ORACLE

Oracle® XML DB
Developer's Guide
10g Release 1 (10.1)
Part No. B10790-01

December 2003

This manual describes Oracle XML DB components and
related tools, such as SQL*Loader and Oracle Enterprise
Manager, and how to use them with Oracle XML DB. It
includes guidelines and examples for managing, loading,
storing, processing, accessing, generating, and searching
XML data stored in Oracle Database.

Oracle XML DB Developer's Guide, 10g Release 1 (10.1)
Part No. B10790-01

Copyright © 2002, 2003, Oracle. All rights reserved.
Primary Author: Shelley Higgins

Contributing Author: Drew Adams, Nipun Agarwal, Abhay Agrawal, Omar Alonso, David Anniss,
Sandeepan Banerjee, Mark Bauer, Ravinder Booreddy, Stephen Buxton, Yuen Chan, Sivasankaran
Chandrasekar, Vincent Chao, Ravindranath Chennoju, Dan Chiba, Mark Drake, Fei Ge, Wenyun He, Thuvan
Hoang, Sam Idicula, Namit Jain, Neema Jalali, Bhushan Khaladkar, Viswanathan Krishnamurthy,
Muralidhar Krishnaprasad, Geoff Lee, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick, Nicolas
Montoya, Steve Muench, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar, Vipul Shah,
Cathy Shea, Asha Tarachandani, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha
Tarachandani, Priya Vennapusa, James Warner

Contributor: Reema Al-Shaikh, Harish Akali, Vikas Arora, Deanna Bradshaw, Paul Brandenstein, Lisa
Eldridge, Craig Foch, Wei Hu, Reema Koo, Susan Kotsovolos, Sonia Kumar, Roza Leyderman, Zhen Hua
Liu, Diana Lorentz, Yasuhiro Matsuda, Valarie Moore, Bhagat Nainani, Visar Nimani, Sunitha Patel, Denis
Raphaely, Rebecca Reitmeyer, Ronen Wolf

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNA US YOUT COMMEBNTS ...t aessesnans XXVii
PUrEIACE ...ttt XXIX
J gkl [<Te NN U s A=) Lol TR RR XXIX
Documentation AcCesSIDILIEYccceuruiiiiiiiiiiiiiiiiiiiicccc s XXIX
114 (6] 101 5 < T O URRN XXX
ReElated DOCUIMEIES ..ottt et e s eae e e e et e e e s et e e saaeeesateeessaeeesaaeesssteessneeeesnnees XXXIV
CONMVEIIEIONS .eoiiieeeiieeeeetteeee e e ettt e e e eeieeeeeeeesaaeeesseseaseteeeesssaseeessasassseessssasseeessssnnseseeessasssseeessssnrseessssnns XXXV
What's NeW 1IN Oracle XML DB? ...t XXXIX
Oracle XML DB: Oracle Database 10g Release 1 (10.1), Enhancementsccccccccceuvuririniinnnnee. XXXiX
Oracle Text ENNANCEIMEITES.........coouiiiuiieiiieieceieetie ettt ettt e et esateeaeesaeesseesaessaseesseesssessneesnseanns xl
Oracle Streams Advanced Queuing (AQ) SUPPOTt ... Xl
Oracle XDK Support for XIMLTYPEccocuiuiiiiiiiiiiciccccccecesecscsssssecss s xli

Part | Introducing Oracle XML DB

1 Introducing Oracle XML DB

Introducing Oracle XML DB..........cccooiiiiiiiiiiii s 1-1
Oracle XML DB ArchitectUurecccooocivieiriiinieiiciriceeceeetetre ettt 1-2
XMLTYPE STOTAZE......cucvviiieiieiiicerie ettt bbb e 1-3
Oracle XML DB REPOSILOTYc.ccuiuiuiiiiiiiiiiiiiiiiiiiicicieieiicicicieeiecscieese e 1-4
APIs for Accessing and Manipulating XMLcccccceoiiiiiiiniieinrreeeeeeeeeeeeeeeeeeenes 1-4

XIMIL SEIVICES ...cvenvvirienerieitrietrtetrietst ettt se et st st sa ettt sttt s b ettt sa b sa b sa b naebenaene 1-5

XML Repository ArchiteCtUreccccocueiriiiiiiiiiiiiiiiiiiiiiiccc e 1-6

How Does Oracle XML DB Repository Work?.........ccccccevueieeninecenreeeeeeeeeeeeeeeeeenas 1-7

Oracle XML DB Protocol Architecture.........cccoeeereeineniniirinieninineinieenccnccneeeneeeneeeseeeenene 1-8
Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)ccccccvuvrivivnnniniiinnns 1-9
Oracle XIML DB FEAtULEscc.ccooveiriiirieinicinieirieeeteieteeetee ettt ssese e s ne s senen 1-9
XIMLTYPO ..ottt bbb bbb 1-10
XIML SCREIMA ..ttt ettt ettt ettt sttt sttt st et b et s bbbt ebe e be e ene 1-11
Structured Versus Unstructured StOrage...........cccovvvviiininiiiiiiiiiiceccne 1-13
XML / SQL DUALLY ..ottt 1-14
SQL /XML ICITS Standard Operators...........ccccciiiriririiiiiiiiininiiicieeeeeeeeeeeeseeeeeeeneeees 1-15
XPath and XQUETy REWTILEc.c.ceuiuiuriiiiiiiiiiiiciiceieeeteeeeeeeeee e seaeees 1-16

Oracle XIML DB BeREfitsooooouviiiiiiiiiieieeeee ettt e et e et e e eaae s esaveessaesessanessnnneessnsesennes 1-17

Unifying Data and Content with Oracle XML DBccccooiiiiiiccee, 1-18
Exploiting Database Capabilities..........ccccoeueuiuiiriiiriiiiiiiiiriiccceeeceeeeeeeceeeeeeeeees 1-19
Exploiting XML Capabilitiescccooiiiiiiiiiiieiii s 1-20

Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents............ 1-21

Oracle XML DB Helps You Integrate Applicationscccceceueueueieureiniiiiinnnieiciceieeceeeeees 1-21

When Your Data Is Not XML You Can Use XMLType Viewsccccoovriiiiiniiniciiininiciene, 1-21

Searching XML Data Stored in CLOBs Using Oracle Text............ccccocovviinnnnnnnnniiinnn, 1-22
Building Messaging Applications using Oracle Streams Advanced Queuing......................... 1-22
Managing Oracle XML DB Applications with Oracle Enterprise Manager.................ccccccoo...e. 1-23
Requirements for Running Oracle XML DB ..o 1-23
Standards Supported by Oracle XML DB ..o 1-23
Oracle XML DB Technical SUPPOIt..........cccocouviiiiiiiiiiiiiiiiiiiiiicc s 1-24
Oracle XML DB Examples Used in This Manual..............cccccccovninnnninnnni, 1-24
Further Oracle XML DB Case Studies and Demonstrations...............ccccocoeeeiiiiiiccceennn, 1-24

2 Getting Started with Oracle XML DB

Installing Oracle XML DBccooiiiiiiierre s 2-1
When to Use Oracle XML DBcccooiiiiiiiiiiiiiic s 2-1
Designing Your XML Application ... 2-2
Oracle XML DB Design Issues: Introductionccccoooiiiiiiiinccn 2-2
A DAt s 2-2
D. ACCESS. ...t 2-2
C. Application LangUAaGEc.ccceuiuiiiiiiiiiiiiiiccccccccccecce e 2-3
. PrOCESSING ceevviiett et 2-3
€. STOTAZE et 2-3
Oracle XML DB Application Design: a. How Structured Is Your Data?ccoeiinnnnn. 2-4
XML Schema-Based or Non-Schema-Based ..o, 2-4
Oracle XML DB Application Design: b. Access Modelsccccoviininnniinnnnnninine, 2-5
Oracle XML DB Application Design: c. Application Language.............ccccccccevviniiinniinnnnnnn. 2-6
Oracle XML DB Application Design: d. Processing Modelscccocovvnniiiiiininiinnnns 2-7
Messaging OPHIONS ..ot 2-7
Oracle XML DB Design: e. Storage Modelscccooviiiiiiiniiinrnicrreeeceeeeeeeeeeae 2-8
Using XMLTYPe Tables........c.coiimiiiiiiicie s 2-8
USINg XMLTYPE VIEWSoviniiiiiiiiicictcetcctc st 2-9
Oracle XML DB PerfOrmance.............cccoovviiinirininininiiiineeieesessee e 2-9
XML Storage Requirements..............courueieiiiiciiiiiccici 2-10
XML Memory Management ... nene s 2-10
XML Parsing Optimizations ..o 2-11
Node-Searching Optimizations.........ccoceueiiiiiiiiiiii e 2-11
XML Schema OptimizZations...........ccceuiiiiiiiiiiiiiiiiiiiiiiii s 2-11
Load Balancing Through Cached XML Schema.........cccccccceiiiiiiiiinniiiiccccccceceeees 2-12
Reduced Non-Native Code Bottlenecksccccevvvveiiiiiiiiiiiiiiiiiiiiiiicccccececs 2-12
Reduced Java Type Conversion Bottlenecks...........ccooverueieiiicieiiinicciciccecce, 2-12

3 Using Oracle XML DB
Storing XML as XIMLTYPE.........ccoiiiiiiiiiiiiiee st 3-2

What i XIMLTYPE ..ottt 3-2

Benefits of the XMLType Datatype and APl..........ccccoovoiiiiiie e 3-3
WHhen t0 USE XIMLTYPE ...ttt 3-3
There are Two Main Ways to Store XMLType Data: LOBs and Structured............c.cccocoece... 3-4
Advantages and Disadvantages of XML Storage Options in Oracle XML DB......................... 3-4
When to Use CLOB Storage for XMLTYPE ..ot 3-4
Creating XMLType Tables and Columns.............cccccovvviiiniiiininiiiiiian 3-4
Loading XML Content Into Oracle XML DBccccccooiniiniiiiin, 3-5
Loading XML Content into Oracle XML DB Using SQL or PL/SQL.......ccccccceevnnniinnnnns 3-5
Loading XML Content into Oracle XML DB Using Java.........cccocoeueiiiineieiiiiciceecceeeie 3-7
Loading XML Content into Oracle XML DB Using Ccccccooiiiiiiiiinieiceeeecceie 3-7
Loading Very Large XML Files of Smaller XML Documents into Oracle Database.............. 3-12
Loading Large XML Files into Oracle Database Using SQL*Loader..........cccccccoevruririinnnnnn. 3-12
Loading XML Documents into Oracle XML DB Repositorycccccoceueiiimeeieiiccieieiccnnnn, 3-13
Loading Documents into Oracle XML DB Repository Using Protocolsccccceueuvucunnnnee. 3-13
Handling Non-ASCII XML DocUmMENts.........cccovoiiuiieiiicieieccieie e 3-14
XML Encoding Declaration ...t 3-14
Loading Non-ASCII XML DOCUMENLS.........ccceururiiiimiiiiiiiricicieieeeieeeeeeeeeeeeeeeeeeeeeeeeeees 3-15
Retrieving Non-ASCII XML Documents.............coooeueiiiiiiiiiiiiicieecieecie i 3-15

APIs Introduced in 10g Release 1 for Handling Non-ASCII Documents.............cc.......... 3-16
Introducing the W3C XML Schema Recommendation..............c.cccocoovvviinnnnninnncnne 3-16
XML Instance DOCUMENTESc.coiiiiiiiiiic s 3-16
The Schema for SChemas..........cccciiiiiiiiiiiiiii s 3-17
Editing XML SChemasc.cccceuriiiiiiiiiiieccee e 3-17
XML Schema Featurescccociiiiiiiiiiiiiiiiiciii s 3-17
Text Representation of the PurchaseOrder XML Schema..........ccccccooviviviiniinniiinnnnnn 3-17
Graphical Representation of the PurchaseOrder XML Schema.........cccccceeuvuvuvuveruiucnnnnnne. 3-20

XML Schema and Oracle XML DB..........ccccccoooiiiiiiiiiiiiiiic s 3-21
Why Use XML Schema With Oracle XML DB?c.cccoooiiiiice e, 3-21
Validating Instance Documents with XML Schemaccoeeeveininininninninnnncccneene. 3-22
Constraining Instance Documents for Business Rules or Format Compliance............... 3-22
Defining How XMLType Contents Must be Stored in the Database...............ccccceueuunne. 3-22
Structured Storage of XML DOCUMENLESc.cceuiuiuiiririiiiiiieiricieicicieeeeeeeeeeeeeeeeeeeeee s 3-22
Annotating an XML Schema to Control Naming, Mapping, and Storage...........ccccccoeuuucee.. 3-23
Controlling How XML Collections are Stored in the Databasecccccevuviriiiininnininnnnn 3-23
Collections: Default Mappingcccccceueueiiiiieiririnieiceieieeceeeeeeeeeeeeeeeee e 3-23
Declaring the Oracle XML DB NameSPaCeccovurieiiiirieieiicicicci s 3-23
Registering an XML Schema with Oracle XML DBccccoooii, 3-28
SQL Types and Tables Created During XML Schema Registration............cccccceeueueunnee. 3-29
Working with Large XML Schemas ..o 3-30
Working with Global Elements............cccccoeuiiiiiiiniiiiiiniiiiiices 3-31
Creating XML Schema-Based XMLType Columns and Tables.............cccccceeuviiiivrvnnnnnnnne. 3-31
Default TADIES ..o 3-32
Identifying Instance DocUmMents..............cccoviviviiiiiiiiniiiii s 3-33
noNamespaceSchemalocation AttriDULE ..., 3-33
schemalocation AttribULe...........cccveiiiiiiiiiiii s 3-34
Dealing with Multiple NamesSpacesccccccovuiiiiiiiniiiiiiiiiiiiiis 3-34

vi

Using the Database to Enforce XML Data Integritycccccocoviviiiiniiniii, 3-34

Comparing Partial to Full XML Schema Validationccccccceeviiiiiiiiinniniiiiiine, 3-35
Partial Validation ... 3-35

Full Validation........ccceiiiiiiiiiiiiiiiic s 3-36

Full XML Schema Validation Costs CPU and Memory Usagec.cccccevevcuereinnnee. 3-36

Using SQL Constraints to Enforce Referential INtegrityccoovveveirininnininninnncccnee. 3-38
DML Operations on XML Content Using Oracle XML DBccccccooviiiiiniiiiii, 3-42
XPath and Oracle XIML.......c.ccoiiiiiiiiie ettt 3-42
Querying XML Content Stored in Oracle XML DB...........ccccocoiiiiiiiiiicce 3-42
A PurchaseOrder XML DOCUMENtccccovriiiiiiiiiiiiiiiiic s 3-42
Retrieving the Content of an XML Document Using Object_Value...........cccccooverriiininnnnn. 3-43
Accessing Fragments or Nodes of an XML Document Using extract()ccccoeeveeruvueueunne. 3-44
Accessing Text Nodes and Attribute Values Using extractValue()ccocoeeveiirieieiinnnen, 3-45
Invalid Use of eXtractValte().......cocevereeuerieerieerieinieirieirietricteeteietei ettt 3-46
Searching the Content of an XML Document Using existsSNOde()cccceuvurueveueurrurenununnnnnes 3-47
Using extractValue() and existsNode() in the WHERE Clause...........c.ccccceeviviineiiriinenennnnn 3-49
Using XMLSequence() to Perform SQL Operations on XMLType Fragments 3-50
Accessing and Updating XML Content in Oracle XML DB Repositoryccccccceuvuvueueunene. 3-53
Relational Access to XML Content Stored in Oracle XML DB Using Viewsccccccooeeue. 3-55
Updating XML Content Stored in Oracle XML DB...........ccccccccoviiiiiiiiiiiicni, 3-58
Updating XML Schema-Based and Non-Schema-Based XML Documents..............cccceuc.e. 3-63
Namespace Support in Oracle XML DB ..o 3-63
Processing XMLType Methods and XML-Specific SQL Functions..............cccccccevuvvnninnnnnn. 3-64
Understanding and Optimizing XPath ReWrite.............ccccccccoiiiiiiiiiiiiicceceeeeees 3-64
Using the EXPLAIN Plan to Tune XPath ReWritesccccooooiiiiiiiiiiie, 3-65
Using Indexes to Tune Simple XPath-Based Operationscccccoooceieiniiieiniiccceines 3-65

Using Indexes to Improve Performance of XPath-Based Functions.........cccccceveinininnincnnce. 3-66
Optimizing Operations on ColleCtionscoiiuiieiiiciciec e, 3-67
Using Indexes to Tune Queries on Collections Stored as Nested Tables............cccccccevuunnnne. 3-67
EXPLAIN Plan Output with ACL-Based Security Enabled: SYS_CHECKACL() Filter 3-69
Accessing Relational Database Content Using XMLccccocoviiiiiiinii 3-70
Generating XML From Relational Tables Using DBUIITypecccccoviviiiiieieiiiicieccnen, 3-78
XSL Transformation ... s 3-80
Using XSLT with Oracle XML DBccccoiiiiii e 3-80
Using Oracle XML DB RepoSitory ..o 3-88
Installing and Uninstalling Oracle XML DB Repositorycccccceuvurueieuiueirininicieiereiecieieenes 3-89
Oracle XML DB Provides Name-Level Not Folder-Level Locking............ccccoeueiiiiiiiiinnnen. 3-89
Use Protocols or SQL to Access and Process Repository Content............cccoeeveieiiiiiinennnnn, 3-90
Using Standard Protocols to Store and Retrieve Contentcooeevivinnncnininnncncnncnceene. 3-90
Uploading Content Into Oracle XML DB Using FTP.........ccccccooiiiiiiiiiice, 3-91
Accessing Oracle XML DB Repository Programmatically...........cccooooriiiiiiiiniiiicnnn, 3-93
Accessing the Content of Documents Using SQLcccccceviiiiiinnniiiirrcccceeeeeeees 3-93
Accessing the Content of XML Schema-Based Documents..............cccoveunieinininicinicicicnne 3-95
Using the XMLRef Element in Joins to Access Resource Content in the Repository..... 3-95
Updating the Content of Documents Stored in Oracle XML DB Repository...........cccceuue.e. 3-97
Updating Repository Content Using Protocols............cooeeueiiiniiiiiiiiiiiicce 3-97
Updating Repository Content Using SQL...........ccoouiiiiiiiiiiiiicece e 3-98

Updating XML Schema-Based Documents in the Repository...........cccooiiiiiiniinn 3-99

Controlling Access to Repository Data ..o, 3-99
XML DB Transactional Semantics ..., 3-100
Querying Metadata and the Folder Hierarchy ..., 3-100
Querying Resources Stored in RESOURCE_VIEW and PATH_VIEW.............cccc.c..... 3-102

The Oracle XML DB Hierarchical INAeXc.cccoeeriiiiiiiiiiniiiicceenee, 3-104
How Documents are Stored in Oracle XML DB Repository..........cccocoveueiiiicieieiiicciciicne, 3-105
Viewing Relational Data as XML From a Browsercccccccceiiniiiiiinninice 3-106
Using DBUTri Servlet to Access Any Table or View From a Browserccccccoeveivnnenns 3-106
XSL Transformation Using DBUTi Servlet ..o 3-108

Part Il Storing and Retrieving XML Data in Oracle XML DB

4 XMLType Operations

Manipulating XML Data With SQL Member Functions................cccccocovniiiiiiiniiiiiin, 4-1
Selecting and Querying XML Data..........ccccccoviiiiiniiiiiii s 4-1
Searching XML Documents With XPath EXPressionscccccccccevvivcininnniccneececeeenes 4-2
Oracle Extension XPath Function SUpport..........coeeieiiiiiieiii 4-2
Selecting XML Data Using XMLType Member Functions...........c.ccccoeoeeeiniineinnicciniccna 4-2
Querying XML Data Using XMLType FUNCHONS..........ccccoviviiiiiiiiniiiiiiccccne 4-4
existsNode() XMLType FUNCHON.........cccouiiiiiic s 4-5
Using Indexes to Evaluate existsNOde()cccovuviiiiiiiiiniiiniiiiiiiiiiiiccccncs 4-6
extract() XMLType FUNCHONc.coiiiiiiiiicccccceeccceecee e 4-6
extractValue() XMLType FUNCHONcoviiiiic 4-9

A ShOTtCUt FUNCHOMN......oviiiiiiiiic et 4-9
extractValue() CharacteriStiCSivirerierierieieieieteeeeeete e seetesresse et ebessessessessessessessessessesenss 4-9
Querying XML Data With SQLccoooiiii 4-10
Updating XML Instances and XML Data in Tablescccccccoviiiiniininnniiiinin 4-17
updateXML() XMLType FUNCHONc.c.ccuiiiiiiiiiiiiiicicccceceeee s 4-18
updateXML() and NULL ValUescccccovuiiiiiiiiiniiiiiincess s 4-22
Updating the Same XML Node More Than ONncecccoeuevviieieiniicininiccceecce e, 4-24
Guidelines For Preserving DOM Fidelity When Using updateXML().......cccccccevuvriricunnnne. 4-24
When DOM Fidelity is Preserved...........ocooooiiioiiiciciccc s 4-24

When DOM Fidelity is Not Preserved...........cccccocoiiiininiiiiiiiiiicnccccis 4-24
Optimization of UpdateXML()ccccoeuriiiiiiicc s 4-24
Creating Views of XML Data with updateXML()ccccooveruriimiiiiniiieicees 4-26
Indexing XMLType COIUMNScoviiiiiiiiiiiiiiiiiii s 4-26
XPATH REWRITE for indexes on Singleton Elements or Attributes...........ccccccccevuvuvvnnnnnee. 4-27
Creating B-Tree Indexes on the Contents of a Collection............ccooveveieiiieiiicinicinice 4-27
Creating Function-Based Indexes on XMLType Tables and Columnsccccocurrrirenrnnnn. 4-29
CTXXPath Indexes on XMLType COIUMMNSc.ceueuririiiiiiieiriicicieieeeieeceeeeeeeeeeeeeeeeeee s 4-32
CTXXPATH Indexing Features..........cccoeuoiiiiiieiiiiiic s 4-32
Creating CTXXPATH INAeXeS......ccccoiiiiiiniiiiiiiiiiiiiiiiiinc s 4-33
Creating CTXXPATH Storage Preferences With CTX_DDL. Statements....................... 4-33
Performance Tuning a CTXXPATH Index: Synchronizing and Optimizing.................. 4-34
Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing............ 4-35

Vii

viii

CTXXPATH Indexes On XML Schema-Based XMLType Tables............ccccocerriiirrnnnnnes 4-35

Determining If an Index is Being Used: Tracingccccceceeveiviriviniiiiininniniiiniciccen 4-37
CTXXPATH Indexing Depends on Storage Options and Document Size 4-37
Oracle Text Indexes on XMLType Columnsccceuiirieieiiicieiincece e 4-38

XML Schema Storage and Query: The Basics

Introducing XML Schema...........ccccooiiiiiiiiiiniiiiii e 5-1
XML Schema and Oracle XML DB..........ccccocoiiiiiiiiiicic e 5-2
Using Oracle XML DB and XML Schema..........ccccccociiiiiiiiiiiiiiiicnreecceeeeeeeeeeeeseneeeeeeenas 5-7
Why We Need XML SChema ... e 5-8
XML Schema Provides Flexible XML-to-SQL Mapping Setupccccoeevvierreiniiicicrennne. 5-8

XML Schema Allows XML Instance Validation...........cccoveeviceniiiiiniiccene, 5-8

DTD Support in Oracle XML DB ... 5-9
Inline DTD Definitions........ccovuiuiuioiiriiiiiiiicciieccerieeet ettt 5-9
External DTD Definitionsccocoviiviiiiiiiiiinieiicce s 5-9
Managing XML Schemas Using DBMS_XMLSCHEMAccccccovvniiniiiiiicens 5-9
Registering Your XML SCheMac.cccvuiiiiiiiiiiiiiiiiiciic s 5-9
Storage and Access INfrastriCtUurecccccueiiiiiiiiiiiiiicce s 5-10
Transactional Action of XML Schema Registrationcccccocoeveieiiiiniiinieiiccce 5-10
Managing and Storing XML Schemacccoiiiiiiiiicc e, 5-11
Debugging XML Schema Registration............c.cccccceieiiiiiiiiiniiniiiirccecceeeeceeeeeeeeees 5-11
SQL ODbJECt TYPES ...evviicecieieei it 5-11
Creating Default Tables During XML Schema Registration............ccccooovoioieeiniiciininccnnn, 5-12
Generated Names are Case SENSItIVEcocvviviiiiiiiiiiic e, 5-13
Objects That Depend on Registered XML Schemas.........c.cccooiuiieiiiiiiiiiiicccce, 5-13
How to Obtain a List of Registered XML Schemas...........c.cccoouovuiiiiniiiiiiniicceccecce, 5-13
Deleting Your XML Schema Using DBMS_XMLSCHEMAcccccccceiiiinnniinrcceceenes 5-14
FORCE MOGE......coiiiiiiiniiiiiiii s 5-14

XML Schema-Related Methods of XMLTYPEcccccovviiiiiiiiiniiiiiiiiiiiins 5-15
Local and Global XML SChemascccoovviiiiiiiiiiiiicc s 5-15
Local XML SChema.......ccociiiiiiiiiiiiiiii s 5-15
Global XML SCREIMA ...ttt 5-16
DOM FAAElitycooiviiiiiiiiiic e 5-17
How Oracle XML DB Ensures DOM Fidelity with XML Schemacccoooeeiniiiiiiiiiinnnen, 5-17
DOM Fidelity and SYS_XDBPDS.........cccccvuriiniiiiiniiieericeietsie et 5-18
Creating XMLType Tables and Columns Based on XML Schema............ccccccocoviiinnnnnnnnn. 5-18
Specifying Unstructured (LOB-Based) Storage of Schema-Based XMLTypecccceue.... 5-19
Specifying Storage Models for Structured Storage of Schema-Based XMLType 5-20
Specifying Relational Constraints on XMLType Tables and Columns...........cccccceuvuvueucunnnne. 5-21
Oracle XML Schema ANNotations.............ccccooviiiiiiiiiiiiii s 5-21
Querying a Registered XML Schema to Obtain Annotationsccccccoecevniiinniiciccnnene. 5-27
SQL Mapping Is Specified in the XML Schema During Registration............c.cccccecevuvuvucunnnee. 5-28
Mapping of Types Using DBMS_XMLSCHEMAcccccecoviniiiiniiiiinns 5-30
Setting Attribute Mapping Type INformationccoeeoiiiiiiiiicccce, 5-30
Overriding the SQLType Value in XML Schema When Declaring Attributes................ 5-31

Setting Element Mapping Type INnformationccooeevrieiimiiiiniicccc 5-31
Overriding the SQLType Value in XML Schema When Declaring Elements................. 5-31

Mapping simpleTypes t0 SOLcccccoovviiiiiiiii s 5-32

simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBs..........ccccccccvuvunnnne 5-34
Working With Time ZOMES ..ot 5-35
Mapping complexTypes to SQLccccccooiiiiiiiiiiii s 5-35
Specifying Attributes in a complexType XML Schema Declarationccccoooeviiiinininnnnn. 5-36
XPath Rewrite with XML Schema-Based Structured Storagecccccccecevvvivinnvinnnnes 5-37
What Is XPath REWTIte?......ccoiiiiiiiiiii e 5-37
When Does XPath Rewrite OCCULI?c.coviiiiiiiiiiiiiiiiicciseee e 5-38
What XPath Expressions Are REWTIHEN? ... 5-38
Common XPath Constructs Supported in XPath Rewritec.cccooiiiiiiiiii 5-40
Unsupported XPath Constructs in XPath Rewrite..........cccccoevviniiiiiinniiiiniiiine, 5-40
Common XMLSchema constructs supported in XPath Rewrite..........cccccccccevviicnnnnn 5-41
Unsupported XML Schema Constructs in XPath Rewrite........ccccoooiiiiiiiiiii 5-41
Common storage constructs supported in XPath Rewrite........c.cccooooiiiiiiiiiiiincnes 5-41
Unsupported Storage Constructs in XPath ReWTiteoccooovvvieiiininniiininniee, 5-41

Is there a difference in XPath logic with Tewrite?cc.cocoooiiiiiiiiie 5-42
How are the XPaths REWTItTEN?cccciiiiiiiiiiiccic e 5-42
Rewriting XPath Expressions: Mapping Types and Path Expressions...........ccccccccuee.... 5-44
Rewrite of SQL FUNCHONScciiiiiiieieieeieteteteeeete ettt v et ss et ssesaesseseereesseveerenas 5-48
XPath Expression Rewrites for ExistsSNOdeccccocvviiiiiivininininiiiniiiiiiine, 5-48
Rewrite for extractValue ... 5-50
Rewrite of XMLSequence FUNCHON............coouoiiiiiriiiciccc e, 5-52
ReWTite fOr @XETACE() . .evevereeririenirieirieirte ettt ettt e 5-53
Optimizing updates using updateXML()cccccceeurriiiinriiiicrcccceeeeeeeees 5-55
Diagnosing XPath REWTIte.........ccooiiiiiiiiiiiii 5-56
Using Explain PIans.........ccccccciiiiiiiiiiiiiiisns 5-56
USING EVENTS ..o 5-57
Turning off Functional Evaluation (Event 19021).........ccccccvvviiivniiinniicniiinen 5-57
Tracing reasons for NON-TEWTILEccccevvueiriiiiiiiiiiiiiiiis 5-58

XML Schema Storage and Query: Advanced Topics

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()............cc.cccccccceee. 6-1
Adding Unique Constraints to An Attribute's Elementscccooviiinnini, 6-3
Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage................cccccocevviiiinnnnn. 6-4
Query Rewrite For Out-Of-Line Tables ... 6-6
Storing Collections in Out-Of-Line Tablescccccocoviiiiiiiniiirrnecrrreeeeeeeeeeeeeeae 6-7
Intermediate table for storing the list of referencescccooooriiiiiiiic 6-9
Fully Qualified XML Schema URLSccccccoeiiiniiiiiiiiniiiiiicc s 6-11
Fully Qualified XML Schema URLs Permit Explicit Reference to XML Schema URLs........ 6-11
Mapping XML Fragments to Large Objects (LOBS).........cccccooiiiiiiiiiiicicccce, 6-11
Oracle XML DB complexType Extensions and Restrictions.............cccccccovvvniiinnniinnnn, 6-12
complexType Declarations in XML Schema: Handling Inheritanceccccccceeevvcnnnne. 6-13
Mapping complexType: simpleContent to Object Types........cccceuviiriiiiiiiciciiicie, 6-15
Mapping complexType: Any and AnyAttributescccccoevviiiviiiiiiiice, 6-15
Inserting New Instances into XMLType ColumIS..........ccccceueirieuiieireieiiiierreeeiceeeeeeeeeeeees 6-16
Examining Type Information in Oracle XML DBccccccocoviiiiiniiic 6-16
ora:instanceof() and ora:instanceof-only().........cccceveriiiiiiiiiiiiiiiii 6-16

Working With Circular and Cyclical Dependencies...............cccocoevviiiiiiniiiiiiicies 6-18

For Circular Dependency Set GenTables Parameter to TRUEcccccccvvnininninnninne. 6-18
Handling Cycling Between complexTypes in XML Schemacccccceeiuivniiinninicnne 6-19
How a complexType Can Reference Itselfcccooooiiiiiiiiiiiniiiccc 6-20

Oracle XML DB: XPath Expression Rewrites for existsNode()ccccoceeinniiinniiinnnnne. 6-21
existsNode Mapping with Document Order Maintained............cccceceueueueirviiicinnincnicene 6-21
existsNode Mapping Without Maintaining Document Order...........c.ccccoorriiiiiiriiiiininnnen, 6-23
Oracle XML DB: Rewrite for extractValue()ccocovviiiiiiiininiiccs 6-23
Oracle XML DB: Rewrite for extract() ..o 6-25
Extract Mapping with Document Order Maintainedcooooueiiiiiiiiiiece, 6-25
Extract Mapping Without Maintaining Document Orderccccccoevviiivinnnniinniiiinn, 6-26
Optimizing Updates Using updateXML()ccccccoiininiiiiniiiiiiicns 6-26
Cyclical References Between XML Schemas ..o, 6-27
Guidelines for Using XML Schema and Oracle XML DB............ccccccooviiinnniniinniinnn, 6-29
Using Bind Variables in XPath EXPressions...........ccccccrivinieininnininiiniccc e 6-29
Creating Constraints on Repetitive Elements in Schema-Based XML Instance Documents. 6-31
Guidelines for Loading and Retrieving Large Documents with Collections............................ 6-32
Guidelines for Setting xdbcore Parameters............ccccoeucuiuiuiiriiiiiiiinriecceeccceeeeeeeeeeees 6-34
Updating Your XML Schema Using Schema Evolution..............cccccocooiiiiiiiiniiiii, 6-34

XML Schema Evolution

Introducing XML Schema Evolution ... 7-1
Limitations of COPYEVOLVE()cciuimiiiiiiiiiiiiiiiiiiiiciciciiccicicccsce e 7-1
Example XIML SCREMIA.......ccoeuiiiiiiiiiecinectrteteetesr ettt ne s 7-2
Guidelines for Using DBMS_XMLSCHEMA.COpYEVOIVe().........ccccccevviiiiiiiiiiiiiiicns 7-3
Top-Level Element Name Changes...........ccccccoviiiiiiininiiiiiniiiiiinneeeessesessennes 7-3
Ensure that the XML Schema and Dependents are Not Used by Concurrent Sessions 7-4
What Happens When CopyEvolve() Raises an Error? Rollback...........cccooeiiiiiiriiniinninne. 7-4
Failed Rollback From Insufficient Privilegesccccocoeiiiiiiiiiiininiiiiiiiiiiicicncicnns 7-4
Using CopyEvolve(): Privileges Needed ... 7-4
DBMS_XMLSCHEMA.CopyEVOolve() SYntax...........ccccoiviiiiiniiiiiiisssnnns 7-5
How DBMS_XMLSCHEMA.CopyEvolve() WOorks............ccccccoiiiiiiiiiiiiiicccccccas 7-7

Transforming and Validating XMLType Data

Transforming XMLType INStancescccccooiiiiiiiiiiiiiiiiiccnne 8-1
XMLTransform() and XMLType.transform().......c.cceeeueueueurrurueieieirieieieieeieieeeeeeeeeeeeeeeeeeneeeeseenenes 8-2
XMLTransform() EXamples..........ccccooooiiiiiiiiiiiiniiiiiis e 8-2
Validating XMLType INStances.............cccccciiiiiiiiiiiiiicccicscsessssssannas 8-6
XMLISVALIA() +ovveveeiereniinnereieiireeiectneeiete ettt ettt et ese et ss et ne et e s s senennenen 8-7
SCHEMAVALIAALE.coveuirieiiciccc ettt ettt et 8-7
1SSCheMAValIAAtEA() ..cveverveeireeirieirie ettt ettt 8-7
SEtSChemMAaValidated()eoveveieieieieieirieirte sttt ettt taeteeseesestestesb e bessessessessessessessesseseasensas 8-7
1SSCHEMAVALIA() c-vvenvevereeirieiricteeeee ettt ettt et 8-8

Validating XML Data Stored as XMLType: Examples............cccccccoiiiiiiiiiiiiiiiicccicnns 8-8

Full Text Search Over XML

Full Text Search and XIML...........ccccoiiiiiiiiiiiiicctre et 9-1
Comparison of Full Text Search and Other Search TYPesccccceuvuvieivirniiicrrcccceeee 9-2
XML SEATCRL ..ot 9-2
Search using Full Text and XML Structurecocoeiiiiiiiicecec e 9-2

About the Examples in this Chapter ...ttt eeseene 9-2
Roles and Privileges..........ccueuiiirieiiiicicieiie et 9-2
Examples Schema and Data...........ccoiiiiiii 9-3

Overview of CONTAINS and 0ra:contains............c.ccooveviiiiiinniiinnnccccereeee e 9-3
Overview of the CONTAINS SQL FUNCHONc.cciviiiiieieieieeteeetteieee ettt s e ess s s eeis 9-3
Overview of the ora:contains XPath FUNCtioncccccoeviviiiiiiniiiis 9-4
Comparison of CONTAINS and 0ra:containsccceueueurereeicieininininieeieieeeeieeeeeeeeeeeeeeeeeeennes 9-5

CONTAINS SOL FUNCHON ..ot 9-5
FUll TeXt SEATCH ...t 9-5

Boolean Operators: AND, OR, NOTccccccciiiiiiiiiiiiiceeeceeeeeeeeeeeeeeeeeeeeeeeeenes 9-6
SEEIMIMING: F ..o s 9-6
Combining Boolean and Stemming Operators............ccoovueieiiiiieieieicceccece 9-7
SCOTE .. 9-7
Structure: Restricting the Scope of the Search ..o 9-8
WITHIN ..ot 9-8
Nested WITHINc.ccoiiiiiieceeeeecee e 9-8
WITHIN AHIDULES ..o 9-8
WITHIN and ANDcooiiiiiiiiercese i 9-9
Definition 0f SECHONc.cviuiiiiiiiiciciccccc s 9-10
INPATH. ...t 9-10
The Text Pathi.......ccooiicccc e 9-10

Text Path Compared to XPathccccccooiiiiiiiicccceees 9-11

Nested INPATH......ccocoviiiiiiiiiiii s 9-12
HASPATH. ...ttt 9-12
Structure: Projecting the Result..........cccccciiiiiiiiiiicccee s 9-13
INA@XITIG 1.ttt 9-14
Introduction to the CONTEXT INdeX......ccccceviiiviiiiiiiiiiiiiiiiiiiiiiiiies 9-14
CONTEXT Index on XMLType Table........ccccccceeueiiiriiiiiiiiiicccccceceeeeeeceeeeees 9-15
Maintaining the CONTEXT INdeX.......c.cccoouiiiiiiiinicieiiccieee e 9-15

Roles and Privileges ..o 9-16

Effect of the CONTEXT Index on CONTAINS........ccccoeuriiiiiiiirieeceeeeeeeeeeeeeeeeees 9-16
The CONTEXT Index: Preferences...........cccoevviiiiiiiiiiiiiiiiiiceecseenns 9-16
Making Search Case-Sensitiveccccoiiiiiriiiiiiiiiiiiiiiis 9-16
Introduction t0 SECHON GIOUPS.....c.cucviueuiuririiiiieieiririeieicieieee e 9-17
Choosing a Section Group TyPe.......ccooueieiiiriiiiiic e 9-17
Choosing a Section GIOUPcccccuiveiiiiiiiiiiiiiii s 9-18

ora:contains XPath FUnction...............cccocoviii s 9-19
Full Text SEArchc.ciiiiiiiiiiiiii s 9-19
SCOTE .. 9-20
Structure: Restricting the Scope of the QUETYccccceuiiiiiiiiiiccce 9-20
Structure: Projecting the Result.........ccoooiii 9-20
POLICIES .. 9-21

Xi

J Haka e o L6 Tain (o) a1 £o 30 ico) ol < SRR 9-21

Policy Example: Supplied StOplist........cccccevviiiiiiniriiiiiiiiiiiiiiiicnccccs 9-21

Effect of Policies 0n 0ra:CONtAINSccceveueuiuiuriririiicicicieieeeeeeee e 9-22

Policy Example: User-Defined LeXerccccooviiiiniiiniiiiiiieceicec e, 9-22

Policy Defaults.........ccccoiiiiiiiiiiiiiiiiiiiiiiic s 9-24
ora:containg Performarnce............coccciiiiiiiiiiiiice s 9-25
Use a Primary Filter in the QUeTry ..o 9-25

Use @ CTXXPath INA@X ..ot 9-26

When to Use CTXXPATH......ocooiiiiii e 9-27
Maintaining the CTXXPATH INd@Xcouoiiiiiiiiiiiiciicc 9-28
Query-Rewrite and the CONTEXT INdeXcccovoiiiiiiiiiiiiccec 9-28
Introducing QUEry-ReWTIte........c.ccuiuiiiiiiiiiiiiiiciiciceeeccceee s 9-28

From Documents t0 NOAES ... 9-29

From ora:contains to CONTAINScccccooiiiiiiniicccaes 9-29
Query-Rewrite: SUMMATYccccooiiiiiiiiiiii s 9-30

Text Path BNFcocoooiiiiiiii s 9-30
EXaMPle SUPPOTIL ... 9-31
Purchase Order po00T.XIML.....c.cccuiiiiiiiiiiiiiiieeee e 9-31
Create Table Statementsccocciiiiiiiiiiiii s 9-32

An XML Schema for the Sample Data..........cccoouoioiiiiiiiiicc e, 9-34

Part Il Using APIs for XMLType to Access and Operate on XML

10 PL/SQL API for XMLType

Introducing PL/SQL APIs for XMLTYPe.........cccoouviiiiiiininiiiiiiiincnsss 10-1
PL/SQL APIs For XMLType FEaturescccccecuiuiiririiiiiiiiiriicieicceeecceeeeeeeeeeeeeeee s 10-1
Lazy XML Loading (Lazy Manifestation)ccccocoeurieininininininccecccs 10-2
XMLType Datatype Now Supports XML Schema..........cccccooiiieiniiiiiicecce 10-2
XMLType Supports Data in Different Character Sets.ccccccoeeevvricicvvnniennes 10-2
With PL/SQL APIs for XMLType You Can Modify and Store XML Elements..................... 10-2
PL/SQL DOM API for XMLType (DBMS_XMLDOM).........ccccecommimmiimniinniininisiecisniseiees 10-3
Introducing W3C Document Object Model (DOM) Recommendationccccceueueueueunnne. 10-3
W3C DOM Extensions Not Supported in This Release..........c.cccooorueiiiiiriiiiiniine 10-3
Supported W3C DOM Recommendations............ccccueueeeurueieiiicieinicie s 10-3
Difference Between DOM and SAX ..o 10-4
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features...........cccoeovvvvininiriiiriincnnn. 10-4
Enhanced Performarncecoccoiciiiiiiiicecccescee e 10-5
Designing End-to-End Applications Using XDK and Oracle XML DBcccccceceuvuvueunnnne. 10-5
Using PL/SQL DOM API for XMLType: Preparing XML Datac..ccccoovveviiriiiriiininnne. 10-6
Generating an XML Schema Mapping to SQL Object Types.........cccocoveiniiiieeiniiiciiiiicnen, 10-7
DOM Fidelity for XML Schema Mapping.......c.cccccceeeuverieieieeininieieieieieeeeeeeeeeeeeeneneneens 10-7
Wrapping Existing Data into XML with XMLType Views.........cccccccoeuniiriiiniiinieiciicicie 10-8
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods..........ccccoovuririnininicininnnnee 10-8
Non-Supported DBMS_XMLDOM Methods in This Releaseccccccceueuvvvvinncnnnnnnes 10-8
PL/SQL DOM API for XMLType (DBMS_XMLDOM) Exceptions...........cccoevuvvriniuririiiinnns 10-14
PL/SQL DOM API for XMLType: Node TYPesccccceeuririiiiiiiiiiniiiiiiiccccceens 10-15
Working with Schema-Based XML INSTANCeScouvuviriririenininnnccec e 10-16

Xii

DOM NodeList and NamesNodeMap Objects..........c.coooeeieiiiiiiiiiiiiicicccee, 10-16

PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequencec.c........ 10-16
PL/SQL DOM API for XMLType EXamples.........ccccceuiiiuiiniiiniiiiniiccccecees 10-17
PL/SQL Parser API for XMLType (DBMS_XMLPARSER)..........ccccceviniiniiniicninens 10-19
PL/SQL Parser API for XMLType: Features..........ccccccceiiiiniiiiiiiiiiiiiniiiiiciccecceenens 10-19
PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence.................... 10-20
PL/SQL Parser API for XMLType EXampleccccoooniriniiiiiniiiiiiciececece e, 10-21
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)ccccccoooriiniiinininnen. 10-21
Enabling Transformations and Conversions with XSLT..........ccccccccoiiiiinniiiiniiccene 10-21
PL/SQL XSLT Processor for XMLType: Features............c.cooovvruiiminiiciniinciceeceee, 10-22
PL/SQL XSLT Processor API (DBMS_XSLPROCESSOR): Methods........ccccoeeverierieieenenene 10-22
PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence.............. 10-23
PL/SQL XSLT Processor for XMLType Example..........cccccoooeveiriiimiiiiiiinciecece, 10-24

11 DBMS_XMLSTORE

Overview of DBMS_XIMLSTORE............ccooiiiiiieieietetieteete ettt sttt a s ss s essess s essereeseeseereaas 11-1
Using DBMS_XMLSTORE............ccocooiiiiiiiiiiicc e 11-2
Insert Processing with DBMS_XMLSTOREccccooiiiiiiinnrrccecereeeeeeeeeeeees 11-2
Update Processing with DBMS_XMLSTOREcccccccoiiiiiiiiis 11-3
Delete Processing with DBMS_XMLSTORE.........c.ccoooiiiiiiiiccreccee e 11-4

12 Java API for XMLType

Introducing Java DOM API for XMLTYPeEccooviviiiniiiiiiiiiiinnsss 12-1
Java DOM APT 01 XIMLTYPEcovuiiiiiiiiiecc ettt 12-1
Accessing XML Documents in REPOSItOIYccceueveveieieieieiiiiiiieiciiic e 12-2
Accessing XML Documents Stored in Oracle Database (Java).........cccccccevvviniinivininnininnne, 12-2
Using JDBC to Access XMLType Data.........ccccoeuiiiniiiiiiniiiiiiiiciiiccnns 12-2
How Java Applications Use JDBC to Access XML Documents in Oracle XML DB....... 12-2

Using JDBC to Manipulate XML Documents Stored in a Database.............ccccccevivirinnininnne. 12-4
Loading a Large XML Document into the Database With JDBC................ccccccoviinnnnn 12-12
Java DOM API for XMLType Features..............ccccccooniiiniiiiii, 12-14
Creating XML Documents Programmaticallyc.ocoooeeiniiiiniiiiceeceee, 12-14
Creating XML Schema-Based DOCUMENLS..........ccccceuiuiiiiiiiiiiiiiiiicieccceeeeeeeeeeee s 12-15
JDBC OF SQLJ oottt 12-15

Java DOM API for XMLType Classes...........cccocuviiiniiinininiiiiiiinissssssssss s 12-16
Java Methods NOt SUPPOTted........c.ccciuiiiiiiiiiiiiicccccccccececee e 12-17
Java DOM API for XMLType: Calling Sequence............ccccoeurieiririnirinicieicecece e 12-17

13 Using C API for XML With Oracle XML DB

Introducing the C API for XML (XDK and Oracle XML DB)cccccocovvininnniiiiii, 13-1
Using OCI and the C API for XML with Oracle XML DB............cccccccouviiiininnniiiie 13-2
XIMIL COMNEEXL.....euiimieiiiiieiirieiteeteee sttt ettt ettt b et st sb b s b bbb e et et et et e st et et e bt e bt ebesbesbenbenee 13-2

OCIXmIDbFreeXmlCtX() SYNtax........cccceviriiiiiiiiiiiiiiiiininiccie s 13-2

OCIXmIDbINItXmMICEX() SYNEAX ..vcvviiiiiiiiiiiiiiiiii s 13-2
How to Use Oracle XML DB FUNCHONSccccooiiiiiriiininienesececteteeeeeteeeeeie e e 13-3
OCT USAZE ...ttt ettt a ettt ae st a et a e s s 13-4

Xiii

14

Accessing XMLType Data From the Back Endccoooiiiiiiii, 13-4
Creating XMLType Instances on the Clientccooovoiiiiiiice e, 13-4
Common XMLType Operations in C ..o 13-4

Using ODP.NET With Oracle XML DB

Overview of Oracle Data Provider for NET (ODP.NET)c..cccooieiiiieeiiieeeceeeeereeeeeve e 14-1
ODP.INET XML SUPPOLL ..ottt easasaes 14-1
ODP.NET Sample COdecvuiiimiiiiiiiniiiciirrccieicee st 14-2

Part IV Viewing Existing Data as XML

15

16

Xiv

Generating XML Data from the Database

Oracle XML DB Options for Generating XML Data From Oracle Database............................. 15-1
Generating XML Using SQL /XML FUNCHONScccoeuiiiiiiiiiiiciiicecccceeecceeeeeeeeees 15-1
Generating XML Using Oracle Database Extensions to SQL/XML..........ccccccoooviiiiirinininnnee. 15-2
Generating XML Using DBMS_XMLGENccccccoceiiiiiiinnices 15-2
Generating XML Using SQL FUNCHONS ..o 15-2
Generating XML with XSQL Pages Publishing Framework............cccccooiiiina, 15-2
Generating XML Using XML SQL Utility (XSU)cccccecvviviniiniiiiiiiiiinnncceceees 15-2

Generating XML from the Database Using SQL/XML Functionscccccoceeevrrniinnnnnnn. 15-3

XMLElement() FUNCHONcccooviiiiiiiiicc s 15-3
XML ABTIDULES _CLAUSEeeeveeeeeeeeeeeeeeeee ettt et e et e et e st e e saaeeesaeeesaneesanaeeesnseessnnes 15-4

XMLForest() FUNCHONccovoiiii s 15-8

XMLSequence() FUNCHONccooiiiiiiiiiiiiicc s 15-9

XMLConcat() FUNCHOMNcooviiiiiii s 15-13

XMLAEZ() FUNCHION ... 15-14

XMLCOIAttVal() FUNCHION.........cooiiiiiiiiiiiic s 15-18

Generating XML from Oracle Database Using DBMS_XMLGEN.............ccccccooiiiiiiinnne. 15-19
Sample DBMS_XMLGEN Query Result.........cccccocveuiiiiiiiiiiiiccccccceeeeceeeeeeeenenens 15-19
DBMS_XMLGEN Calling SEQUEINCEcvovierieiiiiicieieiectei i 15-20

Generating XML Using Oracle Database-Provided SQL Functionsccococciiinnennne. 15-41

SYS_ XMLGEN(FUNCHON ...ttt eee et e et e eseeasensastesntessssnsesasonnas 15-41
Using XMLFormat Object TyPe ... 15-44

SYS XIMLAGG () FUNCHON.......eoiieiieeeeeeeeeeeeee ettt st e et e eeae e st e eeaeeeteseaeeeanesa 15-51

Generating XML Using XSQL Pages Publishing Framework..............cccccocooviviiiinnnn. 15-52

Generating XML Using XML SQL Utility (XSU)ccccoooiiiiiii 15-54

Guidelines for Generating XML With Oracle XML DBccccooviiiiiiiiiiiicnes 15-55
Using XMLAgg ORDER BY Clause to Order Query Results Before Aggregation.............. 15-55
Using XMLSequence in the TABLE Clause to Return a Rowset ..o, 15-55

XMLType Views

What Are XMLType VIEWS?......c.coviiiiiiiiiiiiic s 16-1
Creating XMLType Views: SYNtaXcccccviiiiiiiiiiiiicsc s 16-2

Creating Non-Schema-Based XMLType VIEWSccccocvviiiiiiiririniiiiiirrcicrreeeeeeeeeeeeeeeees 16-3
Using SQL /XML Generation FUNCHONS ..o 16-3
Using Object Types with SYS_XMLGEN()ceoovemmririiiinieieiicecc e 16-4

Creating XML Schema-Based XMLType VIEWS ..o 16-5

Using SQL /XML Generation FUNCHONScccccceuiiiiiiiiiiiiiiiiiiics 16-5
Step 1. Register XML Schema, emp_simple.Xsd.......ccccceuruiueiirniiiiiiriecceeceeeeeees 16-5

Step 2. Create XMLType View Using SQL /XML Functions............cccccoeovvveueiicniiciniinnnnnes 16-6

Using Namespaces With SQL /XML FUnctionsccccoeevioiieininiceecce e 16-7

Using Object Types and VIEWS ..o 16-10
Step 1. Create Object TYPESccocuiiiiiiiciiccc e 16-11

Step 2. Create or Generate XMLSchema, emp.Xxsd.........ccoooeiieiiiiiiiniiiiicce 16-12

Step 3. Register XML Schema, emp_complexX.Xsd........ccccecucueueuiiiiiieniciccceecennee 16-12

Step 4a. Using the One-5tep Process ... 16-13

Step 4b. Using the Two-Step Process by First Creating an Object View........................ 16-14

Step 1. Create ObJECt TYPEScucuvuiiiiiiiiiiiieiciciciciece s 16-14

Step 2. Register XML Schema, dept_complex.Xsdccccoeueviiirieiiiiiiiiieiccca 16-14

Step 3a. Create XMLType Views on Relational Tablesccccccevniiiinnniniinnnen 16-16

Step 3b. Create XMLType Views Using SQL/XML Functions...........cccccccoeueucuceucccnnne 16-16
Creating XMLType Views From XMLType Tables............cccccoooiiiiiiiiines 16-16
Referencing XMLType View Objects Using REF()ccccoooiiiiiiiiiiiiicccnes 16-17
DML (Data Manipulation Language) on XMLType Views..........ccccccoooviiiiinnnineenenen, 16-17
XPath Rewrite on XMLTYPe VIEWS........cccccoiuiiiiiiiiiiiiiiiiici s 16-19
XPath Rewrite on XMLType Views Constructed With SQL /XML Generation Functions 16-19
XPath Rewrite on Non-Schema-Based Views Constructed With SQL/XML 16-19

XPath Rewrite on View Constructed With SQL /XML Generation Functions 16-21

XPath Rewrite on Views Using Object Types, Object Views, and SYS_XMLGEN()........... 16-23
XPath Rewrite on Non-Schema-Based Views Using Object Types or Views 16-23

XPath Rewrite on XML-Schema-Based Views Using Object Types or Object Views.. 16-25

XPath Rewrite Event Trace...........cccccocoiiiiiiiiiiiiiiiiiiiici s 16-26
Generating XML Schema-Based XML Without Creating Views..............ccccccoeiiiiniiiinnccne. 16-26

17 Creating and Accessing Data Through URLs

How Oracle Database Works with URLs and URISs............ccccccccooiniiiiinniniiincne 17-1
Accessing and Processing Data Through HTTP.........c..cooooiiiie, 17-2
Creating Columns and Storing Data Using UriType.......ccccoooeiieiniirininiiicecccccce, 17-2
UTFaCtOTy PaCKAZEcuvueeiiiiiii e 17-2
Other Sources of Information About URIs and URLS ..., 17-3

URI CONECEPLS ...ttt n s 17-3
WHhat IS @ URI? ...ttt 17-3

How to Create a URL Path From an XML Document View..........cccccocevviiiiiinnnnnnnn, 17-4
UriType Objects Can Use Different Protocols to Retrieve Data..........ccccccevvuviviririnininnnnn. 17-4
Advantages of Using DBUri and XDBUTicccccceiuiiiiiiiiiiiiiicccccceeceeeeeeeeeeees 17-4
UriType Values Store Uri-References..............cccoooeiiiiiiiiiiiiiiiiccicseeennnenenes 17-5
Advantages of Using UriType Valuescccccoooiiiiiiiiiccc e, 17-5
UriType FUNCHONSccooviiiiiiiiiiiic e 17-5

HittpUriType FUNCHONSccooviiiiiiiiiiiii s 17-6
getContentType() FUNCHON ..o 17-7
GEEXIML() FUNCHOM ...ttt 17-7

DBUri, Intra-Database ReferenCes...........ccooieieiiiiieiiiiiiieieseeieecere et sre e e eae e ssae e essesseessesseens 17-8
Formulating the DBUTi........ccccoceiiiiiiiiiiiiiiii s 17-8

XV

Notation for DBUriType Fragments.........cccocoouiueiiieiiiiiiininiciiccc e,
DBUTri Syntax GUIAEHNEScccuiviiiiiiiiiiiiiiiiici s
Using Predicate (XPath) Expressions in DBUTIScccovvinnnnnnnncnrncececccenee

Some Common DBUTIi Scenarios ..o
Identifying the Whole Table...........cccccccoiiiiiiiiiiiiiiiiiiis
Identifying a Particular Row of the Table...........ccccccoiiiiiiiiiiiiccccceeeeccee
Identifying a Target COIUMNccoviiiiiiiiicee e
Retrieving the Text Value of @ ColumMMN..........cccooioiiiiiiiiice e,
How DBUTris Differ from Object Referencesccccccccceeeciiiciiiicccccecceeeeeennees
DBUri Applies to a Database and SeSSion...........cccceuiiiiicieiiiicicicccc e,
Where Can DBUTL Be USEA? ..o
DBUIType FUNCHONS ..o
XDBUIITYPE ...ttt
How to Create an Instance of XDBUIITYPEcocormiiiiiiiieiiiciccc e,
Creating Oracle Text Indexes on UriType Columns.............ccccoeiiiniiiininiiiniice
Using UriType ODJectsccccoiiiiiiiiiiiiiiiiiiiiicic s
Storing Pointers to Documents with UriType........c.cccooieiiiiiiiicce,
Using the Substitution MechaniSmc.cooviiniinnnnninnnnrc e
Creating Instances of UriType Objects with the UriFactory Package.............ccccccocvinninnnnn
Registering New UriType Subtypes with the UriFactory Packageccccccceuvuviviriiinnnnnnn.
Why Define New Subtypes of UriType?.........cccccociiiiiiiiiiiiiiecceeeeeeeeeeeeeee e
SYS_DBURIGEN() SOL FUNCHON.........c.coiiiiiiiiiiiiiics s
Rules for Passing Columns or Object Attributes to SYS_DBURIGENY()........c.cccccevuvviiinnnnne
SYS_DBURIGEN EXQMPIEScocvmiiiiiiiiiiiciiicicicicieicicceeieeee e
Turning a URL into a Database Query with DBUTri Servlet...........cccccoooviiinininiiininn,
DBUTri Servlet MeChaniSmm...........coccivriiiiiiiiiiiicenece e
DBUTri Servlet: Optional ATgUMENtSccccuiuiuiuiiiiiiiiciiieiciccceiceceeeeeee s
Installing DBUTL SeIVIetcoooiiiiiiiii
DBUTIL SECUTILY ..vviitiiiiectcec st
Configuring the UriFactory Package to Handle DBUTIS..........cccccoeueuiiiciciiniiccccccccee

Part V Oracle XML DB Repository: Foldering, Security, and Protocols

18 Accessing Oracle XML DB Repository Data

Introducing Oracle XML DB Foldering ...
Oracle XML DB RepPOSitoryccccoviviiiiiiiiiiiiiiiiiiiiiicc s
Repository Terminology ...
Current Repository Folder Listccccoiiiiiiiiiiiiccecccceeeeeee s
Oracle XML DB RESOUICEScococvviiiiiiiiiiiiiiiiic s
Where Exactly Is Repository Data Stored?............coooviiiiiicee,
Generated Table NamMES ...
Defining Structured Storage for Resources...........c.coocoveiiiinicininiciciccecc
Path-IName ReSOIULION.c.ccioiiiiiiiiiiiiciciiciccc et
Deleting RESOUICES........c.cucviiiiiiiiiicicieiciccccee e
Accessing Oracle XML DB Repository Resources...............ccccceviiiiiniiiiiiiniicinicees
Navigational or Path ACCeSS..........ccccceuiiiiiiiiiiiiiiiiiii s
Accessing Oracle XML DB Resources Using Internet Protocolscccccceuevecicvinvicicnnene.

XVi

18-5

19

20

Where You Can Use Oracle XML DB Protocol ACCESS....ccouvvvvveeeviviiieeeieeee e 18-9

Protocol Access Calling SEqUENCEcccuiuiiiiiiiiiiiiiiiiciii s 18-9
Retrieving Oracle XML DB RESOUICESccceurururiiiiiiiiiriiiciicicceicceeeeeeee e 18-9

Storing Oracle XML DB RESOUICES.........coviurueieiiiiiiieiecite st 18-9

Using Internet Protocols and XMLType: XMLType Direct Stream Write..................... 18-10
Configuring Default Namespace to Schema Location Mappings............cccocoeiiiiciiiinccne. 18-10
Configuring XML File EXteNSIiONS.............cooviiiiiiiiiiicesren 18-12
QUETY-Based ACCESS ... 18-12
Accessing Repository Data Using Servlets ..., 18-13
Accessing Data Stored in Oracle XML DB Repository Resources.............ccccoeviiiiiiininnnnnn 18-13
Managing and Controlling Access to ReSources...............cccccevuviviiiiiiiniiiiiiinnces 18-15
Setting and Accessing Custom Namespace Properties..............ccooviiiniiiinniiinnicnne, 18-16

Managing Oracle XML DB Resource Versions

Introducing Oracle XML DB Versioning ... 19-1
Oracle XML DB Versioning Featurescccooiiioiiiiicicceccn e 19-1
Oracle XML DB Versioning Terms Used in This Chaptercccccceviivinvninvninnnnnnn 19-2
Oracle XML DB Resource ID and Path Namec.ccccooveiiiiiniiiccc, 19-2
Creating a Version-Controlled Resource (VCR).........ccccooviiiiiiiiiiiiiiiccs 19-3
Version Resource or VCR VEISIONccoiiiiiiiiiiiiiiiiiiicccee e 19-3
Resource ID of @ NeW VerSion ... 19-3
Accessing a Version-Controlled Resource (VCR)........coomieiiiiiiiiiiieee, 19-5
Updating a Version-Controlled Resource (VCR)c.coovrieiiiiiiioiiccicccec e, 19-5
CRECKOUL......ouitiviiiiie e 19-5
CRECKIN ...ttt s 19-5
UNCRECKOUL .. 19-6

Update Contents and PrOperties ... 19-6

Access Control and Security of VCR.........ccccooviiiiiiiiiiiiicc s 19-6
Guidelines for Using Oracle XML DB Versioningcccccovvvvvnninnnnnnniniis 19-8

SQL Access Using RESOURCE_VIEW and PATH_VIEW

Oracle XML DB RESOURCE_VIEW and PATH_VIEW ..o 20-1
RESOURCE_VIEW Definition and SEIUCEUTEooooveeeeeeieeeeeeeeeeeee ettt eeereeseeveeeeeaee s 20-2
PATH_VIEW Definition and SEIUCEHULE.ccc.oiiiiiiiiieiieeeeeee ettt ettt save e ens 20-2
Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW 20-3
Operations You Can Perform Using UNDER_PATH and EQUALS_PATH.......................... 20-4
Resource_View and Path_ VIeW APIS ...ttt eaee e ssaae e snveeseans 20-5
UNDER _PATH ..ot 20-5
EQUALS _PATH ..ottt 20-6
PATH ..ot s 20-6
DEPTH.......ooiii e s 20-8
Using the Resource View and Path View API ... 20-8
Accessing Repository Data Paths, Resources and Links: Examples..........cccccccooiriiieininnnnen. 20-8
Inserting Data into a Repository Resource: Examples...........cccccceviviiiiiiiiiiiiiinniiiinen, 20-10
Deleting Repository Resources: EXamplesccccccoeciiiiiiiiiiiiiiiicceeeeceeeeeeeenenens 20-10
Deleting Non-Empty Containers Recursively ... 20-11

XVii

Updating Repository Resources: EXamplesccccoiririeiiiiciciiiicccccie e, 20-11

Working with Multiple Oracle XML DB Resources Simultaneously..............cccococvcinnnnne. 20-12
Performance Tuning of XML DB ..o 20-13
Searching for Resources Using Oracle Textcccccoiiiiiiiiiiiiiicccccnes 20-13

21 PL/SQL Access and Management of Data Using DBMS_XDB

Introducing Oracle XML DB Resource API for PL/SQL.............ccccccocoviiinnnniiiin, 21-1
OVerview Of DBIMIS XDIB..... ..ottt ettt e et e et e e ettt eseaae e seaseessaeeessaeesanseessnsaessans 21-1
DBMS_XDB: Oracle XML DB Resource Management.............ccccccceueuvururuiununneneeenenreeeneeeeeeeenns 21-2
Using DBMS_XDB to Manage Resources, Calling Sequencecccceovreieininicicrcicennnen, 21-3
DBMS_XDB: Oracle XML DB ACL-Based Security Management................ccccccevvvniiinnnnnnn. 21-5
Using DBMS_XDB to Manage Security, Calling Sequence............c.cccouevereneninininenceencscnenennc. 21-5
DBMS_XDB: Oracle XML DB Configuration Managementccccocoevinnnniinninennnn, 21-7
Using DBMS_XDB for Configuration Management, Calling Sequence..............ccccceceueeurnnnn. 21-7

22 Java Access to Repository Data Using Resource API for Java

Introducing Oracle XML DB Resource API for Java.........ccccovvvniiiiiinnn, 22-1
Using Oracle XML DB Resource API for Java ..o 22-1
Oracle XML DB Resource API for Java Parameters............cccceveeveveneinenencnneneeeineeneeeneennenes 22-1
Oracle XML DB Resource API for Java: Examplesccccooovviniininnnniii, 22-2

23 Oracle XML DB Resource Security

Introducing Oracle XML DB Resource Security and ACLScccccoevvvvnnnninnniiinn, 23-1
How the ACL-Based Security Mechanism WOTIKSccccceeeiiiinniiiiiccccceeeeees 23-2
Relationship Between ACLs and ReSOUICESccccueviiiuriciiiiiicieici i 23-2

Access Control List COMCEPLS.........ccccuvuiiiiiiiiiiiiiiiiiiii s 23-2
Oracle XML DB Supported Privilegesccccooiiiiniiiiniiines 23-4
AtOMIC PriVIIEGeS ...ovvie e 23-4
Aggregate Privile@es. ... 23-5
Interaction with Database Table Securitycccocooviiiiiiiiiiiiccccees 23-6
Working with Oracle XML DB ACLSccccccoiviiiiiiiiiiiiiiiice s 23-6
Creating an ACL Using DBMS_XDB.createResource()ccocoeuevriverininieiceieieiccieeecennee, 23-7
Setting the ACL 0f @ RESOUICE.........c.ceuiiiiiiiiiiiiiiciciciceee e 23-7
Deleting an ACL........cooiiii et 23-7
Updating an ACLcccccoiiiiiii s 23-8
Updating the Entire ACL or Adding or Deleting an Entire ACE..........ccccovvininnnnnnce. 23-8
Updating Existing ACE(S)c.ovirieiiiiiicicice s 23-8
Retrieving the ACL Document for a Given Resource...........cococeueiiiriiniciccieiecccceeeccen, 23-8
Retrieving Privileges Granted to the Current User for a Particular Resource....................... 23-9
Checking if the Current User Has Privileges on a Resourceccccooevieinininicininicicnnne. 23-9
Checking if the Current User Has Privileges With the ACL and Resource Owner 23-9
Retrieving the Path of the ACL that Protects a Given Resource............cccccceeuvueiivirvcncnnnnne. 23-9
Retrieving the Paths of all Resources Protected by a Given ACL..........c.ccccoovriiiiiiinininnnn. 23-10
Integration With LDAP...........ccooiiiiiiii e 23-10
Performance Issues for USING ACLScccooiiiiiiiiiiiciccececceeece e 23-12

XViii

24 FTP, HTTP, and WebDAYV Access to Repository Data

Introducing Oracle XML DB Protocol Servercccovvivniiininniniinnces 24-1
SESSION POOLING ...ttt 24-2
HTTP Performance is IMproved.........c..ccooceiiiiieiiiiiicce s 24-2

JAVA SEIVIELS ..ttt ettt ettt be bbbt ettt et ne e eaeeteebe s 24-2

Oracle XML DB Protocol Server Configuration Managementcccccccoevvvinnnnnnnennne. 24-2
Configuring Protocol Server Parameters.............ccccocuevrinicieiiiniieccec s 24-3
Interaction with Oracle XML DB File System Resourcesccccccevuvivirivirniniiinnininninnnne, 24-5
Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents..... 24-5
Event-Based LOGZING.........ccouiiiiriiiii 24-6
Using FTP and Oracle XML DB Protocol Server.............cccccovviviiinininniniiiniiinnninis 24-6
Oracle XML DB Protocol Server: FTP Features ..., 24-6
Non-Supported FIP FEAtures ... 24-6

Using FTP on Standard or Non-Standard Ports............ccceeiiiiiiicc 24-6

FTP Server Session Management............cccoouiiiiiiiiiiiinininiiiiiccccsssesss e 24-7
Controlling Character Sets for FTP............ccccooriiiiiiiiicce 24-7
Handling Error 421. Modifying the FTP Session's Default Timeout Value 24-7

Using HTTP and Oracle XML DB Protocol Server.............ccccoooviniiininniniiccce, 24-8
Oracle XML DB Protocol Server: HTTP Features...........cccccooeviviiiiiiiiiiiiiiccccen 24-8
Non-Supported HTTP Features...........cccccoeuiiiiiiiiiiniiiiiiiiiiiiiiccceces 24-8

Using HTTP on Standard or Non-Standard Ports ..., 24-8

HTTP Server and Java SErvIets ...ttt 24-9
Sending Multibyte Data From a Client.........c.ccoovoiiiiiiiiiiicc 24-9
Non-Ascii Characters in URLSccccooviiiiiiiiiicc s 24-9
Controlling Character Sets for HTTPccoooiiiiiiiiiiiiece e 24-10
Request Character Set...........cccoceiiiiiiiiiiiiiiiiiii s 24-10

Response Character Set.........cccciuiuiiiiiiiiiiiiiicceeeeeeeee s 24-10

Using WebDAYV and Oracle XML DB.........cccccccooiiiiiic s 24-10
Oracle XML DB WebDAV Featuresccccioiiriiiiiiiniiiiiiniiciceiseicceseeeecsese e 24-10
Non-Supported WebDAV Featuresccccccccueueiiiiiiiiiiiiiiicieccccceeeceeeeeeienenenenes 24-11

Using Oracle XML DB and WebDAV: Creating a WebFolder in Windows 2000................ 24-11

25 Writing Oracle XML DB Applications in Java

Introducing Oracle XML DB Java Applications.............cccccoovviiiiiiiiiiiiiiiic 25-1
Which Oracle XML DB APIs Are Available Inside and Outside the Database?.................... 25-2
Design Guidelines: Java Inside or Outside the Database?ccccocooinniiiiinnne. 25-2
HTTP: Accessing Java Servlets or Directly Accessing XMLType Resources 25-2
Accessing Many XMLType Object Elements: Use JDBC XMLType Supportccccuevueee. 25-2
Use the Servlets to Manipulate and Write Out Data Quickly as XML.........cccccooerininnnennce. 25-2
Writing Oracle XML DB HTTP Servlets in Java.........cccccccovviiiiiiiiiniiiiics 25-2
Configuring Oracle XML DB Servlets............ccccocoviiiiiiiniiiiiiiiinscsesss 25-3
HTTP Request Processing for Oracle XML DB Servletscccccceevviiinnninnnicceee 25-6
The Session Pool and XML DB Servlets............cccccocoiiiiininiiniiiiiiiccseccs 25-7
Native XML Stream SUpport.........cccooviiiiiiiiiiiiiic e 25-7
Oracle XML DB Servlet APIS ..o 25-7
Oracle XML DB Servlet EXampleccccocoviiniiiiniiiiiiiiies 25-8

Xix

Installing the Oracle XML DB Example Servlet...........ccooooiiiiiiiiiiiiiicecce, 25-8
Configuring the Oracle XML DB Example Servlet..........ccccccooeviiinniiniinnniiicien, 25-9
Testing the Example Serviet ... 25-9

Part VI Oracle Tools that Support Oracle XML DB

26 Managing Oracle XML DB Using Oracle Enterprise Manager

Introducing Oracle XML DB and Oracle Enterprise Managercccocccooevviiiiniiiinninnnen. 26-1
Getting Started with Oracle Enterprise Manager and Oracle XML DBccccocoeiini. 26-1
Enterprise Manager: Installing Oracle XML DB.........ccccccccoiiinniiiniiiiiee, 26-1

You Must Register Your XML Schema with Oracle XML DB..........ccccooiininnnnnnnnnnce. 26-2

Oracle Enterprise Manager Oracle XML DB Featurescccccoovviiiniininiiii, 26-2
Configure Oracle XML DB........ccccccooiiiiiiiiiiiiiiiiiii s 26-3
Create and Manage RESOUICESccccucuiuiiiuiiriiiiiiicieiiieieeeee e 26-3
Manage XML Schema and Related Database Objects............cccoooeuiiiiriiiiiiiiiice, 26-3
The Enterprise Manager Console for Oracle XML DBcccccccooviinniiinnniiiin, 26-4
XML Database Management Window: Right-Hand Dialog Windows............cccccceeviiennnee. 26-4
Hierarchical Navigation Tree: Navigator ..., 26-4
Configuring Oracle XML DB with Enterprise Managercccccocvuvvnnnnnnninnniiinn, 26-4
Viewing or Editing Oracle XML DB Configuration Parameters.............cccccoeeeirinnencninenencnnce. 26-7
CateZOTY: GENETIC......cuitiiieiicteie ettt 26-7
Category: FTP ..o 26-7
Category: HTTP ... 26-7
Creating and Managing Oracle XML DB Resources with Enterprise Manager 26-8
Administering Individual RESOUICESccceuvviiiiiiiiiiiiiiiiciices 26-10
General Resources Pagecccceuiueiiiiiiiiiiiiccccccee s 26-11
SeCUIity PAZE «.oovoviieiecieic e 26-11
Individual Resource Content MENnUcccccviiiiiiniciiniiccreecreeceie s 26-12
Create ReSOUICE........cucveveieiicc s 26-13

Grant Privileges On... ... e 26-14

SHOW CONLENLS. ...ttt 26-14

SHOW GIANEE ..ottt 26-15
Enterprise Manager and Oracle XML DB: ACL Securityccocoeuvimeieiiiicieieiiccieces 26-15
Granting and Revoking User Privileges with User > XML Tabcccccccevuviinnininnnnnn 26-16
RESOUICES LSt .oovvviiittetetet s 26-17
Available Privileges List ... 26-17
Granted LIStc.cocivriiiiiiciccic et 26-17

XML Database Resource PrivileZescccoociuiiiiiiriiiiiciiieieiciiieiceieieieeeeeeieeseneveeeeenenenenenes 26-18
Managing XML Schema and Related Database Objects.............c.cccccoviiiininiiinniiininn, 26-19
Navigating XML Schema in Enterprise Manager.............ccccceevivivivininiiinnniicnens 26-19
Registering an XML SChema...........cccccciiiiiiiiiiiiiecccceeeeee s 26-22
General Pagecvviieiic e 26-22
OPHONS PAZE....ocviniiiitiiiiic e 26-23
Creating Structured Storage Infrastructure Based on XML Schema............cccccocooeiiiinne. 26-24
Creating Tables ... 26-24
Creating VIEWS ..ottt 26-24
Creating Function-Based INAeXesccccccuiiiiiiiiiiiiiiiicccccccceeeeeee s 26-24

XX

27

28

Creating an XMLTYype Tablecoooiiiiiiii e 26-24

Creating Tables with XMLType COIUMNS..........ccccoruiiiiiiiiieiiicieecc e 26-26
Creating a View Based on XML Schemacccccoccuiuiiiiiiiiiiiiiiiccceceeeeeeceeeeeeeenenes 26-28
Creating a Function-Based Index Based on XPath Expressions...........c.ccccoooeueieiiiicieininnne, 26-30
Loading XML Data into Oracle XML DB Using SQL*Loader

Loading XMLType Data into Oracle Database...............ccccccovvviiiiniiiiiiiiic 27-1
RESTOTALION ...t e 27-1
Using SQL*Loader to Load XMLType Dataccccocoiiiniiiiiniiiicccnes 27-1
Using SQL*Loader to Load XMLType Data in LOBsccccooiiiiiiiiiiice, 27-2
Loading LOB Data in Predetermined Size Fields.........cccccceovvinniiinnnniiiiiiiinn, 27-2
Loading LOB Data in Delimited Fieldsccccccoiiiinniiiiiiccccccceeceeeeees 27-2
Loading LOB Data from LOBFILEScccocoooiiiiiiiiiiiice s 27-3
Dynamic Versus Static LOBFILE Specifications...........ccccoeueiiiiininiiiicccc 27-3

Using SQL*Loader to Load XMLType Data Directly From the Control File. 27-3
Loading Very Large XML Documents into Oracle Database................ccccccoevvininininnnnnnnn, 27-3

Importing and Exporting XMLType Tables

Overview of IMPORT/EXPORT Support in Oracle XML DBccccccccovniiiniiiiii, 28-1
Resources and Foldering Do Not Fully Support IMPORT/EXPORTccccccooviiiiininnnan. 28-1
Non-XML Schema-Based XMLType Tables and Columnscccccoeuvuiuiirnniniinnnciceen 28-1
XML Schema-Based XMLType Tablescccccooviiiiiiiiiiiiiiiiiiccs 28-2
Guidelines for Exporting Hierarchy-Enabled Tablescccccccoeviiiiiinnniiniiiiin, 28-2
IMPORT/EXPORT Syntax and EXamplescccccocovrrniiiiinniiiinncccereeeeeeeeeeeeeees 28-2
User Level Import/EXPOTt........coiiiiiiiiiiiiieicic e 28-3
Table Mode EXPOItc.ccciiiiiiiiiiiiiiiii s 28-3
Metadata in Repository is Not Exported During a Full Database Exportcccccccceeeeeee 28-4
Importing and Exporting with Different Character Setscccccocovviiiiiiiiiii 28-4

Part VII XML Data Exchange Using Oracle Streams Advanced Queuing

29

Exchanging XML Data With Oracle Streams AQ
What Is Oracle Streams Advanced Queuing?............cccccccovviiiiiiiiiiiiiiiiiis 29-1
How Do AQ and XML Complement Each Other? ... 29-1
AQ and XML Message Payloadsccccccceerriiiiiiiniriiiceeeeiceieeeeeeeeeeeeeeeeeeeee e 29-2
AQ Enables Hub-and-Spoke Architecture for Application Integration..........c...ccccooerevnnnnce. 29-3
Messages Can Be Retained for Auditing, Tracking, and Mining...........c..ccccoeveueieicieinincncnnn. 29-3
Advantages of Using AQccccccuiiiiiiiiiiiiicecceeeee et 29-3
Oracle Streams and AQcoioieiiiieieeieeeteeete et e s et e st e te st esaesreesseess e seessessassseseessenseessenseenes 29-4
Streams Message QUEUING..........cceiiiiiiiiiiiice s 29-4
XMLType Attributes in Object Types..........cccccooviiiiiiiiiiiiii e 29-5
Internet Data Access Presentation ((IDAP).............ccccoovviiiiiiiiiis 29-5
IDAP ATchitectureccoviiiiiiiiiiiiii s 29-5
XMLType Quete Payloads..........cccccceiiiiiiiiiiiiriiiiiciieiecieeeeeeieee e 29-6
Guidelines for Using XML and Oracle Streams Advanced Queuing............ccccceevvvviiiinnnnnnnn. 29-7
Storing Oracle Streams AQ XML Messages with Many PDFs as One Record?..................... 29-8

XXi

Adding New Recipients After Messages Are Enqueuedc..ccoooeviiiniciiininicinicce 29-8

Enqueuing and Dequeuing XML MeSSages?cccceurirrieiniicieieiiccieeccie e 29-8
Parsing Messages with XML Content from Oracle Streams AQ Queues...........cccccceuvueunnee. 29-8
Preventing the Listener from Stopping Until the XML Document Is Processed.................... 29-9
Using HTTPS With AQouiiiie e 29-9
Storing XML in Oracle Streams AQ Message Payloadscccccoevueuriiirnniicnncicceene 29-9
Comparing iDAP and SOAP ... 29-9

A Installing and Configuring Oracle XML DB

Installing Oracle XML DBccccccooiviiiiiniiiiiiii s A-1
Installing or Reinstalling Oracle XML DB From Scratch..........cccooovoiiiiiiiiiiicccc, A-1
Installing a New Oracle XML DB With Database Configuration Assistantcccccceoee...e. A-l

Dynamic Protocol Registration Registers FTP and HTTP Services with Local Listener. A-2
Changing FTP or HTTP Port NUmMDberscccccoovvviiiniiininiiicnnicnncccnes A-2
Postinstallationcccueiiiiiiiiiiii s A-2

Installing a New Oracle XML DB Manually Without Database Configuration Assistant..... A-2
POStNSEAllATION ...t s A-3
Reinstalling Oracle XML DB.........ccccccoiiiiiiiiicreeeecreeee e A-3

Upgrading an Existing Oracle XML DB Installation...............ccccocoviiiiiniiiniii, A-4
Upgrading Oracle XML DB From Release 9.2 to 10g Release 1 (10.1)ccccovuvivivvivnininininennnes A-4

Privileges for Nested XMLType Tables When Upgrading to Oracle Database 10g......... A-4

Configuring Oracle XML DB...........ccccccooiiiiniiiiiiiii s A-4

Oracle XML DB Configuration File, xdbconfig.xmlcccccooiinnnnnnnn, A-5
Top Level Tag <XdbBCONIG>......c.ccuiiiiiiiiiiiiiiiiccccccc s A-5
CSYSCOMUIGS oot A-5
SUSETCONTIGS . A-5
SPIOLOCOLCONEIZS ..o A-5
CREEPCONEIGS ..o s A-6

Oracle XML DB Configuration Exampleccccooiniiiiniis A-6

Oracle XML DB Configuration APcccccooiiiiiiiiiiirecerreeeer s A-8
Get Configuration, cfg_get().....ccoovuririniriniciie s A-8
Update Configuration, cfg_update()ccooeuerriiiiriiiiiiiec e, A-8
Refresh Configuration, cfg_refreSh().........ccccoveiiiiiriiiiiiccreceeee s A-9

B XML Schema Primer

XML Schema and Oracle XML DB...........cccoooiiiiiiiiiiiic s B-1
INAMESPACES ..ottt s B-1
XML Schema and NameSPACESccocueueiriirrieieiiicicie et B-2

XML Schema Can Specify a targetNamespace Attribute...........cccoevevvviiinvnininnene. B-2
XML Instance Documents Declare Which XML Schema to Use in Their Root Element B-2
schemalocation AttriDULE..........c.ciciiiiiiiciiiccc s B-2
noNamespaceSchemalocation AttribULe ... B-2
Declaring and Identifying XML Schema Namespaces............cccccoueuririnininieinicinicieicinans B-3
Registering an XML Schema..........cccccccoviiiiiiiniiininiiiiii s B-3
Oracle XML DB Creates a Default Tableccccoooiiiiiiiiiiiiiiiccne B-3
Deriving an Object Model: Mapping the XML Schema Constructs to SQL Types.......... B-3
Oracle XML DB and DOM Fidelityccccccoviiiniiiiiiiiiiiiininiicncssns B-4

XXii

Annotating an XML Schema............coiiioiiiiiic e B-4

Identifying and Processing Instance Documentscccoouoiiiieiiiiiiieiiccicecc, B-4
Introducing XML Schema...........ccccocoiiniiiiiiiii s B-4
Purchase Order, po.Xmlcooiiiiiiii B-5
Association Between the Instance Document and Purchase Order Schema.............ccccccoeuee. B-6
Purchase Order Schema, PO.XSccccovuiiiiiiiiriiiiiiiccccrce s B-6
Purchase Order Schema, PO.XSAcooiueiiiiiicieiici e B-6

PrefixX XSO .. oo B-7

XML Schema COMPONENLSc.c.ccrvereuiinirieieiirieieiintereteesteeereaeeseeresestseereseseessesesestsaeseseseesseseseaesnes B-7
Primary COMPONENESccuiiiiiiiiieiiicicie ettt B-8
Secondary COMPONENLScceuiiiiiiiiiiiiiiiiii s B-8
Helper COMPONENES.........cceuiuiiiiiiiiiicieieieieieeeieieeie et B-8
Complex Type Definitions, Element and Attribute Declarationsc.ccccccovevieinininininnnen. B-8
Defining the USAAArIess TYPecccccoviviriiiiiiiiiiiiiiiiiiiiniics s B-9
Defining PurchaseOrderTyPe ... B-9
Occurrence Constraints: minOccurs and maxOCCUrS...........coevviieieieiiiiiicice B-10

Default AIIDULESc.ceiiiiciiiiiccc e B-10

Default EIEMENtSc.coiuiiiiiiiciieiciceecccee e B-11

Global Elements and AttribUtes ... B-12
Naming Conflicts ..o B-12
SIMPLE TYPES ..o B-13
LISt TYPES ..o s B-17
Creating a List of MyINtegeTccccceiviiiiiiiiiiiii s B-17
UNLON TYPES .o B-18
Anonymous Type Definitions ..o B-18
Two Anonymous Type Definitions ... B-18
Element Content ..o B-19
Complex Types from Simple TYPesccccoeuoieiiiriiiiiciciee e B-19
MiXEA CONEEIE ...ttt B-20
EmpPty CONtENtc.coviiiiiiiiiiiiic s B-21
ANYTYPE ittt s B-22
ANNOLAtIONS ..o e B-22
Building Content MOdElSccooviiiiiiiiiiiicerrree s B-23
AIIDULE GIOUPS ..o s B-25
Adding Attributes to the Inline Type Definitioncccccceviviiiniiniiiiiiiiice, B-25
Adding Attributes Using an Attribute Group ... B-25

INIL VALUES ... B-26
How DTDs and XML Schema Differ ..o B-27
DTD LIMItations.....ccccuiviiiiiiiiiiiniiiiici s B-28
XML Schema Features Compared to DTD Featuresccccoooiieiiiniiiiiiicce, B-28
Converting Existing DTDs to XML Schema?cccccoceviiiiininiiininiiiiiiinncceees B-30
XML Schema Example, PurchaseOrderXsdc.ccoveuicinniecnnnecinnecceneeccnenneneeeseenenene B-31

XPath and Namespace Primer

Introducing the W3C XML Path Language (XPath) 1.0 Recommendation...............cccccceeurenenne. C-1
XPath Models an XML Document as a Tree of NOAEScccoviviviiniiiiiiiiiiiin, C-1
The XPath EXPIeSSIONccccoiiiiiiiiiiiiiiiiiiici s C-2

XXii

XXV

Evaluating Expressions with Respect to @ Context.........cooeuviiriiioiiiiiciiicec, C-2

Evaluating SUbeXpIressions...........cccviiiiiiiiiiiiiiiiiiiiiii s C-3
XPath Expressions Often Occur in XML Attributes........ccccoceviiiiiiiiiiiciccneccceene C-3
Location Paths ... C-3
Location Path Syntax Abbreviationscccooiiiiiiiic e, C-4
Location Path Examples Using Unabbreviated Syntaxc.cccccecevveirnvnviininrnrrceeene C-4
Location Path Examples Using Abbreviated Syntax ..o, C-5
Attribute Abbreviation @.............c.ccoiuiiiiiiiiiiiiici s C-6
Path ABDTeVIAtion // ...c.cceuiiiiiiiiiiiicicicceccc s C-6
Location Step Abbreviation ... C-6
Location Step AbDIeviation ... C-7
Abbreviation SUMMATYccccciuiiiiiiiieieeeeeeeee et ees C-7
Relative and Absolute Location Paths ..o C-7
Location Path Syntax SUMMATyccccocciiiiiininiiiiiii s C-7
XPath 1.0 Data Modelcccccoiiiiiiiiicrr s C-8
INOAES ..o C-8
ROOE INOGES. ...ttt C-8
ELement INOAESc.c.cuiiiiiiiiiiicicccecce e s C-8
TEXt INOAES ..ot C-9
ARTIDULE INOAES....c.oiiiiic et C-9
INamMeSPACE INOAESc.cocuiuiiiiiiicc e C-10
Processing Instruction INOES..........c.coeiiiiiiiiiic C-11
Comment NOAESccovuiiiiiiiiiiiiii s Cc-11
EXpanded-INAINEccciiiiiiiicc s C-11
Doctument OTder ... C-12
Introducing the W3C Namespaces in XML Recommendation.............cccoccoecevnicinnincccnninenee. C-12
What Is @ NaMESPACE? ..ot C-12
URI REfEIEIICESouvviiiiiniiiiiis s C-12
Notation and USageccccviiiiiiiiniiiiiiiiiiiiiii s C-13
Declaring NamMeESPACESc.c.cucueuiuriiieiiieieieieieieieteieieie ettt aeaaes C-13
Attribute Names for Namespace Declaration............c.cooeoveiiieininininicececccec C-13
When the Attribute Name Matches the Prefixed AttName............cccccoevviiivviininnnn, C-13
When the Attribute Name Matches the DefaultAttNamecccooevvnnnnnnnnnnenee. C-14
Namespace Constraint: Leading "XML"...........cccccoooiiiiii C-14
QUALIIEA INAINIES ...cvveeiviiieiiiieieeeet ettt et te e te e e e be e b e be e b e sbeesseeteessesssesbesseesseessesesssensessnas C-14
Qualified NaMe SYNEAXc.civiuiiiiiiiiiicicieieieeee e C-14
WHhat i8S the PrefiX? ..ottt C-14
Using Qualified NameScccccoiiiiiiiiiiiiiiiiiiiiic s C-14
ELEMENT TYPES ...ttt C-14
ABTIDULE . C-15
Namespace Constraint: Prefix Declaredcocoooiiiiiiiice e, C-15
Qualified Names in Declarations...........ccuccueeuieveieeieenrieieeeeecreeeeereeeeere e eeeere e esseersenseeseens C-15
Applying Namespaces to Elements and Attributes...........c.cooooiioiiiiiiiiiie, C-15
NameSPaCe SCOPINEoovrvirimiiiiiiiriiii e C-15
Namespace Defaultingcccccciiiiiiiiiiiice e C-16
Uniqueness of Attributesccoooviiiiiiiiiic C-17
Conformance of XML DOCUMENLESc.ceeiriiiiuiiniriiiiiiniccieie s C-17

Introducing the W3C XML Information Set ..o, C-18

INAINESPACESvvniiittiiieetc e C-19

ENEIEIES .ottt ettt ettt n et e et e s ae et e neentenreensenraens C-19
End-of-Line Handlingc.cooeiiiiiiiiiiicc s C-19
BaSE URIS...cuiiiiiicieecieeteee ettt ettt e e et e st eebeestaesbaesste e beaasbaesseessbaesseassseensaaasseenseeassaesaanns C-19
UnKNown and INO VAlUEccooieiriiriiiiieieeetetetetet et ese sttt ae e b ss s esaesassessessansenes C-20
Synthetic INFOSEtSc.oviviiieiiii s C-20

XSLT Primer

INtroducing XSL.........ccooiiiiiiiiiiii s D-1
The W3C XSL Transformation Recommendation Version 1.0cccccccevvvvinnnnnininnnnnne D-1
Namespaces in XML ..o D-3
XSL Style-Sheet Architecture............oooiviviiii D-3

XSL Transformation (XSLT).........cccccccoiviiiiiiiiiiiiiiiiiiii s D-3

XML Path Language (Xpath)cccccoiiiiiiiicee e D-3

CSS Versts XSL ...ttt D-4

XSL Style-Sheet Example, PurchaseOrder.xslccccccoviviviniiiiiinnnii D-4

Java APIs: Quick Reference

Java DOM API For XMLType (oracle.xdb and oracle.xdb.dom Classes)............cccccceceevruruencnee. E-1
Java Methods NOt SUPPOTted........c.cciuiiiiiiiiiiiiiciicccceec e E-1
Oracle XML DB Resource API for Java (oracle.xdb.spi Classes)ccccevvvviiniininnnnnnn E-4
Oracle Database 10g Release 1 (10.1): New Java APIscccoiiiiiiiiiininiciccceccceee E-8
New methods to Manage Node Values Added to XDBNode.java........cccccevuvuvururrrverrunneenes E-8
Java DOM APIs to Manage an Attribute Added to XDBAttributejava........ccocooviicienenne. E-8
New Java XMLTYPE APISoooiiiiiiciiiiiics s E-9

SQL and PL/SQL APIs: Quick Reference

XMLTYPE AP ...ttt F-1
PL/SQL DOM API for XMLType (DBMS_XMLDOM).......ccccceevrmrirninimiirerniinniniieeeeicnenesenenns F-5
PL/SQL Parser for XMLType (DBMS_XMLPARSER)ccccecevviiiniiiiiiiiinnccccccs F-11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)ccccccooooriiiiiiiiine. F-12
DBMS_XMLSCHEMA ..ottt eaees F-13
Oracle XML DB XML Schema Catalog VIeWsccccccoviviiiiininiiiniiiiiiiccs F-16
Resource API for PL/SQL (DBMS_XDB)........covoiiiiieiieieeieeeeteete ettt ettt a et reene e ens F-16
DBMS_XIMLGEN ..ot F-18
RESOURCE_VIEW, PATH_VIEWcoooiiiieerrrrerse st aeaaes F-19
DBMS_XDB_VERSIONc.cecettitiiiieieieieieieieretetetetetetetetesesesesesesesesesesesesesesesesesesssssesesesesssesssesessssses F-20
DBMS _XDBT ..ottt F-21
New PL/SQL APIs to Support XML Data in Different Character Sets...............cccoevriinne. F-22

C API for XML (Oracle XML DB): Quick Reference

XIMIL COMNEOXL....cnteiniiiiiiieiteteettettet ettt ettt ettt ettt et sb et saee bt sbee bt et e s be et e bt eatenbeenaesbeeneesaee G-1
OCIXmIDbFreeXmlCtX() SYNtax........ccccoiiiiririiiiiiiiiiiiiiiiiiiessss s G-1
OCIXmIDDbINItXMICEX() SYNEAX ..vvvviriiiiiiiiieirieieiceeeieeeeeieeeeieeeee e G-1

XXV

H Oracle XML DB-Supplied XML Schemas and Additional Examples

RESOURCE_VIEW and PATH_VIEW Database and XML Schemaccocceovviviviieeiinrnenen. H-1
RESOURCE_VIEW Definition and SEIUCEUTEooveveeeeeieeeeee ettt eeeeeeeeeeeeeeneesenees H-1
PATH_VIEW Definition and StIUCEULE.cc.oiiiiiiiiiiieeeeeeteeetee ettt e H-1

XDBResource.xsd: XML Schema for Representing Oracle XML DB Resources......................... H-2
XDBRESOUICE.XSA ...ttt H-2

acl.xsd: XML Schema for Representing Oracle XML DB ACLscccccovviiinnnnnninnininn, H-4
ACL Representation XML Schema, acl.XSd..........cooruiiiiiiiiiiiicc e, H-4
ACLXS. s H-4

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB............ccccccceevviiininnnninnn, H-6
XADCONFIGXSA ..ottt H-6

Loading XML Using C (OCI)ccccoooiiiiiiiiiiieiiicn s H-11

| Oracle XML DB Feature Summary

Oracle XML DB Feature SUMMATIYccccccoiiiiiiiiiiiiii e -1

XMLTYPE FEAtUIES.....cviiiiiiiiiiitiiittttt s I-1

Oracle XML DB Repository Features ... -3

Standards SUPPOTLEdccormiiiiiiii e I-4

Oracle XML DB Limitations.........ccccocoiiiiiiiiiiiiiici s -4
Index

XXVi

Send Us Your Comments

Oracle XML DB Developer's Guide, 10g Release 1 (10.1)
Part No. B10790-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XXVil

XXViii

Preface

This manual describes Oracle XML DB, and how it stores, generates, manipulates,
manages, and queries XML in the database using Oracle XML DB.

After introducing you to the heart of Oracle XML DB, namely the XMLType
framework and Oracle XML DB repository, the manual provides a brief introduction to
design criteria to consider when planning your Oracle XML DB application. It
provides examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle
XML DB, APIs for manipulating XM_Type data, and ways you can view, generate,
transform, and search on existing XML data. The remainder of the manual discusses
how to use Oracle XML DB repository, including versioning and security, how to
access and manipulate repository resources using protocols, SQL, PL/SQL, or Java,
and how to manage your Oracle XML DB application using Oracle Enterprise
Manager. It also introduces you to XML messaging and Oracle Streams Advanced
Queuing XMLType support.

This Preface contains these topics:
= Intended Audience

= Documentation Accessibility
= Structure

= Related Documents

« Conventions

Intended Audience

This manual is intended for developers building XML Oracle Database applications.

Prerequisite Knowledge

An understanding of XML, XML Schema, XPath, and XSL is helpful when using this
manual.

Many examples provided here are in SQL, PL/SQL, Java, or C, hence, a working
knowledge of one or more of these languages is presumed.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive

XXiX

Structure

XXX

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e.com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

This document contains the following parts, chapters, and appendixes:

Part I, Introducing Oracle XML DB

Introduces you to the Oracle XML DB components and architecture, including
XM_Type and the repository. It discusses some basic design issues and provides a
comprehensive set of examples of where and how you can use Oracle XML DB.

Chapter 1, "Introducing Oracle XML DB"

Introduces you to the Oracle XML DB components and architecture. It includes a
description of the benefits of using Oracle XML DB, the key features, standards
supported, and requirements for running Oracle XML DB. It lists Oracle

XML DB-related terms used throughout the manual.

Chapter 2, "Getting Started with Oracle XML DB"

Describes how to install Oracle XML DB, compatibility and migration. It includes
criteria for planning and designing your Oracle XML DB applications.

Chapter 3, "Using Oracle XML DB"

Introduces you to where and how you can use Oracle XML DB. It provides examples
of storing, accessing, updating, and validating your XML data using Oracle XML DB.

Part Il, Storing and Retrieving XML Data

Describes ways you can store, retrieve, validate, and transform XML data using Oracle
Database 10g database native XMLTy pe Application Program Interface (API).

Chapter 4, "XMLType Operations"

Describes how to create XML Ty pe tables and manipulate and query XML data for
non-schema-based XMLType tables and columns.

Chapter 5, "XML Schema Storage and Query: The Basics"

Describes how to use Oracle XML DB mapping from SQL to XML and back, provides
an overview of how to register XML schema, deleting and updating XML schema, and
how you can either use the default mapping of Oracle XML DB or specify your own.

Chapter 6, "XML Schema Storage and Query: Advanced Topics"

Describes advanced techniques for mapping from simpleType and complexType XML
to SQL structures. It also describes the use of query rewrites and how to use Ordered
Collections in Tables (OCTs) in Oracle XML DB.

Chapter 7, "XML Schema Evolution"

Describes how to update an XML schema registered with Oracle XML DB manually or
using DBM5_XMLSCHEMA. CopyEvol ve().

Chapter 8, "Transforming and Validating XMLType Data"

Describes how you can use SQL functions to transform XML data stored in the
database and being retrieved or generated from the database. It also describes how
you can use SQL functions to validate XML data entered into the database.

Chapter 9, "Full Text Search Over XML"

Describes how you can create an Oracle Text index on DBUr i Type or Oracle XML DB
Uri Type columns and search XML data using the Oracle Text CONTAI NS() function
and the XMLType exi st sNode() function. It includes how to use CTXXPATH index
for XPath querying of XML data.

Part 1ll, Using APIs for XMLType to Access and Operate on XML

Describes the PL/SQL and Java APIs for XMLType, as well as the C DOM API for
XML, and how to use them.

Chapter 10, "PL/SQL API for XMLType"

Introduces the PL/SQL DOM API for XMLType, PL/SQL Parser API for XMLType,
and PL/SQL XSLT Processor API for XMLType. It includes examples and calling
sequence diagrams.

Chapter 11, "DBMS_XMLSTORE"
Describes how to use PL/SQL package DBM5_XM_STORE to insert, update, and delete
XML data.

Chapter 12, "Java API for XMLType"

Describes how to use the Java (JDBC) API for XMLType. It includes examples and
calling sequence diagrams.

Chapter 13, "Using C API for XML With Oracle XML DB"

Introduces the C API for XML used for XDK and Oracle XML DB applications. This
chapter focuses on how to use C API for XML with Oracle XML DB.

Chapter 14, "Using ODP.NET With Oracle XML DB"
Describes how to use Oracle Data Provider for NET (ODP.NET) with Oracle XML DB.

XXXI

XXX

Part IV, Viewing Existing Data as XML

Chapter 15, "Generating XML Data from the Database"

Discusses SQL /XML, Oracle SQL /XML extension functions, and SQL functions for
generating XML. SQL/XML functions include XMLEl enent () and XM_Forest ().
Oracle SQL /XML extension functions include XM_Col At t Val ue() . SQL functions
include SYS_XMLGEN(), XMLSEQUENCE() , and SYS_XMLAGY) . It also describes
how to use DBM5_XM_GEN, XSQL Pages Publishing Framework, and XML SQL Utility
(XSU) to generate XML data from data stored in the database.

Chapter 16, "XMLType Views"

Describes how to create XML Ty pe views based on XML generation functions, object
types, or transforming XMLType tables. It also discusses how to manipulate XML data
in XMLType views.

Chapter 17, "Creating and Accessing Data Through URLs"

Introduces you to how Oracle Database works with URIs and URLs. It describes how
to use Ur i Type and associated sub-types: DBUr i Type, Ht t pUri Type, and

XDBUr i Type to create and access database data using URLs. It also describes how to
create instances of Ur i Type using the Ur i Fact ory package, how to use SYS_
DBURI GEN() SQL function, and how to turn a URL into a database query using
DBUri servlet.

Part V, Oracle XML DB Repository: Foldering, Security, and Protocols

Describes Oracle XML DB repository, the concepts behind it, how to use versioning,
security, the protocol server, and the various associated Oracle XML DB resource APIs.

Chapter 18, "Accessing Oracle XML DB Repository Data"

Describes hierarchical indexing and foldering. Introduces you to the various Oracle
XML DB repository components such as Oracle XML DB resource view API,
Versioning, Oracle XML DB resource API for PL/SQL and Java.

Chapter 19, "Managing Oracle XML DB Resource Versions"

Describes how to create a version-controlled resource (VCR) and how to access and
update a VCR.

Chapter 20, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

Describes how you can use SQL to access data stored in Oracle XML DB repository
using Oracle XML DB resource view API. This chapter also compares the functionality
of the other Oracle XML DB resource APIs.

Chapter 21, "PL/SQL Access and Management of Data Using DBMS_XDB"
Describes the Oracle XML DB resource API for PL/SQL.

Chapter 22, "Java Access to Repository Data Using Resource API for Java"

Describes Oracle XML DB resource API for Java/JNDI and how to use it to access
Oracle XML DB repository data.

Chapter 23, "Oracle XML DB Resource Security"

Describes how to use Oracle XML DB resources and security and how to retrieve
security information.

Chapter 24, "FTP, HTTP, and WebDAV Access to Repository Data"

Introduces Oracle XML DB protocol server and how to use FTP, HTTP, and WebDAV
with Oracle XML DB.

Chapter 25, "Writing Oracle XML DB Applications in Java"

Introduces you to writing Oracle XML DB applications in Java. It describes which Java
APISs are available inside and outside the database, tips for writing Oracle XML DB
HTTP servlets, which parameters to use to configure servlets in the configuration file

/ xdbconfi g. xm , and HTTP request processing.

Part VI, Oracle Tools That Support Oracle XML DB

Includes chapters that describe the tools you can use to build and manage your Oracle
XML DB application.

Chapter 26, "Managing Oracle XML DB Using Oracle Enterprise Manager"

Describes how you can use Oracle Enterprise Manager to register your XML schema;
create resources, XMLType tables, views, and columns; manage ACL security,
configure Oracle XML DB; and create function-based indexes.

Chapter 27, "Loading XML Data into Oracle XML DB Using SQL*Loader"
Describes ways you can load XMLType data using SQL*Loader.

Chapter 28, "Importing and Exporting XMLType Tables"
Describes the IMPORT /EXPORT utility support for loading XMLType tables.

Part VII, XML Data Exchange Using Oracle Streams Advanced Queuing

Describes Oracle Streams Advanced Queuing support for XML and XM.Type
messaging.

Chapter 29, "Exchanging XML Data With Oracle Streams AQ"

Introduces how you can use Oracle Streams Advanced Queuing to exchange XML
data. It briefly describes Oracle Streams, Internet Data Access Presentation (IDAP),
using AQ XML Servlet to enqueue and dequeue messages, using IDAP, and AQ XML
schemas.

Appendix A, "Installing and Configuring Oracle XML DB"
Describes how to install and configure Oracle XML DB.

Appendix B, "XML Schema Primer"
Provides a summary of the W3C XML Schema Recommendation.

Appendix C, "XPath and Namespace Primer"

Provides an introduction to W3C XPath Recommendation, Namespace
Recommendation, and Information Sets.

Appendix D, "XSLT Primer"
Provides an introduction to the W3C XSL/XSLT Recommendation.

Appendix E, "Java APIs: Quick Reference"
Provides a summary of the Oracle XML DB Java API reference information.

XXXiii

Appendix F, "SQL and PL/SQL APIs: Quick Reference”
Provides a summary of the Oracle XML DB PL/SQL API reference information.

Appendix G, "C API for XML (Oracle XML DB): Quick Reference"
Provides a summary of the C API for XML reference information.

Appendix H, "Oracle XML DB-Supplied XML Schemas and Additional Examples"

Describes the RESOURCE_VI EWand PATH_VI EWstructures and lists the sample
resource XML schema supplied by Oracle XML DB.

Appendix I, "Oracle XML DB Feature Summary"

Provides a brief summary of Oracle XML DB features. It includes a list of standards
supported and limitations.

Related Documents

XXXIV

For more information, see these Oracle Database resources:

« Oracle Database New Features for information about the differences between Oracle
Database 10g and the Oracle Database 10g Enterprise Edition and the available
features and options. This book also describes features new to Oracle Database 10g
release 1 (10.1).

« Oracle XML API Reference
= Oracle XML Developer’s Kit Programmer’s Guide

= Oracle Database Error Messages. Oracle Database error message documentation is
only available in HTML. If you only have access to the Oracle Database
Documentation CD, you can browse the error messages by range. Once you find
the specific range, use your browser's "find in page" feature to locate the specific
message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle Database online
documentation.

= Oracle Text Application Developer’s Guide

= Oracle Text Reference

= Oracle Database Concepts.

« Oracle Database Java Developer’s Guide

« Oracle Database Application Developer’s Guide - Fundamentals
« Oracle Streams Advanced Queuing User’s Guide and Reference
= PL/SQL Packages and Types Reference

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. conf

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e. com nmenber shi p/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracl e. com docunent ati on/

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

| ower case
nonospace
(fixed-w dth)
font

| ower case
italic
nonospace
(fixed-w dth)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depar t ment _nane, and
| ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization
parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

You can specify the par al | el _cl ause.

Runol d_rel ease. SQ. where ol d_r el ease
refers to the release you installed prior to
upgrading.

XXXV

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT usernane FROM dba_users WHERE usernane = 'M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{1} Braces enclose two or more items, one of {ENABLE | DI SABLE}
which is required. Do not enter the braces.

| A vertical bar represents a choice of two or {ENABLE | DI SABLE}

Other notation

Italics

UPPERCASE

XXXVI

more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to the
example

. That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

[COVPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;
SELECT col 1, col2, ... , coln FROM
enpl oyees;

SQL> SELECT NAME FROM V$DATAFI LE;

[fsl/dbs/tbs_01. dbf
/fsl/dbs/thbs_02. dbf

[fsl/dbs/tbs_09. dbf
9 rows sel ected.

NUMBER(11, 2) ;
CONSTANT NUMBER(4) : = 3;

acct bal
acct

CONNECT SYSTEM syst em password
DB _NAME = dat abase_name

SELECT | ast _name, enployee_id FROM
enpl oyees;

SELECT * FROM USER TABLES;

DROP TABLE hr. enpl oyees;

Convention Meaning Example

| ower case Lowercase typeface indicates SELECT | ast _nane, enployee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names of sql pl us hr/ hr
tables, columns, or files. CREATE USER nj ones | DENTI FI ED BY ty3MJ;

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

XXXVii

XXXViii

What's New In Oracle XML DB?

This chapter describes the new features and functionality, enhancements, APIs, and
product integration support added to Oracle XML DB for Oracle Database 10g Release
1(10.1).

Oracle XML DB: Oracle Database 10g Release 1 (10.1), Enhancements

This section summarizes the Oracle XML DB enhancements provided with Oracle
Database 10g Release 1 (10.1).

See Also: Oracle Database 10g Release Notes Release 1 (10.1)
available with your software.

Exporting and Importing XML Data

Oracle Database 10g Release 1 (10.1) provides enhanced IMPORT /EXPORT utility
support to assist in loading XML data into Oracle XML DB. See Chapter 28, "Importing
and Exporting XMLType Tables".

XML Schema Evolution Support

In prior releases an XML schema, once registered with Oracle XML DB at a particular
URL, could not be modified or evolved since there may be XMLType tables that
depend on the XML schema. There was no standard procedure for schema evolution.
This release supports XML schema evolution by providing a PL/SQL procedure
named CopyEvol ve() as part of the DBM5_XM.SCHEMA package

DBMS_XMLGEN Now Supports Hierarchical Queries

DBMS_XM_GENnow supports hierarchical queries. See Chapter 15, "Generating XML
Data from the Database", Generating XML from Oracle Database Using DBMS_
XMLGEN on page 15-19.

Globalization Support: Character Encoding and Multibyte Characters

You can now set your client character set different from the database character set.
Appropriate conversion will take place to present the XML data in the character set of
the client. In addition, using FIP or HTTP, you can specify multibyte characters in the
directory, filename, or URL, and you can transfer or receive data encoded in a different
character set from the database. Oracle XML DB can handle all popular XML character
encodings as long as the database character set supports characters in use. For full
support of all valid XML characters, use UTF-8 as your database character set.

XXXIX

C and C++ APIs for XML

The C API for XML is used for both XDK (XML Developer's Kit) and Oracle XML DB.
It is a C-based DOM API for XML and can be used to handle XML inside and outside
the database. See Chapter 13, "Using C API for XML With Oracle XML DB".

See Also:
« Oracle XML Developer’s Kit Programmer’s Guide
« Oracle XML API Reference

SQL*Loader Supports XMLType Tables and Columns Independent of
Storage

In this release, SQL*Loader supports XMLType tables as well as XM_Type columns. It
can load XMLType data regardless of whether the data is stored in LOBs or in an
object-relational manner. See Chapter 27, "Loading XML Data into Oracle XML DB
Using SQL*Loader".

DBMS_XMLGEN: Pretty Printing Option Can be Turned Off
DBMS_XM_CGEN has an option to turn off pretty printing.

See Also:

http://otn.oracle.comtech/xm /content.htm forthe
latest Oracle XML DB updates and notes

Oracle Text Enhancements

This release offers the following Oracle Text enhancements:
« CTXXPATH index now supports the following Xpath expressions:
» Positional predicates such as / A/ B[3]
= Attribute existence expressions suchas/ A/ B/ @ttr or/ AV B[@ttr]

= Highlighting is now supported for | NPATHand HASPATH operators for ConText
indextype.

= The syntax for the XPath function or a: cont ai ns has changed.

See Also: Chapter 9, "Full Text Search Over XML"

Oracle Streams Advanced Queuing (AQ) Support

xl

With this release, the Oracle Streams Advanced Queuing (AQ) Internet Data Access
Presentation (iDAP) has been enhanced. IDAP facilitates your using AQ over the
Internet. You can now use AQ XML servlet to access the database AQ using HTTP and
SOAP.

Also in this release, IDAP is the Simple Object Access Protocol (SOAP) implementation
for AQ operations. IDAP now defines the XML message structure used in the body of
the SOAP request.

You can now use XMLType as the AQ payload type instead of having to embed
XM_Type as an attribute in an Oracle object type.

See Also:
= Chapter 29, "Exchanging XML Data With Oracle Streams AQ"

= Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle XDK Support for XMLType

See Also:

= "Generating XML Using XSQL Pages Publishing Framework"
on page 15-52 and "Generating XML Using XML SQL Utility
(XSU)" on page 15-54

= Oracle XML Developer’s Kit Programmer’s Guide
= Oracle XML API Reference

xli

xlii

Part |

Introducing Oracle XML DB

Part I of this manual introduces Oracle XML DB. It contains the following chapters:
= Chapter 1, "Introducing Oracle XML DB"

= Chapter 2, "Getting Started with Oracle XML DB"

= Chapter 3, "Using Oracle XML DB"

1

Introducing Oracle XML DB

This chapter introduces you to Oracle XML DB. It describes Oracle XML DB features
and architecture.

This chapter contains these topics:

Introducing Oracle XML DB

Oracle XML DB Architecture

Oracle XML DB Features

Oracle XML DB Benefits

Searching XML Data Stored in CLOBs Using Oracle Text

Building Messaging Applications using Oracle Streams Advanced Queuing
Managing Oracle XML DB Applications with Oracle Enterprise Manager
Requirements for Running Oracle XML DB

Standards Supported by Oracle XML DB

Oracle XML DB Technical Support

Oracle XML DB Examples Used in This Manual

Further Oracle XML DB Case Studies and Demonstrations

Introducing Oracle XML DB

Oracle XML DB provides high-performance storage and retrieval of XML. It extends
Oracle Database, by delivering the functionality associated with both a native XML
database and a relational database. It include the following features:

Supports the World Wide Web Consortium (W3C) XML and XML Schema data
models and provides standard access methods for navigating and querying XML.
It absorbs these data models into Oracle Database.

Lets you store, query, update, transform, or otherwise process XML, while at the
same time provides SQL access to the same XML data. Similarly it allows XML
operations on SQL data.

Includes a simple, light-weight XML repository that allows XML content to be
organized and managed using a file/folder/URL metaphor.

Provides a storage-independent, content-independent and
programming-language-independent infrastructure for storing and managing
XML data. It delivers new methods for navigating and querying XML content

Introducing Oracle XML DB 1-1

Oracle XML DB Architecture

stored in the database. For example, Oracle XML DB XML repository facilitates
this by managing XML document hierarchies.

» Provides industry-standard methods for accessing and updating XML, including
W3C XPath recommendation and the ISO-ANSI SQL /XML standard. FTP, HTTP,
and WebDAV support make it possible to move XML-content in and out of Oracle
Database. Industry-standard APIs allow for programmatic access and
manipulation of XML content using Java, C, and PL/SQL.

= XML-specific memory management and optimizations.

= Enterprise-level Oracle Database features, such as reliability, availability,
scalability, and unbreakable security for XML content.

Oracle XML DB is Not a Separate Server

Oracle XML DB is not a separate server but rather the name for a distinct group of
technologies related to high-performance XML storage and retrieval available in
Oracle Database. Oracle XML DB can also be thought of as an evolution of the Oracle
Database that encompasses both SQL and XML data models in a highly interoperable
manner, thus providing native XML support.

Use XDK with Oracle XML DB

You can build applications using Oracle XML DB in conjunction with Oracle XML
Developer's Kit (XDK). XDK provides common development-time utilities that can run
in the middle tier in Oracle Application Server or in Oracle Database.

See Also: Oracle XML Developer’s Kit Programmer’s Guide. for
more information about XDK

Oracle XML DB Architecture

Figure 1-1 and Figure 1-2 show Oracle XML DB architecture. The two main features in
Oracle XML DB architecture are:

=« XM.Type tables and views storage

= Oracle XML DB repository, also referred to in this manual as XML repository or
repository

XMLType Storage describes the architecture in more detail.

1-2 Oracle XML DB Developer's Guide

Oracle XML DB Architecture

Figure 1-1 Oracle XML DB Architecture: XMLType Storage and Repository

Desktop FTP

Tool Tool

WebDAV FTP
Access Access

== mmmm======d Oracle XML DB

Repository

Browser
or other
ul
JDBC
Browser Application
Direct Oracle
HTTP Sel[\\ll‘iact:es
Access Access
Oracle
4= Streams
AQ Access
— Oracle Database
Gateways
to external | «g=—pp Oracle XML DB
sources
XMLType Tables
and Views
[0 XML Services Retrieve / Generate
* XML Validation XML Using
* XML Transformation XMLType APIs
¢ XML Schema ¢ SQL
Registration « Java
* Create Tables ¢ PL/SQL
StoreinLOBorO-R + C
* Insert, Delete, Update * C++
XMLType tables
* Indexing
XMLType Storage

—F&1 XML Services
« Versioning
* ACL Security
« Foldering

Retrieve / Generate XML
Using Resource APIs

e SQL

e Java

e PL/SQL

Figure 1-2 describes the XMLType tables and views storage architecture.

When XML Schema are registered with Oracle XML DB, XML elements for XML Ty pe
tables, tables with XMLType columns, and XMLType views, are mapped to database
tables. These can be viewed and accessed in XML repository.

Data in XMLType tables and tables with XMLType columns can be stored in Character
Large Objects (CLOB) or natively using structured XML.

Data in XMLType views can be stored in local tables or remote tables. The latter can be
accessed through DBLinks.

Both XMLType tables and views can be indexed using B*Tree, Oracle Text,
function-based, or bitmap indexes.

Introducing Oracle XML DB 1-3

Oracle XML DB Architecture

Options for accessing data in XML repository include:
= HTTD, through the HTTP protocol handler.
= WebDAV and FTP, through the WebDAV and FIP protocol server.

= SQL, through Oracle Net Services including JDBC. Oracle XML DB also supports
XML data messaging using Oracle Streams Advanced Queuing (AQ) and Web
Services.

See Also:
« PartIl. "Storing and Retrieving XML Data in Oracle XML DB"

= Chapter 24, "FTP, HTTP, and WebDAV Access to Repository
Data"

= Chapter 26, "Managing Oracle XML DB Using Oracle
Enterprise Manager"

= Chapter 29, "Exchanging XML Data With Oracle Streams AQ"

Oracle XML DB Repository

Oracle XML DB repository (XML repository or repository) is an XML data repository
in Oracle Database optimized for handling XML data. At the heart of Oracle XML DB
repository is the Oracle XML DB foldering module.

See Also: Chapter 18, "Accessing Oracle XML DB Repository
Data"

The contents of Oracle XML DB repository are referred to as resources. These can be
either containers (directories or folders) or files. All resources are identified by a path
name and have a (extensible) set of (metadata) properties such as Owner,
CreationDate, and so on, in addition to the actual contents defined by the user.

APIs for Accessing and Manipulating XML

Figure 1-1 shows the following Oracle XML DB XML application program interfaces
(APIs):

« Oracle XML DB Resource APIs. These are used to access XMLType and other data.
In other words, to access data in the Oracle XML DB hierarchically indexed
repository. The APIs are available in the following languages:

- SQL, through the RESOURCE VI EWand PATH_VI EWAPIs
- PL/SQL, through DBMS_XDB and DBS_XM_STCRE APIs

— Java through the Resource API for Java

- C(OCI) through the C API for XML

— Oracle Data Provider for NET (ODP.NET)

See Also: Part V. "Oracle XML DB Repository: Foldering, Security,
and Protocols"

=« Oracle XML DB Protocol Server. Oracle XML DB supports FTP, HTTP, and
WebDAV protocols, as well as JDBC, for fast access of XML data stored in Oracle
Database in XMLType tables and columns. See Chapter 24, "FIP, HTTP, and
WebDAV Access to Repository Data".

1-4 Oracle XML DB Developer's Guide

Oracle XML DB Architecture

XML Services

Besides supporting APIs that access and manipulate data Oracle XML DB repository
provides API for the following services:

Versioning. Oracle XML DB uses the DBMS_XDB_VERSI ONPL/SQL package for
versioning resources in Oracle XML DB repository. Subsequent updates to the
resource results in new versions being created while the data corresponding to
previous versions is retained. Versioning support is based on the IETF WebDAV
standard.

ACL Security. Oracle XML DB resource security is based on the ACL (Access
Control Lists) mechanism. Every resource or document in Oracle XML DB has an
associated ACL that lists its privileges. Whenever resources are accessed or
manipulated, the ACLs determine if the operation is legal. An ACL is an XML
document that contains a set of Access Control Entries (ACE). Each ACE grants or
revokes a set of permissions to a particular user or group (database role). This
access control mechanism is based on the WebDAV specification.

Foldering. Oracle XML DB repository foldering module manages a persistent
hierarchy of containers (folders or directories) and resources. Other Oracle

XML DB modules, such as protocol servers, the schema manager, and the Oracle
XML DB RESOURCE_VI EWAPI use the foldering module to map path names to
resources.

Introducing Oracle XML DB 1-5

Oracle XML DB Architecture

Figure 1-2 Oracle XML DB: XMLType Storage and Retrieval Architecture

Hierarchical
Index

JDBC
Direct Oracle WebDAV Access
HTTP Net and
Access Access FTP Access
A A Oracle A
4= Streams
AQ Access
Oracle
Database
Oracle XML DB v \ 4 A 4
HTTP DAV, FTP
Protocol SQL Protocol
Handler Engine Handlers
I--.--.--.--.--..I
' XML Schemas 1
1
: '
1
Indexes: ! XMLType XMLType 1 Repository
« B*Tree : Tables Views L
e Text —> 0 JE—
 Function- .- f— e]
based p— _ i
eBitmap | | == | | = | | {:j
—_ N |
— — |m L L B BB B -I
Native r T
CLOB Structured Local ! !
Storage XML Tables i DBLinks | <
Storage 'l :

XML Repository Architecture

Remote
Tables
Accessed
via DBLinks

Figure 1-3 describes the Oracle XML DB repository architecture. A resource is any

piece of content managed by Oracle XML DB. Each resource has a name, an associated
access control list that determines who can see the resource, certain static properties,
and additional properties that are extensible by the application. Applications using the

repository obtain a logical view of parent-child folders. You can access this Oracle
Database repository, for example, in SQL, using the RESOURCE_VI EWAPL.

In addition to the resource information, the RESOURCE_VI EWalso contains a Pat h

column, which holds the paths to each resource.

See Also:

= Chapter 18, "Accessing Oracle XML DB Repository Data"

= Chapter 20, "SQL Access Using RESOURCE_VIEW and PATH_
VIEW"

1-6 Oracle XML DB Developer's Guide

Oracle XML DB Architecture

Figure 1-3 Oracle XML DB Repository Architecture

Application Logical View of
Oracle XML DB Repository

(] Table
Name |ACL | Property 1 | Property N | Property N
~{gabe ‘ ‘ ‘ ‘
Oracle Database >
Database View of Oracle XML DB Repository Xhlgla-\l;vyspe
RESOURCE_VIEW (XMLType) Path p—
Name |ACL | Property1| Property N | Extra | Content | Parent p—
‘ ‘ ‘ ‘ = g
LOB J—
FTP
WebDAV
B*Tree Text Hierarchical Te\l/t_)les or
Index Index Index lews
of XML

\

How Does Oracle XML DB Repository Work?

The relational model table-row-column metaphor, is accepted as an effective
mechanism for managing structured data. The model is not as effective for managing
semi-structured and unstructured data, such as document- or content-oriented XML.
For example, a book is not easily represented as a set of rows in a table. It is more
natural to represent a book as a hierarchy, book:chapter:section:paragraph, and to
represent the hierarchy as a set of folders and subfolders.

//

= A hierarchical metaphor manages document-centric XML content. Relational
databases are traditionally not good at managing hierarchical structures and
traversing a path or URL. Oracle XML DB provides a hierarchically organized
XML repository that can be queried and through which document-centric XML

content can be managed.

= A hierarchical index speeds up folder and path traversals. Oracle XML DB
includes a new, patented hierarchical index that speeds up folder and path
traversals in Oracle XML DB repository. The hierarchical index is transparent to
end users, and allows Oracle XML DB to perform folder and path traversals at
speeds comparable to or faster than conventional file systems.

= Access XML documents using FIP, HTTP, and WebDAV protocols; SQL, PL/SQL,
Java, and C languages. You can access XML documents in the repository using
standard connect-access protocols such as FTP, HTTP, and WebDAYV, in addition to
languages SQL, PL/SQL, Java, and C. Oracle XML DB repository provides content
authors and editors direct access to XML content stored in Oracle Database.

Introducing Oracle XML DB 1-7

Oracle XML DB Architecture

= Aresource in this context is a file or folder, identified by a URL. WebDAYV is an
IETF standard that defines a set of extensions to the HTTP protocol. It allows an
HTTP server to act as a file server for a DAV-enabled client. The WebDAV
standard uses the term resource to describe a file or a folder. Every resource
managed by a WebDAV server is identified by a URL. Oracle XML DB adds native
support to Oracle Database for these protocols. The protocols were designed for
document-centric operations. By providing support for these protocols Oracle
XML DB allows Windows Explorer, Microsoft Office, and products from vendors
such as Altova, Macromedia, and Adobe, to work directly with XML content
stored in Oracle XML DB repository. Figure 1-4 shows the root level directory of
the Oracle XML DB repository as seen from Microsoft Web Folder.

Figure 1-4 Microsoft Web Folder View of Oracle XML DB Repository

=10 x|
File Edit ‘Wiew Favorites Tools Help ﬁ

s=Back « = - | l@Slﬁ!arch L, Folders Qﬁ | B L | E~
Address r@ Fbp: fscakk: Liger@xdbdemo: 2100/ j fi)Gl:l Links **

@ @@ & el

hiome public AT wdbiconfig. ml

|User: scokt (2 Local inkranet o

See Also: Chapter 3, "Using Oracle XML DB"

Hence, WebDAV clients such as Microsoft Windows Explorer can connect directly to
XML DB repository. No additional Oracle Database or Microsoft-specific software or
other complex middleware is needed. End users can work directly with Oracle

XML DB repository using familiar tools and interfaces.

Oracle XML DB Protocol Architecture

One key features of the Oracle XML DB architecture is that HTTP, WebDAYV, and FTP
protocols are supported using the same architecture used to support Oracle Data
Provider for INET (ODP.NET) in a shared server configuration. The Listener listens for
HTTP and FTP requests in the same way that it listens for ODP .NET service requests.
When the listener receives an HTTP or FIP request it hands it off to an Oracle
Database shared server process which services it and sends the appropriate response
back to the client.

As can be seen from Figure 1-5, you can use the TNS Listener command | snr ct |
st at us to verify that HTTP and FIP support has been enabled.

1-8 Oracle XML DB Developer's Guide

Oracle XML DB Features

Figure 1-5 Listener Status with FTP and HTTP Protocol Support Enabled

HRCTL for 32-bit Windows: Wersion 9.2.8.2.8 - Production on 15-JAH-Z00G 18:88 22 -
pyright <ol 1991, ZOBZ. Oracle Corporation. All erights reserved.

nnecting to (DEECRIFTIOM={ADDRELS ={PFROTOCOL=TCP (HOST =mdrake~lapd {PORT =1521 53>
TATUE of the LISTENER

liam LISTEHER

ersion THELEMR for 32-bit Windows: Uersdon 9.2.8.2.80 - Production
tart Date L4-JAM-2801 17:01 48

Pt ime B dayz A7 hr. & nin. 44 zec

race Lewel wff

pourity orp

HHP 'F

OF
istener Paramster File Cruaoran levorallsnetworksadninslistener. ora
iztener Log File Civaras lovwora¥dwnetuorks logs listenar . log
istening Endpoints Summary. ..
CDEECRIPT 10H=CADDRES & = PHOTOCOL =t pd (HOST =pdrake = Lapd (PORT =1 521 32
L DESCRIPFT 1OH=CADDRES S =< PROTOCOL =re pd (HOST smdraloe— Laps CPORT =HAEAY 3 Presentat fon=HT TP Sexz ion =RAWS >
(I]ESGRI;’II[II-M DDRES S ={PROTOCOL ~top {HOST =ndrake=lap? CPORT =2 1BA}Y { Presentat lon=FIP}{Sess ion =RAH2 >
preices Summary. ..
ereice "ORCLYZHR .xp.mark.drake .oracle .con® has 1 instancedal.
Instance “QORCLYZAL™. status READY. bhas 2 handlerdz? for this service...
greice "ORCLYIMZRDE.<p.mark.drakes .oracle.con®™ haz 1 instanced{zk.
Instance "DRCLYZAZ™. status READY. has 1 handlerdis? for this service...
he conmand comploted succeszfully

shgrac lesbemo X DEwedbBaz icDemoshas ic Domo LOCAL>

4| 3

See Also: Chapter 24, "FIP, HTTP, and WebDAV Access to
Repository Data"

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java. Today, the
most popular methods for building web-based applications are servlets plus JSPs (Java
Server Pages) and XSL plus XSPs (XML Style Sheets plus XML Server Pages). Typical
API implementation includes:

= Servlets and JSPs. These APIs access data using JDBC.

= XSL/XSPs. These APIs expect data in the form of XML documents that are
processed using a Document Object Model (DOM) API implementation.

Oracle XML DB supports both styles of application development. It provides Java,
PL/SQL, and C implementations of the DOM APL

Applications that use JDBC, such as those based on servlets, need prior knowledge of
the data structure they are processing. Oracle JDBC drivers allow you to access and
update XMLType tables and columns, and call PL/SQL procedures that access Oracle
XML DB repository.

Applications that use DOM, such as those based on XSLT transformations, typically
require less knowledge of the data structure. DOM-based applications use string
names to identify pieces of content, and must dynamically walk through the DOM tree
to find the required information. For this Oracle XML DB supports the use of the DOM
API to access and update XMLType columns and tables. Programming to a DOM API
is more flexible than programming through JDBC, but it may require more resources at
run time.

Oracle XML DB Features

Any database used for managing XML must be able to persist XML documents. Oracle
XML DB is capable of much more than this. It provides standard database features
such as transaction control, data integrity, replication, reliability, availability, security,
and scalability., while also allowing for efficient indexing, querying, updating, and
searching of XML documents in an XML-centric manner.

Introducing Oracle XML DB 1-9

Oracle XML DB Features

XMLType

Handling the Hierarchical Nature of XML

The hierarchical nature of XML presents the traditional relational database with a
number of challenges:

= Inarelational database the table-row metaphor locates content. Primary-Key
Foreign-Key relationships help define the relationships between content. Content
is accessed and updated using the table-row-column metaphor.

= XML on the other hand uses hierarchical techniques to achieve the same
functionality. A URL is used to locate an XML document. URL-based standards
such as XLink are used to defined the relationships between XML documents.
W3C Recommendations like XPath are used to access and update content
contained within XML documents. Both URLs and XPath expressions are based on
hierarchical metaphors. A URL uses a path through a folder hierarchy to identify a
document whereas XPath uses a path through an XML document's node hierarchy
to access part of an XML document.

Oracle XML DB addresses these challenges by introducing new SQL operators and
methods that allow the use of XML-centric metaphors, such as XPath expressions for
querying and updating XML Documents.

The major features of Oracle XML DB are:

« XMLlype

« XML Schema

« Structured Versus Unstructured Storage

« XML / SQL Duality

« SQL/XML ICITS Standard Operators

= XPath and XQuery Rewrite

=« XMLIype Storage. This was described previously on page 1-3.

= Oracle XML DB Repository. This was described previously on page 1-4.

XM_Type is a native server datatype that allows the database to understand that a
column or table contains XML. This is similar to the way that the DATE datatype
allows the database to understand that a column contains a date. XMLType also
provides methods that allow common operations such as XML schema validation and
XSL transformations on XML content.

You can use the XMLType data-type like any other datatype. For example, you can use
XML Type when:

= Creating a column in a relational table
= Declaring PL/SQL variables
= Defining and calling PL/SQL procedures and functions

Since XMLType is an object type, you can also create a table of XMLType. By default, an
XM_Type table or column can contain any well-formed XML document.

The following example shows creating a simple table with an XML Type column.

Oracle XML DB Stores XML Text in CLOBs

Oracle XML DB stores the content of the document as XML text using the Character
Large Object (CLOB) datatype. This allows for maximum flexibility in terms of the

1-10 Oracle XML DB Developer's Guide

Oracle XML DB Features

XML Schema

shape of the XML structures that can be stored in a single table or column and the
highest rates of ingestion and retrieval.

XMLType Tables and Columns Can Conform to an XML Schema

XM.Type tables or columns can be constrained and conform to an XML schema. This
has several advantages:

= The database will ensure that only XML documents that validate against the XML
schema can be stored in the column or table.

« Since the contents of the table or column conform to a known XML structure,
Oracle XML DB can use the information contained in the XML schema to provide
more intelligent query and update processing of the XML.

= Constraining the XMLType to an XML schema provides the option of storing the
content of the document using structured-storage techniques. Structured-storage
decomposes or 'shreds' the content of the XML document and stores it as a set of
SQL objects rather than simply storing the document as text in a CLOB. The
object-model used to store the document is automatically derived from the
contents of the XML schema.

The XMLType API
The XM_Type datatype provides the following structures:

« Constructors. These allow an XMLType value to be created from a VARCHAR,
CLOB, BLOB, or BFI LE value.

= Methods. A number of XML-specific methods that can operate on XML Type
objects. The methods provided by XMLType provide support for common
operations such as:

= Extracting a subset of nodes contained in the XML Ty pe, using ext r act ()

= Checking whether or not a particular node exists in the XMLType, using
exi st sNode()

= Validating the contents of the XM_Type against an XML schema, using
schemaVal i dat e()

« Performing an XSL Transformation, using t r ansf or ()

See Also: Chapter 4, "XMLIype Operations" and Chapter 8,
"Transforming and Validating XMLType Data"

Support for the Worldwide Web Consortium (W3C) XML Schema Recommendation is
a key feature in Oracle XML DB. XML Schema specifies the structure, content, and
certain semantics of a set of XML documents. It is described in detail at

http://ww. w3. or g/ TR/ xm schema- 0/ .

XML Schema Unifies Document and Data Modeling

XML Schema unifies both document and data modeling. In Oracle XML DB, you can
create tables and types automatically using XML schema. In short, this means that you
can develop and use a standard data model for all your data, structured, unstructured,
and pseudo/semi-structured. You can use Oracle XML DB to enforce this data model
for all your data.

Introducing Oracle XML DB 1-11

Oracle XML DB Features

You Can Create XMLType Tables and Columns, Ensure DOM Fidelity

You can create XML schema-based XMLType tables and columns and optionally
specify, for example, that they:

=« Conform to pre-registered XML schema

= Are stored in structured storage format specified by the XML schema maintaining
DOM fidelity

Use XMLType Views to Wrap Relational Data

You can also choose to wrap existing relational and object-relational data into XML
format using XML Ty pe views.

You can store an XMLType object as an XML schema-based object or a non-XML
schema-based object:

= XML Schema-based objects. These are stored in Oracle XML DB as Large Objects
(LOBs) or in structured storage (object-relationally) in tables, columns, or views.

« Non-XML schema-based objects. These are stored in Oracle XML DB as LOBs.

You can map from XML instances to structured or LOB storage. The mapping can be
specified in XML schema and the XML schema must be registered in Oracle XML DB.
This is a required step before storing XML schema-based instance documents. Once
registered, the XML schema can be referenced using its URL.

W3C's Schema for Schemas

The W3C Schema Working Group publishes an XML Schema, often referred to as the
"Schema for Schemas". This XML schema provides the definition, or vocabulary, of the
XML Schema language. An XML schema definition (XSD) is an XML document, that is
compliant with the vocabulary defined by the "Schema for Schemas". An XML schema
uses vocabulary defined by W3C XML Schema Working Group to create a collection of
type definitions and element declarations that declare a shared vocabulary for
describing the contents and structure of a new class of XML documents.

XML Schema's Base Set of Data Types Can be Extended

The XML Schema language provides strong typing of elements and attributes. It
defines 47 scalar data types. The base set of data types can be extended using
object-oriented techniques like inheritance and extension to define more complex
types. W3C XML Schema vocabulary also includes constructs that allow the definition
of complex types, substitution groups, repeating sets, nesting, ordering, and so on.
Oracle XML DB supports all of constructs defined by the XML Schema
Recommendation, except for redefines.

XML schema are most commonly used as a mechanism for validating that instance
documents conform with their specifications. Oracle XML DB includes methods and
SQL operators that allow an XML schema to be used for this.

Note: This manual uses the term XML schema (lower-case "s") to
infer any schema that conforms to the W3C XML Schema
(upper-case "S") Recommendation. Also, since an XML schema is
used to define a class of XML documents, the term "instance
document" is often used to describe an XML document that
conforms to a particular XML Schema.

1-12 Oracle XML DB Developer's Guide

Oracle XML DB Features

See Also:

Appendix B, "XML Schema Primer" and Chapter 5,

"XML Schema Storage and Query: The Basics" for more information
about using XML schema and using XML schema with Oracle

XML DB

Structured Versus Unstructured Storage

One key decision to make when using Oracle XML DB for persisting XML documents
is when to use structured- and when to use unstructured storage.

Unstructured-storage provides for the highest possible throughput when inserting
and retrieving entire XML documents. It also provides the greatest degree of
flexibility in terms of the structure of the XML that can be stored in a XM_Type
table or column. These throughput and flexibility benefits come at the expense of
certain aspects of intelligent processing. There is little the database can do to
optimize queries or updates on XML stored using a CLOB datatype.

Structured-storage has a number of advantages for managing XML, including
optimized memory management, reduced storage requirements, b-tree indexing
and in-place updates. These advantages are at a cost of somewhat increased
processing overhead during ingestion and retrieval and reduced flexibility in
terms of the structure of the XML that can be managed by a given XMLType table

or column.

Table 1-1 outlines the merits of structured and unstructured storage.

Table 1-1 XML Storage Options: Structured or Unstructured

Unstructured Storage

Structured Storage

Throughput Highest possible throughput when The decomposition process results in
ingesting and retrieving the entire slightly reduced throughput when
content of an XML document. ingesting retrieving the entire content of

an XML document.

Flexibility Provides the maximum amount of Limited Flexibility. Only document that
flexibility in terms of the structure of the conform with the XML Schema can be
XML documents that can be stored in an stored in the XMLType table or column.
XM.Type column or table. Changes to the XML Schema may

require data to be unloaded and
re-loaded.

XML Fidelity Delivers Document Fidelity: Maintains ~DOM Fidelity: A DOM created from an
the original XML byte for byte, which XML document that has been stored in
may be important to some applications. the database will be identical to a DOM

created from the original document.
However trailing new lines, white space
characters between tags and some data
formatting may be lost.

Update Operations When any part of the document is The majority of update operations can
updated the entire document must be be performed using Query Rewrite. This
written back to disk. allows in-place, piece-wise update,

leading to significantly reduced
response times and greater throughput.

XPath based queries XPath operations evaluated by XPath operations may be evaluated

constructing DOM from CLOB and using
functional evaluations. This can be very
expensive when performing operations

on large collections of documents.

using query-rewrite, leading to
significantly improved performance,
particularly with large collections of
documents.

Introducing Oracle XML DB 1-13

Oracle XML DB Features

Table 1-1 (Cont.) XML Storage Options: Structured or Unstructured

Unstructured Storage Structured Storage
SQL Constraint Support SQL constraints are not currently SQL constraints are supported.
available.
Indexing Support Text and function-based indexes. B-Tree, text and function-based indexes.
Optimized Memory XML operations on the document XML operations can be optimized to
Management require creating a DOM from the reduce memory requirements.
document.

Much valuable information in an organization is in the form of semi-structured and
unstructured data. Typically this data is in files stored on a file server or in a CLOB
column inside a database. The information in these files is in proprietary- or
application-specific formats. It can only be accessed through specialist tools, such as
word processors or spreadsheets, or programmatically using complex, proprietary
APIs. Searching across this information is limited to facilities provided by a crawler or
full text indexing.

Major reasons for the rapid adoption of XML are that it allows for:
= Stronger data management
= More open access to semi-structured and unstructured content.

Replacing proprietary file formats with XML allows organizations to achieve much
higher levels of reuse of their semi-structured and unstructured data. The content can
be accurately described using XML Schema. The content can be easily accessed and
updated using standard APIs based on DOM and XPath.

For example, information contained in an Excel spreadsheet is only accessible to the
Excel program, or to a program that uses Microsoft's COM APIs. The same
information, stored in an XML document is accessible to any tool that can leverage the
XML programming model. Structured data on the other hand does not suffer from
these limitations. Structured data is typically stored as rows in tables within a
relational database. These tables are accessed and searched using the relational model
and the power and openness of SQL from a variety of tools and processing engines.

XML / SQL Duality

A key objective of Oracle XML DB is to provide XML/ SQL duality. This means that
the XML programmer can leverage the power of the relational model when working
with XML content and the SQL programmer can leverage the flexibility of XML when
working with relational content. This provides application developers with maximum
flexibility, allowing them to use the most appropriate tools to solving a particular
business problem.

Relational and XML Metaphors are Interchangeable: Oracle XML DB erases the
traditional boundary between applications that work with structured data and those
that work with semi-structured and unstructured content. With Oracle XML DB the
relational and XML metaphors become interchangeable.

XML/SQL duality means that the same data can be exposed as rows in a table and
manipulated using SQL or exposed as nodes in an XML document and manipulated
using techniques such as DOM or XSL transformation. Access and processing
techniques are totally independent of the underlying storage format!

These features provide new, simple solutions to common business problems. For
example:

1-14 Oracle XML DB Developer's Guide

Oracle XML DB Features

= Relational data can quickly and easily be converted into HTML pages. Oracle
XML DB provides new SQL operators that make it possible to generate XML
directly from a SQL query. The XML can be transformed into other formats, such
as HTML using the database-resident XSLT processor.

= You can easily leverage all of the information contained in their XML documents
without the overhead of converting back and forth between different formats.
With Oracle XML DB you can access XML content using SQL queries, On-line
Analytical Processing (OLAP), and Business-Intelligence /Data Warehousing
operations.

« Text, spatial data, and multimedia operations can be performed on XML Content.

SQL/XML ICITS Standard Operators

Oracle XML DB provides an implementation of the majority of operators incorporated
into the forthcoming SQL /XML standard. SQL /XML is defined by specifications
prepared by the International Committee for Information Technology Standards
(Technical Committee H2), the main standards body for developing standards for the
syntax and semantics of database languages, including SQL.

See htt p://ww. ncits. org/tc_hone/ h2. ht mfor more information. SQL /XML
operators fall into two categories:

« The first category consists of a set of operators that make it possible to query and
access XML content as part of normal SQL operations.

« The second category consists of a set of operators that provide an industry
standard method for generating XML from the result of a SQL SELECT statement.

With these SQL/XML operators you can address XML content in any part of a SQL
statement. They use XPath notation to traverse the XML structure and identify the
node or nodes on which to operate. The XPath Recommendation is described in detail
athttp://ww. w3. or g/ TR/ xpat h. The ability to embed XPath expressions in SQL
statements greatly simplifies XML access. The following describes briefly the provided
SQL/XML operators:

« exi stsNode() . Thisis used in the WHERE clause of a SQL statement to restrict
the set of documents returned by a query. The exi st sNode() operator takes an
XPath expression and applies it an XML document. The operator and returns true
(1) or false (0) depending on whether or not the document contains a node which
matches the XPath expression.

« extract (). This takes an XPath expression and returns the nodes that match the
expression as an XML document or fragment. If only a single node matches the
XPath expression, the result is a well-formed XML document. If multiple nodes
match the XPath expression, the result is a document fragment.

« extract Val ue() . This takes an XPath expression and returns the corresponding
leaf level node. The XPath expression passed to ext r act Val ue() should identify
a single attribute, or an element which has precisely one text node child. The result
is returned in the appropriate SQL data type.

= updat eXM.() . This allows partial updates to be made to an XML document,
based on a set of XPath expressions. Each XPath expression identifies a target node
in the document, and a new value for that node. The updat eXM.() operator
allows multiple updates to be specified for a single XML document.

= XM.Sequence() . This makes it possible to expose the members of a collection as
a virtual table

Introducing Oracle XML DB 1-15

Oracle XML DB Features

Detailed examples of the way in which these functions are used are provided in the
Pur chaseOr der examples in Chapter 3, "Using Oracle XML DB".

XPath and XQuery Rewrite

The SQL /XML operators, and corresponding XMLTy pe methods, allow XPath
expressions to be used to search collections of XML documents and to access a subset
of the nodes contained within an XML document

How XPath Expressions are Evaluated by Oracle XML DB

Oracle XML DB has two methods of evaluating XPath expressions that operate on
XMLType columns and tables. For XML:

= Stored using structured storage techniques, Oracle XML DB attempts to translate
the XPath expression in a SQL /XML operator into an equivalent SQL query. The
SQL query references the object-relational data structures that underpin a
schema-based XMLType. While this process is referred to as query-rewrite, it can
also occur when performing UPDATE operations.

= Stored using unstructured storage, Oracle XML DB will evaluate the XPath using
functional evaluation. Functional evaluation builds a DOM tree for each XML
document and then resolves the XPath programmatically using the methods
provided by the DOM APIL. If the operation involves updating the DOM tree, the
entire XML document has to be written back to disc when the operation is
completed.

Query-rewrites Allow Efficient Processing of SQL Containing XPath Expressions

Query-rewrites allow the database to efficiently process SQL statements containing
one or more XPath expressions using conventional relational SQL. By translating the
XPath expression into a conventional SQL statement, Oracle XML DB insulates the
database optimizer from having to understand XPath notation and the XML data
model. The database optimizer simply processes the re-written SQL statement in the
same manner as other SQL statements.

This means that the database optimizer can derive an execution plan based on
conventional relational algebra. This allows Oracle XML DB to leverage all the features
of the database and ensure that SQL statements containing XPath expressions are
executed in a highly performant and efficient manner. To sum up, there is little
overhead with query-rewrites and Oracle XML DB can execute XPath-based queries at
near-relational speed, while preserving the XML abstraction.

When Can Query-Rewrites Occur?
Query-rewrites are possible when:

= The SQL statement contains SQL /XML operators or XMLTy pe methods that use
XPath expressions to refer to one or more nodes within a set of XML documents.

« The XMLType column or table containing the XML documents is associated with a
registered XML Schema.

« The XMLType column or table uses structured storage techniques to provide the
underlying storage model.

= The nodes referenced by the XPath expression can be mapped, using the XML
Schema, to attributes of the underlying SQL object model.

1-16 Oracle XML DB Developer's Guide

Oracle XML DB Benefits

What is the Query-Rewrite Process?
The query-rewrite process is described as follows:

1. Identify the set of XPath expressions included in the SQL statement.

2. Translate each XPath expression into an object relational SQL expression that
references the tables, types, and attributes of the underlying SQL: 1999 object
model.

3. Re-write the original SQL statement into an equivalent object relational SQL
statement.

4. Pass the new SQL statement to the database optimizer for plan generation and
query execution.

In certain cases query-rewrite is not possible. This normally occurs when there is no
SQL equivalent of the XPath expression. In this situation Oracle XML DB performs a
functional evaluation of the XPath expressions.

In general, functional evaluation of a SQL statement is more expensive than
query-rewrite, particularly if the number of documents that needs to be processed is
large. However the major advantage of functional evaluation is that it is always
possible, regardless of whether or not the XML Ty pe is stored using structured storage
and regardless of the complexity of the XPath expression. When documents are stored
using unstructured storage (in a CLOB), functional evaluation is necessary any time
theextract (), extractval ue(),updat exm () operators are used. The

exi st sNode() operator will also result in functional evaluation unless a CTXXPATH
index or function-based index can be used to resolve the query.

Understanding the concept of query-re-write, and the conditions under which query
re-write can take place, is a key step in developing Oracle XML DB applications that
will deliver the required levels of scalability and performance.

Oracle XML DB Benefits

The following sections describe several benefits for using Oracle XML DB advantages
including:

= Unifying Data and Content with Oracle XML DB

= Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents
= Oracle XML DB Helps You Integrate Applications

= When Your Data Is Not XML You Can Use XMLIype Views

Figure 1-6 summarizes the Oracle XML DB benefits.

Introducing Oracle XML DB 1-17

Oracle XML DB Benefits

Figure 1-6 Oracle XML DB Benefits

Oracle
XML DB

. Faster Storage and Helps Also Handles
Unifies Data Retrieval of Complex Integrate non-XML Data
and Content XML Documents Applications with XMLType
Views
— Enhanced native Higher performance XMLType views E Facilitates migrating of
database support for of XML operations over local or remote legacy and non-XML to
XML . . sources XML data
Higher scalability
— Stores and manages of XML operations Connectivity to other
structured, unstructured, databases, files, ...

and semi-structured data Uniform SQL / XML

— Transparent XML and SQL queries over data
interoperability integrated from

multiple sources
— Exploits database features:

—

— indexing, searching
— updating, transaction processing
— manages constraints

— multiple data views
— speeds up XML storage, retrieval

— supports standards for storing,
modifying, retrieving data

— Exploits XML features:

structure and storage independence
facilitates presentation and data display
facilitates B2B data exchange

Unifying Data and Content with Oracle XML DB

Most applications' data and Web content is stored in a relational database or a file
system, or a combination of both. XML is used mostly for transport and is generated
from a database or a file system. As the volume of XML transported grows, the cost of
regenerating these XML documents grows and these storage methods become less
effective at accommodating XML content. See Figure 1-7. Oracle XML DB is effective
at accommodating XML content. It provides enhanced native support for XML.

1-18 Oracle XML DB Developer's Guide

Oracle XML DB Benefits

Figure 1-7 Unifying Data and Content: Some Common XML Architectures

Non-Native XML Processing Separate Data and Content Servers Oracle XML DB
Applications Applications Applications
Application Server Application Server Oracle
Application
| Server

XML Processing and
Repository Layer

File
System

Multimedia and
Document Content

L —
RDBMS XML RDBMS Oracle
Repository XML DB
Structured Data Multimedia, Document Structured Data Multimedia and
and Metadata Content and XML, Document Content,
Metadata Structured Data,

XML, Metadata

Organizations today typically manage their structured data and unstructured data
differently:

= Unstructured data, in tables, makes document access transparent and table access
complex

= Structured data, often in binary large objects (such as in BLOBs) makes access
more complex and table access transparent.

With Oracle XML DB you can store and manage both structured, unstructured, and
pseudo or semi-structured data, using a standard data model, and standard SQL and
XML.

Oracle XML DB provides complete transparency and interchangeability between XML
and SQL. You can perform both the following:

= XML operations on object-relational (such as table) data
= SQL operations on XML documents

This makes the database much more accessible to XML-shaped data content.

Exploiting Database Capabilities
Oracle Database has strong XML support with the following key capabilities:

= Indexing and Search: Applications use queries such as "find all the product
definitions created between March and April 2002", a query that is typically
supported by a B*Tree index on a date column. Oracle XML DB can enable
efficient structured searches on XML data, saving content-management vendors
the need to build proprietary query APIs to handle such queries. See Chapter 4,
"XMLType Operations”, Chapter 9, "Full Text Search Over XML", and Chapter 15,
"Generating XML Data from the Database".

Introducing Oracle XML DB 1-19

Oracle XML DB Benefits

Updates and Transaction Processing: Commercial relational databases use fast
updates of subparts of records, with minimal contention between users trying to
update. As traditionally document-centric data participate in collaborative
environments through XML, this requirement becomes more important. File or
CLOB storage cannot provide the granular concurrency control that Oracle

XML DB does. See Chapter 4, "XMLType Operations".

Managing Relationships: Data with any structure typically has foreign key
constraints. Currently, XML data-stores lack this feature, so you must implement
any constraints in application code. Oracle XML DB enables you to constrain XML
data according to XML schema definitions and hence achieve control over
relationships that structured data has always enjoyed. See Chapter 5, "XML
Schema Storage and Query: The Basics" and the purchase-order examples at the
end of Chapter 4, "XMLType Operations".

Multiple Views of Data: Most enterprise applications need to group data together
in different ways for different modules. This is why relational views are
necessary—to allow for these multiple ways to combine data. By allowing views
on XML, Oracle XML DB creates different logical abstractions on XML for, say,
consumption by different types of applications. See Chapter 16, "XMLType Views".

Performance and Scalability: Users expect data storage, retrieval, and query to be
fast. Loading a file or CLOB value, and parsing, are typically slower than relational
data access. Oracle XML DB dramatically speeds up XML storage and retrieval.
See Chapter 2, "Getting Started with Oracle XML DB" and Chapter 3, "Using
Oracle XML DB".

Ease of Development: Databases are foremost an application platform that
provides standard, easy ways to manipulate, transform, and modify individual
data elements. While typical XML parsers give standard read access to XML data
they do not provide an easy way to modify and store individual XML elements.
Oracle XML DB supports a number of standard ways to store, modify, and retrieve
data: using XML Schema, XPath, DOM, and Java.

See Also:

= Chapter 12, "Java API for XMLIype"

= Chapter 20, "SQL Access Using RESOURCE_VIEW and PATH_
VIEW"

= Chapter 21, "PL/SQL Access and Management of Data Using
DBMS_XDB"

Exploiting XML Capabilities
If the drawbacks of XML file storage force you to break down XML into database
tables and columns, there are several XML advantages you have left:

Structure Independence: The open content model of XML cannot be captured easily
in the pure tables-and-columns world. XML Schemas allow global element
declarations, not just scoped to a container. Hence you can find a particular data
item regardless of where in the XML document it moves to as your application
evolves. See Chapter 5, "XML Schema Storage and Query: The Basics".

Storage Independence: When you use relational design, your client programs must
know where your data is stored, in what format, what table, and what the
relationships are among those tables. XMLType enables you to write applications
without that knowledge and allows DBAs to map structured data to physical table

1-20 Oracle XML DB Developer's Guide

Oracle XML DB Benefits

and column storage. See Chapter 5, "XML Schema Storage and Query: The Basics"
and Chapter 18, "Accessing Oracle XML DB Repository Data".

Ease of Presentation: XML is understood natively by browsers, many popular
desktop applications, and most internet applications. Relational data is not
generally accessible directly from applications, but requires programming to be
made accessible to standard clients. Oracle XML DB stores data as XML and pump
it out as XML, requiring no programming to display your database content. See:

« Chapter 8, "Transforming and Validating XMLType Data".
= Chapter 15, "Generating XML Data from the Database".
= Chapter 16, "XMLType Views".

= Oracle XML Developer’s Kit Programmer’s Guide, in the chapter, "XSQL Pages
Publishing Framework". It includes XM_Type examples.

Ease of Interchange: XML is the language of choice in business-to-business (B2B)
data exchange. If you are forced to store XML in an arbitrary table structure, you
are using some kind of proprietary translation. Whenever you translate a
language, information is lost and interchange suffers. By natively understanding
XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB
enables a clean interchange. See:

= Chapter 8, "Transforming and Validating XMLType Data"
= Chapter 16, "XMLIType Views"

Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large, or
many XML documents. Oracle XML DB provides very high performance and
scalability for XML operations. The major performance features are:

Native XMLType. See Chapter 4, "XMLIype Operations".

The lazily evaluated virtual DOM support. See Chapter 10, "PL/SQL API for
XMLType".

Database-integrated XPath and XSLT support. This support is described in several
chapters, including Chapter 4, "XMLIype Operations" and Chapter 8,
"Transforming and Validating XMLType Data".

XML Schema-caching support. See Chapter 5, "XML Schema Storage and Query:
The Basics".

CTXPATH Text indexing. See Chapter 9, "Full Text Search Over XML".

The hierarchical index over the repository. See Chapter 18, "Accessing Oracle
XML DB Repository Data".

Oracle XML DB Helps You Integrate Applications

Oracle XML DB enables data from disparate systems to be accessed through gateways
and combined into one common data model. This reduces the complexity of
developing applications that must deal with data from different stores.

When Your Data Is Not XML You Can Use XMLType Views

XM.Type views provide a way for you wrap existing relational and object-relational
data in XML format. This is especially useful if, for example, your legacy data is not in

Introducing Oracle XML DB 1-21

Searching XML Data Stored in CLOBs Using Oracle Text

XML but you need to migrate to an XML format. Using XML Ty pe views you do not
need to alter your application code.

See Also: Chapter 16, "XMLTIype Views"

To use XMLType views you must first register an XML Schema with annotations that
represent the bi-directional mapping from XML to SQL object types and back to XML.
An XM_Type view conforming to this schema (mapping) can then be created by
providing an underlying query that constructs instances of the appropriate SQL object
type. Figure 1-6 summarizes the Oracle XML DB advantages.

Searching XML Data Stored in CLOBs Using Oracle Text

Oracle enables special indexing on XML, including Oracle Text indexes for section
searching, special operators to process XML, aggregation of XML, and special
optimization of queries involving XML.

XML data stored in Character Large Objects (CLOB datatype) or stored in XMLType
columns in structured storage (object-relationally), can be indexed using Oracle Text.
hasPat h() and i nPat h() operators are designed to optimize XML data searches
where you can search within XML text for substring matches.

Oracle9i release 2 (9.2) and higher also provides:

« CONTAI NS() function that can be used with exi st sNode() for XPath based
searches. This is for use as the or a: cont ai ns function in an XPath query, as part
of exi st sNode() .

= The ability to create indexes on Ur i Type and XDBUr i Type columns.

= Index type CTXXPATH, which allows higher performance XPath searching in
Oracle XML DB under exi st sNode() .

See Also:
= Chapter 9, "Full Text Search Over XML"
= Oracle Text Application Developer’s Guide

= Oracle Text Reference

Building Messaging Applications using Oracle Streams Advanced
Queuing
Oracle Streams Advanced Queuing supports the use of:
= XM.Type as a message/payload type, including XML Schema-based XM_Type
= Queuing or dequeuing of XMLType messages

See Also:

« Oracle Streams Advanced Queuing User’s Guide and Reference for
information about using XMLType with Oracle Streams
Advanced Queuing

= Chapter 29, "Exchanging XML Data With Oracle Streams AQ"

1-22 Oracle XML DB Developer's Guide

Standards Supported by Oracle XML DB

Managing Oracle XML DB Applications with Oracle Enterprise Manager

You can use Oracle Enterprise Manager (Enterprise Manager) to manage and
administer your Oracle XML DB application. Enterprise Manager's graphical user
interface facilitates your performing the following tasks:

Configuration

= Configuring Oracle XML DB, including protocol server configuration
= Viewing and editing Oracle XML DB configuration parameters

= Registering XML schema

Create resources

= Managing resource security, such as editing resource ACL definitions
= Granting and revoking resource privileges

= Creating and editing resource indexes

« Viewing and navigating your Oracle XML DB hierarchical repository
Create XML schema-based tables and views

« Creating your storage infrastructure based on XML schemas

« Editing an XML schema

= Creating an XMLType table and a table with XMLType columns

= Creating a view based XML Schema

« Creating a function-based index based on XPath expressions

See Also: Chapter 26, "Managing Oracle XML DB Using Oracle
Enterprise Manager"

Requirements for Running Oracle XML DB
Oracle XML DB is available with Oracle9i release 2 (9.2) and higher.

See Also:

« http://otn.oracle.conltech/xm/ for the latest news
and white papers on Oracle XML DB

= Chapter 2, "Getting Started with Oracle XML DB"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

W3C XML Schema 1.0 Recommendation. You can register XML schemas, validate
stored XML content against XML schemas, or constrain XML stored in the server
to XML schemas.

W3C XPath 1.0 Recommendation. You can search or traverse XML stored inside
the database using XPath, either from HTTP requests or from SQL.

ISO-ANSI Working Draft for XML-Related Specifications (SQL/XML) [ISO/IEC

9075 Part 14 and ANSI]. You can use the emerging ANSI SQL /XML functions to

query XML from SQL. The task force defining these specifications falls under the
auspices of the International Committee for Information Technology Standards

Introducing Oracle XML DB 1-23

Oracle XML DB Technical Support

(INCITS). The SQL /XML specification will be fully aligned with SQL:2003.
SQL /XML functions are sometimes referred to as SQLX functions.

« Java Database Connectivity (JDBC) API. JDBC access to XML is available for Java
programmers.

« W3C XSL 1.0 Recommendation. You can transform XML documents at the server
using XSLT.

« W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML stored
in the server as an XML DOM, for dynamic access.

= Protocol support. You can store or retrieve XML data from Oracle XML DB using
standard protocols such as HTTP, FIP, and IETF WebDAYV, as well as Oracle Net.
See Chapter 24, "FTP, HTTP, and WebDAV Access to Repository Data".

= Java Servlet version 2.2, (except that the servlet WAR file, web. xm is not
supported in its entirety, and only one Ser vl et Cont ext and one web- app are
currently supported, and stateful servlets are not supported). See Chapter 25,
"Writing Oracle XML DB Applications in Java".

= Simple Object Access Protocol (SOAP). You can access XML stored in the server
from SOAP requests. You can build, publish, or find Web Services using Oracle
XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle Streams
Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML
stored in Oracle Database. See Chapter 29, "Exchanging XML Data With Oracle
Streams AQ" and Oracle Streams Advanced Queuing User’s Guide and Reference.

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through the Discussions option on Oracle Technology Network (OTN):

http://otn.oracle.comtech/ xm/

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and
XM_Type. The examples are based on a number of database schema, sample XML
documents, and sample XML schema.

See Also: Appendix H, "Oracle XML DB-Supplied XML Schemas
and Additional Examples"

Further Oracle XML DB Case Studies and Demonstrations
Visit OTN to view Oracle XML DB examples, white papers, case studies, and
demonstrations.

Oracle XML DB Examples and Tutorials
You can peruse more Oracle XML DB examples on OTN:

http://otn.oracl e.comtech/xm/index.htm

Note that comprehensive XML classes on how to use Oracle XML DB are also
available. See the Oracle University link on OTN.

1-24 Oracle XML DB Developer's Guide

Further Oracle XML DB Case Studies and Demonstrations

Oracle XML DB Case Studies and Demonstrations

Several detailed Oracle XML DB case studies are available on OTN and include the
following:

Oracle XML DB Downloadable Demonstration. This detailed demonstration
illustrates how to use many Oracle XML DB features. Parts of this demonstration
are also included in Chapter 3, "Using Oracle XML DB".

Content Management System (CMS) application. This illustrates how you can
store files on the database using Oracle XML DB repository in hierarchically
organized folders, place the files under version control, provide security using
ACLs, transform XML content to a desired format, search content using Oracle
Text, and exchange XML messages using Oracle Streams Advanced Queueing (to
request privileges on files or for sending externalization requests). See
http://otn.oracl e. conl sanpl e_

code/ tech/ xm / xm db/ cnexdb/ content . htm .

XML Dynamic News. This is a complete J2EE 1.3 based application that
demonstrates Java and Oracle XML DB features for an online news portal. News
feeds are stored and managed persistently in Oracle XML DB. Various other news
portals can customize this application to provide static or dynamic news services
to end users. End users can personalize their news pages by setting their
preferences. The application also demonstrates the use of Model View Controller
architecture and various J2EE design patterns. See

http://otn.oracl e. conl sanpl e_

code/ tech/ xm / xm news/ content . ht m

SAX Loader Application. This demonstrates an efficient way to break up large files
containing multiple XML documents outside the database and insert them into the
database as a set of separate documents. This is provided as a standalone and a
web-based application.

Oracle XML DB Utilities Package. This highlights the subprograms provided with
the XDB_Uti | i ti es package. These subprograms operate on BFI LE values,
CLOB values, DOM, and Oracle XML DB Resource APIs. With this package, you
can perform basic XML DB foldering operations, read and load XML files into a
database, and perform basic DOM operations through PL/SQL.

Card Payment Gateway Application. This application use s Oracle XML DB to
store all your data in XML format and enables access to the resulting XML data
using SQL. It illustrates how a credit card company can store its account and
transaction data in the database and also maintain XML fidelity.

Survey Application. This application determines what members want from Oracle
products. OTN posts the online surveys and studies the responses. This Oracle
XML DB application demonstrates how a company can create dynamic, interactive
HTML forms, deploy them to the Internet, store the responses as XML, and
analyze them using the XML enabled Oracle Database.

Introducing Oracle XML DB 1-25

Further Oracle XML DB Case Studies and Demonstrations

1-26 Oracle XML DB Developer's Guide

2

Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when
planning your Oracle XML DB solution.

This chapter contains these topics:

Installing Oracle XML DB

When to Use Oracle XML DB

Designing Your XML Application

Oracle XML DB Design Issues: Introduction

Oracle XML DB Application Design: a. How Structured Is Your Data?
Oracle XML DB Application Design: b. Access Models

Oracle XML DB Application Design: c. Application Language

Oracle XML DB Application Design: d. Processing Models

Oracle XML DB Design: e. Storage Models

Oracle XML DB Performance

Installing Oracle XML DB

Oracle XML DB is installed as part of the general purpose database shipped with
Oracle Database. For a manual installation or de-installation of Oracle XML DB, see
Appendix A, "Installing and Configuring Oracle XML DB".

When to Use Oracle XML DB

Oracle XML DB is suited for any application where some or all of the data processed
by the application is represented using XML. Oracle XML DB provides for high
performance ingestion, storage, processing and retrieval of XML data. Additionally, it
also provides the ability to quickly and easily generate XML from existing relational
data.

The type of applications that Oracle XML DB is particularly suited to include:

Business-to-Business (B2B) and Application-to-Application (A2A) integration
Internet applications
Content-management applications

Messaging

Getting Started with Oracle XML DB 2-1

Designing Your XML Application

« Web Services

A typical Oracle XML DB application has one or more of the following requirements
and characteristics:

= Large numbers of XML documents must be ingested or generated
= Large XML documents need to be processed or generated

» High performance searching, both within a document and across a large
collections of documents

= High Levels of security. Fine grained control of security

= Data processing must be contained in XML documents and data contained in
traditional relational tables

= Uses languages such as Java that support open standards such as SQL, XML,
XPath, and XSLT

= Accesses information using standard Internet protocols such as FTP,
HTTP/WebDAYV, or JDBC

« Full queriability from SQL and integration with analytic capabilities

« Validation of XML documents is critical

Designing Your XML Application

Oracle XML DB provides you with the ability to fine tune how XML documents will
be stored and processed in Oracle Database. Depending on the nature of the
application being developed, XML storage must have at least one of the following
features

= High performance ingestion and retrieval of XML documents
= High performance indexing and searching of XML documents
= Be able to update sections of an XML document

= Manage highly either or both structured and non-structured XML documents

Oracle XML DB Design Issues: Introduction

a. Data

b. Access

This section discusses the preliminary design criteria you can consider when planning
your Oracle XML DB application. Figure 2-1 provides an overview of your main
design options for building Oracle XML DB applications.

Will your data be highly structured (mostly XML), semi- structured (pseudo-
structured), or mostly non-structured? If highly structured, will your table(s) be XML
schema-based or non-schema-based? See "Oracle XML DB Application Design: a. How
Structured Is Your Data?" on page 2-4 and Chapter 3, "Using Oracle XML DB".

How will other applications and users access your XML and other data? How secure
must the access be? Do you need versioning? See "Oracle XML DB Application Design:
b. Access Models" on page 2-5.

2-2 Oracle XML DB Developer's Guide

Oracle XML DB Design Issues: Introduction

c. Application Language

d. Processing

e. Storage

In which language(s) will you be programming your application? See "Oracle XML DB
Application Design: c. Application Language" on page 2-6.

Will you need to generate XML? See Chapter 15, "Generating XML Data from the
Database".

How often will XML documents be accessed, updated, and manipulated? Will you
need to update fragments or the whole document?

Will you need to transform the XML to HTML, WML, or other languages, and how
will your application transform the XML? See Chapter 8, "Transforming and
Validating XMLType Data".

Does your application need to be primarily database resident or work in both database
and middle tier?

Is your application data-centric, document- and content-centric, or integrated (is both
data- and document-centric). "Oracle XML DB Application Design: d. Processing
Models" on page 2-7.

Will you be exchanging XML data with other applications, across gateways? Will you
need Advanced Queuing (AQ) or SOAP compliance? See Chapter 29, "Exchanging
XML Data With Oracle Streams AQ".

How and where will you store the data, XML data, XML schema, and so on? See
"Oracle XML DB Design: e. Storage Models" on page 2-8.

Note: Your choice of which models to choose in the preceding
four categories, a through d, are typically related to each other.
However, the storage model you choose is orthogonal to the choices
you make for the other design models. In other words, choices you
make for the other design modeling options are not dependent on
the storage model option you choose.

Getting Started with Oracle XML DB 2-3

Oracle XML DB Application Design: a. How Structured Is Your Data?

Figure 2-1 Oracle XML DB Design Options

© by © o

Data Access? Language? Processing and
Structure? . Java Data
Repository .« JDBC Manipulation?
Path Access « PL/SQL « DOM
« CorC++ * XSLT
¢ Queries
SQL * Inserts
Query Access « Updates

Storage Options?

XMLType Tables or XMLType Views

« You get the same Oracle XML DB functionality regardless
of which storage option you chose.

« The storage option affects the application's performance
and data fidelity

Oracle XML DB Application Design: a. How Structured Is Your Data?

Figure 2-2 shows the following data structure categories and associated suggested
storage options:

= Structured data. Is your data highly structured? In other words, is your data
mostly XML data?

= Semi/pseudo-structured data. Is your data semi/pseudo-structured? In other
words does your data include some XML data?

= Unstructured data. Is your data unstructured? In other words, is your data mostly
non-XML data?

XML Schema-Based or Non-Schema-Based

Also consider the following data modeling questions:
= If your application is XML schema-based:

- For structured data, you can use either Character Large Object (CLOB) or
structured storage.

— For semi- or pseudo-structured data, you can use either CLOB, structured, or
hybrid storage. Here your XML schema can be more loosely coupled. See also
"Oracle XML DB Design: e. Storage Models" on page 2-8.

- For unstructured data, an XML schema design is not applicable.

= If your application is non-schema-based. For structured, semi/ pseudo-structured,
and unstructured data, you can store your data in either CLOB values in XM_Type
tables or views or in files in repository folders. With this design you have many
access options including path- and query-based access through Resource Views.

2-4 Oracle XML DB Developer's Guide

Oracle XML DB Application Design: b. Access Models

Figure 2-2 Data Storage Models: How Structured Is Your Data?

How Structured is

Your Data?

Structured
Data
XML Non-Schema
Schema Based?
Based?
Use either: Store as:
CLOB or ¢ CLOBin
Structured XMLType
Storage Table
e Filein
Repository
Folder
Views
e Access
through
Resource
APIs

Semi-structured
Pseudo-structured
Data
XML Non-Schema
Schema Based?
Based?
Use either: Store as:
« CLOB *« CLOBin
e Structured XMLType
* Hybrid Table
Storage * Filein
(semi- Repository
structured Folder
storage) Views
» Access
through
Resource
APIs

Unstructured
Data

Store as:

« CLOB in
XMLType
Table
File in
Repository
Folder
Views
Access
through
Resource
APls

Oracle XML DB Application Design: b. Access Models

Figure 2-3 shows the two main data access modes to consider when designing your
Oracle XML DB applications:

= Navigation- or path-based access. This is suitable for both content/document and
data oriented applications. Oracle XML DB provides the following languages and

access APlIs:

- SQL access through Resource/Path Views. See Chapter 20, "SQL Access Using
RESOURCE_VIEW and PATH_VIEW".

- PL/SQL access through DBM5_XDB. See Chapter 21, "PL/SQL Access and
Management of Data Using DBMS_XDB".

- Java access. See Chapter 22, "Java Access to Repository Data Using Resource
API for Java".

- Protocol-based access using HTTP/WebDAYV or FTP, most suited to
content-oriented applications. See Chapter 24, "FTP, HTTP, and WebDAV
Access to Repository Data".

= Query-based access. This can be most suited to data oriented applications. Oracle
XML DB provides access using SQL queries through the following APIs:

- Java (through JDBC) access. See Java API for XMLType.
- PL/SQL access. See Chapter 10, "PL/SQL API for XMLType".

These options for accessing repository data are also discussed in Chapter 18,
"Accessing Oracle XML DB Repository Data".

You can also consider the following access model criteria:

Getting Started with Oracle XML DB 2-5

Oracle XML DB Application Design: c. Application Language

= What level of security do you need? See Chapter 23, "Oracle XML DB Resource
Security".

= What kind of indexing will best suit your application? Will you need to use Oracle
Text indexing and querying? See Chapter 4, "XMLType Operations" and Chapter 9,
"Full Text Search Over XML".

= Do you need to version the data? If yes, see Chapter 19, "Managing Oracle
XML DB Resource Versions".
Figure 2-3 Data Access Models: How Will Users or Applications Access the Data?

Oracle XML DB
Data Access Options

Query-based Path-based
Access Access

Use SQL Use Repository

Available Language Available Languages

and XMLType APIs and APIs
— JDBC — SQL (RESOURCE_VIEW or PATH_VIEW)
— PL/SQL —FTP
— C (OCI) — HTTP / WebDav

Oracle XML DB Application Design: ¢. Application Language

You can program your Oracle XML DB applications in the following languages:
« Java (JDBC, Java Servlets)

See Also:
« Chapter 12, "Java API for XMLType"

= Chapter 22, "Java Access to Repository Data Using Resource
API for Java"

= Chapter 25, "Writing Oracle XML DB Applications in Java"
= Appendix E, "Java APIs: Quick Reference"

- PL/SQL

See Also:
= Chapter 10, "PL/SQL API for XMLType"

= Chapter 21, "PL/SQL Access and Management of Data Using
DBMS_XDB"

« Appendix E "SQL and PL/SQL APIs: Quick Reference"

2-6 Oracle XML DB Developer's Guide

Oracle XML DB Application Design: d. Processing Models

Oracle XML DB Application Design: d. Processing Models

The following processing options are available and should be considered when
designing your Oracle XML DB application:

= XSLT. Will you need to transform the XML to HTML, WML, or other languages,
and how will your application transform the XML? While storing XML documents
in Oracle XML DB you can optionally ensure that their structure complies (is
"valid" against) with specific XML Schema. See Chapter 8, "Transforming and
Validating XMLType Data".

= DOM. See Chapter 10, "PL/SQL API for XMLIype". Use object-relational columns,
VARRAYSsS, nested tables, as well as LOBs to store any element or Element-subtree
in your XML Schema, and still maintain DOM fidelity (DOM stored == DOM
retrieved).

Note: If you choose the CLOB storage option, available with
XM Ty pe since Oracle9i release 1 (9.0.1), you can keep white space.
If you are using XML schema, see the discussion on DOM fidelity
in Chapter 5, "XML Schema Storage and Query: The Basics".

= XPath searching. You can use XPath syntax embedded in a SQL statement or as
part of an HTTP request to query XML content in the database. See Chapter 4,
"XMLType Operations”, Chapter 9, "Full Text Search Over XML", Chapter 18,
"Accessing Oracle XML DB Repository Data", and Chapter 20, "SQL Access Using
RESOURCE_VIEW and PATH_VIEW".

= XML Generation and XMLType views. Will you need to generate or regenerate
XML? If yes, see Chapter 15, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? See
Chapter 4, "XMLType Operations" and Chapter 20, "SQL Access Using RESOURCE_
VIEW and PATH_VIEW".

Will you need to update fragments or the whole document? You can use XPath to
specify individual elements and attributes of your document during updates, without
rewriting the entire document. This is more efficient, especially for large XML
documents. Chapter 5, "XML Schema Storage and Query: The Basics".

Is your application data-centric, document- and content-centric, or integrated (is both
data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging Options

Advanced Queuing (AQ) supports XML and XM_.Type applications. You can create
queues with payloads that contain XMLTy pe attributes. These can be used for
transmitting and storing messages that contain XML documents. By defining Oracle
Database objects with XML Ty pe attributes, you can do the following:

= Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

= Selectively dequeue messages with XMLType attributes using the operators such
as exi st sNode() and extract ().

= Define transformations to convert Oracle Database objects to XMLType.

= Define rule-based subscribers that query message content using XMLTy pe
operators such as exi st sNode() and extract ().

Getting Started with Oracle XML DB 2-7

Oracle XML DB Design: e. Storage Models

See Also:
= Chapter 29, "Exchanging XML Data With Oracle Streams AQ"

= Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle XML DB Design: e. Storage Models

Figure 2—4 summarizes the Oracle XML DB storage options with regards to using
XM_Type tables or views. If you have existing or legacy relational data, use XM.Type
Views.

Regardless of which storage options you choose for your Oracle XML DB application,
Oracle XML DB provides the same functionality. However, the option you choose will
affect your application's performance and the data fidelity (data accuracy).

Currently, the three main storage options for Oracle XML DB applications are:

LOB-based storage? LOB-based storage assures complete textual fidelity
including preservation of whitespace. This means that if you store your XML
documents as CLOB values, when the XML documents are retrieved there will be
no data loss. Data integrity is high, and the cost of regeneration is low.

Structured storage? Structured storage loses whitespace information but
maintains fidelity to the XML DOM, namely DOM stored = DOM retrieved. This
provides:

- Better SQL 'queriability’ with improved performance
- Piece-wise updatability

Hybrid or semi-structured storage. Hybrid storage is a special case of structured
storage in which a portion of the XML data is broken up into a structured format
and the remainder of the data is stored as a CLOB value.

The storage options are totally independent of the following criteria:

Data queryability and updatability, namely, how and how often the data is queried
and updated.

How your data is accessed. This is determined by your application processing
requirements.

What language(s) your application uses. This is also determined by your
application processing requirements.

See Also:
= Chapter 1, "Introducing Oracle XML DB", "XMLType Storage"
on page 1-3

= Chapter 3, "Using Oracle XML DB"
= Chapter 4, "XMLType Operations"

= Chapter 5, "XML Schema Storage and Query: The Basics",
"DOM Fidelity" on page 5-17

Using XMLType Tables

If you are using XMLType tables you can store your data in:

CLOB (unstructured) storage

Structured storage

2-8 Oracle XML DB Developer's Guide

Oracle XML DB Performance

= Hybrid or semi-structured storage

Note: For XM.Types stored as CLOB values, use thin JDBC.
Oracle XML DB currently only supports thin JDBC (for both XML
schema- and non-schema-based applications). For XMLTypes stored
in an object-relational manner, use thick JDBC.

Using XMLType Views

Use XMLType views if you have existing relational data. You can use the following
options to define the XMLType views:

= SQLX operators. Using these operators you can store the data in relational tables
and also generate/regenerate the XML. See Chapter 15, "Generating XML Data
from the Database".

= Object Types:
— Object tables

- Object constructors. You can store the data in relational tables using object
constructors.

- Object views

Figure 2-4 Structured Storage Options

Oracle XML DB Data
Storage Options

Your Storage Option Affects Performance
and Data Fidelity

XMLType XMLType }— If you have existing
Tables Views relational data use
XMLType Views

Can define the
views using:
CLOB or S d Hybrid or SQL / XML Object
Unstructured értucture Semi-structured Operators Types
Storage orage Storage I
Relational
Tables
Object Object Object
Tables Views Constructors
Relational
Tables

Oracle XML DB Performance

One objection to using XML to represent data is that it generates higher overhead than
other representations. Oracle XML DB incorporates a number of features specifically
designed to address this issue by significantly improving the performance of XML
processing. These are described in the following sections:

= XML Storage Requirements

Getting Started with Oracle XML DB 2-9

Oracle XML DB Performance

= XML Memory Management

= XML Parsing Optimizations

= Node-Searching Optimizations

= XML Schema Optimizations

= Load Balancing Through Cached XML Schema
» Reduced Non-Native Code Bottlenecks

= Reduced Java Type Conversion Bottlenecks

XML Storage Requirements

Surveys show that data represented in XML and stored in a text file is three times the
size of the same data in a Java object or in relational tables. There are two reasons for
this:

« Tag names (metadata describing the data) and white space (formatting characters)
take up a significant amount of space in the document, particularly for highly
structured, data-centric XML.

= All data in an XML file is represented in human readable (string) format.

Storing Structured Documents in Oracle XML DB Saves Space

The string representation of a numeric value needs about twice as many bytes as the
native (binary) representation When XML documents are stored in Oracle XML DB
using the structured storage option, the 'shredding’ process discards all tags and white
space in the document.

The amount of space saved by this optimization depends on the ratio of tag names to
data, and the number of collections in the document. For highly-structured,
data-centric XML the savings can be significant. When a document is printed, or when
node-based operations such as XPath evaluations take place, Oracle XML DB uses the
information contained in the associated XML Schema to dynamically reconstruct any
necessary tag information.

XML Memory Management

Document Object Model (DOM) is the dominant programming model for XML
documents. DOM APIs are easy to use but the DOM Tree that underpins them is
expensive to generate, in terms of memory. A typical DOM implementation maintains
approximately 80 to 120 bytes of system overhead for each node in the DOM tree. This
means that for highly structured data, the DOM tree can require 10 to 20 times more
memory than the document on which it is based.

A conventional DOM implementation requires the entire contents of an XML
document to be loaded into the DOM tree before any operations can take place. If an
application only needs to process a small percentage of the nodes in the document, this
is extremely inefficient in terms of memory and processing overhead. The alternative
SAX approach reduces the amount of memory required to process an XML document,
but its disadvantage is that it only allows linear processing of nodes in the XML
Document.

Oracle XML DB Reduces Memory Overhead for XML Schema-Based Documents
by Using XML Objects (XOBs)

Oracle XML DB reduces memory overhead associated with DOM programming by
managing XML schema-based XML documents using an internal in-memory structure

2-10 Oracle XML DB Developer's Guide

Oracle XML DB Performance

called an XML Object (XOB). A XOB is much smaller than the equivalent DOM since it
does not duplicate information like tag names and node types, that can easily be
obtained from the associated XML schema. Oracle XML DB automatically uses a XOB
whenever an application works with the contents of a schema-based XM_.Type. The
use of the XOB is transparent to you. It is hidden behind the XMLType datatype and
the C, PL/SQL, and Java APIs.

XOB Uses Lazily-Loaded Virtual DOM

The XOB can also reduce the amount of memory required to work with an XML
document using the Lazily-Loaded Virtual DOM feature. This allows Oracle XML DB
to defer loading in-memory representation of nodes that are part of sub-elements or
collection until methods attempt to operate on a node in that object. Consequently, if
an application only operates on a few nodes in a document, only those nodes and their
immediate siblings are loaded into memory.

The XOB can only used when an XML document is based on an XML schema. If the
contents of the XML document are not based on an XML schema, a traditional DOM is
used instead of the XOB.

XML Parsing Optimizations

To populate a DOM tree the application must parse the XML document. The process of
creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM-based
application, where the XML documents are stored as text, every document has to be
parsed and loaded into the DOM tree before the application can work with it. If the
contents of the DOM tree are updated the whole tree has to be serialized back into a
text format and written out to disk.

With Oracle XML DB No Re-Parsing is Needed

Oracle XML DB eliminates the need to keep re-parsing documents. Once an XML
document has been stored using structured storage techniques no further parsing is
required when the document is loaded from disk into memory. Oracle XML DB is able
to map directly between the on disk format and in-memory format using information
derived from the associated XML schema. When changes are made to the contents of a
schema-based XMLType, Oracle XML DB is able to write just the updated data back to
disk.

Again, when the contents of the XMLIype are not based on an XML schema a
traditional DOM is used instead.

Node-Searching Optimizations

Most DOM implementations use string comparisons when searching for a particular
node in the DOM tree. Even a simple search of a DOM tree can require hundreds or
thousands of instruction cycles. Searching for a node in a XOB is much more efficient
than searching for a node in a DOM. A XOB is based on a computed offset model,
similar to a C/C++ object, and uses dynamic hashtables rather than string
comparisons to perform node searches.

XML Schema Optimizations

Making use of the powerful features associated with XML schema in a conventional
XML application can generate significant amounts of additional overhead. For
example, before an XML document can be validated against an XML schema, the
schema itself must be located, parsed, and validated.

Getting Started with Oracle XML DB 2-11

Oracle XML DB Performance

Oracle XML DB Can Minimize XML Schema Overhead Once it Is Registered

Oracle XML DB minimizes the overhead associated with using XML schema. When an
XML schema is registered with the database it is loaded in the Oracle XML DB schema
cache, along with all of the metadata required to map between the XML, XOB and on
disk representations of the data. This means that once the XML schema has been
registered with the database, no additional parsing or validation of the XML schema is
required before it can be used. The schema cache is shared by all users of the database.
Whenever an Oracle XML DB operation requires information contained in the XML
schema it can access the required information directly from the cache.

Load Balancing Through Cached XML Schema

Some operations, such as performing a full schema validation, or serializing an XML
document back into text form can still require significant memory and CPU resources.
Oracle XML DB allows these operations to be off-loaded to the client or middle tier
processor. Oracle Call Interface (OCI) interface and thick JDBC driver both allow the
XOB to be managed by the client.

The cached representation of the XML schema can also be downloaded to the client.
This allows operations such as XML printing, and XML schema validation to be
performed using client or middle tier resources, rather than server resources.

Reduced Non-Native Code Bottlenecks

Another bottleneck for XML-based Java applications happens when parsing an XML
file. Even natively compiled or JIT compiled Java performs XML passing operations
twice as slowly compared to using native C language. One of the major performance
bottlenecks in implementing XML applications is the cost of transforming data in an
XML document between text, Java, and native server representations. The cost of
performing these transformations is proportional to the size and complexity of the
XML file and becomes severe even in moderately sized files.

Oracle XML DB Implements Java and PL/SQL APIs Over Native C

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL
interfaces as very thin facades over a native 'C' implementation. This provides for
language-neutral XML support (Java, C, PL/SQL, and SQL all use the same
underlying implementation), as well as the higher performance XML parsing and
DOM processing.

Reduced Java Type Conversion Bottlenecks

One of the biggest bottlenecks when using Java and XML is with type conversions.
Internally Java uses UCS-2 to represent character data. Most XML files and databases
do not contain UCS-2 encoded data. This means that all data contained in an XML file
has to be converted from 8 Bit or UTF8 encoding to UCS-2 encoding before it can be
manipulated in a Java program.

Oracle XML DB Uses Lazy Type Conversion to Avoid Unneeded Type
Conversions

Oracle XML DB addresses these problems with lazy type conversions. With lazy type
conversions the content of a node is not converted into the format required by Java
until the application attempts to access the contents of the node. Data remains in the
internal representation till the last moment. Avoiding unnecessary type conversions
can result in significant performance improvements when an application only needs to
access a few nodes in an XML document.

2-12 Oracle XML DB Developer's Guide

Oracle XML DB Performance

Consider a JSP that loads a name from the Oracle Database and prints it out in the
generated HTML output. Typical JSP implementations read the name from the
database (that probably contains data in the ASCII or ISO8859 character sets) convert
the data to UCS-2, and return it to Java as a string. The JSP would not look at the string
content, but only print it out after printing the enclosing HTML, probably converting
back to the same ASCII or ISO8859 for the client browser. Oracle XML DB provides a
write interface on XMLType so that any element can write itself directly to a stream
(such as a Ser vl et Qut put St r eam) without conversion through Java character sets.
Figure 2-5 shows the Oracle XML DB Application Program Interface (API) stack.

Figure 2-5 Oracle XML DB Application Program Interface (API) Stack

OCI-Based Application

Server-Based Application

Java XML
Type and
DOM

PL/SQL
XML Type
and DOM

4

!

Non-Schema-Based

C XML Java XML
Type and Type and
DOM DOM
1
In Memory
Format v
Schema-Based
XML
(XOB)
On Disk
Format
XML Structured
Schema Storage
Cache (Objects)

XML
(DOB)
Unstructured
Storage
(CLOB)

Getting Started with Oracle XML DB 2-13

Oracle XML DB Performance

2-14 Oracle XML DB Developer's Guide

3

Using Oracle XML DB

This chapter provides an overview of how to use Oracle XML DB. The examples here
illustrate techniques for accessing and managing XML content in purchase orders
(POs). The format and data of XML POs are well suited for Oracle XML DB storage
and processing techniques because POs are highly structured XML documents.
However, the majority of techniques introduced here can also be used to manage other
types of XML documents, such as containing non-structured or semi-structured data.
This chapter also further explains Oracle XML DB concepts introduced in Chapter 1,
"Introducing Oracle XML DB".

This chapter contains these topics:

= Storing XML as XMLType

= Creating XMLType Tables and Columns

= Loading XML Content Into Oracle XML DB

= Introducing the W3C XML Schema Recommendation

= XML Schema and Oracle XML DB

= Identifying Instance Documents

= Using the Database to Enforce XML Data Integrity

= DML Operations on XML Content Using Oracle XML DB

= Querying XML Content Stored in Oracle XML DB

= Relational Access to XML Content Stored in Oracle XML DB Using Views
= Updating XML Content Stored in Oracle XML DB

= Namespace Support in Oracle XML DB

= Processing XMLType Methods and XML-Specific SQL Functions
= Understanding and Optimizing XPath Rewrite

= Accessing Relational Database Content Using XML

= XSL Transformation

= Using Oracle XML DB Repository

= Viewing Relational Data as XML From a Browser

= XSL Transformation Using DBUri Servlet

Using Oracle XML DB 3-1

Storing XML as XMLType

Storing XML as XMLType

Before the introduction of Oracle XML DB there were two ways to store XML content
in Oracle Database:

= By using Oracle XML Developer's Kit (XDK) to parse the XML document outside
Oracle Database and store the XML data as rows in one or more tables in the
database. In this case Oracle Database was unaware that it was managing XML
content.

= By storing the XML document in Oracle Database using a Character Large Object
(CLOB), Binary Large Object (BLOB), Binary File (BFI LE), or VARCHAR column.
Again, in this case, Oracle Database was unaware that it was managing XML
content.

The introduction of Oracle XML DB and the XMLType datatype provides new
techniques that facilitate the persistence of XML content in the database. These techniques
include the ability to store XML documents in an XMLType column or table, or in
Oracle XML DB repository.

Storing XML as an XMLType column or table makes Oracle Database aware that the
content is XML. This allows the database to:

= Perform XML-specific validations, operations, and optimizations on the XML
content

= Facilitate highly efficient processing of XML content by Oracle XML DB

What is XMLType

Oracle9i release 1 (9.0.1) introduced a new datatype, XMLType, to facilitate native
handling of XML data in the database. The following summarizes XMLType:

=« XM.Type can represent an XML document as an instance (of XMLType) in SQL.

=« XM.Type has built-in member functions that operate on XML content. For
example, you can use XMLType functions to create, extract, and index XML data
stored in Oracle Database.

= Functionality is also available through a set of Application Program Interfaces
(APIs) provided in PL/SQL and Java.

=« XM.Type can be used in PL/SQL stored procedures as parameters, return values,
and variables

With XMLType and these capabilities, SQL developers can leverage the power of the
relational database while working in the context of XML. Likewise, XML developers
can leverage the power of XML standards while working in the context of a relational
database.

XM_Type datatype can be used as the datatype of columns in tables and views.
Variables of XMLType can be used in PL/SQL stored procedures as parameters, return
values, and so on. You can also use XMLType in SQL, PL/SQL, C, Java (through
JDBC), and Oracle Data Provider for .NET (ODP.NET).

The XMLType API provides a number of useful functions that operate on XML
content. Many of these functions are provided as both SQL functions and XMLType
methods. For example, the ext r act () function extracts one or more nodes from an
XM_Type instance.

3-2 Oracle XML DB Developer's Guide

Storing XML as XMLType

XML DB functionality is based on the Oracle XML Developer's Kit C implementations
of the relevant XML standards such as XML Parser, XML DOM, and XML Schema
Validator.

Benefits of the XMLType Datatype and API

The XMLType datatype and application programming interface (API) provide
significant advantages as they enable both SQL operations on XML content and XML
operations on SQL content:

Versatile API. XMLType has a versatile API for application development, because
it includes built-in functions, indexing, and navigation support.

XMLType and SQL. You can use XMLType in SQL statements combined with other
columns and datatypes. For example, you can query XMLType columns and join
the result of the extraction with a relational column. Oracle Database can then
determine an optimal way to run these queries.

Indexing. Oracle XML DB lets you create Btree indexes on the object-relational
tables that are used to provide structured storage of XMLType tables and columns.
Oracle Text indexing supports text indexing of the content of structured and
unstructured XMLType tables and columns. The CTXXPATH domain index type of
Oracle Text provides an XML-specific text index with transactional semantics. This
index type can speed up certain XPath-based searches on both structured and
unstructured content. Finally, function-based indexes can be used to create indexes
on explicit XPATH expressions for both structured and unstructured XM_Type.

When to Use XMLType

Use XMLType any time you want to use the database a persistent storage of XML. For
example, you can use XMLType functionality to perform the following tasks:

SQL queries on part of or the whole XML document: The XMLType functions
exi st sNode() and extract () provide the necessary SQL query functions over
XML documents.

Strong typing inside SQL statements and PL/SQL functions: The strong typing
offered by XMLType ensures that the values passed in are XML values and not any
arbitrary text string.

XPath functionality provided by ext r act () and exi st sNode() functions: Note
that XMLType uses the built-in C XML parser and processor and hence provides
better performance and scalability when used inside the server.

Indexing on XPath queries on documents: XMLType has member functions that
you can use to create function-based indexes to optimize searches.

To shield applications from storage models. Using XMLType instead of CLOBs or
relational storage allows applications to gracefully move to various storage
alternatives later without affecting any of the query or DML statements in the
application.

To prepare for future optimizations. New XML functionality will support
XM.Type. Because Oracle Database is natively aware that XML Ty pe can store XML
data, better optimizations and indexing techniques can be done. By writing
applications to use XMLType, these optimizations and enhancements can be easily
achieved and preserved in future releases without your needing to rewrite
applications.

Using Oracle XML DB 3-3

Creating XMLType Tables and Columns

There are Two Main Ways to Store XMLType Data: LOBs and Structured

XM_Type data can be stored in two ways:

= In Large Objects (LOBs). LOB storage maintains content fidelity, that is, the
original XML is preserved including whitespace. XML documents are stored
composed as whole documents such as files. For non-schema-based storage,
XM_Type offers a Character Large Object (CLOB) storage option.

= In Structured storage (in tables and views). Structured storage maintains DOM
(Document Object Model) fidelity.

Native XMLType instances contain hidden columns that store this extra information
that does not quite fit in the SQL object model. This information can be accessed
through APIs in SQL or Java, using member functions, such as ext r act Node() .

Changing XMLType storage from structured storage to LOB, or vice versa, is possible
using database IMPORT and EXPORT. Your application code does not have to change.
You can then change XML storage options when tuning your application, because each
storage option has its own benefits.

Advantages and Disadvantages of XML Storage Options in Oracle XML DB

Table 3-1 summarizes some advantages and disadvantages to consider when selecting
your Oracle XML DB storage option. Storage options are also discussed in Table 1-1,

" XML Storage Options: Structured or Unstructured" and Chapter 2, "Getting Started
with Oracle XML DB".

Table 3-1 XML Storage Options in Oracle XML DB

Feature LOB Storage (with Oracle Text Index) Structured Storage (with B*Tree index)

Database schema Very flexible when schemas change. Limited flexibility for schema changes. Similar

flexibility to the ALTER TABLE restrictions.

Data integrity Maintains the original XML content Trailing new lines, whites pace within tags, and

and accuracy fidelity, important in some applications. ~ data format for non-string datatypes is lost. But
maintains DOM fidelity.

Performance Mediocre performance for DML. Excellent DML performance.

Access to SQL Some accessibility to SQL features. Good accessibility to existing SQL features, such

as constraints, indexes, and so on

Space needed Can consume considerable space. Needs less space in particular when used with
an Oracle XML DB registered XML schema.

When to Use CLOB Storage for XMLType
Use CLOB storage for XML Ty pe in the following cases:

= When you are interested in storing and retrieving the whole document.

= When you do not need to perform piece-wise updates on XML documents.

Creating XMLType Tables and Columns

The following examples create XMLType columns and tables for managing XML
content in Oracle Database:

Example 3-1 Creating a Table with an XMLType Column
CREATE TABLE exanpl el

3-4 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

(
key_col um VARCHAR2(10) primary key,

xm _col um XM.Type

)i

Tabl e created.

Example 3-2 Creating a Table of XMLType
CREATE TABLE exanpl e2 of XM.Type;

Tabl e created.

Loading XML Content Into Oracle XML DB

You can load XML content into Oracle XML DB using several techniques, including
the following:

« Table-based loading techniques:
=« Loading XML Content into Oracle XML DB Using SQL or PL/SQL
= Loading XML Content into Oracle XML DB Using Java
= Loading XML Content into Oracle XML DB Using C

= Loading Very Large XML Files of Smaller XML Documents into Oracle
Database

= Loading Large XML Files into Oracle Database Using SQL*Loader
« Path-based loading techniques:
« Loading XML Documents into Oracle XML DB Repository
= Loading Documents into Oracle XML DB Repository Using Protocols

Loading XML Content into Oracle XML DB Using SQL or PL/SQL

You can perform a simple | NSERT in SQL or PL/SQL, to load an XML document into
the database. Before the document can be stored as an XMLType column or table, it
must first be converted into an XMLType instance using one of the XML Type
constructors.

See Also: Chapter 4, "XMLIype Operations", Appendix F, "SQL
and PL/SQL APIs: Quick Reference", and Oracle XML API
Reference for a description of the XMLType constructors

The XMLType constructors allow an XMLType instance to be created from different
sources including VARCHAR and CLOB datatypes. The constructors also accept
additional arguments that reduce the amount of processing associated with XM_Type
creation. For example, if the source XML document is well-formed and valid, the
constructor accepts flags that disable the default checking typically performed when
instantiating the XMLType.

In addition, if the source data is not encoded in the database character set, an XMLType
instance can be constructed using either BFI LE or BLOB datatypes. The encoding of
the source data is specified through the character set id (csi d) argument of the
constructor.

Using Oracle XML DB 3-5

Loading XML Content Into Oracle XML DB

First Create a SQL Directory That Points to the Needed Directory

Before using this procedure you must create a SQL directory object that points to the
directory containing the file to be processed. To do this, you must have the CREATE
ANY DI RECTCRY privilege.

See Also: Oracle Database SQL Reference, Chapter 18, under
GRANT

CREATE DI RECTORY xm dir AS 'The path to the folder containing the XM. File';

Example 3-3 shows how to create an XMLType instance from a CLOB value using
PL/SQL procedure call get Fi | eCont ent () . This procedure returns the content of
the specified file as a CLOB value. It also uses the DBMS_L OB package to create the
CLOB value from a BFI LE value.

Example 3-3 Inserting XML Content into an XMLType Table
I NSERT | NTO exanpl e2
VALUES

(
xnl type

(
bfilename(' XM.DIR', 'purchaseOrder.xnl"),
nl's_charset _id(" AL32UTF8")
)
);

1 row created.

The following code lists the get Fi | eCont ent () procedure definition:

CREATE OR REPLACE FUNCTI ON get Fi | eContent (fil enane varchar 2,
directoryName varchar2 default USER,
charset varchar2 default ' AL32UTF8')

return CLOB
is
fileContent CLOB : = NULL;
file bfile := bfilenane(directoryName, fil enane);
dest _of f set number = 1;
src_of fset number := 1;
| ang_cont ext nunber := 0;
conv_war ni ng nunber := 0;
begi n

DBVS_LOB. creat eTenporary(fil eContent,true, DBMS_LOB. SESSI ON) ;
DBVS_LOB.fileopen(file, DBVMS LOB.file_readonly);
DBMS_LOB. | oadCl obfronFil e
(
fileContent,
file,
DBMS_LOB. get Length(file),
dest _of f set,
src_of fset,
nl s_charset _i d(charset),
| ang_cont ext,
conv_war ni ng
);
DBVS_LOB. fileclose(file);
return fileContent;
end;
/

3-6 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

See Also: Oracle Database Application Developer’s Guide - Large
Objects and PL/SQL Packages and Types Reference for information on
DBM5_L OB and methods used in this procedure

After calling this procedure you must dispose of the temporary CLOB value by calling
procedure DBM5_LOB. f r eeTenpor ar y. If the file with XML content is not stored in
the same character set as the database, the character set of the file must be passed as a
third argument to the get Fi | eCont ent () procedure, so that the contents of the file
are converted to the appropriate database character set as the CLOB value is created.

Loading XML Content into Oracle XML DB Using Java

Example 3—4 shows how to load XML content into Oracle XML DB by first creating an
XML.Type instance in Java given a Document Object Model (DOM).

Example 3-4 Inserting XML Content into an XML Type Table Using Java

public void dolnsert(Connection conn, Docunment doc)
throws Exception
{
String SQLTEXT = "insert into PURCHASEORDER val ues (?)";
XM.Type xm = nul l;
xm = XM.Type. creat eXM_(conn, doc) ;
O acl ePrepar edSt at ement sql Statement = nul | ;
sql Statenment = (Oracl ePreparedStatenent) conn. prepareSt at enent (SQLTEXT) ;
sql St at enent . set Gbj ect (1, xm);
sql St at enent . execut e();

}

1 row sel ected.

The "Simple Bulk Loader Application" available on the Oracle Technology Network
(OTN) siteathttp: // ot n. oracl e. com sanpl e_

code/ tech/ xm / xm db/ cont ent . ht M demonstrates how to load a directory of
XML files into Oracle XML DB using Java Database Connectivity (JDBC). JDBC is a set
of Java interfaces to Oracle Database.

Loading XML Content into Oracle XML DB Using C

Example 3-5 shows, in C, how to insert XML content into an XMLType table by
creating an XMLType instance given a DOM.

Example 3-5 Inserting XML Content into an XMLType Table Using C

#include <xm . h>
#include <string.h>
#incl ude <oci xn db. h>

OCl Env *envhp;

CCl Error *errhp;
QOCl SveCt x *svchp;
QCl Stnt *stnthp;
OCl Server *srvhp;
OCl Dur ation dur;
OCl Sessi on *sesshp;

oratext *usernane;
oratext *password,

Using Oracle XML DB 3-7

Loading XML Content Into Oracle XML DB

oratext *filenane;
orat ext *schenal oc;

/52 */
/* execute a sql statenent which binds xm data */
/* __ */

sword exec_bi nd_xm (OCl SvcCt x *svchp, OClError *errhp, OClStnmt *stnthp,
void *xm, OCl Type *xm tdo, OraText *sqlstnt)
{

OCl Bi nd *bndhpl = (OCIBind *) O;
sword status = 0;

QClInd ind = OCl _| ND_NOTNULL;
QClInd *indp = & nd;

if(status = OCl StntPrepare(stnthp, errhp, (OaText *)sqlstnt,
(ub4)strlen((const char *)sqglstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT))
return OCl _ERROR;

i f(status = OCI Bi ndByPos(stnthp, &bndhpl, errhp, (ub4) 1, (dvoid *) O,
(sbh4) 0, SQT_NTY, (dvoid *) 0, (ub2 *)O,
(ub2 *)0, (ub4) 0, (ub4 *) 0, (ubd4) OCI _DEFAULT))
return OCl _ERROR;

i f(status = OCI Bi ndOhj ect (bndhpl, errhp, (CONST OCl Type *) xmtdo,
(dvoid **) &xnl, (ub4 *) 0,
(dvoid **) & ndp, (ub4 *) 0))
return OCl _ERROR

i f(status = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(CONST QCI Snapshot*) 0, (OC Snapshot *)
(ub4) OCI _DEFAULT))

0,
return OCl _ERROR;

return OCl _SUCCESS;

}

/* __ */
/* initialize oci handl es and connect */
/22 */

sword init_oci_connect()
{

sword status;

if (OClEnvCreate((OC Env **) &(envhp), (ub4) OC _OBJECT,
dvoid *) 0, (dvoid * (*)(dvoid *,size_t)
dvoid * (*)(dvoid *, dvoid *, size_t)) O
void (*)(dvoid *, dvoid *)) 0, (size_t)

0,

—_— e~ o~ —~

)
0, (dvoid **) 0))
{

printf("FALED: OCl EnvCreate()\n");

return OCl _ERROR
}
/* allocate error handle */
if (OClHandl eAll oc((dvoid *) envhp, (dvoid **) & errhp),

(ub4) OCI _HTYPE ERROR (size_t) 0, (dvoid **) 0))

{

printf("FA LED: OCl Handl eAll oc() on errhp\n");

3-8 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

return OCl _ERROR
}

/* allocate server handle */
if (status = OClHandl eAl | oc((dvoid *) envhp, (dvoid **) &srvhp,

(ub4) OCl _HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
{

printf("FAILED: OCl Handl eAlloc() on srvhp\n");
return OCl _ERROR;

}

/* allocate service context handle */
if (status = OClHandl eAll oc((dvoid *) envhp,
(dvoid **) &(svchp), (ub4) OCl _HTYPE SVCCTX,
(size_t) 0, (dvoid **) 0))
{
printf("FAILED: OCl Handl eAlloc() on svchp\n");
return OCl _ERROR

}

/* allocate session handle */
if (status = OClHandl eAl |l oc((dvoid *) envhp, (dvoid **) &sesshp ,
(ub4) OCI _HTYPE SESSION, (size_t) 0, (dvoid **) 0))
{
printf("FA LED: OCl Handl eAlloc() on sesshp\n");
return OCl _ERROR,

}

/* allocate statement handle */
if (OClHandl eAlloc((dvoid *)envhp, (dvoid **) &stnthp,
(ub4) OCl _HTYPE_STMT, (CONST size_t) 0, (dvoid **) 0))
{
printf("FAILED: OCl Handl eAlloc() on stnthp\n");
return status;

}

if (status = OCl ServerAttach((OCl Server *) srvhp, (OClError *) errhp,
(CONST oratext *)"", 0, (ub4) OCI _DEFAULT))
{
printf("FALED: OCl ServerAttach() on srvhp\n");
return OCl _ERROR;

}

/* set server attribute to service context */
if (status = OClAttrSet((dvoid *) svchp, (ub4) OCl _HTYPE_SVCCTX,
(dvoid *) srvhp, (ub4) 0, (ub4) OCl _ATTR SERVER
(OClError *) errhp))
{
printf("FAILED. OClAttrSet() on svchp\n");
return OCl _ERROR;

}

/* set user attribute to session */

if (status = OClAttrSet((dvoid *)sesshp, (ub4) OCI _HTYPE_SESSI ON,
dvoi d *)usernanme,

ub4) strlen((const char *)usernane),

ub4) OClI _ATTR_USERNAME, (OClIError *) errhp))

— e~ —~ —~

Using Oracle XML DB 3-9

Loading XML Content Into Oracle XML DB

{
printf("FAILED: OClAttrSet() on authp for user\n");

return OCl _ERROR,
}

/* set password attribute to session */
if (status = OClAttrSet((dvoid *) sesshp, (ub4) OCl_HTYPE_SESSI ON,
(dvoi d *)password,
(ub4d) strlen((const char *)password),
(ub4) OCI _ATTR_PASSWORD, (OCIError *) errhp))
{
printf("FAILED: OClAttrSet() on authp for password\n");
return OCl _ERROR

}

/* Begin a session */

if (status = OCl Sessi onBegi n((0OCl SveCtx *) svchp,

OCl Error *) errhp,

OCl Session *) sesshp, (ub4) OCl _CRED_RDBMS,

ub4) OCI _STMI_CACHE))

—~ o~ —

{
printf("FAILED: OCl SessionBegin(). Make sure database is up and

the usernane/ password is valid. \n");
return OCl _ERROR

}

/* set session attribute to service context */
if (status = OClAttrSet((dvoid *) svchp, (ub4) OCl _HTYPE_SVCCTX,
(dvoid *)sesshp, (ub4) 0, (ub4) OCI _ATTR_SESSI ON,
(OClError *) errhp))
{
printf("FAILED. OClAttrSet() on svchp\n");
return OCl _ERROR;

}
}
/52 */
/* free oci handl es and di sconnect */
/* __ */

void free_oci()

{

sword status = 0;

/* End the session */
if (status = OCl Sessi onEnd((CCl SvcCtx *)svchp, (OClError *)errhp,
(OCl Session *)sesshp, (ub4) OCI _DEFAULT))
{
i f (envhp)
OCl Handl eFree((dvoi d *)envhp, OCl _HTYPE_ENV);
return;

}

/* Detach fromthe server */
if (status = OCl ServerDetach((OCl Server *)srvhp, (OCIError *)errhp,
(ub4) OCI _DEFAULT))

{

3-10 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

if (envhp)
OCl Handl eFree((dvoi d *)envhp, OCl _HTYPE_ENV);
return;

}

I'* Free the handles */
if (stnthp)
CCl Handl eFree((dvoid *)stnthp, (ub4) OCI_HTYPE_STM);

if (sesshp)
OCl Handl eFree((dvoi d *)sesshp, (ub4) OC _HTYPE_SESSI ON);

if (svchp)
OCl Handl eFree((dvoid *)svchp, (ub4) OCI _HTYPE_SVCCTX);

if (srvhp)
OCl Handl eFree((dvoid *)srvhp, (ub4) OCl _HTYPE_SERVER);

if (errhp)
OCl Hand| eFree((dvoid *)errhp, (ub4) OCl _HTYPE_ERRCR);

if (envhp)
OCl Hand| eFree((dvoi d *)envhp, (ub4) OCI _HTYPE_ENV);

return;

voi d main()

{
CCl Type *xni tdo;

xm docnode *doc;

oci xm dbpar am parans[1] ;
xmerr err;

xmctx *xctx;

oratext *ins_stnt;

sword st at us;
/* Initialize envhp, svchp, errhp, dur, stnthp */
i nit_oci_connect();

/* Get an xml context */

par ans[0] . name_oci xm dbparam = XCTXI NI T_OCl DUR;

parans[0] . val ue_oci xm dbparam = &dur;

xctx = OCl Xm Dbl ni t Xml &t x(envhp, svchp, errhp, params, 1);

if (!(doc = Xml LoadDon(xctx, &err, "file", filenane,
"schenma_l ocation", schenal oc, NULL)))

{
printf("Parse failed.\n");
return;

}

el se
printf("Parse succeeded.\n");

printf("The xm docunent is :\n");

Using Oracle XML DB 3-11

Loading XML Content Into Oracle XML DB

Xm SaveDom(xctx, &err, (xm node *)doc, "stdio", stdout, NULL);

/* Insert the document to ny_table */
ins_stnm = (oratext *)"insert into PURCHASEORDER val ues (:1)";

status = OCl TypeByNane(envhp, errhp, svchp, (const text *) "SYS',
(ub4) strlen((const char *)"SYS'), (const text *) "XM.TYPE',
(ub4) strlen((const char *)"XM.TYPE"), (CONST text *) O,
(ub4) 0, OCl _DURATI ON_SESSI ON, OClI _TYPEGET_HEADER,
(OCl Type **) &xnltdo);

if (status == OCl _SUCCESS)
{
status = exec_bind_xm (svchp, errhp, stnthp, (void *)doc,
xm tdo, ins_stnt);
}

if (status == OCl _SUCCESS)

printf ("Insert successful\n");
el se

printf ("Insert failed\n");

I* free xm instances */
if (doc)
Xm FreeDocument ((xm ctx *)xctx, (xm docnode *)doc);
I* free xm ctx */
OCl Xm DbFreeXm QG x(xctx);
free_oci();

}

1 row sel ected.

See Also: Appendix H, "Oracle XML DB-Supplied XML Schemas
and Additional Examples" for a more detailed listing of this
example

Loading Very Large XML Files of Smaller XML Documents into Oracle Database

When loading very large XML files consisting of a collection of smaller XML
documents, into Oracle Database, if it is often more efficient to use Simple API for
XML (SAX) parsing to break the file into a set of smaller documents before inserting
the documents. SAX is an XML standard interface provided by XML parsers for
event-based applications.

You can use SAX to load a database table from very large XML files in the order of 30
Mb or larger, by creating individual documents from a collection of nodes. You can
also bulk load XML files.

The "SAX Loader Application", available on the Oracle Technology Network (OTN)
siteathttp://otn. oracle. coml sampl e_
code/ tech/ xm / xm db/ cont ent . ht m , demonstrates how to do this.

Loading Large XML Files into Oracle Database Using SQL*Loader

Use SQL*Loader to load large amounts of XML data into Oracle Database.
SQL*Loader loads in one of two modes, conventional or direct path. Table 3-2
compares these modes.

3-12 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

Table 3-2 Comparing SQL*Loader Conventional and Direct Load Modes

Conventional Load Mode Direct Path Load Mode
Uses SQL to load data into Oracle Bypasses SQL and streams the data directly into
Database. This is the default mode. Oracle Database.

Advantage: Follows SQL semantics. For ~ Advantage: This loads data much faster than
example triggers are fired and constraints the conventional load mode.
are checked.

Disadvantage: This loads data slower Disadvantage: SQL semantics are not obeyed.
than with the direct load mode. For example triggers are not fired and
constraints are not checked.

See Also:
= Chapter 27, "Loading XML Data into Oracle XML DB Using
SQL*Loader"

= Example 27-1, "Loading Very Large XML Documents Into
Oracle Database Using SQL*Loader" on page 27-4 for an
example of direct loading of XML data.

Loading XML Documents into Oracle XML DB Repository

You can also store XML documents in Oracle XML DB repository and access these
documents using path-based rather than table-based techniques. To load an XML
document into Oracle XML DB repository under a given path, you can use PL/SQL
package DBM5_XDB. This is illustrated by the following example.

Example 3-6 Inserting XML Content Into XML DB Repository Using PL/SQL DBMS_XDB

decl are
res bool ean;
begin
res := dbns_xdb. creat eResour ce(' / home/ SCOTT/ pur chaseOr der. xm ',
bfil ename(' XM.DIR' , ' purchaseOrder. xm "),
nl's_charset _id('AL32UTF8'));
end;
/

PL/ SQL procedure successfully conpl et ed.

Many operations for configuring and using Oracle XML DB are based on processing
one or more XML documents. For example, registering an XML schema and
performing an XSL transformation. The easiest way to make these XML documents
available to Oracle Database is to load them into Oracle XML DB repository.

Loading Documents into Oracle XML DB Repository Using Protocols

You can load XML documents from a local file system into Oracle XML DB repository
using protocols, such as, the WebDAYV protocol, from Windows Explorer or other tools
that support WebDAV. Figure 3-1 shows a simple drag and drop operation for copying
the contents of the SCOTT folder from the local hard drive to Oracle XML DB
repository.

Using Oracle XML DB 3-13

Loading XML Content Into Oracle XML DB

Figure 3-1 Using Windows Explorer to Load Content Into Oracle XML DB Repository

& C:\oracle\demo\10.1.0.0.0\basicDemo\L OCAL \configurationFiles CEx

: File Edit \iew Favorites Tools Help i

eBack - J lﬁ /_-\’ Search 4 Folders '

: Address |@ Ciloracleldemal 10.1.0.0.0\basicDema’LOCAL configurationFiles Vl Go

File and Folder Tasks

Other Places

Details

poSource ; 4
Copying b10759.pdf to hittp://localhost 8080/home /SCOTT /poS aurce/doc

File Folder

Date Modified: Yesterday,
MNovember 21, 2003, 4:42 PM

LLLL] Cancel

Here the folder tree contains an XML schema document, an HTML page, and a couple
of XSLT style sheets.

Note: Oracle XML DB repository can also store non-XML content,
such as HTML files, JPEG images, word documents, and so on, as
well as both XML schema-based and non-XML schema-based XML
documents.

Handling Non-ASCIlI XML Documents

This section describes how to load documents that are formatted in non-ASCII
character sets.

XML Encoding Declaration

According to XML 1.0 Reference, each XML document is composed of units called
entities. Each entity in an XML document may use a different encoding for its
characters. Entities that are stored in an encoding other than UTF-8 or UTF-16 must
begin with a declaration containing an encoding specification indicating which
character encoding is in use. For example:

<?xm version="1.0" encodi ng=' EUC-JP' ?>

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM) as described
in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the
BOM required of UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is
assumed to be encoded in UTF-8. Note that since ASCII is a subset of UTE-8, ordinary
ASCII entities do not require an encoding declaration.

In many cases, external sources of information are available in addition to the XML
data to provide the character encoding in use. For example, the encoding of the data
can be obtained from the char set parameter of the Content-Type field in an HTTP
request as follows:

Content - Type: text/xm ; charset=I SO 8859-4

3-14 Oracle XML DB Developer's Guide

Loading XML Content Into Oracle XML DB

Loading Non-ASCIl XML Documents

In releases prior to Oracle Database 10g Release 1, all XML documents are assumed to
be in the database character set regardless of the document's encoding declaration.
With Oracle Database 10g Release 1, the document encoding is detected from the
encoding declaration when the document is loaded into the database. However, if the
XML data is obtained from a CLOB or VARCHAR data type, then the encoding
declaration is ignored because these two data types are always encoded in the
database character set. In addition, when loading data to XML DB, either through
programmatic APIs or transfer protocols, you can provide external encoding to
override the document's internal encoding declaration. An error is raised if a
schema-based XML document containing characters that are not legal in the
determined encoding is loaded into XML DB.

The following examples show some ways which external encoding can be specified:

= Using the PL/SQL package DBM5_XDB. Cr eat eResour ce to create a resource
from a BFI LE, you can specify the file encoding through the csi d argument. If a
zero cSi d is specified then the file encoding is auto-detected from the document's
encoding declaration.

create directory XM.DIR as '/private/xndir';
create or replace procedure |oadXM.(filename varchar2, file_csid nunber) is

xbfile bfile;
ret bool ean;
begin

xbfile := bfilename(' XM.DIR , filename);
ret := dbns_xdb. creat eResource('/public/mypo.xm"', xbfile,
file_csid);
end;
/

= When loading documents into XML DB through FTP protocol, you can specify the
qguot e set _charset command to indicate the encoding of the files
subsequently sent to the server.

FTP> quote set_charset Shift_JIS
FTP> put nypo. xm

= When using the HTTP protocol, you can specify the encoding of the data
transmitted to XML DB in the request header as follows:

Content - Type: text/xm; charset= EUC- JP

Retrieving Non-ASCII XML Documents

XML documents stored in XML DB can be retrieved using transfer protocols
programmatic APIs. In Oracle Database releases prior to 10g release 1, XML data is
retrieved only in the database character set. Starting with 10g release 1, you can specify
the encoding of the retrieved data.

The following examples show different ways to specify the output encoding:

= Using programmatic APIs, you can retrieve XML data into VARCHAR, CLOB, or
XM Type datatypes. When using these techniques, you can control the encoding
of the retrieved data by setting the NLS_LANGenvironment variable to an Oracle
Database-supported character set. See the Oracle Database Globalization Support
Guide for details on setting the NLS_LANGenvironment variable.

Using Oracle XML DB 3-15

Introducing the W3C XML Schema Recommendation

Also, methods are provided on the XMLType and URI Type classes to retrieve
XML data into a BLOB datatype. Using these methods, you can specify the desired
character set of the returned BLOB value through the csi d argument.

create or replace function get XM_(pat hnane VARCHAR2, charset VARCHAR?)
return BLOB is
xbl ob bl ob;
begin
sel ect e.res.getBl obVal (nls_charset_id(charset)) into xblob
fromresource_view e where any_path = pat hnane;
return xbl ob;
end;
/

« Using the FTP quot e set _nl s_| ocal e command:
FTP> quote set_nls_l ocal e EUC-JP
FTP> get nypo. xm
= Using the Accept - Char set parameter in the HTTP request:

/httptest/mypo.xm 1.1 HTTP/ Host: | ocal host: 2345
Accept: text/*
Accept-Charset: is0-8859-1, utf-8

See Also: For more information on specifying external coding:
= Controlling Character Sets for FTP on page 24-7

= Controlling Character Sets for HTTP on page 24-10

= Appendix F, "SQL and PL/SQL APIs: Quick Reference"

= Oracle XML API Reference

APIs Introduced in 10g Release 1 for Handling Non-ASCIl Documents

A number of PL/SQL and Java APIs are introduced in 10g Release 1 to support
non-ASCII documents.

See Also:
= New Java XMLType APIs on page E-9

= New PL/SQL APIs to Support XML Data in Different
Character Sets on page F-22

Introducing the W3C XML Schema Recommendation

The W3C XML Schema Recommendation defines a standardized language for
specifying the structure, content, and certain semantics of a set of XML documents. An
XML schema can be considered the metadata that describes a class of XML documents.
The XML Schema Recommendation is described at:

http: //ww. w3. or g/ TR/ xm schenma- 0/

XML Instance Documents

Documents conforming to a given XML schema can be considered as members or
instances of the class defined by that XML schema. Consequently the term instance
document is often used to describe an XML document that conforms to a given XML

3-16 Oracle XML DB Developer's Guide

Introducing the W3C XML Schema Recommendation

schema. The most common use of an XML schema is to validate that a given instance
document conforms to the rules defined by the XML schema.

The Schema for Schemas

The W3C Schema working group publishes an XML schema, often referred to as the
"Schema for Schemas". This XML schema provides the definition, or vocabulary, of the
XML Schema language. All valid XML schemas can be considered as members of the
class defined by this XML schema. This means that an XML schema is an XML
document that conforms to the class defined by the XML schema published at

htt p: // ww. w3. or g/ 2001/ XM_Schema.

Editing XML Schemas

XML schemas can be authored and edited using any of the following;:
= A simple text editor, such as Notepad or vi

« An XML schema-aware editor, such as the XML editor included with Oracle
JDeveloper

= An explicit XML schema-authoring tool, such as XMLSpy from Altova
Corporation

XML Schema Features

The XML Schema language defines 47 scalar datatypes. This provides for strong
typing of elements and attributes. The W3C XML Schema Recommendation also
supports object-oriented techniques such as inheritance and extension, hence you can
design XML schema with complex objects from base data types defined by the XML
Schema language. The vocabulary includes constructs for defining and ordering,
default values, mandatory content, nesting, repeated sets, and redefines. Oracle

XML DB supports all the constructs except for redefines.

Text Representation of the PurchaseOrder XML Schema

The following example Pur chaseCOr der . xsd, is a standard W3C XML schema
example fragment, in its native form, as an XML Document:

Example 3-7 XML Schema, PurchaseOrder.xsd

<xs:schema xm ns: xs="http://wm. w3. or g/ 2001/ XM_.Schenma" ver si on="1. 0" >
<xs: el ement name="PurchaseOrder” type="PurchaseO der Type"/>
<xs: conpl exType nanme="Pur chaseOr der Type" >
<xs: sequence>
<xs: el ement name="Reference" type="ReferenceType"/>
<xs: el ement name="Actions" type="ActionsType"/>
<xs:el ement name="Reject" type="RejectionType" mnCccurs="0"/>
<xs: el ement name="Requestor" type="RequestorType"/>
<xs: el ement name="User" type="User Type"/>
<xs: el ement name="Cost Center" type="Cost CenterType"/>
<xs: el ement name="Shi ppi ngl nstructions" type="Shi ppinglnstructionsType"/>
<xs: el ement name="Special I nstructions" type="SpeciallnstructionsType"/>
<xs:el ement name="Lineltens" type="LineltemsType"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="LineltensType">
<Xs: sequence>
<xs: el ement name="Linelten! type="LineltenType" maxQccurs="unbounded"/>

Using Oracle XML DB 3-17

Introducing the W3C XML Schema Recommendation

</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="Li nel t enlType" >
<Xs: sequence>
<xs: el ement name="Description" type="DescriptionType"/>
<xs:el ement name="Part" type="PartType"/>
</ xs: sequence>
<xs:attribute name="ItenNunber" type="xs:integer"/>
</ xs: conpl exType>
<xs: conpl exType nane="Part Type" >
<xs:attribute name="1d">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:mnLength val ue="10"/>
<xs: maxLength val ue="14"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="Quantity" type="noneyType"/>
<xs:attribute name="UnitPrice" type="quantityType"/>
</ xs: conpl exType>
<xs: si npl eType name="ReferenceType" >
<xs:restriction base="xs:string">
<xs: mnLength val ue="18"/>
<xs: maxLength val ue="30"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: conpl exType nane="Acti onsType">
<Xs: sequence>
<xs: el ement name="Action" maxQccurs="4">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="User" type="User Type"/>
<xs: el ement name="Date" type="DateType" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="Rej ectionType">
<xs:all>
<xs: el ement name="User" type="User Type" m nCccurs="0"/>
<xs: el ement name="Date" type="DateType" m nCccurs="0"/>
<xs: el ement name="Comments" type="Conment sType" ninCccurs="0"/>
</xs:all>
</ xs: conpl exType>
<xs: conpl exType nane="Shi ppi ngl nstructionsType">
<Xs: sequence>
<xs: el ement name="name" type="NameType" m nCccurs="0"/>
<xs: el ement name="address" type="AddressType" ninCccurs="0"/>
<xs: el ement name="tel ephone" type="Tel ephoneType" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: si npl eType name="noneyType" >
<xs:restriction base="xs:deci mal">
<xs:fractionDigits val ue="2"/>
<xs:totalDigits val ue="12"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="quantityType">

3-18 Oracle XML DB Developer's Guide

Introducing the W3C XML Schema Recommendation

<xs:restriction base="xs:deci mal">
<xs:fractionDigits value="4"/>
<xs:totalDigits val ue="8"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="User Type">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="10"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Request or Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="128"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Cost Cent er Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>

<xs: maxLength val ue="4"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Vendor Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Pur chaseOr der Nunber Type" >
<xs:restriction base="xs:integer"/>
</ xs: si mpl eType>
<xs: si npl eType name="Speci al | nstructionsType">
<xs:restriction base="xs:string">
<xs: mnLength val ue="0"/>
<xs: maxLength val ue="2048"/>
</xs:restriction>
</ xs: si mpl eType>
<xs:si npl eType nane="NaneType">
<xs:restriction base="xs:string">
<xs: mnLength val ue="1"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="AddressType" >
<xs:restriction base="xs:string">
<xs: mnLength val ue="1"/>
<xs: maxLength val ue="256"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Tel ephoneType" >
<xs:restriction base="xs:string">
<xs: mnLength val ue="1"/>
<xs: maxLength val ue="24"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType nane="Dat eType" >
<xs:restriction base="xs:date"/>
</ xs: si npl eType>

Using Oracle XML DB 3-19

Introducing the W3C XML Schema Recommendation

<xs: si npl eType name="Conment sType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="2048"/>
</xs:restriction>
</ xs: si npl eType>
<xs:si npl eType nanme="Descri ptionType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLengt h val ue="256"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>

1 row sel ected.

See Also: Appendix B, "XML Schema Primer" for a more detailed
listing of Pur chaseCr der . xsd

Graphical Representation of the PurchaseOrder XML Schema

Figure 3-2 shows the PurchaseOrder XML schema displayed using XMLSpy. XMLSpy
is a graphical and user-friendly tool from Altova Corporation for creating and editing
XML schema and XML documents. See ht t p: / / www. al t ova. comfor details.
XMLSpy also supports WebDAV and FIP protocols hence can directly access and edit
content stored in Oracle XML DB repository.

3-20 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

Figure 3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema

¥ XMLSPY - [http://localhost: BOBO/home/SCOTT/poSourcefxsdipurchaseOrder. xsd]

File Edit Projeck ¥ML DTD{Schema Schema design ¥SL Authentic Comwvert Wiew Browser WSDL SOAP Tools Window Help -8 x
D@ dT & % [Y 28
Project - X ﬂ _—— Y — — — — — — — — — — - A Components - x
PurchaseOrderType —m
2.0 Show XML Sche | _ PurchaseOrder
+ H5L Files |
= DTD/Schermas ()} | T
hitp: #flocalhost: | ' Reject
Enrlities | ! Saaiaatatnd
|
| = Details . x
PurchaseOrder ———
1 | | 3 name Pat =| A
| Shippinginstructions isFef |
Info _— mindce |1
| ES|)e1:iallns‘truc:‘ti-:u15 maxdec |1 x|
| type PartT = |
Eo= T 0 T T T content comples
| | LineltemsType] derivedBy =]
| | | LineltemType mixed [}
| nillahle: - |
ilz | Oracle
| [t & Deta | Oect)
| ¥ ||| Facets - x
< >
Attributes] |dentity constraints]
=
=) e
Mame Type Use Diefault Fixed
Id |xs:string | | |
uantity moneyType v
Text Grid Schema/wSDL Authentic Browser
http: i flacalhost:8080/homefSCOTT jpoSource fxsd/purchaseOrder . xsd | Facet:
¥MLSPY w2004 rel. 3U Reqistered ko Etic Paapanen {Oracle ML DE) @1998-2003 Alkova GmbH & Altava, Inc.

The PurchaseOrder XML schema is a simple XML schema that demonstrates key
features of a typical XML document. For example:

« Global element Pur chaseOr der is an instance of the conpl exType
Pur chaseOr der Type

« PurchaseOr der Type defines the set of nodes that make up a Pur chaseOr der
element

« Lineltens element consists of a collection of Li nel t emelements
« Each Li nel t emelement consists of two elements: Descri pti on and Part

« Part element has attributes | d, Quantity,and Unit Price

XML Schema and Oracle XML DB

XML schema are used with Oracle XML DB for a number of reasons.

Why Use XML Schema With Oracle XML DB?

The following paragraphs describe the main reasons for using XML schema with
Oracle XML DB.

Using Oracle XML DB 3-21

XML Schema and Oracle XML DB

Validating Instance Documents with XML Schema

The most common usage of XML schema is as a mechanism for validating that
instance documents conform to a given XML schema. The XMLType datatype methods
i sSchenmaVal i d() and schemaVal i dat e() allow Oracle XML DB to validate the
contents of an instance document stored in an XMLType, against an XML schema.

Constraining Instance Documents for Business Rules or Format Compliance

An XML schema can also be used as a constraint when creating tables or columns of
XML.Type. For example, the XMLType is constrained to storing XML documents
compliant with one of the global elements defined by the XML schema.

Defining How XMLType Contents Must be Stored in the Database

Oracle XML DB also uses XML schema as a mechanism for defining how the contents
of an XMLType should be stored inside the database. Currently Oracle XML DB
provides two options:

= Unstructured storage. The content of the XMLType is persisted as XML text using a
CLOB datatype. This option is available for non-schema-based and schema-based
XML content. When the XML is to be stored and retrieved as complete documents,
unstructured storage may be the best solution as it offers the fastest rates of
throughput when storing and retrieving XML content.

= Structured storage. The content of the XMLType is persisted as a set of SQL objects.
The structured storage option is only available when the XMLType table or column
has been constrained to a global element defined by XML schema.

If there is a need to extract or update sections of the document, perform XSL
transformation on the document, or work through the DOM AP], then structured
storage may be the preferred storage type. Structured storage allows all these
operations to take place more efficiently but at a greater overhead when storing
and retrieving the entire document.

Structured Storage of XML Documents

Structured storage of XML documents is based on decomposing the content of the
document into a set of SQL objects. These SQL objects are based on the SQL 1999 Type
framework. When an XML schema is registered with Oracle XML DB, the required
SQL type definitions are automatically generated from the XML schema.

A SQL type definition is generated from each conpl exType defined by the XML
schema. Each element or attribute defined by the conpl exType becomes a SQL
attribute in the corresponding SQL type. Oracle XML DB automatically maps the 47
scalar data types defined by the XML Schema Recommendation to the 19 scalar
datatypes supported by SQL. A VARRAY type is generated for each element and this
can occur multiple times.

The generated SQL types allow XML content, compliant with the XML schema, to be
decomposed and stored in the database as a set of objects without any loss of
information. When the document is ingested the constructs defined by the XML
schema are mapped directly to the equivalent SQL types.

This allows Oracle XML DB to leverage the full power of Oracle Database when
managing XML and can lead to significant reductions in the amount of space required
to store the document. It can also reduce the amount of memory required to query and
update XML content.

3-22 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

Annotating an XML Schema to Control Naming, Mapping, and Storage

The W3C XML Schema Recommendation defines an annotation mechanism that
allows vendor-specific information to be added to an XML schema. Oracle XML DB
uses this to control the mapping between the XML schema and the SQL object model.

Annotating an XML schema allows control over the naming of the SQL objects and
attributes created. Annotations can also be used to override the default mapping
between the XML schema data types and SQL data types and to specify which table
should be used to store the data.

Controlling How XML Collections are Stored in the Database

Annotations are also used to control how collections in the XML are stored in the
database. Currently there are four options:

« Character Large Object (CLOB). The entire set of elements is persisted as XML text
stored in a CLOB column.

= VARRAY in LOB. Each element in the collection is converted into a SQL object.
The collection of SQL objects is serialized and stored in a LOB column.

« VARRAY as a nested table. Each element in the collection is converted into a SQL
object. The collection of SQL objects is stored as a set of rows in an Index
Organized Nested Table (IOT).

= VARRAY as XMLType. Each element in the collection is treated as a separate
XM_.Type. The collection of XMLType values is stored as a set of rows in an
XM.Type table.

These storage options allow you to tune the performance of applications that use
XM_Type datatypes to store XML in the database.

However, there is no requirement to annotate an XML schema before using it with
Oracle XML DB. Oracle XML DB uses a set of default assumptions when processing an
XML schema that contains no annotations.

See Also: Chapter 5, "XML Schema Storage and Query: The
Basics"

Collections: Default Mapping

When no annotations are supplied by the user, XML DB stores collections as VARRAY
values in a LOB.

Declaring the Oracle XML DB Namespace

Before annotating an XML schema you must first declare the Oracle XML DB
namespace. The Oracle XML DB namespace is defined as:

http://xm ns. oracl e. conf xdb

The namespace is declared in the XML schema by adding a namespace declaration
such as:

xm ns: xdb="http://xm ns. oracl e. com xdb"

to the root element of the XML schema. Note the use of a namespace prefix. This
makes it possible to abbreviate the namespace to xdb when adding annotations.

Example 3-8 shows the PurchaseOrder XML schema with annotations.

Using Oracle XML DB 3-23

XML Schema and Oracle XML DB

Example 3-8 Annotated XML Schema PurchaseOrder.xsd

<xs: schema xm ns: xs="http:// ww. w3. or g/ 2001/ XM.Schema"
xm ns: xdb="http://xn ns. oracl e. conf xdb"
version="1.0" xdb: storeVarrayAsTabl e="true">
<xs: el ement name="PurchaseOrder” type="PurchaseO der Type"
xdb: def aul t Tabl e=" PURCHASECRDER" / >
<xs: conpl exType nane="PurchaseOr der Type" xdb: SQLType="PURCHASECRDER T">
<Xs: sequence>
<xs: el ement name="Reference" type="ReferenceType" m nCccurs="1"
xdb: SQLNane=" REFERENCE" / >
<xs: el ement name="Actions" type="ActionsType" xdb: SQLName="ACTI ONS"/ >
<xs: el ement name="Reject" type="RejectionType" mi nCccurs="0"
xdb: SQLNanme="REJECTI ON'/ >
<xs: el ement name="Requestor" type="Requestor Type"
xdb: SQLNanme="REQUESTCR"/ >
<xs: el ement name="User" type="UserType" ninCccurs="1"
xdb: SQLNane="USERI D'/ >
<xs: el ement name="Cost Center" type="Cost Center Type"
xdb: SQLNanme="COST_CENTER"/ >
<xs: el ement name="Shi ppi ngl nstructions" type="Shi ppinglnstructionsType"
xdb: SQLNanme="SHI PPl NG_| NSTRUCTI ONS"/ >
<xs: el ement name="Special I nstructions" type="Special I nstructionsType"
xdb: SQLNanme="SPECI AL_| NSTRUCTI ONS"/ >
<xs: el ement name="Lineltens" type="LineltensType"
xdb: SQLNanme="LI| NEI TEMS"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="LineltenmsType" xdb: SQLType="LI NEI TEMS_T" >
<Xs: sequence>
<xs: el ement name="Lineltenl type="LineltenType" maxCOccurs="unbounded"
xdb: SQLNanme="LI NEI TEM' xdb: SQLCol | Type="LI NEI TEM V"'/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="Li nelteniType" xdb: SQLType="LI NEl TEM T" >
<Xs: sequence>
<xs: el ement name="Description" type="DescriptionType"
xdb: SQLNanme="DESCRI PTI ON'/ >
<xs: el ement name="Part" type="Part Type" xdb: SQLName="PART"/>
</ xs: sequence>
<xs:attribute name="ItenNunber" type="xs:integer" xdb: SQLName="1 TEMNUMBER"
xdb: SQLType="NUMBER"/ >
</ xs: conpl exType>
<xs: conpl exType nane="Part Type" xdb: SQLType="PART_T">
<xs:attribute name="Id" xdb: SQLName="PART_NUMBER' xdb: SQLType="VARCHAR2" >
<Xs: si npl eType>
<xs:restriction base="xs:string">
<xs:mnLength val ue="10"/>
<xs: maxLength val ue="14"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="Quantity" type="moneyType" xdb: SQLName="QUANTI TY"/>
<xs:attribute name="UnitPrice" type="quantityType" xdb: SQLName="UNI TPRI CE"/ >
</ xs: conpl exType>
<xs: si npl eType nanme="ReferenceType" >
<xs:restriction base="xs:string">
<xs: mnLength val ue="18"/>
<xs: maxLength val ue="30"/>
</xs:restriction>

3-24 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

</ xs: si npl eType>
<xs: conpl exType nane="ActionsType" xdb: SQLType="ACTI ONS_T" >
<Xs: sequence>
<xs: el ement name="Action" nmaxCccurs="4" xdb: SQLNane="ACTI ON'
xdb: SQLCol | Type="ACTI ON_V" >
<xs: conpl exType xdb: SQLType="ACTI ON_T">
<Xs: sequence>
<xs:el ement name="User" type="User Type" xdb: SQLName="ACTI ONED_BY"/>
<xs: el ement name="Date" type="DateType" m nCccurs="0"
xdb: SQLNanme="DATE_ACTI ONED"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="Rej ectionType" xdb: SQLType="REJECTI ON_T">
<xs:all>
<xs: el ement name="User" type="User Type" ni nCccurs="0"
xdb: SQLNanme="REJECTED BY"/>
<xs: el ement name="Date" type="DateType" ninCccurs="0"
xdb: SQLNane="DATE_REJECTED'/ >
<xs: el ement name="Coments" type="Conment sType" nmi nCccurs="0"
xdb: SQLNanme="REASON_REJECTED"/ >
</xs:all>
</ xs: conpl exType>
<xs: conpl exType nane="Shi ppi ngl nstructionsType"
xdb: SQLType="SHI PPl NG_| NSTRUCTI ONS_T" >
<Xs: sequence>
<xs: el ement name="nane" type="NameType" nmi nCccurs="0"
xdb: SQLName="SH P_TO NAME'/ >
<xs:el ement name="address" type="AddressType" m nCccurs="0"
xdb: SQLNanme="SHI P_TO_ADDRESS"/ >
<xs: el ement name="tel ephone" type="Tel ephoneType" m nCccurs="0"
xdb: SQLNarme="SHI P_TO_PHONE"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: si npl eType name="noneyType" >
<xs:restriction base="xs:deci mal ">
<xs:fractionDigits value="2"/>
<xs:totalDigits val ue="12"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="quantityType">
<xs:restriction base="xs:deci mal ">
<xs:fractionDigits value="4"/>
<xs:totalDigits val ue="8"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="User Type">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="10"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Request or Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="128"/>
</xs:restriction>
</ xs: si npl eType>

Using Oracle XML DB 3-25

XML Schema and Oracle XML DB

<xs: si npl eType name="Cost Cent er Type" >
<xs:restriction base="xs:string">

<xs:mnLength val ue="1"/>
<xs: maxLength val ue="4"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Vendor Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si npl eType>
<xs: si npl eType name="Pur chaseOr der Nunber Type" >
<xs:restriction base="xs:integer"/>
</ xs: si mpl eType>
<xs: si npl eType name="Speci al I nstructi onsType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLengt h val ue="2048"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType nane="NaneType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="AddressType" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLengt h val ue="256"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Tel ephoneType" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="24"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType nane="Dat eType" >
<xs:restriction base="xs:date"/>
</ xs: si npl eType>
<xs: si npl eType name="Conment sType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="2048"/>
</xs:restriction>
</ xs: si npl eType>
<xs:si npl eType nanme="Descri ptionType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="256"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>

1 row sel ected.

3-26 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

The Pur chaseOr der XML schema defines the following two namespaces:

http://ww. w3c. or g/ 2001/ XMLSchema. This is reserved by W3C for the
Schema for Schemas.

http://xm ns. oracl e. com xdb. This is reserved by Oracle for the Oracle
XML DB schema annotations.

The Pur chaseOr der XML schema also uses the following annotations:

def aul t Tabl e annotation in the Pur chaseOr der element. This specifies that

XML documents, compliant with this XML schema are stored in a table called
PURCHASECRDER.

SQLType annotation. The first occurrence of SQLType specifies that the name of
the SQL type generated from complexType Pur chaseOr der Type is
PURCHASEORDER T.

SQLName annotation. This provides an explicit name for the each SQL attribute of
PURCHASECRDER _T.

SQLType annotation. The second occurrence of SQLType specifies that the name
of the SQL type generated from the complexType Li nel t emlype is LI NEI TEM_T
and the SQL type that manages the collection of Li nel t emelements is

LI NEI TEM_V.

Figure 3-3 shows the XMLSpy Or acl e tab, which facilitates adding Oracle XML DB
schema annotations to an XML schema while working in the graphical editor.

Using Oracle XML DB 3-27

XML Schema and Oracle XML DB

Figure 3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations

¥ XMLSPY - [http://localhost: BOBOfhome/SCOTT/poSourcefxsdipurchaseOrder. xsd]

File Edit Projeck ¥ML DTD{Schema Schema design ¥SL Authentic Comwvert Wiew Browser WSDL SOAP Tools Window Help -8 x
0 Ed @ d 4 7 & 28
Project - X %E ﬁl Components . x
IE 2.0 Show XML Sche oif|element Purchase0rder fann: PurchaseOrder
#ML Files ﬁcomplexwpe PurchaseOrderType ann:
#3L Fi|8§ |=i8|complexType LineltemsType ann:
HTML Files |oE|complexType LinettemType an;
DTD/Schemas ﬁcomplexwpe PartType ann:
: .httDZa".-"Ioc:thost: simpleType ReferenceType anmn:
LS ﬂcomplexwpe ActionsType ann:
ﬁcomplexType RejectionType ann;
ﬂcomplexType ShippinginstructionsType ann: Elm Cam 4| »
zimpleType moneyType ann:
impleType quantityType anmn: Details P
i | | 7 2::p:eType UserType anni m
pleType RequestorType ann; ype Purct=]
Info x simpleType CostCenterType ann: content | complex
zimpleType VendorType ann: derivediy -
zimpleType PurchaseOrderlumberType ann. Tmixed -
zimpleType SpeciallnstructionsType ann: substGrp -]
simpleType HameType Ann: abstract =]
=impleType AddressType Ann; hillable |
simpleType TelephoneType ann: bl - |
simpleType Date Type ann: Detailz
zimpleType CommentsType ann:
simpleType DescriptionType ann: Facets . x
Attributes] |dentity constraints
=
‘ Name Tupe Use Default Fixed
Text Grid Schema/WwSDL Authentic Browser

http: i flacalhost:8080/homefSCOTT jpoSource fxsd/purchaseOrder . xsd | Facet:
¥MLSPY w2004 rel. 3U Reqistered ko Etic Paapanen {Oracle ML DE) @1998-2003 Alkova GmbH & Altava, Inc.

Registering an XML Schema with Oracle XML DB

For an XML schema to be useful to Oracle XML DB you must first register it with
Oracle XML DB. Once it has been registered, it can be used for validating XML
documents and for creating XMLType tables and columns bound to the XML schema.

Two items are required to register an XML schema with Oracle XML DB:
= The XML schema document

= A string that can be used as a unique identifier for the XML schema, once it is
registered with the database. Instance documents use this unique identifier to
identify themselves as members of the class defined by the XML schema. The
identifier is typically in the form of a URL, and often referred to as the Schema
Location Hint.

XML schema registration is performed using a simple PL/SQL procedure, dbrs_

xm schema. r egi st er schema() . See Example 3-9. By default, when an XML
schema is registered, Oracle XML DB automatically generates all the SQL object types
and XMLType tables required to manage the instance documents.

XML schemas can be registered as global or local. See Chapter 5, "XML Schema
Storage and Query: The Basics" for a discussion of the differences between global and
local schemas.

3-28 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

Example 3-9 Using the DBMS_XMLSCHEMA Package to Register an XML Schema

begin
dbns_xm schena. regi st er Schena

(

"http://1ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd',
xdbURI Type(" / horme/ SCOTT/ poSour ce/ xsd/ pur chaseOrder. xsd'). get d ob(),

TRUE, TRUE, FALSE, TRUE
)

end;
/

PL/ SQL procedure successfully conpl eted.

In this example the unique identifier for the XML schema is:
http://1 ocal host: 8080/ honme/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd

The XML schema document was previously loaded into Oracle XML DB repository at
the path: / home/ SCOTT/ poSour ce/ xsd/ pur chaseCOr der . xsd.

During XML schema registration, an XDBUr i Type accesses the content of the XML
schema document, based on its location in the repository. Flags passed to the

regi st er Schema() procedure specify that the XML schema must be registered as a
local schema and that SQL objects and tables must be generated by the registration

process.

regi st er Schema() performs the following operations:

« Parses and validates the XML schema

= Creates a set of entries in Oracle Data Dictionary that describe the XML schema

= Creates a set of SQL object definitions, based on conpl exTypes defined in the

XML schema

Creates an XMLType table for each global element defined by the XML schema

SQL Types and Tables Created During XML Schema Registration

Example 3-10 illustrates the creation of object types during XML schema registration

with Oracle XML DB.

Example 3-10 Objects Created During XML Schema Registration

descri be PURCHASEORDER T
PURCHASECRDER T is NOT FI NAL
Nane Nul | ?

SYS_XDBPD$

REFERENCE

ACTI ONS

REJECTI ON

REQUESTOR

USERI D

COST_CENTER

SHI PPI NG _| NSTRUCTI ONS
SPECI AL_| NSTRUCTI ONS
LI NEI TEMS

desc LINEITEMS T
LI NEI TEMS_T is NOT FI NAL
Nane Nul | ?

XDB. XDBSRAW LI ST_T
VARCHAR2(30 CHAR)

ACTI ONS_T

REJECTI ON_T
VARCHAR2(128 CHAR)
VARCHAR2(10 CHAR)
VARCHAR2(4 CHAR)

SHI PPI NG_| NSTRUCTI ONS_T
VARCHAR?(2048 CHAR)

LI NEI TEMS_T

Using Oracle XML DB 3-29

XML Schema and Oracle XML DB

SYS_XDBPD$ XDB. XDBSRAW LI ST_T
LI NEI TEM LI NEI TEM V

desc LI NEITEM V
LI NEI TEM V VARRAY(2147483647) OF LINEITEM.T
LINEITEM T is NOT FI NAL

Nane Nul | ? Type

SYS_XDBPD$ XDB. XDBSRAW LI ST_T
| TEMNUMBER NUMBER(38)

DESCRI PTI ON VARCHAR2(256 CHAR)
PART PART_T

These examples show that SQL type definitions were created when the XML schema
was registered with Oracle XML DB. These SQL type definitions include:

« PURCHASEORDER T. This type is used to persist the SQL objects generated from a
Pur chaseOr der element. When an XML document containing a
Pur chaseOr der element is stored in Oracle XML DB the document is 'shredded'
(or broken up) and the contents of the document are stored as an instance of
PURCHASEORDER _T.

= LINEITEMS_T, LI NEI TEM V, and LI NEI TEM T. These types manage the
collection of Li nel t emelements that may be present in a Pur chaseOr der
document. LI NEI TEM5_T consists of a single attribute LI NEI TEM defined as an
instance of LI NEI TEM V type. LI NEI TEM V is defined as a VARRAY of
LI NTElI TEM_T objects. There is one instance of the LI NEI TEM T object for each
Li nel t emelement in the document.

Working with Large XML Schemas

A number of issues can arise when working with large, complex XML schemas.

Sometimes the error ORA- 01792: maxi mum nunber of columms in a table
or view i s 1000 is encountered when registering an XML schema or creating a
table based on a global element defined by an XML schema. This error occurs when an
attempt is made to create an XMLType table or column based on a global element and
the global element is defined as a conpl exType that contains a very large number of
element and attribute definitions.

The error only occurs when creating an XMLType table or column that uses
object-relational storage. When object-relational storage is selected the XM_Type is
persisted as a SQL type. When a table or column is based on a SQL type, each attribute
defined by the type counts as a column in the underlying table. If the SQL type
contains attributes that are based on other SQL types, the attributes defined by those
types also count as columns in the underlying table. If the total number of attributes in
all the SQL types exceeds the Oracle Database limit of 1000 columns in a table the
storage table cannot be created.

This means that as the total number of elements and attributes defined by a

conpl exType approaches 1000, it is no longer possible to create a single table that can
manage the SQL objects generated when an instance of the type is stored in the
database.

To resolve this you must reduce the total number of attributes in the SQL types that are
used to create the storage tables. Looking at the schema there are two approaches for
achieving this:

= Using a top-down technique with multiple XML Type tables that manage the XML
documents. This technique reduces the number of SQL attributes in the SQL type

3-30 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

hierarchy for a given storage table. As long as none of the tables have to manage
more than 1000 attributes, the problem is resolved.

« Using a bottom-up technique that reduces the number of SQL attributes in the
SQL type hierarchy, collapsing some of elements and attributes defined by the
XML schema so that they are stored as a single CLOB value.

Both techniques rely on annotating the XML schema to define how a particular
conpl exType will be stored in the database.

For the top-down technique, annotations, SQLI nl i ne="false" and def aul t Tabl e,
force some sub-elements in the XML document to be stored as rows in a separate
XM_.Type table. Oracle XML DB maintains the relationship between the two tables
using a REF of XMLType. Good candidates for this approach are XML schemas that
define a choice where each element within the choice is defined as a conpl exType, or
where the XML schema defines an element based on a conpl exType that contains a
very large number of element and attribute definitions.

The bottom-up technique involves reducing the total number of attributes in the SQL
object types by choosing to store some of the lower level conpl exTypes as CLOB
values, rather than as objects. This is achieved by annotating the conpl exType or the
usage of the conpl exType with SQLType="CLOB".

Which technique you use depends on the application and type of queries and updates
to be performed against the data.

Working with Global Elements

When an XML schema is registered with the database Oracle XML DB generates a
default table for each global element defined by the XML schema. If an XML schema
contains a large number of global element definitions it can cause significant overhead
in processor time and space used. There are two ways to avoid this:

= Add the annotation xdb: def aul t Tabl e="" to every global element that does
not appear as the root element of an instance document.

= Setthe genTabl es parameter to FALSE when registering the XML schema and
then manually create the default table for each global element that can legally
appear as the root element of an instance document.

Creating XML Schema-Based XMLType Columns and Tables

Once the XML schema has been registered with Oracle XML DB, it can be referenced
when defining tables that contain XML Type columns, or when creating XMLTy pe
tables.

Example 3-11 shows how to manually create the Pur chaseQr der table, the default
table for Pur chaseOr der elements, as defined by the Pur chaseOr der XML schema.

Example 3-11 Creating an XMLType Table that Conforms to an XML Schema

CREATE TABLE PurchaseOrder of XM.Type

XMLSCHEMA "http:/ /1 ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd”
ELEMENT " Pur chaseOr der "

varray "XM.DATA"."ACTI ONS". " ACTI ON'

STORE AS tabl e ACTI ON_TABLE

(

(primary key (NESTED TABLE_ID, ARRAY_|NDEX))
organi zation index overflow

Using Oracle XML DB 3-31

XML Schema and Oracle XML DB

)

varray "XM.DATA"."LI NEI TEMS". " LI NEI TEM'
store as table LI NEI TEM TABLE

(

(primary key (NESTED TABLE |D, ARRAY_| NDEX))
organi zation index overflow

)i

Tabl e created.

In this example each member of the VARRAY that manages the collection of Li nel t em
elements is stored as a row in nested table LI NEI TEM TABLE. Each member of the
VARRAY that manages the collection of Act i on elements is stored in the nested table
ACTI ON_TABLE. The nested tables are index organized and automatically contain the
NESTED_TABLE_| Dand ARRAY_I| NDEX columns required to link them back to the
parent column.

The CREATE TABLE statement is equivalent to the CREATE TABLE statement
automatically generated by Oracle XML DB if the schema annotation

st oreVarrayAsTabl e="true" was included in the root element of the

Pur chaseOr der XML schema. Note that when this annotation is used to create
nested tables, the nested tables are given system-generated names. Since these names
are somewhat difficult to work with, nested tables generated by the XML schema
registration process can be given more meaningful names using the SQL statement,
RENAME TABLE.

A SQL*Plus DESCRI BE statement, abbreviated to desc, can be used to view
information about an XMLType table.

Example 3-12 Using DESCRIBE for an XML Schema-Based XMLType Table

desc PURCHASEORDER
Name Nul 1?2 Type

TABLE of SYS. XMLTYPE(XM_.Schena
“http://1ocal host: 8080/ hone/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd" El ement
"PurchaseOrder") STORAGE hject-rel ational TYPE "PURCHASEORDER T"

The output of the DESCRI BE statement shows the following information about the
Pur chaseOr der table:
« The table is an XMLType table

= The table is constrained to storing Pur chaseOr der documents as defined by the
Pur chaseOr der XML schema

= Rows in this table are stored as a set of objects in the database

= SQL type PURCHASEORDER T is the base object for this table

Default Tables

The XML schema in Example 3-11 specifies that the Pur chaseOr der table is the
default table for Pur chaseOr der elements. This means that when an XML document
compliant with the XML schema, is inserted into Oracle XML DB repository using
protocols or PL/SQL, the content of the XML document is stored as a row in the

Pur chaseOr der table.

3-32 Oracle XML DB Developer's Guide

Identifying Instance Documents

When an XML schema is registered as a global schema, you must grant the
appropriate access rights on the default table to all other users of the database before
they can work with instance documents that conform to the globally registered XML
schema.

Identifying Instance Documents

Before an XML document can be inserted into an XML schema-based XM_Type table
or column the document must identify the XML schema it is associated with. There are
two ways to achieve this:

= Explicitly identify the XML schema when creating the XMLType. This can be done
by passing the name of the XML schema to the XMLType constructor, or by
invoking the XMLType cr eat eSchenmaBasedXM.() method.

= Use the XMLSchena- i nst ance mechanism to explicitly provide the required
information in the XML document. This option can be used when working with
Oracle XML DB.

The advantage of the XM_LSchena- i nst ance mechanism is that it allows the Oracle
XML DB protocol servers to recognize that an XML document inserted into Oracle
XML DB repository is an instance of a registered XML schema. This means that the
content of the instance document is automatically stored in the default table defined
by that XML schema.

The XMLSchema- i nst ance mechanism is defined by the W3C XML Schema working
group. It is based on adding attributes that identify the target XML schema to the root
element of the instance document. These attributes are defined by the

XMLSchenma- i nst ance namespace.

To identify an instance document as a member of the class defined by a particular
XML schema you must declare the XM_LSchena- i nst ance namespace by adding a
namespace declaration to the root element of the instance document. For example:

xm ns: xsi =http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance

Once the XMLSchena- i nst ance namespace has been declared and given a
namespace prefix, attributes that identify the XML schema can be added to the root
element of the instance document. In the preceding example, the namespace prefix for
the XMLSchema- i nst ance namespace was defined as xsi . This prefix can then be
used when adding the XMLSchena- i nst ance attributes to the root element of the
instance document.

Which attributes must be added depends on a number of factors. There are two
possibilities, noNanespaceSchenaLocat i on and schemalLocat i on. Depending on
the XML schema, one or both of these attributes is required to identify the XML
schemas that the instance document is associated with.

noNamespaceSchemalLocation Attribute

If the target XML schema does not declare a target namespace, the
noNanespaceSchenmaLocat i on attribute is used to identify the XML schema. The
value of the attribute is called the Schema Location Hint. This is the unique identifier
passed to dbrs_xm schema. r egi st er Scherma() when the XML schema is
registered with the database.

For the Pur chaseOr der . xsd XML schema, the correct definition of the root element
of the instance document would read as follows:

<Pur chaseOr der

Using Oracle XML DB 3-33

Using the Database to Enforce XML Data Integrity

xm ns: xsi =http://wwm w3. or g/ 2001/ XM_Schena- i nst ance
xsi : noNanespaceSchemalLocati on="http://| ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur ch
aseOr der. xsd">

schemalocation Attribute

If the target XML schema declares a target namespace then the schermalLocat i on
attribute is used to identify the XML schema. The value of the attribute is a pair of
values separated by a space. The left hand side of the pair is the value of the target
namespace declared in the XML schema. The right hand side of the pair is the Schema
Location Hint, the unique identifier passed to dbns_

xm schema. r egi st er Schema() when the XML schema is registered with the
database.

For example, assume that the Pur chaseOr der XML schema includes a target
namespace declaration. The root element of the XML schema would look something
like:

<xs:schema target Namespace="http://deno. oracl e. con xdb/ pur chaseCr der"
xm ns: xs="http:// ww. w3. org/ 2001/ XM.Schema"
xm ns: xdb="http://xm ns. oracl e. conf xdb"
version="1.0" xdb: storeVarrayAsTabl e="true">
<xs: el ement name="PurchaseCOrder" type="PurchaseO der Type"
xdb: def aul t Tabl e=" PURCHASECRDER'" / >

and in this case the correct form of the root element of the instance document would
read as follows:

<Pur chaseOr der
xnl ns="http://deno. oracl e. con xdb/ pur chaseCr der"
xm ns: xsi =http://wmv. w3. or g/ 2001/ XM.Schena- i nst ance
xsi : schemalLocation="http://deno. oracl e. coni xdb/ pur chaseCr der
http:// mdrake-1ap: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd" >

Dealing with Multiple Namespaces

When the XML schema includes elements defined in multiple namespaces, an entry
must occur in the schemalLocat i on attribute for each of the XML schemas. Each
entry consists of the namespace declaration and the Schema Location Hint. The entries
are separated from each other by one or more whitespace characters. If the primary
XML schema does not declare a target namespace, then the instance document also
needs to include a noNanmespaceSchemalocat i on attribute that provides the Schema
Location Hint for the primary XML schema.

Using the Database to Enforce XML Data Integrity

One advantage of using Oracle XML DB to manage XML content is that SQL can be
used to supplement the functionality provided by XML schema. Combining the power
of SQL and XML with the ability of the database to enforce rules makes the database a
powerful framework for managing XML content.

Only well-formed XML documents can be stored in XML Ty pe tables or columns. A
well-formed XML document is one that conforms to the syntax of the XML version
declared in its XML declaration. This includes having a single root element, properly
nested tags, and so forth. Additionally, if the XMLType table or column is constrained
to an XML schema, only documents that conform to that XML schema can be stored in

3-34 Oracle XML DB Developer's Guide

Using the Database to Enforce XML Data Integrity

that table or column. Any attempt to store or insert any other kind of XML document
in an XML schema-based XML Ty pe causes an ORA-19007 error. Example 3-13
illustrates this.

Example 3-13 ORA-19007 Error From Attempting to Insert an Incorrect XML Document

I NSERT | NTO PURCHASECRDER
VALUES

(
XM.Type

(
bfilename(' XM.DIR' , " I nvoi ce.xm "),
nl's_charset _i d(' AL32UTF8")

)
)
| NSERT | NTO PURCHASEORDER

*

ERROR at line 1:
ORA-19007: Schema - does not match expected
http://1ocal host: 8080/ horme/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd.

This error only occurs when content is inserted directly into an XMLType table. This
means that Oracle XML DB did not recognize the document as a member of the class
defined by the XML schema. For a document to be recognized as a member of the class
defined by the schema, the following conditions must be true:

= The name of the XML document's root element must match the name of global
element used to define the XMLType table or column.

= The XML document must include the appropriate attributes from the
XMLSchena- i nst ance namespace or the XML document must be explicitly
associated with the XML schema using the XML Ty pe constructor or the
creat eSchemaBasedXM.() method.

If the constraining XML schema declares a t ar get Nanespace then the instance
documents must contain the appropriate namespace declarations to place the root
element of the document in the t ar get Namrespace defined by the XML schema.

Note: XML constraints are enforced within XML documents
whereas database (SQL) constraints are enforced across sets of XML
documents.

Comparing Partial to Full XML Schema Validation

This section describes the differences between the partial and full XML schema
validation used when inserting XML documents into the database.

Partial Validation

When an XML document is inserted into an XML schema-based XM_Type table or
column Oracle XML DB performs a partial validation of the document. A partial
validation ensures that all the mandatory elements and attributes are present and that
there are no unexpected elements or attributes in the document. It ensures that the
structure of the XML document conforms to the SQL type definitions that were
derived from the XML schema. However, it does not ensure that the instance
document is fully compliant with the XML schema. Example 3-14 provides an
example of failing a partial validation while inserting an XML document into table
PurchaseOr der:

Using Oracle XML DB 3-35

Using the Database to Enforce XML Data Integrity

Example 3-14 ORA-19007 When Inserting Incorrect XML Document (Partial Validation)

I NSERT | NTO PURCHASECRDER
VALUES

(
XM.Type

(
bfilename(' XM.DIR' , ' I nval i dEl enent. xm '),

nl's_charset i d(' AL32UTF8")

)
)
XM.Type

ERROR at line 4:

ORA-30937: No schenmm definition for 'UserName' (nanespace '##l ocal') in parent
' Pur chaseOr der'

ORA-06512: at "SYS. XMLTYPE"', |ine 259

ORA- 06512: at "SYS. XMLTYPE", |ine 284

ORA-06512: at line 1

Full Validation

When full validation of the instance document against the XML schema is required,
you can enable XML schema validation using either of the following;:

« Table level CHECK constraint
= PL/SQL BEFORE | NSERT trigger

Both approaches ensure that only valid XML documents can be stored in the XML Type
table.

The advantage of a TABLE CHECK constraint is that it is easy to code. The
disadvantage is that it is based on the XM.i sVal i d() SQL function and can only
indicate whether or not the XML document is valid. When the XML document is
invalid it cannot provide any information as to why it is invalid.

A BEFORE | NSERT trigger requires slightly more code. The trigger validates the XML
document by invoking the XML Type schemaVal i dat e() method. The advantage of
using schermaVal i dat e() is that the exception raised provides additional
information about what was wrong with the instance document. Using a BEFORE

| NSERT trigger also makes it possible to attempt corrective action when an invalid
document is encountered.

Full XML Schema Validation Costs CPU and Memory Usage Full XML Schema validation
costs CPU and memory. By leaving the decision on whether or not to force a full XML
schema validation to you, Oracle XML DB lets you perform full XML schema
validation only when necessary. If you can rely on the application validating the XML
document, you can obtain higher overall throughput by avoiding overhead associated
with a full validation. If you cannot be sure about the validity of the incoming XML
documents, you can rely on the database to ensure that the XMLType table or column
only contains schema-valid XML documents.

In Example 3-15 the XML document, | nval i dRef er ence, is a not a valid XML
document according to the XML schema. The XML schema defines a minimum length
of 18 characters for the text node associated with the Ref er ence element. In this
document the node contains the value SBELL- 20021009, which is only 14 characters
long. Partial validation would not catch this error. Unless the constraint or trigger are
present, attempts to insert this document into the database would succeed.

3-36 Oracle XML DB Developer's Guide

Using the Database to Enforce XML Data Integrity

Example 3-15 shows how to force a full XML schema validation by adding a CHECK
constraint to an XMLType table.

Example 3-15 Using CHECK Constraint to Force Full XML Schema Validation

Here, a CHECK constraint is added to Pur chaseOr der table. Any attempt to insert an
invalid document, namely one that does not pass the CHECK constraint, into the table
fails:

ALTER TABLE PURCHASEORDER
ADD constraint VALI DATE _PURCHASEORDER
CHECK (XMLl sVal i d(object _val ue)=1);

Tabl e al tered.

| NSERT | NTO PURCHASEORDER
VALUES
(
XM.Type
(
bfilename(' XM.DIR , ' I nval i dRef erence. xm '),
nls_charset _i d(' AL32UTF8")

)
)
| NSERT | NTO PURCHASEORDER

*

ERRCR at line 1:
ORA-02290: check constraint (SCOTT. VALI DATE_PURCHASEORDER) vi ol at ed

Note that the pseudo column name obj ect _val ue can be used to access the content
of an XMLType table from within a trigger.

Example 3-16 shows how to use a BEFORE | NSERT trigger to validate that the data
being inserted into the XMLType table conforms to the specified XML schema.

Example 3-16 Using BEFORE INSERT Trigger to Enforce Full XML Schema Validation

CREATE OR REPLACE TRI GGER VALI DATE_PURCHASEORDER
BEFORE insert on PURCHASEORDER
FOR each row
begin
if (:new object_value is not null) then
: new. obj ect _val ue. schemaval i date();
end if;
end;
/

Trigger created.

I NSERT | NTO PURCHASECRDER

VALUES (xm type(getFileContent('lnvalidReference.xm')));
VALUES (xm type(getFileContent('InvalidReference.xm"')))
*

ERROR at line 2:

ORA-31154: invalid XM. docunent

ORA-19202: Error occurred in XM processing

LSX-00221: "SBELL-20021009" is too short (mninumlength is 18)
ORA-06512: at "SYS. XMLTYPE", |ine 333

Using Oracle XML DB 3-37

Using the Database to Enforce XML Data Integrity

ORA-06512: at "SCOTT. VALI DATE_PURCHASEORDER', |ine 3
ORA-04088: error during execution of trigger 'SCOTT. VALI DATE_PURCHASEORDER

Using SQL Constraints to Enforce Referential Integrity

The W3C XML Schema Recommendation defines a powerful language for defining the
contents of an XML document. However there are a number of simple data
management concepts not currently addressed by the W3C XML Schema
Recommendation. These include the following;:

= The ability to define that the value of an element or attribute has to be unique
across a set of XML documents (a UNI QUE constraint)

« That the value of an element or attribute must exist in some data source outside
the current document (a FORElI GN KEY constraint)

The mechanisms used to enforce integrity on XML are the same mechanisms used to
enforce integrity on conventional relational data. In other words, simple rules such as
uniqueness and foreign-key relationships, are enforced by specifying constraints. More
complex rules are enforced by specifying database triggers. Example 3-17 and
Example 3-18 illustrate how you can use SQL constraints to enforce referential
integrity.

Oracle XML DB makes it possible to implement database-enforced business rules on
XML content, in addition to rules that can be specified using the XML schema
constructs. The database enforces these business rules regardless of whether XML is
inserted directly into a table, or uploaded using one of the protocols supported by
Oracle XML DB repository.

Example 3-17 Applying Database Integrity Constraints and Triggers to an XMLType
Table

CREATE OR REPLACE TRI GGER VALI DATE_PURCHASEORDER
BEFORE insert on PURCHASEORDER
FOR each row
begin

if (:new object_value is not null) then

: new. obj ect _val ue. schemaval i dat e();

end if;
end;
/

Trigger created.

I NSERT | NTO PURCHASECRDER
VALUES
(
xm type
(
bfil ename(' XM.DIR' , ' I nval i dRef erence. xm "),
nl s_charset _i d(" AL32UTF8")
)
);
I NSERT | NTO PURCHASEORDER
*
ERROR at line 1:
ORA-31154: invalid XM. docunent
ORA-19202: Error occurred in XM processing

3-38 Oracle XML DB Developer's Guide

Using the Database to Enforce XML Data Integrity

LSX-00221: "SBELL-20021009" is too short (mninumlength is 18)

ORA-06512: at "SYS. XMLTYPE', line 333

ORA- 06512: at "SCOTT. VALI DATE_PURCHASECRDER', line 3

ORA-04088: error during execution of trigger 'SCOTT. VALI DATE PURCHASEORDER

ALTER TABLE PURCHASEORDER
ADD constraint REFERENCE | S _UNI QUE
UNI QUE (xni dat a. " REFERENCE") ;

Tabl e al tered.

ALTER TABLE PURCHASEORDER
ADD constraint USER IS VALID
foreign key (xmdata."USERI D') references HR EMPLOYEES(EMAIL);

Tabl e al tered.

I NSERT | NTO PURCHASECRDER
VALUES

(
xm type

(
bfilename(' XM.DIR' , ' purchaseOrder.xm '),
nl's_charset _i d(' AL32UTF8")
)
);

1 row created.

I NSERT | NTO PURCHASECRDER
VALUES

(
xm type

bfilename(' XM.DI R, ' Dupl i cat eRef erence. xm '),
nl's_charset _i d(' AL32UTF8")

)
)
| NSERT | NTO PURCHASEORDER

*

ERROR at line 1:
ORA-00001: uni que constraint (SCOTT. REFERENCE_I S_UNI QUE) vi ol at ed

I NSERT | NTO PURCHASECRDER
VALUES

(
xm type

bfilename(' XM.DIR' , ' I nval i dUser.xm '),
nls_charset _i d(' AL32UTF8")
)
);

Using Oracle XML DB 3-39

Using the Database to Enforce XML Data Integrity

I NSERT | NTO PURCHASEORDER

*

ERROR at |ine 1:
ORA-02291: integrity constraint (SCOTT. USER IS VALID) violated - parent key not
found

The unique constraint REFERENCE_| S_UNI QUE enforces the rule that the value of the
node / Pur chaseOr der/ Ref er ence/ t ext () is unique across all documents stored
in the PURCHASEORDER table. The foreign key constraint USER_| S_VALI D enforces
the rule that the value of the node / Pur chaseOr der/ User/t ext () corresponds to
one of the values in the EMAIL column in the EMPLOYEES table.

Oracle XML DB constraints must be specified in terms of attributes of the SQL types
used to manage the XML content.

The following examples show how database-enforced data integrity ensures that only
XML documents that do not violate the database-enforced referential constraints can
be stored in the PURCHASEORDER table.

The text node associated with the Ref er ence element in the XML document

Dupl i cat eRef er nce. xni , contains the same value as the corresponding node in
XML document Pur chaseOr der . xm . This means that attempting to store both
documents in Oracle XML DB results in the constraint REFERENCE_| S_UNI QUE being
violated.

The text node associated with the User element in XML document

I nval i dUser . xm , contains the value HACKER. There is no entry in the EMPLOYEES
table where the value of the EMAI L column is HACKER. This means attempting to store
this document in Oracle XML DB results in the constraint USER | S_VALI Dbeing
violated.

I NSERT | NTO PURCHASECRDER
VALUES (xm type(getFileContent (' PurchaseOrder.xm")));

1 row created.

I NSERT | NTO PURCHASEORDER
VALUES (xm type(getFileContent (' DuplicateReference.xm")));

insert into PURCHASEORDER

*

ERROR at line 1:
ORA-00001: uni que constraint (SCOTT. REFERENCE | S_UNI QUE) viol ated

I NSERT | NTO PURCHASEORDER
VALUES (xm type(getFileContent('InvalidUser.xm"')));

insert into PURCHASEORDER

*

ERROR at line 1:
ORA-02291: integrity constraint (SCOTT.USER IS VALID) violated - parent key not
found

Integrity rules defined using constraints and triggers are also enforced when XML
schema-based XML content is loaded into Oracle XML DB repository.

Example 3-18 demonstrates that database integrity is also enforced when a protocol,
such as FTP is used to upload XML schema-based XML content into Oracle XML DB
repository.

3-40 Oracle XML DB Developer's Guide

Using the Database to Enforce XML Data Integrity

Example 3-18 Enforcing Database Integrity When Loading XML Using FTP

$ ftp local host 2100

Connected to |ocal host.

220 mdrake-sun FTP Server (Oracle XM. DB/ Oracl e Database 10g Enterprise Edition
Rel ease 10.1.0.0.0 - Beta) ready.

Nanme (| ocal host: oracl el0): SCOTT

331 pass required for SCOTT

Passwor d:

230 SCOTT | ogged in

ftp> cd /home/ SCOTT

250 CWD Command successf ul

ftp> put InvalidReference.xn

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQL level 1

ORA-31154: invalid XM. docunent

ORA-19202: Error occurred in XM processing

LSX-00221: "SBELL-20021009" is too short (mninumlength is 18)
ORA-06512: at "SYS. XMLTYPE', line 333

ORA-06512: at "SCOTT. VALI DATE_PURCHASEORDER', |ine 3

ORA-04088: error during execution of trigger 'SCOTT. VALI DATE_PURCHASEORDER
550 End Error Response

ftp> put InvalidE enent.xm

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
" Pur chaseOr der'

550 End Error Response

ftp> put DuplicateReference. xn

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA- 00604: error occurred at recursive SQ level 1

ORA-00001: uni que constraint (SCOTT. REFERENCE | S_UNI QUE) viol ated
550 End Error Response

ftp> put InvalidUser.xn

200 PORT Command successful

150 ASCI| Data Connection

550- Error Response

ORA- 00604: error occurred at recursive SQ level 1

ORA-02291: integrity constraint (SCOTT.USER IS VALID) violated - parent key not
found

550 End Error Response

Full SQL Error Trace

When an error occurs while a document is being uploaded with a protocol, Oracle
XML DB provides the client with the full SQL error trace. How the error is interpreted
and reported to you is determined by the error-handling built into the client
application. Some clients, such as the command line FTP tool, reports the error
returned by Oracle XML DB, while others, such as Microsoft Windows Explorer,
simply report a generic error message.

See also: Oracle Database Error Messages

Using Oracle XML DB 3-41

DML Operations on XML Content Using Oracle XML DB

DML Operations on XML Content Using Oracle XML DB

Another major advantage of using Oracle XML DB to manage XML content is that it
leverages the power of Oracle Database to deliver powerful, flexible capabilities for
querying and updating XML content, including the following;:

= Retrieving nodes and fragments within an XML document

« Updating nodes and fragments within an XML document

= Creating indexes on specific nodes within an XML document
= Indexing the entire content of an XML document

« Determining whether an XML document contains a particular node

XPath and Oracle XML

Oracle XML DB includes new XMLType methods and XML-specific SQL functions.
WIth these you can query and update XML content stored in Oracle Database. They
use the W3C XPath Recommendation to identify the required node or nodes. Every
node in an XML document can be uniquely identified by an XPath expression. An
XPath expression consists of a slash-separated list of element names, attributes names,
and XPath functions. XPath expressions may contain indexes and conditions that
determine which branch of the tree is traversed in determining the target nodes.

By supporting XPath-based methods and functions, Oracle XML DB makes it possible
for XML programmers to query and update XML documents in a familiar,
standards-compliant manner.

Querying XML Content Stored in Oracle XML DB

This section describes techniques for querying Oracle XML DB and retrieving XML
content. This section contains these topics:

= A PurchaseOrder XML Document

= Retrieving the Content of an XML Document Using Object_Value

= Accessing Fragments or Nodes of an XML Document Using extract()

= Accessing Text Nodes and Attribute Values Using extractValue()

= Searching the Content of an XML Document Using existsNode()

= Using extractValue() and existsNode() in the WHERE Clause

= Using XMLSequence() to Perform SQL Operations on XMLIype Fragments

A PurchaseOrder XML Document

3-42

Examples in this section are based on the following PurchaseOrder XML document:

<Pur chaseOrder xm ns:xsi="http://wm. w3. org/ 2001/ XM_.Schena-i nst ance"
xsi : noNamespaceSchemalLocati on="http://| ocal host: 8080/ hone/ SCOTT
| poSour ce/ xsd/ pur chaseOr der . xsd" >
<Ref er ence>SBELL-2002100912333601PDT</ Ref er ence>
<Acti ons>
<Acti on>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>
<Rej ect/>

Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

<Request or >Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructi ons>
<name>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shores
CA
94065
USA</ addr ess>
<t el ephone>650 506 7400</tel ephone>
</ Shi ppi ngl nstructi ons>
<Speci al I nstructions>Air Mil </ Speci al I nstructions>
<Li nel t ems>
<Lineltem It em\unber="1">
<Description>A N ght to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</ Lineltenp
<Li nel tem | t em\unber =" 2" >
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem
<Linel tem It em\unber="3">
<Descri ption>Si st ers</Description>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltenp
</Linel tens>
</ PurchaseO der >

1 row sel ected.

Retrieving the Content of an XML Document Using Object_Value

The obj ect _val ue keyword can be used as an alias for the value of an object table.
For an XMLType table that consists of a single column of XMLType, the entire XML
document is retrieved. obj ect _val ue replaces the val ue(x) and sys_nc_

r owi nf 0% aliases used in prior releases.

The SQL*Plus settings PAGESI ZE and LONGensure that the entire document is printed
correctly without line breaks.

Example 3-19 Using object_value to Retrieve an Entire XML Document

set [ong 10000
set pagesize 100
set |inesize 132

SELECT obj ect _val ue
FROM PURCHASEORDER;

CBJECT_VALUE

<Pur chaseQOrder xm ns:xsi="http://ww.w3.org/ 2001/ XM_Schena-i nst ance"
xsi : noNamespaceSchemalLocati on="http://| ocal host: 8080/ hone/ SCOTT
/ poSour ce/ xsd/ pur chaseCr der . xsd" >
<Ref er ence>SBELL-2002100912333601PDT</ Ref er ence>
<Actions>

Using Oracle XML DB 3-43

Querying XML Content Stored in Oracle XML DB

<Acti on>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>
<Rej ect/>
<Request or >Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructions>
<name>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shor es
CA
94065
USA</ addr ess>
<t el ephone>650 506 7400</t el ephone>
</ Shi ppi ngl nstructi ons>
<Speci al I nstructions>Air Mil </ Speci al I nstructions>
<Li nel t ems>
<Li nel tem | t em\unber ="1">
<Description>A Ni ght to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</ Lineltenp
<Li nel tem |t em\unber ="2">
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltenp
<Lineltem It em\unber="3">
<Descri ption>Si st ers</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltenp
</ Lineltenms>
</ Pur chaseOr der >

1 row sel ect ed.

Accessing Fragments or Nodes of an XML Document Using extract()

The extract () function returns the node or nodes that match the XPath expression.
Nodes are returned as an instance of XMLType. The results of ext ract () can be
either a docunent or Docunent Fr agnment . The functionality of ext r act () is also
available through the XMLType datatype, ext r act () method.

Example 3-20 Accessing XML Fragments Using extract()
The following SQL statement returns an XMLType containing the Ref er ence element
that matches the XPath expression.

set pages 100
set |inesize 132
set | ong 10000

SELECT extract (object_val ue,'/PurchaseOr der/ Ref erence')
FROM PURCHASEORDER;

EXTRACT(OBJECT_VALUE, ' / PURCHASECRDER/ REFERENCE')

<Ref er ence>SBELL- 2002100912333601PDT</ Ref er ence>

3-44 Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

1 row sel ected.

The following statement returns an XM_Type containing the first Li nel t emelement
in the Li nel t ers collection:

SELECT extract (object _val ue,'/PurchaseOrder/Lineltens/Lineltenf1]")
FROM PURCHASEORDER;

EXTRACT(OBJECT_VALUE, ' / PURCHASECRDER/ LI NEI TEMS/ LI NEI TEM 1] ')

<Li nel tem It em\unber="1">

<Description>A N ght to Renmenber</Description>

<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Linel tenp

1 row sel ected.

The following SQL statement returns an XMLType containing the three Descri pti on
elements that match the XPath expression. The three Descr i pt i on elements are
returned as nodes in a single XMLType. This means that the XM_Type does not have a
single root node. Consequently it is treated as an XML Docunent Fr agnent .

SELECT extract (object_val ue,'/PurchaseOr der/Lineltens/Lineltent Description')
FROM PURCHASEORDER;

EXTRACT(OBJECT_VALUE, ' / PURCHASECRDER/ LI NEI TEMS/ LI NEI TEM DESCRI PTI ON)

<Description>A N ght to Remenber</Description>
<Description>The Unbearabl e Li ghtness O Bei ng</Description>
<Descri ption>Si st ers</ Description>

1 row sel ected.

Accessing Text Nodes and Attribute Values Using extractValue()

The ext r act Val ue() function returns the value of the text node or attribute value
that matches the supplied XPath expression. The value is returned as a SQL scalar
datatype. This means that the XPath expression passed to ext r act Val ue() must
uniquely identify a single text node or attribute value within the document.

Example 3-21 Accessing a Text Node Value Matching an XPath Expression Using
extractValue()

The following SQL statement returns the value of the text node associated with the
Ref er ence element that matches the XPath expression. The value is returned as a
VARCHAR2 datatype.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence')
FROVI PURCHASEORDER;

EXTRACTVALUE(OBJECT_VALUE, ' / PU
SBELL-2002100912333601PDT

1 row sel ected.

The following SQL statement returns the value of the text node associated with the
Descri pti on element associated with the first Li nel t emelement. The value is

Using Oracle XML DB 3-45

Querying XML Content Stored in Oracle XML DB

returned as VARCHARZ datatype. Note the use of the Index to identify which of the
Li nel t emnodes should be processed.

SELECT extract Val ue(obj ect _val ue,
"/ PurchaseOr der/ Li nel t ens/ Li nel ten{ 1]/ Descri ption')
FROM PURCHASEORDER;

EXTRACTVALUE(OBJECT_VALUE, ' / PURCHASECRDER/ LI NEI TEMS/ LI NEI TEM 1] / DESCRI PTI ON')

A N ght to Renmenber
1 row sel ected.

The following SQL statement returns the value of the text node associated with the
Descri pti on element, in turn associated with the Li nel t emelement. The

Li nel t emelement contains an | d attribute with the specified value. The value is
returned as VARCHAR2 datatype. Note how the predicate that identifies which

Li nel t emto process is enclosed in Square Brackets ([]). The at-sign character (@
specifies that | d is an attribute rather than an element.

SELECT extract Val ue(obj ect _val ue,
"/ PurchaseQOrder/ Linel tens/ Li nel ten Part/ @ d="715515011020"] / Descri ption")
FROM PURCHASEORDER;

EXTRACTVALUE(OBJECT
_VALUE, ' / PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM PART/ @ D="715515011020"] / DESCRI PTI ON)

Sisters

1 row sel ected.

Invalid Use of extractValue()

The following examples show invalid uses of extract Val ue() . In the first example
the XPath expression matches three nodes in the document. In the second example the
XPath expression identifies a node tree, not a text node or attribute value.

Example 3-22 Invalid Uses of extractValue()

SELECT extract Val ue(obj ect
_val ue, '/ PurchaseOrder/ Li nel t ems/ Li nel t emf Descri ption")
FROM PURCHASEORDER,;
SELECT extract Val ue(obj ect
_val ue, ' / PurchaseQrder/ Li nel t ems/ Li nel t enf Descri ption')
*
ERRCR at line 1:
ORA-01427: singl e-row subquery returns more than one row

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/Lineltens/Linelten{1]")
FROM PURCHASEORDER;
FROM PURCHASEORDER
*
ERROR at line 2:
ORA-19026: EXTRACTVALUE can only retrieve value of |eaf node

SELECT extract Val ue(obj ect
_val ue, '/ PurchaseQOrder/ Lineltens/Linelten Description/text()")

3-46 Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

FROM PURCHASEORDER;
SELECT extract Val ue(obj ect
_val ue, '/ PurchaseOrder/ Li nel t ens/ Li nel t enf Descri ption/text()")

*

Note that depending on whether or not XPath rewrite takes place, the two preceding
statements can also result in the following error being reported:

ORA-01427: singl e-row subquery returns more than one row

Searching the Content of an XML Document Using existsNode()

The exi st sNode function evaluates whether or not a given document contains a
node which matches a W3C XPath expression. The exi st sNode() function returns
true (1) if the document contains the node specified by the XPath expression supplied
to the function and false (0) if it does not. Since XPath expressions can contain
predicates exi st sNode() can determine whether or not a given node exists in the
document, or whether or not a node with the specified value exists in the document.
The functionality provided by the exi st sNode() function is also available through
the XMLType datatype exi st sNode() method.

Example 3-23 Searching XML Content Using the existsNode() Function

This example checks if the XML document contains a root element named Ref er ence
that is a child of the root element Pur chaseQr der :

SELECT COUNT(*)

FROM PURCHASEORDER

WHERE exi st sNode(obj ect _val ue, '/ PurchaseOrder/ Ref erence') = 1,
COUNT(*)

The following example checks if the value of the text node associated with the
Ref er ence element is SBELL- 2002100912333601PDT:

SELECT count (*)

FROM PURCHASEORDER

WHERE exi st sNode(obj ect _val ue,
" Pur chaseQr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1,
COUNT(*)

1 row sel ected.

The following example checks if the value of the text node associated with the
Ref er ence element is SBEL L - XXXXOOOOOXXXX:

SELECT count (*)

FROM PURCHASEORDER

WHERE exi st sNode(obj ect _

val ue, " / PurchaseQr der / Ref er ence[Ref er ence=" SBELL- XXXXXXXXOOXXXXXX"] ") = 1,

1 row sel ected.

Using Oracle XML DB 3-47

Querying XML Content Stored in Oracle XML DB

The following example checks if the XML document contains a root element
Pur chaseOr der that contains a Li nel t ens element containing a Li nel t em
element, which in turn contains a Part element with an | d attribute:

SELECT count (*)
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, '/ PurchaseOrder/Lineltens/Lineltem Part/@d') = 1;

1 row sel ected.

The following checks if the XML document contains a root element Pur chaseQr der
that contains a Li nel t ens element, contain a Li nel t emelement which contains a
Part element where the value of the | d attribute is 715515009058:

SELECT count (*)

FROM PURCHASECRDER

WHERE exi st sNode(obj ect _

val ue, '/ PurchaseOrder/ Li nel tems/ Li nel tem Part [@ d="715515009058"]") = 1;

The following checks if the XML document contains a root element Pur chaseCr der
that contains Li nel t ens element, where the third Li nel t emelement contains a
Part element where the value of the | d attribute is 715515009058:

SELECT count (*)

FROM PURCHASEORDER

WHERE exi st sNode(obj ect _

val ue, ' / PurchaseQrder/Linel tems/ Li nel tenf 3]/ Part[@ d="715515009058"]") = 1,

1 row sel ected.

The following query shows how to use extr act Val ue() to limit the results of the
SELECT statement to those rows where the text node associated with the User
element starts with the letter S. XPath 1.0 does not include support for LI KE-based
queries:

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence') "Reference”
FROM PURCHASECRDER
WHERE ext ract Val ue(obj ect _val ue, '/ PurchaseCrder/User') LIKE 'S%;

Ref erence

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKI NG 20021009123336321PDT
36 rows sel ected.

The following query shows how to use ext r act Val ue() to perform a join based on
the values of a node in an XML document and data in another table.

3-48 Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence') "Reference"
FROM PURCHASEORDER, HR. EMPLOYEES e

WHERE extract Val ue(obj ect _val ue, '/ PurchaseOrder/User') = e. EMAIL

AND e. EMPLOYEE_| D = 100;

Ref erence

SKI NG 20021009123336321PDT
SKI NG 20021009123337153PDT
SKI NG 20021009123335560PDT
SKI NG 20021009123336952PDT
SKI NG 20021009123336622PDT
SKI NG 20021009123336822PDT
SKI NG 20021009123336131PDT
SKI NG 20021009123336392PDT
SKI NG 20021009123337974PDT
SKI NG 20021009123338294PDT
SKI NG 20021009123337703PDT
SKI NG 20021009123337383PDT
SKI NG 20021009123337503PDT

13 rows sel ected.

Using extractValue() and existsNode() in the WHERE Clause

The preceding examples demonstrated how ext r act Val ue() can be used in the
SELECT list to return information contained in an XML document. You can also use
these functions in the WHERE clause to determine whether or not a document must be
included in the resultset of a SELECT, UPDATE, or DELETE statement.

You can use exi st sNode() to restrict the resultset to those documents containing
nodes that match an XPath expression. You can use ext r act Val ue() when joining
across multiple tables based on the value of one or more nodes in the XML document.
Also use exi st sNode() when specifying the condition in SQL is easier than
specifying it with XPath.

Example 3-24 Limiting the Results of a SELECT Using existsNode() and extractValue()
in the WHERE Clause

The following query shows how to use exi st sNode() to limit the results of the
SEL ECT statement to rows where the text node associated with the User element
contains the value SBELL.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Reference') "Reference"
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, '/ PurchaseOrder[User="SBELL"]"') = 1;

Ref erence
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT
SBELL-2002100912333763PDT
SBELL-2002100912333601PDT
SBELL-20021009123336362PDT
SBELL-20021009123336532PDT

Using Oracle XML DB 3-49

Querying XML Content Stored in Oracle XML DB

SBELL-20021009123338204PDT
SBELL-20021009123337673PDT

13 rows sel ected.

Example 3-25 Finding the Reference for any PurchaseOrder Using extractValue() and
existsNode()

This example combines ext r act Val ue() and exi st sNode() to find the

Ref er ence for any PurchaseOrder where the first Li nel t emelement contains an
order for the item with the | d 715515009058. In this example the exi st sNode()
function is used in the WHERE clause to determine which rows are selected, and the
extract Val ue() function is used in the SELECT list to control which part of the
selected documents appear in the result.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Reference') "Reference"
FROM PURCHASEORDER

WHERE exi st sNode(obj ect _

val ue, '/ PurchaseOr der/Linel tens/Linel ten] 1]/ Part [@d="715515009058"] ") = 1,

Ref erence

SBELL-2002100912333601PDT

1 row sel ected.

Using XMLSequence() to Perform SQL Operations on XMLType Fragments

Example 3-20 demonstrated how the extract () function returns an XM_Type
containing the node or nodes that matched the supplied XPath expression. When the
document contains multiple nodes that match the supplied XPath expression,
extract () returns a document fragment containing all of the matching nodes. A
fragment differs from a document in that it may contain multiple root elements which
may be unrelated.

This kind of result is very common when the ext r act () function is used to retrieve
the set of elements contained in a collection (in this case each node in the fragment will
be of the same type), or when the XPath expression terminates in a wildcard (where
the nodes in the fragment will be of different types).

The XMLSequence() function makes it possible to take an XMLType containing a
fragment and perform SQL operations on it. It generates a collection of XMLType
objects from an XMLType containing a fragment. The collection contains one XM_LType
for each of the root elements in the fragment. This collection of XMLType objects can
then be converted into a virtual table using the SQL tabl e() function. Converting the
fragment into a virtual table makes it easier to use SQL to process the results of an
extract () function that returned multiple nodes.

Example 3-26 Using XMLSequence() and Table() to view Description Nodes

The following example demonstrates how to access the text nodes for each
Descri pti on element in the Pur chaseOr der document.

The initial approach, based on using ext r act Val ue(), fails as there is more then one
Descri pti on element in the document.

SELECT extract Val ue(p. obj ect _

val ue, '/ PurchaseOr der/ Li nel t ens/ Li nel t enf Descri ption')
FROM pur chaseor der p

VHERE

3-50 Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

exi st sNode(p. obj ect _val ue, ' / Pur chaseO der [Ref er ence="SBELL- 2002100912333601PDT"] ")
= 1;

SELECT extract Val ue(p. obj ect _

val ue, '/ PurchaseOr der/ Li nel t ens/ Li nel t enf Descri ption')

*

ERROR at line 1:
ORA-01427: singl e-row subquery returns more than one row

Next use ext ract () to access the required values. This returns the set of

Descri pti on nodes as a single XMLTy pe object containing a fragment consisting of
the three Descri pti on nodes. This is better but not ideal because the objective is to
perform further SQL-based processing on the values in the text nodes.

SELECT extract (p.object_value, '/PurchaseOr der/Lineltens/LinelteniDescription')
FROM pur chaseor der p

VHERE

exi st sNode(p. obj ect

_val ue, ' / PurchaseQr der [Ref erence="SBELL- 2002100912333601PDT"]") = 1;

EXTRACT(P. OBJECT_VALUE, ' / PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM DESCRI PTI ON')

<Description>A N ght to Renenber</Description>
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Descri ption>Si st ers</Description>

1 row sel ected.

To use SQL to process the contents of the text nodes you must convert the collection of
Descri pti on nodes into a virtual table using the XM_Sequence() and t abl e()
functions. These functions convert the three Descr i pt i on nodes retuned by
extract () into a virtual table consisting of three XMLType objects, each of which
contains a single Descri pti on element.

SELECT val ue(d)

FROM pur chaseor der p,

tabl e (xm sequence(extract (p.object

_val ue, '/ PurchaseOrder/ Lineltems/Lineltem Description'))) d

VWHERE exi st sNode(p. obj ect

_val ue, ' / PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1;

<Description>A N ght to Remenber</Description>
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Descri ption>Si sters</Description>

3 rows selected.

Since each XMLType in the virtual table contains a single Descri pti on element,
extract Val ue() function can be used to access the value of the text node associated
with the each Descri pti on element.

SELECT extract Val ue(val ue(d),'/Description')

FROM pur chaseor der p,

tabl e (xm sequence(extract(p. object

_val ue, '/ PurchaseOrder/ Lineltens/Linelten Description'))) d

WHERE exi st sNode(p. obj ect

_val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

EXTRACTVALUE(VALUE(D), ' / DESCRI PTI ON)

A Night to Renenber

Using Oracle XML DB 3-51

Querying XML Content Stored in Oracle XML DB

The Unbear abl e Lightness O Being
Sisters

3 rows sel ected.

Note: There is a correlated join between the results of the

t abl e() function and the row operated on by the ext r act ()
function. This means that the table that provides input to the
extract () function must appear before the t abl e() operator in
the FROMlist. The correlated join ensures a 1 : N relationship
between the rows generated by the t abl e() function and the row
containing the value that was processed by the ext r act ()
function.

Example 3-27 Counting the Number of Elements in a Collection Using XMLSequence()

The following example demonstrates using XM_LSequence() to count the number of
elements in a collection. It also shows how SQL functionality such as ORDER BY and
GROUP BY can be applied to results of the ext r act Val ue() operator.

In this case the query will first locate the set of the XML documents that match the
XPath expression contained in the exi st sNode() function. It will then generate a
virtual table containing the set of Li nel t emnodes for each document selected. Finally
it counts the number of Li nel t emnodes for each Pur chaseOr der document. The
correlated join ensures that the GROUP BY correctly determines which Li nel t ens
belong to which Pur chaseCOr der .

SELECT extract Val ue(p. obj ect _val ue, '/ PurchaseOr der/ Reference'), count(*)
FROM PURCHASEORDER p,

tabl e (xm sequence(extract(p.object_val ue,

"/ PurchaseOrder/Lineltens/Linelten))) d

VWHERE exi st sNode(p. obj ect _val ue, '/ PurchaseOrder[User="SBELL"]') =1
GROUP BY extract Val ue(p. object _val ue, '/ PurchaseOr der/ Ref erence')

ORDER BY extract Val ue(p. obj ect_val ue, '/ PurchaseO der/ Ref erence');

EXTRACTVALUE(P. OBJECT VALUE,'/ COUNT(*)

SBELL-20021009123335280PDT 20
SBELL-20021009123335771PDT 21
SBELL-2002100912333601PDT 3
SBELL-20021009123336231PDT 25
SBELL-20021009123336331PDT 10
SBELL-20021009123336362PDT 15
SBELL-20021009123336532PDT 14
SBELL-20021009123337353PDT 10
SBELL-2002100912333763PDT 21
SBELL-20021009123337673PDT 10
SBELL-20021009123338204PDT 14
SBELL-20021009123338304PDT 24
SBELL-20021009123338505PDT 20

13 rows sel ected.

Example 3-28 Counting the Number of Child Elements in an Element Using
XMLSequence()

The following example demonstrates using XM_LSequence() to count the number of
child elements of a given element. The XPath expression passed to the ext r act ()
function contains a wildcard that matches the elements that are direct descendants of

3-52 Oracle XML DB Developer's Guide

Querying XML Content Stored in Oracle XML DB

the Pur chaseOr der element. The XMLType returned by ext r act () will contain the
set of nodes which match the XPath expression. The XM_Sequence() function
transforms each root element in the fragment into a separate XMLType object, and the
t abl e() function converts the collection returned by XM_Sequence() into a virtual
table. Counting the number of rows in the virtual table provides the number of child
elements in the Pur chaseOr der element.

SELECT count (*)

FROM PURCHASEORDER p,

TABLE (xml Sequence(extract (p.object_val ue,'/PurchaseOrder/*'))) n
WHERE exi st sNode(p. obj ect _val ue,

" [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

1 row sel ected.

Accessing and Updating XML Content in Oracle XML DB Repository

These sections describe features for accessing and updating Oracle XML DB repository
content.

Access XML Documents Using SQL

Another benefit of XML DB repository is that it can be queried from SQL. Content
stored in Oracle XML DB repository can be accessed and updated from SQL and
PL/SQL. You can interrogate the structure of the repository in complex ways.

For example, you can issue a query to determine how many documents with an . xsl|
extension are under a location other than / hone/ nyst yl esheet di r.

For document access, you can also mix path-based repository access with
content-based access. For example, "how many documents not under

/ hone/ pur chaseOr der s have a node named / Pur chaseOr der/ User/ t ext ()
with a value of DRAKE?

All the metadata for managing Oracle XML DB repository is stored in a database
schema owned by the database user XDB. This user is created during Oracle XML DB
installation. The primary table in this schema is an XMLType table called
XDB$RESOURCE. This contains one row for each file or folder in Oracle XML DB
repository. Documents in this table are referred to as resource documents. The XML
schema that defines the structure of an Oracle XML DB resource document is registered
under URL, "htt p: // xm ns. oral ce. com xdb/ XDBResour ce. xsd.

Repository Content is Exposed Through RESOURCE_VIEW and PATH_VIEW
XDB$RESOURCE table is not directly exposed to SQL programmers. Instead the
contents of the repository are exposed through two public views, RESOURCE_VI EW
and PATH_VI EW Through these views you can access and update metadata and
content of documents stored in Oracle XML DB repository.

Both views contain a virtual column, RES. Use RES to access and update resource
documents with SQL statements based on a path notation. Operations on the views
use underlying tables in Oracle XML DB repository.

Use exists_Path() and under_Path() Operators to Include Path-Based Predicates in
the WHERE Clause

Using Oracle XML DB 3-53

Querying XML Content Stored in Oracle XML DB

connect &1/ &2@&3

DECLARE
RESULT bool ean;
BEG N

Oracle XML DB includes two repository specific SQL operators: exi st s_pat h() and
under _pat h() . Use these operators to include path-based predicates in the WHERE
clause of a SQL statement. This means that SQL operations can select repository
content based on the location of the content in the folder hierarchy. The Hierarchical
Index ensures that path-based queries are executed efficiently.

When XML schema-based XML documents are stored in Oracle XML DB repository
the document content is stored as an object in the default table identified by the XML
schema. The repository contains metadata about the document and a pointer (REF of
XM.Type) identifies the row in the default table that contains the content.

You Can Also Store Non-XML Documents in the Repository

It is also possible to store other kinds of documents in the repository. When non-XML
and non-XML schema-based XML documents are stored in the repository, the
documents' content is stored in a LOB along with the metadata about the document.

PL/SQL Packages Allow Creating, Deleting, Renaming, Moving, ... Folders and
Documents

Since Oracle XML DB repository can be accessed and updated using SQL, any
application capable of calling a PL/SQL procedure can work with Oracle XML DB
repository. All SQL and PL/SQL repository operations are transactional, and access to
the repository and its contents is subject to database security as well as XML DB
repository Access Control Lists (ACLs).

With supplied PL/SQL packages DBMS_XDB, DBMS_XDBZ, and DBM5_XDB_VERSI ON,
SQL programmers can perform common tasks on the repository itself. Methods
provided by the packages make it possible to create, delete, and rename documents
and folders, to move a file or folder within the folder hierarchy, to set and change the
access permissions on a file or folder, and the ability to initiate and manage versioning.

The following example shows PL/SQL package DBMS_XDB used to create a set of
subfolders beneath folder / horme/ SCOTT.

if (not xdb_utilities.ResourceExists('/home/" || USER || '/poSource')) then
result := dbns_xdb. createFol der('/hone/' || USER || '/poSource');

end if;

if (not xdb_utilities.ResourceExists('/honme/' || USER || '/poSource/xsd)) then
result := dbms_xdb. createFol der (' /home/" || USER || '/poSource/xsd');

end if;

if (not xdb_utilities.ResourceExists('/hone/' || USER || '/poSource/xsl')) then
result := dbnms_xdb. createFol der (' /hone/' || USER || '/poSource/xsl');

end if;

result := dbns_xdb. createFol der('/hone/' || USER || '/purchaseOrders');

END;

/

- Refresh the contents of WebDAV folder to show that new directories have been created.

PAUSE

- The new directories were not visible fromWbDAV as the transaction had not been conmmitted.
- lssue a COWM T statenment and then refresh the contents of the WbDAV fol der.
- The new directories should now be visible as the transaction that created them have been

3-54 Oracle XML

DB Developer's Guide

Relational Access to XML Content Stored in Oracle XML DB Using Views

- conmtted.

CcOW T

Relational Access to XML Content Stored in Oracle XML DB Using Views

The XML-specific functions and methods provided by Oracle XML DB can be used to
create conventional relational views that provide relational access to XML content. This
allows programmers, tools, and applications that understand Oracle Database, but not
XML, to work with XML content stored in the database.

The views use XPath expressions and functions such as ext r act Val ue() to define
the mapping between columns in the view and nodes in the XML document. For
performance reasons this approach is recommended when XML documents are stored
as XMLType, that is, stored using object-relational storage techniques.

Example 3-29 Creating Relational Views On XML Content

This example shows how to create a simple relational view that exposes XML content
in a relational manner:

CREATE OR REPLACE vi ew PURCHASEORDER MASTER VI EW

(REFERENCE, REQUESTOR, USERI D, COSTCENTER,

SHI P_TO_NAME, SH P_TO ADDRESS, SHI P_TO_PHONE,

| NSTRUCTI ONS)

AS

SELECT extract Val ue(val ue(p), '/ PurchaseOr der/ Reference'),

extract Val ue(val ue(p),"'/PurchaseCr der/Requestor'),

extract Val ue(val ue(p),"'/PurchaseOrder/ User'),

extract Val ue(val ue(p),"'/PurchaseO der/ CostCenter'),

extract Val ue(val ue(p),"'/PurchaseO der/ Shi ppi ngl nstructions/nanme'),
extract Val ue(val ue(p), '/ PurchaseO der/ Shi ppi ngl nstructions/address'),
extract Val ue(val ue(p),"'/PurchaseOr der/ Shi ppi ngl nstructions/tel ephone'),
extract Val ue(val ue(p),"'/PurchaseCrder/ Speci al I nstructions')

FROM PURCHASEORDER p;

Vi ew creat ed.

descri be PURCHASEORDER MASTER VI EW

Name Nul 1?2 Type

REFERENCE VARCHAR2(30 CHAR)
REQUESTOR VARCHAR2(128 CHAR)
USERI D VARCHAR2(10 CHAR)
COSTCENTER VARCHAR2(4 CHAR)
SHI P_TO_NAME VARCHAR2(20 CHAR)
SHI P_TO_ADDRESS VARCHAR2(256 CHAR)
SH P_TO_PHONE VARCHAR2(24 CHAR)

| NSTRUCTI ONS VARCHAR2(2048 CHAR)

This example created view PURCHASEORDER _MASTER VI EW There will be one row in
the view for each row in table PURCHASEORDER.

The CREATE VI EWstatement defines the set of columns that will make up the view.
The SELECT statement uses XPath expressions and the ext r act Val ue() function to
map between the nodes in the XML document and the columns defined by the view.

Using Oracle XML DB 3-55

Relational Access to XML Content Stored in Oracle XML DB Using Views

This technique can be used when there is a 1:1 relationship between documents in the
XM.Type table and the rows in the view.

Example 3-30 Using a View to Access Individual Members of a Collection

This example shows how to use extract () and xm Sequence() for a I:many
relationship between the documents in the XML Type table and rows in the view. This
situation arises when the view must provide access to the individual members of a
collection and expose the members of a collection as a set rows.

CREATE OR REPLACE VI EW PURCHASEORDER DETAI L_VI EW

(REFERENCE, | TEMNO, DESCRI PTI ON,

PARTNO, QUANTI TY, UNI TPRI CE)

AS

SELECT extract Val ue(val ue(p), '/ PurchaseO der/ Reference'),
extractval ue(val ue(l),"'/Lineltem @tenNunber'),
extractval ue(val ue(l),"'/Lineltem Description'),

extractval ue(val ue(l),"/Lineltem Part/@d'),

extractval ue(val ue(l),"/Lineltem Part/ @uantity'),
extractval ue(val ue(l),"/Lineltem Part/ @hitPrice')

FROM PURCHASECRDER p,

TABLE (xm sequence(extract(val ue(p),'/PurchaseOrder/Lineltens/Lineltem))) I;

Vi ew creat ed.

descri be PURCHASEORDER DETAI L_VI EW

Name Nul | ? Type

REFERENCE VARCHAR2(30 CHAR)
| TEMNO NUMBER(38)

DESCRI PTI ON VARCHAR2(1024)
PARTNO VARCHAR2(56)
QUANTI TY NUMBER(12, 2)

UNI TPRI CE NUVBER(8, 4)

This example creates a view called PURCHASEORDER DETAI L_VI EW There will be
one row in the view for each Li nel t emelement the occurs in the XML documents
stored in table PURCHASEORDER.

The CREATE VI EWstatement defines the set of columns that will make up the view.
The SELECT statement uses ext r act () to access the set of Li nel t emelements in
each Pur chaseOr der document. It then uses xm Sequence() and TABLE() to
create a virtual table that contains one XML document for each Li nel t emin the
PURCHASEORDER table.

The XPath expressions passed to the ext r act Val ue() function are used to map
between the nodes in the Li nel t emdocuments and the columns defined by the view.
The Ref er ence element included in the view to create a Foreign Key that can used to
joins rows in PURCHASEORDER DETAI L_VI EWto the corresponding row in
PURCHASEORDER MASTER VI EW The correlated join in the CREATE VI EWstatement
ensures that the 1:many relationship between the Ref er ence element and the
associated Li nel t emelements is maintained when the view is accessed.

As can be seen from the output of the DESCRI BE statement, both views appear to be a
standard relational views. Since the XMLType table referenced in the CREATE VI EW
statements is based on an XML schema, Oracle XML DB can determine the datatypes
of the columns in the views from the information contained in the XML schema.

3-56 Oracle XML DB Developer's Guide

Relational Access to XML Content Stored in Oracle XML DB Using Views

The following examples show some of the benefits provided by creating relational
views over XMLType tables and columns.

Example 3-31 SQL queries on XML Content Using Views

This example uses a simple query against the master view. The query uses a
conventional SQL SELECT statement to select rows where the USERI D column starts
with S.

col um REFERENCE format A30
col unmm DESCRI PTI ON format A40

SELECT REFERENCE, COSTCENTER, SHI P_TO NAME
FROM PURCHASECRDER_MASTER VI EW
VHERE USERID |ike 'S%;

REFERENCE COST SHI P_TO_NAME
SBELL-20021009123336231PDT S30 Sarah J. Bell
SBELL-20021009123336331PDT S30 Sarah J. Bell
SKI'NG- 20021009123336321PDT Al0 Steven A King

36 rows sel ected.

The next query is based on a join between the master view and detail view. Again, a
conventional SQL SELECT statement finds the PURCHASEORDER DETAI L_VI EWrows
where the value of the | TEMNOcolumn is 1 and the corresponding PURCHASEORDER
MASTER VI EWrow contains a USERI D column with the value SM TH.

SELECT d. REFERENCE, d.|TEMNO, d. PARTNO, d. DESCRI PTI ON

FROM PURCHASEORDER DETAI L_VI EWd, PURCHASEORDER MASTER VI EW m
VHERE m REFERENCE = d. REFERENCE

AND m USERI D = ' SBELL'

AND d. | TEMNO = 1,

REFERENCE | TEMNO PARTNO DESCRI PTI ON
SBELL-20021009123336231PDT 37429165829 Juliet of the Spirits
SBELL-20021009123336331PDT 715515009225 Sal o
SBELL-20021009123337353PDT 37429141625 The Third Man
SBELL-20021009123338304PDT 715515009829 Nanook of the North
SBELL-20021009123338505PDT 37429122228 The 400 Bl ows
SBELL-20021009123335771PDT 37429139028 And the Ship Sails on
SBELL-20021009123335280PDT 715515011426 All That Heaven All ows
SBELL-2002100912333763PDT 715515010320 Life of Brian - Python
SBELL-2002100912333601PDT 715515009058 A Night to Remenber
SBELL-20021009123336362PDT 715515012928 In the Mod for Love
SBELL-20021009123336532PDT 37429162422 WId Strawberries
SBELL-20021009123338204PDT 37429168820 Red Beard
SBELL-20021009123337673PDT 37429156322 Cries and Wi spers

PR R RPRRPRRPRRERRERRERRER

13 rows sel ect ed.

Since the views look and act like standard relational views they can be queried using
standard relational syntax. No XML-specific syntax is required in either the query
syntax or the generated result set.

By exposing XML content as relational data Oracle XML DB allows advanced features
of Oracle Database, such as business intelligence and analytic capabilities, to be
applied to XML content. Even though the business intelligence features themselves are

Using Oracle XML DB 3-57

Updating XML Content Stored in Oracle XML DB

not XML-aware, the XML-SQL duality provided by Oracle XML DB allows these
features to be applied to XML content.

Example 3-32 Querying XML Using Views of XML Content

This example demonstrates using relational views over XML content to perform
business intelligence queries on XML documents. The query performs an analysis of
Pur chaseOr der documents that contain orders for titles identified by UPC codes
715515009058 and 715515009126.

SELECT partno, count(*) "No of Orders", quantity "No of Copies"
FROM pur chaseor der _detai | _vi ew

VHERE partno IN (715515009126, 715515009058)

GROUP BY rol lup(partno, quantity);

PARTNO No of Orders No of Copies

715515009058 7
715515009058 9
715515009058 5
715515009058 2
715515009058 23
715515009126 4
715515009126 7
715515009126 11

9 rows sel ected.

The query determines the number of copies of each title that are being ordered on each
Pur chaseOr der . Looking at the results for the part number 715515009126, the

query shows that there are seven Pur chaseOr der values where one copy of the item
is ordered and two Pur chaseOr der values where four copies of the item are ordered.

See Also: Chapter 4, "Using XMLType" for a description of
XM.Type datatype and functions and Appendix C, "XPath and
Namespace Primer" for an introduction to the W3C XPath
Recommendation

Updating XML Content Stored in Oracle XML DB

Oracle XML DB allows update operations to take place on XML content. Update
operations can either replace the entire contents or parts of a document. The ability to
perform partial updates on XML documents is very powerful, particularly when
trying to make small changes to large documents, as it can significantly reduce the
amount of network traffic and disk input-output required to perform the update.

The updat eXM_() function enables partial update of an XML document stored as an
XM Type. It allows multiple changes to be made to the document in a single
operation. Each change consists of an XPath expression which identifies the node to be
updated, and the new value for the node.

Example 3-33 Updating XML Content Using updateXML()

The following example shows an updat eXM_() function used to update the value of
the text node associated with the User element.

SELECT extract Val ue(obj ect _val ue,"' / PurchaseCOr der/ User")
FROM PURCHASEORDER
WHERE

3-58 Oracle XML DB Developer's Guide

Updating XML Content Stored in Oracle XML DB

exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ")
= 1;

EXTRACTVAL

1 row sel ected.

UPDATE PURCHASECRDER

SET obj ect _val ue = updat eXM_(obj ect _val ue, '/ PurchaseOrder/ User/text()"',"' SKING)
WHERE exi st sNode(obj ect

_val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

1 row updat ed.

SELECT extract Val ue(obj ect _val ue,"' / PurchaseCOr der/ User")

FROM PURCHASECRDER

WHERE exi st sNode(obj ect _

val ue, '/ PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]"') = 1,

EXTRACTVAL

1 row sel ected.

Example 3-34 Replacing an Entire Element Using updateXML()

This example uses updat eXM_() to replace an entire element within the XML
document. Here the XPath expression references the element, and the replacement
value is passed as an XMLType object.

SELECT extract (object _val ue,'/PurchaseOrder/Lineltens/Lineltenf1]")
FROM PURCHASEORDER
VHERE exi st sNode(obj ect _val ue,
' [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

EXTRACT(OBJECT_VALUE, ' / PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM 1] ")

<Li neltem | temN\unber="1">

<Description>A N ght to Remenber</Description>

<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltemr

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM
(

obj ect _val ue,

"/ PurchaseOrder/Lineltens/Linelten{1]",

xm type

(

"<Lineltem I tem\unber="1">
<Description>The Lady Vani shes</Description>
<Part |d="37429122129" UnitPrice="39.95" Quantity="1"/>

Using Oracle XML DB 3-59

Updating XML Content Stored in Oracle XML DB

</ Li nel t enp'

)

)
WHERE exi st sNode(obj ect _val ue,

" [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1,

1 row updat ed.

SELECT extract (object _val ue,'/PurchaseOrder/Lineltens/Lineltenf1]")
FROM PURCHASEORDER
VHERE exi st sNode(obj ect _val ue,
' [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

EXTRACT(OBJECT VALUE, ' / PURCHASEORDER! LI NEI TEMS/ LI NEI TEM 1])

<Lineltem It em\unber="1">

<Description>The Lady Vani shes</Descripti on>

<Part 1d="37429122129" UnitPrice="39.95" Quantity="1"/>
</Lineltenp

1 row sel ected.

Example 3-35 Updating a Node Occurring Multiple Times Within a Collection Using
updateXML(): Incorrect Usage

This example show a common error that occurs when using updat eXM_() to update
a node occurring multiple times in a collection. The UPDATE statement sets the value
of the t ext node belonging to a Descri pti on element to "The Wizard of Oz", where
the current value of the t ext node is "Sisters". The statement includes an

exi st sNode() term in the WHERE clause that identifies the set of nodes to be
updated.

SELECT extract Val ue(val ue(l),"/Description")
FROM pur chaseor der p,
tabl e (xm sequence(extract (p.object_val ue,
" | PurchaseOrder/ Linel tens/ Linel tenf Description'))) |
VWHERE exi st sNode(obj ect _val ue,
" [PurchaseOr der [Ref erence="SBELL- 2002100912333601PDT"] ") = 1;

EXTRACTVALUE(VALUE(L) , ' / DESCRI PTI ON')
The Lady Vani shes

The Unbear abl e Li ghtness O Being

Sisters

3 rows sel ected.

UPDATE PURCHASECRDER
SET obj ect _val ue = updateXM.
(
obj ect _val ue,
"/ PurchaseCOrder/Lineltens/Lineltem Description/text()',
'The Wzard of Oz')
VWHERE exi st sNode(obj ect _val ue,
"/ PurchaseOrder/Linel tens/Linelten] Description="Sisters"]") =1
AND exi st sNode(obj ect _val ue,
' [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

3-60 Oracle XML DB Developer's Guide

Updating XML Content Stored in Oracle XML DB

1 row updat ed.

SELECT extract Val ue(val ue(l),"'/Description')
FROM pur chaseor der p,
tabl e (xm sequence(extract(p.object_val ue,
"/ PurchaseOr der/Linel tens/Li nel tem Description'))) |
VWHERE exi st sNode(obj ect _val ue,
"/ PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1;

EXTRACTVALUE(VALUE(L) , ' / DESCRI PTI ON)

The Wzard of Oz
The Wzard of Oz
The Wzard of Oz

3 rows sel ected.

As shown in the preceding example, instead of updating the required node,

updat eXM_() updates the values of any t ext node that belongs to the

Descri pti on element. This is actually the expected behavior. The WHERE clause can
only be used to identify which documents must be updated, not which nodes within the
document must be updated. Once the document has been selected the XPath expression
passed to updat eXM_() determines which nodes within the document must be
updated. In this case the XPath expression identified all three Descri pti on nodes,
and so all three of the associated text nodes were updated. See Example 3-36 for the
correct way to update the nodes.

Example 3-36 Updating a Node Occurring Multiple Times Within a Collection Using
updateXML(): Correct Usage

To correctly use updat eXML() to update a node occurring multiple times within a
collection, use the XPath expression passed to updat eXM_() to identify which nodes
in the XML document to update. By introducing the appropriate predicate into the
XPath expression you can limit which nodes in the document are updated. The
following statement shows the correct way of updating one node within a collection:

SELECT extract Val ue(val ue(l),'/Description')
FROM pur chaseor der p,
tabl e (xm sequence(extract (p.object_val ue,
" | PurchaseOrder/Linel tens/Linelten Description'))) |
VWHERE exi st sNode(obj ect _val ue,
' [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,
EXTRACTVALUE(VALUE(L), ' / DESCRI PTI ON)
A Night to Renenber
The Unbear abl e Lightness O Being
Sisters
3 rows sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM.

(
obj ect _val ue,
"/ PurchaseCOrder/Lineltens/Lineltem Description[text()="Sisters"]/text()",
' The Wzard of Q'
)

VHERE exi st sNode(obj ect _val ue,

" [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1;

Using Oracle XML DB 3-61

Updating XML Content Stored in Oracle XML DB

1 row updat ed.

updat eXM.() allows multiple changes to be made to the document in one statement.

SELECT extract Val ue(val ue(l),"/Description")
FROM pur chaseor der p,
tabl e (xm sequence(extract (p.object_val ue,
"I PurchaseOrder/Linel tens/Linelten Description'))) |
VHERE exi st sNode(obj ect _val ue,
' [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

EXTRACTVALUE(VALUE(L) , ' / DESCRI PTI ON)

A Night to Remenber
The Unbear abl e Lightness O Being
The Wzard of Oz

3 rows sel ected.

Example 3-37 Changing Text Node Values Using updateXML()

This example shows how to change the values of t ext nodes belonging to the User
and Speci al | nst ruct i ons elements in one statement.

colum "Cost Center" format Al2
colum "Instructions" format A40
SELECT extract Val ue(obj ect _val ue, '/ PurchaseCOrder/ Cost Center') "Cost Center",
extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Speci al I nstructions')
"I nstructions”
FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _val ue,
" [PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

Cost Center Instructions

1 row sel ected.
Here is the UPDATE statement that changes the User and Speci al | nstruct
element text node values:

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM.
(
obj ect _val ue,
' [PurchaseOrder/ Cost Center/text()"',
" B4
"/ PurchaseCOrder/ Speci al I nstructions/text()",
"Priority Overnight Service'
)
VWHERE exi st sNode(obj ect _val ue,
" [PurchaseCOr der [Ref erence="SBELL- 2002100912333601PDT"] ") = 1;

1 row updat ed.
Use the following statement to check that the nodes have changed:

SELECT extract Val ue(obj ect _val ue, '/ PurchaseCOrder/ Cost Center') "Cost Center",
extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Speci al I nstructions')
"Instructions”
FROM PURCHASEORDER
VHERE exi st sNode(obj ect _val ue,

3-62 Oracle XML DB Developer's Guide

Namespace Support in Oracle XML DB

" | Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ") = 1,

Cost Center Instructions

B40 Priority Overnight Service

1 row sel ected.

Updating XML Schema-Based and Non-Schema-Based XML Documents

The way updat eXM_() updates XML documents is primarily determined by whether
or not the XML document is XML schema-based or non-XML schema-based, and how
the XML document is stored:

= Storing XML documents in CLOBs. When updat eXM_() updates a non-XML
schema-based or XML schema-based XML document stored as a CLOB, Oracle
XML DB performs the update by creating a Document Object Model (DOM) from
the XML document and then uses DOM API methods, updates the specified
nodes. When the updates have been applied, the updated DOM is returned back
to the underlying CLOB.

= Storing XML documents object-relationally. When updat eXM_() updates a
schema-based XML document stored object-relationally, Oracle XML DB can use
XPath rewrite to perform an in-place update of the underlying option. This is a
partial-update. Partial-updates translate the XPath expression passed to the
updat eXM_() function to an equivalent SQL statement. The update is then
performed by executing the SQL statement that directly updates the attributes of
underlying objects. This partial-update can result in an updat eXM_() operation
that executes many times faster than a DOM-based update. This can make a
significant difference when executing a SQL statement that applies updat eXM_()
to a large number of documents.

These updates techniques are explained further in the following section.

See Also: Chapter 6, XML Schema Storage and Query:
Advanced Topics"

Namespace Support in Oracle XML DB

Namespace support is a key feature of the W3C XML Recommendations. Oracle

XML DB fully supports the W3C Namespace Recommendation. All XMLType methods
and XML-specific SQL functions work with XPath expressions that include namespace
prefixes. All methods and functions accept an optional argument that provides the
namespace declarations for correctly resolving namespace prefixes used in XPath
expressions.

The namespace parameter is required whenever the provided XPath expression
contains namespace prefixes. When the nanespace parameter is not provided, Oracle
XML DB makes the following assumptions about the XPath expression:

= If the content of the XMLType is not based on a registered XML schema any term in
the XPath expression that does include a namespace prefix is assumed to be in the
noNanespace namespace.

= If the content of the XMLType is based on a registered XML schema any term in
the XPath expression that does not include a namespace prefix is assumed to be in
the t ar get Namespace declared by the XML schema. If the XML schema does not
declare at ar get nanespace, this defaults to the noNamespace namespace.

Using Oracle XML DB 3-63

Processing XMLType Methods and XML-Specific SQL Functions

= When the nanespace parameter is provided the parameter must provide an
explicit declaration for the default namespace in addition to the prefixed
namespaces, unless the default namespace is the noNamespace namespace.

Failing to correctly define the namespaces required to resolve XPath expressions
results in XPath-based operations not working as expected. When the namespace
declarations are incorrect or missing, the result of the operation is normally null, rather
than an error. To avoid confusion, Oracle Corporation strongly recommends that you
always pass the set of namespace declarations, including the declaration for the
default namespace, when any namespaces other than the noNamespace namespace
are present in either the XPath expression or the target XML document.

Processing XMLType Methods and XML-Specific SQL Functions

Oracle XML DB processes ext ract (), extract Val ue(), exi st sNode(), and
updat eXM_() functions and their equivalent XML Ty pe methods using DOM-based or
SQL-based techniques:

= DOM-Based XMLType Processing (Functional Evaluation). Oracle XML DB
performs the required processing by constructing a DOM from the contents of the
XML.Type. It uses methods provided by the DOM API to perform the required
operation on the DOM. If the operation involves updating the DOM tree, then the
entire XML document has to be written back to disc when the operation is
completed. The process of using DOM-based operations on XMLType data is
referred to as functional evaluation.

The advantage of functional evaluation is that it can be used regardless of whether
the XMLType is stored using structured or unstructured storage techniques The
disadvantage of functional evaluation is that it much more expensive than XPath
rewrite, and will not scale across large numbers of XML documents.

SQL-Based XMLType Processing (XPath rewrite). Oracle XML DB constructs a
SQL statement that performs the processing required to complete the function or
method. The SQL statement works directly against the object-relational data
structures that underly a schema-based XMLType. This process is referred to as
XPath rewrite, but it can also occur with updat eXM.() operations.

The advantage of XPath rewrite is that it allows Oracle XML DB to evaluate
XPath-based SQL functions and methods at near relational speeds. This allows
these operations to scale across large numbers of XML documents. The
disadvantage of XPath rewrite is that since it relies on direct access and updating
the objects used to store the XML document, it can only be used when the
XML.Type is stored using XML schema-based object-relational storage techniques.

Understanding and Optimizing XPath Rewrite

XPath rewrite improves the performance of SQL statements containing XPath-based
functions, by converting the functions into conventional relational SQL statements. By
translating XPath-based functions into conventional SQL statements, Oracle XML DB
insulates the database optimizer from having to understand the XPath notation and
the XML data model. The database optimizer processes the re-written SQL statement
in the same manner as any other SQL statement. in this way it can derive an execution
plan based on conventional relational algebra. This results in the execution of SQL
statements with XPath-based functions with near-relational performance.

When Can XPath Rewrite Occur?

For XPath rewrite to take place the following conditions must be satisfied:

3-64 Oracle XML DB Developer's Guide

Understanding and Optimizing XPath Rewrite

= The XMLType column or table containing the XML documents must be based on a
registered XML schema.

=« The XMLType column or table must be stored using structured (object-relational)
storage techniques.

= It must be possible to map the nodes referenced by the XPath expression to
attributes of the underlying SQL object model.

Understanding the concept of XPath rewrite, and conditions under which XPath
rewrite takes place, is key to developing Oracle XML DB applications that deliver
satisfactory levels of scalability and performance.

However, XPath rewrite on its own cannot guarantee scalable and performant
applications. Like any other SQL statement, the performance of SQL statements
generated by XPath rewrite is ultimately determined by the way data is stored on disk
and available indexes. Also, as with any other SQL application, a DBA must monitor
the database and optimize storage and indexes if the application is to perform well.

Using the EXPLAIN Plan to Tune XPath Rewrites

The good news, from a DBA perspective, is that this information is nothing new. The
same skills are required to tune an XML application as for any other database
application. All tools that DBAs typically use with SQL-based applications can be used
with XML-based applications using Oracle XML DB functions.

Using Indexes to Tune Simple XPath-Based Operations

Example 3-38 shows how to use an EXPLAI N PLAN to look at the execution plan for
selecting the set of PurchaseOrders created by user SCOTT.

Example 3-38 Using an EXPLAIN Plan to Analyze the Selection of PurchaseOrders

EXPLAI N PLAN FOR

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence') "Reference”
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseCOr der [User="SBELL"]") = 1;

Expl ai ned.

set echo of f
PLAN TABLE CUTPUT

| I'd | Operation | Nane | Rows | Bytes | Cost (%CPU)| Time |
| 0| SELECT STATEMENT | | 1| 22207 | 4 (0)| 00:00:01]
[* 1| TABLE ACCESS FULL| PURCHASECRDER | 1] 22207 | 4 (0)| 00:00:01]

- dynam ¢ sanpling used for this statenent

Using Oracle XML DB 3-65

Understanding and Optimizing XPath Rewrite

17 rows sel ect ed.

Using Indexes to Improve Performance of XPath-Based Functions

explain plan for

Oracle XML DB supports the creation of three kinds of index on XML content:
= Text-based indexes. These can be created on any XMLType table or column.
= Function-based indexes. These can be created on any XMLType table or column.

« Conventional B-Tree indexes. When the XML Type table or column is based on
structured storage techniques, conventional B-Tree indexes can be created on
underlying SQL types.

Indexes are typically created by using the ext r act Val ue() function, although it is
also possible to create indexes based on other XMLType functions such as

exi st sNode() . During the index creation process Oracle XML DB uses XPath rewrite
to determine whether it is possible to map between the nodes referenced in the XPath
expression used in the CREATE | NDEX statement and the attributes of the underlying
SQL types. If the nodes in the XPath expression can be mapped to attributes of the
SQL types, then the index is created as a conventional B-Tree index on the underlying
SQL objects. If the XPath expression cannot be restated using object-relational SQL
then a function-based index is created.

Example 3-39 Creating an Index on a Text Node

This example shows creating an index PURCHASEORDER _USER_| NDEX on the value of
the text node belonging to the User element.

CREATE | NDEX PURCHASEORDER_USER | NDEX
ON PURCHASECRDER
(extract Val ue(obj ect _val ue, '/ PurchaseQrder/ User'));

At first glance the index appears to be a function-based index. However, where the
XM_Type table or column being indexed is based on object-relational storage , XPath
rewrite determines whether the index can be re-stated as an index on the underlying
SQL types. In this example, the CREATE | NDEX statement results in the index being
created on the USERI D attribute of the PURCHASEORDER T object.

The following output shows the EXPLAI N PLAN output generated when the query is
executed after the index has been created.

The EXPLAI N PLAN clearly shows that the query plan will make use of the newly
created index. The new execution plan is much more scalable.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Ref erence') "Reference"
FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _val ue, ' / PurchaseOrder [User="SBELL"]') = 1;

Expl ai ned

set echo of f

PLAN_TABLE_OUTPUT

| 1d | Operation

| Nane | Rows | Bytes | Cost (%CPU)| Tine |

3-66 Oracle XML DB Developer's Guide

Understanding and Optimizing XPath Rewrite

0	SELECT STATEMENT		1] 22207	3 (0)] 00:00:01	
1	TABLE ACCESS BY	NDEX ROWD	PURCHASECRDER	1] 22207	3 (0)] 00:00:01
* 2	INDEX RANGE SCAN	PURCHASEORDER USER	NDEX	1	1 (0)] 00:00:01

2 - access("PURCHASECRDER". " SYS_NC00022$" =" SBELL")

- dynami ¢ sanpling used for this statenent

18 rows sel ected.

One key benefit of the relational database is that you do not need to change your
application logic when the indexes change. This is also true for XML applications that
leverage Oracle XML DB capabilities. Once the index has been created the optimizer
automatically uses it when appropriate.

Optimizing Operations on Collections

The majority of XML documents contain collections of repeating elements. For Oracle
XML DB to be able to efficiently process the collection members it is important that
the storage model for managing the collection provides an efficient way of accessing
the individual members of the collection. Selecting the correct storage structure makes
it possible to index elements within the collection and perform direct operations on
individual elements within the collection.

Oracle XML DB offers four ways to manage members of the collection:

= When stored as a CLOB value, you cannot directly access members of the
collection.

= When a VARRAY is stored as a LOB, you cannot directly access members of the
collection.

Storing the members as XML Text managed by a CLOB means that any operation
on the collection would require parsing the contents of the CLOB and then using
functional evaluation to perform the required operation.

Converting the collection into a set of SQL objects that are serialized into a LOB
removes the need to parse the documents. However any operations on the
members of the collection still require that the collection be loaded from disk into
memory before the necessary processing can take place.

« VARRAY stored as a nested table, allows direct access to members of the collection.
« VARRAY stored as XMLType, allows direct access to members of the collection

In the latter two cases, each member of the VARRAY becomes a row in a table. Since
each element is stored as a row in a table it can be access directly though SQL.

Using Indexes to Tune Queries on Collections Stored as Nested Tables

The following example shows the execution plan for the query to find the Reference
from any document that contains an order for the part with an Id of 717951002372 .

Using Oracle XML DB 3-67

Understanding and Optimizing XPath Rewrite

Example 3-40 Generating the EXPLAIN Plan When Selecting a Collection of Lineltem

Elements from a Nested Table

In this example the collection of Li nel t emelements has been stored as rows in the

Index organized, nested table LI NEI TEM TABLE.

explain plan for
SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Reference') "Reference"
FROM PURCHASECRDER
VWHERE exi st sNode(obj ect _val ue,
' | PurchaseOrder/Linel tens/Lineltem Part[@d="717951002372"]") = 1,

Expl ai ned.

set echo off

PLAN_TABLE_OUTPUT

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)| Tine |

0 | SELECT STATEMENT | | (1)] 1
1] HASH JON RIGHT SEM | | (1)] 1
2| INDEX FAST FULL SCAN| LINEITEMTABLEIOT | 22| 99K 817 (0)| 00:00:1
3| TABLE ACCESS FULL | PURCHASECRDER | (0)] 0

21| 550K 822
21| 550K 822

132 | 2863K| 4

1 - access("NESTED_TABLE_| D' =" PURCHASEORDER" . " SYS_NC0003400035$")
2 - filter("SYS_NC0O0011$"='717951002372")

- dynami ¢ sanpling used for this statenent

20 rows sel ected.

The execution plan shows that the query will be resolved by performing a full scan of
the index that contains the contents of the nested table. Each time an entry is found
that matches the XPath expression passed to the exi st sNode() function the parent
row is located using the value of the NESTED_TABLE_I D column. Since the nested
table is an Indexed Organized Table (IOT) this plan effectively resolves the query by a
full scan of LI NEI TEM TABLE. This plan may be acceptable when there are only a few
hundred documents in the PURCHASECRDER table, but would be unacceptable if there
are 1000's or 1,000,000's of documents in the table.

To improve the performance of this query create an index that allows direct access to
the NESTED_TABLE_I D column given the value of the | d attribute. Unfortunately,
Oracle XML DB does not currently allow indexes on collections to be created using
XPath expressions. To create the index you must understand the structure of the SQL
object used to manage the Li nel t emelements. Given this information you can create
the required index using conventional object-relational SQL.

Here the Li nel t emelement is stored as an instance of the LI NEI TEM T object. The
Part element is stored as an instance of the SQL Type PART_T. The | d attribute is
mapped to the PART_NUMBER attribute. Given this information, you can create a
composite index on the PART_NUMBER attribute and the NESTED_TABLE | D that will
allow direct access to the PURCHASEORDER documents that contain Li nel t em
elements that reference the required part.

3-68 Oracle XML DB Developer's Guide

Understanding and Optimizing XPath Rewrite

Example 3-41 Creating an Index to Improve Query Performance by Allowing Direct
Access to the Nested Table

The following example shows how to use object-relational SQL to create the required
index:

explain plan for
SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Reference') "Reference"
FROM PURCHASECRDER
VWHERE exi st sNode(obj ect _val ue,
" | PurchaseOrder/Linel tens/Linelten Part[@d="717951002372"]"') = 1,

Expl ai ned.

set echo off

PLAN_TABLE_OUTPUT

| 1d | Operation | Namre | Rows | Bytes | Cost (%CPU)| Tine |
| 0| SELECT STATEMENT | | 21 | 13587 | 11 (10)| 00:00:01 |
[* 1| HASH JON RIGHT SEM | | 21| 13587 | 11 (10)| 00:00:01 |
[* 2] INDEX UNIQUE SCAN | LINEITEMTABLE |OT | 22 | 2640 | 6 (0)] 00:00:01 |
[* 3] I NDEX RANGE SCAN | LI NEI TEM PART | NDEX | 17 | | 2 (0)] 00:00:01 |
| 4] TABLE ACCESS FULL | PURCHASEORDER | 132 | 69564 | 4 (0)] 00:00:01 |

1 - access("NESTED_TABLE_| D'="PURCHASEORDER". " SYS_NC0003400035$")
2 - access("SYS_NC00011$"='717951002372")
3 - access("SYS_NC00011$"='717951002372")

18 rows sel ected.

The plan clearly shows that query plan will make use of the newly created index. The
query is now resolved by using LI NEI TEM_PART_| NDEX to determine which
documents in the PURCHASEORDER table satisfy the condition specified in the XPath
expression specified in the exi st sNode() function. This query is clearly much more
scalable.

In both cases the syntax used to define the query has not changed. XPath rewrite has
allowed the optimizer to analyze the query and determine that the new indexes
provide a more efficient way to resolve the queries.

EXPLAIN Plan Output with ACL-Based Security Enabled: SYS_CHECKACL() Filter

The EXPLAI N PLAN output for a query on an XMLType table created as a result of
calling DBM5_XM_SCHEMA. REG STER_SCHEMA() will contain a filter that looks
similar to the following:

3 - filter(SYS_CHECKACL("ACLO D', "OMER D', xm type(' ' <privilege
xm ns="http://xmns. oracl e. con xdb/ acl . xsd"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xsi : schemalLocation="http://xn ns. oracl e. conf xdb/ acl . xsd
http://xm ns. oracl e. con xdb/ acl . xsd
DAV: http://xm ns. oracl e. coml xdb/ dav. xsd" >
<read- properties/><read-contents/></privilege>"))=1)

Using Oracle XML DB 3-69

Accessing Relational Database Content Using XML

This shows that ACL-based security is implemented for this table. In this example the
filter is checking that the user performing the SQL query has r ead- cont ent s
privilege on each of the documents accessed.

Oracle XML DB repository uses an ACL-based security mechanism that allows access
to XML content to be controlled on a document by document basis, rather than a table
by table basis. When XML content is accessed using a SQL statement, the SYS_
CHECKACL () predicate is added to the WHERE clause to ensure that the security
defined is enforced at the SQL level.

Enforcing ACL-based security does add overhead to the SQL query. If ACL-based
security is not required the procedure DI SABLE_HI ERARCHY in the DBMS_XDBZ
package must be used to turn ACL checking off. After calling this procedure the SYS_
CHECKACL () filter should no longer appear in the output generated by EXPLAI N
PLAN.

Example 3-42 Generating an EXPLAIN Plan When XPath Rewrite Does Not Occur

This example shows the kind of EXPLAI N PLAN output generated when Oracle
XML DB cannot perform XPath rewrite. The key is in line 3. Since the exi st sNode()
function appears in the EXPLAI N output the query was not re-written.

Predicate Information (identified by operation id):

1 - access("NESTED TABLE_ | D'=: B1)
2 - access("NESTED TABLE | D'=: Bl)
3 - filter(EX STSNODE(SYS_MAKEXM.(' COA5497E8DCF110BE034080020E5
CF39', 3044, " SYS_ALI AS_4". " XMLEXTRA", " SYS_ALI AS_4". " XMLDATA") ,
"/ PurchaseOr der [User =" SBELL"] ') =1)
5 - access("NESTED TABLE_| D' =: B1)
6 - access("NESTED TABLE_ | D'=: Bl)
In this situation Oracle XML DB constructs a pre-filtered results set based on any other
conditions specified in the WHERE clause of the SQL statement. It then filters all the
rows in potential results set to determine which rows belong in the actual results set.
The filtering is performed by constructing a DOM on each document and performing a
functional evaluation (using the methods defined by the DOM API) to determine
whether or not each document is a member of the actual results set, This can result in
poor performance when there are a large number of documents in the potential results
set. However when other predicates in the WHERE clause caused a small number of
documents in the potential results set, this may be not be a problem.

XMLType and XPath abstractions make it possible for you to develop applications
independently of the underlying storage technology. As in conventional relational
applications, creating and dropping indexes makes it possible to tune the performance
of an application without having to rewrite it.

Accessing Relational Database Content Using XML

Oracle XML DB provides a number of ways to generate XML from relational data.

The most powerful and flexible method is based on the SQL /XML standard. The
SQL/XML standard defines a set of functions that allow XML to be generated directly
from a SQL SELECT statement. These functions make it possible for a SQL statement
to generate an XML document, or set of XML documents, rather than a traditional
tabular result set. The set of functions defined by the SQL/XML standard are flexible,
allowing all most any shape of XML to generated. These functions include the
following:

« Xxml El enment () creates a element

3-70 Oracle XML DB Developer's Guide

Accessing Relational Database Content Using XML

xm At tri butes() adds attributes to an element

« xm Forest () creates forest of elements

= xm Agg() creates a single element from a collection of elements

See Also: Chapter 15, "Generating XML Data from the Database"

Example 3-43 Using SQL/XML Functions to Generate XML

The following SELECT statement generates an XML document containing information
from the tables DEPARTNVENTS, LOCATI ONS, COUNTRI ES, EMPLOYEES, and JOBS:

set [ong 100000
set pages 50

sel ect xml El enent

(

"Department",
xm Attributes(d. DEPARTMENT ID as "Departnentld"),
xm For est

(
d. DEPARTVENT_NAME as " Name"
)

xm El ement
(
"Location",
xm For est
(
STREET_ADDRESS as "Address",
CTY as "Gity",
STATE_PROVINCE as "State",
PCOSTAL_CODE as "Zip",
COUNTRY_NAME as "Country"
)
),
xm El ement
(
" Enpl oyeelist",
(
sel ect xm Agg

(

xm El ement
(
" Enpl oyee",
xm Attributes (e. EMPLOYEE_ID as "enpl oyeeNunber"),
xm For est
(
e. FIRST_NAME as "FirstName", e.LAST _NAME as "LastNane",
e. EMAIL as "Enai | Address",
e. PHONE_NUMBER as " PHONE_NUMBER',
e. H RE_DATE as "StartDate",

.JOB_TITLE as "JobTitle",
e. SALARY as "Sal ary",
mFIRST_NAME || ' ' || mLAST_NAME as "Manager"
),
xm El ement (" Cormi ssion", e.COW SSI ON_PCT)
)
)
from HR. EMPLOYEES e, HR EMPLOYEES m HR JOBS |

wher e e. DEPARTMENT I D = d. DEPARTMENT I D
and j.JOB ID=¢e.JOBID

Using Oracle XML DB 3-71

Accessing Relational Database Content Using XML

and m EMPLOYEE_ I D = e. MANAGER_I D

)
)
) as XM
from HR. DEPARTMENTS d, HR COUNTRIES ¢, HR LOCATI ONS |
wher e DEPARTMENT_NAME = ' Executi ve'
and d. LOCATION_ID = | . LOCATION_ID
and | . COUNTRY_ID = c. COUNTRY_I D;

This returns the following XML:

<Department Departnent|d="90"><Nane>Execut i ve</ Name><Locat i on><Addr ess>2004
Char ade Rd</Address><City>Seatt!|e</C ty><State>Washi ngto
n</ St at e><Zi p>98199</ Zi p><Count ry>Uni ted States of
Aneri ca</ Count ry></ Locat i on><Enpl oyeeLi st ><Enpl oyee
enpl oyeeNunber =" 101" ><Fi r st Na
me>Neena</ Fi r st Name><Last Nane>Kochhar </ Last Nane><Enai | Addr ess>NKOCHHAR</ Emai | Add
ess><PHONE_NUMBER>515. 123. 4568</ PHONE_NUMBER><St ar t
Dat e>21- SEP- 89</ St ar t Dat e><JobTi t | e>Admi ni stration Vice
Presi dent </ JobTi t | e><Sal ar y>17000</ Sal ar y><Manager >St even Ki ng</ Manager ><Com
m ssi on></ Conmi ssi on></ Enpl oyee><Enpl oyee
enpl oyeeNunber =" 102" ><Fi r st Name>Lex</ Fi r st Name><Last Name>De
Haan</ Last Name><Enai | Addr ess>L
DEHAAN</ Emai | Addr ess><PHONE_NUMBER>515. 123. 4569</ PHONE
NUMBER><St ar t Dat e>13- JAN- 93</ St ar t Dat e><JobTi t| e>Adni ni stration Vice Presiden
t </ JobTi t| e><Sal ary>17000</ Sal ar y><Manager >St even
Ki ng</ Manager ><Commi ssi on></ Commi ssi on></ Enpl oyee></ Enpl oyeeli st ></ Depar t nent >

This query generates element Depar t ment for each row in the DEPARTMENTS table.

« Each Depart ment element contains attribute Depar t ment | D. The value of
Depart ment | Dcomes from the Depart ment _I d column. The Depar t nent
element contains sub-elements Nane, Locat i on, and Enpl oyeelLi st .

« The text node associated with the Nane element will come from the NAME
column in the DEPARTMENTS table.

« TheLocati on element will have child elements Addr ess, City, St at e, Zi p,
and Count r y. These elements are constructed by creating a Forest or named
elements from columns in the LOCATI ONS and COUNTRI ES tables. The values in
the columns become the text node for the named element.

« The Enmpl oyeel i st element will contain aggregation of Enpl oyee Elements.
The content of the Enpl oyeeLi st element is created by a sub-select that returns
the set of rows in the EMPLOYEES table that in turn corresponds to the current
department. Each Enpl oyee element will contain information about the
employee. The contents of the elements and attributes for each Employee is taken
from the EMPLOYEES and JOBS tables.

By default, the output generated by the SQL /XML functions is not pretty-printed. This
allows the SQL /XML functions to avoid creating a full DOM when generating the
required output. By avoiding pretty-printing, Oracle XML DB can avoid overheads
associated with DOM and reduce the size of the generated document.

The lack of pretty-printing should not matter to most applications. However it can
make it difficult to verify the generated output. When pretty-printing is required, the
extract () function can force the generation of pretty-printed output. Invoking the
extract () method on the generated document forces a DOM to be constructed.
Printing the results of the ext r act () forces the generation of pretty-printed output.

3-72 Oracle XML DB Developer's Guide

Accessing Relational Database Content Using XML

Since invoking ext r act () forces a conventional DOM to be constructed, this
technique should not be used when working with queries that create large documents.

Example 3-44 Forcing Pretty-Printing by Invoking extract() on the Result

Example 344 shows how to force pretty-printing by invoking the ext r act () method
on the result generated by the xm El ement () SQL/XML function.

set [ong 100000
set pages 50
sel ect xnl El enent
(
"Department",
xm Attributes(d. DEPARTMENT_ID as "Departnentld"),
xm For est

(
d. DEPARTMENT_NAME as " Nane"

)
xm El enent
(
"Location",
xnl For est
(
STREET_ADDRESS as "Address",
CTY as "City",
STATE_PROVI NCE as "State",
POSTAL_CODE as "Zip",
COUNTRY_NAME as "Country"
)
)
xm El enent
(
" Enpl oyeelLi st",
(
sel ect xnl Agg
(
xm El ement
(
" Enpl oyee",
xm Attributes (e. EMPLOYEE_ID as "enpl oyeeNumber™),
xm For est
(
e. FIRST_NAME as "FirstName", e.LAST_NAME as "Last Nane",
e. EMAIL as "Enail Address",
e. PHONE_NUMBER as " PHONE_NUMBER',
e. H RE DATE as "StartDate",

.JOB_TITLE as "JobTitle",

e. SALARY as "Sal ary",

mFIRST_NAME || ' ' || m LAST_NAME as "Manager"
)
xm El ement (" Commi ssion", e.COW SSI ON_PCT)

)

)
from HR EMPLOYEES e, HR EMPLOYEES m HR JOBS |

where e. DEPARTMENT_I D = d. DEPARTMENT_I D
and j.JOB_ID=¢e.JOB_ID
and m EMPLOYEE | D = e. MANAGER | D
)

)
).extract('/*') as XM

Using Oracle XML DB 3-73

Accessing Relational Database Content Using XML

from HR. DEPARTMENTS d, HR. COUNTRIES ¢, HR LOCATI ONS |
wher e DEPARTMENT NAME = ' Executi ve'
and d. LOCATION ID = | . LOCATION_I D
and |.COUNTRY_ID = c. COUNTRY_I D

<Depart ment Departnent|d="90">
<Name>Execut i ve</ Nane>
<Location>
<Addr ess>2004 Charade Rd</Address>
<City>Seattle</Cty>
<St at e>Washi ngt on</ St at e>
<Zi p>98199</ Zi p>
<Country>United States of Anerica</Country>
</ Locati on>
<Enpl oyeeLi st >
<Enmpl oyee enpl oyeeNunber="101" >
<Fi r st Nane>Neena</ Fi r st Nane>
<Last Name>Kochhar </ Last Nane>
<Emai | Addr ess>NKOCHHAR</ Enai | Addr ess>
<PHONE_NUMBER>515. 123. 4568</ PHONE_NUVBER>
<Start Dat e>21- SEP- 89</ St art Dat e>
<JobTi tle>Admi nistration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>
<Manager >St even Ki ng</ Manager >
<Conmi ssi on/ >
</ Enpl oyee>
<Enmpl oyee enpl oyeeNunber="102" >
<Fi r st Name>Lex</ Fi r st Name>
<Last Name>De Haan</ Last Nane>
<Emai | Addr ess>LDEHAAN</ Enai | Addr ess>
<PHONE_NUMBER>515. 123. 4569</ PHONE_NUVBER>
<StartDat e>13- JAN-93</ St ar t Dat e>
<JobTitle>Admi ni stration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>
<Manager >St even Ki ng</ Manager >
<Commi ssi on/ >
</ Enpl oyee>
</ Enpl oyeelLi st >
</ Depart nent >

1 row sel ected.

All SQL/XML functions return XML Ty pes. This means that you can use the

SQL /XML operators to create XMLType views over conventional relational tables.
Example 345 illustrates this. XMLType views are object views. As such each row in
the view has to be identified by an object id. The object id must be specified in the
CREATE VI EWstatement.

Example 3-45 Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VI EW DEPARTMENT_XM. of XM.Type
W TH object id
(

substr(extract Val ue(obj ect _val ue, '/ Department/Nane'), 1, 128)
)

3-74 Oracle XML DB Developer's Guide

Accessing Relational Database Content Using XML

AS
sel ect xm El enent
(
"Department",
xm Attributes(d. DEPARTMENT_ID as "Departrment!d"),
xm For est

(
d. DEPARTMENT_NAME as " Nane"

)

xm El enent
(
"Location",
xnl For est
(
STREET_ADDRESS as "Address",
CTY as "City",
STATE_PROVINCE as "State",
POSTAL_CODE as "Zip",
COUNTRY_NAME as "Country"
)
),

xn El ement
(
" Enpl oyeelLi st",
(
sel ect xn Agg
(
xn El ement
(
" Enpl oyee",
xm Attributes (e. EMPLOYEE_ID as "enpl oyeeNumber"),
xm For est
(
e. FIRST_NAME as "FirstName", e.LAST_NAME as "Last Nanme",
e.EMAIL as "Email Address",
e. PHONE_NUMBER as " PHONE_NUMBER',
e. H RE DATE as "StartDate",

.JOB TITLE as "JobTitle",

e. SALARY as "Sal ary",

mFIRST_NAME || ' ' || m LAST_NAME as "Manager"
)
xnl El ement (" Conmi ssion", e. COM SSI ON_PCT)

)

)
from HR EMPLOYEES e, HR EMPLOYEES m HR. JOBS j

where e. DEPARTMENT | D = d. DEPARTMENT | D
and j.JOB_ID=¢e.JOB_ID
and m EMPLOYEE | D = e. MANAGER | D
)

)
).extract('/*') as XM

from HR DEPARTMENTS d, HR COUNTRIES c,
where d. LOCATION_ID = | . LOCATION_I D
and |. COUNTRY_ID = c. COUNTRY_I D;

HR. LOCATI ONS |

Vi ew creat ed.

The XMLType view allows relational data to be persisted as XML content. Rows in
XML.Type views can be persisted as documents in Oracle XML DB repository. The

Using Oracle XML DB 3-75

Accessing Relational Database Content Using XML

explain plan for

contents of an XMLType view can be queried using SQL /XML functions. See
Example 3-46.

Example 3-46 Querying XMLType Views

Example 3-46 shows a simple query against an XMLType view. The XPath expression
passed to the exi st sNode() function restricts the resultset to the node that contains
the information related to the Execut i ve department.

SELECT obj ect _val ue FROM DEPARTMENT _XM.
WHERE exi st sNode(obj ect _val ue, ' / Depart ment [Name="Executive"]') = 1,

OBJECT_VALUE
<Department Departnent|d="90">
<Name>Execut i ve</ Nane>
<Location>
<Addr ess>2004 Charade Rd</Address>
<City>Seattle</Cty>
<St at e>Washi ngt on</ St at e>
<Zi p>98199</ Zi p>
<Country>United States of America</Country>
</ Locati on>
<Enpl oyeelLi st >
<Empl oyee enpl oyeeNunber="101">
<Fi r st Nane>Neena</ Fi r st Name>
<Last Name>Kochhar </ Last Nane>
<Enmai | Addr ess>NKOCHHAR</ Enai | Addr ess>
<PHONE_NUMBER>515. 123. 4568</ PHONE_NUVBER>
<St art Dat e>21- SEP- 89</ St ar t Dat e>
<JobTitle>Adm nistration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>
<Manager >St even Ki ng</ Manager >
<Commi ssi on/ >
</ Enpl oyee>
<Enmpl oyee enpl oyeeNunber ="102" >
<Fi r st Nane>Lex</ Fi r st Nane>
<Last Name>De Haan</ Last Name>
<Enmai | Addr ess>LDEHAAN</ Emai | Addr ess>
<PHONE_NUMBER>515. 123. 4569</ PHONE_NUVBER>
<Start Dat e>13- JAN-93</ St ar t Dat e>
<JobTitl e>Adnmini stration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>
<Manager >St even Ki ng</ Manager >
<Commi ssi on/ >
</ Enpl oyee>
</ Enpl oyeelLi st >
</ Depart nent >

1 row sel ected.

As can be seen from the following EXPLAI N PLAN output, Oracle XML DB was able
to correctly XPath rewrite the exi st sNode() function on the XMLType row in the
XM.Type view into a SELECT statement on the underlying relational tables .

SELECT obj ect _val ue FROM DEPARTMENT _XM.
WHERE exi st sNode(obj ect _val ue, ' / Depart ment [Name="Executive"]"') =1

Expl ai ned

3-76 Oracle XML DB Developer's Guide

Accessing Relational Database Content Using XML

set echo off

PLAN_TABLE_OUTPUT

0 | SELECT STATEMENT

1| SORT AGGREGATE

2| HASH JON

3| HASH JON

4] TABLE ACCESS BY | NDEX ROW D
5 | | NDEX RANGE SCAN

6 | TABLE ACCESS FULL
7| TABLE ACCESS FULL

8| FILTER

9 | HASH JOI N

0| NESTED LOOPS

1] TABLE ACCESS FULL
2 | I NDEX UNI QUE SCAN
3 TABLE ACCESS FULL
4 SORT AGGREGATE

5 | HASH JOI N

6 | HASH JOI N

7 TABLE ACCESS BY | NDEX ROW
8 | | NDEX RANGE SCAN
9 | TABLE ACCESS FULL
0| TABLE ACCESS FULL

- - °_ _

EMPLOYEES
ENP_DEPARTMENT | X
JoBS

EMPLOYEES

LOCATI ONS
COUNTRY_C | D_PK
DEPARTMENTS

EMPLOYEES
EMP_DEPARTMENT | X
JOBS

EMPLOYEES

2 - access("M."EWMPLOYEE_ID'="E". "MANAGER | D")
3 - access("J"."JOB_ID'="E"."JOB_ID")

5 - access("E"."DEPARTMENT_| D' =: B1)

8 (

[N
N NN [o e e e
~NO OO OO F NPF WWPEF ~N© OO O OrF K

[e e

NN E DN O

N
—
o
-

- filter(EXI STSNODE(" XMLTYPE". " EXTRACT" (XMLELEMENT(" Depar t ment ", XMLATTRI BUTES(TO_CHAR("D".

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

01
01
01
01
01

"DEPARTMENT_I D") AS "Departnent|d"), XM.LELEMENT(" Name", " D". " DEPARTMENT_NAME") , XMLELEMENT(" Locat i

on", CASE WHEN " STREET_ADDRESS" |'S NOT NULL THEN XMLELEMENT("Address"," STREET_ADDRESS') ELSE

NULL END , XMLELEMENT("City","CI TY"), CASE WHEN " STATE_PROVI NCE' |S NOT NULL THEN

XMLELEMENT(" St at ", " STATE_PROVI NCE') ELSE NULL END , CASE WHEN "POSTAL_CODE' |'S NOT NULL THEN
XMLELEMENT(" Zi p", " POSTAL_CODE") ELSE NULL END , CASE VHEN " COUNTRY_NAME' |'S NOT NULL THEN
XMLELEMENT(" Count ry", " COUNTRY_NAME') ELSE NULL END), XMLELENENT(" Enpl oyeeList", (SELECT

" XMLAGG' (XMLELEVENT(" Enpl oyee" , XMLATTRI BUTES(TO_CHAR("E". "ENPLOYEE_I D') AS
"enpl oyeeNunber "), CASE VHEN "E'."FI RST_NAME' |S NOT NULL THEN
XMLELEMENT("Fi r st Name", "E". " FI RST_NAME') ELSE NULL END

, XMLELEMENT(" Last Narme", " E". " LAST_NAME") , XMLELEMENT(" Enmi | Addr ess", "E". "EMAI L"), CASE WHEN
"E". "PHONE_NUMBER" |S NOT NULL THEN XMLELEMENT("PHONE_NUMBER', "E'."PHONE_NUMBER') ELSE NULL

END , XMLELEMENT("Start Date", "E"."H RE_DATE"), XMLELEMENT(" JobTitle","J"."JOB_TI TLE"), CASE WHEN

PLAN_TABLE QUTPUT

"E'."SALARY" |'S NOT NULL THEN XMLELEMENT("Sal ary", TO CHAR("E"."SALARY")) ELSE NULL END , CASE

WHEN "M "FIRST_NAME'[|' '||"M."LAST_NAME' IS NOT NULL THEN
XMLELEMENT(" Manager ", "M . "FI RST_NAME'||' '||"M."LAST_NAME') ELSE NULL END
, XMLELEMENT(" Cormi ssi on", TO_CHAR("E". " COWM SSI ON_PCT")))) FROM "HR'."JOBS'
“J","HR'."EMPLOYEES' "M, "HR'."EMPLOYEES' "E' WHERE "E'."DEPARTMENT |D'=: Bl AND

"M . "EMPLOYEE_|D'="E". "MANAGER | D' AND "J"."JOB_ID'="E"."JOB ID'))),"/*'),"/ Departnent [Nane="

ecutive"]')=1)

9 - access("D'."LOCATI ON_I D'="L"."LOCATI ON_I D")
12 - access("L"."COUNTRY_I D'="C". " COUNTRY_I D")

Using Oracle XML DB

3-77

Accessing Relational Database Content Using XML

15 -
16 -
18 -

"EMPLOYEE_I D'="E". "MANAGER | D")
"JOB_ID'="E"."JOB_ID")
" DEPARTMENT_| D' =: B1)

- warning: inconsistencies found in estimated optimzer costs

63 rows sel ected.

In the current release of Oracle XML DB, XPath rewrites on XML functions that
operate on XMLType views are only supported when nodes referenced in the XPath
expression are not descendants of an element created using xm Agg() function.

Generating XML From Relational Tables Using DBUriType

Another way to generate XML from relational data is with the DBUr i Type datatype.
DBUr i Type exposes one or more rows in a given table as a single XML document. The
name of the root element is derived from the name of the table. The root element
contains a set of ROWelements. There will be one ROWelement for each row in the
table. The sub-elements of each ROMNelement are derived from the columns in the table
or view. Each sub-element will contain a text node that contains the value of the
column for the given row.

Example 3-47 shows how to use DBUr i Type() to access the contents of the
DEPTARTMENTS table in the HR schema. The example uses the get XM_() method to
return the resulting document as an XMLType instance.

Example 3-47 Accessing DEPARTMENTS Table XML Content Using DBUriType() and
getXML()

set pagesize 100
set |inesize 132
set [ong 10000

sel ect dbURI Type(' / HR/ DEPARTMENTS'). get XM_()
fromdual ;

DBURI TYPE(" / HR/ DEPARTNENTS') . GETXM.()

<?xm version="1.0"?>
<DEPARTMENTS>
<ROW
<DEPARTMENT _| D>10</ DEPARTMENT | D>
<DEPARTMENT_NAME>Admi ni st rat i on</ DEPARTMENT _NAVE>
<MANAGER_| D>200</ MANAGER | D>
<LOCATI ON_| D>1700</ LOCATI ON_I D>
</ RON
<ROW
<DEPARTMENT _| D>20</ DEPARTMENT | D>
<DEPARTMENT_NAME>Mar ket i ng</ DEPARTMENT _NAVE>
<MANAGER_| D>201</ MANAGER | D>
<LOCATI ON_| D>1800</ LOCATI ON_I D>
</ RON

DBUri Type() allows XPath notations to be used to control how much of the data in
the table is returned when the table is accessed using the DBUr i Type() . Predicates in

3-78 Oracle XML DB Developer's Guide

Accessing Relational Database Content Using XML

the XPath expression allow control over which of the rows in the table are included in
the generated document.

Example 3-48 Using a Predicate in the XPath Expression to Restrict Which Rows Are
Included

This example demonstrates how to use a predicate in the XPath expression to restrict
which rows are included in the generated document. Here the XPath expression
restricts the document to those DEPARTMENT_I D columns containing the values 10.

SELECT dbURI Type(' / HR/ DEPARTMENTS/ ROW DEPARTMENT | D="10"]"). get XM.()
FROM dual ;

DBUR! TYPE(' / HR/ DEPARTVENTS/ RO DEPARTMENT | D="10"]"). GETXM.()

<?xm version="1.0"?>
<ROW
<DEPARTMENT | D>10</ DEPARTMENT | D>
<DEPARTMENT_NAME>Adni ni st rat i on</ DEPARTMENT_NAVE>
<MANAGER_| D>200</ MANAGER | D>
<LOCATI ON_I D>1700</ LOCATI ON_I D>
</ RON

1 row sel ected.

As can be seen from the examples in this section DBUr i Type() provide a simple way
to expose some or all rows in a relational table as an XML document(s). The URL
passed to DBUri Type() can be extended to return a single column from the view or
table, but in this case the URL must also include predicates that identify a single row
in the target table or view. For example, the following URI would return just the value
of the DEPARTMENT_NAME column for the DEPARTMENTS row where the
DEPARTMENT_ID columns contain the value 10.

SELECT dbURI Type(' / HR/ DEPARTMENTS/ RON DEPARTMVENT | D="10"] / DEPARTMVENT
_NAME') . get XM()
FROM dual ;

DBURI TYPE("' / HR/ DEPARTMENTS/ ROW DEPARTMENT | D="10"] / DEPARTMENT_NAME') . GETXM.()

<?xm version="1.0"?>
<DEPARTMENT _NAME>Admi ni st rat i on</ DEPARTMVENT _NAME>

1 row sel ected.

DBUr i Type() does not provide the flexibility of the SQL /XML operators. Unlike the
SQL/XML operators, DBUr i Type() has no way to control the shape of the generated
document. The data can only come from a single table or view. The generated
document will consist of a set of ROWelements or single column from a single row.
Each ROWelement will contain a sub-element for each column in the target table. The
names of the sub-elements will be derived from names of the columns.

To control the names of the elements, include columns from more than one table, or

control which columns from a table appear in the generated document, it is necessary
to create a relational view that exposes the desired set of columns as a single row and
then use DBUr i Type() to generate an XML document from the contents of the view.

See Also: Appendix D, "XSLT Primer" for an introduction to the
W3C XSL and XSLT recommendations

Using Oracle XML DB 3-79

XSL Transformation

XSL Transformation

The W3C XSLT Recommendation defines an XML language for specifying how to
transform XML documents from one form to another. Transformation can include
mapping from one XML schema to another or mapping from XML to some other
format such as HTML or WML. Oracle XML DB includes an XSLT processor that
allows XSL transformations to be performed inside the database.

Using XSLT with Oracle XML DB

XSL transformation is typically expensive in terms of the amount of memory and
processing required. Both the source document and style sheet have to be parsed and
loaded into in-memory structures that allow random access to different parts of the
documents. Most XSL processors use DOM to provide the in-memory representation
of both documents. The XSL processor then applies the style sheet to the source
document, generating a third document.

By performing XSL transformation inside the database, alongside the data, Oracle
XML DB can provide XML-specific memory optimizations that significantly reduces
the memory required to perform the transformation. It can also eliminate overhead
associated with parsing the documents. These optimizations are only available when
the source for the transformation is a schema-based XML document.

Oracle XML provides three options for invoking the XSL processor.
« XM.Transfornm() SQL function

« transform) XMLType datatype method

« DBM5_XSLPROCESSORPL/SQL package

All three options expect the source document and XSL style sheet to be provided as an
XM_Type. The result of the transformation is also expected to be a valid XML
document. This means that any HTML generated by the transformation must be
XHTML, that is valid XML and valid HTML

Example 3-49 XSLT Style Sheet Example: PurchaseOrder.xsl
The following example, Pur chaseOr der . xsl , is a fragment of an XSLT style sheet:

<?xm version="1.0" encodi ng="W NDOAG- 1252" ?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xdb="http://xm ns. oracl e. con xdb"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<xsl:tenplate match="/">

<htn >

3-80

<head/ >

<body bgcol or="#003333" text="#FFFFCC' |ink="#FFCC00" vlink="#66CC99" alink="#669999">

<xsl:for-each sel ect ="PurchaseOrder"/>
<xsl: for-each sel ect="PurchaseQOr der">
<center>

Pur chaseOrder

</ FONT>
</ span>
</center>

<center>
<xsl:for-each sel ect="Reference">

<xsl : appl y-tenpl at es/ >

Oracle XML DB Developer's Guide

XSL Transformation

</ span>
</ xsl:for-each>
</ center>
</ xsl:for-each>
<pP>
<xsl:for-each sel ect="PurchaseQOrder">

</xsl:for-each>
<P/ >
<P>
<xsl:for-each sel ect="PurchaseCOr der">

</ xsl : for-each>
</ P>
</ P>
<xsl: for-each sel ect="PurchaseCOrder"/>
<xsl:for-each sel ect ="PurchaseOr der">
<tabl e border="0" w dth="100% BGCOLOR="#000000">

<t body>
<tr>
<td WDTH="296">
<pP>

Internal </ FONT>
</ B>
</ P>
<tabl e border="0" w dth="98% BGCOLOR="#000099" >
<t body>
<tr>
<td WDTH="49% >

Act i ons</ FONT>
</ B>
</td>

<td WDTH="51% >
<xsl:for-each select="Actions">
<xsl: for-each sel ect="Action">
<tabl e border="1" WDTH="143">
<xsl:if test="position()=1">
<t head>
<tr>
<td HEl GHT="21">
User </ FONT>
</td>
<td HEl GHT="21">
Dat e</ FONT>
</td>
</tr>
</t head>
<[xsl:if>
<t body>
<tr>
<t d>
<xsl:for-each sel ect="User">
<xsl : appl y-tenpl ates/ >
</xsl:for-each>
</td>
<t d>
<xsl:for-each select="Date">
<xsl : appl y-tenpl at es/ >
</ xsl :for-each>
</td>
</tr>
</t body>
</tabl e>
</ xsl: for-each>

Using Oracle XML DB

3-81

XSL Transformation

</ xsl:for-each>
</td>
<tr>
<tr>
<td W DTH="49% >

Request or </ FONT>
</ B>
</td>
<td WDTH="51% >

<xsl:for-each sel ect ="Requestor">
<xsl : appl y-tenpl ates/ >
</xsl:for-each>
</td>
</[tr>
<tr>
<td W DTH="49% >

User </ FONT>
</ B>
</td>
<td WDTH="51% >
<xsl:for-each sel ect ="User">
<xsl : appl y-tenpl ates/ >
</xsl:for-each>
</td>
</[tr>
<tr>
<td W DTH="49% >

Cost Cent er </ FONT>
</ B>
</td>
<td WDTH="51% >
<xsl:for-each sel ect ="Cost Center">
<xsl : appl y-tenpl ates/ >
</xsl:for-each>
</td>
</tr>
</t body>
</tabl e>
</td>
<td width="93"/>
<td valign="top" W DTH="340">

Shi p To</ FONT>
</ FONT>
</ B>
<xsl:for-each sel ect="Shi ppi nglnstructions">
<xsl:if test="position()=1"/>
</xsl:for-each>
<xsl:for-each sel ect="Shi ppi nglnstructions">
<xsl:if test="position()=1">
<tabl e border="0" BGCOLOR="#999900" >

<t body>
<tr>
<td WDTH="126" HEI GHT="24">
Nane</ B>
</td>
<xsl:for-each sel ect="../Shippinglnstructions">

<td WDTH="218" HEl GHT="24">
<xsl:for-each sel ect="name">
<xsl : appl y-tenpl at es/ >
</ xsl :for-each>

3-82 Oracle XML DB Developer's Guide

XSL Transformation

</td>
</xsl : for-each>
<[tr>
<tr>

<td WDTH="126" HEI GHT="34">
Addr ess</ B>
</td>
<xsl:for-each sel ect="../Shippinglnstructions">
<td WDTH="218" HEI GHT="34">
<xsl:for-each sel ect="address">

<xsl : appl y-tenpl at es/ >
</ span>
</xsl :for-each>
</td>
</ xsl:for-each>
</tr>
<tr>
<td WDTH="126" HEI GHT="32">
Tel ephone</ B>
</td>
<xsl: for-each select="../Shippinglnstructions">
<td WDTH="218" HEI GHT="32">
<xsl:for-each sel ect="tel ephone">
<xsl : appl y-tenpl ates/ >
</xsl :for-each>

</td>
</ xsl: for-each>
<[tr>
</t body>
</tabl e>
</xsl:if>
</ xsl :for-each>
</td>
</tr>

</t body>
</tabl e>

|tems: </ FONT>
</ B>

<tabl e border="0">

<xsl:for-each sel ect="Lineltens">
<xsl:for-each select="Lineltent>
<xsl:if test="position()=1">
<t head>
<tr bgcol or ="#C0C0C0" >
<td>

I t emNunber </ B>
</ FONT>
</td>
<t d>

Descri ption</ B>
</ FONT>
</td>
<t d>

Part| d</ B>
</ FONT>
</td>
<td>

Using Oracle XML DB 3-83

XSL Transformation

1 row sel ected.

Quantity
</ FONT>
</td>
<t d>

Uni t Pri ce</ B>
</ FONT>
</td>
<t d>

Total Price
</ FONT>
</td>
</tr>
</t head>
</xsl:if>
<t body>
<tr bgcol or =" #DADADA" >
<t d>
<FONT COLOR="#000

The style sheet is a standard XSL style sheet. These is nothing Oracle XML DB- specific
about the style sheet. The style sheet can be stored in an XMLType table or column or
stored as non-schema based XML inside Oracle XML DB repository.

Performing transformations inside the database allows Oracle XML DB to optimize
features such as memory usage, I/O operations, and network traffic. These
optimizations are particularly effective when the transform operates on a small subset
of the nodes in the source document.

In traditional XSL processors the entire source document must be parsed and loaded
into memory before XSL processing can begin. This process requires significant
amounts of memory and processor. When only a small part of the document is
processed this is inefficient.

When Oracle XML DB performs XSL transformations on a schema-based XML
document there is no need to parse the document before processing can begin. The
lazily loaded virtual DOM eliminates the need to parse the document by loading
content directly from disk as the nodes are accessed. The lazy load also reduces the
amount of memory required to perform the transformation as only the parts of the
document that are processed are loaded into memory.

Example 3-50 Using transform() to Apply an XSL to an XML Document Stored in an
XMLType Table

This example shows how to use XMLType t r ansf or n{) method to apply an XSL
style sheet to a document stored in an XMLType table. XDBUr i Type() reads the XSL
style sheet from Oracle XML DB repository:

set |ong 10000
set pagesi ze 100
set linesize 132

SELECT XMLTRANSFORM obj ect
_val ue, xdbUri Type(' / honme/ SCOTT/ poSour ce/ xsl / pur chaseOr der. xsl'). get XM.())
FROM PURCHASECRDER
WHERE exi st sNode(obj ect _val ue,
' | Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

XMLTRANSFORM OBJECT

3-84 Oracle XML DB Developer's Guide

XSL Transformation

_VALUE, XDBURI TYPE("' / HOVE/ SCOTT/ POSOURCE/ XSL/ PURCHASEORDER. XSL'). GETXM.())
<htm >
<head/ >
<body bgcol or ="#003333" text="#FFFFCC' |ink="#FFCC00" vlink="#66CC99" alink="#669999" >

<center>

Pur chaseOr der
</ FONT>
</ span>
</center>

<center>

SBELL-2002100912333601PDT</ span>

</center>
<pP>

<P/ >
<p>

</ P>
</ P>
<tabl e border="0" w dth="100% BGCOLOR="#000000">
<t body>
<tr>
<td WDTH="296">
<P>

<FONT S| ZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica,
sans-serif">l nternal </ FONT>
</ B>
</ P>
<tabl e border="0" w dth="98% BGCOLOR="#000099">
<t body>
<tr>
<td WDTH="49% >

Act i ons</ FONT>
</ B>
</td>
<td WDTH="51% >
<tabl e border="1" WDTH="143">
<t head>
<tr>
<td HEI GHT="21">
User </ FONT>
</td>
<td HEI GHT="21">
Dat e</ FONT>
</td>
</tr>
</t head>
<t body>
<tr>
<t d>SVOLLMAN</ t d>
<td/>
</tr>
</t body>
</tabl e>
</td>
<[tr>
<tr>
<td WDTH="49% >

Using Oracle XML DB 3-85

XSL Transformation

Request or </ FONT>
</ B>
</td>
<td WDTH="51% >Sarah J. Bell</td>
</tr>
<tr>
<td WDTH="49% >

User </ FONT>
</ B>
</td>
<td WDTH="51% >SBELL</t d>
<[tr>
<tr>
<td WDTH="49% >

Cost Cent er </ FONT>
</ B>
</td>
<td WDTH="51% >B40</t d>
<[tr>
</t body>
</tabl e>
</td>
<td width="93"/>
<td valign="top" WDTH="340">

Shi p To</ FONT>
</ FONT>
</ B>
<tabl e border="0" BGCOLOR="#999900" >
<t body>

XMLTRANSFORM OBJECT
_VALUE, XDBUR!I TYPE(" / HOME/ SCOTT/ POSOURCE/ XSL/ PURCHASEORDER. XSL'). GETXM.())
<tr>
<td WDTH="126" HElI GHT="24">
Nane</ B>
</td>
<td WDTH="218" HElI GHT="24">Sarah J. Bell</td>
<[tr>
<tr>
<td WDTH="126" HElI GHT="34">
Addr ess</ B>
</td>
<td WDTH="218" HElI GHT="34">
400 Oracle Parkway
Redwood Shores

CA
94065
USA</ span>
</td>
</[tr>
<tr>

<td WDTH="126" HEl GHT="32">
Tel ephone</ B>
</td>
<td WDTH="218" HEI GHT="32">650 506 7400</td>
</[tr>
</t body>
</tabl e>
</td>
</tr>
</t body>

3-86 Oracle XML DB Developer's Guide

XSL Transformation

</tabl e>

|tens: </ FONT>
</ B>

<tabl e border="0">
<t head>
<tr bgcol or ="#C0C0C0" >
<td>

| t emN\unber </ B>
</ FONT>
</td>
<t d>

Descri ption</ B>
</ FONT>
</td>
<td>

Part | d</ B>
</ FONT>
</td>
<td>

Quantity
</ FONT>
</td>
<t d>

Uni t Pri ce</ B>
</ FONT>
</td>
<td>

Total Price
</ FONT>
</td>
</tr>
</t head>
<t body>
<tr bgcol or =" #DADADA" >
<td>
1</ FONT>
</td>
<td>
A Ni ght to Remenber </ FONT>
</td>
<td>
715515009058</ FONT>
</td>
<td>
2</ FONT>
</td>
<td>
39. 95</ FONT>
</td>
<td>
<FONT FACE="Arial, Helvetica, sans-serif"
COLOR="#000000">79. 900000000000006</ FONT>
</td>
</tr>
</t body>
<t body>

Using Oracle XML DB 3-87

Using Oracle XML DB Repository

<tr bgcol or =" #DADADA" >
<td>

XM.TRANSFORM OBJECT
_VALUE, XDBUR!I TYPE("' / HOVE/ SCOTT/ POSOURCE/ XSL/ PURCHASEORDER. XSL'). GETXM.())
2</ FONT>
</td>
<td>
The Unbearabl e Li ghtness O Bei ng</ FONT>
</td>
<td>
37429140222</ FONT>
</td>
<td>
2</ FONT>
</td>
<td>
29. 95</ FONT>
</td>
<td>
<FONT FACE="Arial, Helvetica, sans-serif"
COLOR="#000000">59. 899999999999999</ FONT>
</td>
</tr>
</t body>
<t body>
<tr bgcol or =" #DADADA" >
<td>
3</ FONT>
</td>
<td>
The W zard of Qz
</td>
<td>
715515011020</ FONT>
</td>
<td>
4</ FONT>
</td>
<td>
29. 95</ FONT>
</td>
<td>
<FONT FACE="Arial, Helvetica, sans-serif"
COLOR="#000000">119. 799999999999997</ FONT>
</td>
</tr>
</t body>
</tabl e>
</ FONT>
</ body>
</htm >

1 row sel ected.

See Also: Chapter 8, "Transforming and Validating XMLType
Data"

Using Oracle XML DB Repository

Oracle XML DB repository makes it possible to organize XML content using a file -
folder metaphor. This lets you use a URL to uniquely identify XML documents stored

3-88 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

in the database. This approach appeals to XML developers used to using constructs
such as URLs and XPath expressions to identify content.

Oracle XML DB repository is modelled on the DAV standard. The DAV standard uses
the term resource to describe any file or folder managed by a WebDAYV server. A
resource consists of a combination of metadata and content. The DAV specification
defines the set of metadata properties that a WebDAYV server is expected to maintain
for each resource and the set of XML documents that a DAV server and DAV-enabled
client uses to exchange metadata.

Although Oracle XML DB repository can manage any kind of content, it provides
specialized capabilities and optimizations related to managing resources where the
content is XML.

Installing and Uninstalling Oracle XML DB Repository

All the metadata and content managed by the Oracle XML DB repository is stored
using a set of tables in the database schema owned by database user XDB. User XDB is
a locked account installed with DBCA or by running the script cat gm sql . Script
cat gm sql islocated in the directory ORACLE_HOVE/ r dbns/ admi n. The repository
can be uninstalled using DBCA or by running the script cat nogm sql . Great care
should be taken when running cat nogm sql as this will drop all content stored in
the Oracle XML DB repository and invalidate any XMLType tables or columns
associated with registered XML schemas.

Oracle XML DB Provides Name-Level Not Folder-Level Locking

When using a relational database to maintain hierarchical folder structures, ensuring a
high degree of concurrency when adding and removing items in a folder is a
challenge. In conventional file system there is no concept of a transaction. Each
operation (add a file, create a subfolder, rename a file, delete a file, and so on) is treated
as an atomic transaction. Once the operation has completed the change is immediately
available to all other users of the file system.

Note: Concurrency: As a consequence of transactional semantics
enforced by the database, folders created using SQL statements will
not be visible to other database users until the transaction is
committed. Concurrent access to the Oracle XML DB repository is
controlled by the same mechanism used to control concurrency in
Oracle Database. The integration of the repository with Oracle
Database provides strong management options for XML content.

One key advantage of Oracle XML DB repository is the ability to use SQL for
repository operations in the context of a logical transaction. Applications can create
long-running transactions that include updates to one or more folders. In this situation
a conventional locking strategy that takes an exclusive lock on each updated folder or
directory tree would quickly result in significant concurrency problems.

Queued Folder Modifications are Locked Until Committed

Oracle XML DB solves this by providing for name-level locking rather than
folder-level locking. Repository operations such as creating, renaming, moving, or
deleting a sub-folder or file do not require that your operation be granted an exclusive
write lock on the target folder. The repository manages concurrent folder operations
by locking the name within the folder rather than the folder itself. The name and the
modification type are put on a queue.

Using Oracle XML DB 3-89

Using Oracle XML DB Repository

Only when the transaction is committed is the folder locked and its contents modified.
Hence Oracle XML DB allows multiple applications to perform concurrent updates on
the contents of a folder. The queue is also used to manage folder concurrency by
preventing two applications from creating objects with the same name.

Queuing folder modifications until commit time also minimizes I/O when a number
of changes are made to a single folder in the same transaction.

This is useful when several applications generate files quickly in the same directory,
for example when generating trace or log files, or when maintaining a spool directory
for printing or email delivery.

Use Protocols or SQL to Access and Process Repository Content

There are two ways to work with content stored in Oracle XML DB repository:

« Using industry standard protocols such as HTTP, WebDAYV, or FTP to perform
document level operations such as insert, update and delete.

= By directly accessing Oracle XML DB repository content at the table or row level
using SQL.

Using Standard Protocols to Store and Retrieve Content

Oracle XML DB supports industry-standard internet protocols such as HTTP, WebDayv,
and FTP. The combination of protocol support and URL-based access makes it possible
to insert, retrieve, update, and delete content stored in Oracle Database from standard
desktop applications such as Windows Explorer, Microsoft Word, and XMLSpy.

Figure 3-4 shows Windows Explorer used to insert a folder from the local hard drive
into Oracle Database. Windows Explorer includes support for the WebDAV protocol.
WebDAV extends the HTTP standard, adding additional verbs that allow an HTTP
server to act as a file server.

When a Windows Explorer copy operation or FTP input command is used to transfer a
number of documents into Oracle XML DB repository, each put or post command is
treated as a separate atomic operation. This ensures that the client does not get
confused if one of the file transfers fails. It also means that changes made to a
document through a protocol are visible to other users as soon as the request has been
processed.

3-90 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

Figure 3-4 Copying Files into Oracle XML DB Repository

& C:\oracleldemol10.1.0.0.0vbasicDemolLOCAL \sampleData xR

. File Edit View Favorites Tools Help .l';"
eBack = @ < l.ﬁ pSearch l{.-- Folders v
: Address |L’f} Cioracleldemo 10,1.0.0.0basicDemolLOCAL sampleData hd | Gao

File and Folder Tasks [~ 2002 [~ 2003

| |
Other Places ——

— Irvalid @ PurchaseCrders on localhost
3 LocaL l

(£ My Documents -
g My Computer
Qj My Metwork Places

Copying file

Details

sampleData =i
File Folder Copying SEELL-200305091 23336362P0T. 2ml to hitp:/Alocalhost: 8080./hor

Date Modified: Yesterday,
Movember 21, 2003, 4:42 PM

ANNNNNNNNEEEEN Cancel

Uploading Content Into Oracle XML DB Using FTP

The following example shows commands issued and output generated when a
standard command line FTP tool loads documents into Oracle XML DB repository:

Example 3-51 Uploading Content into Oracle XML DB Repository Using FTP

$ ftp mdrake-sun 2100

Connected to ndrake-sun.

220 ndrake-sun FTP Server (Oracle XML DB/ Oracl e Database 10g Enterprise Edition
Rel ease 10.1.0.1.0 - Beta) ready.

Nane (ndrake-sun:oracl el0): SCOTT

331 pass required for SCOTT

Passwor d:

230 SCOTT | ogged in

ftp> cd /hone/ SCOTT

250 CVWD Command successf ul

ftp> nmkdir PurchaseOrders

257 MKD Conmand successf ul

ftp> cd PurchaseOrders

250 CWD Command successf ul

ftp> nmkdir 2002

257 MKD Command successf ul

ftp> cd 2002

250 WD Command successf ul

ftp> mkdir "Apr"

257 MKD Command successf ul

ftp> put "Apr/ AMCEVEN-20021009123336171PDT. xn "

" Apr / AMCEVEN- 20021009123336171PDT. xm "

200 PORT Command successf ul

150 ASCI| Data Connection

226 ASCI| Transfer Conplete

| ocal : Apr/AMCEVEN- 20021009123336171PDT. xnl renot e:
Apr [AMCEVEN- 20021009123336171PDT. xm

4718 bytes sent in 0.0017 seconds (2683.41 Kbytes/s)
ftp> put "Apr/ AMCEVEN-20021009123336271PDT. xm "

Using Oracle XML DB 3-91

Using Oracle XML DB Repository

" Apr / AMCEVEN- 20021009123336271PDT. xm "

200 PORT Command successful

150 ASCl |

Dat a Connection

226 ASCI| Transfer Conplete
I ocal : Apr/ AMCEVEN- 20021009123336271PDT. xn renot e:
Apr / AMCEVEN- 20021009123336271PDT. xm
4800 bytes sent in 0.0014 seconds (3357.81 Kbytes/s)

ftp> cd "Apr"
250 CWD Conmmand successful

ftp>1Is -

200 PORT Command successf ul

150 ASCI |
SrTWr--rl
STWr--rl
STWr--rl
SrwWr--rl
SrwWr--rl
SrwWr--rl
SrWr--rl
STWr--rl
STWr--rl
SrWr--rl
SrwWr--rl
226 ASC |
renote:; -I

Data Connection

SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT

oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle

0
0
0
0
0
0
0
0
0
0

0

JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24
JUN 24

Transfer Conplete

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

41
41
41
41
41
41
41
41
41
41
41

AMCEVEEN- 20021009123336171PDT. xm
AMCEVEEN- 20021009123336271PDT. xm
EABEL- 20021009123336251PDT. xni
PTUCKER- 20021009123336191PDT. xni
PTUCKER- 20021009123336291PDT. xmi
SBELL-20021009123336231PDT. xm
SBELL-20021009123336331PDT. xm
SKI NG 20021009123336321PDT. xni
SMCCAI N-20021009123336151PDT. xm
SMCCAI N-20021009123336341PDT. xm
VJONES- 20021009123336301PDT. xm

959 bytes received in 0.0027 seconds (349.45 Kbytes/s)

ftp>cd ".

250 CWD Command successful

ftp> quit

221 QU T Goodbye.

$

The key point demonstrated by both these examples is that neither Windows Explorer
nor the FTP tool are aware that they are working with Oracle XML DB. Since the tools
and Oracle XML DB both support open Internet protocols they simply work with each

other out of the box.

Any tool that understands the WebDAV or FIP protocol can be used to create content
managed by Oracle XML DB repository. No additional software has to installed on the

client or the mid-tier.

When the contents of the folders are viewed using a tool such as Windows Explorer or
FTP, the length of any schema-based XML documents contained in the folder is shown

as 0 bytes. This was designed as such for two reasons:

= Firstly, it is not clear what the size of the document should be. Is it the size of the
CLOB generated by printing the document, or the number of bytes required to

store the objects used to persist the document inside the database?

= Secondly, regardless of which definition is chosen, calculating and maintaining

this information is costly.

Figure 3-5 shows Internet Explorer using a URL and the HTTP protocol to view an

XML document stored in the database.

3-92 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

Figure 3-5 Path-Based Access Using HTTP and a URL

23 hitp:Hfiocalhost: B0B0/home/SCOTT/poSourcefxsifpurchaseOrder.xs| - Microsoft Internet ... E|E|PZ|
A

. File Edit View Favorites Tools Help i

3 » —. n »
: = ,) < i i ;) .

e Back 2 \ﬂ lELI [| A Search 1. Favorites @ Media '6:‘; b (=

: Address |£j http: flocalhost: 8050 home/SCOTT poSource/xsl/purchaseOrder, xsl Vl Go

¢ Links éj Aria éj Customize Links éj Free Hotmail éj My Oracle éj Mebwork Request éj Oracle CRM »

<7xml version="1.0" encoding="UTF-8" 7=
- «uslstylesheet version="1.0"
umlns:xsl="http:/ fwww.w3.orgf 1999/ XSL/ Transform”
smins: xdb="http:f/xmins.oracle.com/xdb"
wmins:xsi="http:/ fwww.w3.org/2001/XMLSchema-instance">
- <uslitemplate match="/">
- <html>
<head />
- «body bgcolor="#003333" text="# FFFFCGC" link="#FFGCCO0"
vlink="#66CC99" alink="#669999":
- <FOMT FACE="Arial, Helvetica, sans-serif'=
<xsl: for-each select="PurchaseOrder" /=
- «zusl: for-each select="PurchaseOrder">
- <centers
- «span style="font-family:Arial; font-weight:bold"=
-
<B=Purchase Order

<focenters
e A v
< >
éj %J Lacal intranet

Accessing Oracle XML DB Repository Programmatically

Oracle XML DB repository can be accessed and updated directly from SQL. This
means that any application or programming language that can use SQL to interact
with Oracle Database can also access and update content stored in Oracle XML DB
repository. Oracle XML DB includes PL/SQL package, DBM5_XDB, that provides
methods that allow resources to be created, modified, and deleted in a
programmatically.

Example 3-52 Creating a Text Document Resource Using DBMS_XDB

This example shows how to create a resource using DBMS_XDB. Here the resource will
be a simple text document containing the supplied text.

decl are
res bool ean;
begi n
res := dbns_xdb. creat eResource(' / home/ SCOTT/ Nur ser yRhyne. t xt "',
bfilename(' XMLDI R, ' DocExanpl e01.txt"),
nls_charset _id("' AL32UTF8'));
end;
/

PL/ SQL procedure successfully conpl eted.

Accessing the Content of Documents Using SQL

You can access the content of documents stored in Oracle XML DB repository in
several ways. The easiest way is to use XDBUr i Type. XDBUr i Type uses a URL to

Using Oracle XML DB 3-93

Using Oracle XML DB Repository

specify which resource to access. The URL passed to the XDBUr i Type is assumed to
start at the root of XML DB repository. XDBUr i Type provides methods get BLOB() ,
get CLOB(), and get XM_() to access the different kinds of content that can be
associated with a resource.

Example 3-53 Using XDBUriType to Access a Text Document in the Repository

This example shows how to use XDBUr i Type to access the content of the text
document:

SELECT xdburitype('/home/ SCOTT/ Nur seryRhyne. txt').get d ob()
FROM dual ;

XDBUR! TYPE(' / HOVE/ SCOTT/ NURSERYRHYME. TXT') . GETCLOB()

Mary had a little lanb

It's fleece was white as snow
and every where that Mary went
that lanb was sure to go

1 row sel ected.

Example 3-54 Using XDBUriType and a Repository Resource to Access Content

The contents of a document can also be accessed using the resource document. This
example shows how to access the content of a text document:

SELECT dbms_xnl gen. convert
(

extract

(

res,

"I Resource/ Contents/text/text()",

"xm ns="http://xmns. oracl e. com xdb/ XDBResour ce. xsd""
). getd obVal (),
1

)
FROM RESOURCE_VI EW r

VHERE equal s_pat h(res,"'/home/ SCOTT/ NurseryRhyne. txt') = 1,

DBMS_XMLGEN. CONVERT(EXTRACT(RES, ' / RESOURCE/ CONTENTS/ TEXT/ TEXT() ', " XMLNS="HTTP: / /

Mary had a little lanmb

It's fleece was white as snow
and every where that Mary went
that lanb was sure to go

1 row sel ected.

extract () rather than extract Val ue() is used to access the t ext () node. This
returns the content of the t ext () node as an XMLTy pe, which makes it possible to
access the content of the node using get CLOBVal () . Hence you can access the
content of documents larger than 4K. Here DBMS_XM_GEN. convert removes any
entity escaping from the text.

3-94 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

Example 3-55 Accessing Schema-Based XML Documents Using the Resource and
Namespace Prefixes

The content of non-schema-based and schema-based XML documents can also be
accessed through the resource. This example shows how to use an XPath expression
that includes nodes from the resource document and nodes from the XML document
to access the contents of a Pur chaseOr der document using the resource.

SELECT extract Val ue(val ue(l),"'/Description')
FROM RESOURCE_VI EW'r,
table (
xm sequence

(

extract

(

res,
"/r:Resource/r: Contents/PurchaseO der/Lineltens/Linelten Description',
"xmns:r="http://xmns. oracl e. com xdb/ XDBResour ce. xsd""

)
)
) |
VWHERE equal s_pat h(res,
"/ home/ SCOTT/ Pur chaseOr der s/ 2002/ Mar / SBELL- 2002100912333601PDT. xm ') = 1;

EXTRACTVALUE(VALUE(L) , ' / DESCRI PTI ON)

A Night to Remenber
The Unbear abl e Lightness O Being
The Wzard of Oz

3 rows sel ected.

In this case a namespace prefix was used to identify which nodes in the XPath
expression are members of the resource namespace. This was necessary as the

Pur chaseOr der XML schema does not define a namespace and it was not possible to
apply a namespace prefix to nodes in the PurchaseOrder document.

Accessing the Content of XML Schema-Based Documents

The content of a schema-based XML document can be accessed in two ways.

« In the same manner as for non-schema-based XML documents, by using the
resource document. This allows the RESOURCE_VI EWto be used to query different
types of schema-based XML documents with a single SQL statement.

« Asarow in the default table that was defined when the XML schema was
registered with Oracle XML DB.

Using the XMLRef Element in Joins to Access Resource Content in the Repository

The XMLRef element in the resource document provides the join key required when a
SQL statement needs to access or update metadata and content as part of a single
operation.

The following queries use joins based on the value of the XM_Ref to access resource
content.

Using Oracle XML DB 3-95

Using Oracle XML DB Repository

Example 3-56 Querying Repository Resource Data Using Ref() and the XMLRef Element

This example locates a row in the defaultTable based on a path in Oracle XML DB
repository. SQL r ef () function locates the target row in the default table based on
value of the XMLRef element contained in the resource document.

SELECT extract Val ue(val ue(l),"'/Description')
FROM RESOURCE_VI EWr, PURCHASEORDER p,
TABLE (
xm sequence

(

extract

(
obj ect _val ue,
"I PurchaseQOrder/ Li nel tens/ Li nel t emf Descri ption'

)

)
) |
VHERE equal s_pat h(res,
' [home/ SCOTT/ Pur chaseOr der s/ 2002/ Mar / SBELL- 2002100912333601PDT. xm ') = 1
AND ref(p) = extractVal ue(res,'/Resource/ XMLRef");

EXTRACTVALUE(VALUE(L) , ' / DESCRI PTI ON)

A Night to Renenber
The Unbear abl e Lightness O Being
The Wzard of Qz

3 rows sel ected.

Example 3-57 Selecting XML Document Fragments Based on Metadata, Path, and
Content

This example shows how this technique makes it possible to select fragments from
XML documents based on metadata, path, and content. The statement returns the
value of the Ref er ence element for documents foldered under the path

/' home/ SCOTT/ Pur chaseOr der s/ 2002/ Mar and contain orders for part
715515009058.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseCOrder/ Ref erence')
FROM RESOURCE_VI EWr, PURCHASEORDER p
VHERE under _pat h(res, ' /hone/ SCOTT/ Pur chaseCrders/ 2002/ Mar') =1
AND ref(p) = extractVal ue(res,'/Resource/ XM.Ref")
AND exi st sNode(obj ect _val ue,
" | PurchaseOrder/ Li nel t ens/ Li nel tenf Part [@d="715515009058"]") = 1,

EXTRACTVALUE(OBJECT_VALUE, ' / PU

CIOHNSON- 20021009123335851PDT
LSM TH-2002100912333661PDT
SBELL-2002100912333601PDT

3 rows sel ected.

In general when accessing the content of schema-based XML documents, joining
RESOURCE_VI EWor PATH_VI EWwith the default table is more efficient than using the
RESOURCE_VI EWor PATH_VI EWon their own. The explicit join between the resource
document and the default table tells Oracle XML DB that the SQL statement will only
work on one type of XML document. This allows XPath rewrite to be used to optimize
the operation on the default table as well as the operation on the resource.

3-96 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

Updating the Content of Documents Stored in Oracle XML DB Repository

You can also update the content of documents stored in the Oracle XML DB repository
using protocols or SQL.

Updating Repository Content Using Protocols

The most popular content authoring tools now support HTTP, FTP, and WebDAV
protocols. These tools can use a URL and the HTTP get verb to access the content of a
document, and the HTTP put verb to save the contents of a document. Hence, given
the appropriate access permissions, a simple URL is all you need to access and edit
content stored in Oracle XML DB repository.

Figure 3-6 shows how with the WebDAYV support, included in Microsoft Word, you
can use Microsoft Word to update and edit a document stored in Oracle XML DB
repository.

Figure 3-6 Using Microsoft Word to Update and Edit Content Stored in Oracle XML DB

L-_E. SBELL-2003030912333601PDT.xml - Microsoft Office Word 2003 Beta = IDIlI
File Edit Yiew Insert Format Tools Table Window Help Type aquestion for help X

EHOSISRITHI XNBR S| IO
4_-1 Mormnal + Left: « Times Mew Roman » 12 « | B 7 O
S| % E3 3| TimesMewRoman - 12 - év B 7

- P E@Beada

|-E-|---1---|---2---|---3---|---4---|---5---|---s---|---?---|---s---|5A

(t Reference [SBELL-20030309 1233360 1 PDT Reference)

(0 ser [SV OLLM AN serv)

(tRequestor (Sarah T.

CHUNG Saving as:

I —
Bell Requastar))

‘htp:/flacalhost: 5080 home/SCOTT/purchasetrders 2003/ Mar /SEELL-20

[CostCenter [930 | CastCanter] 0303091 2333601P0T, xml'

41 ShippingInstructions

(W rome [Saral T.

Atelephone | G500
ShippingInstructions *

Al Mascrintinn | A BTt 40 T e cane s - [P crvinbinn =

i

BellJrame"]

506 7400 Jislaphane)

«O»IL

]

At tn Cal REC TRK EXT OWR English(Uis | 1O¥

N

When an editor like Microsoft Word updates an XML document stored in Oracle
XML DB the database receives an input stream containing the new content of the
document. Unfortunately products such as Word do not provide Oracle XML DB with
any way of identifying what changes have taken place in the document. This means
that partial-updates are not possible and it is necessary to re-parse the entire
document, replacing all the objects derived from the original document with objects
derived from the new content.

Using Oracle XML DB 3-97

Using Oracle XML DB Repository

Updating Repository Content Using SQL

The updat exmi () function can be used to update the content of any document stored
in Oracle XML DB repository. The content of the document can be updated by
updating the resource document, or in the case of schema-based XML documents, by
updating the default table that contains the content of the document.

Example 3-58 Updating the Contents of a Text Document Using UPDATE and
updateXML() on the Resource

This example shows how to update the contents of a simple text document using the
SQL UPDATE statement and updat eXM.() on the resource document. XPath
expression is passed to updat eXM_() to identify the text node belonging to the
element t ext contained in element / Resour ce/ Cont ent s as the target of the
update operation.

decl are
file bfile;
contents clob;

dest of f set nunber := 1;
src_of fset nunber := 1;
| ang_cont ext nunber : = 0;
conv_war ni ng nunber := 0;

begin
file := bfilename(' XM.DI R , "' DocExanpl e02.txt");
DBMVS_LOB. creat eTenpor ary(contents, true, DBMS_LOB. SESSI ON) ;
DBVS_LOB. fileopen(file, DBMS LOB.file_readonly);
DBVS_LOB. | oadC obfronFi | e
(
contents,
file,
DBVS_LOB. get Length(file),
dest _of fset,
src_of fset,
nl's_charset _id("'AL32UTF8'),
| ang_cont ext,
conv_war ni ng
)
DBVS_LOB. fileclose(file);
UPDATE RESOURCE_VI EW
SET res = updat eXM
(
res,
'/ Resour ce/ Contents/text/text()",
contents,
"xm ns="http://xn ns. oracl e. com xdb/ XDBResour ce. xsd""
)
VHERE equal s_pat h(res,"'/home/ SCOTT/ Nur seryRhyne. txt') = 1,
dbms_| ob. f reeTenporary(contents);
end;
/

PL/ SQL procedure successfully conpl eted.
The technique for updating the content of a document by updating the associated

resource has the advantage that it can be used to update any kind of document stored
in XML DB repository.

3-98 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

Example 3-59 Updating a Node in the XML Document Using UPDATE and updateXML()

This example shows how to update a node in an XML document by performing an
update on the resource document. Here updat eXM_.() changes the value of the text
node associated with the User element.

UPDATE RESOURCE_VI EW
SET res = updat eXM.

(

res,
"/ r:Resource/r: Contents/PurchaseOrder/ User/text()",

" SKING ,

"xm ns:r="http://xnns. oracl e. conl xdb/ XDBResour ce. xsd""

)
VHERE equal s_pat h(res,
' [home/ SCOTT/ Pur chaseOr der s/ 2002/ Mar / SBELL- 2002100912333601PDT. xm ') = 1;

1 row updat ed.

Updating XML Schema-Based Documents in the Repository

You can update XML schema-based XML documents by performing the update
operation directly on the default table used to manage the content of the document. If
the document must be located by a WHERE clause that includes a path or conditions
based on metadata, then the UPDATE statement must use a join between the resource
and the default table.

In general when updating the contents of XML schema-based XML documents, joining
the RESOQURCE_VI EWor PATH_VI EWwith the default table is more efficient than using
the RESOURCE_VI EWor PATH_VI EWon their own. The explicit join between the
resource document and the default table tells Oracle XML DB that the SQL statement
will only work on one type of XML document. This allows a partial-update to be used
on the default table and resource.

Example 3-60 Updating XML Schema-Based Documents in the Repository

Here updat eXM_() operates on the default table with the target row identified by a
path. The row to be updated is identified by a Ref . The value of the row is obtained
from the resource document identified by the equal s_pat h() function. This
effectively limits the update to the row corresponding to the resource identified by the
specified path.
UPDATE PURCHASECRDER p

SET obj ect _val ue = updat eXM.

(

obj ect _val ue,
"/ PurchaseQrder/ User/text()',' SBELL')
VHERE ref (p) =

(
SELECT extract Val ue(res, '/ Resource/ XM.Ref ")

FROM RESOURCE_VI EW
WHERE equal s_pat h(res,
" [home/ SCOTT/ Pur chaseOr der s/ 2002/ Mar / SBELL- 2002100912333601PDT. xm ') = 1

)i

1 row updat ed.

Controlling Access to Repository Data

You can control access to the resources in the XML DB repository by using Access
Control Lists (ACLs). An ACL is a list of access control entries, each of which grants or

Using Oracle XML DB 3-99

Using Oracle XML DB Repository

denies a set of privileges to a specific principal. The principal can be a database user, a
database role, an LDAP user, an LDAP group or the special principal 'dav:owner' that
refers to the owner of the resource. Each resource in the repository is protected by an
ACL. The ACL determines what privileges, such as 'read-properties’ and 'update’, a
user has on the resource. Each repository operation includes a check of the ACL to
determine if the current user is allowed to perform the operation.

By default, a new resource inherits the ACL of its parent folder. But you can set the
ACL of a resource using the DBMS_XDB. set ACL() procedure. For more details on
XML DB resource security, see Chapter 23, "Oracle XML DB Resource Security".

In the following example, the current user is SCOTT. The query gives the number of
resources in the folder / publ i c. Assume that there are only 2 resources in this folder:
f1 and 2. Also assume that the ACL on {1 grants the r ead- properti es privilege to
SCOTT while the ACL on f2 does not grant SCOTT any privileges. A user needs the
'read-properties’ privilege on a resource for it to be visible to the user. The result of the
query is 1 since only f1 is visible to SCOTT.

sel ect count(*) fromresource_viewr
where under _path(r.res, "/public') = 1;

XML DB Transactional Semantics

When working from SQL, normal transactional behavior is enforced. Multiple
updat exm () statements can be used within a single logical unit of work. Changes
made through updat exni () are not visible to other database users until the
transaction is committed. At any point, r ol | back can be used to back out the set of
changes made since the last commit.

Querying Metadata and the Folder Hierarchy

In Oracle XML DB the metadata for each resource is preserved as an XML document.
The structure of these documents is defined by the XDBResour ce. xsd XML schema.
This schema is registered as a global XML schema at URL

http://xm ns. oracl e. com xdb/ XDBResour ce. xsd.

Oracle XML DB allows you access to metadata and information about the folder
hierarchy using two public views, RESOURCE_VI EWand PATH_VI EW

RESOURCE_VIEW

RESQURCE_VI EWcontains one entry for each file or folder stored in XML DB
repository. The view consists of two columns. The RES column contains the resource
document that manages the metadata properties associated with the document. The
ANY_PATH column contains a valid URL that the current user can pass to

XDBUr i Type in order to access the content the document. In the cases of non-binary
content the resource document will also contain the content of the document.

Oracle XML DB supports the concept of linking. Linking makes it possible to define
multiple paths to a given document. A separate XML document, called the
link-properties document, maintains metadata properties that are specific to the link,
rather than to the resource. Whenever a resource is created an initial link is also
created.

3-100 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

PATH_VIEW

PATH_VI EWexposes the link-properties documents. There is one entry it PATH_VI EW
for each possible path to a document. The PATH_VI EWconsists of three columns. The
RES columns contains the resource document that this link points at. The PATH
column contains the Path that the link allows to be used to access the resource. The

LI NK column contains the link-properties document for this PATH

See Also:
PATH_VIEW"

Chapter 20, "SQL Access Using RESOURCE_VIEW and

Example 3-61 Viewing RESOURCE_VIEW and PATH_VIEW Structures
The following example shows the description of the public views RESOCURCE_VI EW

and PATH_VI EW

desc RESOURCE VI EW
Name Nul | ?

ANY_PATH
RESI D

desc PATH_VI EW
Name Nul |2

LI NK
RESI D

SYS. XMLTYPE(XMLScherma
“http://xmns.oracl e.com xd

b/ XDBResour ce. xsd" El ement "Resource")

VARCHAR2(4000)

RAW(16)

VARCHAR2(1024)
SYS. XMLTYPE(XM_Schena
"http://xmns. oracl e. com xd
b/ XDBResour ce. xsd" El ement "Resource")
SYS. XMLTYPE
RAW(16)

Oracle XML DB provides two new functions, equal s_pat h() and under _pat h(),
that can be used to perform folder-restricted queries. Folder-restricted queries limit
SQL statements that operate on the RESOURCE_VI EWor PATH_VI EWto documents
that are at a particular location in Oracle XML DB folder hierarchy. equal s_pat h()
restricts the statement to a single document identified by the specified path. under _
pat h() restricts the statement to those documents that exist beneath a certain point in

the hierarchy.

Example 3-62 Accessing Resources Using equals_path() and RESOURCE_VIEW

The following query uses the equal s_pat h() function and RESOURCE_VI EWto
access the resource created in Example 3-61.

SELECT r.res. get C obVal ()
FROM RESOURCE_VI EW r

VHERE equal s_pat h(res,"'/home/ SCOTT/ Nur seryRhyne.txt') = 1;

R. RES. GETCLOBVAL()

<Resource xm ns="http://xm ns. oracl e. conl xdb/ XDBResour ce. xsd" H dden="fal se" Inv
alid="fal se" Container="fal se" CustonRslv="fal se" VersionH story="fal se" StickyR

ef ="true">

<CreationDat e>2003- 12- 08T19: 03: 06. 584000</ Cr eat i onDat e>
<Modi fi cati onDat e>2003- 12- 08T19: 03: 07. 456000</ Modi f i cat i onDat e>
<Di spl ayName>Nur ser yRhyne. t xt </ Di spl ayNane>

Using Oracle XML DB 3-101

Using Oracle XML DB Repository

<Language>en- US</ Language>
<Char act er Set >UTF- 8</ Char act er Set >
<Cont ent Type>t ext/ pl ai n</ Cont ent Type>
<Ref Count >1</ Ref Count >
<ACL>
<acl description="Private: Al privileges to OMER only and not accessible to
others" xm ns="http://xm ns. oracl e. con xdb/ acl . xsd" xm ns: dav="DAV: " xm ns: xsi =
“http://wwmw. w3. org/ 2001/ XM.Schema- i nst ance" xsi: schemalLocation="http://xm ns.ora
cl e. conl xdb/ acl . xsd http://xm ns. oracl e. coml xdb/ acl . xs
d'>
<ace>
<princi pal >dav: owner </ pri nci pal >
<grant >t rue</ grant >
<privil ege>
<all/>
</privilege>
</ ace>
<lacl >
</ ACL>
<Oaner >SCOTT</ Oaner >
<Cr eat or >SCOTT</ Cr eat or >
<Last Modi fi er >SCOTT</ Last Modi fi er >
<SchenaEl enent >htt p: //xm ns. or acl e. conf xdb/ XDBSchena. xsd#t ext </ SchenaEl enent >
<Cont ent s>
<t ext >H ckory Di ckory Dock
The Mouse ran up the clock
The clock struck one
The Muse ran down
H ckory Di ckory Dock

</text>
</ Cont ent s>
</ Resour ce>

1 row sel ect ed.

As this example shows, a resource document is an XML document that captures the
set of metadata defined by the DAV standard. The metadata includes information such
as Creation Date, Creator, Owner, Last Modification Date, and Display Name. The
content of the resource document can be queried and updated just like any other XML
document, using functions such as ext r act (), ext ract Val ue(), exi st sNode(),
and updat eXM.() .

Querying Resources Stored in RESOURCE_VIEW and PATH_VIEW

The following examples demonstrate simple folder-restricted queries against resource
documents stored in the RESOURCE_VI EWand PATH_VI EW

Example 3-63 Determining the Path to XSL Style Sheets Stored in the Repository

The first query finds a path to each of XSL style sheet stored in Oracle XML DB
repository. It performs a search based on the Di spl ayNanme ending in . xs| . Unlike a
conventional file system, Oracle XML DB can use the power of Oracle Database to
resolve this query.

SELECT any_path
FROM RESOURCE_VI EW
VHERE extract Val ue(RES, ' / Resour ce/ Di spl ayNanme') |ike '%xsl";

3-102 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

ANY_PATH

/ hone/ SCOTT/ poSour ce/ xsl / enpdept . xsl
/ home/ SCOTT/ poSour ce/ xsl / pur chaseQOr der . xsl|

2 rows selected.

Example 3-64 Counting Resources Under a Path

This example counts the number of resources (files and folders) under the path

/' home/ SCOTT/ Pur chaseOr der s. Using RESOURCE_VI EWrather than PATH_VI EW
ensures that resources that any resources that are the target of multiple links are only
counted once. The under _pat h() function restricts the resultset to documents that
can be accessed using a path where the path starts from

/' home/ SCOTT/ Pur chaseOr der s.

SELECT count (*)
FROM RESOURCE_VI EW
WHERE under _path (RES,'/home/ SCOTT/ PurchaseOrders') = 1;

145
1 row sel ected.

Example 3-65 Listing the Folder Contents in a Path

This query lists the contents of the folder identified by path
/ homre/ SCOTT/ Pur chaseOr der s/ 2002/ Apr . This is effectively a directory listing of
the folder.

SELECT PATH
FROM PATH_VI EW
WHERE under _pat h(RES, ' / home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr') = 1;

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / AMCEVEN- 20021009123336171PDT. xni
[hone/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / AMCEVEEN- 20021009123336271PDT. xm
[home/ SCOTT/ Pur chaseQOr der s/ 2002/ Apr / EABEL- 20021009123336251PDT. xni

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / PTUCKER- 20021009123336191PDT. xni
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / PTUCKER- 20021009123336291PDT. xn
/ home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SBELL-20021009123336231PDT. xn

/ home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SBELL-20021009123336331PDT. xn

/ home/ SCOTT/ Pur chaseQOr der s/ 2002/ Apr / SKI NG- 20021009123336321PDT. xni

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SMCCAI N- 20021009123336151PDT. xni
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SMCCAI N- 20021009123336341PDT. xni
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / VJONES- 20021009123336301PDT. xm

11 rows sel ected.

Example 3-66 Listing the Links Contained in a Folder

This query lists the set of links contained in the folder identified by the path
/ hone/ SCOTT/ Pur chaseOr der s/ 2002/ Apr where the Di spl ayName element in
the associated resource starts with an S.

SELECT PATH
FROM PATH_ VI EW
VHERE extract Val ue(RES, ' / Resour ce/ Di spl ayNane') |ike ' S%

Using Oracle XML DB 3-103

Using Oracle XML DB Repository

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SBELL-20021009123336231PDT. xni
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SBELL-20021009123336331PDT. xn
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SKI NG- 20021009123336321PDT. xn
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SMCCAI N- 20021009123336151PDT. xni
[hone/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / SMCCAI N- 20021009123336341PDT. xm

5 rows sel ected.

Example 3-67 Finding the Path to Resources in the Repository Containing a PO XML
Document

This query finds a path to each of the resources in the repository that contain a
PurchaseOrder XML document. The documents are identified based on the metadata
property SchenmaEl enent that identifies the XML schema URL and global element
for schema-based XML stored in Oracle XML DB repository.

SELECT ANY_PATH
FROM RESOURCE_VI EW
VHERE exi st sNode(RES,

"/ Resour ce[SchemaEl ement ="ht t p: / /1 ocal host : 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr
der. xsd#PurchaseOrder"]") = 1;

This returns the following paths each of which contain a PurchaseOrder XML
document:

ANY_PATH
[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / AMCEVEN- 20021009123336171PDT. xni

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / AMCEVEN- 20021009123336271PDT. xni

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / EABEL- 20021009123336251PDT. xn

[home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr / PTUCKER- 20021009123336191PDT. xmi

The Oracle XML DB Hierarchical Index

explain plan for
SELECT PATH
FROM PATH_VI EW

In a conventional relational database, path-based access and folder-restricted queries
would have to be implemented using CONNECT BY operations. Such queries are
expensive and path-based access and folder-restricted queries would become very
inefficient as the number of documents and depth of the folder hierarchy increases.

To address this issue, Oracle XML DB introduces a new index, the hierarchical index.
The hierarchical index allows the database to resolve folder-restricted queries without
relying on a CONNECT BY operation. Hence Oracle XML DB can execute path-based
and folder-restricted queries efficiently. The hierarchical index is implemented as an
Oracle domain index. This is the same technique used to add Oracle Text indexing
support and many other advanced index types to the database.

Example 3-68 EXPLAIN Plan Output for a Folder-Restricted Query

This example shows the EXPLAI N PLAN output generated for a folder-restricted
query. As shown, the hierarchical index (XDBHI _| DX) will be used to resolve the

query.

3-104 Oracle XML DB Developer's Guide

Using Oracle XML DB Repository

VWHERE extract Val ue(RES, ' / Resour ce/ Di spl ayNane') |ike 'S%
AND under _pat h(RES, ' / home/ SCOTT/ Pur chaseOr der s/ 2002/ Apr') = 1;

Expl ai ned.

set echo of f

PLAN_TABLE_QUTPUT

1d	Operation	Name	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		300	62100	28 (0)	00:00:01
1	NESTED LOOPS		300	62100	28 (0)	00:00:01
2] NESTED LOOPS		300	57000	28 (0)	00:00:01	
3] NESTED LOOPS		300	44400	28 (0)	00:00:01	
* 4] TABLE ACCESS BY	NDEX RON D	XDB$RESOURCE	1	146	4 (0)	00:00:01
5] DOVAI N	NDEX	XDBHI _I DX				
6] COLLECTI ON	TERATOR PI CKLER FETCH					
[* 7 I NDEX UNI QUE SCAN	XDB_PK H LINK	1] 42		00:00:01		
* 8] I NDEX UNI QUE SCAN	SYS_ 0002901	1] 17		00:00:01		

4 - filter("P'."SYS_NCO0011$" LIKE ' S%)

7 - access("H'."PARENT O D'=SYS_OP_ATG(VALUE(KOKBFS), 3, 4,2) AND
"H'. " NAME' =SYS_OP_ATG(VALUE(KOKBF$) , 2, 3, 2))

8 - access("R2"."SYS_NC Ol D$"=SYS_OP_ATG(VALUE(KOKBFS) , 3, 4, 2))

- warning: inconsistencies found in estimted optimzer costs

27 rows sel ected.

How Documents are Stored in Oracle XML DB Repository

Oracle XML DB provides special handling for XML documents. The rules for storing
the contents of schema-based XML document are defined by the XML schema. The
content of the document is stored in the default table associated with the global
element definition.

Oracle XML DB repository also stores the content of non-XML files, such as JPEG
images or Word documents. The XML schema for each resource defines which
elements are allowed and specifies whether the content of these files is to be stored as
BLOBs or CLOBs. The contents of non-schema-based XML documents are stored as a
CLOB in the repository.

There is one resource and one link-properties document for every file or folder in
Oracle XML DB repository. If there are multiple access paths to a given document
there will be a link-properties document for each possible link. Both the resource
document and the link-properties are stored as XML documents. All these documents
are stored in tables in Oracle XML DB repository.

When an XML file is loaded into Oracle XML DB repository the following sequence of
events that takes place:

1. Oracle XML DB examines the root element of the XML document to see if it is
associated with a known (registered) XML schema. This involves looking to see if

Using Oracle XML DB 3-105

Viewing Relational Data as XML From a Browser

the document includes a namespace declaration for the XM_Schena- i nst ance
namespace, and then looking for a schemaLocat i on or
noNanmespaceSchenalLocat i on attribute that identifies which XML schema the
document is associated with.

2. If the document is based on a known XML schema, then the metadata for the XML
schema is loaded from the XML schema cache.

3. The XML document is parsed and decomposed into a set the SQL objects derived
from the XML schema.

4. The SQL objects created from the XML file are stored in the default table defined
when the XML schema was registered with the database.

5. A resource document is created for each document processed. This allows the
content of the document to be accessed using Oracle XML DB repository. The
resource document for a schema-based XMLType includes an element XM_Ref .
This contents of this element is a REF of XMLType that can be used to locate the
row in the default table containing the content associated with the resource.

Viewing Relational Data as XML From a Browser

The HTTP server built into Oracle XML DB makes it possible to use a browser to
access any document stored in the Oracle XML DB repository. Since a resource can
include a REF to a row in an XMLType table or view it is possible to use path-based
access to access this type of content.

Using DBUri Servlet to Access Any Table or View From a Browser

Oracle XML DB includes the DBUr i servlet that makes it possible to access the content
of any table or view directly from a browser. DBUr i servlet uses the facilities of the
DBUr i Type to generate a simple XML document from the contents of the table. The
servlet is C- based and installed in the Oracle XML DB HTTP server. By default the
servlet is installed under the virtual directory / or adb.

The URL passed to the DBUr i Servlet is an extension of the URL passed to the
DBUr i Type. The URL is simply extended with the address and port number of the
Oracle XML DB HTTP server and the virtual root that directs HTTP requests to the
DBUr i servlet. The default configuration for this is / or adb.

This means that the URL: ht t p: / /| ocal host : 8080/ or adb/ HR/ DEPTARTNVENTS,

would return an XML document containing the contents of the DEPARTMENTS table in
the HR database schema, assuming that the Oracle XML DB HTTP server is running
on port 8080, the virtual root for the DBUri ser vl et is/ or adb, and that the user
making the request has access to the HR database schema.

DBUr i servlet accepts parameters that allow you to specify the name of the ROWtag
and MIME-type of the document that is returned to the client.

Content in XMLType table or view can also be accessed through the DBUri servl et.
When the URL passed to the DBUr i ser vl et references an XMLType table or
XML.Type view the URL can be extended with an XPath expression that can determine
which documents in the table or row are returned. The XPath expression appended to
the URL can reference any node in the document.

XML generated by DBUTri servlet can be transformed using the XSLT processor built
into Oracle XML DB. This allows XML generated by DBUr i ser vl et to be presented
in a more legible format such as HTML.

3-106 Oracle XML DB Developer's Guide

Viewing Relational Data as XML From a Browser

See Also: Chapter 17, "Creating and Accessing Data Through
URLs" under "Turning a URL into a Database Query with DBUri
Servlet" on page 17-25

Style-sheet processing is initiated by specifying a transform parameter as part of the
URL passed to DBUri ser vl et . The style sheet is specified using a URI that
references the location of the style sheet within database. The URI can either be a
DBUr i Type value that identifies a XMLType column in a table or view, or a path to a
document stored in the Oracle XML DB repository. The style sheet is applied directly
to the generated XML before it is returned to the client. When using DBUTri servlet for
XSLT processing it is good practice to use the cont ent t ype parameter to explicitly
specify the MIME type of the generated output.

If the XML document being transformed is stored as schema-based XMLType, then
Oracle XML DB can reduce the overhead associated with XSL transformation by
leveraging the capabilities of the lazily loaded virtual DOM.

Example 3-7 shows how DBUr i can access a row in the PURCHASEORDER table.

Figure 3—7 Using DBUri Servlet to Access XML Content

2 http:Hilocalhost: B0B0/home/SCOTT/purchaseOrders/2003/Mar/SBELL -2003030912333601... [;][ﬁ][s_?]

¢ File Edit View Favortes Tools Help i

: ' e i
QBack & \ﬂ |EL| £ P!) Search ‘\{;'\T::’Favorites @Media 6}‘ ==

: Address @http:,l’,l’localhost:SDSD,I’home,l’SCOTT,I’purchaseOrders,l’ZDDS,l’Mar,l’SBELL-ZDDSDSDQ12333601PDT.me v a Go
 Links Ej Aria g‘] Customize Links Ej Free Hotmail éj My Oracle g‘] Metwork Request éj Oracle CRM

»

3

T
- <PurchaseOrder xmins: xsi="http:/ /weww.w3.0rg/2001/XMLSchema-instance"
wsiinoMamespaceSchemalocation="http:/ flocalhost:8080/home /SCOTT/poSource/xsd,
<Reference>=8SBELL-2003030912333601PDT</Reference=
<ACtions
- <Action=
<User=8YOLLMAN</Usars
</actions
</Aactionse
<Reject /=
<Requestor=Sarah J. Bell</Requestor=
“lUserKCHUNG </ Users
<CostCenter=830</CostCentears
<ShippingInstructions
<name=Sarah 1. Bell</name=
<address>400 Oracle Parkway Redwood Shores CA 94065 USA</address>
<telephone=650 506 7400</telephone=
=/ShippingInstructions>
<Speciallnstructions=Air Mail</Speciallnstructions=>
- «zLineltems>
- «Lineltem ItemMumber="1">
<Description=A Night to Remember</Descriptions
<Part Id="715515009058" UnitPrice="39.95" Quantity="2" />
</Lineltem:
- «<Lineltem ItemMumber="2">
<Description=The Unbearable Lightness Of Being<,/Description> v
< >

ﬁj ‘ﬂ Local intranet

Note that the root of the URL is / or adb. This means that the URL will be passed to
the DBUTri servlet that accesses the PURCHASECRDER table in the SCOTT database
schema, rather than as a resource in Oracle XML DB repository. The URL includes an
XPath expression that restricts the result set to those documents where node

/ Pur chaseCOr der/ Ref erence/ t ext () contains the value specified in the
predicate. The cont ent t ype parameter sets the MIME type of the generated
document to t ext / xni .

Using Oracle XML DB 3-107

XSL Transformation Using DBUri Servlet

XSL Transformation Using DBUri Servlet

Figure 3-8 shows how an XSL transformation can be applied to XML content
generated by the DBUTri servlet. In this example the URL passed to the DBUri includes
the transform parameter. This causes the DBUTri servlet to use the XMLTr ansf or i)
function to apply the style sheet / honme/ SCOTT/ xsl| / pur chaseOr der . xsl to the
PurchaseOrder document identified by the main URL, before returning the document
to the browser. This style sheet transforms the XML document to a more user-friendly
HTML page. The URL also uses cont ent Type parameter to specify that the
MIME-type of the final document will be t ext / ht ni .

Figure 3-8 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet

3 http:/ /localhost:8080,/oradb,/SCOTT/PURCHASEOR DER /ROW /PurchaseOrder[Reference="SBELL-20030309123 =] x|

File Edit Wiew Favorites Tools Help ‘ ;,r

QBack - - lj lg"‘ ;‘, ‘ /"- Search ‘_;‘_\?'Favuntes @ reda £7) = = @ @ E 3

Address [&] http:localhost: 5080/oradb/SCOTT[PURCHASEORDER [ROW/PUrchaseOrder|Reference="SBELL-200303091 2333601 PDT" Peontenttype=textjhtmiatransform=(home/5coT 7 | =) |Lmks >

Gaogle - || g searchweb - | 52 | Ghisa0blocked fE] cueorl [| B options

SBELL-2003030812333601PDT

Name

Actions Address

Requestor
User
Cost Center

Telephone

Description Partld Quantity|Unit Price|Total Price

A Might to Remember 715515009058 39 85 79 900000000000006
The Unbearable Lightness Of Being|37428140222 29.85 59.899999999999999
The Wizard of Oz 715515011020 29395 119 799999999993997

[&] one [[[N3tccalintranet

Figure 3-9 shows the DEPARTMENTS table displayed as an HTML document. You need
no code to achieve this, you only need an XM_Type view, based on SQL /XML
functions, an industry-standard XSL style sheet, and DBUr i servlet.

3-108 Oracle XML DB Developer's Guide

XSL Transformation Using DBUri Servlet

Figure 3-9 Database XSL Transformation of Departments Table Using DBUri Servlet

A hitp:#ilocalhost: B0B0/oradb/SCOTT/DEPARTMENT_XML?contenttype-text/html@rowsettag-ROWSET&transfo - Microsoft Inter... [Z |[5(3€)
Ir
L]

File Edit ‘Wiew Favorites Tools Help

OBack - ﬂ .ELI . 7 :.'_"Fa\.-'orites @Media £

Address &ﬁ http:flocalhost: 8080/ oradb) SCOTT/DEPARTMEMT _¥MLFcontentty pe=textihtmigrowsett ag=ROWSET&transform=/home/SCOTT [poSourcefxslfempdept ﬂ Ga

Links @] Aria @] Customize Links @] Free Hotmail] My Oracle @] Metwark Request @] Oracle CRM @] Oracle Emal @] Software & Windows =

DEPARTMENT LOCATION EMPLOYEES
IT 2014 Jabberwocky Rd

Southlake

Texas

26192

United States of

America

2011 Interiors Blvd
South San Francisco
Califorma

99236

United States of
America

% Local intranet

ej Done

Using Oracle XML DB 3-109

XSL Transformation Using DBUri Servlet

3-110 Oracle XML DB Developer's Guide

Part I

Storing and Retrieving XML Data in Oracle

XML DB

Part II of this manual introduces you to ways you can store, retrieve, validate, and
transform XML data using Oracle XML DB. It contains the following chapters:

Chapter 4, "XMLIype Operations"

Chapter 5, "XML Schema Storage and Query: The Basics"
Chapter 6, "XML Schema Storage and Query: Advanced Topics"
Chapter 7, "XML Schema Evolution"

Chapter 8, "Transforming and Validating XMLType Data"
Chapter 9, "Full Text Search Over XML"

A

XMLType Operations

This chapter describes XM_Type operations and indexing for XML schema-based and
non-schema-based applications. It includes guidelines for creating, manipulating,
updating, querying, and indexing XML Ty pe columns and tables.

This chapter contains these topics:

= Manipulating XML Data With SQL Member Functions
= Selecting and Querying XML Data

= Updating XML Instances and XML Data in Tables

= Indexing XMLType Columns

Note:

» Non-schema-based: XMLType tables and columns described in
this chapter are not based on W3C XML Schema 1.0
Recommendation. You can, however, use the techniques and
examples provided in this chapter regardless of which storage
option you choose for your XMLType tables and columns. See
Chapter 3, "Using Oracle XML DB" for more storage
recommendations.

= XML schema-based: Appendix B, "XML Schema Primer" and
Chapter 5, "XML Schema Storage and Query: The Basics"
describe how to work with XML schema-based XML Type tables
and columns.

« Throughout this chapter, XML schema refers to XML Schema
1.0 recommendation. See also:

http://wwv. w3. or g/ XM/ Scherma

Manipulating XML Data With SQL Member Functions

SQL functions such as exi st sNode(),extract (), XM.Tr ansf ornm(), and
updat eXM_() operate on XML data inside SQL. XMLType datatype supports most of
these as member functions.

Selecting and Querying XML Data

You can query XML data from XMLType columns in the following ways:
= By selecting XMLType columns through SQL, PL/SQL, or Java

XMLType Operations 4-1

Selecting and Querying XML Data

= By querying XMLType columns directly and using extract () and
exi st sNode()

= By using Oracle Text operators to query the XML content. See "Indexing XMLIype
Columns" on page 4-26 and Chapter 9, "Full Text Search Over XML".

Searching XML Documents With XPath Expressions

XPath is a W3C recommendation for navigating XML documents. XPath models the
XML document as a tree of nodes. It provides a rich set of operations that walk the tree
of nodes and also apply predicates and node test functions. Applying an XPath
expression to an XML document can result in a set of nodes. For example, / PO/ PONO
selects all PONOchild elements under the POroot element of the document.

See Also: Appendix C, "XPath and Namespace Primer"
Table 4-1 lists some common constructs used in XPath.

Table 4—-1 Common XPath Constructs

XPath Construct Description

/ Denotes the root of the tree in an XPath expression. For example, / PO refers to the
child of the root node whose name is PO.

/ Also used as a path separator to identify the children node of any given node. For
example, / Pur chaseOr der / Ref er ence identifies the purchase order name element
Ref er ence, a child of the root element.

// Used to identify all descendants of the current node. For example,
Pur chaseOr der// Shi ppi ngl nst ruct i ons matches any
Shi ppi ngl nstructi ons element under the Pur chaseOr der element.

* Used as a wildcard to match any child node. For example, / PO/ */ STREET matches
any street element that is a grandchild of the POelement.

[1] Used to denote predicate expressions. XPath supports a rich list of binary operators
such as OR, AND, and NOT. For example, / P PONO=20 and PNAMVE=" PO_
2"]/ SHI PADDR select out the shipping address element of all purchase orders whose
purchase order number is 20 and whose purchase order name is PO _2. [] is also used
to denote an index into a list. For example, / PO PONJ 2] identifies the second
purchase order number element under the PO root element.

Functions XPath supports a set of built-in functions such as subst ri ng(),round(), and
not () . In addition, XPath allows extension functions through the use of namespaces.
In the Oracle namespace, ht t p: / / xm ns. or acl e. conf xdb, XML DB additionally
supports the function ora:contains(). This functions behave just like the equivalent SQL
function.

The XPath must identify a single node, or a set of element, text, or attribute nodes. The
result of the XPath cannot be a Boolean expression.

Oracle Extension XPath Function Support

Oracle supports the XPath extension function or a: cont ai ns() . This function
provides text searching functionality with XPath.

See Also: Chapter 9, "Full Text Search Over XML"
Selecting XML Data Using XMLType Member Functions

You can select XMLType data using PL/SQL, C, or Java. You can also use the SQL
functions get Cl obVal (), get StringVal (), get Number Val (), or

4-2 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

get Bl obVal (csi d) functions to retrieve XML as a CLOB, VARCHAR, NUMBER, or
BLOB, respectively.

Example 4-1 Selecting XMLType Columns using getClobVal()

This example shows how to select an XMLType column using get Cl obVal () in
SQL*Plus:

set long 500
set pagesi ze 100
set |inesize 132

create table XML_TABLE of XM.Type;

Tabl e created.

create table TABLE WTH XM._COLUWN
(

FI LENAVE var char 2(64),
XM._DOCUNENT XM.Type

)i

Tabl e created.

I NSERT | NTO XM__TABLE
VALUES

(
xm type

bfilename(' XM.DIR , ' purchaseOrder.xm "),
nl's_charset _id("' AL32UTF8")

)

1 row created.

I NSERT | NTO TABLE_W TH_XM._COLUWN (FI LENAME, XM._DOCUVMENT)
VALUES

" purchaseOrder. xm ',
xm type

bfilename(' XM.DI R , ' purchaseOrder.xm "),
nl's_charset _id('AL32UTF8")

)
1 row created.
sel ect x.object_val ue. get CLOBVal ()
from XM__TABLE x;
X. OBJECT_VALUE. GETCLOBVAL()

<Pur chaseOrder xnlns:xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance" xsi: noNames
paceSchenmalLocati on="http:// | ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der.

XMLType Operations 4-3

Selecting and Querying XML Data

xsd" >
<Ref erence>SBELL-2002100912333601PDT</ Ref er ence>
<Actions>
<Action>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>
<Rej ect/>
<Request or >Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructions>
<nane>Sarah J. Bel | </ name>
<address>400 Oracl e Parkway
Redwood Shor

1 row sel ect ed.

sel ect x. XM._DOCUMENT. get CLOBVal ()
from TABLE_W TH_XM._COLUWN x;

X. XM__DOCUMENT. GETCLOBVAL()
<Pur chaseOrder xnlns:xsi="http://ww.w3. org/ 2001/ XM.Schena- i nstance" xsi: noNames
paceSchemalLocati on="http:// | ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseCOr der .
xsd" >
<Ref er ence>SBELL-2002100912333601PDT</ Ref er ence>
<Acti ons>
<Acti on>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>
<Rej ect/>
<Request or>Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructi ons>
<name>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shor

1 row sel ected.

Querying XML Data Using XMLType Functions

You can query XMLType data and extract portions of it using the exi st sNode(),
extract (), orextract Val ue() functions. These functions use a subset of the W3C
XPath recommendation to navigate the document.

= existsNode() XMLType Function
= extract() XMLType Function
= extractValue() XMLType Function

4-4 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

existsNode() XMLType Function

Figure 4-1 and the following describes the syntax for the exi st sNode() XM.Type
function:

exi st sNode(XM_Type_i nstance | N XM.Type,
XPath_string IN VARCHAR2, nanespace_string IN varchar2 := null) RETURN NUMBER

Figure 4-1 existsNode() Syntax

O
—J{ EXISTSNODE F@{XMLTypefinstance XPath_string @

The exi st sNode() XMLType function checks if the given XPath evaluation results in
at least a single XML element or text node. If so, it returns the numeric value 1,
otherwise, it returns a 0. The nanmespace parameter can be used to identify the
mapping of prefix(es) specified in the XPat h_st ri ng to the corresponding
namespace(s).

Example 4-2 Using existsNode() on XMLType

The following example demonstrates how to use exi st sNode() on an XM_Type
instance in a query.

SELECT extract (object _val ue,'/PurchaseOrder/ Reference') "REFERENCE"
FROM PURCHASEORDER
VHERE
exi st sNode(obj ect _val ue, ' / PurchaseOr der [Speci al I nstructions="Expidite"]') =1

An XPath expression such as / Pur chaseOr der / Ref er ence results in a single node.
Therefore, exi st sNode() will return 1 for that XPath. This is the same with
/ Pur chaseOr der / Ref er ence/ t ext (), which results in a single text node.

An XPath expression such as / PO/ POTYPE does not return any nodes. Therefore, an
exi st sNode() on this would return the value 0.

To summarize, exi st sSNode() member function can be used in queries and to create
function-based indexes to speed up evaluation of queries.

The following example uses exi st sNode() to select rows with
Speci al I nstructi ons set to Expedi te.

Note: When using the exi st sNode() function in a query, always
specify exi st sNode() in the WHERE clause as shown in this example,
never in the SELECT list.

Example 4-3 Using existsNode() to Find a node

SELECT obj ect _val ue

FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _val ue, '/ PurchaseOrder [Speci al I nstructions="Expidite"]') =
1

OBJECT_VALUE

<Pur chaseOrder xnlns:xsi="http://ww.w3.org/ 2001/ XM_Schena-i nst ance"
<Pur chaseOrder xnlns:xsi="http://ww:. w3. org/ 2001/ XM.Schena-i nst ance"
<Pur chaseOrder xnlns:xsi="http://ww:. w3. org/ 2001/ XM.Schena-i nst ance"

XMLType Operations 4-5

Selecting and Querying XML Data

<Pur chaseOrder xm ns:xsi="http://wmw. w3. org/ 2001/ XM_.Schena- i nst ance"
<Pur chaseOrder xnlns:xsi="http://wmw. w3.org/ 2001/ XM_.Schena-i nst ance"
<Pur chaseOrder xnl ns:xsi="http://ww.w3.org/ 2001/ XM_Schena-i nst ance"
<Pur chaseOrder xnlns:xsi="http://ww:. w3. org/ 2001/ XM.Schena-i nst ance"
<Pur chaseOrder xnlns:xsi="http://wmw:. w3. org/ 2001/ XM.Schena-i nst ance"
<Pur chaseOrder xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
<Pur chaseOrder xm ns:xsi="http://wm. w3. org/ 2001/ XM_.Schena- i nst ance"
<Pur chaseOrder xmns:xsi="http://wmw. w3.org/ 2001/ XM_.Schena-i nst ance"
<Pur chaseOrder xnl ns:xsi="http://ww.w3.org/ 2001/ XM_Schena-i nst ance"
<Pur chaseOrder xnlns:xsi="http://ww:. w3. org/ 2001/ XM.Schena-i nst ance"

13 rows sel ected.

Using Indexes to Evaluate existsNode()

You can create function-based indexes using exi st sNode() to speed up the
execution. You can also create a CTXXPATH index to help speed up arbitrary XPath
searching.

See Also: "Creating CTXXPATH Indexes" on page 4-33

extract() XMLType Function

The ext ract () XMLType function is similar to the exi st sNode() function. It
applies a VARCHAR?2 XPat h string with an optional nanespace parameter and
returns an XMLType instance containing an XML fragment. The syntax is described in
Figure 4-2 and follows:

extract (XM.Type_instance I N XM.Type, XPath_string I N VARCHAR?,
namespace_string In varchar2 := null) RETURN XM.Type;

Figure 4-2 extract() Syntax

O
—J{ EXTRACT |—>®{XMLTypefinstance)»@—(XPathfstring) @

extract () on XMLType extracts the node or a set of nodes from the document
identified by the XPath expression. The extracted nodes can be elements, attributes, or
text nodes. If multiple text nodes are referenced in the XPath, the text nodes are
collapsed into a single text node value. Nanespace can be used to supply namespace
information for prefixes in the XPath string.

The XMLType resulting from applying an XPath through ext r act () need not be a
well-formed XML document but can contain a set of nodes or simple scalar data. You
can use the get St ri ngVal () or get Nunber Val () methods on XMLType to extract
the scalar data.

For example, the XPath expression / Pur chaseOr der / Ref er ence identifies the
PNAME element inside the XML document shown previously. The expression

/ Pur chaseOr der/ Ref er ence/ t ext (), on the other hand, refers to the text node of
the Ref er ence element.

4-6 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

Note: A text node is considered an XMLType. In other words,
ext ract (obj ect _val ue,

'/ PurchaseOrder/ Ref erence/text()")
still returns an XMLt ype instance although the instance may
actually contain only text. You can use get St ri ngVal () to get the
text value out as a VARCHARZ result.

Uset ext () nodet est function to identify text nodes in elements before using the
get StringVal () or get Nunber Val () to convert them to SQL data. Not having the
t ext () node would produce an XML fragment.

For example, XPath expressions:

= [PurchaseOrder/ Ref er ence identifies the fragment <Ref er ence> . ..
</ Ref erence>

« [PurchaseOrder/ Reference/text() identifies the value of the text node of
the Ref er ence element.

You can use the index mechanism to identify individual elements in case of repeated
elements in an XML document. For example, if you have an XML document such as:

<Pur chaseOrder xnmlns:xsi="http://wm. w3. org/ 2001/ XM_.Schena-i nst ance"
xsi : noNamespaceSchenmalLocat i on=
“http://1ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd" >
<Ref er ence>SBELL- 2002100912333601PDT</ Ref er ence>
<Actions>
<Acti on>
<User >SVOLLMAN</ User >
</ Action>
</ Acti ons>
<Rej ect/ >
<Request or >Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructi ons>
<nane>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shor es
CA
94065
USA</ addr ess>
<t el ephone>650 506 7400</t el ephone>
</ Shi ppi ngl nstructi ons>
<Speci al I nstructions>Air Mil </ Special I nstructions>
<Li nel tens>
<Linel tem It em\unber="1">
<Description>A N ght to Remenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp
<Lineltem It em\unber="2">
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</ Lineltenp
<Li nel tem | t em\unber =" 3" >
<Descri ption>Si st ers</Descri pti on>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenp
</Lineltenms>

XMLType Operations 4-7

Selecting and Querying XML Data

</ Pur chaseCOr der >

then you can use:
= //Linelten1] toidentify the first Li nel t emelement.
= //Linelten 2] toidentify the second Li nel t emelement.

The result of ext r act () is always an XMLType. If applying the XPath produces an
empty set, then ext r act () returns a NULL value.

To summarize, the ext r act () member function can be used in a number of ways.
For example, to extract:

= Numerical values on which function-based indexes can be created to speed up
processing

= Collection expressions for use in the FROMclause of SQL statements
= Fragments for later aggregation to produce different documents

This example extracts the value of node, / Var ehouse/ Docks, of column,
war ehouse_spec in table oe. war ehouses:

The following example uses ext r act () to query the value of the Ref er ence column
for orders with Speci al | nstructi ons setto Expedi t e.

Example 4-4 Using extract() to Extract the Value of a Node

SELECT extract (object _val ue,'/PurchaseCOrder/ Ref erence') "REFERENCE"

FROM PURCHASEORDER
VHERE exi st sNode(obj ect _val ue, '/ PurchaseOrder [Speci al I nstructions="Expidite"]') =
1

<Ref er ence>AMCEVEN- 20021009123336271PDT</ Ref er ence>
<Ref er ence>SKI NG 20021009123336321PDT</ Ref er ence>
<Ref er ence>AWALSH 20021009123337303PDT</ Ref er ence>
<Ref er ence>JCHEN- 20021009123337123PDT</ Ref er ence>
<Ref er ence>AWALSH 20021009123336642PDT</ Ref er ence>
<Ref er ence>SKI NG 20021009123336622PDT</ Ref er ence>
<Ref er ence>SKI NG 20021009123336822PDT</ Ref er ence>
<Ref er ence>AWALSH 20021009123336101PDT</ Ref er ence>
<Ref er ence>WsM TH- 20021009123336412PDT</ Ref er ence>
<Ref er ence>AWALSH- 20021009123337954PDT</ Ref er ence>
<Ref er ence>SKI NG 20021009123338294PDT</ Ref er ence>
<Ref erence>WsM TH- 20021009123338154PDT</ Ref er ence>
<Ref er ence>TFOX- 20021009123337463PDT</ Ref er ence>

13 rows sel ected.

Note: Functionsextract().getStringVal () and

ext ract Val ue() differ in their treatment of entity encoding.
Function ext r act Val ue() unescapes any encoded entities;
extract ().get StringVal () returns the data with entity
encoding intact.

4-8 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

extractValue() XMLType Function

The extract val ue() XM.Type function takes as arguments an XMLType instance
and an XPath expression. It returns a scalar value corresponding to the result of the
XPath evaluation on the XMLType instance. Figure 4-3 describes the

extract Val ue() syntax.

« XML schema-based documents. For documents based on XML schema, if Oracle
Database can infer the type of the return value, then a scalar value of the
appropriate type is returned. Otherwise, the result is of type VARCHAR2.

= Non-schema-based documents. If the extract Val ue() query can potentially
be re-written, such as when the query is over a SQL/XML view, then a scalar
value of the appropriate type is returned. Otherwise, the result is of type
VARCHAR2.

The ext ract Val ue() function attempts to determine the proper return type from
the XML schema of the document, or from other information such as the SQL /XML
view. If the proper return type cannot be determined, then Oracle XML DB returns a
VARCHAR?2. With XML schema-based content, ext r act Val ue() returns the
underlying datatype in most cases. For CLOB datatypes, it will return the CLOB
directly.

If a specific datatype is desired, conversion functions such ast o_char ort o_dat e
can be put around the ext r act Val ue() function call or around an

extract. get StringVal (). This can help maintain consistency between different
queries regardless of whether the queries can be rewritten.

Figure 4-3 extractValue() Syntax

0
EXTRACTVALUE [5(() XMLType_instance}@(xpath_string) @

A Shortcut Function

extract Val ue() permits you to extract the desired value more easily than when
using the equivalent ext r act () function. It is an ease-of-use and shortcut function.
So instead of using:

extract (x, ' path/text()").get(string|nunber)val ()

you can replace ext ract (). get Stri ngVal () orextract (). getnunberval ()
with extract Val ue() as follows:

extractVal ue(x, 'path/text()')

With ext ract Val ue() you can leave off the t ext () , but ONLY if the node pointed
to by the 'pat h' part has only one child and that child is a text node. Otherwise, an
error is thrown.

ext ract Val ue() has the same syntax as ext ract ().

extractValue() Characteristics
ext ract Val ue() has the following characteristics:

= It always returns only scalar content, such as NUMBER, VARCHARZ, and so on.

= It cannot return XML nodes or mixed content. It raises an error at compile or run
time if it gets XML nodes as the result.

XMLType Operations 4-9

Selecting and Querying XML Data

« Italways returns VARCHAR2 by default. If the node value is bigger than 4K, a
runtime error occurs.

= In the presence of XML schema information, at compile time, ext r act Val ue()
can automatically return the appropriate datatype based on the XML schema
information, if it can detect so at compile time of the query. For instance, if the
XML schema information for the path / PO’ POl Dindicates that this is a numerical
value, then ext r act Val ue() returns a NUVBER

= If the extractValue() is on top of a SQL/XML view and the type can be determined
at compile time, the appropriate type is returned.

» If the XPath identifies a node, then it automatically gets the scalar content from its
text child. The node must have exactly one text child. For example:

extract Val ue(xm i nstance, '/PurchaseOr der/Reference')

extracts out the text child of Ref er ence. This is equivalent to:

extract (xminstance, '/PurchaseOrder/Reference/text()').getstringval ()

Example 4-5 demonstrates usage of the ext r act Val ue() function. This query
extracts the scalar value of the Reference column. This is in contrast to the ext r act ()
function shown in Example 4—4 where the entire <Ref er ence> element is extracted.

Example 4-5 Extracting the Scalar Value of an XML Fragment Using extractValue()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence') "REFERENCE"

FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, '/ PurchaseOr der [Speci al I nstructions="Expidite"]') =
1

REFERENCE

AMCEVEEN- 20021009123336271PDT
SKI'NG- 20021009123336321PDT
AWALSH- 20021009123337303PDT
JCHEN- 20021009123337123PDT
AWALSH- 20021009123336642PDT
SKI'NG- 20021009123336622PDT
SKI'NG- 20021009123336822PDT
AWALSH- 20021009123336101PDT
WSM TH-20021009123336412PDT
AWALSH- 20021009123337954PDT
SKI'NG- 20021009123338294PDT
WSM TH-20021009123338154PDT
TFOX-20021009123337463PDT

13 rows sel ect ed.

Note: Functionsextract().getStringVal () and
extract Val ue() differ in their treatment of entity encoding.
Function ext r act Val ue() unescapes any encoded entities;
extract ().getStringVal () returns the data with entity
encoding intact.

Querying XML Data With SQL
The following examples illustrate ways you can query XML data with SQL.

4-10 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

Example 4-6 inserts two rows into the PURCHASEORDER table and performs a query of
data in those rows using ext r act Val ue() .

Example 4-6 Querying XMLType Using extractValue() and existsNode()

I NSERT | NTO PURCHASEORDER
VALUES
(
xnl type
(
bfilename(' XMLDI R , " SMCCAI N- 2002091213000000PDT. xni "),
nl's_charset _id("' AL32UTF8")
)
);

1 row created.

I NSERT | NTO PURCHASEORDER
VALUES
(
xm type
(
bfil ename(' XMLDI R, ' VJONES- 20020916140000000PDT. xm "),
nls_charset _i d(' AL32UTF8")
)
);

1 row created.

col um REFERENCE fornmat A32
colum USERI D format A8
col um STATUS format A8
col um STATUS_DATE format Al2
set LI NESIZE 132

SELECT extract Val ue(obj ect _val ue,"' / PurchaseCOr der/ Ref erence’) REFERENCE,
extract Val ue(obj ect _val ue, '/ PurchaseQrder/*//User') USERID,
case
when exi st sNode(obj ect _val ue, '/ PurchaseOrder/Reject/Date') =1
then 'Rejected
el se ' Accept ed'
end " STATUS",
extract Val ue(obj ect _val ue,'//Date') STATUS DATE
FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _value,'//Date') =1
ORDER By extract Val ue(object_value,'//Date');

REFERENCE USERID STATUS STATUS_DATE
VJONES- 20020916140000000PDT SVOLLMAN Accept ed 2002-10-11
SMCCAI N- 2002091213000000PDT SKI'NG Rej ect ed 2002-10- 12

2 rows selected.

Example 4-7 demonstrates using a cursor in PL/SQL to query XML data. A local
XM_Ty pe instance is used to store transient data.

XMLType Operations 4-11

Selecting and Querying XML Data

Example 4-7 Querying Transient XMLType Data

decl are
xNode XM.Type;
vText VARCHAR2(256) ;

vRef erence VARCHAR2(32) ;

cursor getPurchaseOrder (REFERENCE in VARCHAR2) is
SELECT obj ect _val ue XM
FROM PURCHASEORDER
VHERE
EXI STSNODE(obj ect _val ue, ' / PurchaseOr der [Ref erence=""|| REFERENCE || '"]')
=1;

begin
vRef erence : = ' EABEL-20021009123335791PDT" ;
FOR ¢ I N get PurchaseOr der (vRef erence)

LOooP
XxNode := c. XM.. extract (' //Requestor');
vText := xNode.extract('//text()').getStringVal();
dbns_out put. put _Iine(' The Requestor for Reference ' || vReference ||
"is '"|| vText);
END LOCP;

vRef erence : = ' PTUCKER- 20021009123335430PDT" ;
FOR ¢ I N get PurchaseQOr der (vRef erence)
LooP
XxNode : = c. XM..extract('//Linelten] @tenNurmber="1"]/Description');
vText : = xNode.extract('//text()").getStringVal();
dbns_out put. put _|ine(' The Description of Linelten{1l] for Reference
|| vReference || ' is '|| vText);
END LOOP;
end;
/

The Requestor for Reference EABEL-20021009123335791PDT is Ellen S. Abel
The Description of Lineltenf1l] for Reference PTUCKER-20021009123335430PDT is
Pi cnic at Hangi ng Rock

PL/ SQL procedure successfully conpl eted.

Example 4-8 shows how to extract data from an XML purchase order and insert it into
a SQL relational table using the ext r act () function.

Example 4-8 Extracting Data From an XML Document and Inserting It Into a Table

create tabl e PURCHASEORDER TABLE
(

REFERENCE VARCHAR2(28) PRI MARY KEY,
REQUESTER VARCHAR2(48) ,
ACTI ONS XMLTYPE,

USERI D VARCHAR2(32) ,
COSTCENTER VARCHAR2(3) ,

SHI PTONAME VARCHAR2(48) ,
ADDRESS VARCHAR2(512) ,
PHONE VARCHAR2(32) ,
REJECTEDBY VARCHAR2(32) ,
DATEREJECTED DATE,

COVMENTS VARCHAR2(2048) ,
SPECI ALI NSTRUCTI ONS VARCHAR2(2048)

4-12 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

) .

’

Tabl e created.

create tabl e PURCHASEORDER LI NEI TEM

(

REFERENCE,
FOREI GN KEY (" REFERENCE")

CASCADE,

)

LI NENO
PRI MARY KEY ("REFERENCE'," LI NENO'),
UPC

DESCR! PTI ON

QUANTI TY

UNI TPRI CE

Tabl e created.

(

)

sel ect x.object_val ue. extract

nsert into PURCHASEORDER TABLE

REFERENCE,
REQUESTER,
ACTI ONS,

USERI D,
COSTCENTER,
SHI PTONANE,
ADDRESS,
PHONE,
REJECTEDBY,
DATEREJECTED,
COWMENTS,
SPECI ALl NSTRUCTI ONS

. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract
. obj ect _val ue. extract

X. obj ect _val ue. extract
from PURCHASEORDER x

X X X X X X X X X X

~ o~~~ o~~~ o~~~ —~ —

REFERENCES " PURCHASEORDER_TABLE"' ("REFERENCE') ON DELETE

NUMBER(10) ,

VARCHAR2(14) ,
VARCHAR2(128) ,
NUNMBER(10) ,
NUMBER(12, 2)

" | PurchaseOrder/Reference/text()').getStringval (),
"I PurchaseOrder/ Requestor/text()').getStringVval (),
" PurchaseOrder/ Actions'),
"/ PurchaseOrder/User/text()').getStringVal (),

"I PurchaseOrder/ Cost Center/text()').getStringVval (),

" | Pur chaseCOr der/ Shi ppi ngl nstructions/ nane/text()").getStringVal (),

" | Pur chaseOr der/ Shi ppi ngl nstructi ons/ address/text()').getStringVal ()
" | Pur chaseOr der / Shi ppi ngl nstructions/tel ephone/text()').getStringVal
"/ PurchaseOrder/Rej ection/ User/text()').getStringVval (),

"/ PurchaseOrder/Rejection/Date/text()').getStringVval (),

" PurchaseOr der/ Rej ecti on/ Comments/text()').getStringVal (),

"I PurchaseOr der/ Speci al I nstructions/text()").getStringVal ()

0.

wher e x. obj ect _val ue. exi st sNode(' / Pur chaseOr der [Ref er ence="EABEL- 20021009123336251PDT"]") = 1,

1 row created.

(

)

sel ect x.object_val ue. extract (' /PurchaseOrder/Reference/text()').getStringVal (),

nsert into PURCHASECRDER LI NEI TEM

REFERENCE,

LI NENO,

UPC,

DESCR! PTI ON,
QUANTI TY,
UNI TPRI CE

XMLType Operations 4-13

Selecting and Querying XML Data

value(l).extract('/Lineltem @tenmNunber'). get NunberVal (),
value(l).extract('/Lineltem Part/@d').get NunberVal (),
val ue(l).extract('/Linelten Description/text()').getStringval(),
value(l).extract('/Lineltem Part/ @uantity').get NunberVal (),
value(l).extract('/Lineltem Part/ @hnitPrice').getNunberVal ()
from PURCHASEORDER x,
tabl e (xm sequence(val ue(x).extract('/PurchaseOrder/Lineltens/Lineltent))) |
wher e exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="EABEL- 20021009123336251PDT"]") = 1;

3 rows created.

set linesize 132

colum USERID formt A8

col urm SPECI ALI NSTRUCTI ONS format A32
col um DESCRI PTION format A34

sel ect REFERENCE, USERI D, SHI PTONAME, SPECI ALI NSTRUCTI ONS
from PURCHASEORDER TABLE;

REFERENCE USERID SHI PTONAME SPEC!I ALl NSTRUCTI ONS
EABEL-20021009123336251PDT EABEL Ellen S Abel Counter to Counter

1 row sel ected.

sel ect REFERENCE, LINENO, UPC, DESCRIPTION, QUANTITY
from PURCHASEORDER LI NEI TEM

REFERENCE LI NENO UPC DESCRI PTI ON QUANTI TY
EABEL-20021009123336251PDT 1 37429125526 Samurai 2: Duel at Ichijoji Tenple 3
EABEL- 20021009123336251PDT 2 37429128220 The Red Shoes 4
EABEL-20021009123336251PDT 3 715515009058 A Night to Remenber 1

3 rows selected.

Note: PNAMEis NULL, because the input XML document did not
have the element called PNAME under PO. Also, the preceding
example used / / Cl TY to search for the city element at any depth.

Example 4-9 shows how to extract data from an XML purchase order and insert it into
a SQL relational table using the ext r act Val ue() function.

Example 4-9 Extracting Data from an XML Document and Inserting It Into a Table Using extractValue()

create or replace procedure |nsertPurchaseO der (PurchaseOrder xnltype)
as

REFERENCE VARCHAR2(28) ;
begin

insert into PURCHASEORDER TABLE

(
REFERENCE,
REQUESTER,
ACTI ONS,
USERI D,
COSTCENTER,
SHI PTONAME,
ADDRESS,
PHONE,
REJECTEDBY,

4-14 Oracle XML DB Developer's Guide

Selecting and Querying XML Data

DATEREJECTED,

COVMENTS,

SPECI ALI NSTRUCTI ONS
)

val ues
(
extract Val ue(PurchaseOrder, ' / PurchaseOr der/ Ref erence'),
extract Val ue(PurchaseOrder, ' / PurchaseOr der/ Requestor'),
extract (PurchaseOrder, '/ PurchaseOrder/Actions'),
extract Val ue(PurchaseOrder, '/ PurchaseOrder/ User'),
extract Val ue(PurchaseOrder, ' / PurchaseCr der/ Cost Center'),
extract Val ue(Pur chaseOrder, ' / Pur chaseOr der / Shi ppi ngl nstructi ons/ nane'),
extract Val ue(PurchaseOrder, ' / PurchaseOr der/ Shi ppi ngl nstructi ons/ address'),
extract Val ue(PurchaseOrder, '/ PurchaseOr der/ Shi ppi ngl nstructions/tel ephone'),
extract Val ue(PurchaseOrder, '/ PurchaseOr der/ Rej ection/ User'),
extract Val ue(PurchaseOrder, '/ PurchaseOrder/ Rej ection/Date'),
extract Val ue(PurchaseOrder, '/ PurchaseOr der/ Rej ecti on/ Coments'),
extract Val ue(PurchaseOrder, "'/ PurchaseOr der/ Speci al | nstructions')
)
returni ng REFERENCE
into REFERENCE;

insert into PURCHASEORDER LI NEI TEM
(
REFERENCE,
LI NENO,
UPC,
DESCRI PTI ON,
QUANTI TY,
UNI TPRI CE
)
sel ect REFERENCE,
extract Val ue(val ue(l),'/Lineltend @t enNunber'),
extract Val ue(value(l),"/LineltemPart/@d'),
extract Val ue(val ue(l),"/Lineltem Description'),
(.
(1),

—_—

extract Val ue(val ue "ILineltenf Part/ @uantity'),
extract Val ue(val ue "ILineltem Part/ @hitPrice')
fromtabl e(xm sequence(extract (PurchaseOr der,'/PurchaseOrder/Lineltens/Lineltem))) I;
end;
/
Procedure created.

call insertPurchaseCOrder(xmtype(bfilenane(' XM.DIR , ' purchaseOrder.xm '), nls_charset _id(' AL32UTF8')));
Cal | conpl et ed.

set linesize 132

col um USERID format A8

col um SPECI ALI NSTRUCTI ONS format A32

col unmm DESCRI PTION format A34

sel ect REFERENCE, USERI D, SHI PTONAME, SPECI ALI NSTRUCTI ONS
f rom PURCHASECRDER_TABLE;

REFERENCE USERID SHI PTONAME SPECI ALI NSTRUCTI ONS
SBELL-2002100912333601PDT SBELL Sarah J. Bell Air Mil
1 row sel ected.
sel ect REFERENCE, LINENO, UPC, DESCRI PTION, QUANTITY
from PURCHASEORDER LI NEI TEM

REFERENCE LI NENO UPC DESCRI PTI ON QUANTI TY

XMLType Operations 4-15

Selecting and Querying XML Data

SBELL-2002100912333601PDT 1 715515009058 A Night to Renenber 2
SBELL-2002100912333601PDT 2 37429140222 The Unbear abl e Li ghtness O Being 2
SBELL-2002100912333601PDT 3 715515011020 Sisters 4

3 rows selected.

Example 4-10 demonstrates some operations you can perform using the ext r act ()
and exi st sNode() functions. This example extracts the purchase order name from
the purchase order element Pur chaseQr der , for customers with "l | " (double L) in
their names and the word "Shor es" in the shipping instructions.

Example 4-10 Searching XML Data with extract() and existsNode()

SELECT p. obj ect _val ue. extract (' /PurchaseOr der/ Requestor/text()').getStringVal () NAME,
count (*)
FROM PURCHASECRDER p
WHERE p. obj ect _val ue. exi st sNode
(
" | Pur chaseOr der / Shi ppi ngl nstructi ons[ora: cont ai ns(address/text (), "Shores")>0]",
"xm ns:ora="http://xm ns. oracl e. con xdb'
) =1
AND p. obj ect _val ue. extract (' / PurchaseOrder/ Requestor/text()').getStringval () like '%1%
GROUP BY p. obj ect _val ue. extract (' /PurchaseOrder/ Requestor/text()').getStringVal ();

NAMVE COUNT(*)
Allan D. MEwen 9
Ellen S. Abel 4
Sarah J. Bell 13
WlliamM Snmith 7

4 rows sel ected.

Example 4-11 shows the proceeding query rewritten using the ext r act Val ue()
function.

Example 4-11 Searching XML Data with extractValue()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Requestor') NAME, count(*)
FROM PURCHASECRDER p
VWHERE exi st sNode
(
obj ect _val ue,
" | Pur chaseOr der / Shi ppi ngl nstructions[ora: cont ai ns(address/text(),"Shores")>0]",
"xmns:ora="http://xmns. oracl e. com xdb'
) =1
AND extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Requestor/text()') like "%1%
GROUP BY extract Val ue(obj ect _val ue, ' / PurchaseCOr der/ Requestor');

NAMVE COUNT(*)
Allan D. McEwen 9
Ellen S. Abel 4
Sarah J. Bell 13
WlliamM Smth 7

4 rows selected.

Example 4-12 shows usage of the ext ract () function to extract nodes identified by
an XPath expression. An XMLType instance containing the XML fragment is returned
by the ext r act () call. The result may be a set of nodes, a singleton node, or a text
value. You can determine whether the result is a fragment using the i sFragment ()
function on the XM_Ty pe.

4-16 Oracle XML DB Developer's Guide

Updating XML Instances and XML Data in Tables

Note: You cannot insert fragments into XML Ty pe columns. You
can use SYS_XMLCGEN() to convert a fragment into a
well-formed document by adding an enclosing tag. See "SYS_
XMLGEN() Function" on page 15-41. You can, however, query
further on the fragment using the various XMLType functions.

Example 4-12 Extracting Fragments from XMLType Using extract()

sel ect extractVal ue(obj ect _val ue, '/ PurchaseCOr der/ Ref erence') REFERENCE,
count (*)
from PURCHASECORDER,
tabl e (xm sequence(extract(object_value,' //LineltenfPart@d="37429148327"]1"))) |
where extract (object_val ue, '/ PurchaseOrder/Lineltens/Linelten]Part/ @d="37429148327"]").isFragment() =1
group by extractVal ue(object _val ue, '/ PurchaseOr der/ Ref erence')
order by extractVal ue(object_val ue,'/PurchaseOr der/ Reference');

AWALSH- 20021009123337303PDT
AWALSH-20021009123337954PDT
DAUSTI N- 20021009123337553PDT
DAUSTI N-20021009123337613PDT
LSM TH-2002100912333722PDT
LSM TH-20021009123337323PDT
PTUCKER- 20021009123336291PDT
SBELL-20021009123335771PDT
SKI'NG- 20021009123335560PDT
SMCCAI N-20021009123336151PDT
SMCCAI N-20021009123336842PDT
SMCCAI N- 2002100912333894PDT
TFOX-2002100912333681PDT
TFOX-20021009123337784PDT
WSM TH-20021009123335650PDT
WM TH- 20021009123336412PDT

PR WRRPRRPRRPRRRPRRERRERRRERERR

16 rows sel ected.

Updating XML Instances and XML Data in Tables

This section talks about updating transient XML instances and XML data stored in
tables.

For CLOB-based storage, an update effectively replaces the whole document. To
update the whole XML document use the SQL UPDATE statement. The right hand side
of the UPDATE statement SET clause must be an XMLType instance. This can be created
using the SQL functions and XML constructors that return an XML instance, or by
using the PL/SQL DOM APIs for XMLType or Java DOM AP], that change and bind
existing XML instances.

Example 4-13 updates an XMLType instance using the UPDATE statement.

Note: Updates for non-schema based XML documents always
update the whole XML document.

Example 4-13 Updating XMLType Using the UPDATE Statement

sel ect extractVal ue(obj ect _val ue, '/ PurchaseCOr der/ Ref erence') REFERENCE,
extract Val ue(val ue(l),"'/Lineltem @temNumber') LI NENQ,
extract Val ue(val ue(l),"'/Lineltem Description') DESCRI PTION

XMLType Operations 4-17

Updating XML Instances and XML Data in Tables

f r om PURCHASEORDER,
tabl e (xm sequence(extract(object_value,'//Lineltem))) |
VWHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="DAUSTI N- 20021009123335811PDT"]") = 1
and ROMUM < 6;

REFERENCE LI NENO DESCRI PTI ON
DAUSTI N-20021009123335811PDT 1 Nights of Cabiria
DAUSTI N-20021009123335811PDT 2 For All Mankind
DAUSTI N-20021009123335811PDT 3 Dead Ringers
DAUSTI N-20021009123335811PDT 4 Hearts and M nds
DAUSTI N-20021009123335811PDT 5 Rushnore

5 rows sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = xm type
(
bfi | ename(' XMLDI R, ' NEW DAUSTI N- 20021009123335811PDT. xm '),
nls_charset _id("' AL32UTF8")

)
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="DAUSTI N- 20021009123335811PDT"] ') = 1,

1 row updat ed.

sel ect extractVal ue(object _val ue, '/ PurchaseOr der/ Ref erence') REFERENCE,
extract Val ue(val ue(l),"'/Lineltem @tem\unber') LINENG,
extract Val ue(val ue(l),"'/Lineltem Description') DESCR PTI ON
f r om PURCHASEORDER,
tabl e (xm sequence(extract(object_value,'//Lineltem))) |
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="DAUSTI N- 20021009123335811PDT"]") = 1,

REFERENCE LI NENO DESCRI PTI ON
DAUSTI N-20021009123335811PDT 1 Dead Ringers
DAUSTI N-20021009123335811PDT 2 Cetrud

DAUSTI N-20021009123335811PDT 3 Branded to Kill

3 rows selected.

updateXML() XMLType Function

updateXML() function takes in a source XMLType instance, and a set of XPath value
pairs. Figure 44 illustrates the updat eXM.() syntax. It returns a new XML instance
consisting of the original XMLTy pe instance with appropriate XML nodes updated
with the given values. The optional namespace parameter specifies the namespace
mapping of prefix(es) in the XPath parameters.

updat eXM.() can be used to update or replace elements, attributes, and other nodes
with new values. They cannot be directly used to insert new nodes or delete existing
ones. The containing parent element should be updated with the new values instead.

Figure 4-4 updateXML() Syntax

(X
O~ 0O
—{ UPDATEXML (()>(XMLType_instance XPath_string value_expr) O

4-18 Oracle XML DB Developer's Guide

Updating XML Instances and XML Data in Tables

updat eXM.() updates only the transient XML instance in memory. Use a SQL
UPDATE statement to update data stored in tables. The updat eXM_() syntax is:

UPDATEXM_(xn i nst ance, xpathl, value_exprl
[, xpath2, value_expr2]...[,namespace_string]);

Example 4-14 demonstrates using the updat eXM_() function in the right hand side of
an UPDATE statement to update the XML document in the table instead of creating a
new one. Note that updat eXM_() updates the whole document, not just the part
selected.

Example 4-14 Updating XMLType Using UPDATE and updateXML()

SELECT extract (obj ect _val ue, '/ PurchaseCrder/Actions/ Action[1]') ACTION

FROM PURCHASEORDER

WHERE

exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

<Action>
<User >SVOLLMANK/ User >
</ Action>

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM_(obj ect _val ue, '/ PurchaseCOrder/ Actions/Action[1]/User/text()",' SKING)
VWHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

1 row updat ed.

SELECT extract (obj ect_val ue,'/PurchaseOrder/Actions/Action[1]"') ACTION
FROVM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

<Action>
<User >SKI NG</ User >
</ Action>

1 row sel ected.
Example 4-15 shows how you can update multiple nodes using the updat eXM_()
function.

Example 4-15 Updating Multiple Text Nodes and Attribute Values Using updateXML()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Requestor') Nane,
extract (obj ect _val ue, '/ PurchaseOrder/Lineltens') LINE TEMS
FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

NANME LI NEI TEMB
Sarah J. Bell <Li nel t ens>
<Li neltem | t emNunber =" 1" >
<Description>A Night to Renenber</Description>
<Part 1d="715515009058" UnitPrice="39.95" Quantity="2"/>
</ Lineltem
<Li neltem | t emNunber ="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part 1d="37429140222" UnitPrice="29.95" Quantity="2"/>

XMLType Operations 4-19

Updating XML Instances and XML Data in Tables

</Linel tenp
<Li neltem It em\unmber="3">
<Descri ption>Si sters</Descri ption>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenp
</ Linel tens>

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM
(
obj ect _val ue,
"/ PurchaseOrder/ Requestor/text()'," Stephen G King',
"/ PurchaseOrder/Lineltens/Linelten]{1]/Part/@d',' 786936150421",
'/ PurchaseOrder/Lineltens/Linelten]1]/Description/text()',"' The Rock',
"I PurchaseOrder/Lineltens/Lineltenf3]",
XM.Type
(
"<Lineltem | tem\unber="99">
<Descri ption>Dead Ri ngers</Description>
<Part 1d="715515009249" UnitPrice="39.95" Quantity="2"/>
</ Linel t em'
)

)
VWHERE exi st sNode(obj ect _val ue, '/ Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Requestor') Nane,
extract (obj ect _val ue, '/ PurchaseOrder/Lineltens') LINE TEMS
FROM PURCHASEORDER
VWHERE exi st sNode(obj ect _val ue, ' / Pur chaseCOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

NAVE LI NEI TEMS
Stephen G King <Lineltenms>
<Li neltem | t emNunber ="1">
<Descri ption>The Rock</Descri ption>
<Part |d="786936150421" UnitPrice="39.95" Quantity="2"/>
</ Lineltem
<Li neltem | t emNunber ="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</ Lineltem
<Lineltem It emNunber ="99" >
<Descri ption>Dead Ri ngers</Description>
<Part |d="715515009249" UnitPrice="39.95" Quantity="2"/>
</Lineltenm
</ Li nel t ens>

1 row sel ected.

Example 4-16 demonstrates how you can use the updat eXM_() function to update
selected nodes within a collection.

Example 4-16 Updating Selected Nodes Within a Collection Using updateXML()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Requestor') Nane,
extract (obj ect _val ue, '/ PurchaseOrder/Lineltens') LINEl TEMS
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

NAVE LI NEI TEMS

4-20 Oracle XML DB Developer's Guide

Updating XML Instances and XML Data in Tables

Sarah J. Bell <Li nel t ens>
<Li neltem | t emNunber ="1">
<Description>A Night to Renenber</Description>
<Part 1d="715515009058" UnitPrice="39.95" Quantity="2"/>
</ Lineltem
<Li neltem | t emNunber ="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Linel tenp
<Lineltem It em\unber ="3">
<Descri ption>Si sters</Descri ption>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenp
</ Li nel t ens>

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM
(
obj ect _val ue,
' | PurchaseOrder/ Requestor/text()'," Stephen G King',
' [PurchaseOrder/Linel tens/Linelten Part[@d="715515009058"]/ @uantity', 25,
"/ PurchaseOrder/Linel tens/Linel tenf Description/text()="The Unbearabl e Lightness O Being"]"',

XM.Type
(
"<Lineltem Itenm\unber="99">
<Part 1d="786936150421" Quantity="5" UnitPrice="29.95"/>
<Descri ption>The Rock</Descri ption>
</Lineltenm'
)
)

VWHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1;
1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Requestor') Nane,
extract (obj ect _val ue,'/PurchaseOrder/Lineltens') LINE TEMS
FROM PURCHASECRDER
VHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1,

NAVE LI NEI TEMS
Stephen G King <Lineltems>
<Lineltem It em\unber="1">
<Description>A Night to Remenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="25"/>
</Lineltenm
<Li neltem | t emNunber =" 99" >
<Part 1d="786936150421" Quantity="5" UnitPrice="29.95"/>
<Descri ption>The Rock</Descri ption>
</ Lineltem
<Li neltem | t emNunber ="3">
<Descri ption>Si sters</Description>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltem
</ Li nel t ens>

1 row sel ected.

XMLType Operations 4-21

Updating XML Instances and XML Data in Tables

updateXML() and NULL Values

If you update an XML element to NULL, Oracle Database removes the attributes and
children of the element, and the element becomes empty. The type and namespace
properties of the element are retained. A NULL value for an element update is
equivalent to setting the element to empty.

If you update the t ext node of an element to NULL, Oracle Database removes the text
value of the element, and the element itself remains, but is empty.

Example 4-17 updates the Description element, Quantity element, and the t ext ()
node for the Quantity element to NULL using the updat eXM_() function.

Setting an attribute to NULL, similarly sets the value of the attribute to the empty
string.

You cannot use updat eXM_() to remove, add, or delete a particular element or an
attribute. To do so, you must update the containing element with a new value.

Example 4-17 NULL Updates With updateXML()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Requestor') Nane,
extract (obj ect _val ue,'/PurchaseOrder/Lineltens') LINEl TEMS
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1;

NAVE LI NEI TEMB
Sarah J. Bell <Li nel t ens>
<Lineltem It em\unber="1">
<Description>A Night to Renenber</Description>
<Part 1d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp
<Li neltem | t emNunber ="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</ Lineltem
<Lineltem It em\unber="3">
<Descri ption>Si sters</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltem
</Lineltenms>

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM
(
obj ect _val ue,
" | PurchaseOrder/ Linel t ens/ Li nel ten] Part/ @ d="715515009058"] / Descri ption', nul |,
" | Pur chaseQr der/ Li nel tens/ Li nel tenf Part [@ d="715515009058"]/ @uantity', null,
" | PurchaseOr der/Linel t ens/ Li nel tenf Description/text()="The Unbearabl e Lightness O Being"]", null

)
WHERE exi st sNode(obj ect _val ue, ' / PurchaseQOr der [Ref er ence="SBELL-2002100912333601PDT"]"') = 1;
1 row updat ed.
SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/Requestor') Nane,
extract (obj ect _val ue,'/PurchaseOrder/Lineltens') LINE TEMS
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1;

NAMVE LI NEI TEMS

4-22 Oracle XML DB Developer's Guide

Updating XML Instances and XML Data in Tables

Sarah J. Bell <Li nel tens>
<Lineltem It em\unmber="1">
<Descri ption/ >
<Part 1d="715515009058" UnitPrice="39.95" Quantity=""/>
</Linelten>
<Linelten >
<Lineltem It em\unber="3">
<Descri ption>Si st ers</Description>
<Part |1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenm>
</ Lineltems>

1 row sel ected.

The XPath expressions in the updat eXM_() Statement shown in Example 4-18 are
processed by Oracle XML DB and rewritten into the equivalent object relational SQL
statement given in Example 4-19.

Example 4-18 XPATH Rewrite with UpdateXML()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

EXTRACTVAL

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM.(obj ect _val ue, '/ PurchaseOrder/User/text()","' SVOLLMAN)
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ")

1l
=

1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ")

"
=

EXTRACTVAL

1 row sel ected.

Example 4-19 Rewritten Object Relational Equivalent of XPATH Rewrite with UpdateXML()

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

1 row sel ected.

UPDATE PURCHASECRDER p
SET p. " XMLDATA". "USERI D' = ' SVOLLMAN
VWHERE p. " XMLDATA". "REFERENCE" = ' SBELL-2002100912333601PDT" ;

XMLType Operations 4-23

Updating XML Instances and XML Data in Tables

1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASECRDER
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]"') = 1;

1 row sel ected.

Updating the Same XML Node More Than Once

You can update the same XML node more than once in the updat eXM_() statement.
For example, you can update both / EMP[EMPNO=217] and

/ EMP[EMPNAME=" Jane"] / EMPNO, where the first XPath identifies the EMPNOnode
containing it as well. The order of updates is determined by the order of the XPath
expressions in left-to-right order. Each successive XPath works on the result of the
previous XPath update.

Guidelines For Preserving DOM Fidelity When Using updateXML()
Here are some guidelines for preserving DOM fidelity when using updat eXM_() :

When DOM Fidelity is Preserved

When you update an element to NULL, you make that element appear empty in its
parent, such as in <myElem/>.

When you update a text node inside an element to NULL, you remove that text node
from the element.

When you update an attribute node to NULL, you make the value of the attribute

"

become the empty string, for example, myAttr="".

When DOM Fidelity is Not Preserved

When you update a complexType element to NULL, you make the element appear
empty in its parent, for example, <nyEl em >.

When you update a SQL-inlined simpleType element to NULL, you make the element
disappear from its parent.

When you update a text node to NULL, you are doing the same thing as setting the
parent simpleType element to NULL. Furthermore, text nodes can appear only inside
si mpl eTypes when DOM fidelity is not preserved, since there is no positional
descriptor with which to store mixed content.

When you update an attribute node to NULL, you remove the attribute from the
element.

Optimization of updateXML()

In most cases, updat eXM_() materializes the whole input XML document in memory
and updates the values. However, it is optimized for UPDATE statements on XML
schema-based object-relationally stored XMLType tables and columns so that the
function updates the value directly in the column. If all of the rewrite conditions are

4-24 Oracle XML DB Developer's Guide

Updating XML Instances and XML Data in Tables

met, then the updat eXM_() is rewritten to update the object-relational columns
directly with the values.

For example, the XPath expressions in the updat eXM_() statement shown in
Example 4-20 are processed by Oracle XML DB and re-written into the equivalent
object relational SQL statement shown in Example 4-21.

See Also: Chapter 3, "Using Oracle XML DB" and Chapter 5, "XML
Schema Storage and Query: The Basics" for information on the
conditions for XPath rewrite.

Example 4-20 XPath expressions in updateXML() Statement

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

1 row sel ected.

UPDATE PURCHASEORDER
SET obj ect _val ue = updat eXM.(obj ect _val ue, '/ PurchaseCOrder/ User/text()",' SVOLLMAN)
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ")

1l
=

1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"] ")

"
=

1 row sel ected.

Example 4-21 Object Relational Equivalent of updateXML() Statement

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

1 row sel ected.

UPDATE PURCHASECRDER p
SET p. " XMLDATA". "USERI D" = ' SVOLLMAN
VWHERE p. " XMLDATA". " REFERENCE" = ' SBELL-2002100912333601PDT" ;

1 row updat ed.

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOrder/ User")
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, ' / Pur chaseOr der [Ref er ence="SBELL- 2002100912333601PDT"]") = 1;

XMLType Operations 4-25

Indexing XMLType Columns

1 row sel ected.

Creating Views of XML Data with updateXML()

You can use updat eXM_() to create new views of XML data. Example 4-22 creates a
view of the PURCHASEORDER table using the updat eXM_() function.

Example 4-22 Creating Views Using updateXML()

CREATE OR REPLACE VI EW pur chaseor der _summary of XM.Type
as
sel ect updat eXM
(
obj ect _val ue,
" PurchaseOrder/Actions', null,
" | Pur chaseOr der / Shi ppi ngl nstructions', null,
" PurchaseOrder/Lineltens', nul |
) as XM
FROM PURCHASEORDER p;

Vi ew created.

sel ect object_val ue

from

PURCHASEORDER_SUMVARY

wher e exi st sNode(obj ect _val ue, '/PurchaseOr der[Ref er ence="DAUSTI N-20021009123335811PDT"]"') = 1;

OBJECT_VALUE

<Pur chaseOrder xnl ns: xsi="http://ww:. w3. org/ 2001/ XM_.Schena- i nst ance"
Xsi : noNanmespaceSchenmalLocat i on=
"http://1ocal host: 8080/ /home/ SCOTT/ poSour ce/ xsd/ pur chaseCr der . xsd" >
<Ref er ence>DAUSTI N- 20021009123335811PDT</ Ref er ence>
<Actions/ >
<Rej ect/ >
<Request or>David L. Austin</Requestor>
<User >DAUSTI N</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructions/ >
<Speci al I nstructions>Couri er </ Speci al | nstructions>
<Linel tems/ >
</ Pur chaseOr der >

1 row sel ected.

Indexing XMLType Columns

Chapter 3 provided a basic introduction to creating indexes on XML documents that
have been stored using the structured storage option. It demonstrated how to use the
extract Val ue() function to create indexes on XMLType documents stored in tables
or columns that are based on the structured storage option.

This section discusses other indexing techniques including:
« XPATH REWRITE for indexes on Singleton Elements or Attributes

= Creating B-Tree Indexes on the Contents of a Collection

4-26 Oracle XML DB Developer's Guide

Indexing XMLType Columns

= Creating Function-Based Indexes on XMLTIype Tables and Columns
= CTXXPath Indexes on XMLType Columns
= Oracle Text Indexes on XMLType Columns

XPATH REWRITE for indexes on Singleton Elements or Attributes

When indexes are created on structured XMLTy pe tables or columns, XML DB
attempts to re-write the XPath expressions provided to the ext r act Val ue() function
into CREATE | NDEX statements that operate directly on the underlying objects.

For instance, given an index created as shown in Example 4-23, XPath re-write will
re-write the index resulting in the create index statement shown in Example 4-24 being
executed. As can be seen, the rewritten index is created directly on the columns that
manage the attributes of the underlying SQL objects. This technique works well when
the Element or Attribute being indexed only occurs once in the XML Document.

Example 4-23 Using extractValue() to Create an Index on a singleton Element or
Attribute

CREATE | NDEX i PURCHASEORDER REJECTEDBY
ON PURCHASEORDER
(extract Val ue(obj ect _val ue, '/ PurchaseQrder/ Reject/User'));

Example 4-24 XPath Re-write of an Index on a singleton Element or Attribute

CREATE | NDEX i PURCHASECORDER _REJECTEDBY
ON PURCHASECRDER p
(p. " XMLDATA". "REJECTI ON'. " REJECTED_BY");

Creating B-Tree Indexes on the Contents of a Collection

You might often need to create an index over nodes that occur more than once in the
target document. For instance, assume you wanted to create an index on the Id
attribute of the Lineltem element. A logical first attempt would be to create an index
using the syntax shown in Example 4-25.

Example 4-25 Using extractValue() to Create an Index on a repeating Element or
Attributes

CREATE | NDEX i LI NEI TEM UPCCODE

ON PURCHASEORDER

(extract Val ue(obj ect _val ue, '/ PurchaseOrder/Lineltens/LineltemPart/@d'));
(extract Val ue(obj ect _val ue, '/ PurchaseOrder/Lineltens/Lineltem Part/@d'))

*

ERROR at line 3:
ORA-19025: EXTRACTVALUE returns val ue of only one node

As can be seen, when the Element or Attribute being indexed occurs multiple times in
the document, the create index fails because ext r act Val ue() is only allowed to
return a single value for each row it processes. It is possible to create an Index
replacing extract Val ue() withextract (). getStringVal () asshownin
Example 4-26.

XMLType Operations 4-27

Indexing XMLType Columns

Example 4-26 Using extract().getStringVal() to Create a Function-Based Index on an
extract()
CREATE | NDEX i LI NEI TEM UPCCCDE

ON PURCHASECRDER
(extract (object_val ue,' PurchaseOrder/Lineltens/Lineltem Part/@d").getStringVal());

I ndex created.

This allows the Create Index statement to succeed. However, the index that is created
is not what is expected. The index is created by invoking the ext r act () and

get StringVal () functions for each row in the table and then indexing the result of
the function against the rowid of the row.

The problem with this technique, is that when the XPath expression supplied to the
extract () function, the extract () function can only returns multiple nodes. The
result of the ext ract () function is a single XMLType consisting of a fragment
containing the matching nodes. The result of invoking get St ri ngVal () onan
XM.Type that contains a fragment is a concatenation of the nodes in question as
shown in Example 4-27.

As can be seen, what is indexed for this row is the concatenation of the 3 UPC codes,
not each of the individual UPC codes. In general, care should be taken when creating
an index using the ext r act () function. It is unlikely that this index will be useful.

As was shown in Chapter 3, for Schema-Based XMLType, the best way to resolve this
issue is adopt a storage structure that uses nested tables to force each node that is
indexed to be stored as a separate row. The index can then be created directly on the
nested table using object relational SQL similar to the SQL that is generated by XPath
re-write.

Example 4-27 Problem with using extract().getStringVal() to Create a Function-Based
Index on an extract() Function

SELECT extract (obj ect _val ue,'/PurchaseOrder/Lineltens') XM,
extract (obj ect _val ue,' PurchaseCOrder/Lineltens/Lineltem Part/@d').getStringVal ()
| NDEX_VALUE
FROM PURCHASEORDER
WHERE exi st sNode(obj ect _val ue, '/ PurchaseOr der [Ref er ence="SBELL-2002100912333601PDT"]") = 1;

XM | NDEX_VALUE
<Li nel tenms> 71551500905837
<Linel tem I tem\unber="1"> 42914022271551
<Description>A Night to Renenber</Description> 5011020
<Part 1d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem

<Li nel tem | t emNunber ="2">
<Descri ption>The Unbearabl e Li ght ness O Bei ng</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltenm>
<Linel tem It emNunber ="3">
<Descri ption>Si st ers</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Linelten>
</ Linel tens>

1 row sel ected.

4-28 Oracle XML DB Developer's Guide

Indexing XMLType Columns

Creating Function-Based Indexes on XMLType Tables and Columns

The index that is created in Example 4-26 is an example of a function-based index. A
function-based index is created by evaluating the specified functions for each row in
the table. In that particular case, the results of the functions were not useful and
consequently the index itself was not useful. However, there are many cases were
function-based indexes are useful.

One example of when a function-based index is useful is when the XML content is not
being managed using structured storage. In this case, instead of the CREATE INDEX
statement being re-written, the index will be created by invoking the function on the
XML content and indexing the result.

Given the table created in Example 4-28, which uses CLOB storage rather than
structured storage to persist the XML, the following CREATE INDEX statement will
result in a function-based index being created on the value of the text node belonging
to the Reference element. As the example shows, this index will enforce the unique
constraint on the value of the text node associated with the Reference element.

Example 4-28 Creating a Function-Based Index on a CLOB-based XMLType()

create tabl e PURCHASEORDER CLOB of XM.TYPE
XM.Type store as CLOB
ELEMENT "http://1 ocal host: 8080/ home/ SCOTT/ poSour ce/ xsd/ pur chaseOr der . xsd#Pur chaseOr der";

Tabl e created.

insert into PURCHASEORDER CLOB
sel ect object_val ue from PURCHASEORDER,

134 rows created.

create unique i ndex i PURCHASECORDER REFERENCE
on PURCHASECRDER CLOB
(extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Reference'));

I ndex creat ed.

insert into PURCHASEORDER CLOB
VALUES

(
xm type

(
bfilename(' XM.DI R, ' EABEL-20021009123335791PDT. xm "),

nl s_charset _i d("' AL32UTF8")
)
)
insert into PURCHASEORDER CLOB

*

ERROR at line 1:
ORA-00001: uni que constraint (SCOTT. | PURCHASEORDER REFERENCE) vi ol at ed

One thing to bear in mind when creating and using function-based indexes is that the
optimizer will only consider using the index when the function included in the
WHERE clause is identical to the function used to create the index.

Consider the queries in Example 4-29 which both find a PurchaseOrder-based value of
the text node associated with the Reference element. Note that the first query, which

XMLType Operations 4-29

Indexing XMLType Columns

uses exi st sNode() to locate the document, does not use the index, while the second
query, which uses ext r act Val ue(), does use the index.

Example 4-29 Queries that use Function-Based indexes

explain plan for

sel ect object_val ue

from PURCHASEORDER _CLOB

wher e exi st sNode(obj ect _val ue, ' / PurchaseOr der [Ref er ence="EABEL-20021009123335791PDT"") = 1;

Expl ai ned.

set ECHO OFF

PLAN_TABLE_OUTPUT

1d	Operation	Nane	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		2	4004	3 (34)	00:00:01
* 1	TABLE ACCESS FULL	PURCHASECRDER CLOB	2	4004	3 (34)	00:00:01

1 - filter(EXI STSNODE(SYS_MAKEXM. (' 3A7F7DBBEE5543A486567A908C71D65A |, 3664, " PU

RCHASEORDER _CLOB". " XMLDATA"), ' / Pur chaseOr der [Ref er ence="EABEL- 20021009123335791P
Dr"')=1)

15 rows sel ected.

explain plan for

sel ect object_val ue

from PURCHASEORDER _CLOB

where extract Val ue(obj ect _val ue, '/ PurchaseOrder/ Ref erence') = ' EABEL-20021009123335791PDT" ;

Expl ai ned.

set ECHO OFF

PLAN_TABLE_QUTPUT

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		1] 2002	1 (0)	00:00:01	
1	TABLE ACCESS BY	NDEX ROW Dl PURCHASECRDER CLOB	1] 2002	1 (0)	00:00:01	
* 2 I NDEX UNI QUE SCAN		PURCHASEORDER REFERENCE	1]		00:00:01	

2 - access(EXTRACTVALUE(SYS MAKEXM.(' 3A7F7DBBEE5543A486567A908C71D65A" , 3664, " XMLDATA"), ' / Purc
haseOr der/ Ref erence') =' EABEL- 20021009123335791PDT")

4-30 Oracle XML DB Developer's Guide

Indexing XMLType Columns

- warning: inconsistencies found in estimated optim zer costs
- dynami ¢ sanpling used for this statenent

20 rows sel ected.

Function-based indexes can be created on both structured and unstructured
schema-based XMLType tables and columns as well as non-schema-based XM_Type
tables and columns. If XPath re-write cannot process the XPath expression supplied as
part of the Create Index statement, the statement will result in a function-based index
being created.

An example of this would be creating an index based on the existsNode() function.
The existsNode() function simply returns 1 or 0 depending on whether or not a
document contains a node that matches the supplied XPath expression. This means
that it is not possible for XPath re-write to generate an equivalent object-relational
CREATE INDEX statement. In general, since existsNode() returns 0, or 1, it makes
sense to use BITMAP indexes when creating an index based on the existsNode()
function.

In Example 4-30, an index is created that can be used to speed up a query that
searches for instances of a rejected PurchaseOrder by looking for the presence of a
text() node under the element /PurchaseOrder/Reject/User.

Since the index is a function-based index, it can be used with structured and
unstructured schema-based XML Type tables and columns, as well as
non-schema-based XMLType tables and columns.

Example 4-30 Creating a Function-Based index on Schema-Based XMLType

SELECT extract Val ue(obj ect _val ue, ' / PurchaseOr der/ Ref erence')
f r om PURCHASEORDER
wher e exi st sNode(obj ect _Val ue, '/ PurchaseOrder/ Rej ect/ User/text()') = 1;

EXTRACTVALUE(OBJECT_VALUE, ' / PU

SMCCAI N- 2002091213000000PDT

1 row sel ected.

CREATE Bl TMAP | NDEX i PURCHASECRDER REJECTED

ON PURCHASEORDER

(exi st sNode(obj ect _Val ue, '/ PurchaseOrder/ Rej ect/ User/text()'));

I ndex created.

cal | dbns_stats. gather_tabl e_stats(USER ' PURCHASECRDER) ;

Call conpl et ed.

explain plan for

SELECT extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Ref erence')
f r om PURCHASEORDER
wher e exi st sNode(obj ect _Val ue, '/ PurchaseOrder/ Rej ect/ User/text()') = 1;

Expl ai ned.

set ECHO OFF

PLAN_TABLE_QUTPUT

XMLType Operations 4-31

Indexing XMLType Columns

Pl an hash val ue: 841749721

1d	Operation	Nane	Rows	Bytes	Cost (Y%CPU)	Tine
0	SELECT STATEMENT		1] 419	4 (0)	00:00:01	
* 1	TABLE ACCESS FULL	PURCHASEORDER	1] 419	4 (0)] 00:00:01		

1 - filter("PURCHASEORDER'. " SYS_NC00018$" |'S NOT NULL)

13 rows sel ected.

CTXXPath Indexes on XMLType Columns

The indexing techniques outlined earlier in this chapter require you to be aware in
advance of the set of XPath expressions that will be used when searching XML
content. Oracle XML DB also makes it possible to create a CTXXPATH index—a general
purpose XPath-based index, based on Oracle Text technology, that can be used to
improve the performance of any existsNode() based search. Such an index has the
following advantages:

= You do not need prior knowledge of the XPath expressions that will be searched
on.

« It can be used with both structured and unstructured schema-based XM_Type
tables and columns, as well as non-schema-based XMLType tables and columns.

= It can be used to create indexes that make it improve the performance of searches
that involve XPath expressions that target nodes that occur multiple times within a
document.

The CTXXPATH index is based on Oracle Text Technology and the functionality
provided in the HASPATH and INPATH operators provided by the Oracle Text
CONTAINS function. The HASPATH and INPATH operators allow high performance
XPath-like searches to be performed over XML content. Unfortunately, they do not
support true XPath compliant syntax.

The CTXXPATH index is designed to re-write the XPath expression supplied to
existsNode() into HASPATH and INPATH operators that can use the underlying text
index to quickly locate a superset of the documents that match the supplied XPath
expression. Each document identified by the text index is then checked, using a
DOM-based evaluation, to ensure that it is a true match for the supplied XPath
expression. Due to the asynchronous nature of the underlying text technology, the
CTXXPATHindex will also perform a DOM based evaluation of all un-indexed
documents to see if they also should be included in the result set.

CTXXPATH Indexing Features
CTXXPATH indexing has the following characteristics:

= Can only be used to speed up exi st sNode() processing. It acts as a primary
filter for the exi st sNode() function. In other words, it provides a superset of the
results that exi st sNode() would provide

= CTXXPATHindex will only work for queries where the XPath expressions that
identify the required documents are supplied using an exi st sNode() function
that appears in the WHERE clause of the SQL statement being executed.

4-32 Oracle XML DB Developer's Guide

Indexing XMLType Columns

= Only handles a limited set of XPath expressions. See "Choosing the Right Plan:
Using CTXXPATH Index in existsNode() Processing" on page 4-35 for the list of
XPath expressions not supported by the index.

= Only supports the STORAGE preference parameter. See "Creating CTXXPATH
Storage Preferences With CTX_DDL. Statements" on page 4-33.

= Data Manipulation Language (DML) operations such as updating and deleting are
asynchronous. You must use a special command to synchronize the DML
operations, in a similar fashion to Oracle Text index. Despite the asynchronous
nature of DML operations, CTXXPATH indexing still follows the transactional
semantics of exi st sNode() by also returning unindexed rows as part of its result
set in order to guarantee its requirement of returning a superset of the valid
results.

Creating CTXXPATH Indexes

Create CTXXPATH indexes in the same way that you create Oracle Text indexes, using
the syntax:

CREATE | NDEX [schema.]index ON [schena.]tabl e(XM.Type col um)
| NDEXTYPE | S ct xsys. CTXXPATH [PARAMETERS(par anstring)];
where

paramstring = '[storage storage_pref] [menory nensize] [popul ate | nopopul ate]'
Example 4-31 demonstrates how to create a CTXXPATH index for XPath searching.

See Also: "existsNode() XMLType Function" on page 4-5 for more
information on using exi st sNode() .

Example 4-31 Using CTXXPATH Index and existsNode() for XPath Searching

create i ndex PURCHASEORDER CLOB XPATH
on PURCHASEORDER CLOB (obj ect _val ue)
i ndextype i s CTXSYS. CTXXPATH,

Creating CTXXPATH Storage Preferences With CTX_DDL. Statements

The only preference allowed in CTXXPATH indexing is the STORAGE preference. Create
the STORAGE preference in the same way that you would for an Oracle Text index as
shown in Example 4-32.

Note: You must be granted execute privileges on the
CTXSYS. CTX_DLL package in order to create storage preferences.

Example 4-32 Creating and Using Storage Preferences for CTXXPATH Indexes

begin

ctx_ddl .
.set_attribute(' CLOB_XPATH_STORE', '|_TABLE_CLAUSE',

ctx_ddl

ctx_ddl .

ctx_ddl .

ctx_ddl

ctx_ddl

create_preference(' CLOB_XPATH STORE', ' BASI C_STORAGE');

"tabl espace USERS storage (initial 1K)');
set_attribute(' CLOB_XPATH STORE', 'K TABLE CLAUSE',

'tabl espace USERS storage (initial 1K)');
set_attribute(' CLOB_XPATH STORE', 'R TABLE CLAUSE',

"tabl espace USERS storage (initial 1K)');

.set_attribute(' CLOB_XPATH STORE', ' N TABLE_CLAUSE ,

"tabl espace USERS storage (initial 1K)');

.set_attribute(' CLOB_XPATH STORE', '|_I NDEX_CLAUSE ,

XMLType Operations 4-33

Indexing XMLType Columns

"tabl espace USERS storage (initial 1K)');
end;
/

PL/ SQL procedure successfully conpl et ed.
create index PURCHASEORDER CLOB_XPATH
on PURCHASECRDER CLOB (obj ect _val ue)

i ndextype i s CTXSYS. CTXXPATH

PARAVETERS(" st orage CLOB_XPATH STORE nemory 120M);

I ndex created.
explain plan for
sel ect extractVal ue(object_val ue,'/PurchaseO der/ Ref erence')

f rom PURCHASEORDER_CLOB
wher e exi st sNode(obj ect _val ue,'//Lineltenf Part[@d="715515011624"]") = 1,

Expl ai ned.

PLAN_TABLE_QUTPUT

1d	Operation	Name	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		1] 2031	4 (0)	00:00:01	
* 1	TABLE ACCESS BY	NDEX ROWD	PURCHASECRDER CLOB	1] 2031	4 (0)	00:00:01
2] DOVAI N	NDEX	PURCHASEORDER CLOB_XPATH			4 (0)	00:00:01

1 - filter(EX STSNODE(SYS_MAKEXM.(' 3A7F7DBBEE5543A486567A908C71D65A , 3664, " PURCHASEORDER CLOB
" "XMLDATA"),'//Linel t enf Part[@ d="715515011624"] "') =1)

- dynami ¢ sanpling used for this statenent

19 rows sel ected.

Performance Tuning a CTXXPATH Index: Synchronizing and Optimizing

Example 4-33 illustrates how to synchronize DML operations using the SYNC_| NDEX
procedure in the CTX_DDL package.

Example 4-33 Synchronizing the CTXXPATH Index
call ctx_ddl.sync_i ndex(' PURCHASEORDER CLOB_XPATH);

Example 4-34 illustrates how to optimize the CTXXPATHindex using the OPTI M ZE_
I NDEX procedure in the CTX_DDL package.

Example 4-34 Optimizing the CTXXPATH Index
exec ctx_ddl.optim ze_i ndex(' PURCHASEORDER CLOB_XPATH , ' FAST');

PL/ SQL procedure successfully conpl et ed.

4-34 Oracle XML DB Developer's Guide

Indexing XMLType Columns

exec ctx_ddl.optim ze_i ndex(' PURCHASEORDER CLOB XPATH , 'FULL');

PL/ SQL procedure successfully conpleted.

See Also:
= Oracle Text Application Developer’s Guide

= Oracle Text Reference

Choosing the Right Plan: Using CTXXPATH Index in existsNode() Processing

It is not guaranteed that a CTXXPATHindex will always be used to speed up
exi st sNode() processi ng for the following reasons:

= Oracle Database cost-based optimizer may decide it is too costly to use CTXXPATH
index as a primary filter

= XPath expressions cannot all be handled by CTXXPATHindex. The following XPath
constructs cannot be handled by CTXXPATH index:

= XPath functions

« Numerical range operators
= Numerical equality

= Arithmetic operators

= UNION operator " "

= Parent and sibling axes

= Anattribute following a *, //, .., in other words,' /A /*/@attr', '/ A/ / @attr',
'/A//../@attr'

= 'or ™ at the end of the path expression

= A predicate following "' or *'

= String literal equalities are supported with the following restrictions:

* The left hand side must be a path ('.' by itself is not allowed, for example
="dog")

* The right hand side must be a literal
= Anything not expressible by abbreviated syntax is also not supported

For the cost-based optimizer to better estimate the costs and selectivities for the
exi st sNode() function, you must first gather statistics on your CTXXPATHindexing
by using the ANALYZE command or DBM5_STATS package as follows:

ANALYZE | NDEX nyPat hl ndex COVPUTE STATI STI CS;

or you can simply analyze the whole table:

ANALYZE TABLE XM.Tab COMPUTE STATI STI CS;

CTXXPATH Indexes On XML Schema-Based XMLType Tables

XPath queries on XML schema-based XMLType table are candidates for XPath query
rewrite. An exi st sNode() expression in a query may be rewritten to a set of
operators on the underlying object-relational columns of the schema-based table. In

XMLType Operations 4-35

Indexing XMLType Columns

such a case, the CTXXPATHindex can no longer be used by the query, since it can only
be used to satisfy exi st sNode() queries on the index expression, specified during
index creation time.

In Example 4-35, a CTXXPATH index is created on table PURCHASEORDER. The

exi st sNode() expression specified in the WHERE clause gets rewritten into an
expression that checks if the underlying object-relational column is not NULL. This is in
accordance with XPath query rewrite rules. If the hint/ *+ NO_XM._QUERY_REVRI TE
*| causes XPath query rewrite to be turned off for the query, the exi st sNode()
expression is left unchanged.

Example 4-35 Creating a CTXXPATH Index on a Schema-Based XMLType Table

create index PURCHASEORDER XPATH
on PURCHASECRDER (obj ect _val ue)
i ndextype i s CTXSYS. CTXXPATH

I ndex created

explain plan for
sel ect extract Val ue(object _val ue,"' / PurchaseOr der/ Ref erence')
from PURCHASEORDER
wher e exi st sNode(obj ect _val ue, ' / PurchaseOrder/ Li nel t ens/ Li nel t en] Descri ption="The Rock"]"') = 1;

Expl ai ned

set ECHO OFF

PLAN_TABLE_QUTPUT

0 | SELECT STATEMENT 13 | 65520 | 823 (1)] 1
1| HASH JON SEM 13 | 65520 | 823 (1)] 1
2| TABLE ACCESS FULL PURCHASEORDER 56146 | 4 (0)| 00:00:0
3| INDEX FAST FULL SCAN LINEI TEM TABLE_| OT 13 | 60073 | 818 (0)] 1

[N
w
EN

1 - access("NESTED TABLE_| D' =" PURCHASECRDER" . " SYS_NC0003400035$")
3 - filter("DESCRI PTION'=' The Rock')

- dynam ¢ sanpling used for this statenent
20 rows selected
explain plan for
sel ect /*+ NO XML_QUERY_REWRI TE */ extract Val ue(obj ect _val ue,'/PurchaseOr der/ Ref erence')
f rom PURCHASEORDER

where exi st sNode(obj ect _val ue, ' / PurchaseCOrder/ Li nel t ems/ Li nel t enf Descri pti on="The Rock"]') = 1,

Expl ai ned
set ECHO OFF

4-36 Oracle XML DB Developer's Guide

Indexing XMLType Columns

PLAN_TABLE_OUTPUT

1d	Operation	Nanme	Rows	Bytes	Cost (%CPU)	Tine
0	SELECT STATEMENT		1] 419	4 (0)	00:00:01	
* 1	TABLE ACCESS BY	NDEX ROW D	PURCHASEORDER	1] 419	4 (0)] 00:00:01	
2] DOVAIN	NDEX	PURCHASEORDER XPATH			4 (0)] 00:00:01	

1 - filter(EX STSNODE(SYS_MAKEXM.(' 3A7F7DBBEE5543A486567A908C71D65A |, 3664, " PURCHASEORDER
", "XMLEXTRA", " PURCHASECRDER' . " XMLDATA") , ' / Pur chaseOr der / Li nel t ens/ Li nel t enf Descri pti on="The
Rock"]')=1)

16 rows sel ected.

Determining If an Index is Being Used: Tracing
Use tracing to determine whether or not an index is being used.

See Also:
= Oracle Database SQL Reference

= Oracle Database Performance Tuning Guide

CTXXPATH Indexing Depends on Storage Options and Document Size

The choice of whether to use CTXXPATHindexes depends on the storage options used,
the size of the documents being indexed, and the query mix involved.

CTXXPATHindexes can be used for exi st snode() queries on non-schema-based
XML.Type tables and columns when the data is stored as a CLOB. CTXXPATH indexes
are also useful when CLOB portions of schema-based documents are queried. The term
CLOB-based storage is used to apply to these cases. CTXXPATH indexes can also be
used for exi st snode() queries on schema-based XMLType columns, tables and
views, as well as non-schema-based views. The term object-relational storage is used
to apply to these cases.

=« CLOB-based storage. If the storage option used is CLOB-based storage:

= Check the query mix to see if a significant fraction involves the same set of
XPath expressions. If so, then Oracle Corporation recommends that you create
function-based indexes for those expressions.

= Check the query mix to see if a significant fraction involves exi st snode()
queries. CTXXPATH indexes are particularly useful if there are a large
number of small documents and for exi st snode() queries with low
selectivity, that is, with relatively fewer number of hits. Under such scenarios,
build CTXXPATH indexes.

As a general rule, the use of indexes is recommended for Online Transaction
Processing (OLTP) environments with few updates.

= Object-Relational storage. If the storage option is object-relational:

= Check the query mix to see if a significant fraction involves XPath queries that
can be rewritten. Chapter 5, "XML Schema Storage and Query: The Basics"

XMLType Operations 4-37

Indexing XMLType Columns

lists the set of XPath queries that can potentially get rewritten. The set of
XPath queries that are actually rewritten depends on the type of XPath query
as well as the registered XML schema. B*tree, Bitmap and other relational and
domain indexes can further be built to improve performance. XPath rewrite
offers significant performance advantages. Use it in general. It is enabled by
default.

= Check the query mix to see if a significant fraction involves the same set of
XPath expressions. If so, then Oracle Corporation recommends that you create
function-based indexes for these expressions. In the presence of XPath rewrite,
the XPath expressions are sometimes better evaluated using function-based
indexes when:

The queries involve traversing through collections. For example, in
extractval ue(/ PurchaseOrder/Lineitens/Lineiten! Addresses/ A
ddr ess) , multiple collections are traversed under XPath rewrite.

The queries involve returning a scalar element of a collection. For example, in
extractval ue(/ PurchaseOr der/ PONOLi st/ PON(1]), a single scalar
item needs to be returned, and function-based indexes are more efficient for
this. In such a case, you can turn off XPath rewrite using query-level or
session-level hints, and use the function-based index

» Of the non-rewritten queries, check the query mix to see if a significant
fraction involves exi st snode() queries. If so, then you should build
CTXXPATHindexes. CTXXPATH indexes are particularly useful if there are a
large number of small documents, and for exi st snode() queries with low
selectivity, that is, with relatively fewer number of hits.

Note: The use of indexes is in general recommended for OLTP
environments that are seldom updated. Maintaining CTXXPATH
and function-based indexes when there are frequent updates adds
an additional overhead. Take this into account when deciding
whether function-based indexes, CTXXPATH indexes, or both
should be built and maintained. When both types of indexes are
built, the Oracle Database cost-based optimizer makes a cost-based
decision which index to use. Try to first determine statistics on the
CTXXPATHindexing in order to assist the optimizer in choosing the
CTXXPATHindex when appropriate.

Oracle Text Indexes on XMLType Columns

You can create an Oracle Text index on an XMLType column. An Oracle Text index
enables the CONTAI NS operator for Full Text Search over XML.

To create an Oracle Text index, use the CREATE | NDEX SQL statement with the
| NDEXTYPE specified as shown in Example 4-36.

Example 4-36 Creating an Oracle Text Index
create index iPurchaseO der Text | ndex
on purchaseorder p (object_val ue)
i ndextype is ctxsys.context;
I ndex created.
You can also perform Oracle Text operations such as CONTAI NS and SCORE on
XMLType columns. Example 4-37 shows and Oracle Text search using CONTAI NS.

4-38 Oracle XML DB Developer's Guide

Indexing XMLType Columns

Example 4-37 Searching XML Data Using CONTAINS

SELECT DI STINCT extract Val ue(obj ect _val ue, ' / PurchaseOr der/ Shi ppi ngl nstructions/ address') "Address"
from pur chaseor der
wher e CONTAI NS(obj ect _val ue,
"$(Fortieth) INPATH (PurchaseOrder/ Shi ppingl nstructions/address)') > 0;

Addr ess

1200 East Forty Seventh Avenue
New Yor k

NY

10024

USA

1 row sel ected.

See Also: Chapter 9 "Full Text Search Over XML" for more
information on using Oracle Text operations with XML DB.

XMLType Operations 4-39

Indexing XMLType Columns

4-40 Oracle XML DB Developer's Guide

D

XML Schema Storage and Query: The Basics

This chapter introduces XML Schema and explains how to register and use XML
Schema with Oracle XML DB. It also describes how to delete and update XML Schema
and create storage structures for schema-based XML. It discusses si npl eType and
conpl exType mapping from XML to SQL storage types as well as XPath rewrite
fundamentals.

This chapter contains these topics:

= Introducing XML Schema

= XML Schema and Oracle XML DB

« Using Oracle XML DB and XML Schema

= Managing XML Schemas Using DBMS_XMLSCHEMA

=« XML Schema-Related Methods of XMLType

= Local and Global XML Schemas

= DOM Fidelity

= Creating XMLType Tables and Columns Based on XML Schema
= Oracle XML Schema Annotations

= Querying a Registered XML Schema to Obtain Annotations
= Mapping of Types Using DBMS_XMLSCHEMA

= Mapping simpleTypes to SQL

= Mapping complexTypes to SQL

= XPath Rewrite with XML Schema-Based Structured Storage

Introducing XML Schema

The XML Schema Recommendation was created by the World Wide Web Consortium
(W3Q) to describe the content and structure of XML documents in XML. It includes the
full capabilities of Document Type Definitions (DTDs) so that existing DTDs can be
converted to XML Schema. XML Schemas have additional capabilities compared to
DTDs.

See Also: Appendix B, "XML Schema Primer"

XML Schema Storage and Query: The Basics 5-1

XML Schema and Oracle XML DB

XML Schema and Oracle XML DB

XML Schema is a schema definition language written in XML. It can be used to
describe the structure and various other semantics of conforming instance documents.
For example, the following XML Schema definition, pur chaseOr der . xsd, describes
the structure and other properties of purchase order XML documents.

This manual refers to an XML schema definition as an XML Schema.

Example 5-1 XML Schema Definition, purchaseOrder.xsd

The following is an example of an XML Schema. It declares a conpl exType called
pur chaseOr der Type and a global element Pur chaseCOr der of this type.

<xs: schema
tar get Namespace="http://xnl ns. oracl e. conmf xdb/ docurment at i on/ pur chaseCr der"
xm ns: po="http://xn ns. oracl e. com xdb/ docurment at i on/ pur chaseCr der "
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema" versi on="1.0">
<xs: el ement name="PurchaseOrder" type="po: PurchaseCr der Type"/>
<xs: conpl exType nane="PurchaseCr der Type" >
<Xs: sequence>
<xs: el ement name="Reference" type="po: Ref erenceType"/>
<xs: el ement name="Actions" type="po: ActionsType"/>
<xs: el ement name="Reject" type="po: RejectionType" ninCccurs="0"/>
<xs: el ement name="Requestor" type="po: Requestor Type"/>
<xs: el ement name="User" type="po: User Type"/>
<xs: el ement name="Cost Center" type="po: Cost Cent er Type"/ >
<xs: el ement name="Shi ppi ngl nstructions"
type="po: Shi ppi ngl nstructionsType"/>
<xs: el ement name="Speci al | nstructions"
type="po: Speci al | nstructi onsType"/>
<xs: el ement name="Lineltens" type="po:LineltensType"/>
<xs: el ement name="Notes" type="po: Not esType"/>
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType name="Li nel t ensType" >
<Xxs: sequence>
<xs: el ement name="Lineltent type="po:Linelteniype"
maxQCccur s="unbounded"/ >
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType name="Li nel t eniType" >
<xs: sequence>
<xs: el ement name="Description" type="po:DescriptionType"/>
<xs: el ement name="Part" type="po: PartType"/>
</ xs: sequence>
<xs:attribute name="ItemNunber" type="xs:integer"/>
</ xs: conpl exType>
<xs: conpl exType nanme="Part Type">
<xs:attribute name="1d">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs: mnLength val ue="10"/>
<xs: maxLength val ue="14"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute nanme="Quantity" type="po: noneyType"/>
<xs:attribute name="UnitPrice" type="po:quantityType"/>
</ xs: conpl exType>
<xs: si npl eType name="Ref erenceType" >

5-2 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

<xs:restriction base="xs:string">
<xs:mnLength val ue="18"/>
<xs: maxLength val ue="30"/>
</xs:restriction>
</ xs: si npl eType>
<xs: conpl exType name="Acti onsType">
<Xs: sequence>
<xs: el ement name="Action" maxQCccurs="4">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="User" type="po: User Type"/>
<xs: el ement name="Date" type="po: DateType" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType name="Rej ectionType">
<xs:all>
<xs: el ement name="User" type="po: User Type" m nCccurs="0"/>
<xs: el ement name="Date" type="po: DateType" m nCccurs="0"/>
<xs: el ement name="Comments" type="po: Corment sType" m nCccurs="0"/>
</xs:all>
</ xs: conpl exType>
<xs: conpl exType nane="Shi ppi ngl nstructionsType">
<Xxs: sequence>
<xs: el ement name="nane" type="po: NaneType" m nCccurs="0"/>
<xs: el ement name="address" type="po: AddressType" m nCccurs="0"/>
<xs: el ement name="t el ephone" type="po: Tel ephoneType" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: si npl eType name="rnoneyType">
<xs:restriction base="xs: deci mal ">
<xs:fractionDigits value="2"/>
<xs:total Digits value="12"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="quantityType">
<xs:restriction base="xs: deci mal ">
<xs:fractionDigits value="4"/>
<xs:total Digits value="8"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="User Type">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="10"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Request or Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="128"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Cost Cent er Type" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="4"/>
</xs:restriction>

XML Schema Storage and Query: The Basics 5-3

XML Schema and Oracle XML DB

</ xs: si mpl eType>
<xs: si npl eType name="Vendor Type">
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Pur chaseO der Nunber Type" >
<xs:restriction base="xs:integer"/>
</ xs: si mpl eType>
<xs: si npl eType name="Speci al I nstructionsType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="0"/>
<xs: maxLength val ue="2048"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="NaneType" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="AddressType" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="256"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Tel ephoneType" >
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="24"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Dat eType" >
<xs:restriction base="xs:date"/>
</ xs: si mpl eType>
<xs: si npl eType name="Conment sType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="2048"/>
</xs:restriction>
</ xs: si mpl eType>
<xs:si npl eType name="Descri ptionType">
<xs:restriction base="xs:string">
<xs:mnLength val ue="1"/>
<xs: maxLength val ue="256"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType name="Not esType">
<xs:restriction base="xs:string">
<xs:mnLength value="1"/>
<xs: maxLength val ue="32767"/>
</xs:restriction>
</ xs: si mpl eType>
</ xs: schema>

5-4 Oracle XML DB Developer's Guide

XML Schema and Oracle XML DB

Example 5-2 XML Document, purchaseOrder.xml Conforming to XML Schema,
purchaseOrder.xsd

The following is an example of an XML document that conforms to XML Schema
pur chaseOr der . xsd:

<po: PurchaseOrder xm ns:xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns: po="http://xm ns. oracl e. con xdb/ docunent ati on/ pur chaseCrder"
xsi: schemalocation=
"http://xm ns. oracl e. cont xdb/ docunent at i on/ pur chaseOr der
http://xm ns. oracl e. coml xdb/ docunent at i on/ pur chaseOr der . xsd" >
<Ref er ence>SBELL- 2002100912333601PDT</ Ref er ence>
<Acti ons>
<Action>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>
<Rej ect/>
<Request or>Sarah J. Bel | </ Request or >
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructi ons>
<name>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shores
CA
94065
USA
</ addr ess>
<t el ephone>650 506 7400</t el ephone>
</ Shi ppi ngl nstructi ons>
<Speci al I nstructions>Air Mil </ Speci al I nstructions>
<Li nel t ems>
<Li nel tem |t em\unber ="1">
<Description>A Ni ght to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp
<Li nel tem |t em\unber ="2">
<Descri pti on>The Unbearabl e Li ght ness O Bei ng</Descri ption>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltenp
<Linel tem It em\unber="3">
<Descri ption>Si st ers</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltenp
</ Lineltenms>
<Not es>Section 1.10.32 of "de Finibus Bonorum et Ml oruniquot;,
witten by Ciceroin 45 BC

" ; Sed ut perspiciatis unde omis iste natus error sit voluptatem accusantium
dol orengue | audantium totamrem aperiam eaque ips

a quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt
explicabo. Nenp enimipsam vol uptatem qui a voluptas s

it aspernatur aut odit aut fugit, sed quia consequuntur nagni dol ores eos qui
ratione vol uptatem sequi nesciunt. Neque porro quisqua

mest, qui doloremipsumquia dolor sit anmet, consectetur, adipisci velit, sed
qui a non nunguam ei us nmodi tenpora incidunt ut |abore

et dol ore magnam al i quam quaerat voluptatem U enimad ninim veniam quis
nostrum exercitationemullam corporis suscipit |aborios

am nisi ut aliquid ex ea commdi consequatur? Quis autemvel eumiure
reprehenderit qui in ea voluptate velit esse quamnihil noles

XML Schema Storage and Query: The Basics 5-5

XML Schema and Oracle XML DB

tiae consequatur, vel illumqui doloremeumfugiat quo voluptas nulla
pari at ur ?" ;

1914 translation by H Rackham

" ; But | nust explain to you how all this nistaken idea of denouncing
pl easure and praising pain was born and I will give you a ¢

onpl ete account of the system and expound the actual teachings of the great
explorer of the truth, the master-builder of human happ

iness. No one rejects, dislikes, or avoids pleasure itself, because it is
pl easure, but because those who do not know how to pursue

pl easure rational ly encounter consequences that are extrenely painful. Nor again
is there anyone who | oves or pursues or desires to

obtain pain of itself, because it is pain, but because occasionally
circunstances occur in which toil and pain can procure himsone

great pleasure. To take a trivial exanple, which of us ever undertakes |aborious
physi cal exercise, except to obtain sone advantage

fromit? But who has any right to find fault with a man who chooses to enjoy a
pl easure that has no annoyi ng consequences, or one wh

0 avoids a pain that produces no resultant pleasure?"

Section 1.10.33 of "de Finibus Bonorumet Mlorun", witten by Cicero
in 45 BC

" ; At vero eos et accusanmus et iusto odio dignissinms ducinmus qui blanditiis
praesentium vol uptatum del eniti atque corrupti quos

dol ores et quas nolestias excepturi sint occaecati cupiditate non provident,
simlique sunt in culpa qui officia deserunt nollitia a

nim, id est laborumet dolorumfuga. Et harum quidemrerumfacilis est et
expedita distinctio. Namlibero tenpore, cum soluta nobis

est eligendi optio cumgue nihil inpedit quo minus id quod nmaxime placeat facere
possi mus, omis vol uptas assunmenda est, omis dol or

repel | endus. Tenporibus autem qui busdamet aut officiis debitis aut rerum
necessitatibus saepe eveniet ut et voluptates repudi andae

sint et nolestiae non recusandae. Itaque earumrerumhic tenetur a sapiente
del ectus, ut aut reiciendis voluptatibus maiores alias

consequatur aut perferendis doloribus asperiores repellat."

1914 translation by H Rackham

" ; On the other hand, we denounce with righteous indignation and dislike men
who are so beguiled and denoralized by the charns of
pl easure of the monent, so blinded by desire, that they cannot foresee the pain
and trouble that are bound to ensue; and equal blam
e belongs to those who fail in their duty through weakness of will, which is the
sane as saying through shrinking fromtoil and pain
These cases are perfectly sinple and easy to distinguish. In a free hour, when
our power of choice is untramelled and when nothin
g prevents our being able to do what we |ike best, every pleasure is to be
wel comed and every pain avoided. But in certain circunsta
nces and owing to the clains of duty or the obligations of business it wil
frequently occur that pleasures have to be repudiated an
d annoyances accepted. The wise man therefore always holds in these matters to
this principle of selection: he rejects pleasures to
secure other greater pleasures, or else he endures pains to avoid worse
pai ns. " ;
</ Not es>
</ po: Pur chaseCOr der >

5-6 Oracle XML DB Developer's Guide

Using Oracle XML DB and XML Schema

Note:

The URL used here

(http://xm ns. oracl e. conl xdb/ docurment at i on/ pur chas
eOr der . xsd) is simply a name that uniquely identifies the
registered XML Schema within the database; it need not be the
physical URL at the which the XML Schema document is located.
The target namespace of the XML Schema is another URL, different
from the XML Schema location URL, which specifies an abstract
namespace within which elements and types get declared.

An XML Schema can optionally specify the target namespace URL.
If this attribute is omitted, the XML Schema has no target
namespace. The target namespace is commonly the same as the
URL of the XML Schema.

An XML instance document must specify the namespace of the root
element (same as the target namespace of the XML Schema) and the
location (URL) of the XML Schema that defines this root element.
The location is specified with attribute xsi : schemalLocat i on.
When the XML Schema has no target namespace, use attribute

xsi : noNamespaceSchemaLocat i on to specify the schema URL.

Using Oracle XML DB and XML Schema

Oracle XML DB uses annotated XML Schema as metadata, that is, the standard XML
Schema definitions along with several Oracle XML DB-defined attributes. These
attributes control how instance XML documents get mapped to the database. Because
these attributes are in a different namespace from the XML Schema namespace, such
annotated XML Schemas are still legal XML Schema documents.

See Also: Namespace of XML Schema constructs:
http://ww. w3. or g/ 2001/ XM_Schena

When using Oracle XML DB with XML Schema, you must first register the XML
Schema. You can then use the XML Schema URLs while creating XMLType tables,
columns, and views. The XML Schema URL, in other words, the URL that identifies
the XML Schema in the database, is associated with the schemaur | parameter of
regi st er Schema.

Oracle XML DB provides XML Schema support for the following tasks:

= Registering any W3C-compliant XML Schemas.

« Validating your XML documents against a registered XML Schema definitions.
= Registering local and global XML Schemas.

« Generating XML Schema from object types.

= Referencing an XML Schema owned by another user.

= Explicitly referencing a global XML Schema when a local XML Schema exists with
the same name.

« Generating a structured database mapping from your XML Schemas during XML
Schema registration. This includes generating SQL object types, collection types,
and default tables, and capturing the mapping information using XML Schema
attributes.

XML Schema Storage and Query: The Basics 5-7

Using Oracle XML DB and XML Schema

= Specifying a particular SQL type mapping when there are multiple legal
mappings.
= Creating XMLType tables, views and columns based on registered XML Schemas.

» Performing manipulation (DML) and queries on XML Schema-based XMLType
tables.

= Automatically inserting data into default tables when schema-based XML
instances are inserted into Oracle XML DB repository using FTP, HTTP/WebDAV
protocols and other languages.

See Also: Chapter 3, "Using Oracle XML DB"

Why We Need XML Schema

As described in Chapter 4, "XMLType Operations", XMLType is a datatype that
facilitates storing XMLType in columns and tables in the database. XML Schemas
further facilitate storing XML columns and tables in the database, and they offer you
more storage and access options for XML data along with space- performance-saving
options.

For example, you can use XML Schema to declare which elements and attributes can
be used and what kinds of element nesting, and datatypes are allowed in the XML
documents being stored or processed.

XML Schema Provides Flexible XML-to-SQL Mapping Setup

Using XML Schema with Oracle XML DB provides a flexible setup for XML storage
mapping. For example:

= If your data is highly structured (mostly XML), then each element in the XML
documents can be stored as a column in a table.

« If your data is unstructured (all or mostly non-XML data), then the data can be
stored in a Character Large Object (CLOB).

Which storage method you choose depends on how your data will be used and
depends on the queriability and your requirements for querying and updating your
data. In other words, using XML Schema gives you more flexibility for storing highly
structured or unstructured data.

XML Schema Allows XML Instance Validation

Another advantage of using XML Schema with Oracle XML DB is that you can
perform XML instance validation according to the XML Schema and with respect to
Oracle XML repository requirements for optimal performance. For example, an XML
Schema can check that all incoming XML documents comply with definitions declared
in the XML Schema, such as allowed structure, type, number of allowed item
occurrences, or allowed length of items.

Also, by registering XML Schema in Oracle XML DB, when inserting and storing XML
instances using Protocols, such as FTP or HTTP, the XML Schema information can
influence how efficiently XML instances are inserted.

When XML instances must be handled without any prior information about them,
XML Schema can be useful in predicting optimum storage, fidelity, and access.

5-8 Oracle XML DB Developer's Guide

Managing XML Schemas Using DBMS_XMLSCHEMA

DTD Support in Oracle XML DB

In addition to supporting XML Schema that provide a structured mapping to object-
relational storage, Oracle XML DB also supports DTD specifications in XML instance
documents. Though DTDs are not used to derive the mapping, XML processors can
still access and interpret the DTDs.

Inline DTD Definitions

When an XML instance document has an inline DTD definition, it is used during
document parsing. Any DTD validations and entity declaration handling is done at
this point. However, once parsed, the entity references are replaced with actual values
and the original entity reference is lost.

External DTD Definitions

Oracle XML DB also supports external DTD definitions if they are stored in the
repository. Applications needing to process an XML document containing an external
DTD definition such as / publ i ¢/ f i ght s. dt d, must first ensure that the DTD
document is stored in Oracle XML DB at path / publ i ¢/ fli ghts. xsd.

See Also: Chapter 18, "Accessing Oracle XML DB Repository
Data"

Managing XML Schemas Using DBMS_XMLSCHEMA

Before an XML Schema can be used by Oracle XML DB, it must be registered with
Oracle Database. You register an XML Schema using the PL/SQL package DBMS_
XMLSCHEMA.

See Also: Oracle XML API Reference

Some of the main DBM5_XM_SCHEMA functions are:

= registerSchemal(). This registers an XML Schema with Oracle Database, given:

« deleteSchemal(). This deletes a previously registered XML Schema.

« copyEvolve(). This function is described in Chapter 7, "XML Schema Evolution".

Registering Your XML Schema

The main arguments to function r egi st er Schema() are the following:

=« schemaURL —the XML Schema URL. This is a unique identifier for the XML
Schema within Oracle XML DB. Convention is that this identifier is in the form of
a URL; however, this is not a requirement. The XML Schema URL is used with
Oracle XML DB to identify instance documents, by making the schema location
hint identical to the XML Schema URL. Oracle XML DB will never attempt to
access the Web server identified by the specified URL.

« schemabDoc - the XML Schema source document. This is a VARCHAR, CLOB, BLOB,
BFI LE, XMLType, or URI Type value.

= CSl D- the character-set ID of the source-document encoding, when schemaDoc
is a BFI LE or BLOB value.

XML Schema Storage and Query: The Basics 5-9

Managing XML Schemas Using DBMS_XMLSCHEMA

Example 5-3 Registering an XML Schema Using Package DBMS_XMLSCHEMA

The following code registers the XML Schema at URL

http://xm ns. oracl e. conf xdb/ docunent ati on/ pur chaseOr der . xsd. This
example shows how to register an XML Schema using the BFI LE mechanism to read
the source document from a file on the local file system of the database server.

BEG N
DBVS_XM.SCHEMA. r egi st er Schema(
SCHEMAURL => "http://xn ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der. xsd',
SCHEMADOC => bf il ename(' XMLDI R , ' pur chaseOrder. xsd"),
CSID => nls_charset _i d(' AL32UTF8"));
END;
/

Storage and Access Infrastructure

As part of registering an XML Schema, Oracle XML DB also performs several tasks
that facilitate storing, accessing, and manipulating XML instances that conform to the
XML Schema. These steps include:

= Creating types: When an XML Schema is registered, Oracle Database creates the
appropriate SQL object types that enable the structured storage of XML
documents that conform to this XML Schema. You can use the Schema annotations
to control how these object types are named and generated. See "SQL Object
Types" on page 5-11 for details.

« Creating default tables: As part of XML Schema registration, Oracle XML DB
generates default XMLType tables for all global elements. You can use schema
annotations to control the names of the tables and to provide column-level and
table-level storage clauses and constraints for use during table creation.

See Also:

= "Creating Default Tables During XML Schema Registration" on
page 5-12

= "Oracle XML Schema Annotations" on page 5-21

After registration has completed:

= XMLType tables and columns can be created that are constrained to the global
elements defined by this XML Schema.

= XML documents conforming to the XML Schema, and referencing it using the
XML Schema instance mechanism, can be processed automatically by Oracle
XML DB.

See Also: Chapter 3, "Using Oracle XML DB"

Transactional Action of XML Schema Registration

Registration of an XML Schema is non transactional and auto committed as with other
SQL DDL operations, as follows:

= If registration succeeds, then the operation is auto committed.

= If registration fails, then the database is rolled back to the state before the
registration began.

Because XML Schema registration potentially involves creating object types and tables,
error recovery involves dropping any such created types and tables. Thus, the entire

5-10 Oracle XML DB Developer's Guide

Managing XML Schemas Using DBMS_XMLSCHEMA

XML Schema registration is guaranteed to be atomic. That is, either it succeeds or the
database is restored to the state before the start of registration.

Managing and Storing XML Schema

XML Schema documents are themselves stored in Oracle XML DB as XMLType
instances. XML Schema-related XMLType types and tables are created as part of the
Oracle XML DB installation script, cat xdbs. sql .

The XML Schema for XML Schemas is called the root XML Schema, XDBSchena. xsd.
XDBSchema. xsd describes any valid XML Schema document that can be registered
by Oracle XML DB. You can access XDBSchema. xsd through Oracle XML DB
repository at

/ sys/ schemas/ PUBLI C/ xm ns. or acl e. conl xdb/ XDBSchena. xsd.

See Also:

= Chapter 26, "Managing Oracle XML DB Using Oracle
Enterprise Manager"

= Appendix A, "Installing and Configuring Oracle XML DB"

Debugging XML Schema Registration

You can monitor the object types and tables created during XML Schema registration
by setting the following event before calling DBV5_
XMLSCHEMA. r egi st er Schenma() :

ALTER SESSI ON SET events='31098 trace nane context forever'

Setting this event causes the generation of a log of all the CREATE TYPE and CREATE
TABLE statements. The log is written to the user session trace file, typically found in
<ORACLE_HOVE>/ admi n/ <ORACLE_SI D>/ udunp. This script can be a useful aid in
diagnosing problems during XML Schema registration.

See Also: Chapter 3, "Using Oracle XML DB", "XML Schema and
Oracle XML DB" on page 3-21

SQL Object Types

Assuming that the parameter GENTYPES is set to TRUE when an XML Schema is
registered, Oracle XML DB creates the appropriate SQL object types that enable
structured storage of XML documents that conform to this XML Schema. By default,
all SQL object types are created in the database schema of the user who registers the
XML Schema. If the def aul t Schema annotation is used, then Oracle XML DB
attempts to create the object type using the specified database schema. The current
user must have the necessary privileges to perform this.

Example 5-4 Creating SQL Object Types to Store XMLType Tables

For example, when pur chaseOr der . xsd is registered with Oracle XML DB, the
following SQL types are created.

SQL> DESCRI BE "Pur chaseCOrder Typel668_T"

"PurchaseOr der Typel668_T" is NOT Fl NAL

Nane Nul I ? Type
SYS_XDBPD$ XDB. XDB$RAW LI ST_T
Ref erence VARCHAR2(30 CHAR)

XML Schema Storage and Query: The Basics 5-11

Managing XML Schemas Using DBMS_XMLSCHEMA

Actions ActionsTypel661 T

Rej ect Rej ectionTypel660_T

Request or VARCHAR2(128 CHAR)

User VARCHAR2(10 CHAR)

Cost Cent er VARCHAR2(4 CHAR)

Shi ppi ngl nstructi ons Shi ppi ngl nstructionsTypl659_T
Speci al I nstructions VARCHAR2(2048 CHAR)

Li nel t ems Linel temsTypel666_T

Not es VARCHAR2(4000 CHAR)

SQL> DESCRI BE "LineltensTypel666_T"

"Linel tenmsTypel666_T" is NOT Fl NAL

Name Nul I ? Type
SYS_XDBPD$ XDB. XDB$RAW LI ST_T
Li nel tem Linel tenl667_COLL

SQL> DESCRI BE "Linel tenml667_COLL"

“Linel teml667_COLL" VARRAY(2147483647) OF Linelteniypel665_T
"Li nel tenTypel665_T" is NOT FI NAL

Name Nul I ? Type

SYS_XDBPD$ XDB. XDB$RAW LI ST_T
It emNunber NUMBER(38)
Description VARCHAR2(256 CHAR)
Par t Part Typel664_T

Note: By default, the names of the object types and attributes in
the preceding example are system-generated.

= Developers can use schema annotations to provide
user-defined names (see "Oracle XML Schema Annotations" for
details).

« If the XML Schema does not contain the SQLNane attribute,
then the name is derived from the XML name.

Creating Default Tables During XML Schema Registration

As part of XML Schema registration, you can also create default tables. Default tables
are most useful when XML instance documents conforming to this XML Schema are
inserted through APIs that do not have any table specification, such as with FTP or
HTTP. In such cases, the XML instance is inserted into the default table.

If you have given a value for attribute def aul t Tabl e, then the XMLType table is
created with that name. Otherwise it gets created with an internally generated name.

Further, any text specified using the t abl ePr ops and col utmmPr ops attribute are
appended to the generated CREATE TABLE statement.

Example 5-5 Default Table for Global Element PurchaseOrder
SQ.> DESCRI BE " PurchaseCOrder 1669 TAB"

Nane Nul 1?2 Type

TABLE of

5-12 Oracle XML DB Developer's Guide

Managing XML Schemas Using DBMS_XMLSCHEMA

SYS. XMLTYPE(
XM.Schema “http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseOr der . xsd"
El ement "PurchaseQrder")

STORAGE (bj ect-rel ational TYPE "PurchaseOrder Typel668_T"

Generated Names are Case Sensitive

The names of SQL tables, object, and attributes generated by XML Schema registration
are case sensitive. For instance, in Example 5-3, "Registering an XML Schema Using
Package DBMS_XMLSCHEMA", a table called Pur chaseCr der 1669_TAB was
created automatically during registration of the XML Schema. Since the table name
was derived from the element name, Pur chaseQr der, the name of the table is also
mixed case. This means that you must refer to this table in SQL using a quoted
identifier: " Pur chaseCOr der 1669_TAB" . Failure to do so results in an
object-not-found error, such as ORA- 00942: table or view does not exist.

Objects That Depend on Registered XML Schemas

The following objects are dependent on registered XML Schemas:

« Tables or views that have an XMLType column that conforms to some element in
the XML Schema.

= XML Schemas that include or import this schema as part of their definition.

= Cursors that reference the XML Schema name, for example, within DBM5_XM_GEN
operators. Note that these are purely transient objects.

How to Obtain a List of Registered XML Schemas

To obtain a list of the XML Schemas registered with Oracle XML DB using DBMS_
XMLSCHEMA. r egi st er Schema use the following code. You can also use user _xm _
schemas,al | _xm _schenas,user_xnl _tables,andall _xnm _tabl es.

Example 5-6 Data Dictionary Table for Registered Schemas
SQL> DESCRI BE DBA_XM._SCHEMAS

Name Nul I ? Type

OMNER VARCHAR2(30)

SCHEMA_URL VARCHAR2(700)

LOCAL VARCHAR2(3)

SCHEMA XMLTYPE(XM.Schema "http://xm ns. oracl e. com xdb/ XDBSchema. xsd"
El ement "schema")

| NT_OBJNAME VARCHAR2(4000)

QUAL_SCHEMA URL VARCHAR2(767)
SQL> SELECT owner, local, schema_url FROM dba_xm _schenas;

OMER LOC SCHEMA_URL

XDB NO http://xm ns. oracl e. conl xdb/ XDBSchema. xsd
XDB NO http://xm ns. oracl e. conl xdb/ XDBResour ce. xsd
XDB NO http://xm ns. oracl e. con xdb/ acl . xsd

XDB NO http://xm ns. oracl e. conl xdb/ dav. xsd

XDB NO http://xm ns. oracl e. con xdb/ XDBSt andar d. xsd
XDB NO http://xm ns. oracl e. con xdb/ | og/ xdbl og. xsd
XDB NO http://xm ns. oracl e. coni xdb/ | og/ ft pl og. xsd
XDB NO http://xm ns. oracl e. coni xdb/ | og/ ht t pl 0g. xsd

XML Schema Storage and Query: The Basics 5-13

Managing XML Schemas Using DBMS_XMLSCHEMA

XDB NO http:// ww. w3. org/ 2001/ xm . xsd

XDB NO http://xm ns. oracl e. com xdb/ XDBFol der Li sti ng. xsd

XDB NO http://xnm ns. oracl e. conl xdb/ stats. xsd

XDB NO http://xm ns. oracl e. conl xdb/ xdbconfi g. xsd

SCOTT YES http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseCOr der . xsd

13 rows sel ect ed.

SQL> DESCRI BE DBA XM._TABLES

Nane Nul I ? Type

OMNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
XMLSCHEMA VARCHAR2(700)
SCHEMA_OWNER VARCHAR2(30)
ELEMENT_NAME VARCHAR2(2000)
STORAGE_TYPE VARCHAR2(17)

SQ.> SELECT tabl e_name FROM dba_xnl _tabl es WHERE
XMLSCHEMA =
"http://xm ns. oracl e. conf xdb/ docunent ati on/ pur chaseQOr der. xsd' ;

Pur chaseOrder 1669 _TAB

1 row sel ected.

Deleting Your XML Schema Using DBMS_XMLSCHEMA

You can delete your registered XML Schema by using the DBV5_
XMLSCHEMA. del et eSchema procedure. When you attempt to delete an XML
Schema, DBM5S_XM_SCHENA checks:

« That the current user has the appropriate privileges (ACLs) to delete the resource
corresponding to the XML Schema within Oracle XML DB repository. You can thus
control which users can delete which XML Schemas by setting the appropriate
ACLs on the XML Schema resources.

= For dependents. If there are any dependents, then it raises an error and the
deletion operation fails. This is referred to as the RESTRICT mode of deleting
XML Schemas.

FORCE Mode

When deleting XML Schemas, if you specify the FORCE mode option, then the XML
Schema deletion proceeds even if it fails the dependency check. In this mode, XML
Schema deletion marks all its dependents as invalid.

The CASCADE mode option drops all generated types and default tables as part of a
previous call to register XML Schema.

See Also: Oracle XML API Reference the chapter on DBMS_
XMLSCHENMA

5-14 Oracle XML DB Developer's Guide

Local and Global XML Schemas

Example 5-7 Deleting the XML Schema Using DBMS_XMLSCHEMA

The following example deletes XML Schema pur chaseQr der . xsd. Then, the schema
is deleted using the FORCE and CASCADE modes with DBMS_
XM.SCHEMA.DEL ETESCHEMA:

BEG N
DBMS_XMLSCHEMA. del et eSchena(
SCHEMAURL => "http://xn ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der. xsd',
DELETE_OPTI ON => dbns_xm schema. DELETE_CASCADE FORCE) ;
END;
/

XML Schema-Related Methods of XMLType

Table 5-1 lists the XMLType XML Schema-related methods.

Table 5-1 XMLType APl XML Schema-Related Methods

XMLType API Method Description

i sSchenaBased()

Returns TRUE if the XMLType instance is based on an XML Schema, FALSE
otherwise.

get SchemaURL()
get Root El ement ()
get Nanespace()

Returns the XML Schema URL, name of root element, and the namespace for an
XML Schema-based XM_Type instance.

schemaVal i dat e()
i sSchenmaVal i d()

An XMLType instance can be validated against a registered XML Schema using the
val i dati on methods. See Chapter 8, "Transforming and Validating XMLType

is Schenaval i dat ed() Data".
set SchenmaVal i dat ed()

Local and Global XML Schemas

XML Schemas can be registered as local or global:

= Local XML Schema: An XML Schema registered as a local schema is, by default,
visible only to the owner.

= Global XML Schema: An XML Schema registered as a global schema is, by default,
visible and usable by all database users.

When you register an XML Schema, DBM5_XM_SCHEMA adds an Oracle XML DB
resource corresponding to the XML Schema to the Oracle XML DB repository. The
XML Schema URL determines the path name of the resource in Oracle XML DB
repository (and is associated with the schemaur | parameter of r egi st er Schema)
according to the following rules:

Local XML Schema

By default, an XML Schema belongs to you after registering the XML Schema with
Oracle XML DB. A reference to the XML Schema document is stored in Oracle

XML DB repository, in directory. Such XML Schemas are referred to as local. In general,
they are usable only by you, the owner.

In Oracle XML DB, local XML Schema resources are created under the
/ sys/ schemas/ user nane directory. The rest of the path name is derived from the
schema URL.

XML Schema Storage and Query: The Basics 5-15

Local and Global XML Schemas

Example 5-8 Registering A Local XML Schema

BEG N
DBVS_XMLSCHEMA. r egi st er Schema(
SCHEMAURL => "http://xn ns. oracl e. coml xdb/ docunent ati on/ pur chaseOr der . xsd',
SCHEMADOC => bf il ename(' XMLDI R , ' pur chaseOrder. xsd"),
LOCAL => TRUE,
GENTYPES => TRUE,
GENTABLES => FALSE,
CSID => nl s_charset _i d(' AL32UTF8"));
END;
/

If this local XML Schema is registered by user SCOTT, it is given this path name:

/ sys/ schemas/ SCOTT/ xm ns. or acl e. coni xdb/ docunent at i on/ pur chaseOr der . xsd

Database users need appropriate permissions and Access Control Lists (ACL) to create
a resource with this path name in order to register the XML Schema as a local XML
Schema.

See Also: Chapter 23, "Oracle XML DB Resource Security"

Note: Typically, only the owner of the XML Schema can use it to
define XMLType tables, columns, or views, validate documents, and
so on. However, Oracle Database supports fully qualified XML
Schema URLs, which can be specified as:

http://xm ns. oracl e. com xdb/ schenmas/ SCOTT/ xm ns. or
acl e. coni xdb/ docunent at i on/ pur chaseOr der. xsd

This extended URL can be used by privileged users to specify XML
Schema belonging to other users.

Global XML Schema

In contrast to local schemas, privileged users can register an XML Schema as a global
XML Schema by specifying an argument in the DBM5_XM.SCHEMA registration
function.

Global schemas are visible to all users and stored under the / sys/ schenmas/ PUBLI C/
directory in Oracle XML DB repository.

Note: Access to this directory is controlled by Access Control Lists
(ACLs) and, by default, is writable only by a DBA. You need write
privileges on this directory to register global schemas.

XDBAdmi n role also provides write access to this directory,
assuming that it is protected by the default protected Access
Control Lists (ACL). See Chapter 23, "Oracle XML DB Resource
Security" for further information on privileges and for details on
the XDBAdmin role.

You can register a local schema with the same URL as an existing global schema. A
local schema always hides any global schema with the same name (URL).

5-16 Oracle XML DB Developer's Guide

DOM Fidelity

Example 5-9 Registering A Global XML Schema
SQL> GRANT XDBADM N TO SCOTT;

G ant succeeded.
CONNECT scott/tiger
Connect ed.

BEG N
DBVS_XMLSCHEMA. r egi st er Schema(
SCHEMAURL => " http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der . xsd',
SCHEMADOC => bfil ename(' XM.DI R, ' purchaseOrder. xsd"),
LOCAL => FALSE,
GENTYPES => TRUE,
GENTABLES => FALSE,
CSID => nls_charset _id(' AL32UTF8"));
END;
/

If this local XML Schema is registered by user SCOTT, it is given this path name:
/ sys/ schemas/ PUBLI ¢/ xm ns. or acl e. com’ xdb/ docunent at i on/ pur chaseQOr der . xsd

Database users need appropriate permissions (ACLs) to create this resource in order to
register the XML Schema as global.

DOM Fidelity

Document Object Model (DOM) fidelity is the concept of retaining the structure of a
retrieved XML document, compared to the original XML document, for DOM
traversals. DOM fidelity is needed to ensure the accuracy and integrity of XML
documents stored in Oracle XML DB.

See Also: "Overriding the SQLType Value in XML Schema When
Declaring Attributes" on page 5-31 and "Overriding the SQLType
Value in XML Schema When Declaring Elements" on page 5-31

How Oracle XML DB Ensures DOM Fidelity with XML Schema

All elements and attributes declared in the XML Schema are mapped to separate
attributes in the corresponding SQL object type. However, some pieces of information
in XML instance documents are not represented directly by these element or attributes,
such as:

« Comments
= Namespace declarations
« Prefix information

To ensure the integrity and accuracy of this data, for example, when regenerating XML
documents stored in the database, Oracle XML DB uses a data integrity mechanism
called DOM fidelity.

DOM fidelity refers to how similar the returned and original XML documents are,
particularly for purposes of DOM traversals.

XML Schema Storage and Query: The Basics 5-17

Creating XMLType Tables and Columns Based on XML Schema

DOM Fidelity and SYS_XDBPD$

In order to provide DOM fidelity, Oracle XML DB has to maintain instance-level
metadata. This metadata is tracked at a type level using the system-defined binary
attribute SYS_XDBPD$. This attribute is referred to as the Positional Descriptor, or PD
for short. The PD attribute is intended for Oracle Corporation internal use only. You
should never directly access or manipulate this column.

This positional descriptor attribute stores all pieces of information that cannot be
stored in any of the other attributes, thereby ensuring the DOM fidelity of all XML
documents stored in Oracle XML DB. Examples of such pieces of information include:
ordering information, comments, processing instructions, namespace prefixes, and so
on. This is mapped to a Positional Descriptor (PD) column.

If DOM fidelity is not required, you can suppress SYS_XDBPD$ in the XML Schema
definition by setting the attribute, mai nt ai nDOVFFALSE at the type level.

Note: The attribute SYS_XDBPD$ is omitted in many examples
here for clarity. However, the attribute is always present as a
Positional Descriptor (PD) column in all SQL object types generated
by the XML Schema registration process.

In general however, it is not a good idea to suppress the PD
attribute because the extra pieces of information, such as
comments, processing instructions, and so on, could be lost if there
is no PD column.

Creating XMLType Tables and Columns Based on XML Schema

Using Oracle XML DB, developers can create XMLType tables and columns that are
constrained to a global element defined by a registered XML Schema. After an
XM_Type column has been constrained to a particular element and XML Schema it can
only contain documents that are compliant with the schema definition of that element.
An XM_Type table column is constrained to a particular element and XML Schema by
adding the appropriate XML.SCHEMA and ELEMENT clauses to the CREATE TABLE
operation.

Figure 5-1 shows the syntax for creating an XMLType table:

CREATE [GLOBAL TEMPORARY] TABLE [schema.] table OF XM.Type
[(object_properties)] [XM.Type XM.Type_storage] [XM.Schena_spec]
[ON COWM T {DELETE | PRESERVE} ROWS] [O D_clause] [O D_index_clause]
[physi cal _properties] [table_properties];

5-18 Oracle XML DB Developer's Guide

Creating XMLType Tables and Columns Based on XML Schema

Figure 5-1 Creating an XMLType Table

GLOBAL || TEMPORARY |-\ M
e = e} [

o object_properties a [—>| XMLTYPE KXMLTypefstorageh XMLSchema_spec
DELETE
| PRESERVE I

physical_properties table_properties

A subset of the XPointer notation, shown in the following example, can also be used to
provide a single URL containing the XML Schema location and element name. See also
Chapter 4, "XMLType Operations".

OID_clause OID_index_clause

Example 5-10 Creating XML Schema-Based XMLType Tables and Columns

This example shows CREATE TABLE statements. The first creates an XMLType table,
pur chaseor der _as_t abl e. The second creates a relational table,

pur chaseor der _as_col umm, with an XMLType column, xm _docunent . In both,
the XMLType value is constrained to the Pur chaseOr der element defined by the
schema registered under the URL

http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der . xsd.

CREATE TABLE purchaseorder_as_tabl e OF XM.Type
XM.Schema "http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseQOr der . xsd"
ELEMENT " Pur chaseOr der";

CREATE TABLE pur chaseorder _as_col um (id NUMBER, xm _document XM.Type)
XM.Type COLUWN xm _docunent
ELEVENT
"http://xm ns. oracl e. cont xdb/ docunent ati on/ pur chaseQ der . xsd#Pur chaseOr der ";

Note there are two ways to define the element and schema to be used. In one way, the
XM_Schema and El enment are specified as separator clauses. In the other way, the
XM_Schema and El ement are specified using the El ement clause, using an XPointer
notation.

The data associated with an XM_LType table or column that is constrained to an XML
Schema can be stored in two different ways:

= Shred the contents of the document and store it as a set of objects. This is known as
structured storage.

= Stored the contents of the document as text, using a single LOB column. This is
known as unstructured storage.

Specifying Unstructured (LOB-Based) Storage of Schema-Based XMLType

The default storage model is structured storage. To override this behavior, and store
the entire XML document as a single LOB column, use the STORE AS CLOB clause.

XML Schema Storage and Query: The Basics 5-19

Creating XMLType Tables and Columns Based on XML Schema

Example 5-11 Specifying CLOB Storage for Schema-Based XMLType Tables and
Columns

This example shows how to create an XMLType table and a table with an XM_Type
column, where the contents of the XMLType are constrained to a global element
defined by a registered XML Schema, and the contents of the XM_Type are stored
using a single LOB column.

CREATE TABLE purchaseorder_as_table OF XM.Type
XM.Type STORE AS CLOB
XMLSCHEMA "http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseOr der . xsd"
ELEMENT " Pur chaseOrder”;

CREATE TABLE pur chaseorder _as_col um (i d NUVBER, xm _document XM.Type)
XM.Type COLUWN xm _docunent
STORE AS CLOB
XM.Schema "http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseOr der . xsd"
ELEMENT " PurchaseOrder”;

Note that you can add LOB storage parameters to the STORE AS CLOB clause.

Specifying Storage Models for Structured Storage of Schema-Based XMLType

When structured storage is selected, collections (elements which have maxCccurs > 1,
allowing them to appear multiple times) are mapped into SQL VARRAY values. By
default, the entire contents of such a VARRAY is serialized using a single LOB column.
This storage model provides for optimal ingestion and retrieval of the entire
document, but it has significant limitations when it is necessary to index, update, or
retrieve individual members of the collection. A developer may override the way in
which a VARRAY is stored, and force the members of the collection to be stored as a set
of rows in a nested table. This is done by adding an explicit VARRAY STORE AS clause
to the CREATE TABLE statement.

Developers can also add STORE AS clauses for any LOB columns that will be
generated by the CREATE TABLE statement.

Note that the collection and the LOB column must be identified using object-relational
notation. Therefore, it is important to understand the structure of the objects that are
generated when a XML Schema is registered.

Example 5-12 Specifying Storage Options for Schema-Based XMLType Tables and
Columns Using Structured Storage

This example shows how to create an XMLType table and a table with an XMLType
column, where the contents of the XMLType are constrained to a global element
defined by a registered XML Schema, and the contents of the XM_Type are stored
using as a set of SQL objects.

CREATE tabl e purchaseorder_as_tabl e
OF XM.Type (UNI QUE (" XMLDATA"."Reference"),
FOREI GN KEY (" XMLDATA"."User") REFERENCES hr. enpl oyees (email))
ELEMENT
"http://xm ns. oracl e. com xdb/ docunent at i on/ pur chaseOr der . xsd#Pur chaseOr der "
VARRAY " XMLDATA". " Actions"."Action"
STORE AS TABLE action_tablel ((PRI MARY KEY (nested_table_id, array_index))
ORGANI ZATI ON | NDEX OVERFLOW
VARRAY " XMLDATA". "Linel tens". "Li nel tent
STORE AS TABLE lineitemtablel ((PRIMARY KEY (nested_table_ id, array_index))
ORGANI ZATI ON | NDEX OVERFLOW
LOB (" XMLDATA". " Not es")
STORE AS (TABLESPACE USERS ENABLE STORAGE | N ROW

5-20 Oracle XML DB Developer's Guide

Oracle XML Schema Annotations

STORAGE(I NI TI AL 4K NEXT 32K));

CREATE TABLE pur chaseorder_as_col um (
i d NUMBER,
xm _docunent XM.Type,
UNI QUE (xm _docunent . " XMLDATA". " Ref erence"),
FOREI GN KEY (xm _docunent. " XM.DATA". "User") REFERENCES hr. enpl oyees (emil))

XM.Type COLUWN xni _documnent
XM.Schema "http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseQr der . xsd"
ELEMENT " Pur chaseCr der"
VARRAY xml _docunent . " XMLDATA". " Actions". "Action"
STORE AS TABLE action_table2 ((PR MARY KEY (nested_table_id, array_index))
ORGANI ZATI ON | NDEX OVERFLOW
VARRAY xm _docunent. " XMLDATA". "Li nel tens". "Li nel tenf
STORE AS TABLE lineitemtable2 ((PRIMARY KEY (nested_table_id, array_index))
ORGANI ZATI ON | NDEX OVERFLOW
LOB (xm _docunent . " XMLDATA". "Not es")
STORE AS (TABLESPACE USERS ENABLE STORAGE I N ROW
STORAGE(I NI TI AL 4K NEXT 32K));

The example also shows how to specify that the collection of Act i on elements and the
collection of Li nel t emelements are stored as rows in nested tables, and how to
specify LOB storage clauses for the LOB that will contain the content of the Not es
element.

Note: Oracle Corporation recommends the use of the thick JDBC
driver especially to operate on XMLType values stored
object-relationally. Note that the thin JDBC driver currently
supports only XML Ty pe values stored as CLOB values.

Specifying Relational Constraints on XMLType Tables and Columns

When structured storage is selected, typical relational constraints can be specified for
elements and attributes that occur once in the XML document. Example 5-12 shows
how to use object-relational notation to define a unique constraint and a foreign key
constraint when creating the table.

Note that it is not possible to define constraints for XML Ty pe tables and columns that
make use of unstructured storage.

Oracle XML Schema Annotations

Oracle XML DB gives application developers the ability to influence the objects and
tables that are generated by the XML Schema registration process. You use the schema
annotation mechanism to do this.

Annotation involves adding extra attributes to the conpl exType, el enent, and

at t ri but e definitions that are declared by the XML Schema. The attributes used by
Oracle XML DB belong to the namespace ht t p: / / xm ns. or acl e. cont xdb. In
order to simplify the process of annotationg an XML Schema, it is recommended that a
namespace prefix be declared in the root element of the XML Schema.

Common reasons for wanting to annotate an XML Schema include the following:

= When GENTYPES or GENTABLES is set TRUE, schema annotation makes it possible
for developers to ensure that the names of the tables, objects, and attributes

XML Schema Storage and Query: The Basics 5-21

Oracle XML Schema Annotations

created by r egi st er Schema() are well-known names, compliant with any
application-naming standards.

When GENTYPES or GENTABLES is set FALSE, schema annotation makes it
possible for developers to map between the XML Schema and existing objects and
tables within the database.

To prevent the generation of mixed-case names that require the use of quoted
identifies when working directly with SQL.

The most commonly used annotations are the following;:

def aul t Tabl e — Used to control the name of the default table generated for each
global element when the GENTABLES parameter is FALSE. Setting this to " " will
prevent a default table from being generated for the element in question.

SQLName - Used to specify the name of the SQL attribute that corresponds to each
element or attribute defined in the XML Schema

SQLType - For conpl exType definitions, SQLType is used to specify the name of
the SQL object type that are corresponds to the conpl exType definitions. For

si nmpl eType definitions, SQLType is used to override the default mapping
between XML Schema data types and SQL data types. A very common use of
SQLType is to define when unbounded strings should be stored as CLOB values,
rather than VARCHAR(4000) CHARvalues (the default).

SQLCol | Type — Used to specify the name of the VARRAY type that will manage a
collection of elements.

mai nt ai NDOM- Used to determine whether or not DOM fidelity should be
maintained for a given conpl exType definition

st oreVar r ayAsTabl e — Specified in the root element of the XML Schema. Used
to force all collections to be stored as nested tables. There will be one nested table
created for each element that specifies maxCccurs > 1. The nested tables will be
created with system-generated names.

You do not have to specify values for any of these attributes. Oracle XML DB fills in
appropriate values during the XML Schema registration process. However, it is
recommended that you specify the names of at least the top-level SQL types so that
you can reference them later.

Example 5-13 shows a partial listing of the XML Schema in Example 5-1, modified to
include some of the most important XDB annotations.

Example 5-13 Using Common Schema Annotations

<xs: schenmn

tar get Namespace="http://xnl ns. oracl e. com xdb/ docunent ati on/ pur chaseCr der"
xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"

xm ns: xdb="http://xn ns. oracl e. com xdb"

xm ns: po="http://xn ns. oracl e. com xdb/ docurrent at i on/ pur chaseCr der "
version="1.0"

xdb: st oreVarrayAsTabl e="true" >

<xs: el ement name="PurchaseOrder" type="po: PurchaseCO der Type"

xdb: def aul t Tabl e=" PURCHASEORDER" / >

<xs: conpl exType name="Pur chaseOr der Type" xdb: SQLType="PURCHASECRDER T" >

<Xs: sequence>
<xs: el ement name="Reference" type="po: ReferenceType" ninCccurs="1"
xdb: SQLName=" REFERENCE" / >
<xs:el ement name="Actions" type="po:ActionsType"
xdb: SQLNanme="ACTI ON_COLLECTI ON'/ >

5-22 Oracle XML DB Developer's Guide

Oracle XML Schema Annotations

<xs:el ement name="Reject" type="po:RejectionType" ninCccurs="0"/>
<xs: el ement name="Requestor” type="po: Requestor Type"/>
<xs: el ement name="User" type="po: User Type" m nCccurs="1"
xdb: SQLNanme="EMAI L"/ >
<xs: el ement name="Cost Center" type="po: Cost Center Type"/ >
<xs: el ement name="Shi ppi ngl nstructions"
t ype="po: Shi ppi ngl nstructionsType"/>
<xs: el ement name="Special I nstructions" type="po: Speci al | nstructi onsType"/>
<xs: el ement name="Lineltems" type="po: LineltensType"
xdb: SQLNanme="LI| NEI TEM COLLECTI ON'/ >
<xs: el ement name="Not es" type="po: Not esType" xdb: SQLType="CLOB"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="LineltenmsType" xdb: SQLType="LI NEI TEMS_T" >
<xs: sequence>
<xs: el ement name="Lineltenl type="po:LineltenType" maxCccurs="unbounded"
xdb: SQLCol | Type="LI NEI TEM V" xdb: SQLNane=" LI NEI TEM VARRAY"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="Li nelteniType" xdb: SQLType="LI NEI TEM T" >
<xs: sequence>
<xs: el ement name="Description" type="po: DescriptionType"/>
<xs: el ement name="Part" type="po: PartType"/>
</ xs: sequence>
<xs:attribute name="ItenmNunber" type="xs:integer"/>
</ xs: conpl exType>
<xs: conpl exType nane="Part Type" xdb: SQLType="PART_T" xdb: mai nt ai nDOME"f al se">
<xs:attribute name="1d">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:mnLength val ue="10"/>
<xs: maxLength val ue="14"/>
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
<xs:attribute name="Quantity" type="po: moneyType"/>
<xs:attribute name="UnitPrice" type="po:quantityType"/>
</ xs: conpl exType>
</ xs: schema>

The schema element includes the declaration of the xdb namespace. It also includes
the annotation xdb: st or eVarr ayAsTabl e="t r ue" . This will force all collections
within the XML Schema to be managed using nested tables.

The definition of the global element Pur chaseQOr der includes a def aul t Tabl e
annotation that specifies that the name of the default table associated with this element
is PURCHASEORDER.

The global conpl exType Pur chaseOr der Type includes a SQLType annotation that
specifies that the name of the generated SQL object type will be PURCHASEORDER T.
Within the definition of this type, the following annotations are used:

« The element Ref er ence includes a SQLName annotation that ensures that the
name of the SQL attribute corresponding to the Ref er ence element will be
named REFERENCE.

« The element Act i ons includes a SQLNane annotation that ensures that the name
of the SQL attribute corresponding to the Act i ons element will be ACTI ON_
COLLECTI ON.

XML Schema Storage and Query: The Basics 5-23

Oracle XML Schema Annotations

» The element USER includes a SQLName annotation that ensures that the name of
the SQL attribute corresponding to the User element will be EMAI L.

« Theelement Li nel t ens includes a SQLNane annotation that ensures that the
name of the SQL attribute corresponding to the Li nel t ens element will be
LI NEI TEM_COLLECTI ON.

= The element Not es includes a SQLType annotation that ensures that the datatype
of the SQL attribute corresponding to the Not es element will be CLOB.

The global conpl exType Li nel t ensType includes a SQLType annotation that
specifies that the names of generated SQL object type will be LI NEI TEMS_T. Within
the definition of this type, the following annotations are used:

« Theelement Li nel t emincludes a SQLNanme annotation that ensures that the
datatype of the SQL attribute corresponding to the Li nel t ens element will be
LI NEI TEM VARRAY, and a SQLCol | Name annotation that ensures that the name
of the SQL object type that manages the collection will be LI NEI TEM_V.

The global conpl exType Li nel t enType includes a SQLType annotation that
specifies that the names of generated SQL object type will be LI NEI TEM_T.

The global conpl exType Par t Type includes a SQLType annotation that specifies
that the names of generated SQL object type will be PART_T. It also includes the
annotation xdb: mai nt ai nDOVF"f al se", specifying that there is no need for Oracle
XML DB to maintain DOM fidelity for elements based on this type.

Example 5-14 Results of Registering an Annotated XML Schema

The following code shows some of the tables and objects created when the annotated
XML Schema is registered.

BEG N
DBVS_XMLSCHEMA. r egi st er Schema(
SCHEMAURL => " http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der . xsd',
SCHEMADOC => bfil ename(' XM.DI R, ' pur chaseOr der . Annot at ed. xsd'),
LOCAL => TRUE,
GENTYPES => TRUE,
GENTABLES => TRUE,
CSID => nls_charset _id(' AL32UTF8"));
END;
/

SQL> SELECT TABLE_NAME, XM.SCHEMA, ELEMENT_NAME FROM USER XM._TABLES,
TABLE_NAME XMLSCHEMA ELEMENT_NAME

PURCHASEORDER http://xm ns. oracl e. coml xdb/ documen Pur chaseCOr der
tation/ purchaseQOrder. xsd

1 row sel ected.
SQ.> DESCRI BE PURCHASEORDER
Nane Nul I ? Type

TABLE of SYS. XMLTYPE(XM_Schena
"http://xm ns. oracl e. conf xdb/ docunent ati on/ pur chaseCr der. xsd"
ELEMENT " PurchaseOrder") STORAGE (hject-rel ational TYPE "PURCHASEORDER T"

SQL> DESCRI BE PURCHASEORDER T

5-24 Oracle XML DB Developer's Guide

Oracle XML Schema Annotations

PURCHASEORDER T i s NOT FI NAL

Nanme Nul I ? Type

SYS_XDBPD$ XDB. XDB$RAW LI ST_T
REFERENCE VARCHAR2(30 CHAR)
ACTI ON_COLLECTI ON ACTIONS_T

Rej ect REJECTI ON_T

Request or VARCHAR2(128 CHAR)
EMAI L VARCHAR2(10 CHAR)
Cost Cent er VARCHAR2(4 CHAR)
Shi ppi ngl nstructions SHI PPI NG_I NSTRUCTI ONS_T
Speci al I nstructi ons VARCHAR2(2048 CHAR)
LI NEI TEM_COLLECTI ON LI NEI TEMS_T

Not es CLOB

SQL> DESCRI BE LI NEI TEMS_T
LINEI TEMS_T i's NOT FI NAL

Nane Nul | ? Type
SYS_XDBPD$ XDB. XDB$SRAW LI ST_T
LI NEI TEM VARRAY LI NEI TEM V

SQL> DESCRI BE LI NEI TEM_V

LI NEI TEM V VARRAY(2147483647) OF LINEITEM T
LINEITEM T is NOT Fl NAL

Nane Nul I ? Type

SYS_XDBPD$ XDB. XDB$RAW LI ST_T
I't emNunber NUMBER(38)
Description VARCHAR2(256 CHAR)
Part PART T

SQL> DESCRI BE PART T

PART_T is NOT FI NAL

Name Nul I ? Type

Id VARCHAR2(14 CHAR)
Quantity NUMBER(12, 2)
UnitPrice NUVBER(8, 4)

SQL> SELECT TABLE_NAME, PARENT_TABLE_COLUWN FROM USER NESTED TABLES
VHERE PARENT_TABLE_NAME = ' PURCHASEORDER ;

TABLE_NANME PARENT TABLE_COLUWN

SYS_NTNOHV+t f STRaDTAIFETvBIw== " XMLDATA". " LI NEI TEM COLLECTI ON". " LI NEI TEM VARRAY"
SYS_NTVAbNVgQLSAWICI vBK5gj ZA== " XMLDATA". " ACTI ON_COLLECTI ON". " ACTI ON_VARRAY"

2 rows sel ected.

A table called PURCHASEORDER has been created.

Types called PURCHASEORDER T, LI NEI TEMS_T, LI NEI TEM_V, LI NEI TEM T, and
PART_T have been created. The attributes defined by these types are named according
to supplied the SQLNane annotations.

The Not es attribute defined by PURCHASEORDER T has a datatype of CLOB.

PART_T does not include a Positional Descriptor attribute.

XML Schema Storage and Query: The Basics 5-25

Oracle XML Schema Annotations

Nested tables have been created to manage the collections of Li nel t emand Act i on

elements.

Table 5-2 lists Oracle XML DB annotations that you can specify in element and

attribute declarations.

Table 5-2 Annotations You Can Specify in Elements

Attribute

Values

Default

Description

SQLNane

Any SQL identifier

Element name

Specifies the name of the attribute within the
SQL object that maps to this XML element.

SQ . Type

Any SQL type name

Name generated
from element name

Specifies the name of the SQL type
corresponding to this XML
element declaration.

SQLCol | Type

Any SQL collection
type name

Name generated
from element name

Specifies the name of the SQL collection type
corresponding to this XML element that has
maxCccur s>1.

SQLSchena

Any SQL username

User registering
XML Schema

Name of database user owning the type
specified by SQLType.

SQ.Col | Schena

Any SQL username

User registering
XML Schema

Name of database user owning the type
specified by SQLCol | Type.

mai nt ai nOr der

true | false

true

If true, the collection is mapped to a
VARRAY. If false, the collection is mapped to
a NESTED TABLE.

SQ.Inline

true | false

true

If true this element is stored inline as an
embedded attribute (or a collection if
maxQccur s > 1). If false, a REF value is
stored (or a collection of REF values, if
maxQccur s>1). This attribute is forced to
false in certain situations (like cyclic
references) where SQL will not support
inlining.

mai nt ai nDOM

true | false

true

If true, instances of this element are stored
such that they retain DOM fidelity on
output. This implies that all comments,
processing instructions, namespace
declarations, and so on are retained in
addition to the ordering of elements. If false,
the output need not be guaranteed to have
the same DOM action as the input.

col ummPr ops

Any valid column
storage clause

NULL

Specifies the column storage clause that is
inserted into the default CREATE TABLE
statement. It is useful mainly for elements
that get mapped to tables, namely top-level
element declarations and out-of-line element
declarations.

t abl ePr ops

Any valid table
storage clause

NULL

Specifies the TABLE storage clause that is
appended to the default CREATE TABLE
statement. This is meaningful mainly for
global and out-of-line elements.

def aul t Tabl e

Any table name

Based on element
name.

Specifies the name of the table into which
XML instances of this schema should be
stored. This is most useful in cases when the
XML is being inserted from APIs where
table name is not specified, for example, FTP
and HTTP.

5-26 Oracle XML DB Developer's Guide

Querying a Registered XML Schema to Obtain Annotations

Table 5-3 Annotations You Can Specify in Elements Declaring Global complexTypes

Attribute Values Default Description
SQLType Any SQL typename Name generated from Specifies the name of the SQL type
element name corresponding to this XML
element declaration.
SQ.Schema Any SQL username User registering XML Name of database user owning the type
Schema specified by SQLType.
mai nt ai nDOM true | false true If true, instances of this element are stored

such that they retain DOM fidelity on
output. This implies that all comments,
processing instructions, namespace
declarations, and so on, are retained in
addition to the ordering of elements. If false,
the output need not be guaranteed to have
the same DOM action as the input.

Table 5-4 Annotations You Can Specify in XML Schema Declarations

Attribute Values Default Description
mapUnbounded true | false false If true, unbounded strings are mapped to
StringToLob CLOB by default. Similarly, unbounded

binary data gets mapped to a Binary Large
Object (BLOB), by default. If false,
unbounded strings are mapped to
VARCHAR2(4000) and unbounded binary
components are mapped to RAW 2000) .

St oreVar rayAsTabl e true | false false If true, the VARRAY is stored as a table
(OCT). If false, the VARRAY is stored in a
LOB.

Querying a Registered XML Schema to Obtain Annotations

The registered version of an XML Schema will contain a full set of XDB annotations.
As was shown in Example 5-8, and Example 5-9, the location of the registered XML
Schema depends on whether the schema is a local or global schema.

This document can be queried to find out the values of the annotations that were
supplied by the user, or added by the schema registration process. For instance, the
following query shows the set of global conpl exType definitions declared by the
XMLSchema and the corresponding SQL objects types:

Example 5-15 Querying Metadata from a Registered XML Schema

SELECT extract Val ue(val ue(ct),
"I xs: conpl exType/ @ane',
"xm ns: xs="http://wmw. w3. org/ 2001/ XM_Schena"
xm ns: xdb="http://xm ns. oracl e. conf xdb"")
XMLSCHEMA_TYPE_NAME,
extract Val ue(val ue(ct),
"I xs: conpl exType/ @db: SQLType',
"xm ns: xs="http://wm w3. org/ 2001/ XM_Schena"
xm ns: xdb="http://xm ns. oracl e. com xdb"")
SQL_TYPE_NAME
FROM r esour ce_vi ew,
tabl e(
xm sequence(
extract (

XML Schema Storage and Query: The Basics 5-27

Querying a Registered XML Schema to Obtain Annotations

res,
"/ r:Resource/r: Contents/xs:schema/ xs: conpl exType',
"xmns:r="http://xn ns. oracl e. com xdb/ XDBResour ce. xsd"
xm ns: po="http://xn ns. oracl e. com xdb/ docurment at i on/ pur chaseCr der "
xm ns: xs="http:// ww. w3. org/ 2001/ XM.Schema"
xm ns: xdb="http://xmns. oracl e.conf xdb""))) ct

WHERE
equal s_pat h(
res,
"/ sys/ schemas/ SCOTT/ xm ns. or acl e. cont xdb/ docunent ati on/ pur chaseQOr der . xsd')

:11
XMLSCHEMA_TYPE_NAME SQL_TYPE_NAME
Pur chaseOr der Type PURCHASEORDER T
Li nel t ensType LI NEI TEMS_T
Li nel t enType LINEITEM T
Part Type PART_T
Acti onsType ACTIONS_T
Rej ecti onType REJECTION_T
Shi ppi ngl nstructionsType SHI PPI NG_| NSTRUCTI ONS_T

7 rows sel ected.

SQL Mapping Is Specified in the XML Schema During Registration

Information regarding the SQL mapping is stored in the XML Schema document. The
registration process generates the SQL types, as described in "Mapping of Types Using
DBMS_XMLSCHEMA" on page 5-30 and adds annotations to the XML Schema
document to store the mapping information. Annotations are in the form of new
attributes.

Example 5-16 Capturing SQL Mapping Using SQLType and SQLName Attributes

The following XML Schema definition shows how SQL mapping information is
captured using SQLType and SQLNane attributes:

DECLARE
doc VARCHAR2(3000) :=
' <schena
tar get Namespace="http://xn ns. oracl e. conf xdb/ docunent ati on/ pur chaseOr der . xsd"
xm ns: po="http://xm ns. oracl e. conl xdb/ docunent ati on/ pur chaseOr der . xsd"
xm ns: xdb="http://xm ns. oracl e. conf xdb"
xm ns="http://ww. w3. or g/ 2001/ XM_Schena" >
<conpl exType name="Pur chaseOr der Type" >
<sequence>
<el enent name="PONuni' type="deci mal" xdb: SQLName="PONUM'
xdb: SQLType="NUMBER' / >
<el ement name="Conpany" xdb: SQLNane=" COMPANY" xdb: SQLType="VARCHAR2" >
<si npl eType>
<restriction base="string">
<maxLengt h val ue="100"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement name="Iteni xdb: SQLName="|TEM xdb: SQLType="ITEM T"
maxCccur s="1000" >
<conpl exType>
<sequence>

5-28 Oracle XML DB Developer's Guide

Querying a Registered XML Schema to Obtain Annotations

<el ement name="Part" xdb: SQLName="PART" xdb: SQLType="VARCHAR2" >
<si npl eType>
<restriction base="string">
<maxLengt h val ue="1000"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement name="Price" type="float" xdb: SQLName="PRI CE"
xdb: SQLType="NUMBER'/ >
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<el ement name="PurchaseOrder" type="po: PurchaseO der Type"/ >
</ schema>';
BEG N
DBMS_XMLSCHEMA. r egi st er Schena(
"http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseCOr der. xsd', doc);
END;

Figure 5-2 shows how Oracle XML DB creates XML Schema-based XMLType tables
using an XML document and mapping specified in an XML Schema.

XML Schema Storage and Query: The Basics 5-29

Mapping of Types Using DBMS_XMLSCHEMA

Figure 5-2 How Oracle XML DB Maps XML Schema-Based XMLType Tables

XML data: employee_2002.xml
Qéﬁployee>
<first_name>Scott</first_name>

<l ast _nane>Ti ger </ | ast _nane>
<emai | >scott.itger @racl e. conx/ enai | >

<hi -re_dat e>040402</ hi r e_dat e>

<débart nment _i d>1234</ depart nent _i d>

</ enpl oyee> [Create
o - XMLType
XML schema definition: employee.xsd —p| Table
<sequence>

<el enent nane="first name" type="string"/>
<el enent name="last nane" type="string"/>
<el enent nane="email" type="string"/> -

<el ement name="hi r e_date" type="date"/>

<el ement name=" departnent _i d" type="integer"/>
</ sequence>

Structured
Store as CLOB Storage

employee_2002 tables employee_2002 tables
XMLType Columnl o | o first_namel Iast_namel email | dept_id
CLOB AU I scott tiger ..1234
CLOB
CLOB
CLOB
CLOB

Here the whole XML document or parts Here the XML elements are mapped
of it are stored in CLOBs in tables. to columns in tables.

An XMLType table is first created and depending on how the storage is specified in the
XML Schema, the XML document is mapped and stored either as a CLOB in one

XM_.Type column, or stored object-relationally and spread out across several columns
in the table.

Mapping of Types Using DBMS_XMLSCHEMA

Use DBMS_XM_SCHEMA to set the mapping of type information for attributes and
elements.

Setting Attribute Mapping Type Information
An attribute declaration can have its type specified in terms of one of the following;:
= Primitive type

« Global si nmpl eType, declared within this XML Schema or in an external XML
Schema

5-30 Oracle XML DB Developer's Guide

Mapping of Types Using DBMS_XMLSCHEMA

= Reference to global attribute (r ef =". . "), declared within this XML Schema or in
an external XML Schema

« Local si npl eType

In all cases, the SQL type and associated information (length and precision) as well as
the memory mapping information, are derived from the si npl eType on which the
attribute is based.

Overriding the SQLType Value in XML Schema When Declaring Attributes

You can explicitly specify a SQLType value in the input XML Schema document. In
this case, your specified type is validated. This allows for the following specific forms
of overrides:

= If the default type is a STRI NG then you can override it with any of the following:
CHAR, VARCHAR, or CLOB.

= If the default type is RAW then you can override it with RAWor BLOB.

Setting Element Mapping Type Information
An element declaration can specify its type in terms of one of the following:

= Any of the ways for specifying type for an attribute declaration. See "Setting
Attribute Mapping Type Information" on page 5-30.

= Global conpl exType, specified within this XML Schema document or in an
external XML Schema.

= Reference to a global element (r ef =". . . "), which could itself be within this XML
Schema document or in an external XML Schema.

« Local conpl exType.

Overriding the SQLType Value in XML Schema When Declaring Elements

An element based on a conpl exType is, by default, mapped to an object type
containing attributes corresponding to each of the sub-elements and attributes.
However, you can override this mapping by explicitly specifying a value for SQLType
attribute in the input XML Schema. The following values for SQLType are permitted
in this case:

« VARCHARZ2
« RAW

« CLOB

« BLOB

These represent storage of the XML in a text or unexploded form in the database.

For example, to override the SQLType from VARCHARZ to CLOB declare the XDB
namespace as follows:

xm ns: xdb"http://xm ns. oracl e. conf xdb"

and then use xdb: SQLType="CLOB".
The following special cases are handled:

= Ifacycleis detected, as part of processing the conpl exTypes used to declare
elements and elements declared within the conpl exType, then the SQLI nl i ne

XML Schema Storage and Query: The Basics 5-31

Mapping simpleTypes to SQL

attribute is forced to be "false" and the correct SQL mapping is set to REF
XM.Type.

If maxCccurs > 1, a VARRAY type may be created.

- IfSQLInline="true", then a varray type is created whose element type is
the SQL type previously determined.

* Cardinality of the VARRAY is determined based on the value of
maxQccur s attribute.

* The name of the VARRAY type is either explicitly specified by the user
using SQLCol | Type attribute or obtained by mangling the element name.

- IfSQLInline="fal se", then the SQL type is set to XDB. XDB$XMLTYPE_
REF_LI ST_T, a predefined type representing an array of REF values to
XM.Type.

If the element is a global element, or if SQLI nl i ne="f al se", then the system
creates a default table. The name of the default table is specified by you or derived
by mangling the element name.

See Also: Chapter 6, XML Schema Storage and Query:
Advanced Topics" for more information about mapping
si mpl eType values and conpl exType values to SQL.

Mapping simpleTypes to SQL

This section describes how XML Schema definitions map XML Schema si npl eType
to SQL object types. Figure 5-3 shows an example of this.

Table 5-5 through Table 5-8 list the default mapping of XML Schema si npl eType to
SQL, as specified in the XML Schema definition. For example:

An XML primitive type is mapped to the closest SQL datatype. For example,
DECI MAL, PCSI Tl VEI NTEGER, and FLOAT are all mapped to SQL NUVBER

An XML enumeration type is mapped to an object type with a single RAW(n)
attribute. The value of n is determined by the number of possible values in the
enumeration declaration.

An XML list or a union datatype is mapped to a string (VARCHAR2 or CLOB)
datatype in SQL.

Figure 5-3 Mapping simpleType: XML Strings to SQL VARCHAR2 or CLOBs

<element name = "Resume" type = "string">

v

Employee_tab of type OBJ_T
| |Resume|...

| |CLOB—||...
|

Entire resume
value is stored
in the CLOB

5-32 Oracle XML DB Developer's Guide

Mapping simpleTypes to SQL

Table 5-5 Mapping XML String Datatypes to SQL

Length or : ;
XML Primitive MaxLength Default Mapping Compatible Datatype
Type Facet
string n VARCHAR2(n) if n <4000, else VARCHAR2(4000) CHAR, CLOB
string - VARCHAR2(4000) if CHAR, CLOB

mapUnboundedSt ri ngToLob="f al se", CLOB

Table 5-6 Mapping XML Binary Datatypes (hexBinary/base64Binary) to SQL

Length or ; ;
XML Primitive MaxLength Default Mapping Compatible Datatype
Type Facet
hexBi nary, n RAW n) if n <2000, else RAW 2000) RAW BLCOB
base64Bi nar
y
hexBi nary, - RAW 2000) if RAW BLOB
base64Bi nar mapUnboundedSt ri ngToLob="f al se", BLOB
y

Table 5-7 Default Mapping of Numeric XML Primitive Types to SQL

XML Simple Type 8?;‘2"? totalDigits (m), Compatible Datatypes
DataType fractionDigits(n) Specified

f | oat NUMBER NUMBER(m n) FLOAT, DOUBLE, Bl NARY_FLOAT

doubl e NUMBER NUMBER(m n) FLOAT, DOUBLE, Bl NARY_DOUBLE

deci mal NUMBER NUVBER(my n) FLOAT, DOUBLE

i nteger NUMBER NUMBER(m n) NUMBER

nonNegati vel nteg NUMBER NUVBER(my n) NUVBER

er

posi ti vel nt eger NUVBER NUVBER(m n) NUVBER

nonPosi tivelnteg NUMVBER NUMBER(m n) NUMBER

er

negati vel nt eger NUVBER NUVBER(my n) NUVBER

| ong NUMBER(20) NUMBER(m n) NUVBER

unsi gnedLong NUVBER(20) NUMBER(m n) NUVBER

i nt NUMBER(10) NUVBER(m n) NUMBER

unsi gnedl nt NUMBER(10) NUMBER(m n) NUMBER

short NUMBER(5) NUMBER(m n) NUVBER

unsi gnedsShort NUVBER(5) NUVBER(my n) NUVBER

byt e NUMBER(3) NUMBER(m n) NUVBER

unsi gnedByt e NUVBER(3) NUVBER(m n) NUVBER

XML Schema Storage and Query: The Basics 5-33

Mapping simpleTypes to SQL

Table 5-8 Mapping XML Date Datatypes to SQL

XML Primitive Type

Default Mapping

Compatible Datatypes

datetinme TI MESTAMP TI MESTAMP W TH Tl ME ZONE, DATE
time TI MESTAMP TI MESTAMP W TH Tl ME ZONE, DATE
dat e DATE TI MESTAMP W TH TI ME ZONE

gDay DATE TI MESTAMP W TH TI ME ZONE
ghont h DATE TI MESTAMP W TH TI ME ZONE
gYear DATE TI MESTAMP W TH TI ME ZONE
gYear Mont h DATE TI MESTAMP W TH TI ME ZONE
ghont hDay DATE TI MESTAMP W TH TI ME ZONE
duration VARCHAR2(4000) none

Table 5-9 Default Mapping of Other XML Primitive Datatypes to SQL

XML Simple Type

Default Oracle DataType

Compatible Datatypes

Bool ean RAW 1) VARCHAR2
Language(string) VARCHAR2(4000) CLOB, CHAR
NMIOKEN(st ri ng) VARCHAR2(4000) CLOB, CHAR
NMTOKENS(st ri ng) VARCHAR2(4000) CLOB, CHAR
Name(string) VARCHAR2(4000) CLOB, CHAR
NCName(string) VARCHAR2(4000) CLOB, CHAR
ID VARCHAR2(4000) CLOB, CHAR
| DREF VARCHAR2(4000) CLOB, CHAR
| DREFS VARCHAR2(4000) CLOB, CHAR
ENTI TY VARCHAR2(4000) CLOB, CHAR
ENTI TI ES VARCHAR2(4000) CLOB, CHAR
NCTATI ON VARCHAR2(4000) CLOB, CHAR
anyUR VARCHAR2(4000) CLOB, CHAR
anyType VARCHAR2(4000) CLOB, CHAR
anySi npl eType VARCHAR2(4000) CLOB, CHAR
Nane XDB. XDB$QNANE -

simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOBs

If the XML Schema specifies the datatype to be string with a maxLengt h value of less
than 4000, then it is mapped to a VARCHAR?Z attribute of the specified length. However,
if maxLengt h is not specified in the XML Schema, then it can only be mapped to a
LOB. This is sub-optimal when most of the string values are small and only a small
fraction of them are large enough to need a LOB.

See Also: Table 5-5, " Mapping XML String Datatypes to SQL"

5-34 Oracle XML DB Developer's Guide

Mapping complexTypes to SQL

Working with Time Zones

The following XML Schema types allow for an optional time-zone indicator as part of
their literal values.

« Xxsd:dateTine

« Xxsd:tine

« Xxsd:date

« xsd:gYear

« xsd:ghMonth

« xsd: gbay

« Xxsd:gYear Mont h
« xsd: ghont hDay

By default, the schema registration maps xsd: dat eTi me and xsd: ti me to SQL
TI MESTAMP and all the other datatypes to SQL DATE. The SQL TI MESTAMP and DATE
types do not permit the time-zone indicator.

However, if the application needs to work with time-zone indicators, then the schema
should explicitly specify the SQL type to be TI MESTAMP W TH TI ME ZONE, using
the xdb: SQLType attribute. This ensures that values containing time-zone indicators
can be stored and retrieved correctly.

Example:
<el ement nanme="dob" type="xsd: dateTi ne"

xdb: SQLType="TI MESTAMP W TH TI ME ZONE"/ >

<attribute nanme="endof quarter" type="xsd: ghonthDay"
xdb: SQLType="TI MESTAMP W TH TI ME ZONE"/ >

Note: Using trailing Z to indicate UTC time zone.

XML Schema allows the time-zone component to be specified as Z to indicate UTC
time zone. When a value with a trailing Z is stored ina TI| MESTAMP W TH TI ME
ZONE column, the time zone is actually stored as +00: 00. Thus, the retrieved value
contains the trailing +00: 00 and not the original Z.

Example: If the value in the input XML document is 1973- 02- 12T13: 44: 32Z, the
output will look like 1973- 02- 12T13: 44: 32. 000000+00: 00.

Mapping complexTypes to SQL
Using XML Schema, a conpl exType is mapped to a SQL object type as follows:

= XML attributes declared within the conpl exType are mapped to object
attributes. The si npl eType defining the XML attribute determines the SQL
datatype of the corresponding attribute.

= XML elements declared within the conpl exType are also mapped to object
attributes. The datatype of the object attribute is determined by the si npl eType
or conpl exType defining the XML element.

If the XML element is declared with attribute maxCccur s > 1, then it is mapped to a
col | ecti on attribute in SQL. The col | ect i on could be a VARRAY value (default) or
nested table if the mai nt ai nOr der attribute is set to false. Further, the default storage

XML Schema Storage and Query: The Basics 5-35

Mapping complexTypes to SQL

of the VARRAY value is in Ordered Collections in Tables (OCTs) instead of LOBs. You
can choose LOB storage by setting the st or eAsLob attribute to true.

Specifying Attributes in a complexType XML Schema Declaration

When you have an element based on a global conpl exType, the SQLType and
SQLSchena attributes must be specified for the conpl exType declaration. In
addition you can optionally include the same SQLType and SQLSchema attributes
within the element declaration.

The reason is that if you do not specify the SQLType for the global conpl exType,
Oracle XML DB creates a SQLTy pe with an internally generated name. The elements
that reference this global type cannot then have a different value for SQLType. In other
words, the following code is fine:

<xsd: conpl exType name="PURCHASEORDERLI| NEI TEM TYPEType" >
<xsd: sequence>
<xsd: el enent nane="Li neNo" type="xsd: doubl e"
xdb: SQLName="Li neNo" xdb: SQLType="NUVBER'/ >
<xsd: el enent nanme="Decription" type="xsd:string"
xdb: SQLNanme="Decri ption" xdb: SQLType="VARCHAR2" / >
<xsd: el enent name="Part" type="PURCHASEORDERPART TYPEType"
xdb: SQLNane="Part" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="PURCHASEORDERPART TYPEType" xdb: SQLSchema="XM.USER'
xdb: SQLType="PURCHASEORDERPART _TYPE" >
<xsd: sequence>
<xsd: el enent name="1d" type="xsd:string"
xdb: SQLNanme="1d" xdb: SQLType="VARCHAR2" / >
<xsd: el enent name="Quantity" type="xsd:doubl e"
xdb: SQLName="Quantity" xdb: SQLType="NUMBER'/ >
<xsd: el enent name="cost" type="xsd: doubl e"
xdb: SQLName="cost " xdb: SQLType="NUMBER"/ >
</ xsd: sequence>
</ xsd: conpl exType>

The following is also fine:

<xsd: conpl exType nanme="PURCHASEORDERL| NEI TEM TYPEType" >
<xsd: sequence>
<xsd: el enent nanme="Li neNo" type="xsd: doubl e"
xdb: SQLName="Li neNo" xdb: SQLType="NUMBER'/ >
<xsd: el enent nane="Decription" type="xsd:string"
xdb: SQLName="Decri ption" xdb: SQLType="VARCHAR2" / >
<xsd: el enent nanme="Part" type="PURCHASEORDERPART TYPEType"
xdb: SQLNanme="Part" xdb: SQLSchema=" XM_LUSER"
xdb: SQLType="PURCHASEORDERPART_TYPE" />
</ xsd: sequence>
</ xsd: conpl exType>

You Must Specify a Namespace With Remote XMLType Functions

When using XMLType functions such as ext r act () and exi st sNode() remotely for
XML Schema-based views or tables, you must specify the namespace completely.

NVARCHAR and NCHAR SQLType Values are Not Supported

Oracle XML DB does not support N\VARCHAR or NCHAR as a SQLType when registering
an XML Schema. In other words in the XML Schema . xsd file you cannot specify that

5-36 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

an element should be of type NVARCHAR or NCHAR. Also, if you provide your own type
you should not use these datatypes.

XPath Rewrite with XML Schema-Based Structured Storage

This section describes XPath rewrite support in Oracle XML DB and how to use it for
XML Schema based structured storage.

What Is XPath Rewrite?

When the XMLType is stored in structured storage (object-relationally) using an XML
Schema and queries using XPath are used, they can potentially be rewritten directly to
the underlying object-relational columns. This rewrite of queries can also potentially
happen when queries using XPath are issued on certain non-schema-based XM_Type
views.

This enables the use of B*Tree or other indexes, if present on the column, to be used in
query evaluation by the Optimizer. This XPath rewrite mechanism is used for XPaths
in SQL functions such as exi st sNode(),extract (), extract Val ue(), and
updat eXML() . This enables the XPath to be evaluated against the XML document
without having to ever construct the XML document in memory.

Note: XPath queries that get rewritten are a subset of the set of
supported XPath queries. As far as possible, queries should be
written so that the XPath rewrite advantages are realized.

Example 5-17 XPath Rewrite

For example a query such as:

SELECT VALUE(p) FROM MyPCs p
WHERE extract Val ue(val ue(p),"'/PurchaseO der/Conpany') = 'Oacle';

is trying to get the value of the Conpany element and compare it with the literal
'Or acl e'. Because the MyPCs table has been created with XML Schema-based
structured storage, the ext r act Val ue operator gets rewritten to the underlying
relational column that stores the company information for the pur chaseQr der .

Thus the preceding query is rewritten to the following:

SELECT VALUE(p) FROM MyPGCs p WHERE p. xni data. Conpany = ' Oracle';

Note: XM_DATAis a pseudo-attribute of XMLType that enables
direct access to the underlying object column. See Chapter 4,
"XMLType Operations”, under "Changing the Storage Options on
an XMLType Column Using XMLData".

See Also: Chapter 4, "XMLTIype Operations"

If there was a regular index created on the Conpany column, such as:

CREATE | NDEX company_i ndex ON MyPos e
(extractval ue(val ue(e), '/ PurchaseCrder/ Conpany'));

then the preceding query would use the index for its evaluation.

XML Schema Storage and Query: The Basics 5-37

XPath Rewrite with XML Schema-Based Structured Storage

XPath rewrite happens for XML Schema-based tables and both schema-based and
non-schema based views. In this chapter we consider examples related to
schema-based tables.

See Also: Chapter 3, "Using Oracle XML DB", "Understanding
and Optimizing XPath Rewrite" on page 3-64, for additional
examples of rewrite over schema-based and non-schema based
views

When Does XPath Rewrite Occur?
XPath rewrite happens for the following SQL functions:
« extract
« existsNode
« extractVal ue
« updat eXML
« XM.Sequence

The rewrite happens when these SQL functions are present in any expression in a
query, DML, or DDL statement. For example, you can use ext r act Val ue() to create
indexes on the underlying relational columns.

Example 5-18 SELECT Statement and XPath Rewrites

This example gets the existing purchase orders:

SELECT extract Val ue(val ue(x), '/PurchaseOr der/ Conpany')
FROM MYPGs x
VWHERE exi st sNode(val ue(x), '/PurchaseCrder/Iteni{l]/Part') = 1,

Here are some examples of statements that get rewritten to use underlying columns:

Example 5-19 DML Statement and XPath Rewrites
This example deletes all Pur chaseCOr der s where the Conrpany is not Or acl e:

DELETE FROM MYPGs x
VWHERE ext ract Val ue(val ue(x), '/ PurchaseOr der/ Conpany') = 'Oracle Corp';

Example 5-20 CREATE INDEX Statement and XPath Rewrites

This example creates an index on the Conpany column, because this is stored object
relationally and the XPath rewrite happens, a regular index on the underlying
relational column will be created:

CREATE | NDEX conpany_i ndex ON MyPos e
(extractVal ue(val ue(e), "'/ PurchaseCOr der/ Conpany'));

In this case, if the rewrite of the SQL functions results in a simple relational column,
then the index is turned into a B*Tree or a domain index on the column, rather than a
function-based index.

What XPath Expressions Are Rewritten?
The rewrite of XPath expressions happen if all of the following hold true:

« The XML function or method is rewritable.

5-38 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

The SQL functions ext r act , exi st sNode, ext r act Val ue, updat eXM. and
XM.Sequence get rewritten. Other than the exi st sSNode() method, none of the
methods of XMLType get rewritten. You can however use the SQL function
equivalents instead.

« The XPath construct is rewritable

XPath constructs such as simple expressions, wildcards, and descendent axes get
rewritten. The XPath may select attributes, elements or text nodes. Predicates also
get rewritten to SQL predicates. Expressions involving parent axes, sibling axis,
and so on are not rewritten.

« The XMLSchema constructs for these paths are rewritable.

XML_Schema constructs such as complex types, enumerated values, lists, inherited
types, and substitution groups are rewritten. Constructs such as recursive type
definitions are not rewritten.

= The storage structure chosen during the schema registration is rewritable.

Storage using the object-relational mechanism is rewritten. Storage of complex
types using CLOBs are not rewritten

Table 5-10 lists the kinds of XPath expressions that can be translated into underlying
SQL queries in this release.

Table 5-10 Sample List of XPath Expressions for Translation to Underlying SQL constructs

XPath Expression for Translation Description

Simple XPath expressions: Involves traversals over object type attributes only, where the
attributes are simple scalar or object types themselves. The

/ Pur chaseQr der/ @ur chaseDat e only axes supported are the child and the attribute axes.

/ Pur chaseOr der / Conpany

Collection traversal expressions: Involves traversal of collection expressions. The only axes
supported are child and attribute axes. Collection traversal is
/'PurchaseQrder/1tem Part not supported if the SQL operator is used during CREATE
| NDEX or updat eXM_() .

Predicates: Predicates in the XPath are rewritten into SQL predicates.

[Conpany="0r acl e"] Predicates are not rewritten for updat e XM-()

List index: Indexes are rewritten to access the nth item in a collection.
i nei tenf 1] These are not rewritten for updat eXM_() .
Wildcard traversals: If the wildcard can be translated to a unique XPath (for

example, / Pur chaseCOr der/ | t enf Par t), then it gets
rewritten, provided it is not the last entry in the path
expression.

/ Pur chaseOrder/*/ Part

Descendent axis: Similar to the wildcard expression. The descendent axis gets

/ Pur chaseOr der/ / Par t rewritten, if it can be mapped to a unique XPath expression
and the subsequent element is not involved in a recursive type
definition.

XML Schema Storage and Query: The Basics 5-39

XPath Rewrite with XML Schema-Based Structured Storage

Table 5-10 (Cont.) Sample List of XPath Expressions for Translation to Underlying SQL constructs

XPath Expression for Translation Description

Oracle provided extension functions and some Any function from the Oracle XML DB namespace

XPath functions (http://xm ns. oracl e. conl xdb) gets rewritten into the
not, f1 oor, cei | i ng, subst ri ng, ;l;\,gli?tzrl?g SQL function. Some XPath functions also get
string-length,translate ’

ora: contains

String bind variables inside predicates XPath expressions using SQL bind variables are also rewritten

provided the bind variable occurs between the concat (| |)

/PurchaseGrder[@d=""[] :1 []] operators and is inside the double quotes in XPath.
Un-nest operations using XMLSequence XMLSequence combined with Extract, when used in a TABLE
TABLE(XM_Sequence(extract (...))) giissfuisezewrltten to use the underlying nested table

Common XPath Constructs Supported in XPath Rewrite

The following are some of the XPath constructs that get rewritten. This is not an
exhaustive list and only illustrates some of the common forms of XPath expressions
that get rewritten.

= Simple XPath traversals

» Predicates and index accesses
Oracle provided extension functions on scalar values.
SQL Bind variables.

= Descendant axes (XML Schema-based only): Rewrites over descendant axis (/ /)
are supported if:

« There is at least one XPath child or attribute access following the / /

= Only one descendant of the children can potentially match the XPath child or
attribute name following the / / . If the schema indicates that multiple
descendants children can potentially match, and there is no unique path the
/'l can be expanded to, then no rewrite is done.

= None of the descendants have an element of type xsi : anyType

= There is no substitution group that has the same element name at any
descendant.

« Wildcards (XML Schema-based only): Rewrites over wildcard axis (/ *) are
supported if:

« There s at least one XPath child or attribute access following the / *

= Only one of the grandchildren can potentially match the XPath child or
attribute name following the / * . If the schema indicates that multiple
grandchildren can potentially match, and there is no unique path the/ * can
be expanded to, then no rewrite is done.

= None of the children or grandchildren of the node before the / * have an
element of type xsi : anyType

« There is no substitution group that has the same element name for any child of
the node before the / *.

Unsupported XPath Constructs in XPath Rewrite
The following XPath constructs do not get rewritten:

5-40 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

« XPath Functions other than the ones listed earlier. Also the listed functions are
rewritten only if the input is a scalar element.

« XPath Variable references.
« All axis other than child and attribute axis.
= Recursive type definitions with descendent axis.

= UNION operations.

Common XMLSchema constructs supported in XPath Rewrite

In addition to the standard XML Schema constructs such as complex types, sequences,
and so on, the following additional XML Schema constructs are also supported. This is
not an exhaustive list and seeks to illustrate the common schema constructs that get
rewritten.

= Collections of scalar values where the scalar values are used in predicates.
= Simple type extensions containing attributes.

= Enumerated simple types.

= Boolean simple type.

= Inheritance of complex types.

= Substitution groups.

Unsupported XML Schema Constructs in XPath Rewrite

The following XML Schema constructs are not supported. This means that if the XPath
expression includes nodes with the following XML Schema construct then the entire
expression will not get rewritten:

= XPath expressions accessing children of elements containing open content, namely
any content. When nodes contain any content, then the expression cannot be
rewritten, except when the any targets a namespace other than the namespace
specified in the XPath. any attributes are handled in a similar way.

= Non-coercible datatype operations, such as a Boolean added with a number

Common storage constructs supported in XPath Rewrite

All rewritable XPath expressions over object-relational storage get rewritten. In
addition to that, the following storage constructs are also supported for rewrite.

Simple numeric types mapped to SQL RAWdatatype.
Various date and time types mapped to the SQL TI MESTAMP_W TH_TZ datatype.
Collections stored inline, out-of-line, as OCTs and nested tables.

XML functions over schema-based and non-schema based XML Type views and
SQL/XML views also get rewritten. See the views chapter to get detailed information
regarding the rewrite.

See Also: Chapter 16, "XMLType Views"

Unsupported Storage Constructs in XPath Rewrite

The following XML Schema storage constructs are not supported. This means that if
the XPath expression includes nodes with the following storage construct then the
entire expression will not get rewritten:

XML Schema Storage and Query: The Basics 5-41

XPath Rewrite with XML Schema-Based Structured Storage

» CLOBstorage: If the XML Schema maps part of the element definitions to a SQL
CLOB value, then XPath expressions traversing such elements are not supported

Is there a difference in XPath logic with rewrite?

For the most part, there is no difference between rewritten XPath queries and
functionally evaluated ones. However, since XPath rewrite uses XML Schema
information to turn XPath predicates into SQL predicates, comparison of non-numeric
entities are different.

In XPath 1.0, the comparison operators, >, <, >=, and <= use only numeric comparison.
The two sides of the operator are turned into numeric values before comparison. If
either of them fail to be a numeric value, the comparison returns FALSE.

For instance, if I have a schema element such as,

<el ement nane="Shi pDate" type="xs:date" xdb: SQLType="DATE"/>

An XPath predicate such as [Shi pDate < '2003-02-01'] will always evaluate to
false with functional evaluation, since the string value ' 2003- 02- 01" cannot be
converted to a numeric quantity. With XPath rewrite, however, this gets translated to a

SQL date comparison and will evaluate to true or false depending on the value of
ShipDate.

Similarly if you have a collection value compared with another collection value, the
XPath 1.0 semantics dictate that the values have to be converted to a string and then
compared. With Query Rewrite, the comparison will use the SQL datatype comparison
rules.

To suppress this behavior, you can turn off rewrite either using query hints or session
level events.

How are the XPaths Rewritten?

The following sections use the same pur chaseor der XML Schema explained earlier
in the chapter to explain how the functions get rewritten.

Example 5-21 Registering Example Schema
Consider the following pur chaseor der XML Schema:

DECLARE
doc VARCHAR2(2000) :=
' <schema
target Namespace="http://xn ns. oracl e. comf xdb/ docurment at i on/ pur chaseOr der . xsd"
xm ns: po="http://xm ns. oracl e. com xdb/ docunent ati on/ pur chaseOr der . xsd"
xm ns="http://wm w3. or g/ 2001/ XM_Schema"
el ement For mDef aul t ="qual i fied">
<conpl exType name="Pur chaseOr der Type" >
<sequence>
<el ement name="PONuni type="decimal"/>
<el ement name="Conpany" >
<si npl eType>
<restriction base="string">
<maxLengt h val ue="100"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement name="Itent maxQOccurs="1000">
<conpl exType>
<sequence>

5-42 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

<el ement name="Part">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="20"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement name="Price" type="float"/>
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<el ement nane="PurchaseOrder" type="po: PurchaseO der Type"/ >
</ schem>' ;
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(
"http://xm ns.oracl e. conf xdb/ docunent ati on/ pur chaseOr der. xsd', doc);

END;
/

The registration creates the internal types. We can now create a table to store the XML
values and also create a nested table to store the Items.

SQ.> CREATE TABLE MYPCs OF XM.Type
2 XM.Schema "http://xm ns. oracl e. con xdb/ docunent at i on/ pur chaseCr der . xsd"
3 ELEMENT "PurchaseCr der"”
4 VARRAY xnml data."ltent store as table item nested,;

Tabl e created

Now, we insert a purchase order into this table.

I NSERT | NTO MyPos
VALUES(
XM.Type(
' <Pur chaseOr der
xm ns="http://xn ns. oracl e. conf xdb/ docunent at i on/ pur chaseOr der . xsd"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocation="http://xnl ns. oracl e. conf xdb/ docunent ati on/ pur chaseCr der. xsd
http://xm ns. oracl e. conf xdb/ document at i on/ pur chaseOr der . xsd" >
<PONunm»>1001</ PONun®»
<Company>Qr acl e Cor p</ Conpany>
<ltemp
<Part>9i Doc Set</Part>
<Price>2550</ Pri ce>
</ltenmp
<Itemp
<Part>8i Doc Set</Part>
<Pri ce>350</ Pri ce>
</ltem
</ PurchaseCOrder>'));

Because the XML Schema did not specify anything about maintaining the ordering, the
default is to maintain the ordering and DOM fidelity. Hence the types have SYS_
XDBPD$ attribute to store the extra information needed to maintain the ordering of
nodes and to capture extra items such as comments, processing instructions and so on.

The SYS_XDBPD$ attribute also maintains the existential information for the elements
(that is, whether the element was present or not in the input document). This is needed
for elements with scalar content, because they map to simple relational columns. In

XML Schema Storage and Query: The Basics 5-43

XPath Rewrite with XML Schema-Based Structured Storage

this case, both empty and missing scalar elements map to NULL values in the column
and only the SYS_XDBPD$ attribute can help distinguish the two cases. The XPath
rewrite mechanism takes into account the presence or absence of the SYS_XDBPD$
attribute and rewrites queries appropriately.

Now this table has a hidden XM_Dat a column of type "Pur chaseCr der _T" that
stores the actual data.

Rewriting XPath Expressions: Mapping Types and Path Expressions
XPath expression mapping of types and topics are described in the following sections.

Schema-Based: Mapping for a Simple XPath

A rewrite for a simple XPath involves accessing the attribute corresponding to the
XPath expression. Table 5-11 lists the XPath map:

Table 5-11 Simple XPath Mapping for purchaseOrder XML Schema

XPath Expression Maps to

/ Pur chaseOr der column XM_Dat a

/ Pur chaseOr der/ @ur chaseDat e column XM_Dat a. " Pur chaseDat e"

/ Pur chaseOr der / PONum column XM_Dat a. " PONurd'

/ PurchaseOrder/Item elements of the collection XM_Dat a. "I t ent
/ PurchaseOrder/Item Part attribute "Par t " in the collection

XM.Dat a. "1t ent

Mapping for Scalar Nodes

An XPath expression can contain a t ext () operator which maps to the scalar content
in the XML document. When rewriting, this maps directly to the underlying relational
columns.

For example, the XPath expression "/ Pur chaseOr der / PONuni t ext () " maps to the
SQL column XM_Dat a."PONun' directly.

A NULL value in the PONumcolumn implies that the text value is not available, either
because the t ext node was not present in the input document or the element itself
was missing. This is more efficient than accessing the scalar element, because in this
case there is no need to check for the existence of the element in the SYS_XBDPD$
attribute.

For example, the XPath "/ Pur chaseQOr der / PONunt' also maps to the SQL attribute
XML.Dat a. " PONunt',

However, in this case, XPath rewrite also has to check for the existence of the element
itself, using the SYS_XDBPD$ in the XM_Dat a column.

Schema-Based: Mapping of Predicates

Predicates are mapped to SQL predicate expressions. As discussed earlier, since the
predicates are rewritten into SQL, the comparison rules of SQL are used instead of the
XPath 1.0 semantics.

Example 5-22 Mapping Predicates
For example the predicate in the XPath expression:

[PurchaseCOr der [PONun=1001 and Conpany = "Oracle Corp"]

5-44 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

maps to the SQL predicate:
(XM_Dat a."PONum' = 20 and XM.Dat a. " Conpany" = "COracle Corp")

For example, the following query is rewritten to the structured (object-relational)
equivalent, and will not require Functional evaluation of the XPath.

SELECT Extract(val ue(p),'/PurchaseOrder/Iteni).getC obval ()
FROM MYPCs p
WHERE Exi st sNode(val ue(p), '/ PurchaseO der [PONum=1001
AND Company = "Oracle Corp"]') =1;

Schema-Based: Mapping of Collection Predicates

XPath expressions may involve relational operators with collection expressions. In
Xpath 1.0, conditions involving collections are existential checks. In other words, even
if one member of the collection satisfies the condition, the expression is true.

Example 5-23 Mapping Collection Predicates

For example the collection predicate in the XPath:

[PurchaseOrder[Items/Price > 200]

-- maps to a SQ col | ection expression:

exi st s(SELECT null FROM TABLE (XMLDATA. "Itenl') x
WHERE x."Price" > 200)

For example, the following query is rewritten to the structured equivalent.

SELECT Extract(val ue(p),'/PurchaseOrder/Item).getd obval ()
FROM MYPos p
VWHERE Exi st sNode(val ue(p),'/PurchaseOrder[ltem Price > 400]') = 1;

More complicated rewrites occur when you have a collection <condi ti on>
collection. In this case, if at least one combination of nodes from these two collection
arguments satisfy the condition, then the predicate is deemed to be satisfied.

Example 5-24 Mapping Collection Predicates, Using existsNode()

For example, consider a fictitious XPath which checks to see if a Pur chaseor der has
Items such that the price of an item is the same as some part number:

[PurchaseOrder[Itens/Price = Itens/Part]
-- maps to a SQ col | ection expression:
exi st s(SELECT nul |
FROM TABLE (XMLDATA."Itent) x
WHERE EXI STS (SELECT nul |
FROM TABLE(XMLDATA. "Itent) y
WHERE y."Part" = x."Price"))

For example, the following query is rewritten to the structured equivalent:

SELECT Extract(val ue(p),'/PurchaseCrder/Item). getC obval ()
FROM MYPCs p
VHERE Exi st sNode(val ue(p),'/PurchaseOrder[ltemPrice = ItemPart]') = 1;

Schema-Based: Document Ordering with Collection Traversals

Most of the rewrite preserves the original document ordering. However, because the
SQL system does not guarantee ordering on the results of subqueries, when selecting
elements from a collection using the ext r act () function, the resultant nodes may not
be in document order.

XML Schema Storage and Query: The Basics 5-45

XPath Rewrite with XML Schema-Based Structured Storage

Example 5-25 Document Ordering with Collection Traversals

For example:

SELECT extract (val ue(p),'/PurchaseOrder/IteniPrice>2100]/Part")
FROM MYPGs p;

is rewritten to use subqueries as shown in the following;:

SELECT (SELECT XM.Agg(XM.Forest (x."Part" AS "Part"))
FROM TABLE (XM.Data."ltent) x
WHERE x."Price" > 2100)
FROM MYPGs p;

Though in most cases, the result of the aggregation would be in the same order as the
collection elements, this is not guaranteed and hence the results may not be in
document order. This is a limitation that may be fixed in future releases.

Schema-Based: Collection Index

An XPath expression can also access a particular index of a collection For example,
"/ PurchaseOrder/Itenf1l]/Part" is rewritten to extract out the first Item of the
collection and then access the Part attribute within that.

If the collection has been stored as a VARRAY value, then this operation retrieves the
nodes in the same order as present in the original document. If the mapping of the
collection is to a nested table, then the order is undetermined. If the VARRAY value is
stored as an Ordered Collection Table (OCT), (the default for the tables created by the
schema compiler, if St or eVar r ayAsTabl e="t r ue" is set), then this collection index
access is optimized to use the IOT index present on the VARRAY value.

Schema-Based: Non-Satisfiable XPath Expressions

An XPath expression can contain references to nodes that cannot be present in the
input document. Such parts of the expression map to SQL NULL values during rewrite.
For example the XPath expression: "/ Pur chaseQr der/ Shi pAddr ess" cannot be
satisfied by any instance document conforming to the pur chaseor der . xsd XML
Schema, because the XML Schema does not allow for Shi pAddr ess elements under
Pur chaseOr der . Hence this expression would map to a SQL NULL literal.

Schema-Based: Namespace Handling

Namespaces are handled in the same way as the function-based evaluation. For
schema-based documents, if the function (like exi st sNode() orextract ()) does
not specify any namespace parameter, then the target namespace of the schema is used
as the default namespace for the XPath expression.

Example 5-26 Handling Namespaces

For example, the XPath expression / Pur chaseOr der / PONumis treated as

/ a: PurchaseOr der/ a: PONumwith

xm ns:a="http://xmns. oracl e. conf xdb/ docunent at i on/ pur chaseOr der
. xsd" if the SQL function does not explicitly specify the namespace prefix and
mapping. In other words:

SELECT * FROM MYPGs p
WHERE Exi st sNode(val ue(p), '/PurchaseO der/PONum) = 1;
is equivalent to the query:

SELECT *
FROM MYPQs p

5-46 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

VWHERE Exi st sNode(

val ue(p),

"/ Pur chaseOr der / PONumi
"xm ns="http://xm ns. oracl e. conf xdb/ docunent ati on/ pur chaseOr der. xsd')
=]_’

When performing XPath rewrite, the namespace for a particular element is matched
with that of the XML Schema definition. If the XML Schema contains

el ement For nDef aul t ="qual i fi ed" then each node in the XPath expression must
target a namespace (this can be done using a default namespace specification or by
prefixing each node with a namespace prefix).

If the el enment For nDef aul t is unqualified (which is the default), then only the node
that defines the namespace should contain a prefix. For instance if the

pur chaseor der . xsd had the element form to be unqualified, then the

exi st sNode() function should be rewritten as:

exi st sNODE(

val ue(p),

'/ a: PurchaseQr der/ PONuni ,
"xm ns:a="http://xnns. oracl e. conl xdb/ docurment at i on/ pur chaseOr der . xsd")
= 11

Note: For the case where el emrent For nDef aul t is unqualified,
omitting the namespace parameter in the SQL function

exi st sNode() in the preceding example, would cause each node
to default to the target namespace. This would not match the XML
Schema definition and consequently would not return any result.
This is true whether the function is rewritten or not.

Schema-Based: Date Format Conversions

The default date formats are different for XML Schema and SQL. Consequently, when
rewriting XPath expressions involving comparisons with dates, you must use XML
formats.

Example 5-27 Date Format Conversions

For example, the expression:

[@ur chaseDat e="2002- 02- 01"]

cannot be simply rewritten as:

XM.Dat a. " Pur chaseDat e" = "2002-02-01"

because the default date format for SQL is not YYYY- MM DD. Hence during XPath
rewrite, the XML format string is added to convert text values into date datatypes
correctly. Thus the preceding predicate would be rewritten as:

XML.Dat a. " PurchaseDat e" = TO DATE("2002- 02-01", " SYYYY- MM DD") ;

Similarly when converting these columns to text values (needed for ext r act (), and
so on), XML format strings are added to convert them to the same date format as XML.

Existential Checks for Scalar Elements and Attributes

The exi st sNode function checks for the existence of a the node targeted by the XPath
while ext r act returns the targeted node. In both cases we need to do special checks
for scalar elements and for attributes used in exi st sNode expressions. This is

XML Schema Storage and Query: The Basics 5-47

XPath Rewrite with XML Schema-Based Structured Storage

because the SQL column value alone cannot distinguish if a scalar element or attribute
is missing or is empty. In both these cases, the SQL column value is NULL. Note that
these special checks are not required for intermediate (non-scalar) elements since the
SQL UDT value itself will indicate the absence or emptiness of the element.

For instance, an expression of the form,

exi st sNode(val ue(p),'/PurchaseCrder/PONumtext()') = 1,

is rewritten to become

(p. XMLDATA. "PONunt 1S NOT NULL)

since the user is only interested in the text value of the node. If however, the
expression was,

exi st sNode(val ue(p),'/PurchaseCrder/PONum) = 1;

then we need to check the SYS_XDBPDS$ attribute in the parent to check if the scalar
element is empty or is missing.

(check- node- exi st s(p. XMLDATA. " SYS_XDBPD$", " PONunt') 1S NOT NULL)

The check- node- exi st s operation is implemented using internal SQL operators
and returns null if the element or attribute is not present in the document. In the case
of extract expressions, this check needs to be done for both attributes and elements.
An expression of the form,

Extract (val ue(p),'/PurchaseO der/PONuni)

maps to an expression like,

CASE WHEN check- node- exi st s(p. XMLDATA. SYS_XDBPD$", "PONunt') 1S NOT NULL
THEN XMLEl ement (" PONunt', p. XMLDATA. " PONunt')
ELSE NULL END;

Note: Be aware of this overhead when writing your exi st sNode
or ext r act expressions. You can avoid the overhead by using the
text() node in the XPath, using ext r act Val ue to get only the
node's value or by turning off the DOM fidelity for the parent node.

The DOM fidelity can be turned off by setting the value of the
attribute maintainDOM in the element definition to be false. In this
case all empty scalar elements or attributes are treated as missing.

Rewrite of SQL Functions

Section "Rewriting XPath Expressions: Mapping Types and Path Expressions" explains
the various path mappings. This section talks in detail about the differences in rewrite
for some of these functions. The objective of this is to explain the overhead involved in
certain types of operations using exi st sNode or ext r act which can be avoided.

XPath Expression Rewrites for ExistsNode

exi st sNode() returns a numerical value O or 1 indicating if the XPath returns any
nodes (t ext () or el ement nodes). Based on the mapping discussed in the earlier
section, an exi st sNode() simply checks if a scalar element is not NULL in the case
where the XPath targets a t ext () node or a non- scal ar node and checks for the
existence of the element using the SYS_XDBPD$ otherwise. If the SYS_XDBPD$

5-48 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

attribute is absent, then the existence of a scal ar node is determined by the NULL
information for the scalar column.

existsNode Mapping with Document Order Maintained

Table 5-12 shows the mapping of various XPaths in the case of exi st sNode() when
document ordering is preserved, that is, when SYS_XDBPD$ exists and
mai nt ai NDOVE" t r ue” in the schema document.

Table 5-12 XPath Mapping for existsNode() with Document Ordering Preserved

XPath Expression

Maps to

/ Pur chaseOr der

CASE WHEN XM.Data |'S NOT NULL THEN 1 ELSE O END

/ Pur chaseOr der/ @ur chaseDat e CASE WHEN Check_Node_Exi st s(XM.Dat a. SYS_XDBPD$,

"PurchaseDate') IS NOT NULL THEN 1 ELSE O END

/ Pur chaseOr der / PONum CASE WHEN Check_Node_ Exi st s(XM.Dat a. SYS_XDBPD$,

" PONuni) I'S NOT NULL THEN 1 ELSE 0 END

/ Pur chaseOr der [PONum

2100] CASE WHEN XML.Dat a. " PONunt'=2100 THEN 1 ELSE O

/ Pur chaseOr der [PONum

CASE WHEN XM.Dat a. " PONunt =2100 AND Check_Node_

2100]/ @Pur chaseDat e Exi st s(XM_Dat a. SYS_XDBPD$, ' PurchaseDate') 1S NOT
NULL THEN 1 ELSE O END

/ Pur chaseOr der / PONuni t ext () CASE WHEN XM_Dat a. "PONunmt’ |'S NOT NULL THEN 1 ELSE
0

/ PurchaseOrder/Item CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Data."lItent') x WHERE val ue(x) |'S NOT NULL)
THEN 1 ELSE O END

/ PurchaseOrder/Item Part CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Dat a."ltent) x WHERE Check_Node_ Exi sts(x.SYS_
XDBPD$, 'Part') |'S NOT NULL) THEN 1 ELSE 0 END

/ PurchaseOrder/Item Part/text() CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Data."ltent') x WHERE x."Part" | S NOT NULL)
THEN 1 ELSE O END

Example 5-28 existsNode Mapping with Document Order Maintained

Using the preceding mapping, a query which checks whether the Pur chaseOr der
with number 2100 contains a part with price greater than 2000:

SELECT count (*)
FROM nypos p
WHERE EX|I STSNODE(val ue(p), '/ PurchaseO der [PONum=1001 AND
Item Price > 2000]')= 1,

would become:

SELECT count (*)
FROM nypos p
WHERE CASE WHEN
p. XM_Dat a. " PONunt' = 1001 AND
EXI STS (SELECT NULL
FROM TABLE (XM.Data."ltenl) p
WHERE p."Price" > 2000)) THEN 1 ELSE 0 END = 1,

The CASE expression gets further optimized due to the constant relational equality
expressions and this query becomes:

SELECT count (*)
FROM nypos p

XML Schema Storage and Query: The Basics 5-49

XPath Rewrite with XML Schema-Based Structured Storage

WHERE p. XM_.Dat a. " PONunt = 1001 AND
EXI STS (SELECT NULL
FROM TABLE (p.XM.Data."ltenf) x
VWHERE x."Price" > 2000);

which would use relational indexes for its evaluation, if present on the Part and
PONumcolumns.

ExistsNode mapping without DOM fidelity

If the SYS_XDBPD$ does not exist (that is, if the XML Schema specifies

mai nt ai NDOVE" f al se") then NULL scalar columns map to non-existent scalar
elements. Hence you do not need to check for the node existence using the SYS_
XDBPD$ attribute. Table 5-13 shows the mapping of exi st sNode() in the absence of
the SYS_XDBPD$ attribute.

Table 5-13 XPath Mapping for existsNode Without Document Ordering

XPath Expression

Maps to

/ Pur chaseOr der

CASE WHEN XMLData IS NOT NULL THEN 1 ELSE O END

/ Pur chaseOr der/ @ur chaseDat e CASE WHEN XM_Dat a. ' PurchaseDate' |'S NOT NULL THEN
1 ELSE 0 END
/ Pur chaseOr der / PONum CASE WHEN XM_Dat a. "PONunt |'S NOT NULL THEN 1
ELSE 0 END
/ Pur chaseOr der [PONum = 2100] CASE WHEN XM_Dat a. "PONunt = 2100 THEN 1 ELSE 0 END
/ Pur chaseOr der [PONum = CASE WHEN XM_Dat a. " PONunt = 2100 AND
2100] / @ur chaseCOr der Dat e XM.Dat a. " Pur chaseDat e" NOT NULL THEN 1 ELSE 0 END
/ Pur chaseOr der / PONuni t ext () CASE WHEN XM_Dat a. "PONunt’ |'S NOT NULL THEN 1 ELSE
0 END
/ PurchaseOrder/Item CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Data."ltent') x WHERE val ue(x) IS NOT NULL)
THEN 1 ELSE 0 END

/ PurchaseOrder/Itemn Part CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Data. "Itent) x WHERE x."Part"” |'S NOT NULL)
THEN 1 ELSE 0 END

/ PurchaseOrder/Item Part/text() CASE WHEN EXI STS (SELECT NULL FROM TABLE

(XM.Data."ltent') x WHERE x. "Part" | S NOT NULL)
THEN 1 ELSE O END

5-50 Oracle XML

Rewrite for extractValue

extract Val ue() is a shortcut for extracting t ext nodes and attributes using
extract () and then using a get Stri ngVal () or get Nunber Val () to get the
scalar content. ext r act Val ue returns the t ext nodes for scalar elements or the
values of at t ri but e nodes. ext r act Val ue() cannot handle returning multiple
values or non-scalar elements.

Table 5-14 shows the mapping of various XPath expressions in the case of

extract Val ue() . If an XPath expression targets an element, then ext r act Val ue
retrieves the t ext node child of the element. Thus the two XPath expressions,

/ Pur chaseOr der / PONumand / Pur chaseOr der / PONuni t ext () are handled
identically by ext r act Val ue and both of them retrieve the scalar content of PONum

DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

Table 5-14 XPath Mapping for extractValue()

XPath Expression Maps to

/ Pur chaseOr der Not supported - ext r act Val ue can only
retrieve values for scalar elements and
attributes

/ Pur chaseOr der/ @Pur chaseDat e XM_.Dat a. " Pur chaseDat e"

/ Pur chaseOr der/ PONum XM_Dat a. " PONunt'

/ Pur chaseOr der [PONum=2100] (SELECT TO_XM.(x. XM_Dat a) FROM Dual

WHERE x. " PONunt = 2100)
/ Pur chaseOr der [PONum=2100] / @urch (SELECT x. XMLDat a. " Pur chaseDat e")

aseDat e FROM Dual WHERE x."PONuni = 2100)

/ Pur chaseOr der / PONuni t ext () XM_Dat a. " PONunt'

/ PurchaseQOrder/Item Not supported - ext r act Val ue can only
retrieve values for scalar elements and
attributes

/ PurchaseOrder/|tem Part Not supported - ext r act Val ue cannot

retrieve multiple scalar values

/ PurchaseOrder/Item Part/text() Not supported - ext r act Val ue cannot
retrieve multiple scalar values

Example 5-29 Rewriting extractValue
For example, a SQL query such as:

SELECT extract Val ue(val ue(p), '/ PurchaseO der/ PONum)
FROM nypos p
WHERE extract Val ue(val ue(p),"'/PurchaseOr der/PONuni) = 1001;

would become:

SELECT p. XM_Dat a. " PONunt
FROM nypos p
WHERE p. XM_.Dat a. " PONunt = 1001,

Because it gets rewritten to simple scalar columns, indexes if any, on the PONum
attribute can be used to satisfy the query.

Creating Indexes

Ext r act Val ue can be used in index expressions. If the expression gets rewritten into
scalar columns, then the index is turned into a B*Tree index instead of a function-based
index.

Example 5-30 Creating Indexes with extract

For example:
create index ny_po_index on nypos X
(extract(val ue(x),'/PurchaseOrder/PONunftext()'). getnunberval ());
would get rewritten into:
create index ny_po_index on nypos x (x.XMData."PONunt');
and thus becomes a regular B*Tree index. This is useful, because unlike a

function-based index, the same index can now satisfy queries which target the column
such as:

XML Schema Storage and Query: The Basics 5-51

XPath Rewrite with XML Schema-Based Structured Storage

exi st sNode(val ue(x), '/ PurchaseCr der[PONuns1001]") = 1;

Rewrite of XMLSequence Function

XM.Sequence can be used in conjunction with ext r act and the TABLE clause to
unnest collection values in the XML. When used with schema-based storage, they also
get rewritten to go against the underlying collection storage. For example, to get the
price and part numbers of all items in a relational form, we can write a query like,

SQL> SELECT extract Val ue(val ue(p),'/PurchaseO der/PONum) as ponum
Extractval ue(value(i) , '/ltem Part') as part,
Extractval ue(value(i), '/Item Price') as price

FROM MyPGs p,
TABLE(XMLSequence(extract (val ue(p),'/PurchaseGrder/Item))) i;
PONUM PART PRI CE
1001 9i Doc Set 2550
1001 8i Doc Set 350

In this example, the ext r act function returns a fragment containing the list of Item
elements and the XMLSequence function then converts the fragment into a collection
of XMLType values one for each Item element. The TABLE clause converts the elements
of the collection into rows of XMLType. The returned XML from the TABLE clause is
used to extract out the Part and the Pri ce.

XPath rewrite will rewrite the ext r act and the XM_Sequence function so that it will
become a simple select from the | t em _nest ed nested table.

SQL> EXPLAIN PLAN
FOR SELECT extract Val ue(val ue(p), "'/ PurchaseO der/PONum) AS ponum
extract Val ue(val ue(i) , '/ltemPart') AS part,
extractValue(value(i), '/ltem Price') AS price
FROM M/PGs p,
TABLE(XMLSequence(extract (val ue(p),'/PurchaseGrder/Iten))) i;

Expl ai ned
SQL> @it xpls. sql

PLAN TABLE_QUTPUT

I'd	Operation	Name	
0	SELECT STATEMENT		
1	NESTED LOOPS		
2	TABLE ACCESS FULL		TEM NESTED
3	TABLE ACCESS BY I NDEX ROWD	MYPCS	
[* 4] I NDEX UNI QUE SCAN | SYS_C002973 |

4 - access("NESTED TABLE_| D'="P"."SYS_NC0001100012$")

The EXPLAI N PLAN output shows that the optimizer is able to use a simple nested
loops join between the | t em nest ed nested table and MyPCs table. You can also
query the | t emvalues further and create appropriate indexes on the nested table to
speed up such queries.

For example, if we want to search on the Price to get all the expensive items, we could
create an index on the Pri ce column on the nested table. The following EXPLAI N

5-52 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

PLAN uses the Pri ce index to get the list of items and then joins back with the MYPGs
table to get the PONumvalue.

SQL> CREATE | NDEX price_index ONitemnested ("Price");
I ndex created.

SQL> EXPLAIN PLAN FOR
SELECT extract Val ue(val ue(p),'/PurchaseO der/ PONum) AS ponum
extract Val ue(val ue(i) , '/ltem Part') AS part,
extract Val ue(val ue(i), '/ltem Price') AS price
FROM MPGCs p,
TABLE(XMLSequence(extract (val ue(p),'/PurchaseOrder/Item))) i
WHERE extract Val ue(val ue(i),'/Item Price') > 2000;

Expl ai ned.
SQL> @/ rdbns/ admi n/ utl xpls

PLAN TABLE_QUTPUT

I'd	Operation	Name		
0	SELECT STATEMENT			
1	NESTED LOOPS			
2	TABLE ACCESS BY	NDEX ROND		TEM NESTED
[* 3]	NDEX RANGE SCAN	PRICE_INDEX		
4	TABLE ACCESS BY I NDEX ROWD	MYPOS		
[* 5] I NDEX UNI QUE SCAN | SYS_0002973 |

3 - access("| TEM_ NESTED'. "Pri ce" >2000)
5 - access("NESTED TABLE | D'="P"."SYS_NC0001100012%")

Rewrite for extract()

The extract () function retrieves the results of XPath as XML. The rewrite for
extract () issimilar to that of ext r act Val ue() for those Xpath expressions
involving t ext nodes.

Extract Mapping with DOM fidelity

Table 5-15 shows the mapping of various XPath in the case of ext r act () when
document order is preserved (that is, when SYS_XDBPD$ exists and

mai nt ai NDOVE"t r ue" in the schema document).

Table 5-15 XPath Mapping for extract() with Document Ordering Preserved

XPath

Maps to

/ Pur chaseOr der

XM_For est (XM_Dat a as "PurchaseOrder")

/ Pur chaseOr der/ @ur chaseDat e CASE WHEN Check_Node_ Exi st s(XM.Dat a. SYS_XDBPD$,

"PurchaseDate') |I'S NOT NULL THEN XM.El enent ("",
XM_.Dat a. " Pur chaseDat e") ELSE NULL END;

/ Pur chaseQOr der/ PONum CASE WHEN Check_Node_Exi st s(XM_Dat a. SYS_XDBPDS$,

"PONumi) 1S NOT NULL THEN XMLEl enent (" PONunt',
XM.Dat a. "PONuni') ELSE NULL END

XML Schema Storage and Query: The Basics 5-53

XPath Rewrite with XML Schema-Based Structured Storage

Table 5-15 (Cont.) XPath Mapping for extract() with Document Ordering Preserved

XPath Maps to

/ Pur chaseOr der [PONum=2100] (SELECT XM_.For est (XM.Dat a as "PurchaseOrder") from
dual WHERE XM.Dat a. " PONunf = 2100)

/ Pur chaseOr der [PONum = (SELECT CASE WHEN Check_Node_Exi st s(XM.Dat a. SYS_

2100] / @Pur chaseDat e XDBPD$, ' PurchaseDate') |I'S NOT NULL THEN

XMLEl enent ("", XM.Dat a."PurchaseDate") ELSE NULL
END FROM Dual WHERE XM_.Dat a. " PONunt = 2100)

/ Pur chaseOr der / PONuni t ext () XMLEl erment ("", XM.Dat a. " PONunt')

/ PurchaseOrder/Item (SELECT XM_Agg(XMLFor est (val ue(p) as "lItem')) FROM
TABLE (XM.Data."ltent) p)

/ PurchaseOrder/Iten Part (SELECT XM_Agg(CASE WHEN CHECK_Node_Exi st s(p. SYS_

XDBPD$, 'Part') 1S NOT NULL THEN
XM_Forest (p."Part” As "Part”) ELSE NULL END) FROM
TABLE(XM.Dat a. "I tent') p)

/ PurchaseOrder/Item Part/text() (SELECT XM_Agg(XM_El enent ("", p."Part")) FROM
TABLE(XM.Dat a. "I tent) p)

Example 5-31 XPath Mapping for extract() with Document Ordering Preserved

Using the mapping in Table 5-15, a query that extracts the PONum element where the
purchaseorder contains a part with price greater than 2000:

SELECT extract (val ue(p),'/PurchaseOrder[Itenf Part > 2000]/PONum)
FROM PurchaseOrder _table p;

would become:

SELECT (SELECT CASE WHEN check_node_exi st s(p. XM_Dat a. SYS_XDBPD$, ' PONuni)
'S NOT NULL
THEN XMLEl ement (" PONunf', p. XM.Dat a. " PONunt')
ELSE NULL END)
FROM DUAL
VWHERE EXI STS(SELECT NULL
FROM TABLE (XM.Data."Itenl) p
VHERE p."Part" > 2000)

)
FROM Pur chaseOr der _tabl e p;

Extract mapping without DOM fidelity

If the SYS_XDBPD$ does not exist, that is, if the XML Schema specifies

mai nt ai NDOME" f al se", then NULL scalar columns map to non-existent scalar
elements. Hence you do not need to check for the node existence using the SYS_
XDBPD$ attribute. Table 5-16 shows the mapping of exi st sNode() in the absence of
the SYS_XDBPD$ attribute.

Table 5-16 XPath Mapping for extract() Without Document Ordering Preserved

XPath Equivalent to
/ Pur chaseOr der XML_For est (XM.Dat a AS "Pur chaseOrder")
/ Pur chaseOr der/ @ur chaseDat e XM_For est (XML.Dat a. " Pur chaseDat e" AS
"Pur chaseDat e")
/ Pur chaseOr der/ PONum XM_For est (XMLDat a. " PONunt AS " PONuni)
/ Pur chaseOr der [PONum = 2100] (SELECT XM_For est (XM.Dat a AS "PurchaseOrder") FROM

Dual WHERE XM.Dat a. " PONun = 2100)

5-54 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

Table 5-16 (Cont.) XPath Mapping for extract() Without Document Ordering Preserved

XPath Equivalent to

/ Pur chaseOr der [PONum = (SELECT XM_.For est (XM_.Dat a. " Pur chaseDat e" AS

2100] / @Pur chaseDat e "PurchaseDate "") FROM DUAL WHERE XM.Dat a. " PONunt'
= 2100)

/ Pur chaseOr der / PONuni t ext () XM_For est (XMLDat a. PONum AS "")

/ PurchaseOrder/Item (SELECT XM_Agg(XM_For est (val ue(p) as "ltenf') FROM
TABLE (XM.Data."lten') p)

/ PurchaseOrder/1tenl Part (SELECT XMLAgg(XMLForest (p."Part" AS "Part") FROM

TABLE (XM.Data."ltent) p)

/ PurchaseOrder/Item Part/text() (SELECT XM_Agg(XM_Forest(p. "Part" AS "Part"))
FROM TABLE (XM.Data."ltent) p)

Optimizing updates using updateXML()

A regular update using updat eXM_() involves updating a value of the XML
document and then replacing the whole document with the newly updated document.

When XMLTy pe is stored object relationally, using XML Schema mapping, updates are
optimized to directly update pieces of the document. For example, updating the
PONumelement value can be rewritten to directly update the XM_Dat a. PONumcolumn
instead of materializing the whole document in memory and then performing the
update.

updat eXM.() must satisfy the following conditions for it to use the optimization:

« The XMLType column supplied to updat eXM_() must be the same column being
updated in the SET clause. For example:

UPDATE PurchaseOrder _table p SET val ue(p) = updatexn (value(p),...);

=« The XMLType column must have been stored object relationally using Oracle
XML DB XML Schema mapping.

= The XPath expressions must not involve any predicates or collection traversals.
= There must be no duplicate scalar expressions.

= All XPath arguments in the updat eXM_() function must target only scalar
content, that is, text nodes or attributes. For example:

UPDATE PurchaseOrder _table p SET val ue(p) =
updat exm (val ue(p), '/ PurchaseOr der/ @urchaseDate',' 2002-01-02',
"/ PurchaseOrder/PONumtext ()', 2200);

If all the preceding conditions are satisfied, then the updat eXM_ is rewritten into a
simple relational update. For example:

UPDATE PurchaseOrder _table p SET val ue(p) =
updat exm (val ue(p), '/ PurchaseOr der/ @urchaseDate',"'2002-01-02',
"/ PurchaseOrder/PONumtext ()', 2200);
becomes:

UPDATE Pur chaseOrder _table p
SET p. XM_Dat a. " PurchaseDat e" = TO DATE(' 2002- 01-02', ' SYYYY-MA DD),
p. XM.Dat a. " PONunt = 2100;

XML Schema Storage and Query: The Basics 5-55

XPath Rewrite with XML Schema-Based Structured Storage

DATE Conversions

Date datatypes such as DATE, gMONTH, and gDATE have different format in XML
Schemas and SQL. In such cases, if the updat eXM_() has a string value for these
columns, then the rewrite automatically puts the XML format string to convert the

string value correctly. Thus string value specified for DATE columns, must match the
XML date format and not the SQL DATE format.

Diagnosing XPath Rewrite

To determine if your XPath expressions are getting rewritten, you can use one of the
following techniques:

Using Explain Plans

This section shows how you can use the explain plan to examine the query plans after
rewrite. See Chapter 3, "Using Oracle XML DB", "Understanding and Optimizing
XPath Rewrite" on page 3-64 for examples on how to use EXPLAI N PLAN to optimize
XPath rewrite.

With the explained plan, if the plan does not pick applicable indexes and shows the
presence of the SQL function (such as exi st sNode or ext r act), then you know that
the rewrite has not occurred. You can then use the events described later to understand
why the rewrite did not happen.

For example, using the MYPGs table, we can see the use of explain plans. We create an
index on the Conpany element of Pur chaseOr der to show how the plans differ.

SQL> CREATE | NDEX company_i ndex ON MyPCs e
(extract Val ue(obj ect _val ue, '/ PurchaseOr der/ Conpany'));

| ndex created.

SQ.> EXPLAIN PLAN FOR
SELECT extract Val ue(val ue(p),"'/PurchaseCr der/PONunt)
FROM MyPCs p
VWHERE exi st sNode(val ue(p),'/PurchaseO der[Company="Cracle"]"')=1;

Expl ai ned.
SQL> @it xpls. sql

PLAN TABLE QUTPUT

| Id | Operation | Name | Rows | Bytes | Cost |

2 - access("MYPOS". " SYS_NC00010$"=' Oracle')

In this explained plan, you can see that the predicate uses internal columns and picks
up the index on the Conpany element. This shows clearly that the query has been
rewritten to the underlying relational columns.

In the following query, we are trying to perform an arithmetic operation on the
Conpany element which is a string type. This is not rewritten and hence the explain

5-56 Oracle XML DB Developer's Guide

XPath Rewrite with XML Schema-Based Structured Storage

plan shows that the predicate contains the original exi st sNode expression. Also,
since the predicate is not rewritten, a full table scan instead of an index range scan is
used.

SQL> EXPLAIN PLAN FOR
SELECT extract Val ue(val ue(p),"'/PurchaseCr der/PONuni)
FROM M/PCs p
WHERE exi st sNode(val ue(p),
"/ Pur chaseOr der [Conpany+PONune"Oracl e"]') = 1,

Expl ai ned.
SQL> @it xpls. sql

PLAN TABLE_QUTPUT

| SELECT STATEMENT |

| FILTER |

| TABLE ACCESS FULL| MYPCS

| TABLE ACCESS FULL| | TEM NESTED

1 - filter(EX STSNODE(SYS_MAKEXM. (' C6DB2B4A1A3BO
6CDE034080020E5CF39" , 2300, " MYPOS" . " XMLEXTRA",
"MYPCS". " XMLDATA") ,
" | Pur chaseOr der [Company+PONun="Or acl "] ') =1)
3 - filter("NESTED TABLE_| D'=: Bl)

Using Events

Events can be set in the initialization file or can be set for each session using the ALTER
SESSI ON statement. The XML events can be used to turn off functional evaluation,
turn off the query rewrite mechanism and to print diagnostic traces.

Turning off Functional Evaluation (Event 19021) By turning on this event, you can raise an
error whenever any of the XML functions are not rewritten and get evaluated. The
error ORA- 19022 - XML XPath functions are di sabl ed will be raised when
such functions execute. This event can also be used to selectively turn off functional
evaluation of functions. Table 5-17 lists the various levels and the corresponding
behavior.

Table 5-17 Event Levels and Behaviors

Event Behavior

Level 0x1 Turn off functional evaluation of all XML functions.
Level 0x2 Turn off functional evaluation of ext r act .

Level 0x4 Turn off functional evaluation of exi st sNode.
Level 0x8 Turn off functional evaluation of t r ansf orm
Level 0x10 Turn off functional evaluation of ext r act Val ue.
Level 0x20 Turn off the functional evaluation of Updat e XM..
Level 0x200 Turn off functional evaluation of XM_Sequence

XML Schema Storage and Query: The Basics 5-57

XPath Rewrite with XML Schema-Based Structured Storage

For example,

ALTER SESSI ON SET EVENTS ' 19021 trace name context forever, level 1';

would turn off the functional evaluation of all the XML operators listed earlier. Hence
when you perform the query shown earlier that does not get rewritten, you will get an
error during the execution of the query.

SQ> SELECT val ue(p) FROM MyPGs p
VWHERE Exi st snode(val ue(p),
'/ PurchaseQr der [Conpany+PONun¥" Oracl e"]") =1 ;

ERROR:
ORA-19022: XML XPath functions are disabled
Tracing reasons for non-rewrite

Event 19027 with level 8192 (0x2000) can be used to dump traces that indicate the
reason that a particular XML function is not rewritten. For example, to check why the
query described earlier, did not rewrite, we can set the event and run an explain plan:

SQL> alter session set events '19027 trace nane context forever, |evel 8192';
Session al tered.

SQ.> EXPLAIN PLAN FOR
SELECT val ue(p) from M/PCs p
WHERE Exi st snode(val ue(p), '/ PurchaseCrder [Conpany+100="Cracl e"]")=1;

Expl ai ned.

This writes the following the Oracle trace file explaining that the rewrite for the XPath
did not occur since there were non-numeric inputs to an arithmetic function.

NO REWRI TE
XPath ==> [Pur chaseQr der [Conpany+PONum = "Oracl e"]
Reason ==> non nuneric inputs to arith{2}{4}

5-58 Oracle XML DB Developer's Guide

6

XML Schema Storage and Query: Advanced

Topics

This chapter describes more advanced techniques for storing structured XML
schema-based XMLType objects. It explains si npl eType and conpl exType mapping
from XML to SQL storage types and how querying on XMLType tables and columns
based on this mapping are optimized using query rewrite techniques. It discusses the
mechanism for generating XML schema from existing object types.

This chapter contains these topics:

Generating XML Schema Using DBMS_XMLSCHEMA .generateSchema()
Adding Unique Constraints to An Attribute's Elements

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage
Storing Collections in Out-Of-Line Tables

Fully Qualified XML Schema URLs

Oracle XML DB complexType Extensions and Restrictions
Examining Type Information in Oracle XML DB

Working With Circular and Cyclical Dependencies

Oracle XML DB: XPath Expression Rewrites for existsNode()
Oracle XML DB: Rewrite for extractValue()

Oracle XML DB: Rewrite for extract()

Optimizing Updates Using updateXML()

Cyclical References Between XML Schemas

Guidelines for Using XML Schema and Oracle XML DB

Creating Constraints on Repetitive Elements in Schema-Based XML Instance
Documents

Guidelines for Loading and Retrieving Large Documents with Collections

Updating Your XML Schema Using Schema Evolution

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema()

An XML schema can be generated from an object-relational type automatically using a
default mapping. The gener at eSchema() and gener at eSchemas() functions in

XML Schema Storage and Query: Advanced Topics 6-1

Generating XML Schema Using DBMS_XMLSCHEMA.generateSchema)

the DBM5_XMLSCHENA package take in a string that has the object type name and
another that has the Oracle XML DB XML schema.

= generateSchema() returns an XMLType containing an XML schema. It can
optionally generate XML schema for all types referenced by the given object type
or restricted only to the top-level types.

= generateSchemas() is similar, except that it returns an XM_LSequenceType of
XML schemas, each corresponding to a different namespace. It also takes an
additional optional argument, specifying the root URL of the preferred XML
schema location:

http://xm ns. oracl e. com xdb/ schemas/ <schema>. xsd

They can also optionally generate annotated XML schemas that can be used to
register the XML schema with Oracle XML DB.

See Also: "Creating XMLTIype Tables and Columns Based on XML
Schema" on page 5-18

Example 6-1 Generating XML Schema: Using generateSchemay()
For example, given the object type:

CONNECT t1/t1

CREATE TYPE enpl oyee_t AS OBJECT(enpno NUMBER(10),
enane VARCHAR2(200),
sal ary NUMBER(10, 2)):

You can generate the schema for this type as follows:

SELECT DBMS_XM.SCHEMA. gener at eschema(' T1', ' EMPLOYEE T') FROM DUAL;

This returns a schema corresponding to the type EMPLOYEE_T. The schema declares
an element named EMPLOYEE_T and a conpl exType called EMPLOYEE _TType. The
schema includes other annotation from ht t p: // xm ns. or acl e. com xdb.

DBMS_XM_.SCHEMA. GENERATESCHEMA(* T1', ' EMPLOYEE T')
<xsd: schema target Namespace="http://ns. oracl e. com xdb/ T1"
xm ns="http://ns.oracl e. com xdb/ T1"
xm ns: xsd="ht t p: // www. w3. or g/ 2001/ XM_Schena"
xm ns: xdb="http://xm ns. oracl e. com xdb"
xmi ns: xsi ="http://wm. w3. or g/ 2001/ XM_.Schena- i nst ance"
xsi : schemaLocation="http://xm ns. oracl e. conf xdb
http://xm ns. oracl e. con xdb/ XDBSchema. xsd" >
<xsd: el enent name="EMPLOYEE T" type="EMPLOYEE TType"
xdb: SQLType="EMPLOYEE T" xdb: SQ.Schema="T1"/>
<xsd: compl exType nanme="EMPLOYEE_TType" >
<xsd: sequence>
<xsd: el enent name="EMPNO' type="xsd: doubl " xdb: SQLNane="EMPNO'
xdb: SQLType="NUMBER'/ >
<xsd: el ement name="ENAME" type="xsd:string" xdb: SQLNanme="ENAME"
xdb: SQLType="VARCHAR2" / >
<xsd: el enent name="SALARY" type="xsd: doubl e" xdb: SQLName=" SALARY"
xdb: SQLType="NUMBER"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

6-2 Oracle XML DB Developer's Guide

Adding Unique Constraints to An Attribute's Elements

Adding Unique Constraints to An Attribute's Elements

How can you, after creating an XMLType table based on an XML schema, add a unique
constraint to an attribute's elements? You may, for example, want to create a unique
key based on an attribute of an element that repeats itself (therefore creating a
collection type).

To create constraints on elements that can occur more than once within the instance
document, you must store the VARRAY as a table. This is also known as Ordered
Collections in Tables (OCT). You can then create constraints on the OCT. Example 6-2
shows how the attribute No of <PhoneNunber > can appear more than once, and how
a unique constraint can be added to ensure that the same number cannot be repeated
within the same instance document.

Note: This constraint applies to each collection, and not across all
instances. This is achieved by creating a concatenated index with
the collection id column. To apply the constraint across all
collections of all instance documents, simply omit the collection id
column.

Example 6-2 Adding Unique Constraints to an Attribute's Element

BEG N DBMS_XM.SCHEMA. r egi st er schema("' enp. xsd'
" <xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM.Schena"
xm ns: xdb="http://xm ns. oracl e. conf xdb" >
<xs: el ement name="Enpl oyee" xdb: SQLType="EMP_TYPE" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="Enpl oyeel d" type="xs: positivelnteger"/>
<xs: el ement name="PhoneNunber" maxCccurs="10">
<xs: conpl exType>
<xs:attribute name="No" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>'
TRUE,
TRUE,
FALSE,
FALSE) ;
END
/

PL/ SQL procedure successfully conpl et ed.
CREATE table enp_tab OF XM.Type
XM_SCHEMA "enp. xsd" ELEMENT "Enpl oyee"
VARRAY xm dat a. " PhoneNunber" STORE AS tabl e phone_t ab;
Tabl e created.
ALTER TABLE phone_tab ADD uni que(nested_table_id, "No");

Tabl e al tered.

CREATE TABLE po_xtab OF XM.Type; -- The default is CLOB based storage.
I NSERT | NTO enp_tab

XML Schema Storage and Query: Advanced Topics 6-3

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage

VALUES(XM_Type(' <Enpl oyee>
<Enpl oyeel d>1234</ Enpl oyeel d>
<PhoneNunber No="1234"/>
<PhoneNunber No="2345"/>
</ Enpl oyee>'). creat eschemabasedxm (' enp. xsd'));

1 row created.

I NSERT | NTO enp_t ab
VALUES(xm t ype(' <Enpl oyee>
<Enpl oyeel d>3456</ Enpl oyeel d>
<PhoneNunber No="4444"]>
<PhoneNunber No="4444"|>
</ Enpl oyee>'). creat eschemabasedxm (' enp. xsd'));

This returns the expected result:

*

ERROR at line 1:
ORA-00001: uni que constraint (SCOIT. SYS_C002136) vi ol at ed

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage

By default, a sub-element is mapped to an embedded object attribute. However, there
may be scenarios where out-of-line storage offers better performance. In such cases the
SQLI nl i ne attribute can be set to false, and Oracle XML DB generates an object type
with an embedded REF attribute. REF points to another instance of XMLType that
corresponds to the XML fragment that gets stored out-of-line. Default XM_Type tables
are also created to store the out-of-line fragments.

Figure 6-1 illustrates the mapping of a conpl exType to SQL for out-of-line storage.

Figure 6-1 Mapping complexType to SQL for Out-of-Line Storage

<e|ement.name ="Addr" xdb : SQLInLine = "false">

1
1
1
Employee_tab of type OBJ_T2 This XML fragment is
Name |Age | Addr REF XMLType stored out-of-line
I
= | |
Addr_tab of type OBJ_T1
Street | City
REF points
to another
XMLType
instance XMLType table

Example 6-3 Oracle XML DB XML Schema: complexType Mapping - Setting SQLInLine
Attribute to False for Out-of-Line Storage

In this example, attribute xdb: SQLI nLi ne of element Addr is set to false. The
resulting object type OBJ_T2 has a column of type XMLType with an embedded REF
attribute. The REF attribute points to another XMLType instance created of object type

6-4 Oracle XML DB Developer's Guide

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage

OBJ_T1 in table Addr _t ab. Table Addr _t ab has columns St reet and Ci ty. The
latter XMLTy pe instance is stored out of line.

DECLARE
doc VARCHAR2(3000) :=
' <schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
target Namespace="http://ww. oracl e. conf enp. xsd"
xm ns: enp="http://ww. oracl e. conl enp. xsd"
xm ns: xdb="http://xm ns. oracl e. com xdb" >
<conpl exType nanme="EnpType" xdb: SQLType="EMP_T">
<sequence>
<el enent nane="Name" type="string"/>
<el ement name="Age" type="decinal"/>
<el ement nanme="Addr"
xdb: SQLI nl i ne="f al se"
xdb: def aul t Tabl e=" ADDR_TAB" >
<conpl exType xdb: SQLType="ADDR_T">
<sequence>
<el ement name="Street" type="string"/>
<elenment name="City" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<el ement name="Enpl oyee" type="enp: EnpType"
xdb: def aul t Tabl e=" EMP_TAB"/ >
</ schema>';
BEG N
DBVS_XM.SCHEMA. r egi st er Schema(' enp. xsd', doc);
END;
/

On registering this XML schema, Oracle XML DB generates the following types and
XM.Type tables:

CREATE TYPE ADDR_T AS OBJECT (SYS_XDBPD$ XDB. XDB$RAW LI ST T,
Street VARCHAR2(4000),
Gty VARCHAR2(4000));

CREATE TYPE EMP_T AS OBJECT (SYS_XDBPD$ XDB. XDB$RAW LI ST_T,
Nanme VARCHAR2(4000),
Age NUMBER,
Addr REF XM.Type) NOT FI NAL;

Two XMLType tables are also created: EMP_TAB and ADDR_TAB. Table EMP_TAB holds
all the employees and contains an object reference to point to the address values that
are stored only in table ADDR_TAB.

The advantage of this model is that it lets you query the out-of-line table (ADDR_TAB
in this case) directly, to look up the address information. For example, if you want to

get the distinct city information for all the employees, you can query the table ADDR
TAB directly.

I NSERT | NTO EMP_TAB
VALUES
(XM.Type(" <x: Enpl oyee
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xm ns: x="http:// ww. oracl e. con enp. xsd"
xsi:schemalLocation="http://wmv. oracl e. conl enp. xsd enp. xsd">
<Nane>Jason M || er </ Nane>
<Age>22</ Age>

XML Schema Storage and Query: Advanced Topics 6-5

Setting the SQLInLine Attribute to FALSE for Out-of-Line Storage

<Addr >
<Street>Julian Street</Street>
<City>San Francisco</City>
</ Addr >
</ x: Enpl oyee>'));
I NSERT | NTO EMP_TAB
VALUES (XM.Type(' <x: Enpl oyee
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xm ns: x="http:// ww. oracl e. conf enp. xsd"
xsi : schemaLocation="http://ww. oracl e. conf enp. xsd enp. xsd">
<Name>Jack Si non</ Nane>
<Age>23</ Age>
<Addr >
<Street>Mabl e Street</Street>
<City>Redwood City</Cty>
</ Addr >
</ x: Enpl oyee>'));

REM The ADDR_TAB stores the addresses and can be queried directly
SELECT DI STINCT Extractval ue(object_value,'/Addr/City") AS city FROM ADDR TAB;

Redwood City
San Franci sco

The disadvantage of this storage is that to get the whole Enpl oyee element you need
to look up an additional table for the address.

Query Rewrite For Out-Of-Line Tables

XPath expressions that involve elements stored out of line get rewritten. In this case,
the query involves a join with the out-of-line table. For example, the following
EXPLAI N PLANshows how a query involving Enpl oyee and Addr elements is
handled.

EXPLAIN PLAN FOR
SELECT Extractval ue(obj ect _val ue,
"/ x: Enpl oyee/ Nane',
"xm ns: x="http://ww. oracl e. com enp. xsd"")
FROM enp_tab x
VHERE Exi st snode(val ue(x),
"/ x: Enpl oyee/ Addr[Gi ty="San Francisco"]",
"xm ns: x="http:// ww. oracl e. conf enp. xsd"") =1;

SQL> @/ rdbns/ admin/ utl xpls

PLAN_TABLE_QUTPUT

| 1d | Operation | Name

| 0| SELECT STATEMENT |

|* 1| FILTER

| 2| TABLE ACCESS FULL | EMP_TAB

|* 3 | TABLE ACCESS BY INDEX ROND | ADDR TAB |
|* 4 | INDEX UNI QUE SCAN | SYS (003111 |

1 - filter(EX STS(SELECT 0

6-6 Oracle XML DB Developer's Guide

Storing Collections in Out-Of-Line Tables

FROM " SCOTT". " ADDR_TAB" "SYS_ALI AS 1"
WHERE "SYS_ALI AS 1"."SYS NC O D$"=: BL
AND "SYS ALIAS 1"."SYS NC00009%"=' San Francisco'))
3 - filter("SYS_ALIAS 1"."SYS NC00009$"=" San Franci sco')
4 - access("SYS_ALIAS_1"."SYS_NC O D$"=: Bl1)

In this example, the XPath expression was rewritten to an Exi st s subquery that
queries table ADDR_TAB and joins it with table EMP_TAB using the object identifier
column in table ADDR_TAB. The optimizer uses a full table scan to scan all the rows in
the employee table and uses the unique index on the SYS_NC_O D$ column in the
address table to look up the address.

If there are a lot of entries in the ADDR_TAB, then you can make this query more
efficient by creating an index on the Gi t y column.

CREATE | NDEX addr _city_idx

ON ADDR TAB (extractval ue(object_value,'/Addr/City'));
The EXPLAI N PLAN for the previous statement now uses the addr _ci ty_i dx index.
SQL> @/ rdbns/ admi n/ utl xpls

PLAN TABLE QUTPUT

| I'd | Operation | Nane

| O | SELECT STATEMENT |

[* 1| FILTER |

| 2| TABLE ACCESS FULL | EMP_TAB |
|* 3 | TABLE ACCESS BY | NDEX RON D] ADDR TAB |
[* 4 | 1NDEX RANGE SCAN | ADDR CITY_IDX |

1 - filter(EXISTS (SELECT 0
FROM " SCOTT". " ADDR_TAB" "SYS_ALI AS 1"
VHERE " SYS ALl AS 1"."SYS NC O D$"=: Bl
AND "SYS ALI AS 1"."SYS NC00009%"=' San Francisco'))
3 - access("SYS ALIAS_1"."SYS _NC O D$"=: Bl)
4 - filter("SYS_ALIAS_1"."SYS NC00009$"=' San Francisco')

Storing Collections in Out-Of-Line Tables

You can also map list items to be stored out of line. In this case, instead of a single REF
column, the parent element will contain a VARRAY of REF values that point to the
members of the collection. For example, consider the case where we have a list of
addresses for each employee and map that to an out of line storage.

DECLARE
doc VARCHAR2(3000) :=
' <schema xm ns="http://ww. w3. or g/ 2001/ XM.Schema"
tar get Namespace="htt p: // www. or acl e. com enp. xsd"
xm ns: enp="http: //www. oracl e. com enp. xsd"
xm ns: xdb="http://xm ns. oracl e. con xdb" >
<conpl exType name="EnpType" xdb: SQLType="EMP_T2">
<sequence>
<el ement nane="Name" type="string"/>
<el ement name="Age" type="decinmal"/>
<el ement nanme="Addr" xdb: SQLI nline="fal se"
maxCQccur s="unbounded" xdb: def aul t Tabl e=" ADDR_TAB2" >

XML Schema Storage and Query: Advanced Topics 6-7

Storing Collections in Out-Of-Line Tables

<conpl exType xdb: SQLType="ADDR_T2" >
<sequence>
<el ement name="Street" type="string"/>
<el ement name="City" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<el ement name="Enpl oyee" type="enp: EnpType"
xdb: def aul t Tabl e="EMP_TAB2"/ >
</ schema>';
BEG N
DBMS_XMLSCHEMA. r egi st er Schema("' enprefs. xsd', doc);
END;
/

On registering this XML schema, Oracle XML DB now generates the following types
and XMLType tables:

CREATE TYPE ADDR T2 AS OBJECT (SYS XDBPDS$ XDB. XDBSRAW LI ST T,
Street VARCHARZ(4000),
Gty VARCHAR2(4000)):
CREATE TYPE EMP_T2 AS OBJECT (SYS_XDBPD$ XDB. XDBSRAW LI ST T,
Name VARCHAR2(4000),
Age NUMBER,
Addr XDB. XDB$SXMLTYPE_REF LI ST T) NOT FINAL;

The employee type (EMP_T2) now contains a VARRAY of REF values to address instead
of a single REF attribute as in the previous XMLSchema. By default this VARRAY of
REF values is stored in-line in the employee (EMP_TAB2) table. This storage is ideal for
the cases where the more selective predicates in the query are on the employee table.
This is because storing the VARRAY in line effectively forces any query involving the
two tables to always be driven off of the employee table as there is no way to
efficiently join back from the address table. The following example shows the plan for
a query that selects the names of all San Francisco-based employees, and the streets in
which they live, in an unnested form.

EXPLAIN PLAN FOR
SELECT Extractval ue(val ue(e), '/x:Enpl oyee/ Nane',
"xm ns: x="http://ww. oracl e. conf enp. xsd""') AS nane,
Extractval ue(val ue(a), '/Addr/Street') AS street
FROM
EMP_TAB2 e,
TABLE(XM_Sequence(Extract (val ue(e),
"I x: Enpl oyee/ Addr ",
"xm ns: x="http:// ww. oracl e.conl enp. xsd""))) a
VWHERE Extractval ue(value(a),'/Addr/City") = "'San Francisco';

Expl ai ned.
SQL> @!/ rdbns/ admi n/ utl xpl s

PLAN TABLE_QUTPUT

0 | SELECT STATEMENT | |
| 1| NESTED LOOPS | |
2 | NESTED LOOPS | |

6-8 Oracle XML DB Developer's Guide

Storing Collections in Out-Of-Line Tables

3	TABLE ACCESS FULL	ENP TAB2	
4	COLLECTION	TERATCR PI CKLER FETCH	
* 5	TABLE ACCESS BY	NDEX ROW D	ADDR TAB2
* 6	INDEX UNIQUE SCAN	SYS 003016	

5 - filter("SYS_ALIAS 2"."SYS_NC00009$"=' San Francisco')
6 - access(VALUE(KOKBF$) =" SYS ALI AS_2"."SYS NC O D$")

If there are several Addr elements for each employee, then building an index on the
Gi ty element in table ADDR_TAB2 will help speed up the previous query.

Intermediate table for storing the list of references

In cases where the number of employees is large, a full table scan of the EMP_TAB2
table is too expensive. The correct plan is to query the address table on the G ty
element and then join back with the employee table.

This can be achieved by storing the VARRAY of REF values as a separate table, and
creating an index on the REF values in that table. This would allow Oracle Database to
query the address table, get an object reference (REF) to the relevant row, join it with
the intermediate table storing the list of REF values and then join that table back with
the employee table.

The intermediate table can be created by setting the attribute
xdb: st or eVar r ayAsTabl e to TRUE in the XMLSchema definition. This forces the
schema registration to store all VARRAY values as separate tables.

DECLARE
doc varchar2(3000) :=
' <schema xm ns="http://wmv. w3. or g/ 2001/ XM_Schena"
t ar get Namespace="http:// ww. or acl e. conf enp. xsd"
xm ns: enp="http:// ww. oracl e. con enp. xsd"
xm ns: xdb="http://xn ns. oracl e. com xdb"
xdb: st oreVarrayAsTabl e="true" >
<conpl exType nanme="EnpType" xdb: SQLType="EMP_T3" >
<sequence>
<el ement nanme="Name" type="string"/>
<el ement name="Age" type="decinal"/>
<el enent nanme="Addr" xdb: SQLInline="fal se"
maxCccur s="unbounded" xdb: def aul t Tabl e=" ADDR_TAB3" >
<conpl exType xdb: SQLType="ADDR_T3">
<sequence>
<el ement name="Street" type="string"/>
<el ement name="City" type="string"/>
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<el enment nanme="Enpl oyee" type="enp: EnpType"
xdb: def aul t Tabl e=" EMP_TAB3"/ >
</ schema>';
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' enpreftab. xsd', doc);
END;
/

XML Schema Storage and Query: Advanced Topics 6-9

Storing Collections in Out-Of-Line Tables

In addition to creating the types ADDR_T3 and EMP_T3 and the tables EMP_TAB3 and
ADDR_TAB3, the schema registration also creates the intermediate table that stores the
list of REF values.

SELECT t abl e_name
FROM user _nested_tabl es
WHERE parent _t abl e_nane=" EMP_TAB3' ;

SYS_NTyj ti i nHKYuTgNAgAI OXPOQ==

REM Rename nested table to nore meaningful name
RENAME " SYS_NTyj ti i nHKYuTgNAgAl OXPOQ==" TO EMP_TAB3_REFLI ST;

DESCRI BE EMP_TAB3_REFLI ST

Nane Nul 1?2 Type

COLUMN_VALUE REF OF XMLTYPE

We can create an index on the REF value in this table. Indexes on REF values can be
only be created if the REF is scoped or has a referential constraint. Creating a scope on
a REF column implies that the REF only stores pointers to objects in a particular table.
In this example, the REF values in the EMP_TAB3_REFLI ST will only point to objects
in the ADDR_TAB3 table, so we can create a scope constraint and an index on the REF
column, as follows.

ALTER TABLE enp_tab3 reflist ADD SCOPE FOR (col utm_val ue) IS addr _tab3;
CREATE I NDEX reflist_idx ON enp_tab3 reflist (colum_val ue);

REM Al so create an index on the city el ement
CREATE INDEX city_idx ON ADDR TAB3 p (extractval ue(val ue(p),'/Addr/City'));

Now, the EXPLAI N PLAN for the earlier query shows the use of the ci ty_i dx index,
followed by a join with tables EMP_TAB3_REFLI ST and EMP_TAB3.

EXPLAI N PLAN FOR
SELECT Extractval ue(val ue(e), '/x:Enpl oyee/ Nange',
"xm ns: x="http://ww. oracl e. conf enp. xsd""') AS nane,

Extractval ue(val ue(a), '/Addr/Street') AS street

FROM EMP_TAB3 e,
TABLE(XM_Sequence(Extract (val ue(e), '/x:Enpl oyee/ Addr',

"xmns:x="http://ww.oracle.confenp.xsd""))) a
VHERE Extractval ue(val ue(a),'/Addr/City')="San Francisco';

SQL> @!/ rdbns/ admi n/ utl xpl s

PLAN TABLE_QUTPUT

I'd	Operation	Name	
O	SELECT STATEMENT		
1	NESTED LOOPS		
2	NESTED LOOPS		
3	TABLE ACCESS BY	NDEX ROND	ADDR TAB3
* 4	1NDEX RANGE SCAN	ATY_IDX	
[* 5	I'NDEX RANGE SCAN	REFLIST_IDX	
6	TABLE ACCESS BY	NDEX ROND	EMP_TAB3
[* 7 | I'NDEX UNI QUE SCAN | SYS_C003018 |

6-10 Oracle XML DB Developer's Guide

Fully Qualified XML Schema URLs

Predicate Information (identified by operation id):

4 - access("SYS _ALIAS 2"."SYS NC00009$" =" San Franci sco')
5 - access("EVP_TAB3_REFLI ST"." COLUMN_VALUE"="SYS_ALI AS 2"."SYS_NC O D$")
7 - access("NESTED TABLE_|D'="E"."SYS_NC0001100012%")

Fully Qualified XML Schema URLs

By default, XML schema URL names are always referenced within the scope of the
current user. In other words, when database users specify XML Schema URLs, they are
first resolved as the names of local XML schemas owned by the current user.

= If there are no such XML schemas, then they are resolved as names of global XML
schemas.

= If there are no global XML schemas, then Oracle XML DB raises an error.

Fully Qualified XML Schema URLs Permit Explicit Reference to XML Schema URLs

To permit explicit reference to XML schemas in these cases, Oracle XML DB supports
the notion of fully qualified XML schema URLSs. In this form, the name of the database
user owning the XML schema is also specified as part of the XML schema URL, except
that such XML schema URLs belong to the Oracle XML DB namespace as follows:

http://xm ns. oracl e. com xdb/ schemas/ <dat abase- user >/ <schemaURL- ni nus- pr ot ocol >

Example 6-4 Using Fully Qualified XML Schema URL
For example, consider the global XML schema with the following URL:
http:// ww. exanpl e. con po. xsd

Assume that database user SCOTT has a local XML schema with the same URL:
http: // ww. exanpl e. cont po. xsd

User J CE can reference the local XML schema owned by SCOTT as follows:
http://xm ns. oracl e. conml xdb/ schermas/ SCOTT/ wwv. exanpl e. cont po. xsd

Similarly, the fully qualified URL for the global XML schema is:
http://xm ns. oracl e. com xdb/ schemas/ PUBLI C/ www. exanpl e. conl po. xsd

Mapping XML Fragments to Large Objects (LOBs)

You can specify the SQLType for a complex element as a Character Large Object
(CLOB) or Binary Large Object (BLOB), as shown in Figure 6-2. Here the entire XML
fragment is stored in a LOB attribute. This is useful when parts of the XML document
are seldom queried but are mostly retrieved and stored as single pieces. By storing
XML fragments as LOBs, you can save on parsing, decomposition, and recomposition
overheads.

Example 6-5 Oracle XML DB XML Schema: complexType Mapping XML Fragments to
LOBs

In the following example, the XML schema specifies that the XML fragment element
Addr uses the attribute SQLType="CLOB":

DECLARE
doc VARCHAR2(3000) : =

XML Schema Storage and Query: Advanced Topics 6-11

Oracle XML DB complexType Extensions and Restrictions

' <schema xm ns="http://wmv. w3. or g/ 2001/ XM_Schena"
t arget Namespace="http:// ww. or acl e. conf enp. xsd"
xm ns: enp="http://ww. oracl e. conl enp. xsd"
xm ns: xdb="http://xm ns. oracl e. con xdb" >
<conpl exType nane="Enpl oyee" xdb: SQLType="0BJ_T2">
<sequence>

<el ement nane="Name" type="string"/>

<el ement nane="Age" type="deciml"/>

<el ement nane="Addr" xdb: SQLType="CLOB" >
<conpl exType >

<sequence>
<el ement name="Street" type="string"/>
<el ement name="City" type="string"/>
</ sequence>

</ conpl exType>

</ el ement >

</ sequence>
</ conpl exType>
</ schema>';
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' http: //ww. oracl e. cont PO. xsd', doc);
END;

On registering this XML schema, Oracle XML DB generates the following types and
XM.Type tables:

CREATE TYPE OBJ_T AS OBJECT(SYS_XDBPD$ XDB. XDB$RAW LI ST T,
Name VARCHAR2(4000),
Age NUMBER,
Addr CLOB);

Figure 6-2 Mapping complexType XML Fragments to Character Large Objects (CLOBs)

<element name = "Addr” xdb : SQLType = "CLOB">
' 1
1
1

A4

Employee_tab of type OBJ_T
Name |Age | Addr

| | CLOB—I

|

Street and
city are stored
in the CLOB

Oracle XML DB complexType Extensions and Restrictions

In XML schema, conpl exType values are declared based on conpl exCont ent and
si npl eCont ent .

« sinpl eContent is declared as an extension of si npl eType.
= conpl exCont ent is declared as one of the following;:

= Basetype

6-12 Oracle XML DB Developer's Guide

Oracle XML DB complexType Extensions and Restrictions

« conpl exType extension

« conpl exType restriction

complexType Declarations in XML Schema: Handling Inheritance

For conpl exType, Oracle XML DB handles inheritance in the XML schema as
follows:

« For complexTypes declared to extend other complexTypes, the SQL type
corresponding to the base type is specified as the supertype for the current SQL
type. Only the additional attributes and elements declared in the sub-complextype
are added as attributes to the sub-object-type.

« For complexTypes declared to restrict other complexTypes, the SQL type for the
sub-complex type is set to be the same as the SQL type for its base type. This is
because SQL does not support restriction of object types through the inheritance
mechanism. Any constraints are imposed by the restriction in XML schema.

Example 6-6 Inheritance in XML Schema: complexContent as an Extension of
complexTypes

Consider an XML schema that defines a base conpl exType Addr ess and two
extensions USAddr ess and | nt | Addr ess.

DECLARE
doc VARCHAR2(3000) :=
' <xs:schema xnl ns: xs="http://ww.w3. org/ 2001/ XM.Schema"
xm ns: xdb="http://xm ns. oracl e. con xdb" >
<xs: conpl exType nane="Address" xdb: SQLType="ADDR T">
<Xxs: sequence>
<xs:el ement name="street" type="xs:string"/>
<xs: el ement name="city" type="xs:string"/>
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType nane="USAddress" xdb: SQLType="USADDR T" >
<xs: conpl exCont ent >
<xs:extensi on base="Address">
<Xs: sequence>
<xs: el ement name="zip" type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs: conpl exType name="Int| Address" final ="#all" xdb: SQ.Type="1NTLADDR T">
<xs: conpl exCont ent >
<Xs: extension base="Address">
<Xs: sequence>
<xs: el ement name="country" type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: compl exType>
</ xs: schema>'
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' htt p: // www. or acl e. conf PO, xsd', doc)
END

XML Schema Storage and Query: Advanced Topics 6-13

Oracle XML DB complexType Extensions and Restrictions

Note: Type | NTLADDR T is created as a final type because the
corresponding conpl exType specifies the "f i nal " attribute. By
default, all conpl exTypes can be extended and restricted by other
types, and hence, all SQL object types are created as non-final types.

CREATE TYPE addr _t AS OBJECT(SYS_XDBPD$ XDB. XDB$SRAW LI ST_T,

"street" varchar2(4000),

“city" varchar2(4000)) NOT FlI NAL;
CREATE TYPE usaddr _t UNDER addr _t ("zip" varchar2(4000)) NOT Fl NAL;
CREATE TYPE intladdr_t UNDER addr _t ("country" varchar2(4000)) FINAL;

Example 6—7 Inheritance in XML Schema: Restrictions in complexTypes

Consider an XML schema that defines a base conpl exType Addr ess and a restricted
type Local Addr ess that prohibits the specification of count r y attribute.

DECLARE
doc varchar2(3000) :=
' <xs:schema xm ns:xs="http://ww.w3. org/ 2001/ XM_Schema"
xm ns: xdb="http://xm ns. oracl e. con xdb" >
<xs: conpl exType nane="Address" xdb: SQLType="ADDR T">
<XS: sequence>
<xs: el ement name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs: el ement name="zip" type="xs:string"/>
<xs: el ement name="country" type="xs:string" m nCccurs="0"
maxCccur s="1"/>
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType nane="Local Address" xdb: SQLType="USADDR T" >
<xs: conpl exCont ent >
<xs:restriction base="Address">
<Xs: sequence>
<xs: el ement name="street" type="xs:string"/>
<xs: el ement name="city" type="xs:string"/>
<xs: el ement name="zip" type="xs:string"/>
<xs: el ement name="country" type="xs:string"
m nCccur s="0" maxCccurs="0"/>
</ xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: compl exType>
</ xs: schema>'
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' htt p: //www. or acl e. conf PO, xsd', doc)
END,

Because inheritance support in SQL does not support a notion of restriction, the SQL
type corresponding to the restricted conpl exType is a empty subtype of the parent
object type. For the preceding XML schema, the following SQL types are generated:

CREATE TYPE addr _t AS OBJECT (SYS_XDBPD$ XDB. XDBSRAW LI ST_T
"street" varchar2(4000),
"city" varchar2(4000),
"zip" varchar2(4000),
"country" varchar2(4000)) NOT FI NAL;

CREATE TYPE usaddr _t UNDER addr _t;

6-14 Oracle XML DB Developer's Guide

Oracle XML DB complexType Extensions and Restrictions

Mapping complexType: simpleContent to Object Types

A conpl exType based on a si npl eCont ent declaration is mapped to an object type
with attributes corresponding to the XML attributes and an extra SYS_XDBBODY$
attribute corresponding to the body value. The datatype of the body attribute is based
on si npl eType which defines the body type.

Example 6-8 XML Schema complexType: Mapping complexType to simpleContent

DECLARE
doc VARCHAR2(3000) :=
' <schema xm ns="http://wmv. w3. or g/ 2001/ XM_Schena"
t arget Namespace="http:// www. or acl e. conf enp. xsd"
xm ns: enp="http://ww. oracl e. com enp. xsd"
xm ns: xdb="http://xn ns. oracl e. com xdb" >
<conpl exType nane="name" XDB: SQLType="0BJ_T">
<si npl eCont ent >
<restriction base="string">
</restriction>
</ si npl eCont ent >
</ conpl exType>
</ schema>';
BEG N
DBVS_XMLSCHEMA. r egi st erschema(' http://www. oracl e. conf enp. xsd', doc);
END;

On registering this XML schema, Oracle XML DB generates the following types and
XM_Type tables:

CREATE TYPE obj t AS OBJECT(SYS XDBPD$ xdb. xdb$raw |ist t,
SYS_XDBBODY$ VARCHARZ(4000));

Mapping complexType: Any and AnyAttributes

Oracle XML DB maps the element declaration, any, and the attribute declaration,
anyAttri but e, to VARCHARZ attributes (or optionally to Large Objects (LOBs)) in the
created object type. The object attribute stores the text of the XML fragment that
matches the any declaration.

= Thenanespace attribute can be used to restrict the contents so that they belong to
a specified namespace.

« The processCont ent s attribute within the any element declaration, indicates
the level of validation required for the contents matching the any declaration.

Example 6-9 Oracle XML DB XML Schema: Mapping complexType to Any/AnyAttributes

This XML schema example declares an any element and maps it to the column SYS_
XDBANYS$, in object type OBJ_T. This element also declares that the attribute,
processCont ent s, skips validating contents that match the any declaration.

DECLARE
doc VARCHAR2(3000) :=
' <schema xm ns="http://wmv. w3. or g/ 2001/ XM_Schena"
tar get Namespace="htt p: / / www. or acl e. conf any. xsd"
xm ns: enp="http://ww. oracl e. conl any. xsd"
xm ns: xdb="http://xm ns. oracl e. com xdb" >
<conpl exType nane="Enpl oyee" xdb: SQLType="0BJ_T">
<sequence>
<el ement nanme="Name" type="string"/>
<el enent nane="Age" type="decimal"/>

XML Schema Storage and Query: Advanced Topics 6-15

Examining Type Information in Oracle XML DB

<any namespace="http://ww w3. org/ 2001/ xht m "

processCont ent s="ski p"/ >
</ sequence>
</ conpl exType>
</ schema>';
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' http://www. oracl e. conf enp. xsd', doc);
END;

This results in the following statement:

CREATE TYPE OBJ_T AS OBJECT(SYS_XDBPD$ xdb. xdb$raw list t,
Name VARCHAR2(4000),
Age NUMBER,
SYS_XDBANY$ VARCHAR2(4000));

Inserting New Instances into XMLType Columns

New instances can be inserted into an XMLTy pe column as follows:

I NSERT | NTO MyPGCs VALUES
(XM.Type(' <Pur chaseQrder>. .. </ PurchaseCOrder>'));

Examining Type Information in Oracle XML DB

Oracle XML DB supports schema-based XML, wherein elements and attributes in the
XML data have XML Schema type information associated with them. However,

XPath 1.0 is not aware of type information. Oracle XML DB extends XPath 1.0 with the
following functions to support examining of type information:

« instanceof () in the namespace htt p: // xm ns. oracl e. com xdb
= instanceof-only() in the namespace http://xm ns. oracl e. com xdb

An element is an instance of a specified XML Schema type if its type is the same as the
specified type, or is a subtype of the specified type. A subtype of type T in the context
of XML Schema refers to a type that extends or restricts T, or extends or restricts
another subtype of T.

ora:instanceof() and ora:instanceof-only()

XPath queries can use i nst anceof - onl y() to restrict the result set to nodes of a
certain type, and i nst anceof () to restrict it to nodes of a certain type and its
subtypes for schema-based XML data. For non-schema-based data, elements and
attributes do not have type information. Therefore, the functions return FALSE for
non-schema-based XML data.

The semantics of the functions are as follows:

« ora:instanceof-only():Functionora:instanceof -onl y() has the
following signature:

bool ean i nstanceof - onl y(nodeset nodeset - expr,
string typename [, string schema-url])

On schema-based data, the XPath function i nst anceof - onl y evaluates the
xpat h- expr corresponding to nodeset - expr and determines the XML Schema
type for each of the resultant node(s). Note that the xpath expression

nodeset - expr is typically a relative XPath expression. If the type of any of the
nodes exactly matches the name t ypenane, optionally qualified with a

6-16 Oracle XML DB Developer's Guide

Examining Type Information in Oracle XML DB

namespace prefix, then the XPath function returns TRUE. Otherwise, the function
returns FALSE. The XPath function returns FALSE for non-schema-based data.

Example 6-10 Using ora:instanceof-only

The following query selects Nane attributes of AE children of the element Per son that
are of type Per sonType (subtypes of Per sonType are not matched).

SELECT extract (val ue(p),

"/ p9: Person[ora:instanceof - onl y(AE, " p9: PersonType")]/ AE/ Nange',
" xm ns: p9="person9. xsd" xni ns:ora="http://xm ns. oracl e. con xdb"")
FROM PO Tabl e p;

ora: i nstanceof (): Functionora: i nst anceof () has the following
signature:

bool ean i nst anceof (nodeset nodeset - expr,
string typenane [, string schema-url])

On schema-based data, the XPath function i nst anceof evaluates the

xpat h- expr corresponding to nodeset - expr and determines the XML Schema
type for each of the resultant node(s). Note that the xpath expression

nodeset - expr is typically a relative xpath expression. If the type of any of the
nodes exactly matches the name t ypenane, optionally qualified with a
namespace prefix, then the XPath function returns TRUE. Otherwise, the function
returns FALSE. The XPath function returns FALSE for non-schema-based data.

For each node that matches the xpath expression nodeset - expr, the qualified
name of the type of the node is determined. For or a: i nst anceof onl y(), if the
name and namespace of the type exactly matches the specified t ypenane, the
function returns TRUE. For or a: i nst anceof (), if the name and namespace of
the type of the node or one of its supertypes exactly matches the specified

t ypenane, the function return TRUE. Otherwise, processing continues with the
next node in the node set.

The schema- ur| parameter can additionally be specified to indicate the schema
location URL for the type to be matched. If the schenma- ur | parameter is not
specified, then the schema location URI is not checked. If the parameter is
specified, then the schema in which the type of the node is declared must match
the schenma- ur | parameter.

Example 6-11 Using ora:instanceof

The following query selects Name attributes of AE children of the element Per son that
are of type Per sonType or one of its subtypes.

SELECT extract (val ue(p),

"/ p9: Person[ora:instanceof (AE, " p9: PersonType")]/ AE/ Nange' ,
" xm ns: p9="person9. xsd" xm ns:ora="http://xm ns. oracl e. conl xdb"")
FROM PO Tabl e p;

Using ora:instanceof in a heterogeneous schema storage: One of the use cases for
the schema location parameter is the heterogeneous XML Schema scenario. I £
your scenario involves a schema-based table, consider omitting the schema
location parameter. Heterogeneous XML Schema-based data can be present in a
single table.

Consider a non-schema-based table of XMLType. Each row in the table is an XML
document. Suppose that the contents of each XML document is XML data for
which schema information has been specified. If the data in the table is converted

XML Schema Storage and Query: Advanced Topics 6-17

Working With Circular and Cyclical Dependencies

to schema-based data through a subsequent operation, then the rows in the table
could pertain to different schemas. In such a case, you can specify not only the
name and the namespace of the type to be matched, but also the schema location
URL.

Example 6-12 Using ora:instanceof in a Heterogeneous Schema Storage

In the non-schema-based table non_sch_p_t ab, the following query matches
elements of type Per sonType that pertain to schema per son9. xsd.

SELECT extract (
creat eschemabased(
val ue(p)),
'/ p9: Person/ AE[or a: i nstanceof (., "p9: PersonType", "person9.xsd")]",
"xm ns: p9="person9. xsd" xnl ns:ora="http://xmns. oracl e. conf xdb"")
FROM "non_sch_p_tab" p;

Working With Circular and Cyclical Dependencies

The W3C XML Schema Recommendation allows conpl exTypes and global elements
to contain recursive references. For example, a conpl exType definition may contain
an element based on the conpl exType itself being defined, or a global element can
contain a reference to itself. In both cases the reference can be direct or indirect. This
kind of structure allows for instance documents where the element in question can
appear an infinite number of times in a recursive hierarchy.

Example 6-13 An XML Schema With Circular Dependency

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://wm. w3. or g/ 2001/ XM_Schena"
xm ns: xdb="htt p: //xn ns. oracl e. conf xdb"
el enent For nDef aul t ="qual i fied" attributeFornDefaul t="unqualified">
<xs: el ement name="person" type="personType" xdb: defaul t Tabl e=" PERSON_TABLE"/ >
<xs: conpl exType nanme="personType" xdb: SQLType="PERSON _T">
<Xs: sequence>
<xs: el ement name="decendant" type="personType" mi nCccurs="0"
maxCOccur s="unbounded" xdb: SQLName=" DESCENDANT"
xdb: def aut | Tabl e=" DESCENDANT_TABLE"/ >
</ xs: sequence>
<xs:attribute name="personNane" use="required" xdb: SQLNanme="PERSON NAME'>
<Xs: si npl eType>
<xs:restriction base="xs:string">
<xs: maxLength val ue="20"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: schema>

The XML schema shown in Example 6-13 includes a circular dependency. The
conpl exType per sonType consists of a per sonNane attribute and a collection of
descendant elements. The descendant element is defined as being of per sonType.

For Circular Dependency Set GenTables Parameter to TRUE

Oracle XML DB supports XML schemas that define this kind of structure. To break the
cycle implicit in this kind of structure, recursive elements are stored as rows in a

6-18 Oracle XML DB Developer's Guide

Working With Circular and Cyclical Dependencies

separate XMLType table. The table used to manage these elements is an XM_Type
table, created during the XML schema registration process.

Consequently it is important to ensure that the genTabl es parameter is always set to
TRUE when registering an XML schema that defines this kind of structure. The name
of the table used to store the recursive elements can be specified by adding an

xdb: def aul t Tabl e annotation to the XML schema.

Handling Cycling Between complexTypes in XML Schema

Cycles in the XML schema are broken while generating the object types, because object
types do not allow cycles, by introducing a REF attribute at the point at which the
cycle gets completed. Thus part of the data is stored out-of-line yet still belongs to the
parent XML document when it is retrieved.

Example 6-14 XML Schema: Cycling Between complexTypes

XML schemas permit cycling between definitions of conpl exTypes. Figure 6-3
shows this example, where the definition of conpl exType CT1 can reference another
conpl exType CT2, whereas the definition of CT2 references the first type CT1.

XML schemas permit cycling between definitions of conpl exTypes. This is an
example of cycle of length two:

DECLARE
doc VARCHAR2(3000) :=
' <xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: xdb="http://xm ns. oracl e. con xdb" >
<xs: conpl exType nane="CT1" xdb: SQLType="CT1">
<Xs: sequence>
<xs:el ement name="el" type="xs:string"/>
<xs: el ement name="e2" type="Cr2"/>
</ xs: sequence>
</ xs: compl exType>
<xs: conpl exType nane="CT2" xdb: SQLType="CT2">
<Xs: sequence>
<xs:el ement name="el" type="xs:string"/>
<xs: el ement name="e2" type="CT1"/>
</ xs: sequence>
</ xs: compl exType>
</ xs: schema>'
BEG N
DBVS_XMLSCHEMA. r egi st er Scherma(' htt p: // www. or acl e. conl enp. xsd', doc)
END,

SQL types do not allow cycles in type definitions. However, they support weak cycles,
that is, cycles involving REF (reference) attributes. Therefore, cyclic XML schema
definitions are mapped to SQL object types such that any cycles are avoided by forcing
SQLI nl i ne="fal se" at the appropriate point. This creates a weak cycle.

For the preceding XML schema, the following SQL types are generated:
CREATE TYPE CT1 AS OBJECT (SYS_XDBPD$ xdb. xdb$raw |ist t,

"e1" VARCHAR2(4000) ,

"e2" REF XML.Type) NOT FI NAL;
CREATE TYPE CT2 AS OBJECT (SYS XDBPD$ xdb. xdb$raw |ist t,

"e1" VARCHAR2(4000) ,

"e2" CT1) NOT FINAL;

XML Schema Storage and Query: Advanced Topics 6-19

Working With Circular and Cyclical Dependencies

Figure 6-3 Cross Referencing Between Different complexTypes in the Same XML
Schema

XML schema, emp. xsd

<xs:complexType name= <xs:complexType name=
"CT1"...> "CT2"...>
<xs:elemént name= <xs:e|emént name=
"e2" type = "CT2"/> "e2" type="CT1"/>

Example 6-15 XML Schema: Cycling Between complexTypes, Self-Referencing

Another example of a cyclic conpl exType involves the declaration of the
conpl exType having a reference to itself. The following is an example of type
<Sect i onT> that references itself:

DECLARE
doc VARCHAR2(3000) :=
' <xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM.Scherma"
xm ns: xdb="http://xm ns. oracl e. com xdb" >
<xs: conpl exType nane="SectionT" xdb: SQLType="SECTI ON_T" >
<xs: sequence>
<xs: el ement name="title" type="xs:string"/>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement nanme="body" type="xs:string"
xdb: SQLCol | Type="BCODY_COLL"/ >
<xs:el ement name="section" type="SectionT"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: compl exType>
</ xs: schema>';
BEG N
DBVS_XMLSCHEMA. r egi st er Schema(' http: // www. oracl e. conf section. xsd', doc);
END;

The following SQL types are generated.

CREATE TYPE BODY_COLL AS VARRAY(32767) OF VARCHAR2(4000);
CREATE TYPE SECTI ON.T AS OBJECT (SYS_XDBPD$ XDB. XDBSRAW LI ST T,
"title" VARCHAR?(4000) ,
"body" BODY_COLL,
"section” XDB. XDB$REF_LIST T) NOT FINAL;

Note: The sect i on attribute is declared as a VARRAY of REF
references to XMLTy pe instances. Because there can be more than
one occurrence of embedded sections, the attribute is a VARRAY.
And it is a VARRAY of REF references to XML Ty pe values in order to
avoid forming a cycle of SQL objects.

How a complexType Can Reference Itself

Assume that your XML schema, identified by "ht t p: / / www. or acl e. conf PO xsd",
has been registered. An XMLType table, myPCs, can then be created to store instances

6-20 Oracle XML DB Developer's Guide

Oracle XML DB: XPath Expression Rewrites for existsNode()

conforming to element, Pur chaseQr der, of this XML schema, in an object-relational
format as follows:

CREATE TABLE MyPCs OF XM.Type
ELEMENT "http://wwmw oracl e. conf PO. xsd#Pur chaseOr der";

Figure 64 illustrates schematically how a conpl exType can reference or cycle itself.

Figure 6-4 complexType Self Referencing Within an XML Schema

XML schema, emp. xsd

<xs:complexType name=
"SectionT"...>

<xs:element name="section" type =
"SectionT"/>

See Also: "Cyclical References Between XML Schemas" on
page 6-27

Hidden columns are created. These correspond to the object type to which the
Pur chaseOr der element has been mapped. In addition, an XMLExt r a object column
is created to store the top-level instance data such as namespace declarations.

Note: XM_DATAis a pseudo-attribute of XMLType that enables
direct access to the underlying object column. See Chapter 4,
"XMLType Operations", under "Changing the Storage Options on
an XMLType Column Using XMLData".

Oracle XML DB: XPath Expression Rewrites for existsNode()

exi st sNode() returns a numerical value 0 or 1 indicating if the XPath returns any
nodes (t ext () or el ement nodes). Based on the mapping discussed in the earlier
section, an exi st sNode() simply checks if a scalar element is not NULL in the case
where the XPath targets a t ext () node or a non-scal ar node, and checks for the
existence of the element using the SYS_XDBPD$ otherwise. If the SYS_XDBPD$
attribute is absent, then the existence of a scal ar node is determined by the NULL
information for the scalar column.

existsNode Mapping with Document Order Maintained

Table 6-1 shows the mapping of various XPaths in the case of exi st sNode() when
document ordering is preserved, that is, when SYS_XDBPD$ exists and
mai nt ai NDOVE" t r ue” in the schema document.

XML Schema Storage and Query: Advanced Topics 6-21

Oracle XML DB: XPath Expression Rewrites for existsNode()

Table 6-1 XPath Mapping for existsNode() with Document Ordering Preserved

XPath Expression Maps to
/ Pur chaseOr der CASE WHEN XM.Data |'S NOT NULL THEN 1 ELSE 0 END
/ Pur chaseOr der/ @ur chaseDat e CASE WHEN Check_Node_Exi st s(XM.Dat a. SYS_XDBPDS,

" PurchaseDate') =1
THEN 1 ELSE 0 END

/ Pur chaseOr der / PONum CASE WHEN Check_Node Exi st s(XM.Dat a. SYS_XDBPD$, ' PONuni)=1
THEN 1 ELSE 0 END

| Pur chaseOr der [PONum=2100] CASE WHEN XM.Dat a. " PONunf =2100 THEN 1 ELSE 0

[Pur chaseOr der [PONum=2100] / @ur chas CASE WHEN XM Dat a. " PONuni' =2100

eDate AND Check_Node_Exi st s(XM.Dat a. SYS_XDBPDS,

' PurchaseDate') =1
THEN 1 ELSE 0 END

| Pur chaseOr der/ PONunt t ext () CASE WHEN XM.Dat a. "PONunt 1S NOT NULL THEN 1 ELSE 0

[PurchaseOrder/Item CASE WHEN EXI STS (
SELECT NULL FROM TABLE (XM.Data."lteml) x
WHERE val ue(x) 'S NOT NULL) THEN 1 ELSE 0 END

[PurchaseCOrder/Item Part CASE WHEN EXI STS (
SELECT NULL FROM TABLE (XM.Data."ltenf) x
WHERE Check_Node_ EXxi st s(x. SYS_XDBPD$, 'Part')=1)
THEN 1 ELSE 0 END

[PurchaseCrder/Item Part/text() CASE WHEN EXI STS (
SELECT NULL FROM TABLE (XM.Data."ltent) x
WHERE x."Part” |'S NOT NULL) THEN 1 ELSE 0 END

Example 6-16 existsNode Mapping with Document Order Maintained

Using the preceding mapping, a query which checks whether the Pur chaseCQr der
with number 2100 contains a part with price greater than 2000:

SELECT count (*)
FROM nypos p
VWHERE EXI STSNODE(val ue(p), '/ PurchaseCrder [PONum=1001 and Item Price > 2000]"')=1;

would become:

SELECT count (*)

FROM nypos p

WHERE CASE

VWHEN p. XM.Dat a. " PONunt' =1001
AND exi st s(SELECT NULL FROM TABLE (XM.Data."ltent) p
VHERE p. " Price" > 2000))

THEN 1 ELSE O END
=1;

The CASE expression gets further optimized due to the constant relational equality
expressions and this query becomes:

SELECT count (*)
FROM nypos p
VWHERE p. XM_Dat a. " PONunt =1001
AND exi st s(SELECT NULL FROM TABLE (p. XM_Data."ltent) x
VHERE x."Price" > 2000);

6-22 Oracle XML DB Developer's Guide

Oracle XML DB: Rewrite for extractValue()

which would use relational indexes for its evaluation, if present on the Part and
PONumcolumns.

existsNode Mapping Without Maintaining Document Order

If the SYS_XDBPD$ does not exist (that is, if the XML schema specifies

mai nt ai NDOME"f al se") then NULL scalar columns map to non-existent scalar
elements. Hence you do not need to check for the node existence using the SYS_
XDBPD$ attribute. Table 6-2 shows the mapping of exi st sNode() in the absence of
the SYS_XDBPD$ attribute.

Table 6-2 XPath Mapping for existsNode Without Document Ordering

XPath Expression Maps to

| Pur chaseOr der CASE WHEN XM.Data |'S NOT NULL THEN 1 ELSE 0 END

/ Pur chaseQOr der/ @ur chaseDat e CASE WHEN XM_.Dat a. ' PurchaseDate' 1S NOT NULL THEN 1 ELSE 0
END

| Pur chaseOr der/ PONum CASE WHEN XM.Data."PONunf 1S NOT NULL THEN 1 ELSE 0 END

| Pur chaseOr der [PONun=2100] CASE WHEN XML.Dat a. " PONunf =2100 THEN 1 ELSE 0 END

[Pur chaseCOr der [PONum=2100] / @ur chase CASE WHEN XM.Dat a. " PONuni' =2100 AND

OrderDat e XM.Dat a. " Pur chaseDat " NOT NULL THEN
1 ELSE 0 END

/ Pur chaseOr der/ PONum t ext () CASE WHEN XM_.Dat a. "PONunmt 1S NOT NULL THEN 1 ELSE 0 END

[PurchaseOrder/Item CASE WHEN EXI STS (

SELECT NULL FROM TABLE (XM.Data."Iten) x
VWHERE val ue(x) I'S NOT NULL) THEN 1 ELSE O END

[PurchaseOrder/Iten Part CASE WHEN EXI STS (
SELECT NULL FROM TABLE (XM.Data."ltent) x
WHERE x."Part" IS NOT NULL) THEN 1 ELSE 0 END

[PurchaseOrder/Iten Part/text() CASE WHEN EXI STS (
SELECT NULL FROM TABLE (XM.Data."ltenf) x
VWHERE x."Part” 1S NOT NULL) THEN 1 ELSE 0 END

Oracle XML DB: Rewrite for extractValue()

extract Val ue() is a shortcut for extracting t ext nodes and attributes using
extract () and then using a get Stri ngVal () or get Nunber Val () to get the
scalar content. ext r act Val ue returns the t ext nodes for scalar elements or the
values of at t ri but e nodes. ext r act Val ue() cannot handle returning multiple
values or non-scalar elements.

Table 6-3 shows the mapping of various XPath expressions in the case of

ext ract Val ue() . If an XPath expression targets an element, then ext r act Val ue
retrieves the t ext node child of the element. Thus the two XPath expressions,

/ Pur chaseOr der / PONumand / Pur chaseOr der / PONuni t ext () are handled
identically by ext r act Val ue and both of them retrieve the scalar content of PONum

Table 6-3 XPath Mapping for extractValue()

XPath Expression Maps to

' Pur chaseQr der Not supported - ext r act Val ue can only retrieve
values for scalar elements and attributes.

/ Pur chaseQOr der/ @ur chaseDat e XMLDat a. " Pur chaseDat "

XML Schema Storage and Query: Advanced Topics 6-23

Oracle XML DB: Rewrite for extractValue()

Table 6-3 (Cont.) XPath Mapping for extractValue()

XPath Expression Maps to
/ Pur chaseOr der / PONum XM.Dat a. " PONunt
/ Pur chaseOr der [PONun2100] (SELECT TO XM.(x. XM.Data) FROM Dual WHERE

X. " PONunt =2100)

[Pur chaseCOr der [PONum=2100] / @ur chas (SELECT x. XM_Dat a. " Pur chaseDat e")

eDat e FROM Dual
VHERE x. " PONunt =2100)
/ Pur chaseOr der / PONunt t ext () XM_Dat a. " PONunt'
/' PurchaseCQrder/Item Not supported - ext r act Val ue can only retrieve

values for scalar elements and attributes.

I PurchaseQrder/ | tenf Part Not supported - ext r act Val ue cannot retrieve
multiple scalar values.

/' PurchaseCOrder/Iten Part/text() Not supported - ext r act Val ue cannot retrieve
multiple scalar values.

Example 6-17 Rewriting extractValue()
For example, a SQL query such as:

SELECT Extract Val ue(val ue(p),"/PurchaseO der/PONun)

FROM nypos p

WHERE Ext ract Val ue(val ue(p), '/ PurchaseCOr der/ PONumi) =1001;
would become:

SELECT p. XM_Dat a. " PONunt FROM nypos p WHERE p. XM_.Dat a. " PONunt' =1001,;

Because it gets rewritten to simple scalar columns, indexes on the PONumattribute, if
any, can be used to satisfy the query.

Creating Indexes

Ext r act Val ue can be used in index expressions. If the expression gets rewritten into
scalar columns, then the index is turned into a B*Tree index instead of a function-based
index.

Example 6-18 Creating Indexes with extract

For example:
CREATE | NDEX ny_po_i ndex ON nypos x
(Extract (val ue(x),'/PurchaseOrder/PONunftext()'). getnunberval ());
would get rewritten into:
CREATE | NDEX ny_po_i ndex ON nypos x (x.XM.Data."PONuni');
and thus becomes a regular B*Tree index. This is useful, because unlike a

function-based index, the same index can now satisfy queries that target the column,
such as:

EXI STSNODE(val ue(x), '/ PurchaseO der [PONum=1001] ') =1;

6-24 Oracle XML DB Developer's Guide

Oracle XML DB: Rewrite for extract()

Oracle XML DB: Rewrite for extract()

Function ext r act () retrieves the results of XPath as XML. The rewrite for
extract () issimilar to that of extract Val ue() for those Xpath expressions
involving t ext nodes.

Extract Mapping with Document Order Maintained

Table 64 shows the mapping of various XPath values in the case of ext ract (),
when document order is preserved (that is, when SYS_XDBPD$ exists and
mai nt ai NnDOVE"t r ue" in the schema document).

Table 6-4 XPath Mapping for extract() with Document Ordering Preserved

XPath Maps to
/ Pur chaseOr der XM_For est (XM_Dat a as "PurchaseCrder")
/ Pur chaseOr der / @ur chaseDat e CASE WHEN Check_Node_Exi st s(XM_Dat a. SYS_XDBPD$,

' PurchaseDate') =1
THEN XM.El enent (" PONunt' , XM.Dat a. " Pur chaseDat e")
ELSE NULL END

/ Pur chaseOr der / PONum CASE WHEN Check_Node_Exi st s(XM_Dat a. SYS_XDBPD$,
" PONunt) =1
THEN XMLEl ement (" PONuni , XM.Data."PONunt) ELSE
NULL END
/ Pur chaseOr der [PONun2100] (SELECT XM.Forest(XM.Data as "PurchaseOrder") FROM
DUAL

WHERE x. " PONuni' =2100)

/ Pur chaseOr der [PONunm=2100] / @ur chaseDate (SELECT CASE WHEN
Check_Node_Exi st s(x. XM_Dat a. SYS_
XDBPD$, ' Pur chaseDat e") =1
THEN XMLEl enment (" PONunt', XM.Dat a. " Pur chaseDat e")
ELSE NULL END
FROM DUAL WHERE x. " PONunt =2100)

/ Pur chaseOr der/ PONum t ext () XMLEl ement ("", XM.Dat a. PONum

[PurchaseCOrder/Item (SELECT XM_Agg(XMLForest (val ue(p) as "ltent))
FROM TABLE (x.XM.Data."ltenf) p
VHERE val ue(p) |'S NOT NULL)

/ PurchaseOrder/Iten Part (SELECT XMLAgg(
CASE WHEN Check_Node_Exi sts(p. SYS_
XDBPDS, ' Part") =1
THEN XM_Forest(p."Part" as "Part") ELSE NULL
END)
FROM TABLE (x.XM.Data."ltenl) p)

[PurchaseOrder/Item Part/text() (SELECT XML_Agg(XMLE! enent (" PONunt', p."Part"))
FROM TABLE (x.XM.Data."ltemt) x)

Example 6-19 XPath Mapping for extract() with Document Ordering Preserved

Using the mapping in Table 64, a query that extracts the PONumelement where the
purchase order contains a part with price greater than 2000:

SELECT Extract(val ue(p),'/PurchaseOrder[ltem Part > 2000]/PONumi) FROM po_tab p;

would become:

SELECT (SELECT CASE WHEN Check_Node_Exi sts(p. XM.Dat a. SYS _XDBPD§, ' PONumi) = 1

XML Schema Storage and Query: Advanced Topics 6-25

Optimizing Updates Using updateXMLY()

THEN XMLEl erent (" PONund', p. XM_Dat a. " PONunt')
ELSE NULL END
FROM DUAL
VWHERE exi st s(SELECT NULL FROM TABLE (XM.Data."ltent) p
WHERE p."Part" > 2000))
FROM po_tab p;

Check_Node_Exi st s is an internal function that is for illustration purposes only.

Extract Mapping Without Maintaining Document Order

If the SYS_XDBPD$ does not exist, that is, if the XML schema specifies

mai nt ai NDOME" f al se”, then NULL scalar columns map to non-existent scalar
elements. Hence you do not need to check for the node existence using the SYS_
XDBPD$ attribute. Table 6-5 shows the mapping of exi st sNode() in the absence of
the SYS_XDBPD$ attribute.

Table 6-5 XPath Mapping for extract() Without Document Ordering Preserved

XPath

Equivalent to

/ Pur chaseQr der

XM_For est (XM.Dat a AS "PurchaseOrder")

[Pur chaseCOr der/ @ur chaseDat e XM_For est (XM_Dat a. " Pur chaseDat e" AS " Pur chaseDat e")
/ Pur chaseOr der/ PONum XM_For est (XM_LDat a. " PONunt' AS " PONum')
[Pur chaseOr der [PONum=2100] (SELECT XM_Forest (XM.Data AS "PurchaseCrder")

from Dual where x."PONuni'=2100)

[Pur chaseOr der [PONune2100] / @ur chas (SELECT XM.For est (XM.Dat a. " Pur chaseDat e" AS "PurchaseDate "")

eDate from Dual where x."PONuni'=2100)

[PurchaseCOr der/ PONunt t ext () XM_For est (XM_Dat a. PONum AS "")

[PurchaseOrder/Item (SELECT XMLAgg(XM_For est (val ue(p) as "ltent)
from TABLE (x. XM_Data."ltent) p
where value(p) |'S NOT NULL)

[PurchaseOrder/Iten Part (SELECT XMLAgg(XMLForest(p."Part" AS "Part")
from TABLE (x.XM.Data."Itemt) p)

[PurchaseCOrder/Item Part/text() (SELECT XMLAgg(XM.Forest(p. "Part" AS "Part"))

from TABLE (x. XM.Data."ltent) p)

Optimizing Updates Using updateXML()

A regular update using updat eXM_() involves updating a value of the XML
document and then replacing the whole document with the newly updated document.

When XMLType is stored in an object-relational manner using XML schema mapping,
updates are optimized to directly update pieces of the document. For example,
updating the PONumelement value can be rewritten to directly update the

XM.Dat a. PONumcolumn instead of materializing the whole document in memory
and then performing the update.

Function updat eXM_() must satisfy the following conditions for it to use the

optimization:

= The XMLType column supplied to updat eXM_() must be the same column being
updated in the SET clause. For example:

UPDATE po_tab p SET val ue(p)=updat exm (val ue(p),...);

6-26 Oracle XML DB Developer's Guide

Cyclical References Between XML Schemas

= The XMLType column must have been stored in an object-relational manner using
Oracle XML DB XML schema mapping.

= The XPath expressions must not involve any predicates or collection traversals.
= There must be no duplicate scalar expressions.

= All XPath arguments in the updat eXM_() function must target only scalar
content, that is, text nodes or attributes. For example:

UPDATE po_tab p
SET val ue(p) = updatexm (val ue(p),
" [Pur chaseOr der/ @ur chaseDate', '2002-01-02',
"/ PurchaseOrder/PONunftext()', 2200);

If all the preceding conditions are satisfied, then the updateXML is rewritten into a
simple relational update. For example, the preceding UPDATE operation becomes:

UPDATE po_tab p
SET p. XM_Dat a. " Pur chaseDat e" = TO DATE(' 2002- 01-02', ' SYYYY-MM DD),
p. XM_.Dat a. " PONunt = 2100;

DATE Conversions

Date datatypes such as DATE, gMONTH, and gDATE have different formats in XML
schema and SQL. In such cases, if the updat eXM_() has a string value for these
columns, then the rewrite automatically puts the XML format string to convert the

string value correctly. Thus, string value specified for DATE columns must match the
XML date format, not the SQL DATE format.

Cyclical References Between XML Schemas

XML schema documents can have cyclic dependencies that can prevent them from
being registered one after the other in the usual manner. Examples of such XML
schemas follow:

Example 6-20 Cyclic Dependencies

An XML schema that includes another XML schema cannot be created if the included
XML schema does not exist.

BEG N DBMS_XM.SCHEMA. r egi st er Schema(
" xm40. xsd'
' <schema xm ns="http://ww. w3. or g/ 2001/ XM.Schema" xm ns: my="xm0"
t ar get Namespace="xmi0" >
<include schemaLocation="xmi0a. xsd"/ >
<I'-- Define a global conplextype here -->
<conpl exType nane="Conpany" >
<sequence>
<el ement nanme="Nanme" type="string"/>
<el ement nane="Address" type="string"/>
</ sequence>
</ conpl exType>
<I'-- Define a global element depending on included schema -->
<el ement name="Enp" type="ny: Enpl oyee"/>
</ schema>'
TRUE
TRUE
FALSE,
TRUE) ;
END

XML Schema Storage and Query: Advanced Topics 6-27

Cyclical References Between XML Schemas

/

It can however be created with the FORCE option:

BEG N DBMS_XM.SCHEMA. r egi st er Schema(
' xm0. xsd',
' <schema xm ns="http://ww. w3. org/ 2001/ XM.Schema" xm ns: my="xnm0"
t ar get Namespace="xmiQ" >
<include schemalLocation="xm0a. xsd"/>
<I'-- Define a global conplextype here -->
<conpl exType nane="Conpany">
<sequence>
<el ement name="Name" type="string"/>
<el ement name="Address" type="string"/>
</ sequence>
</ conpl exType>
<l-- Define a global element depending on included schema -->
<el ement name="Enp" type="ny: Enpl oyee"/>
</ schema>',
TRUE
TRUE
FALSE,
TRUE
TRUE) ;
END
/

Attempts to use this schema and recompile will fail:

CREATE TABLE foo OF SYS. XM.Type XMLSCHEMA "xm0.xsd" ELEMENT " Enp"

Now, create the second XML schema with the FORCE option. This should also make
the first XML schema valid:

BEG N DBMS_XM.SCHEMA. r egi st er Schema(
' xmi0a. xsd',
' <schema xm ns="http://ww:. w3. or g/ 2001/ XM.Schema" xmn ns: my="xm0"
t ar get Namespace="xmi0" >
<include schenmaLocati on="xm0. xsd"/ >
<I-- Define a global conplextype here -->
<conpl exType nane="Enpl oyee" >
<sequence>
<el ement name="Name" type="string"/>
<el ement name="Age" type="positivelnteger"/>
<el ement name="Phone" type="string"/>
</ sequence>
</ conpl exType>
<I'-- Define a global elenment depending on included schema -->
<el ement name="Conp" type="ny: Conpany"/ >
</ schema>'
TRUE
TRUE
FALSE,
TRUE
TRUE) ;
END,
/
Both XML schemas can be used to create tables:

CREATE TABLE foo OF SYS. XM.Type XMLSCHEMA "xm40. xsd" ELEMENT " Enp"
CREATE TABLE fo002 OF SYS. XM.Type XMLSCHEMA "xm#0Oa. xsd" ELEMENT " Conp"

6-28 Oracle XML DB Developer's Guide

Guidelines for Using XML Schema and Oracle XML DB

To register both these XML schemas that have a cyclic dependency on each other, you
must use the FORCE parameter in DBMS_XM_.SCHEMA. r egi st er Schena as follows:

1. Step 1: Register s1. xsd in FORCE mode:
DBMS_XMLSCHEMA. r egi st er Schema("s1. xsd", "<schema ...", ..., FORCE => TRUE)

At this point, s1. xsd is invalid and cannot be used.
2. Step 2: Register s2. xsd in FORCE mode:
DBMS_XMLSCHEMA. r egi st er Schema("s2. xsd", "<schema ..", ..., FORCE => TRUE)

The second operation automatically compiles s1. xsd and makes both XML
schemas valid.

See Figure 6-5. The preceding example is illustrated in the lower half of the figure.

Figure 6-5 Cyclical References Between XML Schemas

XML schema 1, S1 XML schema 2, S2
References
<

S3 S1

XML schema 3, S3

References References
S2
OR
XML schema 1, S1 References > XML schema 2, S2
References
S2 < S1

Guidelines for Using XML Schema and Oracle XML DB

This section describes guidelines for using XML schema and Oracle XML DB:

Using Bind Variables in XPath Expressions

When you use bind variables, Oracle Database rewrites the queries for the cases where
the bind variable is used in place of a string literal value. You can also use the
CURSOR_SHARI NGset to force Oracle Database to always use bind variables for all
string expressions.

XML Query Rewrites with Bind Variables in XPath

When bind variables are used as string literals in XPath, the expression can be
rewritten to use the bind variables. The bind variable must used in place of the string

XML Schema Storage and Query: Advanced Topics 6-29

Guidelines for Using XML Schema and Oracle XML DB

literal using the concatenation operator (| |), and it must be surrounded by single (')
or double (") quotes inside the XPath string. The following example illustrates the use
of the bind variable with query rewrite.

Example 6-21 Using Bind Variables in XPath

BEG N
DBVS_XMLSCHEMA. r egi st er schema(
" bi ndtest. xsd',
' <xs:schema xn ns:xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: xdb="http://xm ns. oracl e. con xdb">
<xs: el ement name="Enpl oyee" xdb: SQLType="EMP_BI ND_TYPE" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="Enpl oyeel d" type="xs:positivelnteger"/>
<xs: el ement name="PhoneNunber" type="xs:string"/>
</ xs: sequence>
</ xs: compl exType>
</ xs: el ement >
</ xs:schema>',
TRUE,
TRUE,
FALSE,
FALSE) ;
END;
/
REM Create table corresponding to the Enpl oyee el ement
CREATE TABLE enp_bind_tab OF XM.Type
ELEMENT "bi ndt est . xsd#Enpl oyee";
REM Create an index to illustrate the use of bind variables
CREATE | NDEX enpl oyeel d_i dx ON EMP_BI ND_TAB
(Extract Val ue(obj ect _val ue, '/Enpl oyee/ Enpl oyeeld'));
EXPLAIN PLAN FOR
SELECT Extractval ue(object _val ue, '/Enpl oyee/ PhoneNurber")
FROM enp_bind_tab p
VHERE Exi st sNode(obj ect _val ue, '/Enpl oyee[Enpl oyeeld=""||:1]||'"] ') = 1;

SQL> @/ rdbns/ admi n/ utl xpls

PLAN_TABLE_OUTPUT

| 1d | Operation | Nane |

| SELECT STATEMENT |
| TABLE ACCESS BY | NDEX ROWD| EMP_BI ND_TAB |
* 2| INDEX RANGE SCAN | EMPLOYEEID | DX |

2 - access("P"."SYS_NC00008$" =TO NUVBER(: 1))

The bind variable : 1 is used as a string literal value enclosed by double quotes (*).

This allows the XPath expression ' / Enpl oyee[Enpl oyeel d=" " || :1 || ""]'
to be rewritten, and the optimizer can use the Enpl oyeel d_i dx index to satisfy the
predicate.

Setting CURSOR_SHARING to FORCE

With query rewrites, Oracle Database changes the input XPath expression to use the
underlying columns. This means that for a given XPath there is a particular set of

6-30 Oracle XML DB Developer's Guide

Creating Constraints on Repetitive Elements in Schema-Based XML Instance Documents

columns or tables that is referenced underneath. This is a compile-time operation,
because the shared cursor must know exactly which tables and columns it references.
This cannot change with each row or instantiation of the cursor.

Hence if the XPath expression itself is a bind variable, Oracle Database cannot do any
rewrites, because each instantiation of the cursor can have totally different XPaths.
This is similar to binding the name of the column or table in a SQL query. For example,
SELECT * FROM tabl e(:1).

Note: You can specify bind variables on the right side of the query.
For example, this query uses the usual bind variable sharing:

SELECT * FROM pur chaseorder p WHERE
extractval ue(
val ue(p),
" PurchaseOrder/ Linel tens/ Li nel tem |t emNunber')
T

When CURSOR_SHARI NGis set to FORCE, by default each string constant including
XPath becomes a bind variable. When Oracle Database then encounters

extractval ue(), exi st snode(), and so on, it looks at the XPath bind variables to
check if they are really constants. If so then it uses them and rewrites the query. Hence
there is a large difference depending on where the bind variable is used.

Creating Constraints on Repetitive Elements in Schema-Based XML
Instance Documents

After creating an XMLType table based on an XML schema, you may need to add a
unique constraint to one of the elements. That element can occur more than once. To
create constraints on elements that occur more than once in the XML instance
document, you must store the VARRAY as a table. This is considered an Ordered
Collection in the Table, or OCT. In an OCT the elements of the VARRAY are stored in
separate tables. You can then create constraints on the OCT.

The following example shows the attribute No of <PhoneNunber > that can appear
more than once, and a unique constraint added to ensure that the same number cannot
be repeated in the same XML instance document.

Example 6-22 Creating Constraints on Elements in Schema-Based Tables that Occur
More than Once Using OCT

In this example, the constraint applies to each collection and not across all XML
instances. This is achieved by creating a concatenated index with the collection i d
column. To apply the constraint across all collections of all instance documents, simply
omit the collection i d column.

BEG N DBMS_XM.SCHEMA. r egi st er schema(
"enp. xsd',
' <xs: schema xm ns: xs="http:// ww. w3. org/ 2001/ XM_Schema"
xm ns: xdb="http://xnl ns. oracl e. conf xdb" >
<xs: el ement name="Enpl oyee" xdb: SQLType="EMP_TYPE" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="Enpl oyeel d" type="xs:positivelnteger"/>
<xs: el ement name="PhoneNunber"” maxQCccurs="10">
<xs: conpl exType>
<xs:attribute name="No" type="xs:integer"/>

XML Schema Storage and Query: Advanced Topics 6-31

Guidelines for Loading and Retrieving Large Documents with Collections

</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: compl exType>
</ xs: el enent >
</ xs: schema>',
TRUE,
TRUE,
FALSE,
FALSE) ;
END;
/

This returns the following:

PL/ SQL procedure successfully conpl et ed.

CREATE TABLE enp_tab OF XM.Type
XMLSCHEMA "enp. xsd" ELEMENT " Enpl oyee”
VARRAY xm dat a. " PhoneNunber" STORE AS tabl e phone_t ab;

This returns:

Tabl e created.
ALTER TABLE phone_tab AD uni que(nested_table_id, "No");

This returns:

Tabl e al tered.

I NSERT | NTO enp_t ab
VALUES (XM.Type(' <Enpl oyee>
<Enpl oyeel d>1234</ Enpl oyeel d>
<PhoneNunber No="1234"/>
<PhoneNunber No="2345"/>
</ Enpl oyee>'). creat eschemabasedxm (' enp. xsd'));

This returns:

1 row created.

I NSERT | NTO enp_t ab
VALUES(XM.Type(' <Enpl oyee>
<Enpl oyeel d>3456</ Enpl oyeel d>
<PhoneNunber No="4444"|>
<PhoneNunber No="4444"]>
</ Enpl oyee>'). creat eschemabasedxm (' enp. xsd'));

This returns:

I NSERT | NTO enp_tab val ues(XM.Type(

*

ERROR at |ine 1:

ORA- 00001: uni que constraint (SCOTT. SYS_C002136) viol ated

Guidelines for Loading and Retrieving Large Documents with Collections

Two parameters were added to xdbconf i g in Oracle Database 10g in order to control
the amount of memory used by the loading operation. These tunable parameters

6-32 Oracle XML DB Developer's Guide

Guidelines for Loading and Retrieving Large Documents with Collections

provide mechanisms to optimize the loading process provided the following
conditions are met:

= The document is loaded either through protocols (FTP, HTTP, or DAV) or through
the cr eat eResour ce APL

= The document is a schema based document containing large collections (that is, it
contains elements with maxoccur s set to a large number).

= The collections of the document are stored as OCTs. This is achieved by either of
the following ways:

— Setting xdb: st or eVarr ayAsTabl e="true" in the schema definition which
turns this storage option on for all collections of the schema.

- By setting the table properties appropriately in the element definition.

= These optimizations are most useful when there are no triggers on the base table.
For situations where triggers appear, the performance may be suboptimal.

The basic idea behind this optimization is that it allows the collections to be swapped
into or out of the memory in bounded sizes. As an illustration of this idea consider the
following example conforming to a purchase order schema:

<Pur chaseOr der >
<Lineltemitem D="1">

</ Lineltenm»

<Lineltemitem D="10240">

</ Lineltem
</ Pur chaseOr der >

The purchase order document here contains a collection of 10240 Li nel t emelements.
Instead of creating the entire document in memory and then pushing it out to disk (a
process that leads to excessive memory usage and in some instances a load failure due
to inadequate system memory), we create the documents in finite chunks of memory
called loadable units. In the example case, if we assume that each line item needs 1K
memory and we want to use loadable units of size 512K, then each loadable unit will
contain 512K /1K = 512 line items and there will be approximately 20 such units.
Moreover, if we wish that the entire memory representation of the document never
exceeds 2M in size, we ensure that at any time no more than 2M /512K = 4 loadable
units are maintained in the memory. We use an LRU mechanism to swap out the
loadable units.

By controlling the size of the loadable unit and the bound on the size of the document
you can tune the memory usage and performance of the load or retrieval. Typically a
larger loadable unit size translates into lesser number of disk accesses but takes up
more memory. This is controlled by the parameter xdbcor e- | oadabl euni t - si ze
whose default value is 16K. The user can indicate the amount of memory to be given
to the document by setting the xdbcor e- xobmem bound parameter which defaults
to IM. The values to these parameters are specified in Kilobytes. So, the default value
of xdbcor e- xobmem bound is 1024 and that of xdbcor e- | oadabl euni t - si ze is
16. These are soft limits that provide some guidance to the system as to how to use the
memory optimally.

In the preceding example, when we do the FIP load of the document, the pattern in
which the loadable units (LU) are created and flushed to the disk is as follows:

No LUs

XML Schema Storage and Query: Advanced Topics 6-33

Updating Your XML Schema Using Schema Evolution

Create LUL[Lineltems(LI):1-512]
LUL[LI: 1-512], Create LU2[LI:513-1024]

LUL[LI:1-512],...,Create LU4[LI: 1517:2028] <- Total menory size = 2M
Swap Qut LUL[LI:1-512], LU2[LI:513-1024],...,LU[LI:1517-2028], Create
LUS[LI : 2029- 2540]

Swap Qut LU2[LI:513-1024], LU3, LU4, LU5, Create LUB[LI:2541-2052]

Swap Qut LU16, LUL17, LU18, LULO, Create LU20[LI:9729-10240]
Flush LUL7, LU18, LUL19, LU20

Guidelines for Setting xdbcore Parameters

Typically if you have 1 Gigabyte of addressable PGA, give about 1/10th of PGA to the
document. So, xobcor e- xobmem bound should be set to 1/10 of addressable PGA
which equals 100M. During full document retrievals and loads, the

xdbcor e- | oadabl euni t - si ze should be as close to the xobcor e- xobnem bound
size as possible, within some error. However, in practice, we set it to half the value of
xdbcor e- xobrmem bound; in this case this is 50 M. Starting with these values, try to
load the document. In case you run out of memory, lower the

xdbcor e- xobmem bound and set the xdbcor e- | oadabl eunot - si ze to half of its
value, and continue until the documents load. In case the load succeeds, try to see if
you can increase the xdbcor e- | oadabl euni t - si ze to squeeze out better
performance. If xdbcor e- | oadabl euni t - si ze equals xdbcor e- xobmem bound,
then try to increase both parameters for further performance improvements.

Updating Your XML Schema Using Schema Evolution

You can update your XML schema after you have registered it with Oracle XML DB
using the XML schema evolution process.

See: Chapter 7, "XML Schema Evolution"

6-34 Oracle XML DB Developer's Guide

v

XML Schema Evolution

This chapter describes how you can update your XML schema after you have
registered it with Oracle XML DB. XML schema evolution is the process of updating
your registered XML schema.

This chapter contains these topics:

= Introducing XML Schema Evolution

= Example XML Schema

= Guidelines for Using DBMS_XMLSCHEMA.CopyEvolve()
= DBMS_XMLSCHEMA.CopyEvolve() Syntax

= How DBMS_XMLSCHEMA.CopyEvolve() Works

Introducing XML Schema Evolution

Oracle XML DB supports the W3C XML Schema recommendation. XML instances that
conform to an XML schema can be stored and retrieved using SQL and protocols such
as FTP, HTTP, and WebDAV. In addition to specifying the structure of XML documents,
XML schemas determine the mapping between XML and object-relational storage.

See: Chapter 5, "XML Schema Storage and Query: The Basics"

In prior releases an XML schema, once registered with Oracle XML DB at a particular
URL, could not be modified or evolved because there may be XM_Type tables that
depend on the XML schema. There was no standard procedure for schema evolution.
This release supports XML schema evolution by providing a PL/SQL procedure
CopyEvol ve() a part of the DBMS_XM_SCHENMA package. CopyEvol ve() involves
copying existing instance documents to temporary tables, dropping and re-registering
the XML schema, and copying the instance documents to the new XM_Type tables.

With copyevol ve() you can evolve your registered XML schema in such a way that
existing XML instance documents continue to be valid. If you do not care about the
existing documents, you can simply drop the XMLType tables dependent on the XML
schema, delete the old XML schema, and register the new XML schema at the same
URL.

CopyEvol ve() has certain limitations. These are described in the section,
"Limitations of CopyEvolve()".

Limitations of CopyEvolve()
The following are the limitations of CopyEvol ve():

XML Schema Evolution 7-1

Example XML Schema

Indexes, triggers, constraints, RLS policies and other metadata related to the
XM_Type tables that are dependent on the schemas that are evolved, will not be
preserved. These must be re-created after evolution.

If top-level element names are being changed, there are more steps to be followed
after CopyEvol ve() completes executing. See the section on "Top-Level Element
Name Changes" on page 7-3 for more details.

Data copy-based evolution cannot be used if there is a table with an object-type
column that has an XMLType attribute that is dependent on any of the schemas to
be evolved. For example, consider a table TAB1 that is created in the following
way:

CREATE TYPE t1 AS OBJECT (n NUMBER x XM.Type):

CREATE TABLE tabl (e NUMBER o t1) XM.Type COLUW o.x XM.Schenma "s1.xsd"
ELEMENT " Enpl oyee";

The example assumes that an XML schema with a top-level element Enpl oyee
has been registered under URL s1. xsd. It is not possible to evolve this XML
schema since table TAB1 with column Owith XM_Type attribute Xis dependent on
this XML schema.

Example XML Schema

The following is an example of an XML schema along with typical changes you may

want to make. Changes to be made are shown in bold. For changes to attributes, the
old value is shown in italics, followed by the new value:

Example 7-1 Example XML Schema to be Evolved
This example shows the changes that need to be made in bold.

<schema target Nanespace="http://ww. oracl e. conl po. xsd"
xm ns="http:// ww. w3. or g/ 2001/ XM_Schema"
xm ns: po="http://ww. oracl e. conf po. xsd"
el ement For mDef aul t ="qual i fied">
<annot ati on>
<docunentation xnl:lang="en">
Purchase Order schema for US PO s.
</ docunent ati on>
</ annot at i on>
<conpl exType nane="Address">
<sequence>
<el ement nane="name" type="string"/>
<el ement name="street" type="string"/>
<el ement nanme="city" type="string"/>
</ sequence>
</ conpl exType>
<I-- Atype representing US States -->
<si npl eType name="USSt ate" >
<restriction base="string">
<enuner ation val ue="NY"/>
<enuneration val ue="TX"/>
<enumeration val ue="CA"/>
<enumeration val ue="FL"/>
</restriction>
</ si npl eType>
<conpl exType name="USAddress" >
<conpl exCont ent >
<ext ensi on base="po: Address" >

7-2 Oracle XML DB Developer's Guide

Guidelines for Using DBMS_XMLSCHEMA.CopyEvolve()

<sequence>
<el ement name="STATE" name="State" type="po:USState"/>
<el ement nane="zip" type="positivelnteger"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
<el ement nane="PurchaseCrder">
<conpl exType>
<sequence>
<el ement nanme="PO Nunber" type="string"/>
<el ement name="Linel tems" maxCccurs="unbounded" >
<conpl exType>
<sequence>
<el ement nanme="part-nunf type="string" maxLength="20"/>
<el ement name="unit-price" type="float"/>
<el ement nanme="quantity" type="integer"/>
</ sequence>
</ conpl exType>
</ el enent >
<el ement nane="shi pTo" type="po: Address"/>
</ sequence>
</ conpl exType>

The next section describes steps for accomplishing copy-based schema evolution.

Guidelines for Using DBMS_XMLSCHEMA.CopyEvolve()
Here are some guidelines for using DBM5_XM.SCHEMA. CopyEvol ve():

1. First identify the XML schemas that are dependent on the XML schema to be
evolved. You can acquire the URLs of the dependent XML schemas using the
following query:

SELECT dxs. schema_url
FROM dba_dependenci es dd, dba_xml _schemas dxs
VHERE dd. r ef er enced_nane=(SELECT i nt _obj nane
FROM dba_xm _schemas WHERE schema_ur | =<EVOL_SCH_URL>
AND owner =<EVOL_SCH_OWNER>)
AND dxs. owner = <EVOL_SCH OMER>
AND dxs. i nt _obj nane=dd. nane;

In many cases, no changes may be necessary in the dependent XML schemas. But
if the dependent XML schemas need to be changed, you must also prepare new
versions of those XML schemas.

2. If the existing instance documents do not conform to the new XML schema, you
must provide an XSL style sheet that, when applied to an instance document, will
transform it to conform to the new schema. This needs to be done for each XML
schema identified in Step 1. The transformation must handle documents that
conform to all top-level elements in the new XML schema.

3. Call CopyEvol ve(), specifying the XML schema URLs, new schemas, and
transformations.

Top-Level Element Name Changes

The CopyEvol ve() procedure assumes that top-level elements have not been
dropped and that their names have not been changed in the new XML schemas. If
there are such changes in your new XML schemas, you can call CopyEvol ve() with

XML Schema Evolution 7-3

Guidelines for Using DBMS_XMLSCHEMA.CopyEvolve()

the gener at eTabl es parameter set to FALSE and the pr eser ved dDocs parameter
set to TRUE. In this way new tables are generated and the temporary tables holding
the old documents are not dropped at the end of the procedure. You can then store the
old documents in whatever form is appropriate and drop the temporary tables. See
"DBMS_XMLSCHEMA.CopyEvolve() Syntax" on page 7-5 for more details on the
using these parameters.

Ensure that the XML Schema and Dependents are Not Used by Concurrent Sessions

Ensure that the XML schema and its dependents are not used by any concurrent
session during the XML schema evolution process. If other concurrent sessions have
shared locks on this schema at the beginning of the evolution process, DBMS_
XMLSCHEMA. CopyEvol ve() waits for these sessions to release the locks so that it can
acquire an exclusive lock. However this lock is released immediately to allow the rest
of the process to continue.

What Happens When CopyEvolve() Raises an Error? Rollback

CopyEvol ve() either completely succeeds or raises an error in which case it attempts
to rollback as much of the operation as possible. Evolving a schema involves many
database DDL statements. When an error occurs, compensating DDL statements are
executed to undo the effect of all steps executed to that point. If the old
tables/schemas have been dropped they are re-created but any table/column/storage
properties and auxiliary structures associated with the tables/columns like indexes,
triggers, constraints, and RLS policies are lost.

Failed Rollback From Insufficient Privileges

In certain cases you cannot rollback the operation. For example, if table creation fails
due to reasons not related to the new schema, such as, from insufficient privileges,
there is no way to rollback. The temporary tables are not deleted even if

pr eserved dDocs is false, so that the data can be recovered. If the mapTabNane
parameter is null, the mapping table name is XDBSMAPTAB followed by a sequence
number. The exact table name can be found using a query such as:

SELECT tabl e_nanme FROM user _tabl es
VWHERE t abl e_nane LIKE ' XDBSMAPTAB% ;

Using CopyEvolve(): Privileges Needed

Schema evolution may involve dropping/creating types. Hence you need type-related
privileges such as DROP TYPE, CREATE TYPE, and ALTER TYPE.

You need privileges to delete and register the XML schemas involved in the evolution.
You need all privileges on XM_Type tables that conform to the schemas being evolved.
For XMLType columns the ALTER TABLE privilege is needed on corresponding tables.
If there are schema-based XM_Type tables or columns in other users' database
schemas, you need privileges such as CREATE ANY TABLE, CREATE ANY | NDEX,
SELECT ANY TABLE, UPDATE ANY TABLE, | NSERT ANY TABLE, DELETE ANY
TABLE, DROP ANY TABLE, ALTER ANY TABLE, and DROP ANY | NDEX.

To avoid having to grant all these privileges to the schema owner, Oracle Corporation
recommends that the evolution be performed by a DBA if there are XML
schema-based XMLType table or columns in other users' database schemas.

7-4 Oracle XML DB Developer's Guide

DBMS_XMLSCHEMA.CopyEvolve() Syntax

DBMS_XMLSCHEMA.CopyEvolve() Syntax

Here is the DBMS_XM_SCHEMA. CopyEvol ve() syntax:

procedure CopyEvol ve(schemaURLs I'N XDB$STRI NG LI ST_T,
newSchemas I N XM_LSequenceType,
transforns IN XM.SequenceType := NULL,
preserved dDocs | N BOOLEAN : = FALSE,
mapTabName IN VARCHAR? : = NULL,
generateTables | N BOOLEAN : = TRUE,
force N BOOLEAN : = FALSE,
schemaOmner s N XDB$STRI NG LI ST_T := NULL);

Table 7-1 DBMS_XMLSCHEMA.CopyEvolve(): Parameters

Parameter Description

schemaURLs Varray of URLs of XML schemas to be evolved. This should
include the dependent schemas as well. Unless the force
parameter is TRUE, the URLSs should be in the dependency
order, that is, if URL A comes before URL B in the Varray, then
schema A should not be dependent on schema B but schema B
may be dependent on schema A.

newSchemas Varray of new XML schema documents. Specify this in exactly
the same order as the corresponding URLSs. If no change is
necessary in an XML schema, provide the unchanged schema.

transforms Varray of XSL documents that will be applied to XML schema
based documents to make them conform to the new schemas.
Specify these in exactly the same order as the corresponding
URLs. If no transformations are required, this parameter need
not be specified.

preserveOldDocs If this is TRUE the temporary tables holding old data are not
dropped at the end of schema evolution. See also "How
DBMS_XMLSCHEMA.CopyEvolve() Works".

mapTabName Specifies the name of table that maps old XMLType table or
column names to names of corresponding temporary tables.

generateTables By default this parameter is TRUE,; if this is FALSE, XMLIype
tables or columns will not be generated after registering new
schemas. If this is FALSE, preserveOldDocs must be TRUE and
mapTabName must be non-null.

force If this is TRUE errors during the registration of new schemas
are ignored. If there are circular dependencies among the
schemas, set this flag to TRUE to ensure that each schema is
stored even though there may be errors in registration.

schemaOwners Varray of names of schema owners. Specify these in exactly the
same order as the corresponding URLs.

Table 7-2 DBMS_XMLSCHEMA.CopyEvolve(): Errors and Exceptions

Error Number and

Message Cause Action

30942 XML Schema The given XMLType table or Based on the schema, table,
Evolution error for column that conforms to the and column information in this
schema '<schema_url>' given schema had errors error and the more specific
table "<owner_ during evolution. In the case of error that follows, take
name>.<table_name>" a table the column name will corrective action.

column '<column_ be empty. See also the more

name>' specific error that follows this.

XML Schema Evolution 7-5

DBMS_XMLSCHEMA.CopyEvolve() Syntax

Table 7-2 (Cont.) DBMS_XMLSCHEMA.CopyEvolve(): Errors and Exceptions

Error Number and

Message Cause Action

30943 XML Schema Not all dependent XML Include the previously
'<schema_url>'is schemas were specified or the unspecified schema in the list
dependent on XML schemas were not specified in of schemas or correct the order

schema '<schema_url>'

dependency order, that is, if
schema 51 is dependent on
schema S, S must appear before
S1.

in which the schemas are
specified. Then retry the
operation.

30944 Error during
rollback for XML schema
'<schema_url>' table
"<owner_name>.<table_
name>" column
'<column_name>'

The given XMLType table or
column that conforms to the
given schema had errors
during a rollback of XML
schema evolution. For a table
the column name will be
empty. See also the more
specific error that follows this.

Based on the schema, table,
and column information in this
error and the more specific
error that follows, take
corrective action.

30945 Could not create
mapping table '<table_

A mapping table could not be
created during XML schema

Ensure that a table with the
given name does not exist and

name>' evolution. See also the more retry the operation.
specific error that follows this.
30946 XML Schema An error occurred after the If you need to remove the

Evolution warning;:
temporary tables not
cleaned up

schema was evolved while
cleaning up temporary tables.
The schema evolution was
successful.

temporary tables, use the
mapping table to get the
temporary table names and
drop them.

Example 7-2 Using DBMS_XMLSCHEMA.CopyEvolve() to Update an XML Schema

In this example, the addr ess. xsd schema needs to be evolved. The new XML
schema adds a new element St at e as a child of the top-level Addr ess element. It also
renames the element STREET to St r eet . Since it renames an existing element, the old
instance documents may not conform to the new schema and so an XSL
transformation is required to transform them to conform to the new schema.

decl are
newaddr XM Type;
transform XM.Type;
begin
newaddr := xm type(

' <schena target Namespace="http://ww. exanpl e. com | PO’
xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: i po="http:// ww. exanpl e. conl | PO'
xm ns: xdb="http://xm ns. oracl e. com xdb"
el ement For nDef aul t ="qual i fied">

<el enent nanme="Address" xdb: def aul t Tabl e=" ADDR_TAB" >

<conpl exType>

<sequence>
<el enent nanme="Name" type="string"/>
<el ement name="Street" type="string"/>
<element name="City" type="string" />
<el ement name="State" type="string" />

</ sequence>
</ conpl exType>
</ el enent >
</ schema>');

7-6 Oracle XML DB Developer's Guide

How DBMS_XMLSCHEMA.CopyEvolve() Works

transform:= xntype(
' <xsl:stylesheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns="http:// ww. exanpl e. com | PO'
xm ns:i po="http://ww. exanpl e. conf | PO'>
<xsl:tenpl ate match="@| node()">

<xsl : copy>
<xsl:apply-tenpl ates sel ect="@ | node()"/>
</ xsl : copy>

</ xsl:tenpl ate>
<xsl:tenplate match="/ipo: Address/i po: STREET" >

<Street>
<xsl:for-each select="@| node()">
<xsl:copy-of select="."/>
</ xsl: for-each>
</ Street>

</xsl:tenpl at e>
</ xsl:styl esheet>");

dbnms_xm schema. CopyEvol ve(xdb$string_|ist_t (' address.xsd'),
XM.SequenceType(newaddr), XM.SequenceType(transform);
end;

How DBMS_XMLSCHEMA.CopyEvolve() Works

The DBMS_XM_SCHENMA. CopyEvol ve() procedure is used to evolve registered XML
schemas such that existing XML instances continue to remain valid.

Note: Since this procedure deletes all documents conforming to
the XML schemas during the process of schema evolution, backup
all these documents and schemas before executing this procedure.

First CopyEvol ve() copies the data in schema based XMLType tables and columns to
temporary tables. It then drops the tables and columns and deletes the old XML
schemas. After registering the new XML schemas, it creates XMLType tables and
columns and populates them with data (unless the genTabl es parameter is FALSE)
but it does not create any auxiliary structures such as indexes, constraints, triggers,
and row-level security (RLS) policies. CopyEvol ve() creates the tables and columns
in the following way:

= It creates default tables while registering the new schemas.
= It creates nondefault tables by a statement of the following form:

CREATE TABLE <TABLE_NAME> OF XM.Type QD ' <Ol D>'
XMLSCHEMA <SCHEMA URL> ELEMENT <ELEMENT NAME>

where <OID> is the original OID of the table, before it was dropped.
=« XM.Type columns are added using a statement of the following form:

ALTER TABLE <Tabl e_Name> ADD (<Col uim_Name> XM.Type) XM.Type col um
<Col um_Name> xnml schenma <Schema_Ur| > ELEMENT <El enent _Name>

When a new schema is registered, types or beans are generated if the registration of

the corresponding old schema had generated types or beans. If an XML schema was
global before the evolution it will be global after the evolution. Similarly if an XML

XML Schema Evolution 7-7

How DBMS_XMLSCHEMA.CopyEvolve() Works

schema was local before the evolution it will be local (owned by the same user) after
the evolution.

You have the option to preserve the temporary tables that contain the old documents
by passing in TRUE for the pr eser ved dDocs parameter. In this case, the procedure
does not drop the temporary tables at the end. All temporary tables are created in the
current user's database schema. For XMLType tables the temp table will have the
following columns:

Table 7-3 XML Schema Evolution: XMLType Table Temporary Table Columns

Name Type Comment

Data CLOB XML doc from old table in CLOB format.
OID RAW(16) OID of corresponding row in old table.
ACLOID RAW(16) This column is present only if old table is

hierarchy enabled. ACLOID of corresponding
row in old table.

OWNERID RAW(16) This column is present only if old table is
hierarchy enabled. OWNERID of
corresponding row in old table.

For XMLType columns the temp table will have the following columns:

Table 7-4 XML Schema Evolution: XMLType Column Temporary Table Columns

Name Type Comment

Data CLOB XML document from old column in CLOB
format.

RID ROWID ROWID of corresponding row in the table that

this column was a part of.

The CopyEvol ve() procedure stores information about the mapping from the old
table or column name to the corresponding temporary table name in a separate table
specified by the mapTabName parameter. If pr eser ved dDocs is TRUE, the
mapTabName parameter must be non-null and must not be the name of any existing
table in the current user's schema. Each row in the mapping table has information
about one of the old tables/columns. Table 7-5 shows the mapping table columns.

Table 7-5 CopyEvolve() Mapping Table

Column Name Column Type Comment

SCHEMA_URL VARCHAR2(700) URL of schema to which this
table/column conforms.

SCHEMA_OWNER VARCHAR(30) Owner of the schema.

ELEMENT_NAME VARCHAR2(256) Element to which this table/column
conforms.

TABLE_NAME VARCHAR2(65) Qualified Name of table (<owner_
name>.<table_name>).

TABLE_OID RAW(16) OID of table.

COLUMN_NAME VARCHAR2(4000) Name of column (this will be null for
XMLType tables).

TEMP_TABNAME VARCHAR2(30) Name of temporary table which holds

the data for this table/column.

7-8 Oracle XML DB Developer's Guide

How DBMS_XMLSCHEMA.CopyEvolve() Works

You can also avoid generating any tables or columns after registering the new XML
schema, by using FALSE as the genTabl es parameter. If genTabl es is FALSE, the
preser ved dDocs parameter must be TRUE and the mapTabName parameter must
be non-null. This ensures that the data in the old tables is not lost. This is useful if you
do not want the tables to be created by the procedure, as described in section "DBMS_
XMLSCHEMA.CopyEvolve() Syntax".

By default it is assumed that all XML schemas are owned by the current user. If this is
not true, you must specify the owner of each XML schema in the schemaOaner s
parameter.

XML Schema Evolution 7-9

How DBMS_XMLSCHEMA.CopyEvolve() Works

7-10 Oracle XML DB Developer's Guide

38

Transforming and Validating XMLType Data

This chapter describes the SQL functions and XM_Type APIs for transforming
XM_.Type data using XSLT style sheets. It also explains the various functions and APIs
available for validating the XMLTy pe instance against an XML schema.

This chapter contains these topics:

= Transforming XMLIype Instances

= XMLTransform() Examples

= Validating XMLType Instances

= Validating XML Data Stored as XMLIype: Examples

Transforming XMLType Instances

XML documents have structure but no format. To add format to the XML documents
you can use Extensible Stylesheet Language (XSL). XSL provides a way of displaying
XML semantics. It can map XML elements into other formatting or mark-up languages
such as HTML.

In Oracle XML DB, XM_Ty pe instances or XML data stored in XMLType tables,
columns, or views in Oracle Database, can be (formatted) transformed into HTML,
XML, and other mark-up languages, using XSL style sheets and the XMLType function,
transform(). This process conforms to the W3C XSL Transformations 1.0
Recommendation.

XM.Type instance can be transformed in the following ways:

= Using the XMLTr ansf or m() SQL function (or the t r ansf or n{) member
function of XMLType) in the database.

= Using XDK transformation options in the middle tier, such as XSLT Processor for
Java.

Note: The PL/SQL package DBMS_XSLPROCESSCR provides a
convenient and efficient way of applying a single style sheet to
multiple documents. The performance of this package will be better
than t r ansf or n() because the style sheet will be parsed only
once.

Transforming and Validating XMLType Data 8-1

XMLTransform() Examples

See Also:

= Chapter 3, "Using Oracle XML DB", the section, "XSL
Transformation" on page 3-80

=« "PL/SQL XSLT Processor for XMLIype (DBMS_
XSLPROCESSOR)" on page 10-21

= Appendix D, "XSLT Primer"

= Oracle XML Developer’s Kit Programmer’s Guide, the chapter on
XSQL Pages Publishing Framework

XMLTransform() and XMLType.transform()

Figure 8-1 shows the XMLTr ansf or () syntax. The XMLTr ansf or () function
takes as arguments an XMLType instance and an XSLT style sheet (which is itself an
XM.Type instance). It applies the style sheet to the instance and returns an XML Ty pe
instance.

Note: You can also use the syntax, XMLTYPE. t r ansf or () . This
is the same as XMLTr ansf or n{) .

Figure 8-2 shows how XMLTr ansf or n() transforms the XML document by using the
XSLT style sheet passed in. It returns the processed output as XML, HTML, and so on,
as specified by the XSLT style sheet. You typically are required to use

XM.Tr ansf or m() when retrieving or generating XML documents stored as XML Type
in the database.

See Also: Figure 1-1, "Oracle XML DB Architecture: XMLIype

Storage and Repository” in Chapter 1, "Introducing Oracle
XML DB"

Figure 8-1 XMLTransform() Syntax

—{ XMLTRANSFORM F@—(XMLType_instance XMLType_instance

Figure 8-2 Using XMLTransform()

XMLType function

XSL style sheet
XMLType instance XMLTransform() transformed XMLType

HTML, XML, ...
(table, column, view) ()

XMLTransform() Examples

Use the following code to set up the XML schema and tables needed to run the
examples in this chapter. (The call to del et eSchemna is to ensure that there is no
existing schema before creating one. If no such schema exists, then del et eSchena
produces an error.)

CONNECT scott/tiger

8-2 Oracle XML DB Developer's Guide

XMLTransform() Examples

begin
-- delete the schem, if it already exists; otherwise, this produces an error
dbns_xm schena. del et eSchema("' htt p: // www. exanpl e. conf schenas/ i po. xsd' , 4)
end
/
begi n
-- register the schema
dbms_xm schema. regi st er Schema(' htt p: // wwv. exanpl e. conf schemas/ i po. xsd'
' <schemm target Nanmespace="http: // ww. exanpl e. coni | PO'
xm ns="http:// ww. w3. or g/ 2001/ XM_Schema"
xmi ns:ipo="http://wm. exanpl e. conf | PO'>
<l-- annotation>
<docunentation xnl:lang="en">
I nternational Purchase order schema for Exanple.com
Copyright 2000 Exanple.com All rights reserved
</ docunent at i on>

</annotation -->

<el ement name="purchaseCOrder" type="ipo: PurchaseCrder Type"/>

<el ement name="coment" type="string"/>

<conpl exType nane="PurchaseCr der Type" >

<sequence>
<el enment nanme="shi pTo" type="i po: Address"/ >
<el ement name="hill To" type="i po: Address"/ >
<el ement ref="ipo:comment" ninCccurs="0"/>

<el ement nanme="itens" type="ipo:ltenms"/>

</ sequence>
<attribute name="orderDate" type="date"/>
</ conpl exType>
<conpl exType nane="Itens">
<sequence>
<el ement name="iten m nCccurs="0" maxCccurs="unbounded">
<conpl exType>
<sequence>
<el ement name="product Name" type="string"/>
<el ement name="quantity">
<si npl eType>
<restriction base="positivelnteger">
<maxExcl usi ve val ue="100"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement name="USPri ce" type="deci mal "/>
<el ement ref="ipo:coment” m nCccurs="0"/>
<el ement nanme="shi pDate" type="date" m nCccurs="0"/>
</ sequence>
<attribute nanme="partNunt type="ipo: SKU' use="required"/>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>
<conpl exType nane="Address">

<sequence>

<el ement name="nane" type="string"/>
<el ement name="street" type="string"/>
<el ement nanme="city" type="string"/>

<el ement nanme="state" type="string"/>
<el ement nanme="country" type="string"/>
<el enent name="zip" type="string"/>
</ sequence>

</ conpl exType>

Transforming and Validating XMLType Data 8-3

XMLTransform() Examples

<si npl eType name="SKU'>
<restriction base="string">
<pattern value="[0-9]{3}-[A-Z]{2}"/>
</restriction>
</ si npl eType>
</ schema>',
TRUE, TRUE, FALSE);
end;
/

- create table to hold XM instance documents
DROP TABLE po_t ab;

CREATE TABLE po_tab (id nunber, xm col XM.Type)
XMLTYPE COLUWN xni col

XMLSCHEMA "ht t p: // www. exanpl e. coml schemas/ i po. xsd"
ELEMENT " pur chaseQOrder"”;

I NSERT | NTO po_tab VALUES(1, xmtype(
"<?xm version="1.0"?>
<i po: pur chaseCr der
xm ns: xsi ="http:// ww. w3. org/ 2001/ XM.Schena- i nst ance"
xm ns:ipo="http://ww. exanpl e. conf | PO'
xsi:schemaLocation="http://ww. exanpl e. coni | PO
http:// ww. exanpl e. com’ schemas/ i po. xsd"
order Dat e="1999- 12- 01" >
<shi pTo>
<name>Hel en Zoe</ nane>
<street>121 Broadway</street>
<city>Cardiff</city>
<st at e>Wl es</ st at e>
<count r y>UK</ count ry>
<zi p>CF2 1Qi</ zi p>
</ shi pTo>
<bi I'l To>
<name>Robert Smit h</ nane>
<street>8 COak Avenue</street>
<city>d d Town</city>
<st at e>CA</ st at e>
<count ry>US</ count ry>
<zi p>95819</ zi p>
</ bill To>
<itenms>
<i tem part Nun¥" 833- AA" >
<product Nanme>Lapi s neckl ace</ product Nane>
<quantity>1</quantity>
<USPri ce>99. 95</ USPri ce>
<i po: comment >Want this for the holidays!</ipo: conment >
<shi pDat €>1999- 12- 05</ shi pDat e>
<[itemr
<litenms>
</i po: purchaseQrder>'));

The following examples illustrate how to use XMLTr ansf or () to transform XML
data stored as XMLType to HTML, XML, or other languages.

Example 8-1 Transforming an XMLType Instance Using XMLTransform() and DBUriType
to Get the XSL Style Sheet

DBUr i Type is described in Chapter 17, "Creating and Accessing Data Through URLs".
DROP TABLE styl esheet _tab;

8-4 Oracle XML DB Developer's Guide

XMLTransform() Examples

CREATE TABLE styl esheet _tab(id NUMBER styl esheet XM.Type)
I NSERT | NTO styl esheet _tab VALUES (1, xmtype(
"<?xm version="1.0" ?>
<xsl:styl esheet version="1.0" xnins:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf >
<xsl:tenplate match="*">
<td>
<xsl : choose>
<xsl:when test="count(child::*) > 1">
<xsl:call-tenpl ate name="nested"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="name(.)"/>: <xsl:value-of select="text()"/>
</ xsl : ot herwi se>
</ xsl : choose>
</td>
</ xsl:tenpl ate>
<xsl:tenplate match="*" nane="nested" priority="-1" mode="nested2">
<h>
<I'-- xsl:value-of select="count(child::*)"/ -->
<xsl : choose>
<xsl:when test="count(child::*) > 1">
<xsl :val ue-of select="name(.)"/>:<xsl:apply-tenplates mode="nested2"/>
</ xsl : when>
<xsl : ot herw se>
<xsl:val ue-of sel ect="name(.)"/>:<xsl:value-of select="text()"/>
</ xsl : ot herwi se>
</ xsl: choose>
</ b>
</xsl:tenpl ate>
</ xsl : styl esheet >

));

SELECT XML.Transf or m(x. xni col
dburi Type(' / XDB/ STYLESHEET_TAB/ RON | D=1]/ STYLESHEET/text ()'). get XM.()) .
get StringVal ()
AS resul t
FROM po_tab x;

-- The preceding statenment produces the follow ng output:
-- RESULT

-- <td>

-- i po: purchaseCOrder:

-- shi pTo:

-- nane: Hel en Zoe</ b>

-- street: 100 Broadway
-- city: Cardiff

-- st at e: V| es</ b>

-- count ry: UK</ b>

-- zi p: CF2 1Q</ b>

-- </ b>

-- bi | | To:

-- nane: Robert Smith
-- street:8 Cak Avenue
-- city: 0 d Town

-- st at e: CA</ b>

-- count ry: US</ b>

-- zi p: 95819</ b>

-- </ b>

-- i t ens: </ b>

Transforming and Validating XMLType Data 8-5

Validating XMLType Instances

-- </ b>
-- </td>

Example 8-2 Using XMLTransform() and a Subquery to Retrieve the Style Sheet

This example illustrates the use of a stored style sheet to transform XM_Type instances.
Unlike the previous example, this example uses a scalar subquery to retrieve the
stored style sheet:

SELECT XM.Tr ansf or m(x. xni col ,
(sel ect stylesheet fromstylesheet tab where id = 1)).getStringval ()
AS resul t
FROM po_tab x;

Example 8-3 Using Transient Style Sheets and XMLTransform()

This example describes how you can transform XM_Type instances using a transient
style sheet:

SELECT x. xm col . transform{xm type(
'<?xm version="1.0" ?>
<xsl:styl esheet version="1.0" xn ns:xsl="http://wm. w3. org/ 1999/ XSL/ Tr ansf or n{ >
<xsl:tenplate match="*">
<td>
<xsl : choose>
<xsl:when test="count(child::*) > 1">
<xsl:call-tenpl ate name="nested"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="name(.)"/>: <xsl:value-of select="text()"/>
</ xsl: ot herw se>
</ xsl: choose>
</td>
</xsl:tenpl ate>
<xsl:tenpl ate match="*" nane="nested" priority="-1" nmode="nested2">
<h>
<I'-- xsl:val ue-of select="count(child::*)"/ -->
<xsl : choose>
<xsl:when test="count(child::*) > 1">
<xsl :val ue-of select="name(.)"/>:<xsl:apply-tenplates mode="nested2"/>
</ xsl : when>
<xsl : ot herw se>
<xsl :val ue-of select="name(.)"/>: <xsl:value-of select="text()"/>
</ xsl: ot herw se>
</ xsl: choose>
</ b>
</xsl:tenpl ate>
</ xsl :styl esheet >
)).getStringVal ()
FROM po_tab x;

Validating XMLType Instances

Often, besides knowing that a particular XML document is well-formed, it is necessary
to know if a particular document conforms to a specific XML schema, that is, is VALID
with respect to a specific XML schema.

By default, the database checks to ensure that XMLType instances are well-formed. In
addition, for schema-based XMLType instances, the database performs few basic
validation checks. Because full XML schema validation (as specified by the W3C) is an

8-6 Oracle XML DB Developer's Guide

Validating XMLType Instances

XMLIsValid()

expensive operation, when XMLType instances are constructed, stored, or retrieved,
they are not also fully validated.

To validate and manipulate the "validated" status of XML documents, the following
functions and SQL operator are provided:

XM.I sVal i d() is a SQL Operator. It checks if the input instance conforms to a
specified XML schema. It does not change the validation status of the XML instance. If
an XML schema URL is not specified and the XML document is schema-based, the
conformance is checked against the own schema of the XML Ty pe instance. If any of the
arguments are specified to be NULL, then the result is NULL. If validation fails, then 0
is returned and no errors are reported explaining why the validation has failed.

Syntax
XM.IsValid (XM.Type_inst [, schemaurl [, elen]])

Parameters:

« XM.Type_inst - The XMLType instance to be validated against the specified XML
Schema.

« schurl -The URL of the XML Schema against which to check conformance.

= el em- Element of a specified schema, against which to validate. This is useful
when we have a XML Schema which defines more than one top level element, and
we want to check conformance against a specific one of these elements.

schemaValidate

schemaVal i dat e is a member procedure. It validates the XML instance against its
XML schema if it has not already been done. For non-schema-based documents an
error is raised. If validation fails an error is raised otherwise, then the document status
is changed to VALIDATED.

Syntax
MEMBER PROCEDURE schemaVal i dat e

isSchemaValidated()

i sSchemaVal i dat ed() is a member function. It returns the validation status of the
XM.Type instance and tells if a schema-based instance has been actually validated
against its schema. It returns 1 if the instance has been validated against the schema, 0
otherwise.

Syntax
MEMBER FUNCTI ON i sSchemaVal i dated return NUVBER deterministic

setSchemaValidated()

set SchemaVal i dat ed() is a member function. It sets the VALIDATION state of the
input XML instance.

Syntax
MEMBER PROCEDURE set SchemaVal i dat ed(flag IN BI NARY_I NTEGER : = 1)

Transforming and Validating XMLType Data 8-7

Validating XML Data Stored as XMLType: Examples

Parameters:

fl1ag, 0- NOT VALIDATED; 1 - VALIDATED; The default value for this parameter is
1.

isSchemaValid()

i sSchenmaVal i d() is a member function. It checks if the input instance conforms to a
specified XML schema. It does not change the validation status of the XML instance. If
an XML Schema URL is not specified and the XML document is schema-based, then
the conformance is checked against the own schema of the XMLType instance. If the

validation fails, then exceptions are thrown with the reason why the validation has
failed.

Syntax

menber function isSchemaValid(schurl IN VARCHAR2 := NULL, elem|N VARCHARZ : =
NULL) return NUMBER deterministic

Parameters:
schur |l - The URL of the XML Schema against which to check conformance.

el em- Element of a specified schema, against which to validate. This is useful when
we have a XML Schema which defines more than one top level element, and we want
to check conformance against a specific one of these elements.

Validating XML Data Stored as XMLType: Examples

The following examples illustrate how to use i sSchemaVal i d(),
set SchermaVal i dat ed(), and i sSchermaVal i dat ed() to validate XML data being
stored as XMLType in Oracle XML DB.

Example 8-4 Using isSchemaValid()

SELECT x. xm col .isSchemaValid(' http://wm. exanpl e. com schemas/ i po. xsd',
" purchaseOrder')
FROM po_tab x;

Example 8-5 Validating XML Using isSchemaValid()

The following PL/SQL example validates an XML instance against XML schema
PQO. xsd:

declare
xm doc XM.Type;
begin
- popul ate xm doc (for exanple, by fetching fromtable)
- validate against XM. schema
xm doc. i sSchemaVval i d(' http://wwm oracl e. conf PO xsd');
if xmdoc.isSchemaValid = 1 then --
el se --
end if;
end;

8-8 Oracle XML DB Developer's Guide

Validating XML Data Stored as XMLType: Examples

Example 8-6 Using schemaValidate() Within Triggers

The scheraVal i dat e() method of XMLType can be used within INSERT and
UPDATE TRIGGERS to ensure that all instances stored in the table are validated
against the XML schema:

DROP TABLE po_t ab;
CREATE TABLE po_tab OF XM.Type
XM.Schema "http://ww. exanpl e. coml schenmas/ i po. xsd" el ement "purchaseOrder"”;

CREATE TRIGGER enp_trig BEFORE | NSERT OR UPDATE ON po_tab FOR EACH ROW
DECLARE
newxm XM.Type;

BEG n
newxm := :new. object_val ue;
xm type. schemaval i dat e(newxm) ;
END;

/

Example 8-7 Using XMLIsValid() Within CHECK Constraints
This example uses XMLI sVal i d() to:

= Verify that the XMLType instance conforms to the specified XML schema
= Ensure that the incoming XML documents are valid by using CHECK constraints

DROP TABLE po_t ab;
CREATE TABLE po_tab OF XM.TYPe
(CHECK (XM.IsVal i d(object_value) = 1))
XM.Schema "http://ww. exanpl e. coml schenmas/ i po. xsd" el ement "purchaseOrder"”;

Note: The validation functions and operators described in the
preceding section, facilitate validation checking. Of these,

i sSchenmaVal i d() is the only one that throws errors that include
why the validation has failed.

Transforming and Validating XMLType Data 8-9

Validating XML Data Stored as XMLType: Examples

8-10 Oracle XML DB Developer's Guide

9

Full Text Search Over XML

This chapter describes Full Text search over XML using Oracle.

First we motivate the topic by introducing Full Text search and XML. Then we give an
overview and comparison of the CONTAI NS SQL function and the or a: cont ai ns
XPath function, the two functions used by Oracle to do Full Text search over XML.
Then we examine each of these functions in detail. The detailed descriptions have
similar headings, so you can compare the two approaches easily.

To get the most out of this chapter you should be familiar with XML, XML DB and
Oracle Text. This chapter includes a review of some Oracle Text features.

See Also: Oracle Text Reference and Oracle Text Application
Developer’s Guide for more information on Oracle Text

This chapter contains these topics:

» Full Text Search and XML

= About the Examples in this Chapter

= Overview of CONTAINS and ora:contains
« CONTAINS SQL Function

« ora:contains XPath Function

« Text Path BNF

= Example Support

Full Text Search and XML

Oracle supports Full Text search on documents that are managed by the Oracle
Database.

If your documents are XML, then you can use the XML structure of the document to
restrict the Full Text search. For example, you may want to find all purchase orders
that contain the word "electric" using Full Text search. If the purchase orders are XML,
then you can restrict the search by finding all purchase orders that contain the word
"electric" in a comment, or by finding all purchase orders that contain the word
"electric" in a comment under items.

If your XML documents are of type XMLType, then you can project the results of your
query using the XML structure of the document. For example, after finding all
purchase orders that contain the word "electric" in a comment, you may want to return
just the comments, or just the comments that contain the word "electric".

Full Text Search Over XML 9-1

About the Examples in this Chapter

Comparison of Full Text Search and Other Search Types

Full Text search differs from structured search or substring search in the following
ways:

= A Full Text search searches for words rather than substrings. A substring search
for comments that contain the string "law" will return a comment that contains
"my lawn is going wild". A Full Text search for the word "law" will not.

= A Full Text search will support some language-based and word-based searches
which substring searches cannot. You can use a language-based search, for
example, to find all the comments that contain a word with the same linguistic
stem as "mouse", and Oracle Text will find "mouse" and "mice". You can use a
word-based search, for example, to find all the comments that contain the word
"lawn" within 5 words of "wild".

= A Full Text search generally involves some notion of relevance. When you do a
Full Text search for all the comments that contain the word "lawn", for example,
some results are more relevant than others. Relevance is often related to the
number of times the search word (or similar words) occur in the document.

XML search

XML search is different from unstructured document search. In unstructured
document search you generally search across a set of documents to return the
documents that satisfy your text predicate. In XML search you often want to use the
structure of the XML document to restrict the search. And you often want to return
just the part of the document that satisfies the search.

Search using Full Text and XML Structure

There are two ways to do a search that includes Full Text search and XML structure:

« Include the structure inside the Full Text predicate, using the CONTAI NS SQL
function:

. VWHERE CONTAINS(DOC, 'electric |INPATH (/purchaseOrder/itens/iten comrent)'
)50 ...
The CONTAI NS SQL function is an extension to SQL and can be used in any query.
CONTAI NS requires a CONTEXT Full Text index.

= Include the Full Text predicate inside the structure, using the or a: cont ai ns
XPath function:

. "IpurchaseOrder/items/item comment[ora:contains(text(), "electric")>0]" ...
The or a: cont ai ns XPath function is an extension to XPath and can be used in
any call to exi st sNode, ext r act or extract Val ue.

About the Examples in this Chapter

This section describes details about the examples included in this chapter.

Roles and Privileges

To run the examples you will need the CTXAPP role, as well as CONNECT and
RESOURCE. You must also have EXECUTE privilege on the ctxsys package CTX_DDL.

9-2 Oracle XML DB Developer's Guide

Overview of CONTAINS and ora:contains

Examples Schema and Data

Examples in this chapter are based on "The Purchase Order Schema", w3c XML
Schema Part 0: Primer.

See Also:
http://ww. w3. or g/ TR/ xm schema- 0/ #POSchenma

The data in the examples is "Purchase Order po001.xml" on page 9-31. Some of the
performance examples are based on a bigger table (PURCHASE_ORDERS_xni t ype_
bi g), which is included in the downloadable version only.

See Also: http://ww. w3. org/ TR/ xm schema- 0/ #po. xmi

Some examples use VARCHAR2, others use XMLType. All the examples that use
VARCHAR2 will also work on XM_Type.

See Also: Oracle Technology Network
(http://otn. oracl e. com for the example data, the example
schema, and a script to run all the examples

Overview of CONTAINS and ora:contains
This section contains these topics:
« Overview of the CONTAINS SQL Function
« Opverview of the ora:contains XPath Function

» Comparison of CONTAINS and ora:contains

Overview of the CONTAINS SQL Function

CONTAI NS returns a positive number for rows where [schema.] col urm matches

t ext _query, and zero otherwise. CONTAI NS is a user-defined function, a standard
extension method in SQL. CONTAI NS requires an index of type CONTEXT. If there is no
CONTEXT index on the column being searched, then CONTAI NS throws an error.

Syntax

CONTAI'NS si gnat ur eCONTAI NS(
[schema.] col um,
text _query VARCHAR2
[, abel NUVBER]

)
RETURN NUMBER

Example 9-1 Simple CONTAINS Query
A typical query looks like this:

SELECT 1D
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'lawn')>0 ;

This query uses table PURCHASE ORDERS and index po_i ndex. It returns the ID for
each row in table PURCHASE ORDERS where the DOC column contains the word
"lawn".

Full Text Search Over XML 9-3

Overview of CONTAINS and ora:contains

Example 9-2 CONTAINS with a Structured Predicate

CONTAI NS can be used in any SQL query. Here is an example using table PURCHASE _
ORDERS and index po_i ndex:

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, 'lawn')>0 AND id<25 ;

Example 9-3 CONTAINS Using XML Structure to Restrict the Query

Suppose DCCis a column that contains a set of XML documents. You can do Full Text
search over DOC, using its XML structure to restrict the query. This query uses table
PURCHASE_ORDERS and index po_i ndex- pat h- secti on:

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, 'lawn WTH N comment')>0 ;

Example 9-4 CONTAINS with Structure Inside Full Text Predicate

More complex structure restrictions can be applied with the INPATH operator and an
XPath expression. This query uses table PURCHASE_ORDERS and index po_
i ndex- pat h-section:

SELECT ID
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'electric INPATH (/purchaseOrder/itens/iten coment)')>0 ;

Overview of the ora:contains XPath Function

Function or a: cont ai ns can be used in an XPath expression in a call to

exi st sNode, ext ract, or ext r act Val ue to further restrict the structural search
with a Full Text predicate. Function or a: cont ai ns returns a positive integer when
the i nput _t ext matchest ext _query, and zero otherwise.

In this version, i nput _t ext must evaluate to a single text node or an attribute. The
syntax and semantics of t ext _query in or a: cont ai ns are the same as t ext _
query in CONTAI NS, except that in or a: cont ai ns the t ext _query cannot include
any structure operators (W THI N, | NPATH, or HASPATH). Function or a: cont ai ns
extends XPath through a standard mechanism: it is a user-defined function in the

Oracle XML DB namespace.
Syntax
ora: cont ai ns(
i nput _t ext node*,
text _query string

[,policy _name string]
[,policy_owner string]

)
RETURN NUMBER

Example 9-5 shows a call to or a: cont ai ns in the XPath parameter to exi st sNode.
Note that the third parameter (the XML DB namespace) is required. This example uses
table PURCHASE ORDERS xnl t ype.

Example 9-5 ora:contains with an Arbitrarily Complex Text Query

SELECT ID
FROM PURCHASE_ORDERS_xm t ype

9-4 Oracle XML DB Developer's Guide

CONTAINS SQL Function

WHERE exi st sNode(DCC,
'/ purchaseCOrder/ comment [ora: contai ns(text(),
"($lawns AND wild) OR flamingo")>0]",
"xm ns:ora="http://xn ns. oracl e. conl xdb"'
) =1;

See Also: "ora:contains XPath Function" on page 9-19 for more on
the or a: cont ai ns XPath function

Comparison of CONTAINS and ora:contains
The CONTAI NS SQL function:

Needs a CONTEXT index to run

If there is no index, then you get an error.

Does an indexed search and is generally very fast

Returns a score (through the score operator)

Can restrict a search using both Full Text and XML structure

Restricts a search based on documents (rows in a table) rather than nodes

Cannot be used for XML structure-based projection (pulling out parts of an XML
document)

The ora:contains XPath function:

Does not need an index to run, so it is very flexible

Separates application logic from storing and indexing considerations
Might do an unindexed search, so it might be resource-intensive
Does not return a score

Can restrict a search using Full Text in an XPath expression

Can be used for XML structure-based projection (pulling out parts of an XML
document)

Use CONTAI NS when you want a fast, index-based Full Text search over XML
documents, possibly with simple XML structure constraints. Use or a: cont ai ns
when you need the flexibility of Full Text search in XPath (possibly without an index),
or when you need to do projection, and you do not need a score.

CONTAINS SQL Function

This section contains these topics:

Full Text Search

Full Text Search

Score

Structure: Restricting the Scope of the Search
Structure: Projecting the Result

Indexing

The second argument to CONTAI NS, t ext _query, is a string that specifies the Full
Text search. t ext _query has its own language, based on the SQL /MM Full-Text

Full Text Search Over XML 9-5

CONTAINS SQL Function

standard. The operators in the text_query language are documented in [Oracle Text
Reference].

See Also:

= ISO/IEC 13249-2:2000, Information technology - Database
languages - SQL Multimedia and Application Packages - Part 2:
Full-Text, International Organization For Standardization, 2000

= Oracle Text Reference for more information on the operators in
the t ext _query language

The examples in the rest of this section show some of the power of Full Text search.
They use just a few of the available operators: Booleans (AND, OR, NOT) and
stemming. The example queries search over a VARCHARZ2 column (PURCHASE _
ORDERS. doc) with a text index (indextype CTXSYS. CONTEXT).

Boolean Operators: AND, OR, NOT

The t ext _quer y language supports arbitrary combinations of AND, OR and NOT.
Precedence can be controlled using parentheses. The Boolean operators can be written
as:

« AND, OR, NOT
« and, or, not

L] &,l,"’

Example 9-6 CONTAINS Query with Simple Boolean

SELECT 1D
FROM PURCHASE_ORDERS
WHERE CONTAINS(DCC, 'lawn AND wild")>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex.

Example 9-7 CONTAINS Query with Complex Boolean

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, '((lawn OR garden) AND (wild OR flooded))
NOT(flami ngo)')>0 ;

This example uses table PURCHASE_ORDERS and index po_i ndex.

See Also: Oracle Text Reference for a full list of the operators you
can use in CONTAI NS and or a: cont ai ns

Stemming: $

The t ext _quer y language supports stemmed search. Example 9-8 returns all
documents that contain some word with the same linguistic stem as "lawns", so it will
find "lawn" or "lawns". The stem operator is written as a dollar sign ($). There is no
operator STEMor st em

Example 9-8 CONTAINS Query with Stemming

SELECT ID
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, ' $(lawns)')>0 ;

9-6 Oracle XML DB Developer's Guide

CONTAINS SQL Function

Score

This example uses table PURCHASE_CORDERS and index po_i ndex.

Combining Boolean and Stemming Operators

operators in the t ext _quer y language can be arbitrarily combined, as shown in
Example 9-9.

Example 9-9 CONTAINS Query with Complex Query Expression

SELECT ID
FROM PURCHASE _ORDERS
VHERE CONTAINS(DOC, '($lawns AND wild) OR flam ngo')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex.

See Also: Oracle Text Reference for a full list of text_query
operators

The CONTAI NS function has an ancillary operator SCORE that can be used anywhere in
the query. It is a measure of relevance, and it is especially useful when doing Full Text
searches across large document sets. SCORE is typically returned as part of the query
result, used in the ORDER BY clause, or both.

Syntax

SCORE(| abel NUVBER)
RETURN NUMBER

In Example 9-10, SCORE(10) returns the score for each row in the result set. SCORE is
the relevance of a row in the result set with respect to a particular CONTAI NS call. A
call to SCORE is linked to a call to CONTAI NS by a LABEL (in this case the number 10).

Example 9-10 Simple CONTAINS Query with SCORE

SELECT SCORE(10), 1D
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'lawn', 10)>0
AND SCORE(10) >2
ORDER BY SCORE(10) DESC ;

This example uses table PURCHASE_CORDERS and index po_i ndex.

SCORE always returns 0 if, for the corresponding CONTAI NS, t ext _quer y does not
match the i nput _t ext, according to the matching rules dictated by the text index. If
the CONTAI NSt ext _quer y does match the i nput _t ext, then SCORE will return a
number greater than 0 and less than or equal to 100. This number indicates the
relevance of the t ext _query to the i nput _t ext . A higher number means a better
match.

If the CONTAI NSt ext _quer y consists of only the HASPATH operator and a Text Path,
the score will be either 0 or 100, because HASPATH tests for an exact match.

See Also: Oracle Text Reference for details on how the score is
calculated

Full Text Search Over XML 9-7

CONTAINS SQL Function

Structure: Restricting the Scope of the Search

CONTAI NS does a Full Text search across the whole document by default. In our
examples, a search for "lawn" with no structure restriction will find all purchase orders
with the word "lawn" anywhere in the purchase order.

Oracle offers three ways to restrict CONTAI NS queries using XML structure:

« WTHN
« | NPATH
« HASPATH

Note: For the purposes of this discussion, consider section to be
the same as an XML node.

WITHIN

The W THI N operator restricts a query to some section within an XML document. A
search for purchase orders that contain the word "lawn" somewhere inside a comment
section might use W THI N. Section names are case-sensitive.

Example 9-11 WITHIN

SELECT 1D
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'lawn WTH N conment')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Nested WITHIN You can restrict the query further by nesting W THI N. Example 9-12
finds all documents that contain the word "lawn" within a section "comment", where
that occurrence of "lawn" is also within a section "item".

Example 9-12 Nested WITHIN

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, '(lawn WTH N conment) WTHI N iteni)>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Example 9-12 returns no rows. Our sample purchase order does contain the word
"lawn" within a comment. But the only comment within an item is "Confirm this is
electric". So the nested W THI N query will return no rows.

WITHIN Attributes You can also search within attributes. Example 9-13 finds all purchase
orders that contain the word "10" in the or der Dat e attribute of a pur chaseOr der
element.

Example 9-13 WITHIN an Attribute

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, '10 W THI N pur chaseOr der @r der Date')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

9-8 Oracle XML DB Developer's Guide

CONTAINS SQL Function

"o

Note that by default the minus sign ("-") is treated as a word-separator: "1999-10-20" is
treated as the three words "1999", "10" and "20". So this query returns 1 row.

Text in an attribute is not a part of the main searchable document. If you search for "10"
without qualifying the t ext _query with W THI N pur chaseOr der @r der Dat e,
then you will get no rows.

You cannot search attributes in a nested W THI N.

WITHIN and AND Suppose you want to find purchase orders that contain two words
within a comment section: "lawn" and "electric". There can be more than one comment
section in a pur chaseQOr der . So there are two ways to write this query, with two
distinct results.

If you want to find purchase orders that contain both words, where each word occurs
in some comment section, you would write a query like Example 9-14.

Example 9-14 WITHIN and AND: Two Words in Some Comment Section

SELECT 1D

FROM PURCHASE_ORDERS

VHERE CONTAINS(DOC, ' (lawn WTH N conment) AND (electric WTH N conment) '
)>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

If you run this query against the pur chaseOr der data, then it returns 1 row. Note
that the parentheses are not needed in this example, but they make the query more
readable.

If you want to find purchase orders that contain both words, where both words occur
in the same comment, you would write a query like Example 9-15.

Example 9-15 WITHIN and AND: Two Words in the Same Comment

SELECT 1D
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, '(lawn AND el ectric) WTH N coment')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Example 9-15 will return no rows. Example 9-16, which omits the parentheses around
lawn AND electric, on the other hand, will return 1 row.

Example 9-16 WITHIN and AND: No Parentheses

SELECT ID
FROM PURCHASE ORDERS
VHERE CONTAINS(DOC, 'lawn AND electric WTH N comment')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.
W THI Nhas a higher operator precedence than AND, so Example 9-16 is parsed as
Example 9-17.

Example 9-17 WITHIN and AND: Parentheses lllustrating Operator Precedence

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, ' lawn AND (electric WTHIN comment) ')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Full Text Search Over XML 9-9

CONTAINS SQL Function

Definition of Section The foregoing examples have used the W THI N operator to search
within a section. A section can be a:

« PATH or ZONE section

This is a concatenation, in document order, of all text nodes that are descendants
of a node, with whitespace separating the text nodes. To convert from a node to a
ZONE section, you must serialize the node and replace all tags with whitespace.
PATH sections have the same scope and behavior as ZONE sections, except that
PATH sections support queries with | NPATHand HASPATH operators.

« FIELD section

This is the same as a ZONE section, except that repeating nodes in a document are
concatenated into a single section, with whitespace as a separator.

« Attribute section

= Special section (sentence or paragraph)

See Also: Oracle Text Reference for more information on special
sections

INPATH

The W THI N operator provides an easy and intuitive way to express simple structure
restrictions in the t ext _quer y. For queries that use abundant XML structure, you can
use the | NPATH operator plus a Text Path instead of nested W THI N operators.

The | NPATH operator takes at ext _query on the left and a Text Path, enclosed in
parentheses, on the right. Example 9-18 finds pur chaseOr der s that contain the
word "electric" in the path / pur chaseOrder/itemns/iten coment.

Example 9-18 Structure Inside Full Text Predicate: INPATH

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAI NS(DQC, 'electric | NPATH (/purchaseCrder/itens/iten coment)')>0;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h-secti on.

The scope of the search is the section indicated by the Text Path. If you choose a
broader path, such as/ pur chaseQr der /i t ens, you will still get 1 row returned, as
shown in Example 9-19.

Example 9-19 Structure Inside Full Text Predicate: INPATH

SELECT 1D
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, 'electric | NPATH (/purchaseOrder/itens)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.
The Text Path The syntax and semantics of the Text Path are based on the w3c XPath 1.0

recommendation. Simple path expressions are supported (abbreviated syntax only),
but functions are not. The following examples are meant to give the general flavor.

9-10 Oracle XML DB Developer's Guide

CONTAINS SQL Function

See Also:

« http://ww. w3. or g/ TR/ xpat h for information on the w3c
XPath 1.0 recommendation

= "Text Path BNF" on page 9-30 for the Text Path grammar

Example 9-20 finds all purchase orders that contain the word "electric" in a "comment"
which is the direct child of an "item" with an attribute par t Numequal to "872-AA",
which in turn is the direct child of an "items", which is any number of levels down
from the root node.

Example 9-20 INPATH with Complex Path Expression (1)

SELECT ID
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'electric | NPATH
(//itens/itenf @artNune"872-AA"]/coment)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h-sect i on.

Example 9-21 finds all purchase orders that contain the word "lawnmower" in a
third-level "item" (or any of its descendants) that has a "comment" descendant at any
level. This query returns 1 row. Note that the scope of the query is not a "comment”,
but the set of "items" that have a "comment" as a descendant.

Example 9-21 INPATH with Complex Path Expression (2)

SELECT 1D
FROM PURCHASE_ORDERS
VHERE CONTAINS(DOC, 'lawnmower |NPATH (/*/*/iten{.//comrent])"')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.
Text Path Compared to XPath The Text Path language differs from the XPath language in
the following ways:

= Not all XPath operators are included in the Text Path language.

= XPath built-in functions are not included in the Text Path language.

= Text Path language operators are case-insensitive.

n_nmn

= If you use "="inside a filter (inside square brackets), matching follows
text-matching rules.

Rules for case-sensitivity, normalization, stopwords and whitespace depend on the
text index definition. To emphasize this difference, this kind of equality is referred
to here as text-equals.

= Namespace support is not included in the Text Path language.

The name of an element, including a namespace prefix if it exists, is treated as a
string. So two namespace prefixes that map to the same namespace URI will not
be treated as equivalent in the Text Path language.

= In a Text Path the context is always the root node of the document.

So in the purchaseOrder data pur chaseOrder/itens/item
/ purchaseOrder/itens/itemand./purchaseOrder/itens/itemare
equivalent.

Full Text Search Over XML 9-11

CONTAINS SQL Function

= If you want to search within an attribute value, then the direct parent of the
attribute must be specified (wildcards cannot be used).

= A Text Path may not end in a wildcard (*).

See Also: "Text Path BNF" on page 9-30 for the Text Path
grammar

Nested INPATH You can nest | NPATH expressions. The context for the Text Path is
always the root node. It is not changed by a nested | NPATH.

Example 9-22 finds purchase orders that contain the word "electric" in a "comment"
section at any level, where the occurrence of that word is also in an "items" section that
is the direct child of the top-level pur chaseQr der .

Example 9-22 Nested INPATH

SELECT ID
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, ' (electric | NPATH (//coment)) | NPATH
(/purchaseOrder/itens)")>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- secti on.

This nested | NPATH query could be written more concisely as shown in Example 9-23.

Example 9-23 Nested INPATH Rewritten

SELECT ID
FROM PURCHASE_ORDERS
WHERE CONTAINS(DOC, 'electric | NPATH (/purchaseOrder/itens//coment)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

HASPATH

The HASPATH operator takes only one operand: a Text Path, enclosed in parentheses,
on the right. Use HASPATH when you want to find documents that contain a particular
section in a particular path, possibly with an "=" predicate. Note that this is a path
search rather than a Full Text search. You can check for existence of a section, or you
can match the contents of a section, but you cannot do word searches. If your data is of

type XMLType, then consider using exi st sNode instead of HASPATH.

Example 9-24 finds pur chaseOr der s that have some item that has a USPri ce.

Example 9-24 Simple HASPATH

SELECT 1D
FROM PURCHASE_ORDERS
VHERE CONTAINS(DOC, ' HASPATH (/purchaseOrder//item USPrice)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Example 9-25 finds pur chaseOr der s that have some item that has a USPr i ce that
text-equals "148.95".

See Also: "Text Path Compared to XPath" on page 9-11 for an
explanation of text-equals

9-12 Oracle XML DB Developer's Guide

CONTAINS SQL Function

Example 9-25 HASPATH Equality

SELECT 1D
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, ' HASPATH (/purchaseOrder//itenf USPrice="148.95")")>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

HASPATH can be combined with other CONTAI NS operators such as | NPATH.
Example 9-26 finds pur chaseCr der s that contain the word "electric" anywhere in
the document AND have some "item" that has a USPr i ce that text-equals "148.95"
AND contain "10" in the pur chaseOr der attribute or der Dat e.

Example 9-26 HASPATH with Other Operators

SELECT ID
FROM PURCHASE ORDERS
VHERE CONTAINS(DOC, 'electric AND HASPATH
(/purchaseOrder//item USPrice="148.95") AND 10 | NPATH
(/ purchaseOrder/ @rderDate)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h-secti on.

Structure: Projecting the Result

The result of a SQL query with a CONTAI NS predicate in the WHERE clause is always a
set of rows (and possibly SCORE information), or a projection over the rows that match
the query. If you want to return only a part of each XML document that satisfies the
CONTAI NS predicate, then use the SQL /XML extensions ext r act and

extract Val ue. Note that ext r act and ext r act Val ue operate on the XMLType
type, so the following examples use the table PURCHASE_ORDERS_xni t ype.

See Also: Oracle XML DB Developer’s Guide for more information
onextract and extract Val ue

Example 9-27 finds pur chaseOr der s that contain the word "electric” in a "comment"
that is a descendant of the top-level pur chaseOr der . Instead of returning the ID of
the row for each result, ext r act is used to return only the "comment".

Example 9-27 Using Extract to Scope the Results of a CONTAINS Query

SELECT
extract(DCC,
'/ purchaseCOrder//coment ',
"xm ns:ora="http://xn ns. oracl e. conl xdb"'
) "Item Conment"
FROM PURCHASE_ORDERS xm t ype
VWHERE CONTAINS(DOC, 'electric | NPATH (/purchaseOrder//coment) ')>0 ;

This example uses table PURCHASE_ORDERS_xnl t ype and index po_i ndex_
xm type.

Note that the result of Example 9-27 is two instances of "comment". CONTAI NS tells us
which rows contain the word "electric" in a "comment" (the row with ID=1), and
extract extracts all the instances of "comment" in the document at that row. There
are two instances of "comment" in our pur chaseQr der , and the query returns both of
them.

Full Text Search Over XML 9-13

CONTAINS SQL Function

Indexing

This might not be what you want. If you want the query to return only the instances of
"comment" that satisfy the CONTAI NS predicate, then you must repeat that predicate in
the ext r act . You do that with or a: cont ai ns, which is an XPath function.

Example 9-28 returns only the "comment" that matches the CONTAI NS predicate.

Example 9-28 Using Extract Plus ora:contains to Project the Results of a CONTAINS
Query
SELECT
extract(DCC,
"I purchaseOrder/itens/item coment[ora:contains(text(), "electric")>0]",
"xm ns:ora="http://xm ns.oracle.com xdb"") "Item Comrent"
FROM PURCHASE_ORDERS_xni t ype
WHERE CONTAINS(DOC, 'electric
| NPATH (/ purchaseOrder/itens/item comment) ')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

This section contains these topics:

» Introduction to the CONTEXT Index

« Effect of the CONTEXT Index on CONTAINS
» The CONTEXT Index: Preferences

= Introduction to Section Groups

Introduction to the CONTEXT Index

The Oracle general purpose Full Text indextype is the CONTEXT indextype, owned by
the database user CTXSYS. To create a default Full Text index, use the regular SQL
CREATE | NDEX command, and add the clause | NDEXTYPE | S CTXSYS. CONTEXT,
as shown in Example 9-29.

Example 9-29 Simple CONTEXT Index on PURCHASE_ORDERS Table

CREATE | NDEX po_i ndex
ON PURCHASE_ORDERS(DCC)
I NDEXTYPE |'S ctxsys. CONTEXT ;

This example uses table PURCHASE ORDERS.

You have many choices available when building a Full Text index. These choices are
expressed as indexing preferences. To use an indexing preference, add the
PARAMETERS clause to CREATE | NDEX, as shown in Example 9-30.

See Also: "The CONTEXT Index: Preferences” on page 9-16

Example 9-30 Simple CONTEXT Index on PURCHASE_ORDERS Table with Path Section
Group

CREATE | NDEX po_i ndex
ON PURCHASE_ORDERS(DOC)
| NDEXTYPE |'S ct xsys. CONTEXT
PARAMETERS ('section group ctxsys.PATH SECTI ON_GROUP') ;

This example uses table PURCHASE_ ORDERS.

9-14 Oracle XML DB Developer's Guide

CONTAINS SQL Function

Oracle Text provides other indextypes, such as CTXCAT and CTXRULE, which are
outside the scope of this chapter.

See Also: Oracle Text Reference for more information on CONTEXT
indexes

CONTEXT Index on XMLType Table You can build a CONTEXT index on any data that
contains text. Example 9-29 creates a CONTEXT index on a VARCHAR2 column. The
syntax to create a CONTEXT index on a column of type CHAR, VARCHAR, VARCHARZ,
BLOB, CLOB, BFI LE, XML.Type, or URI Type is the same. Example 9-31 creates a
CONTEXT index on a column of type XMLType.

Example 9-31 Simple CONTEXT Index on PURCHASE_ORDERS_xmltype Table
(Defaults to PATH_SECTION_GROUP)
CREATE | NDEX po_i ndex_xnl type

ON PURCHASE_ORDERS_xni t ype(DQOC)

| NDEXTYPE | S ct xsys. CONTEXT ;

This example uses table PURCHASE_ORDERS_xn t ype.

If you have a table of type XMLType, then you need to use object syntax to create the
CONTEXT index as shown in Example 9-32.

Example 9-32 Simple CONTEXT Index on XMLType Table

CREATE | NDEX po_i ndex_xnl type_table
ON PURCHASE_ORDERS xnmtype_table T (value(T))
| NDEXTYPE |'S ct xsys. CONTEXT ;

This example uses table PURCHASE_ORDERS_xni t ype.
You can then query the table using the syntax in Example 9-33.

Example 9-33 CONTAINS Query on XMLType Table

SELECT
extract(value(T), '/purchaseOrder/ @rderDate') "Order Date"
FROM
PURCHASE _ORDERS xmi type table T
VHERE CONTAINS(val ue(T), 'electric I NPATH (/purchaseOrder//coment) ')>0 ;

This example uses table PURCHASE_ORDERS_xnl t ype_t abl e and index po_
i ndex_xm type_tabl e.

Maintaining the CONTEXT Index The CONTEXT index, like most Full Text indexes, is
asynchronous. When indexed data is changed, the CONTEXT index might not change
until you take some action, such as calling a procedure to synchronize the index. There
are a number of ways to manage changes to the CONTEXT index, including some
options that are new for this release.

The CONTEXT index might get fragmented over time. A fragmented index uses more
space, and it leads to slower queries. There are a number of ways to optimize
(defragment) the CONTEXT index, including some options that are new for this release.

See Also: Oracle Text Reference for more information on CONTEXT
index maintenance

Full Text Search Over XML 9-15

CONTAINS SQL Function

Roles and Privileges You do not need any special privileges to create a CONTEXT index.
You need the CTXAPP role to create and delete preferences and to use the Oracle Text
PL/SQL packages. You must also have EXECUTE privilege on the ct xsys package
CTX_DDL.

Effect of the CONTEXT Index on CONTAINS

You must create an index of type CONTEXT in order to use the CONTAI NS function. If
you call the CONTAI NS function, and the column given in the first argument does not
have an index of type CONTEXT, then you will get an error.

The syntax and semantics of t ext _quer y depend on the choices you make when you
build the CONTEXT index. For example:

« What counts as a word?

= Are very common words processed?
« Whatis a common word?

« Is the text search case-sensitive?

= Can the text search include themes (concepts) as well as keywords?

The CONTEXT Index: Preferences

A preference can be considered a collection of indexing choices. Preferences include
section group, datastore, filter, wordlist, stoplist and storage. This section shows how
to set up a lexer preference to make searches case-sensitive.

You can use the procedure CTX_DDL. CREATE_PREFERENCE (CTX_DDL. CREATE_
STOPLI ST) to create a preference. Override default choices in that preference group
by setting attributes of the new preference, using the CTX_DDL. SET_ATTRI BUTE
procedure. Then use the preference in a CONTEXT index by including <pr ef er ence
type> <pref er ence_nane> in the PARAMETERS string of CREATE | NDEX.

Once a preference has been created, you can use it to build any number of indexes.

Making Search Case-Sensitive Full Text searches with CONTAI NS are case-insensitive by
default. That is, when matching words in t ext _quer y against words in the
document, case is not considered. Section names and attribute names, however, are
always case-sensitive.

If you want Full Text searches to be case-sensitive, then you need to make that choice
when building the CONTEXT index. Example 9-34 returns 1 row, because "HURRY" in
t ext _query matches "Hurry" in the pur chaseOr der with the default
case-insensitive index.

Example 9-34 CONTAINS: Default Case Matching

SELECT ID
FROM PURCHASE_CRDERS
VWHERE CONTAINS(DOC, ' HURRY | NPATH (/ purchaseOrder/coment)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- pat h- sect i on.

Example 9-35 creates a new lexer preference nmy_| exer , with the attribute m xed_
case set to TRUE. It also sets printjoin characters to "-" and "!" and ",". You can use the
same preferences for building CONTEXT indexes and for building policies.

nyn

See Also: Oracle Text Reference for a full list of lexer attributes

9-16 Oracle XML DB Developer's Guide

CONTAINS SQL Function

Example 9-35 Create a Preference for Mixed Case

BEG N
Ctx_Ddl . Create_Preference (
preference_name => 'ny_|exer',
obj ect _name => 'BAS|IC LEXER

)

Ctx_Ddl.Set_Attribute (
preference_name => 'ny_|exer',
attribute_nane => 'nixed_case',
attribute_value => 'TRUE
)

Ctx_Ddl.Set_Attribute (
preference_name => 'ny_|exer',
attribute_nane => ‘'printjoins',
attribute value => "'- I'

)

END ;
/

Example 9-36 builds a CONTEXT index using the new ny_| exer lexer preference.

Example 9-36 CONTEXT Index on PURCHASE_ORDERS Table, Mixed Case
CREATE | NDEX po_i ndex

ON PURCHASE_ORDERS(DOC)

| NDEXTYPE | S ct xsys. cont ext

PARAMETERS('l exer ny_l exer section group ctxsys.PATH SECTI ON_ GROUP') ;

This example uses table PURCHASE_CORDERS and preference: preference-case-mixed.

Example 9-36 returns no rows, because "HURRY" in text_query no longer matches
"Hurry" in the pur chaseOr der . Example 9-37 returns 1 row, because the t ext _
query term "Hurry" exactly matches the word "Hurry" in the pur chaseOr der .

Example 9-37 CONTAINS: Mixed (Exact) Case Matching

SELECT ID
FROM PURCHASE_ORDERS
VWHERE CONTAINS(DOC, 'Hurry | NPATH (/purchaseOrder/coment)')>0 ;

This example uses table PURCHASE_CORDERS and index po_i ndex- case- ni xed.

Introduction to Section Groups

One of the choices you make when creating a CONTEXT index is section group. A
section group instance is based on a section group type. The section group type
specifies the kind of structure in your documents, and how to index (and therefore
search) that structure. The section group instance may specify which structure
elements are indexed. Most users will either take the default section group or use a
pre-defined section group.

Choosing a Section Group Type The section group types that are useful in XML searching
are:

« PATH_SECTI ON_GRCUP

Full Text Search Over XML 9-17

CONTAINS SQL Function

Choose this when you want to use W THI N, | NPATH and HASPATH in queries, and
you want to be able to consider all sections to scope the query.

. XM__SECTI ON_GROUP

Choose this when you want to use W THI N, but not | NPATHand HASPATH, in
queries, and you want to be able to consider only explicitly-defined sections to
scope the query. XML_SECTI ON_GROUP section group type supports FI ELD
sections in addition to ZONE sections. In some cases FI ELD sections offer
significantly better query performance.

. AUTO_SECTI ON_GROUP

Choose this when you want to use W THI N, but not | NPATHand HASPATH, in
queries, and you want to be able to consider most sections to scope the query. By
default all sections are indexed (available for query restriction). You can specify
that some sections are not indexed (by defining STOP sections).

= NULL_SECTI ON_GROUP
Choose this when defining no XML sections.
Other section group types include:
= BASI C_SECTI ON_GROUP
« HTM__SECTI ON_GROUP
= NEWS_SECTI ON_GROUP

Oracle recommends that most users with XML Full Text search requirements use
PATH_SECTI ON_GROUP. Some users may prefer XM__SECTI ON_GROUP with FI ELD
sections. This choice will generally give better query performance and a smaller index,
but it is limited to documents with fielded structure (searchable nodes are all
non-repeating leaf nodes).

See Also: Oracle Text Reference for a detailed description of the
XM__SECTI ON_GROUP section group type

Choosing a Section Group When choosing a section group to use with your index, you
can choose a supplied section group, take the default, or create a new section group
based on the section group type you have chosen.

There are supplied section groups for section group types PATH_SECTI ON_GROUP,
AUTO_SECTI ON_GROUP, and NULL_SECTI ON_GRCQUP. The supplied section groups
are owned by CTXSYS and have the same name as their section group types. For
example, the supplied section group of section group type PATH_SECTI ON_GROUP is
CTXSYS. PATH_SECTI ON_GROUP.

There is no supplied section group for section group type XM._SECTI ON_GROUP,
because a default XM__SECTI ON_GROUP would be empty and therefore meaningless.
If you want to use section group type XM._SECTI ON_GROUP, then you must create a
new section group and specify each node that you want to include as a section.

When you create a CONTEXT index on data of type XMLType, the default section group
is the supplied section group CTXSYS. PATH_SECTI ON_GROUP. If the data is
VARCHAR or CLOB, then the default section group is CTXSYS. NULL_SECTI ON_GROUP.

See Also: Oracle Text Reference for instructions on creating your
own section group

9-18 Oracle XML DB Developer's Guide

ora:contains XPath Function

To associate a section group with an index, add secti on group <section group
name> to the PARAMETERS string, as in Example 9-38.

Example 9-38 Simple CONTEXT Index on PURCHASE_ORDERS Table with Path Section
Group

CREATE | NDEX po_i ndex
ON PURCHASE_ORDERS(DOC)
[NDEXTYPE | S ct xsys. CONTEXT
PARAMETERS ('section group ctxsys.PATH SECTI ON_ GROUP') ;

This example uses table PURCHASE ORDERS.

ora:contains XPath Function

Function or a: cont ai ns is an Oracle-defined XPath function for use in the XPath
argument to the SQL /XML functions exi st sNode, ext r act, and ext r act Val ue.

Note: These functions are not yet a part of the SQL/XML
standard. But these functions or very similar functions are expected
to be part of a future version of SQL/XML.

The or a: cont ai ns function name consists of a name (cont ai ns) plus a namespace
prefix (or a:). When you use or a: cont ai ns in exi st sNode, extract or

ext r act Val ue you must also supply a namespace mapping parameter,

xm ns:ora="http://xm ns. oracl e. com xdb".

Full Text Search

The or a: cont ai ns argument t ext _query is a string that specifies the Full Text
search. The or a: cont ai ns t ext _query is the same as the CONTAI NSt ext _query,
with the following restrictions:

« Ora:containstext_query mustnotinclude the structure operators W THI N,
| NPATH, or HASPATH

« oOra:containstext_query may include the score weighting operator
wei ght (*) , but weights will be ignored

If you include any of the following in the or a: cont ai ns t ext _query, the query
cannot use a CONTEXT index:

= Score-based operators M NUS(-) ort hreshol d(>)

= Selective, corpus-based expansion operators FUZZY(?) or soundex(!)

See Also: "Query-Rewrite and the CONTEXT Index" on page 9-28

Example 9-39 shows a Full Text search using an arbitrary combination of Boolean
operators and $ (stemming).

Example 9-39 ora:contains with an Arbitrarily Complex Text Query

SELECT ID
FROM PURCHASE_ORDERS_xm t ype
VWHERE exi st sNode(DCC,
'/ purchaseCOrder/ conment [ora: contai ns(text(),
"($lawns AND wild) OR flam ngo")>0]",

Full Text Search Over XML 9-19

ora:contains XPath Function

"xm ns:ora="http://xmns. oracl e. con xdb"'
) =1

This example uses table PURCHASE_ORDERS_xni t ype.

See Also:

= "Full Text Search" on page 9-5 for a description of Full Text
operators

« Oracle Text Reference for a full list of the operators you can use in
CONTAINS and ora:contains

Matching rules are defined by the policy <pol i cy_owner >. <pol i cy_nane>. If
pol i cy_owner is absent, then the policy owner defaults to the current user. If both
pol i cy_nane and pol i cy_owner are absent, then the policy defaults to

CTXSYS. DEFAULT_POLI CY_ORACONTAI NS.

Score

or a: cont ai ns is an XPath function that returns a number. It returns a positive
number if the t ext _quer y matches the i nput _t ext . Otherwise it returns zero.
or a: cont ai ns does not return a score.

Structure: Restricting the Scope of the Query

When you use or a: cont ai ns in an XPath expression, the scope is defined by

i nput _t ext . This argument is evaluated in the current XPath context. If the result is a
single text node or an attribute, then that node is the target of the or a: cont ai ns
search. If i nput _t ext does not evaluate to a single text node or an attribute, an error
is raised.

The policy determines the matching rules for or a: cont ai ns. The section group
associated with the default policy for or a: cont ai ns is of type NULL_SECTI ON_
GROUP.

or a: cont ai ns can be used anywhere in an XPath expression, and its input_text
argument can be any XPath expression that evaluates to a single text node or an
attribute.

Structure: Projecting the Result

If you want to return only a part of each XML document, then use ext r act to project
anode sequence or ext r act Val ue to project the value of a node.

Example 940 returns the or der Dat e for each pur chaseOr der that has some
comment that contains the word "electric".

Example 9-40 ora:contains in existsNode Plus Extract

SELECT extract(DOC, '/purchaseOrder/ @rderDate’) "Order date"
FROM PURCHASE_ORDERS xm t ype
VWHERE exi st sNode(DCC,
"/ purchaseCrder/comrent [ora: contains(text(), "lawn")>0]",
"xm ns:ora="http://xmns.oracle.comxdb"") =1 ;

This example uses table PURCHASE_ORDERS_xnl t ype.

9-20 Oracle XML DB Developer's Guide

ora:contains XPath Function

Policies

In Example 940 exi st sNode restricts the result to rows (documents) where the

pur chaseOr der includes some comment that contains the word "electric”. ext r act
then returns the Pur chaseOr der attribute or der Dat e from those

pur chaseOr der s. Note that if we extracted / / comment we would get both
comments from the sample document, not just the comment that matched the WHERE
clause.

See Also: Example 9-27, "Using Extract to Scope the Results of a
CONTAINS Query" on page 9-13

The CONTEXT index on a column determines the semantics of CONTAI NS queries on
that column. Because or a: cont ai ns does not rely on a supporting index, some other
means must be found to provide many of the same choices when doing

or a: cont ai ns queries. A policy is a collection of preferences that can be associated
with an or a: cont ai ns query to give the same sort of semantic control as the
indexing choices give to the CONTAI NS user.

Introduction to Policies

When using CONTAI NS, indexing preferences affect the semantics of the query. You
create a preference, using the package CTX_DDL. CREATE_PREFERENCE (or CTX_
DDL. CREATE_STOPLI ST). You override default choices by setting attributes of the
new preference, using the CTX_DDL. SET_ATTRI BUTE procedure. Then you use the
preference in a CONTEXT index by including pr ef er ence_t ype pref er ence_nane
in the PARAMETERS string of CREATE | NDEX.

See Also: "The CONTEXT Index: Preferences” on page 9-16

Because or a: cont ai ns does not have a supporting index, a different mechanism is
needed to apply preferences to a query. That mechanism is called a policy, consisting
of a collection of preferences, and it is used as a parameter to or a: cont ai ns.

Policy Example: Supplied Stoplist Example 9-41 creates a policy with an empty
stopwords list.

Example 9-41 Create a Policy to Use with ora:contains

BEG N
Ctx_Ddl . Create_Policy (
policy_name => 'ny_nostopwords_policy',
stoplist => 'ctxsys. EMPTY_STOPLI ST'
)
END ;
/

For simplicity, this policy consists of an empty stoplist, which is owned by the user

ct xsys. You could create a new stoplist to include in this policy, or you could reuse a
stoplist (or lexer) definition that you created for a CONTEXT index.

Refer to this policy in any or a: cont ai ns to search for all words, including the most
common ones (stopwords). Example 9-42 returns 0 comments, because "is" is a
stopword by default and cannot be queried.

Example 9-42 Query on a Common Word with ora:contains
SELECT ID

Full Text Search Over XML 9-21

ora:contains XPath Function

FROM PURCHASE_ORDERS xni t ype
VHERE exi st sNode(DCC,
" [purchaseOr der/ comment [ora: contai ns(text(), "is")>0]",
"xm ns:ora="http://xm ns. oracl e. conl xdb"'
) =1

This example uses table PURCHASE_ORDERS_xni t ype.
Example 9-43 uses the policy created in Example 9-41 to specify an empty stopword

ne _n

list. This query finds "is" and returns 1 comment.

Example 9-43 Query on a Common Word with ora:contains and Policy my_
nostopwords_policy
SELECT ID
FROM PURCHASE_ORDERS xni t ype
VHERE exi st sNode(DCC,
'/ purchaseOrder/ comment [ora: contains(text(),
"is", "nmy_nostopwords_policy")>0]",
"xmns:ora="http://xmns.oracle.comxdb"') =1;

This example uses table PURCHASE_ORDERS_xn1 t ype and policy my_
nost opwor ds_pol i cy.

Effect of Policies on ora:contains

The or a: cont ai ns policy affects the matching semantics of t ext _query. The

or a: cont ai ns policy may include a lexer, stoplist, wordlist preference, or any
combination of these. Other preferences that can be used to build a CONTEXT index are
not applicable to or a: cont ai ns. The effects of the preferences are as follows:

« The wordlist preference tweaks the semantics of the stem operator.

« The stoplist preference defines which words are too common to be indexed
(searchable).

= The lexer preference defines how words are tokenized and matched. For example,
it defines which characters count as part of a word and whether matching is
case-sensitive.

See Also:

= "Policy Example: Supplied Stoplist" on page 9-21 for an
example of building a policy with a predefined stoplist

= '"Policy Example: User-Defined Lexer" on page 9-22 for an
example of a case-sensitive policy

Policy Example: User-Defined Lexer When you search for a document that contains a
particular word, you usually want the search to be case-insensitive. If you do a search
that is case-sensitive, then you will often miss some expected results. For example, if
you search for pur chaseQr der s that contain the phrase "baby monitor", then you
would not expect to miss our example document just because the phrase is written
"Baby Monitor".

Full Text searches with or a: cont ai ns are case-insensitive by default. Section names
and attribute names, however, are always case-sensitive.

If you want Full Text searches to be case-sensitive, then you need to make that choice
when you create a policy. You can use this procedure:

9-22 Oracle XML DB Developer's Guide

ora:contains XPath Function

1. Create a preference using the procedure CTX_DDL. CREATE_PREFERENCE (or
CTX_DDL. CREATE_STOPLI ST).

2. Opverride default choices in that preference object by setting attributes of the new
preference, using the CTX_DDL. SET_ATTRI BUTE procedure.

3. Use the preference as a parameter to CTX_DDL. CREATE_PCLI CY.
4. Use the policy name as the third argument to or a: cont ai ns in a query.

Once you have created a preference, you can reuse it in other policies or in CONTEXT
index definitions. You can use any policy with any or a: cont ai ns query.

Example 944 returns 1 row, because "HURRY" in t ext _quer y matches "Hurry" in
the pur chaseOr der with the default case-insensitive index.

Example 9-44 ora:contains, Default Case-Sensitivity

SELECT ID
FROM PURCHASE_ORDERS xni t ype
VHERE exi st sNode(DCC,
" [purchaseOr der/ comment [ora: contai ns(text(), "HURRY")>0]',
"xm ns:ora="http://xn ns. oracl e. conl xdb"'
) =1

This example uses table PURCHASE_ORDERS_xni t ype.

Example 9-45 creates a new lexer preference ny_| exer , with the attribute m xed_
case set to TRUE. It also sets printjoin characters to "-" and "!" and ",". You can use the
same preferences for building CONTEXT indexes and for building policies.

nyn

See Also: Oracle Text Reference for a full list of lexer attributes

Example 9-45 Create a Preference for Mixed Case
BEG N

Ctx_Ddl . Create_Preference (
preference_name => 'ny_|exer',
obj ect _name => 'BASIC LEXER

)

Ctx_Ddl.Set_Attribute (
preference_name => 'ny_|exer',
attribute_nanme => 'mixed_case',
attribute value => 'TRUE
)

Ctx_Ddl.Set_Attribute (
preference_name => ‘'ny_|exer',
attribute_nane => 'printjoins',
attribute value => "'- 1"

)
END ;
/

Example 946 creates a new policy nmy_pol i cy and specifies only the lexer. All other
preferences are defaulted.

Example 9-46 Create a Policy with Mixed Case (Case-Insensitive)
BEG N

Full Text Search Over XML 9-23

ora:contains XPath Function

Ctx_Ddl . Create_Policy
(

policy_name => 'ny_policy',
| exer => "ny_| exer'

)

END ;
/

This example uses preference-case-mixed.

Example 9-47 uses the new policy in a query. It returns no rows, because "HURRY" in
t ext _query no longer matches "Hurry" in the pur chaseCOr der .

Example 9-47 ora:contains, Case-Sensitive (1)

SELECT 1D
FROM PURCHASE_ORDERS_xnl t ype
WHERE exi st sNode(DCC,
' [purchaseOrder/coment [ora: contai ns(text(),
"HURRY", "my_policy")>0]",
"xm ns:ora="http://xmns. oracl e. com xdb"'
) =1,

This example uses table PURCHASE_ORDERS_xnl t ype.

Example 9-48 returns 1 row, because the t ext _query term "Hurry" exactly matches
the word "Hurry" in the pur chaseOr der .

Example 9-48 ora:contains, Case-Sensitive (2)

SELECT ID
FROM PURCHASE_ORDERS_xnl t ype
VWHERE exi st sNode(DCC,
'/ purchaseOrder/comrent [ora: contains(text(), "is going wild")>0]",
"xm ns:ora="http://xmns.oracl e. com xdb"'
) =1

This example uses table PURCHASE_ORDERS_xnl t ype.

Policy Defaults

The policy argument to or a: cont ai ns is optional. If it is omitted, then the query
uses the default policy CTXSYS. DEFAULT_POLI CY_ORACONTAI NS.

When you create a policy for use with or a: cont ai ns, you do not need to specify
every preference. In Example 9-46 on page 9-23, for example, only the lexer preference
was specified. For the preferences that are not specified, CREATE_POLI CY uses the
default preferences:

« CTXSYS. DEFAULT_LEXER
« CTXSYS. DEFAULT_STOPLI ST
« CTXSYS. DEFAULT_ WORDLI ST

Creating a policy follows copy semantics for preferences and their attributes, just as
creating a CONTEXT index follows copy semantics for index metadata.

9-24 Oracle XML DB Developer's Guide

ora:contains XPath Function

ora:contains Performance

The or a: cont ai ns XPath function does not depend on a supporting index.

or a: cont ai ns is very flexible. But if you use it to search across large amounts of data
without an index, then it can also be resource-intensive. In this section we discuss how
to get the best performance from queries that include XPath expressions with
ora:contains.

Note: Function-based indexes can also be very effective in
speeding up XML queries, but they are not generally applicable to
Text queries.

The examples in this section use table PURCHASE_CORDERS_xim t ype_bi g. This has
the same table structure and XML Schema as PURCHASE ORDERS xml t ype, but it
has around 1,000 rows. Each row has a unique ID (in the "id" column), and some
different textin/ pur chaseOrder /i temns/ it em comment . Where an execution plan
is shown, it was produced using the SQL*Plus AUTOTRACE. Execution plans can also
be produced using SQL t r ace and t kpr of . A description of AUTOTRACE, SQL
trace andt kpr of is outside the scope of this chapter.

This section contains these topics:

= Use a Primary Filter in the Query

= Use a CTXXPath Index

= Query-Rewrite and the CONTEXT Index

Use a Primary Filter in the Query

Because or a: cont ai ns is relatively expensive to process, Oracle recommends that
you write queries that include a primary filter wherever possible. This will minimize
the number of rows actually processed by or a: cont ai ns.

Example 9-49 examines every row in the table (does a full table scan), as we can see
from the Plan in Example 9-50. In this example, or a: cont ai ns is evaluated for every
row.

Example 9-49 ora:contains in existsNode, Big Table

SELECT 1D
FROM PURCHASE_ORDERS xm type_bi g
VWHERE exi st sNode(DCC,
"/ purchaseOrder/itens/itenf coment[ora:contains(text(),
"constitution")>0]",
"xm ns:ora="http://xmns. oracl e. con xdb"'
) =1

Example 9-50 Explain Plan: existsNode
Execution Plan

0 SELECT STATEMENT Opti ni zer =CHOCSE
1 0 TABLE ACCESS (FULL) OF ' PURCHASE ORDERS XMLTYPE_BI G (TABLE)

If you create an index on the ID column, as shown in Example 9-51, and add a
selective ID predicate to the query, as shown in Example 9-52, then it is apparent from

Full Text Search Over XML 9-25

ora:contains XPath Function

Example 9-53 that Oracle will drive off the ID index. or a: cont ai ns will be executed
only for the rows where the ID predicate is true (where ID is less than 5).

Example 9-51 B-Tree Index on ID

CREATE | NDEX i d_i ndex
ON PURCHASE_ORDERS xm type big(ID) ;

This example uses table PURCHASE_ ORDERS.

Example 9-52 ora:contains in existsNode, Mixed Query

SELECT 1D
FROM PURCHASE_ORDERS xm type_bi g
VHERE exi st sNode(DCC,
"/ purchaseOrder/itens/itent coment[ora:contains(text(),
"constitution")>0]",
"xm ns:ora="http://xmns. oracl e. con xdb"'
) =1
AND i d>5 ;

Example 9-53 Explain Plan: existsNode
Execution Plan

0 SELECT STATEMENT Opti ni zer =CHOOSE
1 0 TABLE ACCESS (BY | NDEX ROASELECT I D) OF ' PURCHASE ORDERS_XM.TYPE BI G (TABLE)
2 1 I NDEX (RANGE SCAN) OF ' SELECT I D_I NDEX (| NDEX)

Use a CTXXPath Index

The CTXXPATHindex can be used as a primary filter for exi st sNode. CTXXPATH s
not related to or a: cont ai ns. CTXXPATH can be a primary filter for any exi st sNode
query.

The CTXXPATH index stores enough information about a document to produce a
superset of the results of an XPath expression. For an exi st sNode query it is often
helpful to interrogate the CTXXPATHindex and then apply exi st sNode to that
superset, rather than applying exi st sNode to each document in turn.

Example 9-54 produces the execution plan shown in Example 9-55.

Example 9-54 ora:contains in existsNode, Big Table

SELECT 1D
FROM PURCHASE _ORDERS xml type_bi g
VWHERE exi st sNode(DCC,
"/ purchaseOrder/items/itenf coment|[ora:contains(text(),
"constitution")>0]",
"xm ns:ora="http://xmns.oracl e. con xdb"'
) =1

Example 9-55 Explain Plan: existsNode
Execution Plan

0 SELECT STATEMENT Opti ni zer =CHOOSE
1 0 TABLE ACCESS (FULL) OF ' PURCHASE_ORDERS_XM.TYPE_BI G (TABLE)

9-26 Oracle XML DB Developer's Guide

ora:contains XPath Function

Now create a CTXXPATHindex on the DOC column, as shown in Example 9-56. You can
create a CTXXPATH index and a CONTEXT index on the same column.

Example 9-56 Create a CTXXPATH Index on PURCHASE_ORDERS_xmltype_big(DOC)

CREATE | NDEX doc_xpat h_i ndex
ON PURCHASE_ORDERS_xm t ype_bi g(DCC)
| NDEXTYPE |'S ct xsys. CTXXPATH ;

Run Example 9-54 again and you will see from the plan, shown in Example 9-57, that
the query now uses the CTXXPATHindex.

Example 9-57 Explain Plan: existsNode with CTXXPATH Index
Execution Plan

0 SELECT STATEMENT Opti m zer =CHOOSE (Cost=2 Card=1 Byt es=2044)
1 0 TABLE ACCESS (BY | NDEX ROWSELECT I D) OF ' PURCHASE ORDERS XMLTYPE_BI G (TABLE)
(Cost=2 Card=1 Byt es=2044)

2 1 DOVAI N | NDEX OF ' DOC_XPATH_| NDEX' (1 NDEX (DOMAIN))
(Cost =0)

When to Use CTXXPATH CTXXPATH processes only a part of the XPath expression, to give
a guaranteed superset (a first-pass estimate) of the results of XPath evaluation.

CTXXPATH does not process:

= Functions, including or a: cont ai ns

= Range operators: <=, <, >=,>

- LT

= Attribute following '. ', *'or '/ /"'

= Predicate following ". ' or *'

= . 'or™'attheend of a path

= Any node with unabbreviated XPath syntax

So in Example 9-54, the CTXXPATH index cannot return results for

/ purchaseOrder/itens/itenl corment[ora:contains(.,
"constitution")>0],because it cannot process the function or a: cont ai ns. But
the CTXXPATHindex can act as a primary filter by returning all documents that
contain the path / pur chaseQrder /it ens/ i t eml comrent . By calculating this
superset of results, CTXXPATH can significantly reduce the number of documents
considered by exi st sNode in this case.

There are two situations where a CTXXPATH index will give a significant performance
boost:

= If the document collection is heterogeneous, then knowing which documents
contain the path (some pur chaseOr der with some i t ens child with somei t em
child with some comment child) is enough to significantly reduce the documents
considered by exi st sNode.

= If many of the queries include XPath expressions with equality predicates rather
than range predicates or functions (such as Example 9-58), then CTXXPATH will
process those predicates and therefore will be a useful primary filter. CTXXPATH
handles both string and number equality predicates.

Full Text Search Over XML 9-27

ora:contains XPath Function

Example 9-58 Equality Predicate in XPath, Big Table

SELECT count (*)
FROM PURCHASE_ORDERS xmi t ype_bi g
VWHERE exi st sNode(DCC,
"/ purchaseOrder/items/iten] USPrice=148.9500] ',
"xm ns:ora="http://xmns.oracl e. com xdb"'
) =1

If you are not sure that CTXXPATH will be useful, then create a CTXXPATHindex and
gather statistics on it, as shown in Example 9-59. With these statistics in place, the
Oracle Cost Based Optimizer can make an informed choice about whether to use the
CTXXPATHindex or to ignore it.

Example 9-59 Gathering Index Statistics

BEG N
DBMS_STATS. GATHER_| NDEX_STATS (
ownname => ‘'test',
i ndname => 'doc_xpath_i ndex'
)
END;
/

This example uses i ndex- ct xxpat h- 1.

Maintaining the CTXXPATH Index The CTXXPATH index, like the CONTEXT index, is
asynchronous. When indexed data is changed, the CTXXPATH index might not change
until you take some action, such as calling a procedure to synchronize the index. There
are a number of ways to manage changes to the CTXXPATHindex, including some
options that are new for this release.

If the CTXXPATHindex is not kept in synch with the data, then the index gradually
becomes less efficient. The CTXXPATHindex still calculates a superset of the true result,
by adding all unsynchronized (unindexed) rows to the result set. So exi st sNode
must process all the rows identified by the CTXXPATH index plus all unsynchronized
(unindexed) rows.

The CTXXPATH index may get fragmented over time. A fragmented index uses more
space and leads to slower queries. There are a number of ways to optimize
(defragment) the CTXXPATHindex, including some options that are new for this
release.

See Also: Oracle Text Reference for information on CTXXPATH
index maintenance

Query-Rewrite and the CONTEXT Index

or a: cont ai ns does not rely on a supporting index. But under some circumstances
an or a: cont ai ns may use an existing CONTEXT index for better performance.

Introducing Query-Rewrite Oracle will, in some circumstances, rewrite a SQL /XML query
into an object-relational query. This is done as part of query optimization and is
transparent to the user. Two of the benefits of query-rewrite are:

= The re-written query can directly access the underlying object-relational tables
instead of processing the whole XML document.

= The re-written query can make use of any available indexes.

9-28 Oracle XML DB Developer's Guide

ora:contains XPath Function

Query-rewrite is a performance optimization. Query-rewrite only makes sense if the
XML data is stored object-relationally, which in turn requires the XML data to be
Schema-based.

See Also: Chapter 1, "Introducing Oracle XML DB" for a full
description of the query-rewrite process

From Documents to Nodes Consider Example 9-60, a simple or a: cont ai ns query. To
naively process the XPath expression in this query, each cell in the DOC column must
be considered, and each cell must be tested to see if it matches

/ purchaseOrder/itens/itenf comment[ora:contains(text(),
"electric")>0].

Example 9-60 ora:contains in existsNode

SELECT ID
FROM PURCHASE_ORDERS xni t ype
VHERE exi st sNode(DCC,
"/ purchaseOrder/itens/itenf conment[ora: contains(text(),
"electric")>0]",
"xmns:ora="http://xmns. oracl e. com xdb"'
) =1,

This example uses table PURCHASE_ORDERS_xni t ype.

But if DOCis schema-based, and the pur chaseOr der documents are physically stored
in object-relational tables, then it makes sense to go straight to the

/ purchaseOrder/itens/itenl comment column (if one exists) and test each cell
there to see if it matches "electric".

This is the first query-rewrite step. If the first argument to or a: cont ai ns (t ext _

i nput) maps to a single relational column, then or a: cont ai ns executes against that
column. Even if there are no indexes involved, this can significantly improve query
performance.

From ora:contains to CONTAINS As noted in "From Documents to Nodes" on page 9-29,
Oracle may rewrite a query so that an XPath expression in exi st sNode may be
resolved by applying or a: cont ai ns to some underlying column instead of applying
the whole XPath to the whole XML document. In this section it will be shown how that
query might make use of a CONTEXT index on the underlying column.

If you are running or a: cont ai ns against a text node or attribute that maps to a
column with a CONTEXT index on it, why would you not use that index? One
powerful reason is that a re-written query should give the same results as the original
query. To ensure consistent results, the following conditions must be true before a
CONTEXT index can be used.

First, the or a: cont ai ns target (i nput _t ext) must be either a single text node
whose parent node maps to a column or an attribute that maps to a column. The
column must be a single relational column (possibly in a nested table).

Second, as noted in "Policies” on page 9-21, the indexing choices (for CONTAI NS) and
policy choices (for or a: cont ai ns) affect the semantics of queries. A simple mismatch
might be that the index-based CONTAI NS would do a case-sensitive search, while

or a: cont ai ns specifies a case-insensitive search. To ensure that the or a: cont ai ns
and the rewritten CONTAI NS have the same semantics, the or a: cont ai ns policy
must exactly match the index choices of the CONTEXT index.

Full Text Search Over XML 9-29

Text Path BNF

Both the or a: cont ai ns policy and the CONTEXT index must also use the NULL _
SECTI ON_GROUP section group type. The default section group for an
or a: cont ai ns policy is ct xsys. NULL_SECTI ON_GROUP.

Third, the CONTEXT index is generally asynchronous. If you add a new document that
contains the word "dog", but do not synchronize the CONTEXT index, then a

CONTAI NS query for "dog" will not return that document. But an or a: cont ai ns
query against the same data will. To ensure that the or a: cont ai ns and the rewritten
CONTAI NS will always return the same results, the CONTEXT index must be built with
the TRANSACTI ONAL keyword in the PARAMETERS string (see [Oracle Text
Reference]).

See Also: Oracle Text Reference

Query-Rewrite: Summary A query with exi st sNode, ext ract or extract Val ue,
where the XPath includes or a: cont ai ns, may be considered for query-rewrite if:

« The XML is schema-based

= The first argument to or a: cont ai ns (t ext _i nput) is either a single text node
whose parent node maps to a column, or an attribute that maps to a column. The
column must be a single relational column (possibly in a nested table).

The rewritten query will use a CONTEXT index if:

= There is a CONTEXT index on the column that the parent node (or attribute node)
of t ext _i nput maps to.

= Theora: cont ai ns policy exactly matches the index choices of the CONTEXT
index.

= The CONTEXT index was built with the TRANSACTI ONAL keyword in the
PARAMETERS string.

Query-rewrite can speed up queries significantly, especially if there is a suitable
CONTEXT index.

Text Path BNF

HasPat hAr g = Locati onPat h
| EqualityExpr
I nPat hAr g Locati onPat h

Rel ativelLocati onPat h
| Absol utelLocationPath
("/" Rel ativelLocati onPat h)
| ("//" RelativelLocationPath)
Rel ativelLocationPath ::= Step
| (RelativelLocationPath "/" Step)
| (RelativelLocationPath "//" Step)

Locat i onPat h

Absol ut eLocationPath ::

Step 1= ("@ NCNane)

| NCNane

| (NCNanme Predicate)

| Dot

|
Predicate = ("[" OExp "]")

| ("[" Digit+"]")
O Expr = AndExpr

| (O Expr "or" AndExpr)
AndExpr = Bool eanExpr

| (AndExpr "and" Bool eanExpr)
Bool eanExpr = Rel ativeLocati onPath

9-30 Oracle XML DB Developer's Guide

Example Support

Equal i t yExpr

Literal

NCNarre
NCNaneChar

Letter
Digit

Dot

Dash

Under score

Example Support

Doubl eQuote [~"]* Doubl eQuot e)
SingleQuote [~']* SingleQuote)
(Letter | Underscore) NCNaneChar*
Letter

Digit

Dot

Dash

Under score

([a-z] | [A-Z])

[0-9]

Equal i t yExpr

("(" OExpr ")")

("not" "(" O Expr ")")

(Rel ativelLocationPath "=" Literal)
(Literal "=" RelativelocationPath)
(Rel ativeLocationPath "=" Literal)
(Literal "!=" RelativeLocationPath)
(Rel ativeLocationPath "=" Literal)
(Literal "!=" RelativelLocationPath)
(

(

This section contains these topics:

= Purchase Order po001.xml

« Create Table Statements

= An XML Schema for the Sample Data

Purchase Order po001.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<pur chaseOrder xnlns:xsi="http://wmw. w3. org/ 2001/ XM_.Schena-i nst ance"
xsi : noNanespaceSchemalLocat i on="xm schena/ po. xsd" or der Dat e="1999- 10- 20" >

<shi pTo country="US">

<nane>Al i ce Smith</nane>
<street>123 Maple Street</street>
<city>M Il Valley</city>

<st at e>CA</ st at e>

<zi p>90952</ zi p>

</ shi pTo>
<bi I'l To country="US">

<nane>Robert Smi t h</ name>
<street>8 Cak Avenue</street>
<city>d d Town</city>

<st at e>PA</ st at e>

<zi p>95819</ zi p>

</bill To>

<conment >Hurry, ny lawn is going wld!</coment>

<itenms>

<item part NumF"872- AA">

<pr oduct Nane>Lawnmower </ pr oduct Nane>

<quantity>1</quantity>

<USPri ce>148. 95</ USPri ce>

<comrent >Confirmthis is electric</coment>
<l[itemr

Full Text Search Over XML

9-31

Example Support

<i tem part Nun¥" 926- AA" >
<product Name>Baby Moni t or </ pr oduct Nane>
<quantity>1</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>

<litemp

<litens>
</ pur chaseCOr der >

Create Table Statements

Example 9-61 CREATE TABLE PURCHASE_ORDERS

CREATE TABLE PURCHASE ORDERS (I D NUMBER,
DOC VARCHAR2(4000));
I NSERT | NTO PURCHASE_ORDERS (1D, DQOC)
VALUES (1,

'<?xm version="1.0" encodi ng="UTF-8"?>
<purchaseQrder xm ns:xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xsi : noNanespaceSchenmaLocat i on="xm schema/ po. xsd"
order Dat e="1999- 10- 20" >

<shi pTo country="US">
<nane>Al i ce Smith</name>
<street>123 Maple Street</street>
<city>M 11| Valley</city>
<stat e>CA</ st at e>
<zi p>90952</ zi p>
</ shi pTo>
<billTo country="US">
<name>Robert Smit h</ nanme>
<street>8 Cak Avenue</street>
<city>d d Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>
</bill To>
<comment >Hurry, ny lawn is going wild!</coment>
<itenms>
<item part Num="872- AA" >
<pr oduct Nanme>Lawnnmower </ pr oduct Nanme>
<quantity>1</quantity>
<USPri ce>148. 95</ USPri ce>
<comrent >Confirmthis is electric</coment>
<litenmp
<i tem part Nun¥" 926- AA" >
<product Name>Baby Moni t or </ pr oduct Nane>
<quantity>1</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>
<litenmp
<litens>
</ purchaseOrder>") ;
COMT ;

Example 9-62 CREATE TABLE PURCHASE_ORDERS_xmltype

CREATE TABLE PURCHASE_ORDERS xnitype (1D NUMBER ,
DOC XM.Type);
I NSERT | NTO PURCHASE_ORDERS xm type (1D, DOC)
VALUES (1,
XMLTYPE (' <?xm version="1.0" encodi ng="UTF-8"?>

9-32 Oracle XML DB Developer's Guide

Example Support

<pur chaseOr der
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xsi : noNanmespaceSchenalLocat i on="po. xsd"
or der Dat e="1999- 10- 20" >
<shi pTo country="US">
<name>Al i ce Smit h</ name>
<street>123 Maple Street</street>
<city>M 11| Valley</city>
<st at e>CA</ st at e>
<zi p>90952</ zi p>
</ shi pTo>
<bi |l To country="US">
<nane>Robert Smith</name>
<street>8 Cak Avenue</street>
<city>dd Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>
</bill To>
<comment >Hurry, ny lawn is going wld!</coment>
<itens>
<i tem part Nun¥" 872- AA" >
<product Nane>Lawnnower </ pr oduct Nane>
<quantity>1</quantity>
<USPri ce>148. 95</ USPri ce>
<comrent >Confirmthis is el ectric</coment>
<litemr
<i tem part Nun¥" 926- AA" >
<product Nane>Baby Moni t or </ product Nane>
<quantity>1</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>
<litenmp
</itenms>
</ purchaseCrder>'));
COMT ;

Example 9-63 CREATE TABLE PURCHASE_ORDERS_xmltype_table

CREATE TABLE PURCHASE_ORDERS xm type_table OF XM.Type;
I NSERT | NTO PURCHASE_ORDERS xni type_tabl e
VALUES (
XMLTYPE (' <?xm version="1.0" encodi ng="UTF-8"?>
<pur chaseCOr der
xm ns: xsi ="http:// ww. w3. org/ 2001/ XM.Schena- i nst ance"
Xsi : noNanespaceSchemaLocat i on="xm schema/ po. xsd"
or der Dat e="1999- 10- 20" >
<shi pTo country="US">
<nane>Al i ce Snith</name>
<street>123 Maple Street</street>
<city>M 11l Valley</city>
<stat e>CA</ st at e>
<zi p>90952</ zi p>
</ shi pTo>
<billTo country="US">
<nane>Robert Smi t h</ nanme>
<street>8 Cak Avenue</street>
<city>dd Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>
</billTo>

Full Text Search Over XML 9-33

Example Support

<comment >Hurry, my lawn is going wild!</coment>
<items>
<i tem part Nune"872- AA" >
<product Nane>Lawnnmower </ pr oduct Nane>
<quantity>1</quantity>
<USPri ce>148. 95</ USPri ce>
<comment >Confirmthis is el ectric</coment>
<litenmp
<i tem part Nun¥"926- AA" >
<product Nane>Baby Moni t or </ product Nane>
<quantity>1</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>
<litemr
<litems>
</ purchaseCOrder>'));
COMT ;

An XML Schema for the Sample Data

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="http://ww w3. or g/ 2001/ XM_Schenma" >
<xsd: annot at i on>
<xsd: docunentation xm :lang="en">
Purchase order schena for Exanple.com
Copyri ght 2000 Exanple.com All rights reserved
</ xsd: docunment ati on>
</ xsd: annot ati on>
<xsd: el ement name="pur chaseOrder" type="PurchaseC der Type"/>
<xsd: el enent name="comment" type="xsd:string"/>
<xsd: conpl exType name="Pur chaseCOr der Type" >
<xsd: sequence>
<xsd: el ement name="shi pTo" type="USAddress"/>
<xsd: el enent name="bi || To" type="USAddress"/>
<xsd: el ement ref="coment" mnCccurs="0"/>
<xsd: el enent name="itens" type="Itens"/>
</ xsd: sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="USAddr ess" >
<xsd: sequence>
<xsd: el enent nanme="nane" type="xsd:string"/>
<xsd: el ement name="street" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el enent name="state" type="xsd:string"/>
<xsd: el enent name="zi p" type="xsd: decinal"/>
</ xsd: sequence>
<xsd:attribute name="country" type="xsd: NMTOKEN' fi xed="US"/>
</ xsd: conpl exType>
<xsd: conpl exType name="|tens">
<xsd: sequence>
<xsd: el ement name="itent' m nCccurs="0" maxCccurs="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="product Name" type="xsd:string"/>
<xsd: el enent nanme="quantity">
<xsd: si mpl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>

9-34 Oracle XML DB Developer's Guide

Example Support

</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el enent nanme="USPrice" type="xsd: deci mal"/>
<xsd: el ement ref="coment" ninCccurs="0"/>
<xsd: el enent nane="shi pDat e" type="xsd: date" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="partNum' type="SKU' use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
<l-- Stock Keeping Unit, a code for identifying products -->
<xsd: si npl eType nanme="SKU' >
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

Full Text Search Over XML 9-35

Example Support

9-36 Oracle XML DB Developer's Guide

Part Il

Using APIs for XMLType to Access and

Operate on XML

Part III of this manual introduces you to ways you can use Oracle XML DB XMLTIype
PL/SQL, Java, C APIs, and Oracle Data Provider for NET (ODP.NET) to access and
manipulate XML data. It contains the following chapters:

Chapter 10, "PL/SQL API for XMLType"

Chapter 11, "DBMS_XMLSTORE"

Chapter 12, "Java API for XMLIype"

Chapter 13, "Using C API for XML With Oracle XML DB"
Chapter 14, "Using ODP.NET With Oracle XML DB"

10

PL/SQL API for XMLType

This chapter describes the use of the APIs for XMLType in PL/SQL.

This chapter contains these topics:

Introducing PL/SQL APIs for XMLType

PL/SQL DOM API for XMLIype (DBMS_XMLDOM)

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
PL/SQL XSLT Processor for XMLIype (DBMS_XSLPROCESSOR)

Introducing PL/SQL APIs for XMLType

This chapter describes the PL/SQL Application Program Interfaces (APIs) for
XM.Type. These include the following:

PL/SQL Document Object Model (DOM) API for XMLType (package DBMS_
XMLDOM): For accessing XML Ty pe objects. You can access both XML
schema-based and non-schema-based documents. Before database startup, you
must specify the read-from and write-to directories in the initialization.ORA file
for example:

UTL_FI LE_DI R=/ mypat h/ i nsi denmypat h

The read-from and write-to files must be on the server file system.

DOM is an in-memory tree-based object representation of an XML document that
enables programmatic access to its elements and attributes. The DOM object and
its interface is a W3C recommendation. It specifies the Document Object Model of
an XML document including APIs for programmatic access. DOM views the
parsed document as a tree of objects.

PL/SQL XML Parser API for XMLType (package DBMS_XMLPARSER): For
accessing the contents and structure of XML documents.

PL/SQL XSLT Processor for XMLType (package DBMS_XSLPROCESSOR): For
transforming XML documents to other formats using XSLT.

PL/SQL APIs For XMLType Features
The PL/SQL APIs for XMLType allow you to perform the following tasks:

Create XMLType tables, columns, and views
Construct XMLType instances from data encoded in different character sets.

Access XMLType data

PL/SQL API for XMLType 10-1

Introducing PL/SQL APIs for XMLType

= Manipulate XM_Type data

See Also:

« "Oracle XML DB Features", for an overview of the Oracle
XML DB architecture and new features.

= Chapter 4, "XMLType Operations"
= Oracle XML API Reference

Lazy XML Loading (Lazy Manifestation)

Because XMLType provides an in-memory or virtual Document Object Model (DOM),
it can use a memory conserving process called lazy XML loading, also sometimes
referred to as lazy manifestation. This process optimizes memory usage by only
loading rows of data when they are requested. It throws away previously-referenced
sections of the document if memory usage grows too large. Lazy XML loading
supports highly scalable applications that have many concurrent users needing to
access large XML documents.

XMLType Datatype Now Supports XML Schema

The XMLType datatype has been enhanced in this release to include support for XML
schemas. You can create an XML schema and annotate it with XML to object- relational
mappings. To take advantage of the PL/SQL DOM API], first create an XML schema
and register it. Then when you create XMLType tables and columns, you can specify
that these conform to the XML schema you defined and registered with Oracle

XML DB.

XMLType Supports Data in Different Character Sets.

XML.Type instances can now be created from data encoded in any Oracle-supported
character sets by using the PL/SQL XM_Type constructor or the cr eat eXM_()
methods. The source XML data must be supplied using either BFI LE or BLOB
datatype. The encoding of the data is specified through the csi d argument. When this
argument is zero then the encoding of the source data is determined from the XML
prolog as specified in Appendix F of the XML 1.0 Reference.

In addition, a new get Bl obVal () method is provided to retrieve the XML contents
in the requested character set.

With PL/SQL APIs for XMLType You Can Modify and Store XML Elements

While typical XML parsers give read access to XML data in a standard way, they do
not provide a way to modify and store individual XML elements.

What are Elements?

An element is the basic logical unit of an XML document and acts as a container for
other elements such as children, data, attributes, and their values. Elements are
identified by start-tags, as in <name>, and end-tags, as in </ name>, or in the case of
empty elements, <name/ >.

What is a DOM Parser?

An embedded DOM parser accepts an XML-formatted document and constructs an
in-memory DOM tree based on the document structure. It then checks whether or not
the document is well-formed and optionally whether it complies with a specific
Document Type Definition (DTD). A DTD is a set of rules that define the allowable

10-2 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

structure of an XML document. DTDs are text files that derive their format from SGML
and can either be included in an XML document by using the DOCTYPE element or by
using an external file through a DOCTYPE reference. A DOM parser also provides
methods for traversing the DOM tree and return data from: it.

If you use the PL/SQL DOM API], then you can use the NanedNodeMap methods to
retrieve elements from an XML file.

Server-Side Support

PL/SQL APIs for XMLTy pe support processing on the server side only. Support for
client-side processing is not provided in this release.

PL/SQL DOM API for XMLType (DBMS_XMLDOM)

This section describes PL/SQL DOM API for XMLType. This is the DBMS_XMLDOM
PL/SQL APIL

Introducing W3C Document Object Model (DOM) Recommendation

Skip this section if you are already familiar with the generic DOM specifications
recommended by the World Wide Web Consortium (W3C).

The Document Object Model (DOM) recommended by the W3C is a universal API to
the structure of XML documents. It was originally developed to formalize Dynamic
HTML, which allows animation, interaction and dynamic updating of Web pages.
DOM provides a language and platform-neutral object model for Web pages and XML
document structures in general. The DOM describes language and
platform-independent interfaces to access and to operate on XML components and
elements. It expresses the structure of an XML document in a universal,
content-neutral way. Applications can be written to dynamically delete, add, and edit
the content, attributes, and style of XML documents. Additionally, the DOM makes it
possible to write applications that work properly on all browsers and servers and on
all platforms.

A brief summary of the state of the DOM Recommendations is provided in this section
for your convenience.

W3C DOM Extensions Not Supported in This Release

The only extensions to the W3C DOM API not supported in this release are those
relating to client-side file system input and output, and character set conversions. This
type of procedural processing is available through the SAX interface.

Supported W3C DOM Recommendations

All Oracle XML DB APIs for accessing and manipulating XML comply with standard
XML processing requirements as approved by the W3C. PL/SQL DOM supports
Levels 1 and 2 from the W3C DOM specifications.

= InOracleYi release 1 (9.0.1), the XDK for PL/SQL implemented DOM Level 1.0
and parts of DOM Level 2.0.

= In OracleYi release 2 (9.2) and Oracle Database 10g release 1 (10.1), the PL/SQL
API for XML Ty pe implements DOM Levels 1.0 and Level 2.0 Core, and is fully
integrated in the database through extensions to the XM_LType APIL

The following briefly describe each level:

PL/SQL API for XMLType 10-3

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

= DOM Level 1.0. The first formal Level of the DOM specifications, completed in
October 1998. Level 1.0 defines support for XML 1.0 and HTML.

=« DOM Level 2.0. Completed in November 2000, Level 2.0 extends Level 1.0 with
support for XML 1.0 with namespaces and adds support for Cascading Style
Sheets (CSS) and events (user-interface events and tree manipulation events), and
enhances tree manipulations (tree ranges and traversal mechanisms). CSS are a
simple mechanism for adding style (fonts, colors, spacing, and so on) to Web
documents.

= DOM Level 3.0. Currently under development, Level 3.0 will extend Level 2.0 by
finishing support for XML 1.0 with namespaces (alignment with the XML Infoset
and support for XML Base) and will extend the user interface events (keyboard). It
will also add support for abstract schemas (for DTDs and XML schema), and the
ability to load and save a document or an abstract schema. It is exploring further
mixed markup vocabularies and the implications on the DOM API (Embedded
DOM), and it will support XPath.

Difference Between DOM and SAX

The generic APIs for XML can be classified in two main categories:
« Tree-based. The DOM is the primary generic tree-based API for XML.

= Event-based. SAX (Simple API for XML) is the primary generic event-based
programming interface between an XML parser and an XML application.

The DOM works by creating objects. These objects have child objects and properties,
and the child objects have child objects and properties, and so on. Objects are
referenced either by moving down the object hierarchy or by explicitly giving an
HTML element an ID attribute. For example:

Examples of structural manipulations are:
= Reordering elements

= Adding or deleting elements

= Adding or deleting attributes

= Renaming elements

PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features

The default action for the PL/SQL DOM API for XM_.Type (DBMS_XMLDOM) is as
follows:

= Produces a parse tree that can be accessed by DOM APIs.
= The parser is validating if a DTD is found; otherwise, it is non-validating.
= An application error is raised if parsing fails.

= The types and methods described in this document are made available by the
PL/SQL package DBM5S_XM_PARSER.

DTD validation follows the same rules that are exposed for the XML Parser available
through the XDK in Oracle9i release 1(9.0.1). The only difference is that the validation
occurs when the object document is manifested. For example, if lazy manifestation is
used, then the document will be validated when it is used.

10-4 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Oracle XML DB extends the Oracle XML development platform beyond SQL support
for XML text and storage and retrieval of XML data. In this release, you can operate on
XM.Type instances using the DOM in PL/SQL and Java. Thus, you can directly
manipulate individual XML elements and data using the language best suited for your
application or plug-in.

This release has updated the PL/SQL DOM API to exploit a C-based representation of
XML in the server and to operate on XML schema-based XML instances. Oracle

XML DB PL/SQL DOM API for XMLType and Java DOM API for XMLType comply
with the W3C DOM Recommendations to define and implement structured storage of
XML in relational or object-relational columns and as in-memory instances of
XMLType. See "Using PL/SQL DOM API for XMLType: Preparing XML Data" on

page 10-6, for a description of W3C DOM Recommendations.

XML Schema Support

PL/SQL DOM API for XMLType introduces XML schema support. Oracle XML DB
uses annotations within an XML schema as metadata to determine both an XML
document structure and its mapping to a database schema.

Note: For backward compatibility and for flexibility, the PL/SQL
DOM supports both XML schema-based documents and non-
schema-based documents.

When an XML schema is registered with Oracle XML DB, the PL/SQL DOM API for
XM.Type builds an in-memory tree representation of the XML document as a
hierarchy of node objects, each with its own specialized interfaces. Most node object
types can have child node types, which in turn implement additional, more
specialized interfaces. Some node types can have child nodes of various types, while
some node types can only be leaf nodes and cannot have children nodes under them in
the document structure.

Enhanced Performance

Additionally, Oracle XML DB uses the DOM to provide a standard way to translate
data from multiple back-end data sources into XML and vice versa. This eliminates the
requirement to use separate XML translation techniques for the different data sources
in your environment. Applications needing to exchange XML data can use one native
XML database to cache XML documents. Thus, Oracle XML DB can speed up
application performance by acting as an intermediate cache between your Web
applications and your back-end data sources, whether in relational databases or in
disparate file systems.

See Also: Chapter 12, "Java API for XMLType"

Designing End-to-End Applications Using XDK and Oracle XML DB

When you build applications based on Oracle XML DB, you do not need the
additional components in the XDKs. However, you can mix and match XDK
components with Oracle XML DB to deploy a full suite of XML-enabled applications
that run end-to-end. For example, you can use features in XDK for:

= Simple API for XML (SAX) interface processing. SAX is an XML standard interface
provided by XML parsers and used by procedural and event-based applications.

= DOM interface processing for structural and recursive object-based processing.

PL/SQL API for XMLType 10-5

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Oracle XDKs contain the basic building blocks for creating applications that run on the
client, in a browser or plug-in, for example, for reading, manipulating, transforming
and viewing XML documents. To provide a broad variety of deployment options,
Oracle XDKs are also available for Java, Java beans, C, C++, and PL/SQL. Unlike
many shareware and trial XML components, Oracle XDKs are fully supported and
come with a commercial redistribution license.

Oracle XDK for Java consists of these components:

= XML Parsers: Supports Java, C, C++ and PL/SQL, the components create and
parse XML using industry standard DOM and SAX interfaces.

« XSLT Processor: Transforms or renders XML into other text-based formats such as
HTML.

= XML Schema Processor: Supports Java, C, and C++, allows use of XML simple and
complex datatypes.

= XML Class Generator: Automatically generates Java and C++ classes from DTDs
and Schemas to send XML data from Web forms or applications. Class generators
accept an input file and creates a set of output classes that have corresponding
functionality. In the case of the XML Class Generator, the input file is a DTD and
the output is a series of classes that can be used to create XML documents
conforming with the DTD.

= XML Transviewer Java Beans: Displays and transforms XML documents and data
using Java components.

= XML SQL Utility: Supports Java, generates XML documents, DTDs and Schemas
from SQL queries.

= TransXUtility. Loads data encapsulated in XML into the database with additional
functionality useful for installations.

= XSQL Servlet: Combines XML, SQL, and XSLT in the server to deliver dynamic

web content.

See Also: Oracle XML Developer's Kit Programmer’s Guide

Using PL/SQL DOM API for XMLType: Preparing XML Data

To take advantage of the Oracle XML DB DOM APIs, you must follow a few processes
to allow Oracle XML DB to develop a data model from your XML data. This is true for
any language, although PL/SQL is the focus of this chapter. The process you use
depends on the state of your data and your application requirements.

To prepare data for using PL/SQL DOM APIs in Oracle XML DB, you must:

1. Create a standard XML schema if you do not already use one. Annotate the XML
schema with definitions for the SQL objects defined in your relational or
object-relational database.

2. Register your XML schema to generate the necessary database mappings.
You can then:

=« Use XMLType views to wrap existing relational or object-relational data in XML
formats. This enables an XML structure to be created that can be accessed by your
application. See also "Wrapping Existing Data into XML with XMLType Views" on
page 10-8.

« Insert XML documents (and fragments) into XML Ty pe columns.

10-6 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

= Use Oracle XML DB DOM PL/SQL and Java APIs to access and manipulate XML
data stored in XMLType columns and tables.

Creating and registering a standard XML schema allows your compliant XML
documents to be inserted into the database where they can be decomposed, parsed,
and stored in object-relational columns that can be accessed by your application.

Generating an XML Schema Mapping to SQL Object Types

An XML schema must be registered before it can be used or referenced in any context.
When you register an XML schema, elements and attributes declared within it get
mapped to separate attributes within the corresponding SQL object types within the
database schema.

After the registration process is completed, XML documents conforming to this XML
schema, and referencing it with its URL within the document, can be handled by
Oracle XML DB. Tables and columns for storing the conforming documents can be
created for root XML elements defined by this schema.

See Also: Chapter 5, "XML Schema Storage and Query: The
Basics" for more information and examples

An XML schema is registered by using the DBMS_XM._SCHEMA package and by
specifying the schema document and its URL (also known as schema location). The
URL used here is a name that uniquely identifies the registered schema within the
database and need not be the physical URL where the schema document is located.

Additionally, the target namespace of the schema is another URL (different from the
schema location URL) that specifies an abstract namespace within which the elements
and types get declared. An instance of an XML document should specify both the
namespace of the root element and the location (URL) of the schema that defines this
element.

When instances of documents are inserted into Oracle XML DB using path-based
protocols like HTTP or FTP, the XML schema to which the document conforms is
registered implicitly, if its name and location are specified and if it has not been
previously registered.

See Also:
= PL/SQL Packages and Types Reference
= Oracle XML API Reference

DOM Fidelity for XML Schema Mapping

While elements and attributes declared within the XML schema get mapped to
separate attributes within the corresponding SQL object type, some encoded
information in an XML document is not represented directly. In order to guarantee
that the returned XML document is identical to the original document for purposes of
DOM traversals (referred to as DOM fidelity), a binary attribute called SYS_XDBPD$ is
added to all generated SQL object types. This attribute stores all pieces of information
that cannot be stored in any of the other attributes, thereby ensuring DOM fidelity for
XML documents stored in Oracle XML DB.

Data handled by SYS_XDBPDS$ that is not represented in the XML schema mapping
include:

« Comments

PL/SQL API for XMLType 10-7

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

= Namespace declaration

« Prefix information

Note: In this document, the SYS_XDBPD$ attribute has been
omitted in many examples for simplicity. However, the attribute is
always present in SQL object types generated by the
schema-registration process.

Wrapping Existing Data into XML with XMLType Views

To make existing relational and object-relational data available to your XML
applications, you create XMLType views, which provide a mechanism for wrapping
the existing data into XML formats. This exposes elements and entities, that can then
be accessed using the PL/SQL DOM APIs.

You register an XML schema containing annotations that represent the bi-directional
mapping from XML to SQL object types. Oracle XML DB can then create an XM_Type
view conforming to this XML schema.

See Also: Chapter 16, "XMLIype Views"

PL/SQL DOM API for XMLType (DBMS_XMLDOM) Methods

Table 10-1 lists the PL/SQL DOM API for XM_Type (DBM5_XM_DOM methods
supported in this release. Character data (CDATA) refers to the section in an XML
document used to indicate the text that should not be parsed. This allows for the
inclusion of characters that would otherwise have special functions, such as &, <, >,
and so on. CDATA sections can be used in the content of an element or in attributes.

Non-Supported DBMS_XMLDOM Methods in This Release
The following DBM5_XM_DOMmethods are not supported in this release:

« hasFeature

« getDocType

« setDocType

= WwiteExternal DTDToFi |l e

= WwiteExternal DTDToBuffer

= WwiteExternal DTDTod ob

Table 10-1 lists additional methods supported in this release.

Table 10-1 Summary of DBMS_XMLDOM Methods

Group/Method Description

Node methods -

i sNull() Tests if the node is NULL.

makeAttr () Casts the node to an Attribute.
makeCDat aSect i on() Casts the node to a CDataSection.
makeChar act er Dat a() Casts the node to CharacterData.
makeConmrent () Casts the node to a Comment.

10-8 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method

Description

makeDocunent Fragnent ()

Casts the node to a DocumentFragment.

makeDocunent Type()

Casts the node to a Document Type.

makeEl ement ()

Casts the node to an Element.

makeEntity()

Casts the node to an Entity.

makeEnt it yRef erence()

Casts the node to an EntityReference.

makeNot at i on()

Casts the node to a Notation.

makePr ocessi ngl nstruction()

Casts the node to a DOMProcessingInstruction.

makeText ()

Casts the node to a DOMText.

makeDocunent ()

Casts the node to a DOMDocument.

writeToFile()

Writes the contents of the node to a file.

writeToBuffer()

Writes the contents of the node to a buffer.

writeTod ob(

Writes the contents of the node to a clob.

get NodeName(

Retrieves the Name of the Node.

Retrieves the Value of the Node.

set NodeVal ue()

Sets the Value of the Node.

)
)
get NodeVal ue()
(
)

get NodeType(

Retrieves the Type of the node.

get Par ent Node

Retrieves the parent of the node.

Retrieves the children of the node.

()
get Chi | dNodes()
get Fi rstChild()

Retrieves the first child of the node.

get Last Chi I d()

Retrieves the last child of the node.

get Previ ousSi bl i ng()

Retrieves the previous sibling of the node.

get Next Si bl i ng()

Retrieves the next sibling of the node.

get Attributes()

Retrieves the attributes of the node.

get Oaner Docunent ()

Retrieves the owner document of the node.

i nsertBefore()

Inserts a child before the reference child.

repl aceChil d()

Replaces the old child with a new child.

removeChi | d(

Removes a specified child from a node.

(
(
)
)

appendChi | d(Appends a new child to the node.
hasChi | dNodes() Tests if the node has child nodes.
cl oneNode() Clones the node.

Named node map methods

i sNull()

Tests if the NodeMap is NULL.

get Nanedl t em()

Retrieves the item specified by the name.

set Nanedl t em()

Sets the item in the map specified by the name.

removeNaned! t en()

Removes the item specified by name.

item()

Retrieves the item given the index in the map.

get Lengt h()

Retrieves the number of items in the map.

PL/SQL API for XMLType 10-9

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method

Description

Node list methods

i sNull() Tests if the Nodelist is NULL.

item) Retrieves the item given the index in the nodelist.
get Lengt h() Retrieves the number of items in the list.

Attr methods -

i sNull () Tests if the Attribute Node is NULL.

makeNode() Casts the Attribute to a node.

get Qual i fi edName()

Retrieves the Qualified Name of the attribute.

get Nanespace()

Retrieves the NS URI of the attribute.

get Local Nange()

Retrieves the local name of the attribute.

get ExpandedNane()

Retrieves the expanded name of the attribute.

get Nane()

Retrieves the name of the attribute.

get Specifiied()

Tests if attribute was specified in the owning
element.

get Val ue()

Retrieves the value of the attribute.

set Val ue()

Sets the value of the attribute.

CData section methods

i SNul I ()isNull()

Tests if the CDataSection is NULL.

makeNode() makeNode()

Casts the CDatasection to a node.

Character data methods

i sNul'l () Tests if the CharacterData is NULL.
makeNode() Casts the CharacterData to a node.
get Dat a() Retrieves the data of the node.

set Dat a() Sets the data to the node.

get Lengt h()

Retrieves the length of the data.

substringDat a()

Retrieves the substring of the data.

appendDat a()

Appends the given data to the node data.

insertData()

Inserts the data in the node at the given offSets.

del et eDat a()

Deletes the data from the given offSets.

repl aceDat a()

Replaces the data from the given offSets.

Comment methods -
i sNull () Tests if the comment is NULL.
makeNode() Casts the Comment to a node.

DOM implementation methods

i sNull ()

Tests if the DOMImplementation node is NULL.

hasFeat ure()

Tests if the DOM implements a given feature. [Not
supported in this release]

10-10 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method

Description

Document fragment methods

i sNull()

Tests if the DocumentFragment is NULL.

makeNode() Casts the Document Fragment to a node.
Document type methods -

i sNull () Tests if the Document Type is NULL.
makeNode() Casts the document type to a node.

findEntity()

Finds the specified entity in the document type.

findNot ati on()

Finds the specified notation in the document type.

get Publ i cl d()

Retrieves the public ID of the document type.

get System d()

Retrieves the system ID of the document type.

wr i t eExt er nal DTDToFi | e()

Writes the Document Type Definition to a file.

wr i t eExt er nal DTDToBuf f er ()

Writes the Document Type Definition to a buffer.

wr i t eExt er nal DTDToCl ob()

Writes the Document Type Definition to a clob.

get Nane()

Retrieves the name of the Document type.

getEntities()

Retrieves the nodemap of entities in the Document
type.

get Not ati ons()

Retrieves the nodemap of the notations in the
Document type.

Element methods

i sNull()

Tests if the Element is NULL.

makeNode()

Casts the Element to a node.

get Qual i fi edName()

Retrieves the qualified name of the element.

get Nanespace()

Retrieves the NS URI of the element.

get Local Nange()

Retrieves the local name of the element.

get ExpandedNane()

Retrieves the expanded name of the element.

get Chi | drenByTagNang()

Retrieves the children of the element by tag name.

get El ement sByTagNang()

Retrieves the elements in the subtree by element.

resol veNanespacePref i x()

Resolve the prefix to a namespace uri.

get TagNane()

Retrieves the Tag name of the element.

getAttribute()

Retrieves the attribute node specified by the name.

setAttribute()

Sets the attribute specified by the name.

removeAttribute()

Removes the attribute specified by the name.

get Attri but eNode()

Retrieves the attribute node specified by the name.

set Attri but eNode()

Sets the attribute node in the element.

removeAttribut eNode()

Removes the attribute node in the element.

nor mal i ze() Normalizes the text children of the element.
Entity methods -
i sNul'l () Tests if the Entity is NULL.

PL/SQL API for XMLType 10-11

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method

Description

makeNode()

Casts the Entity to a node.

get Publicld()

Retrieves the public Id of the entity.

get System d()

Retrieves the system Id of the entity.

get Not at i onNang()

Retrieves the notation name of the entity.

Entity reference methods

i sNull ()

Tests if the entity reference is NULL.

makeNode()

Casts the Entity reference to NULL.

Notation methods

i sNull()

Tests if the notation is NULL.

makeNode()

Casts the notation to a node.

get Publicld()

Retrieves the public Id of the notation.

get System d()

Retrieves the system Id of the notation.

Processing instruction methods

i sNul'l () Tests if the processing instruction is NULL.
makeNode() Casts the Processing instruction to a node.

get Dat a() Retrieves the data of the processing instruction.

get Tar get () Retrieves the target of the processing instruction.
set Dat a() Sets the data of the processing instruction.

Text methods -

i sNull () Tests if the text is NULL.

makeNode() Casts the text to a node.

splitText() Splits the contents of the text node into 2 text nodes.

Document methods

i sNull() Tests if the document is NULL.
makeNode() Casts the document to a node.
newDOVDocunent () Creates a new document.

freeDocunent ()

Frees the document.

get Versi on()

Retrieves the version of the document.

set Version()

Sets the version of the document.

get Char set ()

Retrieves the Character set of the document.

set Charset ()

Sets the Character set of the document.

get St andal one()

Retrieves if the document is specified as standalone.

set St andal one()

Sets the document standalone.

writeToFile()

Writes the document to a file.

writeToBuffer()

Writes the document to a buffer.

writeTod ob()

Writes the document to a clob.

10-12 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method

Description

wr i t eExt er nal DTDToFi | e()

Writes the DTD of the document to a file. [Not
supported in this release]

wr i t eExt er nal DTDToBuf f er ()

Writes the DTD of the document to a buffer. [Not
supported in this release]

wr i t eExt er nal DTDTod ob()

Writes the DTD of the document to a clob. [Not
supported in this release]

get Doct ype()

Retrieves the DTD of the document.

get | npl ement ati on()

Retrieves the DOM implementation.

get Docunent El ement ()

Retrieves the root element of the document.

creat eEl ement ()

Creates a new element.

creat eDocunent Fragnent ()

Creates a new document fragment.

creat eText Node()

Creates a Text node.

creat eComrent ()

Creates a comment node.

creat eCDATASect i on()

Creates a CDatasection node.

creat eProcessi ngl nstruction()

Creates a processing instruction.

createAttribute()

Creates an attribute.

creat eEntityReference()

Creates an Entity reference.

get El ement sByTagNange()

Retrieves the elements in the by tag name.

adopt Node()

FUNCTI ON adopt Node(doc DOWHocunent,
adopt ednode dommode) RETURN DOWNode;

Adopts the given node: removes it from its owner
document and adds it to the given document.

creat eDocunent ()

FUNCTI ON cr eat eDocunent (nanmspaceURl |N
VARCHAR2, qualifiedName I N VARCHAR?,
doctype IN DOMIype) RETURN DocDocunent;

get Prefix()

FUNCTI ON get Prefi x(n DOMNode) RETURN
VARCHAR?;

set Prefix()

PROCEDURE set Prefix (n DOWNode) RETURN
VARCHARZ;

hasAttributes()

FUNCTI ON hasAttributes (n DOMNode) RETURN
BOOLEAN;

get Nanedl t em()

FUNCTI ON get Nanedl t em (nnm DOVNanmedNodeMap,
name | N VARCHAR2, ns | N VARCHAR2) RETURN
DOWNode;

set Nanedl t em()

FUNCTI ON get Nanedl t em (nnm DOVNanedNodeMap,
arg | N DOWode, ns IN VARCHAR2) RETURN
DOVNode;

removeNaned! t en()

FUNCTI ON r enoveNaned! t em (nnm
DOWNaresNodeMap, nane in VARCHAR2, ns IN
VARCHAR2) RETURN DOWNode;

get Oaner El enent ()

FUNCTI ON get Oamner El ement (a DOVAttr) RETURN
DOMVEl enent ;

PL/SQL API for XMLType 10-13

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

Table 10-1 (Cont.) Summary of DBMS_XMLDOM Methods

Group/Method Description

getAttribute() FUNCTI ON get Attribute (el em DOVEl enent, nanme
IN VARCHAR2, ns | N VARCHAR2) RETURN
VARCHARZ;

hasAttribute() FUNCTI ON hasAttribute (el em DOVEl enent, nane
I'N VARCHAR2) RETURN BOOLEAN,

hasAttribute() FUNCTI ON hasAttribute (el em DOVEl enent, name
IN VARCHAR2, ns | N VARCHAR2) RETURN
BOOLEAN,

setAttribute() PROCEDURE set Attribute (el em DOVEl ement, name
IN VARCHAR2, newal ue I N VARCHAR2, ns IN
VARCHAR?) ;

removeAttribute() PROCEDURE renpveAttribute (el em DOVEl erent,
name | N VARCHAR2, ns | N VARCHAR2);

get Attri but eNode() FUNCTI ON get At tri but eNode(el em DOVEl enent,
nane | N VARCHAR2, ns |N VARCHAR2) RETURN
DOVAt tr;

set Attri but eNode() FUNCTI ON set At tri but eNode(el em DOVEl enent,
newAttr IN DOMAttr, ns IN VARCHAR2) RETURN
DOVAt tr;

creat eEl ement () FUNCTI ON cr eat eEl ement (doc DOVDocunent,
tagname |N VARCHAR2, ns IN VARCHAR2) RETURN
DOVEl enent ;

createAttribute() FUNCTI ON createAttribute (doc DOVDocunent,
nane | N VARCHAR2, ns | N VARCHAR2) RETURN
DOVAt tr;

PL/SQL DOM API for XMLType (DBMS_XMLDOM) Exceptions

The following lists the PL/SQL DOM API for XM_Type (DBVM5_XM.DOM) exceptions.
For more information, see Oracle XML Developer’s Kit Programmer’s Guide.

The exceptions have not changed since the prior release:
« | NDEX_SI ZE_ERR

« DOVSTRI NG _SI ZE_ERR

« H ERARCHY_REQUEST_ERR

= VRONG_DOCUMENT_ERR

« | NVALI D_CHARACTER_ERR

« NO_DATA ALLOVED ERR

= NO_MODI FI CATI ON_ALLOWED_ERR
= NOT_FOUND_ERR

« NOT_SUPPORTED_ERR

« | NUSE_ATTRI BUTE_ERR

10-14 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

PL/SQL DOM API for XMLType: Node Types

In the DOM specification, the term "document" is used to describe a container for
many different kinds of information or data, which the DOM objectifies. The DOM
specifies the way elements within an XML document container are used to create an
object-based tree structure and to define and expose interfaces to manage and use the
objects stored in XML documents. Additionally, the DOM supports storage of
documents in diverse systems.

When a request such as get NodeType(nyNode) is given, it returns myNodeType,
which is the node type supported by the parent node. These constants represent the
different types that a node can adopt:

. ELEMENT NODE
. ATTRI BUTE_NCDE

. TEXT_NODE

. CDATA_SECTI ON_NODE

. ENTI TY_REFERENCE_NCDE

. ENTI TY_NODE

. PROCESSI NG _| NSTRUCTI ON_NCDE
. COVMENT _NODE

. DOCUMENT _NODE

. DOCUMENT _TYPE_NODE

. DOCUMENT _FRAGVENT NODE

. NOTATI ON_NODE

Table 10-2 shows the node types for XML and HTML and the allowed corresponding
children node types.

Table 10-2 XML and HTML DOM Node Types and Corresponding Children Node Types

Node Type

Children Node Types

Docunent

Element (maximum of one), ProcessingInstruction, Comment, DocumentType
(maximum of one)

Docunent Fr agnment

Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Document Type

No children

EntityReference

Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

El ement

Element, Text, Comment, ProcessingInstruction, CDATASection, EntityReference

Attr

Text, EntityReference

Processi ngl nstruction No children
Coment No children
Text No children
CDATASect i on No children
Entity Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference
Not at i on No children

Oracle XML DB DOM API for XMLTy pe also specifies these interfaces:

PL/SQL API for XMLType 10-15

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

= A NodelList interface to handle ordered lists of Nodes, for example:
— The children of a Node

— Elements returned by the get El emrent sBy TagNane method of the element
interface

« A NamedNodeMap interface to handle unordered sets of nodes, referenced by
their name attribute, such as the attributes of an element.

Working with Schema-Based XML Instances

Oracle Database has several extensions for character-set conversion and input and
output to and from a file system. PL/SQL API for XMLType is optimized to operate on
XML schema-based XML instances. Function newDOVDocunent () constructs a DOM
document handle, given an XMLType value.

A typical usage scenario would be for a PL/SQL application to:
1. Fetch or construct an XMLType instance

2. Construct a DOVDocunent node over the XMLType instance
3. Use the DOM API to access and manipulate the XML data

Note: For DOVDocunent , node types represent handles to XML
fragments but do not represent the data itself.

For example, if you copy a node value, DOVDocunent clones the
handle to the same underlying data. Any data modified by one of
the handles is visible when accessed by the other handle. The
XM.Type value from which the DOVDocunent handle is
constructed is the actual data, and reflects the results of all DOM
operations on it.

DOM NodeList and NamesNodeMap Objects

NodeLi st and NamedNodeMap objects in the DOM are active; that is, changes to the
underlying document structure are reflected in all relevant NodeLi st and
NamedNodeMap objects.

For example, if a DOM user gets a NodeLi st object containing the children of an
element, and then subsequently adds more children to that element (or removes
children, or modifies them), then those changes are automatically propagated in the
NodelLi st , without additional action from the user. Likewise, changes to a node in the
tree are propagated throughout all references to that node in NodeLi st and
NamedNodeMap objects.

The interfaces: Text , Conment , and CDATASect i on, all inherit from the
Char act er Dat a interface.

PL/SQL DOM API for XMLType (DBMS_XMLDOM): Calling Sequence

Figure 10-1 illustrates the PL/SQL DOM API for XM_Type (DBM5_XM.DOW) calling
sequence.

You can create a DOM document (DOVDocumnent) from an existing XMLType or as an
empty document.

10-16 Oracle XML DB Developer's Guide

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

1. The newDOVDocunent procedure processes the XMLTYpe or empty document.
This creates a DOVDocunent .

2. You can use the DOM API methods such as cr eat eEl enent , cr eat eText,
createAttribute,and creat eConmrent, and so on, to traverse and extend the
DOM tree. See Table 10-1 for a full list of available methods.

3. The results of these methods (DOVEIl enent , DOMText , and so on) can also be
passed to makeNode to obtain the DOVNode interface.

Figure 10-1 PL/SQL DOM API for XMLType: Calling Sequence

| Createxml | | Select Statement |
vV
XMLType
neWDOMDocumentl | newDOMDocumentl
I (Empty

+ + document)

----------.—-DOMDocument-r---------|
1 1 1 1

|]
1 1 1
CreateEIementl | CreateTextNodel : | CreateAttribute | | CreateCommentl c

1 ' 1 1]
1 :] 1 1
! DOMElement y DOMText 1 ' DOMAttibute ' DOMComment
: Interface y Interface 1 : Interface : Interface

1
[] I- ---y] == a [|
B ommmm e m e mmmmy [] p=e e s s s s wl

DOMNode Interface

PL/SQL DOM API for XMLType Examples

Example 10-1 Creating and Manipulating a DOM Document

This example illustrates how to create a DOVDocument handle for an example element
PERSON:

- This exanple illustrates how to create a DOVDocunent handle for an example
el enent PERSON:

decl are
var XM.Type;
doc dbms_xn dom DOVDocunent ;
ndoc dbns_xni dom DOWNode;
docel em dbms_xm dom DOVEl enent ;
node dbrs_xn dom DOWNode;

chi |l dnode dbms_xm dom DOMNode;
nodel i st dbns_xn dom DOWNodel i st ;
buf var char 2(2000) ;
begin
var := xm type(' <PERSON> <NAME> ranesh </ NAVE> </ PERSON>') ;

PL/SQL API for XMLType 10-17

PL/SQL DOM AP for XMLType (DBMS_XMLDOM)

- Create DOVDocunent handl e:
doc : = dbns_xm dom newDOVDocunent (var);
ndoc = dbns_xnl dom makeNode(doc) ;

dbns_xm dom wri t et obuf fer (ndoc, buf);
dbns_out put . put _l'i ne(' Before:' || buf);

docel em : = dbnms_xm dom get Docunent El enent (doc);

- Access el enent:
nodel i st := dbms_xm dom get El enent sByTagName(docel em ' NAME') ;
node : = dbms_xm domitenm(nodelist, 0);
chil dnode : = dbnms_xm dom get Fi r st Chi | d(node);

- Mani pul ate:
dbns_xm dom set NodeVal ue(chi |l dnode, 'raj');

dbns_xm dom writ et obuf f er (ndoc, buf);
dbns_out put. put _line(" After:'||buf);
end;
/

Example 10-2 Creating a DOM Document Using sys.xmltype
This example creates a DOM document from an XML Ty pe value:

decl are
doc dbms_xm dom DOVDocunent ;

buf varchar2(32767);

begin
- new docunent
doc : = dbns_xnl dom newDOVDocunent (sys. xm t ype(' <per son> <name>Scot t </ name>
</ person>'));
dbms_xm dom writ eToBuf f er (doc, buf);
dbms_out put . put _I i ne(buf);
end;
/

Example 10-3 Creating an Element Node
- This exanple creates an el ement node starting froman enpty DOM docunent:

decl are
doc dbms_xm dom DOVDocunent ;
el em dbms_xm dom DOVEl enent ;
nel em dbns_xn dom DOVNode;

begin
-- new docunent
doc : = dbns_xn dom newDOVDocunent ;

- create a el ement node
el em : = dbns_xm dom creat eEl enent (doc, ' ELEM);

- make node
nel em : = dbns_xm dom nakeNode(el en) ;
dbms_out put . put _l'i ne(' Node name = '| | dbnms_xn dom get NodeNane(nel em));

dbms_out put . put _l'i ne(' Node value = "||
dbms_xm dom get NodeVal ue(nel em);
dbns_out put. put _l i ne(' Node type = '||dbms_xm dom get NodeType(nel em));

10-18 Oracle XML DB Developer's Guide

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

end;

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

XML documents are made up of storage units, called entities, that contain either parsed
or unparsed data. Parsed data is made up of characters, some of which form character
data and some of which form markup. Markup encodes a description of the document
storage layout and logical structure. XML provides a mechanism for imposing
constraints on the storage layout and logical structure.

A software module called an XML parser or processor reads XML documents and
provides access to their content and structure. An XML parser usually does its work
on behalf of another module, typically the application.

PL/SQL Parser API for XMLType: Features
In general, PL/SQL Parser API for XML Ty pe (DBM5_XM.PARSER) performs the

following tasks:

= Builds a result tree that can be accessed by PL/SQL APIs

= Raises an error if the parsing fails

Table 10-3 lists the PL/SQL Parser API for XML Type (DBM5_XM_PARSER) methods.

Table 10-3 DBMS_XMLPARSER Methods

Method

Arguments, Return Values, and Results

par se

Argument: (ur |

VARCHAR?)

Result: Parses XML stored in the given URL or file and
returns the built DOM Document

newPar ser

Returns: A new parser instance

par se

Argument: (p Parser, url VARCHARZ)
Result: Parses XML stored in the given URL or file

par seBuf f er

Argument: (p Parser, doc VARCHAR2)
Result: Parses XML stored in the given buffer

parseC ob

Argument: (p Parser, doc CLOB)
Result: Parses XML stored in the given CLOB

par seDTD

Argument: (p Parser, url VARCHARZ2, r oot

VARCHAR?)

Result: Parses XML stored in the given URL or file

par seDTDBuf f er

Argument: (p Parser, dtd VARCHARZ2, r oot

VARCHAR?)

Result: Parses XML stored in the given buffer

par seDTDC ob

Argument: (p Parser, dtd CLOB, root

VARCHAR?)

Result: Parses XML stored in the given clob

set BaseDir

Argument: (p Parser, dir VARCHARZ)

Result: Sets base directory used to resolve relative

URLSs

PL/SQL API for XMLType 10-19

PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

Table 10-3 (Cont.) DBMS_XMLPARSER Methods

Method Arguments, Return Values, and Results

showar ni ngs Argument: (p Parser, yes BOCOLEAN)

Result: Turns warnings on or off

setErrorLog Argument: (p Parser, fileName VARCHAR2)

Result: Sets errors to be sent to the specified file

set PreserveWi t espace Argument: (p Parser,yes BOOLEAN)

Result: Sets white space preserve mode

set Val i dat i onMbde Argument: (p Parser,yes BOOLEAN)

Result: Sets validation mode

get Val i dat i onMbde Argument: (p Parser)

Result: Gets validation mode

set Doct ype [Not supported.]
Argument: (p Parser,dtd DOVDocument Type)
Result: Sets DTD

get Doct ype [Not supported.]
Argument: (p Par ser)
Result: Gets DTD

get Docunent Argument: (p Parser)
Result: Gets DOM document

freeParser Argument: (p Par ser)

Result: Frees a Parser object

PL/SQL Parser API for XMLType (DBMS_XMLPARSER): Calling Sequence

Figure 10-2 illustrates the PL/SQL Parser for XML Ty pe (DBM5_XM_PARSER) calling
sequence:

1. newParser method can be used to construct a Parser instance.

2. XML documents can then be parsed using the Parser with methods such as
par seBuf f er, par seCl ob, par se(URl) , and so on. See Table 10-3 for a full list
of Parser methods.

3. Anerror is raised if the input is not a valid XML document.

4. To use the PL/SQL DOM API for XM_Type on the parsed XML document
instance, you must call get Docunent on the Parser to obtain a DOVDocumnment
interface.

10-20 Oracle XML DB Developer's Guide

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

Figure 10-2 PL/SQL Parser API for XMLType: Calling Sequence

newParser

Parser

| parseBufferl | parse (URI)|

getDocument

DOMDocument

PL/SQL Parser API for XMLType Example

Example 10-4 Parsing an XML Document

This example parses a simple XML document and enables DOM APIs to be used.

decl are
i ndoc VARCHAR2(2000) ;
i ndondoc dbns_xn dom donmdocunent ;
i nnode dbrms_xm dom dommode;
myPar ser dbrs_xn par ser. Par ser;
begin
indoc :='<enp><name> Scott </name></enmp>';
nmyParser := dbnms_xnl par ser. newPar ser;
dbms_xm par ser . par seBuf f er (nyPar ser, indoc);
i ndondoc : = dbns_xni par ser. get Document (nyPar ser);
i nnode : = dbns_xnl dom makeNode(i ndondoc) ;
- DOM APl's can be used here
end;

/

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

W3C XSL Recommendation describes rules for transforming a source tree into a result
tree. A transformation expressed in eXtensible Stylesheet Language Transformation
(XSLT) is called an XSL style sheet. The transformation specified is achieved by
associating patterns with templates defined in the XSLT style sheet. A template is
instantiated to create part of the result tree.

Enabling Transformations and Conversions with XSLT

The Oracle XML DB PL/SQL DOM API for XM_Type also supports eXtensible
Stylesheet Language Transformation (XSLT). This enables transformation from one
XML document to another, or conversion into HTML, PDF, or other formats. XSLT is
also widely used to convert XML to HTML for browser display.

The embedded XSLT processor follows eXtensible Stylesheet Language (XSL)
statements and traverses the DOM tree structure for XML data residing in XML Ty pe.
Oracle XML DB applications do not require a separate parser as did the prior release

PL/SQL API for XMLType 10-21

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

XML Parser for PL/SQL. However, applications requiring external processing can still
use the XML Parser for PL/SQL first to expose the document structure.

Note: The PL/SQL package DBMS_XSLPROCESSCR provides a
convenient and efficient way of applying a single style sheet to
multiple documents. The performance of this package will be better
than t r ansf or n() because the style sheet will be parsed only
once.

Note: The XML Parser for PL/SQL in Oracle XDK parses an XML
document (or a standalone DTD) so that the XML document can be
processed by an application, typically running on the client.
PL/SQL APIs for XMLType are used for applications that run on
the server and are natively integrated in the database. Benefits
include performance improvements and enhanced access and
manipulation options.

See Also:
= Appendix D, "XSLT Primer"
= Chapter 8, "Transforming and Validating XMLType Data"

PL/SQL XSLT Processor for XMLType: Features

PL/SQL XSLT Processor for XMLTy pe (DBMS_XSLPROCESSOR) is the Oracle XML DB
implementation of the XSL processor. This follows the W3C XSLT final
recommendation (REC-xslt-19991116). It includes the required action of an XSL
processor in terms of how it must read XSLT style sheets and the transformations it
must achieve.

The types and methods of PL/SQL XSLT Processor are made available by the PL/SQL
package, DBMS_XSLPROCESSOR

PL/SQL XSLT Processor APl (DBMS_XSLPROCESSOR): Methods

The methods in PL/SQL XSLT Processor API (DBM5_XSLPROCESSOR) use two
PL/SQL types specific to the XSL Processor implementation. These are the
Processor type and the St yl esheet type.

Table 104 lists PL/SQL XSLT Processor (DBM5_XSLPROCESSCOR) methods.

Note: There is no space between the method declaration and the
arguments, for example: pr ocessXSL(p Processor, ss
Styl esheet, xm doc DOVDocunent)

10-22 Oracle XML DB Developer's Guide

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

Table 10-4 DBMS_XSLPROCESSOR Methods

Method Argument or Return Values or Result

newPr ocessor Returns: a new processor instance

processXSL Argument: (p Processor, ss Stylesheet, xm doc DOVDocurnent)
Result: Transforms input XML document using given DOMDocument and style
sheet

processXSL Argument: (p Processor, ss Styl esheet, xm doc
DOvDocunent Fr agnment)
Result: Transforms input XML document using the given
DOVDocument Fr agnent and style sheet

showWar ni ngs Argument: (p Processor, yes BOOLEAN)

Result: Turn warnings on or off

setErrorlLog

Argument: (p Processor, Filename VARCHAR2)

Result: Sets errors to be sent to the specified file

NewsSt yl esheet

Argument: (| nput VARCHAR2, Reference VARCHAR2)

Result: Sets errors to be sent to the specified file

transf or mNode Argument: (n DOVNode, ss Styl esheet)
Result: Transforms a node in a DOM tree using the given style sheet
sel ect Nodes Argument: (n DOWNode, pattern VARCHAR?)

Result: Selects nodes from a DOM tree that match the given pattern

sel ect Si ngl eNodes

Argument: (n DOVWNode, pattern VARCHAR?2)

Result: Selects the first node from the tree that matches the given pattern

val ueOf Argument: (n DOVNode, pattern VARCHAR2)
Result: Retrieves the value of the first node from the tree that matches the given
pattern

set Param Argument: (ss Styl esheet, name VARCHAR2, val ue VARCHARZ)

Result: Sets a top level paramter in the given style sheet

removePar am

Argument: (ss Styl esheet, name VARCHAR2)

Result: Removes a top-level style-sheet parameter

Reset Par ans

Argument: (ss Styl esheet)

Result: Resets the top-level style-sheet parameters

freeStyl esheet

Argument: (ss Styl esheet)
Result: Frees the given St yl esheet object

freeProcessor

Argument: (p Processor)
Result: Frees the given Pr ocessor object

PL/SQL Parser API for XMLType (DBMS_XSLPROCESSOR): Calling Sequence

Figure 10-3 illustrates the XSLT Processor for XML Ty pe (DBMS_XSLPROCESSOR)
calling sequence:

1. An XSLT Processor can be constructed using the method newPr ocessor .
2. Tobuild a St yl esheet from a DOM document, use method newSt yl esheet .

3. Optionally, you can set parameters to the St yl esheet using the call set Par ans.

PL/SQL API for XMLType 10-23

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

4. The XSLT processing can then be executed with the call pr ocessXSL using the
processor and St y| esheet created in Steps 1 - 3.

5. Pass the XML document to be transformed to the call pr ocessXSL.

6. The resulting DOVDocunent Fr agnment interface can be operated on using the
PL/SQL DOM API for XM_Type.

Figure 10-3 PL/SQL XSLT Processor for XMLType: Calling Sequence

XSL Document

l(DOMDocument)
| newProcessorl | neWStersheet |
Processor Stylesheet xmldoc
(DOMDocument)

setParams

N

ProcessXSL

DOMDocumentFragment Interface

DOMNode Interface

PL/SQL XSLT Processor for XMLType Example

Example 10-5 Transforming an XML Document Using an XSL Style Sheet

This example transforms an XML document by using the pr ocessXSL() call. Expect
the following output (XML with tags ordered based on tag name):

<erT‘p>
<enmpno>1</ enpno>
<f name>r obert </ f nane>
<j ob>engi neer </ j ob>
<l name>smi t h</ | nane>
<sal >1000</ sal >

</ enp>

decl are
i ndoc VARCHAR2(2000) ;
xsl doc VARCHAR2(2000) ;

myPar ser dbms_xn par ser. Par ser;
i ndondoc dbrs_xm dom dondocunent ;
xsl tdomdoc dbms_xm dom dondocurnent ;

xsl dbms_xsl processor. styl esheet ;
out dondocf dbms_xm dom dondocunent f ragnent ;
out node dbns_xn dom dommode;

proc dbrs_xsl processor. processor;

10-24 Oracle XML DB Developer's Guide

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

buf var char 2(2000) ;
begin

i ndoc ;= ' <enp><enpno> 1</ enpno> <fnane> robert </fname> <I name>
smi t h</I nane> <sal >1000</ sal > <j ob> engi neer </job> </enp>';

xsl doc =

"<?xm version="1.0"?>
<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni >
<xsl : out put encodi ng="utf-8"/>
<!-- al phabetizes an xm tree -->
<xsl:tenplate match="*">
<xsl : copy>
<xsl:apply-tenpl ates select="*|text()">
<xsl:sort select="nanme(.)" data-type="text" order="ascending"/>
</ xsl : appl y-tenpl at es>
</ xsl : copy>
</xsl:tenpl ate>
<xsl:tenplate match="text()">
<xsl :val ue-of sel ect="nornalize-space(.)"/>
</xsl:tenpl ate>
</ xsl :styl esheet>';

myPar ser := dbns_xnl par ser. newPar ser;

dbns_xm par ser. par seBuf f er (myPar ser, indoc);

i ndondoc := dbns_xm parser. get Docunent (nyPar ser);
dbms_xm par ser . par seBuf f er (nyPar ser, xsldoc);

xsl tdomdoc : = dbns_xni par ser. get Docunent (myPar ser) ;
xsl = dbns_xsl processor. newst yl esheet (xsl t dondoc, '");
proc = dbns_xsl processor. newPr ocessor ;

--apply stylesheet to DOM docunent
out dondocf := dbms_xsl processor. processxsl (proc, xsl, indondoc);
out node : = dbns_xnl dom nmakenode(out dondocf);
- PL/SQL DOM APl for XM.Type can be used here

dbns_xm dom wri t et obuf f er (out node, buf);
dbns_out put . put _I i ne(buf);

end;

/

PL/SQL API for XMLType 10-25

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

10-26 Oracle XML DB Developer's Guide

11

DBMS_XMLSTORE

This chapter introduces you to the PL/SQL package DBMS_XM_STORE. This package is
used to insert, update, and delete data from XML documents in object-relational
tables.

This chapter contains these topics:

= Overview of DBMS_XMLSTORE

= Using DBMS_XMLSTORE

= Insert Processing with DBMS_XMLSTORE

= Update Processing with DBMS_XMLSTORE
= Delete Processing with DBMS_XMLSTORE

Overview of DBMS_XMLSTORE

The DBM5S_XM_STORE package enables DML operations to be performed on relational
tables using XML. It takes a canonical XML mapping, similar to the one produced by
DBMS_XMLCEN, converts it to object relational constructs, and inserts, updates or
deletes the value from relational tables.

The functionality of the DBMS_XM_STORE package is similar to that of the DBMS_
XMLSAVE package which is part of the Oracle XML SQL Utility. There are, however,
several key differences: DBMS_XM_STCORE is written in C and compiled into the kernel
and hence provides higher performance.

= DBM5_XM.STORE uses SAX to parse the input XML document and hence has
higher scalability and lower memory requirements. DBMS_XM_STORE allows input
of XMLType in addition to CLOBs and VARCHAR.

= While DBM5_XM_SAVE is a wrapper around a Java class, DBM5_XM_STORE is
implemented in C inside the database. This should significantly improve
performance.

= DBM5S_XM.STORE uses SAX parsing of the incoming XML documents, which
provides much greater scalability than the DOM parsing used in DBMS_XM_SAVE.

« Theinsert XM.(),updat eXM_(), and del et eXM_() functions, which are also
present in DBMS_XM_SAVE, have been enhanced in DBMS_XM_STORE to take
XM.Types in addition to CLOBs and strings. This provides for better integration
with Oracle XML DB functionality.

DBMS_XMLSTORE 11-1

Using DBMS_XMLSTORE

Using DBMS_XMLSTORE

To use DBM5_XMLSTORE follow these steps:

Create a context handle by calling the DBM5_XM_.STORE. newCont ext () function
and supplying it with the table name to use for the DML operations. For case
sensitivity, double-quote the string which is passed to the function.

By default, XML documents are expected to identify rows with the <ROW> tag.
This is the same default used by DBM5_XM_GEN when generating XML. This may
be overridden by calling the setRowTag function.

For Inserts: You can set the list of columns to insert using the set Updat eCol urm
function for each column. This is highly recommended since it will improve
performance. The default is to insert values for all the columns whose
corresponding elements are present in the XML document.

For Updates: You must specify one or more key columns using the

set KeyCol umm function. The key columns are used to specify which rows are to
be updated, like the where clause in a SQL update statement. For example, if you
set EMPLOYEE_| Das a key column, and the XML document contains
"<EMPLOYEE_| D>2176</ EMPLOYEE_| D>", then rows where EMPLOYEE_| D
equals 2176 are updated. The list of update columns can also be specified and is
recommended for performance. The default is to update all the columns whose
corresponding elements are present in the XML document.

For Deletes: Key columns may be set to specify which columns are used for the
where clause. The default is for all columns present to be used. Specifying the
columns is recommended for performance.

Provide a document to one of i nsert XM, updat eXM., or del et eXM_.
This last step may be repeated multiple times, with several XML documents.

Close the context with the cl oseCont ext function.

Insert Processing with DBMS_XMLSTORE

To insert an XML document into a table or view, simply supply the table or the view
name and then the document. DBM5_XM_STORE parses the document and then creates
an INSERT statement into which it binds all the values. By default, DBMS_XM_STORE
inserts values into all the columns represented by elements in the XML document. The
following example shows you how the XML document generated from the Employees

11-2

table, can be stored in the table with relative ease.

Example 11-1 Inserting data with specified columns

DECLARE
insCtx DBMS_XM.Store. ctxType;
rows NUMBER;
xm doc CLOB : =
' <ROWBET>
<ROW nun¥"1">
<EMPNO>7369</ EMPNO>
<SAL>1800</ SAL>
<H REDATE>27- AUG 1996</ H REDATE>
</ ROW
<ROW
<EMPNC>2290</ EMPNO>
<SAL>2000</ SAL>

<H REDATE>31- DEC- 1992</ H REDATE>

Oracle XML DB Developer's Guide

Update Processing with DBMS_XMLSTORE

</ RON
</ RONBET>" ;
BEG N
insCtx := DBMS_XM.Store. newContext ('scott.enp'); -- get saved context
DBVS_XM.St or e. ¢l ear Updat eCol umLi st (insCtx); -- clear the update settings

- set the colums to be updated as a Iist of values
DBVS_XML.St or e. set Updat eCol um(i nsCt x, ' EMPNO) ;
DBMS_XMLSt or e. set Updat eCol utm(i nsCtx, ' SAL') ;
DBVS_XM.St or e. set Updat ecol um(i nsCt x, ' H REDATE') ;

- Now insert the doc.

- This will only insert into EMPNO, SAL and HI REDATE col urms
rows := DBMS_XM.Store.insert XM (insCtx, xm Doc);

- O ose the context
DBVS_XML.St or e. cl oseCont ext (i nsSCtx) ;

END;
/

Update Processing with DBMS_XMLSTORE

Now that you know how to insert values into the table from XML documents, let us
see how to update only certain values. If you get an XML document to update the
salary of an employee and also the department that she works in:

<RONBET>
<ROW nun¥"1">
<EMPNC>7369</ EMPNO>
<SAL>1800</ SAL>
<DEPTNO>30</ DEPTNC>
</ RON
<ROW
<EMPNG>2290</ EMPNO>
<SAL>2000</ SAL>
<H RE_DATE>31- DEC- 1992</ Hl RE_DATE>
<l-- additional rows ... -->
</ RONBET>

you can call the update processing to update the values. In the case of update, you
need to supply the list of key column names. These form part of the WHERE clause in
the UPDATE statement. In the enpl oyees table shown earlier, the employee number
EMPLOYEE_| D column forms the key that you use for updates.

Example 11-2 Updating Data With Key Columns
Consider the following PL/SQL procedure:

CREATE OR REPLACE PROCEDURE testUpdate (xm Doc IN CLOB) IS
updCt x DBVS_XML.St or e. ct xType;

rows NUMBER;

BEG N
updCt x : = DBMS_XM.St ore. newContext (' scott.enp'); -- get the context
DBMS_XMLSt or e. cl ear Updat eCol ummLi st (updCt x) ; -- clear the update settings
DBMS_XMLSt or e. set KeyCol um(updCt x, ' EMPNO) ; -- set EMPNO as key col um
rows := DBMS_XM.Store. updat eXM_(updCt x, xm Doc) ; -- update the table
DBMS_XMLSt or e. ¢l oseCont ext (updCt x) ; -- close the context

END;

/

In this example, when the procedure is executed with a CLOB value that contains the
document described earlier, two UPDATE statements are generated. For the first ROW

DBMS_XMLSTORE 11-3

Delete Processing with DBMS_XMLSTORE

element, you would generate an UPDATE statement to update the SALARY and JOB_
| Dfields as follows:

UPDATE scott.enp SET SAL = 1800 AND DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROWNelement:
UPDATE scott.enp SET SAL = 2000 AND H REDATE = 12/31/1992 WHERE EMPNO = 2290;

Delete Processing with DBMS_XMLSTORE

For deletes, you can set the list of key columns. These columns are used in the WHERE
clause of the DELETE statement. If the key column names are not supplied, then a new
DELETE statement is created for each ROWelement of the XML document where the

list of columns in the WHERE clause of the DELETE matches those in the ROWelement.

Example 11-3 Simple deleteXML Example
Consider the following PL/SQL example:

CREATE OR REPLACE PROCEDURE testDel ete(xm Doc IN CLOB) IS
del Ctx DBMS_XM.Store. ctxType;
rows NUMBER;

BEG N
del Ctx := DBMS_XM.Store. newContext('scott.enp');
DBVS_XM.St or e. set KeyCol um(del Gt x, ' EMPNO) ;
rows := DBMS_XM.Store. del et eXM.(del Ctx, xnl Doc);
DBVS_XM.St or e. ¢l oseCont ext (del Ct x) ;

END;

/

If you use the same XML document as in the preceding update example, you end up
with the following two DELETE statements:

DELETE FROM scott. enp WHERE EMPNO=7369;

DELETE FROM scott. enp WHERE EMPNO=2200;

The DELETE statements are formed based on the tag names present in each ROV
element in the XML document.

11-4 Oracle XML DB Developer's Guide

12

Java API for XMLType

This chapter describes how to use XMLType in Java, including fetching XMLType data
through JDBC.

This chapter contains these topics:

« Introducing Java DOM API for XMLType

=« Java DOM API for XMLIype

« Loading a Large XML Document into the Database With JDBC
= Java DOM API for XMLType Features

= Java DOM API for XMLIype Classes

Introducing Java DOM API for XMLType

Oracle XML DB supports the Java Document Object Model (DOM) Application
Program Interface (API) for XMLType. This is a generic API for client and server, for
both XML schema-based and non- schema-based documents. It is implemented using
the Java package or acl e. xdb. dom DOM is an in-memory tree-based object
representation of XML documents that enables programmatic access to their elements
and attributes. The DOM object and interface are part of a W3C recommendation.
DOM views the parsed document as a tree of objects.

To access XMLType data using JDBC use the class or acl e. xdb. XMLType.
For XML documents that do not conform to any XML schema, you can use the Java
DOM API for XMLType because it can handle any valid XML document.

See Also:

« Oracle XML API Reference

« Appendix E, "Java APIs: Quick Reference"

Java DOM API for XMLType

Java DOM API for XMLType handles all kinds of valid XML documents irrespective of
how they are stored in Oracle XML DB. It presents to the application a uniform view of
the XML document irrespective of whether it is XML schema-based or non-
schema-based, whatever the underlying storage. Java DOM API works on client and
server.

As discussed in Chapter 10, "PL/SQL API for XMLType", the Oracle XML DB DOM
APIs are compliant with W3C DOM Level 1.0 and Level 2.0 Core Recommendation.

Java API for XMLType 12-1

Java DOM API for XMLType

Java DOM API for XMLType can be used to construct an XMLTy pe instance from data
encoded in different character sets. It also provides a new get Bl obVal () method to
retrieve the XML contents in the requested character set.

See Also: Appendix E, "Java APIs: Quick Reference"

Accessing XML Documents in Repository

Oracle XML DB resource API for Java API allows Java applications to access XML
documents stored in the Oracle XML DB repository. Naming conforms to the Java
binding for DOM as specified by the W3C DOM Recommendation. Oracle XML DB
repository hierarchy can store both XML schema-based and non- schema-based
documents.

See Also: Chapter 22, "Java Access to Repository Data Using
Resource API for Java"

Accessing XML Documents Stored in Oracle Database (Java)

Oracle XML DB provides the following way (part of the Java Resource APIs) for Java
applications to access XML data stored in a database:

Using JDBC to Access XMLType Data

This is a SQL-based approach for Java applications for accessing any data in Oracle
Database, including XML documents in Oracle XML DB. Use the
oracl e. xdb. XMLType class, cr eat eXM_() method.

How Java Applications Use JDBC to Access XML Documents in Oracle XML DB

JDBC users can query an XMLType table to obtain a JDBC XM_Type interface that
supports all methods supported by the SQL XMLType data type. The Java (JDBC) API
for XMLType interface can implement the DOM document interface.

Example 12-1 XMLType Java: Using JDBC to Query an XMLType Table
The following is an example that illustrates using JDBC to query an XMLType table:

inport oracl e. xdb. XM.Type;

O acl ePreparedSt at ement stnt = (Oracl ePreparedSt at enent)
conn. prepareSt at ement ("sel ect e.poDoc frompo_xm _tab e");
Result Set rset = stnt.executeQuery();
Oracl eResul t Set orset = (Oracl eResul tSet) rset;

whi | e(orset. next())

{
Il get the XM.Type

XM.Type poxm = XM.Type. creat eXM (orset. get OPAQUE(1));
Il get the XM.Docunment as a string...
Docunent podoc = (Docunent)poxm . get DOM);

}

Example 12-2 XMLType Java: Selecting XMLType Data
You can select the XMLType data in JDBC in one of two ways:

« Usethegetd obVal (), getStringVal () orget Bl obVal (csi d) in SQL and
get the result as an or acl e. sql . CLOB, java.lang. Stringor

12-2 Oracle XML DB Developer's Guide

Java DOM API for XMLType

oracl e. sql . BLOBin Java. The following Java code snippet shows how to do
this:

Driver Manager. regi sterDriver(new oracle.jdbc.driver.OacleDriver());

Connection conn =
Driver Manager . get Connection("jdbc: oracle:oci 8: @, "scott", "tiger");

Oracl ePreparedSt atement stnt =
(Oracl ePreparedStatement) conn. prepareSt at enent (
"sel ect e.poDoc. get dobVal () poDoc, "+
"e.poDoc. get StringVal () poString "+
" frompo_xm tab e");

Resul t Set rset = stnt.executeQuery();
Oracl eResul t Set orset = (Oracl eResul t Set) rset;

whi | e(orset. next())

{
[l the first argunent is a CLOB

oracle.sql.CLOB clb = orset.getCLOB(1);

/I the second argument is a string..
String poString = orset.getString(2);

/1 now use the CLOB inside the program

}

= Useget OPAQUE() callin the Prepar edSt at enent to get the whole XMLType
instance, and use the XMLType constructor to construct an
or acl e. xdb. XMLType class out of it. Then you can use the Java functions on the
XML_Type class to access the data.

i nport oracl e. xdb. XM_Type;

O acl ePreparedStatement stnt =
(Oracl ePreparedStatenent) conn. prepareSt at ement (
"sel ect e.poDoc frompo_xm _tab e");

Resul t Set rset = stnt.executeQuery();
Oracl eResul t Set orset = (Oracl eResul t Set) rset;

/1 get the XM.Type
XM.Type poxm = XM.Type(orset.get OPAQUE(1));

Il get the XML as a string...
String poString = poxnl.getStringVal ();

Example 12-3 XMLType Java: Directly Returning XMLType Data

This example shows the use of get Cbj ect to directly get the XMLType from the
Resul t Set . This code snippet is the easiest way to get the XMLType from the
Resul t Set .

i nport oracl e. xdb. XM_Type;
PreparedStatement stnt = conn. prepareSt at enent (

"sel ect e.poDoc frompo_xm _tab e");
Resul t Set rset = stnt.executeQuery();

Java API for XMLType 12-3

Java DOM API for XMLType

whil e(rset.next())

{
/1 get the XM.Type

XM.Type poxm = (XM.Type)rset. get Chject(1);

/1 get the XML as a string...
String poString = poxm .getStringVal ();
}

Example 12-4 XMLType Java: Returning XMLType Data and Registering the Output
Parameter as XMLType

This example illustrates how to bind an OUT variable of XMLType to a SQL statement.

public void doCall (String[] args)
throws Exception

{

[l create or replace function getPurchaseCr der(reference varchar?2)
[l return XM.Type

Il as

Il xm XM.Type;

/1 begin

Il sel ect val ue(p)
/1 into xn

Il f r om PURCHASEORDER p

Il where extractVal ue(val ue(p),'/PurchaseOr der/Reference') = reference;
11 return xn;

Il end;

String SQLTEXT = "{? = call

get Pur chaseOr der (' BLAKE- 2002100912333601PDT")} ";
Cal | abl eSt atenent sql Statenent = null;
XM.Type xm = nul | ;

super . doSonet hi ng(args);
creat eConnection();
try
{
Systemout.printin("SQ :=" + SQTEXT);
sql Statement = get Connection(). prepareCal | (SQLTEXT);
sqgl Stat enent . regi sterQut Paranmeter (1, OracleTypes. OPAQUE, " SYS. XMLTYPE") ;
sql St at ement . execut e();
xm = (XM.Type) sql Statement.get Chject(1);
Systemout. println(xm.getStringVal ());
}
catch (SQLException SQLe)
{
if (sqlStatement != null)
{
sql Statenent. cl ose();
throw SQLe;
}
}

Using JDBC to Manipulate XML Documents Stored in a Database
You can also update, insert, and delete XM_Type data using JDBC.

12-4 Oracle XML DB Developer's Guide

Java DOM API for XMLType

Note: extract(),transform(),and exi st sNode() methods
only work with the Thick JDBC driver.

Not all or acl e. xdb. XM_Type functions are supported by the
Thin JDBC driver. However, if you do not use

or acl e. xdb. XMLType classes and OCI driver, you could loose
performance benefits associated with the intelligent handling of
XML.

Example 12-5 XMLType Java: Updating, Inserting, or Deleting XMLType Data

You can insert an XMLType in Java in one of two ways:

= Bind a CLOB or a string to an | NSERT or UPDATE or DELETE statement, and use
the XMLType constructor inside SQL to construct the XML instance:

Oracl ePreparedStatenent stnt =
(Oracl ePreparedStatenent) conn. prepareSt at enent (
"update po_xm _tab set poDoc = XM.Type(?) ");

/] the second argument is a string..
String poString = "<PO><PONO>200</ PONO><PNAME>PO 2</ PNAMVE></ PO>";

/'l now bind the string..
stnt.setString(l, poString);
stnt.execute();

« Usetheset Obj ect () orset OPAQUE() call in the Pr epar edSt at enent to set
the whole XM_Ty pe instance:

i nport oracl e. xdb. XM_Type;

Oracl ePreparedStatement stnt =
(Oracl ePreparedStatenent) conn. prepareSt at enent (
"update po_xm _tab set poDoc = ? ");

/] the second argument is a string
String poString = "<PO><PONO>200</ PONCG><PNAVE>PO_2</ PNAVE></ PO>";
XM.Type poXM. = XM.Type. createXM.(conn, poString);

/1 now bind the string..
stnt.set Cbj ect (1, poXWM);
stnt. execute();

Example 12-6 XMLType Java: Getting Metadata on XMLType

When selecting out XMLType values, JDBC describes the column as an OPAQUE type.
You can select the column type name out and compare it with "XMLTYPE" to check if
you are dealing with an XMLType:

inport oracle.sql.*;
inport oracle.jdbc.*;

Oracl ePreparedStatement stnt =
(Oracl ePreparedSt atenent) conn. prepar eSt at enent (
"sel ect poDoc from po_xm _tab");

Oracl eResul t Set rset = (Oracl eResul t Set) stnt. exuecut eQuery();

/1 Now, we can get the resultset netadata

Java API for XMLType 12-5

Java DOM API for XMLType

Oracl eResul t Set Met aDat a ndata =
(Oracl eResul t Set Met aDat a) r set . get Met aDat a() ;

/I Describe the colum = the colum type comes out as OPAQUE
/1 and colum type name comes out as XM.TYPE
i f (ndata. get Col umType(1) == O acl eTypes. OPAQUE &&

mdat a. get Col urmTypeNane(1) . conpar eTo(" SYS. XML.TYPE") == 0)
{

/1 we know it is an XM.type
}

Example 12-7 XMLType Java: Updating an Element in an XMLType Column

This example updates the di scount element inside PurchaseOrder stored in an
XM_Type column. It uses Java (JDBC) and the or acl e. xdb. XM_Type class. This
example also shows you how to insert, update, or delete XML Ty pes using Java (JDBC).
It uses the parser to update an in-memory DOM tree and write the updated XML
value to the column.

- create po_xnl _hist table to store ol d PurchaseOrders
create table po_xm _hist (

xpo XM.Type

);

/*
DESCRI PTI ON
Exampl e for oracle. xdb. XM.Type

NOTES
Have classes12.zip, xmparserv2.jar, and xdb.jar in CLASSPATH

*|

inport java.sql.*;
inport java.io.*;

inport oracle.xn.parser.v2.*;
inport org.xm.sax.*;
i nport org.w3c.dom *;

inport oracle.jdbc.driver.*;
inport oracle.sql.*;

i nport oracle. xdb. XM_Type;

public class tkxntpje
{

static String conStr = "jdbc:oracle:oci8: @;
static String user = "scott";
static String pass = "tiger";
static String qryStr =
" SELECT x. poDoc frompo_xm _tab x "+
"WHERE x. poDoc. extract('/PQO PONO' text()'). get NunberVal ()=200";

static String updateXM.(String xm TypeStr)

{
Systemout. printin("\n ")
Systemout. println("xm Type.getStringVval ():");
Systemout. println(xm TypeStr);

12-6 Oracle XML DB Developer's Guide

Java DOM API for XMLType

System out. println(" ");
String out XM_ = nul | ;
try{

DOVPar ser parser = new DOWParser();
parser. setVal i dati onMbde(fal se);
par ser. set PreserveWi t espace (true);

par ser. parse(new StringReader (xn TypeStr));

Systemout. println("xm Type.getStringVal (): xm String is well-fornmed");

XM.Docurrent doc = parser. get Docurent () ;
NodeLi st nl = doc. get El ement sByTagNane(" DI SCOUNT") ;

for(int i=0;i<nl.getLength();i++){
XMLEl ement di scount = (XM.El ement)nl.iten(i);
XM.Node text Node = (XM.Node) di scount. getFirstChild();
t ext Node. set NodeVal ue("10");

}

StringWiter sw= new StringWiter();
doc.print(new PrintWiter(sw));

out XML = sw.toString();

[Iprint nodified xm
Systemout.println("\n ");
Systemout. println("Updated PurchaseOrder:");
Systemout. println(out XM.);
Systemout. println(" ");
}

catch (Exception e)

{

e.printStackTrace(System out);

}

return out XM;

}

public static void main(String args[]) throws Exception

{
try{

Systemout.printin("qryStr="+ qryStr);
Driver Manager.registerDriver(new oracle.jdbc.driver.OacleDriver());

Connection conn =
Driver Manager . get Connection("j dbc: oracl e: oci 8: @, user, pass);

Statement s = conn.createStatenment();
Oracl ePreparedStat ement stnt;

Resul t Set rset = s.executeQuery(qryStr);
Oracl eResul t Set orset = (Oracl eResul t Set) rset;

whi | e(orset. next()){

[lretrieve PurchaseOrder xnl document from database
XM.Type xt = XM.Type. creat eXM_(or set . get OPAQUE(1));

Java API for XMLType 12-7

Java DOM API for XMLType

/Istore this PurchaseOrder in po_xm _hist table
stm = (Oracl ePreparedStat ement) conn. prepar eSt at ement (
"insert into po_xm _hist values(?)");

stnt.setCbject(1,xt); // bind the XM.Type instance
stnt.execute();

/'updat e " DI SCOUNT" el enment
String newXM. = updateXM.(xt.getStringVal ());

/I create a new instance of an XM.type fromthe updated val ue
xt = XM.Type. cr eat eXM.(conn, newxXM.) ;

/] update PurchaseOrder xm docunent in database
stnt = (Oracl ePreparedSt at enent) conn. prepar eSt at enent (
"update po_xml _tab x set x.poDoc =? where "+
"x. poDoc. extract ('/PQO PONO' text()'). get Nunber Val ()=200");

stnt.setCbject(1,xt); // bind the XM.Type instance
stnt. execute();

conn.commit();
Systemout. println("PurchaseOrder 200 Updated!");

}

/'l del ete PurchaseOrder 1001
s.execute("delete frompo_xm x"+
"where X.xpo.extract"+
"('I'PurchaseCrder/PONO text()').get Nunber Val ()=1001");
Systemout. println("PurchaseOrder 1001 del eted!");
}
catch(Exception e)

{

e.printStackTrace(System out);

set [ong 20000
set pages 100
sel ect x.xpo. getC obVal ()
frompo_xm x;

Here is the resulting updated purchase order in XML:

<?xml version = "1.0"?>
<Pur chaseOr der >
<PONO>200</ PONC>
<CUSTOVER>
<CUSTNO>2</ CUSTNO>
<CUSTNAME>John Ni ke</ CUSTNAME>
<ADDRESS>
<STREET>323 Col | ege Drive</ STREET>
<Cl TY>Edi son</ CI TY>
<STATE>NJ</ STATE>
<Z| P>08820</ ZI P>

12-8 Oracle XML DB Developer's Guide

Java DOM API for XMLType

</ ADDRESS>
<PHONELI ST>
<VARCHAR2>609- 555- 1212</ VARCHAR2>
<VARCHAR2>201- 555- 1212</ VARCHAR2>
</ PHONEL| ST>
</ CUSTOMER>
<ORDERDATE>20- APR- 97</ ORDERDATE>
<SHI PDATE>20- MAY- 97 12. 00. 00. 000000 AN/ SHI PDATE>
<LI NEI TEMS>
<LI NEI TEM_TYP Li nel t emNo="1">
<| TEM St ockNo="1004">
<PRI CE>6750</ PRI CE>
<TAXRATE>2</ TAXRATE>
</ | TEM>
<QUANTI TY>1</ QUANTI TY>
<Dl SCOUNT>10</ DI SCOUNT>
</ LI NEI TEM TYP>
<LI NEI TEM TYP Li nel t emNo="2">
<| TEM St ockNo="1011">
<PRI CE>4500. 23</ PRI CE>
<TAXRATE>2</ TAXRATE>
</ | TEM>
<QUANTI TY>2</ QUANTI TY>
<Dl SCOUNT>10</ DI SCOUNT>
</ LI NEl TEM TYP>
</ LI NEI TEMS>
<SHI PTOADDR>
<STREET>55 Madi son Ave</ STREET>
<Cl TY>Madi son</ CI TY>
<STATE>W </ STATE>
<ZI P>53715</ ZI P>
</ SH PTOADDR>

</ Pur chaseOr der >

Example 12-8 Manipulating an XMLType Column

This example performs the following:

Selects an XMLType from an XM_Type table

Extracts portions of the XMLType based on an XPath expression
Checks for the existence of elements

Transforms the XMLType to another XML format based on XSL
Checks the validity of the XMLType document against an XML schema

inport java.sql.*;
inport java.io.*;

inport java.net.*;
inport java.util.*;

inport oracle.xm . parser.v2.*;
inport oracle.xnl.parser.schem. *;
inport org.xm.sax.*;

i nport org.w3c.dom *;

inport oracle.xm.sql.dataset.*;
inport oracle.xm.sql.query.*;
inport oracle.xnl.sql.docgen.*;
inport oracle.xn.sql.*;

Java API for XMLType 12-9

Java DOM API for XMLType

inport oracle.jdbc.driver.*;
inport oracle.sql.*;

i nport oracle. xdb. XM.Type;

public class tkxntpkl
{

static String conStr = "jdbc:oracle:oci8: @;
static String user = "tpjc";
static String pass = "tpjc";
static String qryStr = "select x.resune fromtl x where id<3";
static String xslStr =
"<?xm version="1.0"?> " +
"<xsl:stylesheet version="1.0" xmns:xsl="http://ww.w3.o0rg/1l
999/ XSL/ Transform > " +
"<xsl:tenplate match='ROOT' > " +
"<xsl:apply-tenplates/> " +
"</xsl:tenplate> " +
"<xsl:tenplate match="NAME > " +

"<htm> " +

<body> " +
" This is Test " +
" </body> " +
"</htmd>" +

"<[xsl:tenplate> " +
"</ xsl:styl esheet>";

static void parseArg(String args[])
{
conStr = (args.length >= 1 ? args[0]:conStr);
user = (args.length >= 2 ? args[1].substring(0, args[1].indexC("/")): user);
pass = (args.length >= 2 ? args[1].substring(args[1].indexCf("/")+1): pass);
qryStr = (args.length >= 3 ? args[2]:qryStr);
}
/**
* Print the byte array contents
*/
static void showal ue(byte[] bytes) throws SQLException
{
if (bytes == null)
Systemout.printin("null");

else if (bytes.length == 0)
Systemout. println("enpty");

el se

{

for(int i=0; i<bytes.length; i++)
Systemout. print ((bytes[i]&xff)+" ");
Systemout. println();

}
}
public static void main(String args[]) throws Exception
{thrrj ndl util = new tkxnjndl();
try{

if(args !'=null)
parseArg(args);

12-10 Oracle XML DB Developer's Guide

Java DOM API for XMLType

Il Systemout. println("conStr=" + conStr);
Systemout. println("user/pass=" + user + "/" +pass);
Systemout.printin("qryStr="+ qryStr);

Driver Manager.registerDriver(new oracle.jdbc.driver.OacleDriver());

Connection conn = DriverManager. get Connection(conStr, user, pass);
Statenent s = conn.createStatenent();

Resul t Set rset = s.executeQuery(qryStr);
Oracl eResul t Set orset = (Oracl eResul t Set) rset;
OPAQUE xm ;

whi | e(orset. next()){
xm = orset.get OPAQUE(1);
oracl e. xdb. XM.Type xt = oracl e. xdb. XM_Type. creat eXM.(xm) ;

Systemout.printlin("Testing getDOM) ...");
Docunent doc = xt.get DOM);
util.printDocunent (doc);

Systemout. println("Testing getBytesValue() ...");
showval ue(xt . get Byt esVal ue());
Systemout. println("Testing existsNode() ...");
try {
Systemout. println("existsNode(/)" + xt.existsNode("/", null));
}

catch (SQLException e) {
Systemout. println("Thin driver Expected exception: " + e);

}

Systemout.printin("Testing extract() ...");

try {
XM.Type xt1l = xt.extract("/RESUVE", null);
Systemout. println("extract RESUME: " + xtl.getStringVal());
Systemout. println("should be Fragnent: " + xtl.isFragnment());

}
catch (SQLException e) {

Systemout. printIn("Thin driver Expected exception: " + e);
}
Systemout. println("Testing isFragment() ...");
try {
Systemout.printin("isFragment = " + xt.isFragment()); }
catch (SQLException e)
{
Systemout. println("Thin driver Expected exception: " + e);
}
Systemout. println("Testing i sSchemaValid() ...");
try {
Systemout. println("isSchemaValid(): " + xt.isSchemaValid(null,"RES UVE"));
}

catch (SQLException e) {
Systemout.println("Thin driver Expected exception: " + e);

}

Systemout.println("Testing transforn() ...");

Java API for XMLType 12-11

Loading a Large XML Document into the Database With JDBC

Systemout. println("XSLDOC. \n" + xslI Str + "\n");

try {

/* XM.Type xsl Doc = XM.Type. creat eXM_(conn, xsl Str);

Systemout. println("XSLDOC Generated");

Systemout.printin("After transformation:\n" + (xt.transforn(xsl Doc,
null)).getStringval ()); */

Systemout.printin("After transformation:\n" + (xt.transform(null,
nul'l)).getStringval ());

}
catch (SQLException e) {

Systemout. println("Thin driver Expected exception: " + e);
}
Systemout. println("Testing createXM (conn, doc) ...");
try {

XM.Type xt1 = XM.Type. createXM.(conn, doc);
Systemout. println(xtl. getStringVal());

}
catch (SQLException e) {

Systemout. println("CGot exception: " + e);

}
}
}
catch(Exception e)
{
e.printStackTrace(System out);
1
}
}

Loading a Large XML Document into the Database With JDBC

If a large XML document (greater than 4000 characters, typically) is inserted into an
XML.Type table or column using a St r i ng object in JDBC, this run-time error occurs:

"java.sql . SQLException: Data size bigger than max size for this type"

This error can be avoided by using a Java CLOB object to hold the large XML
document. Example 12-9 demonstrates this technique, loading a large document into
an XMLType column; the same approach can be used for XMLType tables. The CLOB
object is created using class or acl e. sql . CLOB on the client side. This class is the
Oracle JDBC driver implementation of the standard JDBC interface j ava. sql . Cl ob.

Example 12-9 Loading a Large XML Document

In this example, method i nsert XML() inserts a large XML document into the

pur chaseOr der XMLType column of table poTabl e. It uses a CLOB object containing
the XML document to do this. The CLOB object is bound to a JDBC prepared statement,
which inserts the data into the XMLType column.

Prerequisites for running this example are as follows:

« Oracle Database, version 9.2.0.1 or later.

« Classesl2. zipord assesl2.jar,available in ORACLE_HOMWE\ j dbc\|i b,
should be included in the CLASSPATH environment variable.

= The target database table. Execute the following SQL before running the example:
CREATE TABLE poTabl e (purchaseOrder XM.Type);

12-12 Oracle XML DB Developer's Guide

Loading a Large XML Document into the Database With JDBC

Method insertXML()
The formal parameters of method i nsert XM_L() are as follows:
« xml Dat a - XML data to be inserted into the XMLType column

= conn - database connection object (Oracle Connection Object)

inport oracle.sqgl.CLCB;

inport java.sql.Connection;

inport java.sql.SQ.Exception;
inport java.sql.PreparedStatenent;

private void insert XM (String xm Data, Connection conn) {

CLOB clob = nul|;

String query;
Il Initialize statement Object

PreparedStatenent pstnt = null;

tryf
query = "I NSERT I NTO potabl e (purchaseCrder) VALUES (XM.Type(?)) ";
Il Get the statement Ohject
pstnt = conn. prepareSt at enent (query);

Il xmData is the string that contains the XM Dat a.
Il Get the CLOB object using the get CLOB met hod.
clob = get CLOB(xm Data, conn);
/1 Bind this CLOB with the prepared Statenent
pstnt.set Ghject (1, clob);
/| Execute the Prepared Statenent
if (pstnt.executeUpdate () == 1) {
Systemout.println ("Successfully inserted a Purchase Order");
}

} catch(SQLException sql exp){
sqgl exp. print StackTrace();

} catch(Exception exp){
exp. printStackTrace();

}

}

Method getCLOB()

Method i nsert XML() calls method get CLOB() to create and return the CL OB object
that holds the XML data. The formal parameters of get CLOB() are as follows:

« xnl Dat a - XML data to be inserted into the XMLType column

= conn —database connection object (Oracle Connection Object)

import oracle.sql.CLOB;

i nport java.sql.Connection;
inport java.sql.SQ.Exception;
inport java.io.Witer;

private CLOB get CLOB(String xm Data, Connection conn) throws SQLException{
CLOB tempC ob = nul I ;
tryf
Il 1f the tenporary CLOB has not yet been created, create one
tenpC ob = CLOB. createTenporary(conn, true, CLOB. DURATI ON_SESSI ON);

Java API for XMLType 12-13

Java DOM API for XMLType Features

/'l Open the temporary CLOB in readwite node, to enable witing
t enpC ob. open(CLOB. MODE_READVRI TE) ;

/1 Get the output streamto wite

Witer tenpC obWiter = tenpC ob. get CharacterQut put Strean();

Il Wite the data into the tenporary CLOB

tenpCl obWiter.wite(xn Data);

/1 Flush and cl ose the stream
tempC obWiter. flush();
tenpC obWiter.close();

Il Cose the tenporary CLOB
tenpd ob. cl ose();

} cat ch(SQLException sql exp){
tenpd ob. freeTenporary();
sql exp. print StackTrace();

} catch(Exception exp){
tenpC ob. freeTenporary();
exp. printStackTrace();

}
return tenpd ob;

See Also: Oracle Database Application Developer’s Guide - Large
Objects

Java DOM API for XMLType Features

When using Java DOM API to retrieve XML data from Oracle XML DB, you get the
following results:

« If the connection is thin, then you get an XM_Docunent instance
« If the Connection is thick or kprb, then you get an XDBDocurnent instance

Both of these are instances of the W3C Document Object Model (DOM) interface. From
this document interface you can access the document elements and perform all the
operations specified in the W3C DOM Recommendation. The DOM works on:

= Any type of XML document:
= XML schema-based
= Non-XML schema-based
= Any type of underlying storage used by the document:
= Character Large Object (CLOB)
= Binary Large Object (BLOB)
= Object-relational.

The Java DOM API for XMLType supports deep or shallow searching in the document
to retrieve children and properties of XML objects such as name, namespace, and so
on. Conforming to the DOM 2.0 recommendation, Java DOM API for XML.Type is
namespace aware.

Creating XML Documents Programmatically

Java API for XML Ty pe also allows applications to create XML documents
programmatically. This way applications can create XML documents on the fly (or

12-14 Oracle XML DB Developer's Guide

Java DOM API for XMLType Features

dynamically) that either conform to a preregistered XML schema or are non-XML
schema-based documents.

Creating XML Schema-Based Documents

To create XML schema-based documents, Java DOM API for XMLType uses an
extension to specify which XML schema URL to use. For XML schema-based
documents, it also verifies that the DOM being created conforms to the specified X