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Preface

This manual discusses the basic concepts underlying Oracle Data Mining (ODM). 
Details of programming with the Java and PL/SQL interfaces are presented in the 
Oracle Data Mining Application Developer’s Guide.

Intended Audience
This manual is intended for anyone planning to write data mining programs using 
the Oracle Data Mining interfaces. Familiarity with Java, PL/SQL, databases, and 
data mining is assumed.

Structure
This manual is organized as follows:

■ Chapter 1, "Introduction to Oracle Data Mining"

■ Chapter 2, "Data for Oracle Data Mining"

■ Chapter 3, "Predictive Data Mining Models"

■ Chapter 4, "Descriptive Data Mining Models"

■ Chapter 5, "Data Mining Using the Java Interface"

■ Chapter 6, "Objects and Functionality in the Java Interface"

■ Chapter 7, "Data Mining Using DBMS_DATA_MINING"

■ Chapter 8, "Text Mining Using Oracle Data Mining"

■ Chapter 9, "Oracle Data Mining Scoring Engine"

■ Chapter 10, "Sequence Similarity Search and Alignment (BLAST)"



xii

■ Appendix A, "ODM Interface Comparison"

■ Glossary

Sample applications and detailed uses cases are provided in the Oracle Data Mining 
Application Developer’s Guide.

Where to Find More Information
The documentation set for Oracle Data Mining is part of the Oracle Database 10g 
Documentation Library. The ODM documentation set consists of the following 
documents, available online:

■ Oracle Data Mining Administrator’s Guide, 10g Release 1 (10.1) 

■ Oracle Data Mining Concepts, 10g Release 1 (10.1)  (this document)

■ Oracle Data Mining Application Developer’s Guide, 10g Release 1 (10.1) 

Last-minute information about ODM is provided in the platform-specific release 
notes or README files.

For detailed information about the ODM Java interface, see the ODM Javadoc 
documentation in the directory $ORACLE_HOME/dm/doc/jdoc (UNIX) or 
%ORACLE_HOME%\dm\doc\jdoc (Windows) on any system where ODM is 
installed.

For detailed information about the PL/SQL interface, see  the Supplied PL/SQL 
Packages and Types Reference.

For information about the data mining process in general, independent of both 
industry and tool, a good source is the CRISP-DM project (Cross-Industry Standard 
Process for Data Mining) (http://www.crisp-dm.org/).

Related Manuals
For more information about the database underlying Oracle Data Mining, see:

■ Oracle Administrator’s Guide, 10g Release 1 (10.1) 

■ Oracle Database Installation Guide for your platform.

For information about developing applications to interact with the Oracle Database, 
see 

■ Oracle Application Developer’s Guide — Fundamentals, 10g Release 1 (10.1) 
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For information about upgrading from Oracle Data Mining release 9.0.1 or release 
9.2.0, see 

■ Oracle Database Upgrade Guide, 10g Release 1 (10.1)  

■ Oracle Data Mining Administrator’s Guide, 10g Release 1 (10.1)    

For information about installing Oracle Data Mining, see 

■ Oracle Installation Guide, 10g Release 1 (10.1)  

■ Oracle Data Mining Administrator’s Guide, 10g Release 1 (10.1) 

Conventions
In this manual, Windows refers to the Windows 95, Windows 98, Windows NT, 
Windows 2000, and Windows XP operating systems.

The SQL interface to Oracle is referred to as SQL. This interface is the Oracle 
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly 
referred to as the ANSI/ISO SQL standard or SQL92. 

In examples, an implied carriage return occurs at the end of each line, unless 
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also followed in this manual:

Convention Meaning

    .
    .
    .

Vertical ellipsis points in an example mean that information not 
directly related to the example has been omitted.

 . . . Horizontal ellipsis points in statements or commands mean that 
parts of the statement or command not directly related to the 
example have been omitted

boldface Boldface type in text indicates the name of a class or method.

italic text Italic type in text indicates a term defined in the text, the glossary, or 
in both locations.

typewriter In interactive examples, user input is indicated by bold typewriter 
font, and system output by plain typewriter font.

typewriter Terms in italic typewriter font represent placeholders or variables.

< > Angle brackets enclose user-supplied names.
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Documentation Accessibility 

Documentation Accessibility 
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of 
assistive technology. This documentation is available in HTML format, and contains 
markup to facilitate access by the disabled community. Standards will continue to 
evolve over time, and Oracle Corporation is actively engaged with other 
market-leading technology vendors to address technical obstacles so that our 
documentation can be accessible to all of our customers. For additional information, 
visit the Oracle Accessibility Program Web site at 
http://www.oracle.com/accessibility/. 

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples 
in this document. The conventions for writing code require that closing braces 
should appear on an otherwise empty line; however, JAWS may not always read a 
line of text that consists solely of a bracket or brace. 

[ ] Brackets enclose optional clauses from which you can choose one or 
none

Convention Meaning
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1
Introduction to Oracle Data Mining

This chapter describes what data mining is, what Oracle Data Mining is, and 
outlines the data mining process.

1.1 What is Data Mining?
Too much data and not enough information — this is a problem facing many 
businesses and industries.

A solution lies here, with data mining. Most businesses have an enormous amount 
of data, with a great deal of information hiding within it, but "hiding" is usually 
exactly what it is doing: So much data exists that it overwhelms traditional methods 
of data analysis. 

Data mining provides a way to get at the information buried in the data. Data 
mining finds hidden patterns in large, complex collections of data, patterns that 
elude traditional statistical approaches to analysis. 

1.2 What Is Oracle Data Mining?
Oracle Data Mining (ODM) embeds data mining within the Oracle database. There 
is no need to move data out of the database into files for analysis and then back 
from files into the database for storing. The data never leaves the database — the 
data, data preparation, model building, and model scoring results all remain in the 
database. This enables Oracle to provide an infrastructure for application 
developers to integrate data mining seamlessly with database applications.

ODM is designed to support production data mining in the Oracle database. 
Production data mining is most appropriate for creating applications to solve 
problems such as customer relationship management, churn, etc., that is, any data 
mining problem for which you want to develop an application. 
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ODM provides single-user milt-session access to models. Model building is either 
synchronous in the PL/SQL interface or asynchronous in the Java interface.

1.2.1 Oracle Data Mining Programming Interfaces
ODM integrates data mining with the Oracle data base and exposes data mining 
through the following interfaces:

■ Java interface: Allows users to embed data mining in Java applications.

■ DBMS_DATA_MINING and DBMS_DATA_MINING_TRANSFORM: Allow 
users to embed data mining in PL/SQL applications. 

The ODM Java interface and DBMS_DATA_MINING have similar, but not identical, 
capabilities. For a comparison of the interfaces, see Appendix A.

1.2.2 ODM Data Mining Functions
Data mining functions are based on two kinds of learning: supervised (directed) and 
unsupervised (undirected). 

Supervised learning functions are typically used to predict a value, and are 
sometimes referred to as predictive models. Unsupervised learning functions are 
typically used to find the intrinsic structure, relations, or affinities in data but no 
classes or labels are assigned aprioi. These are sometimes referred to as descriptive 
models.

Oracle Data Mining supports the following data mining functions:

■ Predictive models (supervised learning):

– Classification: grouping items into discrete classes and predicting which 
class an item belongs to

– Regression: function approximation and forecast of continuous values

– Attribute importance: identifying the attributes that are most important in 
predicting results (Java interface only)

■ Descriptive models (unsupervised learning):

Note: The Java and PL/SQL interfaces do not produce models 
that are interoperable. For example, you cannot produce a model 
with Java and apply it using PL/SQL, or vice versa, in this release.
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– Clustering: finding natural groupings in the data

– Association models: "market basket" analysis

– Feature extraction: create new attributes (features) as a combination of the 
original attributes

■ Multimedia (TEXT)

■ Bioinformatics (BLAST)
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2
Data for Oracle Data Mining

This chapter describes data requirements and how the data is to be prepared before 
you can begin mining it using either of the Oracle Data Mining (ODM) interfaces. 
The data preparation required depends on the type of model that you plan to build 
and the characteristics of the data. For example data that only takes on a small 
number of values may not require binning. 

The following topics are addressed: 

■ Data, cases, and attributes

■ Data Requirements 

■ Data Format

■ Attribute Type

■ Missing Values

■ Prepared and unprepared data

■ Normalizing

■ Binning

2.1 ODM Data, Cases, and Attributes
Data used by ODM consists of tables stored in an Oracle database. The rows of a 
data table are referred to as cases, records, or examples. The columns of the data tables 
are referred to as attributes (also known as fields); each attribute in a record holds an 
item of information. The attribute names are constant from record to record; the 
values in the attributes can vary from record to record. For example, each record 
may have an attribute labeled "annual income". The value in the annual income 
attribute can vary from one record to another.
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ODM distinguishes two types of attributes: categorical and naumerical. Categorical 
attributes are those that define their values as belonging to a small number of 
discrete categories or classes; there is no implicit order associated with them. If 
there are only two possible values, for example yes and no, or male and female, the 
attribute is said to be binary. If there are more than two possible values, for example, 
small, medium, large, extra large, the attribute is said to be multiclass. 

Numerical attributes are those that take on continuous values, for example, annual 
income or age. Annual income or age could theoretically be any value from zero to 
infinity, though of course in practice each usually occupies a more realistic range. 

Numerical attributes can be treated as categorical: Annual income, for example, 
could be divided into three categories: low, medium, high. 

Certain ODM algorithms also support unstructured attributes. Currently only one 
type of unstructured attribute type Text is supported. At most one attribute of type 
Text is allowed in ODM data.

2.2 ODM Data Requirements
ODM has requirements on several aspects of input data: data table format, column 
data type, and attribute type.

2.2.1 ODM Data Table Format
ODM data can be in one of two formats:

■ Single-record case (also known as nontransactional; these are ordinary 
relational tables)

■ Multi-record case (also know as transactional), used for data with many 
attributes (DBMS_DATA_MINING uses nested tables; see Section 2.2.1.3.)

The Java interface for ODM provides a transformation utility reversePivot() 
that converts multiple data sources that are in single-record case format to one table 
that is in multi-record case format. Reverse pivoting can be used to create tables that 
exceed the 1000 column limit on Oracle tables by combining multiple tables that 
have a common key. 

2.2.1.1 Single-Record Case Data
In single-record case (nontransactional) format, each case is stored as one row in a 
table. Single-record-case data is not required to provide a key column to uniquely 
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identify each record. However, a key is needed to associate cases with resulting 
scores for supervised learning. This format is also referred to as nontransactional.

Note that certain algorithms in the ODM Java interface automatically and internally 
(that is, in a way invisible to the user) convert all single-record case data to 
multi-record case data prior to model building. If data is already in multi-record 
case format, algorithm performance might be enhanced over performance with data 
in single-record case format.

2.2.1.2 Multi-Record Case Data in the Java Interface
Oracle tables support at most 1,000 columns. This means that a case can have at 
most 1,000 attributes. Data that has more than 1,000 attributes is said to be wide. 
Certain classes of problems, especially problems in Bioinformatics, are associated 
with wide data.

The Java interface requires that wide data be in multi-record case format.

In multi-record case data format, each case is stored as multiple records (rows) in a 
table with columns sequence ID, attribute name, and value (these are user-defined 
names). This format is also referred to as transactional.

SequenceID is an INTEGER or NUMBER that associates the records that make up a 
single case in a multi-record case table, attribute name is a string containing the name 
of the attribute, and value is a number representing the value of the attribute. Note 
that the values in the value column must be of type NUMBER; non-numeric data 
must be converted to numeric data, usually by binning or explosion. 

2.2.1.3 Wide Data in DBMS_DATA_MINING
In the domains of bioinformatics, text mining, and other specialized areas, the data 
is wide and shallow — relatively few cases, but with one thousand or more mining 
attributes.

Wide data can be represented in a multi-record case format, where attribute/value 
pairs are grouped into collections (nested tables) associated with a given case ID. 
Each row in the multi-record collection represents an attribute name (and its 
corresponding value in another column in the nested table).

DBMS_DATA_MINING includes fixed collection types for defining columns. 

It is most efficient to represent multi--record case data as a view.
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2.2.1.3.1 Fixed Collection Types  The fixed collection types DM_Nested_Numericals 
and DM_Nested_Categoricals are used to define columns that represent 
collections of numerical attributes and categorical attributes respectively.

You can intersperse columns of types DM_Nested_Numericals and DM_Nested_
Categoricals with scalar columns that represent individual attributes in a table or 
view.

For a given case identifier, attribute names must be unique across all the collections 
and individual columns. The two fixed collection types enforce this requirement. 
The two collection types are based on the assumption that mining attributes of the 
same type (numerical versus categorical) are generally grouped together, just as a 
fact table contains values that logically correspond to the same entity.

2.2.1.3.2 Views for Multi-Record Case Format  For maximum efficiency, you should 
represent multi-record case data using object views, and use the view as input to 
BUILD and APPLY operations. Using views for multi-record case data has two 
main advantages:

■ All your mining attributes are available through a single row-source without 
impacting their physical data storage.

■ The view acts as a join specification on the underlying tables that can be utilized 
by the data mining server to efficiently access your data.

Figure 2–1 Single-Record Case and Multi-Record Case Data Format
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2.2.2 Column Data Types Supported by ODM
ODM does not support all the data types that Oracle supports. ODM attributes 
must have one of the following data types: 

■ VARCHAR2

■  CHAR

■  NUMBER

■  CLOB

■  BLOB

■  BFILE

■  XMLTYPE

■ URITYPE

The supported attribute data types have a default attribute type (categorical or 
numerical); Table 2–1 lists the default attribute type for each of these data types.

2.2.2.1 Unstructured Data in ODM
Some ODM algorithms (Support Vector Machine, Non-Negative Matrix 
Factorization, Association, and the implementation of k-means Clustering in 
DBMS_DATA_MINING) permit one column to be unstructured of type Text. For 
information about text mining, see Chapter 8.

2.2.2.2 Dates in ODM
ODM does not support the DATE data type. Depending on the meaning of the item, 
you convert items of type DATE to either type VARCHAR2 or NUMBER.

If, for example, the date serves as a timestamp indicating when a transaction 
occurred, converting the date to VARCHAR2 makes it categorical with unique values, 
one per record. These types of columns are known as "identifiers" and are not useful 
in model building. However, if the date values are coarse and significantly fewer 
than the number of records, this mapping may be fine. 

One way to convert a date to a number is as follows: select a starting date and 
subtract the starting date from each date value. This result produces a NUMBER 
column, which can be treated as a numerical attribute, and then binned as 
necessary.
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2.2.3 Attribute Type for Oracle Data Mining
Oracle Data Mining handles categorical and numerical attributes; it imputes the 
attribute type and, for the Java interface, the data type of the attribute as described 
in Table 2–1.

In situations where you have numbers that are treated as categorical data, you must 
typecast such attribute values using the TO_CHAR() operator and populate them 
into a VARCHAR2 or CHAR column representing the mining attribute.

In situations where you have numeric attribute values stored in a CHAR or 
VARCHAR2 column, you must typecast those attribute values using the TO_
NUMBER() operator and store them in a NUMBER column.

If persisting these transformed values in another table is not a viable option, you 
can create a view with these conversions in place, and provide the view name to 
represent the training data input for model building.

Values of a categorical attribute do not have any meaningful order; values of a 
numerical attribute do. This does not mean that the values of a categorical attribute 
cannot be ordered, but rather that the order is not used by the application. For 
example, since U.S. postal codes are numbers, they can be ordered; however, their 
order is not necessarily meaningful to the application, and they can therefore be 
considered categorical.

Table 2–1 Interpretation of Oracle Database Data Types by ODM

Oracle Type Default ODM Attribute Type
Default Java Data Type 
(Java interface only)

VARCHAR2 categorical String

CHAR length > 1 categorical String

NUMBER numerical Float

NUMBER 0 scale numerical Integer

CLOB Text Unstructured

LOB Text Unstructured

BLOB Text Unstructured

BFILE Text Unstructured

XMLTYPE Text Unstructured

URITYPE Text Unstructured
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2.2.3.1 Target t Attribute
Classification and Regression algorithms require a target attribute. A DBMS_
DATA_MINING predictive model can on predict a single target attribute. The target 
attribute for all classification algorithms can be numerical or categorical. SVM 
Regression supports only numerical target attributes.

2.2.4 Data Storage Issues
If there are a few hundred mining attributes and your application requires the 
attributes to be represented as columns in the same row of the table, data storage 
must be carefully designed. For a table with several columns, the key question to 
consider is the (average) row length, not the number of columns. Having more than 
255 columns in a table built with a smaller block size typically results in intrablock 
chaining. Oracle stores multiple row pieces in the same block, but the overhead to 
maintain the column information is minimal as long as all row pieces fit in a single 
data block. If the rows don't fit in a single data block, you may consider using a 
larger database block size (or use multiple block sizes in the same database). For 
more details, consult Oracle Database Concepts and Oracle Database Performance Tuning 
Guide.

2.2.5 Missing Values in ODM
Data tables often contain missing values.

2.2.5.1 Missing Values and Null Values in ODM
The following algorithms assume that a null values indicate missing values (and 
not as indicators of sparse data): NB, ABN, AI, k-Means (Java interface), and 
O-Cluster.

2.2.5.2 Missing Values Handling
ODM is robust in handling missing values and does not require users to treat 
missing values in any special way. ODM will ignore missing values but will use 
non-missing data in a case.

In some situations you must be careful, for example, in transactional format, to 
distinguish between a "0" that has an assigned meaning and an empty cell. 

Note:  Do not confuse missing values with sparse data.
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2.2.6 Sparse Data in Oracle Data Mining
Data is said to be sparse if only a small fraction (no more than 20%, often 3% or less) 
of the attributes are non-zero or non-null for any given case. Sparse data occurs, for 
example, in market basket problems. In a grocery store, there might be 10,000 
products in the store, and the average size of a basket (the collection of distinct 
items that a customer purchases in a typical transaction) is 50 or fewer products. In 
this example, a transaction (case or record) has at most 50 out of 10,000 attributes 
that are not null. This implies that the fraction of non-zero attributes in the table (or 
the density) is 50/10,000, or 0.5%. This density is typical for market basket and text 
processing problems. 

Association models are designed to process sparse data; indeed, if the data is not 
sparse, the algorithm may require a large amount of temporary space and may not 
be able to build a model.

Different algorithms make different assumptions about what indicates sparse data 
as follows:

■ Support Vector Machine, Non-Negative Matrix Factorization, k-Means in 
DBMS_DATA_MINING: NULL values indicate sparse data. Missing values 
are not automatically handled. If the data is not sparse and the values are 
indeed missing at random, it is necessary to perform missing data imputation 
(that is, perform some kind of missing values "treatment") and substitute the 
nulls value for a non-null value. One simple approach is to substitute the mean 
for numerical attributes and the mode for categorical attributes. If you do not 
treat missing values, the algorithm will not handle the data correctly.

■ All other algorithms (including k-Means in the Java interface):   NULL values 
are treated as missing and not indicators of sparse data.

2.2.7 Outliers and Oracle Data Mining
An outlier is a value that is far outside the normal range in a data set, typically a 
value that is several standard deviations from the mean. The presence of outliers 
can have a significant impact on ODM models.

Outliers affect ODM during data pre-processing either when it is performed by the 
user or automatically during model build. 

Outliers affect the different algorithms as follows:

■ Attribute Intelligence, Naive Bayes, Adaptive Bayes Network: The presence of 
outliers, when automatic data preparation or external equal-width bining is 
used, makes most of the data concentrate in a few bins (a single bin in extreme 
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cases). As a result, the discriminating power of these algorithms may be 
significantly reduced. In the case of ABN, if all attributes have outliers, ABN 
may not even be able to build a tree beyond a first split. 

■ Association Models: The presence of outliers, when automatic data preparation 
or external equal-width bining is used, makes most of the data concentrate in a 
few bins (a single bin in extreme cases). As a result, the ability of AR to detect 
differences in numerical attributes may be significantly lessened. For example, a 
numerical attribute such as income may have all the data belonging to a single 
bin except for one entry (the outlier) that belongs to a different bin. As a result, 
there won't be any rules reflecting different levels of income. All rules 
containing income will only reflect the range in the single bin; this range is 
basically the income range for the whole population

■ O-Cluster: The presence of outliers, when automatic data preparation or 
external equal-width bining is used, will make most of the data concentrate in a 
few bins (a single bin in extreme cases). As a result, the ability of O-Cluster to 
detect clusters may be significantly impacted. If the whole data is divided 
among a few bins, it may look as if there are no clusters, that is, that the whole 
population falls in a single cluster. 

■ k-Means (Java interface): The presence of outliers, when automatic data 
preparation or external equal-width bining is used, will make most of the data 
concentrate in a few bins (a single bin in extreme cases). As a result, the ability 
of k-Means to create clusters that are different in content may be significantly 
impacted. If the whole data is divided among a few bins, then clusters may 
have very similar centroids, histograms, and rules. 

■ k-Means (PL/SQL interface): The presence of outliers, when automatic data 
preparation or min-max normalization is used, will make most of the data 
concentrate in a small range. As a results the ability of k-Means to create clusters 
that are different in content may be significantly impacted. If the whole data is 
concentrated in a small range, then clusters may have very similar centroids, 
histograms, and rules. 

■ Support Vector Machine: The presence of outliers, when automatic data 
preparation or min-max normalization is used, will make most of the data 
concentrate in a small range. As a result it will make learning harder and lead to 
longer training times. 

■ Non-Negative Matrix Factorization: The presence of outliers, when automatic 
data preparation or min-max normalization is used, will make most of the data 
concentrate in a small range. This will result in poor matrix factorization in 
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general. To improve the matrix factorization the error tolerance would need to 
be decreased. This in turn would lead to longer build times. 

2.3 Prepared and Unprepared Data
Data is said to be prepared or unprepared, depending on whether certain data 
transformations required by a data mining algorithm were performed by the user. 

For the Java interface, data can be either unprepared (the default) or prepared; data 
for DBMS_DATA_MINING must be prepared.

2.3.1 Data Preparation for the ODM Java Interface
The ODM Java interface assumes data is unprepared and automatically performs 
the transformations necessary to prepare the data. This means different things to 
different algorithms. For most of the algorithms ODM, prepared data is binned 
data. Unbinned data is said to be unprepared. See Section 2.3.3 for information 
about binning in the java interface.

For the SVM and NMF algorithms, prepared data is normalized data. See 
Section 2.3.4 for information about normalization. 

The user can specify the data’s status (prepared or unprepared) in the 
DataPreparationStatus setting for each attribute. For example, if the user has 
already binned the data for an attribute, the data’s status for that attribute should be 
set to prepared using so that ODM will not bin the data for that attribute again. If 
the user wants ODM to do the binning for all attributes, the status should be set 
to unprepared for all attributes.

Support Vector Machine models require especially careful data preparation. For 
more information, see Section 3.1.6.1.

2.3.2 Data Preparation for DBMS_DATA_MINING
The PL/SQL interface assumes that all data is prepared. The user must perform any 
required data preparation.

2.3.3 Binning (Discretization) in Data Mining
Some ODM algorithms may benefit from binning (discretizing) both numeric and 
categorical data. Naive Bayes, Adaptive Bayes Network, Clustering, Attribute 
Importance, and Association Rules algorithms may benefit from binning. 
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Binning means grouping related values together, thus reducing the number of 
distinct values for an attribute. Having fewer distinct values typically leads to a 
more compact model and one that builds faster, but it can also lead to some loss in 
accuracy. 

2.3.3.1 Methods for Computing Bin Boundaries 
ODM utilities provide three methods for computing bin boundaries from the data:

■ Top N most frequent items: For categorical attributes only, the user selects the 
value N and the name of the "other" category. ODM determines the N most 
frequent values and puts all other values in the "other" category.

■ Equi-Width Binning: For numerical attributes, ODM finds min, max values for 
every attribute in the data. Then ODM divides the [min, max] range into N 
(specified by the user) equal regions of size d=(max-min)/N. Thus bin 1 is [min, 
min+d), bin 2 is [min+d, min+2d) and bin N is [min+(N-1)*d,max].

■ Equi-Width Binning with Winsorizing: The difference between equi-width 
binning and equi-width binning with winsorizing is in the computation of min 
and max values that are computed not on the original but on the winsorized 
data. Winsorizing is accomplished by ordering the data and then excluding the 
data points from the beginning and end of the ordered set. The number of data 
points excluded from both ends is specified as a percentage of non-NULL 
values in the column. For example, if there are 200 non-NULL values in the 
column and tail percentage = 1.5, then 6 data points in total are removed, 3 from 
each end (3 smallest and 3 largest). See Figure 2–2.
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Figure 2–2 Winsorizing

2.3.4 Normalization in Oracle Data Mining
Normalizing converts individual attribute values in such a way that all attributes 
values lie in the same range. Normally, values are converted to be in the range 0.0 to 
1.0 or the range -1 to +1. Normalization ensures that attributes do no receive 
artificial weighting caused by differences in the ranges that they span.

Support Vector Machine (SVM) and non-Negative Matrix Factorization (NMF) may 
benefit from normalization. 
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3
Predictive Data Mining Models

This chapter describes the predictive models, that is, the supervised learning 
functions. These functions predict a target value. The Oracle Data Mining Java 
interface supports the following predictive functions and associated algorithms: 

This chapter also describes ODM Model Seeker (Section 3.4), which builds several 
Naive Bayes and Adaptive Bayes Network models and selects the best one.

3.1 Classification
In a classification problem, you typically have historical data (labeled examples) 
and unlabeled examples. Each labeled example consists of multiple predictor 
attributes and one target attribute (dependent variable). The value of the target 
attribute is a class label. The unlabeled examples consist of the predictor attributes 
only. The goal of classification is to construct a model using the historical data that 
accurately predicts the label (class) of the unlabeled examples.

A classification task begins with build data (also know as training data) for which 
the target values (or class assignments) are known. Different classification 
algorithms use different techniques for finding relations between the predictor 

Function Algorithm

Classification (Section 3.1) Naive Bayes (Section 3.1.3)

Adaptive Bayes Network (Section 3.1.4)

Support Vector Machine (Section 3.1.6)

Regression (Section 3.2) Support Vector Machine (Section 3.2.1) 

Attribute Importance 
(Section 3.3) 

Minimal Descriptor Length 
(Section 3.3.1)
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attributes’ values and the target attribute's values in the build data. These relations 
are summarized in a model, which can then be applied to new cases with unknown 
target values to predict target values. A classification model can also be used on 
build data with known target values, to compare the predictions to the known 
answers; such data is also known as test data or evaluation data. This technique is 
called testing a model, which measures the model's predictive accuracy. The 
application of a classification model to new data is called applying the model, and the 
data is called apply data or scoring data. Applying data is often called scoring the data.

Classification is used in customer segmentation, business modeling, credit analysis, 
and many other applications. For example, a credit card company may wish to 
predict which customers will default on their payments. Each customer corresponds 
to a case; data for each case might consist of a number of attributes that describe the 
customer's spending habits, income, demographic attributes, etc. These are the 
predictor attributes. The target attribute indicates whether or not the customer has 
defaulted; that is, there are two possible classes, corresponding to having defaulted 
or not. The build data is used to build a model that you then use to predict, for new 
cases, whether these new customers are likely to default.

3.1.1 Costs
In a classification problem, it may be important to specify the costs involved in 
making an incorrect decision. Doing so can be useful when the costs of different 
misclassifications vary significantly.

For example, suppose the problem is to predict whether a user will respond to a 
promotional mailing. The target has two categories: YES (the customer responds) 
and NO (the customer does not respond). Suppose a positive response to the 
promotion generates $500 and that it costs $5 to do the mailing. If the model 
predicts YES and the actual value is YES, the cost of misclassification is $0. If the 
model predicts YES and the actual value is NO, the cost of misclassification is $5. If 
the model predicts NO and the actual value is YES, the cost of misclassification is 
$500. If the model predicts NO and the actual value is NO, the cost is $0. 

The row indexes of a cost matrix correspond to actual values; the column indexes 
correspond to predicted values. For any pair of actual/predicted indexes, the value 
indicates the cost of misclassification. 

Classification algorithms apply the cost matrix to the predicted probabilities during 
scoring to estimate the least expensive prediction. If a cost matrix is specified for 
apply, the output of the scoring run is prediction and cost., rather than predication 
and probability
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3.1.2 Priors
In building a classification model, priors can be useful when the training data does 
not accurately reflect the real underlying population. A priors vector is used to 
inform the model of the true underlying distribution of target classes in the 
underlying population. The model build adjusts its predicted probabilities for 
Adaptive Bayes Network and Naive Bayes or relative Complexity factor for 
Support Vector Machine.

3.1.3 Naive Bayes Algorithm
The Naive Bayes algorithm (NB)N can be used for both binary and multiclass 
classification problems to answer questions such as "Which customers will switch to 
a competitor? Which transaction patterns suggest fraud? Which prospects will 
respond to an advertising campaign?" For example, suppose a bank wants to 
promote its mortgage offering to its current customers and that, to reduce 
promotion costs, it wants to target the most likely prospects. The bank has historical 
data for its customers, including income, number of household members, 
money-market holdings, and information on whether a customer has recently 
obtained a mortgage through the bank. Using NB, the bank can predict how likely a 
customer is to respond positively to a mortgage offering. With this information, the 
bank can reduce its promotion costs by restricting the promotion to the most likely 
candidates. 

NB affords fast model building and scoring for relatively low volumes of data.

NB makes predictions using Bayes’ Theorem, which derives the probability of a 
prediction from the underlying evidence.Bayes’ Theorem states: 

P(A | B) =   (P(B | A) P(A))/P(B)

That is, the probability of event A occurring given that event B has occurred is equal 
to the probability of event B occurring given that event A has occurred, multiplied 
by the probability of event A occurring and divided by the probability of event B 
occurring. 

NB assumes that each attribute is conditionally independent of the others: given a 
particular value of the target, the distribution of each predictor is independent of 
the other predictors.

In practice, this assumption, even when violated, does not degrade the model’s 
predictive accuracy significantly, and makes the difference between a fast, 
computationally feasible algorithm and an intractable one. 
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Naive Bayes lets you, using cross-validation, test model accuracy on the same data 
that was used to build the model, rather than building the model on one portion of 
the data and testing it on a different portion. Not having to hold aside a portion of 
the data for testing is especially useful if the amount of build data is relatively 
small.

"Leave-one-out cross-validation" is a special case of cross-validation in which one 
record is left out of the build data when building a model. The number of models 
built equals the number of records (omitting a different build record for each 
model), which makes this procedure computationally expensive. With Naive Bayes 
models, however, the approach can be modified such that all build records are used 
for building a single model. Then, the model is repeatedly modified to quickly 
remove the effects of one build record, incrementally "unbuilding" the model for 
that record, as though that record had been omitted when building the model in the 
first place. The accuracy of the prediction for each build record can then be assessed 
against the model that would have been built from all the build records except that 
one, without having had to actually build a separate model for each build record.

To use Naive Bayes cross-validation, the user executes a CrossValidate task object, 
specifying that a Naive Bayes model is to be tested. The execution of the 
cross-validate task creates a ClassificationTestResult associated with classification 
test metrics.

See Table 3–1, below, for a comparison of the main characteristics of ABN and NB. 

3.1.4 Adaptive Bayes Network Algorithm
Adaptive Bayes Network (ABN) is an Oracle proprietary algorithm that provides a 
fast, scalable, non-parametric means of extracting predictive information from data 
with respect to a target attribute. (Non-parametric statistical techniques avoid 
assuming that the population is characterized by a family of simple distributional 
models, such as standard linear regression, where different members of the family 
are differentiated by a small set of parameters.)

ABN, in single feature build mode, can describe the model in the form of 
human-understandable rules. The rules produced by ABN are one of its main 
advantages over Naive Bayes. The business user, marketing professional, or 
business analyst can understand the basis of the model’s predictions and can 
therefore be comfortable acting on them and explaining them to others.

In addition to explanatory rules, ABN provides performance and scalability, which 
are derived via a collection of user parameters controlling the trade-off of accuracy 
and build time.
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ABN predicts binary as well as multiclass targets. Binary targets are those that take 
on only two values, for example, buy and not buy. Multiclass targets have more than 
two values, for example, products purchased (product A or product B or product 
C). Multiclass target values are not assumed to exist in an ordered relation to each 
other, for example, hair brush is not assumed to be greater or less than comb.

ABN can use costs and priors for both building and scoring (see Section 3.1.1 and 
Section 3.1.2).

3.1.4.1 ABN Model Types
An ABN model is an (adaptive conditional independence model that uses the 
minimum description length principle to construct and prune an array of 
conditionally independent Network Features. Each Network Feature consists of one 
or more Conditional Probability Expressions. The collection of Network Features 
forms a product model that provides estimates of the target class probabilities. 
There can be one or more Network Features. The number and depth of the Network 
Features in the model determine the model mode. There are three model modes for 
ABN: 

■ Pruned Naive Bayes (Naive Bayes Build)

■ Simplified decision tree (Single Feature Build) 

■ Boosted (Multi Feature Build) 

Users can select the ABN model type. Rules are available only for Single Feature 
Build; see Section 3.1.4.2 for information about rules.

Each Network Feature consists of one or more attributes included in a Conditional 
Probability Expression. An array of single attribute Network Features is an 
MDL-pruned Naive Bayes model. A single multi-attribute Network Feature model 
is equivalent to a simplified C4.5 decision tree; such a model is simplified in the 
sense that numerical attributes are binned and treated as categorical. Furthermore, a 
single predictor is used to split all nodes at a given tree depth. The splits are k-way, 
where k is the number of unique (binned) values of the splitting predictor. Finally, a 
collection of multi-attribute Network Features forms a product model (boosted 
mode). All three types provide estimates of the target class probabilities.

3.1.4.2 ABN Rules
Rules can be extracted from the Adaptive Bayes Network Model as Compound 
Predicates. Rules form a human-interpretable depiction of the model and include 
statistics indicating the number of the relevant training data instances in support of 
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the rule. A record apply instance specifies a pathway in a network feature taking 
the form of a compound predicate.

For example, suppose the feature consists of two training attributes: Age {20-40, 
40-60, 60-80} and Income {<=50K, >50K}. A record instance consisting of a person 
age 25 and income $42K is expressed as

IF AGE IN (20-40) and INCOME IN (<=50K)

Suppose that the associated target (for example, response to a promotion) 
probabilities are {0.8 (no), 0.2 (yes)}. Then we have a detailed rule of the form

IF AGE IN (20-40) and INCOME IN (<=50K) => Prob = {0.8, 0.2}

In addition to the probability distribution, there are the associated training data 
counts, e.g. {400, 100}. Suppose there is a cost matrix specifying that it is 6 times 
more costly to incorrectly predict a no than to incorrectly predict a yes. Then the cost 
of predicting yes for this instance is 0.8 * 1 = 0.8 (because the model is wrong in this 
prediction 80% of the time) and the cost of predicting no is 0.2 * 6 = 1.2. Thus, the 
minimum cost (best) prediction is yes. 

Without the cost matrix and the decision is reversed. Implicitly, all errors are equal 
and we have: 0.8 * 1 = 0.8 for yes and 0.2 * 1 = 0.2 for no. 

The order of the predicates in the generated rules implies relative importance.

When you apply an ABN model for which rules were generated, with a single 
feature, you get the same result that you would get if you wrote an external 
program that applied the rules.

3.1.4.3 ABN Build Parameters
To control the execution time of a build, ABN provides the following user-settable 
parameters: 

■ MaximumNetworkFeatureDepth: NetworkFeatures are like individual 
decision trees. This parameter restricts the depth of any individual 
NetworkFeature in the model. At each depth for an individual NetworkFeature 
there is only one predictor chosen. Each level built requires an additional scan 
of the data, so the computational cost of deep feature builds is high. The range 
for this parameter consists of the positive integers. The NULL or 0 value setting 
has special meaning: unrestricted depth. Builds beyond depth 7 are rare. 
Default is 10. 

■ MaximumConsecutivePrunedNetworkFeatures: The maximum number of 
consecutive pruned features before halting the stepwise selection process. 
Default is 1.
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■ MaximumBuildTime: The maximum build time (in minutes) parameter allows 
the user build quick, possibly less accurate models for immediate use or simply 
to get a sense of how long it will take to build a model with a given set of data. 
To accomplish this, the algorithm divides the build into milestones (model 
states) representing complete functional models (see ABNModelBuildState for 
details). The algorithm completes at least a single milestone and then projects 
whether it can reach the next one within the user-specified maximum build 
time. This decision is revisited at each milestone achieved until either the model 
build is complete or the algorithm determines it cannot reach the next milestone 
within the user-specified time limit. The user has access to the statistics 
produced by the time estimation procedure (see ABNModelBuildState for 
details). Default is NULL (no time limit).

■ MaximumPredictors: The maximum number of predictors is a feature selection 
mechanism that can provide a substantial performance improvement, especially 
in the instance of training tables where the number of attributes is high (but less 
than 1000) and is represented in single-record format. Note that the predictors 
are rank ordered with respect to an MDL measure of their correlation to the 
target, which is a greedy measure of their likelihood of being incorporated into 
the model. Default is 25. 

■ NumberPredictorsInNBModel: The number of predictors in the NB model. 
The actual number of predictors will be the minimum of the parameter value 
and the number of active predictors in the model. If the value is less than the 
number of active predictors in the model, the predictors are chosen in 
accordance with their MDL rank. Default is 10.

■ Model Types: You can specify one of the following types when building an 
ABN model:

– MultiFeatureBuild: The model search space includes an NB model and 
single and multi-feature product probability models. Rules are produced 
only if the single feature model is best. No rules are produced for 
multi-feature or NB models. 

– SingleFeatureBuild: The model search space includes only a single feature 
model with one or more predictors. Rules are produced. 

– NaiveBayesBuild: Only a single model is built, an NB model. It is 
compared with the global sample prior (the distribution of target values in 
the sample). If the NB model is a better predictor of the target values than 
the global prior, then the NB model is output. Otherwise no model is 
output. No rules are produced. 

Note that only single feature model results in rules.
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3.1.4.4 ABN Model States
When you specify MaxBuildTime for a boosted mode ABN model, the ABN build 
terminates in one of the following states:

■ CompleteMultiFeature: Multiple features have been tested for inclusion in the 
model. MDL pruning has determined whether the model actually has one or 
more features. The model may have completed either because there is 
insufficient time to test an additional feature or because the number of 
consecutive features failing the stepwise selection criteria exceeded the 
maximum allowed or seed features have been extended and tested.

■ CompleteSingleFeature: A single feature has been built to completion.

■ IncompleteSingleFeature: The model consists of a single feature of at least 
depth two (two predictors) but the attempts to extend this feature have not 
completed.

■ NaiveBayes: The model consists of a subset of (single-predictor) features that 
individually pass MDL correlation criteria. No MDL pruning has occurred with 
respect to the joint model.

The algorithm outputs its current model state and statistics that provide an estimate 
of how long it would take for the model to build (and prune) a feature.

3.1.5 Comparison of NB and ABN Models
Table 3–1 compares the main characteristics of Adaptive Bayes Network and Naive 
Bayes. 

Table 3–1 Comparison of Naive Bayes and Adaptive Bayes Network Algorithms

Feature Naive Bayes Adaptive Bayes Network

Number of cases Any size Any size

Number of 
attributes

Best if less than 200 Any number (built-in feature 
selection)

Speed Faster Not as fast

Accuracy As accurate or less accurate than 
Adaptive Bayes Network

As accurate or more accurate than 
Naive Bayes

Attribute types Numerical (binned) and 
categorical

Numerical (binned) and 
categorical

Automatic binning Yes Yes
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3.1.6 Support Vector Machine
Support Vector Machine (SVM) is a classification and regression prediction tool that 
uses machine learning theory to maximize predictive accuracy while automatically 
avoiding over-fit to the data.

Neural networks (NN) and radial basis functions (RBFs), both popular data mining 
techniques, can be viewed as a special case of SVMs.

SVMs perform well with real-world applications such as classifying text, 
recognizing hand-written characters, classifying images, as well as bioinformatics 
and biosequence analysis. Their introduction in the early 1990s led to an explosion 
of applications and deepening theoretical analysis that established SVM along with 
neural networks as one of the standard tools for machine learning and data mining. 

There is no upper limit on the number of attributes and target cardinality for SVMs.

The SVM kernel functions supported at this release are linear and Gaussian.

3.1.6.1 Data Preparation and Settings Choice for Support Vector Machines 
You can influence both the Support Vector Machine (SVM) model quality (accuracy) 
and performance (build time) through two basic mechanisms: data preparation and 
model settings. Significant performance degradation can be caused by a poor choice 
of settings or inappropriate data preparation. Poor settings choices can also lead to 
inaccurate models. ODM has built- in mechanisms that attempt to choose 
appropriate settings for the problem at hand by default. ODM provides data 
normalization and explosion of categorical fields for data preparation. You may 
need to override the defaults or do your own data preparation for some domains. 
For detailed information about data preparation for SVM models, see the Oracle 
Data Mining Application Developer’s Guide.

SVM uses z-score or min-max normalization. The transformed data for each 
attribute has a mean of 0 and a standard deviation of 1; values can extend beyond 
the range -1 to +1, and there is no special treatment for sparse data.

Target attribute Binary and multiclass Binary and multiclass

Rules No Single Feature Build mode only

Table 3–1 Comparison of Naive Bayes and Adaptive Bayes Network Algorithms

Feature Naive Bayes Adaptive Bayes Network
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3.2 Regression 
Regression creates predictive models. The difference between regression and 
classification is that regression deals with numerical/continuous target attributes, 
whereas classification deals with discrete/categorical target attributes. In other 
words, if the target attribute contains continuous (floating-point) values, a 
regression technique is required. If the target attribute contains categorical (string or 
discrete integer) values, a classification technique is called for.

The most common form of regression is linear regression, in which a line that best 
fits the data is calculated, that is, the line that minimizes the average distance of all 
the points from the line.

This line becomes a predictive model when the value of the dependent variable is 
not known; its value is predicted by the point on the line that corresponds to the 
values of the independent variables for that record.

3.2.1 SVM Algorithm for Regression
Support Vector Machine (SVM) builds both classification and regression models. 
SVM is described in the section on classification; see Section 3.1.6, "Support Vector 
Machine".

3.3 Attribute Importance
Attribute Importance (AI) provides an automated solution for improving the speed 
and possibly the accuracy of classification models built on data tables with a large 
number of attributes. 

Attribute Importance ranks the predictive attributes by eliminating redundant, 
irrelevant, or uninformative attributes and identifying those predictor attributes 
that may have the most influence in making predictions. ODM examines data and 
constructs classification models that can be used to make predictions about 
subsequent data. The time required to build these models increases with the 
number of predictors. Attribute Importance helps a user identify a proper subset of 
these attributes that are most relevant to predicting the target. Model building can 
proceed using the selected attributes (predictor attributes) only. 

Using fewer attributes decreases model building time, although sometimes at a cost 
in predictive accuracy. Using too many attributes (especially those that are "noise") 
can affect the model and degrade its performance and accuracy. By extracting as 
much information as possible from a given data table using the smallest number of 
attributes, a user can save significant computing time and often build better models. 
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Attribute Importance permits the user to specify a number or percentage of 
attributes to use; alternatively the user can specify a cutoff point. After an Attribute 
Importance model is built, the user can select the subset of attributes based on the 
ranking or the predictive value.

Attribute Importance can be applied to data tables with a very large set of 
attributes. However, the DBA may have to tune the database in various ways to 
ensure that Attribute Importance build executes efficiently. For example, it is 
important to ensure that there is adequate swap space and table space. 

3.3.1 Minimum Descriptor Length
Minimum Description Length (MDL) is an information theoretic model selection 
principle. MDL assumes that the simplest, most compact representation of data is 
the best and most probable explanation of it. 

With MDL, the model selection problem is treated as a communication problem. 
There is a sender, a receiver, and data to be transmitted. For classification models, 
the data to be transmitted is a model and the sequence of target class values in the 
training data. Typically, each model under consideration comes from a list of 
potential candidate models. The sizes of the lists vary. The models compute 
probabilities for the target class of each training data set row. The model's predicted 
probability is used to encode the training data set target values. From Shannon's 
noiseless coding theorem, it is known that the most compact encoding uses a 
number of bits equal to -log2(pi), where pi is probability of the target value in the 
i-th training data set row for all rows in the data set. 

The sender and receiver agree on lists of potential candidate models for each model 
under consideration. A model in a list is represented by its position in the list (for 
example, model #26). The position is expressed as a binary number. Thus, for a list 
of length m, the number of bits in the binary number is log2(m). The sender and 
receiver each get a copy of the list. The sender transmits the model. Once the model 
is known, the sender know how to encode the targets and the receiver knows how 
to decode the targets. The sender then transmits the encoded targets. The total 
description length of a model is then:

log2(m) - Sum(log2(pi))

Note that the better the model is at estimating the target probabilities, the shorter 
the description length. However, the improvement in target probability estimation 
can come at the expense of a longer list of potential candidates. Thus the description 
length is a penalized likelihood of the model.



ODM Model Seeker (Java Interface Only)

3-12 Oracle Data Mining Concepts

The attribute importance problem can be put in the MDL framework, by 
considering each attribute as a simple predictive model of the target class. Each 
value of the predictor (indexed by i) has associated with it a set of ni training 
examples and a probability distribution, pij for the m target class values (indexed 
by j). From ni training examples there are at most ni pij's distinguishable in the 
data. From combinatorics, it is known that the number of distributions of m distinct 
objects in a total of n objects is n-m choose m. Hence the size of the list for a 
predictor is

Sumi log2((ni - m  choose m))

 The total description length for a predictor is then:

Sumi (log2(ni - m  choose m)) - Sumij(log2(pij))

The predictor rank is the position in the list of associated description lengths, 
smallest first.

3.4 ODM Model Seeker (Java Interface Only)
ODM Model Seeker allows a user to build multiple ABN and NB models and select 
the "best" model based on a predetermined criterion. 

With Model Seeker, the user can compactly specify parameters for an execution that 
will asynchronously build and test multiple classification models. These models 
may be built using different algorithms. For each algorithm, Model Seeker 
systematically varies the algorithm parameters to create a series of parameter values 
that are used to create corresponding models. Model Seeker then evaluates these 
models and selects a "best" model using a predetermined criterion. 

These features were developed to support applications that want to create a model 
that can be directly used in a production application environment with a minimum 
of user interaction. This assumes that the application developer has the expertise, or 
advice from someone with the expertise, to set the various algorithm parameters in 
a manner that is suitable to the particular business problem and data sources on 
which the application is to operate.

Note: Model Seeker is deprecated in Oracle Data Mining 10g 
Release 1 (10.1) . It will not be available in subsequent releases of 
ODM; the functionlaity will be supported in other ways.
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A secondary purpose is to present to the user or application a summary of 
information about each model built and tested by a Model Seeker execution so that 
the user or application can independently find the parameters that correspond to an 
alternative "best" model using a different criterion. This feature is meant to provide 
support for an application for use by an analyst who will experiment with 
alternative parameter settings to discover the appropriate settings to use in a 
production environment.

Model Seeker’s criterion for the "best" model is the one with the largest value for a 
calculated weighted relative accuracy. The weight used in this calculation is the 
relative importance of the positive target category to the other categories treated as 
a single negative category. If the weight is set to 1.0, the positive target category 
relative accuracy has the same weight as the relative accuracy of all the other 
categories combined. 

The following formula is used to calculate the figure of merit (FOM) for the "best" 
model, where FOM is the weighted sum of the positive target relative accuracy and 
the total negative relative accuracy:

FOM =    W  * (number of correct positives) +   (number of correct negatives)       
(W + 1) * (number of actual positives) (W + 1) * (number of actual negatives)

 
where W is the user-specified weight, a value that must be > 0.0. A recommended 
way for a user to choose a value for the weight is as follows. First, estimate the cost 
to the user of predictions that are all correct except for a random fixed percentage, 
say 5%, of positive predictions being false positives. Second, estimate the cost to the 
user of predictions that are all correct except for the same random fixed percentage, 
5%, of negative predictions being false negatives. Use a value for weight equal to 
the ratio of the second estimate to the first estimate. A weight of 1.0 means that a 
given percentage of false negatives has the same cost as a given percentage of false 
positives.
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4
Descriptive Data Mining Models

This chapter describes descriptive models, that is, the unsupervised learning 
functions. These functions do not predict a target value, but focus more on the 
intrinsic structure, relations, interconnectedness, etc. of the data. The Oracle Data 
Mining interfaces support the following descriptive models and associated 
algorithms:

4.1 Clustering in Oracle Data Mining
Clustering is a technique useful for exploring data. It is particularly useful where 
there are many cases and no obvious natural groupings. Here, clustering data 
mining algorithms can be used to find whatever natural groupings may exist. 

Clustering analysis identifies clusters embedded in the data. A cluster is a collection 
of data objects that are similar in some sense to one another. A good clustering 
method produces high-quality clusters to ensure that the inter-cluster similarity is 
low and the intra-cluster similarity is high; in other words, members of a cluster are 
more like each other than they are like members of a different cluster. 

Clustering can also serve as a useful data-preprocessing step to identify 
homogeneous groups on which to build predictive models. Clustering models are 

Function Algorithm

Clustering (Section 4.1) Enhanced k-means (Section 4.1.1)

Orthogonal Clustering (O-Cluster) Java interface 
only (Section 4.1.2)

Association (Section 4.2) Apriori Algorithm (Section 4.2.4)

Feature Extraction 
(Section 4.3)

Non-Negative Matrix Factorization 
(Section 4.3.1)
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different from predictive models in that the outcome of the process is not guided by 
a known result, that is, there is no target attribute. Predictive models predict values 
for a target attribute, and an error rate between the target and predicted values can 
be calculated to guide model building. Clustering models, on the other hand, 
uncover natural groupings (clusters) in the data. The model can then be used to 
assign groupings labels (cluster IDs) to data points. 

In ODM a cluster is characterized by its centroid, attribute histograms, and place in 
the clustering model hierarchical tree. ODM performs hierarchical clustering using 
an enhanced version of the k-means algorithm and O-Cluster, an Oracle proprietary 
algorithm. The clusters discovered by these algorithms are then used to create rules 
that capture the main characteristics of the data assigned to each cluster. The rules 
represent the hyperboxes (bounding boxes) that envelop the data in the clusters 
discovered by the clustering algorithm. The antecedent of each rule describes the 
clustering bounding box. The consequent encodes the cluster ID for the cluster 
described by the rule. For example, for a data set with two attributes: AGE and 
HEIGHT, the following rule represents most of the data assigned to cluster 10:

If AGE >= 25 and AGE <= 40 and
   HEIGHT >= 5.0ft and HEIGHT <= 5.5ft
then CLUSTER = 10

The clusters are also used to generate a Bayesian probability model which is used 
during scoring for assigning data points to clusters.

The two clustering algorithms supported by ODM interfaces are

■ Enhanced k-means

■ Orthogonal partitioning clustering (Java interface only)

4.1.1 Enhanced k-Means Algorithm
The k-means algorithm is a distance-based clustering algorithm that partitions the 
data into a predetermined number of clusters (provided there are enough distinct 
cases). The k-means algorithm works only with numerical attributes. Distance-based 
algorithms rely on a distance metric (function) to measure the similarity between 
data points. The distance metric is either Euclidean, Cosine, or Fast Cosine distance. 
(Cosine and Fast Cosine are supported in the DBMS_DATA_MINING version of 
k-means only.) Data points are assigned to the nearest cluster according to the 
distance metric used.
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ODM implements an enhanced version of the k-means algorithm with the following 
features:

■ The algorithm builds models in a hierarchical manner. The algorithm builds a 
model top down using binary splits and refinement of all nodes after the 
children of the split node have converged. In this sense, the algorithm is similar 
to the bisecting k-means algorithm described in the literature. The centroid of 
the inner nodes in the hierarchy are updated to reflected changes as the tree 
evolves. The whole tree is returned. 

■ The algorithm can grow the tree either one level at a time (balanced approach) 
or one node at a time (unbalanced approach). The node with the largest 
distortion (sum of distance to the node's centroid) is split to increase the size of 
the tree until the desired number of clusters is reached. The DBMS_DATA_
MINING implementation build unbalanced trees only.

■ The Java version of the algorithm bins the build data. Binning plays the role of 
normalization and helps with data summarization and rules. The DBMS_
DATA_MINING normalizes the data.

■ The algorithm has an internal data summarization step that allows it to scale 
well to data sets with large number of cases.

■ The algorithm provides probabilistic scoring/assignment of data to clusters.

■ The algorithm returns, for each cluster, a centroid (cluster prototype), 
histograms (one for each attribute), and a rule describing the hyperbox that 
encloses the majority of the data assigned to the cluster. 

This incremental approach to k-means avoids the need for building multiple 
k-means models and provides clustering results that are consistently superior to the 
traditional k-means. 

The k-Means Clustering algorithm implementation in DBMS_DATA_MINING is a 
modified and enhanced version of the implementing in the Java interface. There is 
no upper limit on the number of attributes and target cardinality for this 
implementation of k-Means. The DBMS_DATA_MINING implementation will be 
the ODM implementation of the k-Means Clustering algorithm in future ODM 
releases. Table 4–1 summarizes the differences between the two implementations.

Note: DBMS_DATA_MINING and the Java interface use different 
versions of the enhanced k-means algorithm. The two 
implementations may give different results. 
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The choice between balanced and unbalanced approaches in the Java interface is 
controlled by the system parameter CL_ALG_SETTING_TREE_GROWTH in the 
ODM_CONFIGURATION table. The balanced approach is faster than the 
unbalanced approach, while the unbalanced approach generates models with 
smaller overall distortion.

4.1.1.1 Data for k-Means
In the Java interface, the k-means algorithm works with numerical data only. As a 
result, if you need to cluster data with categorical attributes, you must explode the 
categorical attribute into multiple binary columns (one per unique value of the 
categorical attribute) before using k-means. If you bin the data manually, you must 
bin the new binary columns after you have exploded them.

The DBMS_DATA_MINING supports both categorical and numerical data.

The k-means algorithms work best with a moderate number of attributes (at most 
100); however, there is no upper limit on the number of attributes and target 
cardinality for the DBMS_DATA_MINING implementation of k-Means.

Table 4–1 DBMS_DATA_MINING and Java k-Means Implementation Differences

Java Implementation DBMS_DATA_MINING

Numerical attributes only Categorical and numerical attributes

Data automatically binned Data automatically normalized

Does not handle sparse data Handles sparse data

NULLs indicate missing values NULLs indicate sparse data

Build balanced or unbalanced trees Builds unbalanced trees only. (Unbalanced 
trees usually give better results.)

Supports Euclidean distance only Supports Euclidean, Cosine, and Fast 
Cosine distances 

Based on a split and train k-Means 
approach

Based on a bi-sect k-Means with refinement 
approach

Centroid reports the mean only Centroid reports the mean (numerical 
attributes) or mode (categorical attributes) 
and variance (numerical attributes) 

Attribute relevance computed in a different 
way from the DBMS_DATA_MINING 
implementation

Attribute relevance computed in a different 
way from the Java implementation; uses a 
bitmap-based computation

Basic ranking of attributes Better ranking of attributes 
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4.1.1.2 Scalability through Summarization
Because traditional k-means requires multiple passes through the data, it can be 
impractical for large data tables that don’t fit in memory. In this case multiple 
expensive database scans would be required. ODM’s enhanced k-means requires 
at most one database scan. For data tables that don’t fit in memory, the enhanced 
k-means algorithm employs a smart summarization approach that creates a 
summary of the data table that can be stored in memory. This approach allows the 
enhanced k-means algorithm to handle data tables of any size. The summarization 
scheme can be seen as a smart sampling approach that first identifies the main 
partitions in the data and then generates summary points for each partition in 
proportion to their share of the total data. Each summary point has a weight that 
accounts for the proportion of the data it represents.

4.1.1.3 Scoring (Applying Models)
The clusters discovered by enhanced k-means are used to generate a Bayesian 
probability model that is then used during scoring (model apply) for assigning data 
points to clusters. The traditional k-means algorithm can be interpreted as a mixture 
model where the mixture components are spherical multivariate normal 
distributions with the same variance for all components. A mixture model is a type 
of density model that includes several component functions (usually Gaussian) that 
are combined to provide a multimodal density.

In the mixture model created from the clusters discovered by enhanced k-means, on 
the other hand, the mixture components are a product of independent normal 
distribution with potentially different variances. Because of this greater flexibility, 
the probability model created by enhanced k-means provides a better description of 
the underlying data than the underlying model of traditional k-means.

4.1.2 Orthogonal Partitioning Clustering (O-Cluster)

The O-Cluster algorithm supports Orthogonal Partitioning Clustering; O-Cluster 
creates a hierarchical grid-based clustering model, that is, it creates axis-parallel 
(orthogonal) partitions in the input attribute space. The algorithm operates 
recursively. The resulting hierarchical structure represents an irregular grid that 
tessellates the attribute space into clusters. The resulting clusters define dense areas 
in the attribute space. The clusters are described by intervals along the attribute 
axes and the corresponding centroids and histograms. A parameter called sensitivity 

Note: O-Cluster is available in the Java interface only.
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defines a baseline density level. Only areas with peak density above this baseline 
level can be identified as clusters. 

To compare, the k-means algorithm tesselates the space even when natural clusters 
may not exist. For example, if there is a region of uniform density, k-Means 
tesselates it into n clusters (specified by the user). On the other hand, O-Cluster 
separates areas of high density by placing cutting planes through areas of low 
density. O-Cluster needs multi-modal histograms (peaks and valleys). If an area has 
projections with uniform or monotonically changing density, O-Cluster does not 
partition it. 

4.1.2.1 O-Cluster Data Use
O-Cluster does not necessarily use all the data when it builds a model. It reads the 
data in batches (the default batch size is 50000). It will only read another batch if it 
believes, based on some statistical tests, that there may still exist clusters that it has 
not uncovered.

Because O-Cluster may stop the model build before it reads all of the data, it is 
highly recommended that you randomize the data.

4.1.2.2 Binning for O-Cluster
O-Cluster bins the data internally, thus providing automatic data discretization. 
However, if manual binning is used, the bin values must be represented by 
contiguous integer numbers starting at 1. 

4.1.2.3 O-Cluster Attribute Type
Binary attributes should be declared as categorical. O-Cluster distinguishes between 
continuous and discrete numerical attributes. The two types of attributes undergo 
different binning procedures in order to capture the characteristics of the 
underlying distributions. For example, a discrete numerical attribute such as age 
should be declared of data type INTEGER. On the other hand, continuous 
numerical attributes such as height measured in feet should be declared of data 
type NUMBER. 

4.1.2.4 O-Cluster Scoring
The clusters discovered by O-Cluster are used to generate a Bayesian probability 
model that is then used during scoring (model apply) for assigning data points to 
clusters. The generated probability model is a mixture model where the mixture 
components are represented by a product of independent normal distributions for 
numerical attributes and multinomial distributions for categorical attributes.
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4.1.3 K-Means and O-Cluster Comparison
The main characteristics of the enhanced k-means and O-Cluster algorithms are 
summarized in Table 4–2, below.

4.2 Association Models in Oracle Data Mining
The Association model is often associated with "market basket analysis", which is 
used to discover relationships or correlations in a set of items. It is widely used in 
data analysis for direct marketing, catalog design, and other business 
decision-making processes. A typical association rule of this kind asserts the 
likelihood that, for example, "70% of the people who buy spaghetti, wine, and sauce 
also buy garlic bread."

Association models capture the co-occurrence of items or events in large volumes of 
customer transaction data. Because of progress in bar-code technology, it is now 
possible for retail organizations to collect and store massive amounts of sales data, 

Table 4–2 Comparison of Enhanced k-Means and O-Cluster

Feature Enhanced k-means O-Cluster

Interface Both Java and DBMS_DATA_
MINING (different versions)

Java only

Clustering 
methodology

Distance-based Grid-based

Number of cases Handles tables of any size. Uses 
summarization for tables that 
don’t fit in the memory buffer.

More appropriate for data tables 
that have more than 500 cases. 
Handles large tables via active 
sampling.

Number of attributes More appropriate for data sets 
that have 100 or fewer attributes

More appropriate for data tables 
that have more than 5 attributes.

Number of clusters User-specified Automatically determined

Attribute type Numerical attributes only Numerical and categorical 
attributes

Hierarchical clustering Yes Yes

Probabilistic cluster 
assignment

Yes Yes

Automatic data 
preparation

Binning (Java interface); 
normalization (DBMS_DATA_
MINING)

Binning
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referred to as "basket data." Association models were initially defined on basket 
data, even though they are applicable in several other applications. Finding all such 
rules is valuable for cross-marketing and mail-order promotions, but there are other 
applications as well: catalog design, add-on sales, store layout, customer 
segmentation, web page personalization, and target marketing.

Traditionally, association models are used to discover business trends by analyzing 
customer transactions. However, they can also be used effectively to predict Web 
page accesses for personalization. For example, assume that after mining the Web 
access log, Company X discovered an association rule "A and B implies C," with 
80% confidence, where A, B, and C are Web page accesses. If a user has visited 
pages A and B, there is an 80% chance that he/she will visit page C in the same 
session. Page C may or may not have a direct link from A or B. This information can 
be used to create a dynamic link to page C from pages A or B so that the user can 
"click-through" to page C directly. This kind of information is particularly valuable 
for a Web server supporting an e-commerce site to link the different product pages 
dynamically, based on the customer interaction. 

There are several properties of association models that can be calculated. ODM 
provides two: 

■ Support: Support of a rule is a measure of how frequently the items involved in 
it occur together. Using probability notation, support (A implies B) = P(A, B).

■ Confidence: Confidence of a rule is the conditional probability of B given A; 
confidence (A implies B) = P (B given A), which is equal to P(A, B) or P(A). 

These statistical measures can be used to rank the rules and hence the predictions.

ODM supports the Apriori algorithm for association models.

The Apriori algorithm works by iteratively enumerating item sets of increasing 
lengths subject to the minimum support threshold. Since association rule mining is 
defined this way and the state-of-the-art algorithms work by iterative enumeration, 
association rules algorithms don’t handle the following cases efficiently:

■ Finding associations involving rare events

■ Finding associations in data sets that are dense and that have a large number of 
attributes.

4.2.1 Finding Associations Involving Rare Events
By definition, association rule mining discovers frequent patterns with frequency 
above the minimum support threshold. Therefore, in order to find associations 
involving rare events, the algorithm must run with very low minimum support 
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values. However, doing so could potentially explode the number of enumerated 
item sets, especially in cases with large number of items. That could increase the 
execution time significantly. 

Therefore, association rule mining is not recommended for finding associations 
involving "rare" events in problem domains with large number of items.

However, there are ways to restrict the item set enumeration to a smaller set if the 
"rare" events of interest are known. One could also use association rules to perform 
"partial classification" of the rare events. Those enhancements to association rules 
are not supported in this release.

Another option is to use classification models in such problem domains.

4.2.2 Finding Associations in Dense Data Sets 
Since association rule algorithms work by iterative enumeration, they work best for 
sparse data sets, that is, data sets where each record contains only a small fraction of 
the total number of possible items (if the total number of items is very large). 
Algorithm performance degrades exponentially with increasing number of frequent 
items per record. Therefore, to get good runtime performance, one of the following 
conditions should hold:

■ If the data set is dense, the number of possible items is small.

■ If the number of possible items is large, the data set is sparse.

■ The data set becomes progressively sparser with increasing item set length due 
to the application of the minimum support threshold. 

The last condition holds for higher minimum support values.

Typical data sets in many bioinformatics applications are dense with large number 
of attributes. In order to use association rules effectively for such problems, careful 
planning is required. One option is to start with a high minimum support threshold 
and repeat it for lower values until desirable results are obtained. Another option is 
to recode some of the uninteresting attribute values to NULL, if such recoding 
makes the data set sparse.

4.2.3 Data for Association Models
Association models are designed to use sparse data. Sparse data is data for which 
only a small fraction of the attributes are non-zero or non-null in any given row. 
Examples of sparse data include market basket and text mining data. For example, a 
market basket problem, there might be 1,000 products in the company’s catalog, 
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and the average size of a basket (the collection of items that a customer purchases in 
a typical transaction) is 20 products. In this example, a transaction/case/record has 
on average 20 out of 1000 attributes that are not null. This implies that the fraction 
of non-zero attributes on the table (or the density) is 20/1000, or 2%. This density is 
typical for market basket and text processing problems. Data that has a significantly 
higher density can require extremely large amounts of Temp space to build 
associations. For more information about sparse data, see Section 2.2.6.

Association models treat NULL values an indication of sparse data. The algorithm 
doesn't handle missing values. If the data is not sparse and the NULL     values are 
indeed missing at random, it is necessary to perform missing data imputation (that 
is, "treat" the missing values) and substitute the NULL values for a non-null value.

4.2.4 Apriori Algorithm 
The association rule mining problem can be decomposed into two subproblems:

■ Find all combinations of items, called frequent itemsets, whose support is 
greater than the minimum support.

■ Use the frequent itemsets to generate the desired rules. The idea is that if, for 
example, ABC and BC are frequent, then the rule A implies BC holds if the ratio 
of support(ABC) to support(BC) is at least as large as the minimum confidence. 
Note that the rule will have minimum support because ABCD is frequent. ODM 
Association supports single consequent rules only (ABC implies D).

The number of frequent itemsets is governed by the minimum support parameters. 
The number of rules generated is governed by the number of frequent itemsets and 
the confidence parameter. If the confidence parameter is set too high, there may be 
frequent itemsets in the association model but no rules.

ODM uses an SQL-based implementation of the Apriori algorithm. The candidate 
generation and support counting steps are implemented using SQL queries. We do 
not use any specialized in-memory data structures. The SQL queries are fine-tuned 
to run efficiently in the database server by using various hints. 

4.3 Feature Extraction in Oracle Data Mining
ODM Feature Extraction creates a new set of features by decomposing the original 
data. Feature extraction lets you describe the data with a number of features far 
smaller than the number of original dimensions (attributes). A feature is a 
combination of attributes in the data that is of special interest and captures 
important characteristics of the data.



Feature Extraction in Oracle Data Mining

Descriptive Data Mining Models 4-11

Some applications of feature extraction are latent semantic analysis, data 
compression, data decomposition and projection, and pattern recognition. Feature 
extraction can also be used to enhance the speed and effectiveness of supervised 
learning.

For example, feature extraction can be used to extract the themes of a document 
collection, where documents are represented by a set of key words and their 
frequencies. Each theme (feature) is represented by a combination of keywords. The 
documents in the collection can then be expressed in terms of the discovered 
themes.

4.3.1 Non-Negative Matrix Factorization
Non-negative Matrix Factorization (NMF) is described in the paper "Learning the 
Parts of Objects by Non-Negative Matrix Factorization" by D. D. Lee and H. S. 
Seung in Nature (401, pages 788-7910, 1999). Non-negative Matrix Factorization is a 
feature extraction algorithm that decomposes multivariate data by creating a 
user-defined number of features, which results in a reduced representation of the 
original data. NMF decomposes a data matrix V into the product of two lower rank 
matrices W and H so that V is approximately equal to WH. NMF uses an iterative 
procedure to modify the initial values of W and H so that the product approaches V. 
The procedure terminates when the approximation error converges or the specified 
number of iterations is reached. Each feature is a linear combination of the original 
attribute set; the coefficients of these linear combinations are   non-negative. During 
model apply, an NMF model maps the original data into the new set of attributes 
(features) discovered by the model. 

There is no upper limit on the number of attributes and target cardinality for NMF.

4.3.1.1 NMF for Text Mining
Text mining involves extracting information from unstructured data. Further, 
typical text data is high-dimensional and sparse. Unsupervised algorithms like 
Principal Components Analysis (PCA), Singular Value Decomposition (SVD), and 
NMF involve factorizing the document-term matrix based on different constraints. 
One widely used approach for text mining is latent semantic analysis. NMF focuses 
on reducing dimensionality. By comparing the vectors for two adjoining segments 
of text in a high-dimensional semantic space, NMF provides a characterization of 
the degree of semantic relatedness between the segments. NMF is less complex than 
PCA and can be applied to sparse data. NMF-based latent semantic analysis is an 
attractive alternative to SVD approaches due to the additive non-negative nature of 
the solution and the reduced computational complexity and resource requirements.
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Data mining tasks include model building, model testing, computing test metrics, 
and model applying (scoring). 

This chapter describes how these tasks are performed using the Java interface for 
Oracle Data Mining. The objects used by the Java interface are described in 
Chapter 6.

Table 5–1 compares data mining tasks performed using the Java interface for the 
different ODM functions.

Your data mining application may require that you export a model to another 
database or schema. ODM imports and exports PMML models for Naive Bayes 
classification models and Association models. 

Table 5–1 Data Mining Tasks per Function in the Java Interface

Function Build Test
Compute 
Lift

Apply 
(Score)

Import 
PMML

Export 
PMML

Classification X X X X Naive 
Bayes

Naive 
Bayes

Regression X X X

Attribute Importance X

Clustering X X

Association X X X

Feature Extraction X X
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5.1 Building a Model
Models are built in the Oracle debase. After a model is built, it is persisted in the 
database and can be accessed by its user-specified unique name. Model build is 
asynchronous in the Java interface. After a model is built, there is single-user, 
multi-session access to the model.

The typical steps for model building are as follows:

1. Specify input data by creating a physical data specification that references an 
existing data table or view. This data may or may not have been prepared (for 
example, binned) (see Chapter 2).

2. Create and/or store a mining function settings object, which specifies 
function-level parameters to the algorithm. Optionally, specify an algorithm 
and associated algorithm settings. Create mining algorithm settings (optional), 
which specifies algorithm-specific parameters to the algorithm.

3. Create a logical data specification and associate it with the mining function 
settings. 

4. Create a build task and invoke the execute method.

Seethe Oracle Data Mining Application Developer’s Guide.

ODM supports two levels of settings: function and algorithm. When the function 
level settings do not specify particular algorithm settings, ODM chooses an 
appropriate algorithm and provides defaults for the relevant parameters. In general, 
model building at the function level eliminates many of the technical details of data 
mining.

Figure 5–1 illustrates the build process. Data for building the model may be 
preprocess for by the user before the build takes place; alternatively, data 
preparation may take place during the build process. This figure assumes that the 
algorithm requires binned data. (SVM and NMF do not bin data.) The resulting data 
table, that is, the build data table, is fed to the appropriate ODM algorithm, along 
with mining function settings. The algorithm may performs binning or 
normalization, and then performs the build. The resulting model includes bin 
boundary tables internal to the algorithm, i.e., the ones that resulted from automatic 
binning, if the algorithm requires binning. They are not part of the model if you did 
not choose automatic binning or if the algorithm does not perform binning. 
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Figure 5–1 The Build Process with Binning

5.2 Testing a Model
Classification and regression models can be tested to get an estimate of their 
accuracy. 

After a model is built, model testing estimates the accuracy of a model’s predictions 
by applying the model to a new data table that has the same format as the build 
data table. The test results are stored in a mining test result object. A classification 
test result includes a confusion matrix (see Chapter 6) that allows a user to 
understand the type and number of classification errors made by the model. 

The regression test results provide measures of model accuracy: root mean square 
error and mean absolute error of the prediction.

5.2.1 Computing Lift
Producing a lift calculation is a way to asses a model. ODM supports computing lift 
for a classification model. Lift can be computed for both binary (2 values) target 
fields and multiclass (more than 2 values) target fields. Given a designated positive 
target value (that is, the value of most interest for prediction, such as "buyer," or 
"has disease"), test cases are sorted according to how confidently they are predicted 
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to be positive cases. Positive cases with highest confidence come first, followed by 
positive cases with lower confidence. Negative cases with lowest confidence come 
next, followed by negative cases with highest confidence. Based on that ordering, 
they are partitioned into quantiles, and the following statistics are calculated: 

■ Target density of a quantile is the number of actually positive instances in that 
quantile divided by the total number of instances in the quantile. 

■ Cumulative target density is the target density computed over the first n 
quantiles.

■ Quantile lift is the ratio of target density for the quantile to the target density 
over all the test data. 

■ Cumulative percentage of records for a given quantile is the percentage of all test 
cases represented by the first n quantiles, starting at the end that is most 
confidently positive, up to and including the given quantile. 

■ Cumulative number of targets for quantile n is the number of actually positive 
instances in the first n quantiles (defined as above). 

■ Cumulative number of nontargets is the number of actually negative instances in 
the first n quantiles (defined as above). 

■ Cumulative lift for a given quantile is the ratio of the cumulative target density 
to the target density over all the test data. 

Cumulative targets can be computed from the quantities that are available in the 
LiftRresultElement using the following formula:

targets_cumulative = lift_cumulative * percentage_records_cumulative

5.3 Applying a Model (Scoring)
Applying a classification model such as Naive Bayes or Adaptive Bayes Network to 
data produces scores or predictions with an associated probability or cost. Applying a 
clustering model to new data produces, for each case, a predicted cluster identifier 
and the probability that the case belongs to that cluster. Applying an NMF model to 
data produces a predicted feature identifier and the match quality of the feature for 
each case. 

The apply data must be in the same format and preprocessing as the data used to 
build the model.

Figure 5–2 shows the apply process for an algorithm that requires binned data. Note 
that the input data for the apply process must undergo the same preprocessing 
undergone by the build data table. The data to be scored must have attributes 
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compatible with those of the build data, that is, it must have the same attributes 
with the same names and respective data types or there must be a suitable mapping 
of one to the other. The apply data table can have attributes not found in the build 
data table. The result of the apply operation is placed in the schema specified by the 
user.

Figure 5–2 The Apply Process with Binning

The ODM user specifies the result content. For example, a user may want the 
customer identifier attribute, along with the score and probability, to be output into a 
table for each record in the provided mining data. This is specified using the 
MiningApplyOutput class.

ODM supports the apply operation for a table (a set of cases) or a single case 
(represented by a RecordInstance Java object). ODM supports multicategory apply, 
obtaining multiple class values with their associated probabilities for each case.

5.4 Model Export and Import 
A data mining application may deploy a model to several database instances so that 
the scoring can be done at the location where the data resides. In addition, users of 
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different schemas may wish to share models. In both cases it is necessary to export 
the model from the original schema and then import it into the destination schema. 
Support for model export and import in the Java interface is provided by PMML. 

The deployed models can score using the ODM Scoring Engine, described in.

The Predictive Model MParkup Language (PMML) specifies data mining models 
using an XML DTD (document type definition). PMML provides a standard 
representation for data mining models to facilitate model interchange among 
vendors. PMML is specified by the Data Mining Group (http://www.dmg.org). 

The ODM Java interface is both a producer and consumer of PMML models. That is, 
ODM can produce (generate) a PMML model that can be used by other software 
that can consume PMML. ODM can also consume PMML models, that is, ODM can 
convert certain PMML model representations to valid ODM models. ODM is a 
producer and consumer of two model types: Association models and Naive Bayes 
classification models.

For more information about model export and import, see Chapter 9.
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Objects and Functionality in the Java

Interface

This chapter describes the principal objects in the Oracle Data Mining Java interface.

6.1 Physical Data Specification
A physical data specification (PDS) object specifies the characteristics of the physical 
data to be used for mining, for example, whether the data is in multi-record case 
format (transactional) or single-record case (non transactional) format and the roles 
the various data columns play. The data referenced by a physical data specification 
object can be used as input to various tasks: model building, testing, computing lift, 
scoring, transformations, etc. 

ODM physical data must be in one of two formats:
■ Multi-record case (transactional)

■ Single-record case (nontransactional)

These formats describe how to interpret each case as stored in a given database 
table. See Chapter 2.

6.2 Mining Function Settings
A mining function settings (MFS) object contains the high-level parameters for 
building a mining model. 

The mining function settings allow a user to specify the type of problem to solve 
(for example, classification) without having to specify a particular algorithm. The 
ODM interface allows a user to override the default algorithm. For example, if the 
user specifies clustering, the system may select k-means as the algorithm to build 
the model.



Mining Algorithm Settings

6-2 Oracle Data Mining Concepts

Each MFS object consists of the following:
■ parameters specific to the mining function

■ a logical data specification

■ a data usage specification

ODM supports the persistence of mining function settings as independent, named 
entities in the Data Mining Server (DMS). 

Table 6–1 displays function-level parameter settings and their default values. 

6.3 Mining Algorithm Settings
A mining algorithm settings object contains the parameters associated with a 
particular algorithm for building a model. It allows expert data miners to fine-tune 
the behavior of the algorithm. Generally, not all parameters must be specified. 
Missing parameters are replaced with system default values. Algorithm parameters 
are algorithm-specific, along with their corresponding default values.

ODM’s design, which separates mining algorithm settings from mining function 
settings, enables non-expert data miners to use ODM effectively, while expert data 
miners can have the control they need. 

Table 6–2 displays the algorithm-level parameters and their default values. The 
default algorithm for a function appears in boldface type.

Table 6–1 Parameter Settings by Function

Function Parameter Default

Classification CostMatrix NULL

Priors NULL

Clustering MaxNumberOfClusters 20

Association MinimumSupport 0.1

MinimumConfidence 0.1

MaximumRuleLength 2

Attribute Importance None

Table 6–2 Parameter Settings by Algorithm

Function Algorithm Parameter Default

Classification ABN MaximumNetworkFeatureDepth 10
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6.4 Logical Data Specification
A logical data specification (LDS) object is a set of mining attribute (see Section 6.5, 
"Mining Attributes") instances that describes the logical nature of the data used as 
input for model building. This set of mining attributes is the basis for producing the 
signature of the model. Each mining attribute specified in a logical data specification 
must have a unique name.

As stored in the DMS, each MFS has its own copy of the LDS, even if references are 
shared in the interface client process.

6.5 Mining Attributes
A mining attribute is a logical concept that describes a domain of data used as input 
to an ODM data mining operation. Mining attributes are either categorical or 
numerical. For example, domains of data include "age" ranging from 0 to 100, 
"buyer" with values true and false. A mining attribute specifies the name, data type, 
and attribute type (categorical or numeric).

MaximumConsecutivePrunedNetworkFeat
ures

1

MaximumBuildTime NULL

MaximumNumberOfPredictors 25

MaximumNumberOfNaiveBayesPredictors 10

Clustering k-means DistanceFunction Euclidean

Iterations 7

Error 0.05

StoppingCriterion ErrorAnd- 
Iterations

O-Cluster Sensitivity 0.5

Association Apriori

Attribute 
Importance

Predictor 
Variance

Table 6–2 Parameter Settings by Algorithm

Function Algorithm Parameter Default
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6.6 Data Usage Specification
A data usage specification (DUS) object specifies how the attributes in a logical data 
specification (LDS) instance are used for building a model. A specification contains 
at most one data usage entry instance for each mining attribute in the LDS. If no 
data use is specified for an attribute, the default usage is active, implying that the 
attribute is used in building a model. 

Usage includes specifying:

■ whether an attribute is active (to be used in the model build process), inactive 
(ignored), or supplementary (attributes that are not used for build, but for 
supplementary purposes such as for representing a composite attribute derived 
from other attributes)

■ whether an attribute is a target for a supervised learning model

6.6.1 ODM Attribute Names and Case
ODM’s treatment of attribute names differs from that of Oracle SQL. Oracle SQL 
can treat attribute names in a case-insensitive manner; ODM attribute names, 
however, are case-sensitive. The implications of this for ODM users are:

■ The specification of attribute names must be consistent across build, test, 
compute lift, and apply tasks. For example, if a given target attribute name is 
specified for build in mixed-case format, then the same format must be 
maintained while specifying the attribute for test, apply, and lift.

■ For a MiningApply output specification, the interface allows the specification of 
aliases for active and supplementary attributes; the results are based on these 
aliases. These aliases must be unique and case-insensitive.

6.7 Mining Model
A mining model object is the result of building a model based on a mining function 
settings object. The representation of the model depends on the algorithm specified 
by the user or selected by the DMS. Some models can be used for direct inspection, 
for example, to examine the rules produced from association models or clusters, 
others to generate predictions, for example, using a classification model.

ODM supports the persistence of mining models as independent, named entities in 
the DMS. A mining model contains a copy of the mining function settings (MFS) 
used to build it. Models cannot be stored by the user.
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6.8 Mining Results
A mining result object contains the end products of one of the following mining 
tasks: build, test, compute lift, or apply. ODM supports the persistence of mining 
results as independent, named entities in the DMS.

A mining result object contains the operation start time and end time, the name of 
the model used, input data location, and output data location (if any) for the data 
mining operation. 

A build result contains the model details. It provides the function and algorithm 
name of the model.

An apply result names the destination table (schema and table name) for the result. 

A test result, for classification models, contains the model accuracy and references 
the confusion matrix.

A lift result of the lift elements is calculated on a per-quantile basis. 

6.9 Confusion Matrix
The row indexes of a confusion matrix correspond to actual values observed and 
used for model testing; the column indexes correspond to predicted values produced 
by applying the model to the test data. For any pair of actual/predicted indexes, the 
value indicates the number of records classified in that pairing. For example, a 
value of 25 for an actual value index of "buyer" and a predicted value index of 
"nonbuyer" indicates that the model incorrectly classified a "buyer" as a "nonbuyer" 
25 times. A value of 516 for an actual/predicted value index of "buyer" indicates 
that the model correctly classified a "buyer" 516 times. 

The predictions were correct 516 + 725 = 1241 times, and incorrect 25 + 10 = 35 
times. The sum of the values in the matrix is equal to the number of scored records 
in the input data table. The number of scored records is the sum of correct and 
incorrect predictions, which is 1241 + 35 = 1276. The error rate is 35/1276 = 0.0274; 
the accuracy rate is 1241/1276 = 0.9725.

A confusion matrix provides a quick understanding of model accuracy and the types 
of errors the model makes when scoring records. It is the result of a test task for 
classification models.
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Figure 6–1 Confusion Matrix

6.10 Mining Apply Output
A mining apply output instance contains several items that allow users to tailor the 
results of a model apply operation. Output can be in one or more of the following 
forms: 

■ Scalar data to be passed through to the output from the input data table, for 
example, key attributes

■ Computed values from the apply itself such as score and probability

■ For multi-record case (transactional) input data, the sequence ID associated 
with a given case

Through the mining apply object, ODM supports specifying names for the resulting 
data columns.

There are two types of input to the apply mining operation: a database table for batch 
scoring and an individual record for record scoring. Apply input data must contain 
the same attributes that were used to build the model. However, the input data may 
contain additional attributes, which may appear in the output to describe the 
output (see source attribute, below). 

Batch scoring using an input database table results in a table called the apply output 
table. An input record is represented as an instance of RecordInstance that contains a 
set of AttributeInstance objects, each of which describes the name of the attribute, the 
data type, and the value. The result of record scoring is also an instance of 
RecordInstance. The output of the apply mining operation is specified by 
MiningApplyOutput.

An instance of MiningApplyOutput is a specification of the data to be included in the 
apply output (either a table or a record) created as the result of the apply mining 
operation. The columns (or attributes) in the apply output are described by a 
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combination of multiple ApplyContentItem objects. Each item can be one of the 
following:

■ Source attribute: The apply output table (or record) may contain columns 
copied directly from the input table (or record). These are called source attributes, 
and each is represented by an instance of ApplySourceAttributeItem. Source 
attributes can be used to identify the individual source cases in the apply 
output, i.e., associate a key with each output record. There can be no more than 
997 source attributes in the output table.

■ Multiple predictions based on probability: An instance of 
ApplyMultipleScoringItem results in top or bottom n predictions ordered by 
probability of the predictions, where n can range from 1 to the total number of 
target values. One such item produces two columns in the output: prediction 
and probability, each of which is named by the user. There can be at most one 
instance of ApplyMultipleScoringItem in a MiningApplyOutput object.

Typically, users select "top" with n = 1 for obtaining the top likely prediction for 
each case from, for example, a classification model. However, other users may 
require seeing the top three predictions, for example, for recommending 
products to a customer.

■ Multiple predictions based on target values: An instance of 
ApplyTargetProbabilityItem results in predictions for target values. Each such 
target value must be one of the original target values used to build the model. A 
given target value can be specified at most once. One such item produces up to 
three columns in the output: prediction, probability, and rank, each of which is 
named by the user. Probability and rank are optional. There can be at most one 
instance of ApplyTargetProbabilityItem or ApplyMultipleScoringItem in a 
MiningApplyOutput object. This option is useful when interested in the 
probability of a particular prediction, for example, if a retailer has many red 
sweaters, what is the probability the customer would buy something red?

The number of columns in the apply output table varies depending on the 
combination of items. When multiple target values are specified by 
MiningApplyOutput (if n > 1), n rows of output table correspond to the prediction 
for an input row. 

Consider an input table of 15 rows. If the top 2 predictions (n = 2) with probabilities 
are specified in MiningApplyOutput with one source attribute from the input table, 
there will be 3 columns in the output table: the source attribute, the prediction, and 
its probability.The number of rows in the output table is 30 because the result of 
apply for each input row will be 2 rows (top 2) in the output table.
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If the input data is multi-record case (transactional), the sequence ID is 
automatically included in the output table. However, explicit inclusion of source 
attributes is required for nontransactional data. 
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Data Mining Using DBMS_DATA_MINING

Data mining tasks in the ODM PL/SQL interface include model building, model 
testing and computing lift for a model, and model applying (scoring).

The development methodology for data mining using DBMS_DATA_MINING has 
two phases:

■ Problem and data analysis

■ Data mining application development

7.1 DBMS_DATA_MINING Application Development
After you’ve analyzed the problem and data, use the DBMS_DATA_MINING and 
DBMS_DATA_MINING_TRANSFORM packages to develop a PL/SQL application 
that performs the data mining:

1. Prepare the build and scoring data using the DBMS_DATA_MINING_
TRANSFORM package or other third-party tool or direct SQL or PL/SQL 
utilities to prepare the data as required by the chosen mining function and 
algorithm. If you are building a predictive model, you prepare a test data set. 

Note that the build, test, and score data sets must be prepared in an identical 
manner for mining results to be meaningful.

2. Prepare a settings table that overrides the default mining algorithm settings for 
the mining function and the default algorithm settings. This is also an optional 
step.

3. Build a mining model using the training data set.

4. For predictive models (Classification and Regression), test the model for its 
accuracy and other attributes. You test the model by applying it to the test data 
(that is, score the test data) and computing metrics on the apply results. In other 
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words, you compare the predictions of the model with the actual values in the 
test data set.

5. Retrieve the model signature to determine the mining attributes required by a 
given model for scoring. This information helps to verify that the scoring data is 
suitable for scoring. This is an optional step.

6. Apply a classification, regression, clustering, or feature extraction model to new 
data to generate predictions or descriptive summaries and patterns about the 
data.

7. Retrieve the model details to understand how the model scored the data in a 
particular manner. This is an optional step.

8. Repeat steps 3 through 9 until you obtain satisfactory results.

7.2 Building DBMS_DATA_MINING Models
The DBMS_DATA_MINING package creates a mining model for a mining function 
using a specified mining algorithm that supports the function. The algorithm can be 
influenced using specific algorithm settings. Model build is synchronous in the 
PL/SQL interface. After a model is built, there is single-user, multi-session access to 
the model.

7.2.1 DBMS_DATA_MINING Models
A model is identified by its name. Like tables in the database, a model has storage 
associated with it. The form, shape, and content of this storage is opaque to the user. 
However, the user can view the contents of a model — that is, the patterns and rules 
that constitute a mining model — using algorithm-specific GET_MODEL_DETAILS 
functions.

7.2.2 DBMS_DATA_MINING Mining Functions
The DBMS_DATA_MINING package supports Classification, Regression, 
Association, Clustering, and Feature Extraction. You specify the mining function as 
a parameter to the BUILD procedure.

7.2.3 DBMS_DATA_MINING Mining Algorithms
Each mining function can be implemented using one or more algorithms. Table 7–1 
provides a list of supported algorithms. There is a default algorithm for each mining 
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function, but you can override this default through an explicit setting in the settings 
table.

Each algorithm has one or more settings that influence the way it builds the model. 
There is a default set of algorithm settings for each mining algorithm. These 
defaults are provided through the transformation GET_DEFAULT_SETTINGS. To 
override the defaults, you must provide the choice of the algorithm and the settings 
for the algorithm through a settings table input to the BUILD Procedure.

7.2.4 DBMS_DATA_MINING Settings Table
The settings table is a simple relational table with a fixed schema. The name of the 
settings table can be whatever name you choose. The settings table must have 
exactly two columns with names and types as follows:

setting_name VARCHAR2(30) setting_value VARCHAR2(128)

The values specified in a settings table override the default values. The values in the 
setting_name column are one or more of several constants defined in the DBMS_
DATA_MINING package. The values in the setting_value column are either 
predefined constants or actual numerical value corresponding to the setting itself. 
The setting_value column is of type VARCHAR2; you must cast numerical inputs to 
string using the TO_CHAR() function before input into the settings table.

The following example shows how to create a settings table for an SVM 
classification model, and edit the individual values using SQL DML.

CREATE TABLE drugstore_settings (
  setting_name VARCHAR2(30),
  setting_value VARCHAR2(128));

Table 7–1 DBMS_DM Summary of Functions and Algorithms

Mining Function Mining Algorithm 

Classification Naive Bayes (NB) — default algorithm

Adaptive Bayes Network (ABN)

Support Vector Machine (SVM)

Regression Support Vector Machine (SVM)

Association Association Rules (AR)

Clustering k-Means (KM)

Feature Extraction Non-Negative Matrix Factorization (NMF)



Building DBMS_DATA_MINING Models

7-4 Oracle Data Mining Concepts

-- override the default for complexity factor for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_complexity_fator, TO_CHAR(0.081));
COMMIT;

The transformation DATA_MINING_GET_DEFAULT_SETTINGS contains all the default 
settings for mining functions and algorithms. If you intend to override all the 
default settings, you can create a seed settings table and edit them using 
appropriate DML.

CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
  FROM DM_DEFAULT_SETTINGS
 WHERE setting_name LIKE 'SVMS_%';
-- update the values using appropriate DML

You can also create a settings table based on another model's settings using GET_
MODEL_SETTINGS, as shown in the example below.

CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value 

FROM DBMS_DATA_MINING.GET_MODEL_SETTINGS('my_other_model');

7.2.4.1 DBMS_DATA_MINING Prior Probabilities Table
Priors or Prior Probabilities are discussed in Section 3.1.2 You can specify the priors 
in a prior probabilities table as an optional function setting when building 
classification models.

The prior probabilities table has a fixed schema. For numerical targets, use the 
following schema:

target_value  NUMBER prior_probability NUMBER

For categorical targets, use the following schema:

target_value VARCHAR2 prior_probability NUMBER

Specify the name of the prior probabilities table as input to the setting_value column 
in the settings table, with the corresponding value for the setting_name column to be 
DBMS_DATA_MINING.clas_priors_table_name, as shown below:

INSERT INTO drugstore_settings (setting_name, setting_value) 
VALUES (DBMS_DATA_MINING.class_priors_table_name, 'census_
priors');
COMMIT;
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7.2.4.2 DBMS_DATA_MINING Cost Matrix Table
Costs are discussed in Section 3.1.1. You specify costs in a cost matrix table. The cost 
matrix table has a fixed schema. For numerical targets, use the following schema:

actual_target_value  NUMBER predicted_target_value NUMBER  cost NUMBER

For categorical targets, use the following schema:

actual_target_value VARCHAR2 predicted_target_value VARCHAR2 cost NUMBER

The DBMS_DATA_MINING package enables you to evaluate the cost of predictions 
from classification models in an iterative manner during the experimental phase of 
mining, and to eventually apply the optimal cost matrix to predictions on the actual 
scoring data in a production environment.

The data input to each COMPUTE procedure in the package is the result generated 
from applying the model on test data. If you provide a cost matrix as an input, the 
COMPUTE procedure generates test results taking the cost matrix into account. This 
enables you to experiment with various costs for a given prediction against the 
same APPLY results, without rebuilding the model and applying it against the same 
test data for every iteration.

Once you arrive at an optimal cost matrix, you can input this cost matrix to the 
RANK_APPLY procedure along with the results of APPLY on your scoring data. RANK_
APPLY will provide your new data ranked by cost.

7.3 DBMS_DATA_MINING Mining Operations and Results
There are several sets of mining operations supported by the DBMS_DATA_
MINING package:

■ Create, drop, and rename a model: BUILD, DROP_MODEL, RENAME_MODEL

■ Apply a model to new data: APPLY

■ Rank APPLY results or rank other data that uses the same schema as that of 
APPLY results: RANK_APPLY.

■ Read and describe a model: GET_MODEL_DETAILS, GET_MODEL_
SETTINGS, GET_MODEL_SIGNATURE.

■ Test a classification model, based on the results of an APPLY operation on the 
test data, or based on any other data that uses the same schema as that of the 
APPLY results: COMPUTE_CONFUSION_MATRIX, COMPUTE_LIFT, and 
COMPUTE_ROC
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■ Move a model from one schema to another or from one database instance to 
another: EXPORT_MODEL, IMPORT_MODEL.

The first set of operations are DDL-like operations. The last set consists of utilities. 
The remaining sets of operations are query-like operations in that they do not 
modify the model.

In addition to the operations, the following capabilities are also provided as part of 
the Oracle Data Mining installation:

■ User Views - DATA_MINING_USER_MODELS

■ Queries to compute metrics that test regression models.

Mining results are either returned as result sets or persisted as fixed schema tables.

7.3.1 DBMS_DATA_MINING Build Results
The BUILD operation creates a mining model. The GET_MODEL_DETAILS functions 
for each supported algorithm permit you to view the model. In addition, GET_
MODEL_SIGNATURE and GET_MODEL_SETTINGS provide descriptive information about 
the model.

7.3.2 DBMS_DATA_MINING Apply Results
APPLY creates and populates a fixed schema table with a given name. The schema of 
this table varies based on the particular mining function, algorithm, and target 
attribute type — numerical or categorical.

RANK_APPLY takes an APPLY result table as input and generates another table with 
results ranked based on a top-N input, and for classification models, also based on 
cost. The schema of this table varies based on the particular mining function, 
algorithm, and the target attribute type — numerical or categorical.

7.3.3 Evaluating DBMS_DATA_MINING Classification Models
DBMS_DATA_MINING includes the following procedures for testing classification 
models:

■ COMPUTE_CONFUSION_MATRIX — Computes the confusion matrix for a 
classification mo el and provides the accuracy for the model

■  COMPUTE_LIFT — Computes a lift table for a given positive target of a 
classification model.
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■ COMPUTE_ROC — Computes receiver operating characteristic (ROC) for a 
binary classification model.

These procedures are described in the DBMS_DATA_MINING chapter of PL/SQL 
Packages and Types Reference.

The rest of this section describes confusion matrix, lift, and receiver operating 
characteristics.

7.3.3.1 Confusion Matrix
ODM supports the calculation of a confusion matrix to asses the accuracy of a 
classification model. A confusion matrix is a 2-dimensional square matrix. The row 
indexes of a confusion matrix correspond to actual values observed and used for 
model testing; the column indexes correspond to predicted values produced by 
applying the model to the test data. For any pair of actual/predicted indexes, the 
value indicates the number of records classified in that pairing. For example, a 
value of 25 for an actual value index of "buyer" and a predicted value index of 
"nonbuyer" indicates that the model incorrectly classified a "buyer" as a "nonbuyer" 
25 times. A value of 516 for an actual/predicted value index of "buyer" indicates 
that the model correctly classified a "buyer" 516 times. 

The predictions were correct 516 + 725 = 1241 times, and incorrect 25 + 10 = 35 
times. The sum of the values in the matrix is equal to the number of scored records 
in the input data table. The number of scored records is the sum of correct and 
incorrect predictions, which is 1241 + 35 = 1276. The error rate is 35/1276 = 0.0274; 
the accuracy rate is 1241/1276 = 0.9725.

A confusion matrix provides a quick understanding of model accuracy and the types 
of errors the model makes when scoring records. It is the result of a test task for 
classification models.

Figure 7–1 Confusion Matrix
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7.3.3.2 Lift
ODM supports computing lift for a classification model. Lift can be computed for 
both binary (2 values) target fields and multiclass (more than 2 values) target fields. 
Given a designated positive target value (that is, the value of most interest for 
prediction, such as "buyer," or "has disease"), test cases are sorted according to how 
confidently they are predicted to be positive cases. Positive cases with highest 
confidence come first, followed by positive cases with lower confidence. Negative 
cases with lowest confidence come next, followed by negative cases with highest 
confidence. Based on that ordering, they are partitioned into quantiles, and the 
following statistics are calculated: 

■ Target density of a quantile is the number of actually positive instances in that 
quantile divided by the total number of instances in the quantile. 

■ Cumulative target density is the target density computed over the first n 
quantiles.

■ Quantile lift is the ratio of target density for the quantile to the target density 
over all the test data. 

■ Cumulative percentage of records for a given quantile is the percentage of all test 
cases represented by the first n quantiles, starting at the end that is most 
confidently positive, up to and including the given quantile. 

■ Cumulative number of targets for quantile n is the number of actually positive 
instances in the first n quantiles (defined as above). 

■ Cumulative number of nontargets is the number of actually negative instances in 
the first n quantiles (defined as above). 

■ Cumulative lift for a given quantile is the ratio of the cumulative target density 
to the target density over all the test data. 

Cumulative targets can be computed from the quantities that are available in the 
LiftRresultElement using the following formula:

targets_cumulative = lift_cumulative * percentage_records_cumulative

7.3.3.3 Receiver Operating Characteristics
Another useful method for evaluating classification models is Receiver Operating 
Characteristics (ROC) analysis. ROC curves are similar to Lift charts in that they 
provide a means of comparison between individual models and determine 
thresholds which yield a high proportion of positive hits. Specifically, ROC curves 
aid users in selecting samples by minimizing error rates. ROC was originally used 
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in signal detection theory to gauge the true hit versus false alarm ratio when 
sending signals over a noisy channel.

The horizontal axis of an ROC graph measures the false positive rate as a 
percentage. The vertical axis shows the true positive rate. The top left hand corner is 
the optimal location in an ROC curve, indicating high TP (true-positive) rate versus 
low FP (false-positive) rate. The ROC Area Under the Curve is useful as a 
quantitative measure for the overall performance of models over the entire 
evaluation data set. The larger this number is for a specific model, the better. 
However, if the user wants to use a subset of the scored data, the ROC curves help 
in determining which model will provide the best results at a specific threshold. 

In the example graph in Figure 7–2, Model A clearly has a higher ROC Area Under 
the Curve for the entire data set. However, if the user decides that a false positive 
rate of 40% is the maximum acceptable, Model B is better suited, since it achieves a 
better error true positive rate at that false positive rate. 

Figure 7–2 Receiver Operating Characteristics Curves 

Besides model selection the ROC also helps to determine a threshold value to 
achieve an acceptable trade-off between hit (true positives) rate and false alarm 
(false positives) rate. By selecting a point on the curve for a given model a given 
trade-off is achieved. This threshold can then be used as a post-processing for 
achieving the desired performance with respect to the error rates. ODM models by 
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default use a threshold of 0.5. This is the confusion matrix reported by the test in the 
ODM Java interface.

The Oracle Data Mining ROC computation calculates the following statistics:

■ Probability threshold: The minimum predicted positive class probability 
resulting in a positive class prediction. Different threshold values result in 
different hit rates and false alarm rates.

■ True negatives: Negative cases in the test data with predicted probabilities 
below the probability threshold (correctly predicted).

■ True positives: Positive cases in the test data with predicted probabilities above 
the probability threshold (correctly predicted).

■ False negatives: Positive cases in the test data with predicted probabilities 
below the probability threshold (incorrectly predicted).

■ False positives: Negative cases in the test data with predicted probabilities 
above the probability threshold (incorrectly predicted).

■ Hit rate: (true positives/(true positives + false negatives))

■ False alarm rate: (false positives/(false positives + true negatives))

7.3.4 Test Results for DBMS_DATA_MINING Regression Models
The most commonly used metrics for regression models are root mean square error 
and mean absolute error. You can use SQL queries described in Oracle Data Mining 
Application Developer’s Guide to compute those metrics.

The regression test results provide measures of model accuracy: root mean square 
error and mean absolute error of the prediction.

7.3.4.1 Root Mean Square Error
The following query calculates root mean square.

SELECT sqrt(avg((A.prediction - B.target_column_name) * 
                (A.prediction - B.target_column_name))) rmse 
  FROM apply_results_table A, targets_table B 
 WHERE A.case_id_column_name = B.case_id_column_name;
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7.3.4.2 Mean Absolute Error
Given the targets table generated from the test data with the schema:

(case_id_column_name VARCHAR2,
target_column_name NUMBER)

and apply results table for regression with the schema:

(case_id_column_name VARCHAR2, 
prediction NUMBER)

and a (optional) normalization table with the schema:

(attribute_name VARCHAR2(30),
scale NUMBER,
shift NUMBER)

the query for mean absolute error is:

SELECT /*+PARALLEL(T) PARALLEL(A)*/
    AVG(ABS(T.actual_value - T.target_value)) mean_absolute_error
  FROM (SELECT B.case_id_column_name,
          (B.target_column_name * N.scale + N.shift) actual_value
        FROM targets_table B,
             normalization_table N
        WHERE N.attribute_name = B.target_column_name AND
               B.target_column_name = 1) T,
       apply_results_table_name A
 WHERE A.case_id_column_name = T.case_id_column_name;

You can fill in the italicized values with the actual column and table names chosen 
by you. If the data is not normalized, you can eliminate those references from the 
subquery.

7.4 DBMS_DATA_MINING Model Export and Import
Oracle supports data mining model export and import between Oracle databases or 
schemas to provide a way to move models. DBMS_DATA_MINING does not 
support model export and import via PMML.

Model export/import is supported at different levels, as follows: 

■ Database export/import. When a DBA exports a full database using the expdp 
utility, all the existing data mining models in the database will be exported.       
When a DBA imports a database dump using the impdp utility, all the data 
mining models in the dump will be restored.
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■ Schema export/import. When a user or DBA exports a schema using expdp, all 
the data mining models in the schema will be exported. When the user or DBA 
imports the schema dump using impdp, all the models in the dump will be 
imported. 

■ Selected model export/import. Users can export specified models using DBMS_
DATA_MINING.export_model() and import specified models using     
DBMS_DATA_MINING.import_model(). 

DBMS_DATA_MINING supports export and import of models based on the Oracle 
DBMS Data Pump. Where you export a model, the tables that constitute the model 
and the associated metadata are written to a dump file set that consists of one or 
more files. When you import a model, the tables and metadata are retrieved from 
the file and restored in the new database.

For information about requirements for the application system, see Chapter 9.

For detailed information about the export/import transformation, see the Oracle 
Data Mining Application Developer’s Guide.
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8
Text Mining Using Oracle Data Mining

Oracle provides support for text mining in two products:

■ Oracle Text

■ Oracle Data Mining (ODM)

The support for text data in ODM is different from that provided by Oracle Text, 
which is dedicated to text document processing. ODM allows the combination of 
text and non-text (traditional categorical and numerical) columns of data to enable 
clustering, classification, and feature extraction.

Support for text mining is new in ODM. Text is the first unstructured data 
supported by ODM. The approach ODM takes to text can also be used to integrate 
other unstructured data such as images, audio files, etc.

Table 8–1 summarizes how DBMS_DATA_MINING, the ODM Java interface, and 
Oracle Text support text mining.

Oracle Data Mining Application Developer’s Guide contains a case study that mines a 
combination of text data and non-text data.

8.1 What Text Mining Is
Text mining is conventional data mining done using  "text features." Text features 
are usually keywords, frequencies of words, or other document-derived features. 
Once you derive text features, you mine them just as you would any other data.

Some of the applications for text mining include:

■ Create and manage taxonomies

■ Classify or categorize documents
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■ Integrating search capabilities and classification and clustering of documents 
returned from a search

■ Automatic extraction of topics

■ Feature extraction for subsequent mining

8.1.1 Document Classification
Document classification, also known as document categorization, is the process of 
assigning documents to categories (for example, themes or subjects). A particular 
document may fit into two or more different categories. This type of classification 
can often be represented as a multi-target classification problem where a predictive 
model is built for each category.

8.1.2 Combining Text and Numerical Data
In some classes of problems, text is combined with numerical data. For example 
patient records or other clinical records usually contain both numerical data 
(temperature, blood pressure, etc.) and text data (physician’s notes). In such a case, 
you can use ODM to perform mining on the numerical data, the text data, or both 
the numerical and the text data combined.

If you wish to combine both text and numerical data for mining, you must use some 
appropriate method to convert the unstructured data (the text) to numerical data. 
You convert text to numerical data by generating numbers that characterize the 
document. For example, you might count the number of occurrences of certain 
important words. 

The DBMS_DATA_MINING_TRANSFORM package includes a procedure for 
extracting text features that gives a great deal of control on how features are treated. 
These features can be used in either ODM interface. The ODM Java interface, 
automatically converts TEXT columns, but it doesn’t provide any control over how 
the features are generated.

8.2 ODM Technologies Supporting Text Mining
ODM provides infrastructure for developing data mining applications suitable for 
addressing a variety of business problems involving text. Among these, the 
following specific technologies provide key elements for addressing problems that 
require text mining:

■ Classification
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■ Clustering 

■ Feature extraction

■ Association

■ Regression

The technologies that are most used in text mining are classification, clustering, and 
feature extraction.

8.2.1 Classification and Text Mining
A large number of document classification applications fall into one of the 
following:

■ Assigning multiple labels to a document. ODM does not support this case.

■ Assigning a document to one of many labels. For example, automatically 
assigning an email message to a folder and spam filtering. This application 
requires supporting multi-class classification.

Support vector machines (SVMs) are powerful classifiers that have been used 
successfully in document classification applications. SVMs can deal with thousands 
of features and are easy to train with small or large amounts of data. SVMs are 
know to work well with text data. For more information about SVMs, see Chapter 3. 

8.2.2 Clustering and Text Mining
Clustering is used heavily in text mining; the main applications of clustering in text 
mining are 

■ Taxonomy generation

■ Topic extraction

■ Grouping the hits returned by a search engine

Clustering can also be used to group textual information with other indications 
from business databases to provide novel insights.

The current release of ODM adds support for clustering text features using the 
DBMS_DATA_MINING package.
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8.2.3 Feature Extraction and Text Mining
There are two kinds of problems for which feature extraction is useful:

■ Extract features from actual text. Oracle Text is designed to solve this kind of 
problem. DBMS_DATA_MINING also supports feature extraction from text. 
Most text mining is focused on this problem.

■ Extract semantic features or higher-level features from the basic features 
uncovered when features are extracted from actual text. Statistical                           
techniques, such as single value decomposition (SVD) and non-negative matrix 
factorization (NMF), are important in solving this kind of problem. 
Higher-order features can greatly improve the quality of information retrieval, 
classification, and clustering tasks.

Non-negative matrix factorization (NMF) is a new feature in release 10.1 of ODM. 
NMF has been found to provide superior text retrieval when compared to SVD and 
other traditional decomposition methods. NMF takes as input a term-document 
matrix and generates a set of topics that represent weighted sets of co-occurring 
terms. The discovered topics form a basis that provides an efficient representation 
of the original documents. For more information about NMF, see Chapter 4, 
"Descriptive Data Mining Models"or Chapter 4, "Descriptive Data Mining Models".

8.2.4 Association and Regression and Text Mining
Association models can be used to uncover the semantic meaning of words. For 
example, suppose that the word sheep co-occurs with words like sleep, fence, chew,                  
grass, meadow, farmer, and shear. An association model would include rules 
connecting sheep with these concepts. Inspection of the rules would provide context 
for sheep in the document collection. Such associations can improve information 
retrieval engines.

Regression is most often used in problems that combine text with other types of 
data.

8.3 Oracle Support for Text Mining
Table 8–1 summarizes how the ODM Java interface, DBMS_DATA_MINING (the 
ODM PL/SQL package), and Oracle Text support text mining functions.
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Table 8–1 Text Mining Comparison

Feature ODM Java interface DBMS_DATA_MINING Oracle Text

Association No support Text data only or text 
and non-text data

No support

Clustering No support for text 
data

k-means algorithm 
supports text only or 
text and non-text data

k-means algorithm 
supports text only

Attribute 
importance

No support for text 
data

No support for text 
data

 No support

Regression Support vector 
machines (SVM) 
supports text data only 
or text and non-test 
data

Support vector 
machines (SVM) 
supports text data only 
or text and non-text 
data

No support

Classification SVM supports text 
only or text and 
non-text data

Support for assigning 
documents to one of 
many labels

SVM supports text 
only or text and 
non-text data

Support for assigning 
documents to one of 
many labels

SVM and decision trees 
support text only

 Support for assigning 
documents to one of 
many labels and also 
for assigning 
documents to multiple 
labels at the same time

Feature 
extraction (basic 
features)

Feature extraction is 
done internally; the 
results are not exposed. 
Does not provide a 
high level of control for 
feature extraction

Exposes the feature 
extraction that Oracle 
Text performs; allows 
same degree of control 
as Oracle Text

Feature extraction is 
done internally; the 
results are not exposed 

Feature 
extraction 
(higher order 
features)

Non-negative matrix 
factorization (NMF) 
supports text or text 
and non-text data

Non-negative matrix 
factorization (NMF) 
supports text or text 
and non-text data

No support

Record apply No support for record 
apply of text columns

No support for record 
apply

Supports record apply 
for classification
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Support for 
TEXT columns

Accepts a TEXT 
column for mining

Features extracted from 
a column of type 
CLOB, BLOB, BFILE. 
LONG, VARCHAR2, 
XMLType, CHAR, 
RAW, LONG RAW 
using an appropriate 
transformation

Accept table columns 
of type CLOB, BLOB, 
BFILE. LONG, 
VARCHAR2, 
XMLType, CHAR, 
RAW, LONG RAW 

Table 8–1 Text Mining Comparison

Feature ODM Java interface DBMS_DATA_MINING Oracle Text
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9
Oracle Data Mining Scoring Engine

Some data-mining enabled applications have models that are developed on one 
system and then deployed to other (production) systems. Production applications 
often need only to apply models built elsewhere. The Oracle Data Mining Scoring 
Engine supports scoring data (applying models) using models created elsewhere.

The Scoring Engine allows customers to limit the Oracle Data Mining (ODM) 
functionality available within their scoring applications to ensure that 
compute-intensive operations such as model building are not performed on systems 
where Scoring Engine is installed.

9.1 Oracle Data Mining Scoring Engine Features
The ODM Scoring Engine supports operations for preparing data as required from 
the build process, importing a model, and applying a model to data. All 
transformation functionality is included in the Scoring Engine. All functionality 
provided in the Scoring Engine behaves exactly as the full system.

You cannot build models using the Scoring Engine.

9.2 Data Mining Scoring Engine Installation
“Data Mining Scoring Engine” is a custom install option for Oracle Data Mining; 
select this option to install the ODM Scoring Engine.

9.3 Scoring in Data Mining Applications
A single model can be used to score large volumes of data, often in multiple 
geographically distributed application settings. Data analysis and model building 
might be performed by a small group of data mining experts using data from a 
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centralized data warehouse. However, the model, can be used by a much larger 
number of applications working with data at geographically dispersed sites using 
local data. Local data may consist of millions of records representing customers; 
therefore, it can make sense to move the model to where the data is. 

In real-time applications such as call centers, models are often built in one 
environment and used in another. There may be one machine dedicated to model 
building, using large volumes of data to produce models on a daily basis. Several 
other machines may be dedicated to real-time scoring, receiving new models to 
support, for example, the call center application. Call center representatives collect 
information from callers; the collected information is then used to obtain 
predictions or recommendations for that particular caller in real time. Scoring in 
real time often requires that the model is moved to where the data is.

9.4 Moving Data Mining Models
Oracle Data Mining supports two ways to move models from one schema or debase 
instance to another:

■ PMML export and import in the Java interface

■ Native export and import in the PL/SQL interface

9.4.1 PMML Export and Import
You can transport Naive Bayes and Association models between ODM instances 
using the Export task followed by the Import to import. The PMML string produced 
by the Export task can be moved via file transport mechanisms for import at a 
target ODM instance or Scoring Engine instance. The ODM Export Task places the 
PMML string in a table in a cell of type CLOB, The Import Task reads the PMML 
string from a table cell of type CLOB. The sample program PMMLDemo.java 
illustrates exporting and importing a Naive Bayes model.

9.4.2 Native ODM Export and Import
In a narrow sense, native export and import implies moving data mining model out 
of and into Oracle databases using Oracle proprietary facilities.

Native export and import are currently supported for data mining models built 
using the ODM PL/SQL interface only, namely those models created using the 
DBMS_DATA_MINING package.

Naive model export and import is based on Oracle Data Pump technology. 
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Native export is supported at three different levels, as follows:

■ When a full database is exported using the Oracle Data Pump Export Utility 
(expdp), all data mining models in the database are exported. 

■ When a schema is exported using the Oracle Data Pump Export Utility 
(expdp), all data mining models in the schema are exported. 

■ An ODM user can export one or more specific models in a schema using the 
DBMS_DATA_MINING.export_model procedure.

Native import is also supported in all scenarios. Using the dump file set produced 
by the Oracle Data Pump Export Utility (expdp), an ODM user can run the Oracle 
Data Pump Import Utility (impdp) to import all data mining models contained in 
the dump file set. 

ODM users can import a specific model from the dump file set using DBMS_DATA_
MINING.import_model procedure.

For more information about native export and import, see the Oracle Data Mining 
Administrator's Guide and the DBMS_DATA_MINING chapter in the PL/SQL 
Packages and Types Reference.

9.5 Using the Oracle Data Mining Scoring Engine
Suppose that the application builds a model on one system named BLDSYS and 
applies the model on a different system named SCORESYS.

BLDYS must have ODM installed. ODM supports all data mining activities 
(building models, testing models, applying models, etc.). SCORESYS can have the 
ODM Scoring Engine installed. It will not be possible to build models on 
SCORESYS, but it will be possible to apply the model. Note that SCORESYS could 
have a full ODM product installation.

The following processing takes place:

1. Build models on BLDYSYS. Select the appropriate model to deploy.

2. Export the model using the ODM PL/SQL interface (or use the Java interface to 
export Naive Bayes and Association models).

3. Copy the dump file generated by model export to SCORESYS. If you used 
PMML export, copy the PMML XML string to SCORESYS and export the string 
from the table cell.

4. Import the model on SCORESYS using the corresponding interface that you 
used to export it.
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5. Apply the model to data on SCORESYS. 
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10
 Sequence Similarity Search and Alignment

(BLAST)

In addition to data mining functions that produce predictive and descriptive 
models, ODM supports specialized sequence search and alignment algorithms 
(BLAST). In life sciences, vast quantities of data including nucleotide and amino 
acid sequences are stored, typically in a database. These sequence data help 
biologists determine the chemical structure, biological function, and evolutionary 
history of organisms. A key feature of managing the exponential growth in 
sequence data sources is the availability of fast, sensitive, and statistically rigorous 
techniques for detecting similarities between these sequences. 

As the amount of nucleotide and amino acid sequence data continues to grow, the 
data becomes increasingly useful in the analysis of newly sequenced genes and 
proteins because of the greater chance of finding such sequence similarities.

10.1 Bioinformatics Sequence Search and Alignment
Sequence alignment is one of the most commonly used bioinformatics tasks. It is 
present in almost any research and development activity across the many industries 
in the area of life sciences including academia, biotech, services, software, pharma, 
and hospitals. 

Of all the sequence alignment algorithms, the one that is most widely used is 
BLAST (basic local alignment search tool). It is typically used to compare one query 
nucleotide or protein sequence against a database of sequences, and uncover 
similarities and sequence matches. Its success and popularity comes from its 
combination of speed, sensitivity, and statistical assessment of the results.

BLAST is a heuristic method to find the high-scoring locally optimal alignments 
between a query sequence and a database. The BLAST algorithm and family of 
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programs rely on the statistics of gapped and un-gapped sequence alignments. The 
statistics allow the probability of obtaining an alignment with a particular score to 
be estimated. BLAST is unlikely to be as sensitive for all protein searches as a full 
dynamic programming algorithm. However, the underlying statistics provide a 
direct estimate of the significance of any match found.

The inclusion of BLAST in ODM positions the Oracle DBMS as a platform for 
bioinformatics.

10.2 BLAST in the Oracle Database
Implementing BLAST in the database provides the following benefits: 

■ You can include BLAST in complex queries, thereby enabling complex 
analytical pipelines that include BLAST searches.

■ You can subselect portions of the database using SQL, thereby restricting 
searches. 

■ Since sequence data is already stored in the database, it is not necessary to 
export the sequence data and pre-process them to create BLAST data sets and 
then import the results back into the database. 

10.3 Oracle Data Mining Sequence Search and Alignment Capabilities
Sequence search and alignment, with capabilities similar to those of NCBI BLAST 
2.0, has been implemented in the database using table functions. This 
implementation enables users to perform queries against data that is held directly 
inside an Oracle database. As the algorithms are implemented as table functions, 
parallel computation is intrinsically supported. 

The five core variants of BLAST have been implemented:

■ BLASTN compares a nucleotide query sequence against a nucleotide database.

■ BLASTP compares a protein query sequence against a protein sequence 
database.

■ BLASTX compares the six-frame conceptual translation products of a nucleotide 
query sequence (both strands) against a protein sequence database.

■ TBLASTN compares a protein query sequence against a nucleotide sequence 
database dynamically translated in all six reading frames (both strands).

■ TBLASTX compares the six-frame translations of a nucleotide query sequence 
against the six-frame translations of a nucleotide sequence database.
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The BLAST table functions are implemented in the database, and can be invoked by 
SQL. Using SQL, it is possible to pre-process the sequences as well as perform any 
required post-processing. This additional processing capability means it is possible 
to combine BLAST searches with queries that involve images, date functions, 
literature search, etc. Using these complex queries make it possible to perform 
BLAST searches on a required subset of data, potentially resulting in highly 
performant queries. This functionality is expected to provide considerable value.

BLAST queries can be invoked directly using the SQL interface or through an 
application. The query below shows an example of a SQL-invoked BLAST search 
where a protein sequence is compared with the protein database SwissProt, and 
sequences are filtered so that only human sequences that were deposited after 1 
January 1990 are searched against. The column of numbers at the end of the query 
reflects the parameters chosen.

select t_seq_id, alignment_length, q_seq_start, q_seq_end 
       q_frame, t_seq_start, t_seq_end, t_frame, score, expect 
  from TABLE( 
       BLASTP_ALIGN ( 
         (select sequence from query_db), 
         CURSOR(SELECT seq_id, seq_data 
                FROM swissprot 
                WHERE organism = 'Homo sapiens (Human)' AND 
                      creation_date > '01-Jan-90'), 
         1, 
         -1, 
         0, 
         0, 
         'BLOSUM62', 
         10, 
         0, 
         0, 
         0, 
         0, 
         0) 
       ); 

The results of a SQL query can be displayed either through an application or a 
SQL*Plus interface. When the SQL*Plus interface is used, the user can decide how 
the results will be displayed. The following shows an example of the format of the 
output that could be displayed by the SQL query shown above.
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T_SEQ_ID  ALIGNMENT_LENGTH Q_SEQ_START Q_SEQ_END Q_FRAME T_SEQ_START T_SEQ_END T_FRAME SCORE EXPECT
----------
P31946 50 0 50 0 13 63 0 205  5.1694E-18

Q04917 50 0 50 0 12 62 0 198  3.3507E-17

P31947 50 0 50 0 12 62 0 169  7.7247E-14

P27348 50 0 50 0 12 62 0 198  3.3507E-17

P58107 21 30 51 0 792  813  0 94   6.34857645
 

The first row of information represents some of the attributes returned by the query; 
for example, the target sequence ID, the length of the alignment, the position where 
the alignment starts on the query sequence, the position where the alignment ends 
on the query sequence, which open reading frame was used for the query sequence, 
etc. 

The next five rows represent sequence alignments that were returned; for example, 
the protein with the highest alignment to query sequence has the accession number 
"P31946", the alignment length was 50 amino acids, the alignment started at the first 
base of the amino acid query, and ended with the 50th base of the amino acid query, 
etc.
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A
ODM Interface Comparison

The Java and PL/SQL interfaces for Oracle Data Mining (ODM) provide similar 
functionality; however, they are not identical. They are aimed at different audiences; 
they support different features on a detailed level; and they must be used 
differently in different programming environments. This appendix compares the 
two interfaces.

A.1 Target Users of the ODM Interfaces
The two interfaces are aimed at different audiences, as follows:

■ The ODM Java interface is designed to support the development of interactive 
and batch mining applications and tools. The ODM Java interface is a complete 
interface for general-purpose application development. All mining operations, 
such as model build, apply, test, and lift, are executed as asynchronous tasks. 
The interface also supports wrapper operations -- which may involve one or 
more iterations of the core operations -- such as Model Seeker and utilities like 
import and export of PMML models. The interface also provides internal 
packages to support Data Mining for Java (DM4J).

■ The PL/SQL interface is designed to support traditional Oracle RDBMS 
application developers and DBAs who are familiar with SQL and PL/SQL 
packages. The DBMS_DATA_MINING package provides a set of core data 
mining primitives that enable creation, drop, or rename of a data mining model, 
and scoring of new data using a given model. The package also contains a set of 
helper functions for evaluating a model and for inspecting the contents of a 
model. All operations are synchronous. Data is not preprocessed implicitly by 
any of the operations. DBMS_DATA_MINING_TRANSFORM, a 
complementary, open-sourced package, provides a set of utilities to preprocess 
the data to be used for model creation, model testing, and for scoring new data 
using an existing model.
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A.2 Feature Comparison of the ODM Interfaces
Table A–1 summarizes the differences in features between the two data mining 
interfaces.

Table A–1 ODM Java and PL/SQL Interface Feature Comparison

Feature ODM Java Interface  DBMS_DATA_MINING Interface

Operation mode Asynchronous. Synchronous.

If asynchronous execution is 
required, use other Oracle database 
features like unified scheduler

Algorithms ODM k-means algorithm. Different version of k-means 
algorithm; faster, handles sparse 
data, supports new distance metrics 
(cosine and fast cosine), handles 
categorical and numerical 
attributes, doesn't require binning 
(instead it normalizes numeric 
attributes)

O-Cluster not supported

Model build 
specification

Based in ODM classes: LAD 
(data location), PDS (format 
of input data), MFS (function 
settings), MAS (algorithm 
settings)

Data location (schema) is passed in 
the argument list (default is user 
schema); mining function is passed 
in argument list; settings (function 
and algorithm) are passed in a 
single optional table 

Settings Provided through Java objects 
MAS (optional) and MFS.

Provided through an optional 
settings table.

Default settings Available for algorithms? Available for function and 
algorithm.

Attribute form type LDS (explicit or convenience 
function)

Automatically inferred from 
column data type; form types can 
be modified using views

Location of input data 
and result tables

LAD (Java object) Provided in the argument list as 
schema information; default is user 
schema
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Input data structure Supports both single-record 
case both single-record case 
(as a conventional relational     
table input) and multi-record 
case (as a table input in 
"transactional format")

Supports both single-record case (as 
a conventional relational table 
input) and multi-record case (as a 
conventional relational table with      
nested table columns representing 
association of multiple attributes of 
the same kind with the same case 
identifier ("wide data")

Model apply (data 
scoring)

Flexible filtering specification Apply interface is provided; a 
separate interface to rank apply 
accepts a cost matrix input to 
enable results generation on the 
basis of cost 

Model evaluation Confusion matrix and lift 
metrics for classification, 
tightly coupled with models 
for maximum ease of use

Provides a variety of evaluation 
metrics: confusion matrix, lift 
RMSE, and ROC. Not coupled with 
a model for maximum flexibility; 
allows use of different cost matrices 
at evaluation time and performance 
evaluation of non-ODM models

Transformations (data 
preparation)

Internal support for 
automatic binning and 
normalization. Other 
transformations must be                     
performed as pre-processing.

All transformation must be 
performed as pre-processing. 
Normalization and binning are 
supported by DBMS_DATA_
MINING_TRANSFORM

Model export and 
import

PMML export/import for 
Naive Bayes and Association 
models; no support for native 
format

Export and import of all models in 
native format; no support for 
PMML.

Model comparison 
(finding the best 
model)

Model Seeker builds multiple 
NB and ABN models and 
selects the "best" one

Not supported 

Cross validation Automatic for NB models Not supported

Table A–1 ODM Java and PL/SQL Interface Feature Comparison

Feature ODM Java Interface  DBMS_DATA_MINING Interface
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A.3 The ODM Interfaces in Different Programming Environments
 Table A–2 compares using the two interfaces in different programming 
environments.

Programming in XML programming in PL/SQL

Table A–2 ODM APIs in Programming Environments

Environment ODM Java interface ODM PL/SQL interface

Programming in PL/SQL Package ODM routines as 
PL/SQL (Java Stored 
Procedures)

Use the ODM packages 
DBMS_DATA_MINING 
and DBMS_DATA_
MINING_TRANSFORM.

Programming in Java Use native calls. Use JDBC to call the ODM 
PL/SQL packages.

Programming in OCI/C or 
OOCI/C++ 

Invoke PL/SQL (Java stored 
procedures) through 
OCIStatement() calls.

.Use the ODM packages 
DBMS_DATA_MINING 
and DBMS_DATA_
MINING_TRANSFORM

Programming in Pro*C, 
COBOL, or FORTRAN

Invoke PL/SQL (Java stored 
procedures) using EXEC calls

Use standard EXEC SQL 
interface.

Programming in XML JDeveloper9i (and the new 
JDK1.4 release) enable 
seamless Java/XML and 
generation of execution objects 
(SOAP).

NA
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ABN

See adaptive bayes network.

adaptive bayes network

An Oracle proprietary algorithm that can generate "rules". ABN provides a fast, 
scalable, non-parametric means of extracting predictive information from data with 
respect to a target attribute.

algorithm

A specific technique or procedure for producing a data mining model. An algorithm 
uses a specific model representation and may support one or more functional areas. 
Examples of algorithms used by ODM include Naive Bayes, Adaptive Bayes 
Networks, and Support Vector Machine for classification, Support Vector Machine 
for regression, k-means and O-Cluster for clustering, MDL for attribute importance, 
and Apriori for association models.

algorithm settings

The settings that specify algorithm-specific behavior for model building.

apply output

A user specification in the ODM Java interface describing the kind of output desired 
from applying a model to data. This output may include predicted values, 
associated probabilities, key values, and other supplementary data.

approximation

See regression. 
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association

A data mining function that captures co-occurrence of items among transactions. A 
typical rule is an implication of the form A -> B, which means that the presence of 
itemset A implies the presence of itemset B with certain support and confidence. 
The support of the rule is the ratio of the number of transactions where the itemsets 
A and B are present to the total number of transactions. The confidence of the rule is 
the ratio of the number of transactions where the itemsets A and B are present to the 
number of transactions where itemset A is present. ODM uses the Apriori algorithm 
for association models.

association rules

Generated by association models. See association.

attribute 

In the Java interface, an instance of Attribute maps to a column with a name and 
data type. The attribute corresponds to a column in a database table. When assigned 
to a column, the column must have a compatible data type; if the data type is not 
compatible, a runtime exception is likely. Attributes are also called variables, features, 
data fields, or table columns.

attribute importance

A measure of the importance of an attribute in predicting a specified target. The 
measure of different attributes of a build data table enables users to select the 
attributes that are found to be most relevant to a mining model. A smaller set of 
attributes results in a faster model build; the resulting model could be more 
accurate. ODM uses the minimum description length principle to discover 
important attributes. Sometimes referred to as feature selection and key fields.

attribute usage

Specifies how a logical attribute is to be used when building a model, for example, 
active or supplementary, suppressing automatic data preprocessing, and assigning a 
weight to a particular attribute. See also attributes usage set.

attributes usage set

A collection of attribute usage objects that together determine how the logical 
attributes specified in a logical data object are to be used.

binning

See discretization.
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case

All the data collected about a specific transaction or related set of values.

categorical attribute

An attribute where the values correspond to discrete categories. For example, state 
is a categorical attribute with discrete values (CA, NY, MA, etc.). Categorical 
attributes are either non-ordered (nominal) like state, gender, etc., or ordered 
(ordinal) such as high, medium, or low temperatures.

category

In the Java interface, corresponds to a distinct value of a categorical attribute. 
Categories may have string or numeric values. String values must not exceed 64 
characters in length.

centroid

See cluster centroid.

classification 

A data mining function for predicting categorical target values for new records 
using a model built from records with known target values. ODM supports three 
algorithms for classification, Naive Bayes, Adaptive Bayes Networks, and Support 
Vector Machines. 

cluster centroid

The cluster centroid is the vector that encodes, for each attribute, either the mean (if 
the attribute is numerical) or the mode (if the attribute is categorical) of the cases in 
the build data assigned to a cluster.

clustering

A data mining function for finding naturally occurring groupings in data. More 
precisely, given a set of data points, each having a set of attributes, and a similarity 
measure among them, clustering is the process of grouping the data points into 
different clusters such that data points in the same cluster are more similar to one 
another and data points in different clusters are less similar to one another. ODM 
supports two algorithms for clustering, k-means and orthogonal partitioning 
clustering.

confusion matrix

Measures the correctness of predictions made by a model from a test task. The row 
indexes of a confusion matrix correspond to actual values observed and provided in 
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the test data. These were used for model building. The column indexes correspond 
to predicted values produced by applying the model to the test data. For any pair of 
actual/predicted indexes, the value indicates the number of records classified in 
that pairing. 

When predicted value equals actual value, the model produces correct predictions. 
All other entries indicate errors.

cost matrix

A two-dimensional, n by n table that defines the cost associated with a prediction 
versus the actual value. A cost matrix is typically used in classification models, 
where n is the number of distinct values in the target, and the columns and rows are 
labeled with target values. The rows are the actual values; the columns are the 
predicted values.

cross-validation

A technique for evaluating the accuracy of a classification or regression model. This 
technique is used when there are insufficient cases for using separate sets of data for 
model building and testing. The data table is divided into several parts, with each 
part in turn being used to evaluate a model built using the remaining parts. 
Cross-validation occurs automatically for Naive Bayes and Adaptive Bayes 
Networks. Available in the Java interface only.

data mining

The process of discovering hidden, previously unknown, and usable information 
from a large amount of data. This information is represented in a compact form, 
often referred to as a model.

data mining server (DMS)

The component of the Oracle database that implements the data mining engine and 
persistent metadata repository. 

discretization

Discretization groups related values together under a single value (or bin). This 
reduces the number of distinct values in a column. Fewer bins result in models that 
build faster. Many ODM algorithms (NB, ABN, etc.) may benefit from input data 
that is discretized prior to model building, testing, computing lift, and applying 
(scoring).

distance-based (clustering algorithm)
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Distance-based algorithms rely on a distance metric (function) to measure the 
similarity between data points. Data points are assigned to the nearest cluster 
according to the distance metric used.

DMS 

See data mining server (DMS).

document-term matrix

In text mining, a matrix that represents the terms that are included in a given 
document.

feature

A combination of attributes in the data that is of special interest and that captures 
important characteristics of the data.

See also network feature. 

feature extraction

Creates new set of features by decomposing the original data. Feature extraction lets 
you describe the data with a number of features that is usually far smaller than the 
number of original dimensions (attributes). See also non-negative matrix 
factorization.

lift

A measure of how much better prediction results are using a model than could be 
obtained by chance. For example, suppose that 2% of the customers mailed a 
catalog without using the model would make a purchase. However, using the 
model to select catalog recipients, 10% would make a purchase. Then the lift is 10/2 
or 5. Lift may also be used as a measure to compare different data mining models. 
Since lift is computed using a data table with actual outcomes, lift compares how 
well a model performs with respect to this data on predicted outcomes. Lift 
indicates how well the model improved the predictions over a random selection 
given actual results. Lift allows a user to infer how a model will perform on new 
data.

location access data

Specifies the location of data for a mining operation in the ODM Java interface.

logical attribute

In the Java interface, a description of a domain of data used as input to mining 
operations. Logical attributes may be categorical, ordinal, or numerical.
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logical data

A set of mining attributes used as input to building a mining model.

MDL principle

See minimum description length principle.

minimum description length principle

Given a sample of data and an effective enumeration of the appropriate alternative 
theories to explain the data, the best theory is the one that minimizes the sum of 

■ The length, in bits, of the description of the theory

■ The length, in bits, of the data when encoded with the help of the theory

This principle is used to select important attributes in attribute importance. 

mining apply output

See apply output. 

mining function

ODM supports the following mining functions: classification, regression, attribute 
importance, and clustering.

mining function settings

An object in the ODM Java interface that specifies the type of model to build, the 
function of the model, and the algorithm to use. ODM supports the following 
mining functions: classification, regression, association, attribute importance, and 
clustering.

mining model

The result of building a model from mining function settings (Java interface) or 
mining settings table (PL/SQL interface). The representation of the model is specific 
to the algorithm specified by the user or selected by the DMS. A model can be used 
for direct inspection, e.g., to examine the rules produced from an ABN model or 
association models, or to score data.

mining result

In the Java interface, the end product(s) of a mining task. For example, a build task 
produces a mining model; a test task produces a test result.
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missing value

A data value that is missing because it was not measured (that is, has a null value), 
not answered, was unknown, or was lost. Data mining systems vary in the way 
they treat missing values. There are several typical ways to treat them: ignore then, 
omit any records containing missing values, replace missing values with the mode 
or mean, or infer missing values from existing values. ODM ignores missing values 
during mining operations.

mixture model

A mixture model is a type of density model that includes several component 
functions (usually Gaussian) that are combined to provide a multimodal density.

model

An important function of data mining is the production of a model. A model can be 
descriptive or predictive. A descriptive model helps in understanding underlying 
processes or behavior. For example, an association model describes consumer 
behavior. A predictive model is an equation or set of rules that makes it possible to 
predict an unseen or unmeasured value (the dependent variable or output) from 
other, known values (independent variables or input). The form of the equation or 
rules is suggested by mining data collected from the process under study. Some 
training or estimation technique is used to estimate the parameters of the equation 
or rules. See also mining model.

multi-record case

Each case in the data is stored as multiple records in a table with columns 
sequenceID, attribute_name, and value. Also known as transactional format. 
See also single-record case.

network feature

A network feature is a tree-like multi-attribute structure. From the standpoint of the 
network, features are conditionally independent components. Features contain at 
least one attribute (the root attribute). Network features are used in the Adaptive 
Bayes Network algorithm.

NMF

See non-negative matrix factorization.
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non-negative matrix factorization

 A feature extraction algorithm that decomposes multivariate data by creating a 
user-defined number of features, which results in a reduced representation of the 
original data. 

nontransactional format

Each case in the data is stored as one record (row) in a table. Also known as 
single-record case. See also transactional format.

numerical attribute

An attribute whose values are numbers. The numeric value can be either an integer 
or a real number. Numerical attribute values can be manipulated as continuous 
values. See also categorical attribute.

O-cluster

See orthogonal partitioning clustering.

orthogonal partitioning clustering

An Oracle proprietary clustering algorithm that creates a hierarchical grid-based 
clustering model, that is, it creates axis-parallel (orthogonal) partitions in the input 
attribute space. The algorithm operates recursively. The resulting hierarchical 
structure represents an irregular grid that tessellates the attribute space into 
clusters. 

outlier

A data value that does not come from the typical population of data; in other 
words, extreme values. In a normal distribution, outliers are typically at least 3 
standard deviations from the mean.

physical data 

In the Java interface, identifies data to be used as input to data mining. Through the 
use of attribute assignment, attributes of the physical data are mapped to logical 
attributes of a model’s logical data. The data referenced by a physical data object can 
be used in model building, model application (scoring), lift computation, statistical 
analysis, etc.

physical data specification

In the Java interface, an object that specifies the characteristics of the physical data 
used in a mining operation. The physical data specification includes information 
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about the format of the data (transactional or nontransactional) and the roles that 
the data columns play.

positive target value

In binary classification problems, you may designate one of the two classes (target 
values) as positive, the other as negative. When ODM computes a model's lift, it 
calculates the density of positive target values among a set of test instances for 
which the model predicts positive values with a given degree of confidence.

predictor

An attribute used as input to a supervised model or algorithm to build a model.

prior probabilities

The set of prior probabilities specifies the distribution of examples of the various 
classes in data. Also referred to as priors, these could be different from the 
distribution observed in the data.

priors

See prior probabilities.

regression

A data mining function for predicting continuous target values for new records 
using a model built from records with known target values. ODM supports the 
Support Vector Machine algorithm for regression. See approximation.

rule 

An expression of the general form if X, then Y. An output of certain models, such as 
association models or ABN models. The predicate X may be a compound predicate.

score

Scoring data means applying a data mining model to new data to generate 
predictions. See apply output.

settings

See algorithm settings and mining function settings.

single-record case

Each case in the data is stored as one record (row) in a table. Also known as 
nontransactional format. See also multi-record case.
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sparse data

Data for which only a small fraction of the attributes are non-zero or non-null in any 
given case. Examples of sparse data include market basket and text mining data. 

supervised mining (learning)

The process of building data mining models using a known dependent variable, 
also referred to as the target. Classification and regression techniques are examples 
of supervised. See unsupervised mining (learning).

support vector machine

A classification and regression prediction algorithm that uses machine learning 
theory to maximize predictive accuracy while automatically avoiding over-fit to the 
data. Support vector machine also has the ability to make predictions with sparse 
data, i.e., in domains that have a large number of predictor columns and relatively 
few rows, as is the case with bioinformatics.

SVM

See support vector machine.

target

In supervised learning, the identified attribute that is to be predicted. Sometimes 
called target value or target attribute.

task

A container within which to specify arguments to data mining operations to be 
performed by the data mining system. 

text mining

Text mining is conventional data mining done using  "text features." Text features 
are usually keywords, frequencies of words, or other document-derived features. 
Once you derive text features, you mine then just as you would any other data. Both 
ODM interfaces and Oracle Text support text mining.

transactional format

Each case in the data is stored as multiple records in a table with columns 
sequenceID, attribute_name, and value. Also known as multi-record case. 
See also nontransactional format.
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transformation

A function applied to data resulting in a new form or representation of the data. For 
example, discretization and normalization are transformations on data.

unsupervised mining (learning)

The process of building data mining models without the guidance (supervision) of a 
known, correct result. In supervised learning, this correct result is provided in the 
target attribute. Unsupervised learning has no such target attribute. Clustering and 
association are examples of unsupervised mining functions. See supervised mining 
(learning).
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rare events, 4-8
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B
balanced approach
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cost matrix, 3-2

table, 7-5
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support vector machine, 3-9

data preprocessing
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data requirements, 2-2
data storage, 2-7
data table format, 2-2

multi-record case, 2-2
single-record case, 2-2
wide data, 2-3

data types
attribute type, 2-6
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data usage specification object, 6-4
date data type, 2-5
dates in ODM, 2-5
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DBMS_DAT_MINING
cost matrix

table, 7-5
DBMS_DATA_MINING

algorithms, 7-3
application development, 7-1
apply results, 7-6
build results, 7-6
classification model evaluation, 7-6
confusion matrix, 7-7
costs, 7-5
export models, 7-11
functions, 7-3
import models, 7-11
lift, 7-8
mining function, 7-2
model build, 7-2
models, 7-2
prior probabilities, 7-4
priors, 7-4
regression model test, 7-10
settings tables, 7-3

dense data
association models, 4-9

descriptive models, 1-2
discretization, 2-10
distance-based clustering models, 4-2
DMS, 6-2
DUS, 6-4

E
equi-width binning, 2-11

F
feature comparison (table), A-2
feature extraction, 4-10

text mining, 4-11, 8-4
figure of merit, 3-13
fixed collection types, 2-4
function settings, 5-2

G
grid-based clustering models, 4-5

I
IncompleteSingleFeature

ABN model state, 3-8
incremental approach

in k-means, 4-3
input

to apply phase, 6-6

J
Java interface, 5-1

K
k-means, 4-2

balanced approach, 4-3
cluster information, 4-3
compared with O-cluster, 4-7
hierarchical build, 4-3
scoring, 4-5
unbalanced approach, 4-3
version comparison (table), 4-4

k-means algorithm, 4-2
data, 4-4

k-means and O-Cluster (table), 4-7

L
LDS, 6-3, 6-4
lift, 5-3, 7-8
lift result object, 6-5
logical data specification object, 6-3, 6-4

M
market basket analysis, 4-7
MaximumNetworkFeatureDepth, ABN 

parameter, 3-6
MDL, 3-11
MFS, 6-1
minimum descriptor length, 3-11
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mining algorithm settings object, 6-2
mining apply output object, 6-6
mining attribute, 6-3
mining function

DBMS_DATA_MINING, 7-2
mining function settings object, 6-1
mining model

export, 7-10
import, 7-10

mining model object, 6-4
mining models

export, 9-2
import, 9-2
moving, 9-2

mining result object, 6-5
missing values, 2-7

handling, 2-7
mixture model, 4-5
model apply

Java interface, 5-3
Java interface (figure), 5-4

model building
Java interface, 5-2

model building (figure), 5-3
model export

Java interface, 5-5
native, 9-2
PMML, 5-6, 9-2

model import
Java interface, 5-5
PMML, 5-6, 9-2

model seeker, 3-12
model states, 3-8

CompleteMultiFeature, 3-8
CompleteSingleFeature, 3-8
IncompleteSingleFfature, 3-8
NaiveBayes, 3-8

model testing
java interface, 5-3
lift, 5-3

models
apply, 3-2
association, 4-7
building, 3-1
classification, 3-1

clustering, 4-1
DBMS_DATA_MINING, 7-2
descriptive, 1-2, 4-1
export, 7-10
import, 7-10
predictive, 1-2, 3-1
training, 3-1

most frequent items, 2-11
multi-record case, 2-3
multi-record case data table format, 2-2

Java interface, 2-3
views, 2-4

N
Naive Bayes algorithm, 3-3
NavieBayes

ABN model state, 3-8
NB, 3-3
nested table format, 2-3
NMF, 4-11
non-negative matrix factorization, 4-11
nontransactional, 6-1

see single-record case, 2-2
normalization, 2-12
null values, 2-7
numerical data type, 2-2, 4-2, 4-6

O
O-cluster

apply, 4-6
attribute types, 4-6
binning, 4-6
compared with k-means, 4-7
data preparation, 4-6
scoring, 4-6

O-Cluster algorithm, 4-5
ODM, 1-1
ODM features, A-2
ODM programming environments, A-4
Oracle Data Mining

scoring engine, 9-1
Oracle data mining, 1-1

data, 2-1



Index-5

orthogonal partitioning clustering, 4-5
outliers, 2-8

P
PDS, 6-1
physical data specification, 6-1
PL/SQL interface

algorithms, 7-3
functions, 7-3

PMML, 5-6
export, 9-2
import, 9-2
Java interface, 5-6

Predictive Model Markup Language, 5-6
predictive models, 1-2, 3-1
prepared data, 2-10
preprocessing

data, 4-1
prior probabilities, 7-4
priors, 3-3, 7-4
programming environments, A-4

R
rare events

association models, 4-8
receiver operating characteristics, 7-8

figure, 7-9
statistics, 7-10

regression, 3-10
algorithm, 3-10
text mining, 8-4

regression models
test, 7-10

ROC, 7-8
rules

Adaptive Bayes Network, 3-5

S
scoring, 3-2, 4-5

in applications, 9-1
O-Cluster, 4-6

scoring data, 3-2, 9-1

scoring engine, 9-1
application deployment, 9-3
features, 9-1
installation, 9-1
use, 9-3

sequence alignment, 10-1
ODM capabilities, 10-2

sequence search, 10-1
ODM capabilities, 10-2

setting tables, 7-3
settings

support vector machine, 3-9
single-record case, 2-3
single-record case format, 2-2
sparse data, 2-8, 4-9
summarization, 4-7

in k-means, 4-5
support

of association rule, 4-8
support vector machine, 3-9

data preparation, 3-9
regression, 3-10
settings, 3-9

SVM, 3-9

T
targets, 2-7
TBLASTN, 10-2
TBLASTX, 10-2
test result object, 6-5
testing models, 3-2

DBMS_DATA_MINING, 7-6
text mining, 4-11, 8-1

association, 8-4
classification, 8-3
clustering, 8-3
feature extraction, 4-11, 8-4
ODM support, 8-1
regression, 8-4
support (figure), 8-5

transactional, 6-1
see multi-record case, 2-3
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U
unbalanced approach

k-means, 4-3
unprepared data, 2-10
unstructured attributes, 2-2
unstructured data, 2-5

W
wide data, 2-3

fixed collection types, 2-4
nested table format, 2-3

winsorizing, 2-11
figure, 2-12
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