating local partitioned index?................... 7-22
How can | tell how much indexing has completed? ..., 7-23
Frequently Asked Questions About Updating the INdeX...........ccccoeiviiiniiniiniiiciicies 7-23
How often should | index new or updated reCcords? ..........ccooviviieviininnenenerereseeee s 7-23
How can | tell when my indexes are getting fragmented?............cccceveiivevccce e, 7-23
Does memory allocation affect index synchronization? ... 7-24

8 Document Section Searching

About Document SECtiION SEAICHING .......coiiiriiirer e 8-1
Enabling SECtion SEArCNING .......cccviii i nren 8-1
Create 8 SECLION GrOUP .....coii ittt bbb bbbt be et e bbb b e 8-2

DEfiNE YOUKE SECLIONS ..ottt ettt besre st e 8-4

INAEX YOUT DOCUIMENTS .....oeviieiiiiiieiesieieee et e ettt sa et e e eneenaenesrenresresreneas 8-4

Section Searching With WITHIN OPErator...........cccocviiiiiiineniie e 8-4

Path Searching with INPATH and HASPATH OPerators..........cccoceoreniennenseneiennne 8-4

RS-0 A o] o N Y 1= 8-5
pAo) g [ T=Tox £ o] o IR TSR PRV R PPN 8-5

[T (o IS T=Tox o] o [OOSR USROS 8-7

R3] (0] o JR =T ox £ o] o USSR 8-9
IMIDAT A SECLION ...ttt bbb bbbttt ettt b sttt beebe b s 8-9
ATIFTDULE SECTION ...ttt ettt sbesre e 8-12

3] Lo T LIRS T=Tox £ o] o 8-12

o I\ ST Tot A o] g WS T=T= Lol oV o o PSR 8-13
Creating HTML SECLIONS .....c.coviiiiiiiiee ettt 8-13

Xi



Searching HTIML MELA TAQS......c.ccciviieriieieiieieste ettt st be st e sbeenseste e e sreennes 8-14

Example: Creating Sections fOr SIVETASTAQS ...vvovveeirerenireniesiesesieseeneeeeesesnesresesnens 8-14
XML SeCtion SEArChING.....ccccv i e neerenre s 8-14
PN T | (o] g T A oY =Tod A o] 11 T ISR 8-14
ALLFIDULE SEAICNING ...ttt bbb 8-15
Creating Attribute SECLIONS ......ccvie e e re e 8-15
Searching Attributes with the INPATH OPErator.........c.ccocvviiiieneieieeeeseeeeeee 8-16
Creating Document TYPe SENSItIVE SECTIONS ......c.cciiiiviiieiieeierieie e 8-16
Path SeCtion SEArCHING ......c.cccv i e re e 8-16
Creating Index with PATH_SECTION_GROUP .......ccccceiviiiiirisenec e 8-17
TOp-Level Tag SEarChiNg ..o e 8-17
ANY-LeVel Tag SEArChING ....cccocv et e e 8-18
Direct Parentage SEarching ........ccccocviiiiiiie ittt 8-18

TAG VAIUE TESTING ..ttt bbbttt 8-18
ALFIDULE SEAICHING ..o.viiee e 8-18
ALFIDULE Value TESHING ...voveeeiee et sre s 8-19
PaN TOSTING ...ttt b et b e 8-19
Section Equality Testing With HASPATH ... 8-19

9 Working With a Thesaurus

OVEIVIEW OF TRESAUI T .....cuiitiiiiteicieete ettt et ettt et bbb e b e sbe e b e 9-1
Thesaurus Creation and MaiNtENANCE ...........coeiiiiiieinee e 9-1
CTX_THES PACKAGE .....c.veiieiiiiiiiiiieti ettt 9-2
THESAUIUS OPEIALOTS . .....eiviiiiieieiteieeeee et e et sre st te st st e e ee e essesee e eneeseesesneasesresnesrens 9-2

(o 0d Lo =T I 1 1] ] 1Y SRR 9-2
CaSE-SENSITIVE TNESAUI ...ttt ettt bt sttt et et e e e saesne e s 9-2
Case-INSENSILIVE TRESAUIT ........ciieirieiriee bbb 9-3
DEfAUIT TRESAUIUS.......eiuiitiieite bbb ettt b et eb e bbb e 9-3
SUPPIIEA TRESAUIUS ...ttt b bbbttt 9-4
Supplied Thesaurus Structure and CONTENT .........c.ccvivvirieiiereree e 9-4
Supplied TheSAUFUS LOCALION ........coviiiieiiieiieere ettt 9-4
Defining THEeSAUIAl TEIMIS ......coiiiiiiiie bbbt 9-4
DEfiNING SYNONYIMS ...oiiiiciiiice sttt se et e e e en s esaereeneeresresrenrenes 9-5
Defining Hierarchical REIatiONS...........cccocviiiiiiii et 9-5
Using a Thesaurus in a QUery APPLICALION ...t 9-6

Xii



10

11

Loading a Custom Thesaurus and Issuing Thesaural QUEriesS............ccoccevvvvievivcenv e, 9-6

AAVANTAGE ...tttk bbb bbbttt 9-6
LIMIEALIONS. ...ttt bbb bbbttt 9-6
Augmenting Knowledge Base with Custom TheSaurus ...........ccccccveevevieniesiiesisce e 9-7
AGVANTAGE ..ottt bbb bbb bbbt bbbttt 9-7
LIMIEALIONS. ...ttt bbbttt bttt 9-7
Linking New Terms to EXiSting TEIMIS ........coiiiiiiiicicccce e 9-8
Loading a Thesaurus With CtXIOad............ccoeiiiiiiii e 9-8
Compiling a Loaded TRESAUIUS ........ccccivirieieieeeeeese s re e e sresrennens 9-9

About the Supplied KNOWIEAQE BaSE...........cooiiiiiiiiiiie e 9-9
Adding a Language-Specific KNnowledge Base ..o 9-10
LIMIALIONS. ...ttt ettt bbbt 9-10

Administration
Oracle Text USers and ROIES ...t 10-1
LR I ) ST UL OO 10-1
CTXAPP ROIE ...ttt ettt sttt sttt bttt nr e 10-2
Granting Roles and Privileges 10 USEIS.......ccccoieieiiieiese s re e e 10-2
DIML QUEUE ...ttt sttt ettt sttt et s e et bbb e st s b e eb et be et e ettt st et st be b erennne 10-2
The CTX_OUTPUT PACKAGE.........ceiiiiiiiieiirieiinteisieest ettt 10-3
The CTX_REPORT PACKAGE......ccciieiiitirierieriesieiesieeee st s e ste e esre st sae e sae s essesseseeneesessessessesees 10-3
] = £ T TP U PP TR OPPTPRTPRTTRO 10-7
AAMINISIFATION TOON ...t et s et be b e e 10-7
Migrating Applications from Earlier Releases

Security Improvements iN Oracle TEXT ... s 11-1
CTXSYS No Longer Has DBA PErMiSSIONS ......cc.cveviiviiieresesesesieseesieseeseeseeseeessesesessesnens 11-1
Migrating CTXSYS-OWNed ProCEAUIES .........ccvevuiiieie ettt sve e v 11-2
Effective User DUNNG INAEXING ..ot 11-2
Procedures Do Not Need to Be Owned by CTXSYS ... 11-3
Synching and Optimizing of Other USers’ INAEXES ..........ocvirirerenenenieneieeeeeeicsese i 11-3
CTX Packages and INVOKEr'S RIGNLS ..o 11-3
CREATE TABLE PEIMISSIONS ...ttt ettt 11-3
Migrating Back t0 Previous ReIQASES..........cccvcviiiciiiice et 11-4

Xiii



A CONTEXT Query Application

Web Query ApPlication OVEIVIEW .........ccooiiiiiiiiieriesie st A-1
I LI RS R VAT =T o T AN o o] 1 Tox= 1 u o] o 1SS A-4
Web APPlIicatioN Prer@qUISITES .........oiiiiiiiiieieieeee et A-4
Building the Web APPHCALION ............ccoiiiiiiieiceee e A-4
S =T 0] o] [ O o Yo - A-6
JOBET.CLL.....e et A-6

(0= Vo [=T o F- | (RSOOSR A-7
SEArCh_NEMISEIVICES.SOI .. viviieieieccee e et nne A-7
SEAFCN_NTMILPSP .t e A-9

The JSP Web APPHICATION ..o A-11
Web ApPlication Prer@qUISITES ......covcviiieicicise st A-11

JSP SAMIPIE COUE ...ttt sb e bbb nr s A-12
SEANCH_NTMILJSP i A-12

B CATSEARCH Query Application

CATSEARCH Web Query Application OVEIVIEW...........cceiiiiiiiiiiiee e B-1
RTINS VA= o I AN o] o] FTo% 14 o] o S B-1
Building the JSP Web APPIICALION .......ccoiiiiiiiie e B-2

JSP SAMPIE COUE ...ttt B-4
TOAAET L. s B-5

[0T=To (<] g [ | ST U PSP PT PP PR PRTPPRPPRPTN B-5
CALAIOGSEANCIJSP . vt B-5

Index

Xiv



Send Us Your Comments

Oracle Text Application Developer’'s Guide, 10g Release 1 (10.1)
Part No. B10729-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227. Attn: Server Technologies Documentation
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op1l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

XV



XVi



Preface

This guide explains how to build query applications with Oracle Text. This preface
contains these topics:

Audience

Audience

Organization

Related Documentation
Conventions

Documentation Accessibility

Oracle Text Application Developer’s Guide is intended for users who perform the
following tasks:

Develop Oracle Text applications

Administer Oracle Text installations

To use this document, you need to have experience with the Oracle object relational
database management system, SQL, SQL*Plus, and PL/SQL.

Organization

This document contains:

XVii



Chapter 1, "Oracle Text Application Development"

This chapter explains the basic features of the query, catalog, and classification
applications that you can build with Oracle Text.

Chapter 2, "Getting Started with Oracle Text"

This chapter explains how to get started on building a simple query applications
using Oracle Text.

Chapter 3, "Indexing"

This chapter describes how to index your document set. It discusses considerations
for indexing as well as how to create CONTEXT, CTXCAT, and CTXRULE indexes.

Chapter 4, "Querying"
This chapter describes how to query your document set. It gives examples for how
to use the CONTAINS, CATSEARCH, and MATCHES operators.

Chapter 5, "Document Presentation”

This chapter describes how to present documents to the user of your query
application.

Chapter 6, "Document Classification"
This chapter describes how to build classification applications.

Chapter 7, "Performance Tuning"

This chapter describes how to tune your queries to improve response time and
throughput.

Chapter 8, "Document Section Searching"
This chapter describes how to enable section searching in HTML and XML.

Chapter 9, "Working With a Thesaurus"
This chapter describes how to work with a thesaurus in your application. It also

describes how to augment your knowledge base with a thesaurus.

Chapter 10, "Administration”
This chapter describes Oracle Text administration.

xviii



Chapter 11, "Migrating Applications from Earlier Releases"

This chapter describes how to migrate your applications from earlier versions of
Oracle Text.

Appendix A, "CONTEXT Query Application"

This appendix describes a sample Oracle Text CONTEXT Web application and the
wizard used to produce it.

Appendix B, "CATSEARCH Query Application”
This appendix describes an Oracle Text CATSEARCH example Web application.

Related Documentation
For more information about Oracle Text, refer to:
«  Oracle Text Reference
For more information about Oracle Database, refer to:
«  Oracle Database Concepts
= Oracle Database Administrator's Guide
= Oracle Database Utilities
« Oracle Database Performance Tuning Guide
« Oracle Database SQL Reference
«  Oracle Database Reference
=  Oracle Database Application Developer's Guide - Fundamentals
For more information about PL/SQL, refer to:
« PL/SQL User's Guide and Reference

You can obtain Oracle Text technical information, collateral, code samples, training
slides and other material at:

http://otn.oracle.con products/text/

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

Xix



Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. conf
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com nenber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle. com docunent ation/

Conventions

This section describes the conventions used in the text and code examples of the
this documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are The C datatypes such as ub4, sword, or
defined in the text or terms that appear in  OCINumber are valid.
aglossary, or both. When you specify this clause, you create an
index-organized table.
Italics Italic typeface indicates query terms, book Oracle9i Concepts

XX

titles, emphasis, syntax clauses, or .

placeholders. You can specify the parallel_clause.
Run Uol d_r el ease. SQL where old_release
refers to the release you installed prior to

upgrading.



Convention

Meaning

Example

UPPERCASE
monospace
(fixed-width font)

lowercase
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER _
TABLES table in the data dictionary view.

Specify the ROLLBACK_SEGVENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to open SQL*Plus.

The depar t nent _i d, depar t nent _nane,
and | ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

Connect as oe user.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE usernane =

"M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[1 Brackets enclose one or more optional DECI MAL (digits [ , precision ])
items. Do not enter the brackets.
{} Braces enclose two or more items, one of { ENABLE | DI SABLE}
which is required. Do not enter the
braces.
| A vertical bar represents a choice of two  { ENABLE | Dl SABLE}
or more options within brackets or braces. [ COVPRESS | NOCOVPRESS]

Enter one of the options. Do not enter the
vertical bar.

XXi



Convention

Meaning

Horizontal ellipsis points indicate either:

Example

That we have omitted parts of the code CREATE TABLE ... AS subquery;
that are not directly related to the
example
That you can repeat a portion of the code SELECT CO', 1, col2, ..., coln FROM
enpl oyees;
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acctbal NUMBER(11, 2);

brackets, braces, vertical bars, and ellipsis
points as it is shown.

acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates variables for CONNECT SYSTEM syst em password
which you must supply particular values.
UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish « FROM .
them from terms you define. Unless terms SELECT * F USER_TABLES;
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
| ower case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM

programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

enpl oyees;
sql plus hr/hr

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

XXii



http:// ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

XXili



XXiV



1

Oracle Text Application Development

This chapter discuses the following topics:
« What is Oracle Text?

« Designing Your Application

« Text Queries on Document Collections
« Queries on Catalog Information

« Document Classification

« XML Searching

What is Oracle Text?

Oracle Text is a technology that enables you to build text query applications and
document classification applications. Oracle Text provides indexing, word and
theme searching, and viewing capabilities for text.

Designing Your Application

To design your Oracle Text application, you must determine the type of queries you
expect to execute. Doing so enables you to choose the most suitable index for the
task. We can divide application queries into three different categories:

« Text Queries on Document Collections
« Queries on Catalog Information

« Document Classification

Oracle Text Application Development 1-1



Text Queries on Document Collections

Text Queries on Document Collections

A text query application enables users to search document collections such as Web
sites, digital libraries, or document warehouses. Searching is enabled by first
indexing the document collection. The collection is typically static with no
significant change in content after the initial indexing run. Documents can be of any
size and of different formats such as HTML, PDF, or Microsoft Word. These
documents are stored in a document table.

Queries usually consist of words or phrases. Application users can specify logical
combinations of words and phrases using operators such as ORand AND. Other
guery operations such as stemming, proximity searching, and wildcarding can be
used to improve the search results.

An important factor for this type of application is retrieving documents that are
relevant to a user query while retrieving as few non-relevant documents as possible.
The most relevant documents must be ranked high in the result list.

The queries for this type of application are best served with a CONTEXT index on
your document table. To query this index, your application uses the SQL CONTAI NS
operator in the WHERE clause of a SELECT statement

Figure 1-1 Overview of Text Query Application

SQL
CONTAI NS
Database Query

DocTable | Text Query
_Ii Application

{

Context
Index

| | |

Flowchart of Text Query Application

A typical text query application on a document collection enables the user to enter a
query. The application issues a CONTAINS query and returns a list, called a hitlist,
of documents that satisfy the query. The results are usually ranked by relevance.
The application enables the user to view one or more documents in the hitlist.

1-2 Oracle Text Application Developer's Guide



Text Queries on Document Collections

For example, an application might index URLs (HTML files) on the World Wide
Web and provide query capabilities across the set of indexed URLs. Hitlists
returned by the query application are composed of URLSs that the user can visit.

Figure 1-2 illustrates the flowchart of how a user interacts with a simple query
application. The figure shows the steps required to enter the query through to
viewing the results. A query application can be modeled according to the following
steps:

1. The user enters a query.

The application executes a CONTAINS query.

2

3. The application presents a hitlist.

4. The user selects document from hitlist.
5

The application presents a document to the user for viewing.

Oracle Text Application Development 1-3



Queries on Catalog Information

Figure 1-2 Flowchart of a query application

B
\Eel]-— Emeruery “—

Execute Cont ai ns Query

'

Present Hitlist

e B v
\qgui— Select from Hitlist

‘ Application Action

Present Document
CTY_DCC. HI GHLI GHT User Action

Queries on Catalog Information

Catalog information consists of inventory type information such as that of an online
book store or auction site. The stored information consists of text information such
as book titles and related structured information such as price. The information is
usually updated regularly to keep the online catalog up to date with the inventory.

Queries are usually a combination of a text component and a structured component,
such as price or author. Results are almost always sorted by a structured
component such as date or price.

Good response time is always an important factor with this type of query
application.

1-4 Oracle Text Application Developer's Guide



Queries on Catalog Information

Catalog applications are best served by a CTXCAT index. You query this index with
the CATSEARCH operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relation of the catalog table, its CTXCAT index, and the
catalog application which uses the CATSEARCH operator to query the index.

Figure 1-3 A Catalog Query Application

SQL
CATSEARCH
Ctxcat g
Index

Catalog Table
Catalog
—Ii Application

| | |

Flowchart for Catalog Query Application

A catalog application enables users to search for specific items in catalogs. For
example, an online store application enables users to search for and purchase items
in inventory. Typically, the user query consists of a text component that searches
across the textual descriptions plus some other ordering criteria, such as price or
date.

Figure 1-4 illustrates the flowchart of a catalog query application for an online
electronics store.

1. The user enters the query, consisting of a text component (for example cd player)
and a structured component (for example order by price).

The application executes the CATSEARCH query.
The application shows the results ordered accordingly.

The user browses the results.

o & W DN

The user then either issues another query or performs an action, such as
purchasing the item.

Oracle Text Application Development 1-5



Document Classification

Figure 1-4 Flowchart of a catalog query application

Enter Query <

!

/\

Text Component
'cd player'’

Structured Component
"order by price'

i

Execute Catsearch Query
CATSEARCH

v

Show Results

v

&1

New Query

&7

User Browses Results

v

User Purchases ltem

!

Document Classification

In a document classification application, an incoming stream or a set of documents
is compared to a pre-defined set of rules. When a document matches one or more
rules, the application performs some action.

Application Action

User Action

For example, assume we have an incoming stream of news articles. We can define a
rule to represent the category of Finance. The rule is essentially one or more queries
that select document about the subject of Finance. The rule might have the form

*stocks or bonds or earnings”.

1-6 Oracle Text Application Developer’'s Guide



XML Searching

When a document arrives about a Wall Street earnings forecast and satisfies the
rules for this category, the application takes an action such as tagging the document
as Finance or emailing one or more users.

To create a document classification application, you create a table of rules and then
create a CTXRULE index. To classify an incoming stream of text, use the MATCHES
operator in the WHERE clause of a SELECT statement. Refer to Figure 1-5 for the
general flow of a classification application.

Figure 1-5 Overview of a Document Classification Application

Document 1 [——
from —
Database —_—
Document 2 [—— Document Perform
from FEile — Stream Document Action

— Classification
System Application
Document N [—— SQL
from Web I %L?"ES Classify

— y document

Oracle
Ctxrule
Index Rules Table
Database A Database B

XML Searching

An XML search application performs searches over XML documents. In a regular
document search, you usually search across a set of documents to return documents
that satisfy a text predicate; in an XML search, you often use the structure of the
XML document to restrict the search. Typically, only that part of the document that
satisfies the search is returned. For example, instead of finding all purchase orders

Oracle Text Application Development 1-7



XML Searching

that contain the word electric, the user might need only purchase orders in which
the comment field contains electric.

Oracle Text enables you to perform XML searching using the following approaches:
« Using Oracle Text

« Using the Oracle XML DB Framework

« Combining Oracle Text features with Oracle XML DB

Using Oracle Text

The CONTAI NS operator is well suited to structured searching, enabling you to
perform restrictive searches with the W THI N, HASPATH, and | NPATH operators. If
you use a CONTEXT index, you can also benefit from the following characteristics
of Oracle Text searches:

= searches are token-based, whitespace-normalized

« hit lists are ranked by relevance

« you can enable case-sensitive searching

= you can utilize section searching

« you can leverage linguistic features such as stemming and fuzzy searching

« queries are performance-optimized for large document sets

See Also: "XML Section Searching" on page 8-14

Using the Oracle XML DB Framework

With Oracle XML DB, you load your XML documents in an XMLType column. XML
searching with Oracle XML DB usually consists of an XPATH expression within an
exi st sNode(),extract (), orextract Val ue() query. This type of search can
be characterized as follows:

« hon-text search with equality and range on dates and numbers
= string search that is character-based where all characters are treated the same

« has the ability to leverage the or a: cont ai ns() function with a CTXXPATH
index to speed up exi st sNode() queries.

This type of search has the following disadvantages:

1-8 Oracle Text Application Developer’'s Guide



XML Searching

« ho special linguistic processing

= uses exact matching so there is no notion of relevance

« can be very slow for some searches, such as wildcarding, as with:
VWHERE col 1 |ike ' %og%

See Also: The Oracle XML DB Developer's Guide

Combining Oracle Text features with Oracle XML DB

You can combine the features of Oracle Text and Oracle XML DB for applications in
which you want to do a full-text retrieval, leveraging the XML structure by issuing
gueries such as "find all nodes that contain the word Pentium." You do so in one of
two ways:

« Using the Text-on-XML Method
« Using the XML-on-Text Method

See Also: The Oracle XML DB Developer's Guide and "XML Section
Searching" on page 8-14

Using the Text-on-XML Method

With Oracle Text, you can create a CONTEXT index on a column that contains your
XML data. Your column type can be XMLType, but can also be any supported type
provided you use the correct index preference for XML data.

With the Text-on-XML method, you use the standard CONTAI NS query and add a
structured constraint to limit the scope of a search to a particular section, field, tag,
or attribute. This amounts to specifying the structure inside text operators such as
W THI N, HASPATH, and | NPATH.

For example, you can set up your CONTEXT index to create sections with XML
documents. Consider the following XML document that defines a purchase order.

<?xm version="1.0"?>
<PURCHASEORDER pono="1">
<PNAVE>Po_ 1</ PNAVE>
<CUSTNANME>John</ CUSTNAVE>
<SHI PADDR>
<STREET>1033 Mai n Street </ STREET>
<Cl TY>Sunnyval ue</ Cl TY>
<STATE>CA</ STATE>

Oracle Text Application Development 1-9



XML Searching

</ SH PADDR>
<| TEMS>
<| TEM>
<I TEM NAME> Del | Conputer </|TEM NAMVE>
<DESC> Pentium 2.0 Ghz 500MB RAM </ DESC>
</ | TEM>
<| TEM>
<| TEM NAME> Norel co R100 </ | TEM NAME>
<DESC>Hl ectric Razor </ DESC>
</ | TEM>
</ | TEMS>
</ PURCHASECRDER>

To query all purchase orders that contain Pentium within the item description
section, you might use the W THI N operator as follows:

SELECT id frompo_tab where CONTAINS( doc, 'Pentium WTHN desc') > 0;

You can specify more complex criteria with XPATH expressions using | NPATH
operator:

SELECT id frompo_tab where CONTAINS(doc, 'Pentium | NPATH
(/purchaseOrder/itens/item desc') > 0;

Using the XML-on-Text Method

With the XML-on-Text method, you add text operations to an XML search. This
includes using the or a: cont ai ns() function in the XPATH expression with
exi st sNode(),extract (), andextract Val ue() queries. This amounts to
including the full-text predicate inside the structure. For example:

SELECT
Extract (doc, '/purchaseOr der//desc{ora:contains(.,"pentiun)>0]",
"xm ns:ora=http://xm ns. oracl e. com xdb')
“I'tem Comment " FROM po_tab_xnitype
/

Additionally you can improve the performance of exi st sNode(), extract (),
and ext r act Val ue() queries using the CTXXPATH Text domain index.

1-10 Oracle Text Application Developer's Guide



2

Getting Started with Oracle Text

This chapter discuses the following topics:

«  Overview of Getting Started with Oracle Text
« Creating an Oracle Text User

«  Query Application Quick Tour

« Catalog Application Quick Tour

« Classification Application Quick Tour

Overview of Getting Started with Oracle Text

This chapter describes how to get started with creating an Oracle Text developer
and building simple text query and catalog applications. For each type of
application, this chapter steps you through the basic SQL statements for loading,
indexing and querying your tables.

More complete application examples are given in the Appendices. To learn more
about building document classification applications, see Chapter 6.

Note: The SQL> prompt has been omitted in this chapter, in part
to improve readability and in part to make it easier for you to cut
and paste text.

Creating an Oracle Text User

Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages,
you need to create a user with the CTXAPP role. This role enables you to do the
following:

Getting Started with Oracle Text 2-1



Query Application Quick Tour

« Create and delete Oracle Text indexing preferences
« Use the Oracle Text PL/SQL packages

To create an Oracle Text application developer user, execute the following SQL
statements as the system administrator user:

Step 1 Create User

The following SQL command creates a user called MYUSER with a password of
nmyuser _passwor d:

CREATE USER nyuser | DENTI FI ED BY nyuser _passwor d;

Step 2 Grant Roles

The following SQL command grants the required roles of RESOURCE,CONNECT, and
CTXAPP to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;

Step 3 Grant EXECUTE Privileges on CTX PL/SQL Packages

There are ten Oracle Text packages that enable you to perform actions ranging from
synchronizing an Oracle Text index to highlighting documents. For example, the
CTX _DDL. SYNC | NDEX package enables you to synchronize your index.

To call any of these procedures from a stored procedure, your application requires
execute privileges on the packages.

For example, to grant to MYUSER execute privileges on all Oracle Text packages,
issue the following SQL commands:

GRANT EXECUTE ON CTX_CLS TO myuser;
GRANT EXECUTE ON CTX_DDL TO myuser;
GRANT EXECUTE ON CTX_DOC TO myuser;
GRANT EXECUTE ON CTX_QUTPUT TO nyuser;
GRANT EXECUTE ON CTX_QUERY TO nyuser;
GRANT EXECUTE ON CTX_REPORT TO nyuser;
GRANT EXECUTE ON CTX_THES TO myuser;

Query Application Quick Tour

In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an
application involves creating a CONTEXT index and querying it with CONTAINS.

2-2 Oracle Text Application Developer’'s Guide



Query Application Quick Tour

This example steps you through the basic SQL statements you use to load your text
table, index your documents, and query your index.

Typically, query applications require a user interface. An example of how to build
such a query application using the CONTEXT index type is given in Appendix A.

Step 1 Connect as the New User
Before creating any tables, assume the identity of the user you just created.

CONNECT nyuser ;

Step 2 Create your Text Table

The following example creates a table called docs with two columns, i d and t ext ,
by using the CREATE TABLE statement. This example makes the i d column the
primary key. The t ext column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRI MARY KEY, text VARCHAR2(200));

Step 3 Load Documents into Table
You can use the SQL | NSERT statement to load text to a table.

To populate the docs table, use the | NSERT statement as follows;

I NSERT | NTO docs VALUES(1, '<HTM.>California is a state in the US. </HTM.>');
I NSERT | NTO docs VALUES(2, '<HTM.>Paris is a city in France.</HTM.>');
I NSERT | NTO docs VALUES(3, '<HTM.>France is in Europe.</HTM.>');

Using SQL*Loader
You can also load your table in batch with SQL*Loader.

See Also: "Building the Web Application” in Appendix A,
"CONTEXT Query Application" for an example on how to use
SQL*Loader to load a text table from a data file.

Step 1 Create the CONTEXT index

Index the HTML files by creating a CONTEXT index on the text column as follows.
Since you are indexing HTML, this example uses the NULL_FI LTER preference type
for no filtering and uses the HTM._ SECTI ON_GROUP type:

Getting Started with Oracle Text 2-3



Query Application Quick Tour

CREATE | NDEX i dx_docs ON docs(text)
I NDEXTYPE | S CTXSYS. CONTEXT PARAMETERS
(" FILTER CTXSYS. NULL_FI LTER SECTI ON GROUP CTXSYS. HTM._SECTI ON_GROUP' ) ;

Use the NULL_FILTER because you do not need to filter HTML documents during
indexing. However, if you index PDF, Microsoft Word, or other formatted
documents, use the CTXSYS.INSO_FILTER (the default) as your FILTER preference.

This example also uses the HTML_SECTION_GROUP section group which is
recommended for indexing HTML documents. Using HTML_SECTION_GROUP
enables you to search within specific HTML tags, and eliminates from the index
unwanted markup such as font information.

Step 2 Querying Your Table with CONTAINS

You query the table with the SELECT statement with CONTAINS to retrieve the
document ids that satisfy the query.

Before doing so, set the format of the SELECT statement’s output so that it is easily
readable. To do so, set the width of the t ext column to 40 characters:

COLUWN text FORMAT a40;

Now use SELECT. The following query looks for all documents that contain the
word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAI NS(text, 'France', 1) > 0;

SCORE( 1) | D TEXT
4 3 <HTML>France is in Europe.</HTM.>
4 2 <HTM.>Paris is a city in France. </ HTM.>

Step 3 Present the Document

In a real application, you might want to present the selected document to the user
with query terms highlighted. Oracle Text enables you to mark up documents with
the CTX_DOC package.

We can demonstrate HTML document markup with an anonymous PL/SQL block
in SQL*Plus. However, in a real application you might present the document in a
browser.

This PL/SQL example uses the in-memory version of CTX_DOC.MARKUP to
highlight the word France in document 3. It allocates a temporary CLOB (Character

2-4 Oracle Text Application Developer’'s Guide



Query Application Quick Tour

Large Object datatype) to store the markup text and reads it back to the standard
output. The CLOB is then de-allocated before exiting:

SET SERVEROUTPUT ON;
DECLARE
2 nklob CLCB;
3 ant NUMBER : = 40;
4 line VARCHAR2(80);
5 BEGN

6 CTX_DCC. MARKUP(" i dx_docs',"' 3", " France', nklob);
7 DBVS_LOB. READ( nkl ob, ant, 1, line);
8 DBVS_QUTPUT. PUT_LI NE(' FI RST 40 CHARS ARE:'||line);
9 DBVS_LOB. FREETEMPORARY( nkl ob) ;
10 END;
11 /

FIRST 40 CHARS ARE: <HTM_><<<France>>> i s in Europe. </ HTM.>

PL/ SQL procedure successfully conpleted.

Step 4 Synchronize the Index After Data Manipulation

When you create a CONTEXT index, you need to explicitly synchronize your index
to keep it up to date with any inserts, updates, or deletes to the text table.

Oracle Text enables you to do so with the CTX_DDL. SYNC_| NDEX procedure.
Add some rows to the docs table:

I NSERT | NTO docs VALUES(4, '<HTM.>Los Angeles is a city in California. </HTM>");
I NSERT I NTO docs VALUES(5, '<HTM.>Mexico City is big.</HTM.>');

Since the index is not synchronized, these new rows are not returned with a query
on city:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

4 2 <HTM.>Paris is a city in France. </ HTM.>

Therefore, synchronize the index with 2Mb of memory, and reexecute the query:

EXEC CTX_DDL. SYNC_| NDEX(' i dx_docs', '2M);

PL/ SQL procedure successfully conpl eted.

Getting Started with Oracle Text 2-5



Query Application Quick Tour

COLUWN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

SCORE( 1) | D TEXT
4 5 <HTM.>Mexico City is big. </ HTM.>
4 4 <HTM.>Los Angeles is a city in California.</HM>
4 2 <HTM.>Paris is a city in France. </ HTM.>

Building Web Applications with the Oracle Text Wizard

Oracle Text enables you to build simple Text and Catalog Web applications with the
Oracle Text Wizard addin for Oracle JDeveloper. The wizard automatically
generates Java Server Pages or PL/SQL server scripts you can use with the
Oracle-configured Apache Web server.

Both JDeveloper and the Text Wizard can be downloaded for free from the
following Oracle Technology Network (OTN) sites. Note that you need to register
with OTN before you can access these pages.

Oracle JDeveloper
You can obtain the latest JDeveloper software from:

http://otn.oracle.com/software/products/jdev/content.html

See "Building the JSP Web Application" on page B-2 for an example.

Oracle Text Wizard Addins
You can obtain the Text, Catalog, and Classification Wizard addins from:

http://otn.oracle.com/software/products/text/content.html

Oracle Text Wizard Instructions

You can find instructions on using the Oracle Text Wizard and setting up your JSP
files to run in a Web server environment from:

http://otn.oracle.com/software/products/text/content.html

Follow the "Text Search Wizard for JDeveloper" link.

2-6 Oracle Text Application Developer’s Guide



Catalog Application Quick Tour

Catalog Application Quick Tour

This example creates a catalog index for an auction site that sells electronic
equipment such as cameras and CD players. New inventory is added everyday and
item descriptions, bid dates, and prices must be stored together.

The application requires good response time for mixed queries. The key is to
determine what columns users frequently search so that we can create a suitable
CTXCAT index. Queries on this type of index are issued with the CATSEARCH
operator.

Note: Typically, query applications require a user interface. An
example of how to build such a query application using the
CATSEARCH index type is given in Appendix B.

Step 1 Connect as the Appropriate User
In this case, we connect as the user myuser , whom we created in section "Create
User".

CONNECT nyuser ;

Step 2 Create Your Table
Set up an auction table to store your inventory:

CREATE TABLE aucti on(
itemid NUMBER,

title VARCHAR2(100),
category_i d NUMBER,
price NUMBER,

bi d_cl ose DATE);

Figure 2-1 illustrates this table.

Step 3 Populate Your Table

Now populate the table with various items, each withanid, title, priceand
bi d_date:

I NSERT | NTO AUCTI ON VALUES(1, 'N KON CAMERA', 1, 400, '24-0CT-2002');

I NSERT | NTO AUCTI ON VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-CCT-2002');
I NSERT | NTO AUCTI ON VALUES(3, ' PENTAX CAMERA', 1, 200, '26-CCT-2002");

I NSERT | NTO AUCTI ON VALUES(4, ' CANON CAMERA', 1, 250, '27-0CT-2002');

Getting Started with Oracle Text 2-7



Catalog Application Quick Tour

Using SQL*Loader
You can also load your table in batch with SQL*Loader.

See Also: "Building the Web Application” in Appendix A,
"CONTEXT Query Application" for an example on how to use
SQL*Loader to load a text table from a data file.[

Step 1 Determine your Queries

You need to determine what criteria are likely to be retrieved. In this example, you
determine that all queries search the title column for item descriptions, and most
gueries order by price. When using the CATSEARCH operator later, we'll specify the
terms for the text column and the criteria for the structured clause.

Step 2 Create the Sub-Index to Order by Price

For Oracle Text to serve these queries efficiently, we need a sub-index for the price
column, since our queries will order by price.

Therefore, create an index set called auct i on_set and add a sub-index for the
price column:

EXEC CTX_DDL. CREATE. | NDEXT_SET(' auction_iset');
EXEC CTX_DDL. ADD | NDEX(' auction_iset', ' price'); /* sub-index A*/

Figure 2-1 shows how the sub-index relates to the columns.

Step 3 Create the CTXCAT Index

Create the combined catalog index on the AUCTI ON table with CREATE | NDEX as
follows:

CREATE | NDEX auction_titlex ON AUCTION(title) | NDEXTYPE IS CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset');

Figure 2-1 shows how the CTXCAT index and its sub-index relates to the columns.

2-8 Oracle Text Application Developer’s Guide



Catalog Application Quick Tour

Figure 2-1 Auction table schema and CTXCAT index

Sub-index A
CTXCAT
I Index
Auction Table
N e . >
item_id | title category_id | price bid_close
number | varchar (100) | number number | date

Step 1 Querying Your Table with CATSEARCH

When you have created the CTXCAT index on the AUCTI ONtable, you can query
this index with the CATSEARCH operator.

First set the output format to make the output readable:

COLUW title FORMAT a40;

Now execute the query:

SELECT title, price FROM aucti on WHERE CATSEARCH(title, 'CAMERA', 'order hy
price')> 0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
CLYMPUS CAMERA 300
NI KON CAMERA 400

SELECT title, price FROM aucti on WHERE CATSEARCH(title, 'CAMERA',
"price <= 300')>0;

PENTAX CAMERA 200

Getting Started with Oracle Text

2-9



Classification Application Quick Tour

CANON CAMERA 250
CLYMPUS CAMERA 300

Step 2 Update Your Table

You can update your catalog table by adding new rows. When you do so, the
CTXCAT index is automatically synchronized to reflect the change.

For example, add the following new rows to our table and then reexecute the
query:

I NSERT | NTO AUCTI ON VALUES(5, 'FUJlI CAMERA', 1, 350, '28-CCT-2002');

I NSERT | NTO AUCTI ON VALUES(6, ' SONY CAMERA', 1, 310, '28-QCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by

price')> 0;

TI TLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
CLYMPUS CAMERA 300
SONY CAMERA 310
FUWI CAMERA 350
NI KON CAMERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

Classification Application Quick Tour

The function of a classification application is to perform some action based on
document content. These actions can include assigning a category id to a document
or sending the document to a user. The result is classification of a document.

Documents are classified according to pre-defined rules. These rules select for a
category. For instance, a query rule of ‘presidential elections® might select documents
for a category about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, in which you create both document categories and the
rules for categorizing documents. With supervised classification, Oracle Text derives

the rules from a set of training documents you provide. With clustering, Oracle Text

2-10 Oracle Text Application Developer’'s Guide



Classification Application Quick Tour

does all the work for you, deriving both rules and categories. (For more on
classification, see Chapter 6, "Document Classification" in this book.)

To achieve simple classification in Oracle Text, you create rules, which are
essentially a table of queries. You index these rules in a CTXRULE index. To classify
an incoming stream of text, use the MATCHES operator in the WHERE clause of a
SELECT statement. Refer to Figure 2-2 for the general flow of a classification
application.

Figure 2-2 Overview of a Document Classification Application

Document 1 [——
from —
Database —_—
Document 2 [—— Document Perform
from FEile — Stream Document Action

— Classification
System Application
Document N [—— SQL
fromWeb | — %L?HES Classify

— y document

Oracle
Ctxrule
Index Rules Table
Database A Database B

Steps for Creating a Classification Application

The following example steps you through defining simple categories, creating a
CTXRULE index, and using MATCHES to classify documents.

Step 1 Connect As the Appropriate User

In this case, we connect as the user myuser , which we created in section "Create
User".

Getting Started with Oracle Text 2-11



Classification Application Quick Tour

CONNECT nyuser ;

Step 2 Create the Rule Table

We must create a rule table and populate it with query rules. In this example, we
create a table called quer i es. Each row defines a category with an id, and a rule
which is a query string:

CREATE TABLE queries (

query_id NUMBER,
query_string VARCHAR2(80)
);

I NSERT | NTO queries VALUES (1, 'oracle');

I NSERT | NTO queries VALUES (2, 'larry or ellison');
I NSERT | NTO queries VALUES (3, 'oracle and text');
I NSERT | NTO queries VALUES (4, 'market share');

Step 3 Create Your CTXRULE Index
Create a CTXRULE index as follows:

CREATE | NDEX queryx ON queries(query_string) |NDEXTYPE IS CTXRULE;

Step 4 Classify with MATCHES

Use the MATCHES operator in the WHERE clause of a SELECT statement to match
documents to queries and hence classify.

COLUW query_string FORMAT a35;

SELECT query_id, query_string FROM queries

VWHERE MATCHES(query_string,
"Oracl e announced that its market share in databases
increased over the |ast year.')>0;

QUERY_I D QUERY_STRI NG

1 oracle
4 market share

As shown, the document string matches categories 1 and 4. With this classification
you can perform an action, such as writing the document to a specific table or
emailing a user.

See Also: Chapter 6, "Document Classification" for more
extended classification examples.

2-12 Oracle Text Application Developer's Guide



3

Indexing

The chapter is an introduction to Oracle Text indexing. The following topics are
covered:

About Oracle Text Indexes
Considerations For Indexing
Index Creation

Index Maintenance

Managing DML Operations for a CONTEXT Index

About Oracle Text Indexes

The following sections discuss the different types of Oracle Text indexes, their
structure, the indexing process, and limitations.

Type of Index

With Oracle Text, you can create one of four index types with CREATE | NDEX. The
following table describes each type, its purpose, and what features it supports:

Indexing 3-1



About Oracle Text Indexes

Supported Preferences
Index Type  Description and Parameters Query Operator Notes

CONTEXT Use this index to build a  All CREATE | NDEX CONTAI NS Supports all
text retrieval application  preferences and documents services

- Grammar is called -
when your text consists  parameters supported and query services.

of large coherent except for | NDEX SET. the CONTEﬁT h S indexi £
documents. You can grammar, whic upports indexing o
index documents of These supported supports a rich set  partitioned text
different formats such as  Parameters include the  of operations. tables.

MS Word, HTML or index partition clause, o crycAT

and the format, charset,

plain text. and language columns.

grammar can be
used with query

With a context index, you templating.

can customize your
index in a variety of
ways.

This index type requires
CTX_DDL.SYNC_
INDEX after DML on
base table.

3-2 Oracle Text Application Developer’'s Guide



About Oracle Text Indexes

Supported Preferences

Index Type  Description and Parameters Query Operator Notes
CTXCAT Use this index type for | NDEX SET CATSEARCH This index is larger
better mixed query . and takes longer to
performance. Typically, LEXER g;.a;(ngzi.rxﬁiiued build than a
with this index type, you STOPLI ST su ortsllo ical CONTEXT index.
index small documents STORAGE ppor 9 .
or text fragments. Other opergitlons,dphrase Tr:je size ofla C‘(Ij’XCAT
columns in the base WORDLI ST (only prefix_ &ﬂfég‘r d‘f’m iﬂeigtlasl I:\an?(t)in:c:)f
table, such as item index attribute 9: text to be indexed
names, prices and supported for Japanese =~ The CONTEXT number of indexeé
descriptions can be data) grammar can be in the index set. and
included in the index to E h d used with query n E f col '
improve mixed query ormat, charset, an templating. number of columns
performance language columns not o mdeg(ed. Carefully
) supported. Theme querying is consider your
This index type is . supported. queries and your
transactional, Tablg_an(_j index resources before
- - partitioning not S
automatically updating subported adding indexes to
itself after DML to base PP ' the index set.
table. No CTX .
DDL.SYNC_INDEX is ghe CTXCAT index
necessary. - oes not support
table and index
partitioning,
documents services
(highlighting,
markup, themes,
and gists) or query
services (explain,
query feedback, and
browse words.)
CTXRULE Use CTXRULE index to See "CTXRULE MATCHES Single documents
build a document Parameters and (plain text, HTML,
classification or routing  Limitations" on page 6-8. or XML) can be
application. The CTXRULE classified using the
index is an index created MATCHES operator,

on a table of queries,

where the queries define

the classification or
routing criteria.

which turns a
document into a set
of queries and finds
the matching rows
in the CTXRULE
index.

Indexing 3-3



About Oracle Text Indexes

Supported Preferences

Index Type  Description and Parameters Query Operator Notes

CTXXPATH  Create this index when STORACE Use with Can only create this
you need to speed up existsNode() index on XMLType
existsNode() queries on column.

an XMLType column.

Although this index
type can be helpful
for exi st sNode()
queries, it is not
required for XML
searching. See "XML
Searching" on

page 1-7

See Also: Index Creation in this chapter.

An Oracle Text index is an Oracle Database domain index.To build your query
application, you can create an index of type CONTEXT and query it with the
CONTAI NS operator.

You create an index from a populated text table. In a query application, the table
must contain the text or pointers to where the text is stored. Text is usually a
collection of documents, but can also be small text fragments.

For better performance for mixed queries, you can create a CTXCAT index. Use this
index type when your application relies heavily on mixed queries to search small
documents or descriptive text fragments based on related criteria such as dates or
prices. You query this index with the CATSEARCH operator.

To build a document classification application using simple or rule-based
classification, you create an index of type CTXRULE. With such an index, you can
classify plain text, HTML, or XML documents using the MATCHES operator. You
store your defining query set in the text table you index.

If you are working with XMLtype columns, you can create a CTXXPATH index to
speed up queries with existsNode.

You create a text index as a type of extensible index to Oracle Database using
standard SQL. This means that an Oracle Text index operates like an Oracle
Database index. It has a name by which it is referenced and can be manipulated
with standard SQL statements.

The benefits of a creating an Oracle Text index include fast response time for text
queries with the CONTAI NS, CATSEARCH, and MATCHES Oracle Text operators.

3-4 Oracle Text Application Developer’s Guide



About Oracle Text Indexes

These operators query the CONTEXT, CTXCAT, and CTXRULE index types
respectively.

See Also: "Index Creation" in this chapter.

Structure of the Oracle Text CONTEXT Index

Oracle Text indexes text by converting all words into tokens. The general structure
of an Oracle Text CONTEXT index is an inverted index where each token contains the
list of documents (rows) that contain that token.

For example, after a single initial indexing operation, the word DOG might have an
entry as follows:

Word Appears in Document

DOG DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one,
three and five.

For more information, see optimizing the index in this chapter.

Merged Word and Theme Index

By default in English and French, Oracle Text indexes theme information with word
information. You can query theme information with the ABOUT operator. You can
optionally enable and disable theme indexing.

See Also: To learn more about indexing theme information, see
"Creating Preferences" in this chapter.

The Oracle Text Indexing Process

This section describes the Oracle Text indexing process.You initiate the indexing
process with the CREATE | NDEX statement. The goal is to create an Oracle Text
index of tokens according to the parameters and preferences you specify.

Figure 3-1 shows the indexing process. This process is a data stream that is acted
upon by the different indexing objects. Each object corresponds to an indexing
preference type or section group you can specify in the parameter string of CREATE
| NDEX or ALTER | NDEX. The sections that follow describe these objects.

Indexing 3-5



About Oracle Text Indexes

Figure 3-1 Oracle Text Indexing Process

Internet

O/s file
system

v v

Documents
Datastore

Datastore Object

Filter

Marked-up
Text

Markup

Stoplist

Wordlist

Sectioner

Text

Lexer

Tokens

Oracle Text
Index

3!

Indexing
Engine

l

The stream starts with the datastore reading in the documents as they are stored in

the system according to your datastore preference. For example, if you have defined
your datastore as FI LE_DATASTORE, the stream starts by reading the files from the

operating system. You can also store your documents on the internet or in the

Oracle Database. Wherever your files reside physically, you must always have a text
table in the Oracle Database that points to the file.

Filter Object

The stream then passes through the filter. What happens here is determined by your

FILTER preference. The stream can be acted upon in one of the following ways:

« No filtering takes place. This happens when you specify the NULL_FI LTER

preference type or when the value of the format column is | GNORE. Documents

that are plain text, HTML, or XML need no filtering.

3-6 Oracle Text Application Developer’s Guide



About Oracle Text Indexes

« Formatted documents (binary) are filtered to marked-up text. This happens
when you specify the | NSO _FI LTER preference type or when the value of the
format column is Bl NARY.

« Textis converted from a non-database character set to the database character
set. This happens when you specify CHARSET FI LTER preference type.

Sectioner Object

After being filtered, the marked-up text passes through the sectioner that separates
the stream into text and section information. Section information includes where
sections begin and end in the text stream. The type of sections extracted is
determined by your section group type.

The section information is passed directly to the indexing engine which uses it later.
The text is passed to the lexer.

Lexer Object

The lexer breaks the text into tokens according to your language. These tokens are
usually words. To extract tokens, the lexer uses the parameters as defined in your
lexer preference. These parameters include the definitions for the characters that
separate tokens such as whitespace, and whether to convert the text to all uppercase
or to leave it in mixed case.

When theme indexing is enabled, the lexer analyses your text to create theme tokens
for indexing.

Indexing Engine

The indexing engine creates the inverted index that maps tokens to the documents
that contain them. In this phase, Oracle Text uses the stoplist you specify to exclude
stopwords or stopthemes from the index. Oracle Text also uses the parameters
defined in your WORDLI ST preference, which tell the system how to create a prefix
index or substring index, if enabled.

Partitioned Tables and Indexes

You can create a partitioned CONTEXT index on a partitioned text table. The table
must be partitioned by range. Hash, composite and list partitions are not supported.

You might create a partitioned text table to partition your data by date. For
example, if your application maintains a large library of dated news articles, you
can partition your information by month or year. Partitioning simplifies the

Indexing 3-7



About Oracle Text Indexes

manageability of large databases since querying, DML, and backup and recovery
can act on single partitions.

See Also: Oracle Database Concepts for more information about
partitioning.

Querying Partitioned Tables

To query a partitioned table, you use CONTAI NS in the WHERE clause of a SELECT
statement as you query a regular table. You can query the entire table or a single
partition. However, if you are using the ORDER BY SCORE clause, Oracle
recommends that you query single partitions unless you include a range predicate
that limits the query to a single partition.

Creating an Index Online

When it is not practical to lock up your base table for indexing because of ongoing
updates, you can create your index online with the ONLINE parameter of CREATE
INDEX. This way an application with heavy DML need not stop updating the base
table for indexing.

There are short periods, however, when the base table is locked at the beginning
and end of the indexing process.

See Also: Oracle Text Reference to learn more about creating an
index online.

Parallel Indexing
Oracle Text supports parallel indexing with CREATE | NDEX.

When you issue a parallel indexing command on a non-partitioned table, Oracle
Text splits the base table into temporary partitions, spawns slave processes, and
assigns a slave to a partition. Each slave indexes the rows in its partition. The
method of slicing the base table into partitions is determined by Oracle Text and is
not under your direct control. This is true as well for the number of slave processes
actually spawned, which depends on machine capabilities, system load, your
init.ora settings, and other factors. The actual parallel degree may not match the
degree of parallelism requested.

Since indexing is an 170 intensive operation, parallel indexing is most effective in
decreasing your indexing time when you have distributed disk access and multiple
CPUs. Parallel indexing can only affect the performance of an initial index with

3-8 Oracle Text Application Developer’s Guide



Considerations For Indexing

CREATE | NDEX. It does not affect DML performance with ALTER | NDEX, and has
minimal impact on query performance.

Since parallel indexing decreases the initial indexing time, it is useful for
« data staging, when your product includes an Oracle Text index
« rapid initial startup of applications based on large data collections
« application testing, when you need to test different index parameters and
schemas while developing your application
See Also:

"Frequently Asked Questions About Indexing Performance"” in
Chapter 7, "Performance Tuning" to learn more about creating an
index in parallel.

Oracle Text Reference

Indexing and Views

Oracle SQL standards do not support creating indexes on views. If you need to
index documents whose contents are in different tables, you can create a data
storage preference using the USER_DATASTORE object. With this object, you can
define a procedure that synthesizes documents from different tables at index time.

See Also: Oracle Text Reference to learn more about USER _
DATASTORE.

Oracle Text does support the creation of CONTEXT, CTXCAT, CTXRULE, and
CTXXPATH indexes on materialized views (MWI EW.

Considerations For Indexing

You use the CREATE | NDEX statement to create an Oracle Text index. When you
create an index and specify no parameter string, an index is created with default
parameters. You can create either a CONTEXT, CTXCAT, or CTXRULE index.

You can also override the defaults and customize your index to suit your query
application. The parameters and preference types you use to customize your index
with CREATE | NDEX fall into the following general categories.

Indexing 3-9



Considerations For Indexing

Location of Text

The basic prerequisite for an Oracle Text query application is to have a populated
text table. The text table is where you store information about your document
collection and is required for indexing.

When you create a CONTEXT index, you can populate rows in your text table with
one of the following elements:

« text information (can be documents or text fragments)
« path names of documents in your file system

« URLs that specify World Wide Web documents
Figure 3-2 illustrates these different methods.

When creating a CTXCAT or CTXRULE index, only the first method shown is
supported.

3-10 Oracle Text Application Developer’'s Guide



Considerations For Indexing

Figure 3-2 Different Ways of Storing Text

Document Collection

Text Table Document 1

author | date | text ——| Document 2 Document Stored In
4y | — Text Table

Text Table

author | date | text
4y File 1 /my_path/my_system/docl.doc Text Column Stores
=— File 2 /my_path/my_system/doc2.doc File Paths

Text Table

author | date | text

4ty URL 1 http://www.mysite.com/mydocl.html Text Column
——» URL 2 http://www.mysite.com/mydoc1.html Stores URLs

By default, the indexing operation expects your document text to be directly loaded
in your text table, which is the first method shown previously.

Indexing 3-11



Considerations For Indexing

However, when you create a CONTEXT index, you can specify the other ways of
identifying your documents such as with filenames or with URLs by using the
corresponding data storage indexing preference.

Supported Column Types

With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR?,
CLOB, BLOB, CHAR, BFI LE, XM_Type, and URI Type.

Note: The column types NCLOB, DATE and NUVBER cannot be
indexed.

Storing Text in the Text Table

This section discusses how you can store text in directly in your table with the
different indexes.

CONTEXT Data Storage You can store documents in your text table in different ways.

You can store documents in one column using the DI RECT_DATASTORE data
storage type or over a number of columns using the MULTI _COLUMN_DATASTORE
type. When your text is stored over a number of columns, Oracle Text concatenates
the columns into a virtual document for indexing.

You can also create master-detail relationships for your documents, where one
document can be stored across a number of rows. To create master-detail index, use
the DETAI L_DATASTORE data storage type.

You can also store your text in a nested table using the NESTED DATASTORE type.

Oracle Text supports the indexing of the XM_Ty pe datatype which you use to store
XML documents.

CTXCAT Data Storage In your text table, you can also store short text fragments such
as names, descriptions, and addresses over a number of columns and create a
CTXCAT index. A CTXCAT index improves performance for mixed queries.

Storing File Path Names

In your text table, you can store path names to files stored in your file system. When
you do so, use the FI LE_DATASTORE preference type during indexing. This
method of data storage is supported for CONTEXT indexes only.

3-12 Oracle Text Application Developer's Guide



Considerations For Indexing

Storing URLs

You can store URL names to index Web sites. When you do so, use the URL_
DATASTORE preference type during indexing. This method of data storage is
supported for CONTEXT indexes only.

Storing Associated Document Information

In your text table, you can create additional columns to store structured information
that your query application might need, such as primary key, date, description, or
author.

Format and Character Set Columns

If your documents are of mixed formats or of mixed character sets, you can create
the following additional columns:

« A format column to record the format (TEXT or Bl NARY) to help filtering
during indexing. You can also use the format column to ignore rows for
indexing by setting the format column to | GNORE. This is useful for bypassing
rows that contain data incompatible with text indexing such as images.

« A character set column to record the document character set on a per-row basis.

When you create your index, you must specify the name of the format or character
set column in the parameter clause of CREATE | NDEX.

For all rows containing the keywords 'AUTO' or 'AUTOMATIC' in character set or
language columns, Oracle Text will apply statistical techniques to determine the
character set and language respectively of the documents and modify document
indexing appropriately.

Supported Document Formats

Because the system can index most document formats including HTML, PDF,
Microsoft Word, and plain text, you can load any supported type into the text
column.

When you have mixed formats in your text column, you can optionally include a
format column to help filtering during indexing. With the format column you can
specify whether a document is binary (formatted) or text (non-formatted such as

HTML).

See Also: Oracle Text Reference for more information about the
supported document formats.

Indexing 3-13



Considerations For Indexing

Summary of DATASTORE Types

When you index with CREATE | NDEX, you specify the location using the datastore
preference. Use the appropriate datastore according to your application.

The following table summarizes the different ways you can store your text with the
datastore preference type.

Datastore Type Use When

DI RECT_DATASTORE Data is stored internally in a text column. Each row is
indexed as a single document.

Your text column can be VARCHAR2, CLOB, BLOB,
CHAR, or BFI LE. XM_Type columns are supported for
the context index type.

MULTI _COLUWMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one document for each row.

DETAI L_DATASTORE Data is stored internally in a text column. Document
consists of one or more rows stored in a text column in
a detail table, with header information stored in a
master table.

FI LE_DATASTORE Data is stored externally in operating system files.
Filenames are stored in the text column, one for each
row.

NESTED DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet

or the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a
user-defined stored procedure.

Indexing time and document retrieval time will be increased for indexing URLs
since the system must retrieve the document from the network.

See Also: Datastore Examples in this chapter.
Document Formats and Filtering

Formatted documents such as Microsoft Word and PDF must be filtered to text to be
indexed. The type of filtering the system uses is determined by the FILTER

3-14 Oracle Text Application Developer's Guide



Considerations For Indexing

preference type. By default the system uses the | NSO _FI LTER filter type, which
automatically detects the format of your documents and filters them to text.

Oracle Text can index most formats. Oracle Text can also index columns that
contain documents with mixed formats.

No Filtering for HTML

If you are indexing HTML or plain text files, do not use the | NSO_FI LTERtype. For
best results, use the NULL_FI LTER preference type.

See Also: NULL_FILTER Example: Indexing HTML Documents
in this chapter.

Filtering Mixed-Format Columns

If you have a mixed-format column such as one that contains Microsoft Word, plain
text, and HTML documents, you can bypass filtering for plain text or HTML by
including a format column in your text table. In the format column, you tag each
row TEXT or Bl NARY. Rows that are tagged TEXT are not filtered.

For example, you can tag the HTML and plain text rows as TEXT and the Microsoft
Word rows as Bl NARY. You specify the format column in the CREATE | NDEX
parameter clause.

Custom Filtering

You can create your own custom filter to filter documents for indexing. You can
create either an external filter that is executed from the file system or an internal
filter as a PL/SQL or Java stored procedure.

For external custom filtering, use the USER_FI LTER filter preference type.
For internal filtering, use the PROCEDURE_FI LTER filter type.

See Also: PROCEDURE_FILTER Example on page 3-25.

Bypassing Rows for Indexing

You can bypass rows in your text table that are not to be indexed, such as rows that
contain image data. To do so, create a format column in your table and set it to
| GNORE. You name the format column in the parameter clause of CREATE | NDEX.

Indexing 3-15



Considerations For Indexing

Document Character Set

The indexing engine expects filtered text to be in the database character set. When
you use the | NSO_FI LTERfilter type, formatted documents are converted to text in
the database character set.

If your source is text and your document character set is not the database character
set, you can use the | NSO _FI LTER or CHARSET _FI LTERfilter type to convert your
text for indexing.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as
JA16EUC and JA16SJIS, you can index the documents provided you create a charset
column. You populate this column with the name of the document character set on
a per-row basis. You name the column in the parameter clause of the CREATE

| NDEX statement.

Document Language

Oracle Text can index most languages. By default, Oracle Text assumes the language
of text to index is the language you specify in your database setup.

You use the BASI C_LEXER preference type to index whitespace-delimited
languages such as English, French, German, and Spanish. For some of these
languages you can enable alternate spelling, composite word indexing, and base
letter conversion.

You can also index Japanese, Chinese, and Korean.

See Also: Oracle Text Reference to learn more about indexing these
languages.

Languages Features Outside BASIC_LEXER

With the BASIC_LEXER, Japanese, Chinese and Korean lexers, Oracle Text provides
a lexing solution for most languages. For other languages such as Thai and Arabic,
you can create your own lexing solution using the user-defined lexer interface. This
interface enables you to create a PL/SQL or Java procedure to process your
documents during indexing and querying.

You can also use the user-defined lexer to create your own theme lexing solution or
linguistic processing engine.

See Also: Oracle Text Reference to learn more about this lexer.

3-16 Oracle Text Application Developer’'s Guide



Considerations For Indexing

Indexing Multi-language Columns

Oracle Text can index text columns that contain documents of different languages,
such as a column that contains documents written in English, German, and
Japanese. To index a multi-language column, you need a language column in your
text table. Use the MULTI _LEXER preference type.

You can also incorporate a multi-language stoplist when you index multi-language
columns.

See Also: MULTI_LEXER Example: Indexing a Multi-Language
Table in this chapter.

Indexing Special Characters

When you use the BASI C_LEXER preference type, you can specify how
non-alphanumeric characters such as hyphens and periods are indexed in relation
to the tokens that contain them. For example, you can specify that Oracle Text
include or exclude hyphen character (-) when indexing a word such as web-site.

These characters fall into BASI C_LEXER categories according to the behavior you
require during indexing. The way the you set the lexer to behave for indexing is the
way it behaves for query parsing.

Some of the special characters you can set are as follows:

Printjoins Character
Define a non-alphanumeric character as printjoin when you want this character to
be included in the token during indexing.

For example, if you want your index to include hyphens and underscore characters,
define them as printjoins. This means that words such as web-site are indexed as
web-site. A query on website does not find web-site.

See Also: BASIC_LEXER Example: Setting Printjoins Characters
in this chapter.

Skipjoins Character
Define a non-alphanumeric character as a skipjoin when you do not want this
character to be indexed with the token that contains it.

For example, with the hyphen (-) character defined as a skipjoin, the word web-site is
indexed as website. A query on web-site finds documents containing website and
web-site.

Indexing 3-17



Considerations For Indexing

Other Characters

Other characters can be specified to control other tokenization behavior such as
token separation (startjoins, endjoins, whitespace), punctuation identification
(punctuations), number tokenization (numjoins), and word continuation after
line-breaks (continuation). These categories of characters have defaults, which you
can modify.

See Also: Oracle Text Reference to learn more about the
BASI C LEXER

Case-Sensitive Indexing and Querying

By default, all text tokens are converted to uppercase and then indexed. This results
in case-insensitive queries. For example, separate queries on each of the three words
cat, CAT, and Cat all return the same documents.

You can change the default and have the index record tokens as they appear in the
text. When you create a case-sensitive index, you must specify your queries with
exact case to match documents. For example, if a document contains Cat, you must
specify your query as Cat to match this document. Specifying cat or CAT does not
return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the
BASI C_LEXER preference.

See Also: Oracle Text Reference to learn more about the
BASI C LEXER

Language Specific Features
You can enable the following language specific features at index time:

Indexing Themes

For English and French, you can index document theme information. A document
themes is a concept that is sufficiently developed in the document. Themes can be
gueried with the ABOUT operator.

You can index theme information in other languages provided you have loaded and
compiled a knowledge base for the language.

By default themes are indexed in English and French. You can enable and disable
theme indexing with the index_themes attribute of the BASI C_LEXER preference

type.

3-18 Oracle Text Application Developer’'s Guide



Considerations For Indexing

See Also: Oracle Text Reference to learn more about the BASIC _
LEXER.

ABOUT Queries and Themes in Chapter 4, "Querying".

Base-Letter Conversion for Characters with Diacritical Marks

Some languages contain characters with diacritical marks such as tildes, umlauts,
and accents. When your indexing operation converts words containing diacritical
marks to their base letter form, queries need not contain diacritical marks to score
matches. For example in Spanish with a base-letter index, a query of energia matches
energia and energia in the index.

However, with base-letter indexing disabled, a query of energia matches only
energia.

You can enable and disable base-letter indexing for your language with the base_
letter attribute of the BASI C_LEXER preference type.

See Also: Oracle Text Reference to learn more about the
BASI C_LEXER

Alternate Spelling

Languages such as German, Danish, and Swedish contain words that have more
than one accepted spelling. For instance, in German, ae can be substituted for & The
ae character pair is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages.
Query terms are also converted to their alternate forms. The result is that these
words can be queried with either spelling.

You can enable and disable alternate spelling for your language using the alternate
spelling attribute in the BASI C_LEXER preference type.

See Also: Oracle Text Reference to learn more about the
BASI C LEXER

Composite Words

German and Dutch text contain composite words. By default, Oracle Text creates
composite indexes for these languages. The result is that a query on a term returns
words that contain the term as a sub-composite.

Indexing 3-19



Considerations For Indexing

For example, in German, a query on the term Bahnhof (train station) returns
documents that contain Bahnhof or any word containing Bahnhof as a sub-composite,
such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

You can enable and disable the creation of composite indexes with the composite
attribute of the BASI C_LEXER preference.

See Also: Oracle Text Reference to learn more about the
BASI C LEXER

Korean, Japanese, and Chinese Indexing
You index these languages with specific lexers:

Language Lexer

Korean KOREAN_MORPH_LEXER
Japanese JAPANESE_LEXER
Chinese CHI NESE_VGRAM LEXER

The KOREAN_MORPH_LEXER has its own set of attributes to control indexing.
Features include composite word indexing.

See Also: Oracle Text Reference to learn more about these lexers.

Fuzzy Matching and Stemming
Fuzzy matching enables you to match similarly spelled words in queries.

Stemming enables you to match words with the same linguistic root. For example a
query on $speak, expands to search for all documents that contain speak, speaks, spoke,
and spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle
Text supports this feature for your language.

Fuzzy matching is enabled with default parameters for its similarity score lower
limit and for its maximum number of expanded terms. At index time you can
change these default parameters.

To improve the performance of stem queries, you can create a stem index by
enabling the index_stems attribute of the BASIC_LEXER.

See Also: Oracle Text Reference.

3-20 Oracle Text Application Developer’'s Guide



Considerations For Indexing

Better Wildcard Query Performance

Wildcard queries enable you to issue left-truncated, right-truncated and doubly
truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these
gueries can sometimes expand into large word lists, degrading your query
performance.

Wildcard queries have better response time when token prefixes and substrings are
recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index.
If your query application makes heavy use of wildcard queries, consider indexing
token prefixes and substrings. To do so, use the wordlist preference type. The
trade-off is a bigger index for improved wildcard searching.

See Also: BASIC_WORDLIST Example: Enabling Substring and
Prefix Indexing in this chapter.

Document Section Searching

For documents that have internal structure such as HTML and XML, you can define
and index document sections. Indexing document sections enables you to narrow
the scope of your queries to within pre-defined sections. For example, you can
specify a query to find all documents that contain the term dog within a section you
define as Headings.

Sections must be defined prior to indexing and specified with the section group
preference.

Oracle Text provides section groups with system-defined section definitions for
HTML and XML. You can also specify that the system automatically create sections
from XML documents during indexing.

See Also: Chapter 8, "Document Section Searching"”

Stopwords and Stopthemes

A stopword is a word that is not to be indexed. Usually stopwords are low
information words in a given language such as this and that in English.

By default, Oracle Text provides a list of stopwords called a stoplist for indexing a
given language. You can modify this list or create your own with the CTX_DDL
package. You specify the stoplist in the parameter string of CREATE | NDEX.

Indexing 3-21



Index Creation

A stoptheme is a word that is prevented from being theme-indexed or prevented
from contributing to a theme. You can add stopthemes with the CTX_DDL package.

You can search document themes with the ABOUT operator. You can retrieve
document themes programatically with the CTX_DOCPL/SQL package.

Multi-Language Stoplists

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI _LEXERto index a table
that contains documents in different languages, such as English, German, and
Japanese.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when
using the multi-lexer.

Index Performance

There are factors that influence indexing performance including memory allocation,
document format, degree of parallelism, and partitioned tables.

See Also: "Frequently Asked Questions About Indexing
Performance" in Chapter 7, "Performance Tuning"

Query Performance and Storage of LOB Columns

If your table contains LOB structured columns that are frequently accessed in
queries but rarely updated, you can improve query performance by storing these
columns out of line.

See Also: "Does out of line LOB storage of wide base table
columns improve performance?" in Chapter 7, "Performance
Tuning"

Index Creation

You can create four types of indexes with Oracle Text: CONTEXT, CTXCAT, and
CTXRULE, and CTXXPATH

3-22 Oracle Text Application Developer's Guide



Index Creation

Procedure for Creating a CONTEXT Index

By default, the system expects your documents to be stored in a text column. Once
this requirement is satisfied, you can create a text index using the CREATE | NDEX
SQL command as an extensible index of type CONTEXT, without explicitly
specifying any preferences. The system automatically detects your language, the
datatype of the text column, format of documents, and sets indexing preferences
accordingly.

See Also: For more information about the out-of-box defaults, see
Default CONTEXT Index Example in this chapter.
To create an Oracle Text index, do the following:

1. Optionally, determine your custom indexing preferences, section groups, or
stoplists if not using defaults. The following table describes these indexing

classes:
Class Description
Datastore How are your documents stored?
Filter How can the documents be converted to plaintext?
Lexer What language is being indexed?
Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index data be stored?
Stop List What words or themes are not to be indexed?
Section Group How are documents sections defined?

See Also: Considerations For Indexing in this chapter and
Oracle Text Reference.

1. Optionally, create your own custom preferences, section groups, or stoplists. See
"Creating Preferences" in this chapter.

2. Create the Text index with the SQL command CREATE | NDEX, naming your
index and optionally specifying preferences. See "Creating an Index" in this
chapter.

Indexing 3-23



Index Creation

Creating Preferences

You can optionally create your own custom index preferences to override the
defaults. Use the preferences to specify index information such as where your files
are stored and howv to filter your documents. You create the preferences then set the
attributes.

Datastore Examples

The following sections give examples for setting direct, multi-column, URL, and file
datastores.

See Also: Oracle Text Reference for more information about data
storage.

Specifying DIRECT_DATASTORE The following example creates a table with a CLOB
column to store text data. It then populates two rows with text data and indexes the
table using the system-defined preference CTXSYS. DEFAULT _DATASTORE which
uses the DIRECT_DATASTORE preference type.

create table nytable(id nunber primary key, docs clob);

insert into nytable val ues(111555,"this text will be indexed);
insert into nytable values(111556,'this is a default datastore exanple');
commi t;

create index nyindex on nytabl e(docs)
i ndextype is ctxsys.context
parameters (' DATASTORE CTXSYS. DEFAULT_DATASTORE' ) ;

Specifying MULTI_COLUMN_DATASTORE The following example creates a
multi-column datastore preference called my_nul t i on the three text columns to be
concatenated and indexed:

begi n

ctx_ddl.create_preference(' my_nulti', 'MILTI_COLUWN _DATASTORE );
ctx_ddl.set_attribute("my_multi', 'colums', 'columl, colum2, colum3');
end;

Specifying URL Data Storage This example creates a URL_DATASTORE preference
called my_url to which the http_proxy, no_proxy, and timeout attributes are set. The
timeout attribute is set to 300 seconds. The defaults are used for the attributes that
are not set.

begin

3-24  Oracle Text Application Developer's Guide



Index Creation

ctx_ddl . create_preference(' my_url'," URL_DATASTORE );
ctx_ddl.set _attribute(' ny_url'," HTTP_PROXY',' wwa proxy. us. oracl e.com);
ctx_ddl.set _attribute('ny_url'," NO PROXY','us.oracle.con);
ctx_ddl.set _attribute('ny_url',"' Timeout',"'300");
end;

Specifying File Data Storage The following example creates a data storage preference
using the FI LE_DATASTORE. This tells the system that the files to be indexed are
stored in the operating system. The example uses CTX_DDL. SET_ATTRI BUTE to set
the PATH attribute of to the directory / docs.

begi n

ctx_ddl . create_preference(' nypref', 'FILE DATASTORE );
ctx_ddl .set_attribute(' mypref', 'PATH, '/docs');

end;

NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely HTML, Oracle recommends that you use the NULL _
FI LTER in your filter preference, which does no filtering.

For example, to index an HTML document set, you can specify the system-defined
preferences for NULL_FI LTERand HTM__SECTI ON_GROUP as follows:

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter
section group ctxsys.htn _section_group');

PROCEDURE_FILTER Example

Consider a filter procedure CTXSYS. NORMALI ZE that you define with the following
signature:

PROCEDURE NORMALI ZE(id I N ROND, charset IN VARCHAR2, input |IN CLOB,
out put I N OUT NOCOPY VARCHARZ);

To use this procedure as your filter, you set up your filter preference as follows:

begin

ctx_ddl.create_preference(' nyfilt', 'procedure filter');
ctx_ddl.set_attribute('nyfilt', 'procedure', 'nornalize');
ctx_ddl.set_attribute(' myfilt', "input_type', 'clob');

ctx_ddl.set_attribute(' myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('nyfilt', '"row d_paraneter', 'TRUE);
ctx_ddl .set_attribute(' nyfilt', 'charset_paraneter', 'TRUE);
end;

Indexing 3-25



Index Creation

BASIC_LEXER Example: Setting Printjoins Characters
Printjoin characters are non-alphanumeric characters that are to be included in
index tokens, so that words such as web-site are indexed as web-site.

The following example sets printjoin characters to be the hyphen and underscore
with the BASI C_LEXER:

begin

ctx_ddl.create_preference(' nylex', 'BASIC LEXER );
ctx_ddl.set_attribute(' mylex', "printjoins', '_-');
end;

To create the index with printjoins characters set as previously shown, issue the
following statement:

create index nyindex on nytable ( docs )
i ndextype is ctxsys.context
parameters ( 'LEXER nylex' );

MULTI_LEXER Example: Indexing a Multi-Language Table

You use the MULTI _LEXER preference type to index a column containing
documents in different languages. For example, you can use this preference type
when your text column stores documents in English, German, and French.

The first step is to create the multi-language table with a primary key, a text column,
and a language column as follows:

create table gl obal doc (
doc_id number primary key,
| ang varchar2(3),
text clob

)

Assume that the table holds mostly English documents, with some German and
Japanese documents. To handle the three languages, you must create three
sub-lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference(' english_|lexer', basic_lexer');
ctx_ddl .set_attribute('english_lexer',"index_thenes','yes');
ctx_ddl.set_attribute('english_lexer','thene_|anguage', ' english');

ctx_ddl.create_preference(' german_| exer', "' basic_|l exer');

ctx_ddl.set _attribute(' german_|lexer','conposite', ' gernan');
ctx_ddl.set_attribute(' german_|l exer','nm xed_case','yes');
ctx_ddl.set_attribute(' german_l exer',"alternate_spelling','german');

3-26 Oracle Text Application Developer’'s Guide



Index Creation

ctx_ddl . create_preference('japanese_| exer','japanese_vgramlexer');

Create the multi-lexer preference:

ctx_ddl.create_preference(' global lexer', "nulti_lexer');

Since the stored documents are mostly English, make the English lexer the default
using CTX_DDL. ADD_SUB_LEXER

ctx_ddl . add_sub_l exer(' gl obal | exer', "default','english_lexer');

Now add the German and Japanese lexers in their respective languages with CTX_
DDL. ADD_SUB_LEXER procedure. Also assume that the language column is
expressed in the standard 1SO 639-2 language codes, so add those as alternate
values.

ctx_ddl . add_sub_| exer (' gl obal _l exer',' german', ' gernman_| exer','ger');
ctx_ddl.add_sub_|exer('global |exer','japanese','japanese_ lexer','jpn');

Now create the index gl obal x, specifying the multi-lexer preference and the
language column in the parameter clause as follows:

create index global x on global doc(text) indextype is ctxsys.context
parameters ('lexer global _|exer anguage colum lang');

BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

The following example sets the wordlist preference for prefix and substring
indexing. Having a prefix and sub-string component to your index improves
performance for wildcard queries.

For prefix indexing, the example specifies that Oracle Text create token prefixes
between three and four characters long:

begin

ctx_ddl . create_preference(' mywordlist', 'BASIC WORDLIST');
ctx_ddl.set_attribute(' mywordlist',' PREFI X_| NDEX' ,' TRUE );
ctx_ddl.set _attribute(' mywordlist',' PREFIX M N _LENGTH , '3")
ctx_ddl.set_attribute(' mywordlist',' PREFI X MAX_LENGTH , '4")
ctx_ddl.set_attribute(' mywordlist',' SUBSTRING | NDEX', 'YES');
end;

Indexing 3-27



Index Creation

Creating Section Groups for Section Searching

When documents have internal structure such as in HTML and XML, you can
define document sections using embedded tags before you index. This enables you
to query within the sections using the W THI N operator. You define sections as part
of a section group.

Example: Creating HTML Sections

The following code defines a section group called ht mgr oup of type HTM__
SECTI ON_GROUP. It then creates a zone section in ht ngr oup called headi ng
identified by the <H1> tag:

begi n

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );

ctx_ddl . add_zone_section(' htngroup', 'heading', 'HL');

end;

See Also: Chapter 8, "Document Section Searching”

Using Stopwords and Stoplists

A stopword is a word that is not to be indexed. A stopword is usually a low
information word such as this or that in English.

The system supplies a list of stopwords called a stoplist for every language. By
default during indexing, the system uses the Oracle Text default stoplist for your
language.

You can edit the default stoplist CTXSYS. DEFAULT_STOPLI ST or create your own
with the following PL/SQL procedures:

. CTX_DDL. CREATE_STOPLI ST

. CTX_DDL. ADD_STOPWORD

« CTX_DDL. REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE | NDEX.

You can also dynamically add stopwords after indexing with the ALTER | NDEX
statement.

3-28 Oracle Text Application Developer’'s Guide



Index Creation

Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI _LEXERto index a table
that contains documents in different languages, such as English, German, and
Japanese.

To create a multi-language stoplist, use the CTX_DLL. CREATE_STOPLI ST
procedure and specify a stoplist type of MULTI _STOPLI ST. You add language
specific stopwords with CTX_DDL. ADD_STOPWORD.

Stopthemes and Stopclasses

In addition to defining your own stopwords, you can define stopthemes, which are
themes that are not to be indexed. This feature is available for English and French
only.

You can also specify that numbers are not to be indexed. A class of alphanumeric
characters such a numbers that is not to be indexed is a stopclass.

You record your own stopwords, stopthemes, stopclasses by creating a single
stoplist, to which you add the stopwords, stopthemes, and stopclasses. You specify
the stoplist in the paramstring for CREATE | NDEX.

PL/SQL Procedures for Managing Stoplists

You use the following procedures to manage stoplists, stopwords, stopthemes, and
stopclasses:

. CTX_DDL. CREATE STOPLI ST
. CTX_DDL. ADD_STOPWORD

. CTX_DDL. ADD_STOPTHEME

. CTX_DDL. ADD_STOPCLASS

. CTX_DDL. REMOVE_STOPWORD
. CTX_DDL. REMOVE_STOPTHEME
. CTX_DDL. REMOVE_STOPCLASS
. CTX_DDL. DROP_STOPLI ST

See Also: Oracle Text Reference to learn more about using these
commands.

Indexing 3-29



Index Creation

Creating an Index

You create an Oracle Text index as an extensible index using the CREATE | NDEX
SQL command.

You can create four types of indexes:

«  CONTEXT

« CTXCAT

« CTXRULE

« CTXXPATH

Creating a CONTEXT Index

The context index type is well-suited for indexing large coherent documents such as
MS Word, HTML or plain text. With a context index, you can also customize your
index in a variety of ways.

The documents must be loaded in a text table.

CONTEXT Index and DML

A CONTEXT index is not transactional. When you perform inserts, updates, or
deletes on the base table, you must explicitly synchronize the index with CTX_
DDL.SYNC_INDEX.

See Also: "Synchronizing the Index" in this chapter.

Default CONTEXT Index Example

The following command creates a default cont ext index called nyi ndex on the
t ext column in the docs table:

CREATE | NDEX nyi ndex ON docs(text) |NDEXTYPE IS CTXSYS. CONTEXT;
When you use CREATE | NDEX without explicitly specifying parameters, the system
does the following for all languages by default:

« Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFI LE, VARCHAR2, or CHAR.

« Detects the column type and uses filtering for the binary column types of BLOB
and BFILE. Most document formats are supported for filtering. If your column
is plain text, the system does not use filtering.

3-30 Oracle Text Application Developer’'s Guide



Index Creation

Note: For document filtering to work correctly in your system,
you must ensure that your environment is set up correctly to
support the Inso filter.

To learn more about configuring your environment to use the Inso
filter, see the Oracle Text Reference.

« Assumes the language of text to index is the language you specify in your
database setup.

« Uses the default stoplist for the language you specify in your database setup.
Stoplists identify the words that the system ignores during indexing.

« Enables fuzzy and stemming queries for your language, if this feature is
available for your language.

You can always change the default indexing behavior by creating your own
preferences and specifying these custom preferences in the parameter string of
CREATE | NDEX.

Custom CONTEXT Index Example: Indexing HTML Documents

To index an HTML document set located by URLS, you can specify the
system-defined preference for the NULL_FI LTER in the CREATE | NDEX statement.

You can also specify your section group ht ngr oup that uses HTM._SECTI ON_
GROUP and datastore ny_ur | that uses URL_DATASTORE as follows:

begi n
ctx_ddl.create_preference(' my_url'," URL_DATASTORE );
ctx_ddl.set_attribute('ny_url"',' HTTP_PROXY', ' wwa proxy. us. oracle.com);
ctx_ddl .set_attribute('ny_url',' NO_PROXY','us.oracle.con);
ctx_ddl .set _attribute('ny_url',' Timeout',"'300");

end;

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', 'HL');

end;

You can then index your documents as follows:

create index nyindex on docs(htmfile) indextype is ctxsys.context
paranmeters(' datastore nmy_url filter ctxsys.null _filter section group
ht mgroup' ) ;

Indexing 3-31



Index Creation

See Also: "Creating Preferences" in this chapter for more
examples on creating a custom cont ext index.

Creating a CTXCAT Index

The CTXCAT indextype is well-suited for indexing small text fragments and related
information. If created correctly, this type of index can give better structured query
performance over a CONTEXT index.

CTXCAT Index and DML

A CTXCAT index is transactional. When you perform DML (inserts, updates, and
deletes) on the base table, Oracle Text automatically synchronizes the index. Unlike
a CONTEXT index, no CTX_DDL. SYNC_| NDEX is necessary.

Note: Applications that insert without invoking triggers such as
SQL*Loader will not result in automatic index synchronization as
described previously.

About CTXCAT Sub-Indexes and Their Costs

A CTXCAT index is comprised of sub-indexes that you define as part of your index
set. You create a sub-index on one or more columns to improve mixed query
performance.

However, adding sub-indexes to the index set has its costs. The time Oracle Text
takes to create a CTXCAT index depends on its total size, and the total size of a
CTXCAT index is directly related to

« total text to be indexed
« humber of sub-indexes in the index set
« humber of columns in the base table that make up the sub-indexes

Having many component indexes in your index set also degrades DML
performance since more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,
carefully consider the query performance benefit each component index gives your
application before adding it to your index set.

3-32 Oracle Text Application Developer’'s Guide



Index Creation

Creating CTXCAT Sub-indexes

An online auction site that must store item descriptions, prices and bid-close dates
for ordered look-up provides a good example for creating a CTXCAT index.

Figure 3-3 Auction Table Schema and CTXCAT Index

CTXCAT
Index

> [

Sub-index A
Auction Table
item_id | title category_id | price bid_close
number | varchar (100) | number number | date
Sub-index B

Figure 3-3 shows a table called AUCTI ON with the following schema:

create table auction(
itemid nunber,

title varchar2(100),
category_id nunber,

price nunber,
bi d_cl ose date);

To create your sub-indexes, create an index set to contain them:

begin

ctx_ddl.create_index_set('auction_iset');

end;

Next, determine the structured queries your application is likely to issue. The
CATSEARCH query operator takes a mandatory text clause and optional structured

clause.

Indexing 3-33



Index Creation

In our example, this means all queries include a clause for the ti t | e column which
is the text column.

Assume that the structured clauses fall into the following categories:

Sub-index Definition

Structured Clauses to Serve Query Category
'price < 200' 'price’ A

‘price = 150*

‘order by price'

'price = 100 order by bid_close' 'price, bid_close' B

‘order by price, bid_close'

Structured Query Clause Category A The structured query clause contains an
expression for only the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, 'canera', 'price < 200')> O;
SELECT FROM auction WHERE CATSEARCH(title, 'canera’, 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

These queries can be served using sub-index B, but for efficiency you can also create
a sub-index only on pri ce, which we call sub-index A:

begin
ctx_ddl . add_i ndex("' auction_iset','price'); /* sub-index A */
end;

Structured Query Clause Category B The structured query clause includes an
equivalence expression for pri ce ordered by bi d_cl ose, and an expression for
ordering by price and bi d_cl ose in that order:

SELECT FROM auction WHERE CATSEARCH(title, 'canera','price = 100 order by bhid_
close')> 0;

SELECT FROM auction WHERE CATSEARCH(title, 'canera','order by price, bid_
close')> 0;

These queries can be served with a sub-index defined as follows:

begin
ctx_ddl . add_i ndex('auction_iset','price, bid close'); /* sub-index B */
end;

3-34 Oracle Text Application Developer’'s Guide



Index Creation

Like a combined b-tree index, the column order you specify with CTX_DDL. ADD _

| NDEX affects the efficiency and viability of the index scan Oracle Text uses to serve
specific queries. For example, if two structured columns p and g have a b-tree index
specified as' p, q' , Oracle Text cannot scan this index to sort 'or der by q,p'.

Creating CTXCAT Index

The following example combines the previous examples and creates the index set
preference with the two sub-indexes:

begin

ctx_ddl . create_i ndex_set('auction_iset');

ctx_ddl . add_i ndex(' auction_iset', " price'); /* sub-index A */

ctx_ddl . add_i ndex('auction_iset','price, bid close'); /* sub-index B */

end;

Figure 3-3 on page 3-33 shows how the sub-indexes A and B are created from the
auction table. Each sub-index is a b-tree index on the text column and the named
structured columns. For example, sub-index A is an index on the title column and
the bid_close column.

You create the combined catalog index with CREATE | NDEX as follows:
CREATE | NDEX auction_titlex ON AUCTION(title) | NDEXTYPE | S CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset');

See Also: Oracle Text Reference to learn more about creating a
CTXCAT index with CREATE | NDEX.

Creating a CTXRULE Index

You use the CTXRULE index to build a document classification application. In such
an application, a stream of incoming documents is classified based on their content.

See Also: Chapter 6, "Document Classification" for more
information on document classification and the CTXRULE index.

Document routing is achieved by creating a CTXRULE index on a table or queries.
The queries define your categories. You can use the MATCHES operator to classify
single documents.

Create a Table of Queries

The first step is to create a table of queries that define your classifications. We create
atable nyquer i es to hold the category name and query text:

Indexing 3-35



Index Creation

CREATE TABLE nyqueries (
queryi d NUMBER PRI MARY KEY,
cat egory VARCHAR2(30),
query VARCHAR2(2000)

)

Populate the table with the classifications and the queries that define each. For
example, consider a classification for the subjects US Politics, Music, and Soccer.:

I NSERT | NTO nyqueries VALUES(1, 'US Politics', 'dempcrat or republican');
I NSERT | NTO nyqueries VALUES(2, 'Misic', 'ABQUT(nusic)');
I NSERT | NTO myqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

Using CTX_CLS.TRAIN You can also generate a table of rules (queries) with the CTX_
CLS.TRAIN procedure, which takes as input a document training set.

See Also: Oracle Text Reference for more information on
CTX_CLS.TRAIN.

Create the CTXRULE Index

Use CREATE | NDEX to create the CTXRULE index. You can specify lexer, storage,
section group, and wordlist parameters if needed:

CREATE | NDEX ON nyqueries(query) |INDEXTYPE IS CTXRULE PARAMETERS(' | exer |exer_
pref storage storage_pref section group section_pref wordlist wordlist_pref');

Classifying a Document

With a CTXRULE index created on query set, you can use the MATCHES operator to
classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsi d NUVBER,
aut hor VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

You can create a before insert trigger with MATCHES to route each document to
another table news_r out e based on its classification:

BEG N
- find matching queries
FOR ¢l IN (select category

3-36 Oracle Text Application Developer’'s Guide



Index Maintenance

from nyqueries
where MATCHES(query, :new.article)>0)
LooP
I NSERT | NTO news_rout e( newsi d, category)
VALUES (:new. newsid, cl.category);
END LOCP,
END;

Index Maintenance

This section describes maintaining your index in the event of an error or indexing
failure.

Viewing Index Errors

Sometimes an indexing operation might fail or not complete successfully. When the
system encounters an error indexing a row, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER | NDEX_ ERRORS. View errors
on all indexes as CTXSYS with CTX_| NDEX_ ERRORS.

For example to view the most recent errors on your indexes, you can issue:

SELECT err_tinestanp, err_text FROM ctx_user_index_errors ORDER BY err_
timestanp DESC

To clear the view of errors, you can issue:

DELETE FROM ctx_user_index_errors;
This view is cleared automatically when you create a new index.

See Also: Oracle Text Reference to learn more about these views.

Dropping an Index
You must drop an existing index before you can re-create it with CREATE | NDEX.

You drop an index using the DROP | NDEX command in SQL.

If you try to create an index with an invalid PARAMETERS string, you still need to
drop it before you can re-create it.

For example, to drop an index called newsi ndex, issue the following SQL
command:

Indexing 3-37



Index Maintenance

DROP | NDEX newsi ndex;

If Oracle Text cannot determine the state of the index, for example as a result of an
indexing malfunction, you cannot drop the index as described previously. Instead
use:

DROP | NDEX newsi ndex FORCE;

See Also: Oracle Text Reference to learn more about this command.

Resuming Failed Index

You can sometimes resume a failed index creation operation using the ALTER
| NDEX command. You typically resume a failed index after you have investigated
and corrected the index failure. Not all index failures can be resumed.

Index optimization commits at regular intervals. Therefore if an optimization
operation fails, all optimization work up to the commit point has already been
saved.

See Also: Oracle Text Reference to learn more about the
ALTER | NDEX command syntax.

Example: Resuming a Failed Index

The following command resumes the indexing operation on newsi ndex with 10
megabytes of memory:

ALTER | NDEX newsi ndex REBUI LD PARAMETERS('resune menory 10M);

Rebuilding an Index

You can rebuild a valid index using ALTER | NDEX. You might rebuild an index
when you want to index with a new preference.

Generally, there is no advantage in rebuilding an index over dropping it and
re-creating it with CREATE INDEX.

See Also: Oracle Text Reference to learn more about the
ALTER | NDEX command syntax.

3-38 Oracle Text Application Developer’'s Guide



Managing DML Operations for a CONTEXT Index

Example: Rebuilding and Index
The following command rebuilds the index, replacing the lexer preference with my _
| exer.

ALTER | NDEX newsi ndex REBUI LD PARAMETERS(' repl ace | exer ny_lexer');

Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the procedure CTX_DDL. DROP_PREFERENCE.

Dropping a preference does not affect the index created from the preference.

See Also: Oracle Text Reference to learn more about the syntax for
the CTX_DDL. DROP_PREFERENCE procedure.

Example

The following code drops the preference ny_| exer.
begin

ctx_ddl . drop_preference(' ny_|l exer');

end;

Managing DML Operations for a CONTEXT Index

DML operations to the base table refer to when documents are inserted, updated or
deleted from the base table. This section describes how you can monitor,
synchronize, and optimize the Oracle Text CONTEXT index when DML operations
occur.

Note: CTXCAT indexes are transactional and thus updated
immediately when there is an update to the base table. Manual
synchronization as described in this section is not necessary for a
CTXCAT index.

Viewing Pending DML
When documents in the base table are inserted, updated, or deleted, their ROWIDs
are held in a DML queue until you synchronize the index. You can view this queue
with the CTX_USER_PENDI NGview.

Indexing 3-39



Managing DML Operations for a CONTEXT Index

For example, to view pending DML on all your indexes, issue the following
statement:

SELECT pnd_i ndex_name, pnd_rowi d, to_char(pnd_tinestanp, 'dd-non-yyyy
hh24:m:ss') timestanp FROM ctx_user_pendi ng;

This statement gives output in the form:

PND_| NDEX_NAME PND_ROW D TI MESTAMP

MYl NDEX AAADXNAABAAAS3SAAC 06-oct - 1999 15: 56: 50

See Also: Oracle Text Reference to learn more about this view.

Synchronizing the Index

Synchronizing the index involves processing all pending updates, inserts, and
deletes to the base table. You can do this in PL/SQL with the CTX_DDL. SYNC _

| NDEX procedure.

The following example synchronizes the index with 2 megabytes of memory:
begin

ctx_ddl . sync_i ndex(' nyi ndex', '2M);

end;

Setting Background DML

You can set CTX_DDL. SYNC | NDEX to run automatically at regular intervals using
the DBM5_JOB.SUBM T procedure. Oracle Text includes a SQL script you can use to
do this. The location of this script is:

$ORACLE_HOME/ ct x/ sanpl e/ scri pt/drjobdni . sql
To use this script, you must be the index owner and you must have execute

privileges on the CTX_DDL package. You must also set the j ob_queue_pr ocesses
parameter in your Oracle Database initialization file.

For example, to set the index synchronization to run every 360 minutes on myindex,
you can issue the following in SQL*Plus:

SQL> @rjobdm nyindex 360

See Also: Oracle Text Reference to learn more about the
CTX _DDL. SYNC | NDEX command syntax.

3-40 Oracle Text Application Developer’'s Guide



Managing DML Operations for a CONTEXT Index

Index Optimization

Frequent index synchronization can fragment your CONTEXT index. Index
fragmentation can adversely affect query response time. You can optimize your
CONTEXT index to reduce fragmentation and index size and so improve query
performance.

To understand index optimization, you must understand the structure of the index
and what happens when it is synchronized.

CONTEXT Index Structure

The CONTEXT index is an inverted index where each word contains the list of
documents that contain that word. For example, after a single initial indexing
operation, the word DOG might have an entry as follows:

DOG DOC1 DOC3 DOCS

Index Fragmentation

When new documents are added to the base table, the index is synchronized by
adding new rows. Thus if you add a new document (DOC 7) with the word dog to
the base table and synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7
Subsequent DML will also create new rows:

DOG DOC1 DOC3 DOCS
DOG DOC7
DOG DOC9
DOG DOC11

Adding new documents and synchronizing the index causes index fragmentation.
In particular, background DML which synchronizes the index frequently generally
produces more fragmentation than synchronizing in batch.

Less frequent batch processing results in longer document lists, reducing the
number of rows in the index and hence reducing fragmentation.

You can reduce index fragmentation by optimizing the index in either FULL or
FAST mode with CTX_DDL. OPTI M ZE_| NDEX.

Document Invalidation and Garbage Collection

When documents are removed from the base table, Oracle Text marks the document
as removed but does not immediately alter the index.

Indexing 3-41



Managing DML Operations for a CONTEXT Index

Because the old information takes up space and can cause extra overhead at query
time, you must remove the old information from the index by optimizing it in FULL
mode. This is called garbage collection. Optimizing in FULL mode for garbage
collection is necessary when you have frequent updates or deletes to the base table.

Single Token Optimization

In addition to optimizing the entire index, you can optimize single tokens. You can
use token mode to optimize index tokens that are frequently searched, without
spending time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if
you know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.
To optimize an index in token mode, you can use CTX_DDL. OPTI M ZE_| NDEX.

Viewing Index Fragmentation and Garbage Data

With the CTX_REPORT. | NDEX_STATS procedure, you can create a statistical report
on your index. The report includes information on optimal row fragmentation, list
of most fragmented tokens, and the amount of garbage data in your index.
Although this report might take long to run for large indexes, it can help you decide
whether to optimize your index.

See Also: Oracle Text Reference to learn more about using this
procedure.

Examples: Optimizing the Index

To optimize an index, Oracle recommends that you use CTX_DDL. OPTI M ZE
| NDEX.

See Also: Oracle Text Reference for the CTX_DDL. OPTI M ZE_| NDEX
command syntax and examples.

3-42 Oracle Text Application Developer’'s Guide



A

Querying

This chapter describes Oracle Text querying and associated features. The following
topics are covered:

«  Overview of Queries
« The CONTEXT Grammar
« The CTXCAT Grammar

Overview of Queries

The basic Oracle Text query takes a query expression, usually a word with or
without operators, as input. Oracle Text returns all documents (previously indexed)
that satisfy the expression along with a relevance score for each document. Scores
can be used to order the documents in the result set.

To issue an Oracle Text query, use the SQL SELECT statement. Depending on the
type of index you create, you use either the CONTAI NS or CATSEARCH operator in
the WHERE clause. You can use these operators programatically wherever you can
use the SELECT statement, such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

Querying with CONTAINS

When you create an index of type CONTEXT, you must use the CONTAI NS operator
to issue your query. An index of type CONTEXT is suited for indexing collections of
large coherent documents.

With the CONTAI NS operator, you can use a number of operators to define your
search criteria. These operators enable you to issue logical, proximity, fuzzy,
stemming, thesaurus and wildcard searches. With a correctly configured index, you

Querying 4-1



Overview of Queries

can also issue section searches on documents that have internal structure such as
HTML and XML.

With CONTAI NS, you can also use the ABOUT operator to search on document
themes.

CONTAINS SQL Example

In the SELECT statement, specify the query in the WHERE clause with the CONTAI NS
operator. Also specify the SCORE operator to return the score of each hit in the
hitlist. The following example shows how to issue a query:

SELECT SCORE(1), title fromnews WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring
documents using the ORDER BY clause as follows:

SELECT SCORE(1), title fromnews
WHERE CONTAINS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC,

The CONTAI NS operator must always be followed by the > 0 syntax, which specifies
that the score value returned by the CONTAI NS operator must be greater than zero
for the row to be returned.

When the SCORE operator is called in the SELECT statement, the CONTAI NS
operator must reference the score label value in the third parameter as in the
previous example.

CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example issues a CONTAI NS query against the NEWS table to find all
articles that contain the word oracle. The titles and scores of the first ten hits are
output.

decl are
rowno nunber := 0;
begin
for ¢l in (SELECT SCORE(1) score, title FROM news
WHERE CONTAINS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC)

| oop
rowno := rowno + 1;
dbms_out put. put _line(cl.title[|': "||cl.score);

4-2 Oracle Text Application Developer’s Guide



Overview of Queries

exit when rowno = 10;
end | oop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is
declared for the return value of the SCORE operator. The score and title are output
to standard out using cursor dot notation.

Structured Query with CONTAINS

A structured query, also called a mixed query, is a query that has a CONTAI NS
predicate to query a text column and has another predicate to query a structured
data column.

To issue a structured query, you specify the structured clause in the WHERE
condition of the SELECT statement.

For example, the following SELECT statement returns all articles that contain the
word oracle that were written on or after October 1, 1997:

SELECT SCORE(1), title, issue_date from news
WHERE CONTAINS(text, ‘oracle', 1) >0
AND i ssue_date >= (' 01-OCT-97")
ORDER BY SCORE(1) DESC,

Note: Even though you can issue structured queries with
CONTAI NS, consider creating a ctxcat index and issuing the query
with CATSEARCH, which offers better structured query
performance.

Querying with CATSEARCH

When you create an index of type CTXCAT, you must use the CATSEARCH operator
to issue your query. An index of type CTXCAT is best suited when your application
stores short text fragments in the text column and other associated information in
related columns.

For example, an application serving an online auction site might have a table that
stores item description in a text column and associated information such as date
and price in other columns. With a CTXCAT index, you can create b-tree indexes on
one or more of these columns. The result is that when you use the CATSEARCH

Querying 4-3



Overview of Queries

operator to search a CTXCAT index, query performance is generally faster for mixed
gueries.

The operators available for CATSEARCH queries are limited to logical operations
such as AND or OR. The operators you can use to define your structured criteria are
greater than, less than, equality, BETWEEN, and | N.

CATSEARCH SQL Query
A typical query with CATSEARCH might include a structured clause as follows to
find all rows that contain the word camera ordered by the bi d_cl ose date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_cl ose desc')>
0;

The type of structured query you can issue depends on how you create your
sub-indexes.

See Also: "Creating a CTXCAT Index" in Chapter 3, "Indexing".

As shown in the previous example, you specify the structured part of a CATSEARCH
qguery with the third st r uct ur ed_quer y parameter. The columns you name in the
structured expression must have a corresponding sub-index.

For example, assuming that cat egory_i d and bi d_cl ose have a sub-index in
the ct xcat index for the AUCTI ONtable, you can issue the following structured
query:

SELECT FROM auction WHERE CATSEARCH(title, 'canera', 'category_i d=99 order by
bid_cl ose desc')> 0;

CATSEARCH Example

The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query.

- Create and popul ate table
create table BOOKS (1D nunber, |NFO varchar2(200), PUBDATE DATE);

insert into BOOKS val ues(1, '<author>NOAM CHOVBKY</ aut hor ><subj ect >Cl VI L
Rl GHTS</ subj ect ><| anguage>ENGL| SH</ | anguage><publ i sher>M T
PRESS</ publ i sher>', ' 01- NOvV-2003');

insert into BOOKS val ues(2, '<author>N CANOR PARRA</ aut hor ><subj ect >POEMS
AND ANTI POEMB</ subj ect ><I anguage>SPANI SH</ | anguage>

4-4 Oracle Text Application Developer’s Guide



Overview of Queries

<publ i sher >VASQUEZ</ publ i sher>', ' 01-JAN-2001");

insert into BOOKS val ues(1, '<author>LUC SANTE</ aut hor ><subj ect >XM.
DATABASE</ subj ect ><| anguage>FRENCH</ | anguage><publ i sher >FREE
PRESS</ publ i sher>', ' 15- MAY-2002');

conmi t;

- Create index set and section group
exec ctx_ddl.create_index_set (' BOOK | NDEX_SET');
exec ctx_ddl.add_i ndex(' BOOKSET', ' PUBDATE' );

exec ctx_ddl.create_section_group(' BOOK_SECTI ON_GROUF' ,

" BASI C_SECTI ON_GROUP' ) ;
exec ctx_ddl.add field section('BOOK _SECTI ON_ GROUP', " AUTHOR , ' AUTHOR );
exec ctx_ddl.add _field_section('BOOK_SECTI ON_GROUP', ' SUBJECT' ,"' SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTI ON_GROUP', ' LANGUAGE', ' LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTI ON_GROUP', ' PUBLI SHER , ' PUBLI SHER ) ;

- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
paraneters('index set book_index_set section group book_section_group');

- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
- W need to use query tenplate with CONTEXT granmar to access field
- sections with CATSEARCH

select id, info from books
where cat search(info,
' <query>
<t ext query grammar ="context">
NOAM wi t hi n aut hor and english within |anguage
</textquery>
</ query>',
"order by pubdate')>0;

Querying 4-5



Overview of Queries

Querying with MATCHES

When you create an index of type CTXRULE, you must use the MATCHES operator to
classify your documents. The CTXRULE index is essentially an index on the set of
gueries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed
according to content, you can create a set of queries that define your categories. You
create the queries as rows in a text column. It is possible to create this type of table
with the CTX_CLS.TRAIN procedure.

You then index the table to create a CTXRULE index. When documents arrive, you
use the MATCHES operator to classify each document

See Also: Chapter 6, "Document Classification"

MATCHES SQL Query

A MATCHES query finds all rows in a query table that match a given document.
Assuming that a table quer yt abl e has a CTXRULE index associated with it, you
can issue the following query:

SELECT cl assification FROM querytabl e WHERE MATCHES(query_string, :doc_text) > 0;

Note the bind variable : doc_t ext which contains the document CLOB to be
classified.

Putting it all together for a simple example:

create table queries (
query_id nunber,
query_string varchar2(80)

)i

insert into queries values
insert into queries values
insert into queries values
insert into queries values

, ‘oracle');

, ‘larry or ellison");
, ‘oracle and text');
, 'market share');

AW PN

(

(

(

(

create index queryx on queries(query_string)
i ndextype is ctxsys.ctxrule;

sel ect query_id fromqueries

where mat ches(query_string,
"Oracl e announced that its nmarket share in databases

4-6 Oracle Text Application Developer’s Guide



Overview of Queries

increased over the |ast year.')>0

This query will return queries 1 (the word oracle appears in the document) and 4
(the phrase market share appears in the document) but not 2 (neither the word larry
nor the word ellison appears, and not 3 (there is no text in the document, so it does
not match the query).

Note that in this example, the document was passed in as a string for simplicity.
Typically, your document would be passed in a bind variable.

The document text used in a matches query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you
must filter the binary content to CLOB using the INSO filter. For the following
example, we make two assumptions: one, that the document data is in bind
variable : doc_bl ob; and, two, that we have already defined a policy, my_pol i cy,
that CTX_DOC. POLI CY_FI LTERcan use:

decl are
doc_text clob;
begin
- create a tenporary CLOB to hold the docunment text
doc_text := dbms_| ob. createtenporary(doc_text, TRUE, DBMS_LOB. SESSI ON);

- create a sinple policy for this exanple

ctx_ddl.create_preference(preference_name => 'fast filter',
obj ect _name => '"|NSO FILTER );

ctx_ddl .set_attribute(preference_nanme => 'fast filter',
attribute_nane => ' QUTPUT_FORMATTI NG ,
attribute_value =>"'FALSE);

ctx_ddl . create_policy(policy_nane => 'nmy_policy',
filter => "fast _filter);

- call ctx_doc.policy filter to filter the BLOB to CLOB data
ctx_doc.policy filter('ny_policy', :doc_blob, doc_text, FALSE);

- now do the matches query using the CLOB version
for clin (select * fromqueries where matches(query_string, doc_text)>0)
| oop
- do what you need to do here
end | oop;

dbrs_| ob. freet enporary(doc_text);
end;

Querying 4-7



Overview of Queries

The procedure CTX_DQOC. POLI CY_FI LTERfilters the BLOB into the CLOB data,
since you need to get the text into a CLOB to issue a MATCHES query. It takes as one
argument the name of a policy you have already created with CTX_DDL. CREATE_
POLI CY. (See the Oracle Text Reference for information on CTX_DOC. POLI CY_

FI LTER)

If your file is text in the database character set, you can create a BFI LE and load it to
a CLOB using the function DBMS_LOB. LOADFROVFI LE, or you can use UTL_FI LE
to read the file into a temp CLOB locator.

If your file needs INSO filtering, you can load the file into a BLOB instead, and call
CTX_DOC. POLI CY_FI LTERas previously shown.

See Also: Chapter 6, "Document Classification" for more
extended classification examples.

MATCHES PL/SQL Example

The following example assumes that the table of queries pr of i | es has a CTXRULE
index associated with it. It also assumes that the table newsf eed contains a set of
news articles to be categorized.

This example loops through the newsfeed table, categorizing each article using the
MATCHES operator. The results are stored in the r esul t s table.

PROMPT Popul ate the category table based on newsfeed articles

PROVPT
set serveroutput on;
decl are

mypk  nunber;

mytitle varchar2(1000);
myarticles clob;
mycat egory var char2(100);
cursor doccur is select pk,title,articles from newsfeed;
cursor mycur is select category fromprofiles where matches(rule,
nyarticl es) >0;
cursor rescur is select category, pk, title fromresults order by category, pk;

begin

dbms_out put . enabl e(1000000) ;

open doccur;

| oop
fetch doccur into nypk, nytitle, nyarticles;
exit when doccur %ot f ound,;
open nycur;
| oop

4-8 Oracle Text Application Developer’s Guide



Overview of Queries

fetch mycur into nycategory;
exi t when nycur %ot f ound;
insert into results values(mycategory, nypk, nytitle);
end | oop;
cl ose nycur;
comit;
end | oop;
cl ose doccur;
conmi t;

end;
/

The following example displays the categorized articles by category.

PROWPT display the list of articles for every category
PROVPT
set serveroutput on;

decl are
mypk  nunber;
mytitle varchar2(1000);
mycat egory varchar2(100);
cursor catcur is select category fromprofiles order by category;
cursor rescur is select pk, title fromresults where category=nycategory order

by pk;

begin
dbms_out put . enabl e(1000000) ;
open catcur;
| oop
fetch catcur into nycategory;
exit when cat cur %ot f ound;
dbrs_out put. put _| i ne(" ¥*x****x*x CATEGORY: '||mycategory||' ****x*kxkxsixt).
open rescur;
| oop
fetch rescur into nypk, mytitle;
exit when rescur %ot f ound;
dbns_out put. put _line("** ('||nypk||"). "||nytitle);
end | oop;
cl ose rescur;
dbrs_out put. put _line('**");
dbns_out put.put_line('*******************************************************');
end | oop;
cl ose catcur;

Querying 4-9



Overview of Queries

end;

See Also: Chapter 6, "Document Classification” for more
extended classification examples.

Word and Phrase Queries

A word query is a query on a word or phrase. For example, to find all the rows in
your text table that contain the word dog, you issue a query specifying dog as your
query term.

You can issue word queries with both CONTAI NS and CATSEARCH SQL operators.
However, phrase queries are interpreted differently.

CONTAINS Phrase Queries

If multiple words are contained in a query expression, separated only by blank
spaces (no operators), the string of words is considered a phrase and Oracle Text
searches for the entire string during a query.

For example, to find all documents that contain the phrase international law, you
issue your query with the phrase international law.

CATSEARCH Phrase Queries

With the CATSEARCH operator, the AND operator is inserted between words in
phrases. For example, a query such as international law is interpreted as
international AND law.

Querying Stopwords
Stopwords are words for which Oracle Text does not create an index entry. They are

usually common words in your language that are unlikely to be searched on by
themselves.

Oracle Text includes a default list of stopwords for your language. This list is called
a stoplist. For example, in English, the words this and that are defined as stopwords
in the default stoplist. You can modify the default stoplist or create new stoplists
with the CTX_DDL package. You can also add stopwords after indexing with the
ALTER | NDEX statement.

You cannot query on a stopword by itself or on a phrase composed of only
stopwords. For example, a query on the word this returns no hits when this is
defined as a stopword.

4-10 Oracle Text Application Developer's Guide



Overview of Queries

You can query on phrases that contain stopwords as well as non-stopwords such as
this boy talks to that girl. This is possible because the Oracle Text index records the
position of stopwords even though it does not create an index entry for them.

When you include a stopword within your query phrase, the stopword matches any
word. For example, the query:

"Jack was big'

matches phrases such as Jack is big and Jack grew big assuming was is a stopword.
Note that this query matches grew, even though it is not a stopword.

ABOUT Queries and Themes

An ABQUT query is a query on a document theme. A document theme is a concept
that is sufficiently developed in the text. For example, an ABOUT query on US
politics might return documents containing information about US presidential
elections and US foreign policy. Documents need not contain the exact phrase US
politics to be returned.

During indexing, document themes are derived from the knowledge base, which is
a hierarchical list of categories and concepts that represents a view of the world.
Some examples of themes in the knowledge catalog are concrete concepts such as
jazz music, football, or Nelson Mandela. Themes can also be abstract concepts such as
happiness or honesty.

During indexing, the system can also identify and index document themes that are
sufficiently developed in the document, but do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your
industry or query application. When you do so, ABOUT queries are more precise for
the added concepts.

ABQUT queries perform best when you create a theme component in your index.
Theme components are created by default for English and French.

See Also: Oracle Text Reference

Querying Stopthemes

Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme
is a theme that is not to be indexed. You can add and remove stopthemes with the
CTX_DLL package. You can add stopthemes after indexing with the ALTER | NDEX
statement.

Querying 4-11



Overview of Queries

Query Expressions

A query expression is everything in between the single quotes in the t ext _query
argument of the CONTAI NS or CATSEARCH operator. What you can include in a
guery expression in a CONTAI NS query is different from what you can include in a
CATSEARCH operator.

CONTAINS Operators

A CONTAI NS query expression can contain query operators that enable logical,
proximity, thesaural, fuzzy, and wildcard searching. Querying with stored
expressions is also possible. Within the query expression, you can use grouping
characters to alter operator precedence. This book refers to these operators as the
CONTEXT grammar.

With CONTAI NS, you can also use the ABOUT query to query document themes.

See Also: "The CONTEXT Grammar" in this chapter.

CATSEARCH Operator

With the CATSEARCH operator, you specify your query expression with thet ext _
guery argument and your optional structured criteria with the st ruct ured_
guery argument. The t ext _query argument enables you to query words and
phrases. You can use logical operations, such as logical and, or, and not. This book
refers to these operators as the CTXCAT grammar.

If you want to use the much richer set of operators supported by the CONTEXT
grammar, you can use the query template feature with CATSEARCH.

With st ruct ur ed_query argument, you specify your structured criteria. You can
use the following SQL operations:

. <=

. >=

. >

. <

= IN

« BETWEEN

You can also use ORDER BY clause to order your output.

4-12 Oracle Text Application Developer's Guide



Overview of Queries

See Also: "The CTXCAT Grammar" in this chapter.

MATCHES Operator

Unlike CONTAI NS and CATSEARCH, MATCHES does not take a query expression as
input.

Instead, the MATCHES operator takes a document as input and finds all rows in a
query (rule) table that match it. As such, you can use MATCHES to classify
documents according to the rules they match.

See Also: "Querying with MATCHES" in this chapter.

Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

Word Queries

Word queries are case-insensitive by default. This means that a query on the term
dog returns the rows in your text table that contain the word dog, Dog, or DOG.

You can enable case-sensitive searching by enabling the m xed_case attribute in
your BASI C_LEXER index preference. With a case-sensitive index, your queries
must be issued in exact case. This means that a query on Dog matches only
documents with Dog. Documents with dog or DOG are not returned as hits.

Stopwords and Case-Sensitivity If you have case-sensitivity enabled for word queries
and you issue a query on a phrase containing stopwords and non-stopwords, you
must specify the correct case for the stopwords. For example, a query on the dog
does not return text that contains The Dog, assuming that the is a stopword.

ABOUT Queries

ABQUT queries give the best results when your query is formulated with proper
case. This is because the normalization of your query is based on the knowledge
catalog which is case-sensitive. Attention to case is required especially for words
that have different meanings depending on case, such as turkey the bird and Turkey
the country.

However, you need not enter your query in exact case to obtain relevant results
from an ABOUT query. The system does its best to interpret your query. For example,
if you enter a query of ORACLE and the system does not find this concept in the
knowledge catalog, the system might use Oracle as a related concept for look-up.

Querying 4-13



Overview of Queries

Query Feedback

Feedback information provides broader term, narrower term, and related term
information for a specified query with a context index. You obtain this information
programatically with the CTX_QUERY. HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting
other query terms to the user in your query application.

The feedback information returned is obtained from the knowledge base and
contains only those terms that are also in the index. This increases the chances that
terms returned from HFEEDBACK produce hits over the currently indexed document
set.

See Also: Oracle Text Reference for more information about using
CTX_QUERY. HFEEDBACK

Query Explain Plan

Explain plan information provides a graphical representation of the parse tree for a
CONTAI NS query expression. You can obtain this information programatically with
the CTX_QUERY. EXPLAI N procedure.

Explain plan information tells you how a query is expanded and parsed without
having the system execute the query. Obtaining explain information is useful for
knowing the expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex,
or ABOUT query. Parse trees also show the following information:

« order of execution

« ABQUT query normalization

= query expression optimization
« stop-word transformations

« breakdown of composite-word tokens for supported languages

See Also: Oracle Text Reference for more information about using
CTX_QUERY. EXPLAI N

Using a Thesaurus in Queries

Oracle Text enables you to define a thesaurus for your query application.

Defining a custom thesaurus enables you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can

4-14 Oracle Text Application Developer's Guide



Overview of Queries

define synonyms or narrower terms for likely query terms. You can use the
thesaurus operators to expand your query to include thesaurus terms.

See Also: Chapter 9, "Working With a Thesaurus"

Document Section Searching

Section searching enables you to narrow text queries down to sections within
documents.

Section searching can be implemented when your documents have internal
structure, such as HTML and XML documents. For example, you can define a
section for the <H1> tag that enables you to query within this section using the
W THI N operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Note: Section searching is supported for only word queries with a
CONTEXT index.

See Also: Chapter 8, "Document Section Searching"

Using Query Templating
Query templates are an alternative to the existing query languages. Rather than
passing a query string to CONATINS or CATSEARCH, you pass a structured
document which contains the query string in a tagged element. Within this
document, you can enable additional query features:

«  Query Rewrite

«  Query Relaxation

« Query Language

« Alternative Scoring

« Alternative Grammar

Querying 4-15



Overview of Queries

Query Rewrite

Query applications sometimes parse end user queries, interpreting a query string in
one or more ways using different operator combinations. For example, if a user
enters a query of kukui nut, your application might issue the queries {kukui nut} and
{kukui or nut} in order to increase recall.

The query rewrite feature enables you to submit a single query that expands the
original query into the rewritten versions. The results are returned with no
duplication.

You specify your rewrite sequences with the query template feature. The rewritten
versions of the query are executed efficiently with a single call to CONTAINS or
CATSEARCH.

The following template defines a query rewrite sequence. The query of {kukui nut} is
rewritten as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

The query rewrite template for these transformations is as follows:

select id fromdocs where CONTAINS (text,
' <query>
<textquery |ang="ENGLI SH' grammar="CONTEXT"> kukui nut
<progressi on>

<seg><rewrite>transform (TOKENS, "{", "}", " "))</rewite></seq>
<seg><rewrite>transform(TOKENS, “{", "}", " ; "))</rewite>/seq>
<seg><rewrite>transform (TOKENS, "{", "}", "AND"))</rewite></seq>
<seg><rewrite>transfornm (TOKENS, "{", "}", "ACCUM))</rewite></seq>

</ progressi on>
</textquery>
<score datatype="|NTEGER"' al gorithm=" COUNT"/ >
</ query>')>0;

Query Relaxation

Query relaxation enables your application to execute the most restrictive version of
a query first, progressively relaxing the query until the required number of hits are
obtained.

4-16 Oracle Text Application Developer's Guide



Overview of Queries

For example, your application might search first on black pen and then the query is
relaxed to black NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of
black pen is issued in sequence as

{black} {pen}

{black} NEAR {pen}

{black} AND {pen}

{black} ACCUM {pen}

The query rewrite template for these transformations is as follows:

select id fromdocs where CONTAINS (text,
' <query>
<textquery |ang="ENGLI SH' granmar =" CONTEXT" >
<progressi on>
<seq>{bl ack} {pen}</seq>
<seg>{ bl ack} NEAR {pen}</seq>
<seq>{ bl ack} AND {pen}</seq>
<seq>{ bl ack} ACCUM {pen}</seq>
</ progressi on>
</textquery>
<score datatype="INTEGER' al gorithm=" COUNT"/>
</ query>')>0;

Query hits are returned in this sequence with no duplication as long as the
application needs results.

Query relaxation is most effective when your application needs the top n hits to a
guery, which you can obtain with the FIRST_ROWS hint or in a PL/SQL cursor.

Using query templating to relax a query as such is more efficient than re-executing a
query.

Query Language
When you use the multi-lexer to index a column containing documents in different

languages, you can specify which language lexer to use during querying. You do so
using the | ang parameter in the query template.

With the MULTI_LEXER in previous releases, you could only change the query
language by altering the session language before executing the query.

select id fromdocs where CONTAINS (text,

Querying 4-17



Overview of Queries

' <query><textquery |ang="french">bon soir</textquery></query>')>0;

Alternative Scoring

You can use query templating to specify alternative scoring algorithms to use, other
than the default.

select id fromdocs where CONTAINS (text,

' <query>

<textquery grammar="CONTEXT" |ang="english"> mustang </textquery>
<score datatype="float" al gorithm="DEFAULT"/>

</ query>')>0

Alternative Grammar

Query templating enables you to use the CONTEXT grammar with CATSEARCH
gueries and vice-versa.

select id fromdocs where CONTAINS (text,

' <query>
<textquery grammar="CTXCAT">San Di ego</textquery>
<score datatype="integer"/>

</ query>')>0;

Query Analysis

Oracle Textenables you to create a log of queries and to analyze the queries it
contains. For example, suppose you have an application that searches a database of
large animals, and your analysis of its queries shows that users are continually
searching for the word mouse; this analysis might induce you to rewrite your
application so that a search for mouse redirects the user to a database of small
animals instead of simply returning an unsuccessful search.

With query analysis, you can find out

« which queries were made

« which queries were successful

« which queries were unsuccessful

« how many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

4-18 Oracle Text Application Developer's Guide



Overview of Queries

You start query logging with CTX_QOUTPUT. START_QUERY_LOG. The query log
will contain all queries made to all context indexes that the program is using until a
CTX_QUTPUT. END_QUERY_LOGprocedure is issued. Use CTX REPORT. QUERY _
LOG_SUMVARY to get a report of queries made.

See Also: Oracle Text Reference for syntax and examples for these

procedures.

Other Query Features

In your query application, you can use other query features such as proximity
searching. Table 4-1 lists some of these features.

Table 4-1  Other Oracle Text Query Features

Feature

Description

Implement With

Case Sensitive Searching

Base Letter Conversion

Word Decompounding
(German and Dutch)

Alternate Spelling

(German, Dutch, and
Swedish)

Proximity Searching

Stemming

Enables you to search on
words or phrases exactly as
entered in the query. For
example, a search on Roman
returns documents that
contain Roman and not
roman.

Queries words with or
without diacritical marks
such as tildes, accents, and
umlauts. For example, with a
Spanish base-letter index, a
query of energia matches
documents containing both
energia and energia.

Enables searching on words
that contain specified term as
sub-composite.

Searches on alternate
spellings of words

Searches for words near one
another

Searches for words with
same root as specified term

BASI C_LEXER when you
create the index

BASI C_LEXERwhen you
create the index

BASI C_LEXER when you
create the index

BASI C_LEXERwhen you
create the index

NEAR operator when you
issue the query

$ operator at when you issue
the query

Querying 4-19



The CONTEXT Grammar

Table 4-1 (Cont.) Other Oracle Text Query Features

Feature

Description

Implement With

Fuzzy Searching

Query Explain Plan

Hierarchical Query Feedback

Browse index

Count hits

Stored Query Expression

Thesaural Queries

Searches for words that have
similar spelling to specified
term

Generates query parse
information

Generates broader term,
narrower term and related
term information for a query

Browses the words around a
seed word in the index

Counts the number of hits in
aquery

Stores the text of a query
expression for later reuse in
another query.

Uses a thesaurus to expand
queries.

FUZZY operator when you
issue the query

CTX_QUERY. EXPLAI N
PL/SQL procedure after you
index

CTX_QUERY. HFEEDBACK
PL/SQL procedure after you
index.

CTX_QUERY. BROWSE_
WORDS PL/SQL after you
index.

CTX_QUERY. COUNT_HI TS
PL/SQL procedure after you
index.

CTX_QUERY. STORE_SQE
PL/SQL procedure after you
index.

Thesaurus operators such as
SYNand BT as well as the
ABQUT operator.

Use CTX_THES package to
maintain thesaurus.

The CONTEXT Grammar

The CONTEXT grammar is the default grammar for CONTAI NS. With this grammar,
you can add complexity to your searches with operators. You use the query
operators in your query expression. For example, the logical operator AND enables
you to search for all documents that contain two different words. The ABOUT
operator enables you to search on concepts.

You can also use the W THI N operator for section searching, the NEAR operator for
proximity searches, the stem, fuzzy, and thesaural operators for expanding a query

expression.

With CONTAI NS, you can also use the CTXCAT grammar with the query template

feature.

4-20 Oracle Text Application Developer's Guide



The CONTEXT Grammar

The following sections describe some of the Oracle Text operators.

See Also: Oracle Text Reference for complete information about
using query operators.

ABOUT Query

Use the ABOUT operator in English or French to query on a concept. The query
string is usually a concept or theme that represents the idea to be searched on.
Oracle Text returns the documents that contain the theme.

Word information and theme information are combined into a single index. To issue
a theme query, your index must have a theme component which is created by
default in English and French.

You issue a theme query using the ABOUT operator inside the query expression. For
example, to retrieve all documents that are about politics, write your query as
follows:

SELECT SCORE(1), title FROM news
WHERE CONTAI NS(text, 'about(politics)', 1) >0
ORDER BY SCORE(1) DESC;

See Also: Oracle Text Reference for more information about using
the ABOUT operator.

Logical Operators

Logical operators such as AND or OR allow you to limit your search criteria in a
number of ways. Table 4-2 describes some of these operators.

Table 4-2 Logical Operators

Operator Symbol Description Example Expression

AND & Use the AND operator to search ' cats AND dogs'
for documents that containat ' cats & dogs'
least one occurrence of each of
the query terms.

Score returned is the minimum
of the operands.

Querying 4-21



The CONTEXT Grammar

Table 4-2 (Cont.) Logical Operators

Operator Symbol

Description

Example Expression

R |

ACCUM ,

EQUI V

Use the OR operator to search
for documents that contain at
least one occurrence of any of
the query terms.

Score returned is the maximum
of the operands.

Use the NOT operator to search
for documents that contain one
query term and not another.

Use the ACCUMoperator to
search for documents that
contain at least one occurrence
of any of the query terms. The
accumulate operator ranks
documents according to the
total term weight of a
document.

Use the EQUI V operator to
specify an acceptable
substitution for aword in a

query.

"cats | dogs'
"cats OR dogs'

To obtain the documents that
contain the term animals but not
dogs, use the following expression:

"ani mal s ~ dogs'

The following query returns all
documents that contain the terms
dogs, cats and puppies giving the
highest scores to the documents
that contain all three terms:

"dogs, cats, puppies'

The following example returns all
documents that contain either the
phrase alsatians are big dogs or
German shepherds are big dogs:

" Ger man shepherds=al sati ans are
bi g dogs'

Section Searching

Section searching is useful for when your document set is HTML or XML. For
HTML, you can define sections using embedded tags and then use the W THI N
operator to search these sections.

For XML, you can have the system automatically create sections for you. You can
query with the W THI N operator or with the | NPATH operator for path searching.

See Also:

Chapter 8, "Document Section Searching"

Proximity Queries with NEAR and NEAR_ACCUM Operators

You can search for terms that are near to one another in a document with the NEAR

operator.

4-22 Oracle Text Application Developer's Guide



The CONTEXT Grammar

For example, to find all documents where dog is within 6 words of cat, issue the
following query:

"near ((dog, cat), 6)'
The NEAR_ACCUMoperator combines the functionality of the NEAR operator with
that of the ACCUMoperator. Like NEAR it returns terms that are within a given

proximity of each other; however, if one term is not found, it ranks documents
according to the frequency of the occurrence of the term that is found.

See Also: Oracle Text Reference for more information about using
the NEAR and NEAR_ACCUMoperators.

Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
You can expand your queries into longer word lists with operators such as
wildcard, fuzzy, stem, soundex, and thesaurus.
See Also: Oracle Text Reference for more information about using
these operators.

"Is it OK to have many expansions in a query?" in Chapter 7,
"Performance Tuning"

Using CTXCAT Grammar

You can use the CTXCAT grammar in CONTAINS queries. To do so, use a query
template specification in the t ext _query parameter of CONTAINS.

You might take advantage of the CTXCAT grammar when you need an alternative
and simpler query grammar.

See Also: Oracle Text Reference for more information about using
these operators.

Stored Query Expressions

You can use the procedure CTX_ QUERY. STORE_SQE to store the definition of a
guery without storing any results. Referencing the query with the CONTAI NS SQE
operator references the definition of the query. In this way, stored query expressions
make it easy for defining long or frequently used query expressions.

Querying 4-23



The CONTEXT Grammar

Stored query expressions are not attached to an index. When you call CTX_
QUERY. STORE_S(E, you specify only the name of the stored query expression and
the query expression.

The query definitions are stored in the Text data dictionary. Any user can reference
a stored query expression.

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY. STORE_SCE.

Defining a Stored Query Expression
You define and use a stored query expression as follows:
1. Call CTX_QUERY. STORE_SCE to store the queries for the text column. With

STORE_SQE, you specify a name for the stored query expression and a query
expression.

2. Call the stored query expression in a query expression using the SQE operator.
Oracle Text returns the results of the stored query expression in the same way it
returns the results of a regular query. The query is evaluated at the time the
stored query expression is called.

You can delete a stored query expression using REMOVE _SCE.

SQE Example

The following example creates a stored query expression called disaster that
searches for documents containing the words tornado, hurricane, or earthquake:

begi n
ctx_query.store_sqe('disaster', 'tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
WHERE CONTAI NS(text, 'SQE(disaster)', 1) >0
ORDER BY SCORE(1);

See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY. STORE_SQCE.

4-24 Oracle Text Application Developer's Guide



The CONTEXT Grammar

Calling PL/SQL Functions in CONTAINS

You can call user-defined functions directly in the CONTAI NS clause as long as the
function satisfies the requirements for being named in a SQL statement. The caller
must also have EXECUTE privilege on the function.

For example, assuming the function french returns the French equivalent of an
English word, you can search on the French word for cat by writing:

SELECT SCORE(1), title from news
WHERE CONTAINS(text, french('cat'), 1) >0
ORDER BY SCORE(1);

See Also: Oracle Database SQL Reference for more information
about creating user functions and calling user functions from SQ_,

Optimizing for Response Time

A CONTAI NS query optimized for response time provides a fast solution for when
you need the highest scoring documents from a hitlist.

The following example returns the first twenty hits to standard out. This example
uses the FI RST_ROW5(n) hint and a cursor.

decl are
cursor c is
select /*+ FIRST_ROAS(20) */ title, score(l) score
fromnews where contains(txt_col, 'dog', 1) > 0 order by score(1) desc;
begin
for clinc
| oop
dbrs_out put. put _line(cl.score||"':"|]|substr(cl.title,1,50));
exit when c% owcount = 21;
end | oop;
end;
/

See Also: "Optimizing Queries for Response Time" in Chapter 7,
"Performance Tuning"

Other Factors that Influence Query Response Time

Besides using query hints, there are other factors that can influence query response
time such as:

Querying 4-25



The CONTEXT Grammar

« collection of table statistics

« memory allocation

« sorting

« presence of LOB columns in your base table
« partitioning

« parallelism

« the number term expansions in your query

See Also: "Frequently Asked Questions a About Query
Performance" in Chapter 7, "Performance Tuning"

Counting Hits

To count the number of hits returned from a query with only a CONTAI NS
predicate, you can use CTX_QUERY. COUNT_HI TS in PL/SQL or COUNT( *) ina
SQL SELECT statement.

If you want a rough hit count, you can use CTX_QUERY. COUNT_HI TS in estimate
mode (EXACT parameter set to FALSE). With respect to response time, this is the
fastest count you can get.

To count the number of hits returned from a query that contains a structured
predicate, use the COUNT( *) function in a SELECT statement.

SQL Count Hits Example

To find the number of documents that contain the word oracle, issue the query with
the SQL COUNT function as follows:

SELECT count (*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

Counting Hits with a Structured Predicate

To find the number of documents returned by a query with a structured predicate,
use COUNT( *) as follows:

SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author =
"jones';

4-26 Oracle Text Application Developer's Guide



The CTXCAT Grammar

PL/SQL Count Hits Example

To find the number of documents that contain the word oracle, use COUNT_HI TS as
follows:

decl are count nunber;
begi n
count : =ctx_query. count _hits(index_nane=>ny_i ndex, text_query=>'oracle',
exact => TRUE);
dbms_out put . put _l'i ne(" Nunber of docs with oracle:');
dbns_out put. put _l i ne(count);

end;
See Also: Oracle Text Reference to learn more about the syntax of
CTX_QUERY. COUNT_HI TS.
The CTXCAT Grammar

The CTXCAT grammar is the default grammar for CATSEARCH. This grammar
supports logical operations such as AND and OR as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b and c.
Logical OR alb]c Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.
hyphen with no a-b Hyphen treated as a regular character.
space

For example, if the hyphen is defined as
skipjoin, words such as web-site treated as
the single query term website.

Likewise, if the hyphen is defined as a
printjoin, words such as web-site treated
as web site with the space in the CTXCAT
query language.

"abc" Returns rows that contain the phrase "ab
c".

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

Querying 4-27



The CTXCAT Grammar

Operation Syntax Description of Operation

@) (AB)| C Parentheses group operations. This query
is equivalent to the CONTAI NS query (A
&B) | C.

Using CONTEXT Grammar with CATSEARCH

In addition, you can use the CONTEXT grammar in CATSEARCH queries. To do so,
use a query template specification in the text_query parameter.

You might use the CONTAINS grammar as such when you need to issue proximity,
thesaurus, or ABOUT queries with a CTXCAT index.

See Also: Oracle Text Reference for more information about using
these operators.

4-28 Oracle Text Application Developer's Guide



D

Document Presentation

This chapter describes document presentation. The following topics are covered:
« Highlighting Query Terms
« Obtaining Lists of Themes, Gists, and Theme Summaries

« Document Presentation and Highlighting

Highlighting Query Terms

In Oracle Text query applications, you can present selected documents with query
terms highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting: a marked-up
version of the document, a plain text version of the document (filtered output), and
highlight offset information for the document.

The three types of output are generated by three different procedures in the CTX _
DCOC (document services) PL/SQL package. In addition, you can obtain plain text
and HTML versions for each type of output.

Text highlighting

For text highlighting, you supply the query, and Oracle Text highlights words in
document that satisfy the query. You can obtain plain-text or HTML highlighting.

Theme Highlighting

For ABOUT queries, the CTX_DOC procedures highlight and mark up words or
phrases that best represent the ABOUT query.

Document Presentation 5-1



Highlighting Query Terms

CTX_DOC Highlighting Procedures
There are three highlighting procedures in CTX_DOC:

. CTX_DOC. Hi GHLI GHT
. CTX_DOC. MARKUP
. CTX_DCC. FI LTER
. CTX_DOC. POLI CY_FI LTER

Highlight Procedure

Highlight offset information is useful for when you write your own custom routines
for displaying documents.

To obtain highlight offset information, use the CTX_DOC. HI GHLI GHT procedure.
This procedure takes a query and a document, and returns highlight offset
information for either plaintext or HTML formats.

With offset information, you can display a highlighted version of document as
desired. For example, you can display the document with different font types or
colors rather than using the standard plain text markup obtained from CTX_
DOC. MARKUP.

See Also: Oracle Text Reference for more information about using
CTX_DOC. HI GHLI GHT.

Markup Procedure

The CTX_DOC. MARKUP procedure takes a document reference and a query, and
returns a marked-up version of the document. The output can be either marked-up
plaintext or marked-up HTML.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example The following example is taken from the Web application
described in Appendix A, "CONTEXT Query Application". The procedure showbDoc
takes an HTML document and a query, creates the highlight markup, and outputs

the result to an in-memory buffer. It then uses htp.print to display it in the browser.

procedure showDoc (p_id in varchar2, p_query in varchar2) is

v_cl ob_selected CLOB;
v_read_amount i nteger;

5-2 Oracle Text Application Developer’'s Guide



Highlighting Query Terms

v_read_of f set i nteger;
v_buffer var char 2( 32767) ;
v_query var char (2000) ;
v_cursor i nteger;

begi n

htp. p(' <htm ><title>HTM. version with highlighted ternms</title>");

htp. p(' <body bgcol or="#ffffff">");

htp. p(' <b>HTM. version with highlighted terns</b>");

begi n

ctx_doc. markup (index_name => 'idx_search_table',

t ext key = p_id,
text _query => p_query,

restab => v_cl ob_sel ect ed,

query_id =>0,

starttag => '<i><font color=red>",

endt ag => "</font></i>");
v_read_amount := 32767,
v_read_offset := 1;
begin
| oop

dbms_| ob. read(v_cl ob_sel ected, v_read_anount, v_read_offset,v_buffer);

htp.print(v_buffer);

v_read_offset := v_read_offset + v_read_amount;
v_read_anount := 32767,

end | oop;

exception

when no_data_found then
null;

end;

exception

when ot hers then
null; --showHTM.doc(p_id);

end;
end showDoc;

end;

/

show errors
set define on

Document Presentation 5-3



Obtaining Lists of Themes, Gists, and Theme Summaries

See Also: Oracle Text Reference for more information about
CTX_DOC. MARKUP.

Filter Procedure

When documents are stored in their native formats such as Microsoft Word, you can
use the filter procedure CTX_DOC. FI LTERto obtain either a plain text or HTML
version of the document.

See Also: Oracle Text Reference for more information about
CTX_DCC. FI LTER

CTX_DOC.POLICY_FILTER Procedure

This procedure takes a binary document as BLOB and uses the Inso filter to output
text to a CLOB. This procedure is useful with MATCHES query, which can use
CLOB data as input. The procedure can also be called from a user datastore
procedure as a binary to text filter.

Obtaining Lists of Themes, Gists, and Theme Summaries

The following table describes lists of themes, gists, and theme summaries.

Table 5-1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.

You can generate list of themes where each theme is a single word or
phrase or where each theme is a hierarchical list of parent themes.

Gist Text in a document that best represents what the document is about as a
whole.

Theme Summary Text in a document that best represents a given theme in the document.

To obtain this output, you use procedures in the CTX_DOC supplied package. With
this package, you can do the following:

« ldentify documents by RON Din addition to primary key

«  Store results in-memory for improved performance

5-4 Oracle Text Application Developer’s Guide



Obtaining Lists of Themes, Gists, and Theme Summaries

Lists of Themes

A list of themes is a list of the main concepts in a document. Use the CTX_
DCC. THEMES procedure to generate lists of themes.

See Also: Oracle Text Reference to learn more about the command
syntax for CTX_DCOC. THEMES.

In-Memory Themes

The following example generates the top 10 themes for document 1 and stores them
in an in-memory table called t he_t henes. The example then loops through the
table to display the document themes.

decl are
the_thenes ctx_doc.thene_tab;

begi n
ctx_doc. themes(' nyi ndex',"'1',the_themes, nunthemes=>10);
for i in 1..the_themes.count |oop
dbns_out put. put _line(the_themes(i).thenme||':"||the_themes(i).weight);
end | oop;
end,

Result Table Themes
To create a theme table:

create table ctx_thenes (query_id nunber,
t heme var char 2(2000),
wei ght nunber);

Single Themes To obtain a list of themes where each element in the list is a single
theme, issue:

begi n
ctx_doc. t hemes(' newsi ndex',"'34',' CTX_THEMES', 1,full _thenes => FALSE);
end;

Full Themes To obtain a list of themes where each element in the list is a hierarchical
list of parent themes, issue:

begi n
ctx_doc. t hemes(' newsindex',"'34',"' CTX_THEMES' , 1,full _thenes => TRUE);
end;

Document Presentation 5-5



Obtaining Lists of Themes, Gists, and Theme Summaries

Gist and Theme Summary

A gist is the text of a document that best represents what the document is about as a
whole. A theme summary is the text of a document that best represents a single
theme in the document.

Use the procedure CTX_DOC. G ST to generate gists and theme summaries. You can
specify the size of the gist or theme summary when you call the procedure.

See Also: Oracle Text Reference to learn about the command syntax
for CTX_DCC. d ST.

In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then
de-allocates the returned CLOB locator after using it.

decl are
gkl ob cl ob;
ant nunber : = 40;
I'ine varchar2(80);

begin
ctx_doc. gi st (' newsi ndex','34',"'gklob',1,glevel => "P  pov => 'GENERI C,
nunPar agr aphs => 10);
- gklob is NULL when passed-in, so ctx-doc.gist will allocate a tenporary
- CLOB for us and place the results there.

dbms_| ob. read(gkl ob, ant, 1, line);
dbns_out put. put _line(' FIRST 40 CHARS ARE:'||line);
- have to de-allocate the tenp lob
dbrs_| ob. freet enpor ary( gkl ob);
end;

Result Table Gists
To create a gist table:

create table ctx_gist (query_id nunber,
pov var char 2( 80),
gi st CLOB);
The following example returns a default sized paragraph level gist for document 34:

begin
ctx_doc. gi st (' newsi ndex',"'34',' CTX_G ST', 1, ' PARAGRAPH , pov =>' GENERIC );

5-6 Oracle Text Application Developer’s Guide



Document Presentation and Highlighting

end;

The following example generates a non-default size gist of ten paragraphs:

begin

ctx_doc. gi st (' newsi ndex',' 34" ,' CTX_G ST', 1,' PARAGRAPH , pov =>' GENERIC ,
nunPar agr aphs => 10);

end;

The following example generates a gist whose number of paragraphs is ten percent
of the total paragraphs in document:

begin

ctx_doc. gi st (' newsi ndex','34',' CTX G ST',1, 'PARAGRAPH , pov =>' GENERI C,
maxPer cent => 10);

end,

Theme Summary

The following example returns a theme summary on the theme of insects for
document with textkey 34. The default Gist size is returned.

begi n
ctx_doc. gi st (' newsi ndex','34',' CTX_G ST', 1, 'PARAGRAPH , pov => 'insects');
end;

Document Presentation and Highlighting

Typically, a query application enables the user to view the documents returned by a
guery. The user selects a document from the hit list and then the application
presents the document in some form.

With Oracle Text, you can display a document in different ways. For example, you
can present documents with query terms highlighted. Highlighted query terms can
be either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from
documents with the CTX_DOCPL/SQL package.

Table 5-2 describes the different output you can obtain and which procedure to use
to obtain each type.

Document Presentation 5-7



Document Presentation and Highlighting

Table 5-2 CTX_DOC Output

Output Procedure

Plain text version, no highlights CTX_DOC.FILTER
HTML version of document, no highlights CTX_DOC.FILTER
Highlighted document, plain text version CTX_DOC.MARKUP
Highlighted document, HTML version CTX_DOC.MARKUP
Highlight offset information for plain text CTX_DOC.HIGHLIGHT
version

Highlight offset information for HTML CTX_DOC.HIGHLIGHT
version

Theme summaries and gist of document. CTX_DOC.GIST

List of themes in document. CTX_DOC.THEMES

See Also: The Oracle Text Reference

Figure 5-1 shows an original document to which we can apply highlighting, gisting,
and theme extraction in the following sections.

5-8 Oracle Text Application Developer’'s Guide



Document Presentation and Highlighting

Figure 5-1 Sample Document for Highlighting, Gisting, and Theme Extraction

I The Pet Magnet - Mozilla
. File Edit View Go Bookmarks Tools Window Help

. 0,00 W <, [l

. 4% Home | BIBookmarks % Account Request % CRM Tickets “: Files Online % My Oracle % Network Request % S
laws require pets to be on leashes. Sometimes a free-roaming pet will ruin a flower bed, leave a
"calling card" on the sidewalk, or chew through another pet. In the case of extremely smart pets, like
chimpanzees or dolphins, the unattended pet may get away and run up hundreds of dollars worth of
long-distance charges on your phone.

But leashes aren't always a practical answer. They can be too confining, or too big, or can tug
uncomfortably on the pet's neck. They may get tangled, or wrapped around poles or passersby. Pets
may chew through the leash, or, again, in the case of extremely smart pets, burn through it with an
acetvlene torch. In the case of cats, leashes simply look ridiculous, as though the pet owner really
wanted to own a dog but got confused at the pet store.

The Hold '"Em 2000 Pet Magnet from UltraAppliance is the
answer. Instead of old-fashioned leashes, the Hold "Em 2000 Pet
Magnet keeps your pet under control in a humane and simple way.
Here's how it works. Dozens of small magnets are placed
underneath the coat of your pet, where they remain painlessly
invisible. When it's time to take Fido or Snowy outside, yvou
simply let vour pet run free. Any time vou need to recall vour
animal, vou merely activate the handy, massive Hold 'Em 2000 Pet
Magnet electromagnet (fits inside any extremely oversized purse)
and your pet is gently and painlessly dragged to vou from up to
100 vards. It's a must-have for any pet owner!

"The Hold 'Em 2000 Pet Magnet not only keeps my dog
|0 & ©f B =3 Done '

Highlighting Example

Figure 5-2 is a screen shot of a query application presenting the document shown in
Figure 5-1 with the query term pet highlighted. This output was created using the
text query application produced by a wizard described in Appendix A, "CONTEXT
Query Application".

Document Presentation 5-9



Document Presentation and Highlighting

Figure 5-2 Query Application Presenting Highlighted Document

% HTML version with highlighted terms - Mozilla
. File Edit View Go Bookmarks Tools Window Help

o @GQ @ @ | http://mcgregor-peftextsearch/TextSearch App_hic H@kSearch] ’:gg

. % Home | BIBookmarks % Account Request % CRM Tickets : Files Online %+ My Oracle % Network Request % S
Fvery pel owner loves to let his or her per run free, but that's not always possible. Sometimes local

laws require pets to be on leashes. Sometimes a free-roaming per will ruin a flower bed, leave a
"calling card" on the sidewalk, or chew through another pet. In the case of extremely smart pets, like
chimpanzees or dolphins, the unattended per may get away and run up hundreds of dollars worth of
long-distance charges on vour phone.

But leashes aren't always a practical answer. They can be too confining, or too big, or can tug
uncomfortably on the per's neck. They may get tangled, or wrapped around poles or passersby. Pets
may chew through the leash, or, again, in the case of extremely smart pets, burn through it with an
acetylene torch. In the case of cats, leashes simply look ridiculous, as though the per owner really
wanted to own a dog but got confused at the per store.

The Hold "Em 2000 Per Magnet from UltraAppliance is the answer. Instead of old-fashioned
leashes, the Hold '"Em 2000 Per Magnet keeps vour per under control in a humane and simple way.
Here's how it works. Dozens of small magnets are placed underneath the coat of your per, where
they remain painlessly invisible. When it's time to take Fido or Snowy outside, yvou simply let vour
pet rin free. Any time you need to recall your animal, you merely activate the handy, massive Hold
'"Em 2000 Per Magnet electromagnet (fits inside any extremely oversized purse) and vour per is
gently and painlessly dragged to you from up to 100 vards. It's a must-have for any per owner!
B@'Q@Emone | |=m=|d‘|A

Document List of Themes Example

Figure 5-3 is a screen shot of a query application presenting a list of themes for the
document shown in Figure 5-1. This output was created using the text query
application produced by a wizard described in Appendix A, "CONTEXT Query
Application”.

5-10 Oracle Text Application Developer’'s Guide



Document Presentation and Highlighting

Figure 5-3 Query Application Displaying Document Themes

I Themes of the document - Mozilla

. File Edit View Go Bookmarks Tools Window Help
i @0 Q @ @ | http://cmcgregor-pe/textsearch/TextSearch App_ | [@kSearch ] é;a
. & Home | BSBookmarks % Account Request % CRM Tickets % Files Online % My QOracle % Network Request %
The top 50 themes of the document
Theme Name Theme Weight
freedom 30
leashes 29 }
pets 18 il
simplicity 17
pet owners 16
mastication 13
EM 13
EM 2000 13
answers 11
magnets 11
extremeness 10
love 9
desire 9
requirements 8
wandering 8
dogs 8
confusion 7
animals 7
distance 7
time 7
_WB’E’{]@E\DUHE |—4m::|£|4
Gist Example

Figure 5-4 is a screen shot of a query application presenting a gist of the document
shown in Figure 5-1. This output was created using the text query application
produced by a wizard described in Appendix A, "CONTEXT Query Application”.

Document Presentation 5-11



Document Presentation and Highlighting

Figure 5-4 Query Application Presenting Document Gist

% Mozilla

. File Edit View Go Bookmarks Tools Window Help

0,00 Q|

. http://cmcgregor-pc/textsearch/TextSearchApp_g | [@k Search ] ‘:i%;g

-

4 Home | BIBookmarks % Account Request % CRM Tickets : Files Online % My Oracle % Network Request % S

Gist

The Hold '"Em 2000 Pet Magnet from UltraAppliance is the answer. Instead of old-fashioned
leashes, the Hold '"Em 2000 Pet Magnet keeps vour pet under control in a humane and simple way.
Here's how it works. Dozens of small magnets are placed underneath the coat of your pet, where
they remain painlessly invisible. When it's time to take Fido or Snowy outside, vou simply let vour
pet run free. Anv time you need to recall vour animal, vou merely activate the handy, massive Hold
'Em 2000 Pet Magnet electromagnet (fits inside any extremely oversized purse) and vour pet is
gently and painlessly dragged to vou from up to 100 vards. It's a must-have for any pet owner!

| [0 0 &F ] & | Done

-~

5-12 Oracle Text Application Developer’'s Guide



6

Overview

Document Classification

This chapter includes the following topics:
«  Overview

« Classification Solutions

« Rule-Based Classification

« Supervised Classification

« Unsupervised Classification (Clustering)

A major problem facing businesses and institutions today is that of information
overload. Sorting out useful documents from documents that are not of interest
challenges the ingenuity and resources of both individuals and organizations.

One way to sift through numerous documents is to use keyword search engines.
However, keyword searches have limitations. One major drawback is that keyword
searches don't discriminate by context. In many languages, a word or phrase may
have multiple meanings, so a search may result in many matches that are not on the
desired topic. For example, a query on the phrase river bank might return
documents about the Hudson River Bank & Trust Company, because the word bank
has two meanings.

An alternative strategy is to have human beings sort through documents and
classify them by content, but this is not feasible for very large volumes of
documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification, you write the classification rules yourself. With supervised classification,
Oracle Text creates classification rules based on a set of sample documents that you

Document Classification 6-1



Overview

pre-classify. Finally, with unsupervised classification (also known as clustering), Oracle
Text performs all the steps, from writing the classification rules to classifying the
documents, for you.

Classification Applications

Oracle Text enables you to build document classification applications. A
document classification application performs some action based on document
content. Actions include assigning category ids to a document for future lookup or
sending a document to a user. The result is a set or stream of categorized
documents. Figure 6-1 illustrates how the classification process works.

Oracle Text enables you to create document classification applications in different
ways. This chapter defines a typical classification scenario and shows how you can
use Oracle Text to build a solution.

Figure 6-1 Overview of a Document Classification Application

Document 1 [——
from —
Database —_—
Document 2 [—— Document Perform
from File — Stream Document Action

— Classification
System Application
Document N [—— SQL
from Web — %L?ES Classify

— v document

Ctxrule
Index Rules Table
Database A Database B

6-2 Oracle Text Application Developer’'s Guide



Classification Solutions

Classification Solutions

Oracle Text enables you to classify documents in the following ways:

Rule-Based Classification. In rule-based classification, you group your
documents together, decide on categories, and formulate the rules that define
those categories; these rules are actually query phrases. You then index the rules
and use the MATCHES operator to classify documents.

Advantage: Rule-based classification is very accurate for small document sets.
Results are always based on what you define, since you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with
many categories. As your document set grows, you may heed to write
correspondingly more rules.

Supervised Classification. This method is similar to rule-based classification,
but the rule writing step is automated with CTX_CLS. TRAI N. CTX_

CLS. TRAI Nformulates a set of classification rules from a sample set of
pre-classified documents that you provide. As with rule-based classification,
you use MATCHES operator to classify documents.

Oracle Text offers two versions of supervised classification, one using the
RULE_CLASSI FI ER preference and one using the SVM_CLASSI FI ER
preference. These are discussed in "Supervised Classification" on page 6-8.

Advantage: Rules are written for you automatically. This is useful for large
document sets.

Disadvantages:
« You must assign documents to categories before generating the rules.
« Rules may not be as specific or accurate as those you write yourself.

Unsupervised Classification (Clustering). All steps from grouping your
documents to writing the category rules are automated with CTX_

CLS. CLUSTERI NG Oracle Text statistically analyzes your document set and
clusters documents according to content.

Advantages:

« You don't need to provide either the classification rules or the sample
documents as a training set.

« Helps to discover patterns and content similarities in your document set
that you might overlook.

Document Classification 6-3



Rule-Based Classification

In fact, you can use unsupervised classification when you do not have a
clear idea of rules or classifications. One possible scenario is to use
unsupervised classification to provide an initial set of categories, and to
subsequently build on these through supervised classification.

Disadvantages:

«  Clustering might result in unexpected groupings, since the clustering
operation is not user-defined, but based on an internal algorithm.

« You do not see the rules that create the clusters.

« The clustering operation is CPU intensive and can take at least the same
time as indexing.

Rule-Based Classification

Rule-based classification (sometimes called "simple classification") is the basic way
of creating an Oracle Text classification application.

The basic steps for rule-based classification are as follows. Specific steps are
explored in greater detail in the example.

1.
2.

Create a table for the documents to be classified, and populate it.

Create a rule table (also known as a category table). The rule table consists of
categories that you name, such as "medicine" or "finance," and the rules that
sort documents into those categories.

These rules are actually queries. For example, you might define the "medicine"
category as consisting of documents that include the words "hospital," "doctor,"
or "disease," so you would set up a rule of the form "hospital OR doctor OR
disease." See "CTXRULE Parameters and Limitations" for information on which
operators are allowed for queries.

Create a CTXRULE index on the rule table.

Classify the documents.

Rule-based Classification Example

In this example, we gather news articles on different subjects and then classify
them.

Once our rules are created, we can index them and then use the MATCHES
statement to classify documents. The steps are as follows:

6-4 Oracle Text Application Developer’s Guide



Rule-Based Classification

Step 1 Create schema

We create the tables to store the data. The news_t abl e stores the documents to be
classified. The news_cat egor i es table stores the categories and rules that define
our categories. The news_i d_cat table stores the document ids and their
associated categories after classification.

create table news_table (
tk nunber primary key not null,
title varchar2(1000),
text clob);

create table news_categories (
queryid nunber primry key not null,
cat egory varchar2(100),
query var char 2(2000) ) ;

create table news_id_cat (
tk nunber,
category_id number);

Step 2 Load Documents with SQLLDR

In this step, we load the HTML news articles into the news_t abl e using the
SQLLDR program. The filenames and titles are read from loader.dat.

LOAD DATA
I NFILE ' | oader. dat "'
| NTO TABLE news_tabl e

REPLACE
FI ELDS TERM NATED BY ' ;'
(tk | NTEGER EXTERNAL,
title CHAR,
text _file FILLER CHAR,
text LOBFI LE(text _file) TERM NATED BY EOF)

Step 3 Create Categories

In this step, we define our categories and write the rules that define each of our
categories. Our categories are the following:

Document Classification 6-5



Rule-Based Classification

i nsert

Powel |

i nsert
insert

i nsert
i nsert
insert

insert
insert
| BM or

insert
insert

Brazil

i nsert

United States Europe Middle East

Asia Africa Conflicts

Finance Technology Consumer Electronics
Latin America World Politics U.S. Politics
Astronomy Paleontology Health

Natural Disasters Law Music News

A rule is a query that selects documents for the category. For example, the category

'Asia’ has a

rule of 'China or Pakistan or India or Japan'. We insert our rules in the

news_cat egori es table:

into news_categories
);

into news_categories
into news_categories

into news_categories
into news_categories
into news_categories

into news_categories
into news_categories
M crosoft');

into news_categories
into news_categories
or Chile');

into news_categories

or Saddam Hussein or United

val ues(1,"' United States','Wshington or George Bush or Colin

val ues(2,"' Europe', ' England or Britain or Germany');
values(3,"Mddl e East','Israel or lran or Palestine');

val ues(4," Asia',' China or Pakistan or India or Japan');
val ues(5," Africa',' Egypt or Kenya or Nigeria');
val ues(6,"' Conflicts', war or soliders or mlitary or troops');

val ues(7,' Finance',"profit or loss or wall street');

val ues(8,"' Technol ogy', ' software or conputer or Oracle or Intel or

val ues(9, ' Consuner el ectronics',' HDTV or electronics');
val ues(10, ' Latin Anerica',' Venezuela or Col onbia or Argentina or

val ues(11,"Wrld Politics', ' Hugo Chavez or George Bush or Tony Blair
Nations');

insert into news_categories values(12,'US Politics',' George Bush or Denocrats or Republicans or

civil

rights or Senate or Wite House');

insert into news_categories values(13,' Astronony','Jupiter or Earth or star or planet or Orion
or Venus or Mercury or Mars or MIky Way or Tel escope or astronomer or NASA or astronaut');

insert into news_categories val ues(14,' Pal eontol ogy','fossils or scientist or pal eontol ogist or
di nosaur or Nature');

insert into news_categories values(15,'Health','stemcells or enbryo or health or nedical

6-6 Oracle Text Application Developer’s Guide



Rule-Based Classification

or medicine or Wrld Health Organization or AIDS or H'V or virus or centers for disease control
or vaccination');

insert into news_categories values(16,' Natural Disasters','earthquake or hurricane or tornado');
insert into news_categories values(17,'Law ,'abortion or Supreme Court or illegal or legal or
legislation');

insert into news_categories values(18,' Misic News','piracy or anti-piracy or Recording Industry
Associ ation of America or copyright or copy-protection or CDs or nusic or artist or song');

commit;

Step 4 Create the CTXRULE index
In this step, we create a CTXRULE index on our news_categories query column.

create index news_cat_idx on news_categories(query)
i ndextype is ctxsys.ctxrule;

Step 5 Classify Documents

To classify the documents, we use the CLASSI FI ER. THI S PL/SQL procedure (a
simple procedure designed for this example), which scrolls through the news_

t abl e, matches each document to a category, and writes the categorized results
into the news_i d_cat table.

create or replace package classifier as
procedure this;

end;

/

show errors

create or replace package body classifier as

procedure this

is
v_docunent cl ob;
v_item nunber ;
v_doc number ;
begi n

for doc in (select tk, text fromnews_table)
| oop
v_document : = doc.text;
v_item:= 0;

Document Classification 6-7



Supervised Classification

v_doc := doc.tk;
for c in (select queryid, category from news_categories
where matches(query, v_document) > 0 )
| oop
v_item:= v_item+ 1;
insert into news_id_cat values (doc.tk,c.queryid);
end | oop;
end | oop;

end this;

end;

/

show errors

exec classifier.this

CTXRULE Parameters and Limitations
The following considerations apply to indexing a CTXRULE index.

« TheBASI C LEXER, CHI NESE LEXER, JAPANESE LEXER, and KOREAN LEXER
types are supported for indexing your query set.

« Filter, memory, datastore, and [no]populate parameters are not applicable to
index type CTXRULE.

« The CREATE | NDEX storage clause is supported for creating the index on the
gueries.

«  Wordlists are supported for stemming operations on your query set.

«  Queries for CTXRULE are similar to those of CONTAI NS queries. Basic phrasing
("dog house") is supported, as are the following CONTAI NS operators: ABOUT,
AND, NEAR, NOT, OR, STEM W THI N, and THESAURUS. Additionally, wildcards
are supported. Section groups are supported for using the MATCHES operator
to classify documents. Field sections are also supported; however, CTXRULE
does not directly support field queries, so you must use a query rewrite on a
CONTEXT query.

See Also: "Creating a CTXRULE Index" in Chapter 3, "Indexing"

Supervised Classification

With supervised classification, you employ the CTX_CLS. TRAI N procedure to
automate the rule writing step. CTX_CLS. TRAI Nuses a training set of sample

6-8 Oracle Text Application Developer’'s Guide



Supervised Classification

documents to deduce classification rules. This is the major advantage over
rule-based classification, in which you must write the classification rules.

However, before you can run the CTX_CLS. TRAI N procedure, you must manually
create categories and assign each document in the sample training set to a category.
See the Oracle Text Reference for more information on CTX_CLS. TRAI N.

When the rules are generated, you index them to create a CTXRULE index. You can
then use the MATCHES operator to classify an incoming stream of new documents.

You may choose between two different classification algorithms for supervised
classification:

« Decision Tree classification. The advantage of Decision Tree classification is
that the generated rules are easily observed (and modified).

« SVM-based classification. This method uses the Support Vector Machine
(SVM) algorithm for creating rules. The advantage of SVM-based classification
is that it is often more accurate than Decision Tree classification. The
disadvantage is that it generates binary rules, so the rules themselves are
opaque.

Decision Tree Supervised Classification

To use Decision Tree classification, you set the preference argument to CTX_
CLS. TRAI Nto RULE_CLASSI FI ER

This form of classification uses a decision tree algorithm for creating rules.
Generally speaking, a decision tree is a method of deciding between two (or more,
but usually two) choices. In document classification, the choices are "the document
matches the training set" or "the document does not match the training set.”

A decision tree has a set of attributes that can be tested. In this case, these include:
« words from the document

« stems of words from the document (as an example, the stem of running is run)
« themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each
category provided in the training set. These decision trees are then coded into
gueries suitable for use by a CTXRULE index. As a trivial example, if one category is
provided with a training document that consists of "Japanese beetle" and another
category with a document reading "Japanese currency,” the algorithm may create
decision trees based on the words "Japanese,” "beetle," and "currency,” and classify
documents accordingly.

Document Classification 6-9



Supervised Classification

The decision trees include the concept of confidence. Each rule that is generated is
allocated a percentage value that represents the accuracy of the rule, given the
current training set. In trivial examples, this accuracy is almost always 100%, but
this merely represents the limitations of the training set. Similarly, the rules
generated from a trivial training set may seem to be less than what you might
expect, but these are sufficient to distinguish the different categories given the
current training set.

The advantage of the Decision Tree method is that it can generate rules that are
easily inspected and modified by a human. Using Decision Tree classification makes
sense when you want to the computer to generate the bulk of the rules, but you
want to fine tune them afterward by editing the rule sets.

Decision Tree Supervised Classification Example

The following SQL example steps through creating your document and
classification tables, classifying the documents, and generating the rules. It then
goes on to generate rules with CTX_CLS. TRAI N.

Rules are then indexed to create CTXRULE index and new documents are classified
with MATCHES.

The general steps for supervised classification can be broken down as follows:
« Create the Category Rules

« Index Rules to Categorize New Documents

Create the Category Rules The CTX_CLS. TRAI N procedure requires an input training
document set. A training set is a set of documents that have already been assigned a
category.

Step 1 Create and populate a training document table

Create and load a table of training documents. This example uses a simple set;
three concern fast food and three concern computers.

create table docs (
doc_i d nunber primary key,
doc_text  clob);

insert into docs val ues

(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their nost inportant line.");

insert into docs values

(2, "Burger Prince are an up-market chain of burger shops, who sell burgers -

6-10 Oracle Text Application Developer’'s Guide



Supervised Classification

and fries in conpetition with the |ikes of MacTavishes.");

insert into docs val ues

(3, 'Shakes 2 Go are a new venture in the | owcost restaurant arena,
specializing in sem-liquid frozen fruit-flavored vegetable oil products.');
insert into docs val ues

(4, 'TCP/IP network engineers generally need to know about routers, firewalls,

hosts, patch cables networking etc');

insert into docs val ues

(5, 'Firewalls are used to protect a network fromattack by remote hosts,
general ly across TCP/IP");

Step 2 Create category tables, category descriptions and ids

-- Create category tables

-- Note that "category descriptions" isn't really needed for this demo -
-- it just provides a descriptive name for the category nunbers in

-- doc_categories

create table category_descriptions (
cd_category nunber,
cd_description varchar2(80));

create table doc_categories (
dc_cat egory nunber,
dc_doc_id nunber,
primary key (dc_category, dc_doc_id))
organi zation index;

-- descriptons for categories

insert into category_descriptions values (1,
insert into category_descriptions values (2,

‘fast food');
' conputer networking');

Step 3 Assign each document to a category

In this case, the fast food documents all go into category 1, and the computer
documents into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

Document Classification 6-11



Supervised Classification

Step 4 Create a CONTEXT index to be used by CTX_CLS.TRAIN

Create an Oracle Text preference for the index. This allows us to experiment with
the effects of turning themes on and off:

exec ctx_ddl.create_preference('ny_lex', 'basic_|lexer');
exec ctx_ddl.set_attribute ("my_lex', "index_themes', 'no');
exec ctx_ddl.set_attribute ("my_lex', "index_text', ‘yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
paranmeters ('lexer ny_lex');

Step 5 Create the rules table
Create the table that will be populated by the generated rules.

create table rul es(

rule cat_id nunber,

rul e_text var char 2(4000),
rul e_confidence nunber

)i

Step 6 Call CTX_CLS.TRAIN procedure to generate category rules

Now call the CTX_CLS.TRAIN procedure to generate some rules. Note all the
arguments are the names of tables, columns or indexes previously created in this
example. Therul es table now contains the rules, which you can view.

begin
ctx_cls.train(
i ndex_name => ' docsi ndex',

doci d => "doc_id",

cattab => 'doc_categories',
catdocid => "dc_doc_id',
catid => 'dc_category',
restab => "rules',

rescatid =>"'rule_cat_id",
resquery => 'rule_text',
resconfid =>"'rule_confidence'
);
end;
/

Step 7 Fetch the generated rules, viewed by category

Fetch the generated rules. For convenience's sake, the r ul es table is joined with
cat egory_descri pti ons so we can see to which category each rule applies:

6-12 Oracle Text Application Developer's Guide



Supervised Classification

sel ect cd_description, rule_confidence, rule_text fromrules, category_
descriptions where cd_category = rule_cat_id;

Index Rules to Categorize New Documents Once the rules are generated, you can test
them by first indexing them and then using MATCHES to classify new documents.
The process is as follows:

Step 1 Index the rules to create the CTXRULE index

Use CREATE | NDEX to create the CTXRULE index on the previously generated
rules:

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;

Step 2 Test an incoming document using MATCHES
set serveroutput on;

decl are
i ncom ng_doc cl ob;
begi n
i ncom ng_doc
:="1 have spent ny entire |ife managing restaurants selling burgers';
for cin
( select distinct cd_description fromrules, category_descriptions
where cd_category = rule_cat_id
and matches (rule_text, inconing_doc) > 0) |oop
dbms_out put . put _| i ne(' CATEGORY: '||c.cd_description);
end | oop;
end;
/

SVM-Based Supervised Classification

The second method we can use for training purposes is known as Support Vector
Machine (SVM) classification. SVM is a type of machine learning algorithm derived
from statistical learning theory. A property of SVM classification is the ability to
learn from a very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier, with
the following differences.

« The preference used in the call to CTX_CLS. TRAI Nshould be of type SVM_
CLASSI FI ER instead of RULE_CLASSI FI ER. (If you don't want to modify any
attributes, you can use the predefined preference CTXSYS. SVM CLASSI FI ER)

Document Classification 6-13



Supervised Classification

« The CONTEXT index on the table does not have to be populated; that is, you can
use the NOPOPULATE keyword. The classifier uses it only to find the source of
the text, by means of datastore and filter preferences, and to determine how to
process the text, through lexer and sectioner preferences.

« The table for the generated rules must have (as a minimum) these columns:

cat _id nunber ,
type nunber ,
rule blob );

As you can see, the generated rule is written into a BLOB column. It is therefore
opaque to the user, and unlike Decision Tree classification rules, it cannot be edited
or modified. The trade-off here is that you often get considerably better accuracy
with SVM than with Decision Tree classification.

With SVM classification, allocated memory has to be large enough to load the SVM
model; otherwise, the application built on SVM will incur an out-of-memory error.
Here is how to calculate the memory allocation:

M ni num menory request (in bytes) = number of unique categories x nunber of features
exanpl e: (value of MAX_FEATURES attributes) x 8
If necessary to meet the minimum memory requirements, either:
« increase SGA memory (if in shared server mode)

« increase PGA memory (if in dedicated server mode)

SVM-Based Supervised Classification Example

The following example uses SVM-based classification. It uses essentially the same
steps as the Decision Tree example. Some differences between the examples:

« Inthis example, we set the SVM _CLASSI FI ER preference with CTX_
DDL. CREATE_PREFERENCE rather than setting it in CTX_CLS. TRAI N. (You
can do it either way.)

« Inthis example, our category table includes category descriptions, unlike the
category table in the Decision Tree example. (You can do it either way.)

« CTX _CLS. TRAI Ntakes fewer arguments than in the Decision Tree example, as
rules are opaque to the user.

Step 1 Create and populate the training document table:

create table doc (id nunber primary key, text varchar2(2000));
insert into doc values(1,'1 23 456");

6-14 Oracle Text Application Developer's Guide



Supervised Classification

insert into doc values(2,"347890);

insert into doc values(3,"abcdef');

insert into doc values(4,"ghi j kIl mnopgqr")
insert into doc values(5,'ghi j kstuvwxyz)

Step 2 Create and populate the category table:

create table testcategory (

doc_id nunber,

cat _id nunber,

cat _name varchar2(100)

)
insert into testcategory values (1,1, nunber'
insert into testcategory values (2,1, nunber'
insert into testcategory values (3,2,'letter’
insert into testcategory values (4,2,'letter’
insert into testcategory values (5,2,'letter’

— — — ~— —

Step 3 Create the context index on the document table:
In this case, we create the index without population.

create index docx on doc(text) indextype is ctxsys.context
par anet er s(' nopopul ate');

Step 4 Set SVM_CLASSIFIER:
This can also be done in CTX. CLS_TRAI N.

exec ctx_ddl.create_preference('nmy_classifier','SYM CLASSIFIER );
exec ctx_ddl.set_attribute('my_classifier',' MAX_FEATURES' ,'100');

Step 5 Create the result (rule) table:

create table restab (
cat_id nunber,
rule bl ob);

Step 6 Perform the training:
exec ctx_cls.train('docx', "id,6'testcategory','doc_id,'cat_id',
"restab’,'ny_classifier');

Step 7 Create a CTXRULE index on the rules table:
exec ctx_ddl.create_preference(' ny_filter', NULL_FILTER );
create index restabx on restab (rule)

i ndextype is ctxsys.ctxrule

Document Classification 6-15



Unsupervised Classification (Clustering)

paraneters ('filter my_filter classifier ny_classifier');

Now we can classify two unknown documents:

sel ect cat_id, match_score(l) fromrestab
where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(l) fromrestab
where matches(rule, 'f h j',1)>50;

drop tabl e doc;

drop tabl e testcategory;

drop table restab;

exec ctx_ddl.drop_preference('ny_classifier');
exec ctx_ddl.drop_preference('ny_filter');

Unsupervised Classification (Clustering)

With Rule-Based Classification, you write the rules for classifying documents
yourself. With Supervised Classification, Oracle Text writes the rules for you, but
you must provide a set of training documents that you pre-classify. With
unsupervised classification (also known as clustering), you don't even have to provide
a training set of documents.

Clustering is done with the CTX_CLS. CLUSTERI NG procedure. CTX_

CLS. CLUSTERI NGassigns documents to different groups, known as clusters,
according to the similarity with documents already in a cluster. The result is that
documents in a cluster are more similar to one another than documents in different
clusters. "More similar” basically means "sharing more attributes.” As noted in
"Decision Tree Supervised Classification” on page 6-9, attributes may consist of
simple words (or tokens), word stems, and themes (where supported).

CTX_CLS. CLUSTERI NGassigns output to two tables (which may be in-memory
tables):

« A document assignment table containing information about which cluster the
procedure assigned a document, and how similar the document is to the
assigned cluster. This information takes the form of document identification,
cluster identification, and a similarity score between the cluster and an assigned
document.

« A cluster description table containing information about what a generated
cluster is about. This table contains cluster identification, cluster description

6-16 Oracle Text Application Developer’'s Guide



Unsupervised Classification (Clustering)

text, a suggested cluster label, number of documents assigned, and a quality
score of the cluster.

CTX_CLS. CLUSTERI NGemploys a K-MEAN algorithm to perform clustering. Use
the KMEAN _CLUSTER preference to determine how CTX_CLS. CLUSTERI NGworks.
For example, you can have CTX_CLS. CLUSTERI NG produce either flat or
hierarchical clustering. Hierarchical clustering produces something akin to a
knowledge tree, in which clusters of greater specificity (for instance, whose
documents concern dogs or cats) are placed on a layer below more general clusters
(such as one for animals).

See Also: For more on cluster types and hierarchical clustering,
see the Oracle Text Reference guide.

Clustering Example

The following SQL example creates a small collection of documents in the collection
table and creates a CONTEXT index. It then creates a document assignment and
cluster description table, which are populated with a call to the CLUSTERI NG
procedure. The output would then be viewed with a select statement:

set serverout on

/* collect document into a table */

create table collection (id nunber primary key, text varchar2(4000));

insert into collection values (1, 'Oracle Text can index any document or textual content.');
insert into collection values (2, 'Utra Search uses a craw er to access docunents.');
insert into collection values (3, 'XM. is a tag-based markup |anguage.');

insert into collection values (4, 'Oaclel0g XM. DB treats XM. as a native datatype in the
dat abase."');

insert into collection values (
needs.');

insert into collection values (6, 'Utra Search also provides APl for content nanagenent
solutions.');

ol

, 'There are three Text index types to cover all text search

create index collectionx on collection(text) indextype is ctxsys.context
par amet er s(' nopopul ate');

/* prepare result tables, if you onit this step, procedure will create table automatically */
create table restab (

doci d NUMBER,

clusterid NUMVBER

score NUMBER);

Document Classification 6-17



Unsupervised Classification (Clustering)

create table clusters (
clusterid NUVBER
descript varchar2(4000),
| abel varchar2(200),
sze  nunber,
qual ity_score nunber,
parent nunber);

/* set the preference */

exec ctx_ddl.drop_preference(' ny_cluster');

exec ctx_ddl.create_preference(' my_cluster',' KMEAN CLUSTERI NG );
exec ctx_ddl.set_attribute('my_cluster',' CLUSTER. NUM,'3");

/* do the clustering */

exec ctx_output.start _log('ny_log');

exec ctx_cls.clustering('collectionx',"id ,b'restab', clusters',' ny_cluster');
exec ctx_output.end_| og;

See Also: Oracle Text Reference for CTX_CLS.CLUSTERING syntax
and examples.

6-18 Oracle Text Application Developer’'s Guide



v

Performance Tuning

This chapter discusses how to improve your query and indexing performance. The
following topics are covered:

« Optimizing Queries with Statistics

«  Optimizing Queries for Response Time

«  Optimizing Queries for Throughput

« Tracing

« Parallel Queries

« Tuning Queries with Blocking Operations

« Frequently Asked Questions a About Query Performance
« Frequently Asked Questions About Indexing Performance

« Frequently Asked Questions About Updating the Index

Optimizing Queries with Statistics

Query optimization with statistics uses the collected statistics on the tables and
indexes in a query to select an execution plan that can process the query in the most
efficient manner. As a general rule, Oracle recommends that you collect statistics on
your base table if you are interested in improving your query performance.

The optimizer attempts to choose the best execution plan based on the following
parameters:

« the selectivity on the CONTAI NS predicate

« the selectivity of other predicates in the query

Performance Tuning 7-1



Optimizing Queries with Statistics

« the CPU and I/0 costs of processing the CONTAI NS predicates

Note: Importing and exporting of statistics on domain indexes,
including Oracle Text indexes, is not supported with the DBVS_
STATS package. For more information on importing and exporting
statistics, see the PL/SQL Packages and Types Reference guide.

The following sections describe how to use statistics with the extensible query
optimizer. Optimizing with statistics enables a more accurate estimation of the
selectivity and costs of the CONTAI NS predicate and thus a better execution plan.

Collecting Statistics

By default, Oracle Text uses the cost-based optimizer to determine the best
execution plan for a query. To allow the optimizer to better estimate costs, you can
calculate the statistics on the table you query. To do so, issue the following
statement:

ANALYZE TABLE <t abl e_name> COMPUTE STATI STI CS;

Alternatively, you can estimate the statistics on a sample of the table as follows:
ANALYZE TABLE <t abl e_name> ESTI MATE STATI STI CS 1000 ROWS;

or
ANALYZE TABLE <t abl e_name> ESTI MATE STATI STI CS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS. GATHER_TABLE
STATS procedure.

begin

DBVS_STATS. GATHER_TABLE_STATS(' owner', 'tabl e_nane',
estimate_percent =>50,
bl ock_sanpl e=>TRUE,
degree=>4) ;

end

These statements collect statistics on all the objects associated with table_name
including the table columns and any indexes (b-tree, bitmap, or Text domain)
associated with the table.

To re-collect the statistics on a table, you can issue the ANALYZE command as many
times as necessary or use the DBM5_STATS package

7-2 Oracle Text Application Developer’'s Guide



Optimizing Queries with Statistics

By collecting statistics on the Text domain index, the Oracle Database cost-based
optimizer is able to do the following:

« estimate the selectivity of the CONTAI NS predicate

« estimate the I/0 and CPU costs of using the Text index, that is, the cost of
processing the CONTAINS predicate using the domain index

« estimate the 170 and CPU costs of each invocation of CONTAI NS

Knowing the selectivity of a CONTAI NS predicate is useful for queries that contain
more than one predicate, such as in structured queries. This way the cost-based
optimizer can better decide whether to use the domain index to evaluate CONTAI NS
or to apply the CONTAI NS predicate as a post filter.

See Also:

Oracle Database SQL Reference and Oracle Database Performance
Tuning Guide for more information about the ANALYZE command.

PL/SQL Packages and Types Reference for information about DBVS_
STATS package.

Example
Consider the following structured query:

sel ect score(1l) fromtab where contains(txt, 'freedomi, 1) > 0 and author =
"King' and year > 1960;

Assume the aut hor column is of type VARCHAR?2 and the year column is of type
NUMBER. Assume that there is a b-tree index on the aut hor column.

Also assume that the structured aut hor predicate is highly selective with respect to
the CONTAI NS predicate and the year predicate. That is, the structured predicate
(aut hor = " Ki ng" ) returns a much smaller number of rows with respect to the
year and CONTAI NS predicates individually, say 5 rows returned versus 1000 and
1500 rows respectively.

In this situation, Oracle Text can execute this query more efficiently by first doing a
b-tree index range scan on the structured predicate (aut hor = ' Ki ng' ), followed
by a table access by rowid, and then applying the other two predicates to the rows
returned from the b-tree table access.

Performance Tuning 7-3



Optimizing Queries for Response Time

Note: When statistics are not collected for a Text index, the
cost-based optimizer assumes low selectivity and index costs for
the CONTAI NS predicate.

Re-Collecting Statistics

After synchronizing your index, you can re-collect statistics on a single index to
update the cost estimates.

If your base table has been re-analyzed before the synchronization, it is sufficient to
analyze the index after the synchronization without re-analyzing the entire table.

To do so, you can issue any of the following statements:

ANALYZE | NDEX <i ndex_name> COMPUTE STATI STI CS;
or

ANALYZE | NDEX <i ndex_name> ESTI MATE STATI STI CS SAMPLE 1000 ROWS;
or

ANALYZE | NDEX <i ndex_name> ESTI MATE STATI STI CS SAMPLE 50 PERCENT;

Deleting Statistics
You can delete the statistics associated with a table by issuing:
ANALYZE TABLE <t abl e_name> DELETE STATI STI CS;

You can delete statistics on one index by issuing the following statement:
ANALYZE | NDEX <i ndex_name> DELETE STATI STI CS;

Optimizing Queries for Response Time

By default, Oracle Text optimizes queries for throughput. This results in queries
returning all rows in shortest time possible.

However, in many cases, especially in a Web application scenario, queries must be
optimized for response time, when you are only interested in obtaining the first few
hits of a potentially large hitlist in the shortest time possible.

7-4 Oracle Text Application Developer’s Guide



Optimizing Queries for Response Time

The following sections describe some ways to optimize CONTAINS queries for
response time:

« Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
« Improved Response Time using Local Partitioned CONTEXT Index

« Improved Response Time with Local Partitioned Index for Order by Score

Other Factors that Influence Query Response Time
There are other factors that can influence query response time such as:

« collection of table statistics

=« memory allocation

« sorting

« presence of LOB columns in your base table
« partitioning

« parallelism

« the number term expansions in your query

See Also: "Frequently Asked Questions a About Query
Performance" in this chapter.

Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries

When you need the first rows of an ORDER BY query, Oracle recommends that you
use this new fully cost-based hint in place of FIRST_ROWS.

Note: As this hint is cost-based, Oracle recommends that you
collect statistics on your tables before you use this hint. See
"Collecting Statistics" in this chapter.

You use the FIRST_ROWS(n) in cases where you want the first n number of rows in
the shortest possible time. For example, consider the following PL/SQL block that
uses a cursor to retrieve the first 10 hits of a query and uses the FI RST_ROWS( n)
hint to optimize the response time:

decl are
cursor cis

Performance Tuning 7-5



Optimizing Queries for Response Time

select /* FIRST_ROAS(10) */ article_id fromarticles_tab
where contains(article, 'Oracle' )>0 order by pub_date desc;

begin

for i inc

| oop

insert into t_s values(i.pk, i.col);

exit when c% owcount > 11;

end | oop;

end;

/

The cursor c is a SELECT statement that returns the rowids that contain the word
test in sorted order. The code loops through the cursor to extract the first 10 rows.
These rows are stored in the temporary tablet _s.

With the FI RST_ROWE hint, Oracle Text instructs the Text index to return rowids in
score-sorted order, if possible.

Without the hint, Oracle Text sorts the rowids after the Text index has returned all
the rows in unsorted order that satisfy the CONTAI NS predicate. Retrieving the
entire result set as such takes time.

Since only the first 10 hits are needed in this query, using the hint results in better
performance.

Note: Use the FI RST_ROWS( n) hint when you need only the first
few hits of a query. When you need the entire result set, do not use
this hint as it might result in poor performance.

About the FIRST_ROWS Hint

You can also optimize for response time using the related FI RST_ROAS hint. Like
FIRST_ROWS(n), when queries are optimized for response time, Oracle Text returns
the first rows in the shortest time possible.

For example, you can use this hint as follows

select /*+ FIRST_ROAS */ pk, score(l), col fromctx_tab
where contains(txt_col, "test', 1) > 0 order by score(l) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses
the index which satisfies the ORDER BY clause. This might result in sub-optimal
performance for queries in which the CONTAINS clause is very selective. In these

7-6 Oracle Text Application Developer’'s Guide



Optimizing Queries for Response Time

cases, Oracle recommends that you use the FI RST_ROW5( n) hint, which is fully
cost-based.

Improved Response Time using Local Partitioned CONTEXT Index

Partitioning your data and creating local partitioned indexes can improve your
guery performance. On a partitioned table, each partition has its own set of index
tables. Effectively, there are multiple indexes, but the results from each are
combined as necessary to produce the final result set.

You create the CONTEXT index using the LOCAL keyword:

CREATE | NDEX i ndex_nane ON tabl e_name (col unm_nane)
I NDEXTYPE | S ct xsys. cont ext

PARAMVETERS ('...")

LOCAL

With partitioned tables and indexes, you can improve performance of the following
types of queries:

« Range Search on Partition Key Column
« ORDER BY Partition Key Column

Range Search on Partition Key Column

This is a query that restricts the search to a particular range of values on a column
that is also the partition key. For example, consider a query on a date range:

SELECT storyid FROM storytab WHERE CONTAINS(story, 'oliver')>0 and pub_date
BETWEEN ' 1- OCT-93" AND ' 1- NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied by
only looking in a single partition.

ORDER BY Partition Key Column

This is a query that requires only the first N hits and the ORDER BY clause names
the partition key. Consider an ORDER BY query on a price column to fetch the first
20 hits such as:

SELECT * FROM (

SELECT itenmid FROMitemtab WHERE CONTAINS(item desc, 'cd player')>0 ORDER BY
price)

WHERE ROWNUM < 20;

Performance Tuning 7-7



Optimizing Queries for Response Time

In this example, with the table partitioned by price, the query might only need to
get hits from the first partition to satisfy the query.

Improved Response Time with Local Partitioned Index for Order by Score

Using the FIRST_ROWS hint on a local partitioned index might result in poor
performance, especially when you order by score. This is because all hits to the
guery across all partitions must be obtained before the results can be sorted.

You can work around this by using an inline view when you use the FIRST_ROWS
hint. Specifically, you can use the FIRST_ROWS hint to improve query performance
on a local partitioned index under the following conditions:

« The text query itself including the order by SCORE() clause is expressed as an
in-line view.

= The text query inside the in-line view contains the FIRST_ROWS or DOMAIN _
INDEX_SORT hint.

« The query on the in-line view has ROWNUM predicate limiting number of
rows to fetch from the view.

For example, if you have the following text query and local text index created on a
partitioned table doc_tab:

sel ect doc_id, score(1l) fromdoc_tab
where contains(doc, 'oracle', 1)>0
order by score(1l) desc;

and you are only interested in fetching top 20 rows, you can rewrite the query to

select * from
(select /*+ FIRST_ROWs */ doc_id, score(l) fromdoc_tab
where contains(doc, 'oracle', 1)>0 order by score(1l) desc)
where rownum < 21;

See Also:  Oracle Database Performance Tuning Guide for more
information about the query optimizer and using hints such as
FIRST_ROWS.

For more information about the EXPLAIN PLAN command, Oracle
Database Performance Tuning Guide and Oracle Database SQL
Reference.

7-8 Oracle Text Application Developer’s Guide



Tracing

Optimizing Queries for Throughput

Optimizing a query for throughput returns all hits in the shortest time possible.
This is the default behavior.

The following sections describe how you can explicitly optimize for throughput.

CHOOSE and ALL ROWS Modes

By default, queries are optimized for throughput under the CHOOSE and ALL_ROAS
modes. When queries are optimized for throughput, Oracle Text returns all rows in
the shortest time possible.

FIRST_ROWS Mode

Tracing

In FI RST_ROWS mode, the Oracle Database optimizer optimizes for fast response
time by having the Text domain index return score-sorted rows, if possible. This is
the default behavior when you use the FI RST_ROWS hint.

If you want to optimize for better throughput under FI RST_ROWS, you can use the
DOVAI N_I NDEX_NO_SORT hint. Better throughput means you are interested in
getting all the rows to a query in the shortest time.

The following example achieves better throughput by not using the Text domain
index to return score-sorted rows. Instead, Oracle Text sorts the rows after all the
rows that satisfy the CONTAI NS predicate are retrieved from the index:

select /*+ FI RST_ROAS DOVAI N_I| NDEX_NO SORT */ pk, score(1), col fromctx_tab
where contains(txt_col, "test', 1) > 0 order by score(l) desc;

See Also:  Oracle Database Performance Tuning Guide for more
information about the query optimizer and using hints such as
FI RST_ROWS and CHOCSE.

Oracle Text includes a tracing facility that enables you to identify bottlenecks in
indexing and querying.

Oracle Text provides a set of predefined traces. Each trace is identified by a unique
number. There is also a symbol in CTX_QOUTPUT for this number.

Each trace measures a specific numeric quantity—for instance, the number of $I
rows selected during text queries.

Performance Tuning 7-9



Parallel Queries

Traces are cumulative counters, so usage is as follows:
1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations
done in step 2.

4. The user resets the trace to 0.
5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows
from $1 , and query 2 selects 17 rows from $I , then in step 3 the value of the trace
would be 32 (15 + 17).

Traces are associated with a session—they can measure operations that take place
within a single session, and, conversely, cannot make measurements across sessions.

During parallel sync or optimize, the trace profile will be copied to the slave
sessions if and only if tracing is currently enabled. Each slave will accumulate its
own traces and implicitly write all trace values to the slave logfile before
termination.

For more information on tracing, see the Oracle Text Reference.

Parallel Queries

Oracle Text supports parallel query on a local CONTEXT index. That is, based on
the parallel degree of the index and various system attributes, Oracle Text
determines number of parallel query slaves to be spawned to process the index.
Each parallel query slave will process one or more index partitions. This is the
default query behavior for local indexes created in parallel.

In general, parallel queries are good for DSS or analytical systems with large data
collection, multiple CPUs, and low number of concurrent users.

However, for heavily loaded systems with high number of concurrent users,
parallel query can result in degrading your overall query throughput. In addition,
typical top N text queries with order by partition key column, such as

select * from(
select story id fromstories_tab where contains(...)>0 order by
publication_date desc)
where rownum <= 10;

7-10 Oracle Text Application Developer’'s Guide



Tuning Queries with Blocking Operations

will generally perform worse with a parallel query.

You can disable parallel querying after a parallel index operation with ALTER
INDEX command as follows

Al ter index <text index name> NOPARALLEL;
Al ter index <text index name> PARALLEL 1;

You can also enable or increase the parallel degree by doing

Alter index <text index name> paralllel < parallel degree >;

Tuning Queries with Blocking Operations

Issuing a query with more than one predicate can cause a blocking operation in the
execution plan. For example, consider the following mixed query:

sel ect docid fromnytab where contains(text, 'oracle', 1) >0
AND col A > 5
AND col B > 1
AND col C > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap
indexes. The Oracle Database cost-based optimizer chooses the following execution
plan:

TABLE ACCESS BY ROW DS
Bl TMAP CONVERSI ON TO ROW DS
Bl TMAP AND
Bl TMAP | NDEX COLA_BMX
Bl TMAP | NDEX COLB_BMWX
Bl TMAP | NDEX COLC_BMWX
Bl TMAP CONVERSI ON FROM RO DS
SORT ORDER BY
DOVAI' N | NDEX MY NDEX

Since the Bl TMAP AND is a blocking operation, Oracle Text must temporarily save
the rowid and score pairs returned from the Oracle Text domain index before
executing the Bl TMAP AND operation.

Oracle Text attempts to save these rowid and score pairs in memory. However,
when the size of the result set containing these rowid and score pairs exceeds the

Performance Tuning 7-11



Frequently Asked Questions a About Query Performance

SORT_AREA_SI ZE initialization parameter, Oracle Text spills these results to
temporary segments on disk.

Since saving results to disk causes extra overhead, you can improve performance by
increasing the SORT_AREA_SI ZE parameter using ALTER SESSI ON as follows:

alter session set SORT_AREA SIZE = <new nenory size in bytes>;

For example, to set the buffer to approximately 8 megabytes, you can issue:
alter session set SORT_AREA Sl ZE = 8300000;

See Also: Oracle Database Performance Tuning Guide and Oracle
Database Reference for more information on SORT_AREA Sl ZE.

Frequently Asked Questions a About Query Performance

This section answers some of the frequently asked questions about query
performance.

What is Query Performance?
Answer: There are generally two measures of query performance:
« response time, the time to get an answer to an individual query, and

« throughput, the number of queries that can be run in any time period; for
example, queries per second).

These two are related, but are not the same. In a heavily loaded system, you
normally want maximum throughput, whereas in a relatively lightly loaded system,
you probably want minimum response time. Also, some applications require a
query to deliver all its hits to the user, whereas others might only require the first 20
hits from an ordered set. It is important to distinguish between these two scenarios.

What is the fastest type of text query?
Answer: The fastest type of query will meet the following conditions:
« Single CONTAI NS clause
= No other conditions in the WHERE clause
= No ORDER BY clause at all
= Only the first page of results is returned (for example, the first 10 or 20 hits).

7-12 Oracle Text Application Developer's Guide



Frequently Asked Questions a About Query Performance

Should I collect statistics on my tables?

Answer: Yes. Collecting statistics on your tables enables Oracle Text to do
cost-based analysis. This helps Oracle Text choose the most efficient execution plan
for your queries.

See Also: "Optimizing Queries with Statistics" in this chapter.

How does the size of my data affect queries?

Answer: The speed at which the text index can deliver ROWIDs is not affected by
the actual size of the data. Text query speed will be related to the number of rows
that must be fetched from the index table, number of hits requested, number of hits
produced by the query, and the presence or absence of sorting.

How does the format of my data affect queries?

Answer: The format of the documents (plain ascii text, HTML or Microsoft Word)
should make no difference to query speed. The documents are filtered to plain text
at indexing time, not query time.

The cleanliness of the data will make a difference. Spell-checked and sub-edited text
for publication tends to have a much smaller total vocabulary (and therefore size of
the index table) than informal text such as emails, which will contain many spelling
errors and abbreviations. For a given index memory setting, the extra text takes up
more memory, which can lead to more fragmented rows than in the cleaner text,
which can adversely affect query response time.

What is a functional versus an indexed lookup?

Answer: There are two ways the kernel can query the text index. In the first and
most common case, the kernel asks the text index for all the rowids that satisfy a
particular text search. These rowids are returned in batches. In the second, the
kernel passes individual rowids to the text index, and asks whether that particular
rowid satisfies a certain text criterion.

The second is known as a functional lookup, and is most commonly done where
there is a very selective structured clause, so that only a few rowids must be
checked against the text index. An example of a search where a functional lookup

may be used:
SELECT 1D, SCORE(1), TEXT FROM MYTABLE
WHERE START_DATE = '21 Cct 1992 <- highly selective

AND CONTAINS ( TEXT, 'commonword') > 0 <- unsel ective

Performance Tuning 7-13



Frequently Asked Questions a About Query Performance

Functional invocation is also used for text query ordered by structured column (for
example date, price) and text query is unselective.

What tables are involved in queries?

Answer: All queries look at the index token table. Its name has the form

DR$i ndexnane$! . This contains the list of tokens (column TOKEN_TEXT) and the
information about the row and word positions where the token occurs (column
TOKEN_INFO).

The row information is stored as internal DOCID values. These must be translated
into external ROWID values. The table used for this depends on the type of lookup:
For functional lookups, the $K table, DR$i ndexname$K is used. This is a

simple Index Organized Table (I0T) which contains a row for each DOCID/ROWID
pair.

For indexed lookups, the $Rtable, DR$i ndexnanme$R, is used. This holds the
complete list of ROWIDs in a BLOB column.

Hence we can easily find out whether a functional or indexed lookup is being used
by examining a SQL trace, and looking for the $K or $R tables.

Note: These internal index tables are subject to change from
release to release. Oracle recommends that you do not directly
access these tables in your application.

Does sorting the results slow a text-only query?
Answer: Yes, it certainly does.

If there is no sorting, then Oracle Text can return results as it finds them, which is
quicker in the common case where the application needs to display only a page of
results at a time.

How do | make a ORDER BY score query faster?

Answer: Sorting by relevance (SCORE(n)) can be extremely quick if the FIRST _
ROWS(n) hint is used. In this case, Oracle Text performs a high speed internal sort
when fetching from the text index tables.

An example of such a query:

SELECT /*+ FIRST_ROWS(10) */ D, SCORE(1), TEXT FROM MYTABLE

7-14 Oracle Text Application Developer's Guide



Frequently Asked Questions a About Query Performance

VWHERE CONTAINS (TEXT, 'searchternmi, 1) >0
ORDER BY SCORE(1) DESC,

Note that for this to work efficiently, there must be no other criteria in the WHERE
clause other than a single CONTAINS.

Which Memory Settings Affect Querying?

Answer: For querying, you want to strive for a large system global area (SGA). You
can set these parameters related to SGA in your Oracle Database initialization file.
You can also set these parameters dynamically.

The SORT_AREA_SIZE parameter controls the memory available for sorting for
ORDER BY queries. You should increase the size of this parameter if you frequently
order by structured columns.

See Also:

Oracle Database Administrator’s Guide for more information on
setting SGA related parameters.

Oracle Database Performance Tuning Guide for more information on
memory allocation and setting the SORT_AREA _SIZE parameter.

Does out of line LOB storage of wide base table columns improve performance?

Answer: Yes. Typically, a SELECT statement selects more than one column from
your base table. Since Oracle Text fetches columns to memory, it is more efficient to
store wide base table columns such as LOBs out of line, especially when these
columns are rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to
memory during querying. Out of line storage reduces the effective size of the base
table making it easier for Oracle Text to cache the entire table to memory. This
reduces the cost of selecting columns from the base table, and hence speeds up text
queries.

In addition, having smaller base tables cached in memory enables more index table
data to be cached during querying, which improves performance.

How can | make a CONTAINS query on more than one column faster?

Answer: The fastest type of query is one where there is only a single CONTAINS
clause, and no other conditions in the WHERE clause.

Performance Tuning 7-15



Frequently Asked Questions a About Query Performance

Consider the following multiple CONTAINS query:

SELECT title, isbn FROM bookli st
WHERE CONTAINS (title, 'horse') >0
AND CONTAINS (abstract, 'racing') >0

We can obtain the same result with section searching and the WITHIN operator as
follows:

SELECT title, isbn FROM bookli st
WHERE CONTAINS (al I text,
"horse WTHIN title AND racing WTHI N abstract')>0

This will be a much faster query. In order to use a query like this, we must copy all
the data into a single text column for indexing, with section tags around each
column's data. This can be done with PL/SQL procedures before indexing, or by
making use of the USER_DATASTORE datastore during indexing to synthesize
structured columns with the text column into one document.

Is it OK to have many expansions in a query?

Answer: Each distinct word used in a query will require at least one row to be
fetched from the index table. It is therefore best to keep the number of expansions
down as much as possible.

You should not use expansions such as wild cards, thesaurus, stemming and fuzzy
matching unless they are necessary to the task. In general, a few expansions (say up
to 20) is OK, but you should try to avoid more than 100 or so expansions in a query.
The query feedback mechanism can be used to determine the number of expansions
for any particular query expression.

In addition for wildcard and stem queries, you can remove the cost of term
expansion from query time to index time by creating prefix, substring or stem
indexes. Query performance increases at the cost of longer indexing time and added
disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix
and substring indexing with the BASIC_WORDLIST preference. The following
example sets the wordlist preference for prefix and substring indexing. For prefix
indexing, it specifies that Oracle Text create token prefixes between 3 and 4
characters long:

begin
ctx_ddl.create_preference(' mywordlist', 'BASIC WORDLIST');
ctx_ddl.set_attribute(' mywordlist',' PREFI X | NDEX ,' TRUE');

7-16 Oracle Text Application Developer’'s Guide



Frequently Asked Questions a About Query Performance

ctx_ddl .set_attribute(' mywordlist',' PREFI X M N_LENGTH , '3');
ctx_ddl .set_attribute(' mywordlist',' PREFI X MAX_LENGTH , '4');
ctx_ddl.set_attribute(' mywordlist',' SUBSTRING INDEX', 'VYES);
end

You enable stem indexing with the BASIC_LEXER preference:

begin

ctx_ddl.create_preference(' nylex', 'BASIC_LEXER );
ctx_ddl.set_attribute ( 'nylex', "index_stens', 'ENGLISH);
end;

How can local partition indexes help?

Answer: You can create local partitioned CONTEXT indexes on partitioned tables.
This means that on a partitioned table, each partition has its own set of index tables.
Effectively, there are multiple indexes, but the results from each are combined as
necessary to produce the final result set.

The index is created using the LOCAL keyword:

CREATE | NDEX i ndex_nane ON tabl e_name (col unm_nane)
| NDEXTYPE | S ct xsys. cont ext

PARANETERS ('...")

LOCAL

With partitioned tables and local indexes, you can improve performance of the
following types of CONTAINS queries:
« Range Search on Partition Key Column

This is a query that restricts the search to a particular range of values on a
column that is also the partition key.

« ORDER BY Partition Key Column

This is a query that requires only the first N hits and the ORDER BY clause
names the partition key

See Also: "Improved Response Time using Local Partitioned
CONTEXT Index" in this chapter.

Performance Tuning 7-17



Frequently Asked Questions a About Query Performance

Should I query in parallel?

Answer: Depends. Even though parallel querying is the default behavior for
indexes created in parallel, it usually results in degrading overall query throughput
on heavily loaded systems.

In general, parallel queries are good for DSS or analytical systems with large data
collections, multiple CPUs, and low number of concurrent users.

See Also: "Parallel Queries" in this chapter.

Should | index themes?

Answer: Indexing theme information with a CONTEXT index takes longer and also
increases the size of your index. However, theme indexes enable ABOUT queries to
be more precise by using the knowledge base, if available. If your application uses
ABOUT queries heavily, it might be worthwhile to create a theme component to the
index, despite the extra indexing time and extra storage space required.

See Also: "ABOUT Queries and Themes" in Chapter 4,
"Querying".

When should | use a CTXCAT index?

Answer: CTXCAT indexes work best when text is in small chunks, maybe a few
lines maximum, and searches need to restrict or sort the result set according to
certain structured criteria, usually numbers or dates.

For example, consider an on-line auction site. Each item for sale has a short
description, a current bid price, and dates for the start and end of the auction. A
user might want to see all the records with antique cabinet in the description, with a
current bid price less than $500. Since he's particularly interested in newly posted
items, he wants the results sorted by auction start time.

Such a search is not always efficient with a CONTAINS structured query on a
CONTEXT index, where the response time can vary significantly depending on the
structured and CONTAINS clauses. This is because the intersection of structured
and CONTAINS clauses or the ordering of text query is computed during query
time.

By including structured information such as price and date within the CTXCAT
index, query response time is always in an optimal range regardless of search
criteria. This is because the interaction between text and structured query is
pre-computed during indexing. Consequently query response time is optimum.

7-18 Oracle Text Application Developer’'s Guide



Frequently Asked Questions About Indexing Performance

When is a CTXCAT index NOT suitable?

Answer: There are differences in the time and space needed to create the index.
CTXCAT indexes take a bit longer to create and use considerably more disk space
than CONTEXT indexes. If you are tight on disk space, you should consider
carefully whether CTXCAT indexes are appropriate for you.

With respect to query operators, you can now use the richer CONTEXT grammar in
CATSEARCH queries with query templates. The older restriction of a single
CATSEARCH query grammar no longer holds.

What optimizer hints are available, and what do they do?

Answer: The optimizer hint | NDEX(t abl e col utm) can be used in the usual
way to drive the query with a text or b-tree index.

You can also use the NO_| NDEX(t abl e col umm) hint to disable a specific index.

Additionally, the FI RST_ROW5( n) hint has a special meaning for text queries and
should be used when you need the first n hits to a query. Use of the FI RST_RON\S
hint in conjunction with ORDER BY SCORE( n) DESCtells Oracle Text to accept a
sorted set from the text index, and not to do a further sort.

See Also: "Optimizing Queries for Response Time" in this
chapter.

Frequently Asked Questions About Indexing Performance

This section answers some of the frequently asked questions about indexing
performance.

How long should indexing take?

Answer: Indexing text is a resource-intensive process. Obviously, the speed of
indexing will depend on the power of the hardware involved.

As a benchmark, with an average document size of 5K, Oracle Text can index
approximately 200 documents per second with the following hardware and parallel
configuration;

«  4x400Mhz Sun Sparc CPUs
« 4gigof RAM
«  EMC symmetrix (24 disks striped)

Performance Tuning 7-19



Frequently Asked Questions About Indexing Performance

« Parallel degree of 5 with 5 partitions

« Index memory of 600MB per index process

« XML news documents that averaged 5K in size
« USER_DATASTORE

Other factors such as your document format, location of your data, and the calls to
user-defined datastores, filters, and lexers can have an impact on your indexing
speed.

Which index memory settings should | use?

Answer: You can set your index memory with the system parameters DEFAULT _
INDEX_MEMORY and MAX_INDEX_MEMORY. You can also set your index
memory at run time with the CREATE INDEX nenor y parameter in the parameter
string.

You should aim to set the DEFAULT_INDEX_MEMORY value as high as possible,
without causing paging.

You can also improve Indexing performance by increasing the SORT_AREA_SIZE
system parameter.

Experience has shown that using a large index memory setting, even into hundreds
of megabytes, will improve the speed of indexing and reduce the fragmentation of
the final indexes. However, if set too high, then the memory paging that occurs will
cripple indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing
with very large tables, you can tune your database system global area (SGA)
differently for indexing and retrieval. For querying, you are hoping to get as much
information cached in the system global area's (SGA) block buffer cache as possible.
So you should be allocating a large amount of memory to the block buffer cache.
But this will not make any difference to indexing, so you would be better off
reducing the size of the SGA to make more room for a large index memory settings
during indexing.

You set the size of SGA in your Oracle Database initialization file.

7-20 Oracle Text Application Developer’'s Guide



Frequently Asked Questions About Indexing Performance

See Also:

Oracle Text Reference to learn more about Oracle Text system
parameters.

Oracle Database Administrator's Guide for more information on
setting SGA related parameters.

Oracle Database Performance Tuning Guide for more information on
memory allocation and setting the SORT_AREA_SIZE parameter.

How much disk overhead will indexing require?

Answer: The overhead, the amount of space needed for the index tables, varies
between about 50% of the original text volume and 200%. Generally, the larger the
total amount of text, the smaller the overhead, but many small records will use
more overhead than fewer large records. Also, clean data (such as published text)
will require less overhead than dirty data such as emails or discussion notes, since
the dirty data is likely to include many unique words from mis-spellings and
abbreviations.

A text-only index is smaller than a combined text and theme index. A prefix and
substring index makes the index significantly larger.

How does the format of my data affect indexing?

Answer: You can expect much lower storage overhead for formatted documents
such as Microsoft Word files since such documents tend to be very large compared
to the actual text held in them. So 1GB of Word documents might only require 50MB
of index space, whereas 1GB of plain text might require 500MB, since there is ten
times as much plain text in the latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be
indexed will have an obvious effect, you must balance this out against the cost of
filtering the documents with the INSO filter or other user-defined filters.

Can parallel indexing improve performance?

Answer: Parallel indexing can improve index performance when you have a large
amount of data, and have multiple CPUs.

You use the PARALLEL keyword when creating the index:

CREATE | NDEX i ndex_nanme ON tabl e_nanme (col urm_nane)
| NDEXTYPE | S ctxsys.context PARAMETERS ('...') PARALLEL 3;

Performance Tuning 7-21



Frequently Asked Questions About Indexing Performance

This will create the index with up to three separate indexing processes depending
On Your resources.

Parallel indexing can also be used to create local partitioned indexes on partitioned
tables. However, indexing performance only improves when you have multiple
CPUs.

Note: Using PARALLEL to create a local partitioned index enables
parallel queries. (Creating a non-partitioned index in parallel does
not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily
loaded systems. Because of this, Oracle recommends that you
disable parallel querying after parallel indexing. To do so, use
ALTER INDEX NOPARALLEL.

How can | improve index performance for creating local partitioned index?

Answer: When you have multiple CPUs, you can improve indexing performance by
creating a local index in parallel. There are two ways to index in parallel:

You can create a local partitioned index in parallel in two ways:

» Use the PARALLEL clause with the LOCAL clause in CREATE | NDEX. In this
case, the maximum parallel degree is limited to the number of partitions you
have.

» Create an unusable index first, then run the DBMS_PCLXUTI L. BU LD_PART_
| NDEX utility. This method can result in a higher degree of parallelism,
especially if you have more CPUs than partitions.

The following is an example for the second method. In this example, the base table
has three partitions. We create a local partitioned unusable index first, the run the
DBVS_PCLUTI L. BUI LD _PART | NDEX, which builds the 3 partitions in parallel
(inter-partition parallelism). Also inside each partition, index creation is done in
parallel (intra-partition parallelism) with a parallel degree of 2.

create index tdrbip02bx on tdrhbip02b(text)

i ndextype is ctxsys.context local (partition tdrbip02bx1,
partition tdrbip02bx2,
partition tdrbi p02bx3)

unusabl e;

exec dbms_pcl xutil. build_part_index(3,2,' TDRBI P02B',"' TDRBI P02BX , TRUE);

7-22 Oracle Text Application Developer's Guide



Frequently Asked Questions About Updating the Index

How can | tell how much indexing has completed?

Answer: You can use the CTX_OUTPUT. START_LOG procedure to log output from
the indexing process. Filename will normally be written to $ORACLE _

HOME/ ¢t x/ | og, but you can change the directory using the LOG_DI RECTORY
parameter in CTX_ADM SET_PARAMETER

See Also: Oracle Text Reference to learn more about using this
procedure.

Frequently Asked Questions About Updating the Index

This section answers some of the frequently asked questions about updating your
index and related performance issues.

How often should | index new or updated records?

Answer: The less often you run reindexing with CTX_DLL. SYNC_| NDEX, the less
fragmented your indexes will be, and the less you will need to optimize them.

However, this means that your data will become progressively more out of date,
which may be unacceptable for your users.

Many systems are OK with overnight indexing. This means data that is less than a
day old is not searchable. Other systems use hourly, ten minute, or five minute
updates.

See Also: Oracle Text Reference to learn more about using CTX_
DDL. SYNC_| NDEX.

"Managing DML Operations for a CONTEXT Index" in Chapter 3,
"Indexing"

How can | tell when my indexes are getting fragmented?

Answer: The best way is to time some queries, run index optimization, then time
the same queries (restarting the database to clear the SGA each time, of course). If
the queries speed up significantly, then optimization was worthwhile. If they don't,
you can wait longer next time.

You can also use CTX_REPORT.INDEX_STATS to analyze index fragmentation.

Performance Tuning 7-23



Frequently Asked Questions About Updating the Index

See Also: Oracle Text Reference to learn more about using the CTX_
REPORT package.

"Index Optimization" in Chapter 3, "Indexing".

Does memory allocation affect index synchronization?

Answer: Yes, the same way as for normal indexing. But of course, there are often far
fewer records to be indexed during a synchronize operation, so it is not usually
necessary to provide hundreds of megabytes of indexing memory.

7-24  Oracle Text Application Developer's Guide



8

Document Section Searching

This chapter describes how to use document sections in an Oracle Text query
application.

The following topics are discussed in this chapter:
« About Document Section Searching

« HTML Section Searching

« XML Section Searching

About Document Section Searching

Section searching enables you to narrow text queries down to blocks of text within
documents. Section searching is useful when your documents have internal
structure, such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

Enabling Section Searching
The steps for enabling section searching for your document collection are:

1. Create a section group

2. Define your sections

3. Index your documents

4. Section search with W THI N, | NPATH, or HASPATH operators

Document Section Searching 8-1



About Document Section Searching

Create a Section Group

Section searching is enabled by defining section groups. You use one of the
system-defined section groups to create an instance of a section group. Choose a
section group appropriate for your document collection.

You use section groups to specify the type of document set you have and implicitly
indicate the tag structure. For instance, to index HTML tagged documents, you use
the HTML_SECTI ON_GROUP. Likewise, to index XML tagged documents, you can
use the XML_SECTI ON_GROUP.

The following table list the different types of section groups you can use:

Section Group Preference Description

NULL_SECTI ON_GROUP This is the default. Use this group type when you
define no sections or when you define only SENTENCE
or PARAGRAPH sections.

BASI C_SECTI ON_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and </ A>.

Note: This group type dopes not support input such as
unbalanced parentheses, comments tags, and
attributes. Use HTML_SECTI ON_GROUP for this type of
input.

HTM._SECTI ON_GROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.

XM__SECTI ON_GROUP Use this group type for indexing XML documents and
for defining sections in XML documents.

8-2 Oracle Text Application Developer’'s Guide



About Document Section Searching

Section Group Preference

Description

AUTO_SECTI ON_GROUP

PATH_SECTI ON_GROUP

NEWS_SECTI ON_GROUP

Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case-sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form tag@attribute.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

« You cannot add zone, field or special sections to an
automatic section group.

« Automatic sectioning does not index XML
document types (root elements.) However, you can
define stop-sections with document type.

« Thelength of the indexed tags including prefix and
namespace cannot exceed 64 characters. Tags
longer than this are not indexed.

Use this group type to index XML documents. Behaves
like the AUTO_SECTI ON_GROUP.

The difference is that with this section group you can
do path searching with the | NPATH and HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

You use the CTX_DDL package to create section groups and define sections as part
of section groups. For example, to index HTML documents, create a section group

with HTM__SECTI ON_GROUP:

begi n

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );

end;

Document Section Searching 8-3



About Document Section Searching

Define Your Sections

You define sections as part of the section group. The following example defines an
zone section called heading for all text within the HTML < H1> tag:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', 'HL');

end;

Note: If you are using the AUTO _SECTI ON_GROUP or PATH_
SECTI ON_GROUP to index an XML document collection, you need
not explicitly define sections since the system does this for you
during indexing.

See Also: "Section Types" in this chapter for more information
about sections.

"XML Section Searching" in this chapter for more information about
section searching with XML.

Index your Documents
When you index your documents, you specify your section group in the parameter
clause of CREATE | NDEX.

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null _filter section group htngroup');

Section Searching with WITHIN Operator

When your documents are indexed, you can query within sections using the
W THI Noperator. For example, to find all the documents that contain the word
Oracle within their headings, issue the following query:

"Oracl e WTHI N headi ng'

See Also: Oracle Text Reference to learn more about using the
WITHIN operator.

Path Searching with INPATH and HASPATH Operators

When you use the PATH_SECTI ON_GROUP, the system automatically creates XML
sections for you. In addition to using the W THI N operator to issue queries, you can
issue path queries with the | NPATH and HASPATH operators.

8-4 Oracle Text Application Developer’s Guide



About Document Section Searching

Section Types

See Also: "XML Section Searching" to learn more about using
these operators.

Oracle Text Reference to learn more about using the | NPATH
operator.

All sections types are blocks of text in a document. However, sections can differ in
the way they are delimited and the way they are recorded in the index. Sections can
be one of the following:

Zone Section

Field Section

Stop Section

MDATA Section

Attribute Section (for XML documents)

Special Sections (sentence or paragraphs)

Table 8-1 shows which section types may be used with each kind of section group.

Table 8-1 Section Types and Section Groups

Section

Group ZONE FIELD SPECIAL STOP ATTRIBUTE MDATA
NULL NO NO YES NO NO NO
BASIC YES YES YES NO NO YES
HTML YES YES YES NO NO YES
XML YES YES YES NO YES YES
NEWS YES YES YES NO NO YES
AUTO NO NO NO YES NO NO
PATH NO NO NO NO NO NO

Zone Section

A zone section is a body of text delimited by start and end tags in a document. The
positions of the start and end tags are recorded in the index so that any words in

Document Section Searching 8-5



About Document Section Searching

between the tags are considered to be within the section. Any instance of a zone
section must have a start and an end tag.

For example, the text between the <TI TLE> and </ Tl TLE> tags can be defined as a
zone section as follows:

<TITLE>Tal e of Two Cities</TlITLE>
It was the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the W THI N operator to search for a term
across all sections. Oracle Text returns those documents that contain the term within
the defined section.

Zone sections are well suited for defining sections in HTML and XML documents.
To define a zone section, use CTX_DDL.ADD_ZONE_SECTI ON.

For example, assume you define the section booktitle as follows:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' ht ngroup', 'booktitle', 'TITLE);
end;

After you index, you can search for all the documents that contain the term Cities
within the section booktitle as follows:

"Cities WTHI N booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text
returns those documents that contain cat and dog within the same instance of a
booktitle section.

Repeated Zone Sections Zone sections can repeat. Each occurrence is treated as a
separate section. For example, if <H1> denotes a headi ng section, they can repeat
in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wl f </HL>

Assuming that these zone sections are named Headi ng, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

8-6 Oracle Text Application Developer’s Guide



About Document Section Searching

Overlapping Zone Sections Zone sections can overlap each other. For example, if <B>
and <I > denote two different zone sections, they can overlap in a document as
follows:

plain <B> bold <I> bold and italic </B>only italic </I> plain

Nested Zone Sections Zone sections can nest, including themselves as follows:
<TD> <TABLE><TD>nested cel | </ TD></ TABLE></ TD>
Using the W THI N operator, you can write queries to search for text in sections

within sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone
sections occur as follows in documents docl and doc?2:

docl:

<book1> <aut hor>Scott Tiger</author> This is a cool book to read.</bookl>

doc?2:

<book2> <aut hor>Scott Tiger</author> This is a great book to read. </ book2>

Consider the nested query:
"(Scott within author) within bookl'

This query returns only docl.

Field Section

A field section is similar to a zone section in that it is a region of text delimited by
start and end tags. A field section is different from a zone section in that the region
is indexed separate from the rest of the document.

Since field sections are indexed differently, you can also get better query
performance over zone sections for when you have a large number of documents
indexed.

Field sections are more suited to when you have a single occurrence of a section in a
a document such as a field in a news header. Field sections can also be made visible
to the rest of the document.

Unlike zone sections, field sections have the following restrictions:
« field sections cannot overlap

« field sections cannot repeat

Document Section Searching 8-7



About Document Section Searching

« field sections cannot nest

Visible and Invisible Field Sections By default, field sections are indexed as a
sub-document separate from the rest of the document. As such, field sections are
invisible to the surrounding text and can only be queried by explicitly naming the
section in the W THI N clause.

You can make field sections visible if you want the text within the field section to be
indexed as part of the enclosing document. Text within a visible field section can be
gueried with or without the W THI N operator.

The following example shows the difference between using invisible and visible
field sections.

The following code defines a section group basi cgr oup of the BASI C_SECTI ON_
GROUP type. It then creates a field section in basi cgr oup called Aut hor for the
<A> tag. It also sets the visible flag to FALSE to create an invisible section:

begin

ctx_ddl . create_section_group(' basicgroup', 'BASIC SECTI ON_GROUF' );
ctx_ddl.add_field_section('basicgroup', '"Author', "A, FALSE);
end;

Because the Aut hor field section is not visible, to find text within the Aut hor
section, you must use the W THI N operator as follows:

"(Martin Luther King) WTH N Aut hor'

A query of Martin Luther King without the W THI N operator does not return
instances of this term in field sections. If you want to query text within field sections

without specifying W THI N, you must set the visible flag to TRUE when you create
the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', '"Author', 'A, TRUE);
end;

Nested Field Sections Field sections cannot be nested. For example, if you define a

field section to start with <T| TLE> and define another field section to start with
<FQO>, the two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </ FOO> </ TITLE>

To work with nested sections, define them as zone sections.

8-8 Oracle Text Application Developer’s Guide



About Document Section Searching

Repeated Field Sections Repeated field sections are allowed, but W THI N queries treat
them as a single section. The following is an example of repeated field section in a
document:

<TITLE> cat </TITLE>
<TITLE> dog </TI TLE>

The query dog and cat within title returns the document, even though these words
occur in different sections.

To have W THI N queries distinguish repeated sections, define them as zone sections.

Stop Section

A stop section may be added to an automatic section group. Adding a stop section
causes the automatic section indexing operation to ignore the specified section in
XML documents.

Note: Adding a stop section causes no section information to be
created in the index. However, the text within a stop section is
always searchable.

Adding a stop section is useful when your documents contain many low
information tags. Adding stop sections also improves indexing performance with
the automatic section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

MDATA Section

An MDATA section is used to reference user-defined metadata for a document.
Using MDATA sections can speed up mixed queries.

Consider the case in which you want to query both according to text content and
document type (magazine or newspaper or novel). You could create an index with
a column for text and a column for the document type, and then perform a mixed
guery of this form—in this case, searching for all novels with the phrase Adam
Thorpe (author of the novel Ulverton):

Document Section Searching 8-9



About Document Section Searching

SELECT id FROM docunent s
WHERE doctype = 'novel'
AND CONTAI NS(text, 'Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document
type) into a field section, rather than use a separate column, and then use a single
CONTAI NS query:

SELECT id FROM docunents
VWHERE CONTAINS(text, 'Adam Thorpe AND novel W THI N doctype')>0;

There are two drawbacks to this approach:

« Each time the attribute is updated, the entire text document must be re-indexed,
resulting in increased index fragmentation and slower rates of processing DML.

« Field sections tokenize the section value. This has several effects. Special
characters in metadata, such as decimal points or currency characters, are not
easily searchable; value searching (searching for Thurston Howell but not
Thurston Howell, Jr.) is difficult; multi-word values are queried by phrase, which
is slower than single-token searching; and multi-word values do not show up in
browse-words, making author browsing or subject browsing impossible.

For these reasons, using MDATA sections instead of field sections may be
worthwhile. MDATA sections are indexed like field sections, but metadata values
can be added to and removed from documents without the need to re-index the
document text. Unlike field sections, MDATA values are not tokenized.
Additionally, MDATA section indexing generally takes up less disk space than field
section indexing.

Use CTX _DDL. ADD_MDATA SECTI ONto add an MDATA section to a section group.
This example adds an MDATA section called AUTHOR and gives it the value Soseki
Natsume (author of the novel Kokoro).

ctx_ddl . create. section.group('htngroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_ndata_section(' htngroup', 'author', 'Soseki Natsune');

MDATA values can be changed with CTX_DDL. ADD_MDATA and removed with CTX_
DDL. REMOVE_NMDATA. MDATA sections can have multiple values. Only the owner
of the index is allowed to call CTX_DDL. ADD MDATA and CTX_DDL. REMOVE _
VDATA.

Neither CTX_DDL. ADD_NMDATA nor CTX_DDL. REMOVE_MDATA are supported for
CTXCAT, CTXXPTHand CTXRULE indexes.

8-10 Oracle Text Application Developer’'s Guide



About Document Section Searching

MDATA values are not passed through a lexer. Instead, all values undergo a
simplified normalization:

« Leading and trailing whitespace on the value is removed.
« The value is truncated to 64 bytes.
« The value is converted to upper case.

« The value is indexed as a single value; if the value consists of multiple words, it
is not broken up.

« Case is preserved. If the document is dynamically generated, you can
implement case-insensitivity by uppercasing MDATA values and making sure to
search only in uppercase.

Once a document has had MDATA metadata added to it, you can query for that
metadata using the MDATA CONTAI NS query operator:

SELECT id FROM docunent s
WHERE CONTAI NS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query will only be successful if an AUTHOR tag has the exact value Soseki
Natsume (after simplified tokenization). Soseki or Natsume Soseki will not work.

Other things to note about MDATA:

« MDATA values are not highlightable, will not appear in the output of CTX _
DOC. TOKENS, and will not show up when FI LTER PLAI NTEXT is enabled.

« MDATA sections must be unique within section groups. You cannot have an
IVDATA section named FOOand a zone or field section of the same name in the
same section group.

« Like field sections, MDATA sections cannot overlap or nest. An MDATA section is
implicitly closed by the first tag encountered. For instance, in this example:

<AUTHOR>DI ckens <B>Shel | ey</ B> Keat s</ AUTHOR>

The <B> tag closes the AUTHOR IVDATA section; as a result, this document has an
AUTHOR of 'Dickens', but not of 'Shelley' or 'Keats'.

« To prevent race conditions, each call to ADD_NMDATA and REMOVE_MDATA locks
out other calls on that rowid for that index for all values and sections.
However, since ADD_NMDATA and REMOVE _NMDATA do not commit, it is possible
for an application to deadlock when calling them both. It is the application's
responsibility to prevent deadlocking.

Document Section Searching 8-11



About Document Section Searching

See Also: The CONTAI NS query operators chapter of the Oracle
Text Reference for information on the MDATA operator, and the CTX_
DDL package chapter of the Oracle Text Reference for information on
adding and removing MDATA sections

Attribute Section

You can define attribute sections to query on XML attribute text. You can also have
the system automatically define and index XML attributes for you.

See Also: "XML Section Searching" in this chapter.

Special Sections

Special sections are not recognized by tags. Currently the only special sections
supported are sentence and paragraph. This enables you to search for combination
of words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example,
the BASI C_LEXER recognizes sentence and paragraph section boundaries as
follows:

Table 8-2 Sentence and Paragraph Section Boundaries for BASIC_LEXER

Special Section Boundary

SENTENCE WORD/PUNCT/WHITESPACE
WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE

WORD/PUNCT/NEWLINE/NEWLINE

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are
indexed.

To add a special section, use the CTX_DDL.ADD_SPECI AL_SECTI ON procedure. For
example, the following code enables searching within sentences within HTML
documents:

begi n

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_speci al _section(' htmgroup', ' SENTENCE');

end;

8-12 Oracle Text Application Developer's Guide



HTML Section Searching

You can also add zone sections to the group to enable zone searching in addition to
sentence searching. The following example adds the zone section Headl i ne to the
section group ht ngr oup:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP' );
ctx_ddl . add_special _section(' htngroup', ' SENTENCE' );

ctx_ddl . add_zone_section(' htngroup', 'Headline', "Hl');

end;

HTML Section Searching

HTML has internal structure in the form of tagged text which you can use for
section searching. For example, you can define a section called headings for the
<H1> tag. This enables you to search for terms only within these tags across your
document set.

To query, you use the W THI N operator. Oracle Text returns all documents that
contain your query term within the headings section. Thus, if you wanted to find all
documents that contain the word oracle within headings, you issue the following
query:

"oracle within headings'

Creating HTML Sections

The following code defines a section group called ht mgr oup of type HTML_
SECTI ON_GROUP. It then creates a zone section in ht ngr oup called headi ng
identified by the <H1> tag:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', 'HL');

end;

You can then index your documents as follows:

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null _filter section group htngroup');

After indexing with section group ht ngr oup, you can query within the heading

section by issuing a query as follows:
"Oracle WTHI N headi ng'

Document Section Searching 8-13



XML Section Searching

Searching HTML Meta Tags

With HTML documents you can also create sections for NAME/ CONTENT pairs in
<META> tags. When you do so you can limit your searches to text within CONTENT.

Example: Creating Sections for <META>Tags
Consider an HTML document that has a META tag as follows:

<META NAME="aut hor" CONTENT="ken">
To create a zone section that indexes all CONTENT attributes for the META tag whose
NAME value is author:

begin

ctx_ddl . create_section_group(' htmgroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', "author', 'nmeta@uthor');
end

After indexing with section group ht ngr oup, you can query the document as
follows:

"ken WTHI N aut hor'

XML Section Searching

Like HTML documents, XML documents have tagged text which you can use to
define blocks of text for section searching. The contents of a section can be searched
on with the W THI N or | NPATH operators.

For XML searching, you can do the following:
« automatic sectioning

«  attribute searching

« document type sensitive sections

« path section searching

Automatic Sectioning

You can set up your indexing operation to automatically create sections from XML
documents using the section group AUTO_SECTI ON_GROUP. The system creates
zone sections for XML tags. Attribute sections are created for the tags that have
attributes and these sections named in the form tag@attribute.

8-14 Oracle Text Application Developer's Guide



XML Section Searching

For example, the following command creates the index myindex on a column
containing the XML files using the AUTO_SECTI ON_GROUP:

CREATE | NDEX nyi ndex ON xm docs(xm file) | NDEXTYPE IS ctxsys. context PARAMETERS
(' datastore ctxsys.default_datastore filter ctxsys.null _filter section group
ctxsys.auto_section_group');

Attribute Searching
You can search XML attribute text in one of two ways:
« Create attribute sections with CTX_DDL.ADD_ATTR_SECTI ONand then index
with the XM__ SECTI ON_GROUP. If you use AUTO_SECTI ON_GROUP when you

index, attribute sections are created automatically. You can query attribute
sections with the W THI N operator.

« Index with the PATH_SECTI ON_GROUP and query attribute text with the
| NPATH operator.

Creating Attribute Sections
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
It was the best of tines.
</ BOOK>

To define the title attribute as an attribute section, create an XM._ SECTI ON_GROUP
and define the attribute section as follows:

begin

ctx_ddl.create_section_group(' nyxnigroup', 'XM._SECTI ON GROUF');
ctx_ddl.add_attr_section(' myxm group', 'booktitle', 'book@itle');
end;

To index:

CREATE | NDEX nyi ndex ON xm docs(xm file) | NDEXTYPE IS ctxsys. context PARAMETERS
(' datastore ctxsys.default_datastore filter ctxsys.null _filter section group

nyxm group' ) ;

You can query the XML attribute section booktitle as follows:

"Cities within booktitle'

Document Section Searching 8-15



XML Section Searching

Searching Attributes with the INPATH Operator

You can search attribute text with the | NPATH operator. To do so, you must index
your XML document set with the PATH_SECTI ON_GROUP.

See Also: "Path Section Searching" in this chapter.

Creating Document Type Sensitive Sections

You have an XML document set that contains the <book> tag declared for different
document types. You want to create a distinct book section for each document type.

Assume that nydocnanel is declared as an XML document type (root element) as
follows:

<! DOCTYPE nydocnamel ... [...
Within mydocnanel, the element <book> is declared. For this tag, you can create a
section named nybooksec1 that is sensitive to the tag's document type as follows:

begin

ctx_ddl . create_section_group(' nyxn group', ' XM._SECTI ON_GROUF');

ctx_ddl . add_zone_section(' myxm group', 'nybooksecl', 'nydocnamel(book)');
end;

Assume that nydocnane?2 is declared as another XML document type (root
element) as follows:

<! DOCTYPE nydocname2 ... [...
Within mydocnane2, the element <book> is declared. For this tag, you can create a
section named nybooksec2 that is sensitive to the tag's document type as follows:

begin

ctx_ddl . create_section_group(' nyxn group', ' XM._SECTI ON_GROUF');

ctx_ddl . add_zone_section(' myxm group', 'nybooksec2', 'nydocname2(book)');
end;

To query within the section mybooksecl, use WITHIN as follows:

"oracle wthin nybooksecl'

Path Section Searching
XML documents can have parent-child tag structures such as the following:
<A> <B> <C dog </ C </B> </ A>

8-16 Oracle Text Application Developer’'s Guide



XML Section Searching

In this example, tag C is a child of tag B which is a child of tag A.

With Oracle Text, you can do path searching with PATH_SECTI ON_GROUP. This
section group enables you to specify direct parentage in queries, such as to find all
documents that contain the term dog in element C which is a child of element B and
soon.

With PATH_SECTI ON_GROUP, you can also perform attribute value searching and
attribute equality testing.

The new operators associated with this feature are
« | NPATH
« HASPATH

Creating Index with PATH_SECTION_GROUP

To enable path section searching, index your XML document set with PATH_
SECTI ON_GROUP.

Create the preference:

begin

ctx_ddl . create_section_group(' xm pathgroup', ' PATH SECTI ON_GROUP' );
end;

Create the index:

CREATE | NDEX nyi ndex ON xm docs(xm file) |NDEXTYPE IS ctxsys.context PARAMETERS
('datastore ctxsys.default_datastore filter ctxsys.null _filter section group
xm pat hgroup');

When you create the index, you can use the | NPATH and HASPATH operators.

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog | NPATH (/A)
or

dog | NPATH( A)

Document Section Searching 8-17



XML Section Searching

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog | NPATH(// A)

This query finds the following documents:

<A>dog</ A>

and
<C><B><A>dog</ A></ B></ &

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child
of a top-level A element;

dog | NPATH( A/ B)

This query finds the following XML document:
<A><B>My dog is friendly.</B></A>

but does not find:
<C<B>My dog is friendly.</B></C

Tag Value Testing
You can test the value of tags. For example, the query:

dog | NPATH( Al B="dog"])

Finds the following document;
<A><B>dog</ B></ A>

But does not find:

<A><B>My dog is friendly.</B></A>

Attribute Searching
You can search the content of attributes. For example, the query:

dog | NPATH(/ | A @B)

8-18 Oracle Text Application Developer’'s Guide



XML Section Searching

Finds the document
<C<A B="snoop dog"> </ A> </ C

Attribute Value Testing
You can test the value of attributes. For example, the query

California INPATH (// Al @ = "hone address"])

Finds the document:

<A B="hone address">San Francisco, California, USA</A>

But does not find:

<A B="work address">San Francisco, California, USA</ A>

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH( A/ B/ C)

finds and returns a score of 100 for the document
<A><B><C>dog</ C></ B></ A>

without the query having to reference dog at all.

Section Equality Testing with HASPATH

You can use the HASPATH operator to do section quality tests. For example, consider
the following query:

dog | NPATH A

finds
<A>dog</ A>

but it also finds
<A>dog park</ A>

To limit the query to the term dog and nothing else, you can use a section equality
test with the HASPATH operator. For example,

HASPATH( A="dog")

Document Section Searching 8-19



XML Section Searching

finds and returns a score of 100 only for the first document, and not the second.

See Also: Oracle Text Reference to learn more about using the
| NPATH and HASPATH operators.

8-20 Oracle Text Application Developer’'s Guide



9

Working With a Thesaurus

This chapter describes how to improve your query application with a thesaurus.
The following topics are discussed in this chapter:

«  Overview of Thesauri
« Defining Thesaural Terms
« Using a Thesaurus in a Query Application

« About the Supplied Knowledge Base

Overview of Thesauri

Users of your query application looking for information on a given topic might not
know which words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauri which
define synonym and hierarchical relationships between words and phrases. You can
then retrieve documents that contain relevant text by expanding queries to include
similar or related terms as defined in the thesaurus.

You can create a thesaurus and load it into the system.

Note: The Oracle Text thesauri formats and functionality are
compliant with both the 1SO-2788 and ANSI Z39.19 (1993)
standards.

Thesaurus Creation and Maintenance

Thesauri and thesaurus entries can be created, modified, and deleted by all Oracle
Text users with the CTXAPP role.

Working With a Thesaurus 9-1



Overview of Thesauri

CTX_THES Package

To maintain and browse your thesaurus programatically, you can use the PL/SQL
package, CTX_THES. With this package, you can browse terms and hierarchical
relationships, add and delete terms, and add and remove thesaurus relations.

Thesaurus Operators

You can also use the thesaurus operators in the CONTAI NS clause to expand query
terms according to your loaded thesaurus. For example, you can use the SYN
operator to expand a term such as dog to its synonyms as follows:

'syn(dog)’

ctxload Utility

The ctxload utility can be used for loading thesauri from a plain-text file into the
thesaurus tables, as well as dumping thesauri from the tables into output (dump)
files.

The thesaurus dump files created by ct x| oad can be printed out or used as input
for other applications. The dump files can also be used to load a thesaurus into the
thesaurus tables. This can be useful for using an existing thesaurus as the basis for
creating a new thesaurus.

Case-sensitive Thesauri

In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as
entered. For example, if a term is entered in mixed-case (using either the CTX_THES
package or a thesaurus load file), the thesaurus stores the entry in mixed-case.

Note: To take full advantage of query expansions that result from
a case-sensitive thesaurus, your index must also be case-sensitive.

When loading a thesaurus, you can specify that the thesaurus be loaded
case-sensitive using the -thescase parameter.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, you can specify
that the thesaurus created be case-sensitive.

In addition, when a case-sensitive thesaurus is specified in a query, the thesaurus
lookup uses the query terms exactly as entered in the query. Therefore, queries that
use case-sensitive thesauri allow for a higher level of precision in the query

9-2 Oracle Text Application Developer’'s Guide



Overview of Thesauri

expansion, which helps lookup when and only when you have a case-sensitive
index.

For example, a case-sensitive thesaurus is created with different entries for the
distinct meanings of the terms Turkey (the country) and turkey (the type of bird).
Using the thesaurus, a query for Turkey expands to include only the entries
associated with Turkey.

Case-insensitive Thesauri

In a case-insensitive thesaurus, terms are stored in all-uppercase, regardless of the
case in which they were entered.

The ctxload program loads a thesaurus case-insensitive by default.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, the thesaurus is
created case-insensitive by default.

In addition, when a case-insensitive thesaurus is specified in a query, the query
terms are converted to all-uppercase for thesaurus lookup. As a result, Oracle Text
is unable to distinguish between terms that have different meanings when they are
in mixed-case.

For example, a case-insensitive thesaurus is created with different entries for the
two distinct meanings of the term TURKEY (the country or the type of bird). Using
the thesaurus, a query for either Turkey or turkey is converted to TURKEY for
thesaurus lookup and then expanded to include all the entries associated with both
meanings.

Default Thesaurus

If you do not specify a thesaurus by name in a query, by default, the thesaurus
operators use a thesaurus named DEFAULT. However, Oracle Text does not provide
a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you
must create a thesaurus named DEFAULT. You can create the thesaurus through any
of the thesaurus creation methods supported by Oracle Text:

« CTX_THES.CREATE_THESAURUS (PL/SQL)

« ctxload

See Also: Oracle Text Reference to learn more about using
ct x| oad and the CTX_THES package.

Working With a Thesaurus 9-3



Defining Thesaural Terms

Supplied Thesaurus

Although Oracle Text does not provide a default thesaurus, Oracle Text does supply
a thesaurus, in the form of a ct x| oad load file, that can be used to create a
general-purpose, English-language thesaurus.

The thesaurus load file can be used to create a default thesaurus for Oracle Text or it
can be used as the basis for creating thesauri tailored to a specific subject or range of
subjects.

See Also: Oracle Text Reference to learn more about using
ct xI oad and the CTX_THES package.

Supplied Thesaurus Structure and Content

The supplied thesaurus is similar to a traditional thesaurus, such as Roget's
Thesaurus, in that it provides a list of synonymous and semantically related terms.

The supplied thesaurus provides additional value by organizing the terms into a
hierarchy that defines real-world, practical relationships between narrower terms
and their broader terms.

Additionally, cross-references are established between terms in different areas of the
hierarchy.

Supplied Thesaurus Location

The exact name and location of the thesaurus load file is operating system
dependent; however, the file is generally named dr Ot hsus (with an appropriate
extension for text files) and is generally located in the following directory structure:

<Oracl e_honme_directory>
<interMedia_Text _directory>
sanpl e
t hes

See Also: For more information about the directory structure for
Oracle Text, see the Oracle Database installation documentation
specific to your operating system.

Defining Thesaural Terms

You can create synonyms, related terms, and hierarchical relationships with a
thesaurus. The following sections give examples.

9-4 Oracle Text Application Developer’'s Guide



Defining Thesaural Terms

Defining Synonyms
If you have a thesaurus of computer science terms, you might define a synonym for
the term XML as extensible markup language. This enables queries on either of these
terms to return the same documents.

XM
SYN Ext ensi bl e Markup Language
You can thus use the SYN operator to expand XML into its synonyms:

' SYN(XM) '

is expanded to:
"XM., Extensible Mrkup Language'

Defining Hierarchical Relations

If your document set is made up of news articles, you can use a thesaurus to define
a hierarchy of geographical terms. Consider the following hierarchy that describes a
geographical hierarchy for the U.S state of California:

California

NT Northern California
NT San Franci sco
NT San Jose

NT Central Valley
NT Fresno

NT Southern California
NT Los Angel es

You can thus use the NT operator to expand a query on California as follows:

"NT(California)’

expands to:

"California, Northern California, San Francisco, San Jose, Central Valley,
Fresno, Southern California, Los Angeles'

The resulting hitlist shows all documents related to the U.S. state of California
regions and cities.

Working With a Thesaurus 9-5



Using a Thesaurus in a Query Application

Using a Thesaurus in a Query Application

Defining a custom thesaurus enables you to process queries more intelligently. Since
users of your application might not know which words represent a topic, you can
define synonyms or narrower terms for likely query terms. You can use the
thesaurus operators to expand your query into your thesaurus terms.

There are two ways to enhance your query application with a custom thesaurus so
that you can process queries more intelligently:

« Load your custom thesaurus and issue queries with thesaurus operators

« Augment the knowledge base with your custom thesaurus (English only) and
use the ABOUT operator to expand your query.

Each approach has its advantages and disadvantages.

Loading a Custom Thesaurus and Issuing Thesaural Queries
To build a custom thesaurus, follow these steps:
1. Create your thesaurus. See "Defining Thesaural Terms" in this chapter.

2. Load thesaurus with ctxload. For example, the following example imports a
thesaurus named t ech_doc from an import file named t ech_
t hesaurus. t xt:

ctxload -user jsmith/123abc -thes -nane tech_doc -file tech_thesaurus.txt
1. Use THES operators to query. For example, you can find all documents that

contain XML and its synonyms as defined in tech_doc:

" SYN( XM, tech_doc)’

Advantage

The advantage of using this method is that you can modify the thesaurus after
indexing.

Limitations

This method requires you to use thesaurus expansion operators in your query. Long
gueries can cause extra overhead in the thesaurus expansion and slow your query
down.

9-6 Oracle Text Application Developer’s Guide



Using a Thesaurus in a Query Application

Augmenting Knowledge Base with Custom Thesaurus

You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT
gueries, and deriving themes for document services.

When you augment the existing knowledge base with your new thesaurus, you
guery with the ABOUT operator which implicitly expands to synonyms and
narrower terms. You do not query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus, follow these
steps:

1. Create your custom thesaurus, linking new terms to existing knowledge base
terms. See "Defining Thesaural Terms" and "Linking New Terms to Existing
Terms".

2. Load thesaurus with ct x| oad. See "Loading a Thesaurus with ctxload".

3. Compile the loaded thesaurus with ct xkbt ¢ compiler. "Compiling a Loaded
Thesaurus” later in this section.

4. Index your documents. By default the system creates a theme component to
your index.

5. Use ABQOUT operator to query. For example, to find all documents that are
related to the term politics including any synonyms or narrower terms as
defined in the knowledge base, issue the query:

"about (politics)’

Advantage

Compiling your custom thesaurus with the existing knowledge base before
indexing enables faster and simpler queries with the ABOUT operator. Document
services can also take full advantage of the customized information for creating
theme summaries and Gists.

Limitations

Use of the ABOUT operator requires a theme component in the index, which requires
slightly more disk space. You must also define the thesaurus before indexing your
documents. If you make any change to the thesaurus, you must recompile your
thesaurus and re-index your documents.

Working With a Thesaurus 9-7



Using a Thesaurus in a Query Application

Linking New Terms to Existing Terms

When adding terms to the knowledge base, Oracle recommends that new terms be
linked to one of the categories in the knowledge base for best results in theme
proving.

See Also: Oracle Text Reference for more information about the
supplied English knowledge base.

If new terms are kept completely separate from existing categories, fewer themes
from new terms will be proven. The result of this is poor precision and recall with
ABQUT queries as well as poor quality of gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term
for the new terms.

Example: Linking New Terms to Existing Terms You purchase a medical thesaurus
nmedt hes containing a a hierarchy of medical terms. The four top terms in the
thesaurus are the following:

« Anesthesia and Analgesia

« Anti-Allergic and Respiratory System Agents

« Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators
« Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the
medical thesaurus to map the new terms to the existing health and medicine branch:

heal th and nedi ci ne
NT Anesthesia and Anal gesi a
NT Anti-Allergic and Respiratory System Agents
NT Anti-Inflamamatory Agents, Antirheumatic Agents, and Inflamation Mediators
NT Antineopl astic and | munosuppressive Agents

Loading a Thesaurus with ctxload

Assuming the medical thesaurus is in a file called ned. t hes, you load the
thesaurus as medt hes with ct x| oad as follows:

ctxload -thes -thescase y -name nmedthes -file med.thes -user ctxsys/ctxsys

9-8 Oracle Text Application Developer’s Guide



About the Supplied Knowledge Base

Compiling a Loaded Thesaurus

To link the loaded thesaurus medt hes to the knowledge base, use ct xkbt ¢ as
follows:

ctxkbtc -user ctxsys/ctxsys -name nedthes

About the Supplied Knowledge Base

Oracle Text supplies a knowledge base for English and French. The supplied
knowledge contains the information used to perform theme analysis. Theme
analysis includes theme indexing, ABOUT queries, and theme extraction with the
CTX_DOC package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

« science and technology

« business and economics

« government and military

« social environment

« geography

« abstract ideas and concepts

See Also: Oracle Text Reference for the breakdown of the category
hierarchy.

The supplied knowledge base is like a thesaurus in that it is hierarchical and
contains broader term, narrower term, and related term information. As such, you
can improve the accuracy of theme analysis by augmenting the knowledge base
with your industry-specific thesaurus by linking new terms to existing terms.

See Also: "Augmenting Knowledge Base with Custom
Thesaurus" in this chapter.

You can also extend theme functionality to other languages by compiling a
language-specific thesaurus into a knowledge base.

See Also: "Adding a Language-Specific Knowledge Base" in this
chapter.

Working With a Thesaurus 9-9



About the Supplied Knowledge Base

Knowledge Base Character Set

Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WE8ISO8859P1. You can store an extended knowledge base in another
character set such as US7ASCI|I.

Adding a Language-Specific Knowledge Base

You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single-byte whitespace delimited
language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting,
and the generation of themes, gists, and theme summaries with CTX_DCOC.

You extend theme functionality by adding a user-defined knowledge base. For
example, you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:
1. Load your custom thesaurus using ct x| oad.

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus using ct xkbt c:
ct xkbtc -user ctxsys/ctxsys -name my_| ang_thes

This command compiles your language-specific knowledge base from the loaded
thesaurus. To use this knowledge base for theme analysis during indexing and
ABQUT queries, specify the NLS_LANGlanguage as the THEME_LANGUACE attribute
value for the BASI C_LEXER preference.

Limitations
The following limitations hold for adding knowledge bases:

»  Oracle supplies knowledge bases in English and French only. You must provide
your own thesaurus for any other language.

= You can only add knowledge bases for languages with single-byte character
sets. You cannot create a knowledge base for languages which can be expressed
only in multibyte character sets. If the database is a multibyte universal
character set, such as UTF-8, the NLS_LANG parameter must still be set to a
compatible single-byte character set when compiling the thesaurus.

« Adding a knowledge base works best for whitespace delimited languages.

9-10 Oracle Text Application Developer’'s Guide



About the Supplied Knowledge Base

You can have at most one knowledge base for each NLS language.

Obtaining hierarchical query feedback information such as broader terms,
narrower terms and related terms does not work in languages other than
English and French. In other languages, the knowledge bases are derived
entirely from your thesauri. In such cases, Oracle recommends that you obtain
hierarchical information directly from your thesauri.

See Also: Oracle Text Reference for more information about theme
indexing, ABOUT queries, using the CTX_DOC package, and the
supplied English knowledge base.

Working With a Thesaurus 9-11



About the Supplied Knowledge Base

9-12 Oracle Text Application Developer's Guide



10

Administration

This chapter describes Oracle Text administration.The following topics are covered:
« Oracle Text Users and Roles

« DML Queue

« The CTX_OUTPUT Package

« The CTX_REPORT Package

« Servers

« Administration Tool

Oracle Text Users and Roles

CTXSYS User

While any user can create an Oracle Text index and issue a CONTAI NS query, Oracle
Text provides the CTXSYS user for administration and the CTXAPP role for
application developers.

The CTXSYS user is created at install time. CTXSYS can do the following:
« View all indexes

« Syncall indexes

« Runct xkbt ¢, the knowledge base extension compiler

«  Query all system-defined views

« Perform all the tasks of a user with the CTXAPP role

Administration 10-1



DML Queue

CTXAPP Role

Note: In previous releases of Oracle Text, CTXSYS had DBA
privileges, and only CTXSYS could perform certain functions, such
as modifying system-defined preferences or setting system
parameters. See also Chapter 11, "Migrating Applications from
Earlier Releases" for more on changes to CTXSYS.

During a manual installation, after installation of the CTXSYS schema is complete,
you may want to run dr Ol sys. sql to lock and expire the CTXSYS schema for
security reasons. Alternatively, you can choose a good password for CTXSYS when
running dr Ocsys. sql .

The CTXAPP role is a system-defined role that enables users to do the following:
« Create and delete Oracle Text preferences
« Use the Oracle Text PL/SQL packages

Any user can create an Oracle Text index and issue a Text query. The CTXAPP role
enables users to create preferences and use the PL/SQL packages.

Granting Roles and Privileges to Users

DML Queue

The system uses the standard SQL model for granting roles to users. To grant a Text
role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text
PL/SQL packages, you must explicitly grant to each user EXECUTE privileges for
the Oracle Text package.

See Also: "Creating an Oracle Text User" in Chapter 2, "Getting
Started with Oracle Text"

When there are inserts, updates, or deletes to documents in your base table, the
DML queue stores the requests for documents waiting to be indexed. When you
synchronize the index with CTX_DDL.SYNC_| NDEX, requests are removed from this
queue.

10-2 Oracle Text Application Developer's Guide



The CTX_REPORT Package

Pending DML requests can be queried with the CTX_PENDI NGand CTX_USER _
PENDI NGviews.

DML errors can be queried with the CTX_| NDEX_ ERRORS or CTX_USER | NDEX
ERRORS view.

See Also: Oracle Text Reference for more information about these
views.

The CTX_OUTPUT Package

Use the CTX_QOUTPUT PL/SQL package to log indexing and document service
requests.

See Also: Oracle Text Reference for more information about this
package.

The CTX_REPORT Package

Use the CTX_REPORT package to produce reports on indexes and queries. These
reports can help you fine-tune or troubleshoot your applications.

See Also: The CTX_REPORT chapter in the Oracle Text Reference

The CTX_REPORT package contains the following procedures:

CTX_REPORT.DESCRIBE_INDEX

CTX_REPORT.DESCRIBE_POLICY

These procedures create reports that describe an existing index or policy, including
the settings of the index metadata, the indexing objects used, the settings of the
attributes of the objects, and (for CTX_REPORT. DESCRI BE_| NDEX) index partition
information, if any. These procedures are especially useful for diagnosing
index-related problems.

This is sample output from DESCRI BE_| NDEX, run on a simple context index:

| NDEX DESCRI PTI ON

i ndex nane: "DR_TEST". " TDRBPRX0"
i ndex id: 1160
i ndex type: cont ext

Administration 10-3



The CTX_REPORT Package

base table: "DR_TEST". " TDRBPR'
primary key col um: ID

text col um: TEXT2

text colum type: VARCHAR2( 80)

| anguage col um:
format col um:
charset col um:

| NDEX OBJECTS
dat astore: DI RECT_DATASTORE
filter: NULL_FILTER
section group: NULL_SECTI ON_GROUP
| exer: BASI C_LEXER
wordlist: BASI C_ WORDLI ST
st emrer: ENGLI SH
fuzzy_mat ch: CENERI C
stoplist: BASI C_STOPLI ST
stop_word: t est st opwor d
st or age: BASI C_STORAGE
r_table_clause: lob (data) store as (cache)
i _index_cl ause: conmpress 2

CTX_REPORT.CREATE_INDEX_SCRIPT
CTX_REPORT.CREATE_POLICY_SCRIPT

CREATE_| NDEX_SCRI PT creates a SQL*Plus script that can create a duplicate of a
given text index. Use this when you have an index but don't have the original
script (if any) used to create that script and want to be able to re-create the index.
For example, if you accidentally drop a script, CREATE_| NDEX_SCRI PT can
re-create it; likewise, CREATE_| NDEX_SCRI PT can be useful if you have inherited
indexes from another user but not the scripts that created them.

CREATE_POQOLI CY_SCRI PT does the same thing as CREATE_| NDEX_SCRI PT,
except that it enables you to re-create a policy instead of an index.

This is sample output from CREATE | NDEX_SCRI PT, run on a simple context
index (not a complete listing):

begi n

ctx_ddl.create_preference(' " TDRBPRX0O_DST"', ' DI RECT_DATASTORE' );
end;
/

/

10-4 Oracle Text Application Developer's Guide



The CTX_REPORT Package

begin
ctx_ddl . create_section_group(' " TDRBPRX0_SGP"', ' NULL_SECTI ON_GROUP' );
end;
/
begin
ctx_ddl . create_preference(' " TDRBPRXO_WDL"', ' BASI C_WORDLI ST' ) ;
ctx_ddl.set_attribute(' " TDRBPRX0_WDL"',"' STEMVER , ' ENGLI SH ) ;
ctx_ddl.set_attribute(' " TDRBPRXO_WDL"', ' FUZZY_MATCH ,' GENERIC );
end;
/
begin
ctx_ddl .create_stoplist('"TDRBPRXO_SPL"',"' BASI C_STCPLI ST');
ctx_ddl . add_st opwor d("' " TDRBPRX0_SPL"' , ' t est st opword' ) ;
end;
/

/
begin
ctx_output.start_| og(' TDRBPRXO_LCG );
end;
/
create index "DR _TEST"." TDRBPRX0"
on "DR_TEST"." TDRBPR'
(" TEXT2")
i ndextype is ctxsys.context
paraneters(’

datastore " TDRBPRX0_DST"
filter " TDRBPRXO0_FI L"
section group "TDRBPRX0_SGP"
| exer " TDRBPRXO0_LEX"
wor dl i st " TDRBPRX0_\\DL"
stopli st " TDRBPRX0_SPL"
storage " TDRBPRX0_STO'

")
/
CTX_REPORT.INDEX_SIZE
This procedure creates a report showing the names of the internal index objects,
along with their tablespaces, allocated sizes, and used sizes. It is useful for DBAs
who may need to monitor the size of their indexes (for example, when disk space is
at a premium).

Sample output from this procedure looks like this (partial listing):

Administration 10-5



The CTX_REPORT Package

[ NDEX SI ZE FOR DR_TEST. TDRBPRX10

TABLE:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLOCATED:
BYTES USED:

| NDEX (LOB):
TABLE NAVE:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLOCATED:
BYTES USED:

| NDEX ( NORMAL) :
TABLE NAVE:
TABLESPACE NAME:
BLOCKS ALLOCATED:
BLOCKS USED:
BYTES ALLOCATED:
BYTES USED:

CTX_REPORT.INDEX_STATS

DR_TEST. DRSTDRBPRX10$|
DRSYS

4

1

8,192 (8.00 KB)

2,048 (2.00 KB)

DR _TEST. SYS_| L0000023161C00006$$
DR_TEST. DRSTDRBPRX10$!
DRSYS
5
2
10, 240 (10.00 KB)
4,096 (4.00 KB)

DR_TEST. DR$TDRBPRX10$X
DR_TEST. DR§TDRBPRX10$I
DRSYS

| NDEX_STATS produces a variety of calculated statistics about an index, such as
how many documents are indexed, how many unique tokens the index contains,
average size of its tokens, fragmentation information for the index, and so on. An
example of a use of | NDEX_STATS might be in optimizing stoplists.

See the Oracle Text Reference for an example of the output of this procedure.

CTX_REPORT.QUERY_LOG_SUMMARY
This procedure creates a report of logged queries, which you can use to perform
simple analyses. With query analysis, you can find out:

« which queries were made

« which queries were successful

« which queries were unsuccessful

« how many times each query was made

10-6 Oracle Text Application Developer's Guide



Administration Tool

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

See the Oracle Text Reference for an example of the output of this procedure.

CTX_REPORT.TOKEN_INFO

TOKEN I NFOis used mainly to diagnose query problems; for instance, to check that
index data is not corrupted. As an example, you can use it to find out which
documents are producing unexpected or bad tokens.

CTX_REPORT.TOKEN_TYPE
This is a lookup function, used mainly as input to other functions (CTX_
DDL. OPTI M ZE_I| NDEX, CTX_REPORT. TOKEN_| NFO, and so on).

Servers

You index documents and issue queries with standard SQL. No server is needed for
performing batch DML. You can synchronize the CONTEXT index with the CTX_
DDL.SYNC | NDEX procedure.

See Also: For more information about indexing and index
synchronization, see Chapter 3, "Indexing".

Administration Tool

The Oracle Text Manager is a Java application integrated with the Oracle Enterprise
Manager.

The Text Manager enables administrators to create preferences, stoplists, sections,
and indexes. This tool also enables administrators to perform DML.

See Also: for more information about the Oracle Text Manager,
see the online help shipped with this tool.

Administration 10-7



Administration Tool

10-8 Oracle Text Application Developer's Guide



11

Migrating Applications from Earlier
Releases

This chapter covers issues relating to migrating your applications from previous
releases of Oracle Text. It also contains a note on migrating back from the current
release.

« Security Improvements in Oracle Text

« Migrating Back to Previous Releases

Security Improvements in Oracle Text

In previous versions of Oracle Text, CTXSYS had DBA privileges. To tighten
security and protect the database in the case of unauthorized access, CTXSYS now
has only CONNECT and RESOURCE roles, and only limited, necessary direct grants
on some system views and packages. Some applications using Oracle Text may
therefore require minor changes in order to work properly with this security
change. Here are the major effects of the security improvements, their possible
effects on Oracle Text applications, and the steps needed to ensure proper operation
in Oracle Database 10g.

CTXSYS No Longer Has DBA Permissions

CTXSYS no longer has DBA permissions. This may affect indexes using USER_
DATASTORE, PROCEDURE_FI LTER, or USER_LEXER objects. For example, suppose
that you have an index using a USER _DATASTORE whose procedure is

CTXSYS. PROC, and that that procedure refers to other schemas' objects:

create procedure proc(r inrowid, din out nocopy clob)
is
begin

Migrating Applications from Earlier Releases 11-1



Security Improvements in Oracle Text

select text into | _data fromscott.exanple ...

Previously, this user datastore would have worked properly because CTXSYS was
able to select from any table—namely, SCOTT. EXAMPLE. However, in Oracle
Database 10g, CTXSYS does not have DBA privileges and is not allowed to select
from SCOTT. EXAMPLE. This makes the procedure PROC invalid, which leads to
errors when indexing or sync is done for this index.

To resolve this problem, Oracle recommends migrating all user datastores,
procedure filters, and user lexers from CTXSYS-owned procedures to
index-owner-owned procedures (see "Migrating CTXSYS-Owned Procedures").

Migrating CTXSYS-Owned Procedures

Here are the steps to migrate an index using a CTXSYS-owned procedure to use an
index-owner-owned procedure:

1.

Create a procedure owned by the index owner that is equivalent to the
CTXSYS-owned procedure. If your application's CTXSYS-owned procedure
simply calls another procedure owned by the index owner, use that procedure
for step 2. Otherwise, copy the code from the CTXSYS-owned procedure into a
new procedure owned by the index owner, making any needed changes for the
change in schema.

Create a new user datastore, procedure filter, or user lexer preference that uses
the index-owner-owned procedure. Alternatively, you can modify the existing
preference using CTX_DDL. SET_ATTRI BUTE, if the preference used to create
the index still exists.

Replace the existing datastore or filter or lexer with the new, updated preference
using the new REPLACE METADATA command. For instance, to replace a user
datastore:

alter index <nyindex> rebuild parameters ('replace netadata datastore <new_
dat astore_preference>');

REPLACE METADATA does not rebuild the index, so this command will not
affect existing index data.

See Also: "Migrating Back to Previous Releases" on page 11-4

Effective User During Indexing

In previous versions of Oracle Text, the effective user during indexing or sync was
CTXSYS. As aresult, CTXSYS required execute permission on all BFILE directories,

11-2 Oracle Text Application Developer’s Guide



Security Improvements in Oracle Text

execute permission on any procedures called from user datastores, procedure filters,
or user lexers, and the CTXSYS user's TEMP tablespace was used during indexing.
In Oracle Database 10g, the effective user during indexing is the index owner, which
eliminates these caveats.

Procedures Do Not Need to Be Owned by CTXSYS

Previously, procedures used in user datastores, procedure filters, and user lexers
had to be owned by CTXSYS. In Oracle Database 10g, these procedures can be
owned by any schema, so long as the index owner has execute privileges on them.

This principally affects creation of preferences. In previous releases of Oracle Text, a
user datastore created with:

begin

ctx_ddl.create_preference(' exanple',' user_datastore');

ctx_ddl.set_attribute(' exanple',"' procedure','proc');
end;

would have used the procedure CTXSYS. PROC. However, in Oracle Database 10g,
standard Oracle Database rules are applied to the input "PROC," and this resolves
to USER. PROC. Any application code that creates user datastores, procedure filters,
or user lexers should either create the preferences as the owner of the procedure, or
prepend the correct owner name to the procedure name. For example:

ctx_ddl.set_attribute(' exanple', "' procedure', ' user.proc');

Synching and Optimizing of Other Users' Indexes

In previous versions of Oracle Text, only the owner of the index and CTXSYS were
allowed to sync or optimize an index through CTX_DDL. SYNC | NDEX and CTX_
DDL. OPTI M ZE_| NDEX. In Oracle Database 10g, any user with the ALTER ANY

| NDEX system privilege is also allowed to sync or optimize any index.

CTX Packages and Invoker's Rights

Most public CTX packages, such as CTX_DDL, CTX_QUERY, and CTX_REPORT, are
now invoker's rights packages.

CREATE TABLE Permissions

In Oracle Database 10g, if a text index is created by one user for another user, or if
the create index statement is issued from a PL/SQL block, the index owner must be

Migrating Applications from Earlier Releases 11-3



Migrating Back to Previous Releases

granted the CREATE TABLE privilege in order for the indexing to succeed. Even if
the index owner has the RESOURCE role, CREATE TABLE must be specifically
granted.

Migrating Back to Previous Releases

During the upgrade to Oracle Database 10g, Oracle Text drops a number of
procedures belonging to CTXSYS. (These procedures are invalid under Oracle
Database 10g and have the name format DR$indexid$U.) If you migrate back to a
pre-10g release of Oracle Database, you must re-create these procedures in order for
DML to work. To do this, after the backward migration—once all the pre-10g
packages have been reinstalled—rename each CTXCAT index; the rename code will
re-create that procedure. (You can rename the procedures back if you want to retain
the original names).

11-4 Oracle Text Application Developer’s Guide



A

CONTEXT Query Application

This appendix describes how to build a simple Web search application using the
CONTEXT index type, whether by writing your own code or using the Oracle Text
Wizard. The following topics are covered:

«  Web Query Application Overview
« The PSP Web Application
« The JSP Web Application

Web Query Application Overview

A common use of Oracle Text is to index HTML files on Web sites and provide
search capabilities to users. The sample application in this appendix indexes a set
of HTML files stored in the database and uses a Web server connected to Oracle
Database to provide the search service.

This appendix describes two versions of the Web query application:
« one using PL/SQL Server Pages (PSP)
= one using Java Server Pages (JSP).

Both versions of these applications can be produced by means of a query
application wizard, which produces the necessary code automatically.

You can view and download both the PSP and JSP application code, as well as the
text query application wizard, at the Oracle Technology Network Web site:

http://otn.oracle.conl products/text

The text query application wizard Web page also contains complete instructions on
how to use the wizard.

CONTEXT Query Application A-1



Web Query Application Overview

Figure A-1 shows what the JSP version of the text query application looks like. This
application was created with the Oracle Text application wizard.

Figure A-1 The Text Query Application

¥ Text Search - Mozilla
. Fle Edit View Go Bookmarks Tools Window Help

Q000 O Gsearan] <5, []

. 4 Home | BIBookmarks % Account Request % CRM Tickets : Files Online % My Oracle % Network Request % S|

Text Search

Search for: |pst Search

Figure A-2 shows the results of the text query.

A-2 Oracle Text Application Developer’s Guide



Web Query Application Overview

Figure A—2 The Text Query Application with Results

I* Text Search - Mozilla

. File Edit View Go Bookmarks Tools Window Help

_ @QQ @ Q | http://cmgregor-pc/textsearch/TextSearchApp.jsp= | [\ Search | ’:'-:S;Q

. & Home | BBookmarks % Account Request % CRM Tickets % Files Online %+ My Oracle % Network Request %S

Text Search
Search for: |pst Search

Results 1 - 6 of 6 matches

Score

TITLE

Document Services

57%

Set of Pet Mag

nets

HTML Highlight Theme Gist

3%

Self-Tipping Couch

HTML Highlight Theme Gist

3% [Refrigerator w/ Front-Door Auto Cantaloupe Dispenser HTML Highlight Theme Gist
3% [Home Air Dirtier HTML Highlight Theme Gist
3% |Esteem-Building Talking Pillow HTML Highlight Theme Gist
3% |Pizza Shredder HTML Highlight Theme Gist

le

= ) & | Done

| et ]

The application returns links to documents containing the search term. Each
document has four links:

« The HTML link displays the document.

Graphics are not displayed in the filtered document. (You can see the source
document for the first hit by looking at Figure 5-1 on page 5-9.)

« The Highlight link displays the document with the search term highlighted.
Figure 5-2 on page 5-10 shows an example of highlighting.

« The Theme link shows the top 50 themes associated with the document.
Figure 5-3 on page 5-11 shows an example of theme extraction.

« The Gist link displays a short summary of the document. Figure 5-4 on
page 5-12 shows an example of this gisting feature.

CONTEXT Query Application A-3



The PSP Web Application

The PSP Web Application

This application is based on PL/SQL server pages. Figure A-3 illustrates how the
browser calls the PSP-stored procedure on Oracle Database through a Web server.

Figure A—3 The PSP Web Application

http://mymachine: 7777 / mypath / search_html

Browser calls

PSP stored Web Server maps
procedure URLs to PSP
with URL stored procedure __--"" | search_table
PSP T
Browser PL/SQL
»| Gateway P Storgd
rocedure _ -7 | idx_search_table

o

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

Web Application Prerequisites

This application has the following requirements:
= Your Oracle Database (version 8.1.6 or higher) is up and running.
= You have the Oracle PL/SQL gateway running

« You have a Web server such as Apache up and running and correctly
configured to send requests to the Oracle Database server.

Building the Web Application
This section describes how to build the PSP Web application.

Step 1 Create your Text Table

You must create a text table to store your HTML files. This example creates a table
called sear ch_t abl e as follows:

A-4 Oracle Text Application Developer’'s Guide



The PSP Web Application

create table search_table (tk numeric primary key, title varchar2(2000), text
cl ob);

Step 2 Load HTML Documents into Table Using SQL*Loader

You must load the text table with the HTML files. This example uses the control file
loader.ctl to load the files named in loader.dat. The SQL*Loader command is as
follows:

% sql | dr userid=scott/tiger control =l oader.ctl

Step 3 Create the CONTEXT index

If you are using the text query wizard: The wizard produces a script to create an
index. (See the instructions on the download Web page for the wizard.) Run that
script.

If you are not using the wizard: Index the HTML files by creating a CONTEXT index
on the text column as follows. Since you are indexing HTML, this example uses the
NULL_FI LTER preference type for no filtering and uses the HTML_ SECTI ON_GROUP

type:
create index idx_search_table on search_table(text)

i ndextype is ctxsys.context paraneters
("filter ctxsys.null _filter section group CTXSYS. HTM._SECTI ON_GROUP' );

Step 4 Compile search_htmlservices Package in Oracle Database

The application must present selected documents to the user. To do so, Oracle
Database must read the documents from the CLOB in sear ch_t abl e and output
the result for viewing, This is done by calling procedures in the search_htmlservices
package. The file search_htmlservices.sql must be compiled. You can do this at the
SQL*Plus prompt:

SQL> @earch_htm services. sql

Package created.

Step 5 Compile the search_html PSP page with loadpsp

The search page is invoked by calling search_html.psp from a browser. You compile
search_html in Oracle Database with the | oadpsp command-line program:

% | oadpsp -replace -user scott/tiger search_htm.psp
"search_htnl .psp": procedure "search_htm" created.

CONTEXT Query Application A-5



The PSP Web Application

See Also: Oracle Database Application Developer’s Guide -
Fundamentals for more information about using PSP.

Step 6 Configure Your Web Server

You must configure your Web server to accept client PSP requests as a URL. Your
Web server forwards these requests to the Oracle Database server and returns
server output to the browser. Refer to Figure A-3 on page A-4.

You can use the Oracle WebDB Web listener or Oracle Application Server, which
includes the Apache Web server. See your Web server documentation for more
information.

Step 7 Issue Query from Browser

You can access the query application from a browser using a URL. You configure
the URL with your Web server. An example URL might look like;

http:// mymachi ne: 7777/ nypat h/ sear ch_ht m

The application displays a query entry box in your browser and returns the query
results as a list of HTML links, as shown in Figure A-1 on page A-2 and Figure A-2
on page A-3.

PSP Sample Code

This section lists the code used to build the example Web application. It includes the
following files:

« loader.ctl
« loader.dat
« search_htmlservices.sql

« search_html.psp

See Also: http://otn.oracle.com/products/text/

loader.ctl

This example shows a sample | oader . ct| file. Itisused by sql | dr to load the
data file, | oader . dat .

LOAD DATA
I NFI LE ' | oader. dat'

A-6 Oracle Text Application Developer’s Guide



The PSP Web Application

I NTO TABLE search_tabl e

REPLACE
FI ELDS TERM NATED BY ' ;'
(tk | NTEGER,
title CHAR,
text file FI LLER CHAR,
t ext LOBFI LE(text _file) TERM NATED BY EOF)
loader.dat

This example shows a sample | oader . dat file. Each row contains three fields: a
reference number for the document, a label (or "title"), and the name of the HTML
document to load into the text column of sear ch_t abl e. The file has been
truncated for this example.

Pi zza Shredder; Pi zza. ht m

Refrigerator w Front-Door Auto Cantal oupe Di spenser; Cantal oupe. htni
Sel f - Ti ppi ng Couch; Couch. htni

Home Air Dirtier; Mess. htm

Set of Pet Magnets;Pet.htn

Est eem Bui | di ng Tal ki ng Pill ow, Snooze. htm

ISR AN N

28; Shaggy Found Inspiration For Success In Jamaica ;shaggy_found. htn
29; Solar Flare Eruptions Likely ;solar flare. htn

30; Supersoni ¢ Plane Breaks Food Barrier ;food_barrier.htmn

31, SOUNDSCAN REPORT: Reci pe for An Aspiring Top Ten; urban_groove_1. htni

search_htmlservices.sql

set define off
create or replace package search_htnl Services as
procedure showHTM.Doc (p_id in numeric);
procedure showbDoc (p_id in varchar2, p_query in varchar2);
end;
/
show errors;

create or replace package body search_htni Services as
procedure showHTM.Doc (p_id in numeric) is
v_clob selected CLOB;

v_read_anount i nteger;
v_read_of f set i nteger;

CONTEXT Query Application A-7



The PSP Web Application

v_buffer var char 2( 32767) ;
begin

select text into v_clob_selected fromsearch_table where tk = p_id;

v_read_anmount := 32767;
v_read_offset := 1;
begin
| oop

dbns_| ob.read(v_cl ob_sel ected, v_read_amount,v_read_of fset,v_buffer);
htp. print(v_buffer);
v_read_offset := v_read_offset + v_read_anount;

v_read_anount := 32767,
end | oop;
exception
when no_data_found then
nul I ;
end;

end showHTM.Doc;

procedure showDoc (p_id in varchar2, p_query in varchar2) is

v_cl ob_selected CLOB;

v_read_amount i nteger;
v_read_of f set i nteger;
v_buffer var char 2( 32767) ;
v_query var char (2000) ;
v_cursor i nteger;

begi n

htp. p(' <htm ><title>HTM. version with highlighted terns</title>");
ht p. p(' <body bgcol or="#ffffff">");
htp. p(' <b>HTM. version with highlighted terns</b>");

begin
ctx_doc. markup (index_name => 'idx_search_table',
t ext key = p_id,
text_query => p_query,

restab => v_cl ob_sel ect ed,
starttag => '<i><font color=red>",
endt ag = '<[font></i>");
v_read_amount := 32767,
v_read offset := 1;

A-8 Oracle Text Application Developer’s Guide



The PSP Web Application

begin
| oop
dbns_| ob. read(v_cl ob_sel ected, v_read_anount,v_read_offset,v_buffer);
htp.print(v_buffer);
v_read_offset := v_read_offset + v_read_amount;

v_read_amount := 32767,

end | oop;

exception

when no_data_found then
nul l;

end;

exception

when ot hers then
null; --showHTM.doc(p_id);

end;
end showDoc;

end;
/
show errors

set define on

search_html.psp

<%@ pl sql procedure="search_htm" %
<Y%@ pl sql parameter="query" defaul t="null" %
<% v_results nuneric := 0; %

<htm >
<head>
<title>search_htm Search </title>
</ head>
<body>

<%

If query is null Then
%

<center>

<f orm net hod=post action="search_htm ">
<b>Search for: </b>

CONTEXT Query Application A-9



The PSP Web Application

<input type=text nane="query" size=30>&nbsp;
<input type=subnit val ue=Search>
</ center>
<hr>

<%
El se
%

<p>
<%

color varchar2(6) := "ffffff";
%

<center>
<f orm met hod=post action="search_htni ">
<b>Search for:</b>
<input type=text name="query" size=30 val ue="<% query %">
<input type=subnit val ue=Search>
</form
</center>
<hr>
<p>

<%
-- select statenent
for doc in (
select /*+ FIRST_ROAS */ rowid, tk, title, score(l) scr
fromsearch_table
where contains(text, query,1) >0
order by score(l) desc
)
| oop
v_results := v_results + 1;
if v_results =1 then

%

<center>
<tabl e border="0">
<tr bgcol or="#6699CC"' >
<t h>Score</th>
<th>Title</th>
<[tr>

A-10 Oracle Text Application Developer’s Guide



The JSP Web Application

<% end if; %
<tr bgcol or ="#<% col or %">
<td> <% doc.scr %% </td>
<td> <% doc.title %
[<a href="search_htm Services. showHTM.Doc?p_i d=
<% doc.tk %">HTM.</ a>]
[<a href="search_htm Services. showDoc?p_i d=
<% doc.tk %&p_query=<% query %" >Hi ghlight</a>]
</td>
</tr>

<%
if (color ="'ffffff') then

color := 'eeeeee';
el se
color :="ffffff";
end if;
end | oop;
%
</tabl e>
</center>
<%
end if;

%
</ body></ ht nl >

The JSP Web Application

Creating the JSP-based Web application involves most of the same steps as those
used in building the PSP-based application (see "Building the Web Application" on
page A-4). You can use the same | oader . dat and | oader. ct| files. However,
with the JSP-based application, you do not need to do the following:

« compilethesearch_ht m servi ces package

« compile the search_html PSP page with | oadpsp

Web Application Prerequisites
This application has the following requirements:

CONTEXT Query Application A-11



The JSP Web Application

« Your Oracle database (version 8.1.6 or higher) is up and running.

« You have a Web server such as Apache up and running and correctly
configured to send requests to the Oracle Database server.

JSP Sample Code

This section lists the Java code used to build the example Web application. It
includes the following files:

« search_html.jsp

The code for this file was generated by the text query application wizard. (Some
longer lines have been split to make the code easier to read.)

search_html.jsp

<@ page inport="java.sql.*, java.util.*, java.net.*, oracle.jdbc.*,
oracle.jsp.dbutil.*" %

<%@ page content Type="text/htm ;charset=UTF-8" %
<Y%oracle.jsp.util.PublicUil.setReqCharacterEncoding(request, "UTF-8"); %
<j sp:useBean i d="name" class="oracle.jsp.jm.Jn String" scope ="request" >
<j sp: set Property name="name" property="val ue" paran"query" />

</j sp: useBean>

<%
String connStr="jdbc:oracl e:thin: @burtch-pc.us.oracle.com 1521: zi ppy922";

java.util.Properties info=new java.util.Properties();
Connection conn = null;
Resul t Set rset = null;
OracleCal | abl eStatenent call Stnt = null;
Statement stnt = null;
String userQuery = null;
String myQuery = null;
URLEncoder nyEncoder;
i nt count =0;
int | oopNum=0;
int startNunmeO;
if (nane.isEmty()) {
%
<htm >
<title>Text Search</title>
<body>
<tabl e wi dt h="100% >
<tr bgcol or="#336699">

A-12 Oracle Text Application Developer’'s Guide



The JSP Web Application

<td><font face="arial, helvetica" align="left"
col or ="#CCCCY9" size=+2>Text Search</td>
<[tr>
</tabl e>
<center>

<form nethod = post >

Search for:

<input type=text name=query size = 30>

<input type=submt val ue="Search">

</form
</center>
</ body>
</htnl >
<%
}
el se {
%
<htm >
<title>Text Search</title>
<body text="#000000" bgcol or ="#FFFFFF" |i nk="#663300"
vlink="#996633" al i nk="#ff 6600">
<tabl e wi dt h="100% >
<tr bgcol or="#336699">
<td><font face="arial, helvetica" align="left"
col or ="#CCCC99" si ze=+2>Text Search</td>
<[tr>
</tabl e>
<center>
<form nmethod = post action="Text Sear chApp. jsp">
Search for:
<input type=text name="query" val ue="<%nane. get Val ue() %" size = 30>
<input type=submt val ue="Search">
</form
</center>
<%
try {

Driver Manager. registerDriver(new oracle.jdbc.driver.OracleDriver() );
info.put ("user", "nmburtch");

i nfo.put ("password","wel cone");

conn = DriverManager. get Connection(connStr,info);

stm = conn.createStatenent();

userQuery = request.getParanmeter("query");

myQuery =  URLEncoder. encode(user Query);

CONTEXT Query Application A-13



The JSP Web Application

String nunStr = request.getParaneter("sn");
i f(nunsStr!=null)
start Nunel nt eger. parsel nt (nunStr);
String theQuery = translate(userQery);
cal I Stmt =(OracleCal | abl eSt at ement) conn. prepareCal | ("begin "+
"?:=ctx_query. count _hits(index_name=>" ULTRA IDX1', "+
"text_query=>?"+
")t
“end; "),
cal I Stnt.setString(2,theQuery);
cal I Stnt.registerQutParanmeter (1, OracleTypes. NUMBER);
cal | Stnt. execute();
count =((Oracl eCal | abl eSt at ement ) cal | Stnt). get NUMBER( 1) . i nt Val ue();
i f (count >=(startNum+20)){
%
<font col or="#336699" FACE="Arial, Hel vetica" Sl ZE=+1>Results
<Usstart Numtl% - <%start Num+20% of <%count % matches
<%
}
el se i f(count>0){
%
<font col or="#336699" FACE="Arial, Hel vetica" Sl ZE=+1>Results
<Usstart Numrl% - <%count % of <%count % matches
<%
}
el se {
%
<font col or="#336699" FACE="Arial, Hel vetica" SIZE=+1>No match found
<%
}
%
<tabl e w dt h="100% >
<TR ALI G\="RI GHT" >
<%
i f((startNunp0) & count<=startNum+20))
{
%
<TD ALI G\="RI GHT" >
<a href="Text SearchApp. j sp?sn=<%st art Num 20 %&query=
<YEnyQuery %" >previ ous20</ a>

</ TD>
<%
}
el se if((count>startNum+20)&(startNunF=0))
{

A-14 Oracle Text Application Developer’'s Guide



The JSP Web Application

%
<TD ALI G\="RI GHT" >
<a href="Text Sear chApp. j sp?sn=<%st ar t Num+20
%&quer y=<%myQuery %" >next 20</ a>
</ TD>
<%
}
el se if((count>startNum+20) &(startNunr0))
{
%

<TD ALI G\="RI GHT" >

<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %&query=

<YEnyQuery %" >previ ous20</ a>

<a href="Text Sear chApp. j sp?sn=<%st art Num+20 %&query=

<Y%nyQuery %">next20</a>

</ TD>

<%
}
%
</ TR>
</tabl e>
<%

String ctxQuery = "select /*+ FIRST_ROAS */ rowid, 'TITLE,
score(l) scr from'ULTRA TAB1' where contains(' TEXT', '"+theQuery+"',1)
> 0 order by score(1l) desc";
rset = stnt.executeQuery(ctxQery);

String color = "ffffff";

String rowid = null;

String fakeRowid = null;

String[] col ToDisplay = new String[1];
int myScore = 0;
int items = 0;

while (rset.next()&&itenms< 20) {

i f (I oopNunp=startNum

{
rowid = rset.getString(1);
fakeRowi d = URLEncoder. encode(rowi d);
col ToDi spl ay[0] = rset.getString(2);
myScore = (int)rset.getlnt(3);
itens++,
if (items == 1) {

%
<center>
<tabl e BORDER=1 CELLSPACI NG=0 CELLPADDI NG=0 wi dt h="100%
<tr bgcol or ="#CCCC99" >

CONTEXT Query Application A-15



The JSP Web Application

<th><font face="arial, helvetica" col or="#336699">Score</th>
<th><font face="arial, helvetica" col or="#336699">T| TLE</t h>
<th> <font face="arial, helvetica"
col or ="#336699" >Docurent Ser vi ces</t h>
<[tr>
<% } %
<tr bgcol or =" #FFFFEO" >
<td ALI G\="CENTER'> <% nyScore %%/ td>
<td> <% col ToDi spl ay[ 0] %

<td>
</td>
</tr>
<%
if (color.compareTo("ffffff") == 0)
col or = "eeeeee";
el se
color = "ffffff";
}
| oopNumt+;
}
} catch (SQLException e) {
%
<b>Error: </b> <% e %<p>
<%
} finally {

if (conn I'=null) conn.close();
if (stnt = null) stnt.close();
if (rset '=null) rset.close();
}
%
</tabl e>
</center>
<tabl e wi dt h="100% >
<TR ALI G\="RI GHT" >
<%
i f((startNunmp0) & count <=start Num+20))
{
%
<TD ALI G\="RI GHT" >
<a href="Text SearchApp. j sp?sn=<%st art Num 20 %&query=
<YnmyQuery %" >previ ous20</ a>
</ TD>
<%
}

el se i f((count>startNum+20)&(startNunF=0))

A-16 Oracle Text Application Developer’s Guide



The JSP Web Application

{
%
<TD ALI G\="RI GHT" >
<a href="Text SearchApp. j sp?sn=<%st art Num+20 %&query=
<YenmyQuery %" >next 20</ a>

</ TD>
<%
}
el se if((count>startNum+20) &(startNun0))
{
%

<TD ALI G\="RI GHT" >

<a href="Text Sear chApp. j sp?sn=<%st art Num 20 %&query=
<YenyQuery %" >previ ous20</ a>

<a href="Text Sear chApp. j sp?sn=<%st art Num+20 %&query=
<Y%nyQuery %">next 20</a>

</ D>
<%
}
%
</ TR>
</tabl e>
</ body></htm >
<%
}
%
<%
public String translate (String input)
{
Vector reqWrds = new Vector();
StringTokeni zer st = new StringTokenizer(input, " "", true);
whil e (st.hasMreTokens())
{

String token = st.nextToken();
if (token.equals("'"))

{
String phrase = get Quot edPhrase(st);
if (phrase !'= null)
{
req\Wr ds. addEl ement ( phrase);
}
}
else if (!token.equals(" "))
{

CONTEXT Query Application A-17



The JSP Web Application

req\r ds. addEl emrent (t oken) ;

}

}
return getQueryString(reqWrds);

}

private String get Quot edPhrase(StringTokenizer st)

{
StringBuffer phrase = new StringBuffer();

String token = null;
whil e (st.hasMoreTokens() && (! (token = st.nextToken()).equals("'")))

{
}

return phrase.toString();

phrase. append(t oken);

private String get QueryString(Vector regqWrds)

{
StringBuffer query = new StringBuffer("");

int length = (reqWrds == null) ? 0 : reqWrds. size();

for (int ii=0; ii < length; ii++)
{
if (ii 1=0)
{
query. append(" & ");
}

query. append("{");
query. append(reqWrds. el enent At (ii));
query. append("}");

}

return query.toString();

%

A-18 Oracle Text Application Developer’s Guide



B

CATSEARCH Query Application

This appendix describes how to build a simple Web-search application using the
CATSEARCH index type, whether by writing your own code or using the Oracle Text
Wizard. The following topics are covered:

« CATSEARCH Web Query Application Overview
« The JSP Web Application

CATSEARCH Web Query Application Overview

The CTXCAT index type is well suited for merchandise catalogs that have short
descriptive text fragments and associated structured data. This appendix describes
how to build a browser based bookstore catalog that users can search to find titles
and prices.

This application is written in Java Server Pages (JSP).

The application can be produced by means of a catalog query application wizard,
which produces the necessary code automatically. You can view and download the
JSP application code, as well as the catalog query application wizard, at the Oracle
Technology Network Web site:

http://otn.oracle.conl products/text

This Web site also has complete instructions on how to use the catalog query
wizard.

The JSP Web Application

This application is based on Java Server pages and has the following requirements:

« Your Oracle Database (version 8.1.7 or higher) is up and running.

CATSEARCH Query Application B-1



The JSP Web Application

« You have a Web server such as Apache up and running and correctly
configured to send requests to the Oracle Database server.

Building the JSP Web Application

This application models an online bookstore where you can look up book titles and
prices.

Step 1 Create Your Table
You must create the table to store book information such as title, publisher, and
price. From SQL*Plus:

sql pl us>create tabl e book_catal og (
id nuneric,
title var char 2( 80),
publ i sher varchar2(25),
price nuneric )

Step 2 Load data using SQL*Loader
You load the book data from the operating system command line with SQL*Loader:

% sql | dr userid=ct xdeno/ ct xdeno control =l oader . ct|

Step 3 Create index set

You can create the index set from SQL*Plus:

sqgl pl us>begi n
ctx_ddl . create_i ndex_set (' bookset');
ctx_ddl . add_i ndex(' bookset', ' price');

ctx_ddl . add_i ndex(' bookset', ' publisher');
end;

Step 4 Index creation
You can create the CTXCAT index from SQL*Plus as follows:

sql pl us>create index book_idx on book_catalog (title)
i ndextype is ctxsys. ctxcat
paraneters('index set bookset');

Step 5 Try a simple search using CATSEARCH
You can test the newly created index in SQL*Plus as follows:

B-2 Oracle Text Application Developer’s Guide



The JSP Web Application

sql plus>select id, title from book_catal og
where catsearch(title,'Java',' price > 10 order by price') >0

Step 6 Copy the catalogSearch.jsp file to your Web site JSP directory.

When you do so, you can access the application from a browser. The URL should be
ht t p: / / localhost: port/ path/ cat al ogSear ch. j sp

The application displays a query entry box in your browser and returns the query
results as a list of HTML links. See Figure B-1.

CATSEARCH Query Application B-3



The JSP Web Application

Figure B—-1 Screen shot of Web Query Application

2} catalog Search - Microsoft Internet Explorer
| . = . D ot e ] (& &
Back Fomwar Sop Refresh Heome Search Favarikes
| Address ] http:fjmeyoung-lap.us.orsde.com: 781 jcatsearchicatseanchiop. jsp | @60 ||unks »|
Catalog Search
Search for: [Oracle PRICE is [< =] [3000 @
Results 1 - 2 of 2 matches
[ PRODUCT_MAME | PRICE
Cracle Intemnet Application Server Enterprise Edition _[250[!
Oracle Intemet Developer Suite [SIIID
H
8] Done [ [ meermet y
JSP Sample Code

This section lists the code used to build the example Web application. It includes the
following files:

« loader.ctl

« loader.dat

B-4 Oracle Text Application Developer's Guide



The JSP Web Application

catalogSearch.jsp

See Also: http://otn.oracle.com/products/text/

loader.ctl

LOAD DATA
I NFILE ' | oader. dat'
I NTO TABLE book_cat al og
REPLACE
FI ELDS TERM NATED BY ';'
(id, title, publisher, price)

loader.dat

19;

A History of Goats; SPINDR FT BOOKS; 50

Robust Recipes Inspired by Eating Too Mich; SPI NDRI FT BOCKS; 28
Atlas of Greenland H story; SPINDRI FT BOOXKS; 35

Bed and Breakfast Guide to Geenland; SPINDRI FT BOOKS; 37
Quitting Your Job and Running Away; SPINDRI FT BOCKS; 25

Best Noodl e Shops of Omaha ; SPINDRI FT BOCKS; 28

Conpl ete Book of Toes; SPINDRIFT BOOKS; 16

Conplete Idiot's Guide to Nuclear Technol ogy; SPI NDRI FT BOCKS; 28
Java Programming for Wodl and Aninmals; LONLIFE BOOK CO 10
Enmergency Surgery Tips and Tricks; SPOT- ON PUBLI SH NG, 10
Programmng with Your Eyes Shut; KLONDI KE BOOKS; 10

Forest Fires of North Anerica, 1858-1882; CALAM TY BOCXKS; 11
Spani sh in Twel ve M nutes; WRENCH BOOKS 11

Better Sex and Romance Through C++; CALAM TY BOOKS; 12

Oracle Internet Application Server Enterprise Edition; KANT BOOKS; 12
Oracle Internet Devel oper Suite; SPAMMIS BOXX CO 13

Telling the Truth to Your Pets; |BEX BOOKS INC, 13

Go Ask Alice's Restaurant; HUW NG BOCKS; 13

Life Begins at 93; CALAMTY BOCKS; 17

Dating Wile Drunk; BALLAST BOXXS; 14

The Second-to-Last Mhican; KLONDI KE BOOKS;, 14

Eye of Horus; An Oracle of Ancient Egypt; BIG LI TTLE BOCKS; 15
Introduction to Sitting Down; |BEX BOOKS INC, 15

catalogSearch.jsp

<Y%@ page inport="java.sql.* , oracle.jsp.dbutil.*" %

<j sp:useBean i d="name" class="oracle.jsp.jm.Jn String" scope="request" >
<j sp:set Property name="nanme" property="value" param="v_query" />

CATSEARCH Query Application B-5



The JSP Web Application

</j sp: useBean>

<%

String connStr="jdbc: oracl e: thin: @uachi ne-domai n- nanme: 1521: bet adev";

java.util.Properties info =

Connection conn = null;
ResultSet rset = null;
Statement stnt = null;

if (nanme.isEmpty()

%
<htm >

new java. util.Properties();

<title>Catal og Search</title>

<body>
<center>

<f or m net hod=post >

Search for

book title:

<input type=text nanme="v_query" size=10>
where publisher is
<sel ect name="v_publisher">

<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
</ sel ect>

val ue="ADDI SON WESLEY" >ADDI SON WESLEY

val ue="HUMWM NG BOCKS" >HUMM NG BOOKS

val ue="WRENCH BOOKS" >WRENCH BOCKS

val ue="SPOT- ON PUBLI SHI NG'>SPOT- ON PUBLI SHI NG
val ue="SPI NDRI FT BOOKS'>SPI NDRI FT BOCKS

val ue="LOW LI FE BOOK CO'>LOW LI FE BOXKX CO

val ue="KLONDI KE BOOKS" >KLONDI KE BOOKS

val ue="CALAM TY BOOKS">CALAM TY BOCKS

val ue="1 BEX BOOKS | NC'>| BEX BOOKS | NC

val ue="BI G LI TTLE BOOKS">BI G LI TTLE BOOKS

and price is

<sel ect name="v_op">
<option val ue="=">=
<option value="&t;">&t;
<option val ue="g&gt;">&gt;

</ sel ect>

<input type=text name="v_price" size=2>
<input type=subnit val ue="Search">

</form

B-6 Oracle Text Application Developer's Guide



The JSP Web Application

</center>
<hr>
</ body>
</htnm >
<%
1
el se {

String v_query = request.getParameter("v_query");
String v_publisher = request.getParameter("v_publisher");
String v_price = request.getParameter("v_price");

String v_op = request . get Parameter("v_op");
%
<htm >
<title>Catal og Search</title>
<body>
<center>

<f orm net hod=post action="cat al ogSearch. jsp">
Search for book title:
<input type=text name="v_query" val ue=
<% v_query %
si ze=10>
where publisher is
<sel ect name="v_publisher">
<option val ue="ADDI SON WESLEY" >ADDI SON VWESLEY
<option val ue="HUMM NG BOOKS" >HUWM NG BOOKS
<option val ue="WRENCH BOCKS" >WRENCH BOCKS
<option val ue="SPOT- ON PUBLI SH NG'>SPOT- ON PUBLI SHI NG
<option val ue="SPI NDRI FT BOOKS'>SPI NDRI FT BOCKS
<option val ue="LOW LI FE BOOK CO'>LOW LI FE BOOK CO
<option val ue="KLONDI KE BOOKS">KLONDI KE BOOKS
<option val ue="CALAM TY BOOKS">CALAM TY BOCOKS
<option val ue="1BEX BOOKS | NC'>l BEX BOOKS | NC
<option val ue="BI G LI TTLE BOOKS">BI G LI TTLE BOOKS
</sel ect >
and price is
<sel ect name="v_op">
<option val ue="=">=
<option value="&t;">&lt;
<option val ue="&gt; " >&gt;
</sel ect >
<input type=text name="v_price" val ue=
<% v_price % size=2>

CATSEARCH Query Application B-7



The JSP Web Application

<input type=subnit val ue="Search">
</form
</center>

<%
try {

Driver Manager . regi sterDriver(new oracle.jdbc.driver.OacleDriver() );
info.put ("user", "ctxdeno");

i nfo.put ("password","ctxdem");

conn = DriverManager. get Connection(connStr,info);

stm = conn. createStatenment();
String theQuery = request.getParaneter("v_query");
String thePrice = request.getParameter("v_price");

Il select id,title
/1 from book_cat al og
/'l where catsearch (title,"Java',' ' price >10 order by price') >0

/'l select title

/1 from book_catal og

/'l where catsearch(title,'Java','publisher ="''CALAMTY BOCKS''
and price < 40 order by price' )>0

String myQuery = "select title, publisher, price from book_catal og
where catsearch(title, '"+theQuery+"",
"publisher = "''"+v_publisher+""' and price "+v_op+thePrice+"
order by price' ) > 0";

rset = stnt.executeQuery(nyQuery);

String color = "ffffff";
String nmyTitle = null;
String myPublisher = null;
int myPrice = 0;

int items = 0;

while (rset.next()) {

myTitle = (String)rset.getString(1);

myPubl i sher = (String)rset.getString(2);
myPrice = (int)rset.getlnt(3);
items++;

if (items == 1) {

B-8 Oracle Text Application Developer's Guide



The JSP Web Application

%
<center>
<tabl e border="0">
<tr bgcol or="#6699CC' >
<th>Title</th>
<t h>Publ i sher</th>
<th>Price</th>
<[tr>
<%
1
%
<tr bgcol or="#<% col or %">
<td> <% nyTitle %</td>
<td> <% nyPubl i sher %</td>
<td> $<% nyPrice %</td>
</tr>
<%
if (color.conpareTo("ffffff") ==
color = "eeeeee";
el se
color = "ffffff";

}

} catch (SQLException e) {

%
<b>Error: </b> <% e %<p>
<%
} finally {
if (conn !=null) conn.close();
if (stmt !'=null) stnt.close();
if (rset !'=null) rset.close();
}
%
</tabl e>
</ center>
</ body>
</htm >
<%
}

)

CATSEARCH Query Application

B-9



The JSP Web Application

%

B-10 Oracle Text Application Developer’s Guide



Index

A base-letter conversion, 3-19
BASIC_LEXER, 3-16
BASIC_SECTION_GROUP object, 8-2
BFILE column, 3-12
indexing, 3-30
BINARY
format column value, 3-15
BLOB column, 3-12
indexing, 3-30
blocking operations
tuning queries with, 7-11
bypassing rows, 3-15

ABOUT query, 4-21

adding for your language, 9-10

case-sensitivity, 4-13

definition, 4-11
accents

indexing characters with, 3-19
ACCUM operator, 4-22
ADD_STOPCLASS procedure, 3-29
ADD_STOPTHEME procedure, 3-29
ADD_STOPWORD procedure, 3-28, 3-29
ADD_SUB_LEXER procedure

example, 3-26

administration tool, 10-7 C
ALTER INDEX command cantaloupe dispenser, A-3
rebuilding index, 3-38 case-sensitive
resuming failed index, 3-38 ABOUT query, 4-13
alternate spelling, 3-19 indexing, 3-18
alternative grammar, 4-18 queries, 4-13
alternative scoring, 4-18 thesaurus, 9-2
AND operator,  4-21 catalog application, 2-7
application example, 2-7
sa}mp_le, A-l, le CATSEARCH, 4-3
applications, updating, 11-1 creating index for, 3-33
attribute . operators, 4-27
searching XML, 8-15 SQL example, 4-4
attribute sections, 8-12 structured query, 4-4
AUTO_SECTION_GROUP object, 8-3 CATSEARCH queries, 2-9
automatic sections, 8-14 CHAR column, 3-12
Character Large Object (CLOB), 2-5
B character set

indexing, 3-16

background DML, 10-7 indexing mixed, 3-16

Index-1



character set column, 3-13
charset column, 3-16
CHARSET_FILTER, 3-7,3-16
Chinese indexing, 3-20
CHINESE_VGRAM_LEXER, 3-20
classification

Decision Tree (supervised), 6-9

rule-based, 6-4

simple, see rule-based classification

supervised, 6-8

SVM (supervised), 6-13

unsupervised
classification application

example, 2-10
CLOB (Character Large Object) datatype, 2-5
CLOB column, 3-12

indexing, 3-30
clustering, see unsupervised classification
column types

supported for indexing, 3-12
composite words

indexing, 3-19
CONTAINS

operators, 4-20

PL/SQL example, 4-2

query, 4-1

SQL example, 4-2

structured query, 4-3
CONTAINS query, 2-4
CONTEXT grammar, 4-20
CONTEXT index

about, 3-2

creating, 3-23, 3-30

HTML example, 2-3, 3-31, A-5
couch, self-tipping, A-3
counting hits, 4-26
CREATE INDEX command, 3-30
CREATE TABLE permissions, 11-3
CREATE_INDEX_SCRIPT, 10-4
CREATE_POLICY_SCRIPT, 10-4
CREATE_STOPLIST procedure, 3-28, 3-29
CTX_CLS.TRAIN procedure, 6-8
CTX_DDL.SYNC_INDEX procedure, 2-5, 3-40
CTX_DOC package, 5-1
CTX_INDEX_ERRORS view, 3-37,10-2

Index-2

CTX_OUTPUT.END_QUERY_LOG, 4-19
CTX_OUTPUT.START_QUERY_LOG, 4-19
CTX_PENDING view, 10-2
CTX_REPORT, 3-42
CTX_REPORT package, 10-3
CTX_REPORT_QUERY_LOG_SUMMARY, 4-19
CTX_REPORT_TOKEN_TYPE, 10-7
CTX_REPORT.CREATE_INDEX_SCRIPT, 10-4
CTX_REPORT.CREATE_POLICY_SCRIPT, 10-4
CTX_REPORT.DESCRIBE_INDEX, 10-3
CTX_REPORT.DESCRIBE_POLICY, 10-3
CTX_REPORT.INDEX_SIZE, 10-5
CTX_REPORT.INDEX_STATS, 10-6
CTX_REPORT.QUERY_LOG_SUMMARY, 10-6
CTX_REPORT.TOKEN_INFO, 10-7
CTX_THES package

about, 9-2
CTX_USER_INDEX_ERRORS view, 3-37,10-2
CTX_USER_PENDING view, 10-2
CTXAPP role, 2-1,10-1
CTXCAT grammar, 4-27
CTXCAT index

about, 3-3

about performance, 7-18

automatic synchronization, 2-10

creating, 2-7

example, 3-32
ctxkbtc

example, 9-9
ctxload

load thesaurus example, 9-2, 9-6, 9-8
CTXRULE index, 6-8

about, 3-3

allowable queries, 6-8

creating, 2-11, 3-35

limitations, 6-8

parameters, 6-8
CTXSYS user, 10-1

and DBA permissions, 11-1

and effective user, 11-2

and procedure ownership, 11-3

CREATE TABLE permissions, 11-3

migrating procedures owned by, 11-2,11-4

preferences, 11-3

synching and optimizing others’ indexes, 11-3



CTXXPATH index, 1-10
about, 3-4

D

data storage

index default, 3-30

preference example, 3-25
datastore

about, 3-6, 3-23
DATE column, 3-30
DBA permissions and CTXSYS, 11-1
DBMS_JOB.SUBMIT procedure, 3-40
Decision Tree supervised classification,
default thesaurus, 9-3
DEFAULT_INDEX_MEMORY, 7-20
defaults

index, 3-30
DESCRIBE_INDEX, 10-3
DETAIL_DATASTORE, 3-12

about, 3-14
diacritical marks

characters with, 3-19
DIRECT_DATASTORE, 3-12

about, 3-14

example, 3-24
DML

view pending, 3-39
DML processing

background, 10-7
DML queue, 10-2
document

classification, 3-35, 6-1
document format

affect on index performance, 7-21

affect on performance, 7-13
document formats

filtering, 3-14

supported, 3-13
document invalidation, 3-41
document presentation

about, 5-7
document sections, 3-28
document services

about, 5-7

6-9

DOMAIN_INDEX_NO_SORT hint
better throughput example, 7-9

drjobdml.sqgl script, 3-40

DROP INDEX command, 3-37

DROP_STOPLIST procedure, 3-29

dropping an index, 3-37

E

effective user, 11-2
EQUIV operator, 4-22

errors
DML, 10-2
viewing, 3-37

explain plan, 4-14
exporting statistics, 7-2
extensible query optimizer, 7-1

F

feedback

query, 4-14
field section

definition, 8-7

nested, 8-8

repeated, 8-9

visible and invisible, 8-8
file paths

storing, 3-12
FILE_ DATASTORE, 3-6

about, 3-12,3-14

example, 3-25
filter

about, 3-6, 3-23
FILTER procedure, 5-4
filtering

custom, 3-15

index default, 3-30

to plain textand HTML, 5-7
filtering documents, 3-14

to HTML and plain text, 5-4
FIRST_ROWS hint, 4-25

better response time example, 7-6

better throughput example, 7-9
format column, 3-13, 3-15

Index-3



formats indexing example, 2-3, A-5

filtering, 3-14 searching META tags, 8-14
supported, 3-13 zone section example, 3-28, 8-13
fragmentation of index, 3-41, 7-23 HTML_SECTION_GROUP object, 3-28, 8-2, 8-13
viewing, 3-42 with NULL_FILTER, 2-3,3-25, A-5
full themes
obtaining, 5-5 |
functional lookup, 7-13
fuzzy matching, 3-20 IGNORE
default, 3-31 format column value, 3-15
fuzzy operator, 4-23 importing statistics, 7-2
index
G about, 3-1
creating, 3-22,3-30
garbage collection, 3-41 dropping, 3-37
German getting report on, 10-3
alternate spelling, 3-19 optimizing, 3-41, 3-42
composite words, 3-19 rebuilding, 3-38
gist statistics on, 10-6
definition, 5-4 structure, 3-5,3-41
example, 5-6 synchronizing, 3-40, 10-7
GIST procedure, 5-6 viewing information on, 10-3
grammar index defaults
alternative, 4-18 general, 3-30
CTXCAT, 4-27 index engine
grammar CONTEXT, 4-20 about, 3-7
granting roles, 2-2,10-2 index errors
viewing, 3-37
H index fragmentation, 3-41, 7-23
index maintenance, 3-37
HASPATH operator, 8-16 index memory, 7-20
examples, 8-19 index synchronization, 2-5
HFEEDBACK procedure, 4-14 index types
HIGHLIGHT procedure, 5-2 choosing, 3-1
highlighting INDEX_SIZE, 10-5
about, 5-7 INDEX_STATS, 10-6
overview, 5-1 INDEX_STATS procedure, 3-42
highlighting documents, 2-4 indexed lookup, 7-13
highlighting text, 5-1 indexing
highlighting themes, 5-1 and views, 3-9
hit count, 4-26 bypassing rows, 3-15
home air dirtier, A-3 considerations, 3-9
HTML overview of process, 3-5
filtering to, 5-4,5-7 parallel, 3-8, 7-21
indexing, 3-25, 8-2 resuming failed, 3-38

Index-4



special characters, 3-17
indexing performance

FAQs, 7-19

parallel, 7-22
indexing time, 7-19
INPATH operator, 8-16

examples, 8-17
INSO filter, 7-21
INSO_FILTER, 3-7,3-15, 3-16

J

Japanese indexing, 3-20
JAPANESE_LEXER, 3-20
Jdeveloper

Text wizard, 2-6, A-1, B-1

K

knowledge base
about, 9-9
augmenting, 9-7
linking new terms, 9-8
supported character set, 9-10
user-defined, 9-10
Korean indexing, 3-20
KOREAN_MORP_LEXER, 3-20

L

language

default setting for indexing, 3-31
language specific features, 3-18
languages

indexing, 3-16
language-specific knowledge base, 9-10
lexer

about, 3-7,3-23
list of themes

definition, 5-4

obtaining, 5-5
loading text

about, 3-10

LOB columns
improving query performance, 7-15

indexing, 3-30
local partitioned index, 7-17
improved response time, 7-7
location of text, 3-10
logical operators, 4-21

M

magnet, pet see pet magnet
maintaining the index, 3-37
marked-up document

obtaining, 5-2
MARKUP procedure, 2-4,5-2
MATCHES

about, 4-6

PL/SQL example, 3-36,4-8

SQL example, 4-6
MATCHES operator, 2-12, 6-7
materialized views, indexes on
MAX_INDEX_MEMORY, 7-20
MDATA operator, 8-9
MDATA section, 8-9
memory allocation

index synchronization, 7-24

indexing, 7-20
querying, 7-15
META tag

creating zone section for, 8-14
metadata

adding, 8-9
removing, 8-9
section, 8-9

migrating from previous releases, 11-1
migrating procedures, 11-2
migrating to previous releases, 11-4
mixed formats
filtering, 3-15
mixed query, 8-9
MULTI_COLUMN_DATASTORE, 3-12
about, 3-14
example, 3-24
MULTI_LEXER, 3-17
example, 3-26
multi-language columns
indexing, 3-17

Index-5



multi-language stoplist Oracle XML DB, 1-7

about, 3-29 Oracle9i Text Manager, 10-7
multiple CONTAINS out of line LOB storage
improving performance, 7-15 improving performance, 7-15
MVIEW see materialized views
P
N parallel indexing, 3-8, 7-21
NCLOB column, 3-30 partitioned table, 7-22
NEAR operator, 4-22 parallel queries, 7-10, 7-18
NEAR_ACCUM operator, 4-22 paramstring for CREATE INDEX, 3-30
nested zone sections, 8-7 partitioned index, 7-17
NESTED _DATASTORE, 3-12 improved response time, 7-7
about, 3-14 path section searching, 8-16
NEWS_SECTION_GROUP object, 8-3 PATH_SECTION_GROUP
NOT operator, 4-22 example, 8-17
NULL_FILTER, 3-6 pending DML
example, 2-3,3-25, A-5 viewing, 3-39
NULL_SECTION_GROUP object, 8-2 pending updates, 10-2
NUMBER column, 3-30 performance tuning
indexing, 7-19
o) querying, 7-12
updating index, 7-23
offset information pet magnet, A-3
highlight, 5-2 gist, 5-12
operator highlighted term, 5-10
MDATA, 8-9 illustration, 5-9
operators themes, 5-11
CATSEARCH, 4-27 phrase query, 4-10
CONTAINS, 4-20 pizza shredder, A-3
logical, 4-21 plain text
thesaurus, 9-2 filtering to, 5-4
optimizing index, 3-41 indexing with NULL_FILTER, 3-25
example, 3-42 plain text filtering, 5-7
single token, 3-42 PL/SQL functions
optimizing queries, 4-25,7-1 calling in contains, 4-25
FAQs, 7-12 preferences
response time, 7-4 and CTXSYS, 11-3
statistics, 7-1 creating (examples), 3-24
throughput, 7-9 creating with admin tool, 10-7
with blocking operations, 7-11 dropping, 3-39
OR operator, 4-22 previous releases, migrating from, 11-1
ora previous releases, migrating to, 11-4
contains, 1-8 printjoins character, 3-17
Oracle Enterprise Manager, 10-7 PROCEDURE_FILTER, 3-15

Index-6



PSP application, A-4,B-1

Q

query
ABOUT, 4-21
analysis, 4-18
blocking operations, 7-11
case-sensitive, 4-13
CATSEARCH, 4-3,4-4
CONTAINS, 4-1
counting hits, 4-26
CTXRULE, 6-8
getting reporton, 10-3
log, 4-18
MATCHES, 4-6
mixed, 8-9
optimizing for throughput, 7-9
overview, 4-1
parallel, 7-10
speeding up with MDATA, 8-9
viewing information on, 10-3
viewing log of, 10-6
query analysis, 4-18
query application
example, 2-2
sample, 1-2
query explain plan, 4-14
query expressions, 4-12
query features, 4-19
query feedback, 4-14
query language, 4-17
query log, 4-18, 10-6
query optimization, 4-25
FAQs, 7-12
response time, 7-4
query performance
FAQs, 7-12
query relaxation, 4-16
query rewrite, 4-16
query template, 4-23, 4-28
QUERY_LOG_SUMMARY, 10-6
queue
DML, 10-2

R

rebuilding an index, 3-38
relaxing queries, 4-16
REMOVE_SQE procedure, 4-24
REMOVE_STOPCLASS procedure, 3-29
REMOVE_STOPTHEME procedure, 3-29
REMOVE_STOPWORD procedure, 3-28, 3-29
response time

improving, 7-4

optimizing for, 4-25
result buffer size

increasing, 7-11
resuming failed index, 3-38
rewriting queries, 4-16
roles

granting, 2-2,10-2

system-defined, 10-1
rule-based classification, 6-4

S

sample application, A-1,B-1
scoring
alternative, 4-18
searching
XML, 1-7
section
attribute, 8-12
field, 8-7
groups and types, 8-5
HTML example, 3-28
MDATA, 8-9
nested, 8-7
overlapping, 8-7
repeated zone, 8-6
special, 8-12
stop section, 8-9
types and groups, 8-5
zone, 8-5
section group
about, 3-23
and section types, 8-5
creating with admin tool, 10-7
section searching

Index-7



about, 4-15, 8-1
enabling, 8-1
HTML, 8-13
sectioner
about, 3-7
sectioning
automatic, 8-14
path, 8-16
security improvements in current release, 11-1
self-tipping couch, A-3
SGA memory allocation, 7-20
simple classification, see rule-based classification
single themes
obtaining, 5-5
size of index, viewing, 10-5
skipjoins character, 3-17
SORT_AREA _SIZE, 7-11,7-15,7-20
special characters

indexing, 3-17
special sections, 8-12
spelling

alternate, 3-19
SQE operator, 4-23
statistics
exporting and importing, 7-2
optimizing with, 7-2
stem operator, 3-20, 4-23
stemming
default, 3-31
improving performance, 7-16
stop section, 8-9
stopclass, 3-29
stoplist, 3-28
about, 3-23
creating with admin tool, 10-7
default, 3-31
multi-language, 3-22, 3-29
PL/SQL procedures, 3-29
stoptheme, 3-29
about, 3-21
definition, 4-11
stopword, 3-28, 3-29
about, 3-21,4-10
case-sensitive, 4-13
storage

Index-8

about, 3-23
STORE_SQE procedure, 4-23, 4-24
stored query expressions, 4-23
storing text, 3-10
about, 3-12
structure of index, 3-41
structured query
example, 3-32
supervised classification, 6-8
Decision Tree, 6-9
SVM supervised classification, 6-13
memory requirements, 6-14
SYN operator, 9-5
SYNC_INDEX procedure, 2-5, 3-40
synching and optimizing others’ indexes,
synchronize index, 2-5
synchronizing index, 3-40, 10-7
improving performance, 7-23
synonyms
defining, 9-5

T

talking pillow, A-3
template queries, 4-23, 4-28
TEXT

format column value, 3-15
text column

supported types, 3-12
text highlighting, 5-1
Text Manager tool, 10-7
text storage, 3-10
theme functionality

adding, 9-10
theme highlighting, 5-1
theme summary

definition, 5-4
themes
indexing, 3-18

THEMES procedure, 5-5
thesaural queries

about, 4-14
thesaurus
about, 9-1

adding to knowledge base, 9-7



case-sensitive, 9-2

DEFAULT, 09-3

default, 9-3

defining terms, 9-4

hierarchical relations, 9-5

loading custom, 9-6

operators, 9-2

supplied, 9-4

using in application, 9-6
thesaurus operator, 4-23
throughput

improving query, 7-9
tildes

indexing characters with, 3-19
TOKEN_INFO, 10-7
TOKEN_TYPE, 10-7
tracing, 7-9
TRAIN procedure, 6-8
tuning queries

for response time, 7-4

for throughput, 7-9

increasing result buffer size, 7-11

with statistics, 7-1

U

umlauts
indexing characters with, 3-19
unsupervised classification, 6-16
updating index performance
FAQs, 7-23
updating your applications, 11-1
URL_DATASTORE

about, 3-14

example, 3-24
URLs

storing, 3-13
user

creating Oracle Text, 2-1

system-defined, 10-1
USER_DATASTORE, 3-9

about, 3-14
USER_FILTER, 3-15

\%

VARCHAR2 column, 3-12
viewing information on indexes and queries,
viewing size of index, 10-5
views
and indexing, 3-9
materialized

w

10-3

wildcard operator, 4-23
improving performance, 7-16
WITHIN operator, 3-28
wizard
Oracle Text addin, 2-6, A-1, B-1
word query, 4-10
case-sensitivity, 4-13

wordlist

about, 3-23
X
XML DB, 1-7
XML documents

attribute searching, 8-15
doctype sensitive sections, 8-16
indexing, 8-3
section searching, 8-14
XML searching, 1-7
XML_SECTION_GROUP object, 8-2

Z

zone section
definition, 8-5
nested, 8-7
overlapping, 8-7
repeating, 8-6

Index-9



Index-10



	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 Oracle Text Application Development
	What is Oracle Text?
	Designing Your Application
	Text Queries on Document Collections
	Flowchart of Text Query Application

	Queries on Catalog Information
	Flowchart for Catalog Query Application

	Document Classification
	XML Searching
	Using Oracle Text
	Using the Oracle XML DB Framework
	Combining Oracle Text features with Oracle XML DB
	Using the Text-on-XML Method
	Using the XML-on-Text Method



	2 Getting Started with Oracle Text
	Overview of Getting Started with Oracle Text
	Creating an Oracle Text User
	Query Application Quick Tour
	Building Web Applications with the Oracle Text Wizard
	Oracle JDeveloper
	Oracle Text Wizard Addins
	Oracle Text Wizard Instructions


	Catalog Application Quick Tour
	Classification Application Quick Tour
	Steps for Creating a Classification Application


	3 Indexing
	About Oracle Text Indexes
	Type of Index
	Structure of the Oracle Text CONTEXT Index
	Merged Word and Theme Index

	The Oracle Text Indexing Process
	Datastore Object
	Filter Object
	Sectioner Object
	Lexer Object
	Indexing Engine

	Partitioned Tables and Indexes
	Querying Partitioned Tables

	Creating an Index Online
	Parallel Indexing
	Indexing and Views

	Considerations For Indexing
	Location of Text
	Supported Column Types
	Storing Text in the Text Table
	CONTEXT Data Storage
	CTXCAT Data Storage

	Storing File Path Names
	Storing URLs
	Storing Associated Document Information
	Format and Character Set Columns
	Supported Document Formats
	Summary of DATASTORE Types

	Document Formats and Filtering
	No Filtering for HTML
	Filtering Mixed-Format Columns
	Custom Filtering

	Bypassing Rows for Indexing
	Document Character Set
	Mixed Character Set Columns

	Document Language
	Languages Features Outside BASIC_LEXER
	Indexing Multi-language Columns

	Indexing Special Characters
	Printjoins Character
	Skipjoins Character
	Other Characters

	Case-Sensitive Indexing and Querying
	Language Specific Features
	Indexing Themes
	Base-Letter Conversion for Characters with Diacritical Marks
	Alternate Spelling
	Composite Words
	Korean, Japanese, and Chinese Indexing

	Fuzzy Matching and Stemming
	Better Wildcard Query Performance
	Document Section Searching
	Stopwords and Stopthemes
	Multi-Language Stoplists

	Index Performance
	Query Performance and Storage of LOB Columns

	Index Creation
	Procedure for Creating a CONTEXT Index
	Creating Preferences
	Datastore Examples
	Specifying DIRECT_DATASTORE
	Specifying MULTI_COLUMN_DATASTORE
	Specifying URL Data Storage
	Specifying File Data Storage

	NULL_FILTER Example: Indexing HTML Documents
	PROCEDURE_FILTER Example
	BASIC_LEXER Example: Setting Printjoins Characters
	MULTI_LEXER Example: Indexing a Multi-Language Table
	BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

	Creating Section Groups for Section Searching
	Example: Creating HTML Sections

	Using Stopwords and Stoplists
	Multi-Language Stoplists
	Stopthemes and Stopclasses
	PL/SQL Procedures for Managing Stoplists

	Creating an Index
	Creating a CONTEXT Index
	CONTEXT Index and DML
	Default CONTEXT Index Example
	Custom CONTEXT Index Example: Indexing HTML Documents

	Creating a CTXCAT Index
	CTXCAT Index and DML
	About CTXCAT Sub-Indexes and Their Costs
	Creating CTXCAT Sub-indexes
	Structured Query Clause Category A
	Structured Query Clause Category B

	Creating CTXCAT Index

	Creating a CTXRULE Index
	Create a Table of Queries
	Using CTX_CLS.TRAIN

	Create the CTXRULE Index
	Classifying a Document


	Index Maintenance
	Viewing Index Errors
	Dropping an Index
	Resuming Failed Index
	Example: Resuming a Failed Index

	Rebuilding an Index
	Example: Rebuilding and Index

	Dropping a Preference
	Example


	Managing DML Operations for a CONTEXT Index
	Viewing Pending DML
	Synchronizing the Index
	Setting Background DML

	Index Optimization
	CONTEXT Index Structure
	Index Fragmentation
	Document Invalidation and Garbage Collection
	Single Token Optimization
	Viewing Index Fragmentation and Garbage Data
	Examples: Optimizing the Index



	4 Querying
	Overview of Queries
	Querying with CONTAINS
	CONTAINS SQL Example
	CONTAINS PL/SQL Example
	Structured Query with CONTAINS

	Querying with CATSEARCH
	CATSEARCH SQL Query
	CATSEARCH Example

	Querying with MATCHES
	MATCHES SQL Query
	MATCHES PL/SQL Example

	Word and Phrase Queries
	CONTAINS Phrase Queries
	CATSEARCH Phrase Queries

	Querying Stopwords
	ABOUT Queries and Themes
	Querying Stopthemes

	Query Expressions
	CONTAINS Operators
	CATSEARCH Operator
	MATCHES Operator

	Case-Sensitive Searching
	Word Queries
	Stopwords and Case-Sensitivity

	ABOUT Queries

	Query Feedback
	Query Explain Plan
	Using a Thesaurus in Queries
	Document Section Searching
	Using Query Templating
	Query Rewrite
	Query Relaxation
	Query Language
	Alternative Scoring
	Alternative Grammar
	Query Analysis
	Other Query Features

	The CONTEXT Grammar
	ABOUT Query
	Logical Operators
	Section Searching
	Proximity Queries with NEAR and NEAR_ACCUM Operators
	Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	Using CTXCAT Grammar
	Stored Query Expressions
	Defining a Stored Query Expression
	SQE Example

	Calling PL/SQL Functions in CONTAINS
	Optimizing for Response Time
	Other Factors that Influence Query Response Time

	Counting Hits
	SQL Count Hits Example
	Counting Hits with a Structured Predicate
	PL/SQL Count Hits Example


	The CTXCAT Grammar
	Using CONTEXT Grammar with CATSEARCH


	5 Document Presentation
	Highlighting Query Terms
	Text highlighting
	Theme Highlighting
	CTX_DOC Highlighting Procedures
	Highlight Procedure
	Markup Procedure
	CTX_DOC.MARKUP Example

	Filter Procedure
	CTX_DOC.POLICY_FILTER Procedure


	Obtaining Lists of Themes, Gists, and Theme Summaries
	Lists of Themes
	In-Memory Themes
	Result Table Themes
	Single Themes
	Full Themes


	Gist and Theme Summary
	In-Memory Gist
	Result Table Gists
	Theme Summary


	Document Presentation and Highlighting
	Highlighting Example
	Document List of Themes Example
	Gist Example


	6 Document Classification
	Overview
	Classification Applications

	Classification Solutions
	Rule-Based Classification
	Rule-based Classification Example
	CTXRULE Parameters and Limitations

	Supervised Classification
	Decision Tree Supervised Classification
	Decision Tree Supervised Classification Example
	Create the Category Rules
	Index Rules to Categorize New Documents


	SVM-Based Supervised Classification
	SVM-Based Supervised Classification Example


	Unsupervised Classification (Clustering)
	Clustering Example


	7 Performance Tuning
	Optimizing Queries with Statistics
	Collecting Statistics
	Example

	Re-Collecting Statistics
	Deleting Statistics

	Optimizing Queries for Response Time
	Other Factors that Influence Query Response Time
	Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
	About the FIRST_ROWS Hint

	Improved Response Time using Local Partitioned CONTEXT Index
	Range Search on Partition Key Column
	ORDER BY Partition Key Column

	Improved Response Time with Local Partitioned Index for Order by Score

	Optimizing Queries for Throughput
	CHOOSE and ALL ROWS Modes
	FIRST_ROWS Mode

	Tracing
	Parallel Queries
	Tuning Queries with Blocking Operations
	Frequently Asked Questions a About Query Performance
	What is Query Performance?
	What is the fastest type of text query?
	Should I collect statistics on my tables?
	How does the size of my data affect queries?
	How does the format of my data affect queries?
	What is a functional versus an indexed lookup?
	What tables are involved in queries?
	Does sorting the results slow a text-only query?
	How do I make a ORDER BY score query faster?
	Which Memory Settings Affect Querying?
	Does out of line LOB storage of wide base table columns improve performance?
	How can I make a CONTAINS query on more than one column faster?
	Is it OK to have many expansions in a query?
	How can local partition indexes help?
	Should I query in parallel?
	Should I index themes?
	When should I use a CTXCAT index?
	When is a CTXCAT index NOT suitable?
	What optimizer hints are available, and what do they do?

	Frequently Asked Questions About Indexing Performance
	How long should indexing take?
	Which index memory settings should I use?
	How much disk overhead will indexing require?
	How does the format of my data affect indexing?
	Can parallel indexing improve performance?
	How can I improve index performance for creating local partitioned index?
	How can I tell how much indexing has completed?

	Frequently Asked Questions About Updating the Index
	How often should I index new or updated records?
	How can I tell when my indexes are getting fragmented?
	Does memory allocation affect index synchronization?


	8 Document Section Searching
	About Document Section Searching
	Enabling Section Searching
	Create a Section Group
	Define Your Sections
	Index your Documents
	Section Searching with WITHIN Operator
	Path Searching with INPATH and HASPATH Operators

	Section Types
	Zone Section
	Repeated Zone Sections
	Overlapping Zone Sections
	Nested Zone Sections

	Field Section
	Visible and Invisible Field Sections
	Nested Field Sections
	Repeated Field Sections

	Stop Section
	MDATA Section
	Attribute Section
	Special Sections


	HTML Section Searching
	Creating HTML Sections
	Searching HTML Meta Tags
	Example: Creating Sections for <META>Tags


	XML Section Searching
	Automatic Sectioning
	Attribute Searching
	Creating Attribute Sections
	Searching Attributes with the INPATH Operator

	Creating Document Type Sensitive Sections
	Path Section Searching
	Creating Index with PATH_SECTION_GROUP
	Top-Level Tag Searching
	Any-Level Tag Searching
	Direct Parentage Searching
	Tag Value Testing
	Attribute Searching
	Attribute Value Testing
	Path Testing
	Section Equality Testing with HASPATH



	9 Working With a Thesaurus
	Overview of Thesauri
	Thesaurus Creation and Maintenance
	CTX_THES Package
	Thesaurus Operators
	ctxload Utility

	Case-sensitive Thesauri
	Case-insensitive Thesauri
	Default Thesaurus
	Supplied Thesaurus
	Supplied Thesaurus Structure and Content
	Supplied Thesaurus Location


	Defining Thesaural Terms
	Defining Synonyms
	Defining Hierarchical Relations

	Using a Thesaurus in a Query Application
	Loading a Custom Thesaurus and Issuing Thesaural Queries
	Advantage
	Limitations

	Augmenting Knowledge Base with Custom Thesaurus
	Advantage
	Limitations
	Linking New Terms to Existing Terms
	Example: Linking New Terms to Existing Terms

	Loading a Thesaurus with ctxload
	Compiling a Loaded Thesaurus


	About the Supplied Knowledge Base
	Adding a Language-Specific Knowledge Base
	Limitations



	10 Administration
	Oracle Text Users and Roles
	CTXSYS User
	CTXAPP Role
	Granting Roles and Privileges to Users

	DML Queue
	The CTX_OUTPUT Package
	The CTX_REPORT Package
	Servers
	Administration Tool

	11 Migrating Applications from Earlier Releases
	Security Improvements in Oracle Text
	CTXSYS No Longer Has DBA Permissions
	Migrating CTXSYS-Owned Procedures
	Effective User During Indexing
	Procedures Do Not Need to Be Owned by CTXSYS
	Synching and Optimizing of Other Users' Indexes
	CTX Packages and Invoker's Rights
	CREATE TABLE Permissions

	Migrating Back to Previous Releases

	A CONTEXT Query Application
	Web Query Application Overview
	The PSP Web Application
	Web Application Prerequisites
	Building the Web Application
	PSP Sample Code
	loader.ctl
	loader.dat
	search_htmlservices.sql
	search_html.psp


	The JSP Web Application
	Web Application Prerequisites
	JSP Sample Code
	search_html.jsp



	B CATSEARCH Query Application
	CATSEARCH Web Query Application Overview
	The JSP Web Application
	Building the JSP Web Application
	JSP Sample Code
	loader.ctl
	loader.dat
	catalogSearch.jsp



	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


