Oracle® Spatial
Topology and Network Data Models

10g Release 1 (10.1)
Part No. B10828-01

December 2003

Provides usage and reference information about the
topology data model and network data model
capabilities of Oracle Spatial.

ORACLE

Oracle Spatial Topology and Network Data Models, 10g Release 1 (10.1)

Part No. B10828-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: ~Chuck Murray

Contributors: Bruce Blackwell, Janet Blowney, Frank Lee, Siva Ravada, Jack Wang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store and PL/SQL are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us YOUr COMMENLES ...t xiii
PIEIACE. ... ettt XV
AN Lo < 1< TR XV
Documentation AccesSibility ... XV
Organizationcouiuiiiiiiiii e XVi
J 2SI XV =Yo B B JTalBH o 1<) a1 =15 o) o KU XVii
(@03 4 hT£=3 115 o) 0 1= J0RURR TR RTRRN XViii

Part| Topology Data Model

1 Topology Data Model Overview

1.1
1.2
1.3
1.3.1
1.4
1.5
1.5.1
1.5.2
1.5.3
1.54
1.5.5
1.6

Main Steps in Using Topology Data...........cccceoiiiiiiiiiic 1-2
Topology Data Model CONCEPLS.........ccccuiuiiiiiiiiiiniiiiiiiiicrr e 1-3
Topology Geometries and Layers........ccccirieieiiiciiiiiicce 1-7
Features and Topology Objects...........ccccviiiiiiiiiiiiiicciees 1-8
Topology Geometry Layer Hierarchy ..o, 1-9
Topology Data Model Tables............cccoouiiiiiiiiiiiic s 1-13
Edge Information Table............ccooioiiiiiii 1-14
Node INformation Table.........cociiiiiiiiieieceeeeeeeeee e 1-16
Face INformation Table.........c.coieieriieienieiereeieeetesre et ens 1-17
Relationship Information Table ... 1-18
History Information Table ... 1-18
Topology Data TYPes........ccoueiiiieiiiiiciec s 1-19

1.6.1 SDO_TOPO_GEOMETRY TYPe....ccccevrrriiiriiiiiiiiiiiiiiiiiicinicces 1-20

1.6.2 SDO_TOPO_GEOMETRY CONStrUCLOIS.......cvcvviuiiiiiniiiiiiicieisiessenesessienesecens 1-21
1.6.2.1 Constructors for Insert Operations into the Lowest Level..........cccccccoveacee 1-21
1.6.2.2 Constructors for Insert Operations into a Parent Level...........cccccooviinnnne. 1-22
1.6.2.3 Constructors for Update Operations into the Lowest Level.......................... 1-23
1.6.2.4 Constructors for Update Operations into a Parent Level............cccccccvvence. 1-25
1.6.3 GET_GEOMETRY Member FUNCHON.ccveveieiieieeceeeeeee e 1-26
1.6.4 SDO_LIST_TYPE TYPE ..ottt 1-26
1.6.5 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Typescccoevvrvirrrereiennn. 1-27
1.7 Topology Metadata VIEWScccuiiiiiiiiiiici s 1-27
1.7.1 XXX_SDO_TOPO_INFO VIEWSc.corviiiiiiiiiiiciiiiniciiiccneee e 1-27
1.7.2 XXX_SDO_TOPO_METADATA VIEWS..coootieiiiiieieieeeeeieeeeeeeerieeeeesesiereesssssnreessssns 1-28
1.8 Topology Application Programming Interface..........ccocooveueiiiiiininci 1-30
1.8.1 Topology Data Model Java Interface...........coooeuoiiiiiiiiiiice 1-30
1.9 Exporting and Importing Topology Dataccccovurvriirnnnnnnreieeecc e 1-31
1.10 Function-Based Indexes Not Supportedccccoviiiiiiinicne, 1-31
1.11 Topology Example (PL/SQL)cccoormiiiiiiiiici i 1-32
Editing Topologies

2.1 Approaches for Editing Topology Dataccccueuiiiiiiiiiciice 2-1
2.1.1 TOPOMAP ODJECES ...ttt 2-2
2.1.2 Specitying the Editing Approach with the Topology Parameter............................ 2-2
2.1.3 Using GET_xxx Topology FUNCtions............ccooeveiiiiiiiiicccc 2-3
2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API).....ccccccevvvvvvnnnncnes 2-4
2.1.5 Process for Editing Using the Java API.........cccoooiiiiiiii, 2-6
2.1.6 Error Handling for Topology Editingccccccevvvivinininiininiiinccccccccae 2-9
2.1.6.1 Input Parameter Errors.........cccooiviiiiiiiniiiiiiiiiian 2-9
2.1.6.2 AlL EXCEPLIONS ...ttt s 2-10
2.2 Performing Operations on NOESccccocueuriiiiiiinininiiiiiiiccceas 2-10
2.2.1 AddIng @ NOGEc.cooviiiiiiiiiiceece s 2-10
2.2.2 MOoVINg @ INOAEuviiiii e 2-11
2221 Additional Examples of Allowed and Disallowed Node Moves................... 2-14
2.2.3 Removing @ NOE......c.coouiiiiiiiiccr e 2-15
2.3 Performing Operations on Edges........c.cceuoiiiiiiiiiiiiiiii e 2-16
2.3.1 Adding an Edge........ccccoviiiiiiiiiiiiiiiinii 2-17

2.3.2 Moving an EAGeccccovviiieiiiiiiiiciiicc 2-18
2.3.3 Removing an EdGecccccevivniiiiiiiiiniiiiiiicccc 2-19
2.3.4 Updating an EAZecccviiiiiiiiiiicccccieiceceiecee e 2-20

3 SDO_TOPO Package Subprograms

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYERcccoceimiiriineireireereeeeeeieeerenees 3-2
SDO_TOPO.CREATE_TOPOLOGYccoeiiiiiiiiiiiiiiiiiiiciicinciiicitcsese e 3-4
SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER.......ccccccinniiiiiniiiiiinicinas 3-6
SDO_TOPO.DROP_TOPOLOGYecvrtirrriirriiereieienieeneeernereseeeseeaesaesesaeesseesaeesaeessenens 3-8
SDO_TOPO.GET_FACE_BOUNDARYccccociiiniiiiiiiiiiiiiinciiccecieiieens 3-9
SDO_TOPO.GET_TOPO_OBJECTS........ccccoeiiiiiiiiiiniiiciiccec e 3-11
SDO_TOPO.INITIALIZE_METADATA ..ot 3-13

4 SDO_TOPO_MAP Package Subprograms

SDO_TOPO_MAP.ADD_EDGEcccooioiiiiiniiinieeneeineereeeseee et esae e 4-2
SDO_TOPO_MAP.ADD_ISOLATED_NODE.........cccooiiniiiiiiniiiiceees 4-4
SDO_TOPO_MAP.ADD_LOOQRP.......ccoriemireieienirienieienteeneenteeseeaesaeseseesessesesseesaesessenens 4-6
SDO_TOPO_MAP.ADD_NODE......cccocoomiiieineineeneineeseeeseeesaeesaeesseesaeesreeesenees 4-8
SDO_TOPO_MAP.CHANGE_EDGE_COORDS.........ccccoviniiiiiiiiiiince 4-10
SDO_TOPO_MAP.CLEAR_TOPO_MARPccccciririiiiiiiiiinccceecnas 4-13
SDO_TOPO_MAP.COMMIT_TOPO_MARPccoceeimiiriinieeneeenieeeeeneeeeereseesenaenens 4-14
SDO_TOPO_MAP.CREATE_EDGE_INDEXcccceoiniiniiniiniincincincineeeeenne 4-16
SDO_TOPO_MAP.CREATE_FACE_INDEX.......cccccovinniiiiiiniiiiiniccccceinas 4-18
SDO_TOPO_MAP.CREATE_TOPO_MAP.......ccooiminenccereetnetneenieeeneseeeeenens 4-20
SDO_TOPO_MAP.DROP_TOPO_MARPccociiiiiiiiniincircteiciieeeveseeeeenne 4-22
SDO_TOPO_MAP.GET_CONTAINING_FACEcccooiiiiininiiiiniicccccenas 4-23
SDO_TOPO_MAP.GET_EDGE_ADDITIONS.ccocecneimeireinecreeneerieeereeeeennens 4-25
SDO_TOPO_MAP.GET_EDGE_CHANGES........ccoceoiiiiiiniiniiiicceveeee, 4-26
SDO_TOPO_MAP.GET_EDGE_COORDS.cccceoeiiiiiiiiiiiiiiiniccccines 4-27
SDO_TOPO_MAP.GET_EDGE_DELETIONSccccccveimeiniinecneiriecreenreeeeennens 4-29
SDO_TOPO_MAP.GET_EDGE_NODES........c.cccoeiiiiiniiiiniinctrcrcrieneeeeenne 4-30

SDO_TOPO_MAP.GET_FACE_ADDITIONS.........ccccecvininiiiiiniiiiiiiiciincccens 4-32

SDO_TOPO_MAP.GET_FACE_CHANGES........cccooeoeneneeereeeeeeeeeeseeene 4-33
SDO_TOPO_MAP.GET_FACE_DELETIONS.......ccccccoeoiiiniiiiiniiicicicc 4-34
SDO_TOPO_MAP.GET_NEAREST_EDGE........cccccccoeiininiiiiiniiiiiiiccieeces 4-35
SDO_TOPO_MAP.GET_NEAREST _NODE........ccccooicmininereereeeeeeeeeeeeneeenne 4-37
SDO_TOPO_MAP.GET_NODE_ADDITIONScccccceoniiniiiiiiiiniecn 4-39
SDO_TOPO_MAP.GET_NODE_CHANGES.cccccoeoiiiiiiiiniiiiiiccccces 4-40
SDO_TOPO_MAP.GET_NODE_COORDoccveireinreireinreeereeeeeeeseeeeeeneesneene 4-41
SDO_TOPO_MAP.GET_NODE_DELETIONS..........ccccceiiniiiiiiiiiiinicc 4-43
SDO_TOPO_MAP.GET_NODE_STAR......cccccoeviiiiiiiiiniiiciiceceeeees 4-44
SDO_TOPO_MAP.GET_TOPO_NAME......cccocioiiieneeeneereeeneeree e 4-46
SDO_TOPO_MAP.LIST_TOPO_MAPSccocoiiiiiiiiiiiiieeccees 4-47
SDO_TOPO_MAP.LOAD_TOPO_MARP ..o 4-48
SDO_TOPO_MAP.MOVE_EDGEccooiiiiimiiniinieieteeeseeeseeesneeneeeneeeneeenenes 4-52
SDO_TOPO_MAP.MOVE_ISOLATED_NODEcccccccviiniiniiiiiiiiiicccn 4-55
SDO_TOPO_MAP.MOVE_NODEcccccoiiiniiiiiiiiiiiiinciecse s 4-57
SDO_TOPO_MAP.REMOVE_EDGEcccocioiiiiiinieiecieeeeeeeeneeene s 4-60
SDO_TOPO_MAP.REMOVE_NODE..........ccoceiiiiiiiiiiiiiiiinesecs 4-61
SDO_TOPO_MAP.ROLLBACK_TOPO_MARP.......ccoviriiiiiiiiiiiiccccs 4-62
SDO_TOPO_MAP.UPDATE_TOPO_MARPcocceoireiieinceneeeereeereeeeeeeee e 4-63
SDO_TOPO_MAP.VALIDATE_TOPO_MAPccccceoiviiiiiiiiiiiincccc 4-65
SDO_TOPO_MAP.VALIDATE_TOPOLOGYcccceoeuiiiiriiiiiniiiiiicccineeeens 4-67

5 Topology Operators
SDO_ANYINTERACTovvvrrieniieeieissiiessses st sttt ssesss sttt sssssss s ssnnns 5-2

Partll Network Data Model

6 Network Data Model Overview

6.1 Introduction to Network Modelingcoceveiiiiiiiiiiiiicc 6-2
6.2 Main Steps in Using the Network Data Model ..o 6-2

vi

6.2.1
6.2.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
6.8
6.8.1
6.8.2
6.8.2.1
6.8.2.2
6.9
6.9.1
6.9.2
6.9.3
6.9.4

Letting Spatial Perform Most Operations............cccoeeiiiriniiiiiieiciiicieeeceeeenes 6-3
Performing the Operations Yourself ..o 6-4
Network Data Model CONCEPLS.........ccceueuiuiiriiieireiiiicierreeeereeeerees e 6-5
Network APPLCAtIONScoviviviiiiiiiiciicccc e 6-6
Road Network EXample..........oooriioiiiiiiiiccc s 6-6
Train (Subway) Network Example........c.ccccoceiiiiiniiiiincnrrccrreeeeee e 6-7
Utility Network Example..........oooiiii 6-7
Biochemical Network Example............cooooiiiiiiiiic 6-7
Network HIerarchycccccoocciiiiccerreee e 6-7
Network Data Model Tables...........ccccoooiiiiiiiiiiniiiiiiiic 6-9
INOdE Table ... 6-10
Link Table.......coiiiiiiiiciicc e 6-11
Path Table.......ccoooiiii 6-12
Path-Link Table ..o 6-13
Network Data Model Metadata VIEWScccccouiiiiiviiiiiiiiic, 6-14
xxX_SDO_NETWORK_METADATA VIEWS.......cccouovviviimiiiiiiiniiiiinens 6-14
Network Data Model Application Programming Interface............cccccoovreiinninn. 6-16
Network Data Model PL/SQL INteIfacecocevvevveereereerieeeereeeeereeeeeve e 6-16
Network Data Model Java INterface........coeevveerieinieinieinieirieceeceieeeeeeeeeveenes 6-19
Network Metadata and Data Managementccccovoiiiiiiiiinciniicee, 6-20
Network ANALYSIs ...c.cceuiuiiiiiiiiiiiiiiicrcecerec e 6-21
Network Examples (PL/SQL) ...c.cooiviiiiiiiiiiiiiicciicccennes 6-21
Simple Spatial (SDO) Network Example........ccccooiriiiiiiiiiiiiiicieccee 6-22
Simple Logical Network Exampleccccccoeiiiiiiiiiiiiicceccceeeeeeeeeeae 6-24
Spatial (LRS) Network Examplecccccoveiiiiiiiiiiiiiiicce, 6-26
Logical Hierarchical Network Example.........ccccooiiiiiiiiiiiiiiiiiiiiceeins 6-33

SDO_NET Package Subprograms

SDO_NET.COPY_NETWORKoocteirimiiieienieieietetetee sttt seeseeseeneeseeseeseesesnesaeas 7-2
SDO_NET.CREATE_LINK _TABLEccccceoririineeneeneencenteeneeenteeerieeneesesaeesaeesnenens 7-3
SDO_NET.CREATE_LOGICAL_NETWORKccocectmiimiineineineineenreeeeeeeeenennes 7-5
SDO_NET.CREATE_LRS_NETWORKcocccciiiiiiiiiiieinenceceeseee e 7-8
SDO_NET.CREATE_LRS_TABLEcoeoiiiiereeeeneeeceeseeeseeeeeeeeieseee e 7-12
SDO_NET.CREATE_NODE_TABLEccccooiiiiiinieieereeeeeeeeeeeeee e 7-14

vii

viii

SDO_NET.CREATE_PATH_LINK _TABLEc.ccoviiririiieieeeeeeeeeeneeennecneees 7-16

SDO_NET.CREATE_PATH_TABLEcociiieeineeeereeereeeeeee e ee 7-17
SDO_NET.CREATE_SDO_NETWORKcccoviiiiiiiiiniiiinciccccns 7-18
SDO_NET.CREATE_TOPO_NETWORKcccecvimeiiiineineetnretnreenneesneesreeenens 7-22
SDO_NET.DROP_NETWORKc.ccviririiriieiireineeneinretereeeretere e ne 7-25
SDO_NET.GET_CHILD_LINKSooiiiiiiiiiiiieteneneeesesresrcesreeeeee et 7-26
SDO_NET.GET_CHILD_NODESccoocecmitmiiriirieieiiereteneneetsretssesessesessesessenessenes 7-27
SDO_NET.GET_GEOMETRY _TYPEc.ceoiitiiiieieieieeeeeereeeeeneeeneeeneeenens 7-28
SDO_NET.GET_IN_LINKS......cccoiriiiiieieieteteieeeteteeee ettt 7-29
SDO_NET.GET_LINK_COST_COLUMNcccoiiiiiiiiiiiiiniciiccccecnns 7-30
SDO_NET.GET_LINK_DIRECTION......ccoceirteuireinreinieinreenreeereeeeeeneseeneeeneeenesee e 7-31
SDO_NET.GET_LINK_GEOM_COLUMNccccecniiiiiiiiiiiniicnicccnneenes 7-32
SDO_NET.GET_LINK_GEOMETRYcoccctniiiriiiriirieneiieeetneetneetseeenseeesseesneeenens 7-33
SDO_NET.GET_LINK_TABLE_NAMEccooiiiieneneeeeeeeeeeeeeeeeee e 7-34
SDO_NET.GET_LRS_GEOM_COLUMNccccoiiiiniiiiiiiiiineeseee s 7-35
SDO_NET.GET_LRS_LINK_GEOMETRYccccscertmetmeineineeneeeereneneeneeeeeeneneeenne 7-36
SDO_NET.GET_LRS_NODE_GEOMETRYc.cccectmeieireinreineineenreesreesneeereeenens 7-37
SDO_NET.GET_LRS_TABLE _NAMEcccocoiiiiiiirinnereeeseneeereeeeeeee e 7-38
SDO_NET.GET_NETWORK _TYPE......ccceoiiiriiieieineteenetnretseeenneeeneseeneeenens 7-39
SDO_NET.GET_NO_OF_HIERARCHY_LEVELS.......cccccevtriiiineieereereeeenneenne 7-40
SDO_NET.GET_NO_OF_LINKS........ccccoiiiiiiiiiiiiiicnenns 7-41
SDO_NET.GET_NO_OF _NODES........cccocecmitmiiniiriininiiteetrentneetseentssesessesessesessesessenes 7-42
SDO_NET.GET_INODE_DEGREEccccecriiiiiieieieeneetreesneeneeeneeene s 7-43
SDO_NET.GET_NODE_GEOM_COLUMNccccccceiiiiiiiiiiinciciecnecnnecneees 7-44
SDO_NET.GET_NODE_GEOMETRYccoviirtiiiiriinieiiieiieiitetnretnetneeessesessesesneennenes 7-45
SDO_NET.GET_NODE_IN_DEGREE.........cccccecmiieneneineeeeeeeeseeneeeeeee e 7-46
SDO_NET.GET_NODE_OUT_DEGREE..........ccccccciviiiiiiiiniicncnceeeeee s 7-47
SDO_NET.GET_NODE_TABLE _NAMEccccceotiminieieenetnetneenneesnenenneeenenes 7-48
SDO_NET.GET_OUT _LINKS......coctriiiieeneeretereeereeereee e ne 7-49
SDO_NET.GET_PATH_GEOM_COLUMNccceccciiiiiiiiiciieieieeeeeeseeseeeens 7-50
SDO_NET.GET_PATH_TABLE NAME.......ccceontieeneineenenteereeeseeieeeeeene e 7-51

SDO_NET.IS_ HIERARCHICALc.ccoriimiiinetnieieeneeeeeeee et seene s 7-52

SDO_NET.IS_LOGICALccootiirtiireineireireeeeeeeeeieeereee et s e s 7-53
SDO_NET.IS_SPATTIAL ..ottt ettt ettt 7-54
SDO_NET.LRS_ GEOMETRY_NETWORKcccecceiirririininrenencieeeeeeeeseee e 7-55
SDO_NET.INETWORK_EXISTSc.ccoriiiiiniineeeeeeeeeeeesee e 7-56
SDO_NET.SDO_GEOMETRY_NETWORKcccccoooeiiiiiiiiniiiicieieins 7-57
SDO_NET.TOPO_GEOMETRY_NETWORK.........cccceciiiiiiiiiiniiiiiicccccinas 7-58
SDO_NET.VALIDATE_LINK_SCHEMAcccceotiiinineeeneeereeeeeeee e 7-59
SDO_NET.VALIDATE_LRS_SCHEMALcoctntitiiiiieteteteteenestesresreseeeeeee et 7-60
SDO_NET.VALIDATE_NETWORKcccccvirtriirriineineeeeneeeneeenteeneeneseene e saeneaene 7-61
SDO_NET.VALIDATE_NODE_SCHEMAccccecniimeineireenetneereeereeesreseeeeenens 7-62
SDO_NET.VALIDATE_PATH_SCHEMAccceoieiiiirietrtetnenesteteieeeeeeeeee e 7-63

List of Examples

Modeling a Topology Geometry Layer Hierarchyc.ccccccooviviiiinninnnnnnnnn 1-12
SDO_TOPO_GEOMETRY Attributes in Queries............cccccevvvviniiniinninniiiins 1-20
INSERT Using Constructor with SDO_TOPO_OBJECT_ARRAY.......cccccecvvvivirnnnnnen 1-22
INSERT Using Constructor with SDO_TGL_OBJECT_ARRAYccccceovuvvvnnnininnnn 1-23
UPDATE Using Constructor with SDO_TOPO_OBJECT_ARRAYccccceviiinnnes 1-24
UPDATE Using Constructor with SDO_TGL_OBJECT_ARRAYcccccccoviiiinnnnns 1-25
GET_GEOMETRY Member FUNCHON ..o 1-26
Topology Example (PL/SQL)cooioiiiiiiiicieci s 1-32
Simple Spatial (SDO) Network Example (PL/SQL).......cccccocvuvvinininniiiiiiiiicnns 6-22
Simple Logical Network Example (PL/SQL).......ccoooiiiiiiriiiiiiceiicceeccieie 6-25
Spatial (LRS) Network Example (PL/SQL)ccccocoviniiiiiiiiiniiciccccccnns 6-27
Logical Network Example (PL/SQL)ccccoviiiiiiiiiiiiiiiiiiinccccne 6-35

List of Figures

[T N |

LMMI\)I\)I\)I\)II\)I\)I\)I\)I\)—L—L—L—L—L—L

Simplified TOPOLOZY «..cvevvueurueieiiiicieieiec e 1-5
Simplified Topology, with Grid Lines and Unit Numbers ..o, 1-7
Features in @ TOPOLOZYccvueueiiuiieiiiicic e 1-9
Topology Geometry Layer Hierarchy ... 1-11
Mapping Between Feature Tables and Topology Tablesccccceuniiriiiiinnnne. 1-14
Nodes, Edges, and Facesccccccvuiviiniiiiiiiiiiii s 1-15
Editing Topologies Using the TopoMap Object Cache (PL/SQL API)..........cccceuuneee. 2-4
Editing Topologies Using the TopoMap Object Cache (Java API)cccccevvvvviviiininnee. 2-7
Adding a Non-Isolated Nodecooimiiii 2-11
Topology Before Moving a Non-Isolated Nodeccoooiiiiii, 2-12
Topology After Moving a Non-Isolated Node..........cooooriiiiiiiiii 2-12
Node Move Is Not ALIowWed..........coiriiiiiiicc 2-14
Topology for Node Movement Examplescccoooiriiiiiicieiicccc 2-14
Removing a Non-Isolated Node..........c.ccoooiiiiiiiiiii 2-16
Adding a Non-Isolated EAge.........c.covruiiiiiiiiiccc 2-17
Moving a Non-Isolated Edge...........cccooermiiiiiiiii e, 2-18
Removing a Non-Isolated EAgeccccouoiriiiiiiiii 2-19
Loading Topology Objects into @ Windowc.cceueiiiiiiiiiiic, 4-50
Network Hierarchy ... 6-8
Java Classes and Interfaces for Network Data Modelccoceveeieviinieciiniecieceeieeienns 6-20
Simple Spatial (SDO) NetWork.........coviiiiiiiiiieieiicc e, 6-22
Simple Logical NetWork........coooiiiiii 6-24
Roads for Spatial (LRS) Network Exampleccccoooiiiiiniiiiciiiccce, 6-26
Nodes and Links for Logical Network Examplecccooooioiiii 6-34

xi

List of Tables

1-1 Columns in the <topology-name>_EDGE$ Table............c.ccccccoovrrririnirnnnen.
1-2 Edge Table ID Column Valuescccoeueiiiinieiiicicieccec e
1-3 Columns in the <topology-name>_NODE$ Tablec.ccccccoovrrrrrinrrnnnnen.
1-4 Columns in the <topology-name>_FACE$ Table...........cccccccccevvririrnrnnnne.
1-5 Columns in the <topology-name>_RELATIONS$ Tablec.ccccccevurunen.
1-6 Columns in the <topology-name>_HISTORY$ Table..........c.ccccccevvrurrrnnnen.
1-7 SDO_TOPO_GEOMETRY Type Attributes..........cccccoevviiiiiiiiiiinnen.
1-8 Columns in the xxx_SDO_TOPO_INFO Views..........cccocovuvivnnnniinincnnn.
1-9 Columns in the xxx_SDO_TOPO_METADATA Views........ccccccceevvrrinnnnn.
5-1 Topology OPerators ... s
6-1 Node Table COIUMINScoiuiiiiiiiiiiiiiicici e
6-2 Link Table COIUMNScviiiiiiiiiiiicictt s
6-3 Path Table COIUMINSccoiiiiiiiiiicc s
6-4 Path-Link Table COIUMNS.........cccooiiiiiiiiiiiiicec s
6-5 Columns in the xxx_SDO_NETWORK_METADATA Views.......ccccccecevvireeerirennnns

Xii

Send Us Your Comments

Oracle Spatial Topology and Network Data Models, 10g Release 1 (10.1)
Part No. B10828-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: nedc-doc_us@oracle.com

FAX: 603.897.3825 Attn: Spatial Documentation
Postal service:

Oracle Corporation

Oracle Spatial Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name and contact information.

If you have problems with the software, please contact your local Oracle Support Services.

xiii

Xiv

Audience

Preface

Oracle Spatial Topology and Network Data Models provides usage and reference
information about the topology data model and network data model of Oracle
Spatial, which is often referred to as just Spatial.

This preface contains these topics:
= Audience

s Documentation Accessibility
s Organization

= Related Documentation

s Conventions

This guide is intended for those who need to use the Spatial topology or network
data model to work with data about nodes, edges, and faces in a topology or nodes,
links, and paths in a network.

You are assumed to be familiar with the main Spatial concepts, data types, and
operations, as documented in Oracle Spatial User’s Guide and Reference.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains

XV

markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Organization

XVi

This guide has two main parts. The first part contains conceptual, usage, and
reference information about the topology data model of Oracle Spatial. The second
part contains conceptual, usage, and reference information about the network data
model of Oracle Spatial. If you develop network applications, you must understand
the main concepts in both parts.

This guide has the following elements.

Part I, "Topology Data Model"

Contains chapters with conceptual, usage, and reference information about the
topology data model of Oracle Spatial.

Chapter 1, "Topology Data Model Overview"
Provides conceptual and usage information about the topology data model.

Chapter 2, "Editing Topologies"
Explains how to edit node and edge data in a topology. The operations include
adding, moving, and removing nodes and edges.

Chapter 3, "SDO_TOPO Package Subprograms"

Provides reference information about procedures in the PL/SQL package
MDSYS.SDO_TOPO.

Chapter 4, "SDO_TOPO_MAP Package Subprograms"

Provides reference information about procedures in the PL/SQL package
MDSYS.SDO_TOPO_MAP.

Chapter 5, "Topology Operators"

Provides reference information about topology operators (SDO_ANYINTERACT in
the current release).

Part Il, "Network Data Model"

Contains chapters with conceptual, usage, and reference information about the
network data model of Oracle Spatial.

Chapter 6, "Network Data Model Overview"
Provides conceptual and usage information about the network data model.

Chapter 7, "SDO_NET Package Subprograms"

Provides reference information about procedures in the PL/SQL package
MDSYS.SDO_NET.

Related Documentation
For more information, see Oracle Spatial User’s Guide and Reference.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser's "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

Xvii

http://otn.oracle.com/membership

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation

Conventions

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface text indicates a term defined in the text.

monospace text Monospace text is used for the names of parameters, files, and
directory paths. It is also used for SQL and PL/SQL code examples.

italic text Italic text is used for book titles, emphasis, and some special terms.

<> Angle brackets enclose user-supplied names.

[1 Brackets enclose optional clauses from which you can choose one or
none.

xviii

Part |

Topology Data Model

This document has two main parts:

» PartI provides conceptual, usage, and reference information about the topology
data model of Oracle Spatial.

= Part Il provides conceptual, usage, and reference information about the network
data model of Oracle Spatial.

Much of the conceptual information in Part I also applies to the network data
model. Therefore, if you develop network applications, you should be familiar with
the main terms and concepts from both parts of this document.

Part I contains the following chapters:

» Chapter 1, "Topology Data Model Overview"

» Chapter 2, "Editing Topologies"

s Chapter 3, "SDO_TOPO Package Subprograms"

» Chapter 4, "SDO_TOPO_MAP Package Subprograms"
s Chapter 5, "Topology Operators"

1

Topology Data Model Overview

The topology data model of Oracle Spatial lets you work with data about nodes,
edges, and faces in a topology. For example, United States Census geographic data
is provided in terms of nodes, chains, and polygons, and this data can be
represented using the Spatial topology data model. You can store information about
topological elements and geometry layers in Oracle Spatial tables and metadata
views. You can then perform certain Spatial operations referencing the topological
elements, for example, finding which chains (such as streets) have any spatial
interaction with a specific polygon entity (such as a park).

This chapter describes the Spatial data structures and data types that support the
topology data model, and what you need to do to populate and manipulate the
structures. You can use this information to write a program to convert your
topological data into formats usable with Spatial.

A demo procedure is provided that processes U.S. Census topological data for use
with Spatial, although you must modify that procedure (or write your own) to
process your own topological data for use with Spatial. For information about the
demo files provided, see the files in the demos directory and its subdirectory
hierarchy under your Spatial Topology Manager installation directory. For
information about the spatial topology editor demo, see
demos/Topology/Bulk-Load/README.

Note: Although this chapter discusses some topology terms as
they relate to Oracle Spatial, it assumes that you are familiar with
basic topology concepts.

It also assumes that you are familiar with the main Spatial concepts,
data types, and operations, as documented in Oracle Spatial User's
Guide and Reference.

Topology Data Model Overview 1-1

Main Steps in Using Topology Data

This chapter contains the following major sections:

Section 1.1, "Main Steps in Using Topology Data"
Section 1.2, "Topology Data Model Concepts"

Section 1.3, "Topology Geometries and Layers"
Section 1.4, "Topology Geometry Layer Hierarchy"
Section 1.5, "Topology Data Model Tables"

Section 1.6, "Topology Data Types"

Section 1.7, "Topology Metadata Views"

Section 1.8, "Topology Application Programming Interface"
Section 1.9, "Exporting and Importing Topology Data"
Section 1.10, "Function-Based Indexes Not Supported"
Section 1.11, "Topology Example (PL/SQL)"

1.1 Main Steps in Using Topology Data

This section summarizes the main steps for working with topological data in Oracle
Spatial. It refers to important concepts, structures, and operations that are described
in detail in other sections.

The main steps for working with topological data are as follows:

1.

Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure.
This causes the <topology-name>_EDGES$, <topology-name>_NODES$,
<topology-name>_FACES$, and <topology-name>_HISTORY#$ tables to be
created. (These tables are described in Section 1.5.1, Section 1.5.2, Section 1.5.3,
and Section 1.5.5, respectively.)

Load topology data into the node, edge, and face tables created in Step 1. This is
typically done using a bulk-load utility, but it can be done using SQL INSERT
statements.

Create a feature table for each feature in the topology. For example, a city data
topology might have separate feature tables for land parcels, streets, and traffic
signs.

Associate the feature tables with the topology, using the SDO_TOPO.ADD_
TOPO_GEOMETRY_LAYER procedure for each feature table. This causes the

1-2 Oracle Spatial Topology and Network Data Models

Topology Data Model Concepts

<topology-name>_RELATIONS$ table to be created. (This table is described in
Section 1.5.4.)

5. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA
procedure. (This procedure also creates spatial indexes on the
<topology-name>_EDGE$, <topology-name>_NODES$, and <topology-name>_
FACES tables, and B-tree indexes on the <topology-name>_EDGES$,
<topology-name>_RELATIONS$, and <topology-name>_HISTORY$ tables.)

6. Load the feature tables using the SDO_TOPO_GEOMETRY constructor. (This
constructor is described in Section 1.6.2.)

7. Query the topology data (for example, using SDO_ANYINTERACT operator).

8. Optionally, edit topology data using the PL/SQL or Java application
programming interfaces (APIs).

Section 1.11 contains a PL/SQL example that performs these main steps.

You can use the topology data model PL/SQL and Java APIs to update the topology
(for example, to change the data about an edge, node, or face). The PL/SQL API for
most editing operations is the SDO_TOPO_MAP package, which is documented in
Chapter 4. The Java API is described in Section 1.8.1.

1.2 Topology Data Model Concepts

Topology is a branch of mathematics concerned with objects in space. Topological
relationships include such relationships as contains, inside, covers, covered by, touch,
and overlap with boundaries intersecting. Topological relationships remain constant
when the coordinate space is deformed, such as by twisting or stretching.
(Examples of relationships that are not topological include length of, distance between,
and area of.)

The basic elements in a topology are its nodes, edges, and faces.

A node, represented by a point, can be isolated or it can be used to bound edges.
Two or more edges meet at every non-isolated node. A node has a coordinate pair
associated with it that describes the spatial location for that node. Examples of
geographic entities that might be represented as nodes include start and end points
of streets, places of historical interest, and airports (if the map scale is sufficiently
large).

An edge is bounded by two nodes: the start (origin) node and the end (terminal)
node. An edge has an associated geometric object, usually a coordinate string that
describes the spatial representation of the edge. An edge may have several vertices

Topology Data Model Overview 1-3

Topology Data Model Concepts

making up a line string, circular arc string, or combination. Examples of geographic
entities that might be represented as edges include segments of streets and rivers.

The order of the coordinates gives a direction to an edge, and direction is important
in determining topological relationships. The positive direction agrees with the
orientation of the underlying edge, and the negative direction reverses this
orientation. Each orientation of an edge is referred to as a directed edge, and each
directed edge is the mirror image of its other directed edge. The start node of the
positive directed edge is the end node of the negative directed edge. An edge also
lies between two faces and has references to both of them. Each directed edge
contains a reference to the next edge in the contiguous perimeter of the face on its
left side.

A face, represented by a polygon, has a reference to one directed edge of its outer
boundary. If any island nodes or island edges are present, it also has a reference to
one directed edge on the boundary of each island. Examples of geographic entities
that might be represented as faces include parks, lakes, counties, and states.

Figure 1-1 shows a simplified topology containing nodes, edges, and faces. The
arrowheads on each edge indicate the positive direction of the edge (or, more
precisely, the orientation of the underlying line string or curve geometry for positive
direction of the edge).

1-4 Oracle Spatial Topology and Network Data Models

Topology Data Model Concepts

Figure 1-1 Simplified Topology

E5
c2 g
E1 N5
[)
N21 N22 Ne N3
E2o &-p—e
F2 E4
09 E3 NG
F1
e >
N1 N2
F
0 E6 E7 E8
N>~ T > NiE | 77
E21 F3 E19 F4 E17 F5 E15

=2
m
©
>
m
m
o
z
(h
ym
z
20—

15 - N14

Eoo F6 E20 F7 E18 F8 E16
E12 £13 E14
N8 > N9 N10 N11

Notes on Figure 1-1:

= Eelements (E1, E2, and so on) are edges, F elements (F0, F1, and so on) are
faces, and N elements (N1, N2, and so on) are nodes.

» FO (face zero) is created for every topology. It is the universal face containing
everything else in the topology. There is no geometry associated with the
universal face. FO has the face ID value of -1 (negative 1).

» There is a node created for every point geometry and for every start and end
node of an edge. For example, face F1 has only one edge (a closed edge), E1.
The edge has the same node as the start and end nodes (N1).

= Anisland node is a node that is isolated in a face. For example, node N4 is an
island node in face F2.

Topology Data Model Overview 1-5

Topology Data Model Concepts

= Anisland edge is an edge that is isolated in a face. For example, edge E25 is an
island edge in face F1.

= An edge cannot have an island node on it. The edge can broken up into two
edges by adding a node on the edge. For example, if there was originally a
single edge between nodes N16 and N18, adding node N17 resulted in two
edges: E6 and E7.

» Information about the topological relationships is stored in special edge, face,
and node information tables. For example, the edge information table contains
the following information about edges E9 and E10. (Note the direction of the
arrowheads for each edge.) The next and previous edges are based on the left
and right faces of the edge.

For edge E9, the start node is N15 and the end node is N14, the next left edge is
E19 and the previous left edge is -E21, the next right edge is -E22 and the
previous right edge is E20, the left face is F3 and the right face is Fé.

For edge E10, the start node is N13 and the end node is N14, the next left edge
is -E20 and the previous left edge is E18, the next right edge is E17 and the
previous right edge is -E19, the left face is F7 and the right face is F4.

For additional examples of edge-related data, including an illustration and
explanations, see Section 1.5.1.

Figure 1-2 shows the same topology illustrated in Figure 1-1, but it adds a grid and
unit numbers along the x-axis and y-axis. Figure 1-2 is useful for understanding the
output of some of the examples in Chapter 3 and Chapter 4.

1-6 Oracle Spatial Topology and Network Data Models

Topology Geometries and Layers

Figure 1-2 Simplified Topology, with Grid Lines and Unit Numbers

1.3 Topology Geometries and Layers

A topology geometry (also referred to as a feature) is a spatial representation of a
real world object. For example, Main Street and Walden State Park might be the
names of topology geometries. The geometry is stored as a set of topological
elements (nodes, edges, and faces). Each topology geometry has a unique ID
(assigned by Spatial when records are imported or loaded) associated with it.

A topology geometry layer is the collection of topology geometries of a specific
type. For example, Streets might be the topology geometry layer that includes the

Topology Data Model Overview 1-7

Topology Geometries and Layers

Main Street topology geometry, and State Parks might be the topology geometry
layer that includes the Walden State Park topology geometry. Each topology
geometry layer has a unique ID (assigned by Spatial) associated with it. The data for
each topology geometry layer is stored in a feature table. For example, a feature
table named CITY_STREETS might contain information about all topology
geometries (individual roads or streets) in the Streets topology geometry layer.

Each topology geometry (feature) is defined as an object of type SDO_TOPO_
GEOMETRY (described in Section 1.6.1), which identifies the topology geometry
type, topology geometry ID, topology geometry layer ID, and topology ID for the

topology.

Topology metadata is automatically maintained by Spatial in the USER_SDO_
TOPO_METADATA and ALL_SDO_TOPO_METADATA views, which are
described in Section 1.7.2. The USER_SDO_TOPO_INFO and ALL_SDO_TOPO_
INFO views (described in Section 1.7.1) contain a subset of this topology metadata.

1.3.1 Features and Topology Objects

Often, there are fewer features in a topology than there are nodes, edges, and faces.
For example, a road feature may consist of many edges, an area feature such as a
park may consist of many faces, and some nodes may not be associated with point
features. Figure 1-3 shows point, line, and area features associated with the
topology that was shown in Figure 1-1 in Section 1.2.

1-8 Oracle Spatial Topology and Network Data Models

Topology Geometry Layer Hierarchy

Figure 1-3 Features in a Topology

P5

EEE
R3

S4

P4

R4

Illlllllll.
mmp»

N
. Rad)
g Y
". R2 5
N u 8W@S3
. "
. ¥
‘I I.

P1

IIIIRJII‘Illllllslz.llllllll
1

P2

P3

Figure 1-3 shows the following kinds of features in the topology:

» Point features (traffic signs), shown as dark circles: S1, S2, S3, and S4

» Linear features (roads or streets), shown as dashed lines: R1, R2, R3, and R4

= Area features (land parcels), shown as rectangles: P1, P2, P3, P4, and P5

Land parcel P5 does not include the shaded area within its area. (Specifically,
P5 includes face F1 but not face F9. These faces are shown in Figure 1-1 in
Section 1.2.)

Example 1-8 in Section 1.11 defines these features.

1.4 Topology Geometry Layer Hierarchy

In some topologies, the topology geometry layers (feature layers) have one or more
parent-child relationships in a topology hierarchy. That is, the layer at the topmost
level consists of features in its child layer at the next level down in the hierarchy; the

Topology Data Model Overview 1-9

Topology Geometry Layer Hierarchy

child layer might consist of features in its child layer at the next layer farther down;
and so on. For example, a land use topology might have the following topology
geometry layers at different levels of hierarchy:

= States at the highest level, which consists of features from its child layer,
Counties

= Counties at the next level down, which consists of features from its child layer,
Tracts

= Tracts at the next level down, which consists of features from its child layer,
Block Groups

= Block Groups at the next level down, which consists of features from its child
layer, Land Parcels

= Land Parcels at the lowest level of the hierarchy

If the topology geometry layers in a topology have this hierarchical relationship, it
is far more efficient if you model the layers as hierarchical than if you specify all
topology geometry layers at a single level (that is, with no hierarchy). For example,
it is more efficient to construct SDO_TOPO_GEOMETRY objects for counties by
specifying only the tracts in the county than by specifying all land parcels in all
block groups in all tracts in the county.

The lowest level (for the topology geometry layer containing the smallest kinds of
features) in a hierarchy is level 0, and successive higher levels are numbered 1, 2,
and so on. Topology geometry layers at adjacent levels of a hierarchy have a
parent-child relationship. Each topology geometry layer at the higher level is the
parent layer for one layer at the lower level, which is its child layer. A parent layer
can have only one child layer, but a child layer can have one or more parent layers.
Using the preceding example, the Counties layer can have only one child layer,
Tracts; however, the Tracts layer could have parent layers named Counties and
Water Districts (as long as each tract is in only one water district).

Note: Topology geometry layer hierarchy is somewhat similar to
network hierarchy, which is described in Section 6.5; however, there
are significant differences, and you should not confuse the two. For
example, the lowest topology geometry layer hierarchy level is 0,
and the lowest network hierarchy level is 1; and in a topology
geometry layer hierarchy each parent must have one child and each
child can have many parents, while in a network hierarchy each
parent can have many children and each child must have one
parent.

1-10 Oracle Spatial Topology and Network Data Models

Topology Geometry Layer Hierarchy

Figure 1-4 shows the preceding example topology geometry layer hierarchy. Each
level of the hierarchy shows the level number and the topology geometry layer in
that level.

Figure 1-4 Topology Geometry Layer Hierarchy

Level 4

Level O Land Parcels

U

To model topology geometry layers as hierarchical, specify the child layer in the
child_layer_ id parameter when you call the SDO_TOPO.ADD_TOPO_
GEOMETRY_LAYER procedure to add a parent topology geometry layer to the
topology. Add the lowest-level (level 0) topology geometry layer first; then add the
level 1 layer, specifying the level 0 layer as its child; then add the level 2 layer,
specifying the level 1 layer as its child; and so on. Example 1-1 shows five topology
geometry layers being added so that the 5-level hierarchy is established.

Topology Data Model Overview 1-11

Topology Geometry Layer Hierarchy

Example 1-1 Modeling a Topology Geometry Layer Hierarchy

-- Create the topology. (Null SRID in this example.)
EXECUTE SDO_TOPO.CREATE_TOPOLOGY(‘LAND_USE_HIER', 0.00005) ;

-- Create feature tables.

CREATE TABLE land parcels (-- Land parcels (selected faces)
feature name VARCHAR2 (30) PRIMARY KEY,
feature SDO_TOPO GEOMETRY) ;

CREATE TABLE block groups (
feature name VARCHAR2 (30) PRIMARY KEY,
feature SDO_TOPO GEOMETRY) ;

CREATE TABLE tracts (
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO_GEOMETRY) ;

CREATE TABLE counties (
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO GEOMETRY) ;

CREATE TABLE states (
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO GEOMETRY) ;

-- (Other steps not shown here, such as populating the feature tables
-- and initializing the metadata.)

-- Associate feature tables with the topology; include hierarchy information.

DECLARE
land parcels_id NUMBER;
block_groups id NUMBER;
tracts_id NUMBER;
counties id NUMBER;
BEGIN
SDO_TOPO.ADD TOPO GEOMETRY LAYER ('LAND USE HIER', 'LAND PARCELS',
'"FEATURE', 'POLYGON') ;
SELECT tg layer id INTO land parcels_id FROM user sdo_topo_info
WHERE topology = 'LAND USE HIER' AND table name = 'LAND PARCELS';
SDO_TOPO.ADD TOPO_GEOMETRY LAYER ('LAND USE HIER', 'BLOCK GROUPS',
'"FEATURE', 'POLYGON', NULL, land parcels id);
SELECT tg layer id INTO block groups id FROM user sdo topo info

1-12 Oracle Spatial Topology and Network Data Models

Topology Data Model Tables

WHERE topology = 'LAND USE HIER' AND table name = 'BLOCK GROUPS';

SDO_TOPO.ADD TOPO GEOMETRY LAYER ('LAND USE HIER', 'TRACTS',
'"FEATURE', 'POLYGON', NULL, block groups id);

SELECT tg layer id INTO tracts id FROM user sdo topo info
WHERE topology = 'LAND USE HIER' AND table name = 'TRACTS';

SDO_TOPO.ADD TOPO GEOMETRY LAYER ('LAND USE HIER', 'COUNTIES',
'"FEATURE', 'POLYGON', NULL, tracts_ id);

SELECT tg layer id INTO counties id FROM user sdo_topo info
WHERE topology = 'LAND USE HIER' AND table name = 'COUNTIES';

SDO_TOPO.ADD TOPO GEOMETRY LAYER ('LAND USE HIER', 'STATES',
'"FEATURE', 'POLYGON', NULL, counties_id);

END;

/

To insert or update topology geometry objects in feature tables for parent levels in a
hierarchy, use the forms of the SDO_TOPO_GEOMETRY constructor that include
attributes of type SDO_TGL_OBJECT_ARRAY (as opposed to SDO_TOPO_
OBJECT_ARRAY). Feature tables are described in Section 1.3, and SDO_TOPO_
GEOMETRY constructors are described in Section 1.6.2.

Note: The TOPO_ID and TOPO_TYPE attributes in the
relationship information table have special meanings when applied
to parent layers in a topology with a topology geometry layer
hierarchy. See the explanations of these attributes in Table 1-5 in
Section 1.5.4.

1.5 Topology Data Model Tables

To use the Spatial topology capabilities, you must first insert data into special edge,
node, and face tables, which are created by Spatial when you create a topology. The
edge, node, and face tables are described in Section 1.5.1, Section 1.5.2, and

Section 1.5.3, respectively.

Spatial automatically maintains a relationship information (<topology-name>_
RELATIONS$) table for each topology, which is created the first time that a feature
table is associated with a topology (that is, at the first call to the SDO_TOPO.ADD_
TOPO_GEOMETRY_LAYER procedure that specifies the topology). The
relationship information table is described in Section 1.5.4.

Figure 1-5 shows the role of the relationship information table in connecting
information in a feature table with information in its associated node, edge, or face
table.

Topology Data Model Overview 1-13

Topology Data Model Tables

Figure 1-5 Mapping Between Feature Tables and Topology Tables

Feature Table Relationship information Table

SDO_TOPO_GEOMETRY <topology-name>_RELATIONS$

TG_LAYER_ID ~tmmep- TG_LAYER_ID Node, Edge, Face Tables

TG_ID TG_ID = = =p <topology-name>_NODE$
TOPO_ID 1 NODE_ID
TOPO_TYPE < = = 3 =|= » <topology-name>_EDGE$
1 p—> EDGE_ID
L } = <topology-name>_FACE$

FACE_ID

As shown in Figure 1-5, the mapping between feature tables and the topology
node, edge, and face tables occurs through the <topology-name>_RELATION$
table. In particular:

Each feature table includes a column of type SDO_TOPO_GEOMETRY. This
type includes a TG_LAYER_ID attribute (the unique ID assigned by Oracle
Spatial Topology Manager when the layer is created), as well as a TG_ID
attribute (the unique ID assigned to each feature in a layer). The values in these
two columns have corresponding values in the TG_LAYER_ID and TG_ID
columns in the <topology-name>_RELATIONS table.

Each feature has one or more rows in the <topology-name>_RELATIONS$ table.

Given the TG_LAYER_ID and TG_ID values for a feature, the set of nodes,
faces, and edges associated with the feature can be determined by matching the
TOPO_ID value (the node, edge, or face ID) in the <topology-name>_
RELATIONS$ table with the corresponding ID value in the <topology-name>_
NODES, <topology-name>_EDGES$, or <topology-name>_FACES$ table.

1.5.1 Edge Information Table

You must store information about the edges in a topology in the <topology-name>_
EDGES$ table, where <topology-name> is the name of the topology as specified in the
call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each edge information
table has the columns shown in Table 1-1.

Table 1-1 Columns in the <topology-name>_EDGES$ Table

Column Name Data Type Description
EDGE_ID NUMBER Unique ID number for this edge.
START_NODE_ID NUMBER ID number of the start node for this edge.

1-14 Oracle Spatial Topology and Network Data Models

Topology Data Model Tables

Table 1-1 (Cont.) Columns in the <topology-name>_EDGE$ Table

Column Name Data Type Description

END_NODE_ID NUMBER ID number of the end node for this edge.

NEXT_LEFT_EDGE_ID NUMBER ID number (signed) of the next left edge for
this edge.

PREV_LEFT_EDGE_ID NUMBER ID number (signed) of the previous left
edge for this edge.

NEXT_RIGHT_EDGE_ID NUMBER ID number (signed) of the next right edge
for this edge.

PREV_RIGHT_EDGE_ID NUMBER ID number (signed) of the previous right
edge for this edge.

LEFT_FACE_ID NUMBER ID number of the left face for this edge.

RIGHT_FACE_ID NUMBER ID number of the right face for this edge.

GEOMETRY SDO_GEOMETRY Geometry object (line string) representing

this edge.

Figure 1-6 shows nodes, edges, and faces that illustrate the relationships among the
various ID columns in the edge information table. (In Figure 1-6, thick lines show
the edges, and thin lines with arrowheads show the direction of each edge.)

Figure 1-6 Nodes, Edges, and Faces

/E5

E3 F1
. Nt . N2
E1 E4 E7
E6
E2 F2
-
o ®
N3 E8 N4

Table 1-2 shows the ID column values in the edge information table for edges E4
and E8 in Figure 1-6. (For clarity, Table 1-2 shows ID column values with
alphabetical characters, such as E4 and N1; however, the ID columns actually

Topology Data Model Overview 1-15

Topology Data Model Tables

contain numeric values only, specifically the numeric ID value associated with each
named object.)

Table 1-2 Edge Table ID Column Values

NEXT_ PREV_ NEXT_ PREV_
START_ END_ LEFT_ LEFT_ RIGHT_ RIGHT_ LEFT_ RIGHT_

EDGE_ NODE_ NODE_ EDGE_ EDGE_ EDGE_ EDGE_ FACE_ FACE_

ID ID ID ID ID ID ID ID ID
E4 N1 N2 -E5 E3 E2 -E6 F1 F2
E8 N4 N3 -E8 -E8 ES8 E8 F2 F2

In Figure 1-6 and Table 1-2:

The start node and end node for edge E4 are N1 and N2, respectively. The next
left edge for edge E4 is E5, but its direction is the opposite of edge E4, and
therefore the next left edge for E4 is stored as -E5 (negative E5).

The previous left edge for edge E4 is E3, and because it has the same direction
as edge E4, the previous left edge for E4 is stored as E3.

The next right face is determined using the negative directed edge of E4. This
can be viewed as reversing the edge direction and taking the next left edge and
previous left edge. In this case, the next right edge is E2 and the previous right
edge is -E6 (the direction of edge E6 is opposite the negative direction of edge
E4). For edge E4, the left face is F1 and the right face is F2.

Edges E1 and E7 are neither leftmost nor rightmost edges with respect to edge
E4, and therefore they do not appear in the edge table row associated with edge
E4.

1.5.2 Node Information Table

You must store information about the nodes in a topology in the <topology-name>_
NODES$ table, where <topology-name> is the name of the topology as specified in the
call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each node information
table has the columns shown in Table 1-3.

1-16 Oracle Spatial Topology and Network Data Models

Topology Data Model Tables

Table 1-3 Columns in the <topology-name>_NODE$ Table

Column Name Data Type Description

NODE_ID NUMBER Unique ID number for this node.

EDGE_ID NUMBER ID number (signed) of the edge (if any)
associated with this node.

FACE_ID NUMBER ID number of the face (if any) associated
with this node.

GEOMETRY SDO_GEOMETRY Geometry object (point) representing this

node.

1.5.3 Face Information Table

You must store information about the faces in a topology in the <topology-name>_
FACES table, where <topology-name> is the name of the topology as specified in the
call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each face information

table has the columns shown in Table 1-4.

Table 1-4 Columns in the <topology-name>_FACE$ Table

Column Name Data Type

Description

FACE_ID NUMBER
BOUNDARY_EDGE_ID NUMBER

ISLAND_EDGE_ID_LIST SDO_LIST_TYPE

ISLAND_NODE_ID_LIST SDO_LIST_TYPE

MBR_GEOMETRY SDO_GEOMETRY

Unique ID number for this face.

ID number of the boundary edge for this
face. The sign of this number (which is
ignored for use as a key) indicates which
orientation is being used for this
boundary component (positive numbers
indicate the left of the edge, and negative
numbers indicate the right of the edge).

Island edges (if any) in this face. (The
SDO_LIST_TYPE type is described in
Section 1.6.4.)

Island nodes (if any) in this face. (The
SDO_LIST_TYPE type is described in
Section 1.6.4.)

Minimum bounding rectangle (MBR) that
encloses this face. (This is not required.
However, if the MBR is specified and if a
spatial R-tree index is defined on this
geometry, the face can be retrieved more
efficiently.)

Topology Data Model Overview 1-17

Topology Data Model Tables

1.5.4 Relationship Information Table

As you work with topology objects, Spatial automatically maintains information
about each object in <topology-name>_RELATIONS tables, where <topology-name>
is the name of the topology and there is one such table for each topology. Each row
in the table uniquely identifies a topology geometry with respect to its topology
geometry layer and topology. Each relationship information table has the columns
shown in Table 1-5.

Table 1-5 Columns in the <topology-name>_RELATIONS Table

Column Name Data Type Description

TG_LAYER_ID NUMBER ID number of the topology geometry layer to which
the topology geometry belongs.

TG_ID NUMBER ID number of the topology geometry.

TOPO_ID NUMBER For a topology that does not have a topology

geometry layer hierarchy or for the lowest level (level
0) in the hierarchy: ID number of a topological
element in the topology geometry.

For a level higher than 0 in the hierarchy: level
number in the hierarchy of the topology geometry
layer.

TOPO_TYPE NUMBER For a topology that does not have a topology
geometry layer hierarchy or for the lowest level (level
0) in the hierarchy: type of topology: 1 =node, 2 =
edge, 3 = face.

For a level higher than 0 in the hierarchy: ID number
of a topological element in the topology geometry.

TOPO_ATTRIBUTE VARCHAR2 Reserved for Oracle use.

1.5.5 History Information Table

When a topology editing operation causes an insert or delete operation on an edge
or face information table, Spatial automatically maintains information about these
operations in <topology-name>_HISTORY$ tables, where <topology-name> is the
name of the topology and there is one such table for each topology. Each row in the
table uniquely identifies an editing operation on a topology object. (Topology
editing is discussed in Chapter 2.) Each history information table has the columns
shown in Table 1-6.

1-18 Oracle Spatial Topology and Network Data Models

Topology Data Types

Table 1-6 Columns in the <topology-name>_HISTORYS$ Table

Column Name Data Type Description

TOPO_TX_ID NUMBER ID number of the transaction that was started by a call
to the SDO_TOPO_MAPLOAD_TOPO_MAP
function or to the loadWindow or loadTopology Java
method. Each transaction can consist of several
editing operations.

TOPO_SEQUENCE NUMBER Sequence number assigned to an editing operation
within the transaction.

TOPOLOGY VARCHAR2 Name of the topology containing the objects being
edited.

TOPO_ID NUMBER ID number of a topological element in the topology
geometry.

TOPO_TYPE NUMBER Type of topology: 1 =node, 2 = edge, 3 = face.

TOPO_OP VARCHAR?2 Type of editing operation that was performed on the
topology object: I for insert or D for delete.

PARENT_ID NUMBER For an insert operation, the ID of the parent

topological element from which the current
topological element is derived; for a delete operation,
the ID of the resulting topological element.

Consider the following examples:

= Adding a node to break edge E2, generating edge E3: The TOPO_ID value of
the new edge is the ID of E3, the TOPO_TYPE value is 2, the PARENT_ID value
is the ID of E2, and the TOPO_OP value is I.

= Deleting a node to merge edges E6 and E7, resulting in E7: The TOPO_ID value
is the ID of E6, the TOPO_TYPE value is 2, the PARENT_ID value is the ID of
E7, and the TOPO_OP value is D.

1.6 Topology Data Types

The main data type associated with the topology data model is SDO_TOPO_
GEOMETRY, which describes a topology geometry. The SDO_TOPO_GEOMETRY
type has several constructors and one member function. This section describes the
topology model types, constructors, and member functions.

Topology Data Model Overview 1-19

Topology Data Types

1.6.1 SDO_TOPO_GEOMETRY Type

The description of a topology geometry is stored in a single row, in a single column
of object type SDO_TOPO_GEOMETRY in a user-defined table. The object type
SDO_TOPO_GEOMETRY is defined as:

CREATE TYPE sdo topo geometry AS OBJECT
(tg_type NUMBER,
tg_id NUMBER,
tg layer id NUMBER,
topology id NUMBER) ;

The SDO_TOPO_GEOMETRY type has the attributes shown in Table 1-7.

Table 1-7 SDO_TOPO_GEOMETRY Type Attributes

Attribute Explanation

TG_TYPE Type of topology geometry: 1 = point, 2 = line string, 3 = polygon or
multipolygon, 4 = heterogeneous collection. Note: Most real world
topology geometries are one of the multi types.

TG_ID Unique ID number (generated by Spatial) for the topology geometry.

TG_LAYER_ID ID number for the topology geometry layer to which the topology
geometry belongs. (This number is generated by Spatial, and it is unique
within the topology geometry layer.)

TOPOLOGY_ID Unique ID number (generated by Spatial) for the topology.

Each topology geometry in a topology is uniquely identified by the combination of
its TG_ID and TG_LAYER_ID values.

You can use an attribute name in a query on an object of SDO_TOPO_GEOMETRY.
Example 1-2 shows SELECT statements that query each attribute of the FEATURE
column of the CITY_STREETS table, which is defined in Example 1-8 in

Section 1.11.

Example 1-2 SDO_TOPO_GEOMETRY Attributes in Queries

SELECT s.feature.tg type FROM city streets s;
SELECT s.feature.tg_id FROM city streets s;

SELECT s.feature.tg layer id FROM city streets s;
SELECT s.feature.topology id FROM city streets s;

1-20 Oracle Spatial Topology and Network Data Models

Topology Data Types

1.6.2 SDO_TOPO_GEOMETRY Constructors

The SDO_TOPO_GEOMETRY type has constructors for inserting and updating
topology geometry objects. The constructor format to use for either type of
operation (insert or update) depends on whether or not the operation affects a
parent level in a topology geometry layer hierarchy:

» Toinsert and update topology geometry objects when the topology does not
have a topology geometry layer hierarchy or when the operation affects the
lowest level (level 0) in the hierarchy, use constructors that specify the
lowest-level topology objects (nodes, edges, and faces). These constructors have
at least one attribute of type SDO_TOPO_OBJECT_ARRAY and no attributes of
type SDO_TGL_OBJECT_ARRAY. (Topology geometry layer hierarchy is
explained in Section 1.4.)

s Toinsert and update topology geometry layers when the topology has a
topology geometry layer hierarchy and the operation affects a level other than
the lowest in the hierarchy, use constructors that specify elements in the child
level. These constructors have at least one attribute of type SDO_TGL_OBJECT_
ARRAY and no attributes of type SDO_TOPO_OBJECT_ARRAY.

For specifying either lowest-level objects or child-level objects, there are two
constructors for insert operations and two constructors for update operations. For
each type of operation (insert or update), one constructor format specifies the
topology geometry layer by its ID value and the other format specifies the layer by
the combination of table name and column name.

This section describes the available SDO_TOPO_GEOMETRY constructors.

1.6.2.1 Constructors for Insert Operations into the Lowest Level

The SDO_TOPO_GEOMETRY type has the following constructors that you can use
in INSERT statements to create new topology geometry objects when the topology
does not have a topology geometry layer hierarchy or when the operation affects
the lowest level (level 0) in the hierarchy:

SDO_TOPO_GEOMETRY (topology VARCHAR2,

tg _type NUMBER,

tg layer id NUMBER,

topo_ids SDO_TOPO_OBJECT ARRAY)
SDO_TOPO_GEOMETRY (topology VARCHAR2,

table name VARCHAR2,
column name VARCHAR2,
tg type NUMBER,

Topology Data Model Overview 1-21

Topology Data Types

topo_ids SDO_TOPO_OBJECT ARRAY)

The SDO_TOPO_OBJECT_ARRAY type is defined as a VARRAY of SDO_TOPO_
OBJECT objects.

The SDO_TOPO_OBJECT type has the following two attributes:

(topo_id NUMBER, topo type NUMBER)

The TG_TYPE and TOPO_IDS attribute values must be within the range of values
from the <topology-name>_RELATIONS table (described in Section 1.5.4) for the
specified topology.

Example 1-3 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor inserts a topology geometry into the LAND_PARCELS table,
which is defined in Example 1-8 in Section 1.11.

Example 1-3 INSERT Using Constructor with SDO_TOPO_OBJECT_ARRAY

INSERT INTO land parcels VALUES ('P1l', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG LAYER ID for this topology (from ALL SDO TOPO METADATA)
SDO_TOPO_OBJECT ARRAY (

SDO_TOPO OBJECT (3, 3), -- face id = 3
SDO_TOPO_OBJECT (6, 3))) -- face_id = 6
)i
INSERT INTO land parcels VALUES ('P1A', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
'"LAND PARCELS', -- Table name
'FEATURE', -- Column name
3, -- Topology geometry type (polygon/multipolygon)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (3, 3), -- face id = 3
SDO_TOPO_OBJECT (6, 3))) -- face_ id =6

)

1.6.2.2 Constructors for Insert Operations into a Parent Level

The SDO_TOPO_GEOMETRY type has the following constructors that you can use
in INSERT statements into a feature table associated with a parent level in a
topology that has a topology geometry layer hierarchy:

1-22 Oracle Spatial Topology and Network Data Models

Topology Data Types

SDO_TOPO_GEOMETRY (topology VARCHAR2,

tg type NUMBER,

tg layer id NUMBER,

topo_ids SDO_TGL_OBJECT ARRAY)
SDO_TOPO_GEOMETRY (topology VARCHAR2,

table_name VARCHAR2,

column name VARCHAR2,

tg type NUMBER,

topo_ids SDO_TGL_OBJECT ARRAY)

The SDO_TGL_OBJECT_ARRAY type is defined as a VARRAY of SDO_TGL_
OBJECT objects.

The SDO_TGL_OBJECT type has the following two attributes:

(tgl id NUMBER, tg_id NUMBER)

Example 1-4 shows an SDO_TOPO_GEOMETRY constructor that inserts a row into
the BLOCK_GROUPS table, which is the feature table for the Block Groups level in

the topology geometry layer hierarchy. The Block Groups level is the parent of the
Land Parcels level at the bottom of the hierarchy.

Example 1-4 INSERT Using Constructor with SDO_TGL_OBJECT_ARRAY

INSERT INTO block groups VALUES ('BGl', -- Feature name
SDO_TOPO_GEOMETRY ('LAND_USE_HIER',
3, -- Topology geometry type (polygon/multipolygon)
2, -- TG _LAYER ID for block groups (from ALL SDO TOPO METADATA)
SDO_TGL_OBJECT ARRAY (
SDO_TGL_OBJECT (1, 1), -- land parcel ID =1
SDO_TGL_OBJECT (12, 2))) -- land parcel ID = 2

)

1.6.2.3 Constructors for Update Operations into the Lowest Level

The SDO_TOPO_GEOMETRY type has the following constructors that you can use
in UPDATE statements to modify existing topology geometry objects when the
topology does not have a topology geometry layer hierarchy or when the operation
affects the lowest level (level 0) in the hierarchy:

SDO_TOPO_GEOMETRY (topology VARCHAR2,
tg type NUMBER,
tg layer id NUMBER,
add_topo_ids SDO_TOPO_OBJECT_ARRAY,

delete_topo_ids SDO_TOPO_OBJECT ARRAY)

Topology Data Model Overview 1-23

Topology Data Types

SDO_TOPO_GEOMETRY (topology VARCHAR2,
table name VARCHAR2,
column name VARCHAR2,
tg_type NUMBER,
add_topo_ids SDO_TOPO_OBJECT_ARRAY,

delete_topo_ids SDO_TOPO_OBJECT ARRAY)

For example, you could use one of these constructor formats to add an edge to a
linear feature or to remove an obsolete edge from a feature.

The SDO_TOPO_OBJECT_ARRAY type definition and the requirements for the TG_
TYPE and TOPO_IDS attribute values are as described in Section 1.6.2.1.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS
attributes, or you can specify values for one attribute and specify the other as null;
however, you cannot specify null values for both ADD_TOPO_IDS and DELETE_
TOPO_IDS.

Example 1-5 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor removes two faces from the CITY DATA topology in the LAND_
PARCELS table, which is defined in Example 1-8 in Section 1.11.

Example 1-5 UPDATE Using Constructor with SDO_TOPO_OBJECT_ARRAY

UPDATE land parcels 1 SET l.feature = SDO_TOPO GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG_LAYER ID for this topology (from ALL SDO_TOPO_METADATA)
NULL, -- No topology objects to be added
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (3, 3), -- face id = 3
SDO_TOPO_OBJECT (6, 3))) -- face id = 6
WHERE 1.feature name = 'P1';

UPDATE land_parcels 1 SET 1.feature = SDO_TOPO_GEOMETRY (

'CITY DATA', -- Topology name
'LAND PARCELS', -- Table name
'FEATURE', -- Column name
3, -- Topology geometry type (polygon/multipolygon)
NULL, -- No topology objects to be added
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO _OBJECT (3, 3), -- face id = 3
SDO_TOPO_OBJECT (6, 3))) -- face id = 6

WHERE 1.feature name = 'P1A';

1-24 Oracle Spatial Topology and Network Data Models

Topology Data Types

1.6.2.4 Constructors for Update Operations into a Parent Level

The SDO_TOPO_GEOMETRY type has the following constructors that you can use
in UPDATE statements affecting a feature table associated with a parent level in a
topology that has a topology geometry layer hierarchy:

SDO_TOPO_GEOMETRY (topology VARCHARZ,
tg_type NUMBER,
tg_layer id NUMBER,
add topo_ids SDO_TGL_OBJECT ARRAY,

delete topo ids SDO TGL OBJECT ARRAY)

SDO_TOPO_GEOMETRY (topology VARCHARZ2,
table name VARCHAR2,
column_name VARCHAR2,
tg_type NUMBER,
add_topo_ids SDO_TGL_OBJECT ARRAY,

delete topo ids SDO TGL OBJECT ARRAY)

For example, you could use one of these constructor formats to add an edge to a
linear feature or to remove an obsolete edge from a feature.

The SDO_TGL_OBJECT_ARRAY type definition and the requirements for its
attribute values are as described in Section 1.6.2.2.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS
attributes, or you can specify values for one attribute and specify the other as null;
however, you cannot specify null values for both ADD_TOPO_IDS and DELETE_
TOPO_IDS.

Example 1-6 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor deletes the land parcel with the ID value of 2 from two features
(named BG1 and BG1A and that have the same definition) from the CITY DATA
topology in the BLOCK_GROUPS table, which is the feature table for the Block
Groups level in the topology geometry layer hierarchy. The Block Groups level is
the parent of the Land Parcels level at the bottom of the hierarchy.

Example 1-6 UPDATE Using Constructor with SDO_TGL_OBJECT_ARRAY

UPDATE block groups b SET b.feature = SDO_TOPO GEOMETRY (
'LAND USE HIER',
3, -- Topology geometry type (polygon/multipolygon)
2, -- TG_LAYER ID for block groups (from ALL SDO TOPO_METADATA)
null, -- No IDs to add
SDO_TGL_OBJECT ARRAY (
SDO_TGL_OBJECT (1, 2)) -- land parcel ID = 2

Topology Data Model Overview 1-25

Topology Data Types

)
WHERE b.feature name = 'BGl';

UPDATE block groups b SET b.feature = SDO_TOPO GEOMETRY (
'LAND USE_HIER',

'"BLOCK_GROUPS', -- Feature table
'FEATURE', -- Feature column
3, -- Topology geometry type (polygon/multipolygon)
null, -- No IDs to add
SDO_TGL_OBJECT ARRAY (
SDO_TGL_OBJECT (1, 2)) -- land parcel ID = 2

)
WHERE b.feature name = 'BGIA';

1.6.3 GET_GEOMETRY Member Function

The SDO_TOPO_GEOMETRY type has a member function GET_GEOMETRY,
which you can use to return the SDO_GEOMETRY object for the topology geometry
object.

Example 1-7 uses the GET_GEOMETRY member function to return the SDO_

GEOMETRY object for the topology geometry object associated with the land parcel
named P1.

Example 1-7 GET_GEOMETRY Member Function

SELECT 1l.feature name, 1l.feature.get geometry()
FROM land parcels 1 WHERE 1.feature name = 'P1';

FEATURE_NAME

P1
SDO_GEOMETRY (2003, NULL, NULL, SDO ELEM INFO ARRAY (1, 3, 1), SDO ORDINATE ARRAY (

21, 14, 21, 22, 9, 22, 9, 14, 9, 6, 21, 6, 21, 14))

1.6.4 SDO_LIST_TYPE Type

The SDO_LIST_TYPE type is used to store the EDGE_ID values of island edges and
NODE_ID values of island nodes in a face. The SDO_LIST_TYPE type is defined as:

CREATE TYPE sdo_list type as VARRAY(2147483647) OF NUMBER;

1-26 Oracle Spatial Topology and Network Data Models

Topology Metadata Views

1.6.5 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

The SDO_EDGE_ARRAY type is used to specify the coordinates of attached edges
affected by a node move operation. The SDO_EDGE_ARRAY type is defined as:

CREATE TYPE sdo edge array as VARRAY(1000000) OF MDSYS.SDO NUMBER ARRAY;

The SDO_NUMBER_ARRAY type is a general-purpose type used by Spatial for
arrays. The SDO_NUMBER_ARRAY type is defined as:

CREATE TYPE sdo number array as VARRAY(1048576) OF NUMBER;

1.7 Topology Metadata Views

There are two sets of topology metadata views for each schema (user): xxx_SDO_
TOPO_INFO and xxx_SDO_TOPO_METADATA, where xxx can be USER or ALL.
These views are read-only to users; they are created and maintained by Spatial.

The xxx_SDO_TOPO_METADATA views contain the most detailed information,
and each xxx_SDO_TOPO_INFO view contains a subset of the information in its
corresponding xxx_SDO_TOPO_METADATA view.

1.7.1 xxx_SDO _TOPO_INFO Views

The following views contain basic information about topologies:

s USER_SDO_TOPO_INFO contains topology information for all tables owned
by the user.

s ALL SDO_TOPO_INFO contains topology information for all tables on which
the user has SELECT permission.

The USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views contain the same
columns, as shown Table 1-8. (The columns are listed in their order in the view
definition.)

Table 1-8 Columns in the xxx_SDO_TOPO_INFO Views

Column Name Data Type Purpose
OWNER VARCHAR2 Owner of the topology.
TOPOLOGY VARCHAR?2 Name of the topology.

TOPOLOGY_TYPE VARCHAR?2 Contains PLANAR if the topology can have nodes,
edges, and faces. (No other values are supported for
the current release.)

Topology Data Model Overview 1-27

Topology Metadata Views

Table 1-8 (Cont.) Columns in the xxx_SDO_TOPO_INFO Views

Column Name

Data Type

Purpose

TOLERANCE

SRID

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

TG_LAYER_ID
TG_LAYER_TYPE

TG_LAYER_LEVEL

CHILD_LAYER_ID

NUMBER

NUMBER

VARCHAR2

VARCHAR?2

VARCHAR2

NUMBER
VARCHAR?2

NUMBER

NUMBER

Tolerance value associated with topology geometries
in the topology. (Tolerance is explained in Chapter 1
of the Oracle Spatial User's Guide and Reference.) Oracle
Spatial uses the tolerance value in building R-tree
indexes on the node, edge, and face tables; the value
is also used for any spatial queries that use these
tables.

Coordinate system (spatial reference system)
associated with all topology geometry layers in the
topology. Is null if no coordinate system is associated;
otherwise, it contains a value from the SRID column
of the MDSYS.CS_SRS table (described in Oracle
Spatial User’s Guide and Reference).

Name of the schema that owns the table containing
the topology geometry layer column.

Name of the table containing the topology geometry
layer column.

Name of the column containing the topology
geometry layer data.

ID number of the topology geometry layer.

Contains one of the following: POINT, LINE, CURVE,
POLYGON, or COLLECTION.

Hierarchy level number of this topology geometry
layer. (Topology geometry layer hierarchy is
explained in Section 1.4.)

ID number of the topology geometry layer that is the
child layer of this layer in the topology geometry
layer hierarchy. Null if this layer has no child layer or
if the topology does not have a topology geometry
layer hierarchy. (Topology geometry layer hierarchy
is explained in Section 1.4.)

1.7.2 xxx_SDO_TOPO_METADATA Views

The following views contain detailed information about topologies:

s USER_SDO_TOPO_METADATA contains topology information for all tables
owned by the user.

1-28 Oracle Spatial Topology and Network Data Models

Topology Metadata Views

= ALL SDO_TOPO_METADATA contains topology information for all tables on
which the user has SELECT permission.

The USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views
contain the same columns, as shown Table 1-9. (The columns are listed in their
order in the view definition.)

Table 1-9 Columns in the xxx_SDO_TOPO_METADATA Views

Column Name

Data Type

Purpose

OWNER
TOPOLOGY
TOPOLOGY_TYPE

TOLERANCE

SRID

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

TG_LAYER_ID
TG_LAYER_TYPE

TG_LAYER_LEVEL

VARCHAR2
VARCHAR2
VARCHAR?2

NUMBER

NUMBER

VARCHAR?2

VARCHAR2

VARCHAR?2

NUMBER
VARCHAR?2

NUMBER

Owner of the topology.
Name of the topology.

Contains PLANAR if the topology can have nodes,
edges, and faces. (No other values are supported for
the current release.)

Tolerance value associated with topology
geometries in the topology. (Tolerance is explained
in Chapter 1 of Oracle Spatial User’s Guide and
Reference.) Oracle Spatial uses the tolerance value in
building R-tree indexes on the node, edge, and face
tables; the value is also used for any spatial queries
that use these tables.

Coordinate system (spatial reference system)
associated with all topology geometry layers in the
topology. Is null if no coordinate system is
associated; otherwise, contains a value from the
SRID column of the MDSYS.CS_SRS table
(described in Oracle Spatial User’s Guide and
Reference).

Name of the schema that owns the table containing
the topology geometry layer column.

Name of the table containing the topology geometry
layer column.

Name of the column containing the topology
geometry layer data.

ID number of the topology geometry layer.

Contains one of the following: POINT, LINE,
CURVE, or POLYGON.

Hierarchy level number of this topology geometry
layer. (Topology geometry layer hierarchy is
explained in Section 1.4.)

Topology Data Model Overview 1-29

Topology Application Programming Interface

Table 1-9 (Cont.) Columns in the xxx_SDO_TOPO_METADATA Views

Column Name Data Type

Purpose

CHILD_LAYER _ID NUMBER

NODE_SEQUENCE VARCHAR?2

EDGE_SEQUENCE VARCHAR?2

FACE_SEQUENCE VARCHAR2

TG_SEQUENCE VARCHAR?2

ID number of the topology geometry layer that is
the child layer of this layer in the topology
geometry layer hierarchy. Null if this layer has no
child layer or if the topology does not have a
geometry layer hierarchy. (Topology geometry layer
hierarchy is explained in Section 1.4.)

Name of the sequence containing the next available
node ID number.

Name of the sequence containing the next available
edge ID number.

Name of the sequence containing the next available
face ID number.

Name of the sequence containing the next available
topology geometry ID number.

1.8 Topology Application Programming Interface
The topology data model application programming interface (API) consists of the

following:

= Subprograms (PL/SQL functions and procedures) in the SDO_TOPO package
(described in Chapter 3) and the SDO_TOPO_MAP package (described in

Chapter 4)

s SDO_ANYINTERACT operator (described in Chapter 5)
s Java API (described in Section 1.8.1)

1.8.1 Topology Data Model Java Interface

The Java client interface for the topology data model consists of the following

classes:

= TopoMap: class that stores edges, nodes, and faces, and provides methods for
adding and deleting elements while maintaining topological consistency both
in the cache and in the underlying database tables

= Edge: class for an edge

m Face: class for a face

1-30 Oracle Spatial Topology and Network Data Models

Function-Based Indexes Not Supported

Node: class for a node
Point2DD: class for a point
IntArrayList: class for the int data type

InvalidTopoOperationException: class for the invalid topology operation
exception

TopoValidationException: class for the topology validation failure
exception

TopoEntityNotFoundException: class for the entity not found exception

For detailed reference information about the topology data model classes, as well as
some usage information about the Java AP]I, see the Javadoc-generated API
documentation: open index.html in a directory that includes the path
sdotopo/doc/javadoc.

1.9 Exporting and Importing Topology Data

To export topology data from one database and import it into another database,
follow the steps in this section.

In the database with the topology data to be exported, export the topology data by
exporting all topology tables, including the feature tables.

In the database into which to import the topology data:

1.

Import the tables from the .dmp file that you created when you exported the
topology data.

Call the SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure to add each
topology geometry layer to the topology.

Call the SDO_TOPO.INITIALIZE_METADATA procedure to initialize the
topology metadata.

1.10 Function-Based Indexes Not Supported

You cannot create a function-based index on a column of type SDO_TOPO_
GEOMETRY. (Function-based indexes are explained in Oracle Database Application
Developer’s Guide - Fundamentals and Oracle Database Administrator’s Guide.)

Topology Data Model Overview 1-31

Topology Example (PL/SQL)

1.11 Topology Example (PL/SQL)

This section presents a simplified PL/SQL example that performs topology data
model operations. It refers to concepts that are explained in this chapter. It uses
SDO_TOPO functions and procedures, which are documented in Chapter 3, and the
SDO_ANYINTERACT operator, which is documented in Chapter 5.

Example 1-8 uses the topology shown in Figure 1-1 in Section 1.2, and the features
shown in Figure 1-3 in Section 1.3.1.

Example 1-8 Topology Example (PL/SQL)

. Create a topology.

Load (normally bulk-load) topology data (node, edge, and face tables).
Create feature tables.

. Associate feature tables with the topology.

Initialize topology metadata.

Load feature tables using the SDO_TOPO GEOMETRY constructor.

Query the data.

Optionally, edit data using the Java API.

1
|
o J O U1 B W N

-- 1. Create the topology. (Null SRID in this example.)
EXECUTE SDO_TOPO.CREATE TOPOLOGY ('CITY DATA', 0.00005);

-- 2. Load topology data (node, edge, and face tables).
-- Use INSERT statements here instead of a bulk-load utility.

-- 2A. Insert data into <topology name> EDGE$ table.

-- El
INSERT INTO city data edge$ VALUES(1, 1, 1, 1, 1, -1, -1, 1, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (8,30, 16,30, 16,38, 3,38, 3,30, 8,30)));
-- E2
INSERT INTO city data_edge$ VALUES(2, 2, 2, 3, -3, -2, -2, 2, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (25,30, 31,30, 31,40, 17,40, 17,30, 25,30)));
-- E3
INSERT INTO city data_edge$ VALUES(3, 2, 3, -3, 2, 2, 3, 2, 2,
SDO_GEOMETRY (2002, NULL, NULL, SDO ELEM INFO ARRAY(1l, 2, 1),
SDO_ORDINATE_ARRAY (25,30, 25,35)));
-- E4

1-32 Oracle Spatial Topology and Network Data Models

Topology Example (PL/SQL)

INSERT INTO city data edge$ VALUES(4, 5, 6, -5, -4, 4, 5, -1, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (36,38, 38,35, 41,34, 42,33, 45,32, 47,28, 50,28, 52,32,
57,33)));
-- ES
INSERT INTO city data edge$ VALUES(5, 7, 6, -4, -5, 5, 4, -1, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1l, 2, 1),
SDO_ORDINATE ARRAY (41,40, 45,40, 47,42, 62,41, 61,38, 59,39, 57,36,
57,33)));
-- E6
INSERT INTO city data_edge$ VALUES(6, 16, 17, 7, 21, -21, 19, -1, 3,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1l, 2, 1),
SDO_ORDINATE ARRAY (9,22, 21,22)));
-- E7
INSERT INTO city data_edge$ VALUES(7, 17, 18, 8, 6, -19, 17, -1, 4,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (21,22, 35,22)));
-- E8
INSERT INTO city data edge$ VALUES(8, 18, 19, -15, 7, -17, 15, -1, 5,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (35,22, 47,22)));
-- E9
INSERT INTO city data_edge$ VALUES(9, 15, 14, 19, -21, -22, 20, 3, 6,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1l, 2, 1),
SDO_ORDINATE ARRAY (9,14, 21,14)));
-- E10
INSERT INTO city data_edge$ VALUES(10, 13, 14, -20, 18, 17, -19, 7, 4,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (35,14, 21,14)));
-- E11
INSERT INTO city data edge$ VALUES(11, 13, 12, 15, -17, -18, 16, 5, 8,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (35,14, 47,14)));
-- El2
INSERT INTO city data edge$ VALUES(12, 8, 9, 20, -22, 22, -13, 6, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (9,6, 21,6)));
-- E13
INSERT INTO city data edge$ VALUES(13, 9, 10, 18, -20, -12, -14, 7, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (21,6, 35,6)));
-- El4
INSERT INTO city data edge$ VALUES(14, 10, 11, 16, -18, -13, -16, 8, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (35,6, 47,6)));

Topology Data Model Overview 1-33

Topology Example (PL/SQL)

-- E15
INSERT INTO city data_edge$ VALUES(15, 12, 19, -8, 11, -16, 8, 5, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (47,14, 47,22)));
-- El6
INSERT INTO city data edge$ VALUES(16, 11, 12, -11, 14, -14, -15, 8, -1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (47,6, 47,14)));
-- E17
INSERT INTO city data_edge$ VALUES(17, 13, 18, -7, -10, 11, -8, 4, 5,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (35,14, 35,22)));
-- E18
INSERT INTO city data_edge$ VALUES(18, 10, 13, 10, 13, 14, -11, 7, 8,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (35,6, 35,14)));
-- E19
INSERT INTO city data_edge$ VALUES(19, 14, 17, -6, 9, -10, -7, 3, 4,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1l, 2, 1),
SDO_ORDINATE_ARRAY (21,14, 21,22)));
-- E20
INSERT INTO city data_edge$ VALUES(20, 9, 14, -9, 12, 13, 10, 6, 7,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (21,6, 21,14)));
-- E21
INSERT INTO city data_edge$ VALUES(21, 15, 16, 6, 22, 9, -6, -1, 3,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY (9,14, 9,22)));
-- E22
INSERT INTO city data_edge$ VALUES(22, 8, 15, 21, -12, 12, -9, -1, 6,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (9,6, 9,14)));
-- E25
INSERT INTO city data_edge$ VALUES(25, 21, 22, -25, -25, 25, 25, 1, 1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (9,35, 13,35)));
-- E26
INSERT INTO city data_edge$ VALUES(26, 20, 20, 26, 26, -26, -26, 9, 1,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (4,31, 7,31, 7,34, 4,34, 4,31)));

-- 2B. Insert data into <topology name> NODE$ table.

-- N1
INSERT INTO city data node$ VALUES(1, 1, NULL,

1-34 Oracle Spatial Topology and Network Data Models

Topology Example (PL/SQL)

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(8,30,NULL), NULL, NULL));
-- N2
INSERT INTO city_data_node$ VALUES (2, 2, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(25,30,NULL), NULL, NULL));
-- N3
INSERT INTO city_data_node$ VALUES (3, -3, NULL,

SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(25,35,NULL), NULL, NULL));
-- N4
INSERT INTO city_data_node$ VALUES (4, NULL, 2,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(20,37,NULL), NULL, NULL));
-- N5
INSERT INTO city_data_node$ VALUES (5, 4, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(36,38,NULL), NULL, NULL));
-- N6
INSERT INTO city_data_node$ VALUES (6, -4, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(57,33,NULL), NULL, NULL));
-- N7
INSERT INTO city_data_node$ VALUES (7, 5, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(41,40,NULL), NULL, NULL));
-- N8
INSERT INTO city_data_node$ VALUES (8, 12, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(9,6,NULL), NULL, NULL));
-- N9
INSERT INTO city_data_node$ VALUES (9, 20, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(21,6,NULL), NULL, NULL));
-- N10
INSERT INTO city_data_node$ VALUES (10, 18, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(35,6,NULL), NULL, NULL));
-- N11
INSERT INTO city_data_node$ VALUES (11, -14, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(47,6,NULL), NULL, NULL));
-- N12
INSERT INTO city_data_node$ VALUES (12, 15, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(47,14,NULL), NULL, NULL));
-- N13
INSERT INTO city_data_nodes VALUES (13, 17, NULL,

SDO_GEOMETRY(ZOOI, NULL, SDO_POINT_TYPE(35,14,NULL), NULL, NULL));
-- N14
INSERT INTO city_data_node$ VALUES (14, 19, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(21,14,NULL), NULL, NULL));
-- N15
INSERT INTO city_data_nodes VALUES (15, 21, NULL,

SDO_GEOMETRY(ZOOI, NULL, SDO_POINT_TYPE(9,l4,NULL), NULL, NULL));
-- Nl1l6
INSERT INTO city data node$ VALUES (16, 6, NULL,

Topology Data Model Overview 1-35

Topology Example (PL/SQL)

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(9,22,NULL), NULL, NULL));
-- N17
INSERT INTO city_data_node$ VALUES (17, 7, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(21,22,NULL), NULL, NULL));
-- N18
INSERT INTO city data node$ VALUES (18, 8, NULL,

SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(35,22,NULL), NULL, NULL));
-- N19
INSERT INTO city_data_node$ VALUES (19, -15, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(47,22,NULL), NULL, NULL));
-- N20
INSERT INTO city data node$ VALUES (20, 26, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(4,31,NULL), NULL, NULL));
-- N21
INSERT INTO city_data_node$ VALUES (21, 25, NULL,

SDO_GEOMETRY(ZOOl, NULL, SDO_POINT_TYPE(9,35,NULL), NULL, NULL));
-- N22
INSERT INTO city data node$ VALUES (22, -25, NULL,

SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(13,35,NULL), NULL, NULL));

-- 2C. Insert data into <topology name> FACES$ table.

-- F0O (id = -1, not 0)
INSERT INTO city data face$ VALUES(-1, NULL, SDO LIST TYPE(-1, -2, 4, 6),
SDO_LIST TYPE(),

INSERT INTO city data face$ VALUES(1, 1, SDO_LIST TYPE(25), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE ARRAY (3,30, 15,38)));
-- F2
INSERT INTO city data face$ VALUES(2, 2, SDO_LIST TYPE(), SDO_LIST TYPE(4),
SDO_GEOMETRY (2003, NULL, NULL, SDO _ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY (17,30, 31,40)));
-- F3
INSERT INTO city data face$ VALUES(3, 19, SDO_LIST TYPE(), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE ARRAY (9,14, 21,22)));
-- F4
INSERT INTO city data face$ VALUES(4, 17, SDO_LIST TYPE(), SDO LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE ARRAY (21,14, 35,22)));
-- F5
INSERT INTO city data face$ VALUES(5, 15, SDO_LIST TYPE(), SDO LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO ELEM INFO ARRAY(1,1003,3),

1-36 Oracle Spatial Topology and Network Data Models

Topology Example (PL/SQL)

SDO_ORDINATE_ARRAY (35,14, 47,22)));
-- F6
INSERT INTO city data face$ VALUES(6, 20, SDO_LIST TYPE(), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE ARRAY (9,6, 21,14)));
-- F7
INSERT INTO city data face$ VALUES(7, 10, SDO_LIST TYPE(), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY (21,6, 35,14)));
-- F8
INSERT INTO city data face$ VALUES(8, 16, SDO_LIST TYPE(), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY (35,6, 47,14)));
-- F9
INSERT INTO city data face$ VALUES(9,26,SDO_LIST TYPE(), SDO_LIST TYPE(),
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM INFO ARRAY(1,1003,3),
SDO_ORDINATE ARRAY (4,31, 7,34)));

-- 3. Create feature tables.

CREATE TABLE land parcels (-- Land parcels (selected faces)
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO_GEOMETRY) ;

CREATE TABLE city streets (-- City streets (selected edges)
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO GEOMETRY) ;

CREATE TABLE traffic_signs (-- Traffic signs (selected nodes)
feature name VARCHAR2(30) PRIMARY KEY,
feature SDO_TOPO_GEOMETRY) ;

-- 4. Associate feature tables with the topology.
-- Add the three topology geometry layers to the CITY DATA topology.
-- Any order is OK.

EXECUTE SDO_TOPO.ADD TOPO GEOMETRY LAYER('CITY DATA', 'LAND PARCELS', 'FEATURE',
"POLYGON') ;

EXECUTE SDO_TOPO.ADD TOPO GEOMETRY LAYER ('CITY DATA', 'TRAFFIC SIGNS', 'FEATURE',
"POINT') ;

EXECUTE SDO_TOPO.ADD TOPO GEOMETRY LAYER('CITY DATA', 'CITY STREETS',

'"FEATURE', 'LINE') ;

-- As a result, Spatial generates a unique TG LAYER ID for each layer in
-- the topology metadata (USER/ALL_SDO TOPO METADATA) .

Topology Data Model Overview 1-37

Topology Example (PL/SQL)

-- 5. Initialize topology metadata.
EXECUTE SDO_TOPO.INITIALIZE METADATA('CITY DATA');

-- 6. Load feature tables using the SDO_TOPO GEOMETRY constructor.

-- Each topology feature can consist of one or more objects (face, edge, node)
-- of an appropriate type. For example, a land parcel can consist of one face,
-- or two or more faces, as specified in the SDO_TOPO OBJECT ARRAY.

-- There are typically fewer features than there are faces, nodes, and edges.
-- In this example, the only features are these:

-- Area features (land parcels): P1, P2, P3, P4, P5

-- Point features (traffic signs): S1, S2, S3, S4

-- Linear features (roads/streets): R1, R2, R3, R4

-- 6A. Load LAND PARCELS table.

-- P1
INSERT INTO land parcels VALUES ('P1l', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG_LAYER ID for this topology (from ALL SDO_TOPO_METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (3, 3), -- face id = 3
SDO_TOPO_OBJECT (6, 3))) -- face id = 6
)
-- P2
INSERT INTO land parcels VALUES ('P2', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG LAYER ID for this topology (from ALL SDO TOPO METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (4, 3), -- face id = 4
SDO_TOPO_OBJECT (7, 3))) -- face_id = 7
)i
-- P3
INSERT INTO land parcels VALUES ('P3', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG LAYER ID for this topology (from ALL SDO TOPO METADATA)

SDO_TOPO_OBJECT ARRAY (

1-38 Oracle Spatial Topology and Network Data Models

Topology Example (PL/SQL)

SDO_TOPO _OBJECT (5, 3), -- face id = 5
SDO_TOPO_OBJECT (8, 3))) -- face id = 8
)
-- P4
INSERT INTO land parcels VALUES ('P4', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG LAYER ID for this topology (from ALL SDO TOPO METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (2, 3))) -- face_id = 2

)i
-- P5 (Includes F1, but not F9.)

INSERT INTO land parcels VALUES ('P5', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
3, -- Topology geometry type (polygon/multipolygon)
1, -- TG_LAYER_ID for this topology (from ALL_SDO_TOPO_METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (1, 3))) -- face id =1

)

-- 6B. Load TRAFFIC SIGNS table.

-- 81
INSERT INTO traffic signs VALUES ('Sl', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
1, -- Topology geometry type (point)
2, -- TG_LAYER ID for this topology (from ALL_SDO_TOPO_ METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (14, 1))) -- node id = 14
)i
-- 82
INSERT INTO traffic signs VALUES ('S2', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
1, -- Topology geometry type (point)
2, -- TG _LAYER ID for this topology (from ALL SDO_TOPO METADATA)
SDO_TOPO OBJECT ARRAY (
SDO_TOPO OBJECT (13, 1))) -- node id = 13
)i
-- S3
INSERT INTO traffic signs VALUES ('S3', -- Feature name

SDO_TOPO_GEOMETRY (

Topology Data Model Overview 1-39

Topology Example (PL/SQL)

'CITY DATA', -- Topology name
1, -- Topology geometry type (point)
2, -- TG_LAYER ID for this topology (from ALL SDO TOPO METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (6, 1))) -- node_id = 6
)
-- S4
INSERT INTO traffic signs VALUES ('S4', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
1, -- Topology geometry type (point)
2, -- TG_LAYER ID for this topology (from ALL SDO_TOPO_METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (4, 1))) -- node_id = 4
)i

-- 6C. Load CITY STREETS table.
-- (Note: "R" in feature names is for "Road", because "S" is used for signs.)

-- Rl
INSERT INTO city streets VALUES ('R1', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
2, -- Topology geometry type (line string)
3, -- TG_LAYER ID for this topology (from ALL_SDO_TOPO_ METADATA)

SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (9, 2),
SDO_TOPO_OBJECT (-10, 2),
SDO_TOPO_OBJECT (11, 2))) -- edge_ids = 9, -10, 11

)i
-- R2
INSERT INTO city streets VALUES ('R2', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
2, -- Topology geometry type (line string)
3, -- TG_LAYER ID for this topology (from ALL SDO_TOPO_METADATA)

SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (4, 2),

SDO_TOPO_OBJECT (-5, 2))) -- edge_ids = 4, -5
)
-- R3
INSERT INTO city streets VALUES ('R3', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
2, -- Topology geometry type (line string)

1-40 Oracle Spatial Topology and Network Data Models

Topology Example (PL/SQL)

3, -- TG_LAYER_ID for this topology (from ALL SDO_TOPO_METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO OBJECT (25, 2))) -- edge id = 25
)
-- R4
INSERT INTO city_streets VALUES ('R4', -- Feature name
SDO_TOPO_GEOMETRY (
'CITY DATA', -- Topology name
2, -- Topology geometry type (line string)
3, -- TG _LAYER ID for this topology (from ALL SDO TOPO METADATA)
SDO_TOPO_OBJECT ARRAY (
SDO_TOPO_OBJECT (3, 2))) -- edge id = 3

)i
-- 7. Query the data.

SELECT a.feature name, a.feature.tg id, a.feature.get geometry()
FROM land parcels a;

/* Window is city streets */
SELECT a.feature name, b.feature name
FROM city streets b,
land parcels a
WHERE b.feature name like 'R%' AND
sdo_anyinteract (a.feature, b.feature) = 'TRUE'
ORDER BY b.feature name, a.feature name;

-- Find all streets that have any interaction with land parcel P3.
-- (Should return only R1.)
SELECT c.feature name FROM city streets c, land parcels 1
WHERE 1.feature name = 'P3' AND
SDO_ANYINTERACT (c.feature, 1l.feature) = 'TRUE';

-- Find all land parcels that have any interaction with traffic sign S1.
-- (Should return P1 and P2.)
SELECT 1.feature name FROM land parcels 1, traffic signs t
WHERE t.feature name = 'S1' AND
SDO_ANYINTERACT (1.feature, t.feature) = 'TRUE';

-- Get the geometry for land parcel P1.
SELECT 1.feature name, 1.feature.get geometry ()
FROM land parcels 1 WHERE 1.feature name = 'P1l';

-- Get the boundary of face with face id 3.
SELECT SDO_TOPO.GET FACE BOUNDARY ('CITY DATA', 3) FROM DUAL;

Topology Data Model Overview 1-41

Topology Example (PL/SQL)

-- Get the topology objects for land parcel P2.
-- CITY DATA layer, land parcels (tg_ layer id = 1), parcel P2 (tg id = 2)
SELECT SDO_TOPO.GET TOPO OBJECTS('CITY DATA', 1, 2) FROM DUAL;

1-42 Oracle Spatial Topology and Network Data Models

2

Editing Topologies

This chapter explains how to edit node and edge data in a topology. The operations
include adding, moving, and removing nodes and edges, and updating the
coordinates of an edge.

This chapter explains two approaches to editing topology data, and it explains why
one approach (creating and using a special cache) is better in most cases. It also
describes the behavior and implications of some major types of editing operations.
It contains the following major sections:

= Section 2.1, "Approaches for Editing Topology Data"
= Section 2.2, "Performing Operations on Nodes"
» Section 2.3, "Performing Operations on Edges"

The explanations in this chapter refer mainly to the PL/SQL application
programming interface (API) provided in the MDSYS.SDO_TOPO_MAP packages,
which is documented in Chapter 4. However, you can also perform topology
editing operations using the client-side Java API, which is introduced in

Section 1.8.1 and is explained in the Javadoc-generated documentation.

To edit topology data, always use the PL/SQL or Java APIL Do not try to perform
editing operations by directly modifying the node, edge, or face information tables.

2.1 Approaches for Editing Topology Data

Whenever you need to edit a topology, you can use PL/SQL or Java APL In both
cases, Oracle Spatial uses an in-memory topology cache, specifically, a TopoMap
object (described in Section 2.1.1):

= If you use the PL/SQL API, you can either explicitly create and use the cache or
allow Spatial to create and use the cache automatically.

Editing Topologies 2-1

Approaches for Editing Topology Data

= If you use the Java API, you must explicitly create and use the cache.

Allowing Spatial to create and manage the cache automatically is simpler, because it
involves fewer steps than creating and using a cache. However, because allowing
Spatial to create and manage the cache involves more database activity and disk
accesses, it is less efficient when you need to edit more than a few topology objects.

2.1.1 TopoMap Objects

A TopoMap object is associated with an in-memory cache that is associated with a
topology. If you explicitly create and use a cache for editing a topology, you must
create a TopoMap object to be associated with a topology, load all or some of the
topology into the cache, edit objects, periodically update the topology to write
changes to the database, commit the changes made in the cache, and clear the cache.

Although this approach involves more steps than allowing Spatial to create and use
the cache automatically, it is much faster and more efficient for most topology
editing sessions, which typically affect hundreds or thousands of topology objects.
It is the approach shown in most explanations and illustrations.

A TopoMap object can be updatable or read-only, depending on the value of the
allow_updates parameter when you call the SDO_TOPO_MAP.LOAD_TOPO_
MAP procedure. The following procedures set an updatable TopoMap object to be
read-only:

s SDO_TOPO_MAP.COMMIT_TOPO_MAP
s SDO_TOPO_MAPROLLBACK_TOPO_MAP
s SDO_TOPO_MAP.CLEAR_TOPO_MAP

There can be no more than one updatable TopoMap object in a user session at any
time. There can be multiple read-only TopoMap objects.

2.1.2 Specifying the Editing Approach with the Topology Parameter

For many SDO_TOPO_MAP package functions and procedures that edit topologies,
such as SDO_TOPO_MAP.ADD_NODE or SDO_TOPO_MAPMOVE_EDGE, you
indicate the approach you are using for editing by specifying either a topology
name or a null value for the first parameter, which is named topology:

s If you specify a topology name, Spatial checks to see if an updatable TopoMap
object already exists in the user session; and if one does not exist, Spatial creates
an internal TopoMap object, uses that cache to perform the editing operation,
commits the change (or rolls back changes to the savepoint at the beginning of

2-2 Oracle Spatial Topology and Network Data Models

Approaches for Editing Topology Data

the process if an exception occurred), and deletes the TopoMap object. (If an
updatable TopoMap object already exists, an exception is raised.) For example,
the following statement removes the node with node ID value 99 from the MY_
TOPO topology:

CALL SDO_TOPO_MAP.REMOVE NODE ('MY TOPO', 99);

If you specify a null value, Spatial checks to see if an updatable TopoMap object
already exists in the user session; and if one does exist, Spatial performs the
operation in the TopoMap object's cache. (If no updatable TopoMap object
exists, an exception is raised.) For example, the following statement removes
the node with node ID value 99 from the current updatable TopoMap object:

CALL SDO_TOPO MAP.REMOVE NODE (null, 99);

2.1.3 Using GET_xxx Topology Functions

Some SDO_TOPO_MAP package functions that get information about topologies
have topology and topo_map as their first two parameters. Examples of such
functions are SDO_TOPO_MAP.GET_EDGE_COORDS and SDO_TOPO_
MAP.GET_NODE_STAR. To use these functions, specify a valid value for one
parameter and a null value for the other parameter, as follows:

If you specify a valid topology parameter value, Spatial retrieves the
information for the specified topology. It creates an internal TopoMap object,
uses that cache to perform the operation, and deletes the TopoMap object. For
example, the following statement returns the edge coordinates of the edge with
an ID value of 1 from the CITY DATA topology:

SELECT SDO_TOPO_MAP.GET EDGE_COORDS ('CITY DATA', null, 1) FROM DUAL;

If you specify a null topology parameter value and a valid topo_map
parameter value, Spatial uses the specified TopoMap object (which can be
updatable or read-only) to retrieve the information for the specified topology.
For example, the following statement returns the edge coordinates of the edge
with an ID value of 1 from the CITY DATA TOPOMAP TopoMap object:

SELECT SDO_TOPO MAP.GET EDGE COORDS(null, 'CITY DATA TOPOMAP', 1) FROM DUAL;

If you specify a null or invalid value for both the topology and topo map
parameters, an exception is raised.

Some SDO_TOPO_MAP package functions that get information about topology
editing operations have no parameters. Examples of such functions are SDO_
TOPO_MAP.GET_FACE_ADDITIONS and SDO_TOPO_MAP.GET_NODE_

Editing Topologies 2-3

Approaches for Editing Topology Data

CHANGES. These functions use the current updatable TopoMap object. If no
updatable TopoMap object exists, an exception is raised. For example, the following
statement returns an SDO_NUMBER_ARRAY object (described in Section 1.6.5)
with the node ID values of nodes that have been added to the current updatable
TopoMap object:

SELECT SDO_TOPO_MAP.GET NODE ADDITIONS FROM DUAL;

2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API)

Figure 2-1 shows the recommended process for editing topology objects using the
PL/SQL API and explicitly using a TopoMap object and its associated cache.

Figure 2—1 Editing Topologies Using the TopoMap Object Cache (PL/SQL API)

Create TopoMap
object (CREATE_ <
TOPO_MAP) l

Y

Load TopoMap Perform editing operations Clear cache
(Lgﬂgct_[fgrplgd&tzp) T (for example, add 1000 nodes) > (CLEAR_TOPO_MAP)
1
1y by A
Validate cache Rebuild indexes
(VALIDATE_ (CREATE_EDGE_INDEX
A TOPO_MAP) and CREATE_FACE_
INDEX) (for example,
after each 100 added nodes)

Y

Update topology
(UPDATE_TOPO_MAP)

. (for example, after
each 1000 added nodes)

A |

Commit changes Remove TopoMap
(COMMIT_TOPO_MAP) o object (DROP_
TOPO_MAP)

2-4 Oracle Spatial Topology and Network Data Models

Approaches for Editing Topology Data

As Figure 2-1 shows, the basic sequence is as follows:

1.

Create the TopoMap object, using the SDO_TOPO_MAP.CREATE_TOPO_MAP
procedure.

This creates an in-memory cache for editing objects associated with the
specified topology.

Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the SDO_TOPO_MAP.LOAD_TOPO_
MAP procedure.

You can specify that in-memory R-tree indexes be built on the edges and faces
that are being loaded. These indexes use some memory resources and take some
time to create and periodically rebuild; however, they significantly improve
performance if you edit a large number of topology objects in the session. (They
can also improve performance for queries that use a read-only TopoMap object.)

Perform a number of topology editing operations (for example, add 1000
nodes).

Periodically, validate the cache by calling the SDO_TOPO_MAP.VALIDATE_
TOPO_MAP function.

You can rebuild existing in-memory R-tree indexes on edges and faces in the
TopoMap object, or create new indexes if none exist, by using the SDO_TOPO_
MAP.CREATE_EDGE_INDEX and SDO_TOPO_MAP.CREATE_FACE_INDEX
procedures. For best index performance, these indexes should be rebuilt
periodically when you are editing a large number of topology objects.

If you want to discard edits made in the cache, call the SDO_TOPO_
MAP.CLEAR_TOPO_MAP procedure. This procedure fails if there are any
uncommitted updates; otherwise, it clears the data in the cache and sets the
cache to be read-only.

Update the topology by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.

Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished
the topology editing operations.

Commit the topology changes by calling the SDO_TOPO_MAP.COMMIT _
TOPO_MAP procedure. (The SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure automatically performs the actions of the SDO_TOPO_
MAP.UPDATE_TOPO_MAP procedure before it commits the changes.) After
the commit operation, the cache is made read-only (that is, it is no longer

Editing Topologies 2-5

Approaches for Editing Topology Data

updatable). However, if you want to perform further editing operations using
the same TopoMap object, you can load it again and use it (that is, repeat Steps
2 through 5, clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by
calling the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure, and then go to
Step 2.

If you want to discard all uncommitted topology changes, you can call the
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure at any time. After the
rollback operation, the cache is cleared.

7. Remove the TopoMap object by calling the SDO_TOPO_MAP.DROP_TOPO_
MAP procedure.

This procedure removes the TopoMap object and frees any resources that it had
used. (If you forget to drop the TopoMap object, it will automatically be
dropped when the user session ends.) This procedure also rolls back any
topology changes in the cache that have not been committed.

If the application terminates abnormally, all uncommitted changes to the
database will be discarded.

If you plan to perform a very large number of topology editing operations, you can
divide the operations among several editing sessions, each of which performs Steps
1 through 7 in the preceding list.

2.1.5 Process for Editing Using the Java API

Figure 2-2 shows the recommended process for editing topology objects using the
client-side Java API, which is introduced in Section 1.8.1 and is explained in the
Javadoc-generated documentation. The Java API requires that you create and
manage a TopoMap object and its associated cache.

2-6 Oracle Spatial Topology and Network Data Models

Approaches for Editing Topology Data

Figure 2-2 Editing Topologies Using the TopoMap Object Cache (Java API)

Create TopoMap
object i <
Load TopoMap Perform editin ; Clear cache
- g operations
object for update P (for example, add 1000 nodes) =1 (clearCache)
(loadTopology or
loadWindow) A ** A
LY
Validate cache Rebuild indexes
(validateCache) (createEdgelndex and
A createFacelndex) (for

example, after each 100
added nodes)

Y

Update topology
(updateTopology)

—— (for example, after
each 1000 added nodes)

A |

Commit changes
(commitDB) fpp] Remove TopoMap
object

As Figure 2-2 shows, the basic sequence is as follows:

1. Create the TopoMap object, using a constructor of the TopoMap class,
specifying a topology and a database connection.

This creates an in-memory cache for editing objects associated with the
specified topology.

2. Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the 1oadTopology or LloadWindow
method of the TopoMap class.

Editing Topologies 2-7

Approaches for Editing Topology Data

You can specify that in-memory R-tree indexes be built on the edge and edge
face that are being affected. These indexes use some memory resources and take
some time to create and periodically rebuild; however, they significantly
improve performance if you edit a large number of topology objects during the
database connection.

3. Perform a number of topology editing operations (for example, add 1000
nodes), and update the topology by calling the updateTopology method of
the TopoMap class.

Periodically, validate the cache by calling the validateCache method of the
TopoMap class.

If you caused in-memory R-tree indexes to be created when you loaded the
TopoMap object (in Step 2), you can periodically (for example, after each
addition of 100 nodes) rebuild the indexes by calling the createEdgeIndex
and createFaceIndex methods of the TopoMap class. For best index
performance, these indexes should be rebuilt periodically when you are editing
a large number of topology objects.

If you do not want to update the topology but instead want to discard edits
made in the cache since the last update, call the clearCache method of the
TopoMap class. The clearCache method fails if there are any uncommitted
updates; otherwise, it clears the data in the cache and sets the cache to be
read-only.

4. Update the topology by calling the updateTopology method of the TopoMap
class.

5. Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished
the topology editing operations.

6. Commit the topology changes by calling the commi t DB method of the
TopoMap class. (The commitDB method automatically calls the
updateTopology method before it commits the changes.) After the commit
operation, the cache is made read-only (that is, it is no longer updatable).
However, if you want to perform further editing operations using the same
TopoMap object, you can load it again and use it (that is, repeat Steps 2 through
5, clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by
calling the clearCache method of the TopoMap class, and then go to Step 2.

2-8 Oracle Spatial Topology and Network Data Models

Approaches for Editing Topology Data

If you want to discard all uncommitted topology changes, you can call the
rollbackDB method of the TopoMap class at any time. After the rollback
operation, the cache is cleared.

7. Remove the TopoMap object by setting the TopoMap object to null, which
makes the object available for garbage collection and frees any resources that it
had used. (If you forget to remove the TopoMap object, it will automatically be
garbage collected when the application ends.)

If the application terminates abnormally, all uncommitted changes to the
database will be discarded.

If you plan to perform a very large number of topology editing operations, you can
divide the operations among several editing sessions, each of which performs Steps
1 through 7 in the preceding list.

2.1.6 Error Handling for Topology Editing

This section discusses the following conditions:
= Input parameter errors

n All exceptions

2.1.6.1 Input Parameter Errors

When an SDO_TOPO_MAP PL/SQL subprogram or a public static method in the
TopoMap Java class is called, it validates the values of the input parameters, and it
uses or creates a TopoMap object to perform the editing or read-only operation.
Whenever there is an input error, an
oracle.spatial.topo.TopoDataException exception is thrown. Other errors
may occur when the underlying TopoMap object performs an operation.

If the method is called from SQL or PL/SQL, the caller gets the following error
message:

ORA-29532: Java call terminated by uncaught Java exception:
<specific error message text>

The following PL/SQL example shows how you can handle a
TopoDataException exception:

DECLARE

topo_data error EXCEPTION;

PRAGMA EXCEPTION_INIT (topo_data_error, -29532);
BEGIN

Editing Topologies 2-9

Performing Operations on Nodes

sdo _topo map.create topo map(null, null, 100, 100, 100);
EXCEPTION
WHEN topo data error THEN
DBMS_OUTPUT.PUT LINE (SQLERRM) ;
END;

/

The preceding example generates the following output:

ORA-29532: Java call terminated by uncaught Java exception:
oracle.spatial.topo.TopoDataException: invalid TopoMap name

2.1.6.2 All Exceptions

The following actions are performed automatically when any exception occurs in a
call to any of the following SDO_TOPO_MAP PL/SQL subprograms or their
associated methods in the TopoMap Java class: SDO_TOPO_MAP.ADD_EDGE
(addEdge), SDO_TOPO_MAP.ADD_ISOLATED_NODE (addIsolatedNode),
SDO_TOPO_MAP.ADD_LOOP (addLoop), SDO_TOPO_MAP.ADD_NODE
(addNode), SDO_TOPO_MAP.CHANGE_EDGE_COORDS (changeEdgeCoords),
SDO_TOPO_MAPMOVE_ISOLATED_NODE (moveIsolatedNode), SDO_TOPO_
MAPMOVE_NODE (moveNode), SDO_TOPO_MAP.MOVE_EDGE (moveEdge),
SDO_TOPO_MAPREMOVE_EDGE (removeEdge), SDO_TOPO_MAPREMOVE_
NODE (removeNode), and SDO_TOPO_MAP.UPDATE_TOPO_MAP
(updateTopology).

s The transaction is rolled back.
= The TopoMap object cache is cleared.
» The TopoMap object is made read-only.

2.2 Performing Operations on Nodes

This section contains sections that describe the effects of adding, moving, and
removing nodes, and that explain how to perform these operations using the
PL/SQL APL

2.2.1 Adding a Node

Adding a non-isolated node adds the node to an edge at a point that is currently on
the edge. This operation also splits the edge, causing the original edge to be divided
into two edges. Spatial automatically adjusts the definition of the original edge and

2-10 Oracle Spatial Topology and Network Data Models

Performing Operations on Nodes

creates a new edge (assigning it an ID value that is unique among edges in the
topology).

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function. To
add an isolated node, use the SDO_TOPO_MAPADD_ISOLATED_NODE function.

Figure 2-3 shows the addition of a node (N3) on edge E1.

Figure 2-3 Adding a Non-Isolated Node

Before Adding a Node

N1 N2
o P O
E1
After Adding a Node
N1 N3 N2
o P> O P> O
E1 E2

As a result of the operation shown in Figure 2-3:

= Edge E1 is redefined to be between the original edge’s start point and the point
at the added node (N3).

» Edge E2 is created. Its start point is the point at node N3, and its end point is the
end point of the original edge.

Any linear features that were defined on the original edge are automatically
redefined to be on both resulting edges. For example, if a street named Main Street
had been defined on the original edge E1 in Figure 2-3, then after the addition of
node N3, Main Street would be defined on both edges E1 and E2.

2.2.2 Moving a Node

Moving a non-isolated node to a new position causes the ends of all edges that are
attached to the node to move with the node. You must specify the vertices for all
edges affected by the moving of the node; each point (start or end) that is attached
to the node must have the same coordinates as the new location of the node, and the
other end points (not the moved node) of each affected edge must remain the same.

To move a non-isolated node, use the SDO_TOPO_MAPMOVE_NODE procedure.
To move an isolated node, use the SDO_TOPO_MAPMOVE_ISOLATED_NODE
procedure.

Editing Topologies 2-11

Performing Operations on Nodes

Figure 2—4 shows the original topology before node N1 is moved.

Figure 2—-4 Topology Before Moving a Non-Isolated Node

Figure 2-5 shows two cases of the original topology after node N1 is moved. In one
case, no reshaping occurs; that is, all edges affected by the movement are specified
as straight lines. In the other case, reshaping occurs; that is, one or more affected
edges are specified as line segments with multiple vertices.

Figure 2-5 Topology After Moving a Non-Isolated Node

Without Reshaping With Reshaping

In both cases shown in Figure 2-5:

2-12 Oracle Spatial Topology and Network Data Models

Performing Operations on Nodes

The topology does not change. That is, the number of nodes, edges, and faces
does not change, and the relationships among the nodes, edges, and faces do
not change.

All features defined on the nodes, edges, and faces retain their definitions.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of a move operation on a non-isolated node. The SDO_
TOPO_MAP.MOVE_NODE procedure has two output parameters, moved_iso_
nodes and moved_iso_edges, that store the ID numbers of any isolated nodes
and edges that were moved to a different face as a result of the operation.

A node cannot be moved if, as a result of the move, any of the following would
happen:

Any edges attached to the node would intersect any other edge. For example,
assume that the original topology shown in Figure 2-5 had included another
edge E20 that passed just above and to the right of node N1. If the movement of
node N1 would cause edge E3, E4, E6, E8, or E9 to intersect edge E20, the move
operation is not performed.

The node would be moved to a face that does not currently bound the node. For
example, if the movement of node N1 would place it outside the original
topology shown in Figure 2-5, the move operation is not performed.

The node would be moved to the opposite side of an isolated face. This is not
allowed because the move would change the topology by changing one or more
of the following: the relationship or ordering of edges around the face, and the
left and right face for each edge. Figure 2-6 shows a node movement (flipping
node N1 from one side of isolated face F1 to the other side) that would not be
allowed.

Editing Topologies 2-13

Performing Operations on Nodes

Figure 2-6 Node Move Is Not Allowed

Before Flip After Flip
(Not Allowed)
N1
F1
N2 N3
N2 N3
F1
F2 F2 N1

2.2.2.1 Additional Examples of Allowed and Disallowed Node Moves

This section provides additional examples of node movement operations that are
either allowed or not allowed. All refer to the topology shown in Figure 2-7.

Figure 2-7 Topology for Node Movement Examples

In the topology shown in Figure 2-7:

= Attempts will be made to move node N1 to points P1, P2, P3, and P4. (These
points are locations but are not existing nodes.)

2-14 Oracle Spatial Topology and Network Data Models

Performing Operations on Nodes

= The edges have no shape points, either before or after the move operation.

= New vertices are specified for the edges E1, E2, E3, and E4, but the ID values of
the start and end points for the edges remain the same.

When the following node move operations are attempted using the topology shown
in Figure 2-7, the following results occur:

= Moving node N1 to point P1: Not allowed, because one or more of the four
attached edges would intersect edge E5. (Edge E3 would definitely intersect
edge E5 if the move were allowed.)

= Moving node N1 to point P2: Allowed.

= Moving node N1 to point P3: Allowed. However, this operation causes the
isolated node N2 to change from face F2 to face F1, and this might cause the
application to want to roll back or disallow the movement of node N1.
Similarly, if the movement of a node would cause any isolated edges or faces to
change from one face to another, the application might want to roll back or
disallow the node move operation.

= Moving node N1 to point P4: Not allowed, because the node must be moved to
a point in a face that bounds the original (current) position of the node.

2.2.3 Removing a Node

Removing a non-isolated node deletes the node and merges the edges that were
attached to the node into a single edge. (Spatial applies complex rules, which are
not documented, to determine the ID value and direction of the resulting edge.)

To remove a non-isolated or isolated node, use the SDO_TOPO_MAP.REMOVE_
NODE procedure.

Figure 2-8 shows the removal of a node (N1) that is attached to edges E1 and E2.

Editing Topologies 2-15

Performing Operations on Edges

Figure 2-8 Removing a Non-Isolated Node

Before Removing a Node

N3 N1 N2
o > O < O
E1 E2
After Removing a Node
N3 N2
(< P O
E1

As a result of the operation shown in Figure 2-8:

» Edge E1 is redefined to consist of the line segments that had represented the
original edges E1 and E2.

= Edge E2is deleted.

Any linear features that were defined on both original edges are automatically
redefined to be on the resulting edge. For example, if a street named Main Street
had been defined on the original edges E1 and E2 in Figure 2-8, then after the
removal of node N1, Main Street would be defined on edge E1.

A node cannot be removed if one or more of the following are true:

= A point feature is defined on the node. For example, if a point feature named
Metropolitan Art Museum had been defined on node N1 in Figure 2-8, node N1
cannot be removed. Before you can remove the node in this case, you must
remove the definition of any point features on the node.

= Alinear feature defined on either original edge is not also defined on both
edges. For example, if a linear feature named Main Street had been defined on
edge E1 but not edge E2 in Figure 2-8, node N1 cannot be removed.

2.3 Performing Operations on Edges

This section contains sections that describe the effects of adding, moving, removing,
and updating edges, and that explain how to perform these operations using the
PL/SQL APL

2-16 Oracle Spatial Topology and Network Data Models

Performing Operations on Edges

2.3.1 Adding an Edge

Adding a non-isolated edge adds the edge to a face. It also splits the face, causing
the original face to be divided into two faces. Spatial automatically adjusts the
definition of the original face and creates a new face (assigning it an ID value that is
unique among faces in the topology).

To add an edge, use the SDO_TOPO_MAP.ADD_EDGE procedure. You must
specify existing nodes as the start and end nodes of the added edge.

Figure 2-9 shows the addition of an edge (E7) between nodes N3 and N5 on face F3.
Figure 2-9 Adding a Non-Isolated Edge

Before Adding an Edge

N6 E5 N5 E4 N4
0 o
E6 F3 E3
o o o
N1 E1 N3 E2 N2

After Adding an Edge

N6 E5 N5 E4 N4
O) "o

E6 F1 E7 F3 E3
N1 E1 N3 E2 N2

As a result of the operation shown in Figure 2-9, face F3 is redefined to be two
faces, F1 and F3. (Spatial applies complex rules, which are not documented, to
determine the ID values of the resulting faces.)

Any polygon features that were defined on the original face are automatically
redefined to be on both resulting faces. For example, if a park named Walden State
Park had been defined on the original face F3 in Figure 2-9, then after the addition
of edge E7, Walden State Park would be defined on both faces F1 and F3.

Editing Topologies 2-17

Performing Operations on Edges

2.3.2 Moving an Edge

Moving a non-isolated edge keeps the start or end point of the edge in the same
position and moves the other of those two points to another existing node position.
You must specify the source node (location before the move of the node to be
moved), the target node (location after the move of the node being moved), and the
vertices for the moved edge.

To move an edge, use the SDO_TOPO_MAP.MOVE_EDGE procedure.

Figure 2-10 shows the movement of edge E7, which was originally between nodes
N3 and N5, to be between nodes N2 and N5.

Figure 2-10 Moving a Non-Isolated Edge

Before Moving an Edge

N6 E5 N5 E4 N4
o) 7o)

E6 F1 E7 F3 E3
N1 E1 N3 E2 N2
After Moving an Edge
N6 E5 N5 E4 N4
o 7o)

E6 F1 E7 F3 E3
N1 E1 N3 E2 N2

As a result of the operation shown in Figure 2-10, faces F1 and F3 are automatically
redefined to reflect the coordinates of their edges, including the new coordinates for
edge E7.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of a move operation on a non-isolated edge. The SDO_
TOPO_MAPMOVE_EDGE procedure has two output parameters, moved iso
nodes and moved_iso_edges, that store the ID numbers of any isolated nodes
and edges that were moved to a different face as a result of the operation.

2-18 Oracle Spatial Topology and Network Data Models

Performing Operations on Edges

An edge cannot be moved if, as a result of the move, any of the following would
happen:

s The moved edge would intersect any other edge. For example, assume that the
topology before the move, as shown in Figure 2-10, had included another edge
(E10) that was between nodes N3 and N4. In this case, the movement of edge E7
would cause it to intersect edge E10, and therefore the move operation is not
performed.

s The node would be moved to a face that does not currently bound the edge. For
example, if the movement of edge E7 would place its terminating point at a
node outside the faces shown in Figure 2-10 (F1 and F3), the move operation is
not performed.

2.3.3 Removing an Edge

Removing a non-isolated edge deletes the edge and merges the faces that bounded
the edge. (Spatial applies complex rules, which are not documented, to determine
the ID value of the resulting face.)

To remove an edge, use the SDO_TOPO_MAP.REMOVE_EDGE procedure.
Figure 2-11 shows the removal of an edge (E7) that is bounded by faces F1 and F3.

Figure 2-11 Removing a Non-Isolated Edge

Before Removing an Edge

N6 E5 N5 E4 N4
o) 7o)

E6 F1 E7 F3 E3
N1 E1 N3 E2 N2
After Removing an Edge
N6 E5 N5 E4 N4
E6 F1 E3
o O O
N1 E1 N3 E2 N2

Editing Topologies 2-19

Performing Operations on Edges

As a result of the operation shown in Figure 2-11:
s Face F1 is redefined to consist of the area of the original faces F1 and F3.
s Face F3 is deleted.

s The start and end nodes of the deleted edge (nodes N3 and N5) are not
removed.

Any polygon features that were defined on both original faces are automatically
redefined to be on the resulting face. For example, if a park named Adams Park had
been defined on the original faces F1 and F3 in Figure 2-11, then after the removal
of edge E7, Adams Park would be defined on face F1.

A non-isolated edge cannot be removed if one or more of the following are true:

= A linear feature is defined on the edge. For example, if a linear feature named
Main Street had been defined on edge E7 in Figure 2-11, edge E7 cannot be
removed. Before you can remove the edge in this case, you must remove the
definition of any linear features on the edge.

= A polygon feature defined on either original face is not also defined on both
faces. For example, if a linear feature named Adams Park had been defined on
face F1 but not face F3 in Figure 2-11, edge E7 cannot be removed.

2.3.4 Updating an Edge

Updating an isolated edge means changing one or more coordinates of the edge, but
without changing the start point and end point.

To update an edge, use the SDO_TOPO_MAP.CHANGE_EDGE_COORDS
procedure.

An edge cannot be updated if, as a result of the operation, it would intersect any
other edge. See the Usage Notes for the SDO_TOPO_MAP.CHANGE_EDGE_
COORDS procedure for more information about updating an edge.

2-20 Oracle Spatial Topology and Network Data Models

3

SDO_TOPO Package Subprograms

The MDSYS.SDO_TOPO package contains subprograms (functions and procedures)
that constitute part of the PL/SQL application programming interface (API) for the
Spatial topology data model. This package mainly contains subprograms for
creating and managing topologies.

To use the subprograms in this chapter, you must understand the conceptual
information about topology in Chapter 1.

Another package, SDO_TOPO_MAP, mainly contains subprograms related to
editing topologies. Reference information for the SDO_TOPO_MAP package is in
Chapter 4.

The rest of this chapter provides reference information on the SDO_TOPO
subprograms, listed in alphabetical order.

SDO_TOPO Package Subprograms 3-1

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

Format
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER(
topology IN VARCHAR2,
table_name IN VARCHAR2,
column_name IN VARCHAR2,
topo_geometry_layer_type IN VARCHAR2,
relation_table_storage IN VARCHAR2 DEFAULT NULL,
child_layer_id IN NUMBER DEFAULT NULL);
Description
Adds a topology geometry layer to a topology.
Parameters

topology

Topology to which to add the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the topology geometry layer table containing the column specified in
column_name.

column_name
Name of the column (of type SDO_TOPO_GEOMETRY) containing the topology
geometries in the topology geometry layer to be added to the topology.

topo_geometry_layer_type
Type of topology geometry layer: POINT, LINE, CURVE, or POLYGON.

relation_table_storage

Physical storage parameters used internally to create the <topology-name>_
RELATIONS$ table (described in Section 1.5.4). Must be a valid string for use with
the CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE

3-2 Oracle Spatial Topology and Network Data Models

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

Usage Notes

Examples

(INITIAL 100K NEXT 200K).If you do not specify this parameter, the default
physical storage values are used.

child_layer_id

Layer ID number of the child topology geometry layer for this layer, if the topology
has a topology geometry layer hierarchy. (Topology geometry layer hierarchy is
explained in Section 1.4.) If you do not specify this parameter and if the topology
has a topology geometry layer hierarchy, the topology geometry layer is added to
the lowest level (level 0) of the hierarchy.

If the topology does not have a topology geometry layer hierarchy, do not specify
this parameter when adding any of the topology geometry layers.

The first call to this procedure for a given topology creates the <topology-name>_
RELATIONS$ table, which is described in Section 1.5.4.

An exception is raised if topology, table name, or column_name does not exist,
orif topo_geometry layer type isnotone of the supported values.

The following example adds a topology geometry layer to the CITY DATA
topology. The topology geometry layer consists of polygon geometries in the
FEATURE column of the LAND_PARCELS table. (The example refers to definitions
and data from Section 1.11.)

EXECUTE SDO_TOPO.ADD TOPO GEOMETRY LAYER ('CITY DATA', 'LAND PARCELS', 'FEATURE',
"POLYGON') ;

SDO_TOPO Package Subprograms 3-3

SDO_TOPO.CREATE_TOPOLOGY

SDO_TOPO.CREATE_TOPOLOGY

Format
SDO_TOPO.CREATE_TOPOLOGY/(
topology IN VARCHAR2,
tolerance IN NUMBER,
srid IN NUMBER DEFAULT NULL,
node_table_storage IN VARCHAR2 DEFAULT NULL,
edge_table_storage IN VARCHAR2 DEFAULT NULL,
face_table_storage IN VARCHAR2 DEFAULT NULL,
history_table_storage IN VARCHAR2 DEFAULT NULL);
Description
Creates a topology.
Parameters
topology

Name of the topology to be created. Must not exceed 20 characters.

tolerance

Tolerance value associated with topology geometries in the topology. (Tolerance is
explained in Chapter 1 of Oracle Spatial User’s Guide and Reference.) Oracle Spatial
uses the tolerance value in building R-tree indexes on the node, edge, and face
tables; the value is also used for any spatial queries that use these tables.

srid

Coordinate system (spatial reference system) associated with all topology geometry
layers in the topology. The default is null: no coordinate system is associated;
otherwise, it must be a value from the SRID column of the MDSYS.CS_SRS table
(described in Oracle Spatial User’s Guide and Reference).

node_table_storage

Physical storage parameters used internally to create the <topology-name>_NODE$
table (described in Section 1.5.2). Must be a valid string for use with the CREATE

3-4 Oracle Spatial Topology and Network Data Models

SDO_TOPO.CREATE_TOPOLOGY

Usage Notes

Examples

TABLE statement. For example: TABLESPACE tbs_3 STORAGE (INITIAL 100K
NEXT 200K). If you do not specify this parameter, the default physical storage
values are used.

edge_table_storage

Physical storage parameters used internally to create the <topology-name>_EDGE$
table (described in Section 1.5.1). Must be a valid string for use with the CREATE
TABLE statement. For example: TABLESPACE tbs 3 STORAGE (INITIAL 100K
NEXT 200K). If you do not specify this parameter, the default physical storage
values are used.

face_table_storage

Physical storage parameters used internally to create the <topology-name>_FACE$
table (described in Section 1.5.3). Must be a valid string for use with the CREATE
TABLE statement. For example: TABLESPACE tbs 3 STORAGE (INITIAL 100K
NEXT 200K). If you do not specify this parameter, the default physical storage
values are used.

history_table_storage

Physical storage parameters used internally to create the <topology-name>_
HISTORY$ table (described in Section 1.5.5. Must be a valid string for use with the
CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE
(INITIAL 100K NEXT 200K).If you do not specify this parameter, the default
physical storage values are used.

This procedure creates the <topology-name>_EDGES$, <topology-name>_NODES$,
<topology-name>_FACES$, and <topology-name>_HISTORY$ tables, which are
described in Section 1.5. This procedure also creates the metadata for the topology.

An exception is raised if the topology already exists.

The following example creates a topology named CITY DATA. The spatial
geometries in this topology have a tolerance value of 0.5 and use the WGS 84
coordinate system (longitude and latitude, SRID value 8307). (The example refers to
definitions and data from Section 1.11.)

EXECUTE SDO_TOPO.CREATE TOPOLOGY ('CITY DATA', 0.5, 8307);

SDO_TOPO Package Subprograms 3-5

SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO.DELETE_TOPO_GEOMETRY _LAYER(
topology IN VARCHAR2,
table_name IN VARCHAR2,
column_name IN VARCHAR2);

Deletes a topology geometry layer from a topology.

topology

Topology from which to delete the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the table containing the column specified in column_name.

column_name
Name of the column containing the topology geometries in the topology geometry
layer to be deleted from the topology.

This procedure deletes data associated with the specified topology geometry layer
from the <topology-name>_RELATIONS table (described in Section 1.5.4). If this
procedure is deleting the only remaining topology geometry layer from the
topology, it also deletes the <topology-name>_RELATIONS$ table.

The following example deletes the topology geometry layer that is based on the
geometries in the FEATURE column of the LAND_PARCELS table from the
topology named CITY_ DATA. (The example refers to definitions and data from
Section 1.11.)

3-6 Oracle Spatial Topology and Network Data Models

SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

EXECUTE SDO_TOPO.DELETE TOPO GEOMETRY LAYER ('CITY DATA', 'LAND PARCELS',
'"FEATURE') ;

SDO_TOPO Package Subprograms 3-7

SDO_TOPO.DROP_TOPOLOGY

SDO_TOPO.DROP_TOPOLOGY

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO.DROP_TOPOLOGY(
topology IN VARCHAR?2);

Deletes a topology.

topology
Name of the topology to be deleted. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

This procedure deletes the <topology-name>_EDGES$, <topology-name>_NODES$,
<topology-name>_FACES$, and <topology-name>_HISTORY#$ tables (described in
Section 1.5).

An exception is raised if the topology contains any topology geometries from any
topology geometry layers. If you encounter this exception, delete all topology
geometry layers in the topology using the SDO_TOPO.DELETE_TOPO_
GEOMETRY_LAYER procedure for each topology geometry layer, and then drop
the topology.

The following example drops the topology named CITY DATA. (The example refers
to definitions and data from Section 1.11.)

EXECUTE SDO_TOPO.DROP_TOPOLOGY ('CITY DATA');

3-8 Oracle Spatial Topology and Network Data Models

SDO_TOPO.GET_FACE_BOUNDARY

SDO_TOPO.GET_FACE_BOUNDARY

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO.GET_FACE_BOUNDARY(
topology IN VARCHAR2,
face_id IN NUMBER,
all_edges IN VARCHAR2 DEFAULT 'FALSE'
) RETURN SDO_LIST_TYPE;

Returns a list of the signed ID numbers of the edges for the specified face.

topology
Name of the topology that contains the face. Must not exceed 20 characters.

face_id
Face ID value of the face.

all_edges

TRUE includes all edges in the face, including isolated edges and edges that
intersect a point on an edge on the boundary of the face; FALSE (the default)
includes only edges that constitute the boundary of the face. (See the examples for
this function.)

None.

The following examples return the ID numbers of the edges for the face whose face
ID value is 1. The first example accepts the default value of 'FALSE' for theall
edges parameter. The second example specifies ' TRUE' for all_edges, and the
list includes the ID numbers of the boundary edge and the two isolated edges on
the face. (The examples refer to definitions and data from Section 1.11.)

SDO_TOPO Package Subprograms 3-9

SDO_TOPO.GET_FACE_BOUNDARY

-- Get the boundary of face with face id 1.
SELECT SDO_TOPO.GET FACE BOUNDARY ('CITY DATA', 1) FROM DUAL;

SDO_TOPO.GET FACE BOUNDARY ('CITY DATA',1)

SDO_LIST TYPE(1)

-- Specify 'TRUE' for the all edges parameter.
SELECT SDO_TOPO.GET FACE BOUNDARY ('CITY DATA', 1, 'TRUE') FROM DUAL;

SDO_TOPO.GET FACE_BOUNDARY ('CITY DATA',1,'TRUE')

SDO LIST TYPE(1l, -26, 25)

3-10 Oracle Spatial Topology and Network Data Models

SDO_TOPO.GET_TOPO_OBJECTS

SDO_TOPO.GET_TOPO_OBJECTS

Format

Description

Parameters

SDO_TOPO.GET_TOPO_OBJECTS(
topology IN VARCHAR2,
geometry IN SDO_GEOMETRY
) RETURN SDO_TOPO_OBJECT_ARRAY;
or

SDO_TOPO.GET_TOPO_OBJECTS(

topology IN VARCHAR2,
topo_geometry_layer_id IN NUMBER,
topo_geometry_id IN NUMBER

) RETURN SDO_TOPO_OBJECT_ARRAY;

Returns an array of SDO_TOPO_OBJECT objects that interact with a specified
geometry object or topology geometry object.

topology
Name of the topology that contains the face and the point. Must not exceed 20
characters.

geometry
Geometry object to be checked.

topo_geometry_layer_id
ID number of the topology geometry layer that contains the topology geometry
object to be checked.

topo_geometry_id
ID number of the topology geometry object to be checked.

SDO_TOPO Package Subprograms 3-11

SDO_TOPO.GET_TOPO_OBJECTS

Usage Notes
The SDO_TOPO_OBJECT_ARRAY data type is described in Section 1.6.2.1.

Examples

The following example returns the topology geometry objects that interact with
land parcel P2 in the CITY DATA topology. (The example refers to definitions and
data from Section 1.11.)

-- CITY DATA layer, land parcels (topo geometry layer id = 1),
-- parcel P2 (topo geometry id = 2)
SELECT SDO_TOPO.GET TOPO OBJECTS('CITY DATA', 1, 2) FROM DUAL;

SDO_TOPO.GET TOPO_OBJECTS ('CITY DATA',1,2) (TOPO_ID, TOPO_TYPE)
SDO_TOPO_OBJECT ARRAY (SDO_TOPO_OBJECT (9, 1), SDO_TOPO OBJECT (10, 1), SDO_TOPO OB
JECT (13, 1), SDO_TOPO OBJECT(14, 1), SDO_TOPO OBJECT(17, 1), SDO_TOPO OBJECT (18,
1), SDO_TOPO OBJECT(6, 2), SDO_TOPO OBJECT (7, 2), SDO_TOPO OBJECT(8, 2), SDO_TO
PO_OBJECT(9, 2), SDO_TOPO_OBJECT (10, 2), SDO_TOPO_OBJECT (11, 2), SDO_TOPO_OBJECT
(12, 2), SDO_TOPO OBJECT (13, 2), SDO_TOPO OBJECT (14, 2), SDO_TOPO OBJECT (17, 2),
SDO_TOPO_OBJECT (18, 2), SDO_TOPO OBJECT(19, 2), SDO_TOPO OBJECT (20, 2), SDO_TOP
0_OBJECT (-6, 2), SDO_TOPO OBJECT (-7, 2), SDO_TOPO OBJECT (-8, 2), SDO_TOPO OBJECT
(-9, 2), SDO_TOPO OBJECT(-10, 2), SDO_TOPO OBJECT(-11, 2), SDO_TOPO OBJECT (-12,
2), SDO_TOPO OBJECT(-13, 2), SDO_TOPO OBJECT(-14, 2), SDO_TOPO OBJECT(-17, 2), S
DO_TOPO_OBJECT (-18, 2), SDO_TOPO_OBJECT(-19, 2), SDO_TOPO_OBJECT(-20, 2), SDO_TO
PO _OBJECT (-1, 3), SDO_TOPO OBJECT (3, 3), SDO_TOPO OBJECT (4, 3), SDO_TOPO OBJECT (
5, 3), SDO_TOPO OBJECT (6, 3), SDO_TOPO OBJECT(7, 3), SDO_TOPO OBJECT (8, 3))

3-12 Oracle Spatial Topology and Network Data Models

SDO_TOPO.INITIALIZE_METADATA

SDO_TOPO.INITIALIZE_METADATA

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO.INITIALIZE_METADATA(
topology IN VARCHAR2);

Initializes the topology metadata: sets sequence information for the node, edge, and
face tables, and creates (or re-creates) required indexes on these tables.

topology
Name of the topology for which to initialize the sequences. The topology must have
been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

You should run this procedure after loading data into the node, edge, or face tables,
to initialize the sequences for these tables with the highest ID values stored in those
tables. This ensures that no attempt is made to reuse the unique ID values in these
tables. (The node, edge, and face tables are described in Section 1.5.)

This procedure creates spatial indexes on the geometry or MBR geometry columns
in the node, edge, and face tables. If the indexes were dropped before a bulk load
operation, running this procedure after the bulk load will re-create these indexes.

The following example initializes the metadata for the topology named CITY
DATA. (The example refers to definitions and data from Section 1.11.)

EXECUTE SDO_TOPO.INITIALIZE METADATA('CITY DATA');

SDO_TOPO Package Subprograms 3-13

SDO_TOPO.INITIALIZE_METADATA

3-14 Oracle Spatial Topology and Network Data Models

4

SDO_TOPO_MAP Package Subprograms

The MDSYS.SDO_TOPO_MAP package contains subprograms (functions and
procedures) that constitute part of the PL/SQL application programming interface
(API) for the Spatial topology data model. This package contains subprograms
related to editing topologies. These subprograms use a TopoMap object, either one
that you previously created or that Spatial creates implicitly.

To use the subprograms in this chapter, you must understand the conceptual
information about topology in Chapter 1, as well as the information about editing
topologies in Chapter 2.

The rest of this chapter provides reference information on the SDO_TOPO_MAP
subprograms, listed in alphabetical order.

SDO_TOPO_MAP Package Subprograms 4-1

SDO_TOPO_MAP.ADD_EDGE

SDO_TOPO_MAP.ADD_EDGE

Format
SDO_TOPO_MAPADD_EDGE(

topology IN VARCHAR2,
node_id1 IN NUMBER,
node_id2 IN NUMBER,

geom IN SDO_GEOMETRY
) RETURN NUMBER;

Description
Adds an edge to a topology, and returns the edge ID of the added edge.

Parameters

topology
Name of the topology to which to add the edge, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

node_id1
Node ID of the start node for the edge to be added.

node_id2
Node ID of the end node for the edge to be added.

geom

SDO_GEOMETRY object (line or contiguous line string geometry) representing the
edge to be added.

Usage Notes

Spatial automatically assigns an edge ID to the added edge and inserts the
appropriate entry in the <topology-name>_EDGES$ table. If the addition of the edge
affects the face table information, Spatial automatically updates the appropriate
entries in the <topology-name>_FACES$ table.

If node id1l and node_ id2 are the same value, a loop edge is created.

4-2 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.ADD_EDGE

Examples

For information about adding and deleting nodes and edges, see Chapter 2.

This function is equivalent to using the addEdge method of the TopoMap class of
the client-side Java API (described in Section 1.8.1).

The following example adds an edge connecting node N3 to node N4 in the current
updatable TopoMap object. (The example refers to definitions and data from
Section 1.11.)

CALL SDO_TOPO MAP.ADD EDGE (null, 3, 4,
SDO_GEOMETRY (2002, NULL, NULL, SDO ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE_ARRAY(ZS,35, 20,37)))
INTO :res_number;
Call completed.
SQL> PRINT res number;

RES_NUMBER

SDO_TOPO_MAP Package Subprograms 4-3

SDO_TOPO_MAP.ADD_ISOLATED_NODE

SDO_TOPO_MAP.ADD_ISOLATED_NODE

Format
SDO_TOPO_MAP.ADD_ISOLATED_NODE(

topology IN VARCHAR2,

face_id IN NUMBER,

point IN SDO_GEOMETRY

) RETURN NUMBER;
or
SDO_TOPO_MAP.ADD_ISOLATED_NODE(

topology IN VARCHAR2,

point IN SDO_GEOMETRY

) RETURN NUMBER;

Description

Adds an isolated node (that is, an island node) to a topology, and returns the node
ID of the added isolated node.

Parameters

topology
Name of the topology to which to add the isolated node, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

face_id
Face ID of the face on which the isolated node is to be added. (An exception is
raised if the specified point is not on the specified face.)

point

SDO_GEOMETRY object (point geometry) representing the isolated node to be
added.

4-4 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.ADD_ISOLATED_NODE

Usage Notes

Examples

Spatial automatically assigns a node ID to the added node and inserts the
appropriate entry in the <topology-name>_NODES$ table. Spatial also updates the
<topology-name>_FACES$ table to include an entry for the added isolated node.

If you know the ID of the face on which the isolated node is to be added, you can
specify the face id parameter. If you specify this parameter, there are two
benefits:

= Validation: The function checks to see if the point is on the specified face, and
raises an exception if it is not. Otherwise, the function checks to see if the point
is on any face in the topology, and raises an exception if it is not.

» Performance: The function checks only if the point is on the specified face.
Otherwise, it checks potentially all faces in the topology to see if the point is on
any face.

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function.
For information about adding and deleting nodes and edges, see Chapter 2.

This function is equivalent to using the addIsolatedNode method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example adds an isolated node to the right of isolated node N4 on
face F2, and it returns the node ID of the added node. It uses the current updatable
TopoMap object. (The example refers to definitions and data from Section 1.11.)

DECLARE
result num NUMBER;
BEGIN
result num := SDO_TOPO MAP.ADD ISOLATED NODE(null, 2,
SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(22,37,NULL), NULL, NULL));

DBMS_OUTPUT.PUT LINE('Result = ' || result num);
END;

/

Result = 24

PL/SQL procedure successfully completed.

SDO_TOPO_MAP Package Subprograms 4-5

SDO_TOPO_MAP.ADD_LOOP

SDO_TOPO_MAP.ADD_LOOP

Format
SDO_TOPO_MAP.ADD_LOOP(

topology IN VARCHAR2,
node_id IN NUMBER,

geom IN SDO_GEOMETRY
) RETURN NUMBER;

Description

Adds an edge that loops and connects to the same node, and returns the edge ID of
the added edge.

Parameters

topology
Name of the topology to which to add the edge, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

node_id
Node ID of the node to which to add the edge that will start and end at this node.

geom

SDO_GEOMETRY object (line string geometry) representing the edge to be added.
The start and end points of the line string must be the same point representing
node_id.

Usage Notes

This function creates a new edge, as well as a new face consisting of the interior of
the loop. If the edge is added at an isolated node, the edge is an isolated edge.
Spatial automatically updates the <topology-name>_EDGES$ and
<topology-name>_FACES$ tables as needed.

For information about adding and deleting nodes and edges, see Chapter 2.

This function is equivalent to using the addLoop method of the TopoMap class of
the client-side Java API (described in Section 1.8.1).

4-6 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.ADD_LOOP

Examples

The following example adds an edge loop starting and ending at node N4, and it
returns the edge ID of the added edge. It uses the current updatable TopoMap
object. (The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.ADD LOOP (null, 4,
SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1),
SDO_ORDINATE ARRAY (20,37, 20,39, 25,39, 20,37)))
INTO :res_number;
Call completed.
SQL> PRINT res number;

RES_NUMBER

SDO_TOPO_MAP Package Subprograms 4-7

SDO_TOPO_MAP.ADD_NODE

SDO_TOPO_MAP.ADD_NODE

Format
SDO_TOPO_MAP.ADD_NODE(

topology IN VARCHAR2,
edge_id IN NUMBER,
point IN SDO_GEOMETRY,
coord_index IN NUMBER,
is_new_shape_point IN VARCHAR2
) RETURN NUMBER;

Description

Adds a non-isolated node to a topology to split an existing edge, and returns the
node ID of the added node.

Parameters

topology
Name of the topology to which to add the node, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

edge_id
Edge ID of the edge on which the node is to be added.

point

SDO_GEOMETRY object (point geometry) representing the node to be added. The
point must be an existing shape point or be on the line segment connecting two
consecutive shape points.

coord_index

The index (position) of the array position in the edge coordinate array on or after
which the node is to be added. Each vertex (node or shape point) has a position in
the edge coordinate array. The start point (node) is index (position) 0, the first point
after the start point is 1, and so on. (However, the coord_index value cannot be
the index of the last vertex.) For example, if the edge coordinates are (2,2, 5,2, 8,3)
the index of the second vertex (5,2) is 1.

4-8 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.ADD_NODE

Usage Notes

Examples

is_new_shape_point

TRUE if the added node is to be a new shape point following the indexed vertex
(coord_index value) of the edge; FALSE if the added node is exactly on the
indexed vertex.

A value of TRUE lets you add a node at a new point, breaking an edge segment at
the coordinates specified in the point parameter. A value of FALSE causes the
coordinates in the point parameter to be ignored, and causes the node to be added
at the existing shape point associated with the coord_index value.

Spatial automatically assigns a node ID to the added node and inserts the
appropriate entry in the <topology-name>_NODES$ table. Spatial also creates a new
edge and inserts the appropriate entry in the <topology-name>_EDGES$ table.

To add an isolated node (that is, an island node), use the SDO_TOPO_MAP.ADD_
ISOLATED_NODE function.

For information about adding and deleting nodes and edges, see Chapter 2.

This function is equivalent to using the addNode method of the TopoMap class of
the client-side Java API (described in Section 1.8.1).

The following example adds a non-isolated node to the right of node N2 on edge
E2, and it returns the node ID of the added node. It uses the current updatable
TopoMap object. (The example refers to definitions and data from Section 1.11.)

DECLARE
result num NUMBER;

BEGIN

result num := SDO TOPO MAP.ADD NODE (null, 2,
SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(27,30,NULL), NULL, NULL),
0, '"TRUE');

DBMS_OUTPUT.PUT LINE('Result = ' || result num);

END;

/

Result = 26

PL/SQL procedure successfully completed.

SDO_TOPO_MAP Package Subprograms 4-9

SDO_TOPO_MAP.CHANGE_EDGE_COORDS

SDO_TOPO_MAP.CHANGE_EDGE_COORDS

Format

SDO_TOPO_MAP.CHANGE_EDGE_COORDS(
topology IN VARCHAR2,
edge_id IN NUMBER,
geom IN SDO_GEOMETRY);

or

SDO_TOPO_MAP.CHANGE_EDGE_COORDS(
topology IN VARCHAR2,
edge_id IN NUMBER,
geom IN SDO_GEOMETRY,
moved_iso_nodes OUT SDO_NUMBER_ARRAY,
moved_iso_edges OUT SDO_NUMBER_ARRAY,
allow_iso_moves IN VARCHAR2);

Description

Changes the coordinates and related information about an edge.

Parameters

topology

Name of the topology containing the edge, or null if you are using an updatable
TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

edge_id
Edge ID of the edge whose coordinates are to be changed.

geom

SDO_GEOMETRY object (line or contiguous line string geometry) representing the
modified edge. The start and end points of the modified edge must be the same as
for the original edge.

4-10 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.CHANGE_EDGE_COORDS

Usage Notes

moved_iso_nodes

Output parameter in which, if the allow_iso_moves parameter value is TRUE,
Spatial stores the node ID values of any isolated nodes that have moved to a
different face as a result of this procedure. If the allow iso moves parameter
value is FALSE, Spatial stores the node ID values of any isolated nodes that did not
move but that would have moved to a different face if the allow iso moves
parameter value had been TRUE.

moved_iso_edges

Output parameter in which, if the allow_ iso moves parameter value is TRUE,
Spatial stores the edge ID values of any isolated edges that have moved to a
different face as a result of this procedure. If the allow_iso moves parameter
value is FALSE, Spatial stores the edge ID values of any isolated edges that did not
move but that would have moved to a different face if the allow iso moves
parameter value had been TRUE.

allow_iso_moves

TRUE causes Spatial to allow an edge coordinates change operation that would
cause any isolated nodes or edges to be in a different face, and to adjust the
containing face information for such isolated nodes and edges; FALSE causes
Spatial not to allow an edge coordinates change operation that would cause any
isolated nodes or edges to be in a different face.

If you use the format that does not include the allow_iso moves parameter,
Spatial allows edge move operations that would cause any isolated nodes or edges
to be in a different face, and it adjusts the containing face information for such
isolated nodes and edges.

If this procedure modifies a boundary between faces, Spatial automatically
performs the following operations and updates the topology data model tables as
needed: reassigning island nodes and faces, and adjusting the MBRs of the faces on
both sides.

This procedure modifies the information about the specified edge in the
<topology-name>_EDGES$ table (described in Section 1.5.1).

You cannot use this procedure to change the start point or the end point, or both, of
the specified edge. To do any of these operations, you must delete the edge, delete
the node or nodes for the start or end point (or both) to be changed, add the
necessary new node or nodes, and add the edge.

For information about editing topology objects, see Chapter 2.

SDO_TOPO_MAP Package Subprograms 4-11

SDO_TOPO_MAP.CHANGE_EDGE_COORDS

This procedure is equivalent to using the changeEdgeCoords method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

Examples

The following example changes the coordinates of edge E1. (It changes only the
third point, from 16,38 to 16,39.) It uses the current updatable TopoMap object. (The
example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO_MAP.CHANGE EDGE COORDS (null, 1,
SDO_GEOMETRY (2002, NULL, NULL, SDO ELEM INFO ARRAY (1, 2, 1),
SDO_ORDINATE ARRAY (8,30, 16,30, 16,39, 3,38, 3,30, 8,30)));

4-12 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.CLEAR_TOPO_MAP

SDO_TOPO_MAP.CLEAR_TOPO_MAP

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.CLEAR_TOPO_MAP(
topo_map IN VARCHAR2);

Clears all objects and changes in the cache associated with a TopoMap object.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

If the TopoMap object is updatable, this procedure changes it to be read-only.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure, which applies the changes in the cache associated with the TopoMap
object to the topology. You cannot call the SDO_TOPO_MAP.CLEAR_TOPO_MAP
procedure if you previously used the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure on the specified TopoMap object.

This procedure is equivalent to using the clearCache method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example clears the cache associated with the TopoMap object named
CITY_ DATA_TOPOMAP, which is associated with the topology named CITY_ DATA.
(The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO_MAP.CLEAR TOPO MAP ('CITY DATA TOPOMAP');

SDO_TOPO_MAP Package Subprograms 4-13

SDO_TOPO_MAP.COMMIT_TOPO_MAP

SDO_TOPO_MAP.COMMIT_TOPO_MAP

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.COMMIT_TOPO_MAP;

Updates the topology to reflect changes made to the current updatable TopoMap
object, commits all changes to the database, and makes the TopoMap object
read-only.

None.

Use this procedure when you are finished with a batch of edits to a topology and
you want to commit all changes to the database. After the commit operation
completes, you cannot edit the TopoMap object. To make further edits to the
topology, you must either clear the cache (using the SDO_TOPO_MAP.CLEAR_
TOPO_MAP procedure) or create a new TopoMap object (using the SDO_TOPO_
MAP.CREATE_TOPO_MAP procedure), and then load the topology into the
TopoMap object for update (using the SDO_TOPO_MAP.LOAD_TOPO_MAP
function).

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure, which leaves the TopoMap object available for editing operations and
which does not perform a commit operation (and thus does not end the database
transaction).

To roll back all TopoMap object changes, use the SDO_TOPO_MAP.ROLLBACK_
TOPO_MAP procedure.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

This procedure is equivalent to using the commi tDB method of the TopoMap class
of the client-side Java API (described in Section 1.8.1).

4-14 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.COMMIT_TOPO_MAP

Examples

The following example commits to the database all changes to the current updatable
TopoMap object, and prevents further editing of the TopoMap object.

EXECUTE SDO_TOPO MAP.COMMIT TOPO MAP;

SDO_TOPO_MAP Package Subprograms 4-15

SDO_TOPO_MAP.CREATE_EDGE_INDEX

SDO_TOPO_MAP.CREATE_EDGE_INDEX

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.CREATE_EDGE_INDEX(
topo_map IN VARCHAR2);

Creates an internal R-tree index (or rebuilds the index if one already exists) on the
edges in the cache associated with a TopoMap object.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

You can cause Spatial to create in-memory R-tree indexes to be built on the edges
and faces in the specified TopoMap object. These indexes use some memory
resources and take some time to create; however, they significantly improve
performance if you edit a large number of topology objects in the session. They can
also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations,
you should probably rebuild the indexes periodically; however, if the TopoMap
object will not be updated, create the indexes when or after loading the read-only
topoMap object or after calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_FACE_INDEX
procedure, which creates an internal R-tree index (or rebuilds the index if one
already exists) on the faces in the cache associated with a TopoMap object.

This procedure is equivalent to using the createEdgeIndex method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example creates an internal R-tree index (or rebuilds the index if one
already exists) on the edges in the cache associated with the TopoMap object named

4-16 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.CREATE_EDGE_INDEX

CITY_ DATA_TOPOMAP, which is associated with the topology named CITY_ DATA.
(The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.CREATE EDGE INDEX('CITY DATA TOPOMAP');

SDO_TOPO_MAP Package Subprograms 4-17

SDO_TOPO_MAP.CREATE_FACE_INDEX

SDO_TOPO_MAP.CREATE_FACE_INDEX

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.CREATE_FACE_INDEX(
topo_map IN VARCHAR2);

Creates an internal R-tree index (or rebuilds the index if one already exists) on the
faces in the cache associated with a TopoMap object.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

You can cause Spatial to create in-memory R-tree indexes to be built on the edges
and faces in the specified TopoMap object. These indexes use some memory
resources and take some time to create; however, they significantly improve
performance if you edit a large number of topology objects in the session. They can
also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations,
you should probably rebuild the indexes periodically; however, if the TopoMap
object will not be updated, create the indexes when or after loading the read-only
topoMap object or after calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP
procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_EDGE_INDEX
procedure, which creates an internal R-tree index (or rebuilds the index if one
already exists) on the edges in the cache associated with a TopoMap object.

This procedure is equivalent to using the createFaceIndex method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example creates an internal R-tree index (or rebuilds the index if one
already exists) on the faces in the cache associated with the TopoMap object named

4-18 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.CREATE_FACE_INDEX

CITY_ DATA_TOPOMAP, which is associated with the topology named CITY_ DATA.
(The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.CREATE FACE INDEX('CITY DATA TOPOMAP');

SDO_TOPO_MAP Package Subprograms 4-19

SDO_TOPO_MAP.CREATE_TOPO_MAP

SDO_TOPO_MAP.CREATE_TOPO_MAP

Format
SDO_TOPO_MAP.CREATE_TOPO_MAP(

topology IN VARCHAR2,

topo_map IN VARCHAR2,
number_of_edges IN NUMBER DEFAULT 100,
number_of_nodes IN NUMBER DEFAULT 80,
number_of_faces IN NUMBER DEFAULT 30);

Description

Creates a TopoMap object cache associated with an existing topology.

Parameters

topology
Name of the topology. Must not exceed 20 characters.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

number_of_edges
An estimate of the maximum number of edges that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 100 is used.

number_of_nodes
An estimate of the maximum number of nodes that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 80 is used.

number_of_faces
An estimate of the maximum number of faces that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 30 is used.

Usage Notes

The number of edges,number of nodes,and number of faces parameters
let you improve the performance and memory usage of the procedure when you

4-20 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.CREATE_TOPO_MAP

Examples

have a good idea of the approximate number of edges, nodes, or faces (or any
combination) that will be placed in the cache associated with the specified TopoMap
object. Spatial initially allocates memory cache for the specified or default number
of objects of each type, and incrementally increases the allocation later if more
objects need to be accommodated.

You can create more than one TopoMap object in a user session; however, there can
be no more than one updatable TopoMap object at any given time in a user session.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

Using this procedure is equivalent to calling the constructor of the TopoMap class of
the client-side Java API (described in Section 1.8.1).

The following example creates a TopoMap object named CITY DATA TOPOMAP
and its associated cache, and it associates the TopoMap object with the topology
named CITY_ DATA. (The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO_MAP.CREATE TOPO MAP('CITY DATA', 'CITY DATA TOPOMAP');

SDO_TOPO_MAP Package Subprograms 4-21

SDO_TOPO_MAP.DROP_TOPO_MAP

SDO_TOPO_MAP.DROP_TOPO_MAP

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.DROP_TOPO_MAP(
topo_map IN VARCHAR2);

Deletes a TopoMap object from the current user session.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

This procedure rolls back any uncommitted changes if the TopoMap object is
updatable (that is, performs the equivalent of an SDO_TOPO_MAP.ROLLBACK_
TOPO_MAP operation). It clears the cache associated with the TopoMap object, and
removes the TopoMap object from the session.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

Using this procedure is equivalent to setting the variable of the TopoMap object to a
null value in a client-side Java application. (The client-side Java API is described in
Section 1.8.1.)

The following example drops the TopoMap object named CITY DATA_ TOPOMAP.
(The example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO_MAP.DROP_TOPO MAP ('CITY DATA TOPOMAP');

4-22 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_CONTAINING_FACE

SDO_TOPO_MAP.GET_CONTAINING_FACE

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.GET_CONTAINING_FACE(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
point IN SDO_GEOMETRY
) RETURN NUMBER;

Returns the face ID number of the face that contains the specified point.

topology
Name of the topology that contains the face and the point, or a null value, as
explained in Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

point
Geometry object specifying the point.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

This function determines, from the faces in the specified TopoMap object (including
any island faces), which one face (if any) contains the specified point in its open set.
(The open set of a face consists of all points inside, but not on the boundary of, the
face.) If the point is exactly on the boundary of a face, the function returns a value of
0 (zero).

If the entire topology has been loaded into the TopoMap object and if the point is
not in any finite face in the cache, this function returns a value of -1 (for the

SDO_TOPO_MAP Package Subprograms 4-23

SDO_TOPO_MAP.GET_CONTAINING_FACE

universal face). If a window from the topology has been loaded into the TopoMap
object and if the point is not in any finite face in the cache, this function returns a
value of -1 (for the universal face) if the point is inside the window and a value of 0
(zero) if the point is outside the window.

This function is equivalent to using the get ContainingFace method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

Examples

The following example returns the face ID number of the face that contains the
point at (22, 37) in the CITY_DATA TOPOMAP TopoMap object. (The example refers
to definitions and data from Section 1.11.)

SELECT SDO_TOPO_MAP.GET CONTAINING FACE (null, 'CITY DATA TOPOMAP', SDO
GEOMETRY (2001, NULL, SDO POINT TYPE(22,37,NULL), NULL, NULL)) FROM DUAL;

SDO_TOPO_MAP.GET CONTAINING FACE (NULL, 'CITY DATA TOPOMAP',SDO
GEOMETRY (2001, NULL, SDO

4-24 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_EDGE_ADDITIONS

SDO_TOPO_MAP.GET_EDGE_ADDITIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_EDGE_ADDITIONS() RETURN SDO_NUMBER_ARRAY;

Returns an array of edge ID numbers of edges that have been added to the current
updatable TopoMap object.

None.

This function returns the edge ID numbers of edges in the current updatable
TopoMap object that have been added since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
additions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the get EdgeAdditions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the edge ID numbers of edges that have been added
to the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET EDGE_ADDITIONS FROM DUAL;
GET_EDGE_ADDITIONS

SDO_NUMBER ARRAY (28, 29, 30, 32)

SDO_TOPO_MAP Package Subprograms 4-25

SDO_TOPO_MAP.GET_EDGE_CHANGES

SDO_TOPO_MAP.GET_EDGE_CHANGES

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_EDGE_CHANGES() RETURN SDO_NUMBER_ARRAY;

Returns an array of edge ID numbers of edges that have been changed (modified) in
the current updatable TopoMap object.

None.

This function returns the edge ID numbers of edges in the current updatable
TopoMap object that have been changed since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes
during that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get EdgeChanges method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example returns the edge ID numbers of edges that have been
changed in the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET EDGE_CHANGES FROM DUAL;

GET_EDGE_CHANGES

SDO_NUMBER ARRAY (3, 2, 1)

4-26 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_EDGE_COORDS

SDO_TOPO_MAP.GET_EDGE_COORDS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_EDGE_COORDS(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
edge_id INNUMBER
) RETURN SDO_NUMBER_ARRAY;

Returns an array with the coordinates of the start node, shape points, and end node
for the specified edge.

topology
Name of the topology that contains the edge, or a null value, as explained in
Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

edge_id
Edge ID value of the edge.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

This function is equivalent to using the get EdgeCoords method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example returns the coordinates of the start node, shape points, and
end node for the edge whose edge ID value is 1. The returned array contains

SDO_TOPO_MAP Package Subprograms 4-27

SDO_TOPO_MAP.GET_EDGE_COORDS

coordinates for six points. (The example refers to definitions and data from
Section 1.11.)

SELECT SDO_TOPO MAP.GET EDGE COORDS (null, 'CITY DATA TOPOMAP', 1) FROM DUAL;
SDO_TOPO_MAP.GET_ EDGE_COORDS (NULL, 'CITY DATA TOPOMAP',1)

SDO_NUMBER ARRAY (8, 30, 16, 30, 16, 38, 3, 38, 3, 30, 8, 30)

4-28 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_EDGE_DELETIONS

SDO_TOPO_MAP.GET_EDGE_DELETIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_EDGE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Returns an array of edge ID numbers of edges that have been deleted from the
current updatable TopoMap object.

None.

This function returns the edge ID numbers of edges in the current updatable
TopoMap object that have been deleted since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
deletions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the get EdgeDeletions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the edge ID numbers of edges that have been
deleted from the current updatable TopoMap object. In this case, the return of an
empty SDO_NUMBER_ARRAY object indicates that no edges have been deleted.

SELECT SDO_TOPO_MAP.GET EDGE DELETIONS FROM DUAL;
GET_EDGE_DELETIONS

SDO_NUMBER_ARRAY ()

SDO_TOPO_MAP Package Subprograms 4-29

SDO_TOPO_MAP.GET_EDGE_NODES

SDO_TOPO_MAP.GET_EDGE_NODES

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.GET_EDGE_NODES(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
edge_id INNUMBER
) RETURN SDO_NUMBER_ARRAY;

Returns an array with the ID numbers of the start and end nodes on the specified
edge.

topology
Name of the topology that contains the edge, or a null value, as explained in
Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

edge_id
Edge ID value of the edge.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

If the edge starts and ends at a node, the ID number of the node is the first and last
number in the array.

This function has no exact equivalent method in the TopoMap class of the
client-side Java API (described in Section 1.8.1). The get Edge method returns a
Java edge object of the oracle.spatial.topo.Edge class.

4-30 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_EDGE_NODES

Examples

The following example returns the ID numbers of the nodes on the edge whose
edge ID value is 1. The returned array contains two nodes ID numbers, both of
them 1, because the specified edge starts and ends at the node with node ID 1 and
has a loop edge. (The example refers to definitions and data from Section 1.11.)

SELECT SDO_TOPO MAP.GET EDGE NODES (null, 'CITY DATA TOPOMAP', 1) FROM DUAL;
SDO_TOPO_MAP.GET EDGE NODES (NULL, 'CITY DATA TOPOMAP',1)

SDO_NUMBER ARRAY (1, 1)

SDO_TOPO_MAP Package Subprograms 4-31

SDO_TOPO_MAP.GET_FACE_ADDITIONS

SDO_TOPO_MAP.GET_FACE_ADDITIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_FACE_ADDITIONS() RETURN SDO_NUMBER_ARRAY

Returns an array of face ID numbers of faces that have been added to the current
updatable TopoMap object.

None.

This function returns the face ID numbers of faces in the current updatable
TopoMap object that have been added since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
additions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the get FaceAdditions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the face ID numbers of faces that have been added
to the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET FACE ADDITIONS FROM DUAL;

GET_FACE_ADDITIONS

SDO_NUMBER ARRAY (11)

4-32 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_FACE_CHANGES

SDO_TOPO_MAP.GET_FACE_CHANGES

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_FACE_CHANGES() RETURN SDO_NUMBER_ARRAY;

Returns an array of face ID numbers of faces that have been changed (modified) in
the current updatable TopoMap object.

None.

This function returns the face ID numbers of faces in the current updatable
TopoMap object that have been changed since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes
during that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get FaceChanges method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example returns the face ID numbers of faces that have been changed
in the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET FACE CHANGES FROM DUAL;
GET_FACE_CHANGES

SDO_NUMBER ARRAY (2, 1, -1)

SDO_TOPO_MAP Package Subprograms 4-33

SDO_TOPO_MAP.GET_FACE_DELETIONS

SDO_TOPO_MAP.GET_FACE_DELETIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_FACE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Returns an array of face ID numbers of faces that have been deleted from the
current updatable TopoMap object.

None.

This function returns the face ID numbers of faces in the current updatable
TopoMap object that have been deleted since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
deletions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the get FaceDeletions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the face ID numbers of faces that have been deleted
from the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no faces have been deleted.

SELECT SDO_TOPO_MAP.GET FACE DELETIONS FROM DUAL;

GET_FACE_DELETIONS

SDO_NUMBER_ARRAY ()

4-34 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NEAREST_EDGE

SDO_TOPO_MAP.GET_NEAREST_EDGE

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.GET_NEAREST_EDGE(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
point IN SDO_GEOMETRY
) RETURN NUMBER;

Returns the edge ID number of the edge that is nearest (closest to) the specified
point.

topology
Name of the topology that contains the edge and the point, or a null value, as
explained in Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

point
Geometry object specifying the point.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

The nearest edge is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted edges in
the instance and the database has not been updated to reflect those changes, the
result may not reflect the true situation in the TopoMap object cache.

If multiple edges are equally close to the point, one of the edge ID values is
returned.

SDO_TOPO_MAP Package Subprograms 4-35

SDO_TOPO_MAP.GET_NEAREST_EDGE

This function is equivalent to using the getNearestEdge method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

Examples

The following example returns the edge ID number of the edge that is closest to the
point at (8, 8) in the CITY DATA TOPOMAP TopoMap object. (The example refers to
definitions and data from Section 1.11.)

SELECT SDO_TOPO MAP.GET NEAREST EDGE(null, 'CITY DATA TOPOMAP',
SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(8,8,NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO_MAP.GET NEAREST EDGE (NULL, 'CITY DATA TOPOMAP', SDO GEOMETRY (2001,NULL, SD

4-36 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NEAREST_NODE

SDO_TOPO_MAP.GET_NEAREST_NODE

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.GET_NEAREST_NODE(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
point IN SDO_GEOMETRY
) RETURN NUMBER;

Returns the node ID number of the node that is nearest (closest to) the specified
point.

topology
Name of the topology that contains the node and the point, or a null value, as
explained in Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

point
Geometry object specifying the point.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

The nearest node is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted nodes in
the instance and the database has not been updated to reflect those changes, the
result may not reflect the true situation in the TopoMap object cache.

If multiple edges are equally close to the point, one of the edge ID values is
returned.

SDO_TOPO_MAP Package Subprograms 4-37

SDO_TOPO_MAP.GET_NEAREST_NODE

This function is equivalent to using the getNearestNode method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

Examples

The following example returns the node ID number of the node that is closest to the

point at (8, 8) in the CITY DATA TOPOMAP TopoMap object. (The example refers to
definitions and data from Section 1.11.)

SELECT SDO_TOPO_MAP.GET NEAREST NODE(null, 'CITY DATA TOPOMAP',
SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(8,8,NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO_MAP.GET NEAREST NODE (NULL, 'CITY DATA TOPOMAP', SDO GEOMETRY (2001,NULL, SD

4-38 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NODE_ADDITIONS

SDO_TOPO_MAP.GET_NODE_ADDITIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_NODE_ADDITIONS() RETURN SDO_NUMBER_ARRAY;

Returns an array of node ID numbers of nodes that have been added to the current
updatable TopoMap object.

None.

This function returns the node ID numbers of nodes in the current updatable
TopoMap object that have been added since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
additions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the getNodeAdditions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the node ID numbers of nodes that have been added
to the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET NODE ADDITIONS FROM DUAL;
GET_NODE_ADDITIONS

SDO_NUMBER ARRAY (24, 25, 26, 27, 28)

SDO_TOPO_MAP Package Subprograms 4-39

SDO_TOPO_MAP.GET_NODE_CHANGES

SDO_TOPO_MAP.GET_NODE_CHANGES

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_NODE_CHANGES() RETURN SDO_NUMBER_ARRAY;

Returns an array of node ID numbers of nodes that have been changed (modified)
in the current updatable TopoMap object.

None.

This function returns the node ID numbers of nodes in the current updatable
TopoMap object that have been changed since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes
during that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the getNodeChanges method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example returns the node ID numbers of nodes that have been
changed in the current updatable TopoMap object.

SELECT SDO_TOPO_MAP.GET NODE CHANGES FROM DUAL;

GET_NODE_CHANGES

SDO_NUMBER _ARRAY (2, 4)

4-40 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NODE_COORD

SDO_TOPO_MAP.GET_NODE_COORD

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_NODE_COORD(
topology IN VARCHAR2,
topo_map IN VARCHAR2,
node_id IN NUMBER
) RETURN SDO_POINT_TYPE;

Returns an SDO_POINT_TYPE object with the coordinates of the specified node.

topology
Name of the topology that contains the node, or a null value, as explained in
Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

node_id
Node ID value of the node.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

This function is equivalent to using the getNodeCoord method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example returns the coordinates of the node whose node ID value is
14. (The example refers to definitions and data from Section 1.11.)

SDO_TOPO_MAP Package Subprograms 4-41

SDO_TOPO_MAP.GET_NODE_COORD

SELECT SDO_TOPO MAP.GET NODE COORD (null, 'CITY DATA TOPOMAP', 14) FROM DUAL;
SDO_TOPO_MAP.GET NODE COORD (NULL, 'CITY DATA TOPOMAP',14) (X, Y, Z)

SDO_POINT TYPE (21, 14, NULL)

4-42 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NODE_DELETIONS

SDO_TOPO_MAP.GET_NODE_DELETIONS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.GET_NODE_DELETIONS() RETURN SDO_NUMBER_ARRAY;

Returns an array of node ID numbers of nodes that have been deleted from the
current updatable TopoMap object.

None.

This function returns the node ID numbers of nodes in the current updatable
TopoMap object that have been deleted since the object was most recently loaded
(using SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using SDO_TOPO_
MAP.UPDATE_TOPO_MAP), cleared (using SDO_TOPO_MAP.CLEAR_TOPO_
MAP), committed (using SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back
(using SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no
deletions during that time, the function returns an empty SDO_NUMBER_ARRAY
object.

This function is equivalent to using the getNodeDeletions method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example returns the node ID numbers of nodes that have been
deleted from the current updatable TopoMap object. In this case, the return of an
empty SDO_NUMBER_ARRAY object indicates that no nodes have been deleted.

SELECT SDO_TOPO_MAP.GET NODE DELETIONS FROM DUAL;
GET_NODE_DELETIONS

SDO_NUMBER_ARRAY ()

SDO_TOPO_MAP Package Subprograms 4-43

SDO_TOPO_MAP.GET_NODE_STAR

SDO_TOPO_MAP.GET_NODE_STAR

Format
SDO_TOPO_MAP.GET_NODE_STAR(

topology IN VARCHAR2,
topo_map IN VARCHAR2,

node_id IN NUMBER

) RETURN SDO_NUMBER_ARRAY;

Description

Returns an SDO_NUMBER_ARRAY object with the edge ID numbers, in clockwise
order, of the edges that are connected to the specified node.

Parameters

topology
Name of the topology that contains the node, or a null value, as explained in
Section 2.1.3. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Section 2.1.3.
(TopoMap objects are explained in Section 2.1.1.)

node_id
Node ID value of the node.

Usage Notes

The node star of a node is the edges that are connected to the node.

The topology or topo_map parameter should specify a valid name, as explained
in Section 2.1.3.

This function is equivalent to using the getNodeStar method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

4-44 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.GET_NODE_STAR

Examples

The following example returns the node star of the node whose node ID value is 14.
(The example refers to definitions and data from Section 1.11.)

SELECT SDO_TOPO MAP.GET NODE STAR(null, 'CITY DATA TOPOMAP', 14) FROM DUAL;
SDO_TOPO_MAP.GET NODE STAR (NULL, 'CITY DATA TOPOMAP',14)

SDO_NUMBER ARRAY (19, -10, -20, -9)

SDO_TOPO_MAP Package Subprograms 4-45

SDO_TOPO_MAP.GET_TOPO_NAME

SDO_TOPO_MAP.GET_TOPO_NAME

Format
SDO_TOPO_MAP.GET_TOPO_NAME(
topo_map IN VARCHAR2
) RETURN VARCHAR?2;
Description
Returns the name of the topology associated with the specified TopoMap object.
Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

Usage Notes

This function is equivalent to using the get TopoName method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

Examples

The following example returns the name of the topology associated with the
TopoMap object named CITY DATA TOPOMAP. (The example refers to definitions
and data from Section 1.11.)

SELECT SDO_TOPO_MAP.GET TOPO_NAME ('CITY DATA TOPOMAP') FROM DUAL;
SDO_TOPO_MAP.GET TOPO_NAME ('CITY DATA TOPOMAP')

CITY DATA

4-46 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.LIST_TOPO_MAPS

SDO_TOPO_MAP.LIST_TOPO_MAPS

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.LIST_TOPO_MAPS() RETURN VARCHAR2;

Returns a comma-delimited list of entries for each TopoMap object currently active
in the session, or an empty string if there are no currently active TopoMap objects.

None.

Each entry in the comma-delimited list contains the following information: the
name of the TopoMap object, the name of the topology associated with the
TopoMap object, and either updatable if the TopoMap object can be updated (that
is, edited) or read-only if the TopoMap object cannot be updated.

For more information about TopoMap objects, including updatable and read-only
status, see Section 2.1.1.

To remove a TopoMap object from the session, use the SDO_TOPO_MAP.DROP_
TOPO_MAP procedure.

The following example lists the Topomap object name, topology name, and whether
the object is updatable or read-only for each TopoMap object currently active in the
session. (The example refers to definitions and data from Section 1.11.)

SELECT SDO_TOPO_MAP.LIST TOPO MAPS FROM DUAL;
LIST TOPO MAPS

(CITY DATA TOPOMAP, CITY DATA, updatable)

SDO_TOPO_MAP Package Subprograms 4-47

SDO_TOPO_MAP.LOAD_TOPO_MAP

SDO_TOPO_MAP.LOAD_TOPO_MAP

Format

SDO_TOPO_MAP.LOAD_TOPO_MAP(
topo_map IN VARCHAR2,
allow_updates IN VARCHAR2,
build_indexes IN VARCHAR2 DEFAULT 'TRUE'
) RETURN VARCHAR2;

or

SDO_TOPO_MAP.LOAD_TOPO_MAP(
topo_map IN VARCHAR2,
Xmin IN NUMBER,
ymin IN NUMBER,
Xmax IN NUMBER,
ymax IN NUMBER,
allow_updates IN VARCHAR2,
build_indexes IN VARCHAR2 DEFAULT 'TRUE'
) RETURN VARCHAR2;

Description

Loads an entire topology or a window (rectangular portion) of a topology into a
TopoMap object; returns the string TRUE if topology objects were loaded into the
cache, and FALSE if no topology objects were loaded into the cache.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

4-48 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.LOAD_TOPO_MAP

Usage Notes

xmin
Lower-left X coordinate value for the window (rectangular portion of the topology)
to be loaded.

See the Usage Notes and Figure 4-1 for information about which topology objects
are loaded when you specify a window.

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology)
to be loaded.

xmax
Upper-right X coordinate value for the window (rectangular portion of the
topology) to be loaded.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the
topology) to be loaded.

allow_updates

TRUE makes the TopoMap object updatable; that is, it allows topology editing
operations to be performed on the TopoMap object. FALSE makes the TopoMap
object read-only; that is, it does not allow topology editing operations to be
performed on the TopoMap object.

There can be no more than one updatable TopoMap object active in a user session.

build_indexes

TRUE (the default) builds in-memory R-tree indexes for edge and face data; FALSE
does not build in-memory R-tree indexes for edge and face data. The indexes
improve the performance of editing operations, especially with large topologies.

You must create the TopoMap object (using the SDO_TOPO_MAP.CREATE_TOPO_
MAP procedure) before you load data into it.

You cannot use this function if the TopoMap object already contains data. If the
TopoMap object contains any data, you must do one of the following before calling
this function: commit the changes (using the SDO_TOPO_MAP.COMMIT_TOPO_
MAP procedure) and clear the cache (using the SDO_TOPO_MAP.CLEAR_TOPO_
MAP procedure), or roll back the changes (using the SDO_TOPO_
MAPROLLBACK_TOPO_MAP procedure).

SDO_TOPO_MAP Package Subprograms 4-49

SDO_TOPO_MAP.LOAD_TOPO_MAP

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

This function is equivalent to using the 1loadTopoMap method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

If you specify a window using the xmin, ymin, xmax, and ymax parameters, all
topology objects that are inside or on the window, all faces and edges that overlap
the window, and all edges whose definitions depend on a face inside or partially
within the window are loaded. For example, if an isolated node is on a face that is in
the window, or if an edge has a left or right face that is in the window, it is loaded.
Consider the topology and the window (shown by a dashed line) in Figure 4-1.

Figure 4-1 Loading Topology Objects into a Window

N13

N18

N12

1 oN7

E9|
N6

With the window shown in Figure 4-1:
= Face Fl is loaded because it is partially in the window.

= The following edges are loaded: E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13,
E14, E16.

4-50 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.LOAD_TOPO_MAP

Examples

Edges E1, E2, and E15 are not loaded, because their definitions do not refer to
any face within the window (here, face F1).

s The following nodes are loaded: N5, N6, N7, N8, N9, N10, N11, N16, N19, N20.

Non-isolated nodes N1, N2, N3, N4, N12, N13, N14, N15, N17, and N18 are not
loaded, because they are not inside or on the window boundary.

The following example loads all CITY DATA topology elements into its associated
TopoMap object for editing (not read-only) and builds the in-memory R-tree
indexes by default. It returns a result indicating that the operation was successful
and that some topology objects were loaded into the cache. (The example refers to
definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.LOAD TOPO MAP('CITY DATA TOPOMAP', 'TRUE') INTO :res varchar;
Call completed.
PRINT res_varchar;

RES_VARCHAR

SDO_TOPO_MAP Package Subprograms 4-51

SDO_TOPO_MAP.MOVE_EDGE

SDO_TOPO_MAP.MOVE_EDGE

Format
SDO_TOPO_MAPMOVE_EDGE(
topology IN VARCHAR2,
edge_id IN NUMBER,
s_node_id IN NUMBER,
t_node_id IN NUMBER,
edge_coords IN SDO_NUMBER_ARRAY);
or
SDO_TOPO_MAPMOVE_EDGE(
topology IN VARCHAR2,
edge_id IN NUMBER,
s_node_id IN NUMBER,
t_node_id IN NUMBER,
edge_coords IN SDO_NUMBER_ARRAY,
moved_iso_nodes OUT SDO_NUMBER_ARRAY,
moved_iso_edges OUT SDO_NUMBER_ARRAY,
allow_iso_moves IN VARCHAR2);
Description
Moves a non-isolated edge.
Parameters

topology
Name of the topology in which to move the edge, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

edge_id
Edge ID of the edge to be moved.

4-52 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.MOVE_EDGE

edge_coords
An array of coordinates of the resulting moved edge, from start point to end point.

s_node_id

Node ID of the source node, which identifies the point (start node or end node of
the edge) affected by the move, before the move occurs. For example, if the end
point of edge E19 is to be moved from node N17 to node N16, the s_node_id
value is the node ID number for node N17.

t_node_id

Node ID of the target node, which identifies the point affected by the move, after
the move occurs. For example, if the end point of edge E19 is to be moved from
node N17 to node N16, the t node id value is the node ID number for node N16.

moved_iso_nodes

Output parameter in which, if the allow_iso_moves parameter value is TRUE,
Spatial stores the node ID values of any isolated nodes that have moved to a
different face as a result of this procedure. If the allow iso moves parameter
value is FALSE, Spatial stores the node ID values of any isolated nodes that did not
move but that would have moved to a different face if the allow iso moves
parameter value had been TRUE.

moved_iso_edges

Output parameter in which, if the allow iso moves parameter value is TRUE,
Spatial stores the edge ID values of any isolated edges that have moved to a
different face as a result of this procedure. If the allow iso moves parameter
value is FALSE, Spatial stores the edge ID values of any isolated edges that did not
move but that would have moved to a different face if the allow iso moves
parameter value had been TRUE.

allow_iso_moves

TRUE causes Spatial to allow an edge move operation that would cause any isolated
nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial not to allow
an edge move operation that would cause any isolated nodes or edges to be in a
different face.

If you use the format that does not include the allow_iso moves parameter,
Spatial allows an edge move operation that would cause any isolated nodes or
edges to be in a different face, and it adjusts the containing face information for
such isolated nodes and edges.

SDO_TOPO_MAP Package Subprograms 4-53

SDO_TOPO_MAP.MOVE_EDGE

Usage Notes

For information about moving edges, see Section 2.3.2.

This function is equivalent to using the moveEdge method of the TopoMap class of
the client-side Java API (described in Section 1.8.1).

Examples

The following example moves the edge with edge ID value 19, and it displays the
edge coordinates before and after the move. The edge move operation moves the
end point of the edge from the node with node ID value 17 to the node with node
ID value 16. (The edge being moved is E19 in Figure 1-2 in Section 1.2; and the edge
is being changed from going vertically up to node N17, to going diagonally up and
left to node N16. The example refers to definitions and data from Section 1.11.)

-- Get coordinates of edge E19.
SELECT SDO_TOPO MAP.GET EDGE COORDS (null, 'CITY DATA TOPOMAP', 19) FROM DUAL;

SDO_TOPO_MAP.GET EDGE COORDS (NULL, 'CITY DATA TOPOMAP',19)

SDO_NUMBER ARRAY (21, 14, 21, 22)

-- Move edge E19: from N14 -> N17 to N14 -> N16. The 3rd and 4th parameters
-- identify N17 and N16.
CALL SDO_TOPO MAP.MOVE EDGE (null, 19, 17, 16,

SDO_NUMBER ARRAY (21,14, 9,22));

Call completed.

-- Get coordinates of edge E19 after the move.
SELECT SDO_TOPO MAP.GET EDGE COORDS (null, 'CITY DATA TOPOMAP', 19) FROM DUAL;

SDO_TOPO_MAP.GET_EDGE_COORDS (NULL, 'CITY DATA TOPOMAP',19)

SDO_NUMBER ARRAY (21, 14, 9, 22)

4-54 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.MOVE_ISOLATED_NODE

SDO_TOPO_MAP.MOVE_ISOLATED_NODE

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAPMOVE_ISOLATED_NODE(
topology IN VARCHAR2,
node_id IN NUMBER,
point IN SDO_GEOMETRY;

Moves an isolated (island) node.

topology
Name of the topology in which to move the node, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

node_id
Node ID of the node to be moved.

point
SDO_GEOMETRY object (point geometry) representing the location to which the
isolated node is to be moved.

For information about moving nodes, see Section 2.2.2.

This procedure is equivalent to using the moveIsolatedNode method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

The following example adds an isolated node and then moves it. (The example
refers to definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.ADD ISOLATED NODE (null, 2,
SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(22,38,NULL), NULL, NULL))
INTO :res_number;

SDO_TOPO_MAP Package Subprograms 4-55

SDO_TOPO_MAP.MOVE_ISOLATED_NODE

-- Move the just-added isolated node (from 20,38 to 22,39).
CALL SDO_TOPO MAP.MOVE ISOLATED NODE(null, :res number,
SDO_GEOMETRY(ZOO]., NULL, SDO_POINT_TYPE(22,39,N'ULL), NULL, NULL));

4-56 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.MOVE_NODE

SDO_TOPO_MAP.MOVE_NODE

Format
SDO_TOPO_MAP.MOVE_NODE(

topology IN VARCHAR2,
node_id IN NUMBER,
edges_coords IN SDO_EDGE_ARRAY;

or

SDO_TOPO_MAPMOVE_NODE(
topology IN VARCHAR2,
node_id IN NUMBER,
edges_coords IN SDO_EDGE_ARRAY,
moved_iso_nodes OUT SDO_NUMBER_ARRAY,
moved_iso_edges OUT SDO_NUMBER_ARRAY,
allow_iso_moves IN VARCHAR2);

Description

Moves a non-isolated node and its attached edges.

Parameters

topology
Name of the topology in which to move the node, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

node_id
Node ID of the node to be moved.

edges_coords

An array of arrays, of type SDO_EDGE_ARRAY (described in Section 1.6.5). Each
inner array consists of coordinates of each resulting attached edge, from start point
to end point. The outer array consists of the attached edge arrays, starting with the
start edge of the node to be moved and proceeding in clockwise order (with the

SDO_TOPO_MAP Package Subprograms 4-57

SDO_TOPO_MAP.MOVE_NODE

sequence of the edges as would be obtained in a call to the SDO_TOPO_MAP.GET_
NODE_STAR function).

The array for each edge must include the start and end points. Any loops that
connect twice at the moved node must be specified twice in the array.

moved_iso_nodes

Output parameter in which, if the allow iso moves parameter value is TRUE,
Spatial stores the node ID values of any isolated nodes that have moved to a
different face as a result of this procedure. If the allow iso moves parameter
value is FALSE, Spatial stores the node ID values of any isolated nodes that did not
move but that would have moved to a different face if the allow_iso moves
parameter value had been TRUE.

moved_iso_edges

Output parameter in which, if the allow_iso_moves parameter value is TRUE,
Spatial stores the edge ID values of any isolated edges that have moved to a
different face as a result of this procedure. If the allow_iso moves parameter
value is FALSE, Spatial stores the edge ID values of any isolated edges that did not
move but that would have moved to a different face if the allow_iso moves
parameter value had been TRUE.

allow_iso_moves

TRUE causes Spatial to allow a node move operation that would cause any isolated
nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial not to allow a
node move operation that would cause any isolated nodes or edges to be in a
different face.

If you use the format that does not include the allow_iso_moves parameter,
Spatial allows a node move operation that would cause any isolated nodes or edges
to be in a different face, and it adjusts the containing face information for such
isolated nodes and edges.

Usage Notes

For information about moving nodes, see Section 2.2.2.

This procedure is equivalent to using the moveNode method of the TopoMap class
of the client-side Java API (described in Section 1.8.1).

4-58 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.MOVE_NODE

Examples

The following example moves node N3 and adjusts the coordinates of the only
attached edge. (The example refers to definitions and data from Section 1.11.)

-- Move node N3 to right: from 25,35 to 26,35.
-- E3 is changed from 25,30 -> 25,35 to 25,30 -> 26,35.
CALL SDO_TOPO_MAP.MOVE_ NODE (null, 3,

SDO_EDGE_ARRAY (SDO_NUMBER ARRAY (25,30, 26,35)));

SDO_TOPO_MAP Package Subprograms 4-59

SDO_TOPO_MAP.REMOVE_EDGE

SDO_TOPO_MAP.REMOVE_EDGE

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.REMOVE_EDGE(
topology IN VARCHAR2,
edge_id IN NUMBER);

Removes an edge from a topology.

topology
Name of the topology from which to remove the edge, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

edge_id
Edge ID of the edge to be removed.

Spatial automatically updates the appropriate entries in the <topology-name>_
EDGES$ and <topology-name>_FACES$ tables.

For information about removing an edge from a topology, see Section 2.3.3.

The following example removes the edge with edge ID value 99 from the current
updatable TopoMap object.

CALL SDO_TOPO MAP.REMOVE EDGE (null, 99);

4-60 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.REMOVE_NODE

SDO_TOPO_MAP.REMOVE_NODE

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.REMOVE_NODE(
topology IN VARCHAR2,
node_id IN NUMBER);

Removes a node from a topology.

topology
Name of the topology from which to remove the node, or null if you are using an
updatable TopoMap object (see Section 2.1.2). Must not exceed 20 characters.

node_id
Node ID of the node to be removed.

Spatial automatically updates the appropriate entries in the <topology-name>_
NODES$ and <topology-name>_EDGES$ tables, and in the <topology-name>_FACE$
table if necessary.

For information about removing a node from a topology, see Section 2.2.3.

The following example removes the node with node ID value 500 from the current
updatable TopoMap object.

CALL SDO_TOPO MAP.REMOVE NODE (null, 500);

SDO_TOPO_MAP Package Subprograms 4-61

SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

Format

Description

Parameters

Usage Notes

Examples

SDO_TOPO_MAP.ROLLBACK_TOPO_MAP;

Rolls back all changes to the database that were made using the current updatable
TopoMap object, discards any changes in the object, clears the object’s cache
structure, and makes the object read-only.

None.

Use this procedure when you are finished with a batch of edits to a topology and
you want to discard (that is, not commit) all changes to the database and in the
cache. After the rollback operation completes, you cannot edit the TopoMap object.
To make further edits to the topology, you can load the topology into the same
TopoMap object for update (using the SDO_TOPO_MAP.LOAD_TOPO_MAP
procedure), or you can create a new TopoMap object (using the SDO_TOPO_
MAP.CREATE_TOPO_MAP procedure) and load the topology into that TopoMap
object for update.

To commit all TopoMap object changes, use the SDO_TOPO_MAP.COMMIT_
TOPO_MAP procedure.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

This procedure is equivalent to using the rollbackDB method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

The following example rolls back from the database all changes associated with the
current updatable TopoMap object.

EXECUTE SDO_TOPO MAP.ROLLBACK TOPO MAP;

4-62 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.UPDATE_TOPO_MAP

SDO_TOPO_MAP.UPDATE_TOPO_MAP

Format

Description

Parameters

Usage Notes

SDO_TOPO_MAP.UPDATE_TOPO_MAP;

Updates the topology to reflect edits made to the current updatable TopoMap
object.

None.

Use this procedure to update the topology periodically during an editing session, as
explained in Section 2.1.4. The TopoMap object remains open for further editing
operations. The updates are not actually committed to the database until you call
the SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

This procedure performs a level-0 validation of the TopoMap object before it
updates the topology. (See the explanation of the 1evel parameter for the SDO_
TOPO_MAP.VALIDATE_TOPO_MAP function.)

If you caused in-memory R-tree indexes to be created when you loaded the
TopoMap object (by specifying or accepting the default value of TRUE for the

build indexes parameter with the SDO_TOPO_MAPLOAD_TOPO_MAP
function), you can rebuild these indexes by using the SDO_TOPO_MAP.CREATE _
EDGE_INDEX and SDO_TOPO_MAP.CREATE_FACE_INDEX procedures. For best
index performance, these indexes should be rebuilt periodically when you are
editing a large number of topology objects.

Contrast this procedure with the SDO_TOPO_MAP.CLEAR_TOPO_MAP
procedure, which clears the cache associated with a specified TopoMap object and
makes the object read-only.

To commit all TopoMap object changes, use the SDO_TOPO_MAP.COMMIT_
TOPO_MAP procedure.

For information about using an in-memory cache to edit topology objects, see
Section 2.1.

SDO_TOPO_MAP Package Subprograms 4-63

SDO_TOPO_MAP.UPDATE_TOPO_MAP

This procedure is equivalent to using the updateTopology method of the
TopoMap class of the client-side Java API (described in Section 1.8.1).

Examples

The following example updates the topology associated with the current updatable
TopoMap object to reflect changes made to that object.

EXECUTE SDO_TOPO_MAP.UPDATE TOPO MAP;

4-64 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.VALIDATE_TOPO_MAP

SDO_TOPO_MAP.VALIDATE_TOPO_MAP

Format

SDO_TOPO_MAP.VALIDATE_TOPO_MAP(

Description

topo_map IN VARCHAR2,
level IN NUMBER DEFAULT 1
) RETURN VARCHAR2;

Performs a first-order validation of a TopoMap object, and optionally (by default)
checks the computational geometry also; returns the string TRUE if the structure of
the topology objects in TopoMap object is consistent, and raises an exception if the
structure of the topology objects in TopoMap object is not consistent.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in Section 2.1.1.)

level
A value of 0 checks for the following conditions as part of a first-order validation:

All faces are closed, and none have infinite loops.
All previous and next edge pointers are consistent.
All edges meet at nodes.

Each island node is associated with a face.

All edges on a face boundary are associated with the face.

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

Each island is inside the boundary of its associated face.
No edge intersects itself or another edge.
Start and end coordinates of edges match coordinates of nodes.

Node stars are properly ordered geometrically.

SDO_TOPO_MAP Package Subprograms 4-65

SDO_TOPO_MAP.VALIDATE_TOPO_MAP

Usage Notes

This function checks the consistency of all pointer relationships among edges,
nodes, and faces. You can use this function to validate an updatable TopoMap object
before you update the topology (using the SDO_TOPO_MAP.UPDATE_TOPO_
MAP procedure) or to validate a read-only TopoMap object before issuing queries.

This function is equivalent to using the validateCache method of the TopoMap
class of the client-side Java API (described in Section 1.8.1).

Examples

The following example validates the topology in the TopoMap object named CITY
DATA TOPOMAP, and it returns a result indicating that the topology is valid. (The
example refers to definitions and data from Section 1.11.)

CALL SDO_TOPO MAP.VALIDATE TOPO MAP ('CITY DATA TOPOMAP') INTO :res varchar;
Call completed.
PRINT res_varchar;

RES_VARCHAR

4-66 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.VALIDATE_TOPOLOGY

SDO_TOPO_MAP.VALIDATE_TOPOLOGY

Format
SDO_TOPO_MAP.VALIDATE_TOPOLOGY(

topology IN VARCHAR2,
) RETURN VARCHAR2;
or
SDO_TOPO_MAP.VALIDATE_TOPOLOGY(
topology IN VARCHAR2,
prevent_updates IN VARCHAR2,
level IN NUMBER DEFAULT 1
) RETURN VARCHAR2;
or
SDO_TOPO_MAP.VALIDATE_TOPOLOGY(
topology IN VARCHAR2,
Xmin IN NUMBER,
ymin IN NUMBER,
Xmax IN NUMBER,
ymax IN NUMBER,
prevent_updates IN VARCHAR2,
level IN NUMBER DEFAULT 1
) RETURN VARCHAR2;

Description

Loads an entire topology or a window (rectangular portion) of a topology into a
TopoMap object; returns the string TRUE if the structure of the topology is
consistent, and raises an exception if the structure of the topology is not consistent.

SDO_TOPO_MAP Package Subprograms 4-67

SDO_TOPO_MAP.VALIDATE_TOPOLOGY

Parameters

topology
Name of the topology to be validated. Must not exceed 20 characters.

xmin
Lower-left X coordinate value for the window (rectangular portion of the topology)
to be validated.

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology)
to be validated.

Xmax
Upper-right X coordinate value for the window (rectangular portion of the
topology) to be validated.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the
topology) to be validated.

prevent_updates

TRUE prevents other users from updating the topology while the validation is being
performed; FALSE allows other users to update the topology while the validation is
being performed. If you specify FALSE, any topology changes made by other users
while the validation is being performed will not be considered by this function and
will not affect the result.

level
A value of 0 checks for the following conditions:

» All faces are closed, and none have infinite loops.

= All previous and next edge pointers are consistent.

= All edges meet at nodes.

s Eachisland node is associated with a face.

= All edges on a face boundary are associated with the face.

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

= Eachisland is inside the boundary of its associated face.

4-68 Oracle Spatial Topology and Network Data Models

SDO_TOPO_MAP.VALIDATE_TOPOLOGY

Usage Notes

Examples

= No edge intersects itself or another edge.
= Start and end coordinates of edges match coordinates of nodes.

= Node stars are properly ordered geometrically.

This function implicitly creates a TopoMap object, and removes the object after the
validation is complete. (TopoMap objects are described in Section 2.1.1.)

The following example validates the topology named CITY DATA, and it returns a
result indicating that the topology is valid. (The example refers to definitions and
data from Section 1.11.)

CALL SDO_TOPO_MAP.VALIDATE_TOPOLOGY('CITY_DATA‘) INTO :res_varchar;
Call completed.
PRINT res_varchar;

RES_VARCHAR

SDO_TOPO_MAP Package Subprograms 4-69

SDO_TOPO_MAP.VALIDATE_TOPOLOGY

4-70 Oracle Spatial Topology and Network Data Models

o)

Topology Operators

This chapter describes operators that you can use with Spatial topology data. For
the current release, the only topology operator implemented is SDO_
ANYINTERACT.

To use any topology operator, you must understand the following:
= The conceptual information about topology in Chapter 1

= The information about Spatial operators in Oracle Spatial User’s Guide and
Reference

Table 5-1 lists the topology operators.

Table 5-1 Topology Operators

Function Description

SDO_ANYINTERACT Checks if any geometries in a topology geometry layer have the
ANYINTERACT topological relationship with a specified topology
geometry layer.

The rest of this chapter provides reference information about this operator.

Topology Operators 5-1

SDO_ANYINTERACT

SDO_ANYINTERACT

Format
SDO_ANYINTERACT(tg1, tg2);

Description
Checks if any geometries in a topology geometry layer have the ANYINTERACT
topological relationship with a specified topology geometry layer.

Keywords and Parameters

Value Description
tgl Specifies a topology geometry layer. The topology geometry column must
be spatially indexed.

Data type is SDO_TOPO_GEOMETRY.

tg2 Specifies either a topology geometry layer or a spatial geometry layer. (It
cannot be a transient instance of a topology geometry layer specified
using a bind variable or SDO_TOPO_GEOMETRY constructor.)
Data type is SDO_TOPO_GEOMETRY or SDO_GEOMETRY.

Returns

The expression SDO_ANYINTERACT(tg1,tg2) = TRUE' evaluates to TRUE for
object pairs that have the ANYINTERACT topological relationship, and FALSE
otherwise.

Usage Notes

See the Usage Notes for the SDO_RELATE operator in Oracle Spatial User’s Guide
and Reference.

Examples

The following example finds all street geometries that have the ANYINTERACT
relationship with the land parcel named P3. (The examples for SDO_
ANYINTERACT use the data from Example 1-8 in Section 1.11.)

SELECT c.feature name FROM city streets c, land parcels 1
WHERE 1.feature name = 'P3' AND

5-2 Oracle Spatial Topology and Network Data Models

SDO_ANYINTERACT

SDO_ANYINTERACT (c.feature, 1l.feature) = 'TRUE';

FEATURE_NAME

The following example finds all land parcel geometries that have the
ANYINTERACT relationship with the traffic sign named S1.

SELECT 1.feature name FROM land parcels 1, traffic_signs t
WHERE t.feature name = 'S1' AND
SDO_ANYINTERACT (l.feature, t.feature) = 'TRUE';

FEATURE_NAME

P1
P2

The following example finds all street geometries that have the ANYINTERACT
relationship with a query window.

SQL> SELECT c.feature name FROM city streets c WHERE
2 SDO_ANYINTERACT (

3 c.feature,

4 SDO_GEOMETRY (2003, NULL, NULL,

5 SDO_ELEM INFO ARRAY (1, 1003, 3),
6 SDO_ORDINATE_ARRAY (5,5, 30,40)))
7 = 'TRUE';

FEATURE_NAME

R1
R3
R4

Topology Operators 5-3

SDO_ANYINTERACT

5-4 Oracle Spatial Topology and Network Data Models

Part li

Network Data Model

This document has two main parts:

» PartIprovides conceptual, usage, and reference information about the topology
data model of Oracle Spatial.

= PartIl provides conceptual, usage, and reference information about the network
data model of Oracle Spatial.

Much of the conceptual information in Part I also applies to the network data
model. Therefore, if you develop network applications, you should be familiar with
the main terms and concepts from both parts of this document.

Part II contains the following chapters:
» Chapter 6, "Network Data Model Overview"
» Chapter 7, "SDO_NET Package Subprograms"

6

Network Data Model Overview

This chapter explains the concepts and operations related to the Oracle Spatial
network data model. It assumes that you are familiar with the following
information:

The main topology concepts explained in Chapter 1, especially those related to
nodes and links

The main Oracle Spatial concepts, data types, and operations, as documented in
Oracle Spatial User’s Guide and Reference

Although this chapter discusses some network-related terms as they relate to Oracle
Spatial, it assumes that you are familiar with basic network data modeling concepts.

This chapter contains the following major sections:

Section 6.1, "Introduction to Network Modeling"

Section 6.2, "Main Steps in Using the Network Data Model"

Section 6.3, "Network Data Model Concepts"

Section 6.4, "Network Applications"

Section 6.5, "Network Hierarchy"

Section 6.6, "Network Data Model Tables"

Section 6.7, "Network Data Model Metadata Views"

Section 6.8, "Network Data Model Application Programming Interface"
Section 6.9, "Network Examples (PL/SQL)"

Network Data Model Overview 6-1

Introduction to Network Modeling

6.1 Introduction to Network Modeling

In many applications, capabilities or objects are modeled as nodes and links in a
network. The network model contains logical information such as connectivity
relationships among nodes and links, directions of links, and costs of nodes and
links. With logical network information, you can analyze a network and answer
questions, many of them related to path computing and tracing. For example, for a
biochemical pathway, you can find all possible reaction paths between two chemical
compounds; or for a road network, you can find the following information:

= What is the shortest (distance) or fastest (travel time) path between two cities?
= What is the closest hotel to a specific airport, and how can I get there?

In additional to logical network information, spatial information such as node
locations and link geometries can be associated with the logical network. This
information can help you to model the logical information (such as the cost of a
route, because its physical length can be directly computed from its spatial
representation).

The generic data model and network analysis capability can model and analyze
many kinds of network applications in addition to traditional geographical
information systems (GIS). For example, in biochemistry, applications may need to
model reaction pathway networks for living organisms; and in the pharmaceutical
industry, applications that model the drug discovery process may need to model
protein-protein interaction.

The network modeling capabilities of Spatial include schema objects and an
application programming interface (API). The schema objects include metadata and
network tables. The API includes a server-side PL/SQL API (the SDO_NET
package) for creating, managing, and analyzing networks in the database, and a
middle-tier (or client-side) Java API for network analysis.

6.2 Main Steps in Using the Network Data Model

This section summarizes the main steps for working with the network data model
in Oracle Spatial. It refers to important concepts, structures, and operations that are
described in detail in other sections.

There are two basic approaches to creating a network:

» Let Spatial perform most operations, using procedures with names in the form
CREATE_<network-type>_NETWORK. (See Section 6.2.1.)

6-2 Oracle Spatial Topology and Network Data Models

Main Steps in Using the Network Data Model

Perform the operations yourself: create the necessary network tables and
update the network metadata. (See Section 6.2.2.)

With each approach, you must insert the network data into the network tables. You
can then use the network data model PL/SQL and Java application programming
interfaces (APIs) to update the network and perform other operations. (The
PL/SQL and Java APIs are described in Section 6.8.)

6.2.1 Letting Spatial Perform Most Operations

To create a network by letting Spatial perform most of the necessary operations,
follow these steps:

1.

Create the network using a procedure with a name in the form CREATE_
<network-type>_NETWORK, where <network-type> reflects the type of network
that you want to create:

s SDO_NET.CREATE_SDO_NETWORK for a spatial network with non-LRS
SDO_GEOMETRY objects

s SDO_NET.CREATE_LRS_NETWORK for a spatial network with LRS SDO_
GEOMETRY objects

s SDO_NET.CREATE_TOPO_NETWORK for a spatial network with
topology geometry (SDO_TOPO_GEOMETRY) objects

s SDO_NET.CREATE_LOGICAL_NETWORK for a logical network

Each of these procedures creates the necessary network data model tables
(described in Section 6.6) and inserts a row with the appropriate network
metadata information into the xxx_SDO_NETWORK_METADATA views
(described in Section 6.7.1).

Each procedure has two formats: one format creates all network data model
tables using default names for the tables and certain columns, and other format
lets you specify names for the tables and certain columns. The default names for
the network data model tables are <network-name>_NODE$, <network-name>_
LINKS, <network-name>_PATHS$, and <network-name>_PLINKS$. The default
name for cost columns in the network data model tables is COST, and the
default name for geometry columns is GEOMETRY.

Insert data into the node and link tables, and if necessary into the path and
path-link tables. (The node, link, path, and path-link tables are described in
Section 6.6.)

3. Validate the network, using the SDO_NET.VALIDATE_NETWORK procedure.

Network Data Model Overview 6-3

Main Steps in Using the Network Data Model

4.

For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the
geometry columns.

6.2.2 Performing the Operations Yourself

To create a network by performing the necessary operations yourself, follow these
steps:

1.

10.

11.

Create the node table, using the SDO_NET.CREATE_NODE_TABLE procedure.
(The node table is described in Section 6.6.1.)

Insert data into the node table.

Create the link table, using the SDO_NET.CREATE_LINK_TABLE procedure.
(The link table is described in Section 6.6.2).

Insert data into the link table.

Optionally, create the path table, using the SDO_NET.CREATE_PATH_TABLE
procedure. (The path table is described in Section 6.6.3).

If you created the path table, create the path-link table, using the SDO_
NET.CREATE_PATH_LINK_TABLE procedure. (The path-link table is
described in Section 6.6.4).

If you created the path table and if you want to create paths, insert data into the
table.

If you inserted data into the path table, insert the appropriate rows into the
path-link table.

Insert a row into the USER_SDO_NETWORK_METADATA view with
information about the network. (The USER_SDO_NETWORK_METADATA
view is described in Section 6.7.1.)

For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the
geometry columns.

Validate the network, using the SDO_NET.VALIDATE_NETWORK procedure.

You can change the sequence of some of these steps. For example, you can create
both the node and link tables first, and then insert data into each one; and you can
insert the row into the USER_SDO_NETWORK_METADATA view before you
create the node and link tables.

6-4 Oracle Spatial Topology and Network Data Models

Network Data Model Concepts

6.3 Network Data Model Concepts

A network is a type of mathematical graph that captures relationships between
objects using connectivity. The connectivity may or may not be based on spatial
proximity. For example, if two towns are on opposite sides of a lake, the shortest
path based on spatial proximity (a straight line across the middle of the lake) is not
relevant if you want to drive from one town to the other. Instead, to find the
shortest driving distance, you need connectivity information about roads and
intersections and about the "cost" of individual links.

A network consists of a set of nodes and links. Each link (sometimes also called an
edge or a segment) specifies two nodes. A network can be directed or undirected,
although links and paths typically have direction.

The following are some key terms related to the network data model:
= A node represents an object of interest.

= Alink represents a relationship between two nodes. A link may be directed
(that is, have a direction) or undirected (that is, not have a direction).

= A path is an alternating sequence of nodes and links, beginning and ending
with nodes, and usually with no nodes and links appearing more than once.
(Repeating nodes and links within a path are permitted, but are rare in most
network applications.)

= A network is a set of nodes and links. A network is directed if the links that is
contains are directed, and a network is undirected if the links that it contains
are undirected.

= Alogical network contains connectivity information but no geometric
information. This is the model used for network analysis. A logical network can
be treated as a directed graph or undirected graph, depending on the
application.

= A spatial network contains both connectivity information and geometric
information. In a spatial network, the nodes and links are SDO_GEOMETRY
geometry objects without LRS information (an SDO network) or with LRS
information (an LRS network), or SDO_TOPO_GEOMETRY objects (a topology
geometry network).

In an LRS network, each node includes a geometry ID value and a measure
value, and each link includes a geometry ID value and start and end measure
values; and the geometry ID value in each case refers to an SDO_GEOMETRY
object with LRS information. A spatial network can be directed or undirected,
depending on the application.

Network Data Model Overview 6-5

Network Applications

= A feature is an object of interest in a network application that is associated with
a node or link. For example, in a transportation network, features include exits
and intersections (mapped to nodes), and highways and streets (mapped to
links).

s Cost is a non-negative numeric attribute that can be associated with links or
nodes for computing the minimum cost path, which is the path that has the
minimum total cost from a start node to an end node. You can specify a single
cost factor, such as driving time or driving distance for links, in the network
metadata.

= Reachable nodes are all nodes that can be reached from a given node. Reaching
nodes are all nodes that can reach a given node.

s The degree of a node is the number of links to (that is, incident upon) the node.
The in-degree is the number of inbound links, and the out-degree is the
number of outbound links.

= Network constraints are restrictions defined on network analysis computations
(for example, that driving routes must consist of expressways and major
highways).

= A spanning tree of a connected graph is a tree (that is, a graph with no cycles)
that connects all nodes of the graph. (The directions of links are ignored in a
spanning tree.) The minimum cost spanning tree is the spanning tree that
connects all nodes and has the minimum total cost.

6.4 Network Applications

Networks are used in applications to find how different objects are connected to
each other. The connectivity is often expressed in terms of adjacency and path
relationships. Two nodes are adjacent if they are connected by a link. There are often
several paths between any two given nodes, and you may want to find the path
with the minimum cost.

This section describes some typical examples of different kinds of network
applications.

6.4.1 Road Network Example

In a typical road network, the intersections of roads are nodes and the road
segments between two intersections are links. The spatial representation of a road is
not inherently related to the nodes and links in the network. For example, a shape
point in the spatial representation of a road (reflecting a sharp turn in the road) is

6-6 Oracle Spatial Topology and Network Data Models

Network Hierarchy

not a node in the network if that shape point is not associated with an intersection;
and a single spatial object may make up several links in a network (such as a
straight segment intersected by three crossing roads). An important operation with
a road network is to find the path from a start point to an end point, minimizing
either the travel time or distance. There may be additional constraints on the path
computation, such as having the path go through a particular landmark or avoid a
particular intersection.

6.4.2 Train (Subway) Network Example

The subway network of any major city is probably best modeled as a logical
network, assuming that precise spatial representation of the stops and track lines is
unimportant. In such a network, all stops on the system constitute the nodes of the
network, and a link is the connection between two stops if a train travels directly
between these two stops. Important operations with a train network include finding
all stations that can be reached from a specified station, finding the number of stops
between two specified stations, and finding the travel time between two stations.

6.4.3 Utility Network Example

Utility networks, such as power line or cable networks, must often be configured to
minimize the cost. An important operation with a utility network is to determine
the connections among nodes, using minimum cost spanning tree algorithms, to
provide the required quality of service at the minimum cost. Another important
operation is reachability analysis, so that, for example, if a station in a water
network is shut down, you know which areas will be affected.

6.4.4 Biochemical Network Example

Biochemical processes can be modeled as biochemical networks to represent
reactions and regulations in living organisms. For example, metabolic pathways are
networks involved in enzymatic reactions, while regulatory pathways represent
protein-protein interactions. In this example, a pathway is a network; genes,
proteins, and chemical compounds are nodes; and reactions among nodes are links.
Important operations for a biochemical network include computing paths and the
degrees of nodes.

6.5 Network Hierarchy

Some network applications require representations at different levels of abstraction.
For example, two major processes might be represented as nodes with a link

Network Data Model Overview 6-7

Network Hierarchy

between them at the highest level of abstraction, and each major process might have
several subordinate processes that are represented as nodes and links at the next
level down.

A network hierarchy allows you to represent a network with multiple levels of
abstraction by assigning a hierarchy level to each node. (Links are not assigned a
hierarchy level, and links can be between nodes in the same hierarchy level or in
different levels.) The lowest (most detailed) level in the hierarchy is level 1, and
successive higher levels are numbered 2, 3, and so on.

Nodes at adjacent levels of a network hierarchy have parent-child relationships.
Each node at the higher level can be the parent node for one or more nodes at the
lower level. Each node at the lower level can be a child node of one node at the
higher level.

Links can also have parent-child relationships. However, because links are not
assigned to a hierarchy level, there is not necessarily a relationship between link
parent-child relationships and network hierarchy levels.

Figure 6-1 shows a simple hierarchical network, in which there are two levels.

Figure 6—-1 Network Hierarchy

Level 2

As shown in Figure 6-1:

6-8 Oracle Spatial Topology and Network Data Models

Network Data Model Tables

n The top level (level 2) contains two nodes. Each node is the parent node of
several nodes in the bottom level. The link between the nodes in the top level is
the parent link of two links between nodes in the bottom level.

n The bottom level (level 1) shows the nodes that make up each node in the top
level. It also shows the links between nodes that are child nodes of each parent
node in the top level, and two links between nodes that have different parent
nodes.

» The links between nodes in the bottom level that have different parent nodes
are shown with dark connecting lines. These links are child links of the single
link between the nodes in the top level in the hierarchy. (However, these two
links in the bottom level could also be defined as not being child links of any
parent link between nodes in a higher level.)

s The parent-child relationships between each parent node and link and its child
nodes and links are shown with dashed lines with arrowheads at both ends.

Although it is not shown in Figure 6-1, links can cross hierarchy levels. For
example, a link could be defined between a node in the top level and any node in
the bottom level. In this case, there would not be a parent-child relationship
between the links.

6.6 Network Data Model Tables

The connectivity information for a spatial network is stored in two tables: a node
table and a link table. In addition, path information can be stored in a path table and
a path-link table. You can have Spatial create these tables automatically when you
create the network using a CREATE_<network-type>_NETWORK procedure; or you
can create these tables using the SDO_NET.CREATE_NODE_TABLE, SDO_
NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and SDO_
NET.CREATE_PATH_LINK_TABLE procedures.

These tables contain columns with predefined names, and you must not change any
of the predefined column names; however, you can add columns to the tables by
using the ALTER TABLE statement with the ADD COLUMN clause. For example,
although each link and path table is created with a single COST column, you can
create additional columns and associate them with other comparable attributes. For
example, if you wanted to assign a driving time, scenic appeal rating, and a danger
rating to each link, you could use the COST column for driving time, add columns
for SCENIC_APPEAL and DANGER to the link table, and populate all three
columns with values to be interpreted by applications.

Network Data Model Overview 6-9

Network Data Model Tables

6.6.1 Node Table

Each network has a node table that can contain the columns described in Table 6-1.
(The specific columns depend on the network type and whether the network is
hierarchical or not.)

Table 6-1 Node Table Columns

Column Name Data Type Description

NODE_ID NUMBER ID number that uniquely identifies this node within
the network.

NODE_NAME VARCHAR2(32) Name of the node.
NODE_TYPE VARCHAR2(24) User-defined string to identify the node type.

ACTIVE VARCHAR2(1) Contains Y if the node is active (visible in the network),
or N if the node is not active.

PARTITION_ID NUMBER Reserved for future use.

<node_geometry_ SDO_ For a spatial (SDO, non-LRS) network, name of the

column>, or GEOMETRY, or SDO_GEOMETRY column containing the geometry

GEOM_ID and SDO_TOPO_ objects associated with the node.

MEASURE g%(i/ll\gglgm{’ T Fora spatial topology network, name of the SDO_

TOPO_GEOMETRY column containing the topology
geometry objects associated with the node.

For a spatial LRS network, GEOM_ID and MEASURE
columns (both of type NUMBER) for the geometry
objects associated with the node.

For a logical network, this column is not used.

For a spatial SDO or topology network, the actual
column name is either a default name or what you
specified as the geom_column parameter value in the
call to the SDO_NET.CREATE_NODE_TABLE

procedure.
<node_cost_ NUMBER Name of the column containing the cost value to be
column> associated with the node, for use by applications that

use the network. The actual column name is either a
default name or what you specified as the cost_
column parameter value in the call to the SDO_
NET.CREATE_NODE_TABLE procedure. The cost
value can represent anything you want, for example,
the toll to be paid at a toll booth.

6-10 Oracle Spatial Topology and Network Data Models

Network Data Model Tables

Table 6-1 (Cont.) Node Table Columns

Column Name Data Type Description
HIERARCHY_ NUMBER For hierarchical networks only: number indicating the
LEVEL level in the network hierarchy for this node.
(Section 6.5 explains network hierarchy:.)
PARENT_ NUMBER For hierarchical networks only: node ID of the parent
NODE_ID node of this node. (Section 6.5 explains network
hierarchy.)

6.6.2 Link Table

Each network has a link table that contains the columns described in Table 6-2.

Table 6-2 Link Table Columns

Column Name Data Type Description
LINK_ID NUMBER ID number that uniquely identifies this link within the
network.

LINK_NAME VARCHAR2(32) Name of the link.

START_NODE_ NUMBER Node ID of the node that starts the link.

ID

END_NODE_ID NUMBER Node ID of the node that ends the link.

LINK_TYPE VARCHAR2(24) User-defined string to identify the link type.

ACTIVE VARCHAR2(1) Contains Y if the link is active (visible in the network),

or N if the link is not active.

LINK_LEVEL NUMBER Priority level for the link; used for hierarchical
modeling, so that links with higher priority levels can
be considered first in computing a path.

Network Data Model Overview 6-11

Network Data Model Tables

Table 6-2 (Cont.) Link Table Columns

Column Name Data Type Description

<link_geometry_ SDO_ For a spatial (SDO, non-LRS) network, name of the
column>; or GEOMETRY, or SDO_GEOMETRY column containing the geometry
GEOM_ID, SDO_TOPO_ objects associated with the link.

START_ GEOMETRY, or

For a spatial topology network, name of the SDO_
TOPO_GEOMETRY column containing the topology
geometry objects associated with the link.

For a spatial LRS network, GEOM_ID, START_
MEASURE, and END_MEASURE columns (all of type
NUMBER) for the geometry objects associated with the
link.

For a logical network, this column is not used.

MEASURE, and NUMBER
END_MESURE

For a spatial SDO or topology network, the actual
column name is either a default name or what you
specified as the geom_column parameter value in the
call to the SDO_NET.CREATE_LINK_TABLE
procedure.

<link_cost_ NUMBER Name of the column containing the cost value to be

column> associated with the link, for use by applications that
use the network. The actual column name is either a
default name or what you specified as the cost_
column parameter value in the call to the SDO_
NET.CREATE_LINK_TABLE procedure. The cost value
can represent anything you want, for example, the
estimated driving time for the link.

PARENT_LINK_ NUMBER For hierarchical networks only: link ID of the parent
ID link of this link. (Section 6.5 explains parent-child
relationships in a network hierarchy.)

6.6.3 Path Table

Each network can have a path table. A path is an ordered sequence of links, and is
usually created as a result of network analysis. A path table provides a way to store
the result of this analysis. For each path table, you must create an associated
path-link table (described in Section 6.6.4). Each path table contains the columns
described in Table 6-3.

6-12 Oracle Spatial Topology and Network Data Models

Network Data Model Tables

Table 6-3 Path Table Columns

Column Name Data Type Description

PATH_ID NUMBER ID number that uniquely identifies this path within the
network.

PATH_NAME VARCHAR2(32) Name of the path.

START_NODE_ NUMBER Node ID of the node that starts the first link in the

1D path.

END_NODE_ID NUMBER Node ID of the node that ends the last link in the path.

PATH_TYPE VARCHAR2(24) User-defined string to identify the path type.

COST NUMBER Cost value to be associated with the path, for use by
applications that use the network. The cost value can
represent anything you want, for example, the
estimated driving time for the path.

SIMPLE VARCHAR2(1) Contains Y if the path is a simple path, or N if the path
is a complex path. In a simple path, the links form an
ordered list that can be traversed from the start node to
the end node with each link visited once. In a complex
path, there are multiple options for going from the
start node to the end node.

<path_geometry_ SDO_ For all network types except logical, name of the

column> GEOMETRY column containing the geometry object associated with

the path. The actual column name is either a default
name or what you specified as the geom_column
parameter value in the call to the SDO_NET.CREATE_
PATH_TABLE procedure.

For a logical network, this column is not used.

6.6.4 Path-Link Table

For each path table (described in Section 6.6.3), you must create a path-link table.
Each row in the path-link table uniquely identifies a link within a path in a network.
The order of rows in the path-link table is not significant. Each path-link table
contains the columns described in Table 6—4.

Table 6—-4 Path-Link Table Columns

Column Name Data Type Description

PATH_ID

NUMBER ID number of the path in the network.

Network Data Model Overview 6-13

Network Data Model Metadata Views

Table 6—4 (Cont.) Path-Link Table Columns

Column Name Data Type Description

LINK_ID NUMBER ID number of the link in the network. Each combination of
PATH_ID and LINK_ID must be unique within the network.

SEQ_NO NUMBER Unique sequence number of the link in the path. (The
sequence numbers start at 1.) Sequence numbers allow paths
to contain repeating nodes and links.

6.7 Network Data Model Metadata Views

There is a set of network metadata views for each schema (user): xxx_SDO_
NETWORK_METADATA, where xxx can be USER or ALL. These views are created
by Spatial.

6.7.1 xxx_SDO_NETWORK_METADATA Views

The following views contain information about networks:

s USER_SDO_NETWORK_METADATA contains information about all networks
owned by the user.

s ALL_SDO_NETWORK_METADATA contains information about all networks
on which the user has SELECT permission.

If you create a network using one of the CREATE_<network-type>_NETWORK
procedures, the information in these views is automatically updated to reflect the
new network; otherwise, you must insert information about the network into the
USER_SDO_NETWORK_METADATA view.

The USER_SDO_NETWORK_METADATA and ALL_SDO_NETWORK_
METADATA views contain the same columns, as shown Table 6-5, except that the
USER_SDO_NETWORK_METADATA view does not contain the OWNER column.
(The columns are listed in their order in the view definition.)

Table 6-5 Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network. (ALL_SDO_NETWORK_
METADATA view only.)

NETWORK VARCHAR2(32) Name of the network.

6-14 Oracle Spatial Topology and Network Data Models

Network Data Model Metadata Views

Table 6-5 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

NETWORK _ VARCHAR2(12) Contains SPATIAL if the network nodes and

CATEGORY links are associated with spatial geometries;
contains LOGICAL if the network nodes and links
are not associated with spatial geometries.

GEOMETRY_TYPE VARCHAR2(20) If NETWORK CATEGORY is SPATIAL, contains a
value indicating the geometry type of nodes and
links: SDO_GEOMETRY for non-LRS SDO_
GEOMETRY objects, LRS_GEOMETRY for LRS
SDO_GEOMETRY objects, TOPO_GEOMETRY for
SDO_TOPO_GEOMETRY objects.

NETWORK_TYPE VARCHAR2(24) User-defined string to identify the network type.

NO_OF_ NUMBER Number of levels in the network hierarchy.

HIERARCHY_ Contains 1 if there is no hierarchy. (See

LEVELS Section 6.5 for information about network
hierarchy:.)

NO_OF_PARTITIONS NUMBER (Must be 1 for the current release. Other values
may be supported in future releases.)

LRS_TABLE_NAME VARCHAR2(12) If GEOMETRY_TYPE is SDO_GEOMETRY, contains
the name of the table containing geometries
associated with nodes.

LRS_GEOM_ VARCHAR2(12) If LRS_TABLE NAME contains a table name,

COLUMN identifies the geometry column in that table.

NODE_TABLE_ VARCHAR2(32) If GEOMETRY TYPE is SDO_GEOMETRY, contains

NAME the name of the table containing geometries
associated with nodes. (The node table is
described in Section 6.6.1.)

NODE_GEOM_ VARCHAR2(32) If NODE_TABLE_NAME contains a table name,

COLUMN identifies the geometry column in that table.

NODE_COST_ VARCHAR2(32) If NODE_TABLE_NAME contains a table name,

COLUMN identifies the cost column in that table.

LINK_TABLE_NAME VARCHAR2(32) If GEOMETRY TYPE is SDO_GEOMETRY, contains
the name of the table containing geometries
associated with links. (The link table is described
in Section 6.6.2.)

LINK_GEOM_ VARCHAR2(32) If LINK TABLE_NAME contains a table name,

COLUMN identifies the geometry column in that table.

Network Data Model Overview 6-15

Network Data Model Application Programming Interface

Table 6-5 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

LINK_DIRECTION VARCHAR2(12) Contains a value indicating the type for all links
in the network: UNDIRECTED or DIRECTED.

LINK_COST_ VARCHAR2(32) If LINK TABLE_NAME contains a table name,
COLUMN identifies the optional numeric column
containing a cost value for each link.

PATH_TABLE_NAME VARCHAR2(32) Contains the name of an optional table
containing information about paths. (The path
table is described in Section 6.6.3.)

PATH_GEOM_ VARCHAR2(32) If PATH TABLE_ NAME is associated with a

COLUMN spatial network, identifies the geometry column
in that table.

PATH_LINK_TABLE_ VARCHAR2(32) Contains the name of an optional table

NAME containing information about links for each path.

(The path-link table is described in Section 6.6.4.)

PARTITION_TABLE_ VARCHAR2(32) Reserved for future use.
NAME

6.8 Network Data Model Application Programming Interface

The Oracle Spatial network data model includes two client application
programming interfaces (APIs): a PL/SQL interface provided by the SDO_NET
package and a Java interface. Both interfaces let you create and update network
data, and the Java interface provides network analysis capabilities. It is
recommended that you use only PL/SQL or SQL to populate network tables and to
create indexes, and that you use the Java interface for application development.

6.8.1 Network Data Model PL/SQL Interface

The SDO_NET package provides PL/SQL functions and procedures for creating,
accessing, and managing networks on a database server. Example 6-3 in Section 6.9
shows the use of SDO_NET functions and procedures.

The SDO_NET functions and procedures can be grouped into the following logical
categories:

s Creating networks:
SDO_NET.CREATE_SDO_NETWORK
SDO_NET.CREATE_LRS_NETWORK

6-16 Oracle Spatial Topology and Network Data Models

Network Data Model Application Programming Interface

SDO_NET.CREATE_TOPO_NETWORK
SDO_NET.CREATE_LOGICAL_NETWORK
Copying and deleting networks:
SDO_NET.COPY_NETWORK
SDO_NET.DROP_NETWORK

Creating network tables:
SDO_NET.CREATE_NODE_TABLE
SDO_NET.CREATE_LINK_TABLE
SDO_NET.CREATE_PATH_TABLE
SDO_NET.CREATE_PATH_LINK_TABLE
SDO_NET.CREATE_LRS_TABLE
Validating network objects:
SDO_NET.VALIDATE_NETWORK
SDO_NET.VALIDATE_NODE_SCHEMA
SDO_NET.VALIDATE_LINK_SCHEMA
SDO_NET.VALIDATE_PATH_SCHEMA
SDO_NET.VALIDATE_LRS_SCHEMA

Retrieving information (getting information about the network, checking for a
characteristic):

SDO_NET.GET_CHILD_LINKS
SDO_NET.GET_CHILD_NODES
SDO_NET.GET_GEOMETRY_TYPE
SDO_NET.GET_IN_LINKS
SDO_NET.GET_LINK_COST_COLUMN
SDO_NET.GET_LINK_DIRECTION
SDO_NET.GET_LINK_GEOM_COLUMN
SDO_NET.GET_LINK_GEOMETRY
SDO_NET.GET_LINK_TABLE_NAME

Network Data Model Overview 6-17

Network Data Model Application Programming Interface

SDO_NET.GET_LRS_GEOM_COLUMN
SDO_NET.GET_LRS_LINK_GEOMETRY
SDO_NET.GET_LRS_NODE_GEOMETRY
SDO_NET.GET_LRS_TABLE_NAME
SDO_NET.GET_NETWORK_TYPE
SDO_NET.GET_NO_OF_HIERARCHY_LEVELS
SDO_NET.GET_NO_OF_LINKS
SDO_NET.GET_NO_OF_NODES
SDO_NET.GET_NODE_DEGREE
SDO_NET.GET_NODE_GEOM_COLUMN
SDO_NET.GET_NODE_GEOMETRY
SDO_NET.GET_NODE_IN_DEGREE
SDO_NET.GET_NODE_OUT_DEGREE
SDO_NET.GET_NODE_TABLE_NAME
SDO_NET.GET_OUT_LINKS
SDO_NET.GET_PATH_GEOM_COLUMN
SDO_NET.GET_PATH_TABLE_NAME
SDO_NET.IS_HIERARCHICAL
SDO_NET.IS_LOGICAL
SDO_NET.IS_SPATIAL
SDO_NET.LRS_GEOMETRY_NETWORK
SDO_NET.NETWORK_EXISTS
SDO_NET.SDO_GEOMETRY_NETWORK
SDO_NET.TOPO_GEOMETRY_NETWORK

For reference information about each SDO_NET function and procedure, see
Chapter 7.

6-18 Oracle Spatial Topology and Network Data Models

Network Data Model Application Programming Interface

6.8.2 Network Data Model Java Interface

The Java client interface for the network data model consists of the following classes
and interfaces:

s NetworkManager: class to load and store network data and metadata, and to
perform network analysis

s NetworkFactory: class to create elements related to the network

» NetworkConstraint: class to create network constraints

» Network: interface for a network

s NetworkMetadata: interface for network metadata

= GeometryMetadata: class for geometry metadata

= Node: interface for a network node

» Link:interface for a network link

= Path:interface for a network path

= MDPoint: interface for a multiple-dimension point

= MBR: interface for a multiple-dimension minimum bounding rectangle
» JGeometry: class for Oracle Java SDO_GEOMETRY

s NetworkDataException: class for exceptions of network manager

Figure 6-2 is a Unified Modeling Language (UML) diagram that shows the
relationship between the main classes and interfaces.

Network Data Model Overview 6-19

Network Data Model Application Programming Interface

Figure 6-2 Java Classes and Interfaces for Network Data Model

NetworkFactory | _ | Create \ NetworkManager | _ — _| Network I/O \
Elements Analysis
NetworkConstraint
1 1 1 0..n
Network t~ | NetworkMetadata <\JL=4GeometryMetadata
1
JZAE
ydd 1 _In N\ 0..n
Node |2 tLink [0 | Patn JGeometry
1 Q1 1 T
1
0..1 0..1 0..1 !
JGeometry JGeometry JGeometry LRS Referenced \
Geometry

For detailed reference information about the network data model classes, see the
Javadoc-generated API documentation: open index.html in a directory that
includes the path sdonm/doc/javadoc.

6.8.2.1 Network Metadata and Data Management

You can use the Java API to perform network metadata and data management
operations such as the following;:

Insert, delete, and modify node and link data
Load a network from a database

Store a network in a database

Store network metadata in a database

Modify network metadata attributes

6-20 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

6.8.2.2 Network Analysis

You can use the Java API to perform network analysis operations such as the
following:

Shortest path (for directed and undirected networks): typical transitive closure
problems in graph theory. Given a start and an end node, find the shortest path.

Minimum cost spanning tree (for undirected networks): Given an undirected
graph, find the minimum cost tree that connects all nodes.

Reachability: Given a node, find all nodes that can reach that node, or find all
nodes that can be reached by that node.

Within-cost analysis (for directed and undirected networks): Given a target
node and a cost, find all nodes that can be reached by the target node within the
given cost.

Nearest-neighbors analysis (for directed and undirected networks): Given a
target node and number of neighbors, find the neighbor nodes and their costs to
go to the given target node.

All paths between two nodes: Given two nodes, find all possible paths between
them.

"Traveling salesman problem" analysis: Given a set of nodes, find the
lowest-cost path that visits all nodes and in which the start and end nodes are
the same.

6.9 Network Examples (PL/SQL)

This section presents simplified examples that use SDO_NET functions and
procedures. It includes the following sections:

Section 6.9.1, "Simple Spatial (SDO) Network Example"
Section 6.9.2, "Simple Logical Network Example"
Section 6.9.3, "Spatial (LRS) Network Example"

Section 6.9.4, "Logical Hierarchical Network Example"

The examples refer to concepts that are explained in this chapter, and they use
functions and procedures documented in Chapter 7.

Network Data Model Overview 6-21

Network Examples (PL/SQL)

6.9.1 Simple Spatial (SDO) Network Example

This section presents an example of a very simple spatial (SDO, not LRS) network
that contains three nodes and a link between each node. The network is illustrated
in Figure 6-3.

Figure 6-3 Simple Spatial (SDO) Network

N3

N1 L1 N2

= N & h O
e
w
N
(]

0 1 234056 789111121314 15

As shown in Figure 6-3, node N1 is at point 1,1, node N2 is at point 15,1, and node
N3 is at point 9,4. Link L1 is a straight line connecting nodes N1 and N2, link L.2 is a
straight line connecting nodes N2 and N3, and link L3 is a straight line connecting
nodes N3 and N1. There are no other nodes or shape points on any of the links.

Example 6-1 does the following;:

= Ina call to the SDO_NET.CREATE_SDO_NETWORK procedure, creates the
SDO_NET1 directed network; creates the SDO_NET1_NODE$, SDO_NET1_
LINK$, SDO_NET1_PATHS$, and SDO_NET1_PLINKS$ tables; and updates the
xxx_SDO_NETWORK_METADATA views. All geometry columns are named
GEOMETRY. Both the node and link tables contain a cost column named COST.

= Populates the node, link, path, and path-link tables. It inserts three rows into
the node table, three rows into the link table, two rows into the path table, and
four rows into the path-link table.

= Updates the Oracle Spatial metadata, and creates spatial indexes on the
GEOMETRY columns of the node and link tables. (These actions are not
specifically related to network management, but that are necessary if
applications are to benefit from spatial indexing on these geometry columns.)

Example 6-1 does not show the use of many SDO_NET functions and procedures;
these are included in Example 6-3 in Section 6.9.3.

Example 6—1 Simple Spatial (SDO) Network Example (PL/SQL)
-- Create the SDO NET1 directed network. Also creates the SDO NET1 NODES$,

6-22 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

-- SDO_NET1 LINKS$, SDO NET1 PATH$, SDO NET1 PLINKS tables, and updates
-- USER_SDO NETWORK METADATA. All geometry columns are named GEOMETRY.
-- Both the node and link tables contain a cost column named COST.
EXECUTE SDO_NET.CREATE_SDO_NETWORK('SDO_NETl', 1, TRUE, TRUE);

-- Populate the SDO _NET1 NODES$ table.

-- N1

INSERT INTO sdo netl node$ VALUES(1, 'N1', NULL, 'Y', 1,
SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(1,1,NULL), NULL, NULL),
5);

-- N2

INSERT INTO sdo netl node$ VALUES(2, 'N2', NULL, 'Y', 1,
SDO_GEOMETRY (2001, NULL, SDO POINT TYPE(15,1,NULL), NULL, NULL),
8);

-- N3

INSERT INTO sdo netl node$ VALUES(3, 'N3', NULL, 'Y', 1,
SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(9,4,NULL), NULL, NULL),
4);

-- Populate the SDO NET1 LINKS table.
-- L1
INSERT INTO sdo netl link$ VALUES(1, 'Ll1', 1, 2, NULL, 'Y', 1,
SDO_GEOMETRY (2002, NULL, NULL,
SDO_ELEM_INFO ARRAY(1,2,1),
SDO_ORDINATE ARRAY (1,1, 15,1)),
14);
-- L2
INSERT INTO sdo netl link$ VALUES(2, 'L2', 1, 3, NULL, 'Y', 1,
SDO_GEOMETRY (2002, NULL, NULL,
SDO_ELEM_INFO ARRAY(1,2,1),
SDO_ORDINATE ARRAY(1,1, 9,4)),
10);
-- L3
INSERT INTO sdo netl link$ VALUES(3, 'L3', 2, 3, NULL, 'Y', 1,
SDO_GEOMETRY (2002, NULL, NULL,
SDO_ELEM INFO ARRAY(1,2,1),
SDO_ORDINATE ARRAY (9, 4, 1,1)),
10);

-- Do not populate the SDO NET1 PATH$ and SDO NET1 PLINKS tables now.
-- Do this only when you need to create any paths.

Network Data Model Overview 6-23

Network Examples (PL/SQL)

-- Update the USER_SDO GEOM METADATA view. This is required before the
-- gpatial index can be created. Do this only once for each layer
-- (that is, table-column combination).
INSERT INTO USER _SDO_GEOM_METADATA
VALUES (

'SDO_NET1 NODES',

'GEOMETRY ',

SDO_DIM ARRAY (-- 20X20 grid
SDO_DIM ELEMENT('X', 0, 20, 0.005),
SDO_DIM ELEMENT('Y', 0, 20, 0.005)

)

-- SRID (spatial reference system, also called coordinate system)
)i

INSERT INTO USER SDO_GEOM METADATA
VALUES (

'SDO_NET1_LINKS',

'GEOMETRY ',

SDO_DIM ARRAY(-- 20X20 grid
SDO_DIM ELEMENT('X', 0, 20, 0.005),
SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
)

-- SRID (spatial reference system, also called coordinate system)

)

-- Create the spatial indexes

CREATE INDEX sdo netl nodes idx ON sdo netl node$ (geometry)
INDEXTYPE IS MDSYS.SPATIAL INDEX;

CREATE INDEX sdo netl links idx ON sdo netl link$(geometry)
INDEXTYPE IS MDSYS.SPATIAL INDEX;

6.9.2 Simple Logical Network Example

This section presents an example of a very simple logical network that contains
three nodes and a link between the nodes. The network is illustrated in Figure 6—4.

Figure 6—-4 Simple Logical Network

N3

L3 L2

N2

6-24 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

As shown in Figure 64, link L1 is a straight line connecting nodes N1 and N2, link
L2 is a straight line connecting nodes N2 and N3, and link L3 is a straight line
connecting nodes N3 and N1. There are no other nodes on any of the links.

Example 6-2 calls the SDO_NET.CREATE_LOGICAL_NETWORK procedure,
which does the following: creates the LOG_NET1 directed network; creates the
LOG_NET1_NODE$, LOG_NET1_LINK$, LOG_NET1_PATHS$, and LOG_NET1_
PLINKS$ tables; and updates the xxx_SDO_NETWORK_METADATA views. Both
the node and link tables contain a cost column named COST. (Because this is a
logical network, there are no geometry columns.) The example also populates the
node and link tables.

Example 6-2 does not show the use of many SDO_NET functions and procedures;
these are included in the logical hierarchical network example (Example 6—4) in
Section 6.9.4.

Example 6-2 Simple Logical Network Example (PL/SQL)

-- Create the LOG NET1 directed logical network. Also creates the

-- LOG_NET1 NODE$, LOG NET1 LINK$, LOG NET1 PATHS,

-- and LOG NET1 PLINKS tables, and updates USER SDO NETWORK METADATA.
-- Both the node and link tables contain a cost column named COST.
EXECUTE SDO_NET.CREATE LOGICAL NETWORK('LOG NET1', 1, TRUE, TRUE);

-- Populate the LOG NET1 NODES$ table.

-- N1

INSERT INTO log netl node$ (node id, node name, active, cost)
VALUES (1, 'N1', 'Y', 2);

-- N2

INSERT INTO log netl node$ (node_id, node_name, active, cost)
VALUES (2, 'N2', 'Y', 3);

-- N3

INSERT INTO log netl node$ (node id, node name, active, cost)
VALUES (3, 'N3', 'Y', 2);

-- Populate the LOG_NET1_LINK$ table.
-- L1
INSERT INTO log netl link$ (link id, link name, start node id, end node id,
active, link level, cost)
VALUES (1, 'L1', 1, 2, 'Y', 1, 10);
-- L2
INSERT INTO log netl link$ (link id, link name, start node_id, end node_ id,
active, link level, cost)
VALUES (2, 'L2', 2, 3, 'Y', 1, 7);
-- L3

Network Data Model Overview 6-25

Network Examples (PL/SQL)

INSERT INTO log netl link$ (link id, link name, start node id, end node id,
active, link level, cost)
VALUES (3, 'L3', 3, 1, 'Y', 1, 8);

-- Do not populate the LOG_NET1_PATH$ and LOG_NET1_PLINKS tables now.
-- Do this only when you need to create any paths.

6.9.3 Spatial (LRS) Network Example

This section presents an example of a spatial (LRS) network that uses the roads
illustrated in Figure 6-5. This illustration is similar to the one used for the LRS
example in Oracle Spatial User’s Guide and Reference, but it adds two highways
(Route2 and Route3).

Figure 6-5 Roads for Spatial (LRS) Network Example

1 Eoute{ls end
1 oyte] end Route2 end
1 N7 L2 'Ng
1 R1L6
1
1 Route3 start
9 N5
8
7 R2L1 R1L4
6
5 N2
4 Riz NS Rits N4
8]l R1L1 Route?2 start
2
1 N1
Route1 start

7

As shown in Figure 6-5:

= Routel starts at point 2,2 and ends at point 5,14. It has the following nodes: N1,
N2, N3, N4, N5, N6, and N7. It has the following links: R1L.1, R1L2, R1L3, R1L4,
R1LS, and R1L6.

6-26 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

= Route2 starts at point 8,4 and ends at point 8,13. It has the following nodes: N3,
N6, and N8. It has the following links: R2L1 and R2L2.

= Route3 starts at point 12,10 and ends at point 5,14. It has the following nodes:
N5, N8, and N7. It has the following links: R3L1 and R3L2.

Example 6-3 does the following:

s Creates a table to hold the roads data.

s Inserts the definition of three roads into the table.

= Inserts the spatial metadata into the USER_SDO_GEOM_METADATA view.
s Creates a spatial index on the geometry column in the ROADS table.

s Creates and populates the node table.

s Creates and populates the link table.

s Creates and populates the path table and path-link table, for possible future use.
(Before an application can use paths, you must populate these two tables.)

m Inserts network metadata into the USER_SDO_NETWORK_METADATA view.

» Uses various SDO_NET functions and procedures.

Example 6-3 Spatial (LRS) Network Example (PL/SQL)

-- Create a table for roads. Use LRS.
CREATE TABLE roads (

road_id NUMBER PRIMARY KEY,

road name VARCHAR2(32),

road geom SDO GEOMETRY,

geom_id NUMBER) ;

-- Populate the table with roads (Routel, Route2, Route3).
INSERT INTO roads VALUES (
1,
'Routel’,
SDO_GEOMETRY(
3302, -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
NULL,
NULL,
SDO_ELEM_INFO _ARRAY(1,2,1), -- one line string, straight segments
SDO_ORDINATE ARRAY (

Network Data Model Overview 6-27

Network Examples (PL/SQL)

2,2,0, -- Starting point - Nodel; 0 is measure from start.
2,4,2, -- Node2; 2 is measure from start.
8,4,8, -- Node3; 8 is measure from start.
12,4,12, -- Node4; 12 is measure from start.
12,10,NULL, -- Node5; measure automatically calculated and filled.
8,10,22, -- Node6; 22 is measure from start.
5,14,27) -- Ending point - Node7; 27 is measure from start.
), 1001

)

INSERT INTO roads VALUES (

2,
'Route2’',
SDO_GEOMETRY(
3302, -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
NULL,
NULL,
SDO_ELEM_INFO _ARRAY(1,2,1), -- one line string, straight segments
SDO_ORDINATE ARRAY (
8,4,0, -- Node3; 0 is measure from start.
8,10,6, -- Node6; 6 is measure from start.
8,13,9) -- Ending point - Node8; 9 is measure from start.
), 1002

)

INSERT INTO roads VALUES (

3,
'Routel3’,
SDO_GEOMETRY (
3302, -- line string, 3 dimensions (X,Y,M), 3rd is measure dimension
NULL,
NULL,
SDO_ELEM INFO ARRAY(1,2,1), -- one line string, straight segments
SDO_ORDINATE_ARRAY(
12,10,0, -- Node5; 0 is measure from start.
8,13,5, -- Node8; 5 is measure from start.
5,14,3.16) -- Ending point - Node7; 8.16 is measure from start.
), 1003

-- Update the USER SDO GEOM METADATA view. This is required before the
-- gpatial index can be created. Do this only once for each layer

6-28 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

-- (that is, table-column combination; here: roads and road geom).
INSERT INTO USER SDO_GEOM_METADATA
VALUES (
'ROADS',
'ROAD_GEOM',
SDO _DIM ARRAY (-- 20X20 grid
SDO DIM ELEMENT('X', 0, 20, 0.005),
SDO_DIM_ELEMENT(‘Y', 0, 20, 0.005),
SDO_DIM ELEMENT('M', 0, 20, 0.005) -- Measure dimension

NULL -- SRID (spatial reference system, also called coordinate system)

CREATE INDEX roads_idx ON roads(road_geom)
INDEXTYPE IS MDSYS.SPATIAL INDEX;

-- This procedure does not use the CREATE _LRS_NETWORK procedure. Instead,

-- the user creates the network tables and populates the network metadata view.
-- Basic steps:

-- 1. Create and populate the node table.

-- 2. Create and populate the link table.

-- 3. Create the path table and path-link table (for possible

-- future use, before which they will need to be populated).

-- 4. Populate the network metadata (USER_SDO NETWORK METADATA) .

-- Note: Can be done before or after Steps 1-3.

-- 5. Use various SDO NET functions and procedures.

1. Create and populate the node table.
EXECUTE SDO _NET.CREATE NODE TABLE ('ROADS NODES', 'LRS GEOMETRY', 'NODE
GEOMETRY', NULL, 1);
-- Populate the node table.
-- N1
INSERT INTO roads nodes (node id, node name, active, geom id, measure)

VALUES (1, 'N1', 'Y', 1001, 0);

-- N2

Network Data Model Overview 6-29

Network Examples (PL/SQL)

INSERT INTO roads nodes (node id, node name, active, geom id, measure)
VALUES (2, 'N2', 'Y', 1001, 2);

-- N3
INSERT INTO roads nodes (node_id, node name, active, geom id, measure)
VALUES (3, 'N3', 'Y', 1001, 8);

-- N4
INSERT INTO roads nodes (node id, node name, active, geom id, measure)
VALUES (4, 'N4', 'Y', 1001, 12);

-- N5
INSERT INTO roads nodes (node id, node name, active, geom id, measure)
VALUES (5, 'N5', 'Y', 1001, 18);

-- Né
INSERT INTO roads nodes (node_id, node name, active, geom id, measure)
VALUES (6, 'N6', 'Y', 1001, 22);

-- N7
INSERT INTO roads nodes (node id, node name, active, geom id, measure)
VALUES (7, 'N7', 'Y', 1001, 27);

-- N8
INSERT INTO roads nodes (node id, node name, active, geom id, measure)
VALUES (8, 'N8', 'Y', 1002, 9);

-- 2. Create and populate the link table.
EXECUTE SDO_NET.CREATE LINK TABLE ('ROADS LINKS', 'LRS GEOMETRY', 'LINK
GEOMETRY', 'COST', 1);

-- Populate the link table.

-- Routel, Linkl

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (101, 'R1L1', 1, 2, 'Y', 3, 1001, 0, 2);

-- Routel, Link2

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (102, 'R1L2', 2, 3, 'Y', 15, 1001, 2, 8);

-- Routel, Link3
INSERT INTO roads links (link id, link name, start node id, end node id, active,

6-30 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

cost, geom id, start measure, end measure)
VALUES (103, 'R1L3', 3, 4, 'Y', 10, 1001, 8, 12);

-- Routel, Link4

INSERT INTO roads_links (link id, link name, start node id, end node_id, active,
cost, geom id, start measure, end measure)

VALUES (104, 'R1L4', 4, 5, 'Y', 15, 1001, 12, 18);

-- Routel, Link5

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (105, 'R1L5', 5, 6, 'Y', 10, 1001, 18, 22);

-- Routel, Linké6

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom_id, start _measure, end_measure)

VALUES (106, 'R1Lé', 6, 7, 'Y', 7, 1001, 22, 27);

-- Route2, Linkl (cost = 30, a slow drive)

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom_id, start measure, end_measure)

VALUES (201, 'R2L1', 3, 6, 'Y', 30, 1002, 0, 6);

-- Route2, Link2

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (202, 'R2L2', 6, 8, 'Y', 5, 1002, 6, 9);

-- Route3, Linkl

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (301, 'R3L1', 5, 8, 'Y', 5, 1003, 0, 5);

-- Route3, Link2

INSERT INTO roads links (link id, link name, start node id, end node id, active,
cost, geom id, start measure, end measure)

VALUES (302, 'R3L2', 8, 7, 'Y', 5, 1003, 5, 8.16);

-- 3. Create the path table (to store created paths) and the path-link
-- table (to store links for each path) for possible future use,
-- before which they will need to be populated.

EXECUTE SDO_NET.CREATE_PATH_TABLE('ROADS_PATHS‘, 'PATH_GEOMETRY‘);
EXECUTE SDO_NET.CREATE PATH LINK TABLE ('ROADS PATHS LINKS');

-- 4. Populate the network metadata (USER_SDO NETWORK METADATA) .

Network Data Model Overview 6-31

Network Examples (PL/SQL)

INSERT INTO user sdo network metadata VALUES (

'ROADS NETWORK', -- Network name
'SPATIAL', -- Network category
'LRS_GEOMETRY', -- Geometry type
'Roadways', -- Network type (user-defined)
1, -- No. of levels in hierarchy

1, -- No. of partitions

'ROADS ', -- LRS table name

'ROAD_GEOM' , -- LRS geometry column
'ROADS_NODES', -- Node table name
'NODE_GEOMETRY', -- Node geometry column
'"COST', -- Node cost column

'ROADS LINKS', -- Link table name

'"LINK GEOMETRY', -- Link geometry column
'DIRECTED', -- Link direction

'"COST', -- Link cost column
'ROADS_PATHS', -- Path table name

'"PATH GEOMETRY', -- Path geometry column
'"ROADS PATHS LINKS', -- Path-link table
NULL -- No partition table

)i
-- 5. Use various SDO_NET functions and procedures.

-- Validate the network.
SELECT SDO_NET.VALIDATE_NETWORK('ROADS_NETWORK‘) FROM DUAL;

-- Validate parts or aspects of the network.

SELECT SDO_NET.VALIDATE LINK SCHEMA ('ROADS NETWORK') FROM DUAL;
SELECT SDO NET.VALIDATE LRS SCHEMA ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE NODE SCHEMA ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE PATH SCHEMA ('ROADS NETWORK') FROM DUAL;

-- Retrieve various information (GET xxx and some other functions).
SELECT SDO_NET.GET CHILD LINKS ('ROADS NETWORK', 101) FROM DUAL;
SELECT SDO NET.GET CHILD NODES ('ROADS NETWORK', 1) FROM DUAL;
SELECT SDO_NET.GET_GEOMETRY TYPE ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET_ IN LINKS ('ROADS NETWORK', 3) FROM DUAL;

SELECT SDO_NET.GET LINK COST COLUMN ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK DIRECTION ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET LINK GEOM COLUMN ('ROADS NETWORK') FROM DUAL;
SELECT SDO NET.GET LINK GEOMETRY ('ROADS NETWORK', 103) FROM DUAL;
SELECT SDO_NET.GET LINK TABLE NAME ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET LRS GEOM COLUMN ('ROADS NETWORK') FROM DUAL;

6-32 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

SELECT SDO NET.GET LRS LINK GEOMETRY ('ROADS NETWORK', 103) FROM DUAL;
SELECT SDO_NET.GET LRS NODE GEOMETRY ('ROADS NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET_LRS TABLE NAME ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET NETWORK TYPE ('ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.GET_NO OF HIERARCHY LEVELS ('ROADS NETWORK') FROM DUAL;
SELECT SDO _NET.GET NO OF LINKS('ROADS NETWORK') FROM DUAL;

SELECT SDO _NET.GET NO OF NODES ('ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.GET NO OF PARTITIONS ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET NODE DEGREE ('ROADS NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET NODE GEOM COLUMN ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NODE GEOMETRY ('ROADS NETWORK', 3) FROM DUAL;
SELECT SDO _NET.GET NODE IN DEGREE ('ROADS NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET NODE OUT DEGREE ('ROADS NETWORK', 3) FROM DUAL;
SELECT SDO_NET.GET NODE TABLE NAME ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET OUT_LINKS ('ROADS_NETWORK', 3) FROM DUAL;

SELECT SDO_NET.GET PARTITION TABLE NAME ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.GET_PATH GEOM_COLUMN ('ROADS NETWORK') FROM DUAL;
SELECT SDO _NET.GET PATH TABLE NAME ('ROADS NETWORK') FROM DUAL;
SELECT SDO _NET.IS HIERARCHICAL('ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.IS_LOGICAL ('ROADS_NETWORK') FROM DUAL;

SELECT SDO_NET.IS_SPATIAL('ROADS_NETWORK') FROM DUAL;

SELECT SDO_NET.LRS GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.NETWORK_EXISTS ('ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.SDO GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;
SELECT SDO_NET.TOPO_GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;

-- Copy a network.
EXECUTE SDO_NET.COPY NETWORK('ROADS NETWORK', 'ROADS NETWORK2') ;

6.9.4 Logical Hierarchical Network Example

This section presents an example of a logical network that contains the nodes and
links illustrated in Figure 6-6. Because it is a logical network, there are no spatial
geometries associated with it. (Figure 6-6 is essentially the same as Figure 6-1 in
Section 6.5, but with the nodes and links labeled.)

Network Data Model Overview 6-33

Network Examples (PL/SQL)

Figure 6—6 Nodes and Links for Logical Network Example

Level 2

HN1HN2

As shown in Figure 6-6:

The network is hierarchical, with two levels. The top level (level 2) consists of
two nodes (HN1 and HN2) and one link (HN1HN2) that links these nodes. The
remaining nodes and links are in the bottom level (level 1) of the hierarchy.

Each node in level 1 is a child node of one of the nodes in level 2. Node HN1 has
the following child nodes: N1, N2, N3, N4, N5, and N6. Node HN2 has the
following child nodes: N7, N8, N9, N10, N11, N12, N13, and N14.

Two links (N5N8 and N6N7) in level 1 are child links of the link HN1HN2 in level
2.

Example 64 does the following;:

Creates and populates the node table.
Creates and populates the link table.

Creates and populates the path table and path-link table, for possible future use.
(Before an application can use paths, you must populate these two tables.)

Inserts network metadata into the USER_SDO_NETWORK_METADATA view.

Uses various SDO_NET functions and procedures.

6-34 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

Example 6-4 Logical Network Example (PL/SQL)

-- Basic steps:

-- 1. Create and populate the node table.

-- 2. Create and populate the link table.

-- 3. Create the path table and path-link table (for possible

-- future use, before which they will need to be populated) .
-- 4. Populate the network metadata (USER_SDO NETWORK METADATA) .
-- Note: Can be done before or after Steps 1-3.

-- 5. Use various SDO_NET functions and procedures.

1. Create and populate the node table.
EXECUTE SDO _NET.CREATE NODE TABLE ('XYZ NODES', NULL, NULL, NULL, 2);

-- Populate the node table, starting with the highest level in the hierarchy.

-- HN1 (Hierarchy level=2, highest in this network)
INSERT INTO xyz nodes (node id, node name, active, hierarchy level)
VALUES (1, 'HN1', 'Y', 2);

-- HN2 (Hierarchy level=2, highest in this network)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level)
VALUES (2, 'HN2', 'Y', 2);

-- N1 (Hierarchy level 1, parent node ID = 1 for N1 through N6)
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (101, 'N1', 'Y', 1, 1);

-- N2
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (102, 'N2', 'Y', 1, 1);

-~ N3
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (103, 'N3', 'Y', 1, 1);

-- N4
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level,
parent node_id)

VALUES (104, 'N4', 'Y', 1, 1);

-- N5

Network Data Model Overview 6-35

Network Examples (PL/SQL)

INSERT INTO xyz_nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (105, 'N5', 'Y', 1, 1);

-- N6
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level,
parent node id)
VALUES (106, 'Né', 'Y', 1, 1);

-- N7 (Hierarchy level 1, parent node ID = 2 for N7 through N14)
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level,
parent node id)
VALUES (107, 'N7', 'Y', 1, 2);

-- N8
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent _node_ id)
VALUES (108, 'N8', 'Y', 1, 2);

-- N9
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (109, 'N9', 'Y', 1, 2);

-- N10
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (110, 'N1O', 'Y', 1, 2);

-- N11
INSERT INTO xyz nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (111, 'N11', 'Y', 1, 2);

-- Ni12
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level,
parent node_id)
VALUES (112, 'N12', 'Y', 1, 2);

-- N13
INSERT INTO xyz_nodes (node_id, node_name, active, hierarchy level,
parent node id)

VALUES (113, 'N13', 'Y', 1, 2);

-- N14

6-36 Oracle Spatial Topology and Network Data Models

Network Examples (PL/SQL)

INSERT INTO xyz_nodes (node id, node name, active, hierarchy level,
parent node id)
VALUES (114, 'N14',

-- 2. Create and populate the link table.

EXECUTE SDO_NET.CREATE LINK TABLE('XYZ LINKS', NULL, NULL, 'COST', 2);
-- Populate the link table.

-- HN1HN2 (single link in highest hierarchy level: link level = 2)

INSERT INTO xyz links (link id, link name, start node id, end node_ id,
link level)
VALUES (1001, 'HN1HN2', 1, 2, 'Y', 2);
-- For remaining links, link level = 1 and cost (10, 20, or 30) varies
links.
-- NIN2

INSERT INTO xyz_links (link id, link name, start node id,
link level, cost)
VALUES (1101, 'NIN2',

end node_id,

101, 102, 'y', 1, 10);

-- NIN3

INSERT INTO xyz links (link id, link name, start node id,
link level, cost)

VALUES (1102, 'NIN3',

end node_id,

101, 102, 'Y', 1, 20);

-- N2N3

INSERT INTO xyz links (link id, link name, start node id,
link level, cost)

VALUES (1103, 'N2N3',

end node id,

102, 103, 'y', 1, 30);

-- N3N4

INSERT INTO xyz links (link id, link name, start node id,
link level, cost)

VALUES (1104, 'N3N4',

end node_id,

103, 104, 'y', 1, 10);

-- N4N5

INSERT INTO xyz links (link id, link name, start node id,
link level, cost)

VALUES (1105, 'N4N5',

end node id,

104, 105, 'y', 1, 20);

-- N4N6

INSERT INTO xyz_links (link id, link name, start node id,
link level, cost)

VALUES (1106, 'N4Né6',

end node id,

104, 106, 'Y', 1, 30);

active,

among

active,

active,

active,

active,

active,

active,

Network Data Model Overview 6-37

Network Examples (PL/SQL)

-- N5N6
INSERT INTO xyz links (link id, link name, start node id,
link level, cost)
VALUES (1107, 'N5N6', 105, 106, 'Y', 1, 10);
-- N5N8 (child of the higher-level link: parent ID =
INSERT INTO xyz links (link id, link name, start node id,
link level, cost, parent link id)
VALUES (1108, 'N5N8', 105, 106, 'Y', 1, 20, 1001);
-- N6N7 (child of the higher-level link: parent ID =
INSERT INTO xyz_links (link id, link name, start node id,
link level, cost, parent link id)
VALUES (1109, 'N6N7', 106, 107, 'Y', 1, 30, 1001);
-- N7N9
INSERT INTO xyz links (link id, link name, start node id,
link level, cost)
VALUES (1110, 'N7N9', 107, 109, 'Y', 1, 10);
-- N8N9
INSERT INTO xyz links (link id, link name, start node id,
link level, cost)
VALUES (1111, 'N8N9', 108, 109, 'Y', 1, 20);
-- NON10
INSERT INTO xyz links (link id, link name,
link level, cost)

VALUES (1112, 'NON10',

start node id,

109, 110, 'Y', 1, 30);

-- NON13

INSERT INTO xyz links (link id, link name,
link level, cost)

VALUES (1113, 'NON13',

start node id,

109, 113, 'y', 1, 10);

-- N1ON11

INSERT INTO xyz links (link id, link name,
link level, cost)

VALUES (1114, 'N10ON11',

start node id,

110, 111, 'Y', 1, 20);

-- N11N12

INSERT INTO xyz_links (link id, link name,
link level, cost)

VALUES (1115, 'N11N12',

start_node_id,

111, 112, 'y', 1, 30);

6-38 Oracle Spatial Topology and Network Data Models

1001)

1001)

end node id,

end node id,

end node_id,

end node_id,

end node_id,

end node id,

end node_id,

end node id,

end node_id,

active,

active,

active,

active,

active,

active,

active,

active,

active,

Network Examples (PL/SQL)

-- NI12N13
INSERT INTO xyz links (link id, link name, start node id, end node id, active,
link level, cost)
VALUES (1116, 'N12N13', 112, 113, 'Y', 1, 10);
-- N12N14
INSERT INTO xyz links (link id, link name, start node id, end node id, active,
link level, cost)
VALUES (1117, 'N12N14', 112, 114, 'Y', 1, 20);
-- N13N14
INSERT INTO xyz_links (link id, link name, start node id, end node id, active,

link level, cost)

VALUES

-- 3.

(1118, 'N13N14', 113, 114, 'Y', 1, 30);

Create the path table (to store created paths) and the path-link

-- table (to store links for each path) for possible future use,
-- before which they will need to be populated.

EXECUTE SDO_NET.CREATE_PATH_TABLE('XYZ_PATHS', NULL) ;

EXECUTE SDO_NET.CREATE_PATH_LINK_TABLE('XYZ_PATHS_LINKS');

-- 4,

Populate the network metadata (USER_SDO_NETWORK METADATA) .

INSERT INTO user sdo network metadata VALUES (

'XYZ NETWORK',

-- Network name

'LOGICAL', -- Network category

NULL, -- Null geom type because not a spatial network
NULL, -- No user-specified network type string
2, -- No. of levels in hierarchy

1, -- No. of partitions

NULL, -- No LRS table name

NULL, -- No LRS geometry column

'XYZ NODES', -- Node table name

NULL, -- No node geometry column

NULL, -- No node cost column

'XYZ LINKS', -- Link table name

NULL, -- No link geometry column

'DIRECTED', -- Link direction

'COST', -- Link cost column

'XYZ_PATHS', -- Path table name

NULL, -- No path geometry column

NULL, -- No path-link table

NULL -- No partition table

)i

Network Data Model Overview 6-39

Network Examples (PL/SQL)

-- 5. Use various SDO NET functions and procedures.

-- Validate the network.
SELECT SDO_NET.VALIDATE_NETWORK('XYZ_NETWORK') FROM DUAL;

-- Validate parts or aspects of the network.

SELECT SDO_NET.VALIDATE LINK SCHEMA ('XYZ NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE LRS SCHEMA ('XYZ NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE NODE SCHEMA ('XYZ NETWORK') FROM DUAL;
SELECT SDO_NET.VALIDATE PATH SCHEMA ('XYZ NETWORK') FROM DUAL;

-- Retrieve various information (GET xxx and some other functions).
SELECT SDO_NET.GET_CHILD_LINKS('XYZ_NETWORK‘, 1001) FROM DUAL;
SELECT SDO_NET.GET_CHILD_NODES('XYZ_NETWORK‘, 1) FROM DUAL;
SELECT SDO_NET.GET_CHILD_NODES('XYZ_NETWORK‘, 2) FROM DUAL;
SELECT SDO_NET.GET_IN_LINKS('XYZ_NETWORK‘, 104) FROM DUAL;

SELECT SDO_NET.GET_LINK_COST_COLUMN('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET LINK DIRECTION('XYZ NETWORK') FROM DUAL;
SELECT SDO_NET.GET_LINK_TABLE_NAME('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NETWORK_TYPE('XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET.GET_NO_OF_HIERARCHY_LEVELS('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.GET_NO_OF_LINKS('XYZ_NETWORK‘) FROM DUAL;

SELECT SDO_NET.GET_NO_OF_NODES('XYZ_NETWORK‘) FROM DUAL;

SELECT SDO_NET.GET NODE DEGREE ('XYZ NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_NODE_IN_DEGREE('XYZ_NETWORK‘, 104) FROM DUAL;
SELECT SDO_NET.GET_NODE_OUT_DEGREE('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_OUT_LINKS('XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO_NET.GET_PATH_TABLE_NAME('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.IS_HIERARCHICAL('XYZ_NETWORK‘) FROM DUAL;

SELECT SDO_NET.IS_LOGICAL('XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET.IS_SPATIAL('XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET.LRS_GEOMETRY_NETWORK('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.NETWORK_EXISTS(‘XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET.SDO_GEOMETRY_NETWORK('XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET.TOPO_GEOMETRY_NETWORK('XYZ_NETWORK') FROM DUAL;

-- Copy a network.
EXECUTE SDO_NET.COPY NETWORK('XYZ NETWORK', 'XYZ NETWORK2');

6-40 Oracle Spatial Topology and Network Data Models

7

SDO_NET Package Subprograms

The MDSYS.SDO_NET package contains subprograms (functions and procedures)
for managing networks. To use the subprograms in this chapter, you must
understand the conceptual information in Chapter 6.

For a listing of the subprograms grouped in logical categories, see Section 6.8.1. The
rest of this chapter provides reference information about the subprograms, listed in
alphabetical order.

SDO_NET Package Subprograms 7-1

SDO_NET.COPY_NETWORK

SDO_NET.COPY_NETWORK

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.COPY_NETWORK(
source_network IN VARCHAR2,
target_network IN VARCHAR2);

Creates a copy of a network, including its metadata tables.

source_network
Name of the network to be copied.

target_network
Name of the network to be created as a copy of source_network.

This procedure creates an entry in the xxx_SDO_NETWORK_METADATA views
(described in Section 6.7.1) for target network that has the same information as
for source_network, except for the new network name.

This procedure also creates a new node table, link table, and path table (if a path
table exists for source network) for target network based on the metadata
and data in these tables for source network. These tables have names in the form
<target-network>_NODES$, <target-network>_LINKS$, and <target-network>_PATHS.
For example, if target network has the value ROADS NETWORK2 and if
source_network has a path table, the names of the created metadata tables are
ROADS_NETWORKZ_NODE$,ROADS_NETWORK2_LINK$,andROADS_NETWORKZ_
PATHS.

The following example creates a new network named ROADS NETWORK?2 that is a
copy of the network named ROADS NETWORK.

EXECUTE SDO_NET.COPY NETWORK('ROADS NETWORK', 'ROADS NETWORK2') ;

7-2 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LINK_TABLE

SDO_NET.CREATE_LINK_TABLE

Format
SDO_NET.CREATE_LINK_TABLE(
table_name IN VARCHAR2,
geom_type IN VARCHAR2,
geom_column IN VARCHAR2,
cost_column IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER);
Description
Creates a link table for a network.
Parameters
table_name
Name of the link table.
geom_type

For a spatial network, specify a value indicating the geometry type of links: SDO_
GEOMETRY for non-LRS SDO_GEOMETRY objects, LRS_GEOMETRY for LRS SDO_
GEOMETRY objects, or TOPO_GEOMETRY for SDO_TOPO_GEOMETRY objects.

geom_column
For a spatial network, the name of the column containing the geometry objects
associated with the links.

cost_column
Name of the column containing the cost values to be associated with the links.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Section 6.5.)

Usage Notes
The link table is described in Section 6.6.2.

SDO_NET Package Subprograms 7-3

SDO_NET.CREATE_LINK_TABLE

Examples

The following example creates a link table named ROADS_LINKS, with a geometry
column named LINK_GEOMETRY that will contain LRS geometries, a cost column
named COST, and a single hierarchy level.

EXECUTE SDO_NET.CREATE LINK TABLE('ROADS LINKS', 'LRS GEOMETRY', 'LINK
GEOMETRY', 'COST', 1);

7-4 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LOGICAL_NETWORK

SDO_NET.CREATE_LOGICAL_NETWORK

Format

Description

Parameters

SDO_NET.CREATE_LOGICAL_NETWORK(

network

IN VARCHAR2,

no_of_hierarchy_levels IN NUMBER,

is_directed
node_with_cost

or

SDO_NET.CREATE_LOGICAL_NETWORK(

network

IN BOOLEAN,

IN BOOLEAN DEFAULT FALSE);

IN VARCHAR2,

no_of_hierarchy_levels IN NUMBER,

is_directed
node_table_name
node_cost_column
link_table_name
link_cost_column
path_table_name

path_link_table_name

IN BOOLEAN,

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,

IN VARCHAR2);

Creates a logical network, creates all necessary tables, and updates the network

metadata.

network
Network name.

SDO_NET Package Subprograms 7-5

SDO_NET.CREATE_LOGICAL_NETWORK

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Section 6.5.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are not directed.

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the
<network-name>_NODES$ table; FALSE (the default) causes a column named COST
not to be included in the <network-name>_INODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Section 6.6.1.)
If you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_cost_column

Name of the cost column in the node table. (The node table is explained in
Section 6.6.1.) If you use the format that does not specify this parameter, the
geometry column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Section 6.6.2.) If
you use the format that does not specify this parameter, a link table named
<network-name>_LINKS$ is created.

link_cost_column

Name of the cost column in the link table. (The link table is explained in
Section 6.6.2.) If you use the format that does not specify this parameter, the
geometry column is named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Section 6.6.3.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in
Section 6.6.4.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS is created.

7-6 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LOGICAL_NETWORK

Usage Notes

Examples

This procedure provides a convenient way to create a logical network when the
node, link, and optional related tables do not already exist. The procedure creates
the network; creates the node, link, path, and path-link tables for the network; and
inserts the appropriate information in the xxx_SDO_NETWORK_METADATA
views (described in Section 6.7.1).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the cost column name. The other format lets you
specify names for the tables and the cost column.

As an alternative to using this procedure, you can create the network using the
SDO_NET.CREATE_LOGICAL_NETWORK procedure; create the tables using the
SDO_NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, SDO_
NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the USER_SDO_NETWORK_
METADATA view.

The following example creates a directed logical network named LOG_NET1. The
example creates the LOG_NET1_NODE$, LOG_NET1_LINK$,LOG_NET1_PATHS,
and LOG_NET1_PLINKS tables, and updates the xxx_SDO_NETWORK_
METADATA views. Both the node and link tables contain a cost column named
COST.

EXECUTE SDO_NET.CREATE LOGICAL NETWORK('LOG NET1', 1, TRUE, TRUE);

SDO_NET Package Subprograms 7-7

SDO_NET.CREATE_LRS_NETWORK

SDO_NET.CREATE_LRS_NETWORK

Format

SDO_NET.CREATE_LRS_NETWORK(
network IN VARCHAR2,
Irs_table_name IN VARCHAR2,
Irs_geom_column IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_with_cost IN BOOLEAN DEFAULT FALSE);

or

SDO_NET.CREATE_LRS_NETWORK(
network IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_table_name IN VARCHAR2,
node_cost_column IN VARCHAR2,
link_table_name IN VARCHAR2,
link_cost_column IN VARCHAR2,
Irs_table_name IN VARCHAR2,
Irs_geom_column IN VARCHAR2,
path_table_name IN VARCHAR2,
path_geom_column IN VARCHAR2,
path_link_table_name IN VARCHAR2);

Description

Creates a spatial network containing LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

7-8 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LRS_NETWORK

Parameters

network
Network name.

Irs_table_name
Name of the table containing the LRS geometry column.

Irs_geom_column
Name of the column in 1rs_table_name that contains LRS geometries (that is,
SDO_GEOMETRY objects that include measure information for linear referencing).

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are not directed.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Section 6.5.)

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the
<network-name>_NODES$ table; FALSE (the default) causes a column named COST
not to be included in the <network-name>_INODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Section 6.6.1.)
If you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_cost_column

Name of the cost column in the node table. (The node table is explained in
Section 6.6.1.) If you use the format that does not specify this parameter, the
geometry column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Section 6.6.2.) If
you use the format that does not specify this parameter, a link table named
<network-name>_LINKS$ is created.

SDO_NET Package Subprograms 7-9

SDO_NET.CREATE_LRS_NETWORK

Usage Notes

link_cost_column

Name of the cost column in the link table. (The link table is explained in
Section 6.6.2.) If you use the format that does not specify this parameter, the
geometry column is named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Section 6.6.3.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in
Section 6.6.3.) If you use the format that does not specify this parameter, the
geometry column is named GEOMETRY.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in
Section 6.6.4.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS is created.

This procedure provides a convenient way to create a spatial network of LRS
geometries when the node, link, and optional related tables do not already exist.
The procedure creates the network; creates the node, link, path, and path-link tables
for the network; and inserts the appropriate information in the xxx_SDO_
NETWORK_METADATA views (described in Section 6.7.1).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other
format lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network using the
SDO_NET.CREATE_LRS_NETWORK procedure; create the tables using the SDO_
NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, SDO_
NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the USER_SDO_NETWORK_
METADATA view.

7-10 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LRS_NETWORK

Examples

The following example creates a directed spatial network named LRS_NET1. The
LRS geometries are in the column named LRS_GEOM in the table named LRS_TAB.
The example creates the LRS_NET1_NODE$, LRS_NET1_LINK$, LRS_NET1_
PATHS$, and LRS_NET1_PLINKS tables, and updates the xxx_SDO_NETWORK_
METADATA views. All geometry columns are named GEOMETRY. Both the node
and link tables contain a cost column named COST.

EXECUTE SDO NET.CREATE LRS NETWORK('LRS NET1', 'LRS TAB', 'LRS GEOM', 1, TRUE,
TRUE) ;

SDO_NET Package Subprograms 7-11

SDO_NET.CREATE_LRS_TABLE

SDO_NET.CREATE_LRS_TABLE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.CREATE_LRS_TABLE(
table_name IN VARCHAR2,
geom_column IN VARCHAR2);

Creates a table for storing Oracle Spatial linear referencing system (LRS) geometries.

table_name
Name of the table containing the geometry column specified in geom column.

geom_column
Name of the column (of type SDO_GEOMETRY) to contain geometry objects.

This procedure creates a table named table name with two columns: GEOM_ID
of type NUMBER and geom_column of type SDO_GEOMETRY.

Although the created table does not need to be used to store LRS geometries, the
procedure is intended as a convenient method for creating a table to store such
geometries. You will probably want to modify the table to add other columns before
you store data in the table.

The following example creates a table named HIGHWAYS with a geometry column
named GEOM.

EXECUTE SDO_NET.CREATE LRS TABLE ('HIGHWAYS', 'GEOM');
PL/SQL procedure successfully completed.

DESCRIBE highways
Name Null? Type

7-12 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_LRS_TABLE

GEOM_1ID NOT NULL NUMBER
GEOM MDSYS.SDO_GEOMETRY

SDO_NET Package Subprograms 7-13

SDO_NET.CREATE_NODE_TABLE

SDO_NET.CREATE_NODE_TABLE

Format
SDO_NET.CREATE_NODE_TABLE(
table_name IN VARCHAR2,
geom_type IN VARCHAR2,
geom_column IN VARCHAR2,
cost_column IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER);
Description
Creates a node table.
Parameters

table_name
Name of the node table.

geom_type

For a spatial network, specify a value indicating the geometry type of nodes: SDO_
GEOMETRY for non-LRS SDO_GEOMETRY objects, LRS_GEOMETRY for LRS SDO_
GEOMETRY objects, or TOPO_GEOMETRY for SDO_TOPO_GEOMETRY objects.

geom_column
For a spatial network, the name of the column containing the geometry objects
associated with the nodes.

cost_column
Name of the column containing the cost values to be associated with the nodes.

no_of_hierarchy_levels
Number of hierarchy levels for nodes in the network. (For an explanation of
network hierarchy, see Section 6.5.)

Usage Notes
The node table is described in Section 6.6.1.

7-14 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_NODE_TABLE

Examples

The following example creates a node table named ROADS_NODES with a
geometry column named NODE_GEOMETRY that will contain LRS geometries, no
cost column, and a single hierarchy level.

EXECUTE SDO_NET.CREATE NODE TABLE ('ROADS NODES', 'LRS GEOMETRY', 'NODE
GEOMETRY', NULL, 1);

SDO_NET Package Subprograms 7-15

SDO_NET.CREATE_PATH_LINK_TABLE

SDO_NET.CREATE_PATH_LINK_TABLE

Format
SDO_NET.CREATE_PATH_LINK_TABLE(
table_name IN VARCHAR2);
Description
Creates a path-link table, that is, a table with a row for each link in each path in the
path table.
Parameters
table_name

Name of the path-link table.

Usage Notes
The path-link table is described in Section 6.6.4.

To use paths with a network, you must populate the path-link table.

Examples
The following example creates a path-link table named ROADS_PATHS_LINKS.

EXECUTE SDO_NET.CREATE PATH LINK TABLE ('ROADS PATHS LINKS');

7-16 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_PATH_TABLE

SDO_NET.CREATE_PATH_TABLE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.CREATE_PATH_TABLE(
table_name IN VARCHAR2,
geom_column IN VARCHAR2);

Creates a path table.

table_name
Name of the path table.

geom_column
For a spatial network, name of the column containing the geometry objects
associated with the paths.

The path table is described in Section 6.6.3.

To use paths with a network, after you create the path table, you must create the
path-link table using the SDO_NET.CREATE_PATH_LINK_TABLE procedure, and
populate the path-link table.

The following example creates a path table named ROADS_PATHS that contains a
geometry column named PATH_GEOMETRY.

EXECUTE SDO_NET.CREATE PATH TABLE ('ROADS_ PATHS', 'PATH GEOMETRY');

SDO_NET Package Subprograms 7-17

SDO_NET.CREATE_SDO_NETWORK

SDO_NET.CREATE_SDO_NETWORK

Format

SDO_NET.CREATE_SDO_NETWORK(
network IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_with_cost IN BOOLEAN DEFAULT FALSE);

or

SDO_NET.CREATE_SDO_NETWORK(
network IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_table_name IN VARCHAR2,
node_geom_column IN VARCHAR2,
node_cost_column IN VARCHAR2,
link_table_name IN VARCHAR2,
link_geom_column IN VARCHAR2,
link_cost_column IN VARCHAR2,
path_table_name IN VARCHAR2,
path_geom_column IN VARCHAR2,
path_link_table_name IN VARCHAR2);

Description

Creates a spatial network containing non-LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

7-18 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_SDO_NETWORK

Parameters

network
Network name.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Section 6.5.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are not directed.

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the
<network-name>_NODES$ table; FALSE (the default) causes a column named COST
not to be included in the <network-name>_NODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Section 6.6.1.)
If you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_geom_column

Name of the geometry column in the node table. (The node table is explained in
Section 6.6.1.) If you use the format that does not specify this parameter, the
geometry column is named GEOMETRY.

node_cost_column

Name of the cost column in the node table. (The node table is explained in
Section 6.6.1.) If you use the format that does not specify this parameter, the
geometry column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Section 6.6.2.) If
you use the format that does not specify this parameter, a link table named
<network-name>_LINKS$ is created.

link_geom_column

Name of the geometry column in the link table. (The link table is explained in
Section 6.6.2.) If you use the format that does not specify this parameter, the
geometry column is named GEOMETRY.

SDO_NET Package Subprograms 7-19

SDO_NET.CREATE_SDO_NETWORK

Usage Notes

link_cost_column

Name of the cost column in the link table. (The link table is explained in
Section 6.6.2.) If you use the format that does not specify this parameter, the
geometry column is named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Section 6.6.3.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in
Section 6.6.3.) If you use the format that does not specify this parameter, the
geometry column is named GEOMETRY.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in
Section 6.6.4.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS is created.

This procedure provides a convenient way to create a spatial network when the
node, link, and optional related tables do not already exist. The procedure creates
the network; creates the node, link, path, and path-link tables for the network; and
inserts the appropriate information in the xxx_SDO_NETWORK_METADATA
views (described in Section 6.7.1).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other
format lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network using the
SDO_NET.CREATE_SDO_NETWORK procedure; create the tables using the SDO_
NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, SDO_
NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the USER_SDO_NETWORK_
METADATA view.

7-20 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_SDO_NETWORK

Examples

The following example creates a directed spatial network named SDO NET1. The
example creates the SDO_NET1_NODE$, SDO_NET1_LINK$, SDO_NET1_PATHS$,
and SDO_NET1_PLINKS tables, and updates the xxx_SDO_NETWORK_
METADATA views. All geometry columns are named GEOMETRY. Both the node
and link tables contain a cost column named COST.

EXECUTE SDO_NET.CREATE SDO NETWORK('SDO NET1', 1, TRUE, TRUE);

SDO_NET Package Subprograms 7-21

SDO_NET.CREATE_TOPO_NETWORK

SDO_NET.CREATE_TOPO_NETWORK

Format
SDO_NET.CREATE_TOPO_NETWORK(
network IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_with_cost IN BOOLEAN DEFAULT FALSE);
or
SDO_NET.CREATE_TOPO_NETWORK(
network IN VARCHAR2,
no_of_hierarchy_levels IN NUMBER,
is_directed IN BOOLEAN,
node_table_name IN VARCHAR2,
node_cost_column IN VARCHAR2,
link_table_name IN VARCHAR2,
link_cost_column IN VARCHAR2,
path_table_name IN VARCHAR2,
path_geom_column IN VARCHAR2,
path_link_table_name IN VARCHAR2);
Description
Creates a spatial topology network containing SDO_TOPO_GEOMETRY objects,
creates all necessary tables, and updates the network metadata.
Parameters

network
Network name.

7-22 Oracle Spatial Topology and Network Data Models

SDO_NET.CREATE_TOPO_NETWORK

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Section 6.5.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are not directed.

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the
<network-name>_INODES$ table; FALSE (the default) causes a column named COST
not to be included in the <network-name>_INODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Section 6.6.1.)
If you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_cost_column

Name of the cost column in the node table. (The node table is explained in
Section 6.6.1.) If you use the format that does not specify this parameter, the
geometry column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Section 6.6.2.) If
you use the format that does not specify this parameter, a link table named
<network-name>_LINKS$ is created.

link_cost_column

Name of the cost column in the link table. (The link table is explained in
Section 6.6.2.) If you use the format that does not specify this parameter, the
geometry column is named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Section 6.6.3.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in
Section 6.6.3.) If you use the format that does not specify this parameter, the
geometry column is named GEOMETRY.

SDO_NET Package Subprograms 7-23

SDO_NET.CREATE_TOPO_NETWORK

Usage Notes

Examples

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in
Section 6.6.4.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS is created.

This procedure provides a convenient way to create a spatial network when the
node, link, and optional related tables do not already exist. The procedure creates
the network; creates the node, link, path, and path-link tables for the network; and
inserts the appropriate information in the xxx_SDO_NETWORK_METADATA
views (described in Section 6.7.1). The node and link tables contain a topology
geometry column named TOPO_GEOMETRY of type SDO_TOPO_GEOMETRY.

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other
format lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network using the
SDO_NET.CREATE_TOPO_NETWORK procedure; create the tables using the
SDO_NET.CREATE_NODE_TABLE, SDO_NET.CREATE_LINK_TABLE, SDO_
NET.CREATE_PATH_TABLE, and SDO_NET.CREATE_PATH_LINK_TABLE
procedures; and insert the appropriate row in the USER_SDO_NETWORK_
METADATA view.

The following example creates a directed spatial topology geometry network
named TOPO_NET1. The example creates the TOPO_NET1_NODE$, TOPO_NET1_
LINK$, TOPO_NET1_PATHS$, and TOPO_NET1_PLINKS tables, and updates the
xxx_SDO_NETWORK_METADATA views. The topology geometry columns are
named TOPO_GEOMETRY. Both the node and link tables contain a cost column
named COST.

EXECUTE SDO_NET.CREATE TOPO NETWORK ('TOPO_NET1', 1, TRUE, TRUE);

7-24 Oracle Spatial Topology and Network Data Models

SDO_NET.DROP_NETWORK

SDO_NET.DROP_NETWORK

Format
SDO_NET.DROP_NETWORK(
network IN VARCHAR2);
Description
Drops a network.
Parameters

network
Name of the network to be dropped.

Usage Notes

This procedure also deletes the node, link, and path tables associated with the
network, and the network metadata for the network.

Examples
The following example drops the network named ROADS_NETWORK.

EXECUTE SDO_NET.DROP NETWORK ('ROADS NETWORK') ;

SDO_NET Package Subprograms 7-25

SDO_NET.GET_CHILD_LINKS

SDO_NET.GET_CHILD_LINKS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_CHILD_LINKS(
network IN VARCHAR2,
link_id IN NUMBER) RETURN SDO_NUMBER_ARRAY;

Returns the child links of a link.

network
Network name.

link_id
ID of the link for which to return the child links.

For information about parent and child nodes and links in a network hierarchy, see
Section 6.5.

The following example returns the child links of the link in the XYZ NETWORK
network whose link ID is 1001.

SELECT SDO_NET.GET CHILD LINKS('XYZ NETWORK', 1001) FROM DUAL;

SDO_NET.GET CHILD LINKS ('XYZ NETWORK',1001)

SDO_NUMBER ARRAY (1108, 1109)

7-26 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_CHILD_NODES

SDO_NET.GET_CHILD_NODES

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_CHILD_NODES(
network IN VARCHAR2,
node_id IN NUMBER) RETURN SDO_NUMBER_ARRAY;

Returns the child nodes of a node.

network
Network name.

link_id
ID of the node for which to return the child nodes.

For information about parent and child nodes and links in a network hierarchy, see
Section 6.5.

The following example returns the child nodes of the node in the XYZ NETWORK
network whose node ID is 1.

SELECT SDO_NET.GET CHILD NODES ('XYZ NETWORK', 1) FROM DUAL;
SDO_NET.GET CHILD NODES ('XYZ NETWORK',1)

SDO_NUMBER ARRAY (101, 102, 103, 104, 105, 106)

SDO_NET Package Subprograms 7-27

SDO_NET.GET_GEOMETRY_TYPE

SDO_NET.GET_GEOMETRY_TYPE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_GEOMETRY_TYPE(
network IN VARCHAR2) RETURN VARCHAR2;

Returns the geometry type for a spatial network.

network
Network name.

This function returns the value of the GEOMETRY_TYPE column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 6-5 in Section 6.7.1).

The following example returns the geometry type for the network named ROADS
NETWORK.

SELECT SDO _NET.GET GEOMETRY TYPE ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET GEOMETRY TYPE ('ROADS NETWORK')

LRS_GEOMETRY

7-28 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_IN_LINKS

SDO_NET.GET_IN_LINKS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_IN_LINKS(
network IN VARCHAR2,
node_id IN NUMBER) RETURN SDO_NUMBER_ARRAY ;

Returns an array of link ID numbers of the inbound links to a node.

network
Network name.

node_id
ID of the node for which to return the array of inbound links.

For information about inbound links and related network data model concepts, see
Section 6.3.

The following example returns an array of link ID numbers of the inbound links
into the node whose node ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET_IN_LINKS ('ROADS_NETWORK', 3) FROM DUAL;
SDO_NET.GET IN LINKS ('ROADS NETWORK',3)

SDO_NUMBER ARRAY (102)

SDO_NET Package Subprograms 7-29

SDO_NET.GET_LINK_COST_COLUMN

SDO_NET.GET_LINK_COST_COLUMN

Format
SDO_NET.GET_LINK_COST_COLUMN(
network IN VARCHAR2) RETURN VARCHAR?2;
Description
Returns the name of the link cost column for a network.
Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_COST_COLUMN column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the link cost column for the network
named ROADS NETWORK.

SELECT SDO _NET.GET LINK COST COLUMN ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET LINK_COST COLUMN ('ROADS NETWORK')

7-30 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_LINK_DIRECTION

SDO_NET.GET_LINK_DIRECTION

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LINK_DIRECTION(
network IN VARCHAR2) RETURN VARCHAR2;

Returns the link direction for a network.

network
Network name.

This function returns the value of the LINK_DIRECTION column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 6-5 in Section 6.7.1).

The following example returns the link direction for the network named ROADS _
NETWORK.

SELECT SDO_NET.GET LINK DIRECTION ('ROADS NETWORK') FROM DUAL;
SDO_NET.GET LINK DIRECTION ('ROADS NETWORK')

DIRECTED

SDO_NET Package Subprograms 7-31

SDO_NET.GET_LINK_GEOM_COLUMN

SDO_NET.GET_LINK_GEOM_COLUMN

Format
SDO_NET.GET_LINK_GEOM_COLUMN(
network IN VARCHAR2) RETURN VARCHARZ;
Description
Returns the name of the link geometry column for a spatial network.
Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_GEOM_COLUMN column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the link geometry column for the
network named ROADS NETWORK.

SELECT SDO_NET.GET LINK_GEOM COLUMN ('ROADS NETWORK') FROM DUAL;
SDO_NET.GET LINK_GEOM_COLUMN ('ROADS NETWORK')

LINK GEOMETRY

7-32 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_LINK_GEOMETRY

SDO_NET.GET_LINK_GEOMETRY

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LINK_GEOMETRY(
network IN VARCHAR2,
link_id IN NUMBER) RETURN MDSYS.SDO_GEOMETRY;

Returns the geometry associated with a link in a spatial network.

network
Network name.

link_id
ID number of the link for which to return the geometry.

None.

The following example returns the geometry associated with the link whose link ID
is 103 in the network named ROADS NETWORK.

SELECT SDO_NET.GET_ LINK GEOMETRY ('ROADS NETWORK', 103) FROM DUAL;

SDO_NET.GET LINK GEOMETRY ('ROADS NETWORK',103) (SDO_GTYPE, SDO_SRID, SDO_POINT (X,

SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1), SDO_ORDINATE ARRAY (
8, 4, 12, 4))

SDO_NET Package Subprograms 7-33

SDO_NET.GET_LINK_TABLE_NAME

SDO_NET.GET_LINK_TABLE_NAME

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LINK_TABLE_NAME(
network IN VARCHAR2) RETURN VARCHAR2;

Returns the name of the link table for a network.

network
Network name.

This function returns the value of the LINK_TABLE_NAME column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in Section 6.7.1).

The following example returns the name of the link table for the network named
ROADS NETWORK

SELECT SDO _NET.GET LINK TABLE NAME ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET LINK TABLE_NAME ('ROADS NETWORK')

ROADS_LINKS

7-34 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_LRS_GEOM_COLUMN

SDO_NET.GET_LRS_GEOM_COLUMN

Format

SDO_NET.GET_LRS_GEOM_COLUMN(

network IN VARCHAR2) RETURN VARCHAR2;

Description

Returns the name of the LRS geometry column for a spatial network.
Parameters

network

Network name.

Usage Notes

This function returns the value of the LRS_ GEOM_COLUMN column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in

Section 6.7.1).

Examples

The following example returns the name of the LRS geometry column for the

network named ROADS NETWORK.

SELECT SDO _NET.GET LRS GEOM COLUMN ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET LRS GEOM COLUMN ('ROADS NETWORK')

ROAD_GEOM

SDO_NET Package Subprograms

7-35

SDO_NET.GET_LRS_LINK_GEOMETRY

SDO_NET.GET_LRS_LINK_GEOMETRY

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LRS_LINK_GEOMETRY(
network IN VARCHAR2,
link_id IN NUMBER) RETURN MDSYS.SDO_GEOMETRY;

Returns the LRS geometry associated with a link in a spatial LRS network.

network
Network name.

link_id
ID number of the link for which to return the geometry.

None.

The following example returns the LRS geometry associated with the link whose
link ID is 103 in the network named ROADS NETWORK.

SELECT SDO_NET.GET_LRS LINK GEOMETRY ('ROADS NETWORK', 103) FROM DUAL;

SDO_NET.GET LRS_LINK GEOMETRY ('ROADS NETWORK',103) (SDO_GTYPE, SDO_SRID, SDO_POIN

SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1), SDO_ORDINATE ARRAY (
8, 4, 12, 4))

7-36 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_LRS_NODE_GEOMETRY

SDO_NET.GET_LRS_NODE_GEOMETRY

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LRS_NODE_GEOMETRY(
network IN VARCHAR2,
node_id IN NUMBER) RETURN MDSYS.SDO_GEOMETRY;

Returns the LRS geometry associated with a node in a spatial LRS network.

network
Network name.

node_id
ID number of the node for which to return the geometry.

None.

The following example returns the LRS geometry associated with the node whose
node ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET LRS NODE GEOMETRY ('ROADS NETWORK', 3) FROM DUAL;
SDO_NET.GET LRS_NODE_GEOMETRY ('ROADS NETWORK', 3) (SDO_GTYPE, SDO_SRID, SDO_POINT (

SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(8, 4, NULL), NULL, NULL)

SDO_NET Package Subprograms 7-37

SDO_NET.GET_LRS_TABLE_NAME

SDO_NET.GET_LRS_TABLE_NAME

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_LRS_TABLE_NAME(
network IN VARCHAR2) RETURN VARCHAR2;

Returns the name of the table containing LRS geometries in a spatial LRS network.

network
Network name.

This function returns the value of the LRS_ TABLE_NAME column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in Section 6.7.1).

The following example returns the name of the table that contains LRS geometries
for the network named ROADS NETWORK.

SELECT SDO _NET.GET LRS TABLE NAME ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET LRS_TABLE_NAME ('ROADS NETWORK')

7-38 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_NETWORK_TYPE

SDO_NET.GET_NETWORK_TYPE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NETWORK_TYPE(
network IN VARCHAR2) RETURN VARCHAR2;

Returns the network type.

network
Network name.

This function returns the value of the NETWORK_TYPE column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 6-5 in Section 6.7.1).

The following example returns the network type for the network named ROADS_
NETWORK

SELECT SDO_NET.GET NETWORK TYPE ('ROADS NETWORK') FROM DUAL;
SDO_NET.GET NETWORK TYPE ('ROADS NETWORK')

Roadways

SDO_NET Package Subprograms 7-39

SDO_NET.GET_NO_OF_HIERARCHY_LEVELS

SDO_NET.GET_NO_OF_HIERARCHY_LEVELS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NO_OF_HIERARCHY _LEVELS(
network IN VARCHAR2) RETURN NUMBER,;

Returns the number of hierarchy levels for a network.

network
Network name.

This function returns the value of the NO_OF_HIERARCHY_LEVELS column for
the network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

For an explanation of network hierarchy, see Section 6.5.

The following example returns the number of hierarchy levels for the network
named ROADS NETWORK.

SELECT SDO NET.GET NO OF HIERARCHY LEVELS ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET NO_OF HIERARCHY LEVELS ('ROADS NETWORK')

7-40 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_NO_OF_LINKS

SDO_NET.GET_NO_OF_LINKS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NO_OF_LINKS(

network IN VARCHAR2) RETURN NUMBER,;
or
SDO_NET.GET_NO_OF_LINKS(

network IN VARCHAR2,

hierarchy_id IN NUMBER) RETURN NUMBER,;

Returns the number of links for a network or a hierarchy level in a network.

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of links.

None.

The following example returns the number of links in the network named ROADS_
NETWORK.

SELECT SDO_NET.GET NO OF LINKS ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET NO_OF LINKS ('ROADS NETWORK')

SDO_NET Package Subprograms 7-41

SDO_NET.GET_NO_OF_NODES

SDO_NET.GET_NO_OF_NODES

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NO_OF_NODES(

network IN VARCHAR2) RETURN NUMBER,;
or
SDO_NET.GET_NO_OF_NODES(

network IN VARCHAR2,

hierarchy_id IN NUMBER) RETURN NUMBER,;

Returns the number of nodes for a network or a hierarchy level in a network.

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of nodes.

For information about nodes and related concepts, see Section 6.3.

The following example returns the number of nodes in the network named ROADS
NETWORK.

SELECT SDO_NET.GET NO OF NODES ('ROADS NETWORK') FROM DUAL;

SDO_NET.GET NO_OF NODES ('ROADS_NETWORK')

7-42 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_NODE_DEGREE

SDO_NET.GET_NODE_DEGREE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NODE_DEGREE(
network IN VARCHAR2,
node_id IN NUMBER) RETURN NUMBER;

Returns the number of links to a node.

network
Network name.

node_id
Node ID of the node for which to return the number of links.

For information about node degree and related network data model concepts, see
Section 6.3.

The following example returns the number of links to the node whose node ID is 3
in the network named ROADS NETWORK.

SELECT SDO_NET.GET NODE DEGREE ('ROADS NETWORK', 3) FROM DUAL;

SDO_NET.GET NODE_DEGREE ('ROADS_NETWORK', 3)

SDO_NET Package Subprograms 7-43

SDO_NET.GET_NODE_GEOM_COLUMN

SDO_NET.GET_NODE_GEOM_COLUMN

Format
SDO_NET.GET_NODE_GEOM_COLUMN(
network IN VARCHAR2) RETURN VARCHAR2,
Description
Returns the name of the geometry column for nodes in a spatial network.
Parameters

network
Network name.

Usage Notes

This function returns the value of the NODE_GEOM_COLUMN column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the geometry column for nodes in the
network named ROADS NETWORK.

SELECT SDO_NET.GET NODE_GEOM_COLUMN ('ROADS_NETWORK') FROM DUAL;
SDO_NET.GET NODE_GEOM_COLUMN ('ROADS NETWORK')

NODE_GEOMETRY

7-44 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_NODE_GEOMETRY

SDO_NET.GET_NODE_GEOMETRY

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NODE_GEOMETRY(
network IN VARCHAR2,
node_id IN NUMBER) RETURN MDSYS.SDO_GEOMETRY;

Returns the LRS geometry associated with a node in a spatial network.

network
Network name.

node_id
ID number of the node for which to return the geometry.

None.

The following example returns the geometry associated with the node whose node
ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET NODE GEOMETRY ('ROADS NETWORK', 3) FROM DUAL;
SDO_NET.GET NODE_GEOMETRY ('ROADS NETWORK', 3) (SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y

SDO_GEOMETRY (2001, NULL, SDO_POINT TYPE(8, 4, NULL), NULL, NULL)

SDO_NET Package Subprograms 7-45

SDO_NET.GET_NODE_IN_DEGREE

SDO_NET.GET_NODE_IN_DEGREE

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_NODE_IN_DEGREE(
network IN VARCHAR2,
node_id IN NUMBER) RETURN NUMBER,;

Returns the number of inbound links to a node.

network
Network name.

node_id
Node ID of the node for which to return the number of inbound links.

For information about node degree and related network data model concepts, see
Section 6.3.

The following example returns the number of inbound links to the node whose
node ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET NODE IN DEGREE ('ROADS NETWORK', 3) FROM DUAL;

SDO_NET.GET NODE IN DEGREE ('ROADS NETWORK',3)

7-46 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_NODE_OUT_DEGREE

SDO_NET.GET_NODE_OUT_DEGREE

Format
SDO_NET.GET_NODE_OUT_DEGREE(

network IN VARCHAR2,
node_id IN NUMBER) RETURN NUMBER;

Description

Returns the number of outbound links from a node.

Parameters

network
Network name.

node_id
Node ID of the node for which to return the number of outbound links.

Usage Notes

For information about node degree and related network data model concepts, see
Section 6.3.

Examples

The following example returns the number of outbound links from the node whose
node ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET NODE OUT DEGREE ('ROADS NETWORK', 3) FROM DUAL;

SDO_NET.GET NODE_OUT_DEGREE ('ROADS_NETWORK', 3)

SDO_NET Package Subprograms 7-47

SDO_NET.GET_NODE_TABLE_NAME

SDO_NET.GET_NODE_TABLE_NAME

Format
SDO_NET.GET_NODE_TABLE_NAME(
network IN VARCHAR2) RETURN VARCHARZ;
Description
Returns the name of the table that contains the nodes in a spatial network.
Parameters

network
Network name.

Usage Notes

This function returns the value of the NODE_TABLE_NAME column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the table that contains the nodes in the
network named ROADS NETWORK.

SELECT SDO_NET.GET NODE_TABLE_NAME ('ROADS_NETWORK') FROM DUAL;
SDO_NET.GET NODE_TABLE_NAME ('ROADS_NETWORK')

ROADS_NODES

7-48 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_OUT_LINKS

SDO_NET.GET_OUT_LINKS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.GET_OUT_LINKS(
network IN VARCHAR2,
node_id IN NUMBER) RETURN SDO_NUMBER_ARRAY;

Returns an array of link ID numbers of the outbound links from a node.

network
Network name.

node_id
ID of the node for which to return the array of outbound links.

For information about outbound links and related network data model concepts,
see Section 6.3.

The following example returns an array of link ID numbers of the outbound links
from the node whose node ID is 3 in the network named ROADS NETWORK.

SELECT SDO_NET.GET_OUT_LINKS ('ROADS_NETWORK', 3) FROM DUAL;
SDO_NET.GET OUT LINKS ('ROADS_NETWORK',3)

SDO_NUMBER ARRAY (103, 201)

SDO_NET Package Subprograms 7-49

SDO_NET.GET_PATH_GEOM_COLUMN

SDO_NET.GET_PATH_GEOM_COLUMN

Format
SDO_NET.GET_PATH_GEOM_COLUMN(
network IN VARCHAR2) RETURN VARCHARZ;
Description
Returns the name of the geometry column for paths in a spatial network.
Parameters

network
Network name.

Usage Notes

This function returns the value of the PATH_GEOM_COLUMN column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the geometry column for paths in the
network named ROADS NETWORK.

SELECT SDO_NET.GET PATH GEOM COLUMN ('ROADS_NETWORK') FROM DUAL;
SDO_NET.GET PATH_GEOM_COLUMN ('ROADS NETWORK')

PATH GEOMETRY

7-50 Oracle Spatial Topology and Network Data Models

SDO_NET.GET_PATH_TABLE_NAME

SDO_NET.GET_PATH_TABLE_NAME

Format

SDO_NET.GET_PATH_TABLE_NAME(

network IN VARCHAR2) RETURN VARCHAR2;

Description

Returns the name of the table that contains the paths in a spatial network.
Parameters

network

Network name.

Usage Notes

This function returns the value of the PATH_TABLE_NAME column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 6-5 in
Section 6.7.1).

Examples

The following example returns the name of the table that contains the paths in the
network named ROADS NETWORK.

SELECT SDO_NET.GET PATH TABLE_NAME ('ROADS NETWORK') FROM DUAL;
SDO_NET.GET PATH TABLE NAME ('ROADS NETWORK')

ROADS_PATHS

SDO_NET Package Subprograms 7-51

SDO_NET.IS_HIERARCHICAL

SDO_NET.IS_HIERARCHICAL

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.IS_HIERARCHICAL(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network has more than one level of hierarchy; returns FALSE if
the network does not have more than one level of hierarchy.

network
Network name.

For an explanation of network hierarchy, see Section 6.5.

The following example checks if the network named ROADS_NETWORK has more
than one level of hierarchy.

SELECT SDO _NET.IS HIERARCHICAL ('ROADS NETWORK') FROM DUAL;

SDO_NET.IS HIERARCHICAL ('ROADS NETWORK')

7-52 Oracle Spatial Topology and Network Data Models

SDO_NET.IS_LOGICAL

SDO_NET.IS_LOGICAL

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.IS_LOGICAL(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network is a logical network; returns FALSE if the network is
not a logical network.

network
Network name.

A network can be a spatial network or a logical network, as explained in Section 6.3.

The following example checks if the network named ROADS_NETWORK is a logical
network.

SELECT SDO _NET.IS LOGICAL ('ROADS NETWORK') FROM DUAL;

SDO_NET.IS LOGICAL ('ROADS NETWORK')

SDO_NET Package Subprograms 7-53

SDO_NET.IS_SPATIAL

SDO_NET.IS_SPATIAL

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.IS_SPATIAL(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network is a spatial network; returns FALSE if the network is
not a spatial network.

network
Network name.

A network can be a spatial network or a logical network, as explained in Section 6.3.

You can further check for the geometry type of a spatial network by using the
following functions: SDO_NET.LRS_GEOMETRY_NETWORK, SDO_NET.SDO_
GEOMETRY_NETWORK, and SDO_NET.TOPO_GEOMETRY_NETWORK.

The following example checks if the network named ROADS_NETWORK is a spatial
network.

SELECT SDO _NET.IS SPATIAL ('ROADS NETWORK') FROM DUAL;

SDO_NET.IS SPATIAL ('ROADS NETWORK')

7-54 Oracle Spatial Topology and Network Data Models

SDO_NET.LRS_GEOMETRY_NETWORK

SDO_NET.LRS_GEOMETRY_NETWORK

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.LRS_GEOMETRY_NETWORK(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network is a spatial network containing LRS geometries;
returns FALSE if the network is not a spatial network containing LRS geometries.

network
Network name.

A network contains LRS geometries if the GEOMETRY_TYPE column in its entry in
the USER_SDO_NETWORK_METADATA view contains the value LRS GEOMETRY.
(The USER_SDO_NETWORK_METADATA view is explained in Section 6.7.1.)

The following example checks if the network named ROADS_NETWORK is a spatial
network containing LRS geometries.

SELECT SDO _NET.LRS_GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;

SDO_NET.LRS_GEOMETRY NETWORK ('ROADS NETWORK')

SDO_NET Package Subprograms 7-55

SDO_NET.NETWORK_EXISTS

SDO_NET.NETWORK_EXISTS

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.NETWORK_EXISTS(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network exists; returns FALSE if the network does not exist.

network
Network name.

If you drop a network (using the SDO_NET.DROP_NETWORK procedure), the
network no longer exists.

The following example checks if the network named ROADS_NETWORK exists.

SELECT SDO_NET.NETWORK EXISTS ('ROADS NETWORK') FROM DUAL;

SDO_NET.NETWORK EXISTS ('ROADS NETWORK')

7-56 Oracle Spatial Topology and Network Data Models

SDO_NET.SDO_GEOMETRY_NETWORK

SDO_NET.SDO_GEOMETRY_NETWORK

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.SDO_GEOMETRY_NETWORK(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network is a spatial network containing SDO geometries
(spatial geometries without measure information); returns FALSE if the network is
not a spatial network containing SDO geometries.

network
Network name.

A network contains SDO geometries if the GEOMETRY_TYPE column in its entry
in the USER_SDO_NETWORK_METADATA view contains the value SDO__
GEOMETRY. (The USER_SDO_NETWORK_METADATA view is explained in
Section 6.7.1.)

The following example checks if the network named ROADS_NETWORK is a spatial
network containing SDO geometries.

SELECT SDO_NET.SDO GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;

SDO_NET.SDO_GEOMETRY NETWORK ('ROADS NETWORK')

SDO_NET Package Subprograms 7-57

SDO_NET.TOPO_GEOMETRY_NETWORK

SDO_NET.TOPO_GEOMETRY_NETWORK

Format
SDO_NET.TOPO_GEOMETRY_NETWORK(
network IN VARCHAR2) RETURN VARCHARZ;
Description
Returns TRUE if the network is a spatial network containing SDO_TOPO_
GEOMETRY (topology geometry) objects; returns FALSE if the network is not a
spatial network containing SDO_TOPO_GEOMETRY objects.
Parameters

network
Network name.

Usage Notes

A network contains SDO_TOPO_GEOMETRY objects if the GEOMETRY_TYPE
column in its entry in the USER_SDO_NETWORK_METADATA view contains the
value TOPO_GEOMETRY. (The USER_SDO_NETWORK_METADATA view is
explained in Section 6.7.1.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial
network containing SDO_TOPO_GEOMETRY objects.

SELECT SDO_NET.TOPO_GEOMETRY NETWORK ('ROADS NETWORK') FROM DUAL;

SDO_NET.TOPO_GEOMETRY NETWORK ('ROADS NETWORK')

7-58 Oracle Spatial Topology and Network Data Models

SDO_NET.VALIDATE_LINK_SCHEMA

SDO_NET.VALIDATE_LINK_SCHEMA

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.VALIDATE_LINK_SCHEMA(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the metadata relating to links in a network is valid; returns FALSE
if the metadata relating to links in a network is not valid.

network
Network name.

This function checks the following for validity: table name, geometry column, and
cost column for spatial networks; measure-related information for LRS networks;
topology-related information for topology networks; and hierarchy-related
information for hierarchical networks.

The following example checks the validity of the metadata related to links in the
network named ROADS NETWORK.

SELECT SDO NET.VALIDATE LINK SCHEMA ('ROADS NETWORK') FROM DUAL;

SDO_NET.VALIDATE LINK SCHEMA ('ROADS NETWORK')

SDO_NET Package Subprograms 7-59

SDO_NET.VALIDATE_LRS_SCHEMA

SDO_NET.VALIDATE_LRS_SCHEMA

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.VALIDATE_LRS_SCHEMA(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the metadata relating to LRS information in a network is valid;
returns FALSE if the metadata relating to LRS information in a network is not valid.

network
Network name.

None.

The following example checks the validity of the metadata related to LRS
information in the network named ROADS NETWORK.

SELECT SDO_NET.VALIDATE LRS SCHEMA ('ROADS NETWORK') FROM DUAL;

SDO_NET.VALIDATE LRS SCHEMA ('ROADS NETWORK')

7-60 Oracle Spatial Topology and Network Data Models

SDO_NET.VALIDATE_NETWORK

SDO_NET.VALIDATE_NETWORK

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.VALIDATE_NETWORK(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the network is valid; returns FALSE if the network is not valid.

network
Network name.

This function checks for the following, and returns FALSE if one or more are not
true:

s The network exists.

s Thenode and link tables for the network exist, and they contain the required
columns.

= For an LRS geometry network, the LRS table exists and contains the required
columns.

= For a spatial network, columns for the node and path geometries exist and have
spatial indexes defined on them.

The following example validates the network named LOG_NET1.

SELECT SDO NET.VALIDATE NETWORK('LOG NET1') FROM DUAL;

SDO_NET.VALIDATE NETWORK ('LOG NET1')

SDO_NET Package Subprograms 7-61

SDO_NET.VALIDATE_NODE_SCHEMA

SDO_NET.VALIDATE_NODE_SCHEMA

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.VALIDATE_NODE_SCHEMA(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the metadata relating to nodes in a network is valid; returns FALSE
if the metadata relating to nodes in a network is not valid.

network
Network name.

This function checks the following for validity: table name, geometry column, and
cost column for spatial networks; measure-related information for LRS networks;
topology-related information for topology networks; and hierarchy-related
information for hierarchical networks.

The following example checks the validity of the metadata related to nodes in the
network named LOG NET1.

SELECT SDO_NET.VALIDATE NODE SCHEMA ('LOG NET1') FROM DUAL;

SDO_NET.VALIDATE_NODE_SCHEMA ('LOG_NET1')

7-62 Oracle Spatial Topology and Network Data Models

SDO_NET.VALIDATE_PATH_SCHEMA

SDO_NET.VALIDATE_PATH_SCHEMA

Format

Description

Parameters

Usage Notes

Examples

SDO_NET.VALIDATE_PATH_SCHEMA(
network IN VARCHAR2) RETURN VARCHAR2;

Returns TRUE if the metadata relating to paths in a network is valid; returns FALSE
if the metadata relating to paths in a network is not valid.

network
Network name.

This function checks the following for validity: table name, geometry column, and
cost column for spatial networks; measure-related information for LRS networks;
topology-related information for topology networks; and hierarchy-related
information for hierarchical networks.

The following example checks the validity of the metadata related to paths in the
network named ROADS NETWORK.

SELECT SDO _NET.VALIDATE PATH SCHEMA ('ROADS NETWORK') FROM DUAL;

SDO_NET.VALIDATE PATH SCHEMA ('ROADS NETWORK')

SDO_NET Package Subprograms 7-63

SDO_NET.VALIDATE_PATH_SCHEMA

7-64 Oracle Spatial Topology and Network Data Models

A

ADD_EDGE function, 4-2
ADD_ISOLATED_NODE function, 4-4
ADD_LOOQOP function, 4-6
ADD_NODE function, 4-8
ADD_TOPO_GEOMETRY_LAYER procedure, 3-2
ALL_SDO_NETWORK_METADATA view, 6-14
ALL_SDO_TOPO_INFO view, 1-27
ALL_SDO_TOPO_METADATA view, 1-29
API

network data model, 6-16

topology data model, 1-30
application programming interface (API)

network data model, 6-16

topology data model, 1-30

Cc

cache
TopoMap object associated with, 2-2
See also TopoMap objects
census (U.S.) data
demo for processing, 1-1
CHANGE_EDGE_COORDS procedure, 4-10
child layer, 1-10
child node, 6-8
CLEAR_TOPO_MAP procedure, 4-13
COMMIT_TOPO_MAP procedure, 4-14
constraints
network, 6-6
containing face
getting for point, 4-23
COPY_NETWORK procedure, 7-2

Index

cost, 6-6

CREATE_EDGE_INDEX procedure, 4-16
CREATE_FACE_INDEX procedure, 4-18
CREATE_LINK_TABLE procedure, 7-3
CREATE_LOGICAL_NETWORK procedure, 7-5
CREATE_LRS_NETWORK procedure, 7-8
CREATE_LRS_TABLE procedure, 7-12
CREATE_NODE_TABLE procedure, 7-14
CREATE_PATH_LINK_TABLE procedure, 7-16
CREATE_PATH_TABLE procedure, 7-17
CREATE_SDO_NETWORK procedure, 7-18
CREATE_TOPO_MAP procedure, 4-20
CREATE_TOPO_NETWORK procedure, 7-22
CREATE_TOPOLOGY procedure, 3-4

D

degree

of anode, 6-6
DELETE_TOPO_GEOMETRY_LAYER

procedure, 3-6

demo files for topology data model, 1-1
directed links, 6-5
directed networks, 6-5
direction of edge, 1-4
DROP_NETWORK procedure, 7-25
DROP_TOPO_MAP procedure, 4-22
DROP_TOPOLOGY procedure, 3-8

E

edge index
creating for TopoMap object, 4-16
edge information table, 1-14

Index-1

edges
adding, 2-17,4-2
adding loop, 4-6
changing coordinates, 2-20, 4-10
definition, 1-3
direction, 1-4
getting coordinates of shape points, 4-27
getting ID numbers of added edges, 4-25
getting ID numbers of changed edges, 4-26
getting ID numbers of deleted edges, 4-29
getting nearest edge for point, 4-35
getting nodes on, 4-30
island, 1-6
moving, 2-18,4-52
removing, 2-19, 4-60
storing information in edge information
table, 1-14
updating, 2-20
error handling
topology editing, 2-9
examples
network data model (PL/SQL), 6-21
topology data model (PL/SQL), 1-32
exception handling
topology editing, 2-9

F

FO (face zero), 1-5

face index
creating for TopoMap object, 4-18

face information table, 1-17

faces
definition, 1-4
getting boundary of, 3-9
getting containing face for point, 4-23
getting ID numbers of added faces, 4-32
getting ID numbers of changed faces, 4-33
getting ID numbers of deleted faces, 4-34
redefining, 2-20
storing information in face information

table, 1-17

feature
in network application, 6-6

feature table, 1-8

Index-2

function-based indexes
not supported on SDO_TOPO_GEOMETRY
columns, 1-31

G

GET_CHILD_LINKS function, 7-26
GET_CHILD_NODES function, 7-27
GET_CONTAINING_FACE function, 4-23
GET_EDGE_ADDITIONS function, 4-25
GET_EDGE_CHANGES function, 4-26
GET_EDGE_COORDS function, 4-27
GET_EDGE_DELETIONS function, 4-29
GET_EDGE_NODES function, 4-30
GET_FACE_ADDITIONS function, 4-32
GET_FACE_BOUNDARY function, 3-9
GET_FACE_CHANGES function, 4-33
GET_FACE_DELETIONS function, 4-34
GET_GEOMETRY member function, 1-26
GET_GEOMETRY_TYPE function, 7-28
GET_IN_LINKS function, 7-29
GET_LINK_COST_COLUMN function, 7-30
GET_LINK_DIRECTION function, 7-31
GET_LINK_GEOM_COLUMN function, 7-32
GET_LINK_GEOMETRY function, 7-33
GET_LINK_TABLE_NAME function, 7-34
GET_LRS_GEOM_COLUMN function, 7-35
GET_LRS_LINK_GEOMETRY function, 7-36
GET_LRS_NODE_GEOMETRY function, 7-37
GET_LRS_TABLE_NAME function, 7-38
GET_NEAREST_EDGE function, 4-35
GET_NEAREST_NODE function, 4-37
GET_NETWORK_TYPE function, 7-39
GET_NO_OF_HIERARCHY_LEVELS
function, 7-40
GET_NO_OF_LINKS function, 7-41
GET_NO_OF_NODES function, 7-42
GET_NODE_ADDITIONS function, 4-39
GET_NODE_CHANGES function, 4-40
GET_NODE_COORD function, 4-41
GET_NODE_DEGREE function, 7-43
GET_NODE_DELETIONS function, 4-43
GET_NODE_GEOM_COLUMN function, 7-44
GET_NODE_GEOMETRY function, 7-45
GET_NODE_IN_DEGREE function, 7-46

GET_NODE_OUT_DEGREE function, 7-47
GET_NODE_STAR function, 4-44
GET_NODE_TABLE_NAME function, 7-48
GET_OUT_LINKS function, 7-49
GET_PATH_GEOM_COLUMN function, 7-50
GET_PATH_TABLE_NAME function, 7-51
GET_TOPO_NAME function, 4-46
GET_TOPO_OBJECTS function, 3-11

H

hierarchy

network, 6-7

topology geometry layer, 1-9
history information table, 1-18

inbound links, 6-6
getting link ID numbers, 7-29
getting number of for node, 7-46
in-degree, 6-6
INITIALIZE_METADATA procedure, 3-13
IS_HIERARCHICAL function, 7-52
IS_LOGICAL function, 7-53
IS_SPATIAL function, 7-54
island edge, 1-6
island node, 1-5
isolated nodes
adding, 4-4

J

Java client interface for network data model
(sdonm), 6-19

Java client interface for topology data model
(sdotopo), 1-30

L

layer

topology geometry, 1-7,3-2
link direction

getting, 7-31
link geometry

getting, 7-33

link table

definition, 6-11
links

definition, 6-5

determining if directed, 7-31

getting geometry for, 7-33

relationship to paths, 6-5

See also inbound links, outbound links
LIST_TOPO_MAPS function, 4-47
LOAD_TOPO_MAP function, 4-48
logical network, 6-5
loops

adding, 4-6
LRS network, 6-5
LRS_GEOMETRY_NETWORK function, 7-55

metadata

initializing for a topology, 3-13
minimum cost path, 6-6
minimum cost spanning tree, 6-6
MOVE_EDGE procedure, 4-52
MOVE_ISOLATED_NODE procedure, 4-55
MOVE_NODE procedure, 4-57

N

nearest edge
getting for point, 4-35
nearest node
getting for point, 4-37
network constraints, 6-6
network data model
application programming interface (API), 6-16
concepts, 6-5
overview, 6-1
PL/SQL examples, 6-21
steps for using, 6-2
subprogram reference information, 7-1
tables for, 6-9
NETWORK_EXISTS function, 7-56
networks
definition, 6-5
hierarchical, 6-7

Index-3

logical, 6-5
spatial, 6-5
node geometry
getting, 7-45
node information table, 1-16
node star
getting for node, 4-44
node table
definition, 6-10
nodes
adding, 2-10,4-4,4-8
definition, 1-3, 6-5
degree, 6-6
getting coordinates of, 4-41
getting geometry, 7-45
getting ID numbers of added nodes, 4-39
getting ID numbers of changed nodes, 4-40
getting ID numbers of deleted nodes, 4-43
getting nearest node for point, 4-37
getting node star, 4-44
getting number of, 7-42
island, 1-5
moving, 2-11,4-57
moving isolated nodes, 4-55
reachable, 6-6
reaching, 6-6
removing, 2-15,4-61
storing information in node information
table, 1-16

(o)

operators
SDO_ANYINTERACT, 5-2
topology data model, 5-1
outbound links, 6-6
getting link ID numbers, 7-49
getting number of for node, 7-47
out-degree, 6-6

P

parent layer, 1-10
parentnode, 6-8
path table

Index-4

definition, 6-12
path-link table

definition, 6-13
paths

definition, 6-5

minimum cost, 6-6
PL/SQL examples

network data model, 6-21

R

reachable nodes, 6-6

reaching nodes, 6-6

read-only TopoMap objects, 2-2
relationship information table, 1-18
REMOVE_EDGE procedure, 4-60
REMOVE_NODE procedure, 4-61
ROLLBACK_TOPO_MAP procedure, 4-62

S

SDO network, 6-5

SDO_ANYINTERACT operator, 5-2

SDO_EDGE_ARRAY type, 1-27

SDO_GEOMETRY_NETWORK function, 7-57

SDO_LIST_TYPE type, 1-26

SDO_NET package
COPY_NETWORK, 7-2
CREATE_LINK_TABLE, 7-3
CREATE_LOGICAL_NETWORK, 7-5
CREATE_LRS_NETWORK, 7-8
CREATE_LRS_TABLE, 7-12
CREATE_NODE_TABLE, 7-14
CREATE_PATH_LINK_TABLE, 7-16
CREATE_PATH_TABLE, 7-17
CREATE_SDO_NETWORK, 7-18
CREATE_TOPO_NETWORK, 7-22
DROP_NETWORK, 7-25
GET_CHILD_LINKS, 7-26
GET_CHILD_NODES, 7-27
GET_GEOMETRY_TYPE, 7-28
GET_IN_LINKS, 7-29
GET_LINK_COST_COLUMN, 7-30
GET_LINK_DIRECTION, 7-31
GET_LINK_GEOM_COLUMN, 7-32

GET_LINK_GEOMETRY, 7-33 SDO_TOPO_GEOMETRY member function (GET_

GET_LINK_TABLE_NAME, 7-34 GEOMETRY), 1-26
GET_LRS_GEOM_COLUMN, 7-35 SDO_TOPO_GEOMETRY type, 1-20
GET_LRS_LINK_GEOMETRY, 7-36 SDO_TOPO_MAP package

GET_LRS_NODE_GEOMETRY, 7-37
GET_LRS_TABLE_NAME, 7-38
GET_NETWORK_TYPE, 7-39
GET_NO_OF_HIERARCHY_LEVELS, 7-40
GET_NO_OF_LINKS, 7-41
GET_NO_OF_NODES, 7-42
GET_NODE_DEGREE, 7-43
GET_NODE_GEOM_COLUMN, 7-44
GET_NODE_GEOMETRY, 7-45
GET_NODE_IN_DEGREE, 7-46
GET_NODE_OUT_DEGREE, 7-47
GET_NODE_TABLE_NAME, 7-48
GET_OUT_LINKS, 7-49
GET_PATH_GEOM_COLUMN, 7-50
GET_PATH_TABLE_NAME, 7-51
IS_HIERARCHICAL, 7-52
IS_LOGICAL, 7-53
IS_SPATIAL, 7-54
LRS_GEOMETRY_NETWORK, 7-55
NETWORK_EXISTS, 7-56
reference information, 7-1
SDO_GEOMETRY_NETWORK, 7-57
TOPO_GEOMETRY_NETWORK, 7-58
VALIDATE_LINK_SCHEMA, 7-59
VALIDATE_LRS_SCHEMA, 7-60
VALIDATE_NETWORK, 7-61
VALIDATE_NODE_SCHEMA, 7-62
VALIDATE_PATH_SCHEMA, 7-63
SDO_NUMBER_ARRAY type, 1-27
SDO_TGL_OBJECT type, 1-23
SDO_TGL_OBJECT_ARRAY type, 1-23
SDO_TOPO package
ADD_TOPO_GEOMETRY_LAYER, 3-2
CREATE_TOPOLOGY, 3-4
DELETE_TOPO_GEOMETRY_LAYER, 3-6
DROP_TOPOLOGY, 3-8
GET_FACE_BOUNDARY, 3-9
GET_TOPO_OBJECTS, 3-11
INITIALIZE_METADATA, 3-13
reference information, 3-1
SDO_TOPO_GEOMETRY constructors, 1-21

ADD_EDGE, 4-2
ADD_ISOLATED_NODE, 4-4
ADD_LOOP, 4-6
ADD_NODE, 4-8
CHANGE_EDGE_COORDS, 4-10
CLEAR_TOPO_MAP, 4-13
COMMIT_TOPO_MAP, 4-14
CREATE_EDGE_INDEX, 4-16
CREATE_FACE_INDEX, 4-18
CREATE_TOPO_MAP, 4-20
DROP_TOPO_MAP, 4-22
GET_CONTAINING_FACE, 4-23
GET_EDGE_ADDITIONS, 4-25
GET_EDGE_CHANGES, 4-26
GET_EDGE_COORDS, 4-27
GET_EDGE_DELETIONS, 4-29
GET_EDGE_NODES, 4-30
GET_FACE_ADDITIONS, 4-32
GET_FACE_CHANGES, 4-33
GET_FACE_DELETIONS, 4-34
GET_NEAREST_EDGE, 4-35
GET_NEAREST_NODE, 4-37
GET_NODE_ADDITIONS, 4-39
GET_NODE_CHANGES, 4-40
GET_NODE_COORD, 4-41
GET_NODE_DELETIONS, 4-43
GET_NODE_STAR, 4-44
GET_TOPO_NAME, 4-46
LIST TOPO_MAPS, 4-47
LOAD_TOPO_MAP, 4-48
MOVE_EDGE, 4-52
MOVE_ISOLATED_NODE, 4-55
MOVE_NODE, 4-57

reference information, 4-1
REMOVE_EDGE, 4-60
REMOVE_NODE, 4-61
ROLLBACK_TOPO_MAP, 4-62
UPDATE_TOPO_MAP, 4-63
VALIDATE_TOPO_MAP, 4-65
VALIDATE_TOPOLOGY, 4-67

SDO_TOPO_OBJECT type, 1-22

Index-5

SDO_TOPO_OBJECT_ARRAY type, 1-22
sdonm Java client interface, 6-19
sdotopo Java client interface, 1-30
spanning tree, 6-6

minimum cost, 6-6
spatial network, 6-5

T

TG_ID attribute of SDO_TOPO_GEOMETRY
type, 1-20
TG_LAYER_ID attribute of SDO_TOPO_
GEOMETRY type, 1-20
TG_TYPE attribute of SDO_TOPO_GEOMETRY
type, 1-20
TOPO_GEOMETRY_NETWORK function, 7-58
topo_map parameter
SDO_TOPO subprograms, 2-3
topology
clearing map, 4-13
committing map, 4-14
creating, 3-4
creating edge index, 4-16
creating face index, 4-18
creating map, 4-20
deleting (dropping), 3-8
deleting (dropping) map, 4-22
editing, 2-1
getting name from TopoMap object, 4-46
hierarchy of geometry layers, 1-9
initializing metadata, 3-13
loading into TopoMap object, 4-48
updating, 4-63
validating, 4-67
topology data model
application programming interface (API), 1-30
concepts, 1-3
operator reference information, 5-1
overview, 1-1
PL/SQL example, 1-32
steps for using, 1-2
subprogram reference information, 3-1,4-1
topology data types, 1-19
topology editor
demo, 1-1

Index-6

topology geometry

definition, 1-7

layer, 1-7
topology geometry layer

adding, 3-2

definition, 1-7

deleting, 3-6

hierarchical relationships in, 1-9
topology geometry network, 6-5
topology maps

listing, 4-47

loading, 4-48

rolling back, 4-62

validating, 4-65

See also TopoMap objects
topology operators, 5-1

SDO_ANYINTERACT, 5-2
topology parameter

SDO_TOPO subprograms, 2-2,2-3
TOPOLOGY_ID attribute of SDO_TOPO_

GEOMETRY type, 1-20

TopoMap objects

clearing, 4-13

committing changes to the database, 4-14

creating, 4-20

creating edge index, 4-16

creating face index, 4-18

deleting (dropping), 4-22

description, 2-2

getting topology name, 4-46

listing, 4-47

loading, 4-48

process for using to edit topologies, 2-4, 2-6

read-only, 2-2

rolling back changes in, 4-62

updatable, 2-2

validating, 4-65

U

undirected links, 6-5

undirected networks, 6-5

universal face (F0), 1-5

updatable TopoMap objects, 2-2
UPDATE_TOPO_MAP procedure, 4-63

USER_SDO_NETWORK_METADATA view, 6-14
USER_SDO_TOPO_INFO view, 1-27
USER_SDO_TOPO_METADATA view, 1-28

\'

VALIDATE_LINK_SCHEMA function, 7-59
VALIDATE_LRS_SCHEMA function, 7-60
VALIDATE_NETWORK function, 7-61
VALIDATE_NODE_SCHEMA function, 7-62
VALIDATE_PATH_SCHEMA function, 7-63
VALIDATE_TOPO_MAP function, 4-65
VALIDATE_TOPOLOGY procedure, 4-67

Index-7

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	Part I� Topology Data Model
	1 Topology Data Model Overview
	1.1� Main Steps in Using Topology Data
	1.2� Topology Data Model Concepts
	1.3� Topology Geometries and Layers
	1.3.1� Features and Topology Objects

	1.4� Topology Geometry Layer Hierarchy
	1.5� Topology Data Model Tables
	1.5.1� Edge Information Table
	1.5.2� Node Information Table
	1.5.3� Face Information Table
	1.5.4� Relationship Information Table
	1.5.5� History Information Table

	1.6� Topology Data Types
	1.6.1� SDO_TOPO_GEOMETRY Type
	1.6.2� SDO_TOPO_GEOMETRY Constructors
	1.6.2.1� Constructors for Insert Operations into the Lowest Level
	1.6.2.2� Constructors for Insert Operations into a Parent Level
	1.6.2.3� Constructors for Update Operations into the Lowest Level
	1.6.2.4� Constructors for Update Operations into a Parent Level

	1.6.3� GET_GEOMETRY Member Function
	1.6.4� SDO_LIST_TYPE Type
	1.6.5� SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

	1.7� Topology Metadata Views
	1.7.1� xxx_SDO_TOPO_INFO Views
	1.7.2� xxx_SDO_TOPO_METADATA Views

	1.8� Topology Application Programming Interface
	1.8.1� Topology Data Model Java Interface

	1.9� Exporting and Importing Topology Data
	1.10� Function-Based Indexes Not Supported
	1.11� Topology Example (PL/SQL)

	2 Editing Topologies
	2.1� Approaches for Editing Topology Data
	2.1.1� TopoMap Objects
	2.1.2� Specifying the Editing Approach with the Topology Parameter
	2.1.3� Using GET_xxx Topology Functions
	2.1.4� Process for Editing Using Cache Explicitly (PL/SQL API)
	2.1.5� Process for Editing Using the Java API
	2.1.6� Error Handling for Topology Editing
	2.1.6.1� Input Parameter Errors
	2.1.6.2� All Exceptions

	2.2� Performing Operations on Nodes
	2.2.1� Adding a Node
	2.2.2� Moving a Node
	2.2.2.1� Additional Examples of Allowed and Disallowed Node Moves

	2.2.3� Removing a Node
	2.3� Performing Operations on Edges
	2.3.1� Adding an Edge
	2.3.2� Moving an Edge
	2.3.3� Removing an Edge
	2.3.4� Updating an Edge

	3 SDO_TOPO Package Subprograms
	SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER
	SDO_TOPO.CREATE_TOPOLOGY
	SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
	SDO_TOPO.DROP_TOPOLOGY
	SDO_TOPO.GET_FACE_BOUNDARY
	SDO_TOPO.GET_TOPO_OBJECTS
	SDO_TOPO.INITIALIZE_METADATA

	4 SDO_TOPO_MAP Package Subprograms
	SDO_TOPO_MAP.ADD_EDGE
	SDO_TOPO_MAP.ADD_ISOLATED_NODE
	SDO_TOPO_MAP.ADD_LOOP
	SDO_TOPO_MAP.ADD_NODE
	SDO_TOPO_MAP.CHANGE_EDGE_COORDS
	SDO_TOPO_MAP.CLEAR_TOPO_MAP
	SDO_TOPO_MAP.COMMIT_TOPO_MAP
	SDO_TOPO_MAP.CREATE_EDGE_INDEX
	SDO_TOPO_MAP.CREATE_FACE_INDEX
	SDO_TOPO_MAP.CREATE_TOPO_MAP
	SDO_TOPO_MAP.DROP_TOPO_MAP
	SDO_TOPO_MAP.GET_CONTAINING_FACE
	SDO_TOPO_MAP.GET_EDGE_ADDITIONS
	SDO_TOPO_MAP.GET_EDGE_CHANGES
	SDO_TOPO_MAP.GET_EDGE_COORDS
	SDO_TOPO_MAP.GET_EDGE_DELETIONS
	SDO_TOPO_MAP.GET_EDGE_NODES
	SDO_TOPO_MAP.GET_FACE_ADDITIONS
	SDO_TOPO_MAP.GET_FACE_CHANGES
	SDO_TOPO_MAP.GET_FACE_DELETIONS
	SDO_TOPO_MAP.GET_NEAREST_EDGE
	SDO_TOPO_MAP.GET_NEAREST_NODE
	SDO_TOPO_MAP.GET_NODE_ADDITIONS
	SDO_TOPO_MAP.GET_NODE_CHANGES
	SDO_TOPO_MAP.GET_NODE_COORD
	SDO_TOPO_MAP.GET_NODE_DELETIONS
	SDO_TOPO_MAP.GET_NODE_STAR
	SDO_TOPO_MAP.GET_TOPO_NAME
	SDO_TOPO_MAP.LIST_TOPO_MAPS
	SDO_TOPO_MAP.LOAD_TOPO_MAP
	SDO_TOPO_MAP.MOVE_EDGE
	SDO_TOPO_MAP.MOVE_ISOLATED_NODE
	SDO_TOPO_MAP.MOVE_NODE
	SDO_TOPO_MAP.REMOVE_EDGE
	SDO_TOPO_MAP.REMOVE_NODE
	SDO_TOPO_MAP.ROLLBACK_TOPO_MAP
	SDO_TOPO_MAP.UPDATE_TOPO_MAP
	SDO_TOPO_MAP.VALIDATE_TOPO_MAP
	SDO_TOPO_MAP.VALIDATE_TOPOLOGY

	5 Topology Operators
	SDO_ANYINTERACT

	Part II� Network Data Model
	6 Network Data Model Overview
	6.1� Introduction to Network Modeling
	6.2� Main Steps in Using the Network Data Model
	6.2.1� Letting Spatial Perform Most Operations
	6.2.2� Performing the Operations Yourself

	6.3� Network Data Model Concepts
	6.4� Network Applications
	6.4.1� Road Network Example
	6.4.2� Train (Subway) Network Example
	6.4.3� Utility Network Example
	6.4.4� Biochemical Network Example

	6.5� Network Hierarchy
	6.6� Network Data Model Tables
	6.6.1� Node Table
	6.6.2� Link Table
	6.6.3� Path Table
	6.6.4� Path-Link Table

	6.7� Network Data Model Metadata Views
	6.7.1� xxx_SDO_NETWORK_METADATA Views

	6.8� Network Data Model Application Programming Interface
	6.8.1� Network Data Model PL/SQL Interface
	6.8.2� Network Data Model Java Interface
	6.8.2.1� Network Metadata and Data Management
	6.8.2.2� Network Analysis

	6.9� Network Examples (PL/SQL)
	6.9.1� Simple Spatial (SDO) Network Example
	6.9.2� Simple Logical Network Example
	6.9.3� Spatial (LRS) Network Example
	6.9.4� Logical Hierarchical Network Example

	7 SDO_NET Package Subprograms
	SDO_NET.COPY_NETWORK
	SDO_NET.CREATE_LINK_TABLE
	SDO_NET.CREATE_LOGICAL_NETWORK
	SDO_NET.CREATE_LRS_NETWORK
	SDO_NET.CREATE_LRS_TABLE
	SDO_NET.CREATE_NODE_TABLE
	SDO_NET.CREATE_PATH_LINK_TABLE
	SDO_NET.CREATE_PATH_TABLE
	SDO_NET.CREATE_SDO_NETWORK
	SDO_NET.CREATE_TOPO_NETWORK
	SDO_NET.DROP_NETWORK
	SDO_NET.GET_CHILD_LINKS
	SDO_NET.GET_CHILD_NODES
	SDO_NET.GET_GEOMETRY_TYPE
	SDO_NET.GET_IN_LINKS
	SDO_NET.GET_LINK_COST_COLUMN
	SDO_NET.GET_LINK_DIRECTION
	SDO_NET.GET_LINK_GEOM_COLUMN
	SDO_NET.GET_LINK_GEOMETRY
	SDO_NET.GET_LINK_TABLE_NAME
	SDO_NET.GET_LRS_GEOM_COLUMN
	SDO_NET.GET_LRS_LINK_GEOMETRY
	SDO_NET.GET_LRS_NODE_GEOMETRY
	SDO_NET.GET_LRS_TABLE_NAME
	SDO_NET.GET_NETWORK_TYPE
	SDO_NET.GET_NO_OF_HIERARCHY_LEVELS
	SDO_NET.GET_NO_OF_LINKS
	SDO_NET.GET_NO_OF_NODES
	SDO_NET.GET_NODE_DEGREE
	SDO_NET.GET_NODE_GEOM_COLUMN
	SDO_NET.GET_NODE_GEOMETRY
	SDO_NET.GET_NODE_IN_DEGREE
	SDO_NET.GET_NODE_OUT_DEGREE
	SDO_NET.GET_NODE_TABLE_NAME
	SDO_NET.GET_OUT_LINKS
	SDO_NET.GET_PATH_GEOM_COLUMN
	SDO_NET.GET_PATH_TABLE_NAME
	SDO_NET.IS_HIERARCHICAL
	SDO_NET.IS_LOGICAL
	SDO_NET.IS_SPATIAL
	SDO_NET.LRS_GEOMETRY_NETWORK
	SDO_NET.NETWORK_EXISTS
	SDO_NET.SDO_GEOMETRY_NETWORK
	SDO_NET.TOPO_GEOMETRY_NETWORK
	SDO_NET.VALIDATE_LINK_SCHEMA
	SDO_NET.VALIDATE_LRS_SCHEMA
	SDO_NET.VALIDATE_NETWORK
	SDO_NET.VALIDATE_NODE_SCHEMA
	SDO_NET.VALIDATE_PATH_SCHEMA

	Index

