
Oracle® interMedia
User’s Guide

10g Release 1 (10.1)

Part No. B10840-01

December 2003

Oracle interMedia is a feature that enables Oracle
Database to store, manage, and retrieve images, audio,
video, or other heterogeneous media data in an
integrated fashion with other enterprise information.
Oracle interMedia extends Oracle Database reliability,
availability, and data management to multimedia content
in traditional, Internet, electronic commerce, and
media-rich applications.

Oracle interMedia User’s Guide, 10g Release 1 (10.1)

Part No. B10840-01

Copyright © 1999, 2003 Oracle Corporation. All rights reserved.

Primary Author: Rod Ward

Contributors: Susan Mavris, Simon Oxbury, Robert Abbott, Guozhong Wang, Dongbai Guo, Fengting
Chen, Dong Lin, Melliyal Annamalai, Manjari Yalavarthy, Rajiv Chopra, Joseph Mauro, Joseph Meeks,
Rabah Mediouni, Bill Voss, Susan Kotsovolos, Rosanne Toohe, Bill Beauregard, Susan Shepard, Deborah
Owens

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle Store, PL/SQL, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

iii

Contents

Send Us Your Comments ... xiii

Preface... xv

Audience .. xv
Documentation Accessibility .. xv
Organization... xvi
Related Documentation ... xvii
Conventions.. xix
Changes to This Guide.. xix

1 Introduction to Oracle interMedia

1.1 Object Relational Technology ... 1-2
1.2 SQL/MM Still Image Standard Support.. 1-2
1.3 Multimedia Content Management ... 1-3
1.4 Audio Concepts ... 1-6
1.4.1 Digitized Audio ... 1-6
1.4.2 Audio Components.. 1-6
1.5 ORDDoc or Heterogeneous Media Data Concepts .. 1-7
1.5.1 Digitized Heterogeneous Media Data... 1-7
1.5.2 Heterogeneous Media Data Components .. 1-7
1.6 Image Concepts ... 1-8
1.6.1 Digitized Images .. 1-8
1.6.2 Image Components .. 1-8
1.7 Video Concepts ... 1-9

iv

1.7.1 Digitized Video .. 1-9
1.7.2 Video Components... 1-10
1.8 Multimedia Storage... 1-10
1.8.1 Storing Multimedia Data... 1-11
1.8.2 Querying Multimedia Data... 1-12
1.8.3 Accessing and Manipulating Multimedia Data... 1-12
1.8.4 Metadata Extraction ... 1-13
1.8.5 Image Processing.. 1-13
1.8.6 Content-Based Retrieval of Images.. 1-13
1.8.7 interMedia Speech Mining and Speech Indexing .. 1-14
1.9 Loading Multimedia Data .. 1-14
1.10 Accessing Multimedia Data ... 1-15
1.10.1 Oracle interMedia Java Classes... 1-15
1.10.2 Streaming Content from Oracle Database .. 1-16
1.10.3 Support for Web Technologies ... 1-16
1.10.4 interMedia Custom DataSource and DataSink Classes for JMF 2.0/2.1............... 1-19
1.10.5 interMedia Support for Java Advanced Imaging (JAI) ... 1-19
1.11 interMedia Architecture.. 1-20
1.12 Extending Oracle interMedia ... 1-23

2 Application Development

2.1 Developing PL/SQL Web Applications... 2-4
2.2 Developing Java-Based Web Applications Using JDBC.. 2-10

3 Developing Media Upload and Retrieval Applications

3.1 interMedia Photo Album Sample Applications .. 3-2
3.1.1 Oracle interMedia PL/SQL Web Toolkit Photo Album Sample Application 3-3
3.1.1.1 Running the Photo Album Application... 3-3
3.1.1.2 Description of the Photo Album Application ... 3-4
3.1.2 Oracle interMedia Java Servlet Photo Album Sample Application 3-11
3.1.2.1 Running the Java Servlet Photo Album Application 3-11
3.1.2.2 Description of the interMedia Java Servlet Photo Album Application 3-11
3.1.3 Oracle interMedia JavaServer Pages (JSP) Photo Album Sample Application.... 3-22
3.1.3.1 Running the JSP Photo Album Application .. 3-22
3.1.3.2 Description of the interMedia JSP Photo Album Application 3-23

v

3.1.4 Oracle interMedia ASP/VBScript Photo Album Sample Application 3-32
3.1.4.1 Running the ASP/VBScript Photo Album Application.................................. 3-32
3.1.4.2 Description of the ASP/VBScript Photo Album Application 3-33
3.2 interMedia Code Wizard Sample Application .. 3-35
3.2.1 Using the Code Wizard ... 3-35
3.2.1.1 Creating a New DAD or Choosing an Existing DAD...................................... 3-36
3.2.1.2 Authorizing a DAD .. 3-37
3.2.1.3 Creating and Testing Media Upload and Retrieval Procedures 3-40
3.2.1.4 Creating a Media Upload Procedure ... 3-42
3.2.1.5 Creating a Media Retrieval Procedure... 3-49
3.2.1.6 Using the PL/SQL Gateway Document Table ... 3-54
3.2.1.7 How Time Zone Information Is Used to Support Browser Caching............. 3-55
3.2.2 Sample Session Using Images .. 3-56
3.2.3 Sample Session Using Multiple Object Columns .. 3-68
3.2.4 Known Restrictions of the Oracle interMedia Code Wizard.................................. 3-82

4 IMExample Java Sample Application

4.1 Overview .. 4-1
4.2 Compiling and Running the IMExample Application .. 4-1
4.3 Description of the IMExample Application... 4-2

5 Content-Based Retrieval Concepts

5.1 Overview and Benefits ... 5-1
5.2 How Content-Based Retrieval Works .. 5-2
5.2.1 Color... 5-5
5.2.2 Texture ... 5-7
5.2.3 Shape.. 5-7
5.3 How Matching Works .. 5-8
5.3.1 Weight.. 5-8
5.3.2 Score ... 5-8
5.3.3 Similarity Calculation .. 5-10
5.3.4 Threshold Value ... 5-11
5.4 Using an Index to Compare Signatures ... 5-12
5.5 Preparing or Selecting Images for Useful Matching .. 5-15

vi

6 Custom DataSource and DataSink for JMF Versions 2.0 and 2.1

6.1 Installing and Registering Custom DataSource and DataSink 6-1
6.1.1 Registration Method 1 ... 6-1
6.1.2 Registration Method 2 ... 6-2
6.2 Using Custom DataSource and DataSink .. 6-2
6.2.1 Defining the Property File... 6-2
6.2.2 Uploading Media Data .. 6-3
6.2.3 Retrieving Media Data... 6-4
6.2.4 Accessing Media Data Through JMStudio ... 6-5
6.2.5 Accessing Media Data Through a JMF Application.. 6-6

7 Extending Oracle interMedia

7.1 Supporting Other External Sources .. 7-1
7.1.1 Packages or PL/SQL Plug-ins .. 7-2
7.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package .. 7-2
7.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package.. 7-4
7.1.1.3 Extending interMedia to Support a New Data Source....................................... 7-6
7.2 Supporting Other Media Data Formats ... 7-10
7.2.1 Supporting Other ORDAudio Data Formats ... 7-10
7.2.1.1 Packages or PL/SQL Plug-ins .. 7-10
7.2.1.2 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package 7-11
7.2.1.3 Extending interMedia to Support a New Audio Data Format 7-13
7.2.2 Supporting Other ORDDoc Data Formats.. 7-15
7.2.2.1 Packages or PL/SQL Plug-ins ... 7-15
7.2.2.2 ORDPLUGINS.ORDX_DEFAULT_DOC Package... 7-16
7.2.2.3 Extending interMedia to Support a New Media Data Format 7-16
7.2.3 Supporting Other Video Data Formats ... 7-17
7.2.3.1 Packages or PL/SQL Plug-ins ... 7-18
7.2.3.2 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package 7-18
7.2.3.3 Extending interMedia to Support a New Video Data Format 7-20
7.2.4 Supporting Other Image Data Formats... 7-22
7.3 Extending interMedia with a New Type .. 7-22
7.4 Supporting Media Data Processing .. 7-24
7.4.1 Supporting Audio Data Processing ... 7-24
7.4.2 Supporting Video Data Processing.. 7-24

vii

8 Tuning Tips for the DBA

8.1 Setting Database Initialization Parameters.. 8-2
8.2 Issues to Consider in Creating Tables with Column Objects Containing BLOBs 8-8
8.2.1 Initializing Internal Column Objects Containing BLOBs to NULL or EMPTY..... 8-8
8.2.2 Specifying Tablespace and Storage Characteristics for Column Objects Containing

BLOBs ..8-9
8.2.3 Segment Attributes and Physical Attributes.. 8-15
8.3 Improving Multimedia Data INSERT Performance in Objects Containing LOBs..... 8-16
8.4 Loading Multimedia Data Using a WebDAV-Compliant Client Application 8-24
8.5 Transferring Multimedia Data Using Oracle Data Pump ... 8-24
8.6 Reading Data from an ORDVideo Object Using the readFromSource() Method in a

PL/SQL Script ..8-25
8.7 Getting the Best Performance Results .. 8-26
8.8 Improving Multimedia LOB Data Retrieval and Update Performance 8-27

9 interMedia Examples

9.1 Audio Data Examples ... 9-1
9.1.1 Using Audio Types with Object Views... 9-1
9.1.2 Scripts for Populating ORDAudio Objects with BLOB Data................................... 9-3
9.2 Media Data Examples ... 9-13
9.2.1 Using the ORDDoc Object Type as a Repository .. 9-13
9.2.2 Scripts for Creating and Populating a Media Table from a BFILE Data Source. 9-20
9.3 Image Data Examples ... 9-27
9.3.1 Scripts for Creating and Populating an Image Table from a BFILE Data Source 9-27
9.3.2 Scripts for Populating an Image Table from an HTTP Data Source..................... 9-35
9.3.3 Addressing Globalization Support Issues .. 9-37
9.4 Video Data Examples.. 9-38
9.5 Handling Exceptions... 9-38
9.5.1 Handling interMedia Exceptions in PL/SQL... 9-39
9.5.2 Handling interMedia Exceptions in Java .. 9-40

A Sample Programs

A.1 Sample Audio SQL Scripts... A-1
A.2 Sample ORDDoc SQL Scripts .. A-2

viii

A.3 Sample OCI C Program for Modifying Images or Testing Image Installation............. A-3
A.3.1 Sample Program Installation Steps.. A-3
A.3.2 Running the Program .. A-3
A.4 Sample Video SQL Scripts.. A-4
A.5 Java Sample Applications... A-5
A.6 Additional PL/SQL Sample Packages ... A-6
A.7 Additional ASP/VBScript Sample Application.. A-7
A.8 Other Sample Programs ... A-7

B Installing and Upgrading Oracle interMedia

B.1 Installing Oracle interMedia... B-1
B.1.1 Installation Decisions... B-1
B.1.2 Preinstallation Steps... B-2
B.1.3 Installation Steps .. B-2
B.2 Upgrading an Installed Version of Oracle interMedia ... B-3
B.3 Verifying an Installed Version of Oracle interMedia.. B-4
B.4 Downgrading an Installed Version of Oracle interMedia.. B-4

Index

ix

List of Examples

2–1 URL Format Required for Invoking mod_plsql in a Web Browser 2-9
2–2 URL Format Required to Invoke mod_plsql in a Web Browser for the Photo Album

Application ...2-9
7–1 Show the Package Body for Extending Support to a New Data Source 7-7
7–2 Show the Package Body for Extending Support to a New Audio

Data Format ..7-14
7–3 Show the Package Body for Extending Support to a New Media

Data Format ..7-17
7–4 Show the Package Body for Extending Support to a New Video

Data Format ..7-21
7–5 Extend Oracle interMedia ORDImage with a New Object Type.................................. 7-23
8–1 Create a Separate Tablespace to Store an interMedia Column Object Containing LOB

Data ..8-10
8–2 Show the load1.bat File... 8-17
8–3 Show the t1.sql Procedure.. 8-17
8–4 Show the load1.sql File that Executes the load_image Stored Procedure 8-20
8–5 Show the Control File for Loading Video Data .. 8-21
8–6 Read Data from an ORDVideo Column Object Using the interMedia readFromSource()

Method in a PL/SQL Stored Procedure ..8-25
9–1 Define a Relational Table Containing No ORDAudio Object... 9-2
9–2 Define an Object View Containing an ORDAudio Object and Relational Columns... 9-2
9–3 Build a Repository of Media .. 9-14
9–4 Address a Globalization Support Issue ... 9-37
A–1 Execute the Sample Program from the Command Line .. A-4

x

List of Figures

1–1 interMedia Architecture.. 1-22
2–1 Components of the PL/SQL Development Environment ... 2-8
3–1 Procedure and Function Flow Chart for the Photo Album Application....................... 3-5
3–2 interMedia PL/SQL Web Toolkit Photo Album Application (Demo) 3-6
3–3 Main Menu for the interMedia Code Wizard for the PL/SQL Gateway..................... 3-38
3–4 Authorizing the SCOTTCW DAD... 3-39
3–5 List of Authorized DADs.. 3-40
3–6 Using the SCOTTCW DAD.. 3-41
3–7 Create a Media Upload Procedure.. 3-42
3–8 Step 1: Select Database Table and Procedure Type .. 3-43
3–9 Step 2: Select PL/SQL Gateway Document Upload Table (Part 1).............................. 3-44
3–10 Step 2: Select PL/SQL Gateway Document Upload Table (Part 2).............................. 3-44
3–11 Step 3: Select Data Access and Media Column(s) ... 3-45
3–12 Step 4: Select Additional Columns and Procedure Name... 3-46
3–13 Step 5: Review Selected Options ... 3-47
3–14 Compile Procedure and Review Generated Source ... 3-48
3–15 Template Upload Form... 3-48
3–16 Template Upload Procedure -- Media Uploaded Successfully Message 3-49
3–17 Create a Media Retrieval Procedure ... 3-49
3–18 Step 1: Select Database Table and Procedure Type .. 3-50
3–19 Step 2: Select Media Column and Key Column .. 3-51
3–20 Step 3: Select Procedure Name and Parameter Name ... 3-52
3–21 Step 4: Review Selected Options ... 3-53
3–22 Compile Procedure and Review Generated Source ... 3-54
3–23 The Displayed Image 1981 ... 3-54
5–1 Unsegmented Image ... 5-3
5–2 Segmented Image .. 5-4
5–3 Image Comparison: Color and Location .. 5-5
5–4 Images Very Similar in Color... 5-6
5–5 Images Very Similar in Color and Location .. 5-6
5–6 Fabric Images with Similar Texture .. 5-7
5–7 Images with Very Similar Shape ... 5-8
5–8 Score and Distance Relationship ... 5-9

xi

List of Tables

5–1 Distances for Visual Attributes Between Image1 and Image2...................................... 5-10
7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package............... 7-4
7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package............. 7-6
7–3 ORDAudio PL/SQL Plug-ins Provided in the ORDPLUGINS Schema 7-11
7–4 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package..... 7-12
7–5 ORDDoc PL/SQL Plug-ins Provided in the ORDPLUGINS Schema 7-15
7–6 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package 7-16
7–7 ORDVideo PL/SQL Plug-ins Provided in the ORDPLUGINS Schema...................... 7-18
7–8 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package...... 7-19

xii

xiii

Send Us Your Comments

Oracle interMedia User’s Guide, 10g Release 1 (10.1)

Part No. B10840-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

� Electronic mail: nedc-doc_us@oracle.com
� FAX: 603.897.3825 Attn: Oracle interMedia Documentation
� Postal service:

Oracle Corporation
Oracle interMedia Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

xiv

xv

Preface

This guide describes how to use Oracle interMedia ("interMedia").

Oracle interMedia ships with Oracle Database Standard and Enterprise Editions.

For information about Oracle Database and the features and options that are
available to you, see Oracle Database New Features.

Audience
This guide is for application developers and database administrators who are
interested in storing, retrieving, and manipulating audio, image, video, and
heterogeneous media data in a database, including developers of audio,
heterogeneous media data, image, and video specialization options.

If you are interested in an overview and how to use Oracle interMedia, see
Chapter 1 for general introductory information.

For tuning tips for storing media files, see Chapter 8.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,

xvi

visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This guide contains the following chapters and appendixes:

Chapter 1, "Introduction to Oracle interMedia"
Introduces multimedia and Oracle interMedia; explains multimedia-related
concepts.

Chapter 2, "Application Development"
Describes Web application development environments and using interMedia in
these environments.

Chapter 3, "Developing Media Upload and Retrieval Applications"
Describes developing an interMedia photo album Web application.

Chapter 4, "IMExample Java Sample Application"
Describes the IMExample Java sample application for loading, retrieving, and
playing media data using the interMedia image, audio, video, and general media
object types.

Chapter 5, "Content-Based Retrieval Concepts"
Explains concepts, operations, and techniques related to content-based retrieval
using the interMedia image signature object type.

xvii

Chapter 6, "Custom DataSource and DataSink for JMF Versions 2.0 and 2.1"
Describes how to install, register, and use the interMedia Custom DataSource and
DataSink feature, which is an extension to Java Media Framework (JMF) version 2.0
and 2.1 developed by Sun Microsystems.

Chapter 7, "Extending Oracle interMedia"
Describes how to extend interMedia to support other external sources of media
data, other media data formats, and audio and video data processing.

Chapter 8, "Tuning Tips for the DBA"
Provides tuning tips for the DBA for more efficient storage of multimedia data.

Chapter 9, "interMedia Examples"
Provides basic examples of using interMedia object types and methods.

Appendix A, "Sample Programs"
Describes the sample scripts and sample programs and how to run them.

Appendix B, "Installing and Upgrading Oracle interMedia"
Describes how to install and upgrade Oracle interMedia manually.

Related Documentation

For more information about using interMedia in a development environment, see
the following documents in the Oracle Database documentation set for 10g Release
1 (10.1):

� Oracle Call Interface Programmer’s Guide

� Oracle Database Application Developer’s Guide - Fundamentals

Note: For information added after the release of this guide, refer
to the online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

ORACLE_HOME/ord/im/admin/README.txt

Please see your operating system-specific installation guide for
more information.

xviii

� Oracle Database Application Developer’s Guide - Large Objects

� Oracle Database Concepts

� PL/SQL User’s Guide and Reference

� Oracle interMedia Java Classes Reference

� Oracle interMedia Reference

� Oracle interMedia Annotator User’s Guide and Reference (available only from OTN)

For more information on using JDBC, see Oracle Database JDBC Developer’s Guide and
Reference.

For reference information on both Oracle interMedia Java Classes and Oracle
interMedia Java Classes for Servlets and JSP in Javadoc format, see the Oracle API
documentation (also known as Javadoc). The API documentation is available on the
Oracle Database 10g Documentation Library CD-ROM and also from the
documentation section of the Oracle Technology Network (OTN) Web site at

http://otn.oracle.com/documentation/

For more information on Java, see the API documentation provided by Sun
Microsystems at

http://java.sun.com/docs

For more information on the Java Advanced Imaging (JAI) API, see the following
Web site (which is maintained by Sun Microsystems)

http://java.sun.com/products/java-media/jai/index.html

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

xix

Conventions
In this guide, Oracle interMedia is sometimes referred to as interMedia.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Although Boolean is a proper noun, it is presented as boolean in this guide when its
use in Java code requires case-sensitivity.

The following conventions are also used in this guide:

Changes to This Guide
This is a new guide for this release. It contains several chapters that were originally
in Oracle interMedia User’s Guide and Reference in the Oracle9i (9.0.1) release, as well
as a chapter originally in Oracle interMedia Java Classes User’’s Guide and Reference in
the Oracle9i (9.2) release.

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface text indicates a term defined in the text.

italic text Italic text is used for emphasis, book titles, and variable names.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

xx

Introduction to Oracle interMedia 1-1

1
Introduction to Oracle interMedia

Oracle interMedia ("interMedia") is a feature that enables Oracle Database to store,
manage, and retrieve images, audio, video, or other heterogeneous media data in an
integrated fashion with other enterprise information. Oracle interMedia extends
Oracle Database reliability, availability, and data management to multimedia
content in traditional, Internet, electronic commerce, and media-rich applications.
Oracle interMedia does not control media capture or output devices; this function is
left to application software.

interMedia manages multimedia content by providing the following:

� Media and application metadata management (see Section 1.4, Section 1.5,
Section 1.6, Section 1.7, and Section 1.8.4)

� Storage and retrieval (see Section 1.8.1, Section 1.9 and Section 1.10)

� Support for popular formats (see the audio, image, and video data format
appendixes in Oracle interMedia Reference)

� Access through traditional and Web interfaces (see Section 1.8.3 and
Section 1.10)

� Querying using associated relational data

� Querying using extracted metadata

� Querying using media content with optional specialized indexing

interMedia provides media content services to Oracle JDeveloper 10g, Oracle
Content Management SDK, Oracle Application Server Portal, and Oracle partners.
This guide describes the management and integration of audio, image, and video,
or other heterogeneous media data with other Oracle tools and software, as well as
with third-party tools and software.

Object Relational Technology

1-2 Oracle interMedia User’s Guide

1.1 Object Relational Technology
Oracle Database is an object relational database management system. This means
that in addition to its traditional role in the safe and efficient management of
relational data, it provides support for the definition of object types, including the
data associated with objects and the operations (methods) that can be performed on
them. Object relational technology includes integral support for BLOBs to provide
the basis for adding complex objects, such as digitized audio, image, and video, to
databases.

Within interMedia, audio data characteristics have an object relational type known
as ORDAudio, heterogeneous data characteristics have an object relational type
known as ORDDoc, image data characteristics have an object relational type known
as ORDImage, and video data characteristics have an object relational type known
as ORDVideo. All four types store data source information in an object relational
type known as ORDSource.

See the following references for extensive information on using BLOBs and BFILEs:

� Oracle Database Application Developer’s Guide - Large Objects

� Oracle Database Concepts -- see the chapter on Object Views.

See Oracle interMedia Reference for more information about the multimedia object
types and methods, and for more information about the ORDSource object type and
methods.

1.2 SQL/MM Still Image Standard Support
interMedia also provides support for the first edition of the ISO/IEC 13249-5:2001
SQL MM Part5:StillImage standard (commonly referred to as the SQL/MM Still
Image standard), which includes these object relational types for image
characteristics: SI_StillImage, SI_AverageColor, SI_Color, SI_ColorHistogram, SI_
FeatureList, SI_PositionalColor, and SI_Texture.

The following ORDImage features are not specified by the SQL/MM Still Image
Standard, and therefore are not available for StillImage objects:

� Storing image data outside the database

� Image processing operations (such as scaling up, compressing, and so on) that
are specific to ORDImage

� Java client API

Multimedia Content Management

Introduction to Oracle interMedia 1-3

In addition, the following image-matching features are not specified by the
SQL/MM Still Image Standard, and therefore are not available for StillImage
objects:

� Image matching based on shape

� Indexing (averagecolor, texture, positionalcolor, and colorhistogram)

Finally, the SI_Score methods do not provide the same performance as the
interMedia ORDImageSignature methods for image matching.

See Oracle interMedia Reference for more information on the SQL/MM Still Image
Standard object types. The remainder of this chapter applies to the ORDAudio,
ORDVideo, ORDDoc, ORDImage, and ORDSource object types.

1.3 Multimedia Content Management
The capabilities of interMedia include the storage, retrieval, management, and
manipulation of multimedia data managed by Oracle Database. interMedia
supports multimedia storage, retrieval, and management of:

� Binary large objects (BLOBs) stored locally in the database and containing
audio, image, or video data, or other heterogeneous media data

� File-based large objects, or BFILEs, stored locally in operating system-specific
file systems and containing audio, image, or video data, or other heterogeneous
media data

� URLs containing audio, image, or video data or other heterogeneous media
data, stored on any HTTP server such as Oracle Application Server or Oracle
Database, Netscape Application Server, Microsoft Internet Information Server
(IIS), Apache HTTPD server, and Spyglass servers

� Streaming audio or video data stored on specialized media

Multimedia applications have common and unique requirements. interMedia object
types support common application requirements and can be extended to address
application-specific requirements. With interMedia, multimedia data can be
managed as easily as standard attribute data.

interMedia is accessible to applications through both relational and object interfaces.
Database applications written in Java, C++, or traditional third-generation
languages (3GLs) can interact with interMedia through modern class library
interfaces, or PL/SQL and Oracle Call Interface (OCI).

Multimedia Content Management

1-4 Oracle interMedia User’s Guide

interMedia supports storage of the popular file formats, including desktop
publishing image, and streaming audio and video formats in databases. interMedia
provides the means to add audio, image, and video, or other heterogeneous media
columns or objects to existing tables, and insert and retrieve multimedia data. This
enables database designers to extend existing databases with multimedia data, or to
build new end-user multimedia database applications. interMedia developers can
use the basic functions provided here to build specialized multimedia applications.

interMedia uses object types, similar to Java or C++ classes, to describe multimedia
data. These object types are called ORDAudio, ORDDoc, ORDImage, and
ORDVideo. An instance of these object types consists of attributes, including
metadata and the media data, and methods. Media data is the actual audio, image,
or video, or other heterogeneous media data. Metadata is information about the
data, such as object length, compression type, or format. Methods are procedures
that can be performed on the object, such as getContent() and setProperties().

The interMedia objects have a common media data storage model. The media data
component of these objects can be stored in the database, in a BLOB under
transaction control. The media data can also be stored outside the database, without
transaction control. In this case, a pointer is stored in the database under transaction
control, and the media data is stored in:

� File-based large object (BFILE)

� An HTTP server-based URL

� A user-defined source on a specialized media data server, or other server

Media data stored outside the database can provide a convenient mechanism for
managing large, existing or new, media repositories that reside as flat files on
erasable or read-only media. This data can be imported into BLOBs at any time for
transaction control. Section 1.9 describes several ways of loading multimedia data
into a database.

Media metadata is stored in the database under interMedia control. Whether media
data is stored within or outside the database, interMedia manages metadata for all
the media types and may automatically extract it for audio, image, and video. This
metadata includes the following attributes:

� Storage information about audio, image, and video, or other heterogeneous
media data, including the source type, location, and source name, and whether
the data is stored locally (in the database) or externally

� Update time stamp information for audio, image, and video, or other
heterogeneous media data

Multimedia Content Management

Introduction to Oracle interMedia 1-5

� Audio and video data description

� Audio, image, and video, or other heterogeneous media data format

� MIME type of the audio, image, and video, or other heterogeneous media data

� Audio and video metadata, or other heterogeneous media metadata in XML

� Audio characteristics: encoding type, number of channels, sampling rate,
sample size, compression type, and play time (duration)

� Image characteristics: height and width, image content length, image content
format, and image compression format

� Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

In addition to metadata extraction methods, a minimal set of image manipulation
methods is provided. For images, this includes performing format conversion, page
selection, and quantize operations, and compression, scaling, cropping, copying,
flipping, mirroring, rotating, and adjusting the gamma (brightness) of images.

interMedia is extensible. It supports a base set of popular audio, image, and video
data formats for multimedia processing that also can be extended, for example, to
support additional formats, new digital compression and decompression schemes
(codecs), data sources, and even specialized data processing algorithms for audio
and video data. See Chapter 7 for more information on extending interMedia.

interMedia is a building block for various multimedia applications rather than being
an end-user application. It consists of object types along with related methods for
managing and processing multimedia data. Some example applications for
interMedia are:

� Internet music stores that provide music samplings of CD quality

� Digital sound repositories

� Dictation and telephone conversation repositories

� Audio archives and collections (for example, for musicians)

� Digital art galleries

� Real estate marketing

� Document imaging

� Photograph collections (for example, for professional photographers)

Audio Concepts

1-6 Oracle interMedia User’s Guide

� Internet video stores and digital video-clip previews

� Digital video sources for streaming video delivery systems

� Digital video libraries, archives, and repositories

� Libraries of digital video training programs

� Digital video repositories (for example, for motion picture production,
television broadcasting, documentaries, advertisements, and so forth)

1.4 Audio Concepts
This section contains information about digitized audio concepts and using the
ORDAudio object type to build audio applications or specialized ORDAudio
objects.

1.4.1 Digitized Audio
ORDAudio integrates the storage, retrieval, and management of digitized audio
data in a database.

Audio may be produced by an audio recorder, an audio source such as a
microphone, digitized audio, other specialized audio recording devices, or even by
program algorithms. Audio recording devices take an analog or continuous signal,
such as the sound picked up by a microphone or sound recorded on magnetic
media, and convert it into digital values with specific audio characteristics such as
format, encoding type, number of channels, sampling rate, sample size,
compression type, and audio duration.

1.4.2 Audio Components
Digitized audio consists of the audio data (digitized bits) and attributes that
describe and characterize the audio data. Audio applications sometimes associate
application-specific information, such as the description of the audio clip, date
recorded, author or artist, and so forth, with audio data by storing descriptive text
in an attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. ORDAudio can store
and retrieve audio data of any supported data format. ORDAudio can
automatically extract metadata from audio data of a variety of popular audio
formats. ORDAudio can also extract application attributes and store them in the

ORDDoc or Heterogeneous Media Data Concepts

Introduction to Oracle interMedia 1-7

comments field of the object in XML form. See Oracle interMedia Reference for a list of
supported data formats from which ORDAudio can extract and store attributes and
other audio features. ORDAudio is extensible and can be made to recognize and
support additional audio formats.

The size of digitized audio (number of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze audio data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.5 ORDDoc or Heterogeneous Media Data Concepts
This section contains information about heterogeneous media data concepts and
using the ORDDoc object type to build applications or specialized ORDDoc objects.

1.5.1 Digitized Heterogeneous Media Data
ORDDoc integrates the storage, retrieval, and management of heterogeneous media
data in a database.

The ORDDoc type can store any heterogeneous media data including audio, image,
and video data in a database column. Instead of having separate columns for audio,
image, text, and video objects, you can use one column of ORDDoc objects to
represent all types of multimedia.

1.5.2 Heterogeneous Media Data Components
Heterogeneous media data components consist of the data (digitized bits) and
attributes that describe and characterize the heterogeneous media data.

Heterogeneous media data can have different formats, depending upon the
application generating the media data. interMedia can store and retrieve media data
of any supported data format. The ORDDoc type can be used in applications that
require you to store different types of heterogeneous media data (such as audio,
image, video, and any other type of media data) in the same column so you can
build a common metadata index on all the different types of media data. Using this
index, you can search across all the different types of heterogeneous media data.
Note that you cannot use this same search technique if the different types of
heterogeneous media data are stored in different types of objects, in different
columns of relational tables.

ORDDoc can automatically extract metadata from data of a variety of popular
audio, image, and video data formats. ORDDoc can also extract application

Image Concepts

1-8 Oracle interMedia User’s Guide

attributes and store them in the comments attribute of the object in XML form. See
Oracle interMedia Reference for a list of supported data formats from which
interMedia can extract and store attributes. ORDDoc is extensible and can be made
to recognize and support other heterogeneous media data formats.

1.6 Image Concepts
This section contains information about digitized image concepts and using the
ORDImage object type to build image applications or specialized ORDImage
objects.

1.6.1 Digitized Images
ORDImage integrates the storage, retrieval, and management of digitized images in
a database.

ORDImage supports two-dimensional, static, digitized raster images stored as
binary representations of real-world objects or scenes. Images may be produced by
a document or photograph scanner, a video source such as a camera or VCR
connected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or
continuous signal such as the light that falls onto the film in a camera, and convert
it into digital values on a two-dimensional grid of data points known as pixels.
Devices involved in the capture and display of images are under application
control.

1.6.2 Image Components
Digitized images consist of the image data (digitized bits) and attributes that
describe and characterize the image data. Image applications sometimes associate
application-specific information, such as the name of the person pictured in a
photograph, description of the image, date photographed, photographer, and so
forth, with image data by storing this descriptive text in an attribute or column in
the database table.

The image data (pixels) can have varying depths (bits per pixel) depending on how
the image was captured, and can be organized in various ways. The organization of
the image data is known as the data format. ORDImage can store and retrieve
image data of any data format. ORDImage can process and automatically extract
properties of images of a variety of popular data formats. See Oracle interMedia
Reference for a list of supported data formats for which ORDImage can process and
extract metadata. In addition, certain foreign images (formats not natively

Video Concepts

Introduction to Oracle interMedia 1-9

supported by ORDImage) have limited support for image processing. See Oracle
interMedia Reference for more information.

The storage space required for digitized images can be large compared to
traditional attribute data such as numbers and text. Many compression schemes are
available to squeeze an image into fewer bytes, thus reducing storage device and
network load. Lossless compression schemes squeeze an image so that when it is
decompressed, the resulting image is bit-for-bit identical with the original. Lossy
compression schemes do not result in an identical image when decompressed, but
rather, one in which the changes may be imperceptible to the human eye.

Image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, allowing different applications to
create, exchange, and use images. Interchange formats are often stored as disk files.
They may also be exchanged in a sequential fashion over a network and be referred
to as a protocol. There are many application subdomains within the digitized
imaging world and many applications that create or utilize digitized images within
these. ORDImage supports storage and retrieval of all image data formats, and
processing and attribute extraction of many image data formats (see Oracle
interMedia Reference).

1.7 Video Concepts
This section contains information about digitized video concepts and using
ORDVideo to build video applications or specialized ORDVideo objects.

1.7.1 Digitized Video
ORDVideo integrates the storage, retrieval, and management of digitized video
data in a database.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the
video picked up by a video camera or video recorded on magnetic media, and
convert it into digital values with specific video characteristics such as format,
encoding type, frame rate, frame size (width and height), frame resolution, video
length, compression type, number of colors, and bit rate.

Multimedia Storage

1-10 Oracle interMedia User’s Guide

1.7.2 Video Components
Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
application-specific information, such as the description of the video training tape,
date recorded, instructor’s name, producer’s name, and so forth, within the video
data.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and
bit rates depending upon how the video data was digitally recorded. ORDVideo can
store and retrieve video data of any supported data format. ORDVideo can:

� Automatically extract metadata from video data of a variety of popular video
formats.

� Extract application attributes and store them in the comments attribute of the
object in XML form identical to what is provided by Oracle interMedia
Annotator.

See Oracle interMedia Reference for a list of supported data formats from which
interMedia can extract and store attributes and other video features.

� Be made to recognize and support additional video formats (because it is
extensible).

The size of digitized video (number of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze video data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.8 Multimedia Storage
Media can be stored in interMedia object types, or directly in BLOBs or BFILEs. You
will realize the most benefit by storing media in interMedia object types. However,
many of the features of interMedia are available to media stored in BLOBs and
BFILEs using the relational interface.

The interMedia relational interface lets developers use static methods of interMedia
object types with existing and new media stored in BLOBs and BFILEs to move
media data between the local file system and the database, to parse and extract the
properties of the media data, and to store these properties in an XML formatted
CLOB and optionally, in individual relational columns. Developers are not required
to make changes to their existing application schema or to instantiate interMedia
object types to take advantage of this relational interface. interMedia static methods

Multimedia Storage

Introduction to Oracle interMedia 1-11

can also be used to perform image processing operations such as cut, scale,
compress, and convert format. See Oracle interMedia Reference for more information.

The ORDAudio, ORDDoc, ORDImage, and ORDVideo object types all contain an
attribute of type ORDSource and methods for multimedia data source
manipulation.

1.8.1 Storing Multimedia Data
interMedia can store multimedia data as an internal source within the database,
under transactional control as a BLOB. It can also externally reference digitized
multimedia data stored as an external source in an operating system-specific file in
a local file system, as a URL on an HTTP server, or as a user-defined source on other
servers, such as media servers. Although these external storage mechanisms are
particularly convenient for integrating existing sets of multimedia data with a
database, the multimedia data will not be under transactional control if it is not
stored in the database.

BLOBs are stored in the database tablespaces in a way that optimizes space and
provides efficient access. Large BLOBs may not be stored inline (BLOBs under 4K
bytes in size can be stored inline) with other row data. Depending on the size of the
BLOB, a locator is stored in the row and the actual BLOB (up to 4 gigabytes) is
stored in other tablespaces. The locator can be considered a pointer to the actual
location of the BLOB value. When you select a BLOB, you are selecting the locator
instead of the value, although this is done transparently. An advantage of this
design is that multiple BLOB locators can exist in a single row. For example, you
might want to store a short video clip of a training tape, an audio recording
containing a brief description of its contents, a syllabus of the course, a picture of
the instructor, and a set of maps and directions to each training center all in the
same row.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an
inconsistency with the BFILE locator. See Oracle Database Application Developer’s
Guide - Large Objects and Oracle Call Interface Programmer’s Guide for detailed
information on using BLOBs and BFILEs.

Note: ORDSource methods should not be called directly. Instead,
invoke the wrapper method of the media object corresponding to
the ORDSource method. This information is presented for users
who want to write their own user-defined sources.

Multimedia Storage

1-12 Oracle interMedia User’s Guide

interMedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types provide
wrapper methods to do the following:

� Set the source of the data as local or external

� Modify the time an object was last updated

� Set information about the external source type, location, and name of the data

� Transfer data into or out of the database

� Obtain information about the local data content such as its length, location, or
its handle to the BLOB, put the content into a temporary BLOB, or delete it

� Access source data by opening it, reading it, writing to it, trimming it, and
closing it

1.8.2 Querying Multimedia Data
Once stored within a database, multimedia data can be queried and retrieved by
using the various alphanumeric columns or object attributes of the table to find a
row that contains the desired data. For example, you can select a video clip from the
Training table where the course name is ’Oracle Database Concepts’.

Multimedia data can be queried by extracted metadata, by other relational table
columns, and by content, such as image content-based retrieval with optional
specialized indexing.

1.8.3 Accessing and Manipulating Multimedia Data
Applications access and manipulate multimedia data using SQL, PL/SQL, OCI, or
Java through the object relational types OrdAudio, OrdDoc, OrdImage, and
OrdVideo. See Oracle interMedia Java Classes Reference for more information about
using Java.

The object syntax for accessing attributes within a complex object is the dot notation
(except in Java):

variable.data_attribute

The syntax for invoking methods of a complex object is also the dot notation (except
in Java):

variable.function(parameter1, parameter2, ...)

A complete set of media attribute accessors (get methods) and setters (set methods)
are provided for accessing attributes for each media type.

Multimedia Storage

Introduction to Oracle interMedia 1-13

See Oracle Database Concepts for information on this and other SQL syntax.

1.8.4 Metadata Extraction
interMedia provides the ability to extract content and format metadata from media
sources (image, audio, and video files), and collects and organizes this metadata as
an XML formatted CLOB. Once metadata has been extracted and stored, you can
index the metadata for powerful full text and thematic media searches using Oracle
Text. Thus, the database can be queried to locate the media data based on the
metadata extracted from the media. See the setProperties() method in Oracle
interMedia Reference for more information.

Oracle interMedia Annotator lets you write an application that reads media data,
extracts metadata, associates other metadata, and then uploads the media data and
all associated metadata into the database. It lets you customize annotations to
further describe the data and loads the annotation and the media data into a
database. Use Oracle interMedia Annotator if you need to extend the formats or
metadata supported, or if you want to associate other metadata. See Oracle
interMedia Annotator User’s Guide and Reference for more information.

1.8.5 Image Processing
interMedia supports image processing, such as image format transcoding, image
cutting, image scaling, and generating thumbnail images. In addition, specifically
when the destination image file format is RAW Pixel (RPIX) format or Microsoft
Windows Bitmap (BMPF) image format, interMedia supports a variety of operators
for changing the format characteristics. See Oracle interMedia Reference for more
information.

1.8.6 Content-Based Retrieval of Images
Content-based retrieval of images with extensible indexing is supported for image
matching. An overview of the benefits of content-based retrieval is described in
Chapter 5 along with how content-based retrieval works, including definitions and
explanation of the visual attributes (color, texture, shape, and location) and why
you might emphasize specific attributes in certain situations. In addition, the use of
indexing to improve search and retrieval performances is described in Section 5.4.

Loading Multimedia Data

1-14 Oracle interMedia User’s Guide

1.8.7 interMedia Speech Mining and Speech Indexing
interMedia speech mining and speech indexing adds speech recognition and
indexing capabilities to the database. With this feature, third-party speech
recognition vendors can easily and tightly integrate their speech recognition
technology with a database. Customers can then build their own complete
multimedia storage, management, mining, and indexing solutions on top of Oracle
and third-party speech recognition software.

Speech-to-text conversion capabilities of third-party speech recognition software
integrated with a database enable speech data mining. The Oracle speech index
introduces a new index type that lets users build indexes on the results of speech
processing so they can use text-based queries to retrieve data.

This technology is designed to facilitate the mining, indexing, and searching of
recorded speech data. It is not designed to be used for real-time, speech-enabled
user interfaces, or for voice transcriptions, such as a call center application.

This feature can be downloaded from the Oracle interMedia Software section of the
Oracle Technology Network Web site

http://otn.oracle.com/products/intermedia

1.9 Loading Multimedia Data
Multimedia data can be managed best by Oracle Database. Your multimedia data
should be loaded into the database to take advantage of its reliability, scalability,
availability, and data management capabilities. To bulk load multimedia data into
the database, you can use:

� SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case,
multimedia data (LOB data), from external multimedia files into a table of a
database containing interMedia object type columns.

Note: All interMedia features are available with the Standard
Edition of Oracle Database, except image indexing, which uses the
ORDImageSignature object. The image indexing feature requires
bit-mapped indexing, which is available only when you install the
Enterprise Edition of Oracle Database.

Accessing Multimedia Data

Introduction to Oracle interMedia 1-15

� PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation
programming language (4GL) of Oracle Corporation. You can write PL/SQL
procedures to load multimedia data from BLOB, file system, and URL media
data sources into interMedia object type columns.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation. See Section 8.3 for a description of a
sample control file. See also Oracle Database Utilities for more information.

An advantage of using PL/SQL scripts to load your data is that you can call
methods as you load data to generate thumbnail images, or extract properties. See
Section 8.3 for a description of a sample PL/SQL multimedia data load script. See
also PL/SQL User’s Guide and Reference for more information.

Loading Multimedia Data Using Oracle interMedia Annotator
You can use Oracle interMedia Annotator to upload media data and an associated
annotation into a database. Oracle interMedia Annotator does this using a PL/SQL
Upload Template, which contains both PL/SQL calls and Annotator-specific
keywords. Oracle interMedia Annotator extracts content and format attributes from
media sources (image, audio, and video files), and organizes the attributes into an
XML formatted annotation.

Advanced users with PL/SQL experience can create their own PL/SQL Upload
Templates in a text editor.

See Oracle interMedia Annotator User's Guide and Reference for more information.

1.10 Accessing Multimedia Data
Section 1.10.1 through Section 1.10.4 describe ways in which applications, Oracle
development tools, and third-party development tools can access multimedia data
stored in the database using interMedia object types.

1.10.1 Oracle interMedia Java Classes
Oracle interMedia Java Classes enables Java applications on any tier (client,
application server, or database) to manipulate and modify audio, image, and video
data, or heterogeneous media data stored in a database. Oracle interMedia Java
Classes makes it possible for Java database connectivity (JDBC) result sets to
include both traditional relational data and interMedia media objects. This support
enables applications to easily select and operate on a result set that contains sets of

Accessing Multimedia Data

1-16 Oracle interMedia User’s Guide

interMedia columns plus other relational data. These classes also enable access to
object attributes and invocation of object methods. See Oracle interMedia Java Classes
Reference for more information.

1.10.2 Streaming Content from Oracle Database
You can stream content stored in a database using an interMedia plug-in that
supports a third-party streaming server, and deliver this content for play on a client
that uses the browser-supported streaming player.

Oracle interMedia Plug-in for RealNetworks Servers
Oracle interMedia Plug-in for RealNetworks, RealSystem RealServer 7.0,
RealSystem iQ Server 8.0, and Helix Universal Server allows these RealNetworks
servers to stream multimedia data to a client directly out of the database. This
plug-in is installed in the RealNetworks server and defined in the RealNetworks
server configuration file. The data is requested with a URL, which contains
information necessary to select the multimedia data from the database.

For information on RealNetworks servers, see the following URL

http://www.real.com/

See Oracle interMedia Plug-in 2.0 for RealNetworks Streaming Servers Readme for more
information. The Oracle interMedia Plug-in for RealNetworks Streaming Servers
can be downloaded from the Oracle interMedia Software section of the Oracle
Technology Network Web site

http://otn.oracle.com/products/intermedia

1.10.3 Support for Web Technologies
Using interMedia support for Web technologies, you can easily integrate
multimedia data into Web and Java applications. You can also store, retrieve, and
manage rich media content in a database.

Oracle interMedia Java Classes for Servlets and JSP
Oracle interMedia Java Classes for servlets and JSP facilitates the upload and
retrieval of multimedia data stored in a database using the interMedia OrdAudio,
OrdDoc, OrdImage, and OrdVideo object types. Oracle interMedia Java Classes for
servlets and JSP uses Oracle interMedia Java Classes to access data stored in the

Accessing Multimedia Data

Introduction to Oracle interMedia 1-17

interMedia object types. However, Oracle interMedia Java Classes for servlets and
JSP can also be used to handle upload and retrieval of data using BLOBs directly.

The OrdHttpResponseHandler class facilitates the retrieval of multimedia data
from a database and its delivery to a browser or other HTTP client from a Java
servlet. The OrdHttpJspResponseHandler class provides the same features for
JavaServer Pages (JSP).

Form-based file uploading using HTML forms encodes form data and uploaded
files in Post requests using the multipart/form-data format. The
OrdHttpUploadFormData class facilitates the processing of such requests by
parsing the Post data and making the contents of regular form fields and the
contents of uploaded files readily accessible to a Java servlet or JavaServer Pages.
The handling of uploaded files is facilitated by the OrdHttpUploadFile class,
which provides an easy-to-use API that applications call to load audio, image, and
video data, or heterogeneous media data into a database.

To read the Javadoc documentation that describes how to use Oracle interMedia
Java Classes for servlets and JSP, see the API documentation, which can be found on
the Oracle Database 10g Documentation Library CD-ROM as Oracle interMedia
Java Classes for Servlets and JSP and as Oracle interMedia Java Classes.

Also, see Oracle interMedia Java Classes Reference for more information.

Integration with Oracle Application Server Portal
Oracle Application Server Portal is used to create useful and appealing enterprise
portals. A key feature of the Oracle Application Server Portal framework are
portlets, which provide a convenient way to access any type of data including rich
content such as images, audio, and video. Oracle Application Server Portal has
components that give the developer a declarative way to create objects that capture,
act upon, and display data from an Oracle table or view. These Oracle Application
Server Portal components can be connected together to create Web applications that
can be applied directly to enterprise databases. And, as interMedia objects are
stored in Oracle tables, they can be included in the types of data available to Oracle
Application Server Portal components.

Note: JSP engines are not required to support access to the servlet
binary output stream. Therefore, not all JSP engines support the
delivery of multimedia data using the
OrdHttpJspResponseHandler class. See Oracle interMedia Java
Classes Reference for more information.

Accessing Multimedia Data

1-18 Oracle interMedia User’s Guide

Two Oracle Application Server Portal components are predefined: Oracle
Application Server Forms Services and Oracle Application Server Reports Services.
Oracle Application Server Portal contains wizards to help easily create a form to
interact with the data in one or more database tables or views. The Oracle
Application Server Forms Services component builds an appealing Web interface
that lets users interact with data -- they can add, query, update, and delete
information stored in the database. Rich content can be both uploaded and
downloaded between the database and the portal framework by building a form on
tables containing interMedia objects.

In addition to forms, Oracle Application Server Portal offers a report component.
The Oracle Application Server Reports Services component is used to display
dynamic data in a columnar report format through a Web interface. Rich media
content stored in tables can be downloaded, and again, wizards facilitate the
creation of reports.

For an interactive demonstration on the use of Oracle Application Server Portal and
interMedia, see Building Portlets Using Oracle interMedia and an interMedia/Portal
Interactive Demonstration in the interMedia Training section on the Oracle
Technology Network Web site

http://otn.oracle.com/products/intermedia

Integration with BC4J
For rapid development of media-rich Web applications, Oracle offers developers a
Java integrated development environment (IDE) (Oracle JDeveloper 10g) and an
application framework (Oracle Business Components for Java (BC4J)), that utilize
rich media data type support in a database. Oracle JDeveloper 10g enables
developers to build multitier, component-based Internet applications in Java
quickly and efficiently. Oracle BC4J is an XML-powered framework for creating
reusable business logic. An Oracle interMedia/BC4J integration package includes
media-specific domain classes and a set of utilities. The domain classes are
wrappers of the classes of Oracle interMedia Java Classes, and inherit all the
underlying multimedia retrieval, upload, and manipulation methods. The domain
classes support the BC4J framework APIs and provide built-in integrated
multimedia capabilities, while the utility classes support the retrieval, rendering,
and uploading of multimedia content. Together, they provide a fully featured,
integrated application development environment that enables a developer to do the
following:

� Write and test business logic in components that automatically integrate with
relational databases.

Accessing Multimedia Data

Introduction to Oracle interMedia 1-19

� Reuse business logic through multiple SQL-based views of data, supporting
different application tasks.

� Access and update the views from servlets, JavaServer Pages, and thin Java
Swing clients.

� Customize application functions in layers without requiring modification of the
delivered application.

For more information, see the Oracle interMedia/BC4J Interactive Demonstration in
the interMedia Training section on the Oracle Technology Network Web site

 http://otn.oracle.com/products/intermedia

WebDAV-Compliant Client Applications
You can also use a WebDAV-compliant client application, such as Adobe GoLive,
Macromedia UltraDev, Microsoft’s Web Folders, and other available software
products to retrieve multimedia objects, such as audio, video, and image data, from
a database. Using WebDAV, client applications have read-only access to multimedia
content in the database.

To configure WebDAV access to multimedia data, using Oracle HTTP Server and
the mod_oradav component (OraDAV), download the necessary software from the
Oracle interMedia Software section of the Oracle Technology Network Web site

http://otn.oracle.com/products/intermedia

1.10.4 interMedia Custom DataSource and DataSink Classes for JMF 2.0/2.1
Oracle interMedia Custom DataSource and DataSink classes are an extension to the
current Java Media Framework (JMF) version 2.0/2.1 developed by Sun
Microsystems. This software allows a JMF application to upload and retrieve
time-based media data stored in a database using interMedia OrdAudio and
OrdVideo objects. See Chapter 6 for more information.

1.10.5 interMedia Support for Java Advanced Imaging (JAI)
Oracle interMedia Java Classes describes three types of stream objects, which
provide interfaces to BLOB and BFILE data, that can be used by Java Advanced
imaging (JAI). These classes allow a JAI application to read and write image data
stored in a database using interMedia OrdImage objects, or in BLOBs or BFILEs. See
Oracle interMedia Java Classes Reference for more information.

interMedia Architecture

1-20 Oracle interMedia User’s Guide

1.11 interMedia Architecture
interMedia is a single, integrated feature that extends the database by storing,
managing, and retrieving image, audio, and video data, and by supporting Web
technologies and annotations for multimedia data.

The interMedia architecture defines the framework (see Figure 1–1) through which
media-rich content as well as traditional data are supported in the database. This
content and data can then be securely shared across multiple applications written
with popular languages and tools, easily managed and administered by relational
database management and administration technologies, and offered on a scalable
database that supports thousands of users.

Figure 1–1 shows the interMedia architecture from a three-tier perspective: database
tier -- Oracle Database; application server tier -- Oracle Application Server; and
client tier -- thin and thick clients.

In the first tier, through the use of interMedia, Oracle Database holds rich content in
tables along with traditional data. Through a database-embedded JVM, a
server-side media parser is supported as well as an image processor. The media
parser has object-oriented and relational interfaces, supports format and application
metadata parsing, and can be extended to support additional formats. The image
processor includes JAI and provides image processing for operations such as
producing thumbnail-sized images, converting image formats, and image indexing
and matching.

interMedia supports a heterogeneous media column, known as the ORDDoc object
type. This allows a column to hold a mixture of image, audio, and video data, or
other heterogeneous media data. Using interMedia import and export methods for
each object type and for the relational interface, import and export operations
between media objects and operating system files (external file storage) are possible.
interMedia also supports special delivery types of servers, such as streaming
content from a database. Using the Oracle interMedia Plug-in for RealNetworks,
RealSystem RealServer 7.0, RealSystem iQ Server 8.0, or the Helix Universal Server
can stream multimedia data to a client directly out of the database using Real-Time
Streaming Protocol (RTSP). In addition, third-party media processors such as
speech recognition engines run external to the database.

In the second or middle tier, Oracle Application Server provides access to
interMedia through Oracle interMedia Java Classes, which enables Java applications
on any tier (client, application server, or database) to access, manipulate, and
modify audio, image, and video data stored in a database. Oracle interMedia Java
Classes makes it possible for JDBC result sets to include both traditional relational
data and interMedia media objects (OrdAudio, OrdDoc, OrdImage, and OrdVideo).

interMedia Architecture

Introduction to Oracle interMedia 1-21

This support enables applications to easily select and operate on a result set that
contains interMedia columns plus other relational data. These Java classes also
enable access to interMedia object attributes and invocation of interMedia object
methods.

In addition, Oracle interMedia Java Classes for servlets and JSP facilitates the
upload and retrieval of multimedia data stored in a database using the interMedia
OrdAudio, OrdDoc, OrdImage, and OrdVideo object types. Oracle interMedia Java
Classes for servlets and JSP can access data stored in the interMedia objects or
BLOBs or BFILEs directly.

In the third or client tier, the browser-based WebDAV clients can use the
WebDAV-enabled HTTP protocol for communication with the Oracle Application
Server tier to access media data in the database. For thick clients and tools, Oracle
interMedia Annotator is a media parser. In addition, client-side media processing is
supported through Java classes, JAI, and the JMF. For rapid development of
media-rich Web applications, Oracle offers developers a Java IDE (Oracle
JDeveloper 10g) and an application framework (Oracle Business Components for
Java (BC4J)), that utilize rich media data type support in a database so developers
can build scalable, multitier database applications from reusable business
components.

interMedia Architecture

1-22 Oracle interMedia User’s Guide

Figure 1–1 interMedia Architecture

Oracle interMedia features available only on Oracle Technology Network (OTN)
http://otn.oracle.com/products/intermedia include the following:

� interMedia Plug-in for RealNetworks Servers, see Section 1.10.2

� WebDAV-compliant client applications, see Section 1.10.3

� interMedia Custom DataSource and DataSink classes JMF 2.0/2.1 (requires JMF
2.0 or higher), see Section 1.10.4

� interMedia speech mining and speech indexing, see Section 1.8.7

Extending Oracle interMedia

Introduction to Oracle interMedia 1-23

1.12 Extending Oracle interMedia
interMedia can be extended to support:

� Other external sources of media data not currently supported (other than BLOB,
BFILE, or URL)

� Other media data formats not currently supported; not supported means
interMedia can store any format, it just cannot extract the metadata or process
the media data for these external formats that are not known to it.

� Audio and video data processing

For more information about extending interMedia, see Chapter 7.

Extending Oracle interMedia

1-24 Oracle interMedia User’s Guide

Application Development 2-1

2
Application Development

You can develop traditional client/server or two-tier applications, or you can
develop multitier applications. Either method can then deploy Web applications to
run on an application server tier, be tightly integrated with Oracle Database, and
allow users access to the application from their desktop through a Web browser.

Using a complete development framework supported by class library interfaces,
you can create production quality interMedia applications for use in a production
environment where users can interact with the application through either the
standalone client interface or a Web browser. For Web applications, which are based
on standards such as TCP/IP, HTTP, HTML, XML, and XTHML, this is all
facilitated by rapid developments in the underlying technology. As key software
components become more tightly integrated, developers’ tasks to design, create,
and manage Web applications become faster, easier, and simpler to implement.

Using either the object type interface or the relational interface, interMedia provides
Internet support for Oracle Application Server 10g and Oracle Database and
authoring tools so you can quickly develop Web-based applications to upload to the
database, retrieve from it, and manipulate multimedia data for delivery to Web
browsers.

Oracle interMedia supports application development by:

� Providing class libraries that allow access (insert, update, and retrieve) and
manipulation (process) of multimedia data stored in the database. Class
libraries provide access to multimedia data stored in the database in the
following ways:

– Using Oracle interMedia Java Classes. Using the Java database connectivity
(JDBC) interface, you can quickly develop applications for use on any tier
(client, application server, or database) to manipulate and modify audio,
image, and video data, or heterogeneous media data stored in a database.
Oracle interMedia Java Classes makes it possible for JDBC result sets to

2-2 Oracle interMedia User’s Guide

include both traditional relational data with interMedia columns of object
type media data, to easily select and operate on the result set, to access
object attributes, and to invoke object methods. See Oracle interMedia Java
Classes Reference for more information.

– Using Oracle interMedia Java Classes for servlets and JavaServer Pages
(JSP). These additional classes support Web technologies. See Section 1.10.3
for more general information and Section 2.2 for more information about
developing Java-based Web applications using JDBC. See Section 3.1.2 for a
description of a Java servlet application and Section 3.1.3 for a description
of a JSP application that uses these classes. See Oracle interMedia Java Classes
Reference for more information.

– Using the interMedia/BC4J integration package, which includes the
interMedia domain classes and a set of utilities. These classes are for use
with Oracle JDeveloper 10g, the Java integrated development environment
(IDE) tool that supports the application framework (Oracle Business
Components for Java (BC4J)) that enables you to build multitier,
component-based Internet applications. See Section 1.10.3 and Oracle
JDeveloper 10g help for more information.

– Using Oracle interMedia Custom DataSource and DataSink classes. These
classes are an extension to JMF version 2.0/2.1 that allows a JMF
application to upload and retrieve time-based media data stored in a
database using interMedia OrdAudio and OrdVideo object types. See
Section 1.10.4 and Oracle interMedia Java Classes Reference for more
information.

– Using Java Advanced Imaging (JAI) classes. Oracle interMedia Java Classes
describes three types of stream objects, which provide interfaces to BLOB
and BFILE data, that can be used by JAI. These classes allow a JAI
application to read and write image data stored in a database using
interMedia OrdImage objects, or in BLOBs or BFILEs. See Oracle interMedia
Java Classes Reference for more information.

– Using C++ and traditional 3GLs through modern class library interfaces.

� Using the PL/SQL Gateway (mod_plsql) feature of the Oracle HTTP Server and
the PL/SQL Web Toolkit features of Oracle Application Server 10g and Oracle
Database, to listen for browser requests, to execute stored PL/SQL procedures
in the database using Oracle Net and Oracle Call Interface (OCI), and to
generate an HTML page containing data and code for the response returned to
the Web browser for display. As a Web application developer, you can write
PL/SQL servlets and PL/SQL server pages (PSP) that invoke PL/SQL

Application Development 2-3

procedures stored in the database through an Oracle Net connection and OCI.
See Section 2.1 for more information.

� Integrating Oracle development tools with tightly integrated components to
enable you to quickly and easily develop applications that provide access to
(insert, update, and retrieve) and manipulation (process) of multimedia data
stored in the database for delivery to Web browsers and client applications.
These development tools include:

– Oracle Application Server Portal -- a simple browser-based environment for
building and deploying enterprise information portlets (EIPs). An
enterprise portal provides access to portlets, which are summarized
versions of applications and Web content situated in defined regions of the
Web page. Oracle Application Server Portal portlets execute PL/SQL stored
procedures residing in the database, which in turn generate an HTTP
response in the form of a generated HTML page. Oracle Application Server
Portal contains two predefined components: Oracle Application Server
Forms Services and Oracle Application Server Reports Services, which both
support rich media content being uploaded or downloaded between the
database and the portal framework form or report. See Section 1.10.3 for
more information.

– Oracle JDeveloper 10g -- written 100% in Java, is the IDE tool that supports
the application framework (Oracle Business Components for Java (BC4J)).
An interMedia/BC4J integration package includes the interMedia domain
classes and a set of utilities. The domain classes are wrappers of Oracle
interMedia Java Classes and inherit all the underlying multimedia retrieval,
upload, and manipulation methods. The domain classes support the BC4J
framework APIs and provide built-in integrated multimedia capabilities,
while the utility classes support the retrieval, rendering, and uploading of
multimedia content. See Section 1.10.3 for more information.

– Oracle Designer -- a tool used to manage software configuration
management for controlling the evolution of an application from
identification of components, through initiation, evaluation, authorization,
development, and implementation. Oracle Designer can generate C++
classes that enable applications running on the client or on Oracle
Application Server 10g or on Oracle Database to call interMedia methods.

– Oracle Content Management SDK -- lets you create custom file system
applications using XML and Java that use the features and capabilities of
the database, and a variety of Web-based interfaces, such as Java servlets
and JSP or executing SQL or calling stored PL/SQL procedures for
execution in the transaction context of the database.

Developing PL/SQL Web Applications

2-4 Oracle interMedia User’s Guide

� Integration with third-party client Web authoring tools for rapid Web site
development to allow direct delivery of dynamic multimedia data stored in the
database to the Web site. These third-party Web authoring tools include:

– Oracle interMedia Plug-in for RealNetworks servers -- Oracle interMedia
Plug-in for RealNetworks, RealSystem RealServer 7.0, RealSystem iQ Server
8.0, and Helix Universal Server. This tool lets these RealNetworks servers
stream multimedia data to a client directly out of the database. This plug-in
is installed in the RealNetworks server and defined in the RealNetworks
server configuration file. The data is requested with a URL, which contains
information necessary to select the multimedia data from the database. See
Section 1.10.2 for more information.

Chapter 3 describes the interMedia photo album Web application and how to
develop media upload and retrieval applications using either the PL/SQL
development environment, the Java IDE, or the Microsoft Active Server Pages
(ASP)/Visual Basic (VB) development environment for developing Web
applications for the Microsoft IIS Web Server using interMedia. In addition, this
chapter describes an interMedia Code Wizard application that lets you create
PL/SQL stored procedures for the PL/SQL Gateway to upload and retrieve media
data (images, audio, video, and general media) stored in a database using
interMedia object types. You can either create and compile standalone media access
procedures using the Code Wizard, or you can create the source of media access
procedures for inclusion in a PL/SQL package.

Chapter 4 describes the IMExample Java sample application (sometimes referred to
as a demo) and how the classes of Oracle interMedia Java Classes are used to create
this sample application that lets you retrieve from the sample schema, save to a file,
play, and delete from the sample schema interMedia image, audio, video, and
testimonial data using the respective interMedia object types, OrdImage, OrdAudio,
OrdVideo, and OrdDoc.

If you are not familiar with developing PL/SQL Web applications and using the
PL/SQL Gateway and PL/SQL Web Toolkit, see Section 2.1.

If you are not familiar with developing Java-based Web applications using JDBC to
access interMedia objects, see Section 2.2.

2.1 Developing PL/SQL Web Applications
SQL developers familiar with the database can develop Web applications that
exclusively use Oracle Application Server 10g and Oracle Database using the
PL/SQL development environment. PL/SQL is a completely portable,

Developing PL/SQL Web Applications

Application Development 2-5

high-performance transaction processing language that combines the data
manipulation power of SQL with the data processing power of procedural
languages.

The PL/SQL development environment lets you achieve the best performance for
database-intensive applications because PL/SQL is highly optimized for use with
the database through its support for and tight integration with SQL, support for
processing an entire block of SQL statements at one time, and letting you compile
PL/SQL procedures and store them in executable form in the database, to be called
later. In addition, as a development environment, SQL developers have support for
the object-oriented programming model, can experience higher productivity due to
its procedural nature, and can come quickly up to speed to develop PL/SQL-based
Web applications.

Developing Web applications using PL/SQL consists of developing one or more
PL/SQL packages consisting of sets of stored procedures that interact with Web
browsers through HTTP. Stored procedures can be executed in several ways:

� From a hypertext link that calls a stored procedure when it is selected.

� By clicking Submit on an HTML form to denote the completion of a task such
as filling out a form supplied on the HTML page.

� By passing parameters to a stored procedure based on user choices from a list.

Information in the stored procedure, such as tagged HTML text, is displayed in the
Web browser as a Web page. These dynamic Web pages are generated by the
database and are based on the database contents and the input parameters passed
in to the stored procedure. Using PL/SQL stored procedures is especially efficient
and powerful for generating dynamic Web page content.

There are two ways of generating HTML output from PL/SQL:

� Using function calls to generate each HTML tag for output using the PL/SQL
Web Toolkit package that is part of Oracle Application Server 10g and Oracle
Database and whose owa packages are loaded into a common schema so that all
users can access it.

� Embedding PL/SQL code in Web pages (PL/SQL server pages)

Use interMedia when media data such as images, audio, video, or combinations of
all three are to be uploaded into and retrieved from database tables using the
interMedia object types and their respective sets of methods.

Media upload procedures first perform a SQL INSERT operation to insert a row of
data in the media table, which also initializes instances of the respective interMedia
object columns with an empty BLOB. Next, a SQL SELECT FOR UPDATE operation

Developing PL/SQL Web Applications

2-6 Oracle interMedia User’s Guide

selects the object columns for update. Finally a SQL UPDATE operation updates the
media objects in their respective columns. interMedia methods are called to do the
following:

� Initialize the object columns with an empty BLOB.

� Set attributes to indicate media data is stored internally in a BLOB.

� Get values of the object attributes and store them in the object attributes.

� When exceptions occur, determine the length of the BLOB content and its MIME
type.

Media retrieval operations involve the following tasks:

� Retrieving the object from the database into a local object.

� Checking the cache validity of the object based on its updated time versus that
of the HTTP header time.

� Determining where the media object is located: in the database, in a BFILE, or at
a URL location; then, getting the media, and downloading it for display on an
HTML page.

interMedia methods are called to get the time that the media object was last
updated, to determine if the media is stored locally in the database, in a BFILE, or at
a URL location, to get the MIME type of the media object, and finally to retrieve the
media data.

Using the PL/SQL Gateway and PL/SQL Web Toolkit
Oracle Application Server 10g and Oracle Database install Oracle HTTP Server
powered by the Apache HTTPD server that contains the PL/SQL Gateway to
communicate directly with a client Web browser.

Oracle HTTP Server serves mainly the static HTML files, images, and so forth, that
a Web application uses, and is usually located in the file system where Oracle HTTP
Server is installed. Oracle HTTP Server contains modules or plug-ins that extend its
functions. One of these modules supplied by Oracle is the mod_plsql module, also
known as the PL/SQL Gateway. The PL/SQL Gateway serves data dynamically
from the database to Web browsers by calling PL/SQL stored procedures. The
PL/SQL Gateway receives requests from a Web browser in the form of PL/SQL
servlets or PL/SQL server pages that are mapped to PL/SQL stored procedure
calls. PL/SQL stored procedures retrieve data from the database and generate an
HTTP response containing the data and code from the PL/SQL Web Toolkit to
display the generated Web page in a Web browser. The PL/SQL Web Toolkit
contains a set of packages called htp, htf, and owa packages that can be used in

Developing PL/SQL Web Applications

Application Development 2-7

the stored procedures to get information about the request, construct HTML tags,
and return header information to the client Web browser.

Figure 2–1 shows these main components of the PL/SQL development
environment, Oracle HTTP Server (a component of Oracle Application Server 10g
and Oracle Database), the Web browser, and the database. The following
information describes how a client Web browser request is turned into a Web page
response from the execution of the PL/SQL procedure:

1. A client Web browser sends a PL/SQL server page or servlet request to Oracle
HTTP Server.

2. Oracle HTTP Server routes the request to the PL/SQL Gateway (mod_plsql).

3. The PL/SQL Gateway forwards the request to the database using configuration
information stored in the database access descriptor (DAD) and connects to the
database.

4. The PL/SQL Gateway prepares the call parameters and invokes the PL/SQL
package and the PL/SQL stored procedure in the application.

5. The PL/SQL procedure generates an HTML page using data from the database
and special packages in the PL/SQL Web Toolkit accessed from the database.
The PL/SQL Web Toolkit contains a set of packages called htp, htf, and owa
packages that are used in the stored procedures to get information about the
request, construct HTML tags, and return header information back to the client
Web browser as the response returned to the PL/SQL Gateway.

6. The PL/SQL Gateway sends the response to Oracle HTTP Server.

7. Oracle HTTP Server sends the response to the client Web browser for display as
a formatted Web page.

Developing PL/SQL Web Applications

2-8 Oracle interMedia User’s Guide

Figure 2–1 Components of the PL/SQL Development Environment

Usually, the returned formatted Web page has one or more additional links, and
each link, when selected, sends another request to the database through the
PL/SQL Gateway to execute one or more stored procedures. The generated
response displays data on the client Web page usually with additional links, which,
when selected, execute more stored procedures that return the generated response
for display as yet another formatted Web page, and so forth. This is how the
PL/SQL application in the PL/SQL development environment is designed to work.

Web application developers who use the PL/SQL development environment, create
a PL/SQL package specification and body that describe procedures and functions
that comprise the application. The package specification defines the procedures and
functions used by the application, and the package body is the implementation of
each procedure and function. All packages are compiled and stored in the database
to perform specific operations for accessing data in the database and formatting
HTML output for Web page presentation. To invoke these stored PL/SQL
procedures, Web application developers use the request/response PL/SQL servlets
and PL/SQL server pages (PSP) to allow Web browser clients to send requests and
get back responses using HTTP.

Oracle HTTP Server maps a URL entered in a browser to a specific PL/SQL
procedure stored in the database. It does this by storing specific configuration
information by means of a DAD for each stored procedure. Thus, each DAD
contains the database connection information that is needed by the Web server to

Developing PL/SQL Web Applications

Application Development 2-9

translate the URL entered into a database connection in order to call the stored
procedure.

Oracle HTTP Server listens for a request, routes the request to the PL/SQL
Gateway, which forwards it to the database. Configuration information values
stored in a DAD determine the database alias to use, the connection string to use for
remote access, the procedure to use for uploading or downloading documents, and
the user name and password information to allow access to the database. From the
Web browser, the user specifies the URL that invokes the PL/SQL Gateway. The
URL has a defined format specifying all required and optional parameters needed
including the location of the DAD and the name of the PL/SQL stored procedure to
run, as shown in Example 2–1.

Example 2–1 URL Format Required for Invoking mod_plsql in a Web Browser

protocol://hostname[:port number]/DAD-name/[[!][schema name.][package
name.]procedure_name[?query_string]]

For a detailed description of each parameter and options available, see Oracle HTTP
Server mod_plsql User’s Guide. However, for the purpose of using the photo album
application for interMedia and the PL/SQL Web Toolkit described in Section 3.1.1,
the URL can be simplified to the format shown in Example 2–2.

Example 2–2 URL Format Required to Invoke mod_plsql in a Web Browser for the
Photo Album Application

protocol://<hostname>[:<port-number>]/DAD-name/]procedure_name

When the URL is entered in the Web browser, it includes the protocol (HTTP or
HTTPS), the name of the hosting Web server, and the port number to which it is
listening to handle requests. Next, the specified virtual path includes
/pls/<DAD-name> to indicate that the Web server is configured to invoke mod_
plsql, and the location of the DAD on the Web server.

In Example 2–1, the last five parameters include the exclamation point (!) character,
schema name, package name, procedure name, and query string. From the syntax,
the exclamation point, schema name, package name, and query string parameters
are optional; only the procedure name is required.

The exclamation point indicates that flexible parameter passing is being used. The
schema name, if omitted, is resolved based on the user name. The package name, if
omitted, means the procedure is standalone. The query string parameters are for the
stored procedure and follow a special format. Of these five parameters, the
procedure name must be specified in both the DAD and the URL. The other four

Developing Java-Based Web Applications Using JDBC

2-10 Oracle interMedia User’s Guide

parameters are specified in either the DAD or the URL, or not at all, depending on
the application.

The URL displays the home page for the specified DAD. When the URL is entered
in the address field of the Web browser page, it invokes either the specified DAD
location only, or the specified DAD location along with the procedure name, or the
specified DAD location along with the schema.package.procedure name. The
response is returned as an HTML page. The HTML page contains the requested
data and any other specified code for display in the client’s Web browser. The Code
Wizard described in Section 3.2.1 illustrates how this works. For example, to invoke
the Code Wizard administration URL, enter the following URL shown in Step 3 in
Section 3.2.2:

http://<hostname>:<port-number>/pls/ordcwadmin

The virtual path includes pls to indicate that the Web server is configured to
invoke mod_plsql, followed by the name of the DAD used for the Code Wizard
administrator, ordcwadmin.

When the HTML page is displayed, it resolves to the following URL for the Code
Wizard administrator:

http://<hostname>:<port-number>/pls/ordcwadmin/ORDCWPKG.menu

ORDCWPKG.menu represents the package.procedure name, which is specified as
the default home page in the ordcwadmin DAD.

When the PL/SQL Gateway is invoked, it uses the stateless model and does not
allow a transaction to span across multiple HTTP requests. In this stateless model,
applications typically can create a session to maintain state by using one of the
following techniques: HTTP cookies, a hidden HTML field as an HTML form
element of the HTML Form package, or storage of vital information in database
tables for query. For more information, see Oracle Database Application Developer’s
Guide - Fundamentals.

2.2 Developing Java-Based Web Applications Using JDBC
Java database connectivity (JDBC) is a standard Java interface defined by Sun
Microsystems, based on the X/Open SQL Call Level Interface that complies with
the SQL 92 Entry Level standard, that is used for connecting from Java to relational
databases. JDBC supports dynamic SQL, letting a calling program construct SQL
statements dynamically at runtime. These are the major benefits of using this Java
interface in addition to allowing individual providers, such as Oracle Corporation,
to implement and extend their own JDBC drivers.

Developing Java-Based Web Applications Using JDBC

Application Development 2-11

A database-embedded JVM supports the JDBC interface. Java source code (.java
file) is compiled into one or more byte code files (.class files) and these class files
are interpreted at runtime and executed by the embedded JVM. If your Java
application uses objects defined in other packages, you must set the CLASSPATH
environment variable and specify the paths to all objects used by your application.

Resulting class files for servlets are usually placed in the directory enabled to run
servlets. Class files for JSP are usually placed in the JavaBean directory for your
servlet’s container, while the JSP files are usually copied to a directory enabled to
serve JSP, which by default, is your JSP sample application directory. For servlets,
the actual location of your servlet class files depends on the servlet container you
are using and how it is configured. For JSP, the actual location of your servlet and
JSP files depends on the servlet container and JSP engine you are using, and how
the engine is configured. Each of the Java sample applications uses the default
location of the servlet containers as required by Oracle HTTP Server powered by
Apache for an installation of Oracle Application Server 10g or Oracle Database. See
the respective Java sample application readme.txt files for more
information.

To write a Java application that uses the JDBC interface and the embedded JVM,
perform the following operations that will access interMedia objects in a database
table:

1. Establish a JDBC connection from the Java application to the database.

Call a getConnection() method to obtain an OracleConnection object.

2. If your application will modify the interMedia object, perform the following
operations:

a. Call the setAutoCommit() method to disable auto-commit mode.

b. Execute a SELECT... FOR UPDATE statement on the database table.

Create an OracleStatement or OraclePreparedStatement object in your
application. Call the executeQuery() method to execute the SELECT... FOR
UPDATE statement and return an OracleResultSet object, and fetch a row from
the result set.

3. If your application will not modify the interMedia object, execute a SELECT
statement on the database table.

4. Retrieve the interMedia object from the result set as an instance of one of the
classes of Oracle interMedia Java Classes.

5. Perform operations on the Java application object.

Developing Java-Based Web Applications Using JDBC

2-12 Oracle interMedia User’s Guide

Having retrieved the interMedia Java object from the result set, your application
can now load new data into the object, or your application can retrieve or
manipulate existing data in the object.

6. If the interMedia object has been modified by the application, update the
database object to include the results of the operations, and commit your
changes.

If the application modified the object in the previous step, create an
OraclePreparedStatement object that contains a SQL statement that updates the
database object, and execute the statement.

Commit the transaction by calling the commit() method.

7. Close the connection to the database table.

The IMExample Java sample application, which is described in Chapter 4,
provides examples of each step in this process.

For more information on using JDBC, see Oracle Database JDBC Developer’s
Guide and Reference.

Developing Media Upload and Retrieval Applications 3-1

3
Developing Media Upload and Retrieval

Applications

This chapter describes the development of the following types of media upload and
retrieval applications using interMedia object types:

� Section 3.1 describes the development of the following interMedia photo album
sample Web applications that use the interMedia image object type:

– PL/SQL application that uses the PL/SQL Gateway and PL/SQL Web
Toolkit for Oracle Application Server 10g and Oracle Database, see
Section 3.1.1

– Java servlet application that uses Oracle interMedia Java Classes for servlets
and JSP, see Section 3.1.2.

– JavaServer Pages (JSP) application that uses Oracle interMedia Java Classes
for servlets and JSP, see Section 3.1.3

– Active Server Pages (ASP)/Visual Basic (VB) application for the Microsoft
Internet Information Server (IIS) Web Server, see Section 3.1.4

� Section 3.2 describes the interMedia Code Wizard application for the PL/SQL
Gateway that uses the interMedia image, audio, video, and heterogeneous
media object types.

Section 3.1 and Section 3.2 assume the following:

� You are familiar with:

– Developing PL/SQL applications using the PL/SQL Gateway and PL/SQL
Web Toolkit.

– Developing Java-based Web applications using JDBC, creating Java source
code, compiling it into byte code (.class) files, and deploying class files

interMedia Photo Album Sample Applications

3-2 Oracle interMedia User’s Guide

into respective servlet containers required by Oracle HTTP Server for
Oracle Application Server 10g and Oracle Database.

– Developing ASP/VB scripts for the Microsoft IIS Web Server.

� You have already installed and configured the following sample application:

– Oracle interMedia PL/SQL Web Toolkit Photo Album application

– Oracle interMedia Java Servlet Photo Album application

– Oracle interMedia JSP Photo Album application

– Oracle interMedia ASP/VBScript Photo Album application

– Oracle interMedia Code Wizard for the PL/SQL Gateway application

See the README.txt file for each respective sample application for installation
and configuration information.

3.1 interMedia Photo Album Sample Applications
This set of four interMedia photo album sample applications demonstrates the use
of interMedia image object type to upload and retrieve media data stored in Oracle
Database.

Each of these photo album applications, when installed, creates a table named
photos and a sequence named photos_sequence.

The photos table is described by the following CREATE TABLE statement:

CREATE TABLE photos(id NUMBER PRIMARY KEY,
 description VARCHAR2(40) NOT NULL,
 location VARCHAR2(40),
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE);

Note that the data type for the image and thumb columns are defined as
interMedia image object types to store the full-sized images and the generated
thumbnail images.

The photos_sequence sequence is defined by the following CREATE SEQUENCE
statement:

CREATE SEQUENCE photos_sequence;

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-3

3.1.1 Oracle interMedia PL/SQL Web Toolkit Photo Album Sample Application
The interMedia PL/SQL Web Toolkit Photo Album sample application shows you
how to develop a Web application using PL/SQL Web Toolkit function calls to
generate the HTML tags for Web page generation.

During the installation, a document upload table is defined by the following
CREATE TABLE statement:

CREATE TABLE PHOTOS_UPLOAD(name VARCHAR2(256) UNIQUE NOT NULL,
 mime_type VARCHAR2(128),
 doc_size NUMBER,
 dad_charset VARCHAR2(128),
 last_updated DATE,
 content_type VARCHAR2(128),
 blob_content BLOB);

Each image uploaded using the PL/SQL Gateway is stored in the PHOTOS_UPLOAD
table. An upload procedure (insert_new_photo) automatically moves the
uploaded image from the specified PHOTOS_UPLOAD table to the photo album
applications table called photos.

3.1.1.1 Running the Photo Album Application
After you have completed the setup tasks and have built the photo album
application, including creating a database access descriptor (DAD) entry as
described in the readme.txt file, you can run the photo album application by
entering the following URL in the address field of your Web browser:

<protocol><hostname:port-number>/pls/photo_album_dad

The <protocol> field is http:// and the <hostname:port-number> field is
the host name and port number of the system where your HTTP server is running.

When first invoked, the photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photo, select Upload new photo. Enter a description of
the photo, the location where the photo was taken, and the name of the image file or
browse to its directory location, then click Upload photo. The contents of the photo
album are displayed along with a picture of the new photo. Click the thumbnail
image to view the full-sized version of the photo. When the photo album
application displays the text view image instead of its thumbnail image, the image
format that was uploaded was not recognized by interMedia. Click view image to
display the full-sized image.

interMedia Photo Album Sample Applications

3-4 Oracle interMedia User’s Guide

You can now begin to load your photo album application with your favorite photos.

3.1.1.2 Description of the Photo Album Application
The photo album application is composed of a PL/SQL package specification
containing 12 modules: 10 procedures, and 2 functions and with the package body
implementation. Each module describes tasks that the photo album application
performs and information that the photo album application displays on the Web
page. These modules are categorized into specific actions and print operations to
reduce redundancy, with each action and print operation being assigned to a
specific procedure.

Some examples of action operations are the following:

� Display the contents of the photo album (view_album).

� Display an entry in the photo album (view_entry).

� Retrieve the media from the database and deliver it to the Web browser
(deliver_media).

� Display the upload form for inserting a new photo in the photo album (view_
upload_form).

� Insert a new photo in the photo album (insert_new_photo).

Print operations display some text on the Web page, such as:

� Print the upload form (print_upload_form).

� Print the common page header (print_page_header).

� Print the common page trailer (print_page_trailer).

� Print a heading message (print_heading).

� Print a text link (print_link).

The function get_preferred_format performs a task described later in this
section, and returns a value.

Figure 3–1 shows a flow diagram of the names of the procedures and functions, and
the order in which each is called to implement a particular operation in the photo
album application.

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-5

Figure 3–1 Procedure and Function Flow Chart for the Photo Album Application

interMedia Photo Album Sample Applications

3-6 Oracle interMedia User’s Guide

The implementation of the photo album sample application is defined in the
PL/SQL package named PHOTO_ALBUM. The package specification includes the
following procedures and functions.

VIEW_ALBUM Procedure
Procedure VIEW_ALBUM displays the contents of the photo album on a Web page as
a three column table that includes the image description, location, and a thumbnail
image to view if the image format is supported by interMedia. See Figure 3–2.

Figure 3–2 interMedia PL/SQL Web Toolkit Photo Album Application (Demo)

Thumbnail images display as anchor tags that, when selected, are used to display
the full-sized image using the following statements:

htp.print(’<td headers="image"><a href="PHOTO_ALBUM.VIEW_ENTRY’ ||
 ’?entry_id=’ || entry.id || ’">’);

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-7

IF entry.thumb.contentLength > 0
THEN
 htp.print(’<img src="PHOTO_ALBUM.DELIVER_MEDIA?media=thumb’ ||
 ampersand || ’entry_id=’ || entry.id || ’"’ ||
 ’ height=’ || entry.thumb.height ||
 ’ width=’ || entry.thumb.width ||
 ’ alt="’ || htf.escape_sc(entry.description) || ’"’ ||
 ’ border=1></td>’);
ELSE
 htp.print(’[view image]</td>’);
END IF;

The thumbnail images for all entries are displayed by calling the PHOTO_
ALBUM.DELIVER_MEDIA procedure using the tag <IMG SRC="PHOTO_
ALBUM.DELIVER_MEDIA?media=thumb...> within the preceding
IF...THEN...ELSE...END IF statement. Notice that in the query string,
?media=thumb, that the name/value pair indicates that the parameter named
media declared in the deliver_media procedure has a value of thumb, which
represents the thumbnail image.

In the preceding IF...THEN...ELSE...END IF statement, if the image format is not
supported by interMedia, then no thumbnail image would have been created when
the image was uploaded. In this special case, a text link of view image is displayed
as indicated in the ELSE clause. Selecting view image in the image column, calls
the PHOTO_ALBUM.VIEW_ENTRY procedure to display the full-sized image.

At the bottom of the table is Select the thumbnail to view the full-size image,
which when selected, calls the PHOTO_ALBUM.VIEW_UPLOAD_FORM procedure.
The Web browser also displays a common page header with the page title
interMedia PL/SQL Web Toolkit Photo Album Demo by calling the PHOTO_
ALBUM.PRINT_PAGE_HEADER procedure. In addition, the Web page displays a
common page trailer by calling the PHOTO_ALBUM.PRINT_PAGE_TRAILER
procedure. Note that the page trailer is controlled by a Boolean operation, and in
this case, is set to false and so the trailer is not displayed. At the bottom of the page
is an Upload new photo link to upload a new photo, which when selected, calls the
PHOTO_ALBUM.VIEW_UPLOAD_FORM procedure.

VIEW_ENTRY Procedure
Procedure VIEW_ENTRY displays the description, location, and a full-sized version
of the image by calling the PHOTO_ALBUM.DELIVER_MEDIA procedure, using the
tag shown in
the following statement:

interMedia Photo Album Sample Applications

3-8 Oracle interMedia User’s Guide

htp.prn(’<tr><td scope= "col" valign="top">Photo:</td>
 <td scope="col">’ ||
’<img src="PHOTO_ALBUM.DELIVER_MEDIA?media=image’ ||
 ampersand || ’entry_id=’ || entry_id || ’"’);
htp.prn(’ alt="’ || htf.escape_sc(entry.description) || ’"’);

Notice that in the query string, ?media=image, that the name/value pair indicates
that the parameter named media declared in the DELIVER_MEDIA procedure has a
value of image, which represents the full-sized image.

The VIEW_ENTRY procedure is called from the VIEW_ALBUM procedure.

The Web page also displays the common page header (the Web page title) by calling
the PHOTO_ALBUM.PRINT_PAGE_HEADER procedure. In addition, the common
page trailer is called with the PHOTO_ALBUM.PRINT_PAGE_TRAILER procedure.
In this case, the Boolean expression is set to true and displays the Return to photo
album link, near the bottom of the Web page. When this link is selected, it calls the
PHOTO_ALBUM.VIEW_ALBUM procedure.

DELIVER_MEDIA Procedure
Procedure DELIVER_MEDIA retrieves the image from the database and delivers
either a thumbnail or a full-sized image to the Web browser, depending on the value
of the field named MEDIA. If the value of the MEDIA field is thumb, a thumbnail
image is delivered; otherwise, a full-sized image is delivered.

If the image requested is in the browser cache and the cache is valid, then the image
is retrieved from cache; otherwise, the MIME type of the image is set based on the
image attribute value in the database, then the image is retrieved from the database
and is delivered to the browser, as follows:

IF ordplsgwyutil.cache_is_valid(local_image.getUpdateTime())
THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
END IF;
.
.
.
owa_util.mime_header(local_image.mimeType, FALSE);
ordplsgwyutil.set_last_modified(local_image.getUpdateTime());
owa_util.http_header_close();

IF owa_util.get_cgi_env(’REQUEST_METHOD’) <> ’HEAD’ THEN
 wpg_docload.download_file(local_image.source.localData);
END IF;

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-9

Whether the image retrieved is a thumbnail or a full-sized image, two packages of
the PL/SQL Web Toolkit are used to do this operation. The first package, owa_
util, sets the MIME type of the image, while the second package, wpg_docload,
downloads the image from the database to the Web browser.

The DELIVER_MEDIA procedure is called by the PHOTO_ALBUM.VIEW_ALBUM and
PHOTO_ALBUM.VIEW_ENTRY procedures.

VIEW_UPLOAD_FORM Procedure
Procedure VIEW_UPLOAD_FORM displays the upload form by calling the PHOTO_
ALBUM.PRINT_UPLOAD_FORM procedure. The procedure also displays the
common page header by calling the PHOTO_ALBUM.PRINT_PAGE_HEADER
procedure, and displays the common page trailer by calling the PHOTO_
ALBUM.PRINT_PAGE_TRAILER procedure. The VIEW_UPLOAD_FORM procedure
sets the Boolean expression to true to display the common page trailer.

PRINT_UPLOAD_FORM Procedure
Procedure PRINT_UPLOAD_FORM calls the PHOTO_ALBUM.PRINT_HEADING
procedure to display the message header Upload a new photo on the Web page,
then calls the PHOTO_ALBUM.INSERT_NEW_PHOTO procedure to do the insert
operation. In addition, the user input for the image description, image location, and
image file name is entered by the user upon request. Clicking Upload photo
initiates the upload operation because the input type is submit.

INSERT_NEW_PHOTO Procedure
Procedure INSERT_NEW_PHOTO inserts a new photo into the photo album. This
procedure also checks to make sure a file name was entered as input from the
previous PHOTO_ALBUM.PRINT_UPLOAD_FORM procedure call, and that the file
has content or is not of zero length. If the DESCRIPTION field is blank, the file name
is used as the description. Next, the ORDSYS.ORDIMAGE.INIT() function is called
to initialize both the thumb and image ORDImage object type columns with an
empty BLOB for the new row to be stored in the photos table. A SQL SELECT FOR
UPDATE statement fetches the newly initialized thumbnail and full-sized image
object type columns for update. A DBMS_LOB.COPY operation loads the image
from the upload table into the full-sized image ORDImage object type column, then
calls the setProperties() method to read the image data, get the values of the image
object attributes, and store them in the object attributes for the image column.

Because some browsers cannot display some image formats inline, in this sample
application, BMP formatted images are converted to either a JPEG image format

interMedia Photo Album Sample Applications

3-10 Oracle interMedia User’s Guide

(for images with greater than 8 bits of color) or a GIFF image format (for images
with less than 9 bits of color) by calling the GET_PREFERRED_FORMAT function.
A processCopy() operation is performed on the full-sized image to create the
thumbnail image, then both the full-sized image and the thumbnail image are
updated in the database with a SQL UPDATE statement. After the row is updated
in the photos table, then the same row containing these new images is deleted
from the upload PHOTOS_UPLOAD table. The upload operation returns a message
"Photo successfully uploaded into photo album". Finally, the PHOTO_ALBUM.VIEW_
ALBUM procedure is called again to refresh the Web page and the PHOTO_
ALBUM.PRINT_PAGE_TRAILER procedure is called to display the common page
trailer with the Boolean expression set to true to display the trailer.

PRINT_PAGE_HEADER Procedure
Procedure PRINT_PAGE_HEADER displays the common page header, interMedia
PL/SQL Web Toolkit Photo Album Demo.

PRINT_PAGE_TRAILER Procedure
Procedure PRINT_PAGE_TRAILER contains a Boolean expression, which when set
to true, calls the PRINT_LINK procedure; otherwise when set to false, it displays no
text link.

PRINT_HEADING Procedure
Procedure PRINT_HEADING displays a one line message for the specified value of
the MESSAGE field when this procedure is called.

PRINT_LINK Procedure
Procedure PRINT_LINK displays Return to photo album at the bottom of the Web
page, which when selected, calls the PHOTO_ALBUM.VIEW_ALBUM procedure. The
PRINT_LINK procedure is called from the PHOTO_ALBUM.PRINT_PAGE_TRAILER
procedure.

For more information about building applications using PL/SQL, see Oracle HTTP
Server mod_plsql User’s Guide, Oracle Application Server 10g PL/SQL Web Toolkit
Reference, Oracle HTTP Server Administrator’s Guide, Oracle Database Application
Developer’s Guide - Fundamentals, PL/SQL User’s Guide and Reference, and PL/SQL
Packages and Types Reference.

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-11

3.1.2 Oracle interMedia Java Servlet Photo Album Sample Application
The interMedia Java Servlet Photo Album sample application demonstrates the use
of Oracle interMedia Java Classes for servlets and JSP to upload and retrieve
multimedia data to and from the database. Users access the servlet application to
view the contents of the photo album, including thumbnail versions of each photo,
to view the full-sized version of any photo, and to upload new photos into the
album.

3.1.2.1 Running the Java Servlet Photo Album Application
After you have completed the setup tasks and have built the Java servlet photo
album application, you can run the application by entering the following URL in
the address field of your Web browser:

� Default installation of Oracle Application Server 10g or Oracle Database

<protocol><hostname:port-number>/servlet/PhotoAlbumServlet

� Default installation of Tomcat 3.2 on Windows NT

<protocol><hostname:port-number>/examples/servlet/PhotoAlbumServlet

The <protocol> field is http://, and the <hostname:port-number> field
is the host name and port number of the system where your HTTP server is
running.

When first invoked, the photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photo, select Upload new photo. Enter a description of
the photo, the location where the photo was taken, and the name of the image file or
browse to its directory location, then click Upload photo. The contents of the photo
album are displayed along with a picture of the new photo. Click the thumbnail
image to view the full-sized version of the photo.

When the photo album application displays the text view image instead of its
thumbnail image, the image format that was uploaded was not recognized by
interMedia. Click view image to display the full-sized image.

You can now begin to load your photo album application with your favorite photos.

3.1.2.2 Description of the interMedia Java Servlet Photo Album Application
The interMedia Java Servlet Photo Album application combines both business logic
and the presentation into a single servlet, which when compiled, creates two class
files, PhotoAlbumServlet.class and PhotoAlbumRequest.class.

interMedia Photo Album Sample Applications

3-12 Oracle interMedia User’s Guide

To follow along with the description of tasks, users should refer to a copy of the
PhotoAlbumServlet.java file, which can be found in:

<ORACLE_HOME>/ord/http/demo/servlet (on UNIX)

<ORACLE_HOME>\ord\http\demo\servlet (on Windows)

PhotoAlbumServlet Class
The PhotoAlbumServlet class performs the following tasks:

� Extends the HttpServlet and contains the user entered connection information.

public class PhotoAlbumServlet extends HttpServlet

� Accepts connection information by allowing you to select the connection
method, supply the necessary connection information, and optionally change
the user name and password to connect to a schema other than scott/tiger.

private final static String JDBC_CONNECT_STRING =
// "jdbc:oracle:oci:@<SQL*Net TNS name>"; // 9i JDBC OCI driver
// "jdbc:oracle:oci8:@<SQL*Net TNS name>"; // 8i JDBC OCI driver
 "jdbc:oracle:thin:@<host>:<port>:<sid>"; // JDBC Thin driver

private final static String JDBC_USER_NAME = "scott";
private final static String JDBC_PASSWORD = "tiger";

� Instantiates a Java stack used to implement a simple connection-pooling
mechanism.

private static Stack connStack = new Stack();

� Defines a flag to indicate whether or not the JDBC Thin driver has been loaded.

private static boolean driverLoaded = false;

� Defines a servlet initialization method.

public void init(ServletConfig config) throws ServletException
{
 super.init(config);
}

� Defines a doGet() method to process an HTTP GET request containing an
HttpServletRequest object and HttpServletResponse object and instantiates a
PhotoAlbumRequest object to process the request to deliver either a full-sized

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-13

or thumbnail image to the browser, or to display an upload form or the contents
of the photo album as thumbnail images.

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 Connection conn = null;

 //
 // Use a try-block to ensure that JDBC connections are always returned
 // to the pool.
 //
 try
 {
 //
 // Get a JDBC connection from the pool.
 //
 conn = getConnection();

 //
 // Instantiate a PhotoAlbumRequest object to process the request.
 //
 PhotoAlbumRequest albumRequest =
 new PhotoAlbumRequest(conn, request, response);

 //
 // Figure out what to do based on query string parameters.
 //
 String view_media = request.getParameter("view_media");
 if (view_media != null)
 {
 //
 // Deliver a full-sized or thumbnail image to the browser.
 //
 albumRequest.viewMedia(view_media);
 return;
 }
 else if (request.getParameter("view_form") != null)
 {
 //
 // Display the HTML upload form.
 //
 albumRequest.viewUploadForm();
 }

interMedia Photo Album Sample Applications

3-14 Oracle interMedia User’s Guide

 else if (request.getParameter("view_entry") != null)
 {
 //
 // Display full-sized photo image.
 //
 albumRequest.viewPhoto();
 }
 else
 {
 //
 // Display album contents with thumbnail images by default.
 //
 albumRequest.viewAlbum();
 }
 }
 catch (SQLException e)
 {
 //
 // Log what went wrong.
 //
 e.printStackTrace(System.out);

 //
 // Turn SQL exceptions into ServletExceptions.
 //
 throw new ServletException(e.toString());
 }
 finally
 {
 //
 // If we have a JDBC connection, then return it to the pool.
 //
 freeConnection(conn);
 }
}

� Defines a doPost() method to process an HTTP POST request used to upload a
new photo into the album by instantiating a PhotoAlbumRequest object to
process the request and then calling the insertNewPhoto() method.

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 Connection conn = null;

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-15

 //
 // Use a try-block to ensure that JDBC connections are always returned
 // to the pool.
 //
 try
 {
 //
 // Get a JDBC connection from the pool.
 //
 conn = getConnection();

 //
 // Instantiate a PhotoAlbumRequest object to process the request.
 //
 PhotoAlbumRequest albumRequest =
 new PhotoAlbumRequest(conn, request, response);

 //
 // Insert the photo into the album.
 //
 albumRequest.insertNewPhoto();
 }
 catch (SQLException e)
 {
 //
 // Log what went wrong.
 //
 e.printStackTrace(System.out);

 //
 // Turn SQL exceptions into ServletExceptions.
 //
 throw new ServletException(e.toString());
 }
 finally
 {
 //
 // If we have a JDBC connection, then return it to the pool.
 //
 freeConnection(conn);
 }
}

� Defines a getConnection() method.

interMedia Photo Album Sample Applications

3-16 Oracle interMedia User’s Guide

private Connection getConnection()
 throws SQLException
{
 OracleConnection conn = null;

 //
 // Synchronize on the stack object. Load the JDBC driver if not yet
 // done. If there’s a free connection on the stack, then pop it off
 // the stack and return it to the caller. Otherwise, create a new
 // connection object and call the version compatibility initialization
 // method.
 //
 synchronized(connStack)
 {
 if (!driverLoaded)
 {
 DriverManager.registerDriver(
 new oracle.jdbc.driver.OracleDriver());
 driverLoaded = true;
 }
 if (connStack.empty())
 {
 conn = (OracleConnection)DriverManager.getConnection
 (JDBC_CONNECT_STRING, JDBC_USER_NAME, JDBC_PASSWORD);
 }
 else
 {
 conn = (OracleConnection)connStack.pop();
 }
 }

 //
 // Enable auto-commit by default.
 //
 conn.setAutoCommit(true);

 return conn;
}

� Defines a freeConnection() method.

private void freeConnection(Connection conn)
{
 //
 // Synchronize on the stack object, then push the connection onto the

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-17

 // stack.
 //
 if (conn != null)
 {
 synchronized(connStack)
 {
 connStack.push(conn);
 }
 }
}

In summary, the PhotoAlbumServlet class responds to the HTTP GET and POST
requests by allocating a JDBC connection from a connection pool. Each HTTP GET
or POST request is assigned its own JDBC connection from the pool to ensure that
multiple requests can be serviced concurrently. An HTTP GET request is used to
retrieve image data from the photo album and an HTTP POST request is used to
upload image data into the photo album. Then, an instance of the
PhotoAlbumRequest class is created to execute the request, executes the request,
then releases the JDBC connection back to the pool at the end of the request.

PhotoAlbumRequest Class
The PhotoAlbumRequest class does the actual processing of an HTTP GET or
POST request and defines the following methods: viewAlbum(), viewPhoto(),
viewMedia(), viewUploadForm(), insertNewPhoto(), printPageHeader(),
printPageTrailer(), printMessage(), printHeading(), and printLink(), and the
getPreferredFormat() function.

In the viewMedia() and insertNewPhoto() methods, three objects,
OrdHttpResponseHandler, OrdHttpUploadFormData, and OrdHttpUploadFile, are
instantiated. These objects are used to call the methods of the respective
OrdHttpResponseHandler, OrdHttpUploadFormData, OrdHttpUploadFile
classes of the Oracle interMedia Java Classes for servlets and JSP. For example, in
the viewMedia() method, the OrdHttpResponseHandler object is instantiated and
used to call the sendImage() method as shown in the following code:

OrdHttpResponseHandler handler =
 new OrdHttpResponseHandler(request, response);
handler.sendImage(img);

The viewAlbum(), viewPhoto(), viewMedia(), and insertNewPhoto() methods use
the ORAData (formerly getCustomDatum) and ORADataFactory (formerly the
getFactory) interfaces supplied by Oracle to get the image or thumbnail OrdImage
object from the result set to obtain height and width information, to retrieve an

interMedia Photo Album Sample Applications

3-18 Oracle interMedia User’s Guide

image from an OrdImage Java object and deliver it to the browser, and to upload an
image in an OrdImage Java object and to also update it in the photos table. For
example, the following code excerpt is from the viewAlbum() method:

OrdImage img =
 (OrdImage)rset.getORAData(4, OrdImage.getORADataFactory());
.
.
.
out.print("<td headers=\"image\"><a href=\"" + servletUri +
 "?view_entry=yes&id=" + id + "\">");
if (img.getContentLength() > 0)
{
 if (img.getMimeType().startsWith("image/"))
 {
out.print("<img src=\"" + servletUri +
 "?view_media=thumb&id=" + id + "\"" +
 " height=" + img.getHeight() +
 " width=" + img.getWidth() +
 " alt=\"" + description + "\"" +
 " border=1>");
 }
}
else
{
 out.print("[view image]");
}
out.println("</td>");
out.println("</tr>");

What follows is a more detailed description of each method and what it does:

� The viewAlbum() method does the following:

– Initializes the row count to zero.

– Writes a common page header on the HTML page using the
printPageHeader() function.

– Executes a SELECT statement to fetch all the thumbnail images in the photo
album, order them by description, and display the description and location
information for each along with the thumbnail image if it exists, and returns
the results in a result set.

– Displays the thumbnail images in an HTML table with column headers
labeled Description, Location, and Image.

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-19

– Within a while block, reads the contents of the result set by reading the
first row’s contents beginning with the id value, displays the description
and location values, then gets the thumbnail OrdImage object and builds
the height and width attributes for each thumbnail image.

– Displays the thumbnail image using an HTML anchor tag that can be used
to display the full-sized image. When a user clicks the thumbnail image or
view image, the full-sized image is displayed.

– Displays the contents of the photo album within an HTML anchor tag using
the tag <IMG SRC="<servlet-path>?view_media=thumb&id=...">
to display the thumbnail images, where <servlet-path> is the value of
servletUri. If the thumbnail image was not created because the image
format was not supported by interMedia, the text view image is displayed
instead.

– Increments the row count to see if the photo album is empty; if so, display
the message "The photo album is empty".

– Displays an HTML anchor tag near the bottom of the HTML page using the
printLink() function with the text Upload new photo.

– Writes a common trailer at the bottom of the HTML page by calling the
printPageHeader() function, however, in this case, sets the Boolean
argument to false to not display the common page trailer.

– Closes the result set and the statement.

� The viewPhoto() method displays the full-sized version of a photo and does
the following:

– Writes a common page header on the HTML page using the
printPageHeader() function.

– Gets the value of the id column for the entry being viewed.

– Executes a SQL SELECT statement to fetch the entry’s description, location,
and full-sized image where the value of id in the where clause is a
parameter marker and returns the results in a result set.

– Gets the image OrdImage object from the result set in order to later build
the image height and width attributes within the image
tag.

– Displays the full-sized image in an HTML table beginning with the column
names Description and Location, and displays the entry’s values for
these two columns.

interMedia Photo Album Sample Applications

3-20 Oracle interMedia User’s Guide

– Builds the URL to fetch a full-sized image for this entry by using an image
tag <IMG SRC="<servlet-path>?view_media=image&id=..."> to
display an image in the column labeled Photo, where <servlet-path> is
the value of servletUri.

– Displays the full-sized images height and width by calling the getHeight()
and getWidth() interMedia object methods. If the image format is not
recognized by interMedia, height and width values will be zero and will not
be displayed.

– Writes a common page trailer at the bottom of the HTML page by calling
the printPageHeader() function and setting its Boolean argument to true to
display the common page trailer.

– Closes the result set and the statement.

� The viewMedia() method is invoked by both thumbnail and full-sized image
URLs to retrieve a thumbnail or full-sized image from the photos table and
deliver it to the browser using the OrdHttpResponseHandler class. This
method does the following:

– Executes a SQL SELECT statement to fetch either the thumbnail or
full-sized image where the value of id in the where clause is a parameter
marker and returns the results in a result set. The SQL SELECT statement is
built dynamically with the string media equating to either the thumbnail
image column or the full-sized image column.

– Fetches a row from the result set.

– Gets the OrdImage object from the result set.

– Uses the OrdHttpResponseHandler class to create an
OrdHttpResponseHandler object to retrieve the image from the OrdImage
object and deliver it to the browser using the sendImage() method. The
sendImage() method supports browser content caching by supporting the
If-Modified-Since and Last-Modified headers.

– Closes the result set and the statement.

� The viewUploadForm() method displays an HTML form that allows users to
upload new photos and does the following:

– Calls the printPageHeader() function to produce the common page header.

– Defines the form action as a multipart/form-data POST request.

– Calls the upload_form_fields static string containing the contents of the
upload form. The upload form is defined as a table with rows labeled

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-21

Description and Location, with an input type of text and named
description and location respectively, followed by a row labeled File
name:, with an input type of file and named photo, and finally a row with
no label, an input type of submit, and a value of Upload photo.

– Calls the printPageTrailer() function to produce the common page trailer.

� The insertNewPhoto() method does the following:

– Uses the OrdHttpUploadFormData class to parse a multipart/form-data
POST request containing an uploaded photo.

– Uses the OrdHttpUploadFile class to upload the new photo into the
database.

– Executes a SQL SELECT photos_sequence.nextval statement to get the next
value of the id column for the new row to be inserted into the photos
table.

– Executes a SQL INSERT statement to insert a new row in the photos table.

– Executes a SQL SELECT...FOR UPDATE statement to fetch the initialized
full-sized and thumbnail image objects from the photos table.

– Calls the loadImage() method in the OrdHttpUploadFile class to
populate an OrdImage object named image with the full-sized image and
sets the properties or attribute values of the image object based on the
image contents.

– Checks to see what the image format is and if it is an image format that may
not be displayed inline by a browser, such as a BMP image format, then
calls the getPreferredFormat() method to convert a BMP image format and
return the preferred image format.

– Calls the ProcessCopy() method in the OrdImage class to process the
full-sized image, create a thumbnail image, and populate an OrdImage
object named thumb.

– Executes a SQL UPDATE statement to update the full-sized and thumbnail
images in the database.

– Displays a photo upload success message and then directs the browser to
refresh the page.

� A getPreferredFormat() private function, in this sample application, converts a
BMP image format and returns the preferred image file format based on the
number of colors in the image; returns a MONOCHROME image format if there

interMedia Photo Album Sample Applications

3-22 Oracle interMedia User’s Guide

are no colors, or a JPEG if there are more than 8 colors, or a GIF if there greater
than 0 and fewer than 8 colors.

� A printPageHeader() private function displays an HTML header that is
common to all HTML responses.

� A printPageTrailer() private function displays an HTML trailer that is common
to all HTML responses.

� A printMessage() private function prints a message on the HTML page.

� A printHeading() private function prints a header on the HTML page.

� A printLink() function produces an HTML anchor tag in a standard format.

3.1.3 Oracle interMedia JavaServer Pages (JSP) Photo Album Sample Application
The interMedia JavaServer Pages (JSP) Photo Album sample application is a JSP
application that demonstrates the use of Oracle interMedia Java Classes for servlets
and JSP to upload and retrieve multimedia data to and from a database. Users
access the JSP that constitute the application to view the contents of the photo
album, including thumbnail versions of each photo, to view the full-sized version of
any photo, and to upload new photos into the album.

3.1.3.1 Running the JSP Photo Album Application
After you have completed the setup tasks and have built the JSP photo album
application, you can run the JSP photo album application by entering the following
URL in the address field of your Web browser:

� Default installation of Oracle Application Server 10g or Oracle Database

<protocol><hostname:port-number>/demo/PhotoAlbum.jsp

� Default installation of Tomcat 3.2 on Windows NT

<protocol><hostname:port-number>/examples/jsp/PhotoAlbum.jsp

The <protocol> field is http://, and the <hostname:port-number> field
is the host name and port number of the system where your HTTP server is
running.

When first invoked, the photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photo, select Upload new photo. Enter a description of
the photo, the location where the photo was taken, and the name of the image file or
browse to its directory location, then click Upload photo. The contents of the photo

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-23

album are displayed along with a picture of the new photo. Click the thumbnail
image to view the full-sized version of the photo.

When the photo album application displays the text view image instead of its
thumbnail image, the image format that was uploaded was not recognized by
interMedia. Click view image to display the full-sized image.

You can now begin to load your photo album application with your favorite photos.

3.1.3.2 Description of the interMedia JSP Photo Album Application
The JSP photo album application separates the business logic from the presentation
by having a JavaBean containing methods that are accessed from each of five JSP
files. When compiled, the application creates the PhotoAlbumBean.class file,
which contains the user-entered connection information and defines the following
methods: selectTable(), selectRowById(), fetch(), insertNewPhoto(), release(),
getConnection(), freeConnection(), setId(), setDescription(), setLocation(),
getImage(), and getThumb(), and the functions: getId(), getDescription(), and
getLocation(), and getPreferredFormat().

To follow along with the description of tasks, users should refer to a copy of each
JSP file, which can be found in:

<ORACLE_HOME>/ord/http/demo/jsp (on UNIX)

<ORACLE_HOME>\ord\http\demo\jsp (on Windows)

In the PhotoAlbumEntryViewer, PhotoAlbumMediaViewer, PhotoAlbum, and
PhotoAlbumInsertPhoto JSP files, the jsp:useBean action tag is used to
establish an ID and association with the PhotoAlbumBean class and the
OrdHttpJspResponseHandler and OrdHttpUploadFormData classes of
Oracle interMedia Java Classes for servlets and JSP. For example, the following code
appears in the PhotoAlbumInsertPhoto JSP file:

<jsp:useBean id="album" scope="page" class="PhotoAlbumBean"/>
<jsp:useBean id="handler" scope="page"
 class="oracle.ord.im.OrdHttpJspResponseHandler"/>
<jsp:useBean id="formData" scope="page"
 class="oracle.ord.im.OrdHttpUploadFormData"/>

This jsp:useBean action tag is used so these objects can be referenced by their
respective ID values (album, handler, and formData) to call the methods of these
classes.

The OrdHttpUploadFile class of Oracle interMedia Java Classes for servlets and
JSP is defined as an object with the name uploadPhoto in the insertNewPhoto()

interMedia Photo Album Sample Applications

3-24 Oracle interMedia User’s Guide

method in the PhotoAlbumBean.java file and then used to call its loadImage()
method to load the photo into the photos table as shown in the following code
excerpts:

public void insertNewPhoto(OrdHttpUploadFile uploadPhoto)
 throws SQLException, ServletException, IOException
.
.
.
uploadPhoto.loadImage(image);
.
.
.

The insertNewPhoto() method defined in the PhotoAlbumBean.java file, uses
the ORAData (formerly getCustomDatum) and ORADataFactory (formerly the
getFactory) interfaces supplied by Oracle to upload an image and a thumbnail
image in an OrdImage Java object. First, the method executes a SQL SELECT...FOR
UPDATE statement to select the row for update, and then, executes a SQL UPDATE
statement to update the image and thumb columns for that row in the photos
table as shown in the following code excerpts:

stmt = (OraclePreparedStatement)conn.prepareStatement(
 "select image,thumb from photos where id = ? for update");
stmt.setString(1, id);
rset = (OracleResultSet)stmt.executeQuery();
if (!rset.next())
{
 throw new ServletException("new row not found in table");
}
image = (OrdImage)rset.getORAData(1, OrdImage.getORADataFactory());
thumb = (OrdImage)rset.getORAData(2, OrdImage.getORADataFactory());

rset.close();
stmt.close();
.
.
.
 //
 // Prepare and execute a SQL statement to update the full-sized and
 // thumbnail images in the database.
 //
 stmt = (OraclePreparedStatement)conn.prepareStatement(
 "update photos set image = ?, thumb = ? where id = ?");
 stmt.setORAData(1, image);

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-25

 stmt.setORAData(2, thumb);
 stmt.setString(3, id);
 stmt.execute();
 stmt.close();

 //
 // Commit the changes.
 //
 conn.commit();
}

The fetch() method defined in the PhotoAlbumBean.java file or the
PhotoAlbumBean JavaBean, fetches the next row from the result set using the
ORAData and ORADataFactory interfaces to retrieve the image and the thumbnail
image from an OrdImage Java object, and delivers each to the browser, as shown in
the following example:

public boolean fetch()
 throws SQLException
{
 if (rset.next())
 {
 id = rset.getString(1);
 description = rset.getString(2);
 location = rset.getString(3);
 image = (OrdImage)rset.getORAData(4, OrdImage.getORADataFactory());
 thumb = (OrdImage)rset.getORAData(5, OrdImage.getORADataFactory());
 return true;
 }
 else
 {
 rset.close();
 stmt.close();
 return false;
 }
}

What follows is a more detailed description of each JSP file.

PhotoAlbum.jsp
This JSP file is the entry point to the JSP photo album application and does the
following:

� Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

interMedia Photo Album Sample Applications

3-26 Oracle interMedia User’s Guide

� Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of
image data from the photos table and its delivery to a browser or other HTTP
client from a Java servlet.

� Displays the title of the page in the HTML header and in the common page
header.

� Displays the thumbnail images in a table using column headers labeled,
Description, Location, and Image.

� Uses a try/catch block to ensure the JDBC connection is released.

� Calls the selectTable() method to select all the rows in the photos table.

� Initializes the row count to zero.

� Displays an entry in the photo album by calling the getDescription() method,
then the getLocation() method, and then printing the values in the appropriate
columns. If the location information is blank, print a space in the Location
column.

� Displays the contents of the photo album as thumbnail images using an HTML
anchor tag to call the PhotoAlbumEntryViewer.jsp file to get the ID value
by calling the getID() function.

� Calls the getThumb() method to get the thumbnail image and calls the
getContentLength() method to determine the image length.

� Tests to see if the value returned for the image length is greater than 0, and if so
uses an image tag of the form <IMG
SRC="PhotoAlbumMediaViewer.jsp?media=thumb&...> to display the
thumbnail image; otherwise, prints the link view image in the column header
labeled Image, which, when clicked, retrieves the full-sized image.

� Displays a message "The photo album is empty" if the photo album is empty. If
the photo album is not empty, the following message is displayed "Select the
thumbnail to view the full-sized image".

� Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method.

� Displays a link to the upload form with the text Upload new photo at the
bottom of the page that calls the PhotoAlbumUploadForm.jsp file.

PhotoAlbumEntryViewer.jsp
This JSP file is called by the PhotoAlbum.jsp file that displays one full-sized
version of a photo in the album. This JSP file does the following:

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-27

� Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

� Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of
image data from the photos table and its delivery to a browser or other HTTP
client from a Java servlet.

� Displays the title of the page in the HTML header and in the common page
header.

� Defines a string named id that calls the getParameter() method to get the id
value.

� Displays a message "Malformed URL, no id parameter" in the event the value of
the id string is null.

� Uses a try/catch block to ensure the JDBC connection is released.

� Calls the selectRowById() method with the value of id to select the entry to be
displayed. If the next row to be fetched for that id value is not found, display a
message "Entry not found: <id value>".

� Displays the entry in the album by calling the getDescription() method and
displaying its value under the header Description, calling the getLocation()
method and displaying its value under the Location header.

� Displays one full-sized version of a photo in the album using an image tag in
the form <IMG
SRC="PhotoAlbumMediaViewer.jsp?media=image&..."> under the
Photo header.

� Displays the full-sized images height and width by calling the getHeight() and
getWidth() methods. If the image format is not recognized by interMedia,
height and width values will be zero and will not be displayed.

� Displays a link at the bottom of the page Return to photo album that calls the
PhotoAlbum.jsp file.

� Ends the try/catch block, and with a finally clause, releases the JDBC
connection by calling the release() method.

PhotoAlbumMediaViewer.jsp
This JSP file is called by the PhotoAlbum.jsp and
PhotoAlbumEntryViewer.jsp files and retrieves a single thumbnail or full-sized
image from the photos table using the PhotoAlbumBean JavaBean and delivers it
to the browser using the OrdHttpResponseHandler class. This JSP file does the
following:

interMedia Photo Album Sample Applications

3-28 Oracle interMedia User’s Guide

� Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

� Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of
image data from the photos table and its delivery to a browser or other HTTP
client from a Java servlet.

� Defines a string named id that calls the getParameter() method to get the id
value.

� Defines a string named media that calls the getParameter() method to get the
media value.

� Sets a condition to proceed as long as the value of the string id and the value of
the string media is not null.

� Uses a try/catch block to ensure the JDBC connection is released.

� Calls the selectRowById() method to select a specific row from the photos
table for the value of id.

� Delivers the full-sized or thumbnail image by first calling the setPageContext()
method of the OrdHttpJspResponseHandler class to specify the page
context object; then, calling the getImage() method to return the image to the
OrdImage object; then, calling the sendImage() method of the
OrdHttpResponseHandler class to retrieve the image from the OrdImage
object and deliver it to the browser. If the value of media is image, an image is
delivered to the browser; if the value of media is thumb, a thumbnail image is
delivered to the browser. The sendImage() method supports browser content
caching by supporting the If-Modified-Since and Last-Modified headers.

� Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method.

� Displays the following message in the event the request is not understood
"PhotoAlbumMediaViewer.jsp - malformed URL".

PhotoAlbumUploadForm.jsp
This JSP file is called by the PhotoAlbum.jsp file that displays an HTML form to
allow users to upload new photos into the album. This JSP file does the following:

� Displays the title of the page in the HTML header and in its common page
header.

� Displays any error message under the header "Error message" from a previous
attempt to upload an image to determine whether or not the value of a string is
not null after calling the getParameter() method with an argument of error.

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-29

� Displays a header with the text Upload a new photo.

� Defines the form action specifying the PhotoAlbumInsertPhoto.jsp file to
process the upload request as a multipart/form-data POST request.

� Displays the upload form with rows labeled Description, Location, and
File name:.

� Displays the contents of the upload form defined as a table with rows labeled
Description and Location, both with an input type of text and named
description and location respectively, followed by a row labeled File name:
with an input type of file and named photo, and finally followed by a row with
no label and an input type of submit and a value of Upload photo.

� Displays a link at the bottom of the page Return to photo album that calls the
PhotoAlbum.jsp file.

PhotoAlbumInsertPhoto.jsp
This JSP file is called by the PhotoAlbumUploadForm.jsp file that uses the
OrdHttpUploadFormData class to parse the POST data in a POST request
containing the uploaded photo. This JSP file does the following:

� Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

� Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of
image data from the photos table and its delivery to a browser or other HTTP
client from a JSP file.

� Uses the OrdHttpUploadFormData class to facilitate the processing of POST
requests by parsing the POST data containing the multipart/form-data
encoding, and making the contents of regular form fields and uploaded files
readily accessible to a JSP file.

� Sets the value of the strings description and location to null and the
OrdHttpUploadFile object uploadPhoto to null.

� Uses a try/catch block to ensure the JDBC connection is released.

� Passes an OrdHttpUploadFile object to the PhotoAlbumBean class to store the
photo into the database.

� Calls the setServletRequest() method of the OrdHttpUploadFormData class
to specify the ServletRequest object for the request.

� Tests to see if the request is encoded using the multipart/form-data encoding
by calling the isUploadRequest() method of the OrdHttpUploadFormData
class.

interMedia Photo Album Sample Applications

3-30 Oracle interMedia User’s Guide

� Forwards the request to the PhotoAlbumUploadForm.jsp file if the call to
the isUploadRequest() method returns a Boolean expression of not false.

� Parses the form data by calling the parseFormData() method of the
OrdHttpUploadFormData class.

� Gets the form field values for description and location by calling the
getParameter() method of the OrdHttpUploadFormData class, and also gets
the name of the file to be uploaded by calling the getFileParameter() method of
the same class.

� Tests to make sure the file name is not null from the getFileParameter() method
call of the OrdHttpUploadFormData class, then calls the
getOriginalFileName() method of the OrdHttpUploadFile class to ensure
that the original file name as provided by the browser is not null, or that the
content length of the file is empty by calling the getContentLength() method of
the OrdHttpUploadFile class.

� Forwards the request to the PhotoAlbumUploadForm.jsp file if there is a
valid image file.

� If the description is null or empty, uses the file name as the description by
calling the getSimpleFileName() method of the OrdHttpUploadFile class.

� Inserts the new entry into the photos table by calling the setDescription(),
setLocation(), and insertNewPhoto() methods in the PhotoAlbumBean.java
JavaBean.

� Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method and releases all resources held by
the OrdHttpUploadFormData object by calling its release() method.

� Displays the updated photo album by displaying the title of the page in the
HTML header and in its common page header, directing the browser to the
main page by calling the PhotoAlbum.jsp file, then displays the header
"Photo successfully uploaded into photo album" and the instruction, "Please
click on link below or wait for the browser to refresh the page".

� Displays a link at the bottom of the main page Return to photo album that calls
the PhotoAlbum.jsp file.

PhotoAlbumBean.java
This is a JavaBean used by the JSP files to access the database.

The first call to the JavaBean for a request causes it to allocate a JDBC connection
from a connection pool. Subsequent calls by the same request reuse the same

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-31

connection. At the end of a request, each JSP file is responsible for calling the
JavaBean to release the JDBC connection back to the pool. Each HTTP GET or POST
request is assigned its own JDBC connection from the pool to ensure that multiple
requests can be serviced concurrently.

The following methods are defined:

� The selectTable() method selects all the rows in the photos table, orders them
by location, and returns the results in a result set.

� The selectRowById() method selects a specific row from the photos table
where the value of id in the where clause is a parameter marker and returns
the results in a result set.

� The fetch() method fetches the next row from the result set.

� The insertNewPhoto() method does the following:

– Uses the OrdHttpUploadFile class to upload the new photo into the
database.

– Disables auto-commit by calling the setAutoCommit() method with an
argument of false.

– Executes a SQL SELECT photos_sequence.nextval statement to get the next
value for the value of the id column for the new row to be inserted into the
photos table.

– Executes a SQL INSERT statement to insert a new row in the photos table.

– Executes a SQL SELECT...FOR UPDATE statement to fetch the initialized
full-sized and thumbnail image objects from the photos table.

– Loads the image by calling the loadImage() method in the
OrdHttpUploadFile class to populate an OrdImage object named image
with the full-sized image, and sets the properties or attribute values of the
image object based on the image contents.

– Gets the image file format by calling the getContentFormat() method and if
it is not null, and if the MIME type is BMP, then tries to process the image
by calling the process() method and calling the getPreferredFormat()
method to convert it to a MONOCHROME, GIF, or JPEG image format,
based on the number of colors in the image.

– Tries to copy the full-sized image and process it to create the thumbnail
image by calling the processCopy() method in the OrdImage class and
populate the OrdImage object named thumb.

interMedia Photo Album Sample Applications

3-32 Oracle interMedia User’s Guide

– Executes a SQL UPDATE statement to update the full-sized and thumbnail
images in the database.

– Commits the changes.

� A release() method to release the result set and statement objects, and places
the JDBC connection back on the free list or stack.

� Get methods (getId(), getDescription(), getLocation(), getImage(), and
getThumb()) and the set methods (setId(), setDescription(), and setLocation())
are used to get or set attributes for all attributes or columns.

� A getConnection() private function implements a simple JDBC connection
pool.

� A freeConnection() private function releases the JDBC connection back to the
pool at the end of the request.

� A getPreferredFormat() private function returns the preferred image file format
based on the number of bits of color in the BMP image; returns a
MONOCHROME image if there are no bits of color, returns JPEG if there are
more than 8 bits of color, or returns GIF if there are between 1 and 8 bits of
color.

3.1.4 Oracle interMedia ASP/VBScript Photo Album Sample Application
The interMedia ASP/VBScript Photo Album sample application is an ASP/VBScript
application that demonstrates how to upload, retrieve, and process multimedia data
stored using the interMedia ORDImage type and Oracle Objects for OLE. Users
access the application to view the contents of the photo album, including thumbnail
versions of each photo, to view the full-sized version of any photo, and to upload
new photos into the album.

3.1.4.1 Running the ASP/VBScript Photo Album Application
After you have installed and configured this photo album application in Microsoft
IIS and configured the application connection parameters, you are ready to run the
photo album application.

To use it, enter the photo album URL into the location bar of your Web browser, for
example:

http://<hostname:port>/photoAlbum

When first invoked, the application displays any images that are currently stored in
the album. By default, the photo album is empty when first installed. To upload a

interMedia Photo Album Sample Applications

Developing Media Upload and Retrieval Applications 3-33

new photo, click Upload new photo. Enter a description of the photo, the location
where the photo was taken, and the name of the image file or browse to its directory
location, then click Upload new photo. The contents of the photo album are then
displayed along with a picture of the new photo. Click the thumbnail image to view
the full-sized version of the photo.

When the photo album application displays the text view image instead of its
thumbnail image, the image format that was uploaded was not recognized by
interMedia. Click view image to display the full-sized image.

You can now begin to load your photo album application with your favorite photos.

3.1.4.2 Description of the ASP/VBScript Photo Album Application
The top-level files that implement the photo album application are:
viewAlbum.asp, viewEntry.asp, and uploadPhoto.asp. In addition, the
getPhoto.asp file retrieves the images from the database and the
insertPhoto.asp file inserts a new image into the database.

viewAlbum.asp
The viewAlbum page displays the contents of the photo album in a tabular format
with columns labeled Description, Location, and Image.

Thumbnail images are ordered by description in the SQL SELECT statement and
displayed with an anchor tag that is used to display the full-sized image, using the
tag as follows:

<A href="viewEntry.asp?entry_id=<%=strId%>">
 <% If objThumb.contentlength > 0 Then %>
 <IMG border = 1
 height="<%=objThumb.height%>"
 width="<%=objThumb.width%>"
 alt="<%=strDescription%>"
 src="getPhoto.asp?media=thumb&entry_id=<%=strId%>"
 >

If interMedia does not support the image format, then a thumbnail image would not
have been created and stored in the database. In this case, the text view image is
displayed instead of the thumbnail image in the Image column header of the table.

Text is displayed on the page stating Select the thumbnail to view the full-size
image. A link appearing at the bottom of the page Upload new photo, calls the
uploadPhoto.asp file to present an upload form (uploadForm.inc) to assist in
uploading a new photo into the database.

interMedia Photo Album Sample Applications

3-34 Oracle interMedia User’s Guide

viewEntry.asp
The viewEntry page, which displays the full-sized version of a photo, also uses the
tag to display an image, as
follows:

<TD vAlign=top scope="col">Photo:</TD>
 <TD scope="col">
 <IMG border=1
 alt="<%=strDescription%>"
 src="getPhoto.asp?media=image&entry_id=<%=strId%>"
 <% If objImage.height > 0 And objImage.width > 0 Then %>
 height="<%=objImage.height%>"
 width="<%=objImage.width%>"
 <% End If %>
 >
 </TD>

Both URLs will retrieve an image from the database and deliver it to the browser
using Oracle Objects for OLE to communicate with the database.

A link appears at the bottom of the page Return to photo album that calls the
viewAlbum.asp file to present the photo album table and its set of thumbnail
images to view.

uploadPhoto.asp
The uploadPhoto page displays an HTML form (uploadForm.inc) that allows a
user to upload a new photo into the database by entering description and location
information for the new photo, and its image file name. The form invokes the
insertPhoto page as follows:

<FORM action="insertPhoto.asp" method="post" encType="multipart/form-data">

insertPhoto.asp
The insertPhoto page performs the work of loading the image into the photos
table and automatically generating a thumbnail version of the image.

Clicking Upload photo near the bottom of the uploadPhoto page executes the
submit input type form action, as follows:

<TD colSpan=2><INPUT type=submit value="Upload photo"></TD>

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-35

getPhoto.asp
The getPhoto page retrieves the image, either a thumbnail or full-sized image,
based on its photo column indicator value (thumb or image), from the database
and returns it to the browser. If the image requested is in the browser cache and the
cache is valid, then it retrieves the image from cache; otherwise, it sets the MIME
type of the image based on its attribute value in the database, then gets the image
from the database and delivers it to the browser, as follows:

If CacheIsValid(setPhotos(1).value) Then
 Response.Status = HTTP_STATUS_NOT_MODIFIED
Else
 ’ Set the mime type header and deliver the image to the browser.
 SetLastModified(setPhotos(1).value)
 Response.ContentType = objMedia.mimetype
 ReadBlob objMedia.source.localData
End If

3.2 interMedia Code Wizard Sample Application
The interMedia Code Wizard sample application lets you create PL/SQL stored
procedures for the PL/SQL Gateway to upload and retrieve media data (images,
audio, video, and general media) stored in a database using interMedia object types,
ORDImage, ORDAudio, ORDVideo, and ORDDoc, and their respective methods.
The Code Wizard guides you through a series of self-explanatory steps to create
either a media retrieval or a media upload procedure. You can either create and
compile standalone media access procedures, or you can create the source of media
access procedures for inclusion in a PL/SQL package. This is similar to how the
photo album application (see Section 3.1.1.2) uses the insert_new_photo
procedure as the image upload procedure and the deliver_media procedure as
the image retrieval procedure in the photo_album PL/SQL package. Finally, once
created, you can customize the media access procedures as necessary to meet
specific application requirements.

3.2.1 Using the Code Wizard
To use the Code Wizard to create and test media upload and retrieval procedures,
you must do the following steps:

1. Create a new DAD or choose an existing DAD for use with the Code Wizard.

2. Authorize use of the DAD using the Code Wizard’s administration function.

interMedia Code Wizard Sample Application

3-36 Oracle interMedia User’s Guide

3. Create and test media upload and retrieval procedures.

This section describes each of these topics in more detail as the following topics:

� Creating a New DAD or Choosing an Existing DAD

� Authorizing a DAD

� Creating and Testing Media Upload and Retrieval Procedures

� Using the PL/SQL Gateway Document Table

� How Time Zone Information Is Used to Support Browser Caching

3.2.1.1 Creating a New DAD or Choosing an Existing DAD
To create media upload or retrieval procedures, you must select one or more DADs
for use with the Code Wizard. To prevent the unauthorized browsing of schema
tables and to prevent the unauthorized creation of media access procedures, you
must authorize each DAD using the Code Wizard’s administration function.
Depending on your database and application security requirements, you may
choose to create and authorize one or more new DADs specifically for use with the
Code Wizard, or you may choose to authorize the use of one or more existing
DADs.

Oracle recommends that any DAD authorized for use with the Code Wizard should
use some form of user authentication mechanism. The simplest approach is to create
or use a DAD that uses database authentication. To use this approach, select Basic
Authentication Mode and omit the Password in the DAD specification.
Alternatively, you may choose to use a DAD that specifies an existing
application-specific authentication mechanism. For more information on
configuring DADs, see Oracle HTTP Server mod_plsql User’s Guide.

The following example describes how to create a DAD to create and test media
upload and retrieval procedures in the SCOTT schema.

Note: To test media upload procedures, the name of a document
table must be specified in the DAD. When testing an upload
procedure, you may choose the DAD you use to create the
procedure, or you may use the DAD used to access the application.
You may choose a document table name when you create a DAD,
edit a DAD to specify the document table name at a later time, or
use an existing DAD that already specifies a document table name.
This example illustrates specifying the document table name when
you create the DAD.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-37

1. Enter the URL of the Gateway Configuration Menu page into your browser’s
location bar, for example:

http://<host-name>:<port-number>/pls/admin_/gateway.htm

2. Select Gateway Database Access Descriptor Settings.

3. Select Add Default (blank configuration).

4. Enter the following information into the specified sections of the Create DAD
Entry form:

Add Database Access Descriptor
 Database Access Descriptor Name: SCOTTCW
 Schema name: [leave blank]
Database Connectivity Information
 Oracle User Name: SCOTT
 Oracle Password: [leave blank]
 Oracle Connect String: [leave blank or enter TNS name]
Authentication Mode
 Authentication Mode: Basic
Session Cookie
 Session Cookie Name: [leave blank]
Package/Session Management State
 Package/Session Management Type Stateless (Reset Package State)
Connection Pool Parameters
 Enable Connection Pooling? Yes
Default (Home) Page
 Default (Home) Page: ORDCWPKG.MENU
Document Access Information
 Document Table: MEDIA_UPLOAD_TABLE
 Document Access Path: [leave blank]
 Document Access Procedure: [leave blank]
 Extensions uploaded as Long Raw: [leave blank]
Path Aliasing
 Path Alias: [leave blank]
 Path Alias Procedure: [leave blank]

3.2.1.2 Authorizing a DAD
To authorize a DAD for use with the Code Wizard, do the following steps:

1. Enter the Code Wizard’s administration URL into your browser’s location bar,
for example:

http://<host-name>:<port-number>/pls/ordcwadmin

interMedia Code Wizard Sample Application

3-38 Oracle interMedia User’s Guide

2. Enter the ORDSYS user name and password when prompted by the browser.

3. Select DAD authorization from the Main menu as shown in Figure 3–3, then
click Next.

Figure 3–3 Main Menu for the interMedia Code Wizard for the PL/SQL Gateway

4. Enter the name of the DAD you wish to authorize together with the user name,
as shown in Figure 3–4, then click Apply.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-39

Figure 3–4 Authorizing the SCOTTCW DAD

5. Review the updated list of DADs that are authorized to use the interMedia
Code Wizard, as shown in Figure 3–5, then click Next.

Note: Duplicate DADs are not allowed, and each authorized DAD
must indicate which database schema the user is authorized to
access with the Code Wizard, using the DAD. Use this same page to
delete the authorization for any existing DADs that no longer need
to use the Code Wizard.

interMedia Code Wizard Sample Application

3-40 Oracle interMedia User’s Guide

Figure 3–5 List of Authorized DADs

6. To log out (clear HTTP authentication information), select Logout from the
Main menu, then click Next. The log out operation redirects the request to the
PL/SQL Gateway’s built-in logmeoff function. For more information, see
Oracle HTTP Server mod_plsql User’s Guide.

3.2.1.3 Creating and Testing Media Upload and Retrieval Procedures
To start the Code Wizard, enter the appropriate URL into your browser’s location
bar, for example:

http://<hostname>:<port-number>/pls/scottcw

or

http://<hostname>:<port-number>/pls/mediadad/ordcwpkg.menu

Then, enter the user name and password when prompted by the browser. The Main
menu page of the interMedia Code Wizard for the PL/SQL Gateway is displayed as
shown in Figure 3–6.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-41

Figure 3–6 Using the SCOTTCW DAD

If the DAD is configured specifically for use with the Code Wizard, simply enter the
DAD name. Alternatively, to use another DAD, enter the DAD name together with
the Code Wizard package name and Main menu procedure name,
ORDCWPKG.MENU after the DAD name.

Once you have logged in, you can log out (clear HTTP authentication information)
at any time by selecting Logout from the Main menu, then clicking Next. The
logout operation redirects the request to the PL/SQL Gateway’s built-in logmeoff
function. For more information, see Oracle HTTP Server mod_plsql User’s Guide.

To create a media upload procedure (see Section 3.2.1.4) or a media retrieval
procedure (see Section 3.2.1.5), select the appropriate option from the Main menu,
then click Next. The Code Wizard then guides you through a series of
self-explanatory steps to create the procedure.

If you create a standalone media upload or retrieval procedure, you will have the
opportunity to view the contents of the procedure as well as to test it.

The image and multimedia sample sessions described in Section 3.2.2 and
Section 3.2.3 respectively, illustrate how to create and test a media upload procedure
and a media retrieval procedure.

interMedia Code Wizard Sample Application

3-42 Oracle interMedia User’s Guide

3.2.1.4 Creating a Media Upload Procedure
To create a media upload procedure using the interMedia Code Wizard for the
PL/SQL Gateway, do the following steps:

1. At the Main menu, select Create media upload procedure as shown in
Figure 3–7. Click Next.

Figure 3–7 Create a Media Upload Procedure

2. At Step 1: Select database table and procedure type, select CW_IMAGES_
TABLE and Standalone procedure as shown in Figure 3–8. Click Next.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-43

Figure 3–8 Step 1: Select Database Table and Procedure Type

3. At Step 2: Select PL/SQL Gateway document upload table, select Use existing
document table and select MEDIA_UPLOAD_TABLE because the SCOTTCW
DAD is configured to use this document table as shown in Figure 3–9 and
Figure 3–10. Click Next.

interMedia Code Wizard Sample Application

3-44 Oracle interMedia User’s Guide

Figure 3–9 Step 2: Select PL/SQL Gateway Document Upload Table (Part 1)

Figure 3–10 Step 2: Select PL/SQL Gateway Document Upload Table (Part 2)

4. At Step 3: Select data access and media column(s), ensure IMAGE
(ORDIMAGE) is checkmarked, that ID (Primary key) is selected, and select
Conditional insert or update as shown in Figure 3–11. Click Next.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-45

Figure 3–11 Step 3: Select Data Access and Media Column(s)

5. At Step 4: Select additional columns and procedure name, ensure
DESCRIPTION is checkmarked, accept the default procedure name,
UPLOAD_CW_IMAGES_TABLE_IMAGE, and select Create procedure in the
database as shown in Figure 3–12. Click Next.

interMedia Code Wizard Sample Application

3-46 Oracle interMedia User’s Guide

Figure 3–12 Step 4: Select Additional Columns and Procedure Name

6. At Step 5: Review selected options, review the options you have selected as
shown in Figure 3–13. If the options selected are correct, click Finish.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-47

Figure 3–13 Step 5: Review Selected Options

7. At the Compile procedure and review generated source window note the
message, Procedure created successfully: UPLOAD_CW_IMAGES_
TABLE_IMAGE as shown in Figure 3–14. To review the compiled PL/SQL
source code in another window, click View (see Step 5, substep 6g in
Section 3.2.2 for a copy of the generated upload procedure). Assuming you have
configured the SCOTTCW DAD and specified MEDIA_UPLOAD_TABLE as the
document table, in the DAD: field, the DAD name scottcw is displayed by
default. To test the PL/SQL procedure created, click Test.

interMedia Code Wizard Sample Application

3-48 Oracle interMedia User’s Guide

Figure 3–14 Compile Procedure and Review Generated Source

8. At the interMedia Code Wizard: Template Upload Form window, enter the
value 1 in the ID field, browse for and select the image you want to upload in
the IMAGE field, and enter a brief description of the image to be uploaded in
the DESCRIPTION field as shown in Figure 3–15. Click Upload media.

Figure 3–15 Template Upload Form

9. The image is uploaded into the table row and a message is displayed, as shown
in Figure 3–16.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-49

Figure 3–16 Template Upload Procedure -- Media Uploaded Successfully Message

10. Return to the Compile procedure and review generated source window. If you
are finished testing, click Done to return to the Main menu.

3.2.1.5 Creating a Media Retrieval Procedure
To create a media retrieval procedure using the interMedia Code Wizard for the
PL/SQL Gateway, do the following steps:

1. At the Main menu, select Create media retrieval procedure as shown in
Figure 3–17. Click Next.

Figure 3–17 Create a Media Retrieval Procedure

interMedia Code Wizard Sample Application

3-50 Oracle interMedia User’s Guide

2. At Step 1: Select database table and procedure type, select CW_IMAGES_
TABLE and select Standalone procedure as shown in Figure 3–18. Click Next.

Figure 3–18 Step 1: Select Database Table and Procedure Type

3. At Step 2: Select media column and key column, ensure IMAGE
(ORDIMAGE) and ID (Primary key) are selected as shown in Figure 3–19.
Click Next.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-51

Figure 3–19 Step 2: Select Media Column and Key Column

4. At Step 3: Select procedure name and parameter name, accept the default
procedure name, GET_CW_IMAGES_TABLE_IMAGES, accept the default
parameter name, MEDIA_ID, and accept Create procedure in the database as
shown in Figure 3–20. Click Next.

interMedia Code Wizard Sample Application

3-52 Oracle interMedia User’s Guide

Figure 3–20 Step 3: Select Procedure Name and Parameter Name

5. At Step 4: Review Selected Options, review the options you have selected as
shown in Figure 3–21. If the options selected are correct, click Finish.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-53

Figure 3–21 Step 4: Review Selected Options

6. At the Compile procedure and review generated source window note the
message, Procedure created successfully: GET_CW_IMAGES_
TABLE_IMAGE as shown in Figure 3–22. To review the compiled PL/SQL
source code in another window, click View (see Step 6, substep 5e in
Section 3.2.2 for a copy of the generated retrieval procedure). To test the
PL/SQL procedure created, assuming you have an image already loaded in the
database with an ID value of 1, enter the value 1 for the Key parameter
(MEDIA_ID), then click Test. The image is retrieved from the table row and is
displayed as shown in Figure 3–23. Click Done to return to the Main menu.

interMedia Code Wizard Sample Application

3-54 Oracle interMedia User’s Guide

Figure 3–22 Compile Procedure and Review Generated Source

Figure 3–23 The Displayed Image 1981

3.2.1.6 Using the PL/SQL Gateway Document Table
All files uploaded using the PL/SQL Gateway are stored in a document table.
Media upload procedures created by the Code Wizard automatically move
uploaded media from the specified document table to the application’s table. To
avoid transient files from appearing temporarily in a document table used by
another application component, use a document table that is not being used to store
documents permanently.

Be sure to specify the selected document table in the application’s database access
descriptor (DAD). If the DAD already specifies a different document table, create a

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-55

new DAD for media upload procedures. If you choose to create a new document
table, the Code Wizard will create a table with the following format:

CREATE TABLE document-table-name
 (name VARCHAR2(256) UNIQUE NOT NULL,
 mime_type VARCHAR2(128),
 doc_size NUMBER,
 dad_charset VARCHAR2(128),
 last_updated DATE,
 content_type VARCHAR2(128),
 blob_content BLOB);

For more information on file upload and document tables, see Oracle HTTP Server
mod_plsql User’s Guide.

3.2.1.7 How Time Zone Information Is Used to Support Browser Caching
User response times are improved and network traffic is reduced if a browser can
cache resources received from a Web server and subsequently use those cached
resources to satisfy future requests. This section describes at a very high level, how
the browser caching mechanism works and how the Code Wizard utility package is
used to support that mechanism. When reading this discussion, note that all HTTP
date and time stamps are expressed in Coordinated Universal Time (UTC).

All HTTP responses include a Date header, which indicates the date and time when
the response was generated. When a Web server sends a resource in response to a
request from a browser, it can also include the Last-Modified HTTP response
header, which indicates the date and time when the requested resource was last
modified. It is important to note that the Last-Modified header must not be later
than the Date header.

After receiving and caching a resource, if a browser needs to retrieve the same
resource again, it sends a request to the Web server with the If-Modified-Since
request header specified as the value of the Last-Modified date, which was returned
by the application server when the resource was previously retrieved and cached.
When the Web server receives the request, it compares the date in the
If-Modified-Since request header with the last update time of the resource.
Assuming the resource still exists, if the resource has not changed since it was
cached by the browser, the Web server responds with an HTTP 304 Not
Modified status with no response body, which indicates that the browser can use
the resource currently stored in its cache. Assuming once again the resource still
exists, if the request does not include an If-Modified-Since header or if the resource
has been updated since it was cached by the browser, the Web server responds with

interMedia Code Wizard Sample Application

3-56 Oracle interMedia User’s Guide

an HTTP 200 OK status and sends the resource to the browser. See the HTTP
specification (http://www.w3.org/Protocols/) for more information.

The ORDImage, ORDAudio, ORDVideo, and ORDDoc objects all possess an
updateTime attribute stored as a DATE in the embedded ORDSource object.
Although the DATE data type has no support for time zones or daylight savings
time, the Oracle9i and later database versions do support time zones and also
provide functions for converting a DATE value stored in a database to UTC. See
Oracle Database Administrator’s Guide for more information on how to set a time
zone for a database. See Oracle Database SQL Reference for more information on date
and time functions.

When a response is first returned to a browser, a media retrieval procedure sets the
Last-Modified HTTP response header based on the updateTime attribute. If a
request for media data includes an If-Modified-Since header, the media retrieval
procedure compares the value with the updateTime attribute and returns an
appropriate response. If the resource in the browser’s cache is still valid, an HTTP
304 Not Modified status is returned with no response body. If the resource has
been updated since it was cached by the browser, then an HTTP 200 OK status is
returned with the media resource as the response body.

Media retrieval procedures created by the Code Wizard call the utility package to
convert a DATE value stored in the database to UTC. The utility package uses the
time zone information stored with an Oracle9i or later database and the date and
time functions to convert database date and time stamps to UTC. To ensure the
resulting date conforms to the rule for the Last-Modified date described previously,
the time zone information must be specified correctly. See Oracle Database
Administrator’s Guide for more information on how to set a time zone for a database.

3.2.2 Sample Session Using Images
The following sample session uses the SCOTT schema to illustrate the creation of
image media upload and retrieval procedures. Substitute a different schema name if
you want to use a different schema.

This sample session assumes the interMedia Code Wizard has been installed.

Perform the following steps:

Step 1 Create a table to store images for the application by starting SQL*Plus
and connecting to the SCOTT schema in the database.
For example:

sqlplus SCOTT/TIGER[@<connect_identifer>]

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-57

SQL> CREATE TABLE cw_images_table(id NUMBER PRIMARY KEY,
 description VARCHAR2(30) NOT NULL,
 location VARCHAR2(30),
 image ORDSYS.ORDIMAGE);

Step 2 Create the SCOTTCW DAD to be used to create the procedures.
1. Enter the URL of the PL/SQL Gateway Configuration page into your

browser’s location bar, for example:

http://<hostname>:<port-number>/pls/admin_/gateway.htm

2. Click Gateway Database Access Descriptor Settings.

3. Click Add Default (blank configuration).

4. Enter the following information into the specified sections of the Create DAD
Entry Upload form:

Add Database Access Descriptor
 Database Access Descriptor Name: SCOTTCW
 Schema name: [leave blank]
Database Connectivity Information
 Oracle User Name: SCOTT
 Oracle Password: [leave blank]
 Oracle Connect String: [leave blank or enter TNS name]
Authentication Mode
 Authentication Mode: Basic
Session Cookie
 Session Cookie Name: [leave blank]
Package/Session Management State
 Package/Session Management Type Stateless (Reset Package State)
Connection Pool Parameters
 Enable Connection Pooling? Yes
Default (Home) Page
 Default (Home) Page: ORDCWPKG.MENU
Document Access Information
 Document Table: CW_SAMPLE_UPLOAD_TABLE
 Document Access Path: [leave blank]
 Document Access Procedure: [leave blank]
 Extensions uploaded as Long Raw: [leave blank]
Path Aliasing
 Path Alias: [leave blank]
 Path Alias Procedure: [leave blank]

interMedia Code Wizard Sample Application

3-58 Oracle interMedia User’s Guide

Step 3 Authorize the use of the SCOTTCW DAD and SCOTT schema with the
Code Wizard.
1. Enter the Code Wizard’s administration URL into your browser’s location bar,

then enter the ORDSYS user name and password when prompted by the
browser, for example:

http://<hostname>:<port-number>/pls/ordcwadmin

2. Select the DAD authorization function from the Code Wizard’s Main menu
and click Next. Enter the name of the demonstration DAD, SCOTTCW, and the
user name SCOTT, then click Apply. Click Done when the confirmation
window is displayed.

Step 4 Change DADs to the SCOTTCW DAD.
1. Click Change DAD from the Code Wizard’s Main menu.

2. Click Change to SCOTTCW, if it is not already selected, then click Next.

3. Enter the user name SCOTT and password TIGER when prompted for user
name and password, then click OK.

The Main menu now displays the current DAD as SCOTTCW and the current
schema as SCOTT.

Step 5 Create and test the media upload procedure.
Click Create media upload procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click the CW_IMAGES_TABLE database table.

b. Click Standalone procedure.

c. Click Next.

2. Select the PL/SQL document upload table.

If there are no document tables in the SCOTT schema, the Code Wizard displays
a message indicating this situation. In this case, accept the default table name
provided, CW_SAMPLE_UPLOAD_TABLE, then click Next.

If there are existing document tables, but the CW_SAMPLE_UPLOAD_TABLE
is not among them, click Create new document table, accept the default table
name provided, CW_SAMPLE_UPLOAD_TABLE, then click Next.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-59

If the CW_SAMPLE_UPLOAD_TABLE document table already exists, ensure that
the Use existing document table and the CW_SAMPLE_UPLOAD_TABLE
options are selected. Click Next.

3. Select the data access and media columns.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Conditional insert or update.

d. Click Next.

4. Select additional columns and procedure names.

a. Ensure that DESCRIPTION checkmarked because this column has a NOT
NULL constraint. (The LOCATION column is not checkmarked by default
as there are no constraints on this column.)

b. Accept the procedure name provided, UPLOAD_CW_IMAGES_TABLE_
IMAGE.

c. Click Create procedure in the database.

d. Click Next.

5. Review the following selected procedure creation options that are displayed:

Procedure type: Standalone
Table name: CW_IMAGES_TABLE
Media column(s): IMAGE (ORDIMAGE)
Key column: ID
Additional column(s): DESCRIPTION
Table access mode: Conditional update or insert
Procedure name: UPLOAD_CW_IMAGES_TABLE_IMAGE
Function: Create procedure in the database

Click Finish.

6. Compile the procedure and review the generated source information.

The Code Wizard displays the following message: "Procedure created
successfully: UPLOAD_CW_IMAGES_TABLE_IMAGE".

a. At the option Click to display generated source:, click View to view the
generated source in another window. A copy of the generated source is
shown at the end of Step 5, substep 6g.

b. Close the window after looking at the generated source.

interMedia Code Wizard Sample Application

3-60 Oracle interMedia User’s Guide

c. Accept the DAD: name provided, SCOTTCW, then click Test to produce
another window that displays a template file upload form that you can use
to test the generated procedure.

d. To customize the template file upload form, select Save As... from your
browser’s File pull-down menu to save the HTML source for editing.

e. To test the template upload form, enter the following information:

– For the ID: column, enter the number 1 as the row’s primary key.

– For the IMAGE column, click Browse... and choose an image file to
upload to the database.

– For the DESCRIPTION column, enter a brief description of the image.

– Click Upload media.

The Code Wizard displays a template completion window with the heading
interMedia Code Wizard: Template Upload Procedure, and, if the
procedure is successful, the message: Media uploaded successfully.

f. Close the window.

g. Click Done on the Compile procedure and review generated source
window to return to the Main menu of the Code Wizard.

A copy of the generated image upload procedure is as follows:

CREATE OR REPLACE PROCEDURE UPLOAD_CW_IMAGES_TABLE_IMAGE
 (in_ID IN VARCHAR2,
 in_IMAGE IN VARCHAR2 DEFAULT NULL,
 in_DESCRIPTION IN VARCHAR2 DEFAULT NULL)
AS
 local_IMAGE ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_ID CW_IMAGES_TABLE.ID%TYPE := NULL;
 upload_size INTEGER;
 upload_mimetype VARCHAR2(128);
 upload_blob BLOB;
BEGIN
 --
 -- Update the existing row.
 --
 UPDATE CW_IMAGES_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,
 mtbl.DESCRIPTION = in_DESCRIPTION
 WHERE mtbl.ID = in_ID
 RETURN mtbl.ID INTO local_ID;

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-61

 --
 -- Conditionally insert a new row if no existing row is updated.
 --
 IF local_ID IS NULL
 THEN
 --
 -- Insert the new row into the table.
 --
 INSERT INTO CW_IMAGES_TABLE (ID, IMAGE, DESCRIPTION)
 VALUES (in_ID, local_IMAGE, in_DESCRIPTION);
 END IF;
 --
 -- Select interMedia object(s) for update.
 --
 SELECT mtbl.IMAGE INTO local_IMAGE
 FROM CW_IMAGES_TABLE mtbl WHERE mtbl.ID = in_ID FOR UPDATE;
 --
 -- Store media data for the column in_IMAGE.
 --
 IF in_IMAGE IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_IMAGE.source.localData,
 upload_blob,
 upload_size);
 local_IMAGE.setLocal();
 BEGIN
 local_IMAGE.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_IMAGE.contentLength := upload_size;
 local_IMAGE.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 END IF;
 --
 -- Update interMedia objects in the table.
 --
 UPDATE CW_IMAGES_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE

interMedia Code Wizard Sample Application

3-62 Oracle interMedia User’s Guide

 WHERE mtbl.ID = in_ID;
 --
 -- Display the template completion message.
 --
 htp.print(’<html>’);
 htp.print(’<title>interMedia Code Wizard: Template Upload
Procedure</title>’);
 htp.print(’<body>’);
 htp.print(’<h2><i>inter</i>Media Code Wizard:
Template Upload Procedure</h2>’);
 htp.print(’Media uploaded successfully.’);
 htp.print(’</body>’);
 htp.print(’</html>’);
END UPLOAD_CW_IMAGES_TABLE_IMAGE;

This sample image upload procedure declares the following input parameters
and variables:

1. In the declaration section, the procedure declares three input parameters:
in_ID, in_IMAGE, and in_DESCRIPTION, then initializes the latter two to
NULL.

2. In the subprogram section, the following variables are declared:

– The variable local_IMAGE is assigned the data type
ORDSYS.ORDIMAGE and initialized with an empty BLOB using the
ORDIMAGE.init() method.

– The variable local_ID takes the same data type as the ID column in
the table CW_IMAGES_TABLE and is initialized to NULL.

– Three additional variables are declared upload_size, upload_
mimetype, and upload_blob, which are later given values from
comparable column names doc_size, mime_type, and blob_
content from the document table CW_IMAGE_UPLOAD_TABLE, using
a SELECT statement in preparation for copying the content of the
image BLOB data to the ORDSYS.ORDIMAGE.source.localData
attribute.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Update the existing row in the table CW_IMAGES_TABLE for the IMAGE and
DESCRIPTION columns and return the value of local_ID where the value
of the ID column is the value of the in_ID input parameter.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-63

2. If the value returned of local_ID is NULL, conditionally insert a new row
into the table CW_IMAGES_TABLE and initialize the instance of the
ORDImage object type in the image column with an empty BLOB.

3. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE
for update where the value of the ID column is the value of the in_ID
input parameter.

4. Select a row for the doc_size, mime_type, and blob_content columns
from the document table and pass the values to the upload_size,
upload_mimetype, and upload_blob variables where the value of the
document table Name column is the value of the in_IMAGE input
parameter.

5. Perform a DBMS_LOB copy of the BLOB data from the table CW_IMAGE_
UPLOAD_TABLE into the ORDSYS.ORDIMAGE.source.localData attribute,
then call the setLocal() method to indicate that the image data is stored
locally in the BLOB, and ORDImage methods should look for
corresponding data in the source.localData attribute.

6. In the inner executable block, call the ORDImage setProperties() method to
read the image data to get the values of the object attributes and store them
in the image object attributes for the ORDImage object.

7. If the setProperties() call fails, catch the exception and call the
contentLength() method to get the size of the image and call the
mimeType() method to get the MIME type of the image.

8. Delete the row of data from the document table CW_IMAGE_UPLOAD_
TABLE that was copied to the row in the table CW_IMAGES_TABLE where
the value of the Name column is the value of the in_IMAGE input
parameter.

9. Update the ORDImage object IMAGE column in the table CW_IMAGES_
TABLE with the content of the variable local_IMAGE where the value of
the ID column is the value of the in_ID input parameter.

10. Display a completion message on the HTML page to indicate that the media
uploaded successfully using the htp.print function from the PL/SQL
Web Toolkit.

Step 6 Create and test a media retrieval.
Select Create media retrieval procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

interMedia Code Wizard Sample Application

3-64 Oracle interMedia User’s Guide

a. Click CW_IMAGES_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the media column and key column.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Next.

3. Select the procedure name and parameter name.

a. Accept the procedure name provided, GET_CW_IMAGES_TABLE_IMAGE.

b. Accept the parameter name provided, MEDIA_ID.

c. Click Create procedure in the database.

d. Click Next.

4. Review the following selected procedure creation options:

Procedure type: Standalone
Table name: CW_IMAGES_TABLE
Media column(s): IMAGE (ORDIMAGE)
Key column: ID
Procedure name: GET_CW_IMAGES_TABLE_IMAGE
Parameter Name: MEDIA_ID
Function: Create procedure in the database

Click Next.

5. Compile the procedure and review the generated source.

The Code Wizard displays the following message: Procedure created
successfully: GET_CW_IMAGES_TABLE_IMAGE

a. Click View to view the generated source in another window. Close the
window after looking at the generated source. A copy of the generated
source is shown at the end of Step 6, substep 5e.

b. Review the URL format used to retrieve images using the GET_CW_
IMAGES_TABLE_IMAGE procedure.

c. Enter the number 1 as the Key parameter, then click Test to test the
procedure by retrieving the image uploaded previously.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-65

The retrieved image is displayed in another window.

d. Close the window.

e. Click Done to return to the Main menu.

A copy of the generated image retrieval procedure is as follows:

CREATE OR REPLACE PROCEDURE GET_CW_IMAGES_TABLE_IMAGE (
 MEDIA_ID IN VARCHAR2)
AS
 localObject ORDSYS.ORDIMAGE;
 localBlob BLOB;
 localBfile BFILE;
 httpStatus NUMBER;
 lastModDate VARCHAR2(256);
BEGIN
 --
 -- Retrieve the object from the database into a local object.
 --
 BEGIN
 SELECT mtbl.IMAGE INTO localObject FROM CW_IMAGES_TABLE mtbl
 WHERE mtbl.ID = MEDIA_ID;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ordplsgwyutil.resource_not_found(’MEDIA_ID’, MEDIA_ID);
 RETURN;
 END;

 --
 -- Check the update time if the browser sent an If-Modified-Since header.
 --
 IF ordplsgwyutil.cache_is_valid(localObject.getUpdateTime())
 THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
 END IF;

 --
 -- Figure out where the image is.
 --
 IF localObject.isLocal() THEN
 --
 -- Data is stored locally in the localData BLOB attribute.
 --
 localBlob := localObject.getContent();

interMedia Code Wizard Sample Application

3-66 Oracle interMedia User’s Guide

 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env(’REQUEST_METHOD’) <> ’HEAD’ THEN
 wpg_docload.download_file(localBlob);
 END IF;
 ELSIF UPPER(localObject.getSourceType()) = ’FILE’ THEN

 --
 -- Data is stored as a file from which ORDSource creates
 -- a BFILE.
 --
 localBfile := localObject.getBFILE();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env(’REQUEST_METHOD’) <> ’HEAD’ THEN
 wpg_docload.download_file(localBfile);
 END IF;

 ELSIF UPPER(localObject.getSourceType()) = ’HTTP’ THEN
 --
 -- The image is referenced as an HTTP entity, so we have to
 -- redirect the client to the URL that ORDSource provides.
 --
 owa_util.redirect_url(localObject.getSource());
 ELSE
 --
 -- The image is stored in an application-specific data
 -- source type for which no default action is available.
 --
 NULL;
 END IF;
END GET_CW_IMAGES_TABLE_IMAGE;

This sample image retrieval procedure declares the following input parameters
and variables:

1. In the declaration section, the procedure declares one input parameter:
MEDIA_ID.

2. In the subprogram section, the following variables are declared:

– The variable localObject is assigned the data type
ORDSYS.ORDIMAGE.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-67

– The variable localBlob is a BLOB data type, the variable
localBfile is a BFILE data type, httpStatus is a NUMBER, and
lastModDate is a VARCHAR2 with a maximum size of 256 characters.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE
where the value of the ID column is the value of the MEDIA_ID input
parameter.

2. In the inner executable block, when no data is found, raise an exception and
call the resource_not_found function of the PL/SQL Gateway and get
the value of the MEDIA_ID input parameter.

3. Check the update time if the browser sent an If-Modified-Since header by
calling the getUpdateTime() method passed into the cache_is_valid
function of the PL/SQL Gateway.

4. If the cache is valid, send an HTTP status code to the client using the
PL/SQL Web Toolkit owa_util package status_line procedure passing
in the call to the http_status_not_modified function.

5. Determine where the image data is stored; call the ORDImage isLocal()
method, which returns a Boolean expression of true if the image data is
stored locally in the BLOB, then get the handle to the local BLOB.

– If the value is true, assign the variable localBlob the ORDImage
getContent() method to get the handle of the local BLOB containing the
image data.

– Call the ORDImage getMimeType() method to determine the image’s
MIME type and pass this to the owa_util.mime_header procedure
and keep the HTTP header open.

– Call the ORDImage getUpdateTime() method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_
modified procedure.

– Close the HTTP header by calling the owa_util.http_header_
close() procedure.

– Call the owa_util.get_cgi_env procedure and if the value of the
request method is not HEAD, then use the wpg_docload.download_
file procedure to pass in the value of localBlob that contains the
LOB locator of the BLOB containing the image data to download the
image from the database.

interMedia Code Wizard Sample Application

3-68 Oracle interMedia User’s Guide

6. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is FILE; if so, then the
image data is stored as an external file on the local file system. Then, get the
LOB locator of the BFILE containing the image data.

– Assign the variable localBfile the ORDImage getBfile() method to
get the LOB locator of the BFILE containing the image data.

– Call the ORDImage getMimeType() method to determine the image’s
MIME type and pass this to the owa_util.mime_header procedure
and keep the HTTP header open.

– Call the ORDImage getUpdateTime() method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_
modified procedure.

– Close the HTTP header by calling the owa_util.http_header_
close() procedure.

– Call the owa_util.get_cgi_env procedure and if the value of the
request method is not HEAD, then use the wpg_docload.download_
file procedure to pass in the value of localBfile that contains the
LOB locator of the BFILE containing the image data to download the
image from the file.

7. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is HTTP; if so, then the
image data is stored at an HTTP URL location, which then redirects the
client to the URL that ORDSource provides using the owa_
util.redirect_url procedure.

8. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is FILE or HTTP; if it is
neither, then the image is stored in an application-specific data source type
that is not recognized or supported by interMedia.

3.2.3 Sample Session Using Multiple Object Columns
The following sample session uses the SCOTT schema to illustrate the creation of a
multimedia upload (multiple interMedia object columns) and single media retrieval
procedures. Substitute a different schema name if you want to use a different
schema.

This sample session assumes the interMedia Code Wizard has been installed.

Perform the following steps:

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-69

Step 1 Create a table to store audio for the application by starting SQL*Plus
and connecting to the SCOTT schema in the database.
For example:

sqlplus SCOTT/TIGER[@<connect_identifer>]

SQL> CREATE TABLE cw_media_table(id NUMBER PRIMARY KEY,
 description VARCHAR2(30) NOT NULL,
 location VARCHAR2(30),
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE,
 audio ORDSYS.ORDAUDIO,
 video ORDSYS.ORDVIDEO,
 media ORDSYS.ORDDOC);

Step 2 Use the SCOTTW DAD you created in Step 2, and then, authorized the
use of it in Step 3, of Section 3.2.2.
If you have not created the SCOTTW DAD and authorized the use of this DAD,
perform Steps 2 and 3 in Section 3.2.2, then continue to next step that follows in this
section, Step 3.

Step 3 Change DADs to the SCOTTCW DAD.
1. Enter the Code Wizard’s administration URL into your browser’s location bar,

then enter the ORDSYS user name and password when prompted by the
browser, for example:

http://<hostname>:<port-number>/pls/ordcwadmin

2. Click Change DAD from the Code Wizard’s Main menu.

3. Click Change to SCOTTCW, if it is not already selected, then click Next.

4. Enter the user name SCOTT and password TIGER when prompted for user
name and password, then press OK.

The Main menu now displays the current DAD as SCOTTCW and the current
schema as SCOTT.

Step 4 Create and test the media upload procedure.
Click Create media upload procedure from the Main menu, then click Next.

1. Select the database table and procedure Type.

interMedia Code Wizard Sample Application

3-70 Oracle interMedia User’s Guide

a. Click CW_MEDIA_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the PL/SQL document upload table.

If there are no document tables in the SCOTT schema, the Code Wizard displays
a message indicating this situation. In this case, accept the default table name
provided, CW_MEDIA_UPLOAD_TABLE, then click Next.

If there are existing document tables, but the table CW_MEDIA_UPLOAD_TABLE
is not among them, click Create new document table, accept the default table
name provided, CW_MEDIA_UPLOAD_TABLE, then click Next.

If the CW_MEDIA_UPLOAD_TABLE document table already exists, select Use
existing document table and CW_MEDIA_UPLOAD_TABLE, then click Next.

3. Select the data access and media columns.

a. Ensure that IMAGE (ORDIMAGE), THUMB (ORDIMAGE) , AUDIO
(ORDAUDIO), VIDEO (ORDVIDEO), and MEDIA (ORDDOC) are all
checkmarked.

b. Click ID (Primary key).

c. Click Conditional insert or update.

d. Click Next.

4. Select additional columns and procedure names.

a. Ensure that DESCRIPTION is checkmarked because this column has a NOT
NULL constraint. (The LOCATION column is not checkmarked by default
as there are no constraints on this column.)

b. Accept the procedure name provided, UPLOAD_CW_MEDIA_TABLE_IMAGE.

c. Click Create procedure in the database.

d. Click Next.

5. Review the following selected procedure creation options that are displayed:

Procedure type: Standalone
Table name: CW_MEDIA_TABLE
Media column(s): IMAGE (ORDIMAGE)
 THUMB (ORDIMAGE)
 AUDIO (ORDAUDIO)
 VIDEO (ORDVIDEO)

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-71

 MEDIA (ORDDOC)
Key column: ID
Additional column(s): DESCRIPTION
Table access mode: Conditional update or insert
Procedure name: UPLOAD_CW_MEDIA_TABLE_IMAGE
Function: Create procedure in the database

Click Finish.

6. Compile the procedure and review the generated source information.

The Code Wizard displays the following message: "Procedure created
successfully: UPLOAD_CW_MEDIA_TABLE_IMAGE".

a. At the option Click to display generated source:, click View to view the
generated source in another window. A copy of the generated source is
shown at the end of Step 4, substep 6g.

b. Close the window after looking at the generated source.

c. Accept the DAD: name provided, SCOTTCW, then click Test to display in
another window a template file upload form that you can use to test the
generated procedure.

d. To customize the template file upload form, select Save As... from your
browser’s File pull-down menu to save the HTML source for editing.

e. To test the template upload form, enter the following information:

– For the ID: column, enter the number 1 as the row’s primary key.

– For each interMedia object column, click Browse... and choose the
appropriate media to upload to each column of the table. You can
choose one or more or all columns to test.

– For the DESCRIPTION column, enter a brief description of the media.

– Click Upload media.

The Code Wizard displays a template completion window with the heading
interMedia Code Wizard: Template Upload Procedure, and, if the
procedure is successful, the message: Media uploaded successfully.

f. Close the window.

g. Click Done on the Compile procedure and review generated source
window to return to the Main menu of the Code Wizard.

A copy of the generated multimedia upload procedure is as follows:

interMedia Code Wizard Sample Application

3-72 Oracle interMedia User’s Guide

CREATE OR REPLACE PROCEDURE UPLOAD_CW_MEDIA_TABLE_IMAGE
 (in_ID IN VARCHAR2,
 in_IMAGE IN VARCHAR2 DEFAULT NULL,
 in_THUMB IN VARCHAR2 DEFAULT NULL,
 in_AUDIO IN VARCHAR2 DEFAULT NULL,
 in_VIDEO IN VARCHAR2 DEFAULT NULL,
 in_MEDIA IN VARCHAR2 DEFAULT NULL,
 in_DESCRIPTION IN VARCHAR2 DEFAULT NULL)
AS
 local_IMAGE ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_THUMB ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_AUDIO ORDSYS.ORDAUDIO := ORDSYS.ORDAUDIO.init();
 local_AUDIO_ctx RAW(64);
 local_VIDEO ORDSYS.ORDVIDEO := ORDSYS.ORDVIDEO.init();
 local_VIDEO_ctx RAW(64);
 local_MEDIA ORDSYS.ORDDOC := ORDSYS.ORDDOC.init();
 local_MEDIA_ctx RAW(64);
 local_ID CW_MEDIA_TABLE.ID%TYPE := NULL;
 upload_size INTEGER;
 upload_mimetype VARCHAR2(128);
 upload_blob BLOB;
BEGIN
 --
 -- Update the existing row.
 --
 UPDATE CW_MEDIA_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,
 mtbl.THUMB = local_THUMB,
 mtbl.AUDIO = local_AUDIO,
 mtbl.VIDEO = local_VIDEO,
 mtbl.MEDIA = local_MEDIA,
 mtbl.DESCRIPTION = in_DESCRIPTION
 WHERE mtbl.ID = in_ID
 RETURN mtbl.ID INTO local_ID;
 --
 -- Conditionally insert a new row if no existing row is updated.
 --
 IF local_ID IS NULL
 THEN
 --
 -- Insert a new row into the table.
 --
 INSERT INTO CW_MEDIA_TABLE (ID, IMAGE, THUMB, AUDIO, VIDEO, MEDIA,
 DESCRIPTION)
 VALUES (in_ID, local_IMAGE, local_THUMB, local_AUDIO,

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-73

 local_VIDEO, local_MEDIA, in_DESCRIPTION);
 END IF;
 --
 -- Select interMedia object(s) for update.
 --
 SELECT mtbl.IMAGE, mtbl.THUMB, mtbl.AUDIO, mtbl.VIDEO, mtbl.MEDIA INTO
 local_IMAGE, local_THUMB, local_AUDIO, local_VIDEO, local_MEDIA
 FROM CW_MEDIA_TABLE mtbl WHERE mtbl.ID = in_ID FOR UPDATE;
 --
 -- Store media data for the column in_IMAGE.
 --
 IF in_IMAGE IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_IMAGE.source.localData,
 upload_blob,
 upload_size);
 local_IMAGE.setLocal();
 BEGIN
 local_IMAGE.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_IMAGE.contentLength := upload_size;
 local_IMAGE.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 END IF;
 --
 -- Store media data for the column in_THUMB.
 --
 IF in_THUMB IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_THUMB;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_THUMB.source.localData,
 upload_blob,
 upload_size);

interMedia Code Wizard Sample Application

3-74 Oracle interMedia User’s Guide

 local_THUMB.setLocal();
 BEGIN
 local_THUMB.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_THUMB.contentLength := upload_size;
 local_THUMB.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_THUMB;
 END IF;
 --
 -- Store media data for the column in_AUDIO.
 --
 IF in_AUDIO IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_AUDIO;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_AUDIO.source.localData,
 upload_blob,
 upload_size);
 local_AUDIO.setLocal();
 BEGIN
 local_AUDIO.setProperties(local_AUDIO_ctx);
 EXCEPTION
 WHEN OTHERS THEN
 local_AUDIO.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_AUDIO;
 END IF;
 --
 -- Store media data for the column in_VIDEO.
 --
 IF in_VIDEO IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_VIDEO;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_VIDEO.source.localData,

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-75

 upload_blob,
 upload_size);
 local_VIDEO.setLocal();
 BEGIN
 local_VIDEO.setProperties(local_VIDEO_ctx);
 EXCEPTION
 WHEN OTHERS THEN
 local_VIDEO.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_VIDEO;
 END IF;
 --
 -- Store media data for the column in_MEDIA.
 --
 IF in_MEDIA IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_MEDIA;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_MEDIA.source.localData,
 upload_blob,
 upload_size);
 local_MEDIA.setLocal();
 BEGIN
 local_MEDIA.setProperties(local_MEDIA_ctx, FALSE);
 EXCEPTION
 WHEN OTHERS THEN
 local_MEDIA.contentLength := upload_size;
 local_MEDIA.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_MEDIA;
 END IF;
 --
 -- Update interMedia objects in the table.
 --
 UPDATE CW_MEDIA_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,
 mtbl.THUMB = local_THUMB,
 mtbl.AUDIO = local_AUDIO,
 mtbl.VIDEO = local_VIDEO,
 mtbl.MEDIA = local_MEDIA

interMedia Code Wizard Sample Application

3-76 Oracle interMedia User’s Guide

 WHERE mtbl.ID = in_ID;
 --
 -- Display the template completion message.
 --
 htp.print(’<html>’);
 htp.print(’<title>interMedia Code Wizard: Template Upload
 Procedure</title>’);
 htp.print(’<body>’);
 htp.print(’<h2><i>inter</i>Media Code Wizard:
 Template Upload Procedure</h2>’);
 htp.print(’Media uploaded successfully.’);
 htp.print(’</body>’);
 htp.print(’</html>’);

END UPLOAD_CW_MEDIA_TABLE_IMAGE;

This sample multimedia upload procedure declares the following input
parameters and variables:

1. In the declaration section, the procedure declares seven input parameters:
in_ID, in_IMAGE, in_THUMB, in_AUDIO, in_VIDEO, in_MEDIA, and
in_DESCRIPTION, then initializes the last six to NULL.

2. In the subprogram section, the following variables are declared:

– The variables local_IMAGE and local_THUMB are assigned the data
type ORDSYS.ORDIMAGE and initialized with an empty BLOB using
the ORDIMAGE.init() method.

– The variable local_AUDIO is assigned the data type
ORDSYS.ORDAUDIO and initialized with an empty BLOB using the
ORDAUDIO.init() method. Also a context variable local_AUDIO_
ctx is assigned the data type RAW(64).

– The variable local_VIDEO is assigned the data type
ORDSYS.ORDVIDEO and initialized with an empty BLOB using the
ORDVIDEO.init() method. Also, a context variable local_VIDEO_
ctx is assigned the data type RAW(64).

– The variable local_MEDIA is assigned the data type
ORDSYS.ORDDOC and initialized with an empty BLOB using the
ORDDOC.init() method. Also, a context variable local_MEDIA_ctx
is assigned the data type RAW(64).

– The variable local_ID takes the same data type as the ID column in
the table CW_MEDIA_TABLE and is initialized to NULL.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-77

– Three additional variables are declared upload_size, upload_
mimetype, and upload_blob, which are later given values from
comparable column names doc_size, mime_type, and blob_
content from the document table MEDIA_UPLOAD_TABLE using a
SELECT statement. This is all in preparation for copying the content of
the image, thumb, audio, video, and media BLOB data to the respective
ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDAUDIO.source.localData,
ORDSYS.ORDVIDEO.source.localData, and
ORDSYS.ORDDOC.source.localData attributes.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Update the existing row in the table CW_MEDIA_TABLE for the IMAGE ,
THUMB, AUDIO, VIDEO, MEDIA, and DESCRIPTION columns and return the
value of local_ID where the value of the ID column is the value of the
in_ID input parameter.

2. If the value returned of local_ID is NULL, conditionally insert a new row
into the table CW_MEDIA_TABLE and initialize the instance of the
ORDImage object type in the IMAGE column with an empty BLOB, the
instance of the ORDImage object type in the THUMB column with an empty
BLOB, the instance of the ORDAudio object type in the AUDIO column with
an empty BLOB, the instance of the ORDVideo object type in the VIDEO
column with an empty BLOB, and the instance of the ORDDoc object type
in the MEDIA column with an empty BLOB.

3. Select the ORDImage object column IMAGE, ORDImage object column
THUMB, ORDAudio object column AUDIO, ORDVideo object column VIDEO,
and ORDDoc object column MEDIA in the table CW_MEDIA_TABLE for
update where the value of the ID column is the value of the in_ID input
parameter.

4. Select a row for the doc_size, mime_type, and blob_content columns
from the document table and pass the values to the upload_size,
upload_mimetype, and upload_blob variables where the value of the
Name column is the value of one of the following input parameters in_
IMAGE; in_THUMB; in_AUDIO; in_VIDEO; or in_MEDIA.

5. Perform a DBMS LOB copy of the BLOB data from the table MEDIA_
UPLOAD_TABLE into the ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDIMAGE.source.localData,

interMedia Code Wizard Sample Application

3-78 Oracle interMedia User’s Guide

ORDSYS.ORDAUDIO.source.localData,
ORDSYS.ORDVIDEO.source.localData, and
ORDSYS.ORDDoc.source.localData attribute, then call the setLocal()
method to indicate that the image, audio, and video data are stored locally
in the BLOB, and ORDImage, ORDAudio, ORDVideo, and ORDDoc
methods should look for corresponding data in the source.localData
attribute.

6. In the inner executable block, call the respective ORDImage, ORDAudio,
ORDVideo, and ORDDoc setProperties() method to read the image, audio,
and video data to get the values of the object attributes and store them in
the image, audio, video, and media object attributes for the ORDImage,
ORDAudio, ORDVideo, and ORDDoc objects.

7. If the setProperties() call fails, catch the exception and call the
contentLength() method to get the size of the media data and call the
mimeType() method to get the MIME type of the media data.

8. Delete the row of data from the document table MEDIA_UPLOAD_TABLE
hat was copied to the row in the table CW_MEDIA_TABLE where the value
of the Name column is the value of the respective in_IMAGE, in_THUMB,
in_AUDIO, in_VIDEO, and in_MEDIA input parameter.

9. Update the ORDImage object IMAGE column, the ORDImage object THUMB
column, the ORDAudio object AUDIO column, the ORDVideo object VIDEO
column, and the ORDDoc object MEDIA column in the table CW_MEDIA_
TABLE with the content of the variables local_IMAGE, local_THUMB,
local_AUDIO, local_VIDEO, and local_MEDIA respectively, where the
value of the ID column is the value of the in_ID input parameter.

10. Display a completion message on the HTML page to indicate that the media
uploaded successfully using the htp.print function from the PL/SQL
Web Toolkit.

Step 5 Create and test a media retrieval.
Select Create media retrieval procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click CW_MEDIA_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the media column and key column.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-79

a. Ensure that one the following object columns is checkmarked. For example,
if you loaded media data into the media column in Step 4, substep 6e, then
select the MEDIA (ORDDOC) column.

b. Click ID (Primary key).

c. Click Next.

3. Select the procedure name and parameter name.

a. Accept the procedure name provided, GET_CW_MEDIA_TABLE_IMAGE.

b. Accept the parameter name provided, MEDIA_ID.

c. Click Create procedure in the database.

d. Click Next.

4. Review the following selected procedure creation options:

Procedure type: Standalone
Table name: CW_MEDIA_TABLE
Key column: ID
Media column: IMAGE (ORDDOC)
Procedure name: GET_CW_MEDIA_TABLE_IMAGE
Parameter name: MEDIA_ID
Function: Create procedure in the database

Click Finish.

5. Compile the procedure and review the generated source.

The Code Wizard displays the following message: Procedure created
successfully: GET_CW_MEDIA_TABLE_IMAGE.

a. Click View to view the generated source in another window. Close the
window after looking at the generated source. A copy of the generated
source is shown at the end of this step.

b. Review the URL format used to retrieve images using the GET_CW_MEDIA_
TABLE_IMAGE procedure.

c. Enter the number 1 as the Key parameter, then click Test to test the
procedure by retrieving the image uploaded previously.

d. The retrieved image is displayed in another window.

e. Close the window.

f. Click Done to return to the Main menu.

interMedia Code Wizard Sample Application

3-80 Oracle interMedia User’s Guide

A copy of the generated media retrieval procedure is as follows:

CREATE OR REPLACE PROCEDURE GET_CW_MEDIA_TABLE_MEDIA (MEDIA_ID
 IN VARCHAR2)
AS
 localObject ORDSYS.ORDDOC;
 localBlob BLOB;
 localBfile BFILE;
 httpStatus NUMBER;
 lastModDate VARCHAR2(256);

BEGIN
 --
 -- Retrieve the object from the database into a local object.
 --
 BEGIN
 SELECT mtbl.MEDIA INTO localObject FROM CW_MEDIA_TABLE mtbl
 WHERE mtbl.ID = MEDIA_ID;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ordplsgwyutil.resource_not_found(’MEDIA_ID’, MEDIA_ID);
 RETURN;
 END;
 --
 -- Check the update time if the browser sent an If-Modified-Since header.
 --
 IF ordplsgwyutil.cache_is_valid(localObject.getUpdateTime())
 THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
 END IF;
 --
 -- Figure out where the image is.
 --
 IF localObject.isLocal() THEN
 --

Note: A generated media retrieval script, unlike the multiple
media upload script shown at the end of Step 4, handles only the
type of media data designed for that interMedia object type. To
retrieve media data stored in other interMedia object types,
generate a retrieval script for each desired media data type and add
it to your PL/SQL package.

interMedia Code Wizard Sample Application

Developing Media Upload and Retrieval Applications 3-81

 -- Data is stored locally in the localData BLOB attribute.
 --
 localBlob := localObject.getContent();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env(’REQUEST_METHOD’) <> ’HEAD’ THEN
 wpg_docload.download_file(localBlob);
 END IF;

 ELSIF UPPER(localObject.getSourceType()) = ’FILE’ THEN
 --
 -- Data is stored as a file from which ORDSource creates
 -- a BFILE.
 --
 localBfile := localObject.getBFILE();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env(’REQUEST_METHOD’) <> ’HEAD’ THEN
 wpg_docload.download_file(localBfile);
 END IF;

 ELSIF UPPER(localObject.getSourceType()) = ’HTTP’ THEN
 --
 -- The image is referenced as an HTTP entity, so we have to
 -- redirect the client to the URL that ORDSource provides.
 --
 owa_util.redirect_url(localObject.getSource());
 ELSE
 --
 -- The image is stored in an application-specific data
 -- source type for which no default action is available.
 --
 NULL;
 END IF;
END GET_CW_MEDIA_TABLE_MEDIA;

See the description at the end of the generated image retrieval procedure in
Section 3.2.2, Step 6 "Create and test a media retrieval", after substep 5e. The
only difference between these two retrieval procedures is the type of object
being retrieved, an ORDImage object type versus an ORDDoc object type.

interMedia Code Wizard Sample Application

3-82 Oracle interMedia User’s Guide

3.2.4 Known Restrictions of the Oracle interMedia Code Wizard
The following restrictions are known for the interMedia Code Wizard:

� Tables with composite primary keys are not supported.

To use a table with a composite primary key, create an upload or download
procedure, then edit the generated source to support all the primary key
columns. For example, for a media retrieval procedure, this might involve
adding an additional parameter, then specifying that parameter in the where
clause of the SELECT statement.

� User object types containing embedded interMedia object types are not
recognized by the interMedia Code Wizard.

IMExample Java Sample Application 4-1

4
IMExample Java Sample Application

This chapter describes the IMExample Java sample application. This chapter
assumes you have already installed, compiled, and can run this sample application.
See the readme.txt file for requirements and instructions on how to install,
compile, and run this sample application. This chapter describes how Oracle
interMedia Java Classes is used in creating this sample application.

4.1 Overview
This sample application lets you retrieve multimedia data from the sample schema,
save to a file, play, and delete from the sample schema image, audio, video, and
testimonial data using the respective interMedia object types, OrdImage, OrdAudio,
OrdVideo, and OrdDoc by product ID for rows in the PM.ONLINE_MEDIA table.
Section 4.2 briefly describes how to compile and run the IMExample Java sample
application. Section 4.3 describes the class files and shows code examples that
illustrate how interMedia object types and methods and other Oracle objects are
used.

4.2 Compiling and Running the IMExample Application
To compile the IMExample sample application, enter the following at the command
line, assuming you are in the directory where the Java source files are located:

javac *.java

To run the IMExample sample application, enter the following at the command line:

java IMExample

Description of the IMExample Application

4-2 Oracle interMedia User’s Guide

4.3 Description of the IMExample Application
The IMExample sample application when compiled creates the following class files:

� IMExample -- creates the sample application frame, maintains the only
connection to the database, and allows compatibility with future releases of
interMedia.

� IMExampleFrame -- extends the JFrame class and displays the main frame.

� IMLoginDialog -- extends the JDialog class, displays the login dialog box,
and creates the connection to the database.

� IMExampleQuery -- performs the SQL SELECT statement to retrieve rows of
the OE.PRODUCT_INFORMATION table and displays the content of the table by
product ID.

� IMProductDialog -- extends the JDialog class, shows a dialog box to
display detailed information for a particular product, including the product ID,
product name, product description, retrieves and displays the product photo,
audio, video, and testimonial data within the appropriate panel, and, supports
retrieving, saving, deleting, and playing the media data. Allows for applying
changes or rolling back changes to the media objects.

� IMImagePanel -- extends the IMMediaPanel class, displays the product
photo and its attributes: MIME type, image height, image width, and content
length, and if it applies, generates and displays the thumbnail image.

� IMAudioPanel -- extends the IMMediaPanel class and displays the product
audio and its attributes: MIME type, duration of the audio, and content length.

� IMVideoPanel -- extends the IMMediaPanel class and displays the product
video and its attributes: MIME type, frame height, frame width, duration of the
video, and content length.

� IMDocPanel -- extends the IMMediaPanel class and displays the product
testimonials and its attributes: MIME type and content length.

� IMLoadFile -- loads a media stream (photo, video, audio, and testimonials),
from a file to the PM.ONLINE_MEDIA table in the database, and if necessary,
inserts a row and initializes the media objects, then updates the media data, sets
the media attributes, and generates and updates the thumbnail image if loading
a photo.

� IMSaveFile -- saves a media stream from the database to a target file.

Description of the IMExample Application

IMExample Java Sample Application 4-3

� IMMediaPanel -- extends the JPanel class, lays out the common components
for the photo, audio, video, and doc panel with load, save, delete, and play
check boxes, initializes the MIME configuration for the plug-in players for the
operating system detected, plays the data stream associated with the MIME
type of the media, and allows users to specify their own player to play the
media data stream.

The major flow among these class files is: IMExample to IMExampleFrame to
IMLoginDialog (login) to IMExampleFrame.showDefaultTable() to
IMExampleQuery to IMProductDialog to one group of classes (IMImagePanel,
IMAudioPanel, IMVideoPanel, IMDocPanel), and finally to the last group of
classes (IMLoadFile, IMSaveFile, IMMediaPanel).

The remaining class files in this sample application include:

� IMUtil -- includes common utilities such as a method to generate and update
thumbnail images, wrapper methods for each setProperties() method of each
media object type to separate the exceptions caused by unrecognizable formats,
and cleanup methods to close the following: resultSet, Statement, input stream
and its reader, and output stream and its writer.

� IMMIME -- loads and stores the mapping between plug-in players and the
MIME type.

� IMResultSetTableModel -- extends the AbstractTableModel class and
controls the display of the OE.PRODUCT_INFORMATION table.

� IMMessage -- displays various messages for the sample application and
classifies the message level as error, warning, or suggestion.

� IMMessageResource -- extends the java.util.ListResourceBundle
class and contains the actual message text for all messages.

� IMJOptionPane -- extends and puts into subclasses the JOptionPane class in
order to add an accessible description message to the displayed dialog box.

� IMFileChooser -- extends the JFileChooser class, and inherits from the
JFileChooser class in order to add the button mnemonic and accessible
description.

� IMConstants -- describes the IMConstants interface, which contains all the
constants for column names, media types, message types, and message dialog
titles.

� IMAttrTableModel -- extends and puts into subclasses the
DefaultTableModel class in order to provide the table model for displaying

Description of the IMExample Application

4-4 Oracle interMedia User’s Guide

media attributes, and overwrites the isCellEditable() method to make the cells
uneditable.

� FocusedJTextField -- extends and puts into subclasses the JTextField
class and overwrites the isFocusTraversable() method to allow it to gain focus
when it is set to uneditable.

� FocusedJTextArea -- extends and puts into subclasses the JTextArea class
and overwrites the isFocusTraversable() method to allow it to gain focus when
it is set to uneditable; also overrides the isManagingFocus() method to force the
JTextArea class not to handle a TAB key operation.

� FocusedJPanel -- extends and puts into subclasses the JPanel class and
overwrites the isFocusTraversable() method to allow it to gain focus.

� FocusedJLabel -- extends and puts into subclasses the JLabel class,
overwrites the isFocusTraversable() method, and adds a focus listener to allow
it to gain focus.

� BooleanRenderer -- extends the JCheckBox class and renders Boolean
objects as JCheckBox (a checkbox) in a JTable (two-dimensional table format).
This class also sets the AccessibleName and AccessibleDescription properties
by setting the tooltip to support accessibility.

� IMStreamAbsorber -- extends the Thread class and runs as a separate thread
to consume an input stream. This is useful when a plug-in application is loaded
and it writes something out to, for example, a standard error, without
consuming the application’s output, the application may be unable to continue.

� IMTable -- extends and puts into subclasses the JTable class and overwrites
the isManagingFocus() method to avoid letting the table handle a TAB key
operation.

� IMTableRenderer -- extends the DefaultTableCellRenderer class and
renders the PRODUCT_ID, PRODUCT_NAME, and PRODUCT_DESCRIPTION
columns to add accessibility information, and sets the customized display.

� IMUIUtil -- includes common GUI utilities.

IMExample Class
This class makes a call to the interMedia OrdMediaUtil.imCompatibilityInit()
method (see the bolded line in the code example) to allow compatibility with future
releases of interMedia in case a database upgrade includes evolved object types, as
follows:

Description of the IMExample Application

IMExample Java Sample Application 4-5

protected static void setDBConnection(OracleConnection conn) throws Exception
{
 if (s_dbConn == null)
 {
 if (conn == null)
 throw new SQLException();
 s_dbConn = conn;

 // Allow compatibility with future versions.
 OrdMediaUtil.imCompatibilityInit(s_dbConn);
 }
 else
 {
 new IMMessage(IMConstants.ERROR, "ALREADY_CONNECTED");
 }
}

Calling the OrdMediaUtil.imCompatibilityInit() method is a recommended practice
to help ensure client-side applications can maintain compatibility with the current
release of the interMedia object types (OrdAudio, OrdImage, OrdVideo, OrdDoc,
and OrdSource), in the event that there is a database upgrade that includes evolved
object types.

IMProductDialog Class
This class defines the following methods followed by a description of what each
does:

� The loadMedia() method to retrieve the media objects from the database. This
method performs a SQL SELECT...FOR UPDATE statement on the
PM.ONLINE_MEDIA table where the PRODUCT_ID column is a parameter
marker; then this class uses the getORAData and getORADataFactory interfaces
supplied by Oracle to get the media data objects from the result set.

� The displayMedia() method to display the media data, which in turn calls the
corresponding media display methods displayImage(), displayAudio(),
displayVideo(), and displayDoc ().

� The displayImage() method calls the IMImagePanel.display() method to
display the image data attributes, display the thumbnail image, and display the
full sized image using a media player that supports this MIME type.

� The displayAudio() method calls the IMAudioPanel.display() method to
display the audio data attributes and play the audio stream using a media
player that supports this MIME type.

Description of the IMExample Application

4-6 Oracle interMedia User’s Guide

� The displayVideo() method calls the IMVideoPanel.display() method to
display the video data attributes and play the video stream using a media
player that supports this MIME type.

� The displayDoc() method calls the IMDocPanel.display() method to display
the testimonial data attributes and play the testimonial data using a media
player that supports this MIME type.

The following code example shows the loadMedia(), displayMedia(),
displayImage(), displayAudio(), displayVideo(), and displayDoc() methods, and
highlights in bold the SQL query statements and areas in the code where interMedia
and other Oracle object types and methods are used. See the IMImagePanel Class,
IMAudioPanel Class, IMVideoPanel Class, and IMDocPanel Class sections for code
examples of the corresponding m_jXxxPanel.display() methods, where Xxx
represents the particular media data type, Img, Aud, Vid, or Doc.

 private void loadMedia() throws SQLException, IOException
 {
 String sQuery =
 "select product_photo, product_thumbnail, product_audio, product_video, " +
 "product_testimonials from pm.online_media where product_id = ? for update";

 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;
 boolean isInsertNeeded = false;
 byte[] ctx[] = new byte[1][64];

 try
 {
 conn = IMExample.getDBConnection();

 pstmt = (OraclePreparedStatement)conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == true)
 {
 m_img = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());
 m_imgThumb = (OrdImage)rs.getORAData(2, OrdImage.getORADataFactory());
 m_aud = (OrdAudio)rs.getORAData(3, OrdAudio.getORADataFactory());
 m_vid = (OrdVideo)rs.getORAData(4, OrdVideo.getORADataFactory());
 m_doc = (OrdDoc)rs.getORAData(5, OrdDoc.getORADataFactory());
 }

Description of the IMExample Application

IMExample Java Sample Application 4-7

 displayMedia();

 rs.close();
 pstmt.close();
 }
 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

 private void displayMedia() throws SQLException, IOException
 {
 displayImage();
 displayAudio();
 displayVideo();
 displayDoc();
 }

 /**
 * Add the product photo panel.
 */
 private void displayImage() throws SQLException, IOException
 {
 m_jImgPanel = new IMImagePanel(this,
 m_img, m_imgThumb, m_iProdId, m_colorFieldBg);
 m_jImgPanel.display();
 m_jImgPanel.getAccessibleContext().setAccessibleName
 ("Product photo panel");
 m_jImgPanel.getAccessibleContext().setAccessibleDescription
 ("Product photo panel with an image icon on the left, " +
 "image attribute panel in the middle and image control" +
 "panel on the right.");

 m_jMediaPanel.add(m_jImgPanel);

 Component jImgFocus = m_jImgPanel.getFirstFocusComponent();
 if (!m_isProdIlluFocused)
 m_jButtonRevert.setNextFocusableComponent(jImgFocus);
 }

 /**
 * Add the product audio panel.
 */
 private void displayAudio() throws SQLException, IOException

Description of the IMExample Application

4-8 Oracle interMedia User’s Guide

 {
 m_jAudPanel = new IMAudioPanel(this, m_aud, m_iProdId, m_colorFieldBg);
 m_jAudPanel.display();
 m_jAudPanel.getAccessibleContext().setAccessibleName
 ("Product audio panel");
 m_jAudPanel.getAccessibleContext().setAccessibleDescription(
 "Product audio panel with an audio icon at the left, " +
 "audio attribute panel in the middle and audio control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jAudPanel);
 }

 /**
 * Add the product video panel.
 */
 private void displayVideo() throws SQLException, IOException
 {
 m_jVidPanel = new IMVideoPanel(this, m_vid, m_iProdId, m_colorFieldBg);
 m_jVidPanel.display();
 m_jVidPanel.getAccessibleContext().setAccessibleName
 ("Product audio panel");
 m_jVidPanel.getAccessibleContext().setAccessibleDescription(
 "Product audio panel with an video icon at the left, " +
 "video attribute panel in the middle and video control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jVidPanel);
 }

 /**
 * Add the product testimonials panel.
 */
 private void displayDoc() throws SQLException, IOException
 {
 m_jDocPanel = new IMDocPanel(this, m _doc, m_iProdId, m_colorFieldBg);
 m_jDocPanel.display();
 m_jDocPanel.getAccessibleContext().setAccessibleName
 ("Product testimonials panel");
 m_jDocPanel.getAccessibleContext().setAccessibleDescription(
 "Product testimonials panel with an document icon at the left, " +
 "testimonials attribute panel in the middle and testimonials control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jDocPanel);
 }

Description of the IMExample Application

IMExample Java Sample Application 4-9

IMImagePanel Class
This class displays the image panel, the product photo and its attributes, and the
thumbnail image. What follows is a more detailed description of each of the
methods that are defined and what each does:

� The display() method, which first calls the insertProperty() method, which
calls the interMedia image object type methods getMimeType(), getHeight(),
getWidth(), and getContentlength() to get the attributes of the image to display
in a table.

� For supported formats, the class displays the product photo thumbnail image,
which is generated by calling the IMUtil.generateThumbnail()method to create
the thumbnail image from the product photo.

� The addThumbnail() method to show the new thumbnail image.

� The changeThumbnail() method to change the thumbnail image.

� The saveToFile() method to save the photo to a file.

� The deleteMedia() method to delete the product photo image and its thumbnail
image from the database by setting the image object type columns to empty
using the OrdImage.init() method.

� The play() media method to show the image using a media player.

� The setMedia() method to set the photo and thumbnail object.

� The notExist() method checks to see if the image data exists and returns true if
the BLOB is empty or is not associated with an existing BFILE; otherwise, it
returns false.

� The getDataInByteArray() method retrieves image data into a byte array by
calling the interMedia importData() method first for the BFILE and returns the
results of calling the interMedia getDataInByteArray() method.

� The refreshPanel() method refreshes the display when updating the photo
image, attributes, and thumbnail image.

� The getFirstFocusComponent() method enforces the correct focus order.

� The emptyPanel() method clears the icon and attribute panel.

The following code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where interMedia and other Oracle object
types and methods are used:

Description of the IMExample Application

4-10 Oracle interMedia User’s Guide

 void display() throws IOException, SQLException
 {
 addControlPane();

 if (notExist(m_img))
 {
 // The image does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;
 // If image exists, try to show the attributes.
 if (insertProperty())
 {
 // Show the thumbnail image.
 // If the thumbnail image does not exist, generate it first.
 if (m_imgThumb != null)
 {
 String sFormat = m_imgThumb.getFormat();

 if (notExist(m_imgThumb) ||
 (!("JFIF".equalsIgnoreCase(sFormat)) &&
 !("GIFF".equalsIgnoreCase(sFormat))
))
 {
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);
 }

 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);
 }
 else
 {
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);
 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);
 }
 }
 }
 }
.
.
.

Description of the IMExample Application

IMExample Java Sample Application 4-11

 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_img.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_img);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_img.getMimeType()},
 {"Height", new Integer(m_img.getHeight()).toString()},
 {"Width", new Integer(m_img.getWidth()).toString()},
 {"Content Length", new Integer(m_img.getContentLength()).toString()}
 };

 IMAttrTableModel tm = new IMAttrTableModel(data, m_attrColNames);

 m_jAttrTbl = new IMTable(tm);
 m_jAttrScrollPane = new JScrollPane(m_jAttrTbl);
 m_jAttrScrollPane.setPreferredSize(new Dimension(300, 84));

 if (m_isGridLayout)
 addMediaComponent(m_jAttrScrollPane, 0, 1, 0.6, 6,
 GridBagConstraints.CENTER, true);
 else
 {
 m_jAttrPane.setLayout(new GridBagLayout());
 addMediaComponent(m_jAttrPane, m_jAttrScrollPane, 0, 1);
 }
 }

 return isFormatSupported;
 }
.
.
.

Description of the IMExample Application

4-12 Oracle interMedia User’s Guide

 static boolean notExist(OrdImage img) throws SQLException, IOException
 {
 if (img == null)
 return true;
 else
 {
 if (img.isLocal() && (img.getDataInByteArray() == null))
 return true;
 else if (!img.isLocal() && (":///".equals(img.getSource())))
 return true;
 else
 {
 if (!img.isLocal())
 {
 BFILE bfile = img.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 static byte[] getDataInByteArray(OrdImage img) throws SQLException, IOException
 {
 if (notExist(img))
 return null;
 else
 {
 if (!img.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 img.importData(ctx);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;

Description of the IMExample Application

IMExample Java Sample Application 4-13

 }
 }
 return img.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 m_jIconPane.remove(m_jIcon);

 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);

 insertProperty();
 }
 else
 {
 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 changThumbnail(thumbnail);

 m_jAttrTbl.setValueAt(m_img.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getHeight()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getWidth()).toString(), 2, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getContentLength()).toString(),3, 1);
 }
 }
 else
 {
 if (m_jAttrTbl == null)
 {
 m_jEmpty.setText(s_sNotSupported);
 }
 else
 {
 m_jAttrTbl = null;
 m_jAttrPane.remove(m_jAttrScrollPane);
 m_jAttrPane.setLayout(new BorderLayout());

Description of the IMExample Application

4-14 Oracle interMedia User’s Guide

 m_jIconPane.remove(m_jIcon);
 layoutEmpty(s_sNotSupported);
 }
 }
 m_jAttrPane.validate();
 m_jIconPane.validate();
 validate();
 }

IMVideoPanel Class
This class displays the video panel, the product video, and its attributes. This class
is identical in structure and functions similarly to the IMImagePanel class. See the
IMImagePanel Class section for descriptions of methods. The following code
example includes the display(), insertProperty(), notExist(), getDataInByteArray(
), and refreshPanel() methods, and highlights in bold any SQL query statements
and areas in the code where interMedia and other Oracle object types and methods
are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the video icon.
 m_jIcon = new JLabel(new ImageIcon(IMExampleFrame.class.getResource("OrdVideo.gif")));
 m_jIcon.setLabelFor(m_jAttrPane);

 if (m_isGridLayout)
 addMediaComponent(m_jIcon, 3, 0, 0.4, 3, GridBagConstraints.CENTER);
 else
 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

 if (notExist())
 {
 // The video does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;
 // If the video exists, try to show the attributes.
 insertProperty();
 }

Description of the IMExample Application

IMExample Java Sample Application 4-15

 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_vid.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_vid);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_vid.getMimeType()},
 {"Height", new Integer(m_vid.getHeight()).toString()},
 {"Width", new Integer(m_vid.getWidth()).toString()},
 {"Duration", new Integer(m_vid.getVideoDuration()).toString()},
 {"Content Length", new Integer(m_vid.getContentLength()).toString()}
 };
 IMAttrTableModel tm = new IMAttrTableModel(data, m_attrColNames);

 m_jAttrTbl = new IMTable(tm);
 m_jAttrScrollPane = new JScrollPane(m_jAttrTbl);
 m_jAttrScrollPane.setPreferredSize(new Dimension(300, 100));
 if (m_isGridLayout)
 addMediaComponent(m_jAttrScrollPane, 0, 1, 0.6, 6, GridBagConstraints.CENTER, true);
 else
 {
 m_jAttrPane.setLayout(new GridBagLayout());
 addMediaComponent(m_jAttrPane, m_jAttrScrollPane, 0, 1);
 }
 }

 return isFormatSupported;
 }
.

Description of the IMExample Application

4-16 Oracle interMedia User’s Guide

.

.
 boolean notExist() throws SQLException, IOException
 {
 if (m_vid == null)
 return true;
 else
 {
 if (m_vid.isLocal() && (m_vid.getDataInByteArray() == null))
 return true;
 else if (!m_vid.isLocal() && (":///".equals(m_vid.getSource())))
 return true;
 else
 {
 if (!m_vid.isLocal())
 {
 BFILE bfile = m_vid.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdVideo vid) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!vid.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 vid.importData(ctx);
 }
 catch (SQLException e)
 {

Description of the IMExample Application

IMExample Java Sample Application 4-17

 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return vid.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;

 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_vid.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getHeight()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getWidth()).toString(), 2, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getVideoDuration()).toString(), 3, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getContentLength()).toString(), 4, 1);
 }
 }
 else
 {
 if (m_jAttrTbl == null)
 {
 m_jEmpty.setText(s_sNotSupported);
 }
 else
 {
 m_jAttrTbl = null;
 m_jAttrPane.remove(m_jAttrScrollPane);
 m_jAttrPane.setLayout(new BorderLayout());

 layoutEmpty(s_sNotSupported);
 }
 }

Description of the IMExample Application

4-18 Oracle interMedia User’s Guide

 m_jAttrPane.validate();
 validate();
 }

IMAudioPanel Class
This class displays the audio panel, the product audio, and its attributes. This class
is identical in structure and functions similarly to the IMImagePanel class. See the
IMImagePanel Class section for descriptions of methods. The following code
example includes the display(), insertProperty(), notExist(), getDataInByteArray(
), and refreshPanel() methods, and highlights in bold any SQL query statements
and areas in the code where interMedia and other Oracle object types and methods
are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the audio icon.
 m_jIcon = new JLabel(new ImageIcon(IMExampleFrame.class.getResource("OrdAudio.gif")));
 m_jIcon.setLabelFor(m_jAttrPane);

 if (m_isGridLayout)
 addMediaComponent(m_jIcon, 3, 0, 0.4, 3, GridBagConstraints.CENTER);
 else
 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

 if (notExist())
 {
 // The audio does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;

 // If the audio exists, try to show the attributes.
 insertProperty();
 }
 }
.
.

Description of the IMExample Application

IMExample Java Sample Application 4-19

.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_aud.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_aud);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", sMimeType},
 {"Duration", new Integer(m_aud.getAudioDuration()).toString()},
 {"Content Length", new Integer(m_aud.getContentLength()).toString()}
 };

 IMAttrTableModel tm = new IMAttrTableModel(data, m_attrColNames);

 m_jAttrTbl = new IMTable(tm);
 m_jAttrScrollPane = new JScrollPane(m_jAttrTbl);
 m_jAttrScrollPane.setPreferredSize(new Dimension(300, 68));

 if (m_isGridLayout)
 addMediaComponent(m_jAttrScrollPane, 0, 1, 0.6, 6,
 GridBagConstraints.CENTER, true);
 else
 {
 m_jAttrPane.setLayout(new GridBagLayout());
 addMediaComponent(m_jAttrPane, m_jAttrScrollPane, 0, 1);
 }
 }

 return isFormatSupported;
 }
.
.
.

Description of the IMExample Application

4-20 Oracle interMedia User’s Guide

 boolean notExist() throws SQLException, IOException
 {
 if (m_aud == null)
 return true;
 else
 {
 if (m_aud.isLocal() && (m_aud.getDataInByteArray() == null))
 return true;
 else if (!m_aud.isLocal() && (":///".equals(m_aud.getSource())))
 return true;
 else
 {
 if (!m_aud.isLocal())
 {
 BFILE bfile = m_aud.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdAudio aud) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!aud.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 aud.importData(ctx);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;

Description of the IMExample Application

IMExample Java Sample Application 4-21

 }
 }
 return aud.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_aud.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_aud.getAudioDuration()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_aud.getContentLength()).toString(), 2, 1);
 }
 }
 else
 {
 if (m_jAttrTbl == null)
 {
 m_jEmpty.setText(s_sNotSupported);
 }
 else
 {
 m_jAttrTbl = null;
 m_jAttrPane.remove(m_jAttrScrollPane);
 m_jAttrPane.setLayout(new BorderLayout());

 layoutEmpty(s_sNotSupported);
 }
 }
 m_jAttrPane.validate();
 validate();
 }

Description of the IMExample Application

4-22 Oracle interMedia User’s Guide

IMDocPanel Class
This class displays the doc panel, the product testimonials, and its attributes. This
class is identical in structure and functions similarly to the IMImagePanel class.
See the IMImagePanel Class section for descriptions of methods. The following
code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where interMedia and other Oracle object
types and methods are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the icon.
 m_jIcon = new JLabel(new ImageIcon(
 IMExampleFrame.class.getResource("OrdDoc.gif")
));
 m_jIcon.setLabelFor(m_jAttrPane);
 if (m_isGridLayout)
 addMediaComponent(m_jIcon, 3, 0, 0.4, 3, GridBagConstraints.CENTER);
 else
 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

 if (notExist())
 {
 // The doc does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 // If the doc exists, show the attribute table.
 m_hasMedia = true;
 insertProperty();
 }
 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_doc.getMimeType();

 if (sMimeType == null)

Description of the IMExample Application

IMExample Java Sample Application 4-23

 isFormatSupported = IMUtil.setProperties(m_doc);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_doc.getMimeType()},
 {"Content Length", new Integer(m_doc.getContentLength()).toString()}
 };

 IMAttrTableModel tm = new IMAttrTableModel(data, m_attrColNames);

 m_jAttrTbl = new IMTable(tm);
 m_jAttrScrollPane = new JScrollPane(m_jAttrTbl);
 m_jAttrScrollPane.setPreferredSize(new Dimension(300, 52));

 if (m_isGridLayout)
 addMediaComponent(m_jAttrScrollPane, 0, 1, 0.6, 6,
 GridBagConstraints.CENTER, true);
 else
 {
 m_jAttrPane.setLayout(new GridBagLayout());
 addMediaComponent(m_jAttrPane, m_jAttrScrollPane, 0, 1);
 }
 }

 return isFormatSupported;
 }
.
.
.
 boolean notExist() throws SQLException, IOException
 {
 if (m_doc == null)
 return true;
 else
 {
 if (m_doc.isLocal() && (m_doc.getDataInByteArray() == null))
 return true;

Description of the IMExample Application

4-24 Oracle interMedia User’s Guide

 else if (!m_doc.isLocal() && (":///".equals(m_doc.getSource())))
 return true;
 else
 {
 if (!m_doc.isLocal())
 {
 BFILE bfile = m_doc.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdDoc doc) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!doc.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 doc.importData(ctx, false);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return doc.getDataInByteArray();
 }
 }
.
.
.

Description of the IMExample Application

IMExample Java Sample Application 4-25

 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_doc.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_doc.getContentLength()).toString(), 1, 1);
 }
 }
 else
 {
 if (m_jAttrTbl == null)
 {
 m_jEmpty.setText(s_sNotSupported);
 }
 else
 {
 m_jAttrTbl = null;
 m_jAttrPane.remove(m_jAttrScrollPane);
 m_jAttrPane.setLayout(new BorderLayout());
 layoutEmpty(s_sNotSupported);
 }
 }
 m_jAttrPane.validate();
 validate();
 }

IMLoadFile Class
This class loads a media stream from a file to a database for each of the media object
types. First, it checks to see if this PRODUCT_ID column exists in the PM.ONLINE_
MEDIA table and if not, it inserts a new row into the table. Then, it creates and
initializes a new media object for each media object type, updates the media data,
that is, loads it into the database if it is not already stored there, and finally, sets the
media attributes for each media data object.

Description of the IMExample Application

4-26 Oracle interMedia User’s Guide

In this class, the IMFileLoad() method calls the initFileChooser() method, then the
initFileChooser() method calls the loadNewMedia() method, which does the row
insertion and initializing of the media object type columns, and then calls the
updateMedia() method to update the media and to set the media attributes.

The following code example includes the loadNewMedia() and UpdateMedia()
methods, and highlights in bold any SQL query statements and areas in the code
where interMedia and other Oracle object types and methods are used as previously
described:

 private void loadNewMedia()
 throws SQLException, FileNotFoundException, SecurityException, IOException
 {
 boolean isInsertNeeded = false;
 String sQuery = null;
 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;

 try
 {
 conn = IMExample.getDBConnection();

 if (m_obj == null)
 {
 // First, check whether or not this product exists in the
 // pm.online_media table. If it exists, isInsertNeeded is set to false;
 // or else, isInsertNeeded is set to true.
 sQuery = new String(
 "select product_id from pm.online_media where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 isInsertNeeded = true;
 else
 isInsertNeeded = false;
 rs.close();
 pstmt.close();

 if (isInsertNeeded)
 {
 // If this product is not in the pm.online_media table,
 // insert a row in pm.online_media for this product,

Description of the IMExample Application

IMExample Java Sample Application 4-27

 // and initialize the media object at the same time.
 sQuery = new String(
 "insert into pm.online_media (product_id, product_photo, " +
 "product_photo_signature, product_thumbnail, product_video, " +
 "product_audio, product_text, product_testimonials) values (" +
 "?, ORDSYS.ORDImage.init(), ORDSYS.ORDImageSignature.init(), " +
 "ORDSYS.ORDImage.init(), ORDSYS.ORDVideo.init(), " +
 "ORDSYS.ORDAudio.init(), null, ORDSYS.ORDDoc.init())");

 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(1, m_iProdId);
 pstmt.execute();
 pstmt.close();
 }
 }

 // Create a new media object.
 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDImage.init() where product_id = ?");
 break;
 case AUD_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDAudio.init() where product_id = ?");
 break;
 case VID_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDVideo.init() where product_id = ?");
 break;
 case DOC_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDDoc.init() where product_id = ?");
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);

Description of the IMExample Application

4-28 Oracle interMedia User’s Guide

 pstmt.setInt(1, m_iProdId);
 pstmt.execute();
 pstmt.close();

 // At this point, there is a row in the online_media table
 // for this product and the desired media object is initialized.
 // In the following, we update the media object pointer and
 // acquire the right to modify it by selecting again from the
 // database.
 //
 sQuery = new String(
 "select " + m_sColName +
 " from pm.online_media where product_id = ? for update");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 throw new SQLException();
 else
 {
 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 m_img = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());
 break;
 case AUD_TYPE:
 m_aud = (OrdAudio)rs.getORAData(1, OrdAudio.getORADataFactory());
 break;
 case VID_TYPE:
 m_vid = (OrdVideo)rs.getORAData(1, OrdVideo.getORADataFactory());
 break;
 case DOC_TYPE:
 m_doc = (OrdDoc)rs.getORAData(1, OrdDoc.getORADataFactory());
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 // Update the media object.
 updateMedia();
 }

 rs.close();
 pstmt.close();

Description of the IMExample Application

IMExample Java Sample Application 4-29

 }
 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

 /**
 * Update the media and also set the media properties.
 */
 private void updateMedia()
 throws SQLException, FileNotFoundException, SecurityException, IOException
 {
 String sQuery = null;
 OracleConnection conn = null;
 byte[] ctx[] = new byte[1][64];
 OraclePreparedStatement pstmt = null;

 boolean isFormatSupported = false;

 try
 {
 conn = IMExample.getDBConnection();
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ? where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(2, m_iProdId);

 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 m_img.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_img);
 m_img.setLocal();
 pstmt.setORAData(1, m_img);
 break;
 case AUD_TYPE:
 m_aud.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_aud);
 m_aud.setLocal();
 pstmt.setORAData(1, m_aud);

 // We need to update the media pointer for display,
 // because the input media pointer may be null.

Description of the IMExample Application

4-30 Oracle interMedia User’s Guide

 ((IMAudioPanel)m_parent).setMedia(m_aud);
 ((IMAudioPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 case VID_TYPE:
 m_vid.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_vid);
 m_vid.setLocal();
 pstmt.setORAData(1, m_vid);

 ((IMVideoPanel)m_parent).setMedia(m_vid);
 ((IMVideoPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 case DOC_TYPE:
 m_doc.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_doc);
 m_doc.setLocal();
 pstmt.setORAData(1, m_doc);

 ((IMDocPanel)m_parent).setMedia(m_doc);
 ((IMDocPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 pstmt.execute();
 pstmt.close();

 // Update the thumbnail image.
 if (m_iTypeIdentifier == IMG_TYPE)
 {
 if (isFormatSupported)
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);

 ((IMImagePanel)m_parent).setMedia(m_img, m_imgThumb);
 ((IMImagePanel)m_parent).refreshPanel(isFormatSupported);
 }
 }
 finally
 {
 IMUtil.cleanup(pstmt);
 }
 }

Description of the IMExample Application

IMExample Java Sample Application 4-31

IMUtil Class
This class contains common utilities, such as a generateThumbnail() static method,
wrapper methods for the setProperties() methods for each media object type to
separate the exceptions caused by unrecognizable formats, and finally, a number of
cleanup methods. The following code example includes the generateThumbnail()
method, and highlights in bold any SQL query statements and areas in the code
where interMedia and other Oracle object types and methods are used:

static OrdImage generateThumbnail(int iProdId, OrdImage img, OrdImage imgThumb)
 throws SQLException
 {
 String sQuery = null;
 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;

 try
 {
 conn = IMExample.getDBConnection();

 if (imgThumb == null)
 {
 // The thumbnail media pointer is not initialized.
 // Initialize it first.
 sQuery = new String(
 "update pm.online_media set product_thumbnail = " +
 "ORDSYS.ORDImage.init() where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(1, iProdId);
 pstmt.execute();
 pstmt.close();

 // Acquire the new pointer and the permission to update.
 sQuery = new String("select product_thumbnail from pm.online_media " +
 "where product_id = ? for update");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 throw new SQLException();
 else
 imgThumb = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());

Description of the IMExample Application

4-32 Oracle interMedia User’s Guide

 rs.close();
 pstmt.close();
 }

 // Generate the thumbnail image.
 img.processCopy("maxScale=64 64, fileFormat=GIFF", imgThumb);
 imgThumb.setProperties();
 imgThumb.setLocal();

 // Update the thumbnail image in the database.
 sQuery = new String(
 "update pm.online_media set product_thumbnail = ? where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setORAData(1, imgThumb);
 pstmt.setInt(2, iProdId);
 pstmt.execute();
 pstmt.close();

 return imgThumb;
 }
 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

Content-Based Retrieval Concepts 5-1

5
Content-Based Retrieval Concepts

This chapter explains, at a high level, why and how to use content-based retrieval. It
covers the following topics:

� Overview and benefits of content-based retrieval (see Section 5.1)

� How content-based retrieval works, including definitions and explanations of
the visual attributes (color, texture, shape, location) and why you might
emphasize specific attributes in certain situations (see Section 5.2)

� Image matching using a specified comparison image, including comparing how
the weights of visual attributes determine the degree of similarity between
images (see Section 5.3)

� Use of indexing to improve search and retrieval performance (see Section 5.4)

� Image preparation or selection to maximize the usefulness of comparisons (see
Section 5.5)

5.1 Overview and Benefits
Inexpensive image-capture and storage technologies have allowed massive
collections of digital images to be created. However, as an image database grows,
the difficulty of finding relevant images increases. Two general approaches to this
problem have been developed. Both use metadata for image retrieval.

� Using information manually entered or included in the table design, such as
titles, descriptive keywords from a limited vocabulary, and predetermined
classification schemes

� Using automated image feature extraction and object recognition to classify
image content -- that is, using capabilities unique to content-based retrieval

How Content-Based Retrieval Works

5-2 Oracle interMedia User’s Guide

With interMedia, you can combine both approaches in designing a table to
accommodate images: use traditional text columns to describe the semantic
significance of the image (for example, that the pictured automobile won a
particular award, or that its engine has six or eight cylinders), and use the
ORDImageSignature type to permit content-based queries based on intrinsic
attributes of the image (for example, how closely its color and shape match a picture
of a specific automobile).

As an alternative to defining image-related attributes in columns separate from the
image, a database designer could create a specialized composite data type that
combines an ORDImage object and the appropriate text, numeric, and date
attributes.

The primary benefit of using content-based retrieval is reduced time and effort
required to obtain image-based information. With frequent adding and updating of
images in massive databases, it is often not practical to require manual entry of all
attributes that might be needed for queries, and content-based retrieval provides
increased flexibility and practical value. It is also useful in providing the ability to
query on attributes such as texture or shape that are difficult to represent using
keywords.

Examples of database applications where content-based retrieval is useful -- where
the query is semantically of the form, "find objects that look like this one" -- include:

� Trademarks, copyrights, and logos

� Art galleries and museums

� Retailing

� Fashion and fabric design

� Interior design or decorating

For example, a Web-based interface to a retail clothing catalog might allow users to
search by traditional categories (such as style or price range) and also by image
properties (such as color or texture). Thus, a user might ask for formal shirts in a
particular price range that are off-white with pin stripes. Similarly, fashion
designers could use a database with images of fabric swatches, designs, concept
sketches, and finished garments to facilitate their creative processes.

5.2 How Content-Based Retrieval Works
A content-based retrieval system processes the information contained in image data
and creates an abstraction of its content in terms of visual attributes. Any query

How Content-Based Retrieval Works

Content-Based Retrieval Concepts 5-3

operations deal solely with this abstraction rather than with the image itself. Thus,
every image inserted into the database is analyzed, and a compact representation of
its content is stored in a feature vector, or signature.

The signature for the image in Figure 5–1 is extracted by segmenting the image into
regions based on color as shown in Figure 5–2. Each region has associated with it
color, texture, and shape information. The signature contains this region-based
information along with global color, texture, and shape information to represent
these attributes for the entire image. In Figure 5–2, there are a total of 55 shapes
(patches of connected pixels with similar color) in this segmented image. In
addition, there is also a "background" shape, which consists of small disjoint dark
patches. These tiny patches (usually having distinct colors) do not belong to any of
their adjacent shapes and are all classified into a single "background" shape. This
background shape is also taken into consideration for image retrieval.

Figure 5–1 Unsegmented Image

How Content-Based Retrieval Works

5-4 Oracle interMedia User’s Guide

Figure 5–2 Segmented Image

Images are matched based on the color, texture, and shape attributes. The positions
of these visual attributes in the image are represented by location. Location by itself
is not a meaningful search parameter, but in conjunction with one of the three visual
attributes represents a search where the visual attribute and the location of that
visual attribute are both important.

The signature contains information about the following visual attributes:

� Color represents the distribution of colors within the entire image. This
distribution includes the amounts of each color.

� Texture represents the low-level patterns and textures within the image, such as
graininess or smoothness. Unlike shape, texture is very sensitive to features that
appear with great frequency in the image.

� Shape represents the shapes that appear in the image, as determined by
color-based segmentation techniques. A shape is characterized by a region of
uniform color.

How Content-Based Retrieval Works

Content-Based Retrieval Concepts 5-5

� Location represents the positions of the shape components, color, and texture
components. For example, the color blue could be located in the top half of the
image. A certain texture could be located in the bottom right corner of the
image.

Feature data for all these visual attributes is stored in the signature, whose size
typically ranges from 3000 to 4000 bytes. For better performance with large image
databases, you can create an index based on the signatures of your images. See
Section 5.4 for more information on indexing.

Images in the database can be retrieved by matching them with a comparison
image. The comparison image can be any image inside or outside the current
database, a sketch, an algorithmically generated image, and so forth.

The matching process requires that signatures be generated for the comparison
image and each image to be compared with it. Images are seldom identical, and
therefore matching is based on a similarity-measuring function for the visual
attributes and a set of weights for each attribute. The score is the relative distance
between two images being compared. The score for each attribute is used to
determine the degree of similarity when images are compared, with a smaller
distance reflecting a closer match, as explained in Section 5.3.3.

5.2.1 Color
Color reflects the distribution of colors within the entire image.

Color and location specified together reflect the color distributions and where they
occur in the image. To illustrate the relationship between color and location,
consider Figure 5–3.

Figure 5–3 Image Comparison: Color and Location

How Content-Based Retrieval Works

5-6 Oracle interMedia User’s Guide

Image 1 on the left and Image 2 on the right are the same size and are filled with
solid colors. In Image 1, the top left quarter (25%) is red, the bottom left quarter
(25%) is blue, and the right half (50%) is yellow. In Image 2, the top right quarter
(25%) is red, the bottom right quarter (25%) is blue, and the left half (50%) is yellow.

If the two images are compared first solely on color and then color and location, the
following are the similarity results:

� Color: complete similarity (score = 0.0), because each color (red, blue, yellow)
occupies the same percentage of the total image in each one

� Color and location: no similarity (score = 100), because there is no overlap in the
placement of any of the colors between the two images

Thus, if you need to select images based on the dominant color or colors (for
example, to find apartments with blue interiors), give greater relative weight to
color. If you need to find images with common colors in common locations (for
example, red dominant in the upper portion to find sunsets), give greater relative
weight to location and color together.

Figure 5–4 shows two images very close in color. Figure 5–5 shows two images very
close in both color and location.

Figure 5–4 Images Very Similar in Color

Figure 5–5 Images Very Similar in Color and Location

How Content-Based Retrieval Works

Content-Based Retrieval Concepts 5-7

5.2.2 Texture
Texture reflects the texture of the entire image. Texture is most useful for full images
of textures, such as catalogs of wood grains, marble, sand, or stones. These images
are generally hard to categorize using keywords alone because our vocabulary for
textures is limited. Texture can be used effectively alone (without color) for pure
textures, but also with a little bit of color for some kinds of textures, like wood or
fabrics. Figure 5–6 shows two similar fabric samples.

Figure 5–6 Fabric Images with Similar Texture

Texture and location specified together compare texture and location of the textured
regions in the image.

5.2.3 Shape
Shape represents the shapes that appear in the image. Shapes are determined by
identifying regions of uniform color.

Shape is useful to capture objects such as horizon lines in landscapes, rectangular
shapes in buildings, and organic shapes such as trees. Shape is very useful for
querying on simple shapes (like circles, polygons, or diagonal lines) especially
when the query image is drawn by hand. Figure 5–7 shows two images very close
in shape.

How Matching Works

5-8 Oracle interMedia User’s Guide

Figure 5–7 Images with Very Similar Shape

Shape and location specified together compare shapes and location of the shapes in
the images.

5.3 How Matching Works
When you match images, you assign an importance measure, or weight, to each of
the visual attributes, and interMedia calculates a similarity measure for each visual
attribute.

5.3.1 Weight
Each weight value reflects how sensitive the matching process for a given attribute
should be to the degree of similarity or dissimilarity between two images. For
example, if you want color to be completely ignored in matching, assign a weight of
0.0 to color; in this case, any similarity or difference between the color of the two
images is totally irrelevant in matching. On the other hand, if color is extremely
important, assign it a weight greater than any of the other attributes; this will cause
any similarity or dissimilarity between the two images with respect to color to
contribute greatly to whether or not the two images match.

Weight values can be between 0.0 and 1.0. During processing, the values are
normalized such that they total 1.0. The weight of at least one of the color, texture,
or shape attributes must be set to greater than zero. See Section 5.3.3 for details of
the calculation.

5.3.2 Score
The similarity measure for each visual attribute is calculated as the score or
distance between the two images with respect to that attribute. The score can range
from 0.00 (no difference) to 100.0 (maximum possible difference). Thus, the more

How Matching Works

Content-Based Retrieval Concepts 5-9

similar two images are with respect to a visual attribute, the smaller the score will be
for that attribute.

As an example of how distance is determined, assume that the dots in Figure 5–8
represent scores for three images with respect to two visual attributes, such as color
and shape, plotted along the x-axis and y-axis of a graph.

Figure 5–8 Score and Distance Relationship

For matching, assume Image 1 is the comparison image, and Image 2 and Image 3
are each being compared with Image 1. With respect to the color attribute plotted on
the x-axis, the distance between Image 1 and Image 2 is relatively small (for
example, 15), whereas the distance between Image 1 and Image 3 is much greater
(for example, 75). If the color attribute is given more weight, then the fact that the
two distance values differ by a great deal will probably be very important in
determining whether or not Image 2 and Image 3 match Image 1. However, if color
is minimized and the shape attribute is emphasized instead, then Image 3 will
match Image 1 better than Image 2 matches Image 1.

How Matching Works

5-10 Oracle interMedia User’s Guide

5.3.3 Similarity Calculation
In Section 5.3.2, Figure 5–8 showed a graph of only two of the attributes that
interMedia can consider. In reality, when images are matched, the degree of
similarity depends on a weighted sum reflecting the weight and distance of all three
of the visual attributes in conjunction with location of the comparison image and
the test image.

For example, assume that for the comparison image (Image 1) and one of the
images being tested for matching (Image 2), Table 5–1 lists the relative distances
between the two images for each attribute. Note that you would never see these
individual numbers unless you computed three separate scores, each time
highlighting one attribute and setting the others to zero. For simplicity, the three
attributes are not considered in conjunction with location in this example.

In this example, the two images are most similar with respect to texture (distance =
5) and most different with respect to shape (distance = 50), as shown in Table 5–1.

Assume that for the matching process, the following weights have been assigned to
each visual attribute:

� Color = 0.7

� Texture = 0.2

� Shape = 0.1

The weights are supplied in the range of 0.0 to 1.0. Within this range, a weight of 1
indicates the strongest emphasis, and a weight of 0 means the attribute should be
ignored. The values you supply are automatically normalized such that the weights
total 1.0, still maintaining the ratios you have supplied. In this example, the weights
were specified such that normalization was not necessary.

The following formula is used to calculate the weighted sum of the distances, which
is used to determine the degree of similarity between two images:

weighted_sum = color_weight * color_distance +
 texture_weight * texture_distance +

Table 5–1 Distances for Visual Attributes Between Image1 and Image2

Visual Attribute Distance

Color 15

Texture 5

Shape 50

How Matching Works

Content-Based Retrieval Concepts 5-11

 shape_weight * shape_distance+

The degree of similarity between two images in this case is computed as:

0.7*c_distance + 0.2*tex_distance + 0.1*shape_distance

Using the supplied values, this becomes:

(0.7*15 + 0.2*5 + 0.1*50) = (10.5 + 1.0 + 5.0) = 16.5

To illustrate the effect of different weights in this case, assume that the weights for
color and shape were reversed. In this case, the degree of similarity between two
images is computed as:

0.1*c_distance +0.2*tex_distance + 0.7*shape_distance

That is:

(0.1*15 + 0.2*5 + 0.7*50) = (1.5 + 1.0 + 35.0) = 37.5

In this second case, the images are considered to be less similar than in the first case,
because the overall score (37.5) is greater than in the first case (16.5). Whether or not
the two images are considered matching depends on the threshold value (explained
in Section 5.3.4). If the weighted sum is less than or equal to the threshold, the
images match; if the weighted sum is greater than the threshold, the images do not
match.

In these two cases, the correct weight assignments depend on what you are looking
for in the images. If color is extremely important, then the first set of weights is a
better choice than the second set of weights, because the first set of weights grants
greater significance to the disparity between these two specific images with respect
to color. The two images differ greatly in shape (50) but that difference contributes
less to the final score because the weight assigned to the attribute shape is low. With
the second set of weights, the images have a higher score when shape is assigned a
higher weight and the images are less similar with respect to shape than with
respect to color.

5.3.4 Threshold Value
When you match images, you assign a threshold value. If the weighted sum of the
distances for the visual attributes is less than or equal to the threshold, the images
match; if the weighted sum is greater than the threshold, the images do not match.

Using the examples in Section 5.3.3, if you assign a threshold of 20, the images do
not match when the weighted sum is 37.5, but they do match when the weighted

Using an Index to Compare Signatures

5-12 Oracle interMedia User’s Guide

sum is 16.5. If the threshold is 10, the images do not match in either case; and if the
threshold is 37.5 or greater, the images match in both cases.

The following example shows a cursor (getphotos) that selects the product_id
and product_photo columns from the online_media table where the threshold
value is 20 for comparing photographs with a comparison image:

CURSOR getphotos IS
 SELECT product_id, product_photo FROM online_media WHERE
 ORDSYS.IMGSimilar(photo_sig, comparison_sig, ’color="0.4",
 texture="0.10", shape="0.3", location="0.2"’, 20)=1;

Before the cursor executes, the generateSignature() method must be called to
compute the signature of the comparison image (comparison_sig), and to compute
signatures for each image in the table. See Oracle interMedia Reference for a
description of all the operators, including IMGSimilar and IMGScore.

The number of matches returned generally increases as the threshold increases.
Setting the threshold to 100 would return all images as matches. Such a result, of
course, defeats the purpose of content-based retrieval. If your images are all very
similar, you may find that even a threshold of 50 returns too many (or all) images as
matches. Through trial and error, adjust the threshold to an appropriate value for
your application.

You will probably want to experiment with different weights for the visual
attributes and different threshold values, to see which combinations retrieve the
kinds and approximate number of matches you want.

5.4 Using an Index to Compare Signatures
A domain index, or extensible index, is an approach for supporting complex data
objects. Oracle Database and interMedia cooperate to define, build, and maintain an
index for image data. This index is of type ORDImageIndex. Once it is created, the
index automatically updates itself every time an image is inserted, updated, or
removed from the database table. The index is created, managed, and accessed by
the index type routines.

For better performance with large image databases, you should always create and
use an index for searching through the image signatures. The default search model
compares the signature of the query image to the signatures of all images stored in
the database. This works well for simple queries against a few images such as,
"Does this picture of an automobile match the image stored with the client’s
insurance records?" However, if you want to compare that image with thousands or
millions of images to determine if the images match, then a linear search through

Using an Index to Compare Signatures

Content-Based Retrieval Concepts 5-13

the database would be impractical. In this case, an index based on the image
signatures would greatly improve performance.

Assume you are using the online_media table from the Product Media
schema.

Process each image using the generateSignature() method to generate the
signatures.

DECLARE
 t_image ORDSYS.ORDImage;
 image_sig ORDSYS.ORDImageSignature;
BEGIN
 SELECT p.product_photo, p.product_photo_signature INTO t_image, image_sig
 FROM pm.online_media p
 WHERE p.product_id = 1910 FOR UPDATE;
 -- Generate a signature:
 image_sig.generateSignature(t_image);
 UPDATE pm.online_media p SET p.product_photo_signature = image_sig
 WHERE product_id = 1910;
 COMMIT;
END;
/

Once the signatures are created, the following command creates an index on this
table, based on the data in the product_photo_signature column:

CREATE INDEX idx1 ON online_media(product_photo_signature) INDEXTYPE IS
ORDSYS.ORDIMAGEINDEX
 PARAMETERS (’ORDImage_Filter_Tablespace = <name>,ORDImage_Index_Tablespace = <name>’);

The index name is limited to 24 or fewer characters. As with any Oracle table, do
not use pound signs (#) or dollar signs ($) in the name. Also as usual, the
tablespaces must be created before creating the index.

Note: Performance is greatly improved by loading the data tables
prior to creating the index.

Note: The standard Oracle restriction is 30 characters for table or
index names. However, interMedia requires an extra 6 characters
for internal processing of the domain index.

Using an Index to Compare Signatures

5-14 Oracle interMedia User’s Guide

The index data resides in two tablespaces, which must be created first. The first
contains the actual index data, and the second is an internal index created on that
data.

The following recommendations are good starting points for further index tuning:

� ORDIMAGE_FILTER_TABLESPACE -- Each signature requires approximately
350 bytes in this tablespace. The tablespace should be at least 350 times the
number of signatures in the table.

� ORDIMAGE_INDEX_TABLESPACE -- The size of the tablespace should be 100
times the size of the initial and final extents specified. For example, if an extent
is 10 KB, the tablespace size should be 1 MB. The initial and final extents should
be equal to each other. The size of the tablespace should also be approximately
equal to the size of ORDIMAGE_FILTER_TABLESPACE.

� Typically, it will be much faster if you create the index after the images are
loaded into the database and signatures have been generated for them.

� When importing a large number of images, you should postpone index creation
until after the import operation completes. Do this by specifying the following
parameters to the IMPORT statement: INDEXES=N and
INDEXNAME=<filename>. See Oracle Database Utilities for details.

� Rollback segments of an appropriate size are required. The size depends on the
size of your transactions, such as, how many signatures are indexed at one time.

� Analyze the new index.

As with other Oracle indexes, you should analyze the new index as follows:

ANALYZE INDEX idx1 COMPUTE STATISTICS;

Two operators, IMGSimilar and IMGScore, support queries using the index. The
operators automatically use the index if it is present. See Oracle interMedia Reference
for syntax information and examples.

Queries for indexed and nonindexed comparisons are identical. The Oracle
optimizer uses the domain index if it determines that the first argument passed to
the IMGSimilar operator is a domain-indexed column. Otherwise, the optimizer
invokes a functional implementation of the operator that compares the query
signature with the stored signatures, one row at a time.

See Oracle interMedia Reference for examples of retrieving similar images. As in the
example, be sure to specify the query signature as the second parameter.

Preparing or Selecting Images for Useful Matching

Content-Based Retrieval Concepts 5-15

5.5 Preparing or Selecting Images for Useful Matching
The human mind is infinitely smarter than a computer in matching images. If we
are near a street and want to identify all red automobiles, we can easily do so
because our minds rapidly adjust for the following factors:

� Whether the automobile is stopped or moving

� The distinction among red automobiles, red motorcycles, and red trailers

� The absolute size of the automobile, as well as its relative size in our field of
vision (because of its distance from us)

� The location of the automobile in our field of vision (center, left, right, top,
bottom)

� The direction in which the automobile is pointing or traveling (left or right,
toward us, or away from us)

However, for a computer to find red automobiles (retrieving all red automobiles
and no or very few images that are not red or not automobiles), it is helpful if all the
automobile images have the automobile occupy almost the entire image, have no
extraneous elements (people, plants, decorations, and so on), and have the
automobiles pointing in the same direction. In this case, a match emphasizing color
and shape would produce useful results. However, if the pictures show automobiles
in different locations, with different relative sizes in the image, pointing in different
directions, and with different backgrounds, it will be difficult to perform
content-based retrieval with these images.

The following are some suggestions for selecting images or preparing images for
comparison. The list is not exhaustive, but the basic principle to keep in mind is
this: Know what you are looking for, and use common sense. If possible, crop and
edit images in accordance with the following suggestions before performing
content-based retrieval:

� Have what you expect to be looking for occupy almost all the image space, or at
least occupy the same size and position on each image. For example, if you
want to find all the red automobiles, each automobile image should show only
the automobile and should have the automobile in approximately the same
position within the overall image.

� Minimize any extraneous elements that might prevent desired matches or cause
unwanted matches. For example, if you want to match red automobiles and if
each automobile has a person standing in front of it, the color, shape, and
position of the person (skin and clothing) will cause color and shape similarities
to be detected, and might reduce the importance of color and shape similarities

Preparing or Selecting Images for Useful Matching

5-16 Oracle interMedia User’s Guide

between automobiles (because part of the automobile is behind the person and
thus not visible). If you know that your images vary in this way, experiment
with different thresholds and different weights for the various visual attributes
until you find a combination that provides the best result set for your needs.

� During signature generation, images are temporarily scaled to a common size
such that the resulting signatures are based on a common frame of reference. If
you crop a section of an image, and then compare that piece back to the
original, interMedia will likely find that the images are less similar than you
would expect.

� When there are several objects in the image, interMedia matches them best
when:

– The colors in the image are distinct from each other. For example, an image
of green and red as opposed to an image of dark green and light green.

– The color in adjacent objects in the image contrast with each other.

– The image consists of a few, simple shapes.

Note: interMedia has a fuzzy search engine, and is not designed to
recognize objects. For example, interMedia cannot find a specific
automobile in a parking lot. However, if you crop an individual
automobile from a picture of a parking lot, you can then compare
the automobile to known automobile images.

Custom DataSource and DataSink for JMF Versions 2.0 and 2.1 6-1

6
Custom DataSource and DataSink for JMF

Versions 2.0 and 2.1

Sun Microsystems provides a Java Media Framework (JMF) API that enables audio,
video and other time-based media to be added to Java applications and applets.

The Oracle interMedia Custom DataSource and DataSink feature is an extension to
JMF versions 2.0 and 2.1. This feature allows a JMF application to upload
time-based media data into or retrieve media data from a database that contains
Oracle interMedia ("interMedia") video or audio objects. A protocol is defined that
permits media data stored in interMedia video or audio objects in the database to be
accessed through a URL that contains information necessary to select the audio or
video data from the database.

6.1 Installing and Registering Custom DataSource and DataSink
To install Custom DataSource and DataSink, save the ordjmf.jar file to your hard
disk. By default, the file will be stored in the following location:

<ORACLE_HOME>\ord\jlib

Then, enter the path name for the ordjmf.jar file into your CLASSPATH
environment variable.

To register Custom DataSource and DataSink, select one of the methods described
in the following subsections.

6.1.1 Registration Method 1
To register Custom DataSource and DataSink with Registration Method 1 follow
these steps:

Using Custom DataSource and DataSink

6-2 Oracle interMedia User’s Guide

1. Start the JMFRegistry.bat file in your %JMF_HOME%/bin directory.

2. Add oracle.ord to both the protocol Prefix List and Content Prefix List on
the PackageManager tab. Then, click commit for both lists.

3. Close the JMFRegistry.

6.1.2 Registration Method 2
To register Custom DataSource and DataSink with Registration Method 2:

Add oracle.ord to the protocol Prefix List and Content Prefix List in your
application program through the JMF PackageManager.

For more information about JMF, see the JMF API documentation and specification
available at the Sun Microsystems Web site at

http://www.java.sun.com/jmf

6.2 Using Custom DataSource and DataSink
Using Custom DataSource and DataSink includes the following procedures:

� Defining the ordjmf.properties file.

� Uploading media data into Oracle Database through Custom DataSink.

� Retrieving media data from Oracle Database through Custom DataSource.

You can access media data in the database through Sun Microsystems JMStudio or a
JMF application.

The following subsections describe these procedures.

6.2.1 Defining the Property File
The property file, ordjmf.properties, is used to define the database connection
and the PL/SQL procedures to retrieve or upload media data to the database. This
file can be located in any directory, but the directory must be specified in your
CLASSPATH variable. The ordjmf.properties file defines the following
name-value pairs:

user=<database user>
password=<password>
url=<jdbc connection string>
<mediaSource1>=<procedure1>
<mediaSource2>=<procedure2>

Using Custom DataSource and DataSink

Custom DataSource and DataSink for JMF Versions 2.0 and 2.1 6-3

<mediaSink1>=<procedure3>
...

The value <jdbc connection string> is used to set up a Java Database
Connectivity (JDBC) connection with the database. The JDBC connection can be
either an Oracle JDBC Thin Driver or an Oracle JDBC OCI Driver connection string.

For the Thin driver, the connection string should be similar to the following:

jdbc:oracle:thin:@<host>:<port>:<sid>

For the OCI driver, the connection string should be similar to the following:

jdbc:oracle.oci:@MyHostString

where MyHostString is a TNSNAMES entry in the file tnsnames.ora on the
client computer from which you are connecting.

Multiple media data sources and data sinks can be defined in the
ordjmf.properties file. Each source or sink is defined as a name and value pair.
The name is used in the MediaLocator string (see Section 6.2.2 and Section 6.2.3).
The value must be the name of an existing PL/SQL procedure that supports
uploading or retrieving media data in the database.

6.2.2 Uploading Media Data
The format of the MediaLocator upload string is one continuous string, similar to
the following:

im://upload/<sinkName>/<arg1>:<arg2>:...:<argn>

The parameter upload is the keyword that is required to indicate an upload
operation of the media data.

The parameter <sinkName> is the name defined in the ordjmf.properties file.
It refers to a predefined PL/SQL procedure that retrieves the media in a BLOB in a
SQL SELECT ... FOR UPDATE statement. The first argument in the PL/SQL
procedure must be an output parameter of BLOB data type. The second argument
must be an input parameter of VARCHAR2 data type to represent the MIME type of
the uploading media. The predefined PL/SQL procedure can use the input
parameter of the media MIME type in any way necessary.

The following example shows that for a table named videostore with columns
(OrdVideo myvideo, Integer videoid), the PL/SQL procedure could be defined as
follows:

CREATE OR REPLACE PROCEDURE getVideoForUpdate(

Using Custom DataSource and DataSink

6-4 Oracle interMedia User’s Guide

 myVideoLob OUT BLOB,
 myMimetype IN VARCHAR2,
 myid IN INTEGER)
 AS
 myvid ordsys.ordvideo;
 BEGIN
 -- Update the MIME type first
 SELECT t.myvideo INTO myvid from videostore t
 WHERE videoid=myid FOR UPDATE;
 myvid.setMimeType(myMimetype);
 myvid.setLocal();
 myvid.setUpdateTime(SYSDATE);
 UPDATE videostore SET myvideo=myvid WHERE videoid=myid;
 -- Get the BLOB for uploading
 SELECT t.myvideo.getContent() INTO myVideoLob
 FROM videostore t
 WHERE videoid=myid FOR UPDATE;
 END;

An example of the use of the MediaLocator upload string through the Custom
DataSink is as follows:

im://upload/sink1/1

where sink1 is the mediaSink name, and is defined in the ordjmf.properties
file as sink1=getVideoForUpdate. Through the use of this URL, the JMF
application can upload and update the media into the BLOB stored in the
videostore table where the value of videoid is equal to 1.

The parameters <arg1>, <arg2>, ..., <argn> are the input parameters to
the PL/SQL procedure, which can be used to locate the media data in the database.
In the previous example, there is only one input parameter in the PL/SQL
procedure getVideoForUpdate. Thus, the <arg1> parameter corresponds to the
getVideoForUpdate input parameter myid, and the value of <arg1> is equal to 1.

6.2.3 Retrieving Media Data
The format of the MediaLocator retrieval string is one continuous string, similar to
the following:

im://retrieval/<sourceName>/<arg1>:<arg2>:...:<argn>

The parameter retrieval is the keyword that is required to indicate a retrieve
operation of the media data.

Using Custom DataSource and DataSink

Custom DataSource and DataSink for JMF Versions 2.0 and 2.1 6-5

The parameter <sourceName> is the name defined in the ordjmf.properties
file. It refers to a predefined PL/SQL procedure that retrieves the media in a BLOB
as well as the MIME type of the media. The first argument in the PL/SQL
procedure must be an output parameter of BLOB data type. The second argument
must be an output parameter of VARCHAR2 data type to represent the MIME type
of the media.

The following example shows that, for a table named videostore with columns
(OrdVideo myvideo, Integer videoid), the PL/SQL procedure could be defined as
follows:

CREATE OR REPLACE PROCEDURE getVideoForRetrieval(
 myVideoLob OUT BLOB,
 myMimeType OUT VARCHAR2,
 myid IN INTEGER)
 AS
 BEGIN
 SELECT t.myvideo.getContent(), t.myvideo.getMimeType()
 INTO myVideoLob, myMimeType
 FROM videostore t
 WHERE videoid=myid;
 END;

An example of the use of the MediaLocator retrieval string through the Custom
DataSource feature is as follows:

im://retrieval/source2/1

where source2 is the data source name and is defined in the
ordjmf.properties file as source2=getVideoForRetrieval. Through the
use of this URL, the JMF application can retrieve media from the BLOB stored in the
videostore table where the value of videoid is equal to 1.

The parameters <arg1>, <arg2>, ..., <argn> are input parameters to the
PL/SQL procedure, which can be used to locate the media data in the database. In
the previous example, there is only one input parameter in the PL/SQL procedure
getVideoForRetrieval. Thus, the <arg1> parameter corresponds to the
getVideoForRetrieval input parameter myid and the value of <arg1> is equal to 1.

6.2.4 Accessing Media Data Through JMStudio
To access media data in the database through Sun Microsystems JMStudio, follow
these steps:

1. Start JMStudio.

Using Custom DataSource and DataSink

6-6 Oracle interMedia User’s Guide

2. Select File, then select Open URL:. In the Open URL dialog box, enter the
MediaLocator string that points to the data in the database, then click OK.

3. JMStudio should play the media data stored in the database.

6.2.5 Accessing Media Data Through a JMF Application
To access media data in the database through a JMF application, use the
MediaLocator strings defined in Section 6.2.2 and Section 6.2.3 as the input or
output URL. This will enable the JMF application to access the media data in the
database through Custom DataSource and DataSink for JMF 2.0 and 2.1.

For examples of JMF applications, refer to the JMF sample programs available at the
Sun Microsystems Web site at

http://java.sun.com/jmf

Extending Oracle interMedia 7-1

7
Extending Oracle interMedia

Oracle interMedia can be extended to support:

� Other external sources of media data not currently supported (see Section 7.1)

� Other media data formats not currently supported (see Section 7.2)

� A new object type (see Section 7.3)

� Media (audio and video) data processing (see Section 7.4)

For each unique external media data source or each unique ORDAudio, ORDDoc,
or ORDVideo data format that you want to support, you must:

1. Design your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

2. Implement your new data source or new ORDAudio, ORDDoc, or ORDVideo
data format.

3. Install your new plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in to PUBLIC.

7.1 Supporting Other External Sources
To implement your new data source, you must implement the required interfaces in
the ORDX_<srcType>_SOURCE package in the ORDPLUGINS schema (where
<srcType> represents the name of the new external source type). Use the package
body example in Section 7.1.1.3 as a template to create the package body. Then, set
the source type parameter in the setSourceInformation() call to the appropriate
source value to indicate to the ORDAudio, ORDImage, ORDDoc, or ORDVideo
object that package ORDPLUGINS.ORDX_<srcType>_SOURCE is available as a
plug-in. Use the ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_

Supporting Other External Sources

7-2 Oracle interMedia User’s Guide

HTTP_SOURCE packages as guides when you extend support to other external
audio, image, video, or other heterogeneous media data sources.

See Section 7.1.1.1, Section 7.1.1.2, and Section 7.1.1.3 for examples and for more
information on extending the supported external sources of audio, image, video, or
other heterogeneous media data.

7.1.1 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided.

Any method invoked from a source plug-in call has the first argument as obj
(ORDSource) and the second argument as ctx (RAW).

Plug-ins must be named as ORDX_<name>_<module_name> where the <module_
name> is SOURCE for ORDSource. For example, the file plug-in described in
Section 7.1.1.1, is named ORDX_FILE_SOURCE and the HTTP plug-in described in
Section 7.1.1.2, is named ORDX_HTTP_SOURCE and <name> is the source type.
Both source type names, FILE and HTTP, are reserved to Oracle.

Use the ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_
SOURCE packages as a guide in developing your new source type package.

7.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package or PL/SQL plug-in provides
support for multimedia stored in the local file system external to the database.

CREATE OR REPLACE PACKAGE ORDX_FILE_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);

Supporting Other External Sources

Extending Oracle interMedia 7-3

 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 slob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW),
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);

 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource,
 userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,

Supporting Other External Sources

7-4 Oracle interMedia User’s Guide

 buffer OUT RAW);
END ORDX_FILE_SOURCE;
/

Table 7–1 shows the methods supported in the ORDX_FILE_SOURCE package and
the exceptions raised if you call a method that is not supported.

7.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
The ORDPLUGINS.ORDX_HTTP_SOURCE package or PL/SQL plug-in provides
support for multimedia stored in any HTTP server and accessed through a URL.

CREATE OR REPLACE PACKAGE ORDX_HTTP_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,

Table 7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Supported

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Supported

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Supporting Other External Sources

Extending Oracle interMedia 7-5

 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,

Supporting Other External Sources

7-6 Oracle interMedia User’s Guide

 numBytes IN OUT INTEGER,
 buffer OUT RAW);
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_HTTP_SOURCE;
/

Table 7–2 shows the methods supported in the ORDX_HTTP_SOURCE package and
the exceptions raised if you call a method that is not supported.

7.1.1.3 Extending interMedia to Support a New Data Source
Extending interMedia to support a new data source consists of the following steps:

1. Design your new data source.

2. Implement your new data source and name it, for example, ORDX_MY_
SOURCE.SQL.

Table 7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Not supported - raises exception: METHOD_NOT_SUPPORTED

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Supporting Other External Sources

Extending Oracle interMedia 7-7

3. Install your new ORDX_MY_SOURCE.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
SOURCE.SQL plug-in to PUBLIC.

5. Set the srctype to my to cause your plug-in to be invoked.

A package body listing is provided in Example 7–1 to assist you in this operation.
Add your variables to the places that say "--Your variables go here" and add your
code to the places that say "--Your code goes here".

Example 7–1 Show the Package Body for Extending Support to a New Data Source

CREATE OR REPLACE PACKAGE BODY ORDX_MY_SOURCE
AS
 -- functions/procedures
 FUNCTION processCommand(
 obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END processCommand;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END import;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.

Supporting Other External Sources

7-8 Oracle interMedia User’s Guide

 END import;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END importFrom;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END importFrom;
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END export;

 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END getContentLength;
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,

Supporting Other External Sources

Extending Oracle interMedia 7-9

 userData IN VARCHAR2)
 RETURN VARCHAR2
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END getSourceAddress;
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW, ctx OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END open;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END close;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END trim;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END read;
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)

Supporting Other Media Data Formats

7-10 Oracle interMedia User’s Guide

 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END write;
END ORDX_MY_SOURCE;
/
show errors;

7.2 Supporting Other Media Data Formats
To implement your new ORDAudio, ORDDoc, or ORDVideo data format, you must
implement the required interfaces in the ORDPLUGINS.ORDX_<format>_<media>
package in the ORDPLUGINS schema (where <format> represents the name of the
new audio or video, or other heterogeneous media data format and <media>
represents the type of media ("AUDIO" or "VIDEO", or "DOC"). Use the
ORDPLUGINS.ORDX_DEFAULT_<media> package as a guide when you extend
support to other audio or video data formats or other heterogeneous media data
formats. Use the package body examples in Section 7.2.1.2, Section 7.2.2.2 and
Section 7.2.3.2 as templates to create the audio or video, or other heterogeneous
media data package body, respectively. Then, set the new format parameter in the
setFormat() call to the appropriate format value to indicate to the ORDAudio,
ORDDoc, or ORDVideo object that package ORDPLUGINS.ORDX_<format>_
<media> is available as a plug-in and should be used for method invocation.

See Section A.1 and Section A.4 for more information on installing your own format
plug-in and running the sample scripts provided.

See Section 7.2.1.2, Section 7.2.2.2, and Section 7.2.3.2 for examples and for more
information on extending the supported audio and video, or other heterogeneous
media data formats. See Oracle interMedia Reference for more examples.

7.2.1 Supporting Other ORDAudio Data Formats
Section 7.2.1.1, Section 7.2.1.2, and Section 7.2.1.3 describe support for other
ORDAudio data formats.

7.2.1.1 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided for the ORDAudio type. Table 7–3 describes the PL/SQL plug-in packages
provided in the ORDPLUGINS schema.

Supporting Other Media Data Formats

Extending Oracle interMedia 7-11

Section 7.2.1.2 describes the ORDPLUGINS.ORDX_DEFAULT_AUDIO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 7–3
are identical for all plug-in packages, therefore, refer to Section 7.2.1.2.

7.2.1.2 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the following ORDPLUGINS.ORDX_DEFAULT_AUDIO package provided as a
guide in developing your own ORDPLUGINS.ORDX_<format>_AUDIO audio
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_AUDIO
authid current_user
AS
--AUDIO ATTRIBUTES ACCESSORS

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,

Table 7–3 ORDAudio PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_AUDIO <format> Dependent on file format

ORDPLUGINS.ORDX_AUFF_AUDIO AUFF audio/basic

ORDPLUGINS.ORDX_AIFF_AUDIO AIFF audio/x-aiff

ORDPLUGINS.ORDX_AIFC_AUDIO AIFC audio/x-aiff

ORDPLUGINS.ORDX_WAVE_AUDIO WAVE audio/x-wave

ORDPLUGINS.ORDX_MPGA_AUDIO MPGA audio/mpeg

ORDPLUGINS.ORDX_ASF_AUDIO ASF audio/x-ms-wma

ORDPLUGINS.ORDX_MP4_AUDIO MP4 application/mpeg4

Note: The ORDPLUGINS.ORDX_DEFAULT_AUDIO package
specification includes a number of methods deprecated beginning
with release 8.1.6, which have been removed in the following
listing. Do not implement these deprecated methods; they are there
only for backward compatibility.

Supporting Other Media Data Formats

7-12 Oracle interMedia User’s Guide

 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER;
FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB);
--AUDIO PROCESSING METHODS
FUNCTION processCommand(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARHAR2,
 result OUT RAW)
 RETURN RAW;

END;
/

Table 7–4 shows the methods supported in the
ORDPLUGINS.ORDX_DEFAULT_AUDIO package and the exceptions raised if you
call a method that is not supported.

Table 7–4 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO
Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local
data and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if
the source is a BFILE, then extract attributes from the BFILE and
set the properties; if the source is neither local nor a BFILE, get the
media content into a temporary LOB, extract attributes from the
data, and set the properties.

checkProperties Supported; if the source is local, extract the attributes from the
local data and compare them with the attribute values of the
object, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if
the source is a BFILE, extract the attributes from the BFILE and
compare them with the attribute values of the object; if the source
is neither local nor a BFILE, get the media content into a
temporary LOB, extract the attributes from the media content and
compare them with the attribute values of the object.

Supporting Other Media Data Formats

Extending Oracle interMedia 7-13

7.2.1.3 Extending interMedia to Support a New Audio Data Format
Extending interMedia to support a new audio data format consists of the following
steps:

1. Design your new audio data format.

a. To support a new audio data format, implement the required interfaces in
the ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where
<format> represents the name of the new audio data format). See
Section 7.2.1.2 for a complete description of the interfaces for the ORDX_
DEFAULT_AUDIO package. Use the package body example in Example 7–2
as a template to create the audio package body.

b. Then, set the new format parameter in the setFormat() call to the
appropriate format value to indicate to the audio object that package
ORDPLUGINS.ORDX_<format>_AUDIO is available as a plug-in.

2. Implement your new audio data format and name it, for example, ORDX_MY_
AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL plug-in in the ORDPLUGINS schema.

See Section A.1 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and
fpluginb.sql files that are installed in the $ORACLE_
HOME/ord/aud/demo/ directory. These are demonstration (demo) plug-ins
that you can use as a guideline to write any format plug-in that you want to
support. See the auddemo.sql file in this same directory to learn how to install
your own format plug-in.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_
REQUIRED exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

Table 7–4 (Cont.) Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO
Package

Name of Method Level of Support

Supporting Other Media Data Formats

7-14 Oracle interMedia User’s Guide

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
AUDIO.SQL plug-in, to PUBLIC.

5. In an application, set the format attribute to my to cause your plug-in to be
invoked.

A package body listing is provided in Example 7–2 to assist you in this operation.
Add your variables to the places that say "--Your variables go here" and add your
code to the places that say "--Your code goes here".

See Section A.1 for more information on installing your own audio format plug-in
and running the sample scripts provided.

Example 7–2 Show the Package Body for Extending Support to a New Audio
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_AUDIO
AS
 --AUDIO ATTRIBUTES ACCESSORS
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER :=0)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB)

Supporting Other Media Data Formats

Extending Oracle interMedia 7-15

 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 -- AUDIO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.2 Supporting Other ORDDoc Data Formats
Section 7.2.2.1, Section 7.2.2.2, and Section 7.2.2.3 describe support for other
ORDDoc data formats.

7.2.2.1 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided for the ORDDoc type. Table 7–5 describes the PL/SQL plug-in packages
provided in the ORDPLUGINS schema.

Section 7.2.2.2 describes the ORDPLUGINS.ORDX_DEFAULT_DOC package, the
methods supported, and the level of support. The method supported and the level
of support for the PL/SQL plug-in package is described in Table 7–6.

Table 7–5 ORDDoc PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Media Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_DOC <format> Dependent on file format

Supporting Other Media Data Formats

7-16 Oracle interMedia User’s Guide

7.2.2.2 ORDPLUGINS.ORDX_DEFAULT_DOC Package
Use the following ORDPLUGINS.ORDX_DEFAULT_DOC package provided as a guide
in developing your own ORDPLUGINS.ORDX_<format>_DOC media format
package. This package sets the mimeType field in the setProperties() method with a
MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_DOC
authid current_user
AS

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER := 0);

END;
/

Table 7–6 shows the method supported in the ORDPLUGINS.ORDX_DEFAULT_DOC
package and the exception raised if the source is NULL.

7.2.2.3 Extending interMedia to Support a New Media Data Format
Extending interMedia to support a new media data format consists of the following
steps:

1. Design your new media data format.

a. To support a new media data format, implement the required interfaces in
the ORDX_<format>_DOC package in the ORDPLUGINS schema (where
<format> represents the name of the new media data format). See
Section 7.2.2.2 for a complete description of the interfaces for the ORDX_
DEFAULT_DOC package. Use the package body example in Example 7–3 as
a template to create the media package body.

Table 7–6 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and
set the properties.

Supporting Other Media Data Formats

Extending Oracle interMedia 7-17

b. Then, set the new format parameter in the setFormat() call to the
appropriate format value to indicate to the media object that package
ORDPLUG-INS.ORDX_<format>_DOC is available as a plug-in.

2. Implement your new media data format and name it, for example, ORDX_MY_
DOC.SQL.

3. Install your new ORDX_MY_DOC.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
DOC.SQL plug-in, to PUBLIC.

5. In an application, set the format to my to cause your plug-in to be invoked.

A package body listing is provided in Example 7–3 to assist you in this operation.
Add your variables to the places that say "--Your variables go here" and add your
code to the places that say "--Your code goes here".

See Section A.2 for more information on installing your own media format plug-in
and running the sample scripts provided.

Example 7–3 Show the Package Body for Extending Support to a New Media
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_DOC
AS
 --DOCUMENT ATTRIBUTES ACCESSORS
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER :=FALSE)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.3 Supporting Other Video Data Formats
Section 7.2.3.1, Section 7.2.3.2, and Section 7.2.3.3 describe support for other video
data formats.

Supporting Other Media Data Formats

7-18 Oracle interMedia User’s Guide

7.2.3.1 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided with the ORDVideo object. Table 7–7 describes the PL/SQL plug-in
packages provided in the ORDPLUGINS schema.

Section 7.2.3.2 describes the ORDPLUGINS.ORDX_DEFAULT_VIDEO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 7–7
are identical for all plug-in packages, therefore, refer to Section 7.2.3.2.

7.2.3.2 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the following ORDPLUGINS.ORDX_DEFAULT_VIDEO package provided as a
guide in developing your own ORDPLUGINS.ORDX_<format>_VIDEO video
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_VIDEO
authid current_user
AS
--VIDEO ATTRIBUTES ACCESSORS

Table 7–7 ORDVideo PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Video Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_VIDEO <format> Dependent on file format

ORDPLUGINS.ORDX_AVI_VIDEO AVI video/x-msvideo

ORDPLUGINS.ORDX_MOOV_VIDEO MOOV video/quicktime

ORDPLUGINS.ORDX_RMFF_VIDEO RMFF audio/x-pn-realaudio

ORDPLUGINS.ORDX_MPEG_VIDEO MPG video/mpeg

ORDPLUGINS.ORDX_MP4_VIDEO MP4 Application/mpeg4

ORDPLUGINS.ORDX_ASF_VIDEO ASF video/x-ms-wvm

Note: The ORDPLUGINS.ORDX_DEFAULT_VIDEO package
specification includes a number of methods deprecated beginning
with release 8.1.6, which have been removed in the following
listing. Do not implement these deprecated methods; they are there
only for backward compatibility.

Supporting Other Media Data Formats

Extending Oracle interMedia 7-19

FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2;
PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW,obj IN ORDSYS.ORDVideo) RETURN NUMBER;

-- must return name=value; name=value; ... pairs
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB);
-- VIDEO PROCESSING METHODS
FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;

END;
/

Table 7–8 shows the methods supported in the ORDPLUGINS.ORDX_DEFAULT_
VIDEO package and the exceptions raised if you call a method that is not supported.

Table 7–8 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method Level of Support

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and VIDEO_PLUGIN_EXCEPTION

setProperties Supported; if the source is local, extract attributes from the local
data and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and
set the properties.

Supporting Other Media Data Formats

7-20 Oracle interMedia User’s Guide

7.2.3.3 Extending interMedia to Support a New Video Data Format
Extending interMedia to support a new video data format consists of the following
steps:

1. Design your new video data format.

a. To support a new video data format, implement the required interfaces in
the ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where
<format> represents the name of the new video data format). See
Section 7.2.3.2 for a complete description of the interfaces for the ORDX_
DEFAULT_VIDEO package. Use the package body example in Example 7–4
as a template to create the video package body.

b. Then, set the new format parameter in the setFormat() call to the
appropriate format value to indicate to the video object that package
ORDPLUGINS.ORDX_<format> _VIDEO is available as a plug-in.

2. Implement your new video data format and name it, for example, ORDX_MY_
VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL plug-in in the ORDPLUGINS schema.

See Section A.4 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and

checkProperties Supported; if the source is local, extract attributes from the local
data and compare them with the attribute values of the object, but if
the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE data and
compare them with the attribute values of the object; if the source is
neither local nor a BFILE, get the media content into a temporary
LOB, extract attributes from the media content and compare them
with the attribute values of the object.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDVideoExceptions.LOCAL_DATA_SOURCE_
REQUIRED exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and VIDEO_PLUGIN_EXCEPTION

Table 7–8 (Cont.) Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO

Name of Method Level of Support

Supporting Other Media Data Formats

Extending Oracle interMedia 7-21

fpluginb.sql files that are installed in the $ORACLE_
HOME/ord/vid/demo/ directory. These are demonstration (demo) plug-ins
that you can use as a guideline to write any format plug-in that you want to
support. See the viddemo.sql file in this same directory to learn how to install
your own format plug-in.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
VIDEO.SQL plug-in, to PUBLIC.

5. In an application, set the video format to my to cause your plug-in to be
invoked.

A package body listing is provided in Example 7–4 to assist you in this operation.
Add your variables to the places that say "--Your variables go here" and add your
code to the places that say "--Your code goes here".

See Section A.4 for more information on installing your own video format plug-in
and running the sample scripts provided.

Example 7–4 Show the Package Body for Extending Support to a New Video
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_VIDEO
AS
 --VIDEO ATTRIBUTES ACCESSORS
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER :=0)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo) RETURN NUMBER
 IS
--Your variables go here.
 BEGIN

Extending interMedia with a New Type

7-22 Oracle interMedia User’s Guide

--Your code goes here.
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 -- VIDEO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.4 Supporting Other Image Data Formats
Oracle interMedia supports certain other image formats through the setProperties()
method for foreign images. This method allows other image formats to be
recognized by writing the values supplied to the setProperties() method for foreign
images to the existing ORDImage data attributes. See the setProperties() for foreign
images method in Oracle interMedia Reference for more information and to determine
the type of images that can are supported this way.

7.3 Extending interMedia with a New Type
You can use any of the interMedia objects types as the basis for a new type of your
own creation as shown in Example 7–5 for the ORDImage object type.

Extending interMedia with a New Type

Extending Oracle interMedia 7-23

Example 7–5 Extend Oracle interMedia ORDImage with a New Object Type

CREATE TYPE AnnotatedImage AS OBJECT
 (image ORDSYS.ORDImage,
 description VARCHAR2(2000),
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage),
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage),
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage)
);
/

CREATE TYPE BODY AnnotatedImage AS
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.setProperties();
 SELF.description :=
 ’This is an example of using Image object as a subtype’;
 END SetProperties;
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.copy(dest.image);
 dest.description := SELF.description;
 END Copy;
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.Image.processCopy(command,dest.image);
 dest.description := SELF.description;
 END ProcessCopy;
END;
/

Note: When a type is altered, any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an interMedia object type attribute and the
interMedia object type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;

Supporting Media Data Processing

7-24 Oracle interMedia User’s Guide

After creating the new type, you can use it as you would any other type. For
example:

CREATE OR REPLACE DIRECTORY ORDIMGDIR AS ’C:\TESTS’;

CREATE TABLE my_example(id NUMBER, an_image AnnotatedImage);
INSERT INTO my_example VALUES (1,
 AnnotatedImage(
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’plaid.gif’));
COMMIT;
DECLARE
 myimage AnnotatedImage;
BEGIN
 SELECT an_image INTO myimage FROM my_example;
 myimage.SetProperties;
 DBMS_OUTPUT.PUT_LINE(’This image has a description of ’);
 DBMS_OUTPUT.PUT_LINE(myimage.description);
 UPDATE my_example SET an_image = myimage;
END;
/

7.4 Supporting Media Data Processing
Section 7.4.1 and Section 7.4.2 describe support for audio and video data processing.

7.4.1 Supporting Audio Data Processing
To support audio data processing, that is, the passing of an audio processing
command and set of arguments to a format plug-in for processing, use the
processAudioCommand() method. This method is available only for user-defined
formats.

See the processAudioCommand() method in Oracle interMedia Reference for a
description.

7.4.2 Supporting Video Data Processing
To support video data processing, that is, the passing of a command and set of
arguments to a format plug-in for processing, use the processVideoCommand()
method. This method is only available for user-defined formats.

See the processVideoCommand() method in Oracle interMedia Reference for a
description.

Tuning Tips for the DBA 8-1

8
Tuning Tips for the DBA

This chapter provides tuning tips for the Oracle DBA who wants to achieve more
efficient storage and management of multimedia data in the database when using
interMedia.

The goals of your interMedia application determine the resource needs and how
those resources should be allocated. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your interMedia application in a production
environment.

Multimedia data consists of a variety of media types including images, audio clips,
video clips, line drawings, and so forth. All these media types are typically stored in
LOBs, in either internal BLOBs (stored in an internal database tablespace) or in
BFILEs (external LOBs in operating system files outside of the database
tablespaces). This chapter discusses only the management of audio, image, and
video data stored in BLOBs.

Internal LOBs consist of: CLOBs, NCLOBs, and BLOBs and can be of unlimited size
(8 terabytes (TB) to 128 TB depending on the database block size of 2 kilobytes (KB)
to 32 KB), which are supported in these programming environments: Java using
Java Database Connectivity (JDBC), PL/SQL using the DBMS_LOB Package, and C
using Oracle Call Interface (OCI).

However, in these programming environments: COBOL using Pro*COBOL
precompiler, C/C++ using Pro*C/C++ precompiler, Visual Basic using Oracle
Objects for OLE (OO4O), and SQL, you can create and use LOB instances only up to
4 gigabytes (GB) in size. interMedia supports BLOBs up to 4 GB in size for Oracle
Database 10g Release 1 (10.1).

BFILEs can be as large as the operating system will allow up to a maximum of 8 TB.
interMedia supports BFILEs up to a maximum of 4 GB in size.

Setting Database Initialization Parameters

8-2 Oracle interMedia User’s Guide

The following general topics will help you to better manage your interMedia LOB
data:

� Setting database initialization parameters (see Section 8.1)

� Issues to consider in creating tables with interMedia objects containing LOBs
(see Section 8.2)

� Improving multimedia data INSERT performance in interMedia objects
containing LOBs (see Section 8.3)

� Getting the best performance results (see Section 8.7)

� Improving interMedia LOB data retrieval and update performance (see
Section 8.8)

For more information about LOB partitioning, LOB tuning, and LOB buffering, see
Oracle Database Application Developer’s Guide - Large Objects, Oracle Call Interface
Programmer’s Guide, Oracle Database Concepts, and Oracle Database Performance Tuning
Guide.

For information on restrictions to consider when using LOBs, see Oracle Database
Application Developer's Guide - Large Objects.

For guidelines on using the DIRECTORY feature in Oracle, see Oracle Database
Application Developer's Guide - Large Objects. This feature enables a simple, flexible,
nonintrusive, and secure mechanism for the DBA to manage access to large files in
the file system.

8.1 Setting Database Initialization Parameters
The information that follows is an excerpt from Oracle Database Performance Tuning
Guide and Oracle Database Reference, and is presented as an overview of the topic.
Refer to Oracle Database Performance Tuning Guide and Oracle Database Reference for
more information.

Database tuning of the Oracle instance consists of tuning the system global area
(SGA). The SGA is used to store data in memory for fast access. The SGA consumes
a portion of your system’s physical memory. The SGA must be sufficiently large to
keep your data in memory but neither too small nor so large that performance
begins to degrade. Degrading performance occurs when the operating system
begins to page unused information to disk to make room for new information
needed in memory, or begins to temporarily swap active processes to disk so other
processes needing memory can use it. Excessive paging and swapping can bring a
system to a standstill. The goal in sizing the SGA is to size it for the data that must

Setting Database Initialization Parameters

Tuning Tips for the DBA 8-3

be kept in main memory to keep performance optimal. With this in mind, you must
size the SGA required for your interMedia application. This may mean increasing
the physical memory of your system and monitoring your operating system
behavior to ensure paging and swapping remain minimal.

The size of the SGA is determined by the values of the following database
initialization parameters: DB_BLOCK_SIZE, DB_CACHE_SIZE, SHARED_POOL_
SIZE, and LOG_BUFFER.

Beginning with Oracle9i, the SGA infrastructure is dynamic. This means that the
following primary parameters used to size the SGA can be changed while the
instance is running:

� Buffer cache (DB_CACHE_SIZE) -- the size in bytes of the cache of standard
blocks

� Shared pool (SHARED _POOL_SIZE) -- the size in bytes of the area devoted to
shared SQL and PL/SQL statements

� Large pool (LARGE_POOL_SIZE) (default is 0 bytes) -- the size in bytes of the
large pool used in shared server systems for session memory, parallel execution
for message buffers, and by backup and restore processes for disk I/O buffers

The LOG_BUFFER parameter is used when buffering redo entries to a redo log. It is
a static parameter and represents a very small portion of the SGA and can be
changed only by stopping and restarting the database to read the changed value for
this parameter from the initialization parameter file (init.ora).

Note that even though you cannot change the MAX_SGA_SIZE parameter value
dynamically, you do have the option of changing any of its three dependent
primary parameters (DB_CACHE_SIZE, SHARED_POOL_SIZE, and LARGE_
POOL_SIZE) to make memory tuning adjustments on the fly. To help you specify an
optimal cache value, you can use the dynamic DB_CACHE_ADVICE parameter
with statistics gathering enabled to predict behavior with different cache sizes
through the V$DB_CACHE_ADVICE performance view. Use the ALTER
SYSTEM...SET clause... statement to enable this parameter. See Oracle Database
Performance Tuning Guide for more information about using this parameter.

Beginning with Oracle9i, there is a concept of creating tablespaces with multiple
block sizes and specifying cache sizes corresponding with each block size. The
SYSTEM tablespace uses a standard block size and additional tablespaces can use
up to five non-standard block sizes.

The standard block size is specified by the DB_BLOCK_SIZE parameter. Its cache
size is specified by the DB_CACHE_SIZE parameter. Non-standard block sizes are
specified by the BLOCKSIZE clause of the CREATE TABLESPACE statement. The

Setting Database Initialization Parameters

8-4 Oracle interMedia User’s Guide

cache size for each corresponding non-standard block size is specified using the
notation: DB_nK_CACHE_SIZE parameter, where the value n is 2, 4, 8, 16, or 32 KB.

The standard block size, known as the default block size, is usually set to the same
size in bytes as the operating system block size, or a multiple of this size. The DB_
CACHE_SIZE parameter, known as the DEFAULT cache size, specifies the size of
the cache of standard block size (default is 48 megabytes (MB)). The system
tablespace uses the standard block size and the DEFAULT cache size.

Either the standard block size or any of the non-standard block sizes and their
associated cache sizes can be used for any of your other tablespaces. If you intend to
use multiple block sizes in your database storage design, you must specify at least
the DB_CACHE_SIZE and one DB_nK_CACHE_SIZE parameter value. You must
specify all sub-caches for all the other non-standard block sizes that you intend to
use. This block size/cache sizing scheme lets you use up to five different
non-standard block sizes for your tablespaces and lets you specify respective cache
sizes for each corresponding block size. For example, you can size your system
tablespace to the normal 8 KB standard block size with a default DB_CACHE_SIZE
of 48 MB or whatever size you want to specify. Then you can use any of the block
sizes of 2 KB, 4 KB, 8 KB, 16 KB, or the maximum 32 KB for storing your interMedia
LOB data in appropriate block-sized tablespaces and respective caches to achieve
optimal LOB storage and retrieval performance.

Because the DB_BLOCK_SIZE parameter value can be changed only by re-creating
the database, the value for this parameter must be chosen carefully and remain
unchanged for the life of the database. See the next section "DB_BLOCK_SIZE" for
more information about this parameter.

The following sections describe these and some related initialization parameters
and their importance to interMedia performance.

DB_BLOCK_SIZE
The DB_BLOCK_SIZE parameter is the size in bytes of database blocks
(2048-32768). Oracle manages the storage space in the data files of a database in
units called data blocks. The data block is the smallest unit of I/O operation used by
a database; this value should be a multiple of the operating system’s block size
within the maximum (port-specific) limit to avoid unnecessary I/O operations. This
parameter value is set for each database from the DB_BLOCK_SIZE parameter
value in the initialization parameter file when you create the database. This value
cannot be changed unless you create the database again.

The size of a database block determines how many rows of data Oracle can store in
a single database page. The size of an average row is one piece of data that a DBA

Setting Database Initialization Parameters

Tuning Tips for the DBA 8-5

can use to determine the correct database block size. interMedia objects with
instantiated LOB locators range in size from 175 bytes for ORDImage to 260 bytes
for ORDDoc, ORDAudio, and ORDVideo. This figure does not include the size of
the media data. (The difference in row sizes between instantiated image and audio
and video data is that audio and video data contain a Comments attribute that is
about 85 bytes in size to hold the LOB locator.)

If LOB data is less than 4000 bytes, then it can be stored inline or on the same
database page as the rest of the row data. LOB data can be stored inline only when
the block size is large enough to accommodate it.

LOB data that is stored out of line, on database pages that are separate from the row
data, is accessed (read and written) by Oracle in CHUNK size pieces where
CHUNK is specified in the LOB storage clause (see Section 8.2.2 for more
information about the CHUNK option). CHUNK must be an integer multiple of
DB_BLOCK_SIZE and defaults to DB_BLOCK_SIZE if not specified. Generally, it is
more efficient for Oracle to access LOB data in large chunks, up to 32 KB. However,
when LOB data is updated, it may be versioned (for read consistency) and logged
both to the rollback segments and the redo log in CHUNK size pieces. If updates to
LOB data are frequent then it may be more efficient space wise to manipulate
smaller chunks of LOB data, especially when the granularity of the update is much
less than 32 KB.

The preceding discussion is meant to highlight the differences between the
initialization parameter DB_BLOCK_SIZE and the LOB storage parameter CHUNK.
Each parameter controls different aspects of the database design, and though
related, they should not be automatically equated.

Tuning Memory Allocation
Allocating memory to database structures and proper sizing of these structures can
greatly improve database performance when working with LOB data. See Oracle
Database Performance Tuning Guide for a comprehensive, in-depth presentation of
this subject, including understanding memory allocation issues as well as detecting
and solving memory allocation problems. The following sections describe a few of
the important initialization parameters specifically useful for optimizing LOB
performance relative to tuning memory allocation.

DB_CACHE_SIZE
The DB_CACHE_SIZE parameter specifies the size of the DEFAULT buffer pool for
buffers in bytes. This value is the database buffer value that is displayed when you
issue a SQL SHOW SGA statement. Because you cannot change the value of the
DB_BLOCK_SIZE parameter without re-creating the database, change the value of

Setting Database Initialization Parameters

8-6 Oracle interMedia User’s Guide

the DB_CACHE_SIZE parameter to control the size of the database buffer cache
using the ALTER SYSTEM...SET clause... statement. The DB_CACHE_SIZE
parameter is dynamic.

BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE - Tuning Multiple
Buffer Pools Using the Standard Block Size
To greatly reduce I/O operations while reading and processing LOB data, tune the
database instance by partitioning your buffer cache into multiple buffer pools for
the tables containing the LOB columns.

By default, all tables are assigned to the DEFAULT pool. Tune this main cache buffer
using the DB_CACHE_SIZE initialization parameter and assign the appropriate
tables to the keep pool using the DB_KEEP_CACHE_SIZE initialization parameter
and to the recycle pool using the DB_RECYCLE_CACHE_SIZE initialization
parameter.

The keep pool contains buffers that always stay in memory and is intended for
frequently accessed tables that contain important data. The recycle pool contains
buffers that can always be recycled and is intended for infrequently accessed tables
that contain much less important data. The size of the main buffer cache
(DEFAULT) is calculated from the value specified for the DB_CACHE_SIZE
parameter minus the values specified for the DB_KEEP_CACHE_SIZE and DB_
RECYCLE_CACHE_SIZE parameters. Tables are assigned to respective buffer pools
(KEEP, RECYCLE, DEFAULT) using the STORAGE (buffer_pool) clause of the
CREATE or ALTER TABLE statement. Determine what tables you want allocated to
which of these memory buffers and the ideal size of each buffer when you
implement your memory allocation design. These parameter values can be changed
only in the initialization parameter file and take effect only after stopping and
restarting the database.

When working with very large images, set the DB_CACHE_SIZE parameter to a
large number for your Oracle instance. For example, to cache a 40 MB image, set
this parameter to a value of 48 MB. Some general guidelines to consider when
working with LOB data are:

Note: Multiple buffer pools are available only for the standard
block size. Non-standard block size caches have a single DEFAULT
pool. Therefore, the information presented in this section applies to
only the scenario in which you are using only the standard block
size.

Setting Database Initialization Parameters

Tuning Tips for the DBA 8-7

� You should have enough buffers to hold the object, regardless of table LOB
logging and cache settings. See Section 8.2 for more information.

� When using log files you should make the log files larger, otherwise, more time
is spent waiting for log switches. See Section 8.2 for more information.

� If the same BLOB is to be accessed frequently, set the table LOB CACHE
parameter to TRUE. See Section 8.2 for more information.

� Use a large page size (DB_BLOCK_SIZE) if the database is going to contain
primarily large objects.

See Oracle Database Performance Tuning Guide for more information about tuning
multiple buffer pools.

SHARED_POOL_SIZE
The SHARED_POOL_SIZE parameter specifies the size in bytes of the shared pool
that contains the library cache of shared SQL requests, shared cursors, stored
procedures, the dictionary cache, and control structures, Parallel Execution message
buffers, and other cache structures specific to a particular instance configuration.
This parameter value is dynamic. This parameter represents most of the variable
size value that is displayed when you issue a SQL SHOW SGA statement.
Specifying a large value improves performance in multi-user systems. A large value
for example, accommodates the loading and execution of interMedia PL/SQL
scripts and stored procedures; otherwise, execution plans are more likely to be
swapped out. A large value can also accommodate many clients connecting to the
server with each client connection using some shared pool space. However, when
the shared pool is full, the database is unable to accept additional client connections.

SHARED_POOL_RESERVED_SIZE
The SHARED_POOL_RESERVED_SIZE parameter specifies the shared pool space
that is reserved for large contiguous requests for shared pool memory. This static
parameter should be set high enough to avoid performance degradation in the
shared pool from situations where pool fragmentation forces Oracle to search for
free chunks of unused pool to satisfy the current request.

Ideally, this parameter should be large enough to satisfy any request scanning for
memory on the reserved list without flushing objects from the shared pool.

The default value is 5% of the shared pool size, while the maximum value is 50% of
the shared pool size. For interMedia applications, a value at or close to the
maximum can provide performance benefits.

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

8-8 Oracle interMedia User’s Guide

LOG_BUFFER
The LOG_BUFFER parameter specifies the amount of memory, in bytes, used for
buffering redo entries to the redo log file. Redo entries are written to the on disk log
file when a transaction commits or when the LOG_BUFFER is full and space must
be made available for new redo entries. Large values for LOG_BUFFER can reduce
the number of redo log file I/O operations by allowing more data to be flushed per
write operation. Large values can also eliminate the waits that occur when redo
entries are flushed to make space in the log buffer pool. interMedia applications that
have buffering enabled for the LOB data can generate large amounts of redo data
when media is inserted or updated. These applications would benefit from a larger
LOG_BUFFER size. This is a static parameter.

8.2 Issues to Consider in Creating Tables with Column Objects
Containing BLOBs

The following information provides some strategies to consider when you create
tables with interMedia column objects containing BLOBs. You can explicitly indicate
the tablespace and storage characteristics for each BLOB. These topics are discussed
in more detail and with examples in Oracle Database Application Developer’s Guide -
Large Objects. The information that follows is excerpted from Chapter 2 and is
briefly presented to give you an overview of the topic. Refer to Oracle Database
Application Developer’s Guide - Large Objects for more information.

8.2.1 Initializing Internal Column Objects Containing BLOBs to NULL or EMPTY
An interMedia column object containing a LOB value set to NULL has no locator. By
contrast, an empty LOB stored in a table is a LOB of zero length that has a locator.
So, if you select from an empty LOB column or attribute, you get back a locator,
which you can use to fill the LOB with data using the OCI or DBMS_LOB routines
or ORDxxx.import method.

Setting interMedia Column Objects Containing a BLOB to NULL
You may want to set the BLOB value to NULL upon inserting the row whenever you
do not have the BLOB data at the time of the INSERT operation. In this case, you
can issue a SELECT statement at some later time to obtain a count of the number of
rows in which the value of the BLOB is NULL, and determine how many rows must
be populated with BLOB data for that particular column object.

However, the drawback to this approach is that you must then issue a SQL
UPDATE statement to reset the NULL BLOB column to EMPTY_BLOB(). The point

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

Tuning Tips for the DBA 8-9

is that you cannot call the OCI or the PL/SQL DBMS_LOB functions on a BLOB that
is NULL. These functions work only with a locator, and if the BLOB column is NULL,
there is no locator in the row.

Setting an interMedia Column Object Containing a BLOB to EMPTY
If you do not want to set an interMedia column object containing a BLOB to NULL,
another option is to set the BLOB value to EMPTY by using the EMPTY_BLOB()
function in the INSERT statement. Even better, set the BLOB value to EMPTY by
using the EMPTY_BLOB() function in the INSERT statement, and use the
RETURNING clause (thereby eliminating a round-trip that is necessary for the
subsequent SELECT statement). Then, immediately call OCI, the import method, or
the PL/SQL DBMS_LOB functions to fill the LOB with data. See Oracle Database
Application Developer’s Guide - Large Objects for an example.

8.2.2 Specifying Tablespace and Storage Characteristics for Column Objects
Containing BLOBs

When you create tables and define interMedia column objects containing BLOBs,
you can explicitly indicate the tablespace and storage characteristics for each BLOB.
The following guidelines can help you fine-tune BLOB storage.

Tablespace
The best performance for interMedia column objects containing BLOBs can often be
achieved by specifying storage for BLOBs in a tablespace that is different from the
one used for the table that contains the interMedia object with a BLOB. See the
ENABLE | DISABLE STORAGE IN ROW clause near the end of this section for
further considerations on storing BLOB data inline or out of line. If many different
LOBs are to be accessed frequently, it may also be useful to specify a separate
tablespace for each BLOB or attribute in order to reduce device contention.
Preallocate the tablespace to the required allocation size to avoid allocation when
inserting BLOB data. See Oracle Database SQL Reference for examples, specifically the
CREATE TABLE statement and the LOB column example. See Example 8–1.

Example 8–1 assumes that you have already issued a CONNECT statement as a
suitably privileged user. This example creates a separate tablespace, called
MONTANA, that is used to store the interMedia column object containing BLOB
data for the image column. Ideally, this tablespace would be located on its own
high-speed storage device to reduce contention. Other image attributes and the
imageID column are stored in the default tablespace. The initial allocation allows
100 MB of storage space. The images to be inserted are about 20 KB in size. To

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

8-10 Oracle interMedia User’s Guide

improve insert performance, NOCACHE and NOLOGGING options are specified
along with a CHUNK size of 24 KB.

Example 8–1 Create a Separate Tablespace to Store an interMedia Column Object
Containing LOB Data

SVRMGR> CREATE TABLESPACE MONTANA DATAFILE ’montana.tbs’ SIZE 400M;
Statement processed.
SVRMGR> CREATE TABLE images (imageID INTEGER ,image ORDSYS.ORDImage)
 LOB (image.source.localData) STORE AS
 (
 TABLESPACE MONTANA
 STORAGE (
 INITIAL 100M
 NEXT 100M
)
 CHUNK 24K
 NOCACHE NOLOGGING
);

LOB Index and LOB_index_clause
The LOB index is an internal structure that is strongly associated with the LOB
storage.

PCTVERSION Option
When an interMedia column object containing a BLOB is modified, a new version of
the BLOB page is made in order to support consistent reading of prior versions of
the BLOB value.

PCTVERSION is the percent of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to
occupy more than the PCTVERSION amount of used LOB space, Oracle tries to
reclaim the old versions and reuses them. In other words, PCTVERSION is the
percentage of used LOB data blocks that is available for versions of old LOB data.

Note: The LOB_index_clause in the CREATE TABLE statement is
deprecated beginning with release 8.1.5. Oracle generates an index
for each LOB column and beginning with release 8.1.5, LOB indexes
are system named and system managed. For information on how
Oracle manages LOB indexes in tables migrated from earlier
releases, see Oracle Database Upgrade Guide.

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

Tuning Tips for the DBA 8-11

One way of approximating PCTVERSION is to set PCTVERSION = (% of LOBs
updated at any given point in time) times (% of each LOB updated whenever a LOB
is updated) times (% of LOBs being read at any given point in time). Allow for a
percentage of LOB storage space to be used as old versions of LOB pages so users
can get consistent read results of data that has been updated.

Setting PCTVERSION to twice the default allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reading of
LOBs, it is useful to keep more old versions of LOB pages around. LOB storage may
increase if you increase the PCTVERSION value because Oracle will not be reusing
free pages aggressively.

The more infrequent and smaller the LOB updates are, the less space that needs to
be reserved for old versions of LOB data. If existing LOBs are known to be
read-only, you could safely set PCTVERSION to 0% because there would never be
any pages needed for old versions of data.

CACHE or NOCACHE Option
Use the CACHE option on interMedia column objects containing BLOBs if the same
BLOB data is to be accessed frequently. The CACHE option puts the data into the
database buffer and makes it accessible for subsequent read operations. If you
specify CACHE, then LOGGING is used; you cannot have CACHE and
NOLOGGING.

Use the NOCACHE option (the default) if BLOB data is to be read only once or
infrequently, or if you have too much BLOB data to cache, or if you are reading lots
of images but none more frequently than others.

Use the CACHE READS option if the BLOB data is to be brought into the buffer
cache only during frequent read operations and not during write operations.

See Example 8–1.

LOGGING or NOLOGGING Option
An example of when NOLOGGING is useful is with bulk loading or inserting of
data. See Example 8–1. For instance, when loading data into the interMedia column
objects containing BLOBs, if you do not care about redo logging and can just start
the load over if it fails, set the BLOB data segment storage characteristics to
NOCACHE NOLOGGING. This setting gives good performance for the initial
loading of data. Once you have successfully completed loading the data, you can
use the ALTER TABLE statement to modify the BLOB storage characteristics for the
BLOB data segment to the desired storage characteristics for normal BLOB
operations, such as CACHE or NOCACHE LOGGING.

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

8-12 Oracle interMedia User’s Guide

CHUNK Option
Set the CHUNK option to the number of bytes of interMedia column objects
containing BLOB data that are to be accessed at one time. That is, the number of
bytes that are to be read or written using the object.readFromSource() or
object.writeToSource() interMedia audio and video object methods or call,
OCILobRead(), OCILobWrite(), DBMS_LOB.READ(), or DBMS_LOB.WRITE()
during one access of the BLOB value. Note that the default value for the CHUNK
option is 1 Oracle block and does not vary across systems. If only 1 block of BLOB
data is accessed at a time, set the CHUNK option to the size of 1 block. For example,
if the database block size is 2 KB, then set the CHUNK option to 2 KB.

Set the CHUNK option to the next largest integer multiple of database block size
that is slightly larger than the audio, image, or video data size being inserted.
Specifying a slightly larger CHUNK option allows for some variation in the actual
sizes of the multimedia data and ensures that the benefit is realized. For large-sized
media data, a general rule is to set the CHUNK option as large as possible; the
maximum is 32 KB. For example, if the database block size is 2 KB or 4 KB or 8 KB
and the image data is mostly 21 KB in size, set the CHUNK option to 24 KB. See
Example 8–1.

INITIAL and NEXT Parameters
If you explicitly specify the storage characteristics for the interMedia column object
containing a BLOB, make sure that the INITIAL and NEXT parameters for the
BLOB data segment storage are set to a size that is larger than the CHUNK size. For
example, if the database block size is 2 KB and you specify a CHUNK value of 8 KB,
make sure that the INITIAL and NEXT parameters are at least 8 KB, preferably
higher (for example, at least 16 KB).

For LOB storage, Oracle automatically builds and maintains a LOB index that
allows quick access to any chunk and thus any portion of a LOB. The LOB index
gets the same storage extent parameter values as its LOBs. Consequently, to
optimize LOB storage space, you should calculate the size of your LOB index size as
well as the total storage space needed to store the media data including its
overhead.

Assume that N files composed of M total bytes of media data are to be stored and
that the value C represents the size of the LOB CHUNK storage parameter. To
calculate the total number of bytes Y needed to store the media data:

Y = M + (N*C)

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

Tuning Tips for the DBA 8-13

The expression (N*C) accounts for the worst case in which the last CHUNK of each
LOB contains a single byte. Therefore, an extra CHUNK is allowed for each file that
is stored. On average, the last CHUNK will be half full.

To calculate the total number of bytes X to store the LOB index:

X = CEIL(M/C) * 32

The value 32 indicates that the LOB index requires roughly 32 bytes for each
CHUNK that is stored.

The total storage space needed for the media data plus its LOB index is then X + Y.

The following two examples describe these calculations in detail.

Example 1: Assume you have 500 video clips comprising a total size of 250 MB with
an average size is 512 KB. Assume a LOB CHUNK size of 32768 bytes. The total
space needed for the media data is 250 MB + (5000*32768) or 266 MB. The overhead
is 16 MB or about 6.5% storage overhead. The total space needed to store the LOB
index is CEIL(250 MB/32768) * 32 or 244 KB. The total space needed to store the
media data plus its LOB index is then about 266.6 MB.

SQL> SELECT 250000000+(500*32768)+CEIL(250000000/32768)*32 FROM dual;

250000000+(500*32768)+CEIL(250000000/32768)*32
--
 266628160

The following table definition could be used to store this amount of data:

CREATE TABLE video_items
(
 video_id NUMBER,
 video_clip ORDSYS.ORDVideo
)
-- storage parameters for table in general
TABLESPACE video1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the video content
LOB(video_clip.source.localdata) STORE AS
 (TABLESPACE video2 STORAGE (INITIAL 260K NEXT 270M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 32768);

Example 2: Assume you have 5000 images comprising a total size of 274 MB with
an average size of 56 KB. Because the average size of the images are smaller than the
video clips in the preceding example, it is more space efficient to choose a smaller
CHUNK size, for example 8192 bytes to store the data in the LOB. The total space
needed for the media data is 274 MB + (5000*8192) or 314 MB. The overhead is

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

8-14 Oracle interMedia User’s Guide

about 40 MB or about 15% storage overhead. The total space needed to store the
LOB index is CEIL(274 MB/8192) * 32 or 1.05 MB. The total space needed to store
the media data plus its LOB index is then about 316 MB.

SQL> SELECT 274000000+(5000*8192)+CEIL(274000000/8192)*32 FROM dual;

274000000+(5000*8192)+CEIL(274000000/8192)*32

 316030336

The following table definition could be used to store this amount of data:

CREATE TABLE image_items
(
 image_id NUMBER,
 image ORDSYS.ORDImage
)
-- storage parameters for table in general
TABLESPACE image1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the image content
LOB(image.source.localdata) STORE AS
 (TABLESPACE image2 STORAGE (INITIAL 1200K NEXT 320M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 8192);

When working with very large BLOBs on the order of 1 gigabyte in size, choose a
proportionately large INITIAL and NEXT extent parameter size, for example an
INITIAL value slightly larger than your calculated LOB index size and a NEXT
value of 100 MB, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment; otherwise, if the
number of extents is large, the rollback segment can become saturated.

PCTINCREASE Parameter
Set the PCTINCREASE parameter value to 0 to make the growth of new extent sizes
more manageable. When working with very large BLOBs and the BLOB is being
filled up piece by piece in a tablespace, numerous new extents are created in the
process. If the extent sizes keep increasing by the default value of 50% each time one
is created, extents will become unmanageably big and eventually will waste space
in the tablespace.

MAXEXTENTS Parameter
Set the MAXEXTENTS parameter value to suit the projected size of the BLOB or set
it to UNLIMITED for safety. That is, when MAXEXTENTS is set to UNLIMITED,
extents will be allocated automatically as needed and this minimizes fragmentation.

Issues to Consider in Creating Tables with Column Objects Containing BLOBs

Tuning Tips for the DBA 8-15

ENABLE | DISABLE STORAGE IN ROW Clause
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether
the interMedia column objects containing a BLOB should be stored inline (that is, in
the row) or out of line. You may not alter this specification once you have made it: if
you ENABLE STORAGE IN ROW, you cannot alter it to DISABLE STORAGE IN
ROW or the reverse. The default is ENABLE STORAGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum
VARCHAR size (4000). Note that this includes the control information as well as the
LOB value. If the user indicates that the LOB should be stored in the row, once the
LOB value and control information are larger than 4000 bytes, the LOB value is
automatically moved out of the row.

This suggests the following guideline: If the interMedia column object containing a
BLOB is small (that is, less than 4000 bytes), then storing the BLOB data out of line
will decrease performance. However, storing the BLOB in the row increases the size
of the row. This has a detrimental impact on performance if you are doing a lot of
base table processing, such as full table scans, multiple row accesses (range scans),
or doing many UPDATE or SELECT statements to columns other than the
interMedia column objects containing BLOBs. If you do not expect the BLOB data to
be less than 4000 bytes, that is, if all BLOBs are big, then the default is the best
choice because:

� The LOB data is automatically moved out of line once it gets bigger than 4000
bytes.

� Performance can be better if the BLOB data is small (less than 4000 bytes
including control information) and is stored inline because the LOB locator and
the BLOB data can be retrieved in the same buffer, thus reducing I/O
operations.

8.2.3 Segment Attributes and Physical Attributes
The following physical attribute is important for optimum storage of BLOB data in
the data block and consequently achieving optimum retrieval performance.

PCTFREE Parameter
The PCTFREE parameter specifies the percentage of space in each data block of the
table or partition reserved for future updates to each row of the table. Setting this
parameter to an appropriate value is useful for efficient inline storage of multimedia
data. The default value is 10%.

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

8-16 Oracle interMedia User’s Guide

Set this parameter to a high enough value to avoid row chaining or row migration.
Because the INSERT statement for BLOBs requires an EMPTY_BLOB column object
initialization followed by an UPDATE statement to load the BLOB data into the
data block, you must set the PCTFREE parameter value to a proper value especially
if the BLOB data will be stored inline. For example, row chaining can result after a
row INSERT operation when insufficient space is reserved in the existing data block
to store the entire row, including the inline BLOB data in the subsequent UPDATE
operation. As a result, the row would be broken into multiple pieces and each piece
stored in a separate data block. Consequently, more I/O operations would be
needed to retrieve the entire row, including the BLOB data, resulting in poorer
performance. Row migration can also result if there is insufficient space in the data
block to store the entire row during the initial INSERT operation, and thus the row
is stored in another data block.

To make best use of the PCTFREE parameter, determine the average size of the
BLOB data being stored inline in each row, and then determine the entire row size,
including the inline BLOB data. Set the PCTFREE parameter value to allow for
sufficient free space to store an entire row of data in the data block. For example, if
you have a large number of thumbnail images that are about 3 KB in size, and each
row is about 3.8 KB in size, and the database block size is 8 KB, set the value of
PCTFREE to a value that ensures that two complete rows can be stored in each data
block in the initial INSERT operation. This approach initially uses 1.6 KB of space
(0.8 KB/row *2 rows) leaving 6.4 KB of free space. Because two rows initially use
20% of the data block and 95% after an UPDATE operation and adding a third row
would initially use 30% of the data block causing a chain to occur when the third
row is updated, set the PCTRFEE parameter value to 75. This setting permits a
maximum of two rows to be stored per data block and leaves sufficient space to
update each row with its 3 KB thumbnail image leaving about 0.4 KB free space
minus overhead per data block.

8.3 Improving Multimedia Data INSERT Performance in Objects
Containing LOBs

There are a number of bulk loading methods available for loading FILE data into
interMedia objects containing BLOBs. These include:

� interMedia import() method in a PL/SQL stored procedure

� SQL*Loader (conventional path load and direct path load)

� OCILobLoadFromFile() relational function

� DBMS_LOB.LOADFROMFILE() procedure in the DBMS_LOB package

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

Tuning Tips for the DBA 8-17

� DBMS_LOB.LOADBLOBFROMFILE() procedure in the DBMS_LOB package

� Java loadDataFromFile() or loadDataFromInputStream() methods of Oracle
interMedia Java Classes to load media data from a client file

Using interMedia import() Method in a PL/SQL Stored Procedure
Example 8–2 shows the contents of the load1.bat file, which invokes SQL*Plus
and runs the t1.sql procedure (Example 8–3). The db_block_size for this schema
is 8 KB bytes.

Example 8–2 Show the load1.bat File

sqlplus scott/tiger@intertcp @t1

Example 8–3 shows the contents of the t1.sql file. This procedure:

� Creates two tablespaces.

� Creates the image_items table and defines the physical properties of the table,
specifically the physical attributes and LOB storage attributes.

� Partitions the table storage into each tablespace by range using the image_id
value.

� Creates the load_image stored procedure that:

– Declares a variable nxtseq defined as the ROWID data type.

– Inserts a row into the image_items table and uses the INSERT
RETURNING ROWID statement to return the ROWID value for fastest
access to the row for loading the image BLOB data into the object columns
of each row using the import() method.

– Sets the image attribute properties automatically (by means of the import
operation) for each loaded image (note that thumbnail images are stored
inline, and regular images are stored out of line).

– Commits the update operation.

Example 8–3 Show the t1.sql Procedure

spool t1.log
set echo on
connect sys/change_on_install as sysdba

create tablespace Image_h default storage (initial 30m next 400m pctincrease 0)
 datafile ’h:\IMPB\Image_h.DBF’

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

8-18 Oracle interMedia User’s Guide

 size 2501M reuse;

create tablespace Image_i default storage (initial 30m next 400m pctincrease 0)
 datafile ’i:\IMPB\Image_i.DBF’
 size 2501M reuse;

connect scott/tiger

drop table image_items;

create table image_items(
 image_id number,-- constraint pl_rm primary key,
 image_title varchar2(128),
 image_artist varchar2(128),
 image_publisher varchar2(128),
 image_description varchar2(1000),
 image_price number(6,2),
 image_file_path varchar2(128),
 image_thumb_path varchar2(128),
 image_thumb ordsys.ordimage,
 image_clip ordsys.ordimage
)
--
-- physical properties of table
--
 -- physical attributes clause
 pctfree 35 storage (initial 30M next 400M pctincrease 0)

 -- LOB storage clause (applies to LOB column)
 LOB (image_clip.source.localdata)
 store as (disable storage in row nocache nologging chunk 32768)
--
-- table properties (applies to whole table)
--
Partition by range (image_id)
(
Partition Part1 values less than (110001)
Tablespace image_h,
Partition Part2 values less than (maxvalue)
Tablespace image_i
);

connect scott/tiger;

create or replace procedure load_image

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

Tuning Tips for the DBA 8-19

(
 image_id number,
 image_title varchar2,
 image_artist varchar2,
 image_publisher varchar2,
 image_description varchar2,
 image_price number,
 image_file_path varchar2,
 image_thumb_path varchar2,
 thumb_dir varchar2,
 content_dir varchar2,
 file_name1 varchar2,
 file_name2 varchar2)
as
 ctx raw(4000) := NULL;
 obj1 ORDSYS.ORDIMAGE;
 obj2 ORDSYS.ORDIMAGE;
 nxtseq rowid;

Begin
 Insert into image_items(
 image_id,
 image_title,
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 image_thumb,
 image_clip)
 values (
 image_id,
 image_title,
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 ORDSYS.ORDIMAGE.init(’FILE’,upper(thumb_dir),file_name1),
 ORDSYS.ORDIMAGE.init(’FILE’,upper(content_dir),file_name2))
 returning rowid into nxtseq;

-- load up the thumbnail image

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

8-20 Oracle interMedia User’s Guide

 select t.image_thumb,
t.image_clip
 into obj1, obj2
 from image_items t
 where t.rowid = nxtseq for update;
 obj1.import(ctx); -- import sets properties
 obj2.import(ctx);
 Update image_items I
 set I.image_thumb = obj1,
 I.image_clip = obj2
 where i.rowid = nxtseq;

 Commit;
End;
/
spool off
set echo off

Example 8–4 shows the contents of the load1.sql file. The image load directories
are created and specified for each tablespace and user scott is granted read
privilege on each load directory. The stored procedure named load_image is then
executed, which loads values for each column row. By partitioning the data into
different tablespaces, each partition can be loaded in a parallel data load operation.

Example 8–4 Show the load1.sql File that Executes the load_image Stored Procedure

connect sys/change_on_install as sysdba
drop directory IMAGE_H;
drop directory IMAGE_I;
create directory IMAGE_H as ’h:\image_files’;
create directory IMAGE_I as ’i:\image_files’;
grant read on directory IMAGE_H to scott;
grant read on directory IMAGE_I to scott;
EXEC Load_image(100001,’T_100001’,1916,’Publisher’,’Visit our WEB page’
,8.71,’image_I\T_100001.jpg’,’image_I\T_100001_thumb1.jpg’,’image_I’,’image_
I’,’T_100001_thumb1.jpg’,’T_100001.jpg’);
EXEC Load_image(100002,’T_100002’,2050,’Publisher’,’Visit our WEB page’
,9.61,’image_I\T_100002.jpg’,’image_I\T_100002_thumb10.jpg’,’image_I’,’image_
I’,’T_100002_thumb10.jpg’,’T_100002.jpg’);
exit

Using SQL*Loader
SQL*Loader provides two methods for loading data:

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

Tuning Tips for the DBA 8-21

� Conventional Path Load

A conventional path load (the default) uses the SQL INSERT statement and a
bind array buffer to load data into database tables. When SQL*Loader performs
a conventional path load, it competes equally with all other processes for buffer
resources. This can slow the load significantly. Extra overhead is added as SQL
statements are generated, passed to Oracle, and executed. Oracle looks for
partially filled blocks and attempts to fill them on each insert operation.
Although appropriate during normal use, this can slow bulk loads dramatically.
Use conventional path load if you encounter certain restrictions on direct path
loads.

� Direct Path Load

A direct path load eliminates much of the database overhead by formatting
Oracle data blocks and writing the data blocks directly to the database files. A
direct load does not compete with other users for database resources, so it can
usually load data at near disk speed. In addition, if the asynchronous I/O
operations feature is available on your host platform, multiple buffers are used
for the formatted data blocks to further increase load performance.

See Oracle Database Utilities for a complete list of restrictions for using either the
conventional path load or direct path load method for loading data using
SQL*Loader. See Oracle Database Application Developer’s Guide - Fundamentals for
more information on LOBs.

Using SQL*Loader to Load Multimedia Data into Oracle Database Using
interMedia Column Objects
Example 8–5 shows the use of the control file to load one ORDVideo object per file
into a table named JUKE that has three columns, with the last one being a column
object. Each LOB file is the source of a single LOB and follows the column object
name with the LOBFILE data type specifications. Two LOB files are loaded in this
example.

Example 8–5 Show the Control File for Loading Video Data

LOAD DATA
INFILE *
INTO TABLE JUKE
REPLACE
FIELDS TERMINATED BY ’,’
(id integer external,
 file_name char(1000),
 mediacontent column object

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

8-22 Oracle interMedia User’s Guide

 (
 source column object
 (
1) localData_fname FILLER CHAR(128),

 2) localData LOBFILE (mediacontent.source.localData_fname) terminated by EOF

)

)
)

BEGINDATA
1,slynne,slynne.rm
2,Commodores,Commodores - Brick House.rm

Notes:

1. The FILLER field is mapped to the 128-byte long data field which is read using
the SQL*Loader CHAR data type.

2. SQL*Loader gets the LOB file name from the localData_fname FILLER field. It
then loads the data from the LOB file (using the BLOB data type) from its
beginning to the EOF character, whichever is reached first. Note that if no
existing LOB file is specified, the localData field is initialized to empty.

Using the OCILobLoadFromFile() Relational Function
Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to manipulate data and schemas in a database using a host
programming language, such as C.

The OCI relational function, OCILobLoadFromFile(), loads or copies all or a
portion of a file into an interMedia column object containing a specified BLOB. The
data is copied from the source file to the destination interMedia column objects
containing a BLOB. When binary data is loaded into an interMedia column object
containing a BLOB, no character set conversions are performed. Therefore, the file
data must already be in the same character set as the BLOB in the database. No
error checking is performed to verify this.

See Oracle Call Interface Programmer’s Guide for more information.

Using the DBMS_LOB.LOADFROMFILE() Procedure in the DBMS_LOB
Package
The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs, and temporary LOBs. You can use the DBMS_LOB package for
access and manipulation of specific parts of an interMedia column object containing

Improving Multimedia Data INSERT Performance in Objects Containing LOBs

Tuning Tips for the DBA 8-23

a BLOB, as well as complete BLOBs. DBMS_LOB can read as well as modify BLOBs,
CLOBs, and NCLOBs, and provides read-only operations for BFILEs. The majority
of the LOB operations are provided by this package.

The DBMS_LOB.LOADFROMFILE() procedure copies all, or part of, a
source-external LOB (BFILE) to a destination internal LOB.

You can specify the offsets for both the source LOB (BFILE) and destination
interMedia column object containing the BLOB and the number of bytes to copy
from the source BFILE. The amount and src_offset, because they refer to the BFILE,
are in terms of bytes, and the destination offset is either in bytes or characters for
BLOBs and CLOBs respectively.

The input BFILE must have been opened prior to using this procedure. No
character-set conversions are performed implicitly when binary BFILE data is
loaded into a CLOB. The BFILE data must already be in the same character set as
the CLOB in the database. No error checking is performed to verify this. See PL/SQL
Packages and Types Reference for more information.

Using the DBMS_LOB.LOADBLOBFROMFILE() Procedure in the DBMS_
LOB Package
The DBMS_LOB.LOADBLOBFROMFILE() procedure loads a persistent or
temporary BLOB instance with data from a BFILE. This procedure achieves the
same result as using DBMS_LOB.LOADFROMFILE, but returns the new offset in
bytes in the destination BLOB right after the end of the write operation, which is
also where the next write operation should begin and the offset in bytes in the
source BFILE right after the end of the read operation, which is also where the next
read operation should begin.

To use this procedure, you can specify the offsets for both the source and
destination LOBs, and the number of bytes to copy from the source BFILE. The
value you pass for the amount parameter to the DBMS_
LOB.LOADBLOBFROMFILE function must be either an amount less than or equal
to the actual size (in bytes) of the BFILE you are loading or the maximum allowable
LOB size: DBMS_LOB.LOBMAXSIZE. Passing this latter value causes the function
to load the entire BFILE, which is a useful technique for loading the entire BFILE
without introspecting the size of the BFILE.

To use this procedure, the target BLOB instance and the source BFILE must both
exist and the BFILE must be opened and later closed after calling this procedure.

See PL/SQL Packages and Types Reference for more information.

Loading Multimedia Data Using a WebDAV-Compliant Client Application

8-24 Oracle interMedia User’s Guide

Using Java loadDataFrom...() Methods to Load Media Data from a Client
File
From the Java client, you can use the Java loadDataFromByteArray(),
loadDataFromFile(), or loadDataFromInputStream() methods of Oracle interMedia
Java Classes to load media data from a given file into a server-side media object
designated by the corresponding media locator parameters. You must specify the
name of the file from which to load the data and the method returns true if loading
is successful, false otherwise. See Oracle interMedia Java Classes Reference for more
information.

8.4 Loading Multimedia Data Using a WebDAV-Compliant Client
Application

You can also use a WebDAV-compliant client application, such as Adobe GoLive,
Microsoft’s Web Folders, and other available software products to individually store
and retrieve multimedia objects, such as audio, video, and image data, in a
database. Using WebDAV, client applications have read/write access to multimedia
content in the database.

To configure WebDAV access to multimedia data, using Oracle HTTP Server and
the mod_oradav component (OraDAV), the necessary software components can be
downloaded from the Oracle interMedia Software section of the Oracle Technology
Network Web site

http://otn.oracle.com/products/intermedia

8.5 Transferring Multimedia Data Using Oracle Data Pump
Oracle Data Pump ("Data Pump") enables very high-speed movement of data and
metadata from one database to another using the Data Pump Export and Data
Pump Import utilities. Data Pump enables you to specify whether or not a job
should move a subset of the data and metadata. This is done using data filters and
metadata filters, which are implemented through Export and Import parameters
using the Metadata API and the Data Pump API. The Metadata API uses the
procedures provided in the DBMS_METADATA PL/SQL package and the Data
Pump API uses the procedures provided in the DBMS_DATAPUMP PL/SQL
package. See Oracle Database Concepts, Oracle Database Utilities, and PL/SQL Packages
and Types Reference for more information.

Reading Data from an ORDVideo Object Using the readFromSource() Method in a PL/SQL Script

Tuning Tips for the DBA 8-25

8.6 Reading Data from an ORDVideo Object Using the
readFromSource() Method in a PL/SQL Script

Example 8–6 shows the contents of the readvideo1.sql file. This procedure reads
data from an ORDVideo object with the video stored in a BLOB in the database
using the readFromSource() method in a PL/SQL script until no more data is
found. The procedure then returns a NO_DATA_FOUND exception when the read
operation is complete and displays an "End of data" message.

Example 8–6 Read Data from an ORDVideo Column Object Using the interMedia
readFromSource() Method in a PL/SQL Stored Procedure

create or replace procedure readVideo1(i integer) as

 obj ORDSYS.ORDVideo;
 buffer RAW (32767);
 numbytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select mediacontent into obj from juke where id = 100001;

 LOOP
 obj.readFromSource(ctx,startpos,numbytes,buffer);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 DBMS_OUTPUT.PUT_LINE(’start position :’|| startpos);

END;

Note: This example can be modified to work with the ORDAudio,
ORDDoc, and ORDImage objects too.

Getting the Best Performance Results

8-26 Oracle interMedia User’s Guide

/
show errors

8.7 Getting the Best Performance Results
The following guidelines can be used to help you achieve the best performance
when working with interMedia objects:

� Because interMedia objects are big, attain the best performance by reading and
writing large CHUNKS of an interMedia object value at a time. This helps in
several respects:

– If you are accessing the interMedia object from the client side and the client
is on a different node than the server, large read/write operations reduce
network overhead.

– If you are using the NOCACHE option, each small read/write operation
incurs an I/O impact. Reading and writing large quantities of data reduces
the I/O impact.

– Writing to the interMedia object creates a new version of the interMedia
object CHUNK. Therefore, writing small amounts at a time will incur the
cost of a new version for each small write operation. If logging is on, the
CHUNK is also stored in the redo log.

� If you need to read or write small pieces of interMedia object data on the client,
use LOB buffering (see OCILobEnableBuffering(), OCILobDisableBuffering(),
OCILobFlushBuffer(), OCILobWrite(), OCILobRead() in Oracle Call Interface
Programmer’s Guide for more information.). Turn on LOB buffering before
reading or writing small pieces of interMedia object data. For more information
about LOB buffering, its advantages, guidelines for use, and usage, see Oracle
Database Application Developer's Guide - Large Objects.

� Use interMedia methods (readFromSource() and writeToSource()) for audio
and video data or OCILobWrite() and OCILobRead() with a callback for image
data so media data is streamed to and from the BLOB. Ensure that the length of
the entire write operation is set in the numBytes parameter using interMedia
methods or in the amount parameter using OCI calls on input. Whenever
possible, read and write in multiples of the LOB CHUNK size.

� Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

– Updating interMedia object data: SQL UPDATE operations, which replaces
the entire BLOB value.

Improving Multimedia LOB Data Retrieval and Update Performance

Tuning Tips for the DBA 8-27

– Copying the entire LOB data to the client, modifying the LOB data on the
client side, and copying the entire LOB data back to the database. This can
be done using OCILobRead() and OCILobWrite() with streaming.

� Commit changes frequently.

� Follow temporary LOB performance guidelines.

See Oracle Database Application Developer’s Guide - Large Objects for information
and guidelines about using temporary LOBs.

� Use interMedia column objects containing BLOBs in table partitions.

See the information about LOBs in partitioned tables in Oracle Database
Application Developer’s Guide - Large Objects and see Oracle Database SQL
Reference for examples, specifically the CREATE TABLE statement and the
Partitioned Table with LOB Columns example.

See Oracle Database Application Developer’s Guide - Large Objects for more
information.

8.8 Improving Multimedia LOB Data Retrieval and Update Performance
Once the LOB data is stored in the database, a modified strategy must be used to
improve the performance of retrieving and updating the LOB data compared to the
insertion strategy described in Section 8.3. The following guidelines should be
considered:

� Use the CACHE option on LOBs if the same LOB data is to be accessed
frequently by other users.

� Increase the number of buffers if you are going to use the CACHE option.

� Have enough buffers to hold the object. Using a small number of buffers for
large objects is not good. Set the DB_CACHE_SIZE parameter to a value that
you know will hold the object.

� Ensure that your redo log files are much larger than they usually are; otherwise,
you may be waiting for log switches, especially if you are making many
updates to your LOB data.

� Ensure that you use a larger page size (DB_BLOCK_SIZE), especially if the
majority of the data in the database is LOB data.

Improving Multimedia LOB Data Retrieval and Update Performance

8-28 Oracle interMedia User’s Guide

interMedia Examples 9-1

9
interMedia Examples

This chapter provides examples that show common operations with interMedia.
Examples are presented by audio (Section 9.1), media (Section 9.2), image
(Section 9.3), and video (Section 9.4) data groups. In addition, Section 9.5 describes
handling exceptions in PL/SQL and Java for some of the more common interMedia
errors and other types of errors.

For more examples, see the Oracle Technology Network (OTN) Web site

http://otn.oracle.com/

Select the Sample Code icon, then under Oracle Database, select Oracle interMedia
to go to the Oracle interMedia Sample Code Web page.

9.1 Audio Data Examples
Audio data examples using interMedia include the following common operations:

� Using interMedia with object views

� Using a set of scripts for creating and populating an audio table with BLOB
data stored in the database

Reference information on the methods used in these examples is presented in Oracle
interMedia Reference.

9.1.1 Using Audio Types with Object Views
This section describes how to use audio types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data --

Audio Data Examples

9-2 Oracle interMedia User’s Guide

of either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 9–1, consider the following relational table (containing no ORDAudio
objects).

Example 9–1 Define a Relational Table Containing No ORDAudio Object

create table flat (
 id NUMBER,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),
 comments CLOB,
 encoding VARCHAR2(256),
 numberOfChannels NUMBER,
 samplingRate NUMBER,
 sampleSize NUMBER,
 compressionType VARCHAR2(4000),
 audioDuration NUMBER,
);

You can create an object view on the relational table shown in Example 9–1 as
follows in Example 9–2.

Example 9–2 Define an Object View Containing an ORDAudio Object and Relational
Columns

create or replace view object_audio_v as
 select
 id,
 ORDSYS.ORDAudio(T.description,

Audio Data Examples

interMedia Examples 9-3

 ORDSYS.ORDSource(
 T.localData, T.srctype, T.srcLocation, T.srcName, T.updateTime,
 T.local),
 T.format,
 T.mimeType,
 T.comments,
 T.encoding,
 T.numberOfChannels,
 T.samplingRate,
 T.sampleSize,
 T.compressionType,
 T.audioDuration)
 from flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See Oracle Database Concepts for more information on defining,
using, and updating object views.

9.1.2 Scripts for Populating ORDAudio Objects with BLOB Data
The following scripts can be found on the Oracle Technology Network (OTN) Web
site

 http://otn.oracle.com/

These scripts are end-to-end scripts that show you how to populate an interMedia
ORDAudio object from a BLOB stored in the database. You can get to this site by
selecting the Sample Code icon, then under Oracle Database, select Oracle
interMedia to go to the Oracle interMedia Sample Code Web page.

The following set of scripts:

� Creates a tablespace for the audio data, creates a user and grants certain
privileges to this new user, creates an audio data load directory (create_
auduser.sql).

� Creates the soundtable table with two columns (id, sound), inserts a row
into the table and initializes the BLOB column with an empty BLOB, and loads
the audio data clip with a SELECT FOR UPDATE operation using a DBMS_LOB
loadfromfile call to load the data from a BFILE, (create_soundtable.sql).

� Creates the audtable table with two columns (id, audio), inserts three rows
and initializes the object column to empty with a locator and initializes the

Audio Data Examples

9-4 Oracle interMedia User’s Guide

object attributes in the object, loads the audio data with a SELECT FOR
UPDATE operation using an import() method to import the data from a BFILE
for ID=1, and sets the properties of the object (create_audtable.sql).

� Copies the BLOB audio data clip stored in the BLOB column of the
soundtable table to the ORDAudio object column of the audtable table
using an UPDATE statement for ID=3 and updates the properties of the object
and the time stamp with another UPDATE statement.

� Checks the properties of each audio data clip object, one that was imported
from a BFILE into the ORDAudio object type for ID=1, and the other that was
copied from a BLOB into the ORDAudio object type for ID=3. The attributes for
each audio data clip should be identical.

� A sixth script (setup_audschema2.sql) automates this entire process by
running each script in the required order.

To successfully load audio data, you must have an auddir directory created on
your system. This directory contains your sample audio clip file, chimes.wav.
Actually, you can copy any supported audio data clip file to the auddir directory
to run this script. Be sure to change the data file names in the script to correspond
with the name of the data file you use. This directory path and disk drive must be
specified in the CREATE DIRECTORY statement in the creat_auduser.sql file.

Script 1: Create a Tablespace and an Audio User, Grant Privileges to the
Audio User, and Create an Audio Data Load Directory (create_
auduser.sql)
This script creates the auddemo tablespace. It contains a data file named
auddemo.dbf of 200 MB in size, an initial extent of 64 KB, and a next extent of 128
KB, and turns on table logging. Next, the auddemo user is created and given
connect, resource, create library, and create directory privileges followed by creating
the audio data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

Note: You must edit the create_auduser.sql file and either
enter the SYS password in the CONNECT statement or comment
out the CONNECT statement and run this file as SYS AS SYSDBA.
You must specify the disk drive in the CREATE DIRECTORY
statement. Also, create the temp temporary tablespace if you have
not already created it, otherwise this file will not run.

Audio Data Examples

interMedia Examples 9-5

-- create_auduser.sql

-- Connect as admin.
CONNECT SYS AS SYSDBA/<SYS password>;

-- Edit this script and either enter your sys password here
-- to replace <SYS password> or comment out this CONNECT
-- statement and connect as SYS AS SYSDBA before running this script.

SET SERVEROUTPUT ON;
SET ECHO ON;

-- You need SYSDBA privileges to delete a user.
-- Note: No need to delete auddemo user if you don’t delete the
-- auddemo tablespace, therefore comment out the next line.

-- DROP USER auddemo CASCADE;

-- You need SYSDBA privileges to delete a directory. If there is no need
-- to really delete it, then comment out the next line.

-- DROP DIRECTORY auddir;

-- Delete, then create, a tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The CREATE TABLESPACE statement
-- will fail if it already exists.

-- DROP TABLESPACE auddemo INCLUDING CONTENTS;

-- If you uncomment the line above and really want to delete the
-- auddemo tablespace, remember to manually delete the auddemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the auddemo tablespace again because the auddemo.dbf file already
-- exists. Therefore, it might be best to create this tablespace
-- once and not delete it.

-- Create a tablespace.
CREATE TABLESPACE auddemo
 DATAFILE ’auddemo.dbf’ SIZE 25M
 MINIMIM EXTENT 64K
 DEFAULT STORAGE (INITIAL 64K NEXT 128K)
 LOGGING;

Audio Data Examples

9-6 Oracle interMedia User’s Guide

-- Create the auddemo user.
CREATE USER auddemo IDENTIFIED BY auddemo
DEFAULT TABLESPACE auddemo
TEMPORARY TABLESPACE temp;

-- Note: If you do not have a temp tablespace already defined,
-- you will have to create it first for this script to work.

GRANT CONNECT, RESOURCE, CREATE LIBRARY TO auddemo;
GRANT CREATE ANY DIRECTORY TO auddemo;

-- Note: If this user already exists, you will get an error message
-- when you try to create this user again.

-- Connect as auddemo.
CONNECT auddemo/auddemo

-- Create the auddemo load directory, the directory where the audio
-- clips are residing. Replace directory specification with your own.

CREATE OR REPLACE DIRECTORY auddir
 AS ’e:\auddir’;
GRANT READ ON DIRECTORY auddir TO PUBLIC WITH GRANT OPTION;

Script 2: Create the Sound Table, Insert a Row with an Empty BLOB,
Load the Row with BLOB Data, and Check the Length of the BLOB Data
This script creates the soundtable table, performs an insert operation inserting a
row with an empty BLOB, loads the row with BLOB data, then checks the length of
the BLOB data to ensure that the BLOB data was loaded.

--create_soundtable.sql
--
-- Create the soundtable table.
-- Insert a row into the table with an empty BLOB.
-- Load the row with BLOB data by pointing to the audio
-- file to be loaded from the directory specified
-- using the BFILE data type.
-- Open the file and use the locator to insert the file.
-- Close the files and commit the transaction.
-- Check the length of the BLOB loaded. Is the length
-- what you are expecting?

CONNECT auddemo/auddemo;

Audio Data Examples

interMedia Examples 9-7

SET SERVEROUTPUT ON;
SET ECHO ON;

DROP TABLE soundtable;
CREATE TABLE soundtable (id number,
 sound BLOB
 default EMPTY_BLOB());

INSERT INTO soundtable(id, sound) VALUES (1, EMPTY_BLOB());
COMMIT;

DECLARE
 f_lob BFILE := BFILENAME(’AUDDIR’,’chimes.wav’);
 b_lob BLOB;
 Lob BLOB;
 Length INTEGER;
BEGIN

 SELECT sound INTO b_lob FROM soundtable WHERE id=1 FOR UPDATE;

-- Open the LOBs.
 dbms_lob.open(f_lob, dbms_lob.file_readonly);
 dbms_lob.open(b_lob, dbms_lob.lob_readwrite);
 dbms_lob.loadfromfile
 (b_lob, f_lob, dbms_lob.getlength(f_lob));
-- Close the LOBs.
 dbms_lob.close(b_lob);
 dbms_lob.close(f_lob);
 COMMIT;

-- Select the LOB:
 SELECT sound INTO Lob FROM soundtable
 WHERE ID = 1;
-- Opening the LOB is optional.
 DBMS_LOB.OPEN (Lob, DBMS_LOB.LOB_READONLY);
-- Get the length of the LOB.
 length := DBMS_LOB.GETLENGTH(Lob);
 IF length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’|| length);
 END IF;
-- Closing the LOB is mandatory if you have opened it.
 DBMS_LOB.CLOSE (Lob);

Audio Data Examples

9-8 Oracle interMedia User’s Guide

END;
/

Script 3: Create the Audtable Table, Insert Three Rows with Empty BLOBs,
Initialize Object Attributes, and Load One Row (ID=1) with Audio Data (create_
audtable.sql)
This script creates the audtable table, and then performs an insert operation to
initialize the column object to empty for three rows. Initializing the column object
creates the BLOB locator that is required for populating each row with BLOB data in
a subsequent data load operation. Next the script performs a SELECT FOR
UPDATE operation to load the audio data by first setting the source for loading the
audio data from a file for ID=1, importing the data, setting the properties for the
BLOB data, updating the row for ID=1, and committing the transaction. To
successfully run this script, you must copy one audio clip to your auddir directory
using the names specified in this script, or modify this script to match the file names
of your audio clips.

-- create_audtable.sql
--
-- Create the audtable table.
-- Insert three rows with empty BLOBs and initialize object attributes.
-- Import a BFILE into the ORDAudio object for ID=1.

CONNECT auddemo/auddemo;
SET SERVEROUTPUT ON;
SET ECHO ON;

 DROP TABLE audtable;
 CREATE TABLE audtable (id NUMBER,
 audio ORDSYS.ORDAudio);

-- Insert rows with an empty BLOB and initialize the object attributes.

 INSERT INTO audtable VALUES(1,ORDSYS.ORDAudio.init());
 INSERT INTO audtable VALUES(2,ORDSYS.ORDAudio.init());
 INSERT INTO audtable VALUES(3,ORDSYS.ORDAudio.init());

 COMMIT;

DECLARE
 obj ORDSYS.ORDAUDIO;
 ctx RAW(64) := NULL;

BEGIN

Audio Data Examples

interMedia Examples 9-9

-- This performs a SELECT FOR UPDATE from table audtable for ID=1,
-- imports the audio file chimes.wav from the AUDDIR directory
-- as a BFILE on a local file system (srcType=FILE), sets the properties,
-- updates the row in table audtable for ID=1, then commits the transaction.

 SELECT audio INTO obj FROM audtable WHERE id = 1 FOR UPDATE;
 obj.setSource(’FILE’,’AUDDIR’,’chimes.wav’);
 obj.import(ctx);
 obj.setProperties(ctx);

 UPDATE audtable SET audio = obj WHERE id = 1;
 COMMIT;

END;
/

Script 4: Copy the BLOB Data to the ORDAudio Object
This script copies the BLOB audio data in the sound column of the soundtable
table for a row (ID=1) to the ORDAudio object column of the audtable table for a
row (ID=3). The script uses a SQL UPDATE statement to set the contents of
T.audio.source.localData in the audtable table to be the same as the contents of the
sound column of the soundtable table, which performs the copy operation. The
script then sets the properties and updates the time stamp for the new BLOB stored
in the ORDAudio object.

--copyblob3.sql
--
CONNECT auddemo/auddemo;
SET SERVEROUTPUT ON;
SET ECHO ON;

-- Use the SQL UPDATE statement to set the contents of
-- T.audio.source.localData to be the same as the BLOB stored
-- in the sound column of the soundtable table. This is an easy way
-- to copy a BLOB stored in the database into a row containing
-- a column defined as an interMedia ORDAudio object type.
--
-- In this case, the BLOB (an audio clip), which was stored in
-- a row in the soundtable table containing a sound column
-- defined as a BLOB data type for an ID=1 is copied to a row
-- in the audtable table containing an audio column defined as
-- an ORDSYS.ORDAudio object type in which the ID=3. The audio
-- clip is referenced through the source attribute of the
-- ORDAudio object type to the underlying localData attribute

Audio Data Examples

9-10 Oracle interMedia User’s Guide

-- of the ORDSource object type.
--

-- Then (1) Call setProperties() and (2) call setUpdateTime()
-- for this new BLOB stored in the ORDAudio object type.

-- Create a procedure to do this.

CREATE OR REPLACE PROCEDURE update_proc IS

 obj ORDSYS.ORDAudio;
 ctx RAW(64) :=NULL;

BEGIN
 UPDATE audtable T SET T.audio.source.localData = (SELECT sound FROM
 soundtable S WHERE S.id = 1) WHERE T.id=3;
 COMMIT;

 SELECT audio INTO obj FROM audtable WHERE id = 3 FOR UPDATE;
 obj.setProperties(ctx);
 obj.setUpdateTime(SYSDATE);
 UPDATE audtable SET audio = obj WHERE id = 3;
 COMMIT;

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;
/
EXECUTE UPDATE_PROC;

Script 5: Check the Properties of the Loaded Data in Each Row (chkprop.sql)
This script performs a SELECT operation of two rows (ID=1 and ID=3) of the
audtable table and gets the audio characteristics of the BLOB data to check that
the BLOB data is in fact loaded. The properties of each stored audio clip should be
identical.

-- chkprop.sql
SET SERVEROUTPUT ON;
--connect auddemo/auddemo
--Query audtable for ORDSYS.ORDAudio content.

DECLARE
 audio ORDSYS.ORDAudio;
 idnum integer;

Audio Data Examples

interMedia Examples 9-11

 properties_match BOOLEAN;
 ctx RAW(64) :=NULL;

BEGIN
-- Check the properties of the audio data clip imported into the
-- ORDAudio object type. Properties for ID=1 should be identical
-- with ID=3.

 SELECT id, audio INTO idnum, audio FROM audtable WHERE id=1;
 dbms_output.put_line(’audio id: ’|| idnum);

 properties_match := audio.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’audio encoding: ’|| audio.getEncoding);
 dbms_output.put_line(’audio number of channels: ’||
audio.getNumberOfChannels);
 dbms_output.put_line(’audio MIME type: ’|| audio.getMimeType);
 dbms_output.put_line(’audio file format: ’|| audio.getFormat);
 dbms_output.put_line(’BLOB Length: ’|| TO_
CHAR(audio.getContentLength(ctx)));
 dbms_output.put_line(’--’);

-- Check the properties of the audio data clip copied into the
-- ORDAudio object type from a BLOB stored in the database.
-- Properties for ID=1 should be identical with ID=3.

 SELECT id, audio INTO idnum, audio FROM audtable WHERE id=3;
 dbms_output.put_line(’audio id: ’|| idnum);

 properties_match := audio.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’audio encoding: ’|| audio.getEncoding);
 dbms_output.put_line(’audio number of channels: ’||
audio.getNumberOfChannels);
 dbms_output.put_line(’audio MIME type: ’|| audio.getMimeType);
 dbms_output.put_line(’audio file format: ’|| audio.getFormat);
 dbms_output.put_line(’BLOB Length: ’|| TO_
CHAR(audio.getContentLength(ctx)));
 dbms_output.put_line(’--’);

END;

Audio Data Examples

9-12 Oracle interMedia User’s Guide

/
The results from running the script chkprop.sql show that the properties are
identical for each stored audio clip.

audio id: 1
Check Properties Succeeded
audio encoding: MS_PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
BLOB Length: 15932
--
audio id: 3
Check Properties Succeeded
audio encoding: MS_PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
BLOB Length: 15932
--

PL/SQL procedure successfully completed.

Automated Script (setup_audschema2.sql)
This script runs each of the previous five scripts in the correct order to automate this
entire process.

-- setup_audschema2.sql
-- Create the auddemo user, a tablespace, and a load directory to
-- hold the BFILE:
@create_auduser.sql

-- Create a soundtable table and populate it with
-- an audio clip:
@create_soundtable.sql

-- Create an audtable table and import an audio clip:
@create_audtable.sql

-- Copy a BLOB into an ORDAudio object, set the properties,
-- and update the time:
@copyblob3.sql

-- Check the properties of the audio clips. The properties
-- should be identical:

Media Data Examples

interMedia Examples 9-13

@chkprop.sql

--exit;

9.2 Media Data Examples
Media data examples using interMedia include the following common operations:

� Using the ORDDoc object type as a repository

� Using a set of scripts for creating and populating a media table from a BFILE
data source

Reference information on the methods used in these examples is presented in Oracle
interMedia Reference.

9.2.1 Using the ORDDoc Object Type as a Repository
The ORDDoc object type is most useful for applications that require the storage of
different types of media, such as audio, image, video, and any other type of
document in the same column so you can build a common metadata index on all
the different types of media and perform searches across different types of media
using this index.

Example 9–3 shows how to create a repository of media using the tdoc table by
running the createschema.sql script followed by the createindex.sql script.

A requirement for creating the metadata index is to create a primary key constraint
on column n. After initializing each row, load each row with different media, in this
case, rows 1 and 2 with an audio clip, rows 3 and 4 with a video clip, and rows 5
and 6 with an image. For each media file, call the setProperties() method after each
row is loaded and specify the setComments = TRUE value for this parameter to
populate the comments attribute of the object with a set of format and application
properties in XML form. Because the format of each media type is natively
supported by interMedia, the setProperties() method is used to extract the
properties from the media source and the comments field of the object is populated
in XML form. If the format of the media type is not known, then the setProperties()
method raises a DOC_PLUGIN_EXCEPTION exception. interMedia does not

Note: You cannot use this same search technique if the different
types of media are stored in different types of objects in different
columns of relational tables.

Media Data Examples

9-14 Oracle interMedia User’s Guide

support any document media file type (html, pdf, doc, and so forth), therefore you
must create your own format plug-in in order to extract the media attributes from
the media data. After loading the media data, display the MIME type, format, and
content length of the doc column for each row.

Next, use Oracle Text and create a metadata index on the comments attribute of the
ORDDOC column. Then, search for the format MPGA in the comments attribute of
each row; only one row, row 2, returns a match. Finally, perform a substring search
of the CLOB comments attribute for row 2 to locate the value MPGA (the value is
bolded here for contrast). At this point, you can begin to search for other interesting
media formats, such as MOOV; or mimeTypes, such as audio/mpeg, and so forth,
in the stored rows using the Oracle Text index.

Example 9–3 Build a Repository of Media

-- createschema.sql
-- Connect as SYSDBA to create a tablespace and a user.
-- May need to create a temp tablespace for this to work.

CONNECT SYS AS SYSDBA
SET SERVEROUTPUT ON;
SET ECHO ON;

--Create tablespace docrepository.

CREATE TABLESPACE docrepository
 DATAFILE ’docrepos.dbf’ SIZE 200M
 MINIMUM EXTENT 64K
 DEFAULT STORAGE (INITIAL 64K NEXT 128K)
 LOGGING;

-- Create a docuser user.
-- Create a temp tablespace if you do not have one.

CREATE USER DOCUSER IDENTIFIED BY DOCUSER
DEFAULT TABLESPACE docrepository
TEMPORARY TABLESPACE temp;

GRANT CONNECT, RESOURCE, CREATE LIBRARY, CTXAPP to docuser;
GRANT CREATE ANY DIRECTORY TO docuser;

GRANT EXECUTE ON CTX_CLS TO docuser;
GRANT EXECUTE ON CTX_DDL TO docuser;
GRANT EXECUTE ON CTX_DOC TO docuser;
GRANT EXECUTE ON CTX_OUTPUT TO docuser;

Media Data Examples

interMedia Examples 9-15

GRANT EXECUTE ON CTX_QUERY TO docuser;
GRANT EXECUTE ON CTX_REPORT TO docuser;
GRANT EXECUTE ON CTX_THES TO docuser;

-- End of SYSDBA tasks.

-- Begin user tasks.

CONNECT docuser/docuser
SET SERVEROUTPUT ON;
SET ECHO ON;

DROP TABLE tdoc;

-- Create the docdir directory. Replace directory specification with your own.
CREATE OR REPLACE DIRECTORY docdir
 as ’c:\media’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;
-- Create the tdoc table.
CREATE TABLE tdoc (n NUMBER CONSTRAINT n_pk PRIMARY KEY, doc ORDSYS.ORDDoc)
 STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);
INSERT INTO tdoc VALUES(1, ORDSYS.ORDDoc.init());
INSERT INTO tdoc VALUES(2, ORDSYS.ORDDoc.init());
INSERT INTO tdoc VALUES(3, ORDSYS.ORDDOC.init());
INSERT INTO tdoc VALUES(4, ORDSYS.ORDDOC.init());
INSERT INTO tdoc VALUES(5, ORDSYS.ORDDOC.init());
INSERT INTO tdoc VALUES(6, ORDSYS.ORDDOC.init());

DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(64) := NULL;
BEGIN
-- This imports the audio file aud1.wav from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 1 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’aud1.wav’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx,TRUE);
UPDATE tdoc SET doc = obj WHERE n = 1;
COMMIT;
-- This imports the audio file aud2.mp3 from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 2 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’aud2.mp3’);
 obj.import(ctx,FALSE);

Media Data Examples

9-16 Oracle interMedia User’s Guide

 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 2;
COMMIT;
-- This imports the video file vid1.mov from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 3 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’vid1.mov’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx,TRUE);
UPDATE tdoc SET doc = obj WHERE n = 3;
COMMIT;
-- This imports the video file vid2.mov from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 4 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’vid2.mov’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 4;
COMMIT;
-- This imports the image file img71.gif from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 5 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’img71.gif’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 5;
COMMIT;
-- This imports the image file img50.gif from the docdir directory
-- on a local file system (srcType=file) and sets the properties.
SELECT doc INTO obj FROM tdoc WHERE n = 6 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’img50.gif’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 6;
COMMIT;
END;
/
--Display the MIME type, format, and content length of the media.
DECLARE
 doc ORDSYS.ORDDOC;
 idnum integer;
BEGIN
 FOR I IN 1..6 LOOP
 SELECT n, doc into idnum, doc from tdoc where n=I;
 dbms_output.put_line(’media n: ’|| idnum);

Media Data Examples

interMedia Examples 9-17

 dbms_output.put_line(’media MIME type: ’|| doc.getMimeType);
 dbms_output.put_line(’media file format: ’|| doc.getFormat);
 dbms_output.put_line(’BLOB length: ’|| TO_CHAR(doc.getContentLength()));
 dbms_output.put_line(’---’);
 END loop;
END;
/

-- Display the output.
media n: 1
media MIME type: audio/x-wav
media file format: WAVE
BLOB length: 93594

media n: 2
media MIME type: audio/mpeg
media file format: MPGA
BLOB length: 51537

media n: 3
media MIME type: video/quicktime
media file format: MOOV
BLOB length: 4958415

media n: 4
media MIME type: video/quicktime
media file format: MOOV
BLOB length: 2891247

media n: 5
media MIME type: image/gif
media file format: GIFF
BLOB length: 1124

media n: 6
media MIME type: image/gif
media file format: GIFF
BLOB length: 686

PL/SQL procedure successfully completed.

-- createindex.sql
-- Connect as DOCUSER.
-- Create the index using Oracle Text.
--

Media Data Examples

9-18 Oracle interMedia User’s Guide

CONNECT DOCUSER/DOCUSER;
SET SERVEROUTPUT ON;
SET ECHO ON;
--
-- Next, you can create a preference, and
-- create media attribute sections for each media attribute,
-- that is, format, mimeType, and contentLength.
--
-- Create a preference.
EXECUTE ctx_ddl.drop_preference(’ANNOT_WORDLIST’);
EXECUTE ctx_ddl.create_preference(’ANNOT_WORDLIST’, ’BASIC_WORDLIST’);
EXECUTE ctx_ddl.set_attribute(’ANNOT_WORDLIST’, ’stemmer’, ’ENGLISH’);
EXECUTE ctx_ddl.set_attribute(’ANNOT_WORDLIST’, ’fuzzy_match’, ’ENGLISH’);
-- Create a section group.
-- Define Media Attribute sections, that is, the XML tags for the attributes
-- or samples.
EXECUTE CTX_DDL.DROP_SECTION_GROUP(’MEDIAANN_TAGS’);
EXECUTE CTX_DDL.CREATE_SECTION_GROUP(’MEDIAANN_TAGS’,’xml_section_group’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’,
’MEDIAFORMATENCODINGTAG’,’MEDIA_FORMAT_ENCODING_CODE’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’,’MEDIASOURCEMIMETYPETAG’,
’MEDIA_SOURCE_MIME_TYPE’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’, ’MEDIASIZETAG’,’MEDIA_SIZE’);
--
-- Add the following PARAMETERS clause to the end of the CREATE INDEX statement:
-- PARAMETERS (’section group MEDIAANN_TAGS’), so the statement appears
-- as follows:
DROP INDEX mediaidx FORCE;
--
CREATE INDEX mediaidx ON tdoc(doc.comments) INDEXTYPE IS
 CTXSYS.CONTEXT PARAMETERS(’stoplist CTXSYS.EMPTY_STOPLIST wordlist
 ANNOT_WORDLIST filter CTXSYS.NULL_FILTER section group MEDIAANN_TAGS’);
COMMIT;
--
-- Now, perform a SELECT statement on the attributes in the doc.comments column.
--
SELECT score(1), n from tdoc t WHERE CONTAINS(t.doc.comments, ’MPGA’,1)>0;
-- Should find one row, representing the aud2.mp3 audio file.
-- Display the results, MPGA is found in row 2.

 SCORE(1) N
---------- ----------
 5 2

-- Look for MPGA in the comments attribute of row 2 (bolded value MPGA).

Media Data Examples

interMedia Examples 9-19

SELECT DBMS_LOB.SUBSTR(t.doc.comments, 2000,1) FROM tdoc t WHERE n=2;
-- Display the output.

DBMS_LOB.SUBSTR(T.DOC.COMMENTS,2000,1)
--
<?xml version="1.0"?>
<!-- Generated by Oracle interMedia Annotator 1.0 -->
<AudioCDTrackAnn dt="oracle.ord.media.annotator.annotations.AudioCDTrackAnn">
 <Attributes>
 <MEDIA_FORMAT_ENCODING desc="Format of the media" dt="java.lang.String"><![C
DATA[Layer III]]></MEDIA_FORMAT_ENCODING>
 <AUDIO_CD_TRACK_ALBUM desc="Audio CD Title" dt="java.lang.String"><![CDATA[N
one]]></AUDIO_CD_TRACK_ALBUM>
 <MEDIA_DURATION desc="Duration in seconds of the media" dt="java.lang.Long">
<![CDATA[4]]></MEDIA_DURATION>
 <MEDIA_BITRATE desc="Bitrate of the media in bits per second" dt="java.lang.
DBMS_LOB.SUBSTR(T.DOC.COMMENTS,2000,1)
--
Integer"><![CDATA[96000]]></MEDIA_BITRATE>
 <MEDIA_FORMAT_ENCODING_CODE desc="Format of the media in the form of a verbo
se code" dt="java.lang.String"><![CDATA[LAYER3]]></MEDIA_FORMAT_ENCODING_CODE>
 <MEDIA_SOURCE_FILE_FORMAT_CODE desc="Media file format code" dt="java.lang.S
tring"><![CDATA[MPGA]]></MEDIA_SOURCE_FILE_FORMAT_CODE>
 <MEDIA_SOURCE_FILE_FORMAT desc="Media file format" dt="java.lang.String"><![
CDATA[MPEG1 Audio (ISO/IEC 11172-3)]]></MEDIA_SOURCE_FILE_FORMAT>
 <MEDIA_SOURCE_MIME_TYPE desc="MIME Type of the media/its samples" dt="java.l
ang.String"><![CDATA[audio/mpeg]]></MEDIA_SOURCE_MIME_TYPE>
 <AUDIO_ARTIST desc="Main artist for the audio clip" dt="java.lang.String"><!
[CDATA[Oracle]]></AUDIO_ARTIST>
DBMS_LOB.SUBSTR(T.DOC.COMMENTS,2000,1)
--
 <AUDIO_NUM_CHANNELS desc="The number of audio channels" dt="java.lang.Intege
r"><![CDATA[1]]></AUDIO_NUM_CHANNELS>
 <AUDIO_SAMPLE_RATE desc="Audio sample rate (samples/sec)" dt="java.lang.Inte
ger"><![CDATA[44100]]></AUDIO_SAMPLE_RATE>
 <MEDIA_CONTENT_DATE desc="Creation date for the media content" dt="java.lang
.String"><![CDATA[1999]]></MEDIA_CONTENT_DATE>
 <MEDIA_USER_DATA desc="String containing all user data" dt="java.lang.String
"><![CDATA[Welcome to Oracle 8i64]]></MEDIA_USER_DATA>
 <MEDIA_TITLE desc="Title of the media" dt="java.lang.String"><![CDATA[welcom
e3.mp3]]></MEDIA_TITLE>
 </Attributes>
DBMS_LOB.SUBSTR(T.DOC.COMMENTS,2000,1)
--

Media Data Examples

9-20 Oracle interMedia User’s Guide

 <Samples>
 </Samples>
</AudioCDTrackAnn>

9.2.2 Scripts for Creating and Populating a Media Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site

 http://otn.oracle.com/

These scripts are end-to-end scripts that create and populate a media table from a
BFILE data source. You can get to this site by selecting the Sample Code icon, then
under Oracle Database, select Oracle interMedia to go to the Oracle interMedia
Sample Code Web page.

The following set of scripts:

1. Creates a tablespace for the media data, creates a user and grants certain
privileges to this new user, and creates a media data load directory (create_
docuser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_doctable.sql).

3. Loads the media data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importdoc.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_docschema.sql) automates this entire process by running
each script in the required order. The last script (readdoc.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of media
data from the BLOB, beginning at a particular offset, until all the media data is read.
To successfully load the media data, you must have a docdir directory created on
your system. This directory contains the aud1.wav and aud2.mp3 files, which are
installed in the <ORACLE_HOME>/ord/aud/demo directory; this directory path
and disk drive must be specified in the CREATE DIRECTORY statement in the
create_docuser.sql file.

Media Data Examples

interMedia Examples 9-21

Script 1: Create a Tablespace, Create a Media User, Grant Privileges to
the Media User, and Create a Media Data Load Directory (create_
docuser.sql)
This script creates the docdemo tablespace. It contains a data file named
docdemo.dbf of 200 MB in size, an initial extent of 64 KB, and a next extent of 128
KB, and turns on table logging. Next, the docdemo user is created and given
connect, resource, create library, and create directory privileges followed by creating
the media data load directory. Before running this script, you must change the
create directory line to point to your data load directory location.

-- create_docuser.sql
-- Connect as admin.
connect SYS AS SYSDBA/<SYS password>;

-- Edit this script and either enter your sys password here
-- to replace <SYS password> or comment out this CONNECT
-- statement and connect as SYS AS SYSDBA before running this script.

set serveroutput on
set echo on

-- You need SYSDBA privileges to delete a user.
-- Note: There is no need to delete docdemo user if you do not delete
-- the docdemo tablespace, therefore comment out the next line.

-- DROP USER docdemo CASCADE;

-- You need SYSDBA privileges to delete a directory. If there is
-- no need to delete it, then comment out the next line.

-- DROP DIRECTORY docdir;

-- Delete and then create a tablespace.

Note: You must edit the create_docuser.sql file and either
enter the SYS password in the CONNECT statement or comment
out the CONNECT statement and run this file as SYS AS SYSDBA.
You must specify the disk drive in the CREATE DIRECTORY
statement. Also, create the temp temporary tablespace if you have
not already created it, otherwise this file will not run.

Media Data Examples

9-22 Oracle interMedia User’s Guide

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The CREATE TABLESPACE statement
-- will fail if it already exists.

-- DROP TABLESPACE docdemo INCLUDING CONTENTS;

-- If you uncomment the preceding line and really want to delete the
-- docdemo tablespace, remember to manually delete the docdemo.dbf
-- file to complete this operation. Otherwise, you cannot create
-- the docdemo tablespace again because the docdemo.dbf file
-- already exists. Therefore, it might be best to create this tablespace
-- once and not delete it.

create tablespace docdemo
 datafile ’docdemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create the docdemo user.
create user docdemo identified by docdemo
default tablespace docdemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will have to
-- create it first for this script to work.

grant connect, resource, create library to docdemo;
grant create any directory to docdemo;

-- Note: If this user already exists, you will get an error message
-- when you try to create this user again.

-- Connect as docdemo.
connect docdemo/docdemo

-- Create the docdir load directory; this is the directory where the media
-- files are residing. Replace directory specification with your own.

create or replace directory docdir
 as ’e:\oracle\ord\aud\demo’;
grant read on directory docdir to public with grant option;
-- Note for Solaris, the directory specification could be ’/user/local’

Media Data Examples

interMedia Examples 9-23

Script 2: Create the Media Table and Initialize the Column Object
(create_doctable.sql)
This script creates the media table and then performs an INSERT operation to
initialize the column object to empty for two rows. Initializing the column object
creates the BLOB locator that is required for populating each row with BLOB data in
a subsequent data load operation.

--create_doctable.sql

connect docdemo/docdemo;
set serveroutput on
set echo on

drop table doctable;
create table doctable (id number,
 Document ordsys.ordDoc);

-- Insert a row with an empty BLOB.
insert into doctable values(1,ORDSYS.ORDDoc.init());

-- Insert a row with an empty BLOB.
insert into doctable values(2,ORDSYS.ORDDoc.init());
commit;

Script 3: Load the Media Data (importdoc.sql)
This script performs a SELECT FOR UPDATE operation to load the media data by
first setting the source for loading the media data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two media files to your
docdir directory using the names specified in this script, or modify this script to
match the file names of your media.

-- importdoc.sql

set serveroutput on
set echo on
-- Import two files into the database.

DECLARE
 obj ORDSYS.ORDDOC;
 ctx RAW(64) := NULL;

BEGIN
-- This imports the audio file aud1.wav from the DOCDIR directory

Media Data Examples

9-24 Oracle interMedia User’s Guide

-- on a local file system (srcType=file) and sets the properties.

 select Document into obj from doctable where id = 1 for update;
 obj.setSource(’file’,’DOCDIR’,’aud1.wav’);
 obj.import(ctx,TRUE);
 update doctable set document = obj where id = 1;
 commit;

-- This imports the audio file aud2.mp3 from the DOCDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Document into obj from doctable where id = 2 for update;
 obj.setSource(’file’,’DOCDIR’,’aud2.mp3’);
 obj.import(ctx,TRUE);
 update doctable set document = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the media table, then gets
the media characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
connect docdemo/docdemo
set serveroutput on;
--Query doctable for ORDSYS.ORDDoc.
DECLARE
 document ORDSYS.ORDDoc;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(64) := NULL;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, document into idnum, document from doctable where id=I;
 dbms_output.put_line(’document id: ’|| idnum);

 dbms_output.put_line(’document MIME type: ’|| document.getMimeType());
 dbms_output.put_line(’document file format: ’|| document.getFormat());
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(document.getContentLength()));
dbms_output.put_line(’--’);

 END loop;

Media Data Examples

interMedia Examples 9-25

END;
/

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
document id: 1
document MIME type: audio/xwav
document file format: WAVE
BLOB Length: 93594
--
document id: 2
document MIME type: audio/mpeg
document file format: MPGA
BLOB Length: 51537
--
PL/SQL procedure successfully completed.

Automated Script (setup_docschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

--setup_docschema.sql
-- Create the docdemo user, tablespace, and load directory to
-- hold the media files:
@create_docuser.sql

-- Create the media table:
@create_doctable.sql

--Import 2 media clips and set properties:
@importdoc.sql

--Check the properties of the media clips:
@chkprop.sql

--exit;

Read Data from the BLOB (readdoc.sql)
This script creates a stored procedure that performs a SELECT operation to read a
specified amount of media data from the BLOB, beginning at a particular offset,
until all the media data is read.

--readdoc.sql

Media Data Examples

9-26 Oracle interMedia User’s Guide

set serveroutput on
set echo on

create or replace procedure readdocument as

 obj ORDSYS.ORDDoc;
 buffer RAW (32767);
 numBytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(64) := NULL;

BEGIN

 Select document into obj from doctable where id = 1;

 LOOP
 obj.readFromSource(ctx,startPos,numBytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’BLOB Length: ’ || TO_CHAR(obj.getContentLength()));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startPos);
 DBMS_OUTPUT.PUT_LINE(’doing read: ’ || read_cnt);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;
 END LOOP;
-- Note: Add your own code here to process the media data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

Image Data Examples

interMedia Examples 9-27

SQL> set serveroutput on;
SQL> execute readdocument
Content Length: 93594
start position: 1
doing read: 1
start position: 32768
doing read: 2
start position: 65535
doing read: 3

End of data

PL/SQL procedure successfully completed.

9.3 Image Data Examples
Image data examples using interMedia include the following common operations:

� Using a set of scripts for creating and populating an image table from a BFILE
data source

� Using a set of scripts for creating and populating an image table from an HTTP
data source

� Addressing globalization support issues

9.3.1 Scripts for Creating and Populating an Image Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site

 http://otn.oracle.com/

These scripts are as end-to-end scripts that create and populate an image table from
a BFILE data source. You can get to this site by selecting the Sample Code icon, then
under Oracle Database, select Oracle interMedia to go to the Oracle interMedia
Sample Code Web page.

The following set of scripts:

1. Creates a tablespace for the image data, creates a user and grants certain
privileges to this new user, creates an image data load directory (create_
imguser.sql).

Image Data Examples

9-28 Oracle interMedia User’s Guide

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_imgtable.sql).

3. Loads the image data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importimg.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_imgschema.sql) automates this entire process by running
each script in the required order. The last script (readimage.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of image
data from the BLOB beginning at a particular offset until all the image data is read.
To successfully load the image data, you must have an imgdir directory created on
your system containing the img71.gif and img50.gif files, which are installed
in the <ORACLE_HOME>/ord/img/demo directory; this directory path and disk
drive must be specified in the CREATE DIRECTORY statement in the create_
imguser.sql file.

Script 1: Create a Tablespace, Create an Image User, Grant Privileges to
the Image User, and Create an Image Data Load Directory (create_
imguser.sql)
This script creates the imgdemo tablespace with a data file named imgdemo.dbf of
200 MB in size, with an initial extent of 64 KB, a next extent of 128 KB, and turns on
table logging. Next, the imgdemo user is created and given connect, resource, create
library, and create directory privileges, followed by creating the image data load
directory.

-- create_imguser.sql
-- Connect as admin.
connect SYS AS SYSDBA/<SYS password>;
-- Edit this script and either enter your SYS password here
-- to replace <SYS password> or comment out this CONNECT
-- statement and connect as SYS AS SYSDBA before running this script.

Note: You must edit the create_imguser.sql file and either
enter the SYS password in the CONNECT statement or comment
out the CONNECT statement and run this file as SYS AS SYSDBA.
You must specify the disk drive in the CREATE DIRECTORY
statement. Also, create the temp temporary tablespace if you have
not already created it, otherwise this file will not run.

Image Data Examples

interMedia Examples 9-29

set serveroutput on
set echo on

-- You need SYSDBA privileges to delete a user.
-- Note: There is no need to delete imgdemo user if you do not delete the
-- imgdemo tablespace, therefore comment out the next line.

-- DROP USER imgdemo CASCADE;

-- You need SYSDBA privileges to delete a directory. If there is
-- no need to really delete it, then comment out the next line.

-- DROP DIRECTORY imgdir;

-- Delete, then create the tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The CREATE TABLESPACE statement
-- will fail if it already exists.

-- DROP TABLESPACE imgdemo INCLUDING CONTENTS;

-- If you uncomment the preceding line and really want to delete the
-- imgdemo tablespace, remember to manually delete the imgdemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the imgdemo tablespace again because the imgdemo.dbf file
-- already exists. Therefore, it might be best to create this
-- tablespace once and not delete it.

-- Create the tablespace.
create tablespace imgdemo
 datafile ’imgdemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create the imgdemo user.
create user imgdemo identified by imgdemo
default tablespace imgdemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will
-- have to create it first for this script to work.

Image Data Examples

9-30 Oracle interMedia User’s Guide

grant connect, resource, create library to imgdemo;
grant create any directory to imgdemo;

-- Note: If this user already exists, you will get an error message when you
-- try to create this user again.

-- Connect as imgdemo.
connect imgdemo/imgdemo

-- Create the imgdir load directory; this is the directory where the image
-- files are residing. Replace directory specification with your own.

create or replace directory imgdir
 as ’e:\oracle\ord\img\demo’;
grant read on directory imgdir to public with grant option;

Script 2: Create the Image Table and Initialize the Column Object
(create_imgtable.sql)
This script creates the image table and then performs an INSERT operation to
initialize the column object to empty for two rows. Initializing the column object
creates the BLOB locator that is required for populating each row with BLOB data in
a subsequent data load operation.

-- create_imgtable.sql
connect imgdemo/imgdemo;
set serveroutput on
set echo on

drop table imgtable;
create table imgtable (id number,
 Image ordsys.ordImage);

-- Insert a row with an empty BLOB.
insert into imgtable values(1,ORDSYS.ORDImage.init());

-- Insert a row with an empty BLOB.
insert into imgtable values(2,ORDSYS.ORDImage.init());
commit;

Image Data Examples

interMedia Examples 9-31

Script 3: Load the Image Data (importimg.sql)
This script performs a SELECT FOR UPDATE operation to load the image data by
first setting the source for loading the image data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two image files to your
imgdir directory using the names specified in this script, or modify this script to
match the file names of your image files.

--importimg.sql
set serveroutput on
set echo on
-- Import the two files into the database.

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(64) := NULL;
BEGIN
-- This imports the image file img71.gif from the IMGDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Image into obj from imgtable where id = 1 for update;
 obj.setSource(’file’,’IMGDIR’,’img71.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 1;
 commit;

-- This imports the image file img50.gif from the IMGDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Image into obj from imgtable where id = 2 for update;
 obj.setSource(’file’,’IMGDIR’,’img50.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

Image Data Examples

9-32 Oracle interMedia User’s Guide

-- chkprop.sql
connect imgdemo/imgdemo
set serveroutput on;
--Query imgtable for ORDSYS.ORDImage.
DECLARE
 image ORDSYS.ORDImage;
 idnum integer;
 properties_match BOOLEAN;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, image into idnum, image from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);
 properties_match := image.checkProperties();
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’image height: ’|| image.getHeight());
 dbms_output.put_line(’image width: ’|| image.getWidth());
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType());
 dbms_output.put_line(’image file format: ’|| image.getFileFormat());
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(image.getContentLength()));

 dbms_output.put_line(’---’);

 END loop;
END;
/
Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
image id: 1
Check Properties Succeeded
image height: 15
image width: 43
image MIME type: image/gif
image file format: GIFF
BLOB Length: 1124

image id: 2
Check Properties Succeeded
image height: 32
image width: 110
image MIME type: image/gif
image file format: GIFF
BLOB Length: 686

Image Data Examples

interMedia Examples 9-33

PL/SQL procedure successfully completed.

Automated Script (setup_imgschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_imgschema.sql
-- Create imgdemo user, tablespace, and load directory to
-- hold image files:
@create_imguser.sql

-- Create image table:
@create_imgtable.sql

--Import 2 images and set properties:
@importimg.sql

--Check the properties of the images:
@chkprop.sql

--exit;

Read Data from the BLOB (readimage.sql)
This script performs a SELECT operation to read a specified amount of image data
from the BLOB, beginning at a particular offset until all the image data is read.

-- readimage.sql

set serveroutput on
set echo on

create or replace procedure readimage as

-- Note: ORDImage has no readFromSource method like ORDAudio
-- and ORDVideo; therefore, you must use the DBMS_LOB package to
-- read image data from a BLOB.

 buffer RAW (32767);
 src BLOB;
 obj ORDSYS.ORDImage;
 amt BINARY_INTEGER := 32767;

Image Data Examples

9-34 Oracle interMedia User’s Guide

 pos integer := 1;
 read_cnt integer := 1;

BEGIN

 Select t.image.getcontent() into src from imgtable t where t.id = 1;
 Select image into obj from imgtable t where t.id = 1;
 DBMS_OUTPUT.PUT_LINE(’Content length is: ’|| TO_CHAR(obj.getContentLength()));

 LOOP
 DBMS_LOB.READ(src,amt,pos,buffer);
 DBMS_OUTPUT.PUT_LINE(’start position: ’|| pos);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 pos := pos + amt;
 read_cnt := read_cnt + 1;

-- Note: Add your own code here to process the image data being read;
-- this routine just reads data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.
 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 DBMS_OUTPUT.PUT_LINE(’End of data ’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readimage;
Content length is: 1124
start position: 1
doing read 1

End of data

PL/SQL procedure successfully completed.

Image Data Examples

interMedia Examples 9-35

9.3.2 Scripts for Populating an Image Table from an HTTP Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site

http://otn.oracle.com/

These scripts are end-to-end scripts that create and populate an image table from an
HTTP data source. You can get to this site by selecting the Sample Code icon, then
under Oracle Database, select Oracle interMedia to go to the Oracle interMedia
Sample Code Web page.

The following set of scripts performs a row insert operation and an import
operation, then checks the properties of the loaded images to ensure that the images
are really loaded.

Initialize the Column Object and Import the Image Data
(importimghttp.sql)
This script inserts two rows into the imgtable table, initializing the object column
for each row to empty with a locator, and indicating the HTTP source information
(source type (HTTP), URL location, and HTTP object name). Within a SELECT FOR
UPDATE statement, an import operation loads each image object into the database
followed by an UPDATE statement to update the object attributes for each image,
and finally a COMMIT statement to commit the transaction.

To successfully run this script, you must modify this script to point to two images
located on your own Web site.

--importimghttp.sql
-- Import the two HTTP images from a Web site into the database.
-- Running this script assumes you have already run the
-- create_imguser.sql and create_imgtable.sql scripts.
-- Modify the HTTP URL and object name to point to two images
-- on your own Web site.

set serveroutput on
set echo on

Note: Before you run the importimg.sql script described in this
section to load image data from an HTTP data source, check to
ensure you have already run the create_imguser.sql and
create_imgtable.sql scripts described in Section 9.3.1.

Image Data Examples

9-36 Oracle interMedia User’s Guide

-- Import two images from HTTP source URLs.

connect imgdemo/imgdemo;

-- Insert two rows with an empty BLOB.

insert into imgtable values (7,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image1.gif’));

insert into imgtable values (8,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image2.gif’));

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(64) := NULL;
BEGIN
-- This imports the image file image1.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 7 for update;
 obj.import(ctx);

 update imgtable set image = obj where id = 7;
 commit;

-- This imports the image file image2.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 8 for update;
 obj.import(ctx);

 update imgtable set image = obj where id = 8;
 commit;
END;
/

Check the Properties of the Loaded Data
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--connect imgdemo/imgdemo
--Query imgtable for ORDSYS.ORDImage.

Image Data Examples

interMedia Examples 9-37

DECLARE
 image ORDSYS.ORDImage;
 idnum integer;
 properties_match BOOLEAN;
BEGIN
 FOR I IN 7..8 LOOP
 SELECT id , image into idnum, image from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);
 properties_match := image.checkProperties();
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;
 dbms_output.put_line(’image height: ’|| image.getHeight());
 dbms_output.put_line(’image width: ’|| image.getWidth());
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType());
 dbms_output.put_line(’image file format: ’|| image.getFileFormat());
 dbms_output.put_line(’BLOB length: ’|| TO_CHAR(image.getContentLength()));
 dbms_output.put_line(’---’);
 END loop;
END;
/

9.3.3 Addressing Globalization Support Issues
Example 9–4 shows how to use the processCopy() method with language settings
that use the comma as the decimal point. For example, when the territory is
FRANCE, the decimal point is expected to be a comma. Notice that the ",75" is
specified as the scale factor. This application addresses globalization support issues.

Example 9–4 Address a Globalization Support Issue

ALTER SESSION SET NLS_LANGUAGE = FRENCH;
ALTER SESSION SET NLS_TERRITORY = FRANCE;
DECLARE
 myimage ORDSYS.ORDImage;
 mylargeimage ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo INTO myimage, mylargeimage
 FROM emp FOR UPDATE;
 myimage.setProperties();
 myimage.ProcessCopy(’scale=",75"’, mylargeimage);
 UPDATE emp SET photo = myimage, large_photo = mylargeimage;
 COMMIT;
END;
/

Video Data Examples

9-38 Oracle interMedia User’s Guide

9.4 Video Data Examples
See Oracle interMedia Reference for video data examples.

9.5 Handling Exceptions
Possible errors that can arise during runtime should always be handled in your
application in order for the program to continue to operate despite the presence of
these errors. In other words, end users should always be able to recover from an
error, whenever possible, while running an application and also know what went
wrong. This section describes how you can accomplish this task of properly
handling errors by showing examples for handling some of the more common
interMedia and other types of errors in PL/SQL and Java programs. These examples
come from the sample applications described in Chapter 3. Also, see Oracle
interMedia Reference for more examples.

When handling exceptions, PL/SQL uses exception blocks, while Java uses the
try/catch block. For example, in PL/SQL, the exception may appear as:

BEGIN
<some program logic>
EXCEPTION
 WHEN OTHERS THEN
 <some exception logic
END;

See Section 9.5.1 for examples of handling exceptions in PL/SQL.

In Java, the exception may appear as:

try {
 //<some program logic>)
}
catch (exceptionName a) {
//Exception logic
}
finally {
//Execute logic if try block is executed even if an exception is caught
}

See Section 9.5.2 for examples of handling exceptions in Java.

When you design, code, and debug your application, you will know the places in
your program where it is possible for your program to stop processing because it

Handling Exceptions

interMedia Examples 9-39

failed to anticipate an error. These are the places where you must add exception
handling blocks to handle these instances.

For more information about handling PL/SQL exceptions, see PL/SQL User’s Guide
and Reference. For more information about handling Java exceptions, see Oracle
Database Java Developer’s Guide and Oracle Database JDBC Developer’s Guide and
Reference.

9.5.1 Handling interMedia Exceptions in PL/SQL
This section shows examples and describes handling exceptions in the interMedia
PL/SQL Web Toolkit Photo Album application.

Handling the Setting of Properties for Unknown Image Formats
If your program tries to set the properties of an uploaded image (it reads the image
data to get the values of the object attributes so it can store them in the appropriate
attribute fields) and the image format is not recognized, then the setProperties()
method will fail. To catch this exception and work around this potential problem,
the application uses the following exception block:

BEGIN
 new_image.setProperties();
EXCEPTION
 WHEN OTHERS THEN
 new_image.contentLength := upload_size;
 new_image.mimeType := upload_mime_type;

In this example, this exception handler sets the MIME type and length of the image
based on the values from the upload table described at the beginning of the
insert_new_photo procedure. The browser sets a MIME type header when the
file is uploaded. The application reads this header to set the ORDImage field.

Handling Image Processing for Unknown Image Formats
If your program tries to proces an image in cases when the image format is
unknown, then the processCopy() method will always fail. To work around this
potential problem, the application uses the following exception block:

BEGIN
 new_image.processCopy(’maxScale=50,50’, new_thumb);
EXCEPTION
 WHEN OTHERS THEN
 new_thumb.deleteContent();
 new_thumb.contentLength := 0;

Handling Exceptions

9-40 Oracle interMedia User’s Guide

END;

In this example from the interMedia PL/SQL Web Toolkit Photo Album application,
when the image format is unknown and a thumbnail image cannot be created, this
exception handler deletes the content of the thumbnail image and sets its length to
zero.

9.5.2 Handling interMedia Exceptions in Java
This section shows examples and describes handling exceptions using the
try/catch block that are in either the interMedia Java Servlet Photo Album
application or the interMedia JavaServer Pages Photo Album application, or are in
both applications. In addition, there are several examples of throwing exceptions.

Handling interMedia Version Compatibility Initialization
In the getConnection() method in both the PhotoAlbumServlet class of the
interMedia Java Servlet Photo Album application and in the PhotoAlbumBean
class of the interMedia JavaServer Pages Photo Album application, when trying to
get a free connection from the stack, if the stack is empty, a new connection object is
created. Within the try/catch block a call is made to the version compatibility
initialization method. Making this call on the client-side is recommended to ensure
that the application will always work, without upgrading, with any potential future
release of interMedia, which may have evolved object types. See Oracle interMedia
Java Classes Reference for more information about the
OrdMediaUtil.imCompatibilityInit() method. A catch block catches any SQL
exception and throws a new SQLException, returning a string representation of the
object thrown with the toString() method.

 private Connection getConnection()
 throws SQLException
 {
 OracleConnection conn = null;

 //
 // Synchronize on the stack object. Load the JDBC driver if not yet
 // done. If there’s a free connection on the stack, then pop it off
 // the stack and return it to the caller. Otherwise, create a new
 // connection object and call the version compatibility initialization
 // method.
 //
 synchronized(connStack)
 {
 if (!driverLoaded)

Handling Exceptions

interMedia Examples 9-41

 {
 DriverManager.registerDriver(
 new oracle.jdbc.driver.OracleDriver());
 driverLoaded = true;
 }
 if (connStack.empty())
 {
 conn = (OracleConnection)DriverManager.getConnection
 (JDBC_CONNECT_STRING, JDBC_USER_NAME, JDBC_PASSWORD);
 try
 {
 OrdMediaUtil.imCompatibilityInit(conn);
 }
 catch (Exception e)
 {
 throw new SQLException(e.toString());
 }
 }
 else
 {
 conn = (OracleConnection)connStack.pop();
 }
 }

 //
 // Enable auto-commit by default.
 //
 conn.setAutoCommit(true);

 return conn;
 }

Handling Image Processing for Unknown Image Formats
In the insertNewPhoto() method in both the PhotoAlbumServlet class of the
interMedia Java Servlet Photo Album application and in the PhotoAlbumBean
class of the interMedia JavaServer Pages Photo Album application, a new photo is
inserted into the photo album, creating a thumbnail image at the same time. If the
application tries to process an image in cases when the image format is unknown,
then when the application calls the processCopy() method, the application will
always fail. To work around this potential problem, the application uses the
following try block and catch block to catch any SQL exceptions:

 }

Handling Exceptions

9-42 Oracle interMedia User’s Guide

 try
 {
 image.processCopy("maxScale=50,50", thumb);
 }
 catch (SQLException e)
 {
 thumb.deleteContent();
 thumb.setContentLength(0);
 }

In this example, when the image format is unknown and a thumbnail image cannot
be created, the application catches the SQL exception and calls the deleteContent()
method to delete the content of the thumbnail image, and then calls the
setContentLength() method to set its length to zero.

Sample Programs A-1

A
Sample Programs

Oracle interMedia includes a number of scripts and sample programs that you can
use. These consist of SQL, OCI, Java, PL/SQL, and ASP/VBScript sample
applications (demos).

Sample interMedia SQL, Java, and OCI applications are available in the following
directories after you install interMedia:

On UNIX
<ORACLE_HOME>/ord/aud/demo/
<ORACLE_HOME>/ord/doc/demo/
<ORACLE_HOME>/ord/img/demo/
<ORACLE_HOME>/ord/vid/demo/
<ORACLE_HOME>/ord/http/demo/
<ORACLE_HOME>/ord/im/demo/java/

On Windows
<ORACLE_HOME>\ord\aud\demo\
<ORACLE_HOME>\ord\doc\demo\
<ORACLE_HOME>\ord\img\demo\
<ORACLE_HOME>\ord\vid\demo\
<ORACLE_HOME>\ord\http\demo\
<ORACLE_HOME>\ord\im\demo\java\

A.1 Sample Audio SQL Scripts
The audio SQL scripts consist of the following files:

� auddemo.sql - audio demo that shows features of the audio object including:

– Checking interMedia objects

– Creating a sample table with audio in it

Sample ORDDoc SQL Scripts

A-2 Oracle interMedia User’s Guide

– Inserting NULL rows into the audio table

– Selecting the rows

– Checking all the audio attributes directly

– Checking all the audio attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 7.2.1.3
on how to extend interMedia audio features to support a new audio data
format

� fplugins.sql - demo format plug-in specification that you can use as a
guideline to write any audio format plug-in you want to support

� fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any audio format plug-in you want to support

See the README.txt file in the <ORACLE_HOME>/ord/aud/demo directory on
UNIX and <ORACLE_HOME>\ord\aud\demo directory on Windows for
requirements and instructions on running this SQL demo.

See Section A.5 for a description of the Java sample application that is provided to
help you learn to use the multimedia client-side Java classes so you can build your
own applications.

A.2 Sample ORDDoc SQL Scripts
The ORDDoc SQL scripts consist of the following files:

� docdemo.sql - ORDDoc demo that shows features of the ORDDoc object.

See the README.txt file in the <ORACLE_HOME>/ord/doc/demo/ directory on
UNIX and <ORACLE_HOME>\ord\doc\demo\ directory on Windows for
requirements and instructions on running this SQL demo.

See Section A.5 for a description of the Java sample application that is provided to
help you learn to use the multimedia client-side Java classes so you can build your
own applications.

Sample OCI C Program for Modifying Images or Testing Image Installation

Sample Programs A-3

A.3 Sample OCI C Program for Modifying Images or Testing Image
Installation

Once you have installed interMedia, you may choose to run the interMedia image
OCI C program. This program can also be used as a test to confirm successful
installation.

This section describes how to run the interMedia image sample program.

The interMedia image sample files are located in <ORACLE_
HOME>/ord/img/demo on UNIX and <ORACLE_HOME>\ord\img\demo on
Windows where <ORACLE_HOME> is the Oracle home directory.

A.3.1 Sample Program Installation Steps
For interMedia image features, see the README.txt file at <ORACLE_
HOME>/ord/img/demo (on UNIX), and <ORACLE_HOME>\ord\img\demo (on
Windows), where <ORACLE_HOME> is the Oracle home.

A.3.2 Running the Program
The file imgdemo.c is a sample program that shows how interMedia image
features can be used from within a program. The program is written in C and uses
OCI, Oracle Call Interface, to access the database and use interMedia image features.

The program operates on imgdemo.dat, which is a bitmap (BMP) image in the
demo directory. Optionally, you can supply an image file name on the command
line, provided the file resides in the same directory as the program. In either case,
once the image has been manipulated by interMedia, the resulting image is written
to the file imgdemo.out and can then be viewed with common rendering tools that
you supply.

When the program is run, it deletes and re-creates a table named IMGDEMOTAB in
the SCOTT/TIGER schema of the default database. This table is used to hold the
program data. Once the table is created, a reference to the image file is inserted into
the table. The data is then loaded into the table and converted to JFIF using the
processCopy() method of ORDImage.

The image properties are extracted within the database using the setProperties()
method. An UPDATE statement is issued after the setProperties() invocation. This
is required to make the object attributes permanent because the setProperties()
invocation has updated only a local copy of the type attributes.

Sample Video SQL Scripts

A-4 Oracle interMedia User’s Guide

Next, the process() method is used to cut and scale the image within the database.
This is followed by an update that commits the change. The program cuts a portion
of the image 100 pixels wide by 100 pixels high, starting from pixel location
(100,100). This subimage is scaled to twice its original size and the resulting image is
written out to the file system in a file named imgdemo.out.

Upon completion, the program leaves the imgdemo.out file in the current
directory. It also leaves the table IMGDEMOTAB in the SCOTT/TIGER schema of the
database.

Execute the program by typing imgdemo on the command line.

Use the command shown in Example A–1.

Example A–1 Execute the Sample Program from the Command Line

 $ imgdemo <optional-image-filename>

The program displays a number of messages describing its progress, along with any
errors encountered in the event that something was not set up correctly. Expect to
see the following messages:

Dropping table IMGDEMOTAB...
Creating and populating table IMGDEMOTAB...
Loading data into cartridge...
Modifying image characteristics...
Writing image to file imgdemo.out...
Disconnecting from database...
Logged off and detached from server.
Demo completed successfully.

If the program encounters any errors, it is likely that either interMedia software has
not been installed correctly, or the database has not been started. If the program
completes successfully, the original image and the resulting image, which has
undergone the cutting and scaling described earlier, can be viewed with common
image rendering tools.

See Section A.5 for a description of the Java sample application that is provided to
help you learn to use the multimedia client-side Java classes so you can build your
own applications.

A.4 Sample Video SQL Scripts
The video SQL scripts consist of the following files:

Java Sample Applications

Sample Programs A-5

� viddemo.sql - video demo that shows features of the video object including:

– Checking interMedia objects

– Creating a sample table with video in it

– Inserting NULL rows into the video table

– Selecting the rows

– Checking all the video attributes directly

– Checking all the video attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 7.2.3.3
on how to extend interMedia video features to support a new video data
format

� fplugins.sql - demo format plug-in specification that you can use as a
guideline to write any video format plug-in you want to support

� fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any video format plug-in you want to support

See the README.txt file in the <ORACLE_HOME>/ord/vid/demo directory on
UNIX and <ORACLE_HOME>\ord\vid\demo directory on Windows for
requirements and instructions on how to run this SQL demo.

See Section A.5 for a description of the Java sample application that is provided to
help you learn to use the multimedia client-side Java classes so you can build your
own applications.

A.5 Java Sample Applications
An IMExample Java sample application has been provided to help you learn to use
the audio, video, image, and media (ORDDoc) client-side Java classes so you can
build your own applications. In this sample application, the sample schema is used
to demonstrate the use of the OrdAudio, OrdVideo, OrdImage, and OrdDoc Java
objects.

See the README.txt file in the <ORACLE_HOME>/ord/im/demo/java directory
on UNIX and <ORACLE_HOME>\ord\im\demo\java directory on Windows for
requirements and instructions on how to run this Java sample application. See
Chapter 4 for a description of this Java sample application. See Oracle interMedia
Java Classes Reference for information about using Oracle interMedia Java Classes.

Additional PL/SQL Sample Packages

A-6 Oracle interMedia User’s Guide

The IMExample Java sample application files are located in:

<ORACLE_HOME>/ord/im/demo/java (on UNIX)

<ORACLE_HOME>\ord\im\demo\java (on Windows)

The interMedia Java Servlet Photo Album application shows how to use interMedia
Java Classes for servlets and JSP to upload and retrieve multimedia data. See the
README.txt file at:

<ORACLE_HOME>/ord/http/demo/servlet (on UNIX)

<ORACLE_HOME>\ord\http\demo\servlet (on Windows)

The interMedia JavaServer Pages Photo Album application shows how to use
interMedia Java Classes for servlets and JSP to upload and retrieve multimedia data.
See the README.txt file at:

<ORACLE_HOME>/ord/http/demo/jsp (on UNIX)

<ORACLE_HOME>\ord\http\demo\jsp (on Windows)

A.6 Additional PL/SQL Sample Packages
Two additional PL/SQL sample application packages are available after installing
interMedia. These packages include:

� Oracle interMedia PL/SQL Web Toolkit Photo Album application

The interMedia PL/SQL Web Toolkit Photo Album application shows how to
upload and retrieve image data using the PL/SQL Web Toolkit and PL/SQL
Gateway. The SQL scripts and README.txt file are at:

<ORACLE_HOME>/ord/http/demo/plsqlwtk (on UNIX)

<ORACLE_HOME>\ord\http\demo\plsqlwtk (on Windows)

See Section 3.1.1 for more information about installing and using this
application.

� Oracle interMedia Code Wizard for the PL/SQL Gateway

The interMedia Code Wizard for the PL/SQL Gateway is an example of a tool
that lets you create PL/SQL procedures for the PL/SQL Gateway to upload and
retrieve media data stored in the database using any of the interMedia object
types. The SQL scripts and README.txt file are at:

<ORACLE_HOME>/ord/http/demo/plsgwycw (on UNIX)

Other Sample Programs

Sample Programs A-7

<ORACLE_HOME>\ord\http\demo\plsgwycw (on Windows)

See Section 3.2 for more information about installing and using this application.

A.7 Additional ASP/VBScript Sample Application
The interMedia ASP/VBScript Photo Album application illustrates how to upload
and retrieve multimedia data with an ASP/VBScript application. See the
README.txt file at:

<ORACLE_HOME>/ord/http/demo/asp (on UNIX)

<ORACLE_HOME>\ord\http\demo\asp (on Windows)

A.8 Other Sample Programs
See the program examples available from the interMedia Web page on the Oracle
Technology Network at

http://otn.oracle.com/sample_
code/products/intermedia/content.html

Sample SQL scripts that demonstrate how to set up a schema on your database are
also included on the Oracle Technology Network Web site.

Other Sample Programs

A-8 Oracle interMedia User’s Guide

Installing and Upgrading Oracle interMedia B-1

B
Installing and Upgrading Oracle interMedia

This appendix describes the manual installation of Oracle interMedia (see
Section B.1) as well as the manual upgrading of an installed version of Oracle
interMedia (see Section B.2).

B.1 Installing Oracle interMedia
Oracle interMedia is installed and configured with Oracle Database 10g. If, for some
reason, you need to install interMedia manually, you can follow the instructions in
this section, according to the following topics:

� Installation decisions

� Preinstallation steps

� Installation steps

B.1.1 Installation Decisions
The installation procedure creates the ORDSYS, ORDPLUGINS, SI_INFORMTN_
SCHEMA, and MDSYS users. These user IDs are the standard Oracle Database account
with special privileges.

Decision: Decide which tablespace to use for interMedia users (ORDSYS,
ORDPLUGINS, and SI_INFORMTN_SCHEMA), and which tablespace to use for the

Note: See the interMedia README.txt file located in <ORACLE_
HOME>/ord/im/admin on UNIX systems or <ORACLE_
HOME>\ord\im\admin on Windows systems for the latest
information.

Installing Oracle interMedia

B-2 Oracle interMedia User’s Guide

Spatial/interMedia Location Services user (MDSYS). Oracle Corporation suggests
you use the SYSAUX tablespace for both.

Decision: Decide on passwords for the ORDSYS, ORDPLUGINS, SI_INFORMTN_
SCHEMA, and MDSYS users. The installation uses default passwords for ORDSYS,
ORDPLUGINS, SI_INFORMTN_SCHEMA, and MDSYS. Then, it locks the accounts and
expires the passwords. You must change these passwords and unlock the accounts
after the installation completes if you want to log into these accounts directly.

The default password for the ORDSYS user during automatic installation is ORDSYS,
for ORDPLUGINS is ORDPLUGINS, for SI_INFORMTN_SCHEMA is SI_INFORMTN_
SCHEMA, and for MDSYS is MDSYS.

The installation process grants the EXECUTE privilege to the user group PUBLIC
for the interMedia packages and objects installed in the ORDSYS, ORDPLUGINS, and
SI_INFORMTN_SCHEMA schemas.

B.1.2 Preinstallation Steps
Perform the following preinstallation tasks prior to manually installing and
configuring interMedia. For instructions, see Oracle Installation Guide for your
operating system:

1. Install Oracle Database 10g Release 1 (10.1), including PL/SQL and Oracle JVM.

2. Create the database.

3. Start the database.

4. Verify that Oracle JVM is installed and is valid.

You can verify that Oracle JVM is correctly installed by running SQL*Plus,
connecting as SYSDBA, and issuing the following query:

SQL> select version, status from dba_registry where comp_id=’JAVAVM’;

Ensure that the version is correct and the status is VALID.

B.1.3 Installation Steps
Perform the following mandatory configuration steps. Remember, you need to do
this only if you are configuring interMedia manually. You do not need to do this if
you use the Database Configuration Assistant.

References to <ORACLE_HOME> in these instructions represent the Oracle home
directory.

Upgrading an Installed Version of Oracle interMedia

Installing and Upgrading Oracle interMedia B-3

1. Use Oracle Universal Installer to install the files that make up interMedia on
your system.

2. Create the users and grant the appropriate privileges.

Start SQL*Plus.

% sqlplus

Connect as SYSDBA.

SQL> connect / as SYSDBA

Invoke ordinst.sql with two parameters for interMedia tablespace and
Location Services tablespace.

SQL> @<ORACLE_HOME>/ord/admin/ordinst.sql SYSAUX SYSAUX (on UNIX)
 @<ORACLE_HOME>\ord\admin\ordinst.sql SYSAUX SYSAUX (on Windows)

3. Install interMedia types and packages.

SQL> @<ORACLE_HOME>/ord/im/admin/iminst.sql (on UNIX)
 @<ORACLE_HOME>\ord\im\admin\iminst.sql (on Windows)

4. Start the listener.

The listener must be configured to use external procedure calls. Check your
tnsnames.ora file for an entry called extproc_connection_data and in
the listener.ora file for an entry called extproc.

See your network documentation for details. If this is not done properly,
interMedia will not work for all supported formats.

Once these mandatory installation steps have been completed, interMedia is ready
for use.

B.2 Upgrading an Installed Version of Oracle interMedia
If you upgrade a database from an earlier release of Oracle Database to Oracle
Database 10g, interMedia will be upgraded automatically if detected in the source
database. See Oracle Database Upgrade Guide for detailed instructions.

Verifying an Installed Version of Oracle interMedia

B-4 Oracle interMedia User’s Guide

B.3 Verifying an Installed Version of Oracle interMedia
After installing or upgrading interMedia, you can verify the interMedia installation
by invoking the interMedia check script.

To run the interMedia check script, connect as SYSDBA and invoke imchk.sql as
follows:

1. Start SQL*Plus.

% sqlplus

2. Connect as SYSDBA.

SQL> connect / as SYSDBA

3. Invoke imchk.sql.

On UNIX
SQL> @<ORACLE_HOME>/ord/im/admin/imchk.sql

On Windows
SQL> @<ORACLE_HOME>\ord\im/admin\imchk.sql

The check script will produce the list of interMedia components and their status
values, and a summary line indicating whether or not the interMedia installation is
valid. All interMedia components are expected to have the status VALID.

B.4 Downgrading an Installed Version of Oracle interMedia
Oracle interMedia is automatically downgraded when you downgrade a database
with the interMedia feature installed. See Oracle Database Upgrade Guide for detailed
instructions.

Index-1

Index
A
application

connecting to a database, 2-11
ASP/VBScript Web Toolkit photo album sample

application, 3-32, A-7
audio data examples, 9-1

PL/SQL
populating ORDAudio objects with BLOB

data, 9-3
using audio types with object views, 9-1

audio SQL scripts, A-1

B
BUFFER_POOL_KEEP parameter, 8-6
BUFFER_POOL_RECYCLE parameter, 8-6
bulk data loading methods, 8-16

C
CACHE option, 8-11
CHUNK option, 8-12
Code Wizard for the PL/SQL Gateway sample

application, 3-35, A-6
codecs (compression and decompression

schemes), 1-5
color visual attribute, 5-4

location visual attribute, 5-5
specified with location, 5-5

content-based retrieval
benefits, 5-1
overview, 5-1

D
data

loading multimedia, 1-14
data formats, 1-8
database

connecting to an application, 2-11
database initialization parameter

BUFFER_POOL_KEEP, 8-6
BUFFER_POOL_RECYCLE, 8-6
DB_BLOCK_SIZE, 8-3, 8-4, 8-27
DB_CACHE_SIZE, 8-3, 8-5, 8-27
LARGE_POOL_SIZE, 8-3
LOG_BUFFER, 8-8
setting, 8-2
SHARED_POOL_RESERVED_SIZE, 8-7
SHARED_POOL_SIZE, 8-3, 8-7

DB_BLOCK_SIZE parameter, 8-3, 8-4, 8-27
DB_CACHE_SIZE parameter, 8-3, 8-5, 8-27
DBA tuning tips, 8-1
DBMS_LOB package

loading data, 8-22, 8-23
distance, 5-8
domain index, 5-12
downgrading an installed version of Oracle

interMedia, B-4

E
exceptions handling, 9-38
exceptions handling examples

Java servlet photo album application, 9-40
JavaServer pages photo album application, 9-40
PL/SQL Web Toolkit photo album

Index-2

application, 9-39
extending interMedia

audio default format, 7-11
document default format, 7-16
new audio format, 7-13, 7-16
new data source, 7-6
new document format, 7-16
new image object type, 7-22
new video format, 7-20
video default format, 7-18

extensible index, 5-12

H
handling exceptions, 9-38
handling exceptions examples

Java servlet photo album application, 9-40
JavaServer pages photo album application, 9-40
PL/SQL Web Toolkit photo album

application, 9-39

I
image

attributes, 5-2
image data examples

addressing globalization support issues, 9-37
PL/SQL

populating ORDImage objects with BFILE
data, 9-27

populating ORDImage objects with HTTP
data, 9-35

image OCI C sample program, A-3
IMExample Java sample application, 4-1, A-5
indexing signatures, 5-12
INITIAL and NEXT parameters, 8-12
initializing interMedia column objects, 8-8
installation location of sample programs, A-1
installing and upgrading

downgrading an installed version of Oracle
interMedia, B-4

installing Oracle interMedia, B-1
upgrading an Oracle interMedia

installation, B-3
verifying an Oracle interMedia installation, B-4

interchange format, 1-9
interMedia

guidelines for best performance results, 8-26
improving multimedia LOB data retrieval and

update performance, 8-27
installing and upgrading, B-1
media data storage model, 1-4
objects types, 1-4
reading data from an object, 8-25

interMedia column objects
initializing column objects, 8-8
setting to empty, 8-9
setting to NULL, 8-8
strategies with, 8-8
tablespace, 8-9

J
Java Media Framework (JMF), 6-1
Java servlet photo album sample application, 3-11,

A-6
JavaServer pages photo album sample

application, 3-22, A-6
JMF (Java Media Framework), 6-1
JMF applications, 6-6
JMStudio, 6-5

L
LARGE_POOL_SIZE parameter, 8-3
loading data

bulk methods, 8-16
multimedia, 1-14
using DBMS_LOB package, 8-22, 8-23
using interMedia Annotator, 1-15
using OCI, 8-22
using PL/SQL, 1-15, 8-17
using SQL*Loader, 1-14

loading FILE data into interMedia objects, 8-16
LOB index

using with interMedia column objects, 8-10
location visual attribute, 5-5

specified with color, 5-5
LOG_BUFFER parameter, 8-8
LOGGING option, 8-11

Index-3

lossless compression, 1-9
lossy compression, 1-9

M
matching

preparing or selecting images for, 5-15
MAXEXTENTS parameter, 8-14
media data examples

PL/SQL
populating ORDDoc objects with BFILE

data, 9-20
using ORDDoc object type as a repository, 9-13

memory allocation
tuning, 8-5

multimedia LOB data retrieval and update
performance

improving, 8-27

O
object relational technology, 1-2
object views, 9-1
OCI

loading data, 8-22
Oracle Custom DataSource and DataSink for JMF

versions 2.0 and 2.1, 6-1
data retrieval, 6-4
data uploading, 6-3
installation, 6-1
JMF applications, 6-6
JMStudio, 6-5
properties, 6-2
registration, 6-1, 6-2

Oracle Technology Network sample
programs, A-7

ORDDoc SQL scripts, A-2
ORDPLUGINS.ORDX_DEFAULT_AUDIO

package, 7-11
ORDPLUGINS.ORDX_DEFAULT_DOC

package, 7-16
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, 7-18
ORDPLUGINS.ORDX_FILE_SOURCE

package, 7-2

ORDPLUGINS.ORDX_HTTP_SOURCE
package, 7-4

P
packages

ORDPLUGINS.ORDX_DEFAULT_
AUDIO, 7-11

ORDPLUGINS.ORDX_DEFAULT_DOC, 7-16
ORDPLUGINS.ORDX_DEFAULT_VIDEO, 7-18
ORDPLUGINS.ORDX_FILE_SOURCE, 7-2
ORDPLUGINS.ORDX_HTTP_SOURCE, 7-4

packages or PL/SQL plug-ins, 7-2, 7-15, 7-18
PCTFREE parameter, 8-15
PCTINCREASE parameter, 8-14
PCTVERSION option, 8-10
performance results

guidelines for using interMedia objects, 8-26
PL/SQL

audio data example
populating ORDAudio objects with BLOB

data, 9-3
image data example

populating ORDImage objects with BFILE
data, 9-27

populating ORDImage objects with HTTP
data, 9-35

loading data, 1-15
example, 8-17

media data example
populating ORDDoc objects with BFILE

data, 9-20
PL/SQL Web Toolkit photo album sample

application, 3-3, A-6
preparing

images for matching, 5-15
protocol, 1-9

R
reading data from an interMedia object, 8-25
reading interMedia data

example, 8-25
retrieval, content-based

benefits, 5-1

Index-4

overview, 5-1

S
sample programs, A-1

ASP/VBScript Web Toolkit photo album, 3-32,
A-7

audio SQL scripts, A-1
Code Wizard for the PL/SQL Gateway, 3-35,

A-6
image OCI C, A-3
IMExample Java sample application, 4-1, A-5
installation location, A-1
Java servlet photo album, 3-11, A-6
JavaServer pages photo album, 3-22, A-6
on Oracle Technology Network, A-7
ORDDoc SQL scripts, A-2
PL/SQL

populating ORDAudio objects with BLOB
data, 9-3

populating ORDDoc objects with BFILE
data, 9-20

populating ORDImage objects with BFILE
data, 9-27

populating ORDImage objects with HTTP
data, 9-35

PL/SQL Web Toolkit photo album, 3-3, A-6
video SQL scripts, A-4

segment and physical attributes
PCTFREE parameter, 8-15

selecting images for matching, 5-15
setting

column object to empty, 8-9
column objects to NULL, 8-8

setting database initialization parameters, 8-2
SGA, 8-2

database initialization parameters, 8-3
sizing, 8-3
sizing using DB_BLOCK_SIZE parameter, 8-3
sizing using DB_CACHE_SIZE parameter, 8-3
sizing using LARGE_POOL_SIZE

parameter, 8-3
sizing using SHARED_POOL_SIZE

parameter, 8-3
shape (visual attribute), 5-4

SHARED_POOL_RESERVED_SIZE parameter, 8-7
SHARED_POOL_SIZE parameter, 8-3, 8-7
signature, 5-2

indexing, 5-12
similarity calculation, 5-10
SQL*Loader

example loading multimedia data, 8-21
loading data, 1-14

storage characteristics
CACHE option, 8-11
CHUNK option, 8-12
DB_BLOCK_SIZE parameter, 8-4
INITIAL and NEXT parameters, 8-12
LOGGING option, 8-11
MAXEXTENTS parameter, 8-14
PCTINCREASE parameter, 8-14
PCTVERSION option, 8-10
STORAGE IN ROW clause, 8-15

STORAGE IN ROW clause, 8-15
strategies for column objects, 8-8
system global area. See SGA

T
tablespace characteristics

LOB index, 8-10
tablespace, 8-9

texture (visual attribute), 5-4
threshold, 5-11
tuning memory allocation, 8-5

U
upgrading an Oracle interMedia installation, B-3

V
verifying an Oracle interMedia installation, B-4
video SQL scripts, A-4
visual attributes, 5-2

W
weight, 5-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions
	Changes to This Guide

	1 Introduction to Oracle interMedia
	1.1� Object Relational Technology
	1.2� SQL/MM Still Image Standard Support
	1.3� Multimedia Content Management
	1.4� Audio Concepts
	1.4.1� Digitized Audio
	1.4.2� Audio Components

	1.5� ORDDoc or Heterogeneous Media Data Concepts
	1.5.1� Digitized Heterogeneous Media Data
	1.5.2� Heterogeneous Media Data Components

	1.6� Image Concepts
	1.6.1� Digitized Images
	1.6.2� Image Components

	1.7� Video Concepts
	1.7.1� Digitized Video
	1.7.2� Video Components

	1.8� Multimedia Storage
	1.8.1� Storing Multimedia Data
	1.8.2� Querying Multimedia Data
	1.8.3� Accessing and Manipulating Multimedia Data
	1.8.4� Metadata Extraction
	1.8.5� Image Processing
	1.8.6� Content-Based Retrieval of Images
	1.8.7� interMedia Speech Mining and Speech Indexing

	1.9� Loading Multimedia Data
	1.10� Accessing Multimedia Data
	1.10.1� Oracle interMedia Java Classes
	1.10.2� Streaming Content from Oracle Database
	1.10.3� Support for Web Technologies
	1.10.4� interMedia Custom DataSource and DataSink Classes for JMF 2.0/2.1
	1.10.5� interMedia Support for Java Advanced Imaging (JAI)

	1.11� interMedia Architecture
	1.12� Extending Oracle interMedia

	2 Application Development
	2.1� Developing PL/SQL Web Applications
	2.2� Developing Java-Based Web Applications Using JDBC

	3 Developing Media Upload and Retrieval Applications
	3.1� interMedia Photo Album Sample Applications
	3.1.1� Oracle interMedia PL/SQL Web Toolkit Photo Album Sample Application
	3.1.1.1� Running the Photo Album Application
	3.1.1.2� Description of the Photo Album Application

	3.1.2� Oracle interMedia Java Servlet Photo Album Sample Application
	3.1.2.1� Running the Java Servlet Photo Album Application
	3.1.2.2� Description of the interMedia Java Servlet Photo Album Application

	3.1.3� Oracle interMedia JavaServer Pages (JSP) Photo Album Sample Application
	3.1.3.1� Running the JSP Photo Album Application
	3.1.3.2� Description of the interMedia JSP Photo Album Application

	3.1.4� Oracle interMedia ASP/VBScript Photo Album Sample Application
	3.1.4.1� Running the ASP/VBScript Photo Album Application
	3.1.4.2� Description of the ASP/VBScript Photo Album Application

	3.2� interMedia Code Wizard Sample Application
	3.2.1� Using the Code Wizard
	3.2.1.1� Creating a New DAD or Choosing an Existing DAD
	3.2.1.2� Authorizing a DAD
	3.2.1.3� Creating and Testing Media Upload and Retrieval Procedures
	3.2.1.4� Creating a Media Upload Procedure
	3.2.1.5� Creating a Media Retrieval Procedure
	3.2.1.6� Using the PL/SQL Gateway Document Table
	3.2.1.7� How Time Zone Information Is Used to Support Browser Caching

	3.2.2� Sample Session Using Images
	3.2.3� Sample Session Using Multiple Object Columns
	3.2.4� Known Restrictions of the Oracle interMedia Code Wizard

	4 IMExample Java Sample Application
	4.1� Overview
	4.2� Compiling and Running the IMExample Application
	4.3� Description of the IMExample Application

	5 Content-Based Retrieval Concepts
	5.1� Overview and Benefits
	5.2� How Content-Based Retrieval Works
	5.2.1� Color
	5.2.2� Texture
	5.2.3� Shape

	5.3� How Matching Works
	5.3.1� Weight
	5.3.2� Score
	5.3.3� Similarity Calculation
	5.3.4� Threshold Value

	5.4� Using an Index to Compare Signatures
	5.5� Preparing or Selecting Images for Useful Matching

	6 Custom DataSource and DataSink for JMF Versions 2.0 and 2.1
	6.1� Installing and Registering Custom DataSource and DataSink
	6.1.1� Registration Method 1
	6.1.2� Registration Method 2

	6.2� Using Custom DataSource and DataSink
	6.2.1� Defining the Property File
	6.2.2� Uploading Media Data
	6.2.3� Retrieving Media Data
	6.2.4� Accessing Media Data Through JMStudio
	6.2.5� Accessing Media Data Through a JMF Application

	7 Extending Oracle interMedia
	7.1� Supporting Other External Sources
	7.1.1� Packages or PL/SQL Plug-ins
	7.1.1.1� ORDPLUGINS.ORDX_FILE_SOURCE Package
	7.1.1.2� ORDPLUGINS.ORDX_HTTP_SOURCE Package
	7.1.1.3� Extending interMedia to Support a New Data Source

	7.2� Supporting Other Media Data Formats
	7.2.1� Supporting Other ORDAudio Data Formats
	7.2.1.1� Packages or PL/SQL Plug-ins
	7.2.1.2� ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	7.2.1.3� Extending interMedia to Support a New Audio Data Format

	7.2.2� Supporting Other ORDDoc Data Formats
	7.2.2.1� Packages or PL/SQL Plug-ins
	7.2.2.2� ORDPLUGINS.ORDX_DEFAULT_DOC Package
	7.2.2.3� Extending interMedia to Support a New Media Data Format

	7.2.3� Supporting Other Video Data Formats
	7.2.3.1� Packages or PL/SQL Plug-ins
	7.2.3.2� ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	7.2.3.3� Extending interMedia to Support a New Video Data Format

	7.2.4� Supporting Other Image Data Formats

	7.3� Extending interMedia with a New Type
	7.4� Supporting Media Data Processing
	7.4.1� Supporting Audio Data Processing
	7.4.2� Supporting Video Data Processing

	8 Tuning Tips for the DBA
	8.1� Setting Database Initialization Parameters
	8.2� Issues to Consider in Creating Tables with Column Objects Containing BLOBs
	8.2.1� Initializing Internal Column Objects Containing BLOBs to NULL or EMPTY
	8.2.2� Specifying Tablespace and Storage Characteristics for Column Objects Containing BLOBs
	8.2.3� Segment Attributes and Physical Attributes

	8.3� Improving Multimedia Data INSERT Performance in Objects Containing LOBs
	8.4� Loading Multimedia Data Using a WebDAV-Compliant Client Application
	8.5� Transferring Multimedia Data Using Oracle Data Pump
	8.6� Reading Data from an ORDVideo Object Using the readFromSource() Method in a PL/SQL Script
	8.7� Getting the Best Performance Results
	8.8� Improving Multimedia LOB Data Retrieval and Update Performance

	9 interMedia Examples
	9.1� Audio Data Examples
	9.1.1� Using Audio Types with Object Views
	9.1.2� Scripts for Populating ORDAudio Objects with BLOB Data

	9.2� Media Data Examples
	9.2.1� Using the ORDDoc Object Type as a Repository
	9.2.2� Scripts for Creating and Populating a Media Table from a BFILE Data Source

	9.3� Image Data Examples
	9.3.1� Scripts for Creating and Populating an Image Table from a BFILE Data Source
	9.3.2� Scripts for Populating an Image Table from an HTTP Data Source
	9.3.3� Addressing Globalization Support Issues

	9.4� Video Data Examples
	9.5� Handling Exceptions
	9.5.1� Handling interMedia Exceptions in PL/SQL
	9.5.2� Handling interMedia Exceptions in Java

	A Sample Programs
	A.1� Sample Audio SQL Scripts
	A.2� Sample ORDDoc SQL Scripts
	A.3� Sample OCI C Program for Modifying Images or Testing Image Installation
	A.3.1� Sample Program Installation Steps
	A.3.2� Running the Program

	A.4� Sample Video SQL Scripts
	A.5� Java Sample Applications
	A.6� Additional PL/SQL Sample Packages
	A.7� Additional ASP/VBScript Sample Application
	A.8� Other Sample Programs

	B Installing and Upgrading Oracle interMedia
	B.1� Installing Oracle interMedia
	B.1.1� Installation Decisions
	B.1.2� Preinstallation Steps
	B.1.3� Installation Steps

	B.2� Upgrading an Installed Version of Oracle interMedia
	B.3� Verifying an Installed Version of Oracle interMedia
	B.4� Downgrading an Installed Version of Oracle interMedia

	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

