
Oracle® OLAP
DML Reference

10g Release 1 (10.1)

Part No. B10339-02

December 2003

Oracle OLAP DML Reference, 10g Release 1 (10.1)

Part No. B10339-02

Copyright © 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, PL/SQL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... xxvii

Preface.. xxix

Intended Audience .. xxix
Documentation Accessibility ... xxix
Structure... xxx
Related Documents.. xxxi
Conventions... xxxii

Part I Using the OLAP DML

1 Introduction to the OLAP DML

What is the OLAP DML?... 1-1
Basic Syntactical Units... 1-1

OLAP DML Options .. 1-2
Categories of Options ... 1-2
Syntax for Specifying and Retrieving Option Values .. 1-3

OLAP DML Properties .. 1-3
OLAP DML Commands and Functions.. 1-4

OLAP DML Commands... 1-4
OLAP DML Functions .. 1-4

OLAP DML Programs ... 1-5

iv

OLAP DML as a Data Definition Language .. 1-5
Statements for Creating Analytic Workspaces... 1-5
Defining Analytic Workspace Objects ... 1-6

Defining Data Objects Using the OLAP DML... 1-7
Defining Calculation Specification Objects Using the OLAP DML 1-8

Types of Calculation Specifications ... 1-8
Creating Calculation Specification Objects... 1-9

Viewing Data Definitions .. 1-10
OLAP DML as a Data Manipulation Language .. 1-10

Startup Programs.. 1-11
ONATTACH Programs .. 1-11
Permission Programs .. 1-12
AUTOGO Programs.. 1-12
TRIGGER_AW Program... 1-12

Data Loading Programs... 1-13
Programs that Copy Data From Relational Tables to Workspace Objects.................. 1-13
File-Reading Programs ... 1-13
Spreadsheet Import Programs... 1-14

Trigger Programs.. 1-14
Aggregation, Allocation, and Modeling Programs ... 1-15
Forecasting Programs... 1-16
Programs to Export and Import Workspace Objects... 1-16

2 Data Types and Operators

OLAP DML Data Types ... 2-1
Numeric Data Types .. 2-2

Using LONGINTEGER Values.. 2-2
Using NUMBER Values.. 2-3

Text Data Types .. 2-3
Literals... 2-4
Escape Sequences... 2-4

Boolean Data Type.. 2-4

v

Date Data Types.. 2-5
Date and Time Options .. 2-5
DATE Values.. 2-6
DATETIME Values.. 2-6
Calculating Dates .. 2-6

Converting from One Data Type to Another ... 2-7
OLAP DML Operators ... 2-7

Arithmetic Operators ... 2-8
Comparison and Logical Operators... 2-9
Assignment Operator... 2-9

3 Expressions

Introducing OLAP DML Expressions... 3-1
How the Data Type of an Expression is Determined.. 3-2
Changing the Data Type of an Expression ... 3-2

Using Workspace Objects in Expressions .. 3-3
Syntax for Specifying an Object in an Expression ... 3-3

Considerations When Creating and Using Qualified Object Names 3-5
When Not to Use Qualified Object Names... 3-5
Using Ampersand Substitution for Workspace and Object Names 3-6
Passing Qualified Object Names to Programs... 3-6

How Objects Behave in Expressions.. 3-6
Using Variables in Expressions .. 3-7
Using Variables Defined with Composites in Expressions .. 3-8

Dimensionality of OLAP DML Expressions .. 3-9
Determining the Dimensions of an Expression.. 3-10
How Dimension Status Affects the Results of Expressions ... 3-10
Changing the Dimensionality of an Expression... 3-11

vi

Numeric Expressions.. 3-11
Numeric Options .. 3-11
Mixing Numeric Data Types... 3-12
Automatic Conversion of Numeric Data Types... 3-12
Using Dimensions in Arithmetic Expressions.. 3-13
Using Dates in Arithmetic Expressions... 3-13
Limitations of Floating Point Calculations ... 3-14
Controlling Errors During Calculations.. 3-15

Text Expressions .. 3-15
Working with Dates in Text Expressions .. 3-16
Working with NTEXT Data... 3-16

Boolean Expressions ... 3-16
Creating Boolean Expressions... 3-17
Comparing NA Values in Boolean Expressions... 3-18
Controlling Errors When Comparing Numeric Data.. 3-19

Controlling Errors Due to Numerical Precision.. 3-19
Controlling Errors When Comparing Floating Point Numbers 3-20
Controlling Errors When Comparing Different Numeric Data Types 3-20

Comparing Dimension Values.. 3-21
Comparing Dates .. 3-22
Comparing Text Data... 3-22

Comparing a Text Value to a Text Pattern... 3-23
Comparing Text Literals to Relations... 3-23

Conditional Expressions.. 3-24
Substitution Expressions ... 3-25
Working with Empty Cells in Expressions .. 3-26

Specifying a Value of NA .. 3-26
Controlling how NA values are treated .. 3-27

Working with the $NATRIGGER Property ... 3-28
Using NASKIP ... 3-29
Using NASKIP2 ... 3-29
Using NAFILL.. 3-29

vii

Working with Subsets of Data ... 3-30
Working with Dimension Status .. 3-30

Changing the Status List of a Dimension... 3-31
Saving and Restoring Current Dimension Status... 3-32

Specifying a List of Dimension Values for an Expression or Subexpression..................... 3-32
Specifying a Single Data Value in an Expression .. 3-32

Form of a Qualified Data Reference ... 3-33
Qualifying a Variable.. 3-33
Replacing a Dimension in a Variable ... 3-34
Qualifying a Relation .. 3-35
Qualifying a Dimension ... 3-36
Using Ampersand Substitution with QDRs .. 3-36
Using the QUAL Function to Specify a QDR.. 3-37

4 Formulas, Aggregations, Allocations, and Models

Formulas ... 4-1
Aggregations .. 4-2

Aggregating Data ... 4-3
Executing the Aggregation.. 4-4
Creating Custom Aggregates.. 4-6

Allocations ... 4-7
Allocating Data ... 4-8
Handling NA Values.. 4-9

Models... 4-10
Creating Models.. 4-10

Nesting Models.. 4-11
Dimension Status and Model Equations.. 4-12
Using Data from Past and Future Time Periods... 4-12
Handling NA Values .. 4-13
Solving Simultaneous Equations .. 4-13
Modeling for Multiple Scenarios... 4-14

Compiling a Model... 4-14
Understanding Dependencies ... 4-15
Checking for Additional Problems ... 4-15

viii

Running a Model .. 4-15
Dimensions of Solution Variables .. 4-16
Solution Variables Dimensioned by a Composite ... 4-17
Debugging a Model .. 4-18

5 OLAP DML Programs

Creating OLAP DML Programs ... 5-1
Specifying Program Contents ... 5-2

Creating User-Defined Functions ... 5-2
Passing Arguments ... 5-3

Using Multiple Arguments ... 5-3
Handling Arguments Without Converting Values to a Specific Data Type 5-4
Passing Arguments as Text with Ampersand Substitution 5-4

Program Flow-of-Control ... 5-5
Looping Nature of OLAP DML Commands and Functions.................................... 5-5
Flow-of Control Commands ... 5-6

Preserving the Environment Settings .. 5-8
Changing the Program Environment ... 5-8
Ways to Save and Restore Environments .. 5-9
Saving the Status of a Dimension or the Value of an Option.. 5-9
Saving Several Values at Once... 5-10
Using Level Markers ... 5-10
Using CONTEXT to Save Several Values at Once .. 5-10

Handling Errors .. 5-10
Trapping an Error.. 5-11
Suppressing Error Messages.. 5-11
Creating Your Own Error Messages... 5-12
Handling Errors in Nested Programs... 5-12
Handling Errors While Saving the Session Environment ... 5-13

Compiling Programs .. 5-13
Finding Out If a Program Has Been Compiled .. 5-14
Programming Methods That Prevent Compilation... 5-14

ix

Testing and Debugging Programs ... 5-14
Error and Debugging Options.. 5-15
Generating Diagnostic Messages ... 5-16
Identifying Bad Lines of Code .. 5-16
Sending Output to a Debugging File... 5-16

Executing Programs .. 5-17

Part II Alphabetic Reference

6 $AGGMAP to AGGMAP

$AGGMAP ... 6-3
$AGGREGATE_FROM.. 6-5
$AGGREGATE_FROMVAR ... 6-7
$ALLOCMAP... 6-9
$COUNTVAR .. 6-11
$NATRIGGER ... 6-13
$STORETRIGGERVAL.. 6-18
$VARCACHE ... 6-20
ABS .. 6-25
ACQUIRE ... 6-27
ACROSS ... 6-33
ADD_MONTHS ... 6-35
AGGMAP ... 6-37

AGGINDEX... 6-63
BREAKOUT DIMENSION.. 6-67
CACHE... 6-70
DIMENSION (for aggregation) .. 6-74
DROP DIMENSION... 6-75
MEASUREDIM (for aggregation) .. 6-78
MODEL (in an aggregation).. 6-80
RELATION (for aggregation) ... 6-82

AGGMAP ADD or REMOVE model.. 6-98
AGGMAP SET .. 6-101

x

7 AFFMAPINFO to ARCCOS

AGGMAPINFO... 7-3
AGGREGATE command ... 7-9
AGGREGATE function.. 7-23
AGGREGATION .. 7-33
ALLCOMPILE ... 7-35
ALLOCATE .. 7-36
ALLOCERRLOGFORMAT ... 7-46
ALLOCERRLOGHEADER ... 7-48
ALLOCMAP... 7-50

CHILDLOCK... 7-56
DEADLOCK .. 7-57
DIMENSION (for allocation) .. 7-58
ERRORLOG ... 7-59
ERRORMASK.. 7-60
MEASUREDIM (for allocation) .. 7-61
RELATION (for allocation) ... 7-62
SOURCEVAL... 7-70
VALUESET .. 7-71

ALLSTAT .. 7-76
ANTILOG... 7-77
ANTILOG10... 7-78
ANY ... 7-79
ARCCOS ... 7-83

8 ARCSIN to CHARLIST

ARCSIN .. 8-3
ARCTAN ... 8-4
ARCTAN2 ... 8-5
ARG ... 8-6
ARGCOUNT .. 8-10
ARGFR .. 8-12
ARGS... 8-16
ARGUMENT.. 8-19
ASCII ... 8-26

xi

AVERAGE .. 8-27
AW command... 8-30

AW ALIASLIST... 8-31
AW ALLOCATE... 8-33
AW ATTACH.. 8-34
AW CREATE... 8-46
AW DELETE.. 8-51
AW DETACH.. 8-52
AW LIST... 8-53
AW SEGMENTSIZE... 8-55

AW function ... 8-56
AWDESCRIBE ... 8-60
AWWAITTIME .. 8-63
BACK... 8-64
BADLINE ... 8-66
BASEDIM... 8-68
BASEVAL ... 8-71
BEGINDATE.. 8-74
BITAND .. 8-76
BLANK.. 8-77
BLANKSTRIP.. 8-78
BMARGIN ... 8-79
BREAK .. 8-81
CALENDARWEEK ... 8-82
CALL ... 8-85
CALLTYPE ... 8-90
CATEGORIZE ... 8-92
CDA ... 8-95
CEIL ... 8-97
CHANGEBYTES ... 8-98
CHANGECHARS ... 8-100
CHARLIST ... 8-102

9 CHGDFN to DDOF

CHGDFN .. 9-3

xii

CHGDIMS.. 9-14
CLEAR... 9-16
COALESCE .. 9-20
COLVAL .. 9-21
COLWIDTH ... 9-23
COMMAS... 9-25
COMMIT .. 9-27
COMPILE ... 9-29
COMPILEMESSAGE ... 9-41
COMPILEWARN .. 9-42
CONSIDER .. 9-44
CONTEXT command ... 9-46
CONTEXT function .. 9-49
CONTINUE .. 9-51
CONVERT .. 9-52
COPYDFN .. 9-62
CORRELATION .. 9-64
COS .. 9-68
COSH .. 9-69
COUNT ... 9-70
CUMSUM ... 9-73
DATEFORMAT ... 9-78
DATEORDER .. 9-84
DAYABBRLEN .. 9-88
DAYNAMES .. 9-91
DAYOF .. 9-93
DBGOUTFILE ... 9-95
DDOF .. 9-99

10 DECIMALCHAR to DELETE

DECIMALCHAR .. 10-2
DECIMALOVERFLOW ... 10-4
DECIMALS .. 10-6
DECODE... 10-9
DEFAULTAWSEGSIZE .. 10-11

xiii

DEFINE ... 10-12
DEFINE AGGMAP... 10-16
DEFINE COMPOSITE.. 10-20
DEFINE DIMENSION ... 10-26

DEFINE DIMENSION (simple)... 10-26
DEFINE DIMENSION (DWMQY).. 10-29
DEFINE DIMENSION (conjoint) .. 10-33
DEFINE DIMENSION CONCAT ... 10-38
DEFINE DIMENSION ALIASOF.. 10-42

DEFINE FORMULA... 10-46
DEFINE MODEL .. 10-49
DEFINE PARTITION TEMPLATE .. 10-51
DEFINE PROGRAM .. 10-55
DEFINE RELATION .. 10-58
DEFINE SURROGATE .. 10-61
DEFINE VALUESET .. 10-64
DEFINE VARIABLE... 10-68
DEFINE WORKSHEET.. 10-84

DELETE... 10-87

11 DEPRDECL to EXISTS

DEPRDECL .. 11-3
DEPRDECLSW.. 11-9
DEPRSL .. 11-17
DEPRSOYD ... 11-22
DESCRIBE.. 11-28
DIVIDEBYZERO .. 11-32
DO ... DOEND ... 11-34
DSECONDS... 11-36
ECHOPROMPT... 11-38
EDIT .. 11-40
EIFBYTES ... 11-42
EIFEXTENSIONPATH ... 11-43
EIFNAMES... 11-45
EIFSHORTNAMES .. 11-46

xiv

EIFTYPES.. 11-48
EIFUPDBYTES .. 11-50
EIFVERSION ... 11-51
END ... 11-53
ENDDATE .. 11-54
ENDOF .. 11-56
EQ... 11-58
ERRNAMES ... 11-61
ERRORNAME ... 11-63
ERRORTEXT .. 11-65
ESCAPEBASE .. 11-66
EVERSION ... 11-67
EVERY ... 11-68
EXISTS .. 11-72
EXP ... 11-73

12 EXPORT to FILEMOVE

EXPORT .. 12-3
EXPORT (to EIF) ... 12-4
EXPORT (to spreadsheet) .. 12-12

EXPTRACE ... 12-14
EXTBYTES .. 12-15
EXTCHARS .. 12-17
EXTCOLS.. 12-19
EXTLINES .. 12-22
FCCLOSE .. 12-24
FCEXEC ... 12-25
FCOPEN .. 12-28
FCQUERY ... 12-29
FCSET .. 12-36
FETCH ... 12-45
FILECLOSE .. 12-49
FILECOPY .. 12-50
FILEDELETE .. 12-51
FILEERROR ... 12-52

xv

FILEGET ... 12-56
FILEMOVE... 12-58

13 FILENEXT to FULLDSC

FILENEXT... 13-2
FILEOPEN .. 13-5
FILEPAGE... 13-8
FILEPUT ... 13-10
FILEQUERY ... 13-13
FILEREAD .. 13-18
FILESET .. 13-40
FILEVIEW... 13-44
FILTERLINES .. 13-56
FINDBYTES ... 13-58
FINDCHARS ... 13-60
FINDLINES.. 13-62
FINTSCHED .. 13-64
FLOOR .. 13-68
FOR .. 13-69
FORECAST .. 13-74
FORECAST.REPORT ... 13-81
FPMTSCHED... 13-83
FULLDSC ... 13-87

14 GET to IMPORT

GET .. 14-2
GOTO.. 14-7
GREATEST... 14-11
GROUPINGID .. 14-12
GROWRATE .. 14-18
HEADING .. 14-20
HIDE.. 14-22
HIERCHECK ... 14-24
HIERHEIGHT command .. 14-29
HIERHEIGHT function ... 14-34

xvi

IF...THEN...ELSE.. 14-42
IMPORT .. 14-45

IMPORT (from EIF) .. 14-46
IMPORT (from text).. 14-57
IMPORT (from spreadsheet) ... 14-63

15 INF_STOP_ON_ERROR to LIKEESCAPE

INF_STOP_ON_ERROR ... 15-3
INFILE ... 15-5
INFO .. 15-9

INFO (FORECAST)... 15-10
INFO (MODEL)... 15-14
INFO (PARSE)... 15-26
INFO (REGRESS) .. 15-29

INITCAP ... 15-32
INLIST .. 15-33
INSBYTES .. 15-35
INSCHARS .. 15-37
INSCOLS .. 15-39
INSLINES ... 15-41
INSTAT ... 15-43
INSTR.. 15-46
INSTRB ... 15-48
INTPART .. 15-49
IRR ... 15-50
ISDATE ... 15-53
ISVALUE... 15-54
JOINBYTES .. 15-56
JOINCHARS .. 15-58
JOINCOLS.. 15-61
JOINLINES .. 15-64
KEY .. 15-66
LAG.. 15-68
LAGABSPCT ... 15-72
LAGDIF .. 15-76

xvii

LAGPCT ... 15-78
LARGEST ... 15-81
LAST_DAY ... 15-84
LCOLWIDTH... 15-85
LD... 15-87
LEAD ... 15-89
LEAST ... 15-92
LIKECASE .. 15-93
LIKEESCAPE ... 15-95

16 LIKENL to MAX

LIKENL ... 16-3
LIMIT command ... 16-6

LIMIT command (using values) ... 16-19
LIMIT command (using LEVELREL) .. 16-29
LIMIT command (using related dimension) .. 16-31
LIMIT command (using parent relation) .. 16-34
LIMIT command (NOCONVERT) ... 16-40
LIMIT command (using POSLIST) .. 16-42

LIMIT function.. 16-43
LIMITMAPINFO .. 16-48
LIMIT.SORTREL... 16-50
LINENUM .. 16-52
LINESLEFT .. 16-54
LISTBY .. 16-56
LISTFILES .. 16-58
LISTNAMES .. 16-59
LOAD .. 16-61
LOG command .. 16-63
LOG function... 16-65
LOG10 ... 16-66
LOWCASE.. 16-67
LPAD ... 16-68
LSIZE... 16-69
LTRIM ... 16-71

xviii

MAINTAIN .. 16-72
MAINTAIN ADD ... 16-76

MAINTAIN ADD for TEXT, ID, and INTEGER Values.. 16-76
MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values....... 16-79
MAINTAIN ADD SESSION .. 16-81
MAINTAIN ADD TO PARTITION .. 16-88

MAINTAIN DELETE ... 16-90
MAINTAIN DELETE dimension .. 16-90
MAINTAIN DELETE composite... 16-96
MAINTAIN DELETE FROM PARTITION.. 16-98

MAINTAIN MERGE .. 16-101
MAINTAIN MOVE .. 16-103

MAINTAIN MOVE dimension value... 16-103
MAINTAIN MOVE TO PARTITION ... 16-107

MAINTAIN RENAME... 16-110
MAKEDATE... 16-112
MAX... 16-114

17 MAXBYTES to MODTRACE

MAXBYTES .. 17-2
MAXCHARS .. 17-4
MAXFETCH ... 17-6
MEDIAN... 17-8
MIN.. 17-10
MMOF ... 17-12
MODDAMP ... 17-13
MODE ... 17-18
MODEL ... 17-21

DIMENSION (in models) .. 17-29
INCLUDE... 17-35

MODEL.COMPRPT ... 17-40
MODEL.DEPRT .. 17-42
MODEL.XEQRPT ... 17-44
MODERROR ... 17-46
MODGAMMA .. 17-49

xix

MODINPUTORDER.. 17-53
MODMAXITERS .. 17-56
MODOVERFLOW .. 17-58
MODSIMULTYPE .. 17-62
MODTOLERANCE .. 17-66
MODTRACE.. 17-70

18 MONITOR to NVL2

MONITOR ... 18-3
MONTHABBRLEN .. 18-8
MONTHNAMES .. 18-10
MONTHS_BETWEEN ... 18-13
MOVE ... 18-15
MOVINGAVERAGE.. 18-18
MOVINGMAX .. 18-22
MOVINGMIN... 18-25
MOVINGTOTAL.. 18-28
MULTIPATHHIER.. 18-31
NAFILL ... 18-34
NAME ... 18-36
NASKIP .. 18-38
NASKIP2 .. 18-43
NASPELL.. 18-48
NEW_TIME .. 18-50
NEXT_DAY... 18-53
NLS Options .. 18-54
NONE .. 18-62
NORMAL ... 18-66
NOSPELL ... 18-68
NPV ... 18-69
NULLIF ... 18-72
NUMBYTES ... 18-73
NUMCHARS ... 18-75
NUMLINES.. 18-77
NVL ... 18-78

xx

NVL2.. 18-79

19 OBJ to QUAL

OBJ ... 19-3
OBJLIST .. 19-24
OBSCURE... 19-26
OKFORLIMIT ... 19-30
OKNULLSTATUS ... 19-32
ONATTACH ... 19-34
OUTFILE... 19-36
OUTFILEUNIT .. 19-40
PAGE ... 19-41
PAGENUM ... 19-43
PAGEPRG ... 19-45
PAGESIZE .. 19-49
PAGING.. 19-51
PARENS .. 19-54
PARSE ... 19-56
PARTITIONCHECK ... 19-58
PERCENTAGE ... 19-60
PERMIT .. 19-63
PERMIT_READ... 19-74
PERMIT_WRITE ... 19-76
PERMITERROR .. 19-78
PERMITRESET.. 19-81
POP .. 19-85
POPLEVEL ... 19-87
POUTFILEUNIT.. 19-89
PRGTRACE .. 19-91
PROGRAM .. 19-94
PROPERTY ... 19-98
PUSH ... 19-100
PUSHLEVEL .. 19-102
QUAL .. 19-108

xxi

20 RANDOM to REPORT

RANDOM .. 20-3
RANDOM.SEED.1 and RANDOM.SEED.2 .. 20-5
RANK .. 20-9
RECAP... 20-13
RECNO ... 20-16
RECURSIVE... 20-18
REDO .. 20-19
REEDIT ... 20-22
REGRESS ... 20-25
REGRESS.REPORT .. 20-28
RELEASE .. 20-30
REM ... 20-35
REMBYTES .. 20-36
REMCHARS .. 20-38
REMCOLS .. 20-40
REMLINES... 20-42
RENAME .. 20-44
REPLBYTES ... 20-47
REPLCHARS ... 20-50
REPLCOLS ... 20-53
REPLLINES .. 20-56
REPORT .. 20-58

21 RESERVED to SPARSEINDEX

RESERVED... 21-3
RESYNC.. 21-5
RETURN ... 21-7
REVERT .. 21-10
ROLE ... 21-12
ROLLUP.. 21-13
ROOTOFNEGATIVE ... 21-22
ROUND .. 21-24

ROUND (for dates and time) .. 21-25
ROUND (for numbers) .. 21-28

xxii

ROW command ... 21-33
ROW function.. 21-45
RPAD ... 21-47
RTRIM... 21-48
RUNTOTAL ... 21-49
SECONDS .. 21-52
SESSCACHE .. 21-54
SET ... 21-56
SET1 ... 21-71
SHOW ... 21-72
SIGN .. 21-75
SIGNAL .. 21-76
SIN ... 21-79
SINH .. 21-80
SLEEP .. 21-81
SMALLEST .. 21-82
SMOOTH ... 21-85
SORT ... 21-90
SORTCOMPOSITE .. 21-96
SORTLINES ... 21-99
SPARSEINDEX.. 21-101

22 SQL to STATVAL

SQL .. 22-3
SQL CLEANUP... 22-8
SQL CLOSE.. 22-9
SQL DECLARE CURSOR .. 22-10
SQL EXECUTE .. 22-17
SQL FETCH ... 22-19
SQL IMPORT... 22-29
SQL OPEN ... 22-37
SQL PREPARE .. 22-38
SQL PROCEDURE.. 22-43
SQL SELECT.. 22-45

SQLBLOCKMAX .. 22-49

xxiii

SQLCODE .. 22-51
SQLERRM .. 22-53
SQLMESSAGES ... 22-55
SQRT ... 22-56
STARTOF.. 22-57
STATALL .. 22-59
STATFIRST .. 22-60
STATLAST ... 22-62
STATLEN .. 22-64
STATLIST ... 22-65
STATMAX .. 22-68
STATMIN ... 22-70
STATRANK.. 22-73
STATUS... 22-77
STATVAL .. 22-79

23 STDDEV to TRACKPRG

STDDEV ... 23-3
STDHDR .. 23-6
SUBSTR .. 23-8
SUBSTRB ... 23-10
SUBTOTAL .. 23-11
SWITCH ... 23-14
SYSDATE.. 23-18
SYSINFO .. 23-19
SYSTEM.. 23-21
TALLY.. 23-22
TAN.. 23-25
TANH .. 23-26
TCONVERT ... 23-27
TEMPSTAT... 23-37
TEXTFILL ... 23-39
THIS_AW.. 23-42
THOUSANDSCHAR ... 23-43
TMARGIN ... 23-44

xxiv

TO_CHAR .. 23-46
TO_DATE ... 23-51
TO_NCHAR ... 23-54
TO_NUMBER .. 23-59
TOD ... 23-62
TODAY .. 23-63
TOTAL... 23-65
TRACEFILEUNIT ... 23-69
TRACKPRG ... 23-70

24 TRAP to ZSPELL

TRAP ... 24-3
TRIGGER command .. 24-8
TRIGGER function ... 24-28
TRIGGER_AFTER_UPDATE ... 24-31
TRIGGER_AW... 24-33
TRIGGER_BEFORE_UPDATE... 24-34
TRIGGER_DEFINE .. 24-36
TRIGGERASSIGN ... 24-38
TRIGGERMAXDEPTH ... 24-44
TRIGGERSTOREOK ... 24-46
TRIM ... 24-49
TRUNC.. 24-50

TRUNC (for dates and time) ... 24-51
TRUNC (for numbers) ... 24-53

UNHIDE ... 24-55
UNIQUELINES ... 24-56
UNRAVEL... 24-58
UPCASE .. 24-62
UPDATE.. 24-63
USERID... 24-66
USETRIGGERS ... 24-67
VALSPERPAGE ... 24-69
VALUES .. 24-70
VARCACHE ... 24-75

xxv

VARIABLE ... 24-77
VINTSCHED ... 24-80
VNF.. 24-84
VPMTSCHED.. 24-94
WEEKDAYSNEWYEAR .. 24-98
WEEKOF... 24-100
WHILE... 24-102
WIDTH_BUCKET ... 24-104
WKSDATA ... 24-106
YESSPELL... 24-108
YRABSTART.. 24-109
YYOF ... 24-111
ZEROROW... 24-113
ZEROTOTAL ... 24-116
ZSPELL ... 24-119

Part III Appendixes

A Functions and Commands by Functional Category

Session Statements ... A-2
Data Type Conversion.. A-3
Assignment Statements ... A-3
Statements for Working with NA Values... A-4
Text Functions.. A-4

General Character Functions .. A-5
Byte Functions... A-6
Multiline Text Functions.. A-7

Date and Time Functions .. A-8
Numeric Functions ... A-10

General Numeric Functions .. A-10
Financial Functions... A-12
Statistical Functions.. A-13
Time-Series Functions.. A-14
Aggregation Functions .. A-15

xxvi

Forecast and Regression Statements ... A-16
Simple Forecasts and Regressions.. A-16
Statements for Forecasting Using a Forecasting Context.. A-16

Aggregation Statements... A-17
Allocation Statements .. A-18
Workspace Object Operation Statements .. A-19
Dimension and Composite Operation Statements... A-19
Formula Statements .. A-21
Modeling Statements ... A-21
Programming Statements .. A-22

Statements for Handling Programs.. A-22
Statement Used Only in Programs... A-23
Statements Used Primarily in Programs ... A-25
Statements for Program Debugging .. A-26
Statements for Working with Startup and Trigger Programs.. A-26

File Reading and Writing Statements ... A-28
Statements for Importing and Exporting Data.. A-29
Reporting Statements ... A-29
Statements Related to Using OLAP_TABLE in SQL.. A-30

B OLAP DML Statement Changes

Statements Added ... B-1
Statements Deleted ... B-4
Statements Significantly Changed .. B-6
Statements Renamed .. B-7

Index

xxvii

Send Us Your Comments

Oracle OLAP DML Reference, 10g Release 1 (10.1)

Part No. B10339-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

■ Electronic mail: infodev@us.oracle.com
■ FAX: 781-238-9850 Attn: Oracle OLAP
■ Postal service:

Oracle Corporation
Oracle OLAP
10 Van de Graaff Drive
Burlington, MA 01803
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

xxviii

xxix

Preface

The Oracle OLAP DML Reference provides a complete description of the OLAP Data
Manipulation Language (OLAP DML) used to define and manipulate analytic
workspace objects. Part I briefly describes how to use the OLAP DML. Part II
consists of a reference topic for each of the OLAP DML statements.

Intended Audience
This manual is intended for programmers and database administrators who create
and modify analytic workspaces and analytic workspace objects using the OLAP
DML.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

xxx

otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
This document is structured in the following three parts.

Part I, "Using the OLAP DML"
Introduces the basic concepts of analyzing data using the OLAP DML.

Chapter 1, "Introduction to the OLAP DML"
Provides an introduction to the OLAP DML and provides some basic
information that you need to know to effectively use the OLAP DML.

Chapter 2, "Data Types and Operators"
 Introduces the OLAP DML data types and operators.

Chapter 3, "Expressions"
Explains how to create and use OLAP DML expressions.

Chapter 4, "Formulas, Aggregations, Allocations, and Models"
Explains how to create and execute OLAP DML calculation specification
objects.

Chapter 5, "OLAP DML Programs"
Explains how to create, test, and execute OLAP DML programs.

Part II, "Alphabetic Reference"
Consists of a topic for each of the OLAP DML statements, arranged alphabetically.
Each topic provides a description, syntax, notes, and example for an OLAP DML
statement.

Chapter 6, "$AGGMAP to AGGMAP"
Chapter 7, "AFFMAPINFO to ARCCOS"
Chapter 8, "ARCSIN to CHARLIST"
Chapter 9, "CHGDFN to DDOF"

xxxi

Chapter 10, "DECIMALCHAR to DELETE"
Chapter 11, "DEPRDECL to EXISTS"
Chapter 12, "EXPORT to FILEMOVE"
Chapter 13, "FILENEXT to FULLDSC"
Chapter 14, "GET to IMPORT"
Chapter 15, "INF_STOP_ON_ERROR to LIKEESCAPE"
Chapter 16, "LIKENL to MAX"
Chapter 17, "MAXBYTES to MODTRACE"
Chapter 18, "MONITOR to NVL2"
Chapter 19, "OBJ to QUAL"
Chapter 20, "RANDOM to REPORT"
Chapter 21, "RESERVED to SPARSEINDEX"
Chapter 22, "SQL to STATVAL"
Chapter 23, "STDDEV to TRACKPRG"
Chapter 24, "TRAP to ZSPELL"

Part III, "Appendixes"
Provides summary information about OLAP DML statements.

Appendix A, "Functions and Commands by Functional Category"
This appendix lists the OLAP DML functions, commands, and programs by
functional category.

Appendix B, "OLAP DML Statement Changes"
This appendix provides information about recent changes to the OLAP DML.

Related Documents
The following documents provide additional information about using Oracle
OLAP:

■ Oracle OLAP Application Developer's Guide

Explains how SQL and Java applications can extend their analytic processing
capabilities by using Oracle OLAP in the Enterprise Edition of Oracle Database.

■ Oracle OLAP Reference

Explains the syntax of PL/SQL packages and types and the column structure of
views related to Oracle OLAP.

xxxii

■ Oracle OLAP Java API Reference

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used to perform online analytical processing of the data
stored in an Oracle database. Describes the API and how to discover metadata,
create queries, and retrieve data.

■ Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying
analytic workspaces and relational data warehouses.

■ Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for building
and maintaining analytic workspaces.

Conventions
The following conventions are used in this manual.

Convention Meaning

... Horizontal ellipsis points in examples mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in syntax indicate a repeating
argument or clause.

boldface text Boldface type in text indicates a term defined in the text.

italic text Italicized type in text indicates emphasis.

Italicized type in syntax indicates or a user-supplied name.

[] Brackets in syntax enclose optional clauses from which you can
choose one or none.

{} Braces in syntax enclose required clauses from which you must
chose one.

Part I
Using the OLAP DML

Part I introduces the basic concepts of the OLAP DML and contains overview
information about using the OLAP DML to perform multidimensional analysis.

This part contains the following chapters:

■ Chapter 1, "Introduction to the OLAP DML"

■ Chapter 2, "Data Types and Operators"

■ Chapter 3, "Expressions"

■ Chapter 4, "Formulas, Aggregations, Allocations, and Models"

■ Chapter 5, "OLAP DML Programs"

Introduction to the OLAP DML 1-1

1
Introduction to the OLAP DML

This chapter provides an introduction to the OLAP DML. It includes the following
topics:

■ What is the OLAP DML?

■ Basic Syntactical Units

■ OLAP DML as a Data Definition Language

■ OLAP DML as a Data Manipulation Language

What is the OLAP DML?
The OLAP DML is a language that defines and manipulates data in an analytic
workspace.

■ As a data definition language, you can use DML statements to create analytic
workspaces and analytic workspace data objects. See "OLAP DML as a Data
Definition Language" on page 1-5 for more information.

■ As a data manipulation language, you can use DML statements to perform
complex analysis of data. See "OLAP DML as a Data Manipulation Language"
on page 1-10 for more information.

The purpose of the OLAP DML is to enable application developers to extend the
analytical capabilities of querying languages such as SQL and the OLAP API for
Java.

Basic Syntactical Units
The basic syntactic units of the OLAP DML are:

Basic Syntactical Units

1-2 Oracle OLAP DML Reference

■ Options to which you assign a value and that can influence the analytic
workspace processing environment in various ways

■ Properties that Oracle OLAP checks to determine processing

■ Commands that initiate actions and functions that initiate actions and return a
value.

■ Programs that perform complicated analysis and reporting

OLAP DML commands, functions, options, programs, and properties are
collectively referred to as OLAP DML statements. Part I of this manual introduces
basic elements of the OLAP DML. The complete syntax of each statement, usage
notes, and examples is provided in Part II of this manual. Lists of statements,
arranged by functional category are presented in Appendix A

OLAP DML Options
An option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or
what Oracle OLAP operations are activated. You cannot define an option as part of
a workspace. However, you can use any of the options that are defined as part of
the Oracle OLAP DML.

Some options are read-only, while others are read/write options for which you can
specify values. Read/write options have default values.

Categories of Options
OLAP DML options fall into the following general categories:

■ Aggregating data. See Table 6–1 on page 6-39.

■ Allocating data. See Table 7–4 on page 7-52.

■ Modeling data. See Table 17–1 on page 17-23.

■ Compiling programs, models and aggregation specifications. See Table 9–1 on
page 9-30.

■ Handling errors. See Table 5–2 on page 5-15.

■ Debugging programs and models. See Table 5–3 on page 5-15.

■ Embedding SQL in OLAP DML programs. See Table 22–1 on page 22-5.

■ File reading and writing. See Table 15–1 on page 15-6.

■ Importing and exporting analytic workspaces. See Table 12–1 on page 12-7.

Basic Syntactical Units

Introduction to the OLAP DML 1-3

■ OLAP DML reports. See Table 20–6 on page 20-65.

■ Working with empty cells. See Table 3–5 on page 3-27.

■ Using date and time values. See Table 2–6 on page 2-5.

■ Calculating data. See Table 3–2 on page 3-11.

■ Oracle Database options. See Table 18–2 on page 18-54.

Syntax for Specifying and Retrieving Option Values
The general syntax for specifying and retrieving option values is shown in
Table 1–1, " Syntax for Specifying and Retrieving Option Values" on page 1-3.

OLAP DML Properties
A property is a named value that is associated with a definition of an analytic
workspace object. You name, create, and assign properties to an object using a
PROPERTY statement.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as
system properties. You assign system properties to objects the same way that you
create other properties; however, you must give them the appropriate name in order
for Oracle OLAP to recognize them. Part II, "Alphabetic Reference" includes tables
that list two types of system properties:

■ Table 6–2 on page 6-39 lists system properties that you can use to specify
default behavior when aggregating or allocating data.

■ Table 3–6 on page 3-28 lists system properties that you can use to specify
behavior in regard to empty data cells.

OLAP has other system properties that are not as integral to the use of the OLAP
DML. For example, properties are part of the object definitions for an analytic
workspace that has database standard form.

Table 1–1 Syntax for Specifying and Retrieving Option Values

Action Syntax

To specify an option value option-name = value

To display an option value SHOW option-name

To retrieve an option value into a predefined variable variable-name = option-name

Basic Syntactical Units

1-4 Oracle OLAP DML Reference

OLAP DML Commands and Functions
Most OLAP DML statements are either OLAP DML commands and functions.
OLAP DML commands and commands work in much the same way as commands
and functions in other programming languages—the one exception is the "looping"
nature of OLAP DML commands and functions discussed in "Looping Nature of
OLAP DML Commands and Functions" on page 5-5.

OLAP DML Commands
Many OLAP DML statements are commands that perform complex actions. Some
of these commands are data definition commands that you use to create an analytic
workspace or define objects within an analytic workspace. Data definition
commands are introduced in "OLAP DML as a Data Definition Language" on
page 1-5.

Other OLAP DML commands are complex data manipulation commands. For
example, you can use the OLAP DML SQL command to embed SQL statements in
an OLAP DML program in order to copy data from relational tables into analytic
workspace data objects, or you can use the AGGREGATE command to calculate
summary data. You can also augment the functionality of the OLAP DML by
writing an OLAP DML program for use as a command.

OLAP DML Functions
Most of the OLAP DML functions are simple text or calculation functions (that is,
numeric, financial, statistical, date, time, time-series functions, and aggregation
functions), or data type conversion functions. For tables listing these standard
functions, see:

"Text Functions" on page A-4
"Date and Time Functions" on page A-8
"General Numeric Functions" on page A-10
"Financial Functions" on page A-12
"Statistical Functions" on page A-13
"Time-Series Functions" on page A-14
"Aggregation Functions" on page A-15
"Data Type Conversion" on page A-3

Other OLAP DML functions return more complex information. For example, the
OLAP DML provides the AW function that you can use to retrieve many different
types of information about an analytic workspace and the AGGREGATE function
that you can use to calculate aggregate data on-the-fly at user request.

OLAP DML as a Data Definition Language

Introduction to the OLAP DML 1-5

You can also augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a function.

OLAP DML Programs
Some OLAP DML statements are actually the names of OLAP DML programs
provided as part of the OLAP DML. Some of these programs produce reports that
you can print or see online. For example, the AWDESCRIBE program produces a
report that consists of a summary page; an alphabetic list of analytic workspace
objects showing name, type, and description; and a list of object definitions by
object type.

Other programs provided as part of the OLAP DML perform standard calculations
of use to programmers and database administrators. For example, VALSPERPAGE
program calculates the maximum number of values for a variable of a given width
that will fit on one analytic workspace page.

You execute programs provided as part of the OLAP DML the same way that you
do any other OLAP DML statement following the syntax provided for that program
in Part II, "Alphabetic Reference".

You can also write your own OLAP DML programs to augment the functionality of
the OLAP DML as described in Chapter 5, "OLAP DML Programs".

OLAP DML as a Data Definition Language
The OLAP DML provides statements that you can use to create and manage
analytic workspaces and the object definitions within them.

This section provides overview information about the statements that you use to:

■ Define and manage analytic workspaces

■ Define analytic workspace objects

■ View analytic workspace definitions

Statements for Creating Analytic Workspaces
Table 1–2, " Statements for Creating and Managing Analytic Workspaces" on
page 1-6 lists the OLAP DML statements that you use to create and manipulate
analytic workspaces. Table 1–3, " Options Related to Creating or Attaching Analytic
Workspaces" on page 1-6 lists the OLAP DML options that relate to these
statements.

OLAP DML as a Data Definition Language

1-6 Oracle OLAP DML Reference

Defining Analytic Workspace Objects
An analytic workspace contains two types of objects:

■ Data objects that contain the data that you want to analyze and the results of the
analysis.

■ Calculation specifications that contain OLAP DML statements that specify the
analysis that you want performed.

Table 1–4, " Workspace Object Data Definition Statements" on page 1-6 lists the
OLAP DML statements that relate to defining analytic workspace objects. For more
specific information, see "Defining Data Objects Using the OLAP DML" on page 1-7
and ore information on calculation specification objects, see "Defining Calculation
Specification Objects Using the OLAP DML" on page 1-8.

Table 1–2 Statements for Creating and Managing Analytic Workspaces

Statement Description

AW command Creates a new workspace; allocates space for a workspace; attaches
a workspace to a session; deletes a workspace; detaches a
workspace from a session; sets up a workspace for multiple
segments; or sends to the current outfile a list of the active
workspaces, along with their update status.

COMMIT Executes a SQL COMMIT statement.

UPDATE Moves analytic workspace changes from a temporary area to the
database table in which the workspace is stored. The table is not
saved until you execute a COMMIT command, either from Oracle
OLAP or from SQL.

Table 1–3 Options Related to Creating or Attaching Analytic Workspaces

Statement Description

AWWAITTIME An option that contains the number of seconds that AW ATTACH
with the if the WAIT keyword waits for an analytic workspace to
become available for access.

DEFAULTAWSEGSIZE An option that specifies the default maximum segment size for an
analytic workspace created in your database session.

Table 1–4 Workspace Object Data Definition Statements

Statement Description

CHGDFN Changes certain aspects of the definitions of certain objects.

OLAP DML as a Data Definition Language

Introduction to the OLAP DML 1-7

Defining Data Objects Using the OLAP DML
Data objects contain the data that you want to analyze and the results of the
analysis. Data objects are implemented as arrays and indexes.

Table 1–5, " OLAP Data Object Definition Statements" on page 1-8 briefly describes
the data objects that you can define in an analytic workspace and the OLAP DML
statements that you use to define these objects.

CONSIDER Identifies a definition as the current definition. This enables you to add a
description, property, calculation specification, or trigger (event) to an
object.

COPYDFN Defines a new object in the analytical workspace and uses the same
definition as a specified object in the current workspace or in an attached
workspace.

DEFINE Adds a new object to the analytic workspace.

DELETE Deletes one or more objects from a workspace.

LD Assigns a description to an object that has already been defined.

MOVE Moves an object name to a new position in the NAME dimension of a
workspace.

PERMITRESET Causes the values of permission conditions to be reevaluated. Permission
conditions consist of one or more Boolean expressions that designate the
criteria used by PERMIT commands associated with an object.

PROPERTY Assigns a property to an object. A property is a named value that is
associated with a given object definition.

RENAME Changes the name of an object in an analytical workspace and updates
associated objects.

TRIGGER
command

Associates a previously-created program to an object and identifies the
object event that automatically executes the program; or a disassociates a
trigger program from the object

VALSPERPAGE Calculates the maximum number of values for a variable of a given
width that will fit on one page. Pages are units of storage in the
workspace.

Table 1–4 (Cont.) Workspace Object Data Definition Statements

Statement Description

OLAP DML as a Data Definition Language

1-8 Oracle OLAP DML Reference

Oracle OLAP also supports the definition of dimension surrogates and valuesets
that you can use in calculations instead of dimensions. (You cannot use these objects
to dimension variables or relations.) See DEFINE SURROGATE and DEFINE
VALUESET for more information.

Defining Calculation Specification Objects Using the OLAP DML
Calculation specifications contain OLAP DML statements that specify analysis that
you want performed.

Types of Calculation Specifications Using the OLAP DML you can define objects that
are specifications for different types of OLAP calculation.

■ Formulas—A formula is a saved expression.

■ Aggregations—An aggregation is a specification for how data should be
aggregated..

■ Allocations—An allocation is a specification for how data should be allocated.

■ Models—A model is a set of interrelated equations. The calculations in an
equation can be based either on variables or on dimension values. You can
assign the results of the calculations directly to a variable or you can specify a
dimension value for which data is being calculated.

Table 1–5 OLAP Data Object Definition Statements

Object Name Description DEFINE command

Variable An array of values that you want to analyze or an
array of values that are the result of the analysis.

DEFINE VARIABLE

Dimension A dimension or index to one or more variables or
relations, or provide a list of values to an OLAP DML
program.

DEFINE
DIMENSION

Composite A list of dimension value combinations that you use
to dimension variables when you do not want the
variable to have empty cells.

DEFINE
COMPOSITE

Relation A multidimensional array whose values specify
correspondence between the values of one or more
dimensions. For example, a parent relation for a
hierarchical dimension describes the child-parent
relationship of the values within the dimension.

DEFINE
RELATION

OLAP DML as a Data Definition Language

Introduction to the OLAP DML 1-9

■ Programs—An OLAP DML program is a collection of OLAP DML statements
that helps you accomplish some workspace management or analysis task. You
can use OLAP DML programs as user-defined commands and functions.

Creating Calculation Specification Objects The general process of creating a calculation
specification object is the following two step process:

1. Define the calculation object using the appropriate DEFINE command.

2. Add the calculation specification to the object definition. You can add the
calculation specification to the definition of a calculation object in the following
ways:

■ At the command line level of the OLAP Worksheet, in an input file, or as an
argument to a PL/SQL function. In this case, ensure that the object is the
current object (issue a CONSIDER statement, if necessary), and, then, issue
the appropriate command that includes the specification as a multiline text
argument. To code the specification as a multiline text, you can use a
JOINLINES function where each of the text arguments of JOINLINES is a
statement that specifies the desired processing, and where the final
statement is END.

■ In an Edit Window of the OLAP Worksheet. In this case, at the command
line level of the OLAP Worksheet, issue an EDIT statement with the
appropriate keyword. This opens an Edit Window for the specified object.
You can then type each statement as an individual line in the Edit Window.
Saving the specification and closing the Edit Window when you are
finished.

Table 1–6 outlines the OLAP DML statements that you use to create each type of
calculation specification. For more detailed information on creating calculation
specifications, see the relevant DEFINE statement, Chapter 4, "Formulas,
Aggregations, Allocations, and Models", and Chapter 5, "OLAP DML Programs".

Table 1–6 Commands for Defining Calculation Specifications

Specification
Type

Definition
Statement

Command for Entering
Specification

Statement for Opening
Edit Window

Aggregation DEFINE
AGGMAP

AGGMAP EDIT AGGMAP
aggmap-name

Allocation DEFINE
AGGMAP

ALLOCMAP EDIT AGGMAP
aggmap-name

OLAP DML as a Data Manipulation Language

1-10 Oracle OLAP DML Reference

Viewing Data Definitions
Table 1–7, " Statements for Viewing Definitions" on page 1-10 lists the OLAP DML
statements that you can use to view definitions stored in an analytic workspace

OLAP DML as a Data Manipulation Language
The real power of the OLAP DML is apparent when you begin using it to analyze
your data. Using the OLAP DML you can:

Formula DEFINE
FORMULA

EQ EDIT FORMULA
formula-name

Model DEFINE MODEL MODEL EDIT MODEL
model-name

Program DEFINE
PROGRAM

PROGRAM EDIT [PROGRAM]
program-name

Table 1–7 Statements for Viewing Definitions

Statement Description

AW function Returns information about currently attached workspaces.

EXISTS Returns a value that indicates whether an object is defined in any attached
workspace.

LISTBY Lists all objects in a workspace that are dimensioned by or related to one or
more specified dimensions or composites.

LISTNAMES Lists the names of the objects in a workspace.

OBJ Returns information about a workspace object.

OBJLIST Lists the objects that in one or more workspaces that you specify.

AWDESCRIBE Sends information about the current analytic workspace to the current
outfile.

DESCRIBE Lists the base definition of one or more workspace objects.

FULLDSC Lists the definition of one or more workspace objects, including the
properties and triggers of the object(s).

Table 1–6 (Cont.) Commands for Defining Calculation Specifications

Specification
Type

Definition
Statement

Command for Entering
Specification

Statement for Opening
Edit Window

OLAP DML as a Data Manipulation Language

Introduction to the OLAP DML 1-11

■ Define special OLAP DML objects (sometimes called calculation specification
objects) that you can use to aggregate, allocate, or model data. (See "Defining
Calculation Specification Objects Using the OLAP DML" on page 1-8 for a
general discussion of this process.)

■ Write programs to perform complex analysis.You can write a OLAP DML
programs to perform almost any type of complicated multidimensional
analysis.

This section provides overview information about the following types of programs:

■ "Startup Programs" on page 1-11

■ "Data Loading Programs" on page 1-13

■ "Trigger Programs" on page 1-14

■ "Aggregation, Allocation, and Modeling Programs" on page 1-15

■ "Forecasting Programs" on page 1-16

■ "Programs to Export and Import Workspace Objects" on page 1-16

For more information on creating an OLAP DML program, see Chapter 5, "OLAP
DML Programs".

Startup Programs
Startup programs are programs that you write and that Oracle OLAP checks for by
name when an AW ATTACH statement executes. Startup programs do not exist
within an analytic workspace unless you define and write them. In a startup
program you can execute any OLAP DML statements, or run any of your own
programs. For example, a startup program might set options to values appropriate
to your application.

The types of startup programs that are recognized by Oracle OLAP are discussed in
this topic. The order in which these programs are executed is discussed in
"Programs Executed When Attaching Analytic Workspaces" on page 8-39.

ONATTACH Programs
You can create an Onattach program in one of two ways:

■ You can define a program named ONATTACH. Each time you attach the
workspace, the ONATTACH program executes automatically unless you
include a NOOTTACH keyword in the AW ATTACH statement.

OLAP DML as a Data Manipulation Language

1-12 Oracle OLAP DML Reference

■ You can define a program and give it any name you want. When attaching the
workspace using a AW ATTACH statement, you can run the program by
specifying its name after the ONATTACH keyword. This is useful for
application developers; an application can run a different startup program
depending on the users' choices.

Permission Programs
The startup programs named PERMIT_READ and PERMIT_WRITE are also known
as permission programs. Permission programs allow you to control two levels of
access to the analytic workspace in which they reside.

■ Access at the analytic workspace level—Depending on the return value of the
permission program, the user is or is not granted access to the entire analytic
workspace. You can use the return value to indicate to Oracle OLAP whether or
not the user has the right to attach the workspace.

■ Access at the object level—Depending on the statements in the permission
program, the user is granted or denied access to specific objects or sets of object
values. Within an ONATTACH program, you can use ACQUIRE statements to
provide access to individual workspace objects. Within a permission program
for read-only or read/write attachment, you can specify PERMIT commands
that grant or restrict access to individual workspace objects.

To create a permission program, define a user-defined function (as described in
"Creating User-Defined Functions" on page 5-2) with one of the recognized names,
then define the contents for the program as described in "Specifying Program
Contents" on page 5-2.

AUTOGO Programs
You can create an Autogo program by defining a program with any name, and
specifying that name in the AW ATTACH statement after the AUTOGO keyword.

TRIGGER_AW Program
When you create a program named TRIGGER_AW program, the execution of any
AW command (including an AW ATTACH statement) becomes an event that
triggers the execution of the TRIGGER_AW program.

Note: All of the objects referred to in a given permission program
must exist in the same analytic workspace.

OLAP DML as a Data Manipulation Language

Introduction to the OLAP DML 1-13

Data Loading Programs
The OLAP DML provides support for loading data to and from relational tables, flat
files, and spreadsheets.

Programs that Copy Data From Relational Tables to Workspace Objects
You can embed SQL statements in OLAP DML programs using the OLAP DML
SQL command. Oracle OLAP provides statements that you can use in a program to
copy relational data into analytic workspace objects using either an implicit cursor
or an explicit cursor:

■ To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the SQL SELECT command. You can use this OLAP DML
command interactively in the OLAP Worksheet or within an OLAP DML
program.

■ To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the following statements in the order indicated. You can
only use these commands within an OLAP DML program. You cannot use them
interactively in the OLAP Worksheet.

1. SQL DECLARE CURSOR defines a SQL cursor by associating it with a
SELECT statement or procedure.

2. SQL OPEN activates a SQL cursor.

3. SQL FETCH and SQL IMPORT retrieve and process data specified by a
cursor.

4. SQL CLOSE closes a SQL cursor.

5. SQL CLEANUP cancels a SQL cursor declaration and frees the memory
resources of an SQL cursor.

For examples of programs that copy table data into workspace objects, see SQL
FETCH and SQL IMPORT.

File-Reading Programs
Oracle OLAP provides a number of statements that you can use to read data from
flat files. These statements (listed in "File Reading and Writing Statements" on
page A-28) are frequently used together in a special program.

OLAP DML as a Data Manipulation Language

1-14 Oracle OLAP DML Reference

Spreadsheet Import Programs
Within an OLAP DML program you can use the IMPORT (from spreadsheet)
command to imp;ort data from a spreadsheet into analytic workspace objects.

Trigger Programs
DEFINE, MAINTAIN, PROPERTY, SET (=) UPDATE, and AW commands are
recognized by Oracle OLAP as events that can trigger the execution of OLAP DML
programs.

■ Programs triggered by AW ATTACH, are called startup programs and are
discussed in "Startup Programs" on page 1-11 and in the topic for AW ATTACH.

■ Programs triggered by AW CREATE, AW DELETE, AW DETACH, DEFINE,
MAINTAIN, PROPERTY, UPDATE, and SET are called trigger programs and
are discussed in this section and in the topic for the TRIGGER command.

Trigger programs are frequently written to maintain application-specific metadata.
Trigger programs have certain characteristics depending on the statement that
triggers them. Some trigger programs execute before the triggering statement
executes; some after. Oracle OLAP passes arguments to programs triggered by some
statements, but not others. Oracle OLAP does not change dimension status before
most trigger programs execute, but does change dimension status before some
MAINTAIN statements trigger program execution. In most cases, you can give a
trigger program any name that you choose, but some events require a program with
a specific name. "Characteristics of Trigger Programs" on page 24-11 discusses these
characteristics.

Once an object is defined in an analytic workspace, you can create a trigger
program for that object by following the following procedure:

1. Define the program as described in DEFINE PROGRAM.

2. Determine what to name the program and whether the program can be a
user-defined program. (See Table 24–1, " Trigger Program Characteristics" on
page 24-12.) If the program can be a user-defined program, decide whether or
not you want to define the trigger program as a user-defined function.

3. Code the actual program as described in"Specifying Program Contents" on
page 5-2.

4. Keep the following points in mind when coding trigger programs:

■ Use Table 24–1, " Trigger Program Characteristics" on page 24-12 to
determine if Oracle OLAP will pass values to the program. If it will, use the

OLAP DML as a Data Manipulation Language

Introduction to the OLAP DML 1-15

ARGUMENT command to declare these arguments in your program and
the VARIABLE command to define program variables for the values. (See
Table 24–2, " Arguments Passed to Trigger Programs" on page 24-13 for
specific information about the arguments.)

■ A program that is triggered by an Assign event is executed each time Oracle
OLAP assigns a value to the object for which the event was defined. Thus, a
program triggered by an Assign event is often executed over and over again
as the assignment statements loops through a object assigning values. You
can use TRIGGERASSIGN to assign a value that is different from the value
specified by the assignment statement that triggered the execution of the
program.

■ In some cases, Oracle OLAP changes the status of the dimension being
maintained when a Maintain event triggers the execution of a program. See
Table 24–3, "How Programs Triggered by Maintain Events Effect Dimension
Status" on page 24-14 for details

■ Use the CALLTYPE function within a program to identify that the program
was invoked as a trigger.

5. When the trigger program is not a TRIGGER_AFTER_UPDATE,
TRIGGER_BEFORE_UPDATE, or TRIGGER_DEFINE program, associate the
program with the desired object and event using the TRIGGER command.

Aggregation, Allocation, and Modeling Programs
To aggregate, allocate, or model data using the OLAP DML, you first specify the
calculation that you want performed by defining a calculation specification as
outlined in "Defining Calculation Specification Objects Using the OLAP DML" on
page 1-8. Later, if you want to populate variables with aggregated, allocated or
modeled values as a database maintenance procedure, you write a program to
execute the calculation object. For more information on the OLAP DML statements
that you use in these programs, see "Executing the Aggregation" on page 4-4,
"Allocating Data" on page 4-8, and "Running a Model" on page 4-15.

See also: The following statements:

■ TRIGGER function, DESCRIBE command, and OBJ function
that retrieve information about triggers.

■ USETRIGGERS option that you can use to disable all triggers.

OLAP DML as a Data Manipulation Language

1-16 Oracle OLAP DML Reference

Forecasting Programs
Oracle OLAP provides statements that you can use to forecast data using a
sophisticated forecast context. To forecast using this context, take the following
steps:

1. Create the objects that you need to hold the results of the forecast.

2. Within the contents of a forecasting program, issue the following statements in
the order indicated:

a. FCOPEN function -- Creates a forecasting context.

b. FCSET command -- Specifies the characteristics of a forecast.

c. FCEXEC command -- Executes a forecast and populates Oracle OLAP
variables with forecasting data.

d. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

e. FCCLOSE command -- Closes a forecasting context.

For examples of forecasting programs, see Example 12–10, "A Forecasting Program"
on page 12-43.

Programs to Export and Import Workspace Objects
You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of a workspace object to a specially formatted EIF file. Then you
can import the information into a different workspace within the same Oracle
database or a different one. The OLAP DML statements for importing and
exporting data are listed in Table A–28, " Statements for Importing and Exporting
Data" on page A-29.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, issue an
EXPORT statement to put all the data in an EIF file, create another workspace with
a different name, and then use an IMPORT statement to import the EIF file into the
new workspace. When you have imported into the same database, you can delete
the old workspace and refer to the new one with the same workspace alias that you
used for the original one.

The following statement copies all the data and definitions from the current analytic
workspace to an EIF file called reorg.eif in a directory object called mydir.

OLAP DML as a Data Manipulation Language

Introduction to the OLAP DML 1-17

EXPORT ALL TO EIF FILE 'mydir/reorg.eif'

OLAP DML as a Data Manipulation Language

1-18 Oracle OLAP DML Reference

Data Types and Operators 2-1

2
Data Types and Operators

This chapter introduces the OLAP DML data types and operators. It includes the
following topics:

■ OLAP DML Data Types

■ OLAP DML Operators

OLAP DML Data Types
Workspace data types fall into categories, which are referred to as basic data types.
They are listed in Table 2–1, " OLAP DML Data Types".

Different objects support the use of different data types for their values:

■ For most values, including variable values, all of the data types are supported.

■ For dimension values, only the INTEGER, NUMBER, TEXT, ID, and NTEXT data
types are supported.

Also, when you want an OLAP DML program to be able to handle arguments
without converting values to a specific data type, you can specify a data type of

Table 2–1 OLAP DML Data Types

Basic Type Specific Types

Numeric INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL, SHORTDECIMAL,
NUMBER

Text TEXT, NTEXT, ID

Boolean BOOLEAN

Date DATETIME, DATE

OLAP DML Data Types

2-2 Oracle OLAP DML Reference

WORKSHEET for the arguments and temporary variables in the program. Use the
WKSDATA function to retrieve the data type of an argument with a WORKSHEET
data type.

Numeric Data Types
The numeric data types described in Table 2–2, " OLAP DML Numeric Data Types"
are supported.

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Note, however, that a comma is required before a
negative number that follows another numeric expression, or the minus sign is
interpreted as a subtraction operator. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by
the NLS_NUMERIC_CHARACTERS option.

Using LONGINTEGER Values
Most of the numerical data types return NA when a value is outside its range.
However, the LONGINTEGER data type does not have overflow protection and will
return an incorrect value when, for example, a calculation produces a number that
exceeds its range. Use the NUMBER data type instead of LONGINTEGER when this
is likely to be a problem.

Table 2–2 OLAP DML Numeric Data Types

Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.

SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.

LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits in the range of
-(10**308) to +(10**308).

SHORTDECIMAL A decimal number with up to 7 significant digits in the range of -(10**38)
to +(10**38).

NUMBER A decimal number with up to 38 significant digits in the range of
-(10**125) to +(10**125).

OLAP DML Data Types

Data Types and Operators 2-3

Using NUMBER Values
When you define a NUMBER variable, you can specify its precision (p) and scale (s)
so that it is sufficiently, but not unnecessarily, large. Precision is the number of
significant digits. Scale can be positive or negative: Positive scale identifies the
number of digits to the right of the decimal point; negative scale identifies the
number of digits to the left of the decimal point that can be rounded up or down.

The NUMBER data type is supported by Oracle Database standard libraries and
operates the same way as it does in SQL. It is used for dimensions and surrogates
when a text or INTEGER data type is not appropriate. It is typically assigned to
variables that are not used for calculations (like forecasts and aggregations), and it
is used for variables that must match the rounding behavior of the database or
require a high degree of precision. When deciding whether to assign the NUMBER
data type to a variable, keep the following facts in mind in order to maximize
performance:

■ Analytic workspace calculations on NUMBER variables is slower than other
numerical data types because NUMBER values are calculated in software (for
accuracy) rather than in hardware (for speed).

■ When data is fetched from an analytic workspace to a relational column that
has the NUMBER data type, performance is best when the data already has the
NUMBER data type in the analytic workspace because a conversion step is not
required.

Text Data Types
The text data types described in Table 2–3, " OLAP DML Text Data Types" are
supported by Oracle OLAP.

Table 2–3 OLAP DML Text Data Types

Data Type Data Value

TEXT Up to 4000 bytes for each line in the database character set.
This data type is equivalent to the CHAR and VARCHAR2 data
types in the database.

NTEXT Up to 4000 bytes for each line in UTF-8 character encoding.
This data type is equivalent to the NCHAR and NVARCHAR2 data
types in the database.

ID Up to 8 single-byte characters for each line in the database
character set. (ID is valid only for values of simple dimensions,
see DEFINE DIMENSION (simple).)

OLAP DML Data Types

2-4 Oracle OLAP DML Reference

Literals
Enclose text literals in single quotes. Oracle OLAP recognizes unquoted
alpha-numeric values as object names and double quotes as the beginning of a
comment.

Escape Sequences
Table 2–4, " Recognized Escape Sequences" shows escape sequences that are
recognized by Oracle OLAP.

Boolean Data Type
A BOOLEAN data type enables you to represent logical values. In code, BOOLEAN
values are represented by values for "no" and yes" (in any combination of uppercase
and lowercase characters). The actual values that are recognized in your version of
Oracle OLAP are determined by the language identified by the NLS_LANGUAGE
option. You can use the read-only NOSPELL and YESSPELL options to obtain the
values represent BOOLEAN values. In English language code, you can represent
BOOLEAN values, using:

Table 2–4 Recognized Escape Sequences

Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal escape
and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a
hexadecimal escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and
nnnn is a four-digit hexadecimal integer that represents the Unicode
codepoint with the value U+nnnn. The U must be a capital letter.

OLAP DML Data Types

Data Types and Operators 2-5

■ YES, TRUE, ON

■ NO, FALSE, OFF

Working with BOOLEAN expressions is discussed in "Boolean Expressions" on
page 3-16.

Date Data Types
The date data types that are supported are listed in Table 2–5, " OLAP DML Date
Data Types".

Date and Time Options
A number of options determine how date and time values are handled. These
options are listed in Table 2–6, " Date and Time Options" on page 2-5.

Table 2–5 OLAP DML Date Data Types

Data Type Data Value

DATETIME Dates between January 1, 4712 B.C. and December 31, 9999
A.D., and times in hours, minutes and seconds.

DATE Dates between January 1, 1000 A.D. and December 31, 9999
A.D.

Table 2–6 Date and Time Options

Statement Description

CALENDARWEEK Determines whether weeks should be aligned with the actual
calendar year.

DATEFORMAT Specifies the template used for displaying DATE values and
converting DATE values to TEXT values.

DATEORDER Contains three characters that indicate the intended order of
the month, day, and year components of the DATE values in a
workspace for those cases in which their interpretation is
ambiguous.

DAYABBRLEN Specifies the number of characters to use for abbreviations of
day names that are stored in the DAYNAMES option.

DAYNAMES A list of valid names for the days of the week. The names are
used to display values of type DATE or to convert DATE values
to text.

OLAP DML Data Types

2-6 Oracle OLAP DML Reference

DATE Values
DATE values have independent input and output formats. You can enter date values
in one style and report them in a different style. To change the order of the month,
day, and year components, see the DATEORDER option. When you show a date
value in output, the format depends on the DATEFORMAT option. The default
format is a 2-digit day, a 3-letter month, and a 2-digit year; for example, 03MAR97.
The text for the month names depends on the MONTHNAMES option.

DATETIME Values
The format and language of DATETIME values are controlled by the settings of the
NLS_DATE_FORMAT and NLS_DATE_LANGUAGE options. The DATETIME data
type is supported by Oracle Database standard libraries and operates the same way
in the OLAP DML as it does in SQL. The DATEORDER, DATEFORMAT, and
MONTHNAMES options, which control the formatting of DATE values, have no
effect on DATETIME values. However, DATETIME and DATE values can be used
interchangeably in most DML statements.

Calculating Dates
You can add numbers to a DATE or DATETIME value, or subtract numbers from
them. Whole numbers are calculated as days, and decimal values are calculated as
fractions of a day. For example, SYSDATE+1.5 adds 1 day and 12 hours to the
current date and time. You cannot divide or multiply DATE or DATETIME values,

DSECONDS (Read-only) The number of seconds since January 1, 1970.

MONTHABBRLEN The number of characters to use for abbreviations of month
names that are stored in the MONTHNAMES option.

MONTHNAMES The list of valid names for months that is used in handling
values with a DATE data type and values of dimensions of type
DAY, WEEK, MONTH, QUARTER, and YEAR.

SECONDS (Read-only) The number of seconds since January 1, 1970.

WEEKDAYSNEWYEAR For a dimension of type WEEK, determines how many days of
the new year there must be for a week to be identified as
week 1 of the new year.

YRABSTART The specific 100-year period associated with years that are read
or displayed using a two-digit abbreviation.

Table 2–6 (Cont.) Date and Time Options

Statement Description

OLAP DML Operators

Data Types and Operators 2-7

and you cannot subtract them from numbers. For example, 1-SYSDATE and
1*SYSDATE return errors.

Converting from One Data Type to Another
In many cases, Oracle OLAP performs automatic data type conversion for you.

■ Oracle OLAP automatically converts NTEXT values to TEXT when they are
specified as arguments to OLAP DML statements. This can result in data loss
when the NTEXT values cannot be represented in the database character set.

■ Oracle OLAP automatically converts SHORTINTEGER variables, as well as
INTEGER variables with a fixed width of 1 byte, to INTEGER (with a width of 4
bytes) for calculations. When you calculate a total of SHORTINTEGER variables,
then you can obtain and report a result greater than 32,767 or less than -32,768.
When you calculate a total of 1-byte INTEGER variables, then you can obtain
and report a result greater than 127 or less than -128. However, when you try to
assign the result to a SHORTINTEGER variable or a 1-byte INTEGER variable
respectively, then the variable is set to NA.

There are a number of OLAP DML functions that you can use to convert values
from one data type to another. See Table A–2, " Data Type Conversion Functions" on
page A-3 for a list of these functions.

OLAP DML Operators
An operator is a symbol that transforms a value or combines it in some way with
another value. Table 2–7, " OLAP DML Operators" describes the categories of OLAP
DML operators.

Table 2–7 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with numeric data to
produce a numeric result. You can also use some arithmetic operators in date
expressions with a mix of date and numeric data, which returns either a date
or numeric result. For a list of arithmetic operators, see "Arithmetic
Operators" on page 2-8. For more information on numeric expressions, see
"Numeric Expressions" on page 3-11

Assignment An operator that you use to assign the results of an expression into an object
or to assign a value to an OLAP DML option. For more information on using
assignment statements, see "Assignment Operator" on page 2-9 and SET.

OLAP DML Operators

2-8 Oracle OLAP DML Reference

Arithmetic Operators
Table 2–8, " Arithmetic Operators" shows the OLAP DML arithmetic operators, their
operations, and priority where priority is the order in which that operator is
evaluated. Operators of the same priority are evaluated from left to right. When you
use two or more operators in a numeric expression, the expression is evaluated
according to standard rules of arithmetic.

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean), which returns a BOOLEAN
result. For a list of comparison operators, see "Comparison and Logical
Operators" on page 2-9. For more information on BOOLEAN expressions, see
"Boolean Expressions" on page 3-16.

Conditional The IF...THEN...ELSE operators that you can use to select one of two values
based on a BOOLEAN condition. For more information on the conditional
operator, see Table 2–9, " Comparison and Logical Operators". For more
information on conditional expressions, see "Conditional Expressions" on
page 3-24.

Logical Operators that you can use to transform BOOLEAN values using logical
operations, which returns a BOOLEAN result. For a list of logical operators, see
"Comparison and Logical Operators" on page 2-9. For more information on
BOOLEAN expressions, see "Boolean Expressions" on page 3-16.

Substitution The & (ampersand) operator that you can use to evaluate an expression and
substitute the resulting value. For more information on the substitution
operator, see "Substitution Expressions" on page 3-25.

Table 2–8 Arithmetic Operators

Operator Operation Priority

- Sign reversal 1

** Exponentiation 2

* Multiplication 3

/ Division 3

* Addition 4

- Subtraction 4

Table 2–7 (Cont.) OLAP DML Operators

Category Description

OLAP DML Operators

Data Types and Operators 2-9

Comparison and Logical Operators
Table 2–9, " Comparison and Logical Operators" shows the OLAP DML comparison
operators and logical operators, the operations, example, and priority where
priority is the order in which that operator is evaluated. Operators of the same
priority are evaluated from left to right. You use these operators to make
expressions in much the same way as arithmetic operators. Each operator has a
priority that determines its order of evaluation. Operators of equal priority are
evaluated left to right, unless parentheses change the order of evaluation. However,
the evaluation is halted when the truth value is already decided.

Assignment Operator
In the OLAP DML, as in many other programming languages, the = (equal) sign is
used as an assignment operator.

Note: A comma is required before a negative number that follows
another numeric expression, or the minus sign is interpreted as a
subtraction operator. For example, intvar,-4.

Table 2–9 Comparison and Logical Operators

Operator Operation Example Priority

NOT Returns opposite of
BOOLEAN expression

NOT(YES) = NO 1

EQ Equal to 4 EQ 4 = YES 2

NE Not equal to 5 NE 2 = YES 2

GT Greater than 5 GT 7 = NO 2

LT Less than 5 LT 7 = YES 2

GE Greater than or equal to 8 GE 8 = YES 2

LE Less than or equal to 8 LE 9 = YES 2

IN Is a date in a time
period?

'1Jan02' IN w1.02 = YES 2

LIKE Does a text value match a
specified text pattern?

'Finance' LIKE '%nan%' = YES 2

AND Both expressions are true 8 GE 8 AND 5 LT 7 = YES 3

OR Either expression is true 8 GE 8 OR 5 GT 7 = YES 4

OLAP DML Operators

2-10 Oracle OLAP DML Reference

An expression creates temporary data; you can display the resulting values, but
these values are not automatically saved in your analytic workspace. When you
want to save the result of an expression, then you store it in an object that has the
same data type and dimensions as the expression. You use an assignment statement
to store the value that is the result of the expression in the object.

Like other programming languages, an assignment statement in the OLAP DML
sets the value of the target expression equal to the results of the source expression.
However, an OLAP DML assignment statement does not work exactly as it does in
other programming languages. Like many other OLAP DML statements it does not
assign a value to a single cell, instead, when the target-expression is a
multidimensional object, Oracle OLAP loops through the cells of the target object
setting each one to the results of the source-expression. Additionally, you can use
UNRAVEL to copy the values of an expression into the cells of a target object when
the dimensions of the expression are not the same as the dimensions of the target
object.

For more information on using assignment statements in the OLAP DML, see SET.

Expressions 3-1

3
Expressions

Expressions represent data values in the syntax of the OLAP DML. This chapter
explains how to create and use OLAP DML expressions. It includes the following
topics:

■ Introducing OLAP DML Expressions

■ Using Workspace Objects in Expressions

■ Dimensionality of OLAP DML Expressions

■ Numeric Expressions

■ Boolean Expressions

■ Conditional Expressions

■ Substitution Expressions

■ Working with Empty Cells in Expressions

■ Working with Subsets of Data

Introducing OLAP DML Expressions
Expressions represent data values in the syntax of the OLAP DML. An expression
has a data type and can also have dimensions. You can use expressions as
arguments in statements. An expression often performs a mathematical or logical
operation. It always evaluates to a result in one of the workspace data types.

Introducing OLAP DML Expressions

3-2 Oracle OLAP DML Reference

An expression can be:

■ A literal value. For example, 10 or 'East'

■ An analytic workspace object that contains multiple values. For example, the
variable sales

■ A function that returns one or more values. For example, TOTAL or JOINLINES

■ Another expression that combines literal values, dimensions, variables,
formulas, and functions with operators. For example, inflation*1.02

You can save an expression as a formula. See "Formulas" on page 4-1 for more
information.

How the Data Type of an Expression is Determined
The data type of an expression is the data type of the resulting value. It might not be
the same as the data type of the data objects that make up the expression; it depends
on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN. . . ELSE
operator is supported. A conditional expression returns a value whose data type
depends on the expressions in the THEN and ELSE clauses, not on the expression in
the IF clause, which must be BOOLEAN.

Changing the Data Type of an Expression
You can use the CONVERT function to change data type of an expression. For
example, you can convert a number to text, or you can convert a text string that
consists of digits to a number.

However, there is no need to convert data to another type within the same basic
category because those conversions are made automatically. In general, you can use
TEXT, NTEXT, or ID data anywhere text is called for, and you can use integers and
decimal numbers interchangeably.

Note: Do not confuse a conditional expression with the
IF...THEN...ELSE statement in a program, which has similar syntax
but a different purpose. The IF statement does not have a data type
and is not evaluated like an expression.

Using Workspace Objects in Expressions

Expressions 3-3

Using Workspace Objects in Expressions
You can use an analytic workspace data object in an expression by specifying its
name as described in "Syntax for Specifying an Object in an Expression" on
page 3-3. When calculating the expression, Oracle OLAP uses the data in the
specified object as described in "How Objects Behave in Expressions" on page 3-6.

Syntax for Specifying an Object in an Expression
You can specify an analytic workspace object in an expression using the following
syntax.

[[schema-name.]analytic-workspace-name!]object-name

where:

■ schema-name is the name of the schema in which the analytic workspace was
defined when it was created. By default, a workspace is created in the schema
for the database user ID of the user issuing the AW CREATE statement. In
almost any DML statement, you can specify the full name of a workspace (for
example, Scott.demo). When the workspace is in your schema, you can
specify only the name (for example, demo) instead.

■ analytic-workspace-name is the name of the workspace that contains the desired
object. By specify the analytic workspace name along with the object name you
create a qualified object name (QON) for the object. Using a QON for an object
is recommended except in those sitatuations described in "When Not to Use
Qualified Object Names" on page 3-5.

You can specify the value for analytic-workspace-name in any of the following
ways:

■ The name of an analytic workspace. A workspace name is assigned when a
workspace is created with an AW CREATE statement.

■ The alias name of an analytic workspace. An analytic workspace alias is an
alternative name for an attached analytic workspace. You can assign or
delete an alias with an AW ALIASLIST statement. An alias is in effect from
the time it is assigned to the time that the workspace is detached (or until
the alias is deleted). Therefore, each time you attach an unattached
workspace, you must reassign its aliases.

One reason for assigning an alias is to have a short way to reference a
workspace that belongs to a schema that is not yours. For example, you can
use the alias in qualified object names and statements that reference such a

Using Workspace Objects in Expressions

3-4 Oracle OLAP DML Reference

workspace. Another reason for assigning an alias is to write generic code
that includes a reference to a workspace but does not hard-code its name.
With the alias providing a generic reference, you can assign the alias and
run the code on different workspaces at different times.

■ Within anm aggregation specification, model, or program, you can use
THIS_AW to qualify an object name. When Oracle OLAP compiles an object,
it interprets any occurrence of THIS_AW as the name of the workspace in
which the object is being compiled. Thus if you have a workspace named
myworkspace that contains a program named myprog and a variable
named myvar, Oracle OLAP interprets a statement myvar=1 as though it
was written myworkspace!myvar=1. Within a program, you can retrieve
the value of THIS_AW using the THIS_AW option.

When you do not specify a value for analytic-workspace-name, Oracle OLAP
assumes that the specified object is in the urrent analytic workspace. The
current analytic workspace is the first analytic workspace in the list of the
active analytic workspaces that you view with an AW LIST statement. You can
retrieve the name of the current analytic workspace by using the AW function
with the NAME keyword.

■ object-name is the name of the object.

Objects with the same name in different workspaces are treated as completely
separate objects, and no similarity or relationship is assumed to exist between them.
Any OLAP DML language restrictions that apply between objects in different
workspaces apply even when the objects have the same name. For example, you
cannot dimension an object in one workspace by a dimension that resides in
another workspace, even when both workspaces have dimensions with the same
name.

Note: Your session does not have to have a current analytic
workspace. When you start Oracle OLAP without specifying an
analytic workspace name, then the EXPRESS analytic workspace is
first on the list. However, in this case, the EXPRESS analytic
workspace is not current; there is no current analytic workspace
until you specify one with the AW command.

Using Workspace Objects in Expressions

Expressions 3-5

Considerations When Creating and Using Qualified Object Names
Although the use of qualified object names for objects is typical, there are a number
of considerations to keep in mind:

■ There are some situations where you cannot use a qualified object name or do
not need to use a qualified object name. See "When Not to Use Qualified Object
Names" on page 3-5 for more information

■ Before you use ampersand substitution when creating a qualified object name
you need to understand how and when the substitution occurs. See "Using
Ampersand Substitution for Workspace and Object Names" on page 3-6 for
more information.

■ Special considerations apply when passing a qualified object name as an
argument to a program. See "Passing Qualified Object Names to Programs" on
page 3-6 for more information.

When Not to Use Qualified Object Names Generally it is good practice to use a qualified
object name in an expression. However, there are some situations where you cannot
use a qualified object name or when a qualified object name is not necessary:

■ The following objects cannot have qualified object names:

■ An object that is local to a particular program because it was created by the
ARGUMENT or VARIABLE command.

■ The NAME dimension of any given workspace. When you reference the
NAME dimension, Oracle OLAP always uses the NAME dimension of the
current workspace.

■ You do not need to use a qualified object name in the following circumstances:

■ In the qualifiers of a qualified data reference (QDR). Only the object being
qualified needs to be named with a qualified object name. Any unqualified
names are assumed to apply to objects in the same workspace as the object
being qualified.

■ In an unnamed composite, when you specify one base dimension as a
qualified object name, then all the others are assumed to come from the
same workspace.

■ In a named composite, when the name is a qualified object name then its
base dimensions are assumed to come from the same workspace.

Using Workspace Objects in Expressions

3-6 Oracle OLAP DML Reference

■ In a model, when you specify the solution variable as a qualified object
name, then all the dimensions named in DIMENSION (in models)
statements are assumed to come from the same workspace.

Using Ampersand Substitution for Workspace and Object Names The workspace name, or
the object name, or both can be supplied using ampersand substitution. However,
take care when using a qualified object name with ampersand substitution because
Oracle OLAP parses the qualified object name (with its exclamation point) before it
resolves the ampersand reference. For example, in the expression
&awname!objname, the ampersand (&) applies to the entire qualified object name,
not just to the workspace name.

Passing Qualified Object Names to Programs When you pass a qualified object name as
an argument to a program and you use the ARGUMENT command and the
ARCTAN2, ARGFR, and ARGS functions, the entire qualified object name is
considered to be a single argument. Its component parts are not passed separately.

How Objects Behave in Expressions
Table 3–1 summarizes how Oracle OLAP uses the data in an object used as an
argument in an expression.

Table 3–1 Objects in Expressions

Object Use in Expressions

Variables As an array of data. For example, as the target or source expression in an
assignment statement as outlined in "Using Objects in Assignment
Statements" on page 21-58.

Relations As an array of data. For example, as the target or source expression in an
assignment statement as outlined in "Using Objects in Assignment
Statements" on page 21-58.

■ When you use a relation in a text expression, the relation value is
referenced as a text value. The values of the related dimension that is
contained in the relation are converted into text, and you can use these
values in an expression. You can also compare a text literal to a relation.

■ When you use a relation in a numeric expression, the relation value is
referenced by its position (an INTEGER) in its related dimension array.
You can use this numeric value in an expression. The position number is
based on the default status list of the dimension, not the current status list
of the dimension.

Using Workspace Objects in Expressions

Expressions 3-7

Using Variables in Expressions
In expressions, a variable is referenced as an array containing values of the specified
data type.

When you assign values to a variable or when you use REPORT or another
statement that loops over the dimensions of a variable, the values of the
fastest-varying dimension of the variable vary first. For example, for the opcosts
variable that is dimensioned by month and city, when you view the variable as
REPORT output, you see the data for all months for the first city before you see any
data for the second city. In this case, month is the fastest-varying dimension because
its values change before those of city. When you write programs that loop over a

Dimensions As a one-dimensional array of data. When you use a TEXT
dimensionvalue in a numeric expression or compare values in a
non-numeric dimension, Oracle OLAP uses the INTEGER position
number of the value in the array (as based on the default status list)
rather than the value itself.

Note: A dimension cannot be the target of an assignment statement; add
values to dimensions using MAINTAIN.

Composites You can use a composite wherever you can use a dimension.

When you refer to an unnamed composite in an expression , specify
SPARSE <dimensions...> ; for example, SPARSE <product month>.

Valuesets As a list of dimension values.

Dimension
surrogates

As a one-dimensional array. When you use a TEXT surrogate value in a
numeric expression or compare values in a non-numeric surrogate,
Oracle OLAP uses the INTEGER position number of the value in the
array (as based on the default status list) rather than the value itself.

Note: A surrogate cannot be a participant object in any argument in a DEFINE
statement that defines another object.

Formulas As a sub-expression or as an expression in a statement.

Programs For a program that does not return a value, use the program name as you
would an OLAP DML command. For a program that returns a value, invoke
the program the same way you invoke an OLAP DML command— use the
program name in then expression and enclose the program arguments, if any,
in parentheses.

Table 3–1 (Cont.) Objects in Expressions

Object Use in Expressions

Using Workspace Objects in Expressions

3-8 Oracle OLAP DML Reference

multidimensional variable in this way, try to maximize performance by matching
the fastest-varying dimension with the inner loop.

You can uniquely and completely select any item of data within a multidimensional
variable by using a qualified data reference (QDR) to specify one value from each of
the dimensions of the variable.

For example, when the opcosts variable is dimensioned by month and city,
specifying Jan02 for the month dimension and Boston for the city dimension
uniquely specifies a single cell in the variable.

Using Variables Defined with Composites in Expressions
In most cases, when you use OLAP DML statements with variables that are defined
with composites, the statements treat those variables as if they were defined with
base dimensions:

■ You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

■ The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and
therefore, they do not have any independent status.

When you use the REPORT command or any other statement that loops over a
variable that uses a composite, the default behavior is to evaluate all the
combinations of the values of the base dimensions of the composite that are in
status. Any combinations that do not exist in the composite display NA for their
associated data.

For example, the following statements create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Since no coupons were issued in March 2002, the report displays NA in that
column.

LIMIT month TO 'Jan02' 'Feb02' 'Mar02'
LIMIT market TO 'East'

Note: When you use a variable as the solution variable in a model,
the model executes most efficiently when the order of the
dimensions in the definition of the solution variable matches the
order of the dimensions in the DIMENSION commands in the
model.

Dimensionality of OLAP DML Expressions

Expressions 3-9

LIMIT product TO 'Sportswear'
REPORT coupons

MARKET: EAST
 ------------COUPONS-------------
 -------------MONTH--------------
PRODUCT Jan02 Feb02 Mar02
-------------- ---------- ---------- ----------
Sportswear 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
statements such as REPORT, ROW, and the assignment statement (SET) so that they
loop over the values in the composite rather than all of the base dimension values.

Dimensionality of OLAP DML Expressions
An expression is dimensioned by a union of the dimensions of all of the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression:

■ Variables, relations, and formulas are dimensioned by the dimensions listed in
the definition of the object.

Example 1: When the price variable is dimensioned by month and product,
then the expression price * 1.2 is also dimensioned by month and product.

Example 2: When the units variable is dimensioned by month, product, and
district, then the expression units * price is dimensioned by month,
product, and district (even though the dimensions of the price variable
are month and product only).

■ Qualified data references (QDRs) are dimensioned by all of the dimensions of
the associated object, expect for the dimensions being qualified. (For more
information about qualified data references, see "Specifying a Single Data Value
in an Expression" on page 3-32.)

■ The return values of most OLAP DML functions are, in most cases,
dimensioned by the union of the dimensions of the input arguments. However,
some functions (such as aggregation functions) have fewer dimensions than the
input arguments. In these cases, the dimensionality of the return value is
documented in the topic for the function in Part II, "Alphabetic Reference".

Dimensionality of OLAP DML Expressions

3-10 Oracle OLAP DML Reference

Determining the Dimensions of an Expression
You can find out the dimensions of an expression with the PARSE command and
the INFO function. PARSE evaluates the text of an expression; the INFO indicates
how the expression is interpreted.

This example illustrates the use of the DIMENSION keyword with the INFO
function to retrieve the dimensions of the expression just analyzed by the PARSE
command. Assume that you issue the following statement.

PARSE 'TOTAL(sales region)'

The statement produces the following output.

SHOW INFO(PARSE DIMENSION)
REGION

How Dimension Status Affects the Results of Expressions
The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, when
three dimension values are in status for month, and two for product, then the
expression price gt 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an
expression are limited to the range of data you want to consider. In addition, you
must consider any PERMIT statements that might limit access to the dimensions of
the data.

When you want to specify a single value without changing the current status you
can use a qualified data reference (QDR). Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation. For more information on
dimension status, see "Working with Subsets of Data" on page 3-30; for more
information on QDRs, see "Specifying a Single Data Value in an Expression" on
page 3-32.

Note: Unless otherwise noted this manual, when you specify
breakout dimensions or relations in an aggregation function, you
change the dimensionality of the expression. The first dimension
that you specify as a breakout dimension is the slowest varying and
the last dimension that you specify is the fastest varying.

Numeric Expressions

Expressions 3-11

Changing the Dimensionality of an Expression
You can change the dimensionality of an expression or subexpression using the
CHGDIMS function.

Numeric Expressions
A numeric expression evaluates to data with any of the numeric data types (that is,
INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL, and NUMBER). The data in
a numeric expression can be any combination of the following:

■ Numeric literals

■ Numeric variables or formulas

■ Dimensions

■ Functions that yield numeric results

■ Date literals, variables, formulas, or functions

In addition, you can join any of these three-part expressions with the arithmetic
operators for a more complex numeric expression. You use arithmetic operators in
numeric expressions with numeric data, which returns a numeric result. You can
also use some arithmetic operators in date expressions with a mix of date and
numeric data, to retrieve either a date or numeric result.

Numeric Options
A number of options determine how Oracle OLAP handles numeric expressions.
These options are listed in Table 3–2, " Numeric Options" on page 3-11.

Table 3–2 Numeric Options

Option Description

DECIMALOVERFLOW Controls the result of arithmetic operations that produce
out-of-range numbers. Decimal numbers are stored as a
mantissa and an exponent. Decimal overflow occurs when the
result of a calculation is very large and can no longer be
represented by the exponent portion of the decimal
representation.

DIVIDEBYZERO Controls the result of division by zero.

Numeric Expressions

3-12 Oracle OLAP DML Reference

Mixing Numeric Data Types
You can include any type of numeric data in the same numeric expression.

The data type of the result is determined according to the following rules:

■ When all the data in the expression is INTEGER or SHORTINTEGER, and the
only operations are addition, subtraction, and multiplication, then the result is
INTEGER.

■ When any of the data is NUMBER, then the result is NUMBER.

■ When any of the data is DECIMAL or SHORTDECIMAL, and no data is NUMBER,
then the result is DECIMAL.

■ When you perform any division or exponentiation operations, then the result is
DECIMAL.

Automatic Conversion of Numeric Data Types
Oracle OLAP automatically converts numeric data types according to the following
rules:

■ When you use a value with the SHORTINTEGER or SHORTDECIMAL data type in
an expression, then the value is converted to its long counterpart before using it.
See "Boolean Expressions" on page 3-16 for information about problems that
can occur when you mix SHORTDECIMAL and DECIMAL data types in a
comparison expression.

■ When you save the results of a calculation as a value with the SHORTINTEGER
data type, then NA is stored when the result is outside the range of a
SHORTINTEGER (-32768 to 32767).

RANDOM.SEED.1 and
RANDOM.SEED.2

(Set only) Options that specify values used by RANDOM when
computing random numbers. Typically, you only set values for
these options when you are developing and debugging your
application programs.

ROOTOFNEGATIVE A flag that allows or disallows any attempt to obtain a root of a
negative number.

Table 3–2 (Cont.) Numeric Options

Option Description

Numeric Expressions

Expressions 3-13

■ When you assign the value of a DECIMAL expression to an object with the
INTEGER data type, then the value is rounded before storing or using it.

■ When you use a decimal value where a value with the INTEGER data type is
required, then the value is rounded before storing or using it.

■ When you assign the value of a decimal expression to a variable with the
SHORTDECIMAL data type, then only the first 7 significant digits are stored.

■ When you combine NUMBER values with other numeric data types, then all
values are converted to NUMBER.

When these conversions are not what you want, then you can use the CONVERT,
TO_CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different results.

Using Dimensions in Arithmetic Expressions
When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an INTEGER) and is used numerically. The
position number is based on the default status list, not on current status.

Using Dates in Arithmetic Expressions
When you use dates in arithmetic expressions, the result can be numeric or it can be
a date. The legal operations for dates and the data type of the result are outlined in
Table 3–3, " Legal Operations for Dates" on page 3-13.

Note: When the decimal value is outside the range of an integer
(approximately plus or minus 2 billion), then an NA is stored.

Note: When the decimal value is outside the range of an integer
(approximately plus or minus 2 billion), then an NA is stored.

Table 3–3 Legal Operations for Dates

Operation Result

Add or subtract a number from
a date

Future or prior date

Subtract a date from a date The number of days between the dates.

Numeric Expressions

3-14 Oracle OLAP DML Reference

Limitations of Floating Point Calculations
All decimal data is converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a
mantissa and an exponent. The mantissa and the exponent are stored as binary
numbers. The mantissa is a binary fraction which, when multiplied by a number
equal to 2 raised to the exponent, produces a number that equals or closely
approximates the original decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers can result in further
approximations, and the inaccuracy gradually increases with the number of
operations. In addition to the approximation factor, the available number of
significant digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable can differ in the
least significant digits from a result you compute by hand. Because the
SHORTDECIMAL data type provides a maximum of only seven significant digits,
you see more of these differences with SHORTDECIMAL data. Therefore, you might
want to use the NUMBER data type when accuracy is more important than
computational speed, such as variables that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type
offers a different and closer approximation than the SHORTDECIMAL data type,
because it has more significant digits. This can lead to problems when
SHORTDECIMAL and DECIMAL data types are mixed in a comparison expression.
For information on how to handle such comparisons, see "Boolean Expressions" on
page 3-16.

Add or subtract a number from a
time period.

The time period at the appropriate interval in
the future or the past, similar to the return
values of the LEAD or LAG function. The result
is NA when there is no dimension value that
corresponds to the result. The calculation is
made based on the positions of the values in the
default status list of the dimension.

Table 3–3 (Cont.) Legal Operations for Dates

Operation Result

Text Expressions

Expressions 3-15

Controlling Errors During Calculations
You can control the following types of errors:

■ Division by zero. When you divide an NA value by zero, then the result is NA;
no error occurs. Dividing a non-NA value by zero normally produces an error.
When a divide-by-zero error occurs when you are making a calculation on
dimensioned data, then you can end up with partial results. When you use
REPORT or an assignment statement (SET), values are reported or stored as
they are calculated, so the division by zero halts the loop before it has gone
through all the values.

When you want to suppress the divide-by-zero error, then you can change the
value of the DIVIDEBYZERO option to YES. This means that the result of any
division by zero is NA and no error occurs. This allows the calculation of the
other values of a dimensioned expression to continue.

■ Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power).
When you want to suppress the error message and allow the calculation of
roots for non-negative values of the expression to continue, then set the
ROOTOFNEGATIVE option to YES.

■ Overflow errors. The DECIMALOVERFLOW option works in a similar manner
to DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions
A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

■ Text literals. For example, 'Boston' or 'Current Sales Report'

■ Text dimensions. For example, district or month

■ Text variables or formulas. For example, product.name

■ Functions that yield text results. For example, JOINLINES('Product: '
product.name)

Boolean Expressions

3-16 Oracle OLAP DML Reference

Working with Dates in Text Expressions
When you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is
expected, or when you store a DATETIME value in a text variable, then the
DATETIME value is automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option.
Once a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT
setting has no impact.

Working with NTEXT Data
TEXT and NTEXT data are interchangeable in most cases. However, implicit
conversion can occur, such as when an NTEXT value is assigned to a TEXT variable.
When TEXT is converted to NTEXT, no data loss occurs because the UTF-8 character
encoding of the NTEXT data type encompasses most other data types. However,
when NTEXT is converted to TEXT, data loss occurs when NTEXT characters are not
represented in the workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the
JOINCHARS function, the TEXT value is converted to NTEXT and an NTEXT value is
returned.

Boolean Expressions
A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean
expressions can compare data of any type as long as both parts of the expression
have the same basic data type. You can test data to see if it is equal to, greater than,
or less than other data.

A Boolean expression can consist of Boolean data, such as the following:

■ BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and
FALSE)

■ BOOLEAN variables or formulas

■ Functions that yield BOOLEAN results

■ BOOLEAN values calculated by comparison operators

For example, assume that your code contains the following Boolean expression.

actual GT 20000

Boolean Expressions

Expressions 3-17

When processing this expression, Oracle OLAP compares each value of the variable
actual to the constant 20,000. When the value is greater than 20,000, then the
statement is TRUE; when the value is less than or equal to 20,000, then the statement
is FALSE.

When you are supplying a Boolean value, you can type either YES, ON, or TRUE for
a true value, and NO, OFF, or FALSE for a false value. When the result of a Boolean
calculation is produced, the defaults are YES and NO in the language specified by
the NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options
record the YES and NO values.

Table 2–9, " Comparison and Logical Operators" shows the comparison and logical
operators. Each operator has a priority that determines its order of evaluation.
Operators of equal priority are evaluated left to right, unless parentheses change the
order of evaluation. However, the evaluation is halted when the truth value is
already decided. For example, in the following expression, the TOTAL function is
never executed because the first phrase determines that the whole expression is
true.

yes EQ yes OR TOTAL(sales) GT 20000

Creating Boolean Expressions
A Boolean expression is a three-part clause that consists of two items to be
compared, separated by a comparison operator. You can create a more complex
Boolean expression by joining any of these three-part expressions with the AND and
OR logical operators. Each expression that is connected by AND or OR must be a
complete Boolean expression in itself, even when it means specifying the same
variable several times.

For example, the following expression is not valid because the second part is
incomplete.

sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be
valid even when the truth value can be determined by the first part of the
expression. The whole expression is compiled before it is evaluated, so when there
are undefined variables in the second part of a Boolean expression, you get an error.

Boolean Expressions

3-18 Oracle OLAP DML Reference

Use the NOT operator, with parentheses around the expression, to reverse the sense
of a Boolean expression.

The following two expressions are equivalent.

district NE 'BOSTON'
NOT(district EQ 'BOSTON')

Example 3–1 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for
each product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO 'BOSTON'
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT statement returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY: BOSTON
 ---F.SALES GT 7500---
 --------TIME---------
PRODUCT Jan02 Feb02
-------------- ---------- ----------
Portaudio NO NO
Audiocomp YES YES
TV NO NO
VCR NO NO
Camcorder YES YES
Audiotape NO NO
Videotape YES YES

Comparing NA Values in Boolean Expressions
When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, when you test
whether an NA value is equal to a non-NA value, then the result is NO. However,
when the result would be misleading, then NA is returned. For example, testing
whether an NA value is less than or greater than a non–NA value gives a result of
NA.

Table 3–4, " Boolean Expressions with NA Values that Result in non-NA Values"
shows the results of Boolean expressions involving NA values, which yield non-NA
values.

Boolean Expressions

Expressions 3-19

Controlling Errors When Comparing Numeric Data
When you get unexpected results when comparing numeric data, then there are
several possible causes to consider:

■ One of the numbers you are comparing might have a small decimal part that
does not show in output because of the setting of the DECIMALS option.

■ You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

■ You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle recommends that you use the ABS and ROUND functions to do approximate
tests for equality and avoid all three causes of unexpected comparison failure.
When using ABS or ROUND, you can adjust the absolute difference or the rounding
factor to values you feel are appropriate for your application. When speed of
calculation is important, then you probably want to use the ABS rather than the
ROUND function.

Controlling Errors Due to Numerical Precision
Suppose expense is a decimal variable whose value is set by a calculation. When
the result of the calculation is 100.000001 and the number of decimal places is two,
then the value appears in output as 100.00. However, the output of the following
statement returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Table 3–4 Boolean Expressions with NA Values that Result in non-NA Values

Expressions Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

Boolean Expressions

3-20 Oracle OLAP DML Reference

Controlling Errors When Comparing Floating Point Numbers
A standard restriction on the use of floating point numbers in a computer language
is that you cannot expect exact equality in a comparison of two floating point
numbers when either number is the result of an arithmetic operation. For example,
on some systems, the following statement returns a NO instead of the expected YES.

SHOW .1 + .2 EQ .3

When you deal with decimal data, you should not code direct comparisons. Instead,
you can use the ABS or the ROUND function to allow a tolerance for approximate
equality. For example, either of the following two statements produce the desired
YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types
You cannot expect exact equality between SHORTDECIMAL and DECIMAL or
NUMBER representations of a decimal number with a fractional component, because
the DECIMAL and NUMBER data types have more significant digits to approximate
fractional components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a
fractional decimal number, then compare the SHORTDECIMAL number to the
fractional decimal number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the
literal is automatically typed as DECIMAL and converts the SHORTDECIMAL variable
sdvar to DECIMAL, which extends the decimal places with zeros. A bit-by-bit
comparison is then performed, which fails. The same comparison using a variable
with a DECIMAL or a NUMBER data type is likely to return YES.

Boolean Expressions

Expressions 3-21

There are several ways to avoid this type of comparison failure:

■ Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in
comparisons. To avoid mixing these two data types, you should generally avoid
defining variables with decimal components as SHORTDECIMAL.

■ Use the ABS or ROUND function to allow for approximate equality. The
following statements both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values
Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of
the dimension. This enables you to specify statements like the following statement.

REPORT district LT 'Seattle'

Statements are interpreted such as these using the following process:

1. The text literal 'Seattle' is converted to its position in the district default
status list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

3. As shown by the following report, the value YES is returned for districts that
are positioned before Seattle in the district default status list of the
dimension, and NO for Seattle itself.

REPORT 22 WIDTH district LT 'Seattle'

District DISTRICT LT 'Seattle'
-------------- ----------------------
Boston YES
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the

Boolean Expressions

3-22 Oracle OLAP DML Reference

position of the values in the month dimension. Because it is a time dimension, the
values are in chronological order.

quota = IF month LE 'Jun02' THEN 100 ELSE LAG(quota, 1, month)* 1.15

However, when you compare values from different dimensions, such as in the
expression region lt district, then the only common denominator is TEXT,
and text values are compared, not dimension positions.

Comparing Dates
You can compare two dates with any of the Boolean comparison operators. For
dates, "less" means before and "greater" means after. The expressions being
compared can include any of the date calculations discussed in " Comparison and
Logical Operators" on page 2-9. For example, in a billing application, you can
determine whether today is 60 or more days after the billing date in order to send
out a more strongly worded bill.

bill.date + 60 LE SYSDATE

Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE
functions to change dates to integers and integers to dates for comparison.

Comparing Text Data
When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter
of each employee's name is greater than the letter "M."

EXTCHARS(employee.name, 1, 1) GT 'M'

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text.
Ordering is based on the values of the characters. This can produce unexpected
results because the text is evaluated from left to right. For example, the text literal
1234 is greater than 100,999.00 because 2, the second character in the first text
literal, is greater than 0, the second character in the second text literal.

Suppose name.label is an ID variable whose value is 3-Person and name.desc
is a TEXT variable whose value is 3-Person Tents.

Boolean Expressions

Expressions 3-23

The result of the following SHOW statement is NO.

SHOW name.desc EQ name.label

The result of the following statements is YES.

name.desc = '3-Person'
SHOW name.desc EQ name.label

Comparing a Text Value to a Text Pattern
The Boolean operator LIKE is designed for comparing a text value to a text pattern.
A text value is like another text value or pattern when corresponding characters
match.

Besides literal matching, LIKE lets you use wildcard characters to match more than
one character in a string:

■ An underscore (_) character in a pattern matches any single character.

■ A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of %AT_ matches any text that contains zero or more
characters, followed by the characters AT, followed by any other single character.
Both DATA and ERRATA return YES when LIKE is used to compare them with the
pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following statement is NO.

SHOW NOT ('Boston' LIKE 'Bo%')

Comparing Text Literals to Relations
You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, region.district holds values of region, so you can do the following
comparison.

region.district EQ 'West'

Conditional Expressions

3-24 Oracle OLAP DML Reference

Conditional Expressions
A conditional expression is an expression you can use to select one of two values
based on a Boolean condition. A conditional expression contains the conditional
operators IF. . .THEN. . .ELSE and has the following format.

IF Boolean-expression THEN expression1 ELSE expression2

You can use a conditional expression as part of any other expression as long as the
data type is appropriate.

A conditional expression is processed by first evaluating the Boolean expression;
then:

■ When the result of the Boolean expression is TRUE, then expression1 is evaluated
and returns that value.

■ When the result of the Boolean expression is FALSE, then expression2 is
evaluated and returns that value.

The expression1 and expression2 arguments are any valid OLAP DML
expressions that evaluate to the same basic data type. However, when the data type
of either value is DATE, it is possible for the other value to have a numeric or text
data type. Because both data types are expected to be DATE, Oracle OLAP converts
the numeric or text value to a DATE. The data type of the whole expression is the
same as the two expressions.

When the result of the Boolean expression is NA, then NA is returned.

Example 3–2 Report with Conditional Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but when sales in the district are below budget, then the
bonus is zero.

LIMIT month TO 'Jan02' TO 'Jun02'
LIMIT product TO 'Tents'
REPORT DOWN district IF sales-sales.plan LT 0 THEN 0
 ELSE .05*(sales-sales.plan)

Note: Do not confuse a conditional expression with the IF
command, which has similar syntax but a different purpose. The IF
command does not have a data type and is not evaluated like an
expression.

Substitution Expressions

Expressions 3-25

PRODUCT: TENTS
 ---IF SALES-SALES.PLAN LT 0 THEN 0 ELSE .05*(SALES-SALES.PLAN)---
 ----------------------MONTH------------------------------
DISTRICT Jan02 Feb02 Mar02 Apr02 May02 Jun02
--------- -------- -------- -------- ------- --------- ----------
Boston 229.53 0.00 0.00 0.00 584.51 749.13
Atlanta 0.00 0.00 0.00 190.34 837.62 1,154.87
Chicago 0.00 0.00 0.00 84.06 504.95 786.81
...

Substitution Expressions
To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that Oracle
OLAP should evaluate an expression containing a substitution expression as
follows:

1. Evaluate the expression following the ampersand (the substitution expression).

2. Evaluate the rest of the expression using the result of step 1 (that is, the result of
the substitution expression).

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable
that holds the name of another variable, the value of the expression becomes the
data in the second variable. Ampersand substitution lets you write more general
programs that can operate on data that is chosen when the program is run.

You cannot use ampersand substitution in model equations.

Note: Although ampersand substitution lets you write general
programs that can handle different variables and data, program
lines that use ampersand substitution are executed less efficiently.
Lines with ampersand substitution are not compiled; instead these
lines are interpreted when the program runs. To avoid ampersand
substitution, you can often use the IF or SWITCH command
instead.

Working with Empty Cells in Expressions

3-26 Oracle OLAP DML Reference

Example 3–3 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of one of the
dimensions in the analytic workspace (product). When you execute the following
statement, then REPORT produces the single value, product, which is the actual
value stored in the curname variable.

REPORT curname

CURNAME

PRODUCT

However, when you execute the following statement, then REPORT produces the
values of the dimension product.

REPORT &curname

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

Working with Empty Cells in Expressions
At any given time, some of the cells of an analytic workspace data object may be
empty. An empty cell occurs when a specific data value has not been assigned to it
or when a data value cannot be calculated for the cell. The value of any empty cell
in an object is NA. An NA value has no specific data type. Certain functions (for
example, the aggregation functions) return an NA values when the information that
is requested with the function is not available or cannot be calculated. Similarly, an
expression whose value cannot be calculated has NA as its value.

Specifying a Value of NA
There are cases in which you might specify an operation for which no data is
available. For example, there might be no appropriate value for a given cell in a
variable, for the return value of a function, or for the value of an expression that
includes an arithmetic operator. In these cases, an NA (Not Available) value is
automatically supplied.

Working with Empty Cells in Expressions

Expressions 3-27

■ To set the values of a variable or relation to NA, you can use an assignment
statement (SET), as shown in the following example.

sales = NA

Controlling how NA values are treated
A number of options and functions control how NA values are treated. For example:

■ The options listed in Table 3–5, "NA Value Options".

■ The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function
in an expression to control the format of its value.

■ System properties listed in Table 3–6, " System Properties Used When Working
with NA Values" on page 3-28.

Table 3–5 NA Value Options

Statement Description

NASKIP An option that controls whether NA values are considered as
input to aggregation functions.

NASKIP2 An option that controls how NA values are treated in arithmetic
operations with the + (plus) and - (minus) operators.

NASPELL An option that controls the spelling that is used for NA values in
output.

RECURSIVE An option that controls the ability of a formula or $NATRIGGER
expression to call itself.

TRIGGERMAXDEPTH An option that specifies the maximum number of $NATRIGGER
property expressions that Oracle OLAP can execute
simultaneously.

TRIGGERSTOREOK An option that determines whether Oracle OLAP permanently
replaces NA values in the cells of a variable with the value of the
$NATRIGGER property expression that is set for the variable.

Working with Empty Cells in Expressions

3-28 Oracle OLAP DML Reference

Working with the $NATRIGGER Property
An $NATRIGGER property expression is evaluated before applying the NAFILL
function or the NASKIP, NASKIP2, or NASPELL options. When the $NATRIGGER
expression is NA, then the NAFILL function and the NA options have an effect.
Additionally, the $NATRIGGER property allows you a good deal of flexibility about
handling NA values:

■ You can make $NATRIGGERs recursive or mutually recursive by including
triggered objects within the value expression. You must set the RECURSIVE
option to YES before a formula, program, or other $NATRIGGER expression
can invoke a trigger expression again while it is executing. For limiting the
number of triggers that can execute simultaneously, see the
TRIGGERMAXDEPTH option.

■ You can replace the NA value in the cells of the variable with the $NATRIGGER
expression value by setting the TRIGGERSTOREOK option to YES and setting
the $STORETRIGGERVAL property on the variable to YES.

The ROLLUP and AGGREGATE commands and the AGGREGATE function ignore
the $NATRIGGER property setting for a variable during a rollup or aggregation
operation. Additionally, the $NATRIGGER property expression on a variable is not
evaluated when the variable is simply exported with an EXPORT TO EIF file
command. The $NATRIGGER property expression is only evaluated when the
variable is part of an expression that is calculated during the export operation.

Table 3–6 System Properties Used When Working with NA Values

Property Description

$NATRIGGER A property that specifies values to substitute for NA values that
are in the object, but not in the session cache for the object (if any).

$STORETRIGGERVAL A property that specifies that NA values in an object be
permanently replaced by the values specified by the
$NATRIGGER property.

$VARCACHE A property that specifies whether Oracle OLAP stores or caches
variable data that is the result of the execution of a AGGREGATE
function or $NATRIGGER expression.

Working with Empty Cells in Expressions

Expressions 3-29

Using NASKIP
The NASKIP option controls how NA values are treated in aggregation functions:

■ By default, the NASKIP option is set to YES, and NA values are ignored by
aggregation functions. Only expressions with actual values are used in
calculations.

■ When you set the NASKIP option to NO, then NA values are considered as input
to aggregation functions. When any of the values being considered are NA, then
the function returns NA for that value.

Setting NASKIP to NO is useful for cases in which having NA values in the data
makes the calculation itself invalid. For example, when you use the MOVINGMAX
function, you specify a range from which to select the maximum value.

■ When NASKIP is YES (the default), then MOVINGMAX returns NA only when
all the values in the range are NA.

■ When NASKIP is NO and any value in the range is NA, then MOVINGMAX
returns NA.

Using NASKIP2
The NASKIP2 option controls how NA values are treated in arithmetic operations
with the addition (+) and subtraction (-) operators.

■ By default, the value of the NASKIP2 option is NO. NA values are treated as NAs
in arithmetic operations using the addition (+) and subtraction (-) operators.
When any of the operands being considered is NA, then the arithmetic operation
evaluates to NA. For example, by default, 2+NA results in NA.

■ When you set the value of the NASKIP2 option to YES, then zeroes are
substituted for NA values in arithmetic operations using the addition (+) and
subtraction (-) operators. The two special cases of NA+ NA and NA-NA both
result in NA.

Using NAFILL
NASKIP and NASKIP2 do not change your data. They only affect the results of
calculations on your data. When you would prefer a more targeted influence on any
kind of expressions, and want the option of making an actual change in your data,
then you can use the NAFILL function.

The effect of the NAFILL function is limited to the single expression you specify. It
can be any kind of expression, not just a function or an addition (+) or subtraction
(-) operation. In addition, you can use NAFILL to substitute anything for the NAs in

Working with Subsets of Data

3-30 Oracle OLAP DML Reference

the expression, not just zeroes. Moreover, using an assignment statement (SET), you
can use NAFILL to make a permanent substitution for NAs in your data.

NAFILL returns the value of a specified expression unless its value is NA, in which
case NAFILL returns the substitute value you specify.

The following command uses NAFILL to replace the NA values in the sales
variable with the number 1 and then assign those values to the variable. This makes
the substitution permanent in your data.

sales = NAFILL(sales, 1)

The following command illustrates the use of NAFILL for more specialized
purposes. By substituting zeros for NA values, NAFILL in this example forces the
AVERAGE function to include NA values when it counts the number of values it is
averaging. The substitution is temporary, lasting only for the duration of this
command.z

SHOW AVERAGE(NAFILL(sales 0.0) district)

Working with Subsets of Data
In the OLAP DML, when you want to calculate against a subset of data, you can
specify the desired subset in one of the following ways:

■ Specify what dimension values (and, therefore, what variable values) are
currently accessible or "in status" to all OLAP DML statements and expressions.
For more information, see "Working with Dimension Status" on page 3-30.

■ Within an expression, specify a single value or a subset of values. For more
information, see "Specifying a List of Dimension Values for an Expression or
Subexpression" on page 3-32 or "Specifying a Single Data Value in an
Expression" on page 3-32.

Working with Dimension Status
The current status list of a dimension is an ordered list of currently accessible
values for the dimension. Values that are in the current status list of a dimension are
said to be "in status." The current status list of a dimension determines the selection
of the data from all of the objects that are dimensioned by it.

For dimensions, only those dimension values that are in the current status list are
accessed. For dimensioned objects, only those data values that are indexed by
dimension values in the current status list are accessed. As a loop is performed
through a dimensioned object, the order of the dimension values in the current

Working with Subsets of Data

Expressions 3-31

status list is used to determine the order in which the values of the object are
accessed.

A dimension and any surrogate for that dimension share the same status. Setting
the status of a dimension surrogate sets the status of its dimension and setting the
status of a dimension sets the status of any dimension surrogates for it. In Part II of
this manual, references to dimensions apply equally to dimension surrogates,
except where noted. Also the phrase "setting status" includes assigning values to a
valueset as well as setting the current status of a dimension. Composites are not
dimensions, and therefore they do not have any independent status. The values of a
composite that are "in status" are determined by the status of the base dimensions of
the composite. In general, when statements deal with objects defined with
composites, the default behavior is to treat those objects as if no SPARSE keyword
or named composite had been used when the object was defined.

When you first attach an analytic workspace, the current status list of each
dimension consists of all of the values of the dimension that have read permission,
in the order in which the values are stored. This list of values is called the default
status list for the dimension.

Changing the Status List of a Dimension
You can change the current status list for a dimension by using:

■ The LIMIT command to change the values and the order of the values in the
current status list of a dimension.

■ The SORT command to arrange the order of values in the current status list of a
dimension.

■ The PERMIT command to change the read permissions for dimension values.

Important: Whether or not a dimension value is in status merely
restricts your view of the value during a given session; it does not
permanently affect the values that are stored in the analytic
workspace.

Working with Subsets of Data

3-32 Oracle OLAP DML Reference

You can change the default status list of a dimension in the following ways:

■ You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command or adding dimension values in other ways (for
example, using a SQL FETCH statement).

■ You can change the read permission of values that are associated with a
dimension by using a PERMIT or PERMITRESET statement.

The OLAP DML provides a number of statements that you can use to identify and
retrieve the status of dimension values These statements are listed in Table A–19,
" Dimension and Composite Operation Statements".

Saving and Restoring Current Dimension Status
You can save the current status of a dimension in the following ways:

■ When you want to save the current status for use in any session, then use a
named valueset. Use a DEFINE VALUESET statement to define the valueset.

■ When you want to save the current status for use in the current program, then
use the PUSHLEVEL and PUSH statements. You can restore the current status
values using the POPLEVEL and POP statements.

■ When you want to save, access, or update the current status for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Specifying a List of Dimension Values for an Expression or Subexpression
Using the CHGDIMS function, you can limit one element of an expression to only
those values that are dimensioned by the specified dimension values. Using the
CHGDIMS function in this manner limits the dimension to the specified values for
the calculation without the current status of the dimension.

Specifying a Single Data Value in an Expression
A qualified data reference (QDR) is a way of limiting one or more dimensions of an
expression to a single value. QDRs are useful when you want to specify a single
value without changing the current status. Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation.

Working with Subsets of Data

Expressions 3-33

Form of a Qualified Data Reference
A qualified data reference takes the following form.

expression(dimname1 dimexp1 [, dimname2 dimexp2. . .])

The dimname argument is the name of one of the dimensions, or a dimension
surrogate of the dimension, of the expression and the dimexp argument is one of the
following:

■ A value of dimname.

■ A text expression whose result is a value of dimname.

■ A numeric expression whose result is the logical position of a value of dimname.

■ A relation of dimname.

Qualifying a Variable
You can qualify any or all of a dimensions of a variable using either of the following
techniques:

■ The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

■ The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the
qualifier. The dimension is temporarily replaced by the dimension(s) of the
relation.

For example, the variable sales has three dimensions, month, product, and
district. You might want to compare total sales in Boston to the total sales in all
cities. In a single statement, you want district to be limited to two different
values:

■ For the numerator of the expression, you want the status of district to be
Boston.

■ For the denominator of the expression, you want the status of district to be
ALL.

The following statement lets you calculate this result by using a QDR.

SHOW sales(district 'Boston')/TOTAL(sales)

Note: To qualify a complex expression, use the QUAL function.

Working with Subsets of Data

3-34 Oracle OLAP DML Reference

You can qualify more than one of the dimensions of a variable. For example, when
you qualify all the dimensions of the sales variable by specifying one dimension
value of each dimension, then you narrow sales down to a single–cell value.

To fetch sales for Jun02, Tents, and Seattle, use the following QDR.

SHOW sales(month 'Jun02', product 'Tents', district 'Seattle')

This statement fetches a single value.

You can use a qualified data reference with the target expression of an assignment
(SET) statement. This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales
composite that is specified in the qualified data reference. When the composite
named sales does not already have a value for the combination Boston and
Tents, then this value combination is added to the composite, thus adding the data
cell.

sales(market 'Boston' product 'Tents' month 'Jan99')= 10200

Replacing a Dimension in a Variable
When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be
related to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

Example 3–4 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by
month, product, and district. A third variable, division.mgr, is dimensioned
by month and division. You also have a relation between division and
product, called division.product. These objects have the following definitions.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue
DEFINE quota VARIABLE DECIMAL <month product district>
DEFINE division.mgr VARIABLE TEXT <month division>
DEFINE division.product RELATION division <product>
LD Division for each product

The following statement produces the report following it.

REPORT division.mgr

-------------------DIVISION.MGR----------------------

Working with Subsets of Data

Expressions 3-35

 ----------------------MONTH--------------------------
DIVISION JAn02 Feb02 Mar02 Apr02 May02 Jun02
-------- -------- -------- -------- -------- -------- --------
Camping Hawley Hawley Jones Jones Jones Jones
Sporting Carey Carey Carey Carey Carey Musgrave
Clothing Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product,
as the qualifier. The QDR replaces the division dimension with product, so that
it has the same dimensions as the other expression in the report sales / quota.
The following statement produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
 'MANAGER' division.mgr(division division.product)

DISTRICT: BOSTON
 -----------------------------PRODUCT------------------------------------
 ----TEnts---- ---canoes---- --racquets--- --sportswear-- ---footwear---
 Sales/ Sales/ Sales/ Sales/ Sales/
Month Quota Manager Quota Manager Quota Manager Quota Manager Quota Manager
------ ----- ------- ----- ------- ----- ------- ----- -------- ----- --------
Jan02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
Feb02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
Mar02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
Apr02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave
...

Qualifying a Relation
You can also use a QDR to qualify a relation (which is really a special kind of
variable).

Suppose the region.district relation is dimensioned by district. When you
qualify district with the value Seattle, then the value of the expression is the
value of the relation for Seattle. Because the QDR specifies one value of
district, the expression has a single–cell result.

The definition of region.district is as follows.

DEFINE region.district RELATION region <district>
LD The region for each district

Working with Subsets of Data

3-36 Oracle OLAP DML Reference

The following statement displays the value WEST.

SHOW region.district(district 'Seattle')

Qualifying a Dimension
You can use a QDR to qualify the dimension itself, which enables you to specify one
dimension value in an expression. The following expression specifies one value of
district, the one contained in the single-cell variable mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying
a value from one of the base dimensions of the concat dimension. The following
expression specifies one value of reg.dist.ccdim, a concat dimension that has
region and district as its base dimensions. The costs variable is dimensioned
by the division and reg.dist.ccdim dimensions.

SHOW reg.dist.ccdim(district 'Boston')

The preceding expression produces the following result.

<DISTRICT: Boston>

Using Ampersand Substitution with QDRs
An ampersand character (&) at the beginning of an expression substitutes the value
of the expression for the expression itself in a statement.When you use an
ampersand with a QDR, you must enclose the whole expression in parentheses
when you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype
and that contains the names of variables. Remember that it is myvar that is
dimensioned by reptype, not the variables named by myvar. Therefore, you must
use parentheses so that myvar is qualified and the resulting value is used in the
REPORT command.

REPORT &(myvar(reptype 'actual'))

When you do not use parentheses and the variable that is specified in myvar is
sales, then you get an error message that sales is not dimensioned by reptype.

Working with Subsets of Data

Expressions 3-37

Using the QUAL Function to Specify a QDR
Sometimes you the syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error. In this case, you can use the QUAL function
to explicitly specify a qualified data reference (QDR).

Example 3–5 Using the QUAL Function

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

Assume that you want to create a report of Cogs line items in the Sporting division
from January 1996 through June 1996 with columns for month, the maximum value
of either actual costs or budgeted costs or MAX(actual,budget), actual costs for
the month, and budgeted amount for the month. To create this report you can issue
three LIMIT statements (one each for month, line, and division) and a REPORT
statement.

LIMIT month TO 'Jan96' to 'Jun96'
LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
REPORT DOWN month W 11 MAX(actual,budget) W 11 actual W 11 budget

DIVISION: SPORTING
 ---------------LINE----------------
 ---------------COGS----------------
 MAX(ACTUAL,
MONTH budget) actual budget
-------------- ----------- ----------- -----------
Jan96 287,557.87 287,557.87 279,773.01
Feb96 323,981.56 315,298.82 323,981.56
Mar96 326,184.87 326,184.87 302,177.88
Apr96 394,544.27 394,544.27 386,100.82
May96 449,862.25 449,862.25 433,997.89
Jun96 457,347.55 457,347.55 448,042.45

Now assume that you want a report on the same items and the same time period,
but with only two columns: one for month and another for MAX(actual,budget).
In this case, you can issue merely one LIMIT statement for month and use the
QUAL function in your REPORT statement to limit calculation to Cogs line items in
the Sporting division.

LIMIT month TO 'Jan96' to 'Jun96'
REPORT HEADING 'For Cogs in Sporting Division' DOWN month -
 W 11 HEADING 'MAX(actual,budget)'-

Working with Subsets of Data

3-38 Oracle OLAP DML Reference

 QUAL(MAX(actual,budget), line 'COGS', division 'SPORTING')

For Cogs in
Sporting MAX(ACTUAL,
Division BUDGET)
-------------- -----------
JAN96 287,557.87
FEB96 323,981.56
MAR96 326,184.87
APR96 394,544.27
MAY96 449,862.25
JUN96 457,347.55

When you attempt to produce the same report with standard QDR syntax, then an
error is signalled.

REPORT HEADING 'For Cogs in Sporting Division' DOWN month -
 W 11 HEADING 'MAX(actual,budget)'-
 MAX(actual,budget) (line cogs, division sporting)

The following error message is produced.

ERROR: A right parenthesis or an operator is expected after LINE.

Formulas, Aggregations, Allocations, and Models 4-1

4
Formulas, Aggregations, Allocations, and

Models

This chapter provides information about creating and executing OLAP DML
calculation specification objects. It includes the following topics:

■ Formulas

■ Aggregations

■ Allocations

■ Models

Formulas
You can save an expression in a formula. Frequently, you define a formula for ease
of use and to save storage space. Once you have defined a formula for an
expression, you can use the name of the formula takes the place of the text of the
expression. Oracle OLAP does not store the data for a formula in a variable; instead
it is calculated at runtime each time it is requested.

Before you create a formula, decide whether you want to specify the expression
when you first define the formula object or whether you want to specify the
expression for the formula after you define the formula object:

■ When you decide to specify the expression when you first define the formula
object, then:

1. Issue a DEFINE FORMULA statement to define the formula object. Include
the expression in the definition. Do not specify values for the datatype or
dimensions arguments.

2. (Optional) Issue a COMPILE statement to compile the formula.

Aggregations

4-2 Oracle OLAP DML Reference

■ When you decide to specify the expression for the formula after you define the
formula object, then:

1. Issue a DEFINE FORMULA statement to define the formula object. Specify
values for the datatype or dimensions arguments, but do not specify a
value for the expression, itself.

2. Issue a CONSIDER statement to make the formula the current definition.

3. Issue an EQ statement to specify the expression for the formula.

4. (Optional) Issue a COMPILE statement to compile the formula.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE dollar.sales FORMULA units * price

Aggregations
Historically, aggregating data was summing detail data to provide subtotals and
totals. However, using OLAP DML aggmap objects you can specify more complex
aggregation calculation:

■ The summary data dimensioned by hierarchical dimension can be calculated
using many different types of methods (for example, first, last, average, or
weighted average). For an example of this type of aggregation, see
Example 6–27, "Aggregating Up a Hierarchy" on page 6-58.

■ The summary data dimensioned by a nonhierarchical dimension can be
calculated using a model. This functionality is useful to calculate values for
dimensions, such as line items, that do not have a hierarchical structure.
Instead, you create a model to calculate the values of individual line items from
one or more other line items or workspace objects. For an example of this type
of aggregation, see Example 6–26, "Solving a Model in an Aggregation" on
page 6-57.

■ The detail data used to calculate the summary data can be in the variable that
contains the summary data or in one or more other variables. The variable that
contains the summary data does not have to have exactly the same dimensions
as the variables that contain the detail data. For an examples of this type of
aggregation, see Example 6–24, "Aggregating into a Different
Variable"Example 6–24, "Aggregating into a Different Variable" on page 6-54,
and Example 7–7, "Capstone Aggregation" on page 7-17.

Aggregations

Formulas, Aggregations, Allocations, and Models 4-3

■ The data can be aggregated as a database maintenance procedure, in response
to user requests for summarized data, or you can combine these approaches.
See "Executing the Aggregation" on page 4-4 for more information.

■ Data that is aggregated in response to user requests can be calculated each time
it is requested or stored or cached in the analytic workspace for future queries.

■ The specification for the aggregation can be permanent or temporary as
described in "Creating Custom Aggregates" on page 4-6.

Aggregating Data
To aggregate data using the OLAP DML, take the following steps:

1. Decide if you want to aggregate all of the data as a database maintenance
procedure using the AGGREGATE command or on-the-fly at runtime using the
AGGREGATE function, or if you want to combine these approaches and
precalculate some values and calculate others at run time. For a discussion of
the various approaches, see "Executing the Aggregation" on page 4-4.

2. When the aggregation involves aggregating data up a variable dimensioned by
a composite, ensure that the composite has a BTREE index.

3. Issue a DEFINE AGGMAP statement to define the aggmap object as type
AGGMAP.

4. Write the aggregation specification as described in AGGMAP.

5. When aggregating a partitioned variable, run PARTITIONCHECK to check that
the aggregation specification created in the previous step is compatible with the
variable's partitioning. If it is not, either rewrite the aggregation specification or
repartition the variable using CHGDFN.

6. When some or all of the data is to be aggregated at runtime:

a. Compile the aggmap object as described in "Compiling Aggregation
Specifications" on page 9-38.

Note: When the variable that contains the data you want to
aggregate is dimensioned by a compressed composite, you must
use the AGGREGATE command to aggregated the data. See
"Aggregating Variables Dimensioned by Compressed Composites"
on page 6-38 for more information.

Aggregations

4-4 Oracle OLAP DML Reference

b. Save the aggmap object using an UPDATE command followed by
COMMIT.

c. (Optional) Add a $NATRIGGER property to the variable to trigger the
AGGREGATE function in response to a runtime request for data.

7. (Optional) Add one or more of the following properties to variables that will
use the aggmap object:

■ $AGGMAP to specify that the aggmap is the default aggmap for the
variable.

■ $AGGREGATE_FROM or $AGGREGATE_FROMVAR to specify the
location of the detail data when the detail data is not in the target variable.

8. For data that is to be precalculated:

a. (Optional) Set the POUTFILEUNIT option so that you can monitor the
progress of the aggregation.

b. Use the AGGREGATE command with the aggmap to precalculate the data
and store it in the database.

For brief descriptions of all of the OLAP DML statements that relate to aggregation,
see "Aggregation Statements" on page A-17.

Executing the Aggregation
When variables are dimensioned with detailed, multilevel hierarchies, the number
of cells of aggregate data can be many times greater than the number of cells of
detail data. Users often query some levels of data heavily and other levels very
infrequently. They tend to focus on top-level aggregates and only occasionally drill
to middle-level aggregates, although the middle-level aggregates comprise the
largest proportion of aggregate data.

For this reason, the OLAP DML provides two ways to aggregate data:

■ As a data maintenance procedure using the AGGREGATE command.

■ At run-time when needed using the AGGREGATE function.

The DBA can choose whatever method seems appropriate: by level, individual
member, member attribute, time range, data value, or other criteria. You can also
combine these approaches and precalculate some values and calculate others at run
time. In this case, frequently, you use the same aggmap with the AGGREGATE
command and the AGGREGATE function. However, in some cases you might use
different aggmaps.

Aggregations

Formulas, Aggregations, Allocations, and Models 4-5

One step that you can take to achieve overall good performance is to balance the
amount of the data that you aggregate and store in an analytic workspace with the
amount of data that you specify for calculation on the fly. A technique called "skip
level" aggregation pre-aggregates every other level in a dimension hierarchy. Good
performance is a matter of trade-offs. (For more information about skip-level
aggregation, see "Skip-Level Aggregation" on page 6-96.)

Aggregating Data as a Data Maintenance Procedure.
Using the AGGREGATE command, the DBA acquires detail data, calculates the
aggregate values, and stores them in the analytic workspace for all users to share.
This type of aggregate data is sometimes call precomputed or stored aggregation.

Precomputed aggregation supports the fastest querying time, but increases the size
of the analytic workspace and therefore the size of the Oracle Database. The amount
of precomputed data can also be limited by the amount of time available for the
data task (often called a batch window).

For an example of aggregating data as a batch job, see Example 7–2, "Precalculating
Data in a Batch Job" on page 7-13. When an AGGREGATE command executes,
Oracle OLAP always stores the results of the calculation directly in the variable in
the same way it stores the results of an assignment statement. Additionally, if you
issue another AGGREGATE command Oracle OLAP always recalculates the
aggregation.

Aggregating Data at Run-Time When Needed.
You can use the AGGREGATE function in response to a runtime request for data.
For example, an AGGREGATE function can be the expression of a $NATRIGGER
property or a formula:

■ As an expression of $NATRIGGER property, the AGGREGATE function is
executed when a runtime requests data for NA or empty data cells.

■ As the expression of a formula, the AGGREGATE function is executed
whenever the formula is executed.

Note: You must aggregate data in variables dimensioned using
compressed composites using the AGGREGATE command. See
"Aggregating Variables Dimensioned by Compressed Composites"
on page 6-38 for more information

Aggregations

4-6 Oracle OLAP DML Reference

In either case, the aggregates are computed in response to the query. The results can
be stored in a temporary cache for use throughout the session. When the session has
write access to the analytic worksheet, the results can also be stored permanently.
This type of aggregate data is referred to as on-the-fly or run-time aggregates.
Calculating aggregate data at runtime slows querying time since the data must be
calculated instead of just retrieved, but it does not require permanent storage for
aggregate values.

There are a number of aggregation features that you can specify when you use the
AGGREGATE function to aggregate data on the fly. For example, you can specify:

■ Whether or not Oracle OLAP stores the results of the calculation directly in the
variable or caches the data in the session cache. For a discussion of how to
specify storage or caching, see "How Oracle OLAP Determines Whether to Store
or Cache Aggregated Data" on page 6-23.

■ Whether or not previously cached or stored data is recalculated by specifying or
omitting FORCECALC keyword on the AGGREGATE function.

■ Whether or not any NA values that result from the aggregation that are stored in
the variable will cause an $NATRIGGER property to execute on future requests
for NA variable values. For a discussion of caching the NA values which
precludes $NATRIGGER execution for NA values that result from the execution
of an aggregation, see "How Oracle OLAP Determines Whether to Store or
Cache Results of $NATRIGGER" on page 6-21.

Creating Custom Aggregates
The definitions for most aggregations persist from one session to another. However,
you might need to create session-only aggregates at runtime for forecasting or
what-if analysis, or just because you want to view the data in an unforeseen way.
Adding session-only aggregates is sometimes called creating custom aggregates.
You can create non-persistent aggregated data without permanently changing the
specification for the aggregation in the following ways:

■ Using a MAINTAIN ADD SESSION statement, define temporary dimension
members and include an aggregation specification as part of the definition of
these members. The aggregation specification can either be a model or an
aggmap. For an example of using this method to create a temporary
aggregation, see "Creating Calculated Dimension Members with Aggregated
Values" on page 16-84.

■ Create a model that specifies the aggregation. Use an AGGMAP ADD statement
to add the model to an aggmap at run time. At the end of a session, Oracle

Allocations

Formulas, Aggregations, Allocations, and Models 4-7

OLAP automatically removes any models that you have added to an aggmap in
this manner. See AGGMAP ADD or REMOVE model for more information.

Allocations
Allocating data involves creating lower-level data from summary data. Allocating
data using the OLAP DML involves creating an ALLOCMAP type aggmap object
that specifies how the data should be allocated, and executing that object using the
ALLOCATE command to actually distribute the data from a source object to the
cells of a target. The target is a variable that is dimensioned by one or more
hierarchical dimensions. The source data is specified by dimension values at a
higher level in a hierarchical dimension than the values that specify the target cells.

ALLOCATE uses an aggmap to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some of the allocation operations are based on existing data. The object containing
that data is the basis object for the allocation. In those operations, ALLOCATE
distributes the data from the source based on the values of the basis object.

ALLOCATE has operations that are the inverse of the operations of the
AGGREGATE command. The allocation operation methods range from simple
allocations, such as copying the source data to the cells of the target variable, to very
complex allocations, such as a proportional distribution of data from a source that is
a formula, with the amount distributed being based on another formula, with
multiple variables as targets, and with an aggmap that specifies different methods
of allocation for different dimensions.

The Oracle OLAP allocation system is very flexible and has many features,
including the following:

■ The source, basis, and target objects can be the same variable or they can be
different objects.

■ The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

■ You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex.

■ You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

Allocations

4-8 Oracle OLAP DML Reference

■ You can specify an amount to add to or multiply by the allocated value before
the result is assigned to the target cell.

■ You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. When
you lock a dimension value, then the allocation system normalizes the source
data, which subtracts the locked data from the source before the allocation. You
can choose to not normalize the source data.

■ You can specify minimum, maximum, floor, or ceiling values for certain
operations.

■ You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

■ You can specify ways of handling allocations when the basis has a null value.

■ You can use the same aggmap in different ALLOCATE commands to use the
same set of dimension hierarchy values, operations, and arguments with
different source, basis, or target objects.

Allocating Data
To allocate data using an aggmap object, use the following OLAP DML statements
in the order indicated:

1. Issue a DEFINE AGGMAP statement to define the aggmap object and an
ALLOCMAP statement to indicate that the aggmap object is of type
ALLOCMAP and that it contains an allocation specification. For example:

DEFINE myaggmap AGGMAP
ALLOCMAP 'END'

2. Add a specification to the aggmap object that specifies the allocation that you
want performed.

3. Save the aggmap object using an UPDATE command followed by COMMIT.

4. (Optional) Set the POUTFILEUNIT option so that you can monitor the progress
of the allocation.

5. (Optional) Redesign the allocation error log by setting the
ALLOCERRLOGFORMAT and ALLOCERRLOGHEADER options to
nondefault values.

6. (Optional) Set the $ALLOCMAP on one or more variables to specify that the
aggmap is the default allocation specification for the variables.

Allocations

Formulas, Aggregations, Allocations, and Models 4-9

7. (Recommended, but optional) Limit the variable to the target cells (that is, the
cells into which you want to allocate data).

8. Issue an ALLOCATE statement to allocate the data.

For brief descriptions of all of the OLAP DML statements that relate to allocation,
see "Allocation Statements" on page A-18.

Handling NA Values
Sometimes you want to overwrite existing data when allocating values to a target
variable and at other times you want to write allocated values to target cells that
have an NA basis before the allocation. For example, when you create a new product
in your product dimension, then no basis exists for the new product in your budget
variable. You want to allocate advertising costs for the entire product line, including
the new product.

You can handle NA values using formulas and hierarchical operators in a
RELATION (for allocation) statement in the following ways:

■ Handling NA data with formulas—One way to handle the NA values is to
construct a basis that only describes the desired target cells. This is the preferred
method. You can refine your choice of basis values by deriving the basis from a
formula. The following statements define a formula that equates the values of
the new product to twice the value of an existing product. You could use such a
formula as the basis for allocating advertising costs to the new product.

DEFINE formula_basis FORMULA DECIMAL <product>
EQ IF product EQ 'NEWPRODUCT' -

THEN 2 * product.budget(product 'EXISTINGPRODUCT') -
ELSE product.budget

■ Handling NA data with hierarchical operators—To allocate data to target cells
that currently have NA values, use a hierarchical operator in a RELATION (for
allocation) statement in the allocation specification. The hierarchical operators
use the hierarchy of the dimension rather than existing data as the allocation
basis. A danger in using hierarchical operators is the possibility of densely
populating your detail level data, which can result in a much larger analytic
workspace and require much more time to aggregate the data.

To continue the example of allocating the advertising cost for the new product,
you could use the hierarchical last operator HLAST to specify allocating the cost
to the new (and presumably the last) product in the product dimension
hierarchy.

Models

4-10 Oracle OLAP DML Reference

Models
A model is a set of interrelated equations that can assign results either to a variable
or to a dimension value. For example, in a financial model, you can assign values to
specific line items, such as gross.margin or net.income.

gross.margin = revenue - cogs

When an assignment statement assigns data to a dimension value or refers to a
dimension value in its calculations, then it is called a dimension-based equation. A
dimension-based equation does not refer to the dimension itself, but only to the
values of the dimension. Therefore, when the model contains any dimension-based
equations, then you must specify the name of each of these dimensions in a
DIMENSION statement at the beginning of the model.

When a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both
a source of data and the assignment target of model equations. It holds the input
data used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the line dimension, you might specify actual as the solution
variable.

Dimension-based equations provide flexibility in financial modeling. Since you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the actual variable, the budget variable, or any other variable
that is dimensioned by line.

Models can be quite complex. You can:

■ Include one model within another model as discussed in "Nesting Models" on
page 4-11

■ Use data from different time periods as discussed in "Using Data from Past and
Future Time Periods" on page 4-12

■ Solve simultaneous equations as discussed in "Solving Simultaneous Equations"
on page 4-13

■ Create models for different scenarios as described in "Modeling for Multiple
Scenarios" on page 4-14

Creating Models
To create an OLAP DML model, take the following steps:

Models

Formulas, Aggregations, Allocations, and Models 4-11

1. Issue a DEFINE MODEL statement to define the program object.

2. Add a specification to the model to specify the processing that you want
performed as described in MODEL.

3. Compile the model as described in "Compiling a Model" on page 4-14.

4. (Optional) If necessary, change the settings of model options listed in
Table 17–1, "Model Options" on page 17-23.

5. Execute the model as described in "Running a Model" on page 4-15.

6. Debug the model as described in "Debugging a Model" on page 4-18.

For an example of creating a model, see "Creating a Model" on page 17-25.

Nesting Models
You can include one model within another model by using an INCLUDE statement.
The model that contains the INCLUDE statement is referred to as the parent model.
The included model is referred to as the base model. You can nest models by
placing an INCLUDE statement in a base model. For example, model myModel1
can include model myModel2, and model myModel2 can include model myModel3.
The nested models form a hierarchy. In this example, myModel1 is at the top of the
hierarchy, and myModel3 is at the root.

When a model contains an INCLUDE statement, then it cannot contain any
DIMENSION (in models) statements. A parent model inherits its dimensions, if any,
from the DIMENSION statements in the root model of the included hierarchy. In the
example just given, models myModel1 and myModel2 both inherit their
dimensions from the DIMENSION statements in model myModel3.

The INCLUDE statement enables you to create modular models. When certain
equations are common to several models, then you can place these equations in a
separate model and include that model in other models as needed.

The INCLUDE statement also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations. To support what-if analysis, you can use equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed or shown in the
MODEL.COMPRPT report for a model

Models

4-12 Oracle OLAP DML Reference

Dimension Status and Model Equations
When a model contains an assignment statement to assign data to a dimension
value, then the dimension is limited temporarily to that value, performs the
calculation, and restores the initial status of the dimension.

For example, a model might have the following statements.

DIMENSION line
gross.margin = revenue - cogs

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

PUSH line
LIMIT line TO gross.margin
actual = actual(line revenue) - actual(line cogs)
POP line

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the actual
variable, which is dimensioned by line. However, detail line item data might be
stored in a variable named detail.data, with a dimension named
detail.line.

When your analytic workspace contains a relation between line and
detail.line, which specifies the line item to which each detail item pertains,
then you might write model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between detail.line and line is used automatically to aggregate
the detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the line
dimension. For example, while the equation for the revenue item is calculated,
line is temporarily limited to revenue, and the TOTAL function returns the total
of detail items for the revenue value of line.

Using Data from Past and Future Time Periods
Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAG function returns data from a specified previous
time period, and the LEAD function returns data from a specified future period.

Models

Formulas, Aggregations, Allocations, and Models 4-13

When you run a model that uses past or future data in its calculations, you must
make sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement that bases an estimate of
the revenue line item for the current month on the revenue line item for the
previous month.

DIMENSION line month
...
revenue = LAG(revenue, 1, month) * 1.05

When the month dimension is limited to Apr2004 to Jun2004 when you run the
model, then you must be sure that the solution variable contains revenue data for
Mar96.

When your model contains a LEAD function, then your solution variable must
contain the necessary future data. For example, when you want to calculate data for
the months of April through June of 2004, and when the model retrieves data from
one month in the future, then the solution variable must contain data for July 2004
when you run the model.

Handling NA Values
Oracle OLAP observes the NASKIP2 option when it evaluates equations in a model.
NASKIP2 controls how NA values are handled when + (plus) and - (minus)
operations are performed. The setting of NASKIP2 is important when the solution
variable contains NA values.

The results of a calculation may be NA not only when the solution variable contains
an NA value that is used as input, but also when the target of a simultaneous
equation is NA. Values in the solution variable are used as the initial values of the
targets in the first iteration over a simultaneous block. Therefore, when the solution
variable contains NA as the initial value of a target, an NA result may be produced in
the first iteration, and the NA result may be perpetuated through subsequent
iterations.

To avoid obtaining NA for the results, you can make sure that the solution variable
does not contain NA values or you can set NASKIP2 to YES before running the
model.

Solving Simultaneous Equations
An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. When the comparison falls within a specified

Models

4-14 Oracle OLAP DML Reference

tolerance, then the equation is considered to have converged to a solution. When
the comparison exceeds a specified limit, then the equation is considered to have
diverged.

When all the equations in the block converge, then the block is considered solved.
When any equation diverges or fails to converge within a specified number of
iterations, then the solution of the block (and the model) fails and an error occurs.

You can exercise control over the solution of simultaneous equations, use the OLAP
DML options described in Table 17–1, "Model Options" on page 17-23. For example,
using these options, you can specify the solution method to use, the factors to use in
testing for convergence and divergence, the maximum number of iterations to
perform, and the action to take when the assignment statement diverges or fails to
converge.

Modeling for Multiple Scenarios
Instead of calculating a single set of figures for a month and division, you might
want to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget
figures based on different sets of input figures. For example, you might want to
calculate profit based on optimistic, pessimistic, and best-guess figures.

To build a scenario model, follow these steps.

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.

3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

For an example of building a scenario model see, Example 17–12, "Building a
Scenario Model" on page 17-26.

Compiling a Model
When you finish writing the statements in a model, you can use COMPILE to
compile the model. During compilation, COMPILE checks for format errors, so you
can use COMPILE to help debug your code before running a model. When you do
not use COMPILE before you run the model, then the model is compiled
automatically before it is solved.

Models

Formulas, Aggregations, Allocations, and Models 4-15

When you compile a model, either by using a COMPILE statement or by running
the model, the model compiler examines each equation to determine whether the
assignment target and each data source is a variable or a dimension value.

Understanding Dependencies
After resolving each name reference, the model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. When an assignment statement indirectly depends on itself as
the result of the dependencies among equations, then a cyclic dependence exists
between the equations.

The model compiler structures the equations into blocks and orders the equations
within each block, and the blocks themselves, to reflect dependencies. The compiler
can produce three types of solution blocks: simple blocks, step blocks, and
simultaneous blocks as described in "Dependencies Between Equations" on
page 9-34.

Checking for Additional Problems
The compiler does not analyze the contents of any programs or formulas that are
used in model equations. Therefore, you must check the programs and formulas
yourself to make sure they do not do any of the following:

■ Refer to the value of any variable used in the model.

■ Refer to the solution variable.

■ Limit any of the dimensions used in the model.

■ Invoke other models.

When a model or program violates any of these restrictions, the results of the model
may be incorrect.

Running a Model
To run or solve a model, use the following syntax.

model-name [solution-variable] [NOWARN]

where:

■ model-name is the name of the model.

Models

4-16 Oracle OLAP DML Reference

■ solution-variable is the name of a numeric variable that serves as both the source
and the target of data in a model that contains dimension-based equations. The
solution variable is usually dimensioned by all the dimensions on which model
equations are based (as specified in explicit or included DIMENSION
commands). The solution-variable argument is required when the model contains
any dimension-based equations. When all the model equations are based only
on variables, a solution variable is not needed and an error occurs when you
supply this argument.

■ NOWARN is an optional argument that specifies that you do not want to be
warned when the model contains a block of simultaneous equations.

When you run a model, you should keep these points in mind:

■ Before you run a model, the input data must be available in the solution
variable.

■ Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. These options are described briefly
in Table 17–1, "Model Options" on page 17-23.

■ When your model contains any dimension-based equations, then you must
provide a numeric solution variable that serves both as a source of data and as
the assignment target for equation results. The solution variable is usually
dimensioned by all of the dimensions on which model equations are based and
also by the other dimensions of the solution variable on which you are not
basing equations.

■ When you run a model, a loop is performed automatically over the values in
the current status list of each of the dimensions of the solution variable on
which you have not based equations.

■ When a model equation bases its calculations on data from previous time
periods, then the solution variable must contain data for these previous periods.
When it does not, or when the first value of the dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR is in status, then the results of the calculation
are NA.

Dimensions of Solution Variables
In a model with dimension-based equations, the solution variable is usually
dimensioned by the dimensions on which model equations are based. Or, when a
solution variable is dimensioned by a composite, the model equations can be based

Models

Formulas, Aggregations, Allocations, and Models 4-17

on base dimensions of the composite. The dimensions on which model equations
are based are listed in explicit or inherited DIMENSION (in models) commands.

The following special cases regarding the dimensions of the solution variable can
occur:

■ The solution variable can have dimensions that are not listed in DIMENSION
commands. Oracle OLAP automatically loops over the values in the status of
the extra dimensions. For example, the model might contain a DIMENSION
command that lists the line and month dimensions, but you might specify a
solution variable dimensioned by line, month, and division. Oracle OLAP
automatically loops over the division dimension when you run the model.
The solution variable can also be dimensioned by a composite that has one or
more base dimensions that are not listed in DIMENSION commands. See
"Solution Variables Dimensioned by a Composite" on page 4-17.

■ When the solution variable has dimensions that are not listed in DIMENSION
commands and when any of these other dimensions are the dimension of a step
or simultaneous block, an error occurs.

■ Oracle OLAP loops over the values in the status of all the dimensions listed in
DIMENSION commands, regardless of whether the solution variable is
dimensioned by them. Therefore, Oracle OLAP will be doing extra, unnecessary
work when the solution variable is not dimensioned by all the listed
dimensions. Oracle OLAP warns you of this situation before it starts solving the
model.

■ The inclusion of an unneeded dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR in a DIMENSION command causes incorrect results when
you use a loan, depreciation, or aggregation function in a model equation. This
happens because any component of a model equation that refers to the values
of a model dimension behaves as if that component has all the dimensions of
the model.

Solution Variables Dimensioned by a Composite
When a solution variable contains a composite in its dimension list, Oracle OLAP
observes the sparsity of the composite whenever possible. As it solves the model,
Oracle OLAP confines its loop over the composite to the values that exist in the
composite. It observes the current status of the composite's base dimensions as it
loops.

However, for proper solution of the model, Oracle OLAP must treat the following
base dimensions of the composite as regular dimensions:

Models

4-18 Oracle OLAP DML Reference

■ A base dimension that is listed in a DIMENSION (in models) command.

■ A base dimension that is implicated in a model equation created using SET (for
example, an equation that assigns data to a variable dimensioned by the base
dimension).

■ A base dimension that is also a base dimension of a different composite that is
specified in the ACROSS phrase of an equation. (See SET for more information
on assignment statements and the use of ACROSS phrase.)

When a base dimension of a solution variable's composite falls in any of the
preceding three categories, Oracle OLAP treats that dimension as a regular
dimension and loops over all the values that are in the current status.

When the solution variable's composite has other base dimensions that do not fall in
the special three categories, Oracle OLAP creates a temporary composite of these
extra base dimensions. The values of the temporary composite are the combinations
that existed in the original composite. Oracle OLAP loops over the temporary
composite as it solves the model.

Debugging a Model
The following tools are available for debugging models:

■ To see the order in which the equations in a model are solved, you can set the
MODTRACE option to YES before you run the model.When you set
MODTRACE to YES, you can use the DBGOUTFILE command to send
debugging information to a file. The file produced by DBGOUTFILE
interweaves each line of your model with its corresponding output.

■ You can use the MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT
programs and the INFO function to obtain information about the structure of a
compiled model and the solution status of a model you have run.

OLAP DML Programs 5-1

5
OLAP DML Programs

This chapter provides an overview of create OLAP DML programs. It includes the
following topics:

■ Creating OLAP DML Programs

■ Compiling Programs

■ Testing and Debugging Programs

■ Executing Programs

Creating OLAP DML Programs
An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis
task. You can write OLAP DML programs to perform tasks that you must do
repeatedly in the analytic workspace, or you can write them as part of an
application that you are developing.

To create an OLAP DML program, take the following steps:

1. Issue a DEFINE PROGRAM statement to define the program object. When the
program that you are defining will be used is a function, include the datatype
and dimension arguments.

2. Add contents to the program that specify the processing that you want
performed as described in "Specifying Program Contents" on page 5-2.

3. Compile the program as described in "Compiling Programs" on page 5-13.

4. Test and debug the program as described in "Testing and Debugging Programs"
on page 5-14.

5. Execute the program as described in "Executing Programs" on page 5-17.

Creating OLAP DML Programs

5-2 Oracle OLAP DML Reference

Specifying Program Contents
The content of a program consists of the following OLAP DML statements:

1. A PROGRAM statement that indicates the beginning of the program contents.
(Omit when coding the specification in an Edit window of the OLAP
Worksheet.)

2. (Optional) VARIABLE statements that define any local variables.

3. (Optional) ARGUMENT statements that declare arguments. (See "Passing
Arguments" on page 5-3 for more information.)

4. Additional OLAP DML statements that specify the processing you want
performed. You can use almost any of the OLAP DML statements in a program.
There are also some OLAP DML statements, such as flow-of-control statements,
that are only used in programs. For brief descriptions, see "Programming
Statements" on page A-22.

Use the following formatting guidelines as you add lines to your program:

■ Each line of code can have a maximum of 4000 bytes.

■ To continue a single command on the next line, place a hyphen (-) at the
end of the line to be broken. The hyphen is called a continuation character.

■ You cannot use a continuation character in the middle of a text literal.

■ To write more than one command on a single line, separate the commands
with semicolon (;).

■ Enclose literal text in single quotation marks ('). To include a single
quotation mark within literal text, precede it with a backslash (\). To specify
escape sequences, see "Escape Sequences" on page 2-4.

■ Precede comments with double quotation marks ("). You can place a
comment, preceded by double quotation marks, either at the beginning of a
line or at the end of a line, after some commands.

5. A final END statement that indicates the end of the contents of the program.
(Omit when coding the specification in an Edit window of the OLAP
Worksheet.)

Creating User-Defined Functions
One type of program that is commonly written is a user-define function that you
can use in OLAP DML statements in much the same way as you use an OLAP DML
function. A user-defined function is simply an OLAP DML program that returns a

Creating OLAP DML Programs

OLAP DML Programs 5-3

value. For an example of a user-defined function, see Example 8–7, "Passing an
Argument to a User-Defined Function" on page 8-22.

When you create a user-defined function, you use a DEFINE PROGRAM statement
that includes the datatype and dimension arguments. Within the program, you include
a RETURN statement that returns a value. The return expression in the program
should match the data type that is specified in its definition. When the data type of
the return value does not match the data type that is specified in its definition, then
the value is converted to the data type in the definition.

User-defined functions can accept arguments. A user-defined function returns only
a single value. However, when you supply an argument to a user-defined function
in a context that loops over a dimension (for example, in a REPORT command),
then the function returns results with the same dimensions as its argument.

You must declare the arguments using the ARGUMENT command within the
program, and you must specify the arguments in parentheses following the name of
the program.

Passing Arguments
Use ARGUMENT statements to declare both simple and complex arguments (such
as expressions). The ARGUMENT command also makes it convenient to pass
arguments from one program to another, or to create your own user-defined
functions. The ARGUMENT command lets you declare an argument of any data
type, dimension, or valueset. Any ARGUMENT commands must precede the first
executable line in the program. When you run the program, these declared
arguments are initialized with the values you provided as arguments to the
program. The program can then use these arguments in the same way it would use
local variables.

Using Multiple Arguments A program can declare as many arguments as needed.
When the program is executed with arguments specified, the arguments are
matched positionally with the declared arguments in the program. When you run
the program, you must separate arguments with spaces rather than with commas or
other punctuation. Punctuation is treated as part of the arguments. For an example
of passing multiple arguments, see Example 8–8, "Passing Multiple Arguments" on
page 8-23.

See Also: "Passing Arguments" on page 5-3 for more information
about using arguments with programs.

Creating OLAP DML Programs

5-4 Oracle OLAP DML Reference

Handling Arguments Without Converting Values to a Specific Data Type Sometimes you
want your OLAP DML program to be able to handle arguments without converting
values to a specific data type. In this case, you can specify a data type of
WORKSHEET in the ARGUMENT and VARIABLE statements that define the
arguments and temporary variables for the program. You can use WKSDATA to
determine the actual data type of the argument or variable.

Passing Arguments as Text with Ampersand Substitution It is very common to pass a
simple text argument to a program. However, there are some situations in which
you might want to write more general programs or pass a more complicated text
argument, such as an argument that is all of the data in one of the analytic
workspace objects or the results of an expression. In these cases, you can pass the
argument using a substitution expression. Passing an argument in this way is called
ampersand substitution.

For the following types of arguments, you must always use an ampersand to make
the appropriate substitution:

■ Names of workspace objects, such as units or product

■ Command keywords, such as COMMA or NOCOMMA in the REPORT command, or
A or D in the SORT command

When you use ampersand substitution to pass the names of workspace objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program
must manipulate the objects in several operations.

For an example of using ampersand substitution to pass multiple dimension values,
see Example 16–6, "Using Ampersand Substitution with LIMIT" on page 16-17. For
an example of using ampersand substitution to pass the text of an expression, see
Example 8–10, "Passing the Text of an Expression" on page 8-25. For an example of
using ampersand substitution to pass object names and keywords, see
Example 8–11, "Passing Workspace Object Names and Keywords" on page 8-25.

Note: You cannot compile and save any program line that
contains an ampersand. Instead, the line is evaluated at run time,
which can reduce the speed of your programs. Therefore, to
maximize performance, avoid using ampersand substitution when
another technique is available.

Creating OLAP DML Programs

OLAP DML Programs 5-5

Program Flow-of-Control
Like most programming languages, the OLAP DML has a number of commands
that you can use to determine the flow-of-control within a program. However, you
need to code explicit loops less frequently in an OLAP DML program because of the
intrinsic looping nature of many OLAP DML statements.

Table 5–1, " Statements For Determining Flow-of-Control" on page 5-7 lists OLAP
DML flow-of-control commands. The looping characteristic of OLAP DML
commands is discussed in "Looping Nature of OLAP DML Commands and
Functions" on page 5-5.

Looping Nature of OLAP DML Commands and Functions Unlike SQL statements that
operate against a single row in a table, OLAP DML commands and functions
usually operate against the entire array of data represented by an analytic
workspace data object:

■ When you issue a statement against an object that has one or more dimensions,
the statement loops over the values in status for each dimension of the object
and performs the requested operation.

■ When you use an OLAP assignment statement (that is, SET) to assign values to
a variable, Oracle OLAP loops through all of the cells assigning values in
sequence.

Assume for example, that there is a dimension named prodid that has three
values, Prod01, Prod02, and Prod03, and you have a variable named
quantity that is dimensioned by prodid. As the following code snippet
illustrates, when you assign the value 3 to quantity, Oracle OLAP loops over the
values in status for each dimension of the target and assigns the value 3 to all
the cells in quantity.

quantity = 3
REPORT quantity

PRODID QUANTITY
-------------- ----------
PROD01 3.00
PROD02 3.00
PROD03 3.00

See Also: "Substitution Expressions" on page 3-25 for more
information about ampersand substitution.

Creating OLAP DML Programs

5-6 Oracle OLAP DML Reference

■ Other OLAP DML statements (for example, REPORT, ROW, and FOR) also loop
through all of the values of a dimensioned object when they execute.

By default, looping statements loop through the values of a dimensioned object
using the order in which the dimensions of the object are listed in the definition of
the object. Also, when a variable is dimensioned by a composite, most looping
statements loop through the variable as though it was not dimensioned by a
composite, but was, instead, dimensioned by the base dimensions of the composite.

The OLAP DML provides ways for you to change the default looping behavior or to
explicitly request looping:

■ ACROSS phrase—Some looping statements (such as SET that you use to assign
values) have an ACROSS phrase that you can use to specify nondefault looping
behavior. Using the ACROSS phrase, you can specify:

■ The specific dimensions (and order) in which you want the statement to
loop. In this case, the statement will loop over the dimensions in the order
that you specify them in the ACROSS phrase, not in the order in which they
appear in the variable's definition.

■ A composite over which you want the statement to loop. When a variable is
dimensioned by a composite, specifying the name of a composite improves
performance. When you specify the name of a composite in the ACROSS
phrase of a looping statement, the statement only loops over the existing
cells of a variable.

For more complete documentation of the ACROSS phrase, see SET.

■ ACROSS command—When an OLAP DML statement is not a looping
statement or does not include an ACROSS phrase, you can request looping
behavior by coding the DML statement as an argument of the ACROSS
command.

Flow-of Control Commands The OLAP DML contains the flow-of-control statements
typically found in a programming language. Table 5–1, " Statements For
Determining Flow-of-Control" on page 5-7 lists these statements.

Creating OLAP DML Programs

OLAP DML Programs 5-7

Table 5–1 Statements For Determining Flow-of-Control

Statement Description

BREAK statement Transfers program control from within a SWITCH, FOR, or
WHILE statement to the statement immediately following the
DOEND associated with SWITCH, FOR, or WHILE.

CONTINUE statement Transfers program control to the end of a FOR or WHILE loop
(just before the DO/DOEND statement), allowing the loop to
repeat. You can use CONTINUE only within programs and
only with FOR or WHILE.

DO ... DOEND statements Brackets a group of one or more statements. DO and DOEND
are normally used to bracket a group of statements that are to
be executed under a condition specified by an IF statement, a
group of statements in a repeating loop introduced by FOR or
WHILE, or the CASE labels for a SWITCH statement.

FOR statement Specifies one or more dimensions whose status will control the
repetition of one or more statements.

GOTO statement Alters the sequence of statement execution within the program
by indicating the next program statement to execute.

IF...THEN...ELSE
statement

Executes one or more statements in a program if a specified
condition is met. Optionally, it also executes an alternative
statement or group of statements when the condition is not
met.

OKFORLIMIT An option that determines whether you can limit the
dimension you are looping over within an explicit FOR loop.

RETURN statement Terminates execution of a program prior to its last line. You can
optionally specify a value that the program will return.

SIGNAL statement Produces an error message and halts normal execution of the
program. When the program contains an active trap label,
execution branches to the label. Without a trap label, execution
of the program terminates and, if the program was called by
another program, execution control returns to the calling
program.

SWITCH statement Provides a multipath branch in a program. The specific path
taken during program execution depends on the value of the
control expression that is specified with SWITCH.

Creating OLAP DML Programs

5-8 Oracle OLAP DML Reference

Preserving the Environment Settings
There are two types of environments:

■ Session environment. The dimension status, option values, and output
destination that are in effect before a program is run make up the session
environment.

■ Program environment. The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the Program Environment
To perform a task within a program, you often need to change the output
destination or some dimension and option values. For example, you might run a
monthly sales report that always shows the last six months of sales data. You might
want to show the data without decimal places, include the text "No Sales" where the
sales figure is zero, and send the report to a file. To set up this program
environment, you can use the following commands in your program.

LIMIT month TO LAST 6
DECIMALS = 0
ZSPELL = 'No Sales'
OUTFILE monsales.txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the
program. At the end of the program, you can restore the saved environment, so that

TEMPSTAT statement Limits the dimension you are looping over, inside a FOR loop
or inside a loop that is generated by the REPORT command.
Status is restored after the statement following TEMPSTAT. If a
DO ... DOEND phrase follows TEMPSTAT, status is restored
when the matched DOEND or a BREAK or GOTO statement is
encountered.

TRAP statement Causes program execution to branch to a label when an error
occurs in a program or when the user interrupts the program.
When execution branches to the trap label, that label is
deactivated.

WHILE statement Repeatedly executes a statement while the value of a Boolean
expression remains TRUE.

Table 5–1 (Cont.) Statements For Determining Flow-of-Control

Statement Description

Creating OLAP DML Programs

OLAP DML Programs 5-9

other programs do not need to be concerned about whether any values have been
changed. In addition, when you have sent output to a file, then the exit sections
should return the output destination to the default outfile.

Ways to Save and Restore Environments
The following suggestions let you save the environment of a program or a session:

■ When you want to save the current status or value of a dimension, a valueset,
an option, or a single-cell variable that will be changed in the current program,
then use the PUSHLEVEL and PUSH commands. You can restore the current
status values using the POPLEVEL and POP commands.

■ When you want to save, access, or update the current status or value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation
for use in the current session, then use a named context. Use the CONTEXT
command to define the context.

Contexts are the most sophisticated way to save object values for use during a
session. With contexts, you can access, update, and commit the saved object values.
In contrast, PUSH and POP simply allow you to save and restore values. Typically,
you use the PUSH and POP commands within a program to make changes that
apply only during the execution of the program.

Saving the Status of a Dimension or the Value of an Option
The PUSH command saves the current status of a dimension, the value of an option,
or the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the
program, use the following command in the initialization section.

PUSH DECIMALS

You do not need to know the original value of the option to save it or to restore it
later. You can restore the saved value with the POP command.

POP DECIMALS

You must make sure the POP command is executed when errors cause abnormal
termination of the program, as well as when the program ends normally. Therefore,
you should place the POP command in the normal and abnormal exit sections of the
program.

Creating OLAP DML Programs

5-10 Oracle OLAP DML Reference

Saving Several Values at Once
You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH command, and you can restore the values
with a single POP command, as shown in the following example.

PUSH month DECIMALS ZSPELL
 ...
POP month DECIMALS ZSPELL

Using Level Markers
When you are saving the values of several dimensions and options, then the
PUSHLEVEL and POPLEVEL commands provide a convenient way to save and
restore the session environment.

You first use the PUSHLEVEL command to establish a level marker. Once the level
marker is established, you use the PUSH command to save the status of dimensions
and the values of options or single-cell variables.

When you place more than one PUSH command between the PUSHLEVEL and
POPLEVEL commands, then all the objects that are specified in those PUSH
commands are restored with a single POPLEVEL command.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

For an example of creating level markers, see Example 19–45, "Creating Level
Markers" on page 19-103.Example 19–46, "Nesting PUSHLEVEL and POPLEVEL
Commands" on page 19-103 illustrates nesting PUSHLEVEL and POPLEVEL
commands.

Using CONTEXT to Save Several Values at Once
As an alternative to using PUSHLEVEL and POPLEVEL, you can use the
CONTEXT command. After you create a context, you can save the current status of
dimensions and the values of options, single-cell variables, valuesets, and single-cell
relations in the context. You can then restore some or all of the object values from
the context. The CONTEXT function returns information about objects in a context.

Handling Errors
When an error occurs anywhere in a program, Oracle OLAP performs the following
actions:

Creating OLAP DML Programs

OLAP DML Programs 5-11

1. Stores the name of the error in the ERRORNAME option, and the text of the
error message in the ERRORTEXT option.

2. When ECHOPROMPT is YES, then Oracle OLAP echoes input lines, error
messages, and output lines, to the current outfile. When you use the OUTFILE
or DBGOUTFILE command, you can capture the error messages in a file. See
Example 19–17, "Directing Output to a File" on page 19-38 for an example of
directing output to a file.

3. When error trapping is off, then the execution of the program is halted. When
error trapping is on, then the error is trapped.

Trapping an Error
To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use the TRAP command to turn on an
error-trapping mechanism in a program. When error trapping is on and an error is
signaled, then the execution of the program is not halted. Instead, error trapping
does the following:

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP command

3. Executes the commands following the label

Suppressing Error Messages
When you do not want to produce the error message that is normally provided for a
given error, then you can use the NOPRINT keyword with the TRAP command.

TRAP ON error NOPRINT

When you use the NOPRINT keyword with TRAP, control branches to the error
label, and an error message is not issued when an error occurs. The commands
following the error label are then executed.

Note: When the ERRNAMES option is set to the default value of
YES, the ERRORTEXT option contains the name of the error (that is,
the value of the ERRORNAME option) as well as the text of the
error message.

Creating OLAP DML Programs

5-12 Oracle OLAP DML Reference

When you suppress the error message, you might want to produce your own
message in the abnormal exit section. The SHOW command produces the text you
specify but does not signal an error.

TRAP ON error NOPRINT
 ...
error:
 ...
SHOW 'The report will not be produced.'

The program continues with the next command after producing the message.

Creating Your Own Error Messages
All errors that occur when a command or command sequence does not conform to
its requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute the SIGNAL command to signal an error.

You can give the error any name. When the SIGNAL command is executed, the error
name you specify is stored in the ERRORNAME option, just as an OLAP DML error
name is automatically stored. When you specify your own error message in the
SIGNAL command, then your message is produced just as an OLAP DML error
message is produced. When you are using a TRAP command to trap errors, a
SIGNAL command branches to the TRAP label after the error message is produced.

For an example of signaling an error, see Example 21–32, "Signaling an Error" on
page 21-77.

When you want to produce a warning message without branching to an error label,
then you can use the SHOW command as illustrated in Example 21–31, "Creating
Error Messages Using SHOW" on page 21-74.

Handling Errors in Nested Programs
When handling errors in nested programs, the error-handling section in each
program should restore the environment. It can also handle any special error
conditions that are particular to that program. For example, when your program
signals its own error, then you can include commands that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want
the error message to be produced:

Compiling Programs

OLAP DML Programs 5-13

■ The error message is produced immediately, and the error condition is then
passed through the chain of programs. This approach is illustrated in
Example 24–2, "Producing a Program Error Message Immediately" on
page 24-6.

■ The error is passed through the chain of programs first, and the error message is
produced at the end of the chain. This approach is illustrated in Example 24–3,
"Producing a Program Error Message at the End of the Chain" on page 24-7.

The SIGNAL command is used in both methods.

Handling Errors While Saving the Session Environment
To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL command before the TRAP command and
your PUSH commands after the TRAP command.

PUSHLEVEL 'firstlevel'
TRAP ON error
PUSH
 ...

In the abnormal exit section of your program, place the error label (followed by a
colon) and the commands that restore the session environment and handle errors.
The abnormal exit section might look like this.

error:
POPLEVEL 'firstlevel'
OUTFILE EOF

These commands restore saved dimension status and option values and reroute
output to the default outfile.

Compiling Programs
You can explicitly compile a program by using the COMPILE command. If you do
not explicitly compile a program, then it is compiled when you run the program for
the first time.

When a program is compiled, it translates the program commands into efficient
processed code that executes much more rapidly than the original text of the
program. When errors are encountered in the program, then the compilation is not
completed, and the program is considered to be uncompiled.

Testing and Debugging Programs

5-14 Oracle OLAP DML Reference

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and used to run the program in future sessions. Therefore, you should
be sure to update and commit after compiling a program. This is particularly critical
when the program is part of an application that is run by many users. Unless the
compiled version of the program is saved in the analytic workspace, the program is
recompiled individually in each user session.

Example 9–11, "Compiling a Program" on page 9-39 illustrates using COMPILE to
compile a program

Finding Out If a Program Has Been Compiled
You can use the ISCOMPILED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

SHOW OBJ(ISCOMPILED 'myprogram')

Programming Methods That Prevent Compilation
Program lines that include ampersand substitution are not compiled. Any syntax
errors are not caught until the program is run. A program whose other lines
compiled correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program cannot be compiled. COMPILE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

Testing and Debugging Programs
Even when your program compiles cleanly, you must also test the program by
running it. Running a program helps you detect errors in commands with
ampersand substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data
that the program processes. To confirm that you test all the features of the program,
including error-handling mechanisms, run the program several times, using
different data and responses. Use test data that:

■ Falls within the expected range

■ Falls outside the expected range

Testing and Debugging Programs

OLAP DML Programs 5-15

■ Causes each section of a program to execute

Error and Debugging Options
A number of options determine how errors are handled and what happens during
debugging. These options are listed in Table 5–2, " Error Handling Options" on
page 5-15 and Table 5–3, "Debugging Options" on page 5-15.

Table 5–2 Error Handling Options

Statement Description

ERRNAMES An option that controls whether the value of the ERRORTEXT
option contains the name of the error (that is, the value of the
ERRORNAME option) as well as the text of the error message.

ERRORNAME An option that contains the name of the first error that occurs
when you execute a program or when you execute an OLAP
DML statement.

ERRORTEXT An option that contains the text of the first error message that
occurs when you execute a program or a statement.

PERMITERROR An option that determines whether or not an error is signaled
on attempted access of a variable for which read or write
permission is denied by a PERMIT command.

MODERROR Specifies the action to be taken when a model equation
diverges or a block fails to converge. The possible values are
STOP, CONTINUE, and DEBUG.

BADLINE When a program, model, or input file is executing, an option
that controls whether Oracle OLAP records, in the current
outfile, the line that caused an error.

INF_STOP_ON_ERROR An option that specifies the behavior of Oracle OLAP when an
error is reached when reading from a file using the INFILE
command

Table 5–3 Debugging Options

Statement Description

EXPTRACE An option that controls whether system DML programs are
traced when the PRGTRACE option is set to YES.

PRGTRACE An option that determines whether each line of a program is
recorded in the current outfile or in a debugging file during
execution of the program.

Testing and Debugging Programs

5-16 Oracle OLAP DML Reference

Generating Diagnostic Messages
Each time you run the program, confirm that the program executes its commands in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW commands in the program to
produce diagnostic or status messages. Then delete the SHOW commands after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the
rest of this section.

Identifying Bad Lines of Code
When you set the BADLINE option to YES, additional information is produced,
along with any error message when a bad line of code is encountered. When the
error occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile. You can edit the specified program
to correct the error and then run the original program. Example 8–22, "Using the
BADLINE Option" on page 8-66 illustrates using the BADLINE option.

Sending Output to a Debugging File
When your program contains an error in logic, then the program might execute
without producing an error message, but it executes the wrong set of commands or
produces incorrect results. For example, suppose you write a Boolean expression
incorrectly in an IF command (for example, you use NE instead of EQ). The
program executes the commands you specified, but it does so under the wrong
conditions.

To find an error in program logic, you often need to see the order in which the
commands are being executed. One way you can do this is to create a debugging
file and then examine the file to diagnose any problems in your programs.

MODTRACE An option that controls whether each equation in a model is
recorded in a file during execution of the model.

MODERROR Specifies the action to be taken when a model equation
diverges or a block fails to converge. The possible values are
STOP, CONTINUE, and DEBUG.

Table 5–3 Debugging Options

Statement Description

Executing Programs

OLAP DML Programs 5-17

To create a debugging file, you use the DBGOUTFILE command.

The DBGOUTFILE command merely creates a file for debugging. To specify that you
want each program line to be sent, as it executes, to the debugging file, set the
PRGTRACE option to YES.

When you want the debugging file to interweave the program lines with both the
program input and error messages, then set the ECHOPROMPT option to YES.

Executing Programs
You can invoke a program that does not return a value by using the CALL
command. You enclose arguments in parentheses, and they are passed by value.

For example, suppose you create a simple program named addit to add two
integers. You can use the CALL command in the main program of your application
to invoke the program.

CALL addit (3, 4)

You can also invoke programs in much the same way as you issue OLAP DML
statements. In this case, for a program that does not return a value, you merely use
the program name as you would an OLAP DML command. If the OLAP DML
program returns a value then it is a user-defined function. You invoke user-defined
functions in the same way as you use built-in functions. You merely use the
program name in an expression and enclose the program arguments, if any, in
parentheses.

For example:

■ You can use the program name as an expression in a command.

The following REPORT command uses the value that is returned by the
user-defined function isrecent that has a single argument, actual.

REPORT isrecent(actual)

■ You can use SET to assign the return value of the function to a variable.

See Also: The following examples of using a debugging file:

■ Example 9–38, "Debugging with a Debugging File" on
page 9-96

■ Example 9–39, "Sending Debugging Information to a File" on
page 9-97

Executing Programs

5-18 Oracle OLAP DML Reference

The following command assigns the return value of the user-defined function
named tempsales to a temporary variable called mytempsales.

mytempsales = tempsales

You can also create programs that execute automatically when a user attaches an
analytic workspace as described in "Startup Programs" on page 1-11.

Note: Although you can also run user-defined functions using the
CALL command, you do not have access to the return value.

Part II
Alphabetic Reference

Part II consists of a topic for each of the OLAP DML statements, arranged
alphabetically. Each OLAP DML topic provides a description, syntax, argument
descriptions, notes, and example for the statement.

This part contains the following chapters:

■ Chapter 6, "$AGGMAP to AGGMAP"

■ Chapter 7, "AFFMAPINFO to ARCCOS"

■ Chapter 8, "ARCSIN to CHARLIST"

■ Chapter 9, "CHGDFN to DDOF"

■ Chapter 10, "DECIMALCHAR to DELETE"

■ Chapter 11, "DEPRDECL to EXISTS"

■ Chapter 12, "EXPORT to FILEMOVE"

■ Chapter 13, "FILENEXT to FULLDSC"

■ Chapter 14, "GET to IMPORT"

■ Chapter 15, "INF_STOP_ON_ERROR to LIKEESCAPE"

■ Chapter 16, "LIKENL to MAX"

■ Chapter 17, "MAXBYTES to MODTRACE"

■ Chapter 18, "MONITOR to NVL2"

■ Chapter 19, "OBJ to QUAL"

■ Chapter 20, "RANDOM to REPORT"

■ Chapter 21, "RESERVED to SPARSEINDEX"

■ Chapter 22, "SQL to STATVAL"

■ Chapter 23, "STDDEV to TRACKPRG"

■ Chapter 24, "TRAP to ZSPELL"

$AGGMAP to AGGMAP 6-1

6
$AGGMAP to AGGMAP

This chapter contains the following OLAP DML statements:

■ $AGGMAP

■ $AGGREGATE_FROM

■ $AGGREGATE_FROMVAR

■ $ALLOCMAP

■ $COUNTVAR

■ $NATRIGGER

■ $STORETRIGGERVAL

■ $VARCACHE

■ ABS

■ ACQUIRE

■ ACROSS

■ ADD_MONTHS

■ AGGMAP

■ AGGINDEX

■ BREAKOUT DIMENSION

■ CACHE

■ DIMENSION (for aggregation)

■ DROP DIMENSION

■ MEASUREDIM (for aggregation)

6-2 Oracle OLAP DML Reference

■ MODEL (in an aggregation)

■ RELATION (for aggregation)

■ AGGMAP ADD or REMOVE model

■ AGGMAP SET

$AGGMAP

$AGGMAP to AGGMAP 6-3

$AGGMAP

The $AGGMAP property specifies the default AGGMAP type aggmap for a
variable. When calculating the data in a variable, Oracle OLAP checks to see if the
variable has an $AGGMAP property and, if it does, uses the aggmap object
specified by that property as the default aggregation specification for a variable.

Syntax
You add or delete an $AGGMAP property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$AGGMAP' agggmap-name

■ deleteproperty has the following syntax.

DELETE '$AGGMAP'

Arguments

aggmap-name
A TEXT expression that is the name of a previously defined aggmap object.

DELETE '$AGGMAP'
Deletes the $AGGMAP property.

Tip: You can also use a AGGMAP SET statement to specify the
default aggregation specification for a variable or the $ALLOCMAP
property to specify the default allocation specification for a
variable.

See: The PROPERTY command for general information on using
properties in the OLAP DML.

$AGGMAP

6-4 Oracle OLAP DML Reference

Examples

Example 6–1 Using the $AGGMAP Property

Example 6–2, "Using the $AGGREGATE_FROM Property" on page 6-6 illustrates
how the AGGREGATE command shown in Example 6–22, "Using a CACHE
Statement in an Aggregation Specification" on page 6-52 can be simplified to the
following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you place an $AGGMAP
property on the sales_by_revenue variable. To define an $AGGMAP property
on the sales_by_revenue variable, issue the following statements.

CONSIDER sales_by_revenue
PROPERTY ('$AGGMAP' 'revenue_aggmap')

Now you can aggregate the data by issuing the following AGGREGATE command
that does not include a USING clause.

AGGREGATE sales_by_revenue

$AGGREGATE_FROM

$AGGMAP to AGGMAP 6-5

$AGGREGATE_FROM

The $AGGREGATE_FROM property specifies the name of an object from which to
obtain detail data when aggregating data. When aggregating the data in a variable,
Oracle OLAP checks to see if the variable has an $AGGREGATE_FROM property
and, if it does, obtains the detail data for the aggregation from the variable specified
by that property.

Syntax
You add or delete an $AGGREGATE_FROM property to the most recently defined
or considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$AGGREGATE_FROM' fromspec ACROSS dimname

■ deleteproperty has the following syntax.

DELETE '$AGGREGATE_FROM'

Arguments

fromspec
A TEXT expression that specifies an arbitrarily dimensioned variable, formula, or
relation from which the detail data for the aggregation is obtained.

ACROSS dimname
Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in fromspec. Because fromspec can be a formula, you can realize a

See: "Ways of Specifying Where to Obtain Detail Data for
Aggregation" on page 7-13 for a discussion of all of the ways in
which you can specify the variables from which detail data should
be obtained when performing aggregation.

The PROPERTY command for general information on using
properties in the OLAP DML.

$AGGREGATE_FROM

6-6 Oracle OLAP DML Reference

significant performance advantage by supplying a looping dimension that
eliminates the sparsity from the fromspec loop.

DELETE '$AGGREGATE_FROM'
Deletes the $AGGREGATE_FROM property.

Examples

Example 6–2 Using the $AGGREGATE_FROM Property

Example 6–22, "Using a CACHE Statement in an Aggregation Specification" on
page 6-52 uses the following AGGREGATE command to aggregate the data.

AGGREGATE sales_by_revenue USING revenue_aggmap FROM units_aggmap

You can place a $AGGREGATE_FROM property on the sales_by_revenue
variable by issuing the following statements.

CONSIDER sales_by_revenue
PROPERTY ('$AGGREGATE_FROM' 'units_aggmap')

Now you can aggregate the data by issuing the following AGGREGATE command
that does not include a FROM clause.

AGGREGATE sales_by_revenue USING revenue_aggmap

$AGGREGATE_FROMVAR

$AGGMAP to AGGMAP 6-7

$AGGREGATE_FROMVAR

The $AGGREGATE_FROMVAR property specifies two or more objects from which
to obtain detail data when aggregating data. When aggregating the data in a
variable, Oracle OLAP checks to see if the variable has an
$AGGREGATE_FROMVAR property and, if it does, obtains the detail data for the
aggregation from the variables specified by that property.

Syntax
You add or delete an $AGGGREGATE_FROMVAR property to the most recently
defined or considered object (see DEFINE PROGRAM and CONSIDER) using a
PROPERTY statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$AGGREGATE_FROMVAR' textvar ACROSS dimname

■ deleteproperty has the following syntax.

DELETE '$AGGREGATE_FROMVAR'

Arguments

textvar
A TEXT expression that specifies an arbitrarily dimensioned variable or formula
that specifies the names of the objects from which to obtain detail data when
performing a capstone aggregation. Specify NA to indicate that a node does not need
detail data to calculate the value.

See: "Ways of Specifying Where to Obtain Detail Data for
Aggregation" on page 7-13 for a discussion of all of the ways in
which you can specify the variables from which detail data should
be obtained when performing aggregation.

The PROPERTY command for general information on using
properties in the OLAP DML

$AGGREGATE_FROMVAR

6-8 Oracle OLAP DML Reference

ACROSS dimname
Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in the objects specified by textvar. Because the objects specified by
textvar can be formulas, you can realize a significant performance advantage by
supplying a looping dimension that eliminates the sparsity.

DELETE $AGGREGATE_FROMVAR
Deletes the $AGGREGATE_FROMVAR property.

Examples

Example 6–3 Capstone Aggregation Using the $AGGREGATE_FROMVAR Property

Example 7–7, "Capstone Aggregation" on page 7-17 uses the following
AGGREGATE command to perform the final capstone aggregation.

AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

You can omit the FROMVAR clause in the second AGGREGATE command if there
is a $AGGREGATE_FROMVAR property on the sales_capstone76 variable.

To create a $FROMVAR property, issue the following OLAP DML statements.

CONSIDER sales_capstone76
PROPERTY ('$AGGREGATE_FROMVAR' 'capstone_source')

Now you can perform the final capstone aggregation by issuing the following
statement.

AGGREGATE sales_capstone76 USING capstone_aggmap

$ALLOCMAP

$AGGMAP to AGGMAP 6-9

$ALLOCMAP

The $ALLOCMAP property specifies the default aggmap for allocation for a
variable. When calculating the data in a variable, Oracle OLAP checks to see if the
variable has an $ALLOCMAP property and, if it does, uses the aggmap object
specified by that property as the default allocation specification for a variable.

Syntax
You add or delete an $ALLOCMAP property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$ALLOCMAP' aggmap-name

■ deleteproperty has the following syntax.

DELETE '$ALLOCMAP'

Arguments

aggmap-name
A TEXT expression that specifies the name of a previously defined ALLOCMAP
type aggmap object.

DELETE $ALLOCMAP
Deletes the $ALLOCMAP property.

Note: The $ALLOCMAP property is only one way in which you
can specify a default aggmap for a variable. You can also use a
$AGGMAP property or a AGGMAP SET statement to specify the
default aggregation specification for a variable.

See: The PROPERTY command for general information on using
properties in the OLAP DML.

$ALLOCMAP

6-10 Oracle OLAP DML Reference

Examples

Example 6–4 Using $ALLOCMAP to Specify a Default allocation Specification

Example 7–16, "Recursive Even Allocation with a Lock" on page 7-41 uses the
following statement to allocated data in the projbudget variable using the
projbudgmap allocation specification.

ALLOCATE projbudget USING projbudgmap

You can specify that projbudgmap is the default allocation specification for the
projbudget variable by issuing the following statements.

CONSIDER projbudget
PROPERTY ('$ALLOCMAP' "projbugmap')

Now, merely by issuing the following statement, you can allocate data in the
projbudget variable using the projbudgmap allocation specification.

ALLOCATE projbudget

$COUNTVAR

$AGGMAP to AGGMAP 6-11

$COUNTVAR

The $COUNTVAR property specifies that Oracle OLAP counts the number of leaf
nodes that contributed to an aggregate value when an AGGREGATE function
executes. Leaf nodes that are NA are not included in the tally. Indicates that the
number of leaf nodes that contributed to an aggregate value are counted. When
calculating the data in a variable, Oracle OLAP checks to see if the variable has an
$COUNTVAR property and, if it does, counts the number of leaf nodes that
contributed to an aggregate value.

Syntax
You add or delete a $COUNTVAR property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$COUNTVAR' agggmap-name

■ deleteproperty has the following syntax.

DELETE '$COUNTVAR'

Note: The $COUNTVAR property is only one way in which you
can specify that Oracle OLAP should count the number of leaf
nodes that contributed to an aggregate value when an
AGGREGATE function executes. You can also specify this by
including a COUNTVAR phrase in the AGGREGATE function.

See: The PROPERTY command for general information on using
properties in the OLAP DML.

$COUNTVAR

6-12 Oracle OLAP DML Reference

Arguments

aggmap-name
A TEXT expression that specifies the name of a previously defined AGGMAP type
aggmap object.

DELETE $COUNTVAR
Deletes the $COUNTVAR property.

Using $COUNTVAR
For a variable named v1, the following statements cause Oracle OLAP to count the
number of leaf nodes that contributed to an aggregate value that is the result of the
execution of the myaggmap aggmap object by a AGGREGATE function.

CONSIDER v1
PROPERTY '$COUNTVAR' 'myaggmap'

$NATRIGGER

$AGGMAP to AGGMAP 6-13

$NATRIGGER

The $NATRIGGER property specifies values to substitute for NA values that are in
the object, but not in the session cache for the object (if any). To calculate the values,
Oracle OLAP takes the steps described in "How Oracle OLAP Calculates Data for a
Variable with NA Values" on page 6-14. The results of the calculation are either
stored in the variable or cached in the session cache for the variable as described in
"How Oracle OLAP Determines Whether to Store or Cache Results of
$NATRIGGER" on page 6-21.

Syntax
You add or delete a $NATRIGGER property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$NATRIGGER' value

■ deleteproperty has the following syntax.

DELETE '$NATRIGGER'

Arguments

value
A TEXT expression that is the value of the property. The text can be any expression
that is valid for defining a formula

DELETE $NATRIGGER
Deletes the $NATRIGGER property.

See: The PROPERTY command for general information on using
properties in the OLAP DML.

$NATRIGGER

6-14 Oracle OLAP DML Reference

Notes

How Oracle OLAP Calculates Data for a Variable with NA Values
When calculating the data for a dimensioned variable, Oracle OLAP takes the
following steps for each cell in the variable:

1. Is there is a session cache for the variable.

■ Yes. Go to step 2.

■ No. Go to step 3.

2. Does that cell in the session cache for the variable have an NA value.

■ Yes. Go to step 3.

■ No. Go to step 7.

3. Does that cell in variable storage have an NA value.

■ Yes. Go to step 4.

■ No. Go to step 7.

4. Does the variable have an $AGGMAP property?

■ Yes. Aggregate the variable using the aggmap specified for the $AGGMAP
property and, then, go to step 5.

■ No. Go to step 6.

5. What is the value of the cell after aggregating the variable?

■ NA, go to step 6.

■ Non-NA, go to step 7.

6. Does the variable have a $NATRIGGER property?

■ Yes. Execute the expression specified for the $NATRIGGER property and,
then, go to step 7.

■ No. Go to step 7.

7. Calculate the data.

$NATRIGGER

$AGGMAP to AGGMAP 6-15

Setting the $NATRIGGER Property on Objects that are not Dimensioned
Variables
When you set the $NATRIGGER property on an object that is not a dimensioned
variable, including a single-cell variable, then Oracle OLAP treats it as any other
user-assigned property with no special meaning for NA values

Making NA Triggers Recursive or Mutually Recursive
You can make NA triggers recursive or mutually recursive by including triggered
objects within the value expression. You must set the RECURSIVE option to YES
before a formula, program, or other $NATRIGGER expression can invoke a trigger
expression again while it is executing. For limiting the number of triggers that can
execute simultaneously, see the TRIGGERMAXDEPTH option.

Using $NATRIGGER with Composites
You can set an $NATRIGGER expression on a variable that is dimensioned by a
composite, but Oracle OLAP evaluates the $NATRIGGER expression only for the
dimension-value combinations that exist in the composite. Suppose you had the
following dimensions and variables defined.

DEFINE d1 DIMENSION INTEGER
DEFINE d2 DIMENSION INTEGER
DEFINE v1 DECIMAL <d1 d2>
DEFINE v2 DECIMAL <SPARSE <d1 d2>>
PROPERTY '$NATRIGGER' 'v1 + 500.0'
DEFINE v3 DECIMAL <SPARSE <d1 d2>>

The following statement is an example of looping over a composite.

v3 = v2 ACROSS <SPARSE <d1 d2>>

$NATRIGGER Takes Precedence over NAFILL or NA Options
Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NAFILL function or the NASKIP, NASKIP2, or NASPELL options. When the
$NATRIGGER expression is NA, then the NAFILL function and the NA options have
an effect.

$NATRIGGER Ignored by EXPORT, ROLLUP, and AGGREGATE
The ROLLUP command, AGGREGATE command, and the AGGREGATE function
ignore the $NATRIGGER property setting for a variable during a rollup operation.
The statements fetch the stored value only, and do not invoke the $NATRIGGER
expression. The $NATRIGGER property remains in effect for other operations.

$NATRIGGER

6-16 Oracle OLAP DML Reference

In executing an EXPORT (to EIF) command, Oracle OLAP does not evaluate the
$NATRIGGER property expression on a variable when it simply exports the
variable. However, Oracle OLAP does evaluate the $NATRIGGER property
expression when the variable is part of an expression that Oracle OLAP calculates
during the export operation. Suppose you had the following d1 dimension and v1
variable definitions.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 2
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' '500'

For the following statement, Oracle OLAP would not evaluate the $NATRIGGER
property expression for the v1 variable. It would export the $NATRIGGER property
as part of the description of the variable. The value in v2 would be NA.

EXPORT v1 AS v2 TO EIF FILE 'myeif.eif'

For the following statement, Oracle OLAP would evaluate the $NATRIGGER
property expression for the v1 variable. The value in v1plus1 would be 501.

EXPORT v1 + 1 AS v1plus1 TO EIF FILE 'myeif.eif'

Examples

Example 6–5 Triggering Aggregation Using an $NATRIGGER

Instead of specifying the AGGREGATE function in every statement that you want
to return aggregate data, you use the $NATRIGGER property to cause the
aggregation to occur when a cell in the variable has an NA value. To use
$NATRIGGER for this purpose, assign an $NATRIGGER property to the variable
with a call to the AGGREGATE function specified as the $NATRIGGER expression.

The following statements add the $NATRIGGER property to the sales variable, so
that unsolved data is aggregated using the sales.aggmap aggmap.

CONSIDER sales
PROPERTY '$NATRIGGER' 'AGGREGATE(sales USING sales.aggmap)'

Example 6–6 Adding an $NATRIGGER Property to a Variable

The following statements define a dimension with three values and define a
variable that is dimensioned by the dimension. They add the $NATRIGGER
property to the variable, then put a value in one cell of the variable and leave the

$NATRIGGER

$AGGMAP to AGGMAP 6-17

other cells empty so their values are NA. Finally, they report the values in the cells of
the variable.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' '500.0'
v1(d1 1) = 333.3
REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------

1 333.3
2 500.0
3 500.0

$STORETRIGGERVAL

6-18 Oracle OLAP DML Reference

$STORETRIGGERVAL

The $STORETRIGGERVAL property specifies that when a $NATRIGGER
expression executes, Oracle OLAP replaces the NA values in the variable with the
results of the expression.

Syntax
You add or delete a $STORETRIGGERVAL property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$STORETRIGGERVAL' value

■ deleteproperty has the following syntax.

DELETE '$STORERIGGERVAL'

Note: Most applications use the $VARCACHE property to specify
that Oracle OLAP should store variable data that is the result of
$NATRIGGER expression execution since the functionality of the
$STORETRIGGERVAL property is subsumed within the
$VARCACHE property.

See: "How Oracle OLAP Determines Whether to Store or Cache
Results of $NATRIGGER" on page 6-21 for a discussion of all of the
factors that Oracle OLAP uses to determine what to do with
variable data that is the result of $NATRIGGER expression
execution.

The PROPERTY command for general information on using
properties in the OLAP DML.

$STORETRIGGERVAL

$AGGMAP to AGGMAP 6-19

Arguments

value
A BOOLEAN expression that contains the value of the property.

DELETE $STORETRIGGERVAL
Deletes the $STORETRIGGERVAL property.

You can also delete the $STORETRIGGERVAL property along with all properties
from an object by issuing a PROPERTY DELETE ALL statement.

Notes

Relationship With the TRIGGERSTOREOK Option and $NATRIGGER Property
To permanently replace the NA values in the cells of a variable for which you have
set an $AGGREGATE_FROM property, you must set the TRIGGERSTOREOK
option setting to YES and you must set the $STORETRIGGERVAL property of the
variable to the Boolean value YES. When the $STORETRIGGERVAL property for
the variable has a Boolean value of NO, then Oracle OLAP does not replace the NA
values in the cells of the variable with the $NATRIGGER expression value.

When the value of the TRIGGERSTOREOK option is NO, then Oracle OLAP does
not replace the NA values in the cells of the variable with the $AGGREGATE_FROM
expression value, even when the value of the $STORETRIGGERVAL property for
the variable is YES.

Examples

Example 6–7 Storing an $NATRIGGER Property Value

The following statements cause Oracle OLAP to store the $NATRIGGER expression
value in the NA cells of the v1 variable when Oracle OLAP evaluates the expression.

TRIGGERSTOREOK = yes
CONSIDER v1
PROPERTY '$STORETRIGGERVAL' yes

$VARCACHE

6-20 Oracle OLAP DML Reference

$VARCACHE

The $VARCACHE property specifies whether Oracle OLAP stores or caches
variable data that is the result of the execution of a AGGREGATE function or
$NATRIGGER expression.

Syntax
You add or delete a $VARCACHE property to the most recently defined or
considered object (see DEFINE PROGRAM and CONSIDER) using a PROPERTY
statement with the following syntax.

PROPERTY {addproperty | deleteproperty}

where

■ addproperty has the following syntax.

'$VARCACHE' value

■ deleteproperty has the following syntax.

DELETE '$VARCACHE'

Arguments

value
One of the following TEXT expressions that indicate where Oracle OLAP should
place variable data that is the result of calculations performed when the
AGGREGATE function or $NATRIGGER value executes:

See: "How Oracle OLAP Determines Whether to Store or Cache
Aggregated Data" on page 6-23 and "How Oracle OLAP
Determines Whether to Store or Cache Results of $NATRIGGER"
on page 6-21 for discussions of all of the various factors that Oracle
OLAP uses to determine whether variable data computed when the
AGGREGATE function or $NATRIGGER property executes is
stored or cached.

The PROPERTY command for general information on using
properties in the OLAP DML.

$VARCACHE

$AGGMAP to AGGMAP 6-21

■ VARIABLE specifies that Oracle OLAP populates the variable with data that is
the result of the execution of the AGGREGATE function or $NATRIGGER
property. When you specify this option, the data that is the result of the
aggregation is permanently stored in the variable when the analytic workspace
is updated and committed.

■ SESSION specifies that Oracle OLAP caches data that is the result of the
execution of the AGGREGATE function or $NATRIGGER property in the
session cache (See "What is an Oracle OLAP Session Cache?" on page 21-54).
When you specify this option, the data that is the result of the execution of the
AGGREGATE function or $NATRIGGER property is ignored during updates
and commits and is discarded at the end of the session.

■ NONE specifies that Oracle OLAP calculates new variable data each time the
AGGREGATE function or $NATRIGGER value executes; Oracle OLAP does not
store or cache the data.

■ DEFAULT specifies that you do not want Oracle OLAP to use the $VARCACHE
property when determining what to do with data that is calculated by the
AGGREGATE function. (See "How Oracle OLAP Determines Whether to Store
or Cache Aggregated Data" on page 6-23.)

DELETE $VARCACHE
Deletes the $VARCACHE property.

You can also delete the $VARCACHE property along with all properties from an
object by issuing a PROPERTY DELETE ALL statement.

Notes

How Oracle OLAP Determines Whether to Store or Cache Results of
$NATRIGGER
When a $NATRIGGER expression executes, what Oracle OLAP does with variable
data that results from the execution of the expression is determined based on
whether or not the variable that has the $NATRIGGER property also has a
$STORETRIGGERVAL property and, if not, if the value of the $NATRIGGER
property is an AGGREGATE function.

Important: When SESSCACHE is set to NO, Oracle OLAP does not
cache the data even when you specify SESSION. In this case,
specifying SESSION is the same as specifying NONE.

$VARCACHE

6-22 Oracle OLAP DML Reference

When a a $NATRIGGER expression executes, Oracle OLAP goes through the
following process:

1. Does the variable with the $NATRIGGER property also have a
$STORETRIGGERVAL property?

Yes. Go to step 1a.

No. Go to step 2.

a. Is the value of the TRIGGERSTOREOK option, 'YES' or 'NO?

Yes. Go to step 1b.

No. Go to step 2.

b. Is the value of the $STORETRIGGERVAL property, YES or NO?

Yes. Store the results of the $NATRIGGER expression. End decision-making
process.

No. Do not store the results of the $NATRIGGER expression. End
decision-making process

2. Is the $NATRIGGER expression is an AGGREGATE function?

Yes. Follow the steps described in "How Oracle OLAP Determines Whether to
Store or Cache Aggregated Data" on page 6-23 to determine what to do with the
result of $NATRIGGER expression execution.

No. Go to step 3.

3. Does the variable with the $NATRIGGER property also have a $VARCACHE
property?

Yes. Go to step 4.

No. Go to step 5.

4. Does the $VARCACHE property have a value of DEFAULT?

Yes. Go to step 5.

No. Use the value of the $VARCACHE property (that is, STORE, CACHE, or
NONE) to determine what happens to the variable data values that are the result
of $NATRIGGER expression execution. End decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data values that are the result of $NATRIGGER expression
execution. End decision-making process.

$VARCACHE

$AGGMAP to AGGMAP 6-23

How Oracle OLAP Determines Whether to Store or Cache Aggregated Data
When an AGGREGATE command executes, Oracle OLAP always stores the results
of the calculation directly in the variable in the same way it stores the results of an
assignment statement.

However, when an AGGREGATE function executes, Oracle OLAP sometimes stores
the results of the calculation directly in the variable and sometimes caches it in the
session cache. (See "What is an Oracle OLAP Session Cache?" on page 21-54 for
more information about the session cache.)

To determine where to place the data that is the result of AGGREGATE function
execution, Oracle OLAP goes through the following process to determine whether
to store or cache aggregated variable data:

1. Is there a CACHE statement in the specification for the aggmap that is being
used by the current AGGREGATE function?

■ Yes. Go to step 2.

■ No. Go to step 3.

2. Is the CACHE statement a CACHE DEFAULT statement?

■ Yes. Go to step 3.

■ No. Use the CACHE statement in the aggregation specification to
determine what to do with variable data that is the result of the calculation.
End decision-making process.

3. Does the variable being aggregated have a $VARCACHE property?

■ Yes. Go to Step 4.

■ No. Go to step 5.

See also: The following topics:

■ The description of the NA keyword of the CACHE command
for information on caching NA values calculated by the
AGGREGATE function.

■ "What is an Oracle OLAP Session Cache?" on page 21-54 for a
description of the data that is in a session cache.

$VARCACHE

6-24 Oracle OLAP DML Reference

4. Does the $VARCACHE property have a value of DEFAULT?

■ Yes. Go to step 5.

■ No. Use the value of the $VARCACHE property determines what happens
to the variable data calculated using the AGGREGATE function. End
decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data calculated using the AGGREGATE function. End
decision-making process.

Examples

Example 6–8 Setting the $VARCACHE Property

■ For a variable named v1, the following statements cause Oracle OLAP to
cache the variable data that is the result of the execution of an
AGGREGATE function or $NATRIGGER expression.

CONSIDER v1
PROPERTY '$SVARCACHE' 'v1'

ABS

$AGGMAP to AGGMAP 6-25

ABS

The ABS function calculates the absolute value of an expression.

Return Value
DECIMAL.

The dimensionality of the result is the same as the specified expression.

Syntax
ABS(expression)

Arguments

expression
The expression whose absolute value is to be calculated.

Examples

Example 6–9 Finding Values in an Absolute Range

Suppose you are interested in how close your planned 1996 sales figures for
sportswear in Boston were to the actual sales. You would like to see those months
where budgeted figures are off by more than $5,000 in either direction. You can use
ABS to help you find those months.

LIMIT product TO 'Sportswear'
LIMIT district TO 'Boston'
LIMIT month TO YEAR 'Yr96'
LIMIT month KEEP ABS(sales - sales.plan) GT 5000
REPORT DOWN month sales sales.plan sales - sales.plan

ABS

6-26 Oracle OLAP DML Reference

These statements produce the following output.

DISTRICT: BOSTON
------------PRODUCT-------------
-----------SPORTSWEAR-----------

SALES -
MONTH SALES SALES.PLAN SALES.PLAN
-------------- ---------- ---------- ----------
Jun96 79,630.20 73,568.52 6,061.68
Jul96 95,707.30 80,744.18 14,963.12
Aug96 82,004.00 71,811.45 10,192.55
Sep96 89,988.60 78,282.07 11,706.53
Dec96 50,281.40 56,720.87 -6,439.47

ACQUIRE

$AGGMAP to AGGMAP 6-27

ACQUIRE

When an analytic workspace is attached in multiwriter mode, the ACQUIRE
command acquires and (optionally) resynchronizes the specified objects so that
their changes can be updated and committed.

Syntax
ACQUIRE [acquired_noresync_objects] [RESYNC resync_objects [WAIT]] -

 [CONSISTENT WITH consistency_objects [WAIT]]

Arguments

acquired_noresync_objects
A list of one or more variables, relations, valuesets, or dimension names, separated
by commas, that you want to acquire without resynchronizing. Acquiring objects in
this manner preserves all read-only changes made to the objects. You can update
variables and dimensions acquired in this manner using the UPDATE command.

RESYNC
Specifies acquisition of the latest generation of the specified objects with all private
changes discarded.

resync_objects [WAIT]
A list of one or more variables, relations, valuesets, or dimension names, separated
by commas, that you want to acquire and resynchronize.

When you do not specify WAIT, the ACQUIRE statement fails when another user
has acquired any of the objects in resync_objects in read/write mode. When you
specify WAIT, Oracle OLAP waits until all objects in resync_objects it can be acquired
or the wait times out.

CONSISTENT WITH
Specifies the behavior of the ACQUIRE statement when a specified object is already
acquired by another user and resynchronizes the specified objects when the
ACQUIRE statement succeeds.

ACQUIRE

6-28 Oracle OLAP DML Reference

consistency_objects [WAIT]
A list of one or more a list of one or more variables, relations, valuesets, or
dimension names, separated by commas, that you want Oracle OLAP to determine
if another user has already acquired.

When you do not specify WAIT, the ACQUIRE statement fails when any of the
objects in the consistency_objects are acquired by another user. When you specify the
WAIT keyword, Oracle OLAP waits to execute the ACQUIRE statement until none
of the objects in consistency_objects are acquired by another user or until the wait
times out.

Notes

Understanding Consistency
To some extent you can think of an ACQUIRE statement with a CONSISTENT
WITH phrase as a combination of ACQUIRE and RELEASE statements.

ACQUIRE [avar...] RESYNC [rvar ...] cvar ... [WAIT]
RELEASE cvar ...

The difference is that an ACQUIRE CONSISTENT WITH statement succeeds even
when the user does not have sufficient permissions to acquire cvar variables.

Failure and Error-Handling
When a specified object has been acquired by another user or when your read-only
generation for a specified object is not the latest generation for the object, the
ACQUIRE statement fails.

Also, it can take a long time for the ACQUIRE statement to complete when you
specify WAIT for either the RESYNC or CONSISTENT phrase. During the wait,
some variables in the acquisition lists may be released while others may have been
acquired. It is even possible for a deadlock to occur which causes the ACQUIRE
statement to fail with a timeout error.

To avoid problems caused by deadlock, be thoughtful about the order in which you
code ACQUIRE and RELEASE statements and include appropriate error handling
routines.

Whenever an ACQUIRE statement fails, none of the objects are acquired.
Consequently, either all of the requested objects are acquired or none of them are
acquired.

ACQUIRE

$AGGMAP to AGGMAP 6-29

Acquiring Objects Dimensioned by Composites
You can acquire any variable, valueset, dimension, or relation that is dimensioned
by a composite unless that composite has a composite as one of its base dimensions.

Examples

Example 6–10 Acquiring, Updating and Releasing Objects

A classic use of multiwriter attachment mode is to allow two users to modify two
different objects in the same analytic workspace. For example, assume that an
analytic workspace has two variables: actuals and budget. Assume also that one
user (user A) wants to modify actuals, while another user (user B) wants to
modify budget. In this case, after attaching the analytic workspace in the
multiwriter mode, each user acquires the desired variable, performs the desired
modification, updates, commits the changes, and then, either detaches the
workspace or releases the acquired variable.

User A executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
... make modifications
UPDATE MULTI actuals
COMMIT
RELEASE actuals
AW DETACH myworkspace

While, at the same time, User B executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE budget
…make modifications
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Example 6–11 Acquiring and Resynchronizing Objects

Assume that two users (named B1 and B2) both need to make what-if changes to
budget and possibly modify their parts of budget when they like the results of the
what-if changes Neither user knows if anyone else will need to access budget at
the same time that they are or if they will need to make any permanent changes to

ACQUIRE

6-30 Oracle OLAP DML Reference

budget. Consequently, they do not want to block anyone while they are
performing what-if changes.

In this case, both users perform their what-if computation after attaching the
analytic workspace in the multiwriter mode but without acquiring budget. When
they later decide to make their what-if changes permanent, they try to acquire
budget in unresynchronized mode. When the acquire succeeds, they update
budget and commit the changes. The following OLAP DML statements show this
scenario.

AW ATTACH myworkspace MULTI
...perform what-if computations
ACQUIRE budget
...maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

However, when the first acquire does not succeed, however, the users try again to
acquire budget in resynchronized mode (possibly requesting a wait). When the
resynchronized acquisition succeeds, they re-create the changes (since some
relevant numbers might have changed) and then proceed to update and commit
their analytic workspace. The following OLAP DML statements show this scenario.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget
...maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace
AW ATTACH myworkspace MULTI
...perform what-if computations
ACQUIRE budget --> failed
ACQUIRE RESYNC budget WAIT
...determine that the changes are still needed
...make changes to make permanent
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

ACQUIRE

$AGGMAP to AGGMAP 6-31

Example 6–12 Acquiring Objects While Keeping Consistency

Sometimes you must keep some objects consistent with each other, which requires
special care in multiwriter mode.

Assume that two users (User B1 and User B2) both need to modify budget, that
budget must be kept consistent with investment, and that another user (User I)
needs to modify investment. In this scenario, even though none of the users
needs to modify both budget and investment, they all must ensure that when
they acquire either budget or investment that no one else has either budget or
investment already acquired. To achieve this effect, each user must issue an
ACQUIRE statement with the CONSISTENT WITH phrase as shown in the
following example code. Note that all of the users must be aware that the objects
listed in the CONSISTENT phrase may be resynchronized by the ACQUIRE
statement, if needed.

For example, User B1 could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget CONSISTENT WITH investment
... maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

User B2 could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget CONSISTENT WITH investment --> failed
ACQUIRE RESYNC budget CONSISTENT WITH investment WAIT
... determine that the changes are still needed
... make changes to make permanent
UPDATE MULTI budget
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

ACQUIRE

6-32 Oracle OLAP DML Reference

User I could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE investment CONSISTENT WITH budget --> failed
ACQUIRE RESYNC investment CONSISTENT WITH budget WAIT
... make changes to investment
UPDATE MULTI investment
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

ACROSS

$AGGMAP to AGGMAP 6-33

ACROSS

The ACROSS command specifies a text expression that contains one or more
statements to be executed in a loop. The repetition of these statements is controlled
by the status of the dimensions and composites specified in the ACROSS command.

Syntax
ACROSS dimension... DO dml-statements

Arguments

dimension
One or more dimensions or composites whose current status controls the repetition
of one or more statements, which are contained in dml-statements. The statements
are repeated for each combination of the values of the specified dimensions in the
current status. When two or more dimensions are specified, the first one varies the
slowest.

DO dml-statements
A multiline text expression that is one or more OLAP DML statements to be
executed for each iteration of the loop.

Notes

Statements That You Cannot Use
You cannot specify statements in the text expression of ACROSS that are typically
used as part of a multiple-line construct in a program. For example, the
IF...THEN...ELSE, WHILE, FOR, or SWITCH statements cannot be executed by the
ACROSS command.

Code Compiles When Executed
The compiled code for the loop body will not be generated until the ACROSS
command or the program that contains it is executed. This allows for the possibility
that, because the statements are contained within a text expression, the contents of
an ACROSS loop may change between compilation and execution.

ACROSS

6-34 Oracle OLAP DML Reference

ACROSS Dimension
ACROSS temporarily sets status to the values that are in current status for the
specified dimensions. After the ACROSS statement executes, dimension status is
restored to what it was before the loop, and execution of the program resumes with
the next statement.

Examples

Example 6–13 Repeating ROW Commands

In a report program, you want to show the unit sales of tents for each of three
months. Use the following ACROSS command to repeat ROW commands for each
value of the month dimension.

LIMIT product TO 'Tents'
LIMIT month TO 'Jan95' to 'Mar95'
ACROSS month DO 'ROW INDENT 5 month WIDTH 6 unit'

Jan95 533363
Feb95 572796
Mar95 707198

ADD_MONTHS

$AGGMAP to AGGMAP 6-35

ADD_MONTHS

The ADD_MONTHS function returns the date that is n months after the specified
date.

Return Value
DATETIME

Syntax
ADD_MONTHS(start_datetime, n)

Arguments

start_datetime
A DATETIME expression that identifies the starting date.

n
An INTEGER that identifies the number of months to be added to start_datetime.

Notes

End of Month
When the day component of start_datetime is the last day of the month or when the
returned month has fewer days, then the returned day component is the last day of
the month. Otherwise, the day component of the returned date is the same as the
day component of start_datetime. See Example 6–14, "End-of-Month Calculation" on
page 6-35.

Examples

Example 6–14 End-of-Month Calculation

The following statement displays the date of the day that is one month after January
30, 2000.

SHOW ADD_MONTHS('30Jan00', 1)

ADD_MONTHS

6-36 Oracle OLAP DML Reference

Since February 29 was the last day of February 2000, ADD_MONTHS returns
February 29, 2000.

29-Feb-00

AGGMAP

$AGGMAP to AGGMAP 6-37

AGGMAP

The AGGMAP command identifies an aggmap object as a specification for
aggregation and adds an aggregation specification to the definition of the current
aggmap object.

Syntax
AGGMAP [specification]

Arguments

specification
A multiline text expression that is the aggregation specification for the current
aggmap object. Separate statements with newline delimiters (\n), or use
JOINLINES. An aggregation specification begins with an ALLOCMAP statement
and ends with an END statement. Between these statements, you code one or more
the following statements depending on the calculation that you want to specify.
Minimally, an aggregation specification consists of a RELATION (for aggregation)
statement. You can create more complex aggregation specifications by including one

Tip: The current aggmap definition is the definition of the
aggmap object most recently defined or considered. Issue a
CONSIDER statement to explicitly make an aggmap definition the
current aggmap definition.

Note: There are two other OLAP DML statements that are also
sometimes referred to as "AGGMAP statements":

■ The AGGMAP ADD or REMOVE model statement that you
can use to add or remove a model from an aggmap object of
type AGGMAP

■ The AGGMAP SET that you can use to specify the default
aggmap for a variable.

AGGMAP

6-38 Oracle OLAP DML Reference

or more of the following statements in the specification as described in
"Aggregations" on page 4-2:

AGGINDEX
BREAKOUT DIMENSION
CACHE
DIMENSION (for aggregation)
DROP DIMENSION
MEASUREDIM (for aggregation)
MODEL (in an aggregation)
RELATION (for aggregation)

Notes

Aggregating Variables Dimensioned by Compressed Composites
Keep the following points in mind when designing aggregating values in a variable
dimensioned by a compressed composite:

■ You must use the AGGREGATE command to aggregate data in a variable
dimensioned by a compressed composite; you cannot use the AGGREGATE
function.

■ When coding the aggregation specification, follow these guidelines:

■ MODEL statements must precede RELATION statements.

■ MODEL statements must either exclude a PRECOMPUTE clause or specify
PRECOMPUTE ALL. You cannot include a dynamic model in the
aggregation specification.

■ RELATION statements for the hierarchical dimensions in the compressed
composite must include a PRECOMPUTE clause.

■ Once the data in a variable dimensioned by a compressed composite is
aggregated, it is read-only-data. Before you can recalculate values using the

Note: Special considerations apply when you are writing a
specification to aggregate a variable dimensioned by a compressed
composite. See "Aggregating Variables Dimensioned by
Compressed Composites" on page 6-38.

You cannot specify a conjoint dimension in the specification for the
aggmap; use composites instead.

AGGMAP

$AGGMAP to AGGMAP 6-39

AGGREGATE command, you must first delete the values using the CLEAR
AGGREGATES command.

■ There is no support for parallel aggregation. Instead, use multiple sessions to
compute variables or partitions that have their own compressed composites.

■ There is no support for incremental aggregation. Instead, partition using a
dense time dimension with local compressed composites. In this way you can
aggregate only those partitions that contain new data.

Aggregation Options
A number of options can impact aggregation as outlined in Table 6–1, " Aggregation
Options" on page 6-39.

System Properties Related to Aggregation
Table 6–2, " System Properties Used When Aggregating or Allocating Data" on
page 6-39 lists system properties documented in this manual that relate to
aggregation or allocation.

Table 6–1 Aggregation Options

Statement Description

MULTIPATHHIER An option that specifies that a given cell that contains detail data can
have more than one path into a cell that contains aggregated data.

POUTFILEUNIT An option that identifies a destination for status information about an
aggregation operation.

SESSCACHE An option that that controls whether Oracle OLAP uses the session
cache to store variable data that has been aggregated on the fly.

VARCACHE An option that specifies if and where variable data that has been
aggregated on the fly should be stored. (The VARCACHE option is only
one factor that can determine this decision.)

Table 6–2 System Properties Used When Aggregating or Allocating Data

Property Description

$AGGMAP A property that specifies the default aggregation specification
for a variable.

$AGGREGATE_FROM A property that specifies the name of an object from which to
obtain detail data when aggregating data.

AGGMAP

6-40 Oracle OLAP DML Reference

Checking for Circularity
AGGREGATE automatically checks relations for circularity in and among multiple
hierarchies. When you first define hierarchies, check for circularity by setting
PRECOMPUTE statements to NA and AGGINDEX to NO. A XSHIERCK01 error
during aggregation indicates that a circular hierarchy may have been detected.
However, when the message includes a reference to UNDIRECTED, then multiple
paths to an ancestor from a detail data cell have been detected. Some calculations
require that a detail data cell use multiple paths to the same ancestor cell. When this
is the case, then you need to set the MULTIPATHHIER option to YES before you
execute the AGGREGATE command. Otherwise, you need to correct the error in the
hierarchy structure. For more details about this error message and how to interpret
it, see the MULTIPATHHIER option.

Examples

Example 6–15 Combining Pre-calculation and Calculation on the Fly

This example describes the steps you can take to pre-calculate some of the data in
your analytic workspace and specify that the rest should be calculated when users
request it.

Suppose you define an analytic workspace named mydtb that has a units variable
with the following definition.

DEFINE units INTEGER <time, SPARSE <product, geography>>

$AGGREGATE_FROMVAR A property that specifies the objects from which to obtain
detail data when aggregating data.

$ALLOCMAP A property that specifies the default allocation specification
for a variable.

$COUNTVAR A property that specifies that Oracle OLAP counts the
number of leaf nodes that contributed to an aggregate value
when an AGGREGATE function executes.

$VARCACHE A property that specifies whether Oracle OLAP stores or
caches variable data that is the result of the execution of a
AGGREGATE function or $NATRIGGER expression

.

Table 6–2 (Cont.) System Properties Used When Aggregating or Allocating Data

Property Description

AGGMAP

$AGGMAP to AGGMAP 6-41

You now need to create and add a specification to the aggmap, which will specify
the data that should be aggregated. This example shows you how to use an input
file, which contains OLAP DML statements that define the aggmap and add a
specification to it:

1. Identify the name of each dimension's hierarchy. When you have defined the
hierarchies as self-relations, you use the names of the self-relations.

2. Decide which data to aggregate.

Suppose you want to calculate data for all levels of the time and product
dimensions, but not for geography. The geography dimension's lowest level
of data is at the city level. The second level of the hierarchy has three dimension
values that represent regions: East, Central, and West. The third level of the
hierarchy has one dimension value: Total.

Suppose that you want to pre-calculate the data for East and store it in the
analytic workspace. You want the data for Central, West, and Total to be
calculated only when users request that data — that data will not be stored in
the analytic workspace. Therefore, you need to specify this information in the
specification that you add to your aggmap object.

3. Create an ASCII text file named units.txt. Add the following OLAP DML
statements to your text file.

DEFINE units.agg AGGMAP <time, SPARSE <product, geography>>
AGGMAP
RELATION myti.parent
RELATION mypr.parent
RELATION myge.parent PRECOMPUTE ('East')
END

The preceding statements define an aggmap named units.agg, then add the
three RELATION statements to the aggregation specification when you read the
units.txt file into your analytic workspace.

4. To read the units.txt file into your analytic workspace, execute the following
statement.

INFILE 'units.txt'

5. The units.agg aggmap should now exist in your analytic workspace. You can
aggregate the units variable with the following statement.

AGGREGATE units USING units.agg

AGGMAP

6-42 Oracle OLAP DML Reference

Now the data for East for all times and products has been calculated and
stored in the analytic workspace.

6. Set up the analytic workspace so that when a user requests data for Central,
West, or Total, that data will be calculated and displayed. It is generally a
good idea to compile the aggmap object before using it with the AGGREGATE
function, as shown by the following statement.

COMPILE units.agg

This is not an issue when you are just using the AGGREGATE command,
because the command compiles the aggmap object before it uses it. However,
when you do not use the FUNCDATA keyword with the AGGREGATE
command, the metadata that is needed to perform calculation on the fly has not
been compiled yet. As long as you have performed all other necessary
calculations (such as calculating models), it is a good practice to compile the
aggmap when you load data. When you fail to do so, that means that every
time a user opens the analytic workspace, that user will have to wait for the
aggregation to be compiled automatically. In other words, when any data will
be calculated on the fly, you can improve query performance for all of your
users by compiling the aggmap before making the analytic workspace available
to your users.

7. Add a property to the units variable.

CONSIDER units
PROPERTY '$NATRIGGER' 'AGGREGATE(units USING units.agg)'

This property indicates that when a data cell contains an NA value, Oracle
OLAP will call the AGGREGATE function to aggregate the data for that cell.
Therefore, any units data that is requested by a user will be displayed.
However, only the data for the East dimension value of the geography
dimension has actually been aggregated and stored in the analytic workspace.
All other data (for Central, West, and Total) is calculated only when users
request it.

Example 6–16 Performing Non-additive Aggregation

This example shows how to use operators and arguments to combine additive and
non-additive aggregation.

Suppose that you have defined four variables: sales, debt, interest_rate, and
inventory. The variables have been defined with the same dimensionality where

AGGMAP

$AGGMAP to AGGMAP 6-43

cp is a composite that has been defined with the product and geography
dimensions.

<time cp<product geography>>

Suppose you want to use one AGGREGATE command to aggregate all four
variables. The debt variable requires additive aggregation. The sales variable
requires a weighted sum aggregation, and interest_rate requires a hierarchical
weighted average. Therefore, sales andinterest_rate will each require a
weight object, which you need to define and populate with weight values.
inventory requires a result that represents the total inventory, which is the last
value in the hierarchy.

You will specify the aggregation operation for debt and inventory with the
OPERATOR keyword. However, because sales and interest_rate have
aggregation operations that require weight objects, you must use the ARGS
keyword to specify their operations. You define an operator variable to use the
OPERATOR keyword. Typically, the operator variable is dimensioned by a measure
dimension or a line item dimension.

Here are the steps to define the aggregation you want to occur:

1. Because you will also be using a measure dimension to define an argument
variable to use with the ARGS keyword, define that measure dimension, as
illustrated by the following statements.

DEFINE measure DIMENSION TEXT
MAINTAIN measure 'sales', 'debt', 'interest_rate', 'inventory'

Note: Whenever you use a measure dimension in a RELATION
statement, you must include a MEASUREDIM statement in the
same aggregation specification

AGGMAP

6-44 Oracle OLAP DML Reference

2. Define an operator variable named opvar and populate it.The statements
specify that the aggregation for debt should use the SUM operator, and the
aggregation for inventory should use the HLAST operator.

DEFINE opvar TEXT <measure>
opvar (measure 'sales') = 'WSUM'
opvar (measure 'debt') = 'SUM'
opvar (measure 'interest_rate') = 'HWAVERAGE'
opvar (measure 'inventory') = 'HLAST'

3. Because sales and interest_rate require weight objects, define and
populate those weight objects. The following statement defines a weight object
named currency (to be used by sales).

DEFINE currency DECIMAL <time geography>

Notice that the currency variable is dimensioned only by time and
geography. The purpose of this variable is to provide weights that act as
currency conversion information for foreign countries; therefore, it is
unnecessary to include the product dimension.

4. Populate currency with the weight values that you want to use.

5. The interest_rate variable's nonaddictive aggregation (hierarchical
weighted average) requires the sum of the variable debt. In other words,
interest_rate cannot be aggregated without the results of the aggregation
of debt.

You can now define an argument variable, which you will need to specify the
aggregation results of debt as a weight object for interest_rate. You will
use the same argument variable to specify currency as the weight object for
the sales variable. The following statement defines an argument variable
named argvar.

DEFINE argvar TEXT <measure>

6. The next few statements populate the argument variable.

argvar (measure 'sales') = 'weightby currency'
argvar (measure 'debt') = NA
argvar (measure 'interest_rate') = 'weightby debt'
argvar (measure 'inventory') = NA

7. For the aggregation of product and geography, the data for the sales,
debt, and interest_rate variables can simply be added. But the
inventory variable requires a hierarchical weighted average. This means that

AGGMAP

$AGGMAP to AGGMAP 6-45

it is necessary to define a second operator variable and a second argument
variable, both of which will be used in the RELATION statement for product
and geography.

The following statements define the second operator variable and populate it.

DEFINE opvar2 TEXT <measure>
opvar (measure 'sales') = 'Sum'
opvar (measure 'debt') = 'Sum'
opvar (measure 'interest_rate') = 'Sum'
opvar (measure 'inventory') = 'HWAverage'

The following statements define the second argument variable and populate it.

DEFINE argvar2 TEXT <measure>
argvar (measure 'sales') = NA
argvar (measure 'debt') = NA
argvar (measure 'interest_rate') = NA
argvar (measure 'inventory') = 'weightby debt'

8. Now create the aggmap, by issuing the following statements.

DEFINE sales.agg AGGMAP <time, CP<product geography>>
AGGMAP
RELATION time.r OPERATOR opvar ARGS argvar
RELATION product.r OPERATOR opvar2 ARGS argvar2
RELATION geography.r OPERATOR opvar2 ARGS argvar2
MEASUREDIM measure
END

9. Finally, use the following statement to aggregate all four variables.

AGGREGATE sales debt interest_rate inventory USING sales.agg

AGGMAP

6-46 Oracle OLAP DML Reference

Example 6–17 Programmatically Defining an Aggmap

The following program uses the EXISTS function to test whether an AGGMAP
already exists, and defines the AGGMAP when it does not. It then uses the
AGGMAP command to define the specification for the aggmap.

DEFINE MAKEAGGMAP PROGRAM
LD Create dynamic aggmap
PROGRAM
IF NOT EXISTS ('test.agg')

THEN DEFINE test.agg AGGMAP <geography product channel time>
ELSE CONSIDER test.agg

AGGMAP JOINLINES(-
'RELATION geography.parentrel PRECOMPUTE (geography.lvldim 2 4)' -
'RELATION product.parentrel' -
'RELATION channel.parentrel' -
'RELATION time.parentrel' -
'END')

END

Example 6–18 Creating an Aggmap Using an Input File

Suppose that you have created a disk file called salesagg.txt, which contains the
following aggmap definition and specification.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'ALL')
RELATION geography.r
CACHE STORE
END

To include the sales.agg aggmap in your analytic workspace, execute the
following statement, where inf is the alias for the directory where the file is stored.

INFILE 'inf/salesagg.txt'

The sales.agg aggmap has now been defined and contains the three RELATION
statements and the CACHE statement. In this example, you are specifying that all of
the data for the hierarchy for the time dimension, time.r, should be aggregated,
except for any data that has a time dimension value of Year99. All of the data for
the hierarchy for the product dimension, product.r, should be aggregated,
except for any data that has a product dimension value of All. All geography
dimension values are aggregated. The CACHE STORE statement specifies that any

AGGMAP

$AGGMAP to AGGMAP 6-47

data that are rolled up on the fly should be calculated just once and stored in the
cache for other access requests during the same session.

You can now use the sales.agg aggmap with an AGGREGATE command, such
as.

AGGREGATE sales USING sales.agg

In this example, any data value that dimensioned by a Year99 value of the time
dimension or an All value of the product dimension is calculated on the fly. All
other data is aggregated and stored in the analytic workspace.

Example 6–19 Using Multiple Aggmaps

When you use a forecast, you must make sure that all of the input data that is
required by that forecast has been pre-calculated. Otherwise, the forecast uses
incorrect or nonexistent data. For example, suppose your forecast requires that all
line items are aggregated. Using a budget variable that is dimensioned by time,
line, and division, one approach would be to perform a complete aggregation
of the line dimension, forecast the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, and then aggregate the remaining dimension, division.

You can support this processing by defining three aggmap objects:

1. Define the first aggmap, named forecast.agg1, which aggregates the data
needed by the forecast. It contains the following statement.

RELATION line.parentrel

2. Define the second aggmap, named forecast.agg2, which aggregates the
data generated using the first aggmap and the forecast. It contains the following
statement.

RELATION division.parentrel PRECOMPUTE ('L3')

3. Define the third aggmap, named forecast.agg3, which contains the
RELATION statements in the specifications of the first two aggmaps.

RELATION line.parentrel
RELATION division.parentrel PRECOMPUTE ('L3')

AGGMAP

6-48 Oracle OLAP DML Reference

When your forecast is in a program named fore.prg, then you would use the
followinfstatements to aggregate the data.

AGGREGATE budget USING forecast.agg1 "Aggregate over LINE
CALL fore.prg "Forecast over TIME
AGGREGATE budget USING forecast.agg2 "Aggregate over DIVISION
"Compile the limit map for LINE and DIVISION
COMPILE forecast.agg3
"Use the combined aggmap for the AGGREGATE function
CONSIDER budget
PROPERTY 'NATRIGGER' 'AGGREGATE(budget USING forecast.agg3)'

Example 6–20 Using an AGGINDEX Statement in an Aggregation Specification

Suppose you have two variables, sales1 and sales2, with the following
definitions.

DEFINE sales1 DECIMAL <time, SPARSE<product, channel, customer>>
DEFINE sales2 DECIMAL <time, SPARSE<product, channel, customer>>

You do not want to precompute and commit all of the sales data to the database,
because disk space is limited and you need to improve performance. Therefore, you
need to create an aggmap, in which you specify which data should be
pre-computed and which data should be calculated on the fly.

You define the aggmap, named sales.agg, with the following statement.

DEFINE sales.agg AGGMAP <time, SPARSE<product, channel, customer>>

Next, you use the AGGMAP command to enter the following specification for
sales.agg.

RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'All')
RELATION channel.r
RELATION customer.r
AGGINDEX NO

This aggregation specification tells Oracle OLAP that all sales data should be
rolled up committed to the database with the exception of any data that has a time
dimension value of Year99 or a product dimension value of All—the data for
those cells is calculated the first time a user accesses them. The AGGINDEX value of
NO tells Oracle OLAP not to create the indexes for data that should be calculated on
the fly.

AGGMAP

$AGGMAP to AGGMAP 6-49

Now you execute the following statement.

sales2 = AGGREGATE(sales1 USING sales.agg) ACROSS SPARSE -
 <product, channel, customer>

sales2 now contains all of the data in sales1, plus any data that is aggregated for
Year99—this is because time is not included in a composite.

On the other hand, the data that is aggregated for the product value of All is not
computed and stored in sales2. This is because the product dimension is
included in a composite—the indexes that are required for dimensions that are
included in composites were not created because the aggregation specification
contains an AGGINDEX NO statement. Since the indexes did not exist, Oracle OLAP
never called the AGGREGATE function to compute the data to be calculated on the
fly.

Example 6–21 Aggregating By Dimension Attributes

Assume that when your business makes a sales it keeps records of the customer's
name, sex, age, and the amount of the sale. To hold this data, your analytic
workspace contains a dimension named customer and three variables (named
customer_sex, customer_age, and sales) that are dimensioned by customer.

 REPORT W 14 <customer_sex customer_age sales>

CUSTOMER CUSTOMER_SEX CUSTOMER_AGE SALES
-------------- -------------- -------------- --------------
Clarke M 26 26,000.00
Smith M 47 15,000.00
Ilsa F 24 33,000.00
Rick M 33 22,000.00

You want to aggregate the detail sales data over sex and age to calculate the amount
of sales you have made to males and females, and the amount of sales for different
age ranges. To hold this data you will need an INTEGER variable that is
dimensioned by hierarchical dimensions for sex and age. You will also need an
aggmap object that specifies the calculations that Oracle OLAP will perform to
populate this variable from the data in the sales variable.

AGGMAP

6-50 Oracle OLAP DML Reference

To create and populate the necessary objects, you take the following steps:

1. Create and populate dimensions and self-relations for hierarchical dimensions
named sex and age.

DEFINE sex DIMENSION TEXT
DEFINE sex.parentrel RELATION sex <sex>
DEFINE age DIMENSION TEXT
DEFINE age.parentrel RELATION age <age>

AGE AGE.PARENTREL
-------------- --------------------
0-20 All
21-30 All
31-50 All
51-100 All
No Response All
All NA

SEX SEX.PARENTREL
-------------- --------------------
M All
F All
No Reponse All
All NA

2. Create and populate relations that map the age and sex dimensions to the
customer dimension.

DEFINE customer.age.rel RELATION age <customer>
DEFINE customer.sex.rel RELATION sex <customer>

CUSTOMER CUSTOMER.AGE.REL CUSTOMER.SEX.REL
-------------- -------------------- --------------------
Clarke 21-30 M
Smith 31-50 M
Ilsa 21-30 F
Rick 31-50 M

3. Create a variable named sales_by_sex_age to hold the aggregated data.
Like the sales variable this variable is of type DECIMAL, but it is
dimensioned by sex and age rather than by customer.

DEFINE sales_by_sex_age VARIABLE DECIMAL <sex age>

AGGMAP

$AGGMAP to AGGMAP 6-51

4. Define an AGGMAP type aggmap object named ssa_aggmap to calculate the
values of the sales_by_sex_age variable.

DEFINE SSA_AGGMAP AGGMAP
AGGMAP
RELATION sex.parentrel OPERATOR SUM
RELATION age.parentrel OPERATOR SUM
BREAKOUT DIMENSION customer -
BY customer.sex.rel, customer.age.rel OPERATOR SUM
END

Notice that the specification for the ssa_aggmap includes the following
statements:

■ A BREAKOUT DIMENSION statement that specifies how to map the
customer dimension of the sales variable to the lowest-level values of
the sales_by_sex_age variable. This statement specifies the name of the
dimension of the variable that contains the detail values (that is,
customer) and the names of the relations (customer.sex.rel and
customer.age.rel) that define the relations between customer
dimension and the sex and age dimensions.

■ Two RELATION statements that specify how to aggregate up the sex and
age dimensions of the sales_by_sex_age variable. Each of these
statements includes the name of the child-parent relation (sex.parentrel
or age.parentrel) that define the self-relation for the hierarchal
dimension (sex or age).

5. Populate the sales_by_sex_age variable by issuing and AGGREGATE
command that specifies that the detail data for the aggregation comes from the
sales variable.

AGGREGATE sales_by_sex_age USING ssa_aggmap FROM sales

AGGMAP

6-52 Oracle OLAP DML Reference

After performing the aggregation, a report of sales_by_sex_age shows the
calculated values.

 ---------------------SALES_BY_SEX_AGE----------------------
 ----------------------------SEX----------------------------
AGE M F No Reponse All
-------------- -------------- -------------- -------------- --------------
0-20 NA NA NA NA
21-30 26,000.00 33,000.00 NA 59,000.00
31-50 37,000.00 NA NA 37,000.00
51-100 NA NA NA NA
No Response NA NA NA NA
All 63,000.00 33,000.00 NA 96,000.00

Example 6–22 Using a CACHE Statement in an Aggregation Specification

Suppose you have a sales variable with the following definition.

DEFINE sales DECIMAL <time, SPARSE<product, channel, customer>>

You do not want to pre-compute and commit all of the sales data, because space is
limited and you need to improve performance. Therefore, you need to create an
aggmap, in which you will specify which data should be pre-computed and which
data should be calculated on the fly.

You define the aggmap, named sales.agg, with the following statement.

DEFINE sales.agg AGGMAP <time, SPARSE<product, channel, - customer>>

Next, you use the AGGMAP statement to enter the following aggregation
specification forsales.agg.

AGGMAP
RELATION time.r PRECOMPUTE (time NE 'YEAR99')
RELATION product.r PRECOMPUTE (product NE 'ALL')
RELATION channel.r
RELATION customer.r
CACHE SESSION
END

This aggregation specification tells Oracle OLAP that all sales data should be
rolled up and committed, with the exception of any cells that have a time dimension
value of Year99 or a product dimension value of ALL; the data for those cells will
be calculated the first time a user accesses them. Because the CACHE statement
uses the SESSION keyword, that means that when those cells are calculated on the
fly, the data is stored in the cache for the remainder of the Oracle OLAP session.

AGGMAP

$AGGMAP to AGGMAP 6-53

That way, the next time a user accesses the same cell, the data will not have to be
calculated again. Instead, the data will be retrieved from the session cache.

Example 6–23 Populating All Levels of a Hierarchy Except the Detail Level

Assume that your analytic workspace contains the relations and dimensions with
the following definitions.

DEFINE geog.d TEXT DIMENSION
DEFINE geog.r RELATION geog.d <geog.d>
DEFINE sales_by_units INTEGER VARIABLE <geog.d>
DEFINE sales_by_revenue DECIMAL VARIABLE <geog.d>
DEFINE price_per_unit DECIMAL VARIABLE <geog.d>

Assume that you create two aggmap objects. One aggmap object, named
units_aggmap, is the specification to aggregate data in the sales_by_units
variable. The other aggmap object, revenue_aggmap, is the specification to
calculate all of the data except the detail data in the sales_by_revenue variable.

DEFINE units_aggmap AGGMAP
AGGMAP
 RELATION geog.r OPERATOR SUM
END

DEFINE revenue_aggmap AGGMAP
AGGMAP
 RELATION geog.r OPERATOR WSUM ARGS WEIGHTBY price_per_unit
 CACHE NOLEAF
END

The following steps outline the aggregation process:

1. Before either the sales_by_unit or sales_by_revenue variables are
aggregated, they have the following values.

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA
Sunnydale 4 NA
MA NA NA
CA NA NA
USA NA NA

AGGMAP

6-54 Oracle OLAP DML Reference

2. After the data for the sales_by_unit variable is aggregated, the
sales_by_unit and sales_by_revenue variables have the following
values.

AGGREGATE sales_by_unit USING units_aggmap

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA
Sunnydale 4 NA
MA 3 NA
CA 7 NA
USA 10 NA

3. After the data for the sales_by_revue variable is aggregated, the
sales_by_unit and sales_by_revenue variables have the following
values.

AGGREGATE sales_by_revenue USING revenue_aggmap FROM units_aggmap

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA
Sunnydale 4 NA
MA 3 13.5
CA 7 31.5
USA 10 45.0

Example 6–24 Aggregating into a Different Variable

Assume that there is a variable named sales that is dimensioned by time, a
hierarchical dimension, and district, a non-hierarchical dimension.

DEFINE time DIMENSION TEXT
DEFINE time.parentrel RELATION time <time>
DEFINE district DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <time district>

AGGMAP

$AGGMAP to AGGMAP 6-55

 -----------------------SALES-----------------------
 ---------------------DISTRICT----------------------
TIME North South West East
------------ ------------ ------------ ------------ ------------
1976Q1 168,776.81 362,367.87 219,667.47 149,815.65
1976Q2 330,062.49 293,392.29 237,128.26 167,808.03
1976Q3 304,953.04 354,240.51 170,892.80 298,737.70
1976Q4 252,757.33 206,189.01 139,954.56 175,063.51
1976 NA NA NA NA

Assume also that you want to calculate the total sales for each quarter and year for
all districts except the North district. To perform this calculation using an aggmap
object, you take the following steps:

1. Define a valueset named not_north that represents the values of district for
which you want to aggregate data.

DEFINE not_north VALUESET district
LIMIT not_north TO ALL
LIMIT not_north REMOVE 'North'

2. Define a variable named total_sales_exclud_north to hold the results of
the calculation.

DEFINE total_sales_exclud_north VARIABLE DECIMAL <time>

Notice that, like sales, the total_sales_exclud_north variable is
dimensioned by time. However, unlike sales, the
total_sales_exclud_north variable is not dimensioned by district
since it will hold detail data for each district, but only the total (aggregated)
values for the South, West, and East districts (that is, all districts except
North).

3. Define an aggmap object that specifies the calculation that you want performed.

DEFINE agg_sales_exclud_north AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM
DROP DIMENSION district OPERATOR SUM VALUES not_north
END

Notice that the aggregation specification consists of two statements that specify
how to perform the aggregation:

AGGMAP

6-56 Oracle OLAP DML Reference

■ A RELATION statement that specifies how to aggregate up the hierarchical
time dimension

■ A DROP DIMENSION statement that specifies how to aggregate across the
non-hierarchical district dimension. In this case, the DROP
DIMENSION also uses the not_north valueset to specify that values for
the North district are excluded when performing the aggregation

4. Aggregate the data.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales

The report of the total_sales_exclud_north variable shows the
aggregated values.

TIME ALL_SALES_EXCEPT_NORTH
------------ ------------------------------
1976Q1 731,850.99
1976Q2 698,328.58
1976Q3 823,871.02
1976Q4 521,207.09
1976 2,775,257.69

Example 6–25 Using a MEASUREDIM Statement in an Aggregation Specification

Suppose you have defined a measure dimension named measure. You then define
an operation variable named myopvar, which is dimensioned by measure. When
you use myopvar in an aggregation specification, you must also include a
MEASUREDIM statement that identifies measure as the dimension is included in
the definition of myopvar.

The MEASUREDIM statement should follow the last RELATION (for aggregation)
statement in the aggregation specification, as shown in the following example.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r OPERATOR myopvar
RELATION product.r
RELATION geography.r
MEASUREDIM measure
END

AGGMAP

$AGGMAP to AGGMAP 6-57

Example 6–26 Solving a Model in an Aggregation

This example uses the budget variable.

DEFINE budget VARIABLE DECIMAL <line time>
LD Budgeted $ Financial

The time dimension has two hierarchies (Standard and YTD) and a parent
relation named time.parentrel as follows.

 -----TIME.PARENTREL------
 ----TIME.HIERARCHIES-----
TIME Standard YTD
-------------- ------------ ------------
Last.YTD NA NA
Current.YTD NA NA
Jan01 Q1.01 Last.YTD
...
Dec01 Q4.01 Last.YTD
Jan02 Q1.02 Current.YTD
Feb02 Q1.02 Current.YTD
Mar02 Q1.02 Current.YTD
Apr02 Q2.02 Current.YTD
May02 Q2.02 Current.YTD
Q1.01 2001 NA
...
Q4.01 2001 NA
Q1.02 2002 NA
Q2.02 2002 NA
2001 NA NA
2002 NA NA

The relationships among line items are defined in the following model.

DEFINE income.budget MODEL
MODEL
DIMENSION line time
opr.income = gross.margin - marketing
gross.margin = revenue - cogs
revenue = LAG(revenue, 12, time) * 1.02
cogs = LAG(cogs, 1, time) * 1.01
marketing = LAG(opr.income, 1, time) * 0.20
END

AGGMAP

6-58 Oracle OLAP DML Reference

The following aggregation specification pre-aggregates all of the data. Notice that
all of the data must be pre-aggregated because the model includes both LAG
functions and a simultaneous equation.

DEFINE budget.aggmap1 AGGMAP
AGGMAP
MODEL income.budget
RELATION time.parentrel
END

Example 6–27 Aggregating Up a Hierarchy

Suppose you define a sales variable with the following statement.

DEFINE sales VARIABLE <time, SPARSE <product, geography>>

The aggregation specification for sales might include RELATION statements like
the following.

AGGMAP
RELATION time.r PRECOMPUTE ('Yr98', 'Yr99')
RELATION product.r
RELATION geography.r PRECOMPUTE (geography NE 'Atlanta')
END

The AGGREGATE command will aggregate values for Yr98 and Yr99, over all of
products, and over all geographic areas except for Atlanta. All other aggregates
are calculated on the fly.

Example 6–28 Using Valuesets

Suppose you have a hierarchy dimension named time.type, whose dimension
values are Fiscal and Calendar, in that order. These hierarchies are in conflict,
and you want to precompute some time data but calculate the rest on the fly.
Because the Calendar hierarchy is the last dimension value in the hierarchy
dimension, this means that you need to define a valueset in order to get the correct
results for the Fiscal hierarchy.

First, use the following statements to define and populate a valueset.

DEFINE time.vs VALUESET time
LIMIT time.vs TO 'Calendar' 'Fiscal'

AGGMAP

$AGGMAP to AGGMAP 6-59

You can then use the valueset in the following RELATION statement. Because the
Fiscal hierarchy is the last hierarchy in the valueset, the data that is aggregated will
be accurate for the Fiscal hierarchy.

RELATION time.r(time.vs) PRECOMPUTE ('Yr99', 'Yr00')

Example 6–29 Aggregating with a RELATION Statement That Uses an ARGS Keyword

You can list the arguments in a RELATIION statement directly in the statement or as
the value of a text variable. For example, the following statement specifies
WEIGHTBY wobj as an argument.

RELATION time.r OPERATOR wsum ARGS WEIGHTBY wobj

Alternatively, you can define an variable for the argument whose value is the text of
the WEIGHTBY clause.

DEFINE argvar TEXT
argvar = 'WEIGHTBY wobj'

Then the RELATION statement can specify the text variable that contains the
WEIGHTBY clause.

RELATION time.r OPERATOR WSUM ARGS argvar

Example 6–30 Aggregating Using a Measure Dimension

Suppose you want to use a single AGGREGATE command to aggregate the sales,
units, price, and inventory variables. When you want to use the same
operator for each variable, then you do not need to use a measure dimension.
However, when you want to specify different aggregation operations, then you
need to use a measure dimension.

The following statement defines a dimension named measure.

DEFINE measure DIMENSION TEXT

You can then use a MAINTAIN statement to add dimension values to the measure
dimension.

MAINTAIN measure ADD 'sales', 'units', 'quota', 'inventory'

Use the measure dimension to dimension a text variable named meas.opvar that
you will use as the operator variable.

DEFINE meas.opvar TEXT WIDTH 2 <measure>

AGGMAP

6-60 Oracle OLAP DML Reference

The following statements add values to OPVAR

meas.opvar (measure 'sales') = 'SU'
meas.opvar (measure 'units') = 'SU'
meas.opvar (measure 'price') = 'HA'
meas.opvar (measure 'inventory') = 'HL'

The aggregation specification might look like the following. Note that when you
specify an operator variable in a RELATION statement, you must include a
MEASUREDIM statement that specifies the name of the measure dimension
(measure in the following example) in the aggregation specification.

DEFINE opvar.aggmap AGGMAP
AGGMAP
RELATION geography.parentrel PRECOMPUTE (geography.lvldim 2 4)
RELATION product.parentrel OPERATOR opvar
RELATION channel.parentrel OPERATOR opvar
RELATION time.parentrel OPERATOR opvar
MEASUREDIM measure
END

Example 6–31 Aggregating Using a Line Item Dimension

Suppose you have two variables, actual and budget, that have these dimensions.

<time line division>

You want to use different methods to calculate different line items. You create a text
variable that you will use as the operator variable.

DEFINE line.opvar TEXT WIDTH 2 <line>

You then populate line.opvar with the appropriate operator for each line item,
for example:

line.opvar (line 'Net.Income') = 'SU'
line.opvar (line 'Tax.Rate') = 'AV'

The aggregation specification might look like this.

DEFINE LINE.AGGMAP AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR line.opvar
RELATION division.parentrel
END

AGGMAP

$AGGMAP to AGGMAP 6-61

Example 6–32 Skip-Level Aggregation

Suppose you want to aggregate sales data. The sales variable is dimensioned by
geography, product, channel, and time.

First, consider the hierarchy for each dimension. How many levels does each
hierarchy have? What levels of data do users typically query? When you are
designing a new workspace, what levels of data do your users plan to query?

Suppose you learn the information described in the following table about how users
tend to query sales data for the time hierarchy.

While the next table shows how your users tend to query sales data for the
geography hierarchy.

Finally, the next table shows how your users tend to query sales data for the
product dimension hierarchy.

Time Level
Names

Descriptive
Level Name

Examples of Dimension
Values

Do users query this
level often?

L1 Year Year99, Year00 yes

L2 Quarter Q3.99, Q3.99, Q1.00 yes

L3 Month Jan99, Dec00 yes

Geography
Level Names

Descriptive
Level Name Examples of Dimension Values

Do users query this
level often?

L1 World World yes

L2 Continent Europe, Americas no

L3 Country Hungary, Spain yes

L4 City Budapest, Madrid yes

Product Level
Names

Descriptive
Level Name

Examples of Dimension
Values

Do users query
this level often?

L1 All Products Totalprod yes

L2 Division Audiodiv, Videodiv yes

L3 Category TV, VCR yes

L4 Product Tuner, CDplayer yes

AGGMAP

6-62 Oracle OLAP DML Reference

Using this information about how users query data, you should use the following
strategy for aggregation:

■ Fully aggregate time and product because all levels are queried frequently.

■ For the geography dimension, aggregate data for L1 (World) and L3
(Country) because they are queried frequently. However, L2 is queried less
often and so can be calculated on the fly.

The lowest level of data was loaded into the analytic workspace. The aggregate data
is calculated from this source data.

Therefore, the aggregation specification might look like the following.

RELATION time.parentrel
RELATION geography.parentrel PRECOMPUTE (geog.leveldim 'L3' 'L1')
RELATION product.parentrel

Example 6–33 Aggregation Specification with RELATION Statements That Include
PRECOMPUTE Clauses

This aggregation specification uses PRECOMPUTE clauses in the RELATION
statements to limit the data that is aggregated by the AGGREGATE command.

DEFINE gpct.aggmap AGGMAP
LD Aggmap for sales, units, quota, costs
AGGMAP
RELATION geography.parentrel PRECOMPUTE (geography.levelrel 'L3')
RELATION product.parentrel PRECOMPUTE (LIMIT(product complement 'TotalProd'))
RELATION channel.parentrel
RELATION time.parentrel PRECOMPUTE (time NE '2001')
END

AGGMAP

$AGGMAP to AGGMAP 6-63

AGGINDEX

Within an aggregation specification, an AGGINDEX statement in an aggregation
specification tells Oracle OLAP whether the compilation of that aggmap should
create indexes (meaning, composite tuples) for data cells that are calculated on the
fly by the AGGREGATE function. Therefore, the AGGINDEX statement has an
effect on a dimension that is included in a composite but it has no effect on a
dimension that is not included in a composite.

These indexes are used in the MODEL (in an aggregation) statement and in
statements that use the ACROSS phrase to help Oracle OLAP loop over variables
that are dimensioned by composites. These statements expect all data to be
calculated. When you specify calculating some data on the fly, that data appears to
be missing. When you set AGGINDEX to YES, then the statements try to access the
missing data whether or not you are using the AGGREGATE function to perform
calculation on the fly (meaning, you have added to the variable whose data is being
aggregated an NA trigger property that calls the AGGREGATE function).

When the indexes have been created and you use AGGREGATION with the
AGGREGATE function, then when MODEL (or a statement that uses the ACROSS
phrase) requests the missing data, that data is calculated on the fly. That means that
the results of the MODEL (or other statement) are correct, because the statement has
all of the data that it needs.

When these indexes have not been created, then the missing data cannot be
calculated. As a result, the statements that need the indexes interpret the missing
data as NA data, even when you use the AGGREGATE function.

Syntax
AGGINDEX {YES|NO}

Arguments

YES
Tells the AGGMAP compiler to make sure that all possible indexes are created
whenever an aggmap is recompiled. In other words, indexes are created both for the
data that is being pre-calculated and the data that is calculated on the fly. This
happens when you use a COMPILE statement to compile the aggmap, as well as
when the AGGREGATE command automatically compiles an aggmap whose
specification has changed since the last time it was compiled. The creation of all

AGGINDEX

6-64 Oracle OLAP DML Reference

possible indexes results in a longer compilation time but faster execution of the
AGGREGATE function. (Default)

NO
Does not create the indexes for data that is calculated on the fly. Omitting the
creation of these index values accelerates the compilation time, but causes Oracle
OLAP to treat the uncomputed data as NA data whenever the MODEL (in an
aggregation) statement or the ACROSS phrase is used.

Notes

When You Should Use an AGGINDEX Value of YES
The primary advantage to using an AGGINDEX value of YES is that then Oracle
OLAP always try to access data that you have specified to be calculated on the fly.
When you have created an $NATRIGGER property for a variable that calls the
AGGREGATE function, the variable appears to have been fully precomputed. That
means that when any NA value is encountered, the NA trigger is called during a
MODEL (in an aggregation) statement or a statement using the ACROSS phrase.
When the NA trigger is called, the AGGREGATE function is executed, and the data
is calculated on the fly.

When AGGINDEX has a value of NO, then the NA trigger is called only to aggregate
data for dimensions that are not included in a composite. Data for dimensions that
are included in composites is interpreted as NA values.

For example, suppose you have two variables called sales1 and sales2, which
are defined with the following definitions.

DEFINE sales1 DECIMAL <time, SPARSE <product, geography>>
DEFINE sales2 DECIMAL <time, SPARSE <product, geography>>

Now suppose you have an aggmap object named sales.agg, which has the
following definition.

DEFINE sales.agg AGGMAP <time, SPARSE <product, geography>>

When you add a specification to the sales.agg aggmap, you enter RELATION
(for aggregation) statements for time, product and geography with
PRECOMPUTE clauses that specify NA. This specifies that no data is

AGGMAP

$AGGMAP to AGGMAP 6-65

aggregated—instead, all of the data for any variable that uses this aggmap is
calculated on the fly.

RELATION time.r PRECOMPUTE (NA)
RELATION product.r PRECOMPUTE (NA)
RELATION geography.r PRECOMPUTE (NA)

Now attach the following $NATRIGGER property to the sales1 variable.

CONSIDER sales1
PROPERTY '$NATRIGGER' 'AGGREGATE(sales1 USING sales.agg)'

Consider the effect of AGGINDEX in the following statement. Because you did not
enter an AGGINDEX statement in the sales.agg aggregation specification, the
default of AGGINDEX YES is assumed.

sales2 = sales1 ACROSS SPARSE <product, geography>

This statement loops over the data in sales1 and copies the values into sales2.
This statement causes the NA trigger to call the AGGREGATE function for all of the
data that you have specified to be calculated on the fly in sales1. This means that
after the aggregation that sales2 contains a copy of sales1 plus all the aggregate
data cells (the cells that would have been calculated if the sales1 data had been
completely precomputed, meaning, fully rolled up).

However, when you put an AGGINDEX NO statement in the sales.agg
aggregation specification, then sales2 contains a copy of the data in sales1 and
the aggregate data cells for the time dimension.

Note that in both cases, $NATRIGGER is called to aggregate time data, because the
time dimension is not included in the composite, so the value of AGGINDEX has
no effect on it.

When You Should Use an AGGINDEX Value of NO
You can use an AGGINDEX value of NO when you know that either of the following
is true:

■ Your application does not use a MODEL (in an aggregation) statement or an
ACROSS phrase.

■ The results of your MODEL (in an aggregation) statement or ACROSS phrase
are additive, and data that needs to be aggregated can be calculated safely on
the fly.

AGGINDEX

6-66 Oracle OLAP DML Reference

Each of the preceding cases ensures that the data that you have specified to be
calculated on the fly is available at the appropriate time.

By setting AGGINDEX to NO, the size of the indexes is reduced, and overall
application performance improves.

When Using an AGGINDEX Value Of NO Causes Problems
When you run a MODEL that assumes all data that should be aggregated has been
aggregated, then you may get NA data where real data should occur. For instance,
suppose you have a variable that has a composite that includes the time
dimension. You perform a calculation that subtracts the fourth quarter from the
total for the year. When the value of Year is to be calculated dynamically, and the
AGGINDEX statement is set to NO, then the result of the calculation is NA. When the
value of Year was precomputed or when AGGINDEX is set to YES, then the
MODEL correctly calculates a result equal to the sum of the first three quarters.

Index Creation Is Based on Existing Data
Only the indexes that are needed to aggregate existing data are created when
AGGINDEX has a value of YES. For example, suppose one of the dimensions in
your composite is a dimension named time. The lowest-level data for the time
dimension is at the monthly level. Therefore, the dimension values that are
associated with the lowest-level data are Jan99, Feb99, and so on. The monthly
data aggregates to quarters and to years. Suppose you have data for the first six
months of the year. When AGGINDEX has a value of YES, indexes are created for
the Q1, Q2, and Yr99 dimension values, but not for Q3 and Q4.

Reducing Compilation Time When AGGINDEX is YES
One disadvantage of using the default of AGGINDEX YES is that the compilation of
the aggmap takes a longer time to complete. You can eliminate the cost of this extra
time by using the FUNCDATA keyword with the AGGREGATE command. When you
use the FUNCDATA keyword, all possible indexes (regardless of how you have
limited your data) are created. However, do not use the FUNCDATA keyword when
you use a different aggmap to execute the AGGREGATE command and the
AGGREGATE function.

Examples
For an example of using an AGGINDEX statement, see Example 6–20, "Using an
AGGINDEX Statement in an Aggregation Specification" on page 6-48.

AGGMAP

$AGGMAP to AGGMAP 6-67

BREAKOUT DIMENSION

Within an aggregation specification, a BREAKOUT DIMENSION statement
specifies how a dimension of the target variable maps to one or more dimensions of
the source variable. You use this statement in an aggregation specification when you
will be aggregating the detail data from one variable (the source variable) into
another variable (the target variable) that has a different dimension (that is, a
"breakout" dimension) than the variable that contains the detail data.

Syntax
BREAKOUT DIMENSION dimname BY relationname [, relationname...] -

OPERATOR operation [ARGS argument]

where:

argument specifies the settings of various options and is one or more of the following
phrases:

DIVIDEBYZERO {YES|NO}
DECIMALOVERFLOW {YES|NO}
NASKIP {YES|NO}
WEIGHTBY [WNAFILL {number|NA}] wobj

Arguments

dimname
The name of a dimension in the variable that contains the detail data (that is, the
source variable).

relationname
The name of a relation whose values relate a dimension of the target variable to
dimname.

OPERATOR
Identifies the calculation method used to aggregate the data.

operation
A keyword that describes the type of aggregation to perform. The keywords are
listed in Table 6–3, " Aggregation Operators" on page 6-83.

BREAKOUT DIMENSION

6-68 Oracle OLAP DML Reference

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero.

YES allows division by zero; a statement involving division by zero executes
without error but produces NA results.

NO disallows division by zero; a statement involving division by zero stops
executing and produces an error message.

The default value is the current value of the DIVIDEBYZERO option.

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion
of the numerical representation.

YES allows overflow; a calculation that generates overflow executes without error
and produces NA results.

NO disallows overflow; a calculation involving overflow stops executing and
generates an error message.

The default value is the current value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input.

YES specifies that NA values are ignored when aggregating. Only actual values are
used in calculations.

NO specifies that NA values are considered when aggregating. When any of the
values being considered are NA, the calculation returns NA.

The default value is the current value of the NASKIP option.

The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and can optionally include the WNAFILL

AGGMAP

$AGGMAP to AGGMAP 6-69

keyword. For more information about the use of the WEIGHTBY phrase, see
RELATION (for aggregation).

WNAFILL
Indicates handling for NA values. The default values for WNAFILL vary depending
on the value of operation.

number
Substitutes a number for every NA value. That number will replace every NA value
in the weight object, weight formula, or weight relation.

■ 0.0 is the default for HWAVERAGE and SSUM.

■ 1.0 is the default for HWFIRST, HWLAST, WAVERAGE, WFIRST, WLAST, and
WSUM.

NA
Specifies that NA values are to be specified as NA. NA is the default for OR.

For more information about using the WNAFILL phrase, see RELATION (for
aggregation).

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric
or BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE
has a weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the of the variable being aggregated. When wobj
is a relation, it should be a one-dimensional self-relation. For more information
about specifying values for wobj, see RELATION (for aggregation).

Examples
For an example of using the BREAKOUT DIMENSION statement, see
Example 6–21, "Aggregating By Dimension Attributes" on page 6-49.

CACHE

6-70 Oracle OLAP DML Reference

CACHE

Within an aggregation specification, a CACHE statement tells Oracle OLAP
whether to cache or store the calculated data, whether to populate leaf or detail data
when the variable data is aggregated using detail data from another variable, and
whether to cache NA values when a summary values calculates to NA.

Syntax
CACHE {NOSTORE|NONE|STORE|SESSION|DEFAULT} [LEAF|NOLEAF] [NA|NONA]

Arguments

NONE
NOSTORE
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP calculates the data each time the AGGREGATE function executes. When you
specify either of these keywords, Oracle OLAP does not store or cache the data
calculated by the AGGREGATE function.

STORE
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP stores data calculated by the AGGREGATE function in the variable in the
database. When you specify this option, the results of the aggregation are
permanently stored in the variable when the analytic workspace is updated and
committed.

SESSION
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP caches data calculated by the AGGREGATE function in the session cache (see
"What is an Oracle OLAP Session Cache?" on page 21-54). When you specify this
option, the results of the aggregation are ignored during updates and commits and
are discarded at the end of the session.

Note: The CACHE statement is only one factor that determines
whether variable data that has been aggregated on-the-fly using the
AGGREGATE function is stored or cached. See "How Oracle OLAP
Determines Whether to Store or Cache Aggregated Data" on
page 6-23.

AGGMAP

$AGGMAP to AGGMAP 6-71

DEFAULT
For data that is calculated using the AGGREGATE function, specifies that you do
not want Oracle OLAP to use the CACHE statement when determining what to do
with data that is calculated by the AGGREGATE function. See "How Oracle OLAP
Determines Whether to Store or Cache Aggregated Data" on page 6-23. (Default)

LEAF
When the variable data is aggregated using detail data from another variable,
specifies that Oracle OLAP calculates the leaf data for the variable.

NOLEAF
When the variable data is aggregated using detail data from another variable,
specifies that Oracle OLAP does not calculate the leaf data for the variable.

NA
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP places any NA values that are the results of the execution of the AGGREGATE
function in the Oracle OLAP session cache. In this case, when there is a variable has
an $NATRIGGER property with an AGGREGATE function as its expression, Oracle
OLAP does not recalculate the values for the variable. (For more information on the
caching NA values, see "How Oracle OLAP Determines Whether to Store or Cache
Results of $NATRIGGER" on page 6-21.)

NONA
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP does not cache any NA values that are the results of the execution of the
AGGREGATE function. In this case, when a variable has an $NATRIGGER property
with an AGGREGATE function as its expression, Oracle OLAP recalculates the
values for the variable.

Note: When SESSCACHE is set to NO, Oracle OLAP does not
cache the data even when you specify SESSION. In this case,
specifying SESSION is the same as specifying NONE.

CACHE

6-72 Oracle OLAP DML Reference

Notes

When to Use NOSTORE
You should use NOSTORE when you know that your users are likely to modify
pre-computed data, and you want any data that calculated by the AGGREGATE
function to consistent with any of those users' changes.

In other words, suppose a user makes a change to detail-level data, such as sales
figures for three stores, which are in a geography dimension. The geography
dimension rolls up data from stores to cities to states to regions to countries. In
other words, there are five levels in the geography dimension's hierarchy. Now
suppose that users tend to access data only at the store level (your detail data), the
regions level, and the countries level. Those are the levels for which you roll up
sales data and commit it to the database. Because users do not access data at the city
and state level, you specify that the data cells in those two levels will be calculated
on the fly. When users modify the store-level data and then access city data, the city
data will be calculated every time that a user requests it. Therefore, any changes
that a user makes to the store-level details will accurately rollup to the city and state
level every time that user accesses a data cell in the city or state level. (However,
this will not be true of the data in the region and country levels, because those cells
store pre-computed data.)

When to Use STORE or SESSION
The advantage to using STORE or SESSION is that it improves query performance.
For example, suppose your users use a Table tool to look at a variable's data and an
individual user requests the same data cells several times in the same session. When
you use the default of NOSTORE, then any data that is not aggregated using the
AGGREGATE command will have to be calculated every time the user requests that
data even if you do not use the FORECALC keyword in the AGGREGATE function.
On the other hand, when you use STORE or SESSION, then any given cell of data is
calculated only once because it is available in either the variable or the cache for the
entire session. Therefore, the next time a user requests that data cell, the data is
returned from the variable or the cache instead of being calculated on the fly, which
results in faster query time for the user.

Frequently you do not want the data that is calculated using the AGGREGATE
function to be stored permanently in the database since that would defeat the
purpose of calculating data on the fly.

■ To ensure that the aggregated values cannot be permanently committed to the
database, use SESSION.

AGGMAP

$AGGMAP to AGGMAP 6-73

■ Use STORE when you know either of the following is true which also ensures
that the data that is calculated on the fly using the AGGREGATE function will
not be committed to the database:

■ The users of the analytic workspace can only open it as read-only

■ You know that the users of the analytic workspace will not or cannot issue
UPDATE and COMMIT commands.

Examples
For examples of using a CACHE statement in an aggregation specification, see
Example 6–22, "Using a CACHE Statement in an Aggregation Specification" on
page 6-52 and Example 6–23, "Populating All Levels of a Hierarchy Except the
Detail Level" on page 6-53.

Note: You should use STORE with caution when it is likely that
your users modify pre-computed data, and they access data that
you have specified to be calculated on the fly using the
AGGREGATE function. The problem is that any data that is
calculated using the AGGREGATE function before the user's
modification will not reflect the user's change unless the user made
the change using an AGGREGATE function with the FORCECALC
keyword.

DIMENSION (for aggregation)

6-74 Oracle OLAP DML Reference

DIMENSION (for aggregation)

Within an aggregation specification, a DIMENSION statement sets the status to a
single value of a dimension. When an aggregation specification does not specify
such single values with DIMENSION statements, Oracle OLAP uses the current
status values of the dimensions when performing the aggregation.

You use a DIMENSION statement to ensure that the status of a dimension is set to
the value that you want it to have for the aggregation. You must use a separate
DIMENSION statement for each dimension that is not shared by the source, basis,
and target objects.

Syntax
DIMENSION dimension 'dimval'

Arguments

dimension
the name of the dimension that you want to limit.

dimval
The single value of the dimension to which you want the status of the dimension set
for the duration of an aggregation.

AGGMAP

$AGGMAP to AGGMAP 6-75

DROP DIMENSION

Within an aggregation specification, a DROP DIMENSION statement specifies how
non-hierarchical aggregation across variables is performed. You use this statement
in aggregation specification when you will be aggregating the detail data from one
variable (the source variable) into another variable (the target variable) and you
want to aggregate across a non-hierarchical dimension of the source variable. In this
case, the target variable has one less dimension (the "dropped" dimension) than the
source variable because the values of the source variable associated with this
dimension are aggregated to populate the target variable.

Syntax
DROP DIMENSION dimname [VALUES {valsetname|ALL} OPERATOR operation [ARGS argument]

where

argument is one or more of the following phrases:

DIVIDEBYZERO {YES|NO}

DECIMALOVERFLOW {YES|NO}

NASKIP {YES|NO}

WEIGHTBY [WNAFILL {number|NA}] wobj

Arguments

dimname
The name of a dimension in the source variable that contains the detail data.

VALUES
Sets the status of dimname during the aggregation.

valsetname
The name of a valueset object that determines the status of the dimension specified
by dimname.

ALL
Specifies that all of the values of dimname are in status.

OPERATOR
Identifies the calculation method used to aggregate the data.

DROP DIMENSION

6-76 Oracle OLAP DML Reference

operation
A keyword that describes the type of aggregation to perform. The keywords are
listed in Table 6–3, " Aggregation Operators" on page 6-83.

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero.

YES allows division by zero; a statement involving division by zero executes
without error but produces NA results.

NO disallows division by zero; a statement involving division by zero stops
executing and produces an error message.

The default value is the current value of the DIVIDEBYZERO option.

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion
of the numerical representation.

YES allows overflow; a calculation that generates overflow executes without error
and produces NA results.

NO disallows overflow; a calculation involving overflow stops executing and
generates an error message.

The default value is the current value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input.

YES specifies that NA values are ignored when aggregating. Only actual values are
used in calculations.

NO specifies that NA values are considered when aggregating. When any of the
values being considered are NA, the calculation returns NA.

The default value is the current value of the NASKIP option.

The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

AGGMAP

$AGGMAP to AGGMAP 6-77

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and can optionally include the WNAFILL
keyword. For more information about the use of the WEIGHTBY phrase, see
RELATION (for aggregation).

WNAFILL
Indicates handling for NA values. The default values for WNAFILL vary depending
on the value of operation. For more information about using the WNAFILL phrase,
see RELATION (for aggregation).

number
Substitutes a number for every NA value. That number will replace every NA value
in the weight object, weight formula, or weight relation.

■ 0.0 is the default for HWAVERAGE and SSUM.

■ 1.0 is the default for HWFIRST, HWLAST, WAVERAGE, WFIRST, WLAST, and
WSUM.

NA
Specifies that NA values are to be specified as NA. NA is the default for OR.

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric
or BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE
has a weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the of the variable being aggregated. When wobj
is a relation, it should be a one-dimensional self-relation. For more information
about specifying values for wobj,, see RELATION (for aggregation).

Examples
For an example of using a DROPT DIMENSION statement in an aggregation
specification, see Example 6–24, "Aggregating into a Different Variable" on
page 6-54.

MEASUREDIM (for aggregation)

6-78 Oracle OLAP DML Reference

MEASUREDIM (for aggregation)

Within an aggregation specification, a MEASUREDIM statement identifies the name
of a measure dimension that is specified in the definition of an operator variable or
an argument variable.

Syntax
MEASUREDIM name

Arguments

name
The name of the measure dimension. A measure dimension is a dimension that you
define. The dimension values are names of existing variables.

Notes

Defining a Measure Dimension
The following statement defines a dimension named MEASURE.

DEFINE measure DIMENSION TEXT

Populating a Measure Dimension
Once you have defined a measure dimension, you can then use a MAINTAIN
statement to add dimension values to the MEASURE dimension.

The following statement adds the names of the sales, units, price, and
inventory variables to measure as its dimension values.

MAINTAIN measure ADD 'sales', 'units', 'price', 'inventory'

Note: You cannot specify a measure dimension when it is
included in the definition of the aggmap object.

AGGMAP

$AGGMAP to AGGMAP 6-79

Using a Measure Dimension with an Operator Variable
The purpose of using measure dimensions is to take advantage of the flexibility of
using non-additive aggregation operators. You can use measure dimensions in the
definition of operation variables or argument variables.

The following statements show how to define an operator variable named opvar
and populate it.

DEFINE opvar TEXT <measure>
opvar (measure 'sales') = 'SUM'
opvar (measure 'inventory') = 'HLAST'

Examples
For an example of an aggregation specification that includes a MEASUREDIM
statement, see Example 6–25, "Using a MEASUREDIM Statement in an Aggregation
Specification" on page 6-56.

MODEL (in an aggregation)

6-80 Oracle OLAP DML Reference

MODEL (in an aggregation)

Within an aggregation specification, a MODEL statement executes a predefined
model.

Syntax
MODEL modelname [PRECOMPUTE ALL|NA]

Arguments

modelname
A text expression that contains the name of a predefined MODEL object.

PRECOMPUTE ALL
Specifies that the AGGREGATE command will execute the model as a data

maintenance step. The following conditions must be met:

■ Any RELATION (for aggregation) or MODEL statements that precede it in the
aggregation specification must also be specified as PRECOMPUTE ALL.

■ Any RELATION (for aggregation) or MODEL statements that follow it in the
aggregation specification can either be specified as PRECOMPUTE ALL or
PRECOMPUTE NA.

PRECOMPUTE NA
Specifies that the AGGREGATE function will execute the model at runtime. The
following conditions must be met for runtime execution of the model:

■ All RELATION (for aggregation) statements in the aggregation specification
must appear before the MODEL statements specified as PRECOMPUTE NA.

■ Any additional MODEL statements that follow it in the aggregation
specification must also be specified as PRECOMPUTE NA.

Notes

Adding a Model to an An Aggregation Specification
You add a model to an aggregation specification using an AGGMAP ADD
statement.

AGGMAP

$AGGMAP to AGGMAP 6-81

Examples
For an example of using a model in an aggregation specification, see Example 6–26,
"Solving a Model in an Aggregation" on page 6-57.

RELATION (for aggregation)

6-82 Oracle OLAP DML Reference

RELATION (for aggregation)

Within an aggregation specification, a RELATION statement specifies how data is
aggregated across a hierarchical dimension. Frequently, an aggregation specification
contains one RELATION statement for each of the hierarchical dimensions of a
variable.

Syntax
RELATION rel-name [(valueset...)] -

[PRECOMPUTE (dimension-values | valueset2 | ALL | {NA | NONE}] -

[OPERATOR {operation|opvar}] -

[PARENTALIAS dimension-alias-name] -

[ARGS {argument|argsvar}]

where

argument is one of the following phrases:

DIVIDEBYZERO {YES|NO}

DECIMALOVERFLOW {YES|NO}

NASKIP {YES|NO}

WEIGHTBY [WNAFILL {number|NA}] wobj

argsvar is a text variable that contains argument phrases for some or all dimension
values.

Arguments

rel-name
A relation that defines a hierarchy by identifying the parent of every dimension
value in a hierarchy.

valueset
Sets the status of one or more dimensions for the duration of the aggregation. It
overrides the current status.

AGGMAP

$AGGMAP to AGGMAP 6-83

PRECOMPUTE
Indicates dimension values for which data should be precalculated with the
AGGREGATE command.

dimension-values
A list of one or more values of dimension.

valueset2
The name of a valueset object. When you include this argument, only data that is
dimensioned by the dimension values in the valueset should be precalculated with
the AGGREGATE command. The rest of the values can be calculated on the fly.

Note that the current status of a dimension can also limit the data that is
precalculated. See the AGGREGATE command for details.

ALL
Specifies that data should be precalculated for all dimension values.

NA
NONE
Specifies that all values should be calculated on the fly (that is, that no data should
be precalculated with the AGGREGATE command).

OPERATOR
Identifies the calculation method used to aggregate the data.

operation
A keyword that describes the type of aggregation to perform. The keywords are
listed in Table 6–3, " Aggregation Operators". You can specify a fixed-length
three-character abbreviation for the keywords by specifying only the first three
characters.

Table 6–3 Aggregation Operators

Keyword Description

SUM Adds data values. (Default)

SSUM (Scaled Sum) Adds the value of a weight object to each data value, then
adds the data values.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

RELATION (for aggregation)

6-84 Oracle OLAP DML Reference

WSUM (Weighted Sum) Multiplies each data value by a weight factor, then adds
the data values.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

AVERAGE Adds data values, then divides the sum by the number of data values that
were added together. When you use AVERAGE, there are special
considerations described in "Average Operators" on page 6-90.

HAVERAGE (Hierarchical Average) Adds data values, then divides the sum by the
number of the children in the dimension hierarchy. Unlike AVERAGE,
which counts only non-NA children, HAVERAGE counts all of the logical
children of a parent, regardless of whether each child does or does not
have a value.

This keyword is not affected by the setting of the NASKIP option for
argument.

WAVERAGE (Weighted Average) Multiplies each data value by a weight factor, adds
the data values, and then divides that result by the sum of the weight
factors.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

HWAVERAGE (Hierarchical Weighted Average) Multiplies non-NA child data values by
their corresponding weight values then divides the result by the sum of
the weight values. Unlike WAVERAGE, HWAVERAGE includes weight
values in the denominator sum even when the corresponding child
values are NA.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

This keyword is not affected by the setting of the NASKIP option for
argument.

FIRST The first non-NA data value.

HFIRST (Hierarchical First) The first data value that is specified by the hierarchy,
even when that value is NA.

This keyword is not affected by the setting of the NASKIP option for
argument.

WFIRST (Weighted First) The first non-NA data value multiplied by its
corresponding weight value.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

Table 6–3 (Cont.) Aggregation Operators

Keyword Description

AGGMAP

$AGGMAP to AGGMAP 6-85

HWFIRST (Hierarchical Weighted First) The first data value that is specified by the
hierarchy multiplied by its corresponding weight value, even when that
value is NA.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

This keyword is not affected by the setting of the NASKIP option for
argument.

LAST The last non-NA data value.

HLAST (Hierarchical Last) The last data value that is specified by the hierarchy,
even when that value is NA.

This keyword is not affected by the setting of the NASKIP option for
argument.

WLAST (Weighted Last) The last non-NA data value multiplied by its
corresponding weight value.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

HWLAST (Hierarchical Weighted Last) The last data value that is specified by the
hierarchy multiplied by its corresponding weight value, even when that
value is NA.

When you use this keyword, you must include the WEIGHTBY argument
keyword with a variable, formula, or relation as the weight object.

This keyword is not affected by the setting of the NASKIP option for
argument.

MAX The largest data value among the children of any parent data value.

MIN The smallest data value among the children of any parent data value.

AND When any child data value is FALSE, then the data value of its parent is
FALSE. A parent is TRUE only when all of its children are TRUE.
(BOOLEAN variables only)

OR When any child data value is TRUE, then the data value of its parent is
TRUE. A parent is FALSE only when all of its children are FALSE.
(BOOLEAN variables only)

NOAGG Do not aggregate any data for this dimension. Use this keyword only in
an operator variable. It has no effect otherwise.

Table 6–3 (Cont.) Aggregation Operators

Keyword Description

RELATION (for aggregation)

6-86 Oracle OLAP DML Reference

opvar
A text variable that specifies different the operation for each of its dimension values.
The opvar argument is used in two ways:

■ Measure dimension -- Changes the aggregation method depending upon the
variable being aggregated. This is useful when a single aggmap is used to
aggregate several variables that need to be aggregated with different methods.
Whether you pre-aggregate all of the measures in a single AGGREGATE
command or in separate statements, AGGREGATE uses the operation variable
to identify the calculation method. The values of the measure dimension are the
names of the variables to be aggregated. It dimensions a text variable whose
values identify the operation to be used to aggregate each measure. The
aggregation specification must include a MEASUREDIM (for aggregation)
statement that identifies the measure dimension. See Example 6–30,
"Aggregating Using a Measure Dimension" on page 6-59.

■ Line item dimension -- Changes the aggregation method depending upon the
line item being aggregated. The line item dimension is typically
non-hierarchical and identifies financial allocations. The line item dimension is
used both to dimension the data variable and to dimension a text variable that
identifies the operation to be used to aggregate each item. The operation
variable is typically used to aggregate line items over time. You do not use the
MEASUREDIM (for aggregation) statement in the aggmap. See Example 6–31,
"Aggregating Using a Line Item Dimension" on page 6-60.

The opvar argument cannot be dimensioned by the dimension it is used to
aggregate. For example, when you want to specify different operations for the
geography dimension, then opvar cannot be dimensioned by geography.

To minimize the amount of paging for the operator variable, define the operation
variable as type of TEXT with a fixed width of 8.

PARENTALIAS
Specifies that an alias dimension for the dimension being aggregated is QDRd to the
parent value currently being aggregated.

dimension-alias-name
The name of the alias dimension for the dimension of rel-name.

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero.

AGGMAP

$AGGMAP to AGGMAP 6-87

YES allows division by zero; a statement involving division by zero executes
without error but produces NA results.

NO disallows division by zero; a statement involving division by zero stops
executing and produces an error message.

The default value is the current value of the DIVIDEBYZERO option.

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion
of the numerical representation.

YES allows overflow; a calculation that generates overflow executes without error
and produces NA results.

NO disallows overflow; a calculation involving overflow stops executing and
generates an error message.

The default value is the current value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input.

YES specifies that NA values are ignored when aggregating. Only actual values are
used in calculations.

NO specifies that NA values are considered when aggregating. When any of the
values being considered are NA, the calculation returns NA.

The default value is the current value of the NASKIP option.

The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and can optionally include the WNAFILL
keyword. It can also include several other deprecated keywords (see "Deprecated
WEIGHTBY Keywords" on page 6-92 for details).

RELATION (for aggregation)

6-88 Oracle OLAP DML Reference

WNAFILL {number|NA}
Indicates handling for NA values. The default values for WNAFILL vary depending
on the value of operation:

■ 0.0 is the default for HWAVERAGE and SSUM.

■ 1.0 is the default for HWFIRST, HWLAST, WAVERAGE, WFIRST, WLAST, and
WSUM.

■ NA is the default for OR.

number substitutes a number for every NA value. That number will replace every
NA value in the weight object, weight formula, or weight relation.

NA specifies that NA values are to be specified as NA.

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric
or BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE
has a weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the of the variable being aggregated. When wobj
is a relation, it should be a one-dimensional self-relation. See "Working with Weight
Objects" on page 6-93 for more information about specifying values for wobj.

argsvar
A text variable that contains the argument options for some or all dimension values.

Notes

Specifying the Precomputed Data
The PRECOMPUTE clause of the RELATION statement limits the data that is
aggregated by the AGGREGATE command. In its simplest form, you can think of
the PRECOMPUTE clause as working like a LIMIT dimension TO statement. Notice
that the default limit is on the dimension, which is not explicitly named in the
RELATION statement.

Important: Be aware that WNAFILL defaults for each operator in
an aggregation specification. In other words, when one RELATION
statement includes a WSUM OPERATOR, then WNAFILL defaults
to 1.0. When the next RELATION statement includes an SSUM
OPERATOR, then WNAFILL defaults to 0.0, and so on. See "Using
WNAFILL" on page 6-94.

AGGMAP

$AGGMAP to AGGMAP 6-89

For example, this LIMIT statement selects the Audiodiv, Videodiv, and Accdiv
values of the product dimension:

LIMIT product TO 'Audiodiv' 'Videodiv' 'Accdiv'

The equivalent RELATION statement looks like this:

RELATION product.parentrel PRECOMPUTE ('Audiodiv' 'Videodiv' 'Accdiv')

Two Ways to use Valuesets
You can use valuesets in two different ways.

■ You can use a valueset to limit hierarchy dimensions. You can limit which
hierarchies will be used by the AGGREGATE command and AGGREGATE
function, as well as the order in which these hierarchies should be used. The
valueset that you use specifies the names of a dimension's hierarchies. To use a
valueset in this way, use the following syntax.

RELATION rel-name (valueset)

In this case, using valuesets provides a way to manage hierarchies that are in
conflict with each other, meaning, when the same dimension value stores data
for different children in different hierarchies (such as, Q1 stores data for Jan,
Feb, and Mar in the Calendar hierarchy, but Q1 stores data for May, Jun, and
Jul in the Fiscal hierarchy).

■ You can use a valueset to specify which values should be calculated on the fly
by the AGGREGATE function and which values should be pre-calculated by the
AGGREGATE command. The valueset that you use specifies the names of
dimension values. To use a valueset in this way, use the following syntax.

RELATION rel-name PRECOMPUTE (valueset)

In this case, you use the valueset that follows the PRECOMPUTE keyword.

When you use valuesets to limit hierarchy dimensions, you must also use the
FORCECALC keyword in the AGGREGATE function when using more than
one aggmap and the hierarchies are inconsistent.

When You Change a PRECOMPUTE or an OPERATOR Clause
Any time you make changes to a PRECOMPUTE or an OPERATOR clause, you
should aggregate the variable data again and recompile the aggmap in order to
produce accurate data.

RELATION (for aggregation)

6-90 Oracle OLAP DML Reference

Aggregating Data Loaded into Different Hierarchy Levels
When data is loaded into dimension values that are at different levels of a hierarchy,
then you need to be careful in how you set status in the PRECOMPUTE clause in a
RELATION statement in your aggregation specification.

Suppose that a time dimension has a hierarchy with three levels: months aggregate
into quarters, and quarters aggregate into years. Some data is loaded into month
dimension values, while other data is loaded into quarter dimension values. For
example, Q1 is the parent of January, February, and March. Data for March is
loaded into the March dimension value. But the sum of data for January and
February is loaded directly into the Q1 dimension value. In fact, the January
and February dimension values contain NA values instead of data. Your goal is to
add the data in March to the data in Q1.

When you attempt to aggregate January, February, and March into Q1, the data
in March will simply replace the data in Q1. When this happens, Q1 will only
contain the March data instead of the sum of January, February, and March.

To aggregate data that is loaded into different levels of a hierarchy, create a valueset
for only those dimension values that contain data.

DEFINE all_but_q4 VALUESET time
LIMIT all_but_q4 TO ALL
LIMIT all_but_q4 REMOVE 'Q4'

Within the aggregation specification, use that valueset to specify that the detail-level
data should be added to the data that already exists in its parent, Q1, as shown in
the following statement.

RELATION time.r PRECOMPUTE (all_but_q4)

Average Operators
There are a number of issues involved in using the AVERAGE, HAVERAGE,
WAVERAGE, and HWAVERAGE operators:

■ Accuracy of when averaging—All decimal data is converted to floating point
format, both for storing and for calculations, consequently, in some cases, an
average aggregation computed on a DECIMAL or SHORTDECIMAL variable
can differ in the least significant digits from a result you compute by hand. For
this reason, you might want to use the NUMBER data type when accuracy is
more important than computational speed, such as variables that contain
currency amounts. See "Numeric Expressions" on page 3-11 for more
information.

AGGMAP

$AGGMAP to AGGMAP 6-91

■ Using Average operators when aggregating using an AGGREGATE
Function—When you use an average operator in an aggregation specification
that used by an AGGREGATE function, you must specify that you want Oracle
OLAP to count the number of leaf nodes that contributed to an aggregate value
when the AGGREGATE function executes. You can specify this behavior in
either of the following ways:

■ Create $COUNTVAR properties for the variables that use the aggregation
specification with a RELATION statement with an average operator.

■ Include the COUNTVAR keyword in the AGGREGATE command with an
integer variable as its weight object when you use the specification to
aggregate data.

■ Using Average operators when aggregating using an AGGREGATE
Command—When you use an average operator with the PRECOMPUTE
keyword, the best practice is to use variables that have a decimal or NUMBER
data type in order to ensure the accuracy of the results.

■ Using Average operators for partial aggregations—When you use an average
operator in a partial aggregation, then you must always use the same integer
variable with the COUNTVAR keyword in the AGGREGATE commands. Do
not change the values that are stored in the integer variable between
AGGREGATE commands. Finally, the number of integer variables that you use
with COUNTVAR must match the number of variables that are being
aggregated by the AGGREGATE command. Following these rules will ensure
the accuracy of your data.

HAVERAGE, HFIRST, HLAST, AND HWAVERAGE Operators
The "hierarchical" operators are intended to provide an alternative form of NA
handling.

FIRST, HFIRST, LAST, AND HLAST Operators
These operators rely on the existing order of the dimension values, which are
assumed to be the default logical order of that dimension. For example, in a month
dimension, it is assumed that February follows January, March follows February,
and so on.

When you need to change the default order, use the MAINTAIN statement to do so.
For example, suppose Q1 includes January, February, and March, but you need

RELATION (for aggregation)

6-92 Oracle OLAP DML Reference

to make February the last month in the Q1 instead of March. Use the following
statement to do so.

MAINTAIN time MOVE 'Feb01' AFTER 'Mar01'

Now, the LAST operator will assume that FEB01 is the last month in Q1.

Read Permissions and Aggmaps
When you change the read permission to rel-name in a RELATION statement, then
you must recompile the aggmap before using it with the AGGREGATE function.
This is not an issue when you use the AGGREGATE command, because the aggmap
will be recompiled automatically. However, when you do not have read access to
every rel-name in the aggmap, then attempting to use that aggmap will result in an
error message.

Deprecated WEIGHTBY Keywords
Aggmap objects are reentrant and you can use a aggmap object to aggregate a
weight object in the same way you would any other object. Consequently, the
following keywords of the WEIGHTBY phrase are deprecated:

■ WAGG or WNOAGG —WAGG aggregates the weight object. WAGG is the default
when the weight object is a variable or relation (except when the operator is
SSUM or WSUM). WNOAGG prevents the aggregation of a weight object.
Using WNOAGG means that you will not be able to use WSOTRE and
WNOSTORE. You can use WNOAGG with weight variables, weight formulas,
and weight relations.

■ WSTORE or WNOSTORE—WSTORE stores the aggregated weight object values in
the weight object for later use. The wobj argument must be dimensioned exactly
the same as the variable being aggregated; otherwise, the aggregated data
might not be stored correctly. You cannot use WSTORE when the weight object
is a formula. WNOSTORE stores the aggregated weight object values in a
temporary variable so that they cannot be saved for later use. You cannot use
WNOSTORE with a weight formula. WNOSTORE is the default when the
weight object is a variable or relation.

■ WPREAGG —WPREAGG specifies that the weight object is used only for
weighting the detail data when aggregating the variable's data. Use this
operator when every level of aggregate data can be aggregated either directly
from detail data or aggregated into each intermediate level and still yield the
same results. You do not have to specify this option, since it is the option for
WEIGHTBY when the operator is any weight operation,

AGGMAP

$AGGMAP to AGGMAP 6-93

Using Weighted Aggregation Methods
When you use one of the weighted methods of aggregation (that is, HWAVERAGE,
HWFIRST, HWLAST, SSUM, WAVERAGE, WFIRST, WLAST, or WSUM), you must
define and populate an object that contains the weights. You identify the
aggregation method in the OPERATOR clause and the weight object in the ARGS
clause.

Working with Weight Objects
You must specify at least one weight object as the wobj argument when you use the
WEIGHTBY keyword. The weight object can be a variable, a formula, or a relation.
Special considerations apply depending on the type of object. the data type of the
weight object, and whether or not you are performing a partial aggregation.

Weight Object Considerations Based on Type of Object The following
considerations apply depending on the type of object that you use for the weight
object:

■ When the weight object is a variable, you can define it with a numeric or
BOOLEAN data type. Use a variable as your weight object when you want to
pre-calculate weight values and commit them to the database. You can use a
variable weight object with any weight option.

■ When the weight object is a relation, you should define it as a one-dimensional
self-relation. You can use the weight object to specify that the weight for a
specific cell is contained in the current variable at a different location. Use a
relation as your weight object when you use a line item or a measure
dimension. In this case, one line item is used as the weight to calculate the
aggregate value of another line item. Using a relation enables you to specify
another set of cells in the variable being aggregated as the weight values for a
weighted operation.

■ When the weight object is a formula, that formula will be queried only as often
as needed, depending on the dimensionality of the formula and the
dimensionality of the variable whose data is being aggregated. You can define
the formula with a numeric or BOOLEAN data type. Use a formula as your
weight object when you want to calculate weight values on the fly. A formula
weight object is similar to a variable weight object, except that it cannot be
aggregated. The value of a formula weight object is executed dynamically.
Therefore, you cannot use a formula weight object with many of the weight
options.

RELATION (for aggregation)

6-94 Oracle OLAP DML Reference

Considerations Based on Data Type of the Weight Object The following
considerations apply when the weight object is numeric or BOOLEAN:

■ When the weight object has a numeric data type, It is good practice for the
weight object variable to have the same dimensionality (or a subset thereof) as
the variable to which it corresponds, but it is not required. When you use Oracle
numbers or decimals to define your data variable, then always use the same
data type to define the corresponding weight object. Otherwise, use the same
data type for the weight object and the data variable unless you use
WAVERAGE or HWAVERAGE; in this case, use a decimal or NUMBER data
type to define the weight object.

■ When the weight object variable, formula, or relation that you define has a
BOOLEAN data type, then TRUE represents a weight of 1.0 and FALSE
represents a weight of 0.0. Furthermore, when an NA value is multiplied by
any value, the result is NA.

Weight Object Considerations When Performing Partial Aggregations When you
use any operators that require the WEIGHTBY phrase, and you are performing a
partial aggregation, then do not change the values that are stored in the weight
object between AGGREGATE commands.

Using WNAFILL
For example, suppose you use the WSUM operator to perform currency conversion.
The currency conversation rates will be applied at the detail data level. Only the
detail data needs to be converted, because the variable data is aggregated after the
conversion. In order to get the correct results, all of the non-detail level weight
values in the weight object would have to be 1. Although this strategy produces
correct results, it is inefficient. The best practice is to use the default WNAFILL
value of 1. This specifies that all NA values in the weight object should be treated as
if they have a weight of 1. In this case, because the operator is WSUM, you do not
have to include WNAFILL in the AGGREGATE command, because the default
values are correct.

For example, the following statement causes the value 0.7 to be substituted for
every NA value in the salesw weight object.

AGGREGATE sales USING sales.agg WEIGHTBY WNAFILL 0.7 salesw

When you do not want to specify a number to replace NA values, then you can use
NA instead of a number, as shown in the following statement.

AGGREGATE sales USING sales.agg WEIGHTBY WNAFILL NA salesw

AGGMAP

$AGGMAP to AGGMAP 6-95

Specifying NA after WNAFILL has the following effect:

■ When the aggregation specification contains a WAVERAGE or a WSUM
OPERATOR, then any child cell in the weight object that has an NA value is
treated as an NA cell.

■ When the aggregation specification contains an SSUM OPERATOR, then the
results depend on how the Oracle OLAP option NASKIP is set. When NASKIP
is set to YES, then any NA value is treated as 0.0. However, when NASKIP is set
to NO, then any NA value is treated as an NA cell.

Effects of Dimension Status on Aggregation
A RELATION statement only aggregates those source data values that are in status.
The parent values are calculated regardless of whether they are in status or not. For
example, when only Jan01, Feb01, and Mar01 are in status for the time
dimension, then Q1.01 is calculated (but no other quarters), and 2001 is calculated
(but no other years) using only Q1.01 as input since the other quarters are NA.

This can be useful when you want to aggregate just the new data in your analytic
workspace. However, you must exercise some care, as described in "Weight Object
Considerations When Performing Partial Aggregations" on page 6-94.

Assume that there is a variable named sales that is dimensioned by time, a
hierarchical dimension, and district, a non-hierarchical dimension.

DEFINE time DIMENSION TEXT
DEFINE time.parentrel RELATION time <time>
DEFINE district DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <time district>

REPORT DOWN time sales

 -----------------------SALES-----------------------
 ---------------------DISTRICT----------------------
TIME North South West East
------------ ------------ ------------ ------------ ------------
1976Q1 168,776.81 362,367.87 219,667.47 149,815.65
1976Q2 330,062.49 293,392.29 237,128.26 167,808.03
1976Q3 304,953.04 354,240.51 170,892.80 298,737.70
1976Q4 252,757.33 206,189.01 139,954.56 175,063.51
1976 NA NA NA NA

RELATION (for aggregation)

6-96 Oracle OLAP DML Reference

Skip-Level Aggregation
One aggregation strategy is skip-level aggregation illustrated in Example 6–32,
"Skip-Level Aggregation" on page 6-61. With skip-level aggregation, you select one
or two of the dimensions of a variable and pre-aggregate every other level in those
dimension hierarchies. When you know which levels are queried most often by
users, you should pre-calculate those levels of data.

Keep the following points in mind when designing skip-level aggregation:

■ When selecting the dimensions to aggregate using skip-level aggregation:

■ Use a skip-level approach for only one or two dimensions. You should use
the skip-level approach for half or fewer of the dimensions in a variable
definition. For example, when there are three dimensions, then you can use
the skip-level approach for one dimension; when there are four or more
dimensions, then you can use the skip-level approach for two dimensions.

■ The dimensions that are the best candidates for skip-level aggregation are
the dimensions whose hierarchies have many levels.

■ When possible, choose a dimension that is either fastest- or
intermediate-varying in the variable dimension. Performance of calculation
on the fly is always best for dimensions in this position.

■ When selecting the levels to skip:

■ Consider skipping every other level in a dimension hierarchy, and avoid
skipping more than two levels that are adjacent to each other. For example,
when a hierarchy has seven levels, you might skip L2, L4, and L6. That
means you would precalculate L1, L3, and L5. (The detail-level data is at
L7.) Consider how frequently a level is queried. Users experience the best
performance when you pre-aggregate the data most frequently queried,
and aggregate on the fly the data that is requested occasionally.

■ Do not skip adjacent levels. For example, when you skipped L2, L3, L4,
and L5, then a query for L2 data would require AGGREGATE to calculate
L5, then aggregate that data up to L4, then up to L3, and finally to L2.
Alternatively, when you skip L2, L4, and L6, then a query for L2 data
requires AGGREGATE to aggregate data only from L3.

■ The one exception to this rule is when each level has very few children for
each parent. When this is true for every adjacent level that you want to skip,
then you can skip two or more adjacent levels.

AGGMAP

$AGGMAP to AGGMAP 6-97

Examples
For examples of aggregation specifications that include RELATION statements, see
the examples in AGGMAP.

AGGMAP ADD or REMOVE model

6-98 Oracle OLAP DML Reference

AGGMAP ADD or REMOVE model

The AGGMAP ADD or REMOVE model command adds or removes a model from a
previously defined aggmap object of type AGGMAP. Models are used in aggmap
objects to aggregate data over a non-hierarchical dimension (such as line items),
which has no parent relation and therefore cannot be aggregated by a RELATION
(for aggregation) statement. See MODEL (in an aggregation) for details.

Syntax
AGGMAP {ADD model TO aggmap|REMOVE model FROM aggmap}

Arguments

ADD
Temporarily adds a model to an aggmap object. The model is attached to the
aggmap only for the duration of the session. Even when the analytic workspace has
been updated and committed, the model is discarded from the aggmap when the
session is closed.

REMOVE
Removes a model from an aggmap.

model
The name of the model object that you wish to add to the specified aggmap.

aggmap
The name of a previously defined aggmap object of type AGGMAP.

Notes

Creating Temporary or Custom Aggregates
Most aggmap objects are defined to calculate variable values that are dimensioned
by permanent dimension members (that is, dimension members that persist from
one session to another). However, users might wish to create their own aggregates
at runtime for forecasting or what-if analysis, or just because they want to view the
data in an unforeseen way. Adding temporary members to dimensions and
aggregating data for those members is sometimes called creating temporary or
custom aggregates.

AGGMAP ADD or REMOVE model

$AGGMAP to AGGMAP 6-99

Examples

Example 6–34 Temporarily Adding a Model to an Aggmap

Assume for example, that you have an aggmap object named letter.aggmap
with the following definition.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE ('AA')
END

Assume also that you want to create summarized variable data for the cells that are
dimensioned by the dimension values AAB and ABA. However, you do not want this
data to be permanently stored in the analytic workspace. You just want to see the
data during your session.

To perform this type of aggregation, you can take the following steps:

1. Create a dimension value for the custom aggregate. This dimension value will
be the parent of the dimension values AAB and ABA. The following statement
adds 'BB' to the letter dimension:

MAINTAIN letter ADD 'BB'

2. Create a MODEL object that contains an AGGREGATION function, which
associates child dimension values with the new dimension value. The following
model identifies BB as the parent of AAB and ABA. Note that the parent
dimension value (in this case, BB) cannot already be defined as a parent in the
parent relation (letter.letter).

DEFINE LETTER.MODEL MODEL
MODEL
DIMENSION letter
BB=AGGREGATION('AAB' 'ABA')

3. Execute an AGGMAP ADD statement to append the model to the existing AGGMAP
object.

AGGMAP ADD letter.model TO letter.aggmap

AGGMAP ADD or REMOVE model

6-100 Oracle OLAP DML Reference

The aggmap now looks like this.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE ('AA')
END
AGGMAP ADD letter.model

4. The model is executed only by the AGGREGATE function like the one shown
here; the AGGREGATE command ignores it.

REPORT AGGREGATE(units USING letter.aggmap)

5. When you wish to remove the model from the aggmap during a session, use the
AGGMAP REMOVE statement.

6. To ensure that your aggmap does not become a permanent object in the analytic
workspace, before you close your session issue the following statement to
delete the dimension values that you added in Step 1.

MAINTAIN letter DELETE 'BB'

When your session ends, Oracle OLAP automatically removes the model added
using the AGGMAP ADD statement. You do not have to issue an explicit
AGGMAP REMOVE statement.

AGGMAP SET

$AGGMAP to AGGMAP 6-101

AGGMAP SET

Specifies the default aggmap for a variable.

Syntax
AGGMAP SET aggmap AS DEFAULT FOR variables

Arguments

aggmap
The name of a previously defined aggmap object.

variables
A text expression that is the name of one or more variables for which the specified
aggmap is the default aggmap. When you specify a literal value, separate the names
of the variables with commas.

Examples

Example 6–35 Using AGGMAP SET to Specify a Default Aggmap

Example 6–2, "Using the $AGGREGATE_FROM Property" on page 6-6 illustrates
how the AGGREGATE command shown in Example 6–22, "Using a CACHE
Statement in an Aggregation Specification" on page 6-52 can be simplified to the
following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you make
revenue_aggmap the default aggmap for sales_by_revenue variable. You can
do this using either by defining an $AGGMAP property on the
sales_by_revenue variable or by issuing the following statement.

AGGMAP SET revuienue_aggmap AS DEFAULT FOR sales_by_revenue

Note: You can also use an $AGGMAP property to specify the
default aggregation specification for a variable or the $ALLOCMAP
property to specify the default allocation specification for a
variable.

AGGMAP SET

6-102 Oracle OLAP DML Reference

Now you can aggregate the data by issuing the following AGGREGATE command
that does not include a USING clause.

AGGREGATE sales_by_revenue

AFFMAPINFO to ARCCOS 7-1

7
AFFMAPINFO to ARCCOS

This chapter contains the following OLAP DML statements:

■ AGGMAPINFO

■ AGGREGATE command

■ AGGREGATE function

■ AGGREGATION

■ ALLCOMPILE

■ ALLOCATE

■ ALLOCERRLOGFORMAT

■ ALLOCERRLOGHEADER

■ ALLOCMAP

■ CHILDLOCK

■ DEADLOCK

■ DIMENSION (for allocation)

■ ERRORLOG

■ ERRORMASK

■ MEASUREDIM (for allocation)

■ RELATION (for allocation)

■ SOURCEVAL

■ VALUESET

■ ALLSTAT

7-2 Oracle OLAP DML Reference

■ ANTILOG

■ ANTILOG10

■ ANY

■ ARCCOS

AGGMAPINFO

AFFMAPINFO to ARCCOS 7-3

AGGMAPINFO

The AGGMAPINFO function returns information about the specification of an
aggmap object in your analytic workspace.

Return Value
Varies depending on the type of information that is requested. See Table 7–1,
" Keywords for the choice Parameter of the AGGMAPINFO function" on page 7-4
for more information.

Syntax
AGGMAPINFO (name {choice | {choice-at-position rel-pos} })

Arguments

name
The name of the aggmap object.

choice
Specifies the type of information that you want returned. See Table 7–1, " Keywords
for the choice Parameter of the AGGMAPINFO function", for details.

Note: You can get information about an aggregation specification
(that is, an aggmap of type AGGMAP) only after it has been
compiled. You can compile an aggregation specification using a
COMPILE statement or by including the FUNCDATA keyword
when you execute the AGGREGATE command. When an
aggregation specification has not been compiled before you use it
with the AGGMAPINFO function, then it is compiled by
AGGMAPINFO. You do not need to compile an aggmap for use
with ALLOCATE.

AGGMAPINFO

7-4 Oracle OLAP DML Reference

Table 7–1 Keywords for the choice Parameter of the AGGMAPINFO function

Keyword Return Value Description

ADDED_MODELS TEXT The models that are currently added to an
aggmap using AGGMAP ADD or REMOVE
model statements.The names of the models are
returned as a multi-line text string.

AGGINDEX BOOLEAN Indicates the setting for the AGGINDEX
statement in the aggmap. A YES setting
specifies that all possible indexes (composite
tuples) are created whenever the aggmap is
recompiled. (Applies to AGGMAP type
aggmaps only.)

CHILDREN member-name TEXT The dimension members used in the right-hand
side of equations used to calculate temporary
calculated members added using MAINTAIN
ADD SESSION statements. The names of the
members are returned as a multi-line text string.

CUSTOMMEMBERS TEXT The members added using MAINTAIN ADD
SESSION statements. The names of the
members are returned as a multi-line text string.

DIMENSION TEXT The names of the dimensions of the models or
relations used by the aggmap. The names of the
members are returned as a multi-line text string.

FCACHE BOOLEAN Indicates whether Oracle OLAP has a cache for
the AGGREGATE function. (Applies to
AGGMAP type aggmaps only.)

AGGMAPINFO

AFFMAPINFO to ARCCOS 7-5

MAPTYPE TEXT The type of the aggmap.

■ Returns AGGMAP for an aggregation
specification (that is, when the specification
has been entered with the AGGMAP
command). You can use this type of
aggmap only with the AGGREGATE
command or AGGREGATE function.

■ Returns ALLOCMAP for an allocation
specification (that is, when the specification
has been entered with the ALLOCMAP
command). You can use this type of
aggmap only with the ALLOCATE
command.

■ Returns NA when the aggmap has been
defined but a specification has not been
entered with the AGGMAP or ALLOCMAP
command.

MODELS TEXT The models in the aggmap. The names of the
models are returned as a multi-line text string.

NUMRELS INTEGER The total number of RELATION (for
aggregation) statements in an aggmap
specification

.

RELATIONS TEXT The name of relation that is specified by a
RELATION (for aggregation) statement in the
aggmap object. Each statement is displayed on a
separate line.

STORE BOOLEAN Indicates whether the CACHE statement in the
aggmap is set to STORE. A YES setting specifies
that the data that is calculated on the fly is
stored in the cache. (Applies to AGGMAP type
aggmaps only.)

VARIABLES TEXT The variables for which this aggmap object has
been specified as the default aggmap using
AGGMAP ADD or REMOVE model statements
or the $AGGMAP property. The names of the
variables are returned as a multi-line text string.

Table 7–1 (Cont.) Keywords for the choice Parameter of the AGGMAPINFO function

Keyword Return Value Description

AGGMAPINFO

7-6 Oracle OLAP DML Reference

choice-at-position
Specifies the exactly which piece of information you want returned.

PRECOMPUTE returns the text of the limit-clause that follows the PRECOMPUTE
keyword in a RELATION statement. You must use the rel-pos argument to specify a
single RELATION statement. Returns NA when the RELATION statement does not
have a PRECOMPUTE keyword. (Applies to AGGMAP type aggmaps only.)

RELATION returns the name of the relation that follows the RELATION statement
that you specify with the rel-pos argument.

STATUS returns the status list that results from the compilation of the
PRECOMPUTE clause in the RELATION statement that you specify with the rel-pos
argument. (Applies to AGGMAP type aggmaps only.)

rel-pos
An INTEGER that specifies a RELATION statement in the aggmap. The integer
indicates the position of the statement in the list of RELATION statements. You can
use the rel-pos argument only with the RELATION, PRECOMPUTE, or STATUS
keywords. For example, to get information about the first RELATION statement in
an aggmap, use the integer 1 as the rel-pos argument. To get information about the
fourth RELATION statement in an aggmap, use the integer 4, and so on. You may
use any integer between 1 and the total number of RELATION statements in an
aggmap specification. You can use the NUMRELS keyword to obtain the total
number of RELATION statements for an aggmap object.

Examples

Example 7–1 Retrieving Information About an Aggmap Object

Suppose an aggmap named sales.agg has been defined with the following
statement.

DEFINE sales.agg AGGMAP <time, product, geography>

Suppose the following specification has been added to sales.agg with the
AGGMAP command.

AGGMAP
RELATION time.r PRECOMPUTE (time ne 'Year98')
RELATION product.r
RELATION geography.r
CACHE STORE
END

AGGMAPINFO

AFFMAPINFO to ARCCOS 7-7

Once a specification has been added to the aggmap, you can use AGGMAPINFO to
get information about its specification.

To see the names of the hierarchies that are specified by the RELATION statements,
use the following statement.

SHOW AGGMAPINFO(sales.agg RELATIONS)

The following results are displayed.

time.r
product.r
geography.r

The following statement and result tell you how many RELATION statements are in
the aggmap object.

SHOW AGGMAPINFO(sales.agg NUMRELS)
3

The following statement and result verifies that data that is calculated on the fly is
stored in the cache for the session. The result is YES because the aggmap contains a
CACHE STORE statement.

show AGGMAPINFO(sales.agg STORE)
YES

The following statement displays the relation name that is specified in the second
RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg RELATION 2)
product.r

The following statement displays the limit-clause that follows the PRECOMPUTE
keyword in the first RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg PRECOMPUTE 1)
time NE 'YEAR98'

Suppose the time dimension values are Jan98 to Dec99, Year98, and Year99.
The following statement displays the status list for the dimension in the first
RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg STATUS 1)
Jan98 TO Dec99, Year99

AGGMAPINFO

7-8 Oracle OLAP DML Reference

Because the limit-clause in the RELATION statement specifies that the time
dimension values should not equal Year98, all time dimension values other than
Year98 are included in its status.

The following statement displays the aggmap type of sales.agg.

SHOW AGGMAPINFO(sales.agg MAPTYPE)
AGGMAP

AGGREGATE command

AFFMAPINFO to ARCCOS 7-9

AGGREGATE command

The AGGREGATE command calculates summary data from detail data. Use the
AGGREGATE command to pre-calculate data and store it in an Oracle OLAP
analytic workspace. Use the AGGREGATE function to calculate data at runtime. In
either case, the aggregation is limited to the base values that are currently in status.

Syntax
AGGREGATE|AGGR var... [USING aggmap] [FROM fromspec|FROMVAR textvar]

 [FUNCDATA] [COUNTVAR intvar...]

Arguments

var
One or more variables whose data values are to be calculated. Every variable in a
single AGGREGATE command must have exactly the same dimensions in exactly
the same order. The variables are often numeric, but can also be TEXT, DATETIME,
or DATE when the aggregation operation is FIRST, LAST, MIN, or MAX, as specified
in the aggmap.

USING
This keyword indicates that the aggregation is performed using the specified
aggmap. When you do not include this phrase, the command uses the default
aggmap for the variable as previously specified using the AGGMAP command or
the $AGGMAP property.

aggmap
The name of a previously-defined aggmap that specifies how the data will be
aggregated. For information about aggmaps, see the DEFINE AGGMAP command.

FROM
This keyword indicates that the detail data is obtained from a different object.

A FROM clause is only one way in which you can specify the variable from which
detail data should be obtained when performing aggregation. See "Ways of
Specifying Where to Obtain Detail Data for Aggregation" on page 7-13.

AGGREGATE command

7-10 Oracle OLAP DML Reference

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data
for the aggregation is obtained.

FROMVAR
This keyword indicates that the detail data is obtained from different objects to
perform a capstone aggregation. (For an example of using the FROMVAR clause,
see Example 7–7, "Capstone Aggregation" on page 7-17.)

A FROMVAR clause is only one way in which you can specify the variable from
which detail data should be obtained when performing aggregation. See "Ways of
Specifying Where to Obtain Detail Data for Aggregation" on page 7-13.

textvar
An arbitrarily dimensioned variable used to resolve any leaf nodes. Specify NA to
indicate that a node does not need detail data to calculate the value.

FUNCDATA
Compiles the aggregation specification for future use by the AGGREGATE function.
When you use FUNCDATA, you do not have to recompile the aggmap before using
the AGGREGATE function, unless afterward you make changes to the aggmap, the
relation hierarchies, or a composite.

When the variables have composite dimensions, the indexes (composite tuples) are
created and saved for use by the AGGREGATE function. Otherwise, the indexes are
re-created each time the AGGREGATE function is called. Refer to AGGINDEX for
more information about composite indexes.

COUNTVAR
Indicates that the number of leaf nodes that contributed to an aggregate value are
counted. Leaf nodes that are NA are not included in the tally. You must include a
COUNTVAR phrase when the aggmap contains a RELATION (for aggregation)
statement that uses the AVERAGE operator.

intvar
A variable that you have defined with an INTEGER data type. The definition of
intvar must have exactly the same dimensions in exactly the same order as the
dimensions in var. When you aggregate several variables together, you must define
an INTEGER variable for each one to record the results.

AGGREGATE command

AFFMAPINFO to ARCCOS 7-11

Notes

Terminology
A dimension hierarchy is a tree structure in which the dimension values are the
nodes. At the lowest level of the hierarchy are leaves or leaf nodes, and at the
highest level is the root or root node. Nodes in a hierarchy have parent-child
relationships. Leaf nodes have parents but no children; root nodes have children but
no parents.

Effect of Status
The current status only affects dimension values at the lowest level of the hierarchy,
that is, the leaf nodes. Only leaf-node dimension values that are currently in status
are aggregated. The parent values of leaf nodes in status are calculated, whether the
parent values are in status or not (unless you exclude the dimension values in those
levels with a RELATION PRECOMPUTE statement in the aggmap). Thus, when
you want to aggregate all of the data specified in the aggmap, then be sure to set the
status of the dimensions to ALL before performing the aggregation. AGGREGATE
uses the parent relation to distinguish among dimension values at different levels of
the hierarchy. Alternatively, you can perform a partial aggregation of the data by
limiting status. However, this must be done carefully when some of the data will be
aggregated at runtime by the AGGREGATE function. See the AGGREGATE
function notes for more information.

For example, suppose you use the area dimension and the area.area
child-parent relation that supports one hierarchy for a geography dimension as
illustrated in Table 7–2, " Geography Hierarchy".

Table 7–2 Geography Hierarchy

Level area Dimension area.area Parent Relation

1 TotalUS NA

2 East TotalUS

2 South TotalUS

3 Boston East

3 New York East

3 Atlanta South

AGGREGATE command

7-12 Oracle OLAP DML Reference

Now suppose you change the data value for New York. When you then use
AGGREGATE with only New York, the calculation occurs without including the
child value for South (Atlanta), but still includes level 2 as it goes from level 3 to
level 1 (TotalUS). When you want all the child values included in rolling up to
TotalUS, use a LIMIT TO ALL statement before you execute the AGGREGATE
command.

When the data has changed for some, but not all, of the child values in a hierarchy,
you can set the status to calculate just the values that have changed. For example,
when your embedded-total dimension is called d2, and its parent relation is called
reld2, first limit d2 to the values that have changed.

To calculate the data for every hierarchy in a dimension, limit the dimension's
hierarchy dimension to ALL before you execute the AGGREGATE command.

Controlling the Amount of Data That Is Calculated
You can control how much of the variable data is calculated by using the
PRECOMPUTE keyword with the RELATION statement in the aggmap. Use the
limit-clause (after the PRECOMPUTE keyword) to set the status of the dimension.

When Users Modify Data
When users are able to change the data in a variable, then you should calculate
aggregates on the fly using the AGGREGATE function, so that their changes are
reflected in the aggregate data. See the AGGREGATE function for more information
about runtime changes to the data.

Generation-Skipping Hierarchies
AGGREGATE automatically distinguishes between generations in the parent
relation, even to the extent of allowing generation-skipping hierarchies. For example,
you can have a four-level hierarchy (for example, neighborhoods, cities,
states, and totalUS) that has a three-level branch (for example, Boston,
Massachusetts, and totalUS).

Restrictions on Permissions
AGGREGATE does not work on variables that have cell-by-cell permissions; it will
immediately return an error. It also ignores the PERMITERROR option. However,
AGGREGATE will operate on variables with object level or dimension level
permission. See the PERMIT and PERMITERROR entries.

AGGREGATE command

AFFMAPINFO to ARCCOS 7-13

Ways of Specifying Where to Obtain Detail Data for Aggregation
You can specify where to obtain detail data when aggregating data in the following
ways:

■ Assign either a $AGGREGATE_FROM property or a
$AGGREGATE_FROMVAR property to a variable.

■ Include either a FROM or FROMVAR clause in the AGGREGATE command or
AGGREGATE function that aggregates the data.

When performing an aggregation, Oracle OLAP determines where to obtain the
detail data as follows:

1. When a location has been specified using a FROM or FROMVAR clause, Oracle
OLAP uses the detail data at that location.

2. When a location has not been specified using a FROM or FROMVAR clause,
Oracle OLAP checks to see if a location has been specified using aa
$AGGREGATE_FROM property or a $AGGREGATE_FROMVAR property.
When a location has been specified using one of these properties, Oracle OLAP
uses the detail data at that location.

3. When a location has not been specified using either FROM or FROMVAR clause
or a $AGGREGATE_FROM property or a $AGGREGATE_FROMVAR property,
Oracle OLAP performs the aggregation using the detail data in the variable
itself.

Examples
This section contains several examples of using the AGGREGATE command. For
additional aggregation examples, see the examples in AGGMAP.

Example 7–2 Precalculating Data in a Batch Job

Frequently, you generate precalculated aggregates in a batch window as part of
maintaining the data in your database. When you wish, you can use Job Manager to
schedule batch jobs in Oracle Enterprise Manager, as described in the Oracle OLAP
Application Developer's Guide.

Note: You can only assign one of these properties to a variable. A
variable cannot have both the $AGGREGATE_FROM and
$AGGREGATE_FROMVAR properties assigned to it.

AGGREGATE command

7-14 Oracle OLAP DML Reference

To generate precalculated aggregates, you use the AGGREGATE command. The
AGGREGATE command aggregates the data for one or more variables according to
the specifications provided in the aggmap.

Your batch job should include statements like the following.

POUTFILEUNIT=FILEOPEN('userfiles/progress.txt' WRITE)
AGGREGATE sales units USING gpct.aggmap
UPDATE
COMMIT
FILECLOSE POUTFILEUNIT

Example 7–3 Aggregating One Variable

Suppose your analytic workspace contains a variable named actuals, which has
the following definition.

DEFINE actuals DECIMAL <time, SPARSE <product, customer, channel>>

The next step is to define an aggmap object, whose definition has the same
dimensions in the same dimension order. Suppose you define an aggmap object
named act.agg using the DEFINE AGGMAP command.

DEFINE act.agg AGGMAP <time, SPARSE <product, customer, channel>>

Suppose that the name of the hierarchy for the time dimension is time.r, the
name of the product dimension is product.r, and so on Next, you use the
AGGMAP command to add the following text in the act.agg aggmap.

AGGMAP
RELATION time.r
RELATION product.r
RELATION customer.r
RELATION channel.r
END

The preceding text specifies the name of each dimension's hierarchy for which data
should be rolled up. Assuming that the current status of every dimension is ALL,
data will be calculated for every dimension value of every dimension in the
definition of actuals. No data will be calculated on the fly.

Use the following statements to calculate the actuals variable. (It is not necessary
to compile the aggmap, because the compilation is included as part of the
AGGREGATE command.)

AGGREGATE actuals USING act.agg

AGGREGATE command

AFFMAPINFO to ARCCOS 7-15

Example 7–4 Aggregating Multiple Variables

Suppose your analytic workspace contains a variable named actuals and a
variable named forecast. As shown in the following variable definitions, these
variables have the same dimensions in the same dimension order.

DEFINE actuals DECIMAL <time, SPARSE <product, customer, channel>>
DEFINE forecast DECIMAL <time, SPARSE <product, customer, channel>>

The next step is to define an aggmap object, whose definition has the same
dimensions in the same dimension order. Suppose you define the same aggmap
object named act.agg, as described in "Aggregating One Variable" on page 7-14.
As long as you want the data for each variable to be rolled up in exactly the same
way, you can use the same aggmap to calculate both variables in a single command.

Use the following statements to calculate the actuals and the forecast
variables.

AGGREGATE actuals forecast USING act.agg

Because the aggmap specifies that all data for every dimension value in each
dimension should be rolled up, this command rolls up all of the data in actuals
and all of the data in forecast.

Example 7–5 Using COUNTVAR with Multiple Variables

Suppose you plan to use one AGGREGATE command to aggregate the data for
three variables: sales, units, and projected_sales. Each variable has the
following dimensionality.

<month product geography>

To tally the results with COUNTVAR, you must define three INTEGER variables
that have the same dimensionality as sales, units, and projected_sales.

DEFINE intsales INTEGER <month product geography>
DEFINE intunits INTEGER <month product geography>
DEFINE intprojsales INTEGER <month product geography>

You can then specify the INTEGER variables in the following command:

AGGREGATE sales units projected_sales USING sales.agg -
COUNTVAR intsales intunits inprojsales

AGGREGATE command

7-16 Oracle OLAP DML Reference

Example 7–6 Performing a Partial Aggregation

This example limits the time dimension to the last two time periods, so that only
newly loaded data is aggregated.

The tp2.agg aggmap specifies preaggregation for all detail data currently in
status.

DEFINE TP2.AGG AGGMAP
LD Full preaggregation
AGGMAP
RELATION time.parentrel PRECOMPUTE (ALL)
RELATION product.parentrel PRECOMPUTE (ALL)
END

For the aggregation, time is limited to the last two time periods and all product
values are in status.

LIMIT time TO LAST 2
STATUS time product
The current status of TIME is:
Apr02, May02
LIMIT product TO ALL

The AGGREGATE command calculates units using the tp2.agg aggmap.

AGGREGATE units USING tp2.agg

The results of this aggregation show that parent values are calculated, regardless of
their own status, when their children are in status.

LIMIT time TO '2002' 'Q1.02' 'Q2.02' 'Jan02' to 'May02'
REPORT DOWN time units

 ---UNITS---
 --PRODUCT--
TIME FOOD SNACKS DRINKS POPCORN COOKIES CAKES SODA JUICE
------- -------- -------- -------- -------- -------- -------- -------- --------
2002 38 24 14 6 9 9 9 5
Q1.02 NA NA NA NA NA NA NA NA
Q2.02 38 24 14 6 9 9 9 5
Jan02 NA NA NA 8 2 4 5 8
Feb02 NA NA NA 5 3 2 2 5
Mar02 NA NA NA 3 4 4 2 4
Apr02 21 13 8 2 7 4 6 2
May02 17 11 6 4 2 5 3 3

AGGREGATE command

AFFMAPINFO to ARCCOS 7-17

Example 7–7 Capstone Aggregation

Assume that your analytic workspace has the two hierarchical TEXT dimensions
named geog.d and time.d with the following values.

GEOG.D

Boston
Medford
San Diego
Sunnydale
Massachusetts
California
United States

TIME.D

Jan76
Feb76
Mar76
76Q1

Assume, also, that there are four variables with the following definitions

DEFINE sales_jan76 VARIABLE INTEGER <geog.d>
DEFINE sales_feb76 VARIABLE INTEGER <geog.d>
DEFINE sales_mar76 VARIABLE INTEGER <geog.d>
DEFINE sales_capstone76 VARIABLE INTEGER <geog.d time.d>

AGGREGATE command

7-18 Oracle OLAP DML Reference

Assume that you issue the following REPORT statements for the variables. The
output of the reports show the detail data in the variables.

REPORT sales_jan76 sales_feb76 sales_mar76
REPORT DOWN geog.d sales_capstone76

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- ------------ ------------ ------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts NA NA NA
California NA NA NA
United States NA NA NA

 -----------------SALES_CAPSTONE76------------------
 ----------------------TIME.D-----------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- ------------ ------------ ------------ ------------
Boston NA NA NA NA
Medford NA NA NA NA
San Diego NA NA NA NA
Sunnydale NA NA NA NA
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

1. Define two aggmap objects with the following definitions.

DEFINE leaf_aggmap AGGMAP
AGGMAP
RELATION geog.parentrel OPERATOR SUM
END

DEFINE capstone_aggmap AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM
END

2. Define a variable named capstone_source with the following definition to
use to aggregate the data.

DEFINE capstone_source VARIABLE TEXT <time.d>

AGGREGATE command

AFFMAPINFO to ARCCOS 7-19

As the following output of a REPORT statement illustrates, for each value of
time.d, you populate capstone_source with the name of the variable that
contains the corresponding sales data.

TIME.D CAPSTONE_SOURCE
-------------- ----------------------
Jan76 sales_jan76
Feb76 sales_feb76
Mar76 sales_mar76
76Q1 NA

3. Issue the following statements to aggregate the variables.

AGGREGATE sales_jan76 sales_feb76 sales_mar76 USING leaf_aggmap
AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

After aggregating the variables, when you issue the REPORT statements, the
variables are populated with the calculated data.

REPORT sales_jan76 sales_feb76 sales_mar76
REPORT DOWN geog.d sales_capstone76

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- ------------ ------------ ------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts 3,000 6,000 9,000
California 7,000 14,000 21,000
United States 10,000 20,000 30,000

 -----------------SALES_CAPSTONE76------------------
 ----------------------TIME.D-----------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- ------------ ------------ ------------ ------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000
San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts 3,000 6,000 9,000 18,000
California 7,000 14,000 21,000 42,000
United States 10,000 20,000 30,000 60,000

AGGREGATE command

7-20 Oracle OLAP DML Reference

Example 7–8 Aggregating a Variable with External Partitions

Assume that you have the following objects defined in your analytic workspace.

DEFINE YEAR_2003 DIMENSION TEXT
DEFINE YEAR_2002 DIMENSION TEXT
DEFINE PRODUCT DIMENSION TEXT
DEFINE SALES_2003 VARIABLE DECIMAL <YEAR_2003 PRODUCT>
DEFINE SALES_2002 VARIABLE DECIMAL <YEAR_2002 PRODUCT>
DEFINE TIME DIMENSION CONCAT (YEAR_2003 YEAR_2002) UNIQUE
DEFINE TIME_PARENTREL RELATION TIME <TIME>
DEFINE PART_TEMP_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY CONCAT (TIME) -
 (PARTITION PARTITION_2002 <YEAR_2002 PRODUCT> -
 PARTITION PARTITION_2003 <YEAR_2003 PRODUCT>)
DEFINE SALES VARIABLE DECIMAL <PART_TEMP_SALES_BY_YEAR <TIME PRODUCT>> -
 (PARTITION PARTITION_2002 EXTERNAL SALES_2002 -
 PARTITION PARTITION_2003 EXTERNAL SALES_2003)
DEFINE AGG_SALES AGGMAP
 AGGMAP
 RELATION time_parentrel OPERATOR SUM
 END

To aggregate sales , you issue the following statement.

AGGREGATE sales USING agg_sales

AGGREGATE command

AFFMAPINFO to ARCCOS 7-21

When you issue REPORT statements on sales, you can see the aggregated values in
sales.

 --------SALES--------
 -------PRODUCT-------
TIME 00001 00002
---------- ---------- ----------
01Jan2003 10.00 15.21
31Jan2003 10.88 13.37
01Dec2003 NA NA
31Dec2003 NA NA
Jan2003 20.88 28.58
Dec2003 NA NA
2003 20.88 28.58
01Jan2002 14.44 11.03
31Jan2002 15.55 12.20
01Dec2002 11.39 12.80
31Dec2002 10.53 13.77
Jan2002 29.98 23.23
Dec2002 21.92 26.57
2002 51.91 49.80

Since sales_2002 and sales_2003 are external partitions of sales,
aggregating sales effectively means that you aggregated sales_2002 and
sales_2003. When you issue REPORT statements onsales_2002 and
sales_2003, you can see the aggregated values in those variables.

 -----SALES_2002------
 -------PRODUCT-------
YEAR_2002 00001 00002
---------- ---------- ----------
01Jan2002 14.44 11.03
31Jan2002 15.55 12.20
01Dec2002 11.39 12.80
31Dec2002 10.53 13.77
Jan2002 29.98 23.23
Dec2002 21.92 26.57
2002 51.91 49.80

AGGREGATE command

7-22 Oracle OLAP DML Reference

 -----SALES_2003------
 -------PRODUCT-------
YEAR_2003 00001 00002
---------- ---------- ----------
01Jan2003 10.00 15.21
31Jan2003 10.88 13.37
01Dec2003 NA NA
31Dec2003 NA NA
Jan2003 20.88 28.58
Dec2003 NA NA
2003 20.88 28.58

AGGREGATE function

AFFMAPINFO to ARCCOS 7-23

AGGREGATE function

The AGGREGATE function calculates the data of a variable at runtime, in response
to a user's request. The AGGREGATE function returns the requested data by
retrieving stored values and calculating the remaining values.

Return Value
The same data type as the aggregated variable

Syntax
AGGREGATE (var [USING aggmap] [FROM fromspec|FROMVAR textvar] -

[FORCECALC FORCEORDER] [COUNTVAR intvar])

Arguments

var
The name of the variable whose data will be calculated (if necessary) and returned.
It is frequently numeric, but can also be BOOLEAN, TEXT, DATETIME, or DATE
depending on the operator specified in the RELATION (for aggregation) statements
in the aggmap specification.

USING
This keyword indicates that the aggregation is performed using the specified
aggmap. When you do not include this phrase, the function uses the default
aggmap for the variable as previously specified using the AGGMAP command or
the $AGGMAP property.

aggmap
The name of a previously-defined aggmap that specifies how the data will be
aggregated. For information about aggmaps, see the DEFINE AGGMAP command.

FROM
This keyword indicates that the detail data is obtained from a different object. A
FROM clause is only one way in which you can specify the variable from which
detail data should be obtained when performing aggregation. See "Ways of
Specifying Where to Obtain Detail Data for Aggregation" on page 7-13.

AGGREGATE function

7-24 Oracle OLAP DML Reference

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data
for the aggregation is obtained.

FROMVAR
This keyword indicates that the detail data is obtained from different objects to
perform a capstone aggregation. A FROMVAR clause is only one way in which you
can specify the variable from which detail data should be obtained when
performing aggregation. See "Ways of Specifying Where to Obtain Detail Data for
Aggregation" on page 7-13.

textvar
An arbitrarily dimensioned variable used to resolve any leaf nodes. Specify NA to
indicate that a node does not need detail data to calculate the value.

FORCECALC
Specifies that any value that is not specified in the aggmap's PRECOMPUTE clause
should be recalculated, even when there is a value stored in the desired cell. Use the
FORCECALC keyword when you want users to be able to change detail data cells
and see the changed values reflected in dynamically-computed aggregate cells.

FORCEORDER
Specifies that the calculation must be performed in the order in which the
RELATION (for aggregation) statements are listed, which should be from the fastest
varying dimension to the slowest varying dimension. Use this option when you
have changed some of the values calculated by the AGGREGATE command.
Otherwise, the optimization methods used by the AGGREGATE function may
cause the modified values to be ignored. FORCEORDER will slow performance.

COUNTVAR
Indicates that the number of leaf nodes that contributed to an aggregate value are
counted. Leaf nodes that are NA are not included in the tally. You must include a
COUNTVAR phrase when the aggmap contains a RELATION (for aggregation)
statement that uses the AVERAGE operator.

Note: You can also set a $COUNTVAR property to specify that
Oracle OLAP should count the number of leaf nodes that
contributed to an aggregate value when an AGGREGATE function
executes. In this case, you do not need to include the COUNTVAR
keyword with the AGGREGATE function.

AGGREGATE function

AFFMAPINFO to ARCCOS 7-25

intvar
A variable that you have defined with an INTEGER data type. The definition of
intvar must have exactly the same dimensions in exactly the same order as the
dimensions in var. When you aggregate several variables together, you must define
an INTEGER variable for each one to record the results.

Notes

Steps for Supporting Runtime Calculations
Follow these steps when combining pre-aggregation with runtime aggregation:

1. Create an aggmap that limits the amount of data to be precalculated.

2. Execute the AGGREGATE command with the FUNCDATA argument.

3. When you have made any changes after executing the AGGREGATE command
(see "Compiling the Aggmap" on page 7-25), recompile the aggmap with the
COMPILE command.

4. Add an $AGGREGATE_FROM property to the data variables (see "Using NA
Values to Trigger Runtime Calculations" on page 7-26).

5. UPDATE and COMMIT the analytic workspace.

Compiling the Aggmap
Be sure to compile the aggmap at the time you load data, either with an explicit
COMPILE command or with the FUNCDATA argument to the AGGREGATE
command. Otherwise, the aggmap will be recompiled at runtime for each session in
which the AGGREGATE function is used. Perform other calculations (such as
calculating models) before you compile the aggmap.

You need to recompile the aggmap after maintaining any of the dimensions in the
aggmap definition or any of the relations that are included in the text of the
aggmap.

Runtime Changes to Data Values
When users are able to change data values at runtime, then the data may get out of
synchronization. You can prevent this problem in the following ways:

■ Use the ALLOCATE command to distribute the data in a new aggregate to the
contributing values lower in the hierarchy.

AGGREGATE function

7-26 Oracle OLAP DML Reference

■ Do not precalculate the data that is subject to runtime changes, since the stored
aggregates cannot be altered to reflect changes made at runtime to the
contributing values.

Using NA Values to Trigger Runtime Calculations
By adding an $NATRIGGER property to a variable, you can implicitly call the
AGGREGATE function each time the data is queried. The following statements
cause sales data to be aggregated using the sales.aggmap aggmap.

CONSIDER sales
PROPERTY '$NATRIGGER' 'AGGREGATE(sales USING sales.aggmap)'

A statement such as REPORT SALES will now execute the AGGREGATE function,
so that computed values are returned instead of NAs.

Using the AGGREGATE Function after Partial Rollups
When your batch window is not sufficiently long to preaggregate all of the data that
you want to generate, you can perform the aggregation in stages on consecutive
days and use the AGGREGATE function to calculate the balance. For each stage,
you must do the following:

1. Change the PRECOMPUTE phrase of the RELATION statement in the aggmap
so that new data is aggregated.

2. Execute the AGGREGATE command with the FUNCDATA keyword.

3. Verify that the $NATRIGGER property is set on the variables so that the
AGGREGATE function will calculate the balance of the data.

Using Multiple Aggmaps
Whenever possible, you should only use one aggmap to rollup a variable. However,
in some situations, a variable requires more than one aggmap to roll up the data in
the desired manner. This can create problems when some of the data is calculated
on the fly, because the metadata retained for the AGGREGATE function
corresponds to the last aggmap. The AGGREGATE function needs metadata that is
the union of all of the aggmaps used by the AGGREGATE command. The solution
is to create an additional aggmap for use by the AGGREGATE function that
correctly identifies the NA values. Be sure to compile this aggmap.

You should not use the AGGREGATE function with multiple aggmaps unless you
feel comfortable answering the following question:

AGGREGATE function

AFFMAPINFO to ARCCOS 7-27

When the aggmap is compiled for use by the AGGREGATE function, does the
status that results from each PRECOMPUTE clause accurately define the nodes
within that dimension at which data has been pre-computed?

When you cannot answer "yes" to this question with confidence, you should not use
the AGGREGATE function with multiple aggmaps.

Examples
This section contains several examples of using the AGGREGATE function. For
additional aggregation examples, see the examples in AGGMAP.

Example 7–9 Using the AGGREGATE Function as the Formula of an Expression

Example 7–7, "Capstone Aggregation" on page 7-17 illustrates performing the final
capstone aggregation using an AGGREGATE command. You could also perform the
capstone aggregation at runtime as the expression of a formula.

Assume that your analytic workspace contains the following object definitions.

DEFINE GEOG.D DIMENSION TEXT
DEFINE GEOG.PARENTREL RELATION GEOG.D <GEOG.D>
DEFINE TIME.D DIMENSION TEXT
DEFINE TIME.PARENTREL RELATION TIME.D <TIME.D>
DEFINE SALES_JAN76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_FEB76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_MAR76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_CAPSTONE76 VARIABLE INTEGER <GEOG.D TIME.D>
DEFINE CAPSTONE_SOURCE VARIABLE TEXT <TIME.D>

Now you create two aggmap objects with the following definitions. Note that in this
case the capstone_aggmap consists of a RELATION (for aggregation) statement
with a PRECOMPUTE NA clause.

DEFINE LEAF_AGGMAP AGGMAP
AGGMAP
RELATION geog.parentrel OPERATOR SUM
END

DEFINE CAPSTONE_AGGMAP AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM PRECOMPUTE (NA)
END

AGGREGATE function

7-28 Oracle OLAP DML Reference

In Example 7–7, "Capstone Aggregation" on page 7-17, the final capstone
aggregation is performed using an AGGREGATE command. In this example, the
capstone aggregation is defined as a formula named f_sales_capstone76 that
has an AGGREGATE function as the expression of the formula.

DEFINE F_SALES_CAPSTONE76 FORMULA INTEGER <GEOG.D TIME.D>
EQ AGGREGATE (sales_capstone76 USING capstone_aggmap fromvar capstone_source)

When you report on the unaggregated variables and formulas in your analytic
workspace, you see the following results.

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts NA NA NA
California NA NA NA
United States NA NA NA

 --------------------F_SALES_CAPSTONE76---------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000
San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

 ---------------------SALES_CAPSTONE76----------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 NA
Medford 2,000 4,000 6,000 NA
San Diego 3,000 6,000 9,000 NA
Sunnydale 4,000 8,000 12,000 NA
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

AGGREGATE function

AFFMAPINFO to ARCCOS 7-29

Now you aggregate the leaf variables using the following AGGREGATE statement.

AGGREGATE sales_jan76 sales_feb76 sales_mar76 USING leaf_aggmap

A report of the leaf variables shows that they are aggregated.

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts 3,000 6,000 9,000
California 7,000 14,000 21,000
United States 10,000 20,000 30,000

A report of the f_sales_capstone76 formula shows the aggregated values for
76Q1.

 --------------------F_SALES_CAPSTONE76---------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000
San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts 3,000 6,000 9,000 18,000
California 7,000 14,000 21,000 42,000
United States 10,000 20,000 30,000 60,000

While a report of the sales_capstone76 variable does not show the aggregated
values for 76Q1 since they are not stored in the variable.

 ---------------------SALES_CAPSTONE76----------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 NA
Medford 2,000 4,000 6,000 NA
San Diego 3,000 6,000 9,000 NA
Sunnydale 4,000 8,000 12,000 NA
Massachusetts 3,000 6,000 9,000 NA
California 7,000 14,000 21,000 NA
United States 10,000 20,000 30,000 NA

AGGREGATE function

7-30 Oracle OLAP DML Reference

Example 7–10 Aggregating Data on the Fly for a Report

The units variable is aggregated entirely on the fly using the tp.agg aggmap.

This is the object definitions for the variable units.

DEFINE units VARIABLE INTEGER <time product>

The parent relation for time contains these values.

 ---TIME.PARENTREL----
 --TIME.HIERARCHIES---
TIME STANDARD YTD
---------- ---------- ----------
Jan01 Q1.01 Last.Ytd
Feb01 Q1.01 Last.Ytd
Mar01 Q1.01 Last.Ytd
Q1.01 2001 NA

The parent relation for the product dimension contains these values.

 PRODUCT.PA
PRODUCT RENTREL
---------- ----------
Food Na
Snacks Food
Drinks Food
Popcorn Snacks
Cookies Snacks
Cakes Snacks
Soda Drinks
Juice Drinks

AGGREGATE function

AFFMAPINFO to ARCCOS 7-31

In the units variable, data is stored only at the lowest level of each dimension
hierarchy.

 -------------------UNITS-------------------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food NA NA NA NA
Snacks NA NA NA NA
Drinks NA NA NA NA
Popcorn 2 2 4 NA
Cookies 3 6 3 NA
Cakes 4 4 2 NA
Soda 7 3 9 NA
Juice 1 3 2 NA

The aggmap specifies that all data will be calculated on the fly.

DEFINE tp.agg AGGMAP
LD <time product> Aggmap
AGGMAP
RELATION time.parentrel PRECOMPUTE (NA)
RELATION product.parentrel PRECOMPUTE (NA)
END

The following REPORT command uses the AGGREGATE function to calculate the
data.

REPORT aggregate(units USING tp.agg)

 -------AGGREGATE(UNITS USING TP.AGG)-------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food 17 18 20 55
Snacks 9 12 9 30
Drinks 8 6 11 25
Popcorn 2 2 4 8
Cookies 3 6 3 12
Cakes 4 4 2 10
Soda 7 3 9 19
Juice 1 3 2 6

AGGREGATE function

7-32 Oracle OLAP DML Reference

Example 7–11 Using $NATRIGGER to Aggregate Data

When the AGGREGATE function is added to units in the $NATRIGGER property,
a simple REPORT command will display aggregated results.

CONSIDER units
PROPERTY '$NATRIGGER' 'AGGREGATE(units USING tp.agg)'
REPORT units

 -------------------UNITS-------------------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food 17 18 20 55
Snacks 9 12 9 30

Example 7–12 Calculating all but one Value on the Fly

The AGGREGATE function calculates the complement of the data specified in the
PRECOMPUTE clause of the RELATION statement. It returns those values that are
currently in status.

For example, when you are using an aggmap that contains this RELATION
statement.

RELATION letter.letter PRECOMPUTE ('AA')

Then the AGGREGATE function calculates all aggregations except AA, as shown
here.

REPORT AGGREGATE(units USING letter.aggmap)

 AGGREGATE(UNITS
LETTER USING LETTER.AGGMAP)
-------------- --------------------
A 3
AA NA
AB 3
AAB 2
ABA 1
ABB 2
AAAA 1
AABA 2
ABAA 1
ABBB 1
ABBA 1
...

AGGREGATION

AFFMAPINFO to ARCCOS 7-33

AGGREGATION

The AGGREGATION function is available only within a model. Its purpose is to
allow you to create a model that represents a custom aggregate. Such an aggmap
can be used for dynamic aggregation with the AGGREGATE function.

Syntax
AGGREGATION(dimval-list)

Arguments

dimval-list
A list of one or more dimension values to include in the custom aggregation. The
specified values must belong to the same dimension to which the target dimension
value belongs. You must specify each dimension value as a text literal. That is, they
cannot be represented by a text expression such as a variable.

Examples

Example 7–13 Using the AGGREGATION Function to Create a Custom Aggregate

The following lines of code from a program perform these steps:

1. Add the new dimension value my_time to the time dimension.

MAINTAIN time ADD 'My_Time'

2. Define the model mytime_custagg and set the specification of the model
using the AGGREGATION function.

DEFINE mytime_custagg MODEL
MODEL JOINLINES('DIMENSION time' 'My_Time = AGGREGATION(\'23\' \'24\')')

(Note that backslash escape characters are required to include quotation marks
within a quoted string.)

Note: Because the AGGREGATION function is intended only for
dynamic aggregation, a model that contains such a function cannot
be used with the AGGREGATE command.

AGGREGATION

7-34 Oracle OLAP DML Reference

3. Define the sales_aggmap aggmap.

DEFINE sales_aggmap AGGMAP <time cpc <customer product channel> >
AGGMAP
RELATION prntrel.time
RELATION prntrel.chan
RELATION prntrel.prod
RELATION prntrel.cust
END

4. Add the model mytime_custagg to sales_aggmap.

AGGMAP ADD mytime_custagg TO sales_aggmap

5. Limit the dimensions to the values of interest and run a report.

" Run a report
LIMIT time TO 'My_Time' '23' '24'
LIMIT channel TO '5'
LIMIT product TO '70'
LIMIT customer TO '114'
REPORT DOWN time AGGREGATE(sales USING sales_aggmap)

The report generates the following output.

CHANNEL: 5
PRODUCT: 70

--AGGREGATE(SALES---
USING SALES_AGGMAP)-
------CUSTOMER------

TIME 114
-------------- --------------------
my_time 682,904.34
23 84,982.92
24 597,921.42

ALLCOMPILE

AFFMAPINFO to ARCCOS 7-35

ALLCOMPILE

The ALLCOMPILE program compiles every compilable object in your current
analytic workspace, one at a time. As it works, ALLCOMPILE sends to the current
outfile messages that show the name of the object being compiled.

Syntax
ALLCOMPILE [n]

Arguments

n
An INTEGER expression with a value of zero or higher. The expression specifies the
number of objects to be compiled before an UPDATE command is executed. For
example, when you specify 1, an UPDATE command is executed after each object is
compiled. When you specify 0 (zero), all the objects are compiled and an UPDATE
command is executed only at the end. When you omit the argument, no UPDATE
command is executed by ALLCOMPILE. Frequent updates during an
ALLCOMPILE help ensure the most efficient use of space in the analytic workspace.

Notes

Error Messages
ALLCOMPILE uses the COMPILE command. This means that it will check for
syntax errors as it compiles an object, and it will record error messages in the
current outfile as appropriate.

Examples

Example 7–14 ALLCOMPILE Output

The following example shows the output of ALLCOMPILE when it is run on an
analytic workspace that contains four programs.

Compiling AUTOGO
Compiling READIT
Compiling REGION.REPORT
Compiling SALES.REPORT

ALLOCATE

7-36 Oracle OLAP DML Reference

ALLOCATE

The ALLOCATE command calculates lower-level data from upper-level data by
allocating variable data down a hierarchical dimension. Frequently you allocate
data for budgeting, forecasting, and profitability analysis.

Syntax
ALLOCATE source [SOURCE conjoint] [BASIS basisname [ACROSS dimname]] -

 [TARGET targetname [TARGETLOG targetlogname]] -

 [USING aggmap] [ERRORLOG errorlogfileunit]

Arguments

source
A variable or formula that provides the values to allocate. When the source object is
a formula, you must also specify a variable with the TARGET keyword. When you
specify a variable as source and you do not specify a target variable or a basisname
variable, then ALLOCATE uses source as the basis and the target.

SOURCE conjoint
Specifies a conjoint dimension that contains a list of cells the user has changed. The
ALLOCATE command uses this list to produce the smallest target status needed to
allocate all of the changed source cells.

BASIS basisname
Specifies a variable, relation, or formula that provides the data on which the
allocation is based. That data determines which cells of the target receive allocated
values and, in an even or proportional operation, the amount of the source allocated
to a target cell.

When the OPERATOR specified by a RELATION (for allocation) statement in
aggmap is a COPY operator (COPY, MIN, MAX, FIRST, LAST), the basis tells the
ALLOCATE command which target cells to update. When the OPERATOR
specified is EVEN, then ALLOCATE derives the counts that it uses for allocation
from the basis. When the OPERATOR specified is the PROPORTIONAL, then
ALLOCATE uses the basis data to determine the amount to allocate to each target
cell. When the OPERATOR is HCOPY, HFIRST, HLAST, or HEVEN, then
ALLOCATE does not use a BASIS object. Instead, it allocates the source data to all

ALLOCATE

AFFMAPINFO to ARCCOS 7-37

of the target cells in the dimension hierarchy that is specified by the relation named
in the RELATION command.

When you specify the same variable as both the basis and the target, the current
values of the target cells determine the allocation. When you do not specify a basis,
then the ALLOCATE command uses the source as the basis.

ACROSS dimname
Specifies a dimension, which can be a named composite, that the ALLOCATE
command loops over to discover the cells in a basis. Because a basis can be a
formula, you can realize a significant performance advantage by supplying a
looping dimension that eliminates the sparsity from the basis loop.

TARGET targetname
Specifies a variable to hold the allocated values. When the source object is a
formula, then you must specify a target. When the source object is a variable and
you do not specify a target, then ALLOCATE uses the source variable as the target.

TARGETLOG targetlogname
Specifies a variable (identically dimensioned to the targetname variable), or a
relation that specifies such a variable, to which ALLOCATE assigns a copy of the
allocation. For instance, when ALLOCATE assigns the value of 100 to the cell of the
costs variable that is specified by the time and product dimension values
Jan01 and TV, and the targetlog relation specifies the cell of the costacct
variable that is specified by the same dimension values, then ALLOCATE assigns
the value of 100 to the specified costacct cell, also.

USING aggmap
Specifies the name of a previously-defined aggmap to use for the allocation. When
you do not include this phrase, the command uses the default allocation
specification for the variable as previously specified using the $ALLOCMAP
property.

ERRORLOG errorlogfileunit
Specifies a file unit that ALLOCATE uses for logging allocation deadlocks, errors, or
other information. When the allocation does not generate any deadlocks or errors,
ALLOCATE sets errorlogname to NA. When the allocation produces one or more
deadlocks or errors, the events are sent to the specified file. ALLOCATE writes one
line in the file for each allocation source that remains unallocated.

When you do not specify a file unit with ERRORLOG, ALLOCATE sends the
information to the standard output device.

ALLOCATE

7-38 Oracle OLAP DML Reference

Notes

Preserving Original Basis Values
Often the source, basis, and target objects are the same variable and therefore the
original values in the cells of the target variable determine the proportions of the
allocation. The allocation overwrites those original values in the target cells with the
allocated values. To preserve original values in a variable, specify the original
variable as the basis object and save the allocated values to a new variable as the
target object. Using different basis and target objects makes it possible for you to
preview the allocated data. When you then want to store the allocated values in the
same variable as the basis, you can perform the allocation again with the same
object as the basis and the target. Another example of using different basis and
target objects is using an actuals variable as the basis of the allocation and a budget
variable as the target.

Using a Formula as a Source or Basis
Source and basis objects can be formulas, which makes it possible for you to make
complex computations and have the results be the source or basis object. For
example, when you want to see the sales of individual products that would be
necessary to produce a thirty percent increase in sales for the next year, you could
express the increase in the following formula.

DEFINE actualsWanted DECIMAL FORMULA <time, product>
EQ LAG(actuals, 1, time) * 1.3

You would then use ACTUALSWANTED as the source object with the ALLOCATE
command. In this example, you would use the ACTUALS variable as the basis.

Tracking Multiple Allocations
When you specify a variable with the TARGETLOG argument, you can store an
allocated value in that variable as well as in the target variable. This double entry
allocation makes it possible for you to track multiple allocations to the same target
cell. For example, when you allocate a series of different costs to the same costs
centers, then each allocation increases the values in the target cells. You can keep
track of the individual allocations by specifying a different targetlogname variable for
each allocation.

Logging Allocation Errors
When you specify a file with the ERRORLOG argument, you can record errors that
result from locks and NA basis values. The log can provide feedback to an

ALLOCATE

AFFMAPINFO to ARCCOS 7-39

application about which source values remain unallocated. You can use the
information to modify the allocation, for example by using a hierarchical operator
such as HEVEN in a RELATION command in the aggmap. You can use the
ALLOCERRLOGHEADER and ALLOCERRLOGFORMAT options to format the
error log. Within an allocation specification, you can specify other aspects of the
error log using the ERRORLOG and ERRORMASK statements.

Logging the Progress of an Allocation
When you specify a file with the POUTFILEUNIT option, then you can record and
monitor the progress of an allocation. You can use the file to get feedback during the
course of a lengthy allocation and to gain information that might be useful for
optimizing the allocation in the future.

Examples

Example 7–15 Direct Even Allocation

This example allocates a value specified at one level of the time dimension
hierarchy directly to the variable target cells that are specified by lower level values
in the hierarchy without allocating values to an intermediate level. The
timemonthyear relation specifies the hierarchical relationship of the time values.
The source, basis, and target of the allocation are all the same variable,
PROJBUDGET, which is dimensioned by division, time, and line. The time
dimension is a nonunqiue concat dimension that has as its base dimensions year,
quarter, and month. The time dimension is limited to <year: Yr02>,
<quarter: Q1.02>, <quarter: q1.02>, and <month: Jan02> to <month:
Jun02>. The following statements define the projbudget variable, set the value of
a cell in to 6000 and then report the variable.

DEFINE projbudget VARIABLE DECIMAL <division time line>
projbudget(division 'CAMPING' time '<YEAR: YR02>' line 'MARKETING') = 6000
REPORT projbudget

ALLOCATE

7-40 Oracle OLAP DML Reference

The preceding statement produces the following results.

LINE: MARKETING
-PROJBUDGET--
--DIVISION---

TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> NA
<quarter: Q2.02> NA
<month: Jan02> NA
<month: Feb02> NA
<month: Mar02> NA
<month: Apr02> NA
<month: May02> NA
<month: Jun02> NA

The following statements define a self-relation on the time dimension, relate the
month values directly to the year values, and report the values of the relation.

DEFINE timemonthyear RELATION time <time>
LIMIT month TO 'JAN02' TO 'JUN02'
timemonthyear(time month) = '<YEAR: YR02>'
REPORT timemonthyear

The preceding statement produces the following results.

TIME TIMEMONTHYEAR
---------------- -------------
<year: Yr02> NA
<quarter: Q1.02> NA
<quarter: Q2.02> NA
<month: Jan02> <year: Yr02>
<month: Feb02> <year: Yr02>
<month: Mar02> <year: Yr02>
<month: Apr02> <year: Yr02>
<month: May02> <year: Yr02>
<month: Jun02> <year: Yr02>

The following statements define an aggmap and enter commands into the allocation
specification. They allocate the value that is specified by <year: Yr02> from
projbudget to the cells of the same variable that are specified by the month
dimension values, and then report projbudget. The target cells of the variable
have NA values so the RELATION command in the allocation specification specifies
the HEVEN operator. The ALLOCATE command specifies only one variable,

ALLOCATE

AFFMAPINFO to ARCCOS 7-41

projbudget, so that variable is the source and target of the allocation. No basis
object is required because the allocation is an HEVEN operation. The allocation is
directly from the year source value to the month target values because that is the
hierarchy specified by the relation in the allocation specification.

DEFINE projbudgmap AGGMAP
ALLOCMAP
RELATION timemonthyear OPERATOR HEVEN
END
ALLOCATE projbudget USING projbudgmap
REPORT projbudget

The preceding statement produces the following results.

LINE: MARKETING
-PROJBUDGET--
--DIVISION---

TIME CAMPING
---------------- -------------
<YEAR: YR02> 6,000.00
<QUARTER: Q1.02> NA
<QUARTER: Q2.02> NA
<MONTH: JAN02> 1,000.00
...
<MONTH: JUN02> 1,000.00

Example 7–16 Recursive Even Allocation with a Lock

This example allocates a value specified at one level of the time dimension
hierarchy first to the target cells at an intermediate level in a variable and then to
the cells that are specified by the lowest level values in the hierarchy. The
timeparent relation specifies the hierarchical relationship of the time values. The
source, basis, and target of the allocation are projbudget. The status of the
division, time, and line dimensions are the same as the direct allocation

ALLOCATE

7-42 Oracle OLAP DML Reference

example. At the beginning of this example, the projbudget variable again has just
the single value, 6000, in the cell specified by <year: Yr02>.

DEFINE timeparent RELATION time <time>
LIMIT quarter TO 'Q1.02' 'Q2.02'
timeparent(time quarter) = '<YEAR: YR02>'
LIMIT month TO 'JAN02' TO 'MAR02'
timeparent(time month) = '<QUARTER: Q1.02>'
LIMIT month TO 'APR02' TO 'JUN02'
timeparent(time month) = '<QUARTER: Q1.02>'
REPORT timeparent

The preceding statement produces the following results.

TIME TIMEPARENT
---------------- -------------
<year: Yr02> NA
<quarter: Q1.02> <year: Yr02>
<quarter: Q2.02> <year: Yr02>
<month: Jan02> <quarter: Q1.02>
<month: Feb02> <quarter: Q1.02>
<month: Mar02> <quarter: Q1.02>
<month: Apr02> <quarter: Q2.02>
<month: May02> <quarter: Q2.02>
<month: Jun02> <quarter: Q2.02>

This example demonstrates locking a cell so that it does not participate in the
allocation. Locking a cell requires a valueset, so the following statements define one,
limit the time dimension to the desired value, assign a value to the valueset, and
then reset the status of the time dimension.

DEFINE timeval TO '<QUARTER: Q2.02>'
LIMIT time TO '<Year: YR02>' '<Quarter: Q1.02>' '<Quarter: Q2.02>' -

'<month: Jan02>' '<month: Feb02>' '<month: Mar02>' -
'<month: Apr02>' '<month: May02>' '<month: Jun02>

The following statements revise the specification of the aggmap named
projbudgmap. This time the RELATION command in the allocation specification
specifies the timeparent relation, the HEVEN operator, and the PROTECT
argument. The READWRITE keyword specifies that the children of the locked cell
also do not participate in the allocation. The NONORMALIZE keyword specifies
that the value of the locked cell is not subtracted from the source value before it is

ALLOCATE

AFFMAPINFO to ARCCOS 7-43

allocated to the target cells. The statements then allocate the source value and report
the results.

CONSIDER projbudgmap
ALLOCMAP
RELATION timeparent OPERATOR HEVEN ARGS PROTECT NONORMALIZE READWRITE timeval
END

ALLOCATE projbudget USING projbudgmap
REPORT projbudget

The preceding statement produces the following results.

LINE: MARKETING
-PROJBUDGET--
--DIVISION---

TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> 6,000.00
<quarter: Q2.02> NA
<month: Jan02> 2,000.00
<month: Feb02> 2,000.00
<month: Mar02> 2,000.00
<month: Apr02> NA
<month: May02> NA
<month: Jun02> NA

Example 7–17 Recursive Proportional Allocation

This example uses the same relation as the recursive even allocation but it uses the
PROPORTIONAL operator and it does not lock any cells. Because a proportional
allocation uses the values of the basis object to calculate the values to assign to the
target cells, the projbudget variable has values assigned to each of its cells. The
value of the <year: Yr02> cell is 6000., which was assigned to that cell. It is not

ALLOCATE

7-44 Oracle OLAP DML Reference

the value an aggregation of the lower levels. A report of projbudget before the
allocation produces the following results.

LINE: MARKETING
-PROJBUDGET--
--DIVISION---

TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> 1,000.00
<quarter: Q2.02> 2,000.00
<month: Jan02> 300.00
<month: Feb02> 100.00
<month: Mar02> 600.00
<month: Apr02> 400.00
<month: May02> 800.00
<month: Jun02> 800.00

The following statements replace the previous specification of the aggmap with the
new RELATION command, which specifies the PROPORTIONAL operator. The
allocation specification includes a SOURCEVAL ZERO statement, which specifies that
the source value is replace with a zero value after the allocation (see SOURCEVAL
for more information). The statements then allocate the source value and report the
result.

CONSIDER projbudgmap
ALLOCMAP JOINLINES('RELATION timeparent OPERATOR PROPORTIONAL timeval' -
'SOURCEVAL ZERO' -
'END')

ALLOCATE projbudget USING projbudgmap
REPORT projbudget

ALLOCATE

AFFMAPINFO to ARCCOS 7-45

The preceding statement produces the following results.

TIME TIMEPARENT
LINE: MARKETING

-PROJBUDGET--
--DIVISION---

TIME CAMPING
---------------- -------------
<year: Yr02> 0
<quarter: Q1.02> 2,000.00
<quarter: Q2.02> 4,000.00
<month: Jan02> 600.00
<month: Feb02> 200.00
<month: Mar02> 1,200.00
<month: Apr02> 800.00
<month: May02> 1,600.00
<month: Jun02> 1,600.00

ALLOCERRLOGFORMAT

7-46 Oracle OLAP DML Reference

ALLOCERRLOGFORMAT

The ALLOCERRLOGFORMAT option determines the contents and the formatting
of the error log that you specify with the ERRORLOG argument to the ALLOCATE
command. You can specify a header for the error log with the
ALLOCERRLOGHEADER option.

Syntax
ALLOCERRLOGFORMAT = text

Arguments

text
Characters that determine the contents and formatting of the error log that you
specify with the VNF command. Table 7–3, " Characters for Specify the Contents of
the Error Log for ALLOCATE" lists the characters that specify the contents of the
error log.

Table 7–3 Characters for Specify the Contents of the Error Log for ALLOCATE

Character Output Specified

b The basis object being processed.

c The child node of the dimension being processed.

d The name of the dimension being processed.

e A description of the error encountered.

n The error code of the error encountered.

p The parent node of the dimension being processed.

r The name of the relation being allocated down.

s The source object being processed.

t The target object being processed.

n The basis value of the child cell receiving the allocation.

y The source value of the parent cell being allocated.

z The basis value of the parent cell being allocated.

ALLOCERRLOGFORMAT

AFFMAPINFO to ARCCOS 7-47

Notes

Specifying the Number of Characters for an Object
By placing an INTEGER value before the formatting character, you can specify the
number of characters that the object occupies in the error log. The default value of
ALLOCERRLOGFORMAT is the following.

'%8p %8y %8z %e (%n)'

Specifying Escape Sequences as Formatting Characters
You can specify escape sequences as formatting characters. For valid escape
sequences, see "Escape Sequences" on page 2-4.

Specifying How Many Error Conditions to Log
The ERRORLOG command in an allocation specification specifies how many
allocation error conditions to log and whether to continue or to stop the allocation
when the specified maximum number of errors have been logged.

Examples

Example 7–18 Setting the ALLOCERRLOGFORMAT Option

This example sets the ALLOCERRLOGFORMAT option.

ALLOCERRLOGFORMAT = '%8p %8y %8z %e (%n)'
SHOW ALLOCERRLOGFORMAT

The preceding statement produces the following results.

%8p %8y %8z %e (%n)

ALLOCERRLOGHEADER

7-48 Oracle OLAP DML Reference

ALLOCERRLOGHEADER

The ALLOCERRLOGHEADER option determines the column headings for the
error log that you specify with the ERRORLOG argument to the ALLOCATE
command. To specify additional formatting for the error log, use the
ALLOCERRLOGFORMAT option.

Syntax
ALLOCERRLOGHEADER = text

Arguments

text
Characters that determine the content and formatting of the column headers that
are the first line of the error log that you specify with the ALLOCATE command.
(See ALLOCERRLOGFORMAT for a list of the characters you can use.)

When you specify NA as the value for this option, then ALLOCATE does not write
any header to the error log. The following is the default value of
ALLOCERRLOGHEADER.

'Dim Source Basis\n%-8d %-8v %-8b Description\n
-------- -------- -------- -----------'

Notes

Specifying How Many Error Conditions to Log
The ERRORLOG command in an ALLOCMAP type aggmap specifies how many
allocation error conditions to log and whether to continue or to stop the allocation
when the specified maximum number of errors have been logged.

ALLOCERRLOGHEADER

AFFMAPINFO to ARCCOS 7-49

Examples

Example 7–19 Setting the ALLOCERRLOGHEADER Option

The following statements define the heading for the error log specified by an
ALLOCATE command and show the value of the ALLOCERRLOGHEADER
option.

ALLOCERRLOGHEADER = 'Dim Source Basis\n %-8d %-8v %-8b Description \n
-------- -------- -------- -----------'
SHOW ALLOCERRLOGHEADER

The preceding statement produces the following results.

Dim Source Basis
%-8d %-8s %-8b Description
-------- -------- -------- -----------

An allocation operation that has a variable named budget as both the source and
basis objects and which encounters a deadlock when allocating down the
division dimension produces the following entry in the error log.

Dim Source Basis
Division Budget Budget Description
-------- -------- -------- -----------
Accdiv 650000 NA A deadlock occurred allocating data (5)

ALLOCMAP

7-50 Oracle OLAP DML Reference

ALLOCMAP

The ALLOCMAP command identifies an aggmap object as an allocation
specification and enters the contents of the specification.

Syntax
ALLOCMAP [specification]

Arguments

specification
A multiline text expression that is the allocation specification for the current
aggmap object. An allocation specification begins with an ALLOCMAP statement
and ends with an END statement. Between these statements, you code one or more
of the following statements depending on the calculation that you want to specify:

CHILDLOCK
DEADLOCK
DIMENSION (for allocation)
ERRORLOG
ERRORMASK
MEASUREDIM (for allocation)
RELATION (for allocation)
SOURCEVAL
VALUESET

Each statement is a line of the multiline text expression. Separate statements with
newline delimiters (\n), or use JOINLINES.

For a discussion of how to determine which statements to include, see "Designing
an Allocation Specification" on page 50.

Notes

Designing an Allocation Specification
Minimally, an allocation specification consists of a RELATION (for allocation)
statement or a VALUESET statement However, you can create more complex
allocation specifications and change the default settings for error handling by
including additional OLAP DML statements in the specification, as follows:

ALLOCMAP

AFFMAPINFO to ARCCOS 7-51

1. For hierarchical allocations, a RELATION (for allocation) statement that
specifies a self-relation that identifies the child-parent relationships of the
hierarchy. List the statements in the order in which you want to perform the
various operations; or if this is not important, list the RELATION statements in
the same order as the dimensions appear in the variable definition.

2. For non-hierarchical allocations, a VALUESET statement that specifies the
values to be used when allocating.

3. A CHILDLOCK statement that tells the ALLOCATE command whether to
determine if RELATION statements in the aggmap specify lock on both a parent
and a child element of a dimension hierarchy.

4. A DEADLOCK statement that tells the ALLOCATE command whether to
continue an allocation when it encounters a deadlock, which occurs when the
allocation cannot distribute a value because the targeted cell is locked or, for
some operations, has a basis value of NA.

5. When a dimension is not shared by the target variable and the source or the
basis objects, a DIMENSION (for allocation) statement that specifies a single
value to set as the status of that dimension.

6. An ERRORLOG statement that specifies how many errors to allow in the error
log specified by the ALLOCATE command and whether to continue the
allocation when the maximum number of errors has occurred.

7. An ERRORMASK statement that specifies which error conditions to exclude
from the error log.

8. When the source data comes from a variable, a SOURCEVAL statement that
specifies whether ALLOCATE changes the source data value after the
allocation.

Aggmap Type
You can use the AGGMAPINFO function to learn the type of an aggmap. An
aggmap into which you have entered an allocation specification using the
ALLOCMAP has the type ALLOCMAP and an aggmap into which you have
entered an aggregation specification using the AGGMAP command has the type
AGGMAP. When you have defined an aggmap but have not yet entered a
specification in it, its type is NA.

Allocation Options
A number of options effect allocation. These options are listed in Table 7–4,
" Allocation Options" on page 7-52.

ALLOCMAP

7-52 Oracle OLAP DML Reference

One RELATION for Each Dimension
An aggmap can have only one RELATION statement for any given dimension.

One Hierarchy For Each Dimension
An allocation operation proceeds down only one hierarchy in a dimension. When a
dimension has more than one hierarchy, then you must limit the dimension to one
of the hierarchies with a qualified data reference after the rel-name argument.

Examples

Example 7–20 Allocation Specification from an Input File

In this example an aggmap and its specification are defined in an ASCII disk file
called salesalloc.txt. The statements in the file are then executed in the
analytic workspace through the use of the INFILE statement. The statements in
salesalloc.txt are the following.

IF NOT EXISTS ('salesalloc')
THEN DEFINE salesalloc AGGMAP
ELSE CONSIDER salesalloc

ALLOCMAP
RELATION time.parent OPERATOR EVEN
RELATION product.parent OPERATOR EVEN
RELATION geography.parent OPERATOR EVEN
SOURCEVAL ZERO
DEADLOCK SKIP

END

Table 7–4 Allocation Options

Statement Description

ALLOCERRLOGFORMAT An option that determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument
to the ALLOCATE command.

ALLOCERRLOGHEADER An option that determines the column headings for the error
log that you specify with the ERRORLOG argument to the
ALLOCATE command.

POUTFILEUNIT An option that identifies a destination for status information
about an allocation or aggregation operation. A file unit
uniquely identifies the destination file.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-53

To include the salesalloc aggmap in your analytic workspace, execute the
following statement.

INFILE 'salesalloc.txt'

The sales.agg aggmap has now been defined and contains three RELATION (for
allocation) statements and the SOURCEVAL and DEADLOCK statements. In this
example, the ALLOCATE statement allocates its source value evenly to all of the
aggregate level cells and the detail level cells of the target variable because the
relations time.parent, product.parent, and geography.parent relate each
child dimension value to its parent in the dimension hierarchy. The DEADLOCK
statement tells the ALLOCATE statement to log an error and continue the allocation
when a branch of a target hierarchy is locked or has a value of NA. The
SOURCEVAL statement tells ALLOCATE to assign a zero value to the source cells
after allocating the source data.

You can now use the salesalloc aggmap with an ALLOCATE statement, such as.

ALLOCATE sales USING salesalloc

Example 7–21 Allocation Specification from a Text Expression

In this example the salesalloc aggmap has already been defined. The
specification is added to the aggmap as a text expression argument to the
ALLOCMAP statement.

CONSIDER salesalloc
ALLOCMAP
RELATION time.parent OPERATOR EVEN
RELATION product.parent OPERATOR EVEN
RELATION geography.parent OPERATOR EVEN
SOURCEVAL ZERO
DEADLOCK SKIP

Example 7–22 Specifying a Single Dimension Value in an Allocation Specification

This example proportionally allocates a value it calculates from the sales variable
to cells in a projectedsales variable. The sales variable is dimensioned by the
time, product, customer, and channel dimensions.

The example defines the projectedsales variable to use as the target of the
allocation and the increasefactor formula to use as the source. The formula
multiplies values from sales by ten percent. The example limits the time
dimension and creates the ytoq.rel relation, which relates the year 2001 to the

ALLOCMAP

7-54 Oracle OLAP DML Reference

quarters of 2002. The next LIMIT commands limit the dimensions shared by sales
and projectedsales.

The example creates an aggmap and uses the ALLOCMAP statement to enter a
RELATION (for allocation) and a DIMENSION statement into the map. The
RELATION statement specifies the ytoq.rel relation as the dimension hierarchy
to use for the allocation and specifies that the allocation is proportional. The
DIMENSION statement tells ALLOCATE to set the status of the channel
dimension to totalchannel for the duration of the allocation.

DEFINE projectedSales DECIMAL VARIABLE <time, SPARSE <product, customer>>
DEFINE increaseFactor DECIMAL FORMULA <product>
EQ sales * 1.1
LIMIT time TO '2001' 'Q1.02' TO 'Q4.02'
DEFINE YtoQ.rel RELATION time <time>
LIMIT time TO 'Q1.02' to 'Q4.02'
YtoQ.rel = '2001'
LIMIT time TO '2001' 'Q1.02' to 'Q4.02'
LIMIT product TO 'TotalProduct' 'Videodiv' 'Audiodiv' 'Accdiv'
LIMIT customers TO 'TotalCustomer'
DEFINE time.alloc AGGMAP
ALLOCMAP
RELATION YtoQ.rel OPERATOR PROPORTIONAL
DIMENSION channel 'TotalChannel'
END
ALLOCATE increaseFactor BASIS sales TARGET projectedSales USING time.alloc

The sales values that are the basis of the allocation are the following.

CHANNEL: TOTALCHANNEL
CUSTOMERS: TOTALCUSTOMER

---------------PROJECTEDSALES---------------
--------------------TIME--------------------

PRODUCT 2001 Q1.02 Q2.02 Q3.02 Q4.02
------------ ------ ------ ------ ------ ------
TotalProduct 7000 1000 2000 3000 1000
Videodiv 4100 600 1100 1900 500
Audiodiv 1700 200 600 600 300
Accdiv 1200 200 300 500 200

ALLOCMAP

AFFMAPINFO to ARCCOS 7-55

The following shows a report of projectedsales for totalchannel after the
allocation.

CHANNEL: TOTALCHANNEL
CUSTOMERS: TOTALCUSTOMER

---------------PROJECTEDSALES---------------
--------------------TIME--------------------

PRODUCT 2001 Q1.02 Q2.02 Q3.02 Q4.02
------------ ------ ------ ------ ------ ------
TotalProduct NA NA NA NA NA
Videodiv NA 660 1210 2090 550
Audiodiv NA 220 660 660 330
Accdiv NA 220 330 550 220

Example 7–23 Entering RELATION Statements in an Allocation Specification

This example defines a time.type dimension and adds to it the two hierarchies of
the time dimension. It defines the time.time relation that relates the hierarchy
types (that is, time.type) to the time dimension. The example defines the
time.alloc aggmap. With the ALLOCMAP command, it enters a RELATION
statement in the aggmap. The RELATION statement specifies the values of the
time dimension hierarchy to use in the allocation, limits the time dimension to one
hierarchy with the QDR, and the specifies the EVEN operation for the allocation.
The ALLOCATE command then allocates data from the source object to the target
variable using the time.alloc aggmap. In the ALLOCATE command the source,
basis, and target objects are the same sales variable.

DEFINE time.type TEXT DIMENSION
MAINTAIN time.type add 'Fiscal'
MAINTAIN time.type add 'Calendar'
DEFINE time.time RELATION time <time, time.type>
DEFINE time.alloc AGGMAP

ALLOCMAP
RELATION time.time (time.type 'Fiscal') OPERATOR EVEN
END

ALLOCATE sales USING time.alloc

CHILDLOCK

7-56 Oracle OLAP DML Reference

CHILDLOCK

Within an allocation specification, a CHILDLOCK statement tells the ALLOCATE
statement to determine if RELATION (for allocation) statements in the allocation
specification have specified locks on both a parent and on a child of the parent in a
dimension hierarchy. Locking both a parent and one of its children can cause
incorrect allocation results.

Syntax
CHILDLOCK [DETECT|NODETECT]

Arguments

DETECT
Tells the ALLOCATE statement to detect that an allocation lock exists on a parent
and also on one of its children in a dimension hierarchy. When it detects a locked
parent and child, the ALLOCATE statement creates an entry in the error log for the
allocation.

NODETECT
Tells the ALLOCATE statement to continue an allocation even when a lock exists on
a parent and also on one of its children in a hierarchy. (Default)

ALLOCMAP

AFFMAPINFO to ARCCOS 7-57

DEADLOCK

Within an allocation specification, a DEADLOCK statement tells the ALLOCATE
statement what to do when it cannot distribute a source value to a target cell
specified by a value in a dimension hierarchy because the target cell is either locked
by a RELATION (for allocation) statement in the allocation specification or the cell
has a basis value of NA.

Syntax
DEADLOCK [SKIP|NOSKIP]

Arguments

SKIP
Tells the ALLOCATE statement to log the error and continue with the allocation
even though it cannot distribute source values to cells specified by a branch of a
dimension hierarchy because a target cell is locked or the basis value of the cell is
NA.

NOSKIP
Tells the ALLOCATE statement to stop the allocation and to return an error when it
cannot distribute source values to cells in a branch of a dimension hierarchy
because a target cell is locked or the basis value is NA. This is the default action
when you do not include a DEADLOCK statement in the aggmap used by the
ALLOCATE command.

DIMENSION (for allocation)

7-58 Oracle OLAP DML Reference

DIMENSION (for allocation)

Within an allocation specification, a DIMENSION statement sets the status to a
single value of a dimension. Within an allocation specification this dimension is a
dimension that the source, basis, and target objects do not have in common. When
an allocation specification does not specify such single values with DIMENSION
statements, Oracle OLAP uses the current status values of the dimensions when
performing the allocation.

You use a DIMENSION statement to ensure that the status of a dimension is set to
the value that you want it to have for the allocation. You must use a separate
DIMENSION statement for each dimension that is not shared by the source, basis,
and target objects.

Syntax
DIMENSION dimension 'dimval'

Arguments

dimension
the name of the dimension that you want to limit.

dimval
The single value of the dimension to which you want the status of the dimension set
for the duration of an allocation.

Examples
For an example of using a DIMENSION statement in an allocation specification, see
Example 7–22, "Specifying a Single Dimension Value in an Allocation Specification"
on page 7-53.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-59

ERRORLOG

Within an allocation specification, an ERRORLOG statement specifies how many
allocation error conditions to log and whether to continue or to stop the allocation
when the specified maximum number of errors have been logged. You specify the
error log with the ERRORLOG keyword to the ALLOCATE command.

Syntax
ERRORLOG [UNLIMITED|MAX <num>] [STOP|NOSTOP]

Arguments

UNLIMITED
Tells the ALLOCATE command to write an unlimited number of errors to the error
log. This is the default setting.

MAX num
Specifies a maximum number of errors that ALLOCATE can write to the error log.

STOP
NOSTOP
Specifies whether to stop the allocation when ALLOCATE has written the
maximum number of errors to the error log. When you specify STOP, the allocation
stops. When you specify NOSTOP, the allocation continues but ALLOCATE does
not write any more errors to the error log. When you have specified UNLIMITED,
then the STOP and NOSTOP arguments have no effect and the allocation continues
no matter how many errors occur.

Notes

Formatting the Error Log
The ALLOCERRLOGFORMAT option determines the contents and the formatting
of the error log that you specify with the ERRORLOG argument to the ALLOCATE
command. You can specify a header for the error log with the
ALLOCERRLOGHEADER option.

ERRORMASK

7-60 Oracle OLAP DML Reference

ERRORMASK

Within an allocation specification, an ERRORMASK statement specifies the error
conditions that you do not want to appear in the allocation error log. You specify
the error log with the ERRORLOG keyword to the ALLOCATE command.

Syntax
ERRORMASK <num...>

Arguments

num...
The number of the error that you do not want to appear in the error log. For
example, to exclude CHILDLOCK error, you would enter the following statement in
the aggmap.

ERRORMASK 10

To exclude all errors, you would enter the following statement in the aggmap.

ERRORMASK 1 2 3 4 5 6 7 8 9 10

ALLOCMAP

AFFMAPINFO to ARCCOS 7-61

MEASUREDIM (for allocation)

Within an allocation specification, a MEASUREDIM statement identifies the name
of a measure dimension that is specified in the definition of an operator variable or
an argument variable. However, you cannot specify a measure dimension when it is
included in the definition of the aggmap object.

Syntax
MEASUREDIM name

Arguments

name
The name of the measure dimension. A measure dimension is a dimension that you
define. The dimension values are names of existing variables.

Notes
See MEASUREDIM (for aggregation)

RELATION (for allocation)

7-62 Oracle OLAP DML Reference

RELATION (for allocation)

Within an allocation specification, a RELATION statement identifies a relation that
specifies the path through a dimension hierarchy and the method of the allocation.

To allocate a source data down a hierarchy of a dimension, you must specify with a
RELATION statement the values of the hierarchy that identify the cells of the
variable that are the targets of the allocation. When the target of the allocation is a
multidimensional variable, then you must include a separate RELATION statement
for each dimension down which you want to allocate the source data. The order of
the RELATION statements in an aggmap determines the order of the allocation. The
allocation proceeds down the dimension hierarchy in the first RELATION
statement, then down the second, and so on.

Oracle OLAP can perform allocations on only one hierarchy in a dimension in one
execution of the ALLOCATE command. When a dimension has more than one
hierarchy, then you must supply a qdr argument to limit the relation to only one
hierarchy.

Syntax
RELATION rel-name [(qdr. . .)] OPERATOR {operator|} -

[NAOPERATOR operator] [REMOPERATOR operator] -

[PARENTALIAS dimension-alias-name] -

[ARGS {[FLOOR floorval] [CEILING ceilval] [MIN minval] [MAX maxval] -

[NAHANDLE {IGNORE|CONSIDER|PREFER}] -

[ADD|ASSIGN] [PROTECT [NONORMALIZE] [READWRITE|WRITE] lockvalueset] -

[WEIGHTBY [ADD|MULTIPLY] [WNAFILL nafillval] weightobj]}]

Note: Keep the following restrictions in mind:

■ An allocation specification must include either a RELATION
statement or a VALUESET statement.

■ Only one RELATION statement or VALUESET statement may
be used for each dimension in the allocation specification.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-63

Arguments

rel-name
An Oracle OLAP self-relation that specifies the values of a dimension hierarchy that
identify the path of allocation. The cells in the target variable identified by the
values in rel-name receive the allocated data.

qdr. . .
One or more qualified data references that specify a single dimension value for each
dimension of the relation that is not part of the self-relation. When the self-relation
has more than one hierarchy, you must provide a qdr for the hierarchy dimension of
the self-relation dimension that limits to single values any hierarchies not involved
in the allocation.

OPERATOR operator
The operator after the OPERATOR keyword indicates one of the operator types
described in Table 7–5, " Allocation Operators" on page 7-63. The operator type
specifies the method of the allocation. The method determines the cells of the target
variable for the rel-name relation to which ALLOCATE assigns a value. For the
FIRST, LAST, HFIRST, and HLAST operators, ALLOCATE uses the order of the
value in the dimension to determine the cell. The dimension order is the default
logical order of the allocation dimension. There is no default operator for allocation.

Table 7–5 Allocation Operators

Operator Description

COPY Copies the allocation source to all of the target cells that have a basis
data value that is not NA.

HCOPY Copies the allocation source to all of the target cells specified by the
hierarchy even when the data in any of those cells is NA. When the
source data is NA, then that NA value is not allocated to the target cells
of that allocation.

MIN Copies the allocation source to the target that has the smallest basis
data value.

MAX Copies the allocation source to the target that has the largest basis data
value.

FIRST Copies the allocation source to the first target cell that has a non-NA
basis data value.

HFIRST Copies the allocation source to the first target cell specified by the
hierarchy even when the current data value of that cell is NA

RELATION (for allocation)

7-64 Oracle OLAP DML Reference

NAOPERATOR operator
The operator after the NAOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when it encounters an NA or lock-based deadlock. Valid
operators are HFIRST, HLAST, and HEVEN which are described in Table 7–5,
" Allocation Operators" on page 7-63.

REMOPERATOR operator
The operator after the REMOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when storing a remainder produced by an allocation.
For example, assume you allocate the INTEGER 10 to three cells at the same level in
a hierarchy, there is a remainder of 1. The REMOPERATOR specifies where you
want the allocation operation to store this remainder. Valid operators for
REMOPERATOR are MIN, MAX, FIRST, HFIRST, LAST, and HLAST which are
described in Table 7–5, " Allocation Operators" on page 7-63.

ARGS
Indicates additional arguments specify additional parameters for the allocation
operation. All of these arguments apply uniformly to the dimension hierarchy
specified by rel-name.

PARENTALIAS dimension-alias-name
Specifies specialized allocation depending on the parent (for example, weighting by
parent or child). For dimension-alias-name, specify the name of the alias for the
dimension of rel-name.

LAST Copies the allocation source to the last target cell that has a non-NA
basis data value.

HLAST Copies the allocation source to the last target cell specified by the
hierarchy even when the current data value of that cell is NA

EVEN Divides the allocation source by the number of target cells that have
non-NA basis data values and applies the quotient to each target cell.

HEVEN Divides the allocation source by the number of target cells, including
the ones that have NA values, and applies the quotient to each target
cell.

PROPORTIONAL Divides the allocation source by the sum of the data values of the
target cells that have non-NA basis data values, multiplies the basis
data value of each target cell by the quotient, and applies the resulting
data to the target cell.

Table 7–5 (Cont.) Allocation Operators

Operator Description

ALLOCMAP

AFFMAPINFO to ARCCOS 7-65

ARGS argument...
One or more arguments after the ARGS keyword that specify additional parameters
for the allocation operation. All of these arguments apply uniformly to the
dimension hierarchy specified by rel-name.

FLOOR floorval
Specifies that when an allocated target data value is less than floorval, the data
allocated to the target cell is NA. This argument applies to the relation only when the
PROPORTIONAL operator is specified.

CEILING ceilval
Specifies that when an allocated target data value is greater than ceilval, the data
allocated to the target cell is NA. This argument applies to the relation only when the
PROPORTIONAL operator is specified.

MIN minval
Specifies that when an allocated target data value is less than minval, the data
allocated to the target cell is minval.

MAX maxval
Specifies that when an allocated target data value is greater than maxval, the value
allocated to the target cell is maxval.

NAHANDLE IGNORE
Valid only when the OPERATOR is MIN or MAX, specifies that ALLOCATE does
not consider NA values in a MIN or MAX operation. (Default)

NAHANDLE CONSIDER
Valid only when the OPERATOR is MIN or MAX, specifies that ALLOCATE treats
an NA value as a zero; however, when the data value of a target cell is actually zero,
the zero cell receives the allocated data value and not the NA cell.

NAHANDLE PREFER
Valid only when the OPERATOR is MIN or MAX, specifies that ALLOCATE treats
an NA value as a zero and the NA has priority over a zero value, so the NA cell
receives the allocated data value and not the cell with the actual zero value.

ADD
Specifies that ALLOCATE adds the allocated data to the current data in the target
cell.

RELATION (for allocation)

7-66 Oracle OLAP DML Reference

ASSIGN
Specifies that ALLOCATE replaces the data in the target cell with the allocated data,
which is the default behavior.

PROTECT lockvalueset
Specifies a set of dimension values that you want to lock so that they cannot be
targets of the allocation. Before allocating the source data, the allocation operation
normalizes the sources by subtracting the data values of the specified locked cells
from the source data.

NONORMALIZE
Specifies that the allocation operation does not normalize the source data. Using
NONORMALIZE effectively removes from the allocation the values of the
hierarchy at and below the dimension values specified by lockvalueset.

READWRITE
The READWRITE keyword specifies that the locked data values cannot be used as
source data in a subsequent allocation, thereby locking the data of the hierarchy
below the lockvalueset values.

WRITE
The WRITE keyword specifies that the allocation cannot store data values in the
cells identified by the lockvalueset dimension values but the allocation can use the
data in those cells as source data in its subsequent steps. However, when in the
aggmap you include a SOURCEVAL statement that specifies NA or ZERO and the
locked cell is the source of an allocation, then ALLOCATE sets the value of the
locked cell to NA or zero after the allocation.

WEIGHTBY weightobj
The weightobj argument with WEIGHTBY is the name of an variable, formula, or
relation whose value or values are the weights that Oracle OLAP applies to the
allocated data just before it is stored in the target cell. Using this clause allows for
processes such as unit or currency conversion. When a relation is used, the target
variable is referenced based on the weight relation and the cell is applied to the
allocation target cell.

ADD
ADD specifies that ALLOCATE adds the weight value to the existing data value of
the target and assigns the sum to the target cell.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-67

MULTIPLY
Specifies that ALLOCATE multiplies the weight value by the data value of the
target and assigning the product. (Default)

WNAFILL nafillval
Specifies a value with which to replace an NA value in a cell before applying the
weight object to the nafillval value. The default NA fill value is 1 unless you specify
the ADD option to the WEIGHTBY argument, which changes the default NA fill
value to 0.

Notes

Specifying the Path of the Allocation
The path of the allocation is the route the allocation system takes to go from the
source data to the target data. Very different results derive from different allocation
paths. You specify the path with the RELATION statements that you enter in the
aggmap. The relation objects in the RELATION statements and the order of those
statements specify the path and the method of allocation.

The allocation path goes from any level in the hierarchy of a dimension to any
lower level of the hierarchy. You use a relation object that relates the members of the
hierarchy to each other (a self-relation) to identify the elements of the hierarchy that
you want to participate in the allocation. The allocation proceeds down the
hierarchy of the dimension in the first RELATION statement in the aggmap, then
down the hierarchy of the second RELATION statement, and so on.

When the dimension has more than one hierarchy, you must use the qdr argument
in the RELATION statement to specify which hierarchy to use for the allocation.

The hierarchy that you specify with a relation must not contain a circular relation
(for example, one in which dimension value A relates to dimension value B which
relates to dimension value C which relates to dimension value A).

Types of Allocation Paths
You can allocate values from a source to a target with a direct allocation path, a
recursive descent hierarchy path, a multidimensional allocation path, or a
simultaneous multidimensional allocation path.

■ Direct allocation path — You can allocate values directly from a source to the
final target cells with no allocations to intermediate nodes of the hierarchy. For
example, you can allocate source data values specified by dimension values at
the Quarter level of a hierarchical time dimension to those at the Month level

RELATION (for allocation)

7-68 Oracle OLAP DML Reference

or those specified by dimension values at the Year level to those at the Month
level.

■ Recursive descent hierarchy path — You can allocate values to intermediate
nodes of the hierarchy and then to final target cells. For example, you can
allocate source data values specified by dimension values at the Category
level of a product dimension to those at the Subcategory level and then to
those at the ProductID level.

■ Multidimensional allocation path — You can allocate values first down one
dimension and then down another dimension. The allocations can be direct or
recursive or a combination of both. The results might vary depending on the
order of the allocation.

■ Simultaneous multidimensional allocation path — You can do a direct
allocation of values simultaneously to variable cells specified by more than one
dimension by creating a composite dimension that specifies the non-NA cells of
the variable to which you want to allocate values. You then use that composite
as the basis of the allocation.

Locking Cells in the Allocation Path
Sometimes you want a cell to retain its existing value and to not be affected by an
allocation. You can lock a value of the hierarchy of the dimension and thereby
remove that value from the allocation path.When you lock a value above the detail
level in a hierarchy, then you remove the branch of the hierarchy below that value
from the allocation. To lock a value, use the PROTECT argument to the RELATION
statement.

For example, when you want to allocate a yearly budget that you revise monthly,
then you would set the value of the budget at the Year level of the time
dimension hierarchy. You would allocate data to the elements that are at the Month
level. As the year progresses, you would enter the actual data for a month and then
lock that element and reallocate the remaining yearly budget value to see the new
monthly targets that are required to meet the annual goal.

When you lock an element, you can specify whether the source value is
renormalized. By default, when you lock an element of the hierarchy, the value of
the cell of the target variable specified by that element is subtracted from the source
value and the remainder is allocated to the target cells. When you do not want the
source renormalized during the allocation, specify NONORMALIZE after the
PROTECT argument.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-69

Examples
For an example of using RELATION statements in an allocation statement, see the
examples in ALLOCMAP, especially Example 7–23, "Entering RELATION
Statements in an Allocation Specification" on page 7-55.

SOURCEVAL

7-70 Oracle OLAP DML Reference

SOURCEVAL

Within an allocation specification, a SOURCE VAL statement specifies the value that
the ALLOCATE command assigns to a source cell in an allocation operation after it
successfully allocates the value that the cell contained before the allocation.

The default value of SOURCEVAL is NA, which means that ALLOCATE sets the
value of each of the allocated source cells to NA following the allocation. When you
specify CURRENT as the SOURCEVAL, then the allocated source cells retain the
values that they had before the allocation. When you specify ZERO as the
SOURCEVAL, then ALLOCATE assigns a zero value to each source cell that is
allocated.

Syntax
SOURCEVAL [CURRENT|ZERO|NA]

Arguments

CURRENT
Specifies that the value of a source cell after the allocation is the same as its value
before the allocation.

ZERO
Specifies that the value of a source cell after the allocation is zero.

NA
Specifies that the value of a source cell after the allocation is NA. This is the default
value.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-71

VALUESET

Within an allocation specification, a VALUESET statement specifies the target
dimension values of an allocation. A dimensioned valueset can be used to specify
the allocation targets for an entire non-hierarchical dimension such as a measure or
line dimension.

Syntax
VALUSET vs-name[(nondimvalueset)| qdr...] OPERATOR operator | opvar –

[NAOPERATOR text -exp] [REMOPERATOR text -exp] -

[ARGS [FLOOR floorval] [CEILING ceilval] –

[MIN minval] [MAX maxval] –

[ADDT[Boolean]| ASSIGN] –

[{PROTECTRW| PROTECTW} [NONORMALIZE] lockvalueset] –

[WEIGHTBY [ADD] weightobj [WNAFILL nafillval]] | -

[WEIGHTBY WEIGHTVAR wobjr]]

Arguments

vs-name
Specifies the name of a valueset object that specifies the values of a dimension
which are the path of allocation. The cells in the target variable identified by the
values in vs-name receive the allocated data.

Note: Keep the following restrictions in mind:

■ An allocation specification must include at least one
RELATION (for allocation) statement or a VALUESET
statement.

■ You can only specify one RELATION statement or VALUESET
statement for each dimension specified in the allocation
specification.

VALUESET

7-72 Oracle OLAP DML Reference

nondimvalueset
When vs-name is a dimensioned valueset, specifies a nondimensioned valueset that
is the status used to loop the valueset dimension. When you do not include
nondimvalueset or qdr, Oracle OLAP uses the default logical order of the dimensions,
not its current status.

qdr
When vs-name is a a non-dimensioned valueset, one or more qualified data
references that specify the dimension values to use when allocating data.

OPERATOR operator
The operator argument after the OPERATOR keyword is a text expression that is one
of the operator types described in Table 7–5, " Allocation Operators" on page 7-63.
The operator type specifies the method of the allocation. The method determines
the cells of the target variable for the vs-name relation to which ALLOCATE assigns
a value. Unless you have specified a different status using dimorder valueset, for the
FIRST, LAST, HFIRST, and HLAST operators, ALLOCATE uses the default logical
order of the allocation dimension to determine the cell. There is no default operator
for allocation.

OPERATOR opvar
The opvar argument after OPERATOR keyword specifies a TEXT variable that
specifies different the operation for each of the values of a dimension. The values of
the variable are the allocation operators described in Table 7–5, " Allocation
Operators" on page 7-63. An operator variable is used to change the allocation
operator with the values of one dimension. The opvar argument is used with the
following types of dimensions:

■ Measure dimension -- Changes the allocation method depending upon the
variable being allocated. This is useful when a single aggmap is used to allocate
several variables that need to be allocated with different methods. Whether you
preallocate all of the measures in a single ALLOCATE statement or in separate
statements, allocate uses the operation variable to identify the calculation
method. The values of the measure dimension are the names of the variables to
be allocated. It dimensions a text variable whose values identify the operation
to be used to allocate each measure. The aggmap must include a
MEASUREDIM (for allocation) command that identifies the measure
dimension.

■ Line item dimension -- Changes the allocation method depending upon the line
item being allocated. The line item dimension is typically non-hierarchical and
identifies financial allocations. The line item dimension is used both to
dimension the data variable and to dimension a text variable that identifies the

ALLOCMAP

AFFMAPINFO to ARCCOS 7-73

operation to be used to allocate each item. The operation variable is typically
used to allocate line items over time.

The opvar argument cannot be dimensioned by the dimension it is used to allocate.
For example, when you want to specify different operations for the geography
dimension, then opvar cannot be dimensioned by geography.

NAOPERATOR text-exp
The operator after the NAOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when it encounters an NA or lock-based deadlock. Valid
operators are HFIRST, HLAST, and HEVEN which are described in Table 7–5,
" Allocation Operators" on page 7-63.

REMOPERATOR text-exp
The operator after the REMOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when storing a remainder produced by an allocation.
For example, assume you allocate the INTEGER 10 to three cells at the same level in
a hierarchy, there is a remainder of 1. The REMOPERATOR specifies where you
want the allocation operation to store this remainder. Valid operators for
REMOPERATOR are MIN, MAX, FIRST, HFIRST, LAST, and HLAST which are
described in Table 7–5, " Allocation Operators" on page 7-63.

ARGS
Indicates that additional arguments specify additional parameters for the allocation
operation. All of these arguments apply uniformly to the valueset.

FLOOR floorval
Specifies that when an allocated target value falls below the value specified in
floorval, Oracle OLAP stores the value as NA.

CEILING ceilval
Specifies that when an allocated target value exceeds the value specified in ceilval,
then Oracle OLAP stores the value as NA.

MIN minval
Specifies that when an allocated target value falls below the value specified minval,
then Oracle OLAP stores the value of minval in the target.

Tip: To minimize the amount of paging for the operator variable,
define the opvar variable as type of TEXT with a fixed width of 8.

VALUESET

7-74 Oracle OLAP DML Reference

MAX maxval
Specifies that when an allocated target value exceeds the value specified maxval,
then Oracle OLAP stores the value of maxval in the target

ADDT [Boolean]
Boolean with the ADDT phrase specifies the sign of the addition when Oracle OLAP
adds target cells to the existing contents of the target cell:

■ TRUE specifies that the results of the allocation are added to the target. (Default)

■ FALSE specifies that the results of the allocation are subtracted from the target
cell.

PROTECTRW lockvalueset
Specifies that the dimension members specified by lockvalueset cannot be the targets
or source values of allocation. This lets users specify an allocation "lock" on a
hierarchical subtree. The current contents of the target cell are subtracted from the
source and the source and basis is renormalized.

PROTECTW lockvalueset
Specifies that the dimension members specified by lockvalueset cannot be the targets
of an allocation. However, these target cells are used as the source values for
subsequent steps in the allocation process. When the SOURCEVAL statement is set
to 0 (zero) or NA and these values are reallocated, they will be set appropriately.

NONORMALIZE
Specifies that Oracle OLAP should not renormalize the source and basis based on
the protected cells. Specifying this keyword has an effect similar to removing a
sub-branch from a hierarchy. Frequently, when you use this keyword, if, after
allocation, data is aggregated from the allocation level, the source cell will probably
not contain the original allocated amount

WEIGHTBY weightobj
Specifies a weight that should be applied to the target cell just before it is stored.
This allows for processes such and unit or currency conversion. Value weight
objects are variables, formulas and relations. When a relation is used, the target
variable is referenced based on the weight relation, and the cell is applied the
allocation target cell.

ADD
Specifies that Oracle OLAP adds the value of the weight to the allocation target
rather than using multiplication.

ALLOCMAP

AFFMAPINFO to ARCCOS 7-75

WNAFILL nafillval
Specifies the default value of the weight variable that should be used. When you do
not include an ADD clause, the default value of nafillval is 1. When you include the
ADD clause, the default value of nafillval is 0 (zero).

WEIGHTBY WEIGHTVAR wobj
Specifies that the allocated data should be weighted. The wobj argument is the name
of a variable, relation, or formula whose values are the weights that Oracle OLAP
applies to the allocated data just before it is stored in the target cell. Using this
clause allows for processes such as unit or currency conversion and enables you to
use different weight objects with the different operators specified in the operator
variable you created for the OPERATOR opvar clause.

ALLSTAT

7-76 Oracle OLAP DML Reference

ALLSTAT

The ALLSTAT command sets the status of all dimensions in the current analytic
workspace to all their values. ALLSTAT does not, however, set the status of the
NAME dimension.

Syntax
ALLSTAT

Notes

Limiting One Dimension
You can set the status of a single dimension to all its values with the LIMIT
command.

Examples

Example 7–24 Limiting to All Values

The following STATUS stsatement produces the current status of the dimensions of
the variable UNITS.

status units

The current status of MONTH is:
Jul96 TO Dec96
The current status of PRODUCT is:
Tents TO Racquets
The current status of DISTRICT is:
DALLAS

After you execute an ALLSTAT statement the same STATUS statement produces
this output.

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
ALL

ANTILOG

AFFMAPINFO to ARCCOS 7-77

ANTILOG

The ANTILOG function calculates the value of e (the base of natural logarithms)
raised to a specific power.

Return Value
DECIMAL

Syntax
ANTILOG(n)

Arguments

n
The power of e to be returned by the ANTILOG function.

Examples

Example 7–25 Calculating the Value of e Raised to the Second Power

The following function calculates the value of e raised to the second power.

ANTILOG(2)

This function returns the following value.

7.38906

ANTILOG10

7-78 Oracle OLAP DML Reference

ANTILOG10

The ANTILOG10 function calculates the value of 10 raised to a specified power.

Return Value
DECIMAL

Syntax
ANTILOG10(n)

Arguments

n
The power of 10 to be returned by the ANTILOG10 function.

Examples

Example 7–26 Calculating the Value of Ten Raised to the Third Power

The following function calculates the value of 10 raised to the third power.

ANTILOG10(3)

This function returns the following value.

1,000.00

ANY

AFFMAPINFO to ARCCOS 7-79

ANY

The ANY function returns YES when any values of a Boolean expression are TRUE,
or NO when none of the values of the expression are TRUE.

Return Value
BOOLEAN.

Syntax
ANY(boolean-expression [[STATUS] dimensions])

Arguments

boolean-expression
The Boolean expression to be evaluated

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the Boolean expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, the STATUS keyword might be required in
order for Oracle OLAP to process the function successfully, or the STATUS keyword
might provide a performance enhancement. See "The STATUS Keyword" on
page 7-81.

dimensions
The dimensions of the result. By default, ANY returns a single YES or NO value.
When you indicate one or more dimensions for the result, ANY tests for TRUE
values along the dimensions that are specified and returns an array of values. Each
dimension must be either a dimension of boolean-expression or related to one of its
dimensions. When it is a related dimension, you can specify the name of the relation
instead of the dimension name. This makes it possible for you to choose which
relation is used when there is more than one.

ANY

7-80 Oracle OLAP DML Reference

Notes

NA Values
When the Boolean expression involves an NA value, ANY returns a YES or NO result
when it can, as shown in Table 7–6, " Results of ANY with Boolean Expressions with
NA Values".

However, in cases where a YES or NO result would be misleading, ANY returns NA.
For example, when you test whether an NA value is greater than a non-NA value,
ANY returns NA.

The Effect of NASKIP
ANY is affected by the NASKIP option. When NASKIP is set to YES (the default),
ANY ignores NA values and returns YES when any of the values of the expression
that are not NA are TRUE and returns NO when none of the values are TRUE. When
NASKIP is set to NO, ANY returns NA when any value of the expression is NA. When
all the values of the expression are NA, ANY returns NA for either setting of NASKIP.

Data with a Type of DAY, WEEK, MONTH, QUERTER, or YEAR
When boolean-expression is dimensioned by a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other dimension of this type as
a related dimension. Oracle OLAP uses the implicit relation between these
dimensions. To control the mapping of one of these dimension to another (for
example, from weeks to months), you can define an explicit relation between the
dimensions and specify the name of the relation as the dimension argument to the
ANY function.

Table 7–6 Results of ANY with Boolean Expressions with NA Values

Boolean Expression Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

ANY

AFFMAPINFO to ARCCOS 7-81

For each time period in the related dimension, Oracle OLAP tests the data values
for all the source time periods that end in the target time period. This method is
used regardless of which dimension has the more aggregate time periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, Oracle OLAP creates a temporary variable to
use while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the Boolean expression
are limited to a few values and are physically fragmented, you can specify the
STATUS keyword to improve the performance of the function.

When you use the ANY function with the STATUS keyword in an expression that
requires going outside of the status for results (for example, with the LEAD or LAG
functions or with a qualified data reference), the results outside of the status will be
returned as NA.

Related Statements
COUNT, EVERY, and NONE.

Examples

Example 7–27 Testing for Any True Values by District

Suppose you want to find out which districts had at least one month with sales
greater than $150,000 for sportswear. You use the ANY function to determine
whether the Boolean expression (sales GT 150000) is TRUE for any month. To
have the result dimensioned by district, specify district as the second argument
in the ANY function.

LIMIT product TO 'SPORTSWEAR'
REPORT HEADING 'High Sales' ANY(sales GT 150000, district)

ANY

7-82 Oracle OLAP DML Reference

The preceding statements produce the following output.

DISTRICT High Sales
-------------- ----------
Boston NO
Atlanta YES
Chicago NO
Dallas YES
Denver NO
Seattle NO

Example 7–28 Testing for Any True Values by Region

You might also want to find out which regions had at least one month in which at
least one district had sportswear sales greater than $150,000. Since the region
dimension is related to the district dimension, you can specify region instead
of district as a dimension for the results of ANY.

report heading 'High Sales' any(sales gt 150000, region)

The preceding statement produces the following output.

REGION High Sales
-------------- ----------
East YES
Central YES
west NO

ARCCOS

AFFMAPINFO to ARCCOS 7-83

ARCCOS

The ARCCOS function calculates the angle value (in radians) of a specified cosine.

Return Value
DECIMAL

Syntax
ARCCOS(expression)

Arguments

expression
An expression that contains the decimal value of a cosine.

Notes

Invalid Cosine Values
When you provide an ineligible value for the cosine expression (that is, a value
greater than 1 or less than -1), ARCCOS returns a value of NA.

Examples

Example 7–29 Calculating the Arc of a Cosine

This example calculates the arc of a cosine that has a value of 0.54030. The
statement

SHOW ARCCOS(.54030)

produces the following result.

1.00

ARCCOS

7-84 Oracle OLAP DML Reference

ARCSIN to CHARLIST 8-1

8
ARCSIN to CHARLIST

This chapter contains the following OLAP DML statements:

■ ARCSIN

■ ARCTAN

■ ARCTAN2

■ ARG

■ ARGCOUNT

■ ARGFR

■ ARGS

■ ARGUMENT

■ ASCII

■ AVERAGE

■ AW command

■ AW ALIASLIST

■ AW ALLOCATE

■ AW ATTACH

■ AW CREATE

■ AW DELETE

■ AW DETACH

■ AW LIST

■ AW SEGMENTSIZE

8-2 Oracle OLAP DML Reference

■ AW function

■ AWDESCRIBE

■ AWWAITTIME

■ BACK

■ BADLINE

■ BASEDIM

■ BASEVAL

■ BEGINDATE

■ BITAND

■ BLANKSTRIP

■ BMARGIN

■ BREAK

■ CALENDARWEEK

■ CALL

■ CALLTYPE

■ CATEGORIZE

■ CDA

■ CEIL

■ CHANGEBYTES

■ CHANGECHARS

■ CHARLIST

ARCSIN

ARCSIN to CHARLIST 8-3

ARCSIN

The ARCSIN function calculates the angle value (in radians) of a specified sine.

Return Value
DECIMAL

Syntax
ARCSIN(expression)

Arguments

expression
An expression that contains the decimal value of a sine.

Notes

Invalid Sine Values
When you provide an ineligible value for the sine expression (that is, a value greater
than 1 or less than -1), ARCSIN returns a value of NA.

Examples

Example 8–1 Calculating the Arc of a Sine

This example calculates the arc of a sine that has a value of 0.84147. The statement

SHOW ARCSIN(.84147)

produces the following result.

1.00

ARCTAN

8-4 Oracle OLAP DML Reference

ARCTAN

The ARCTAN function calculates the angle value (in radians) of a specified tangent.

To retrieve a full-range (0 - 2 pi) numeric value indicating the arc tangent of a given
ratio, use ARCTAN2.

Return Value
DECIMAL

Syntax
ARCTAN(expression)

Arguments

expression
An expression that contains the decimal value of a tangent.

Examples

Example 8–2 Calculating the Arc of a Tangent

This example calculates the arc of a tangent that has a value of 1.56. The statement

SHOW ARCTAN(1.56)

produces the following result.

1.00

ARCTAN2

ARCSIN to CHARLIST 8-5

ARCTAN2

The ARCTAN2 function returns a full-range (0 - 2 pi) numeric value indicating the
arc tangent of a given ratio. The function returns values in the range of -pi to pi,
depending on the signs of the arguments. The values are expressed in radians.

To calculate the angle value (in radians) of a specified tangent that is not a ratio, use
ARCTAN.

Return Value
NUMBER

Syntax
ARCTAN2 (n / m)

Arguments

n
A numeric expression that specifies one component of the ratio. The argument n can
be in an unbounded range.

m
A numeric expression that specifies the other component of the ratio.

Examples
The following example returns the arc tangent of.3 and.2.

SHOW ARCTAN2(.3/.2)

.982793723

ARG

8-6 Oracle OLAP DML Reference

ARG

Within an OLAP DML program, the ARG function lets you reference arguments
passed to a program. The function returns one argument as a text value.

Return Value
TEXT

Syntax
ARG(n)

Arguments

n
The number by position of the argument whose value you want to reference.
ARG(1) returns the first argument to the program, ARG(2) returns the second
argument, and so forth. When the program is called with fewer than n arguments,
ARG returns a null value. ARG also returns a null value when n is zero or negative.

Note: Use an ARGUMENT statement to define arguments in a
program and to negate the need for using the ARG function to
reference arguments passed to the program. For more information
on how to use the ARGUMENT to define arguments that are
passed to a program, see "Declaring Arguments that Will be Passed
Into a Program" on page 8-20.

Important: When you want to pass NTEXT arguments, be sure to
declare them using ARGUMENT instead of using ARG. With ARG,
NTEXT arguments are converted to TEXT, and this can result in
data loss when the NTEXT values cannot be represented in the
database character set.

ARG

ARCSIN to CHARLIST 8-7

Notes

Argument Requirements
When a program is invoked as a command -- that is, without parentheses around
the arguments -- Oracle OLAP counts each word and punctuation mark on the
command line as a separate argument. Therefore, you cannot use ARG when the
arguments include arithmetic expressions, functions, qualified data references, or
IF...THEN...ELSE statements as arguments.

When you want to include any of these types of expressions in the arguments, you
can invoke the program in one of the following ways:

■ Invoke it as a command. With this method, the program must handle the
arguments as a text expression, perhaps using ARGS, and it must use PARSE to
interpret the arithmetic expressions, functions, qualified data references, and
IF...THEN...ELSE statements.

■ Invoke it as a user-defined function or with CALL and enclose the arguments
within parentheses. When you use CALL, the return value is discarded.

Arguments Passed by Value
The ARG function is often preceded by an ampersand (&) in a program line to allow
the user flexibility in specifying arguments; in other words, to tell Oracle OLAP not
to pass the literal contents of ARG into the program, but what the contents point to.
Another way to pass arguments by value is to declare them using an ARGUMENT
statement instead of referencing them with the ARG function.

ARGS and ARGFR Functions
To reference all the arguments, or a group of arguments, use ARGS or ARGFR.

ARGCOUNT Function
A program can include ARGCOUNT to verify the number of arguments passed to
the program.

Commas or Spaces as Delimiters
In most cases, you can use either commas or spaces between arguments. However,
arguments may need to be separated with commas when those arguments include
parentheses or negative numbers. Without commas, Oracle OLAP might interpret
parenthetical expressions as qualified data references and negative signs as
subtraction.

ARG

8-8 Oracle OLAP DML Reference

CALLTYPE Function
You can use CALLTYPE to determine whether a program was invoked as a
function, as a command, or by using a CALL statement.

Examples

Example 8–3 Assigning Arguments

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any two periods of months, so you do not want to limit the
month dimension to any particular month in the program. Instead, you use ARG
functions in the LIMIT command so that the starting and ending months for the two
periods can be supplied as arguments when the program is run.

Notice the UPCASE function preceding the ARG functions. UPCASE allows the
arguments to be specified in upper- or lowercase, even though dimension values in
the analytic workspace are in uppercase. A prefixed & (ampersand) would have a
similar effect since it tells Oracle OLAP to substitute the values of ARG before the
LIMIT command is executed -- in this case, a value of the month dimension.
However, an & (ampersand) has the disadvantage of preventing compilation of
program lines in which it appears, and slower execution results.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH month product district
TRAP ON cleanup
LIMIT month TO UPCASE(ARG(1)) TO UPCASE(ARG(2))
LIMIT product TO 'CANOES'
LIMIT district TO all
REPORT grandtotals DOWN district sales
LIMIT month TO UPCASE(ARG(3)) TO UPCASE(ARG(4))
REPORT grandtotals DOWN district sales
cleanup:
POP month product district
END

To run the program, you specify the program name (salesrpt) followed by two
sets of months to mark the beginning and the end of the two periods of sales to be
reported. Then, when the LIMIT MONTH statements are executed, Oracle OLAP
passes the months specified on the command line as return values for ARG(1),
ARG(2), ARG(3), and ARG(4) in the LIMIT commands.

salesrpt 'Jan95' 'Mar95' 'Jan96' 'Mar96'

ARG

ARCSIN to CHARLIST 8-9

This statement produces the following output.

PRODUCT: Canoes
------------SALES--------------
------------MONTH--------------

DISTRICT Jan95 Feb95 Mar95

Boston 66,013.92 76,083.84 91,748.16
Atlanta 49,462.88 54,209.74 67,764.20
Chicago 45,277.56 50,595.75 63,576.53
Dallas 33,292.32 37,471.29 43,970.59
Denver 45,467.80 51,737.01 58,437.11
Seattle 64,111.50 71,899.23 83,943.86

---------- --------- ---------
303,625.98 341,996.86 409,440.44
========== ========== ==========

PRODUCT: Canoes
------------SALES---------------
------------MONTH---------------

DISTRICT Jan96 Feb96 Mar96

Boston 70,489.44 82,237.68 97,622.28
Atlanta 56,271.40 61,828.33 77,217.62
Chicago 48,661.74 54,424.94 68,815.71
Dallas 35,244.72 40,218.43 46,810.68
Denver 44,456.41 50,623.19 57,013.01
Seattle 67,085.12 74,834.29 87,820.04

---------- --------- ---------
322,208.83 364,166.86 435,299.35
========== ========== ==========

ARGCOUNT

8-10 Oracle OLAP DML Reference

ARGCOUNT

Within an OLAP DML program, the ARGCOUNT function returns the number of
arguments that were specified when the current program was invoked.

Return Value
INTEGER

Syntax
ARGCOUNT

Notes

Argument Declarations
Arguments can be either declared with an ARGUMENT statement or referenced
with the ARG function.

Argument Requirements
When a program is invoked as a command -- that is, without parentheses around
the arguments -- Oracle OLAP counts each word and punctuation mark on the
command line as a separate argument. Therefore, you should not include arithmetic
expressions, functions, qualified data references, or IF...THEN...ELSE... statements
as arguments.

When you want to include any of these types of expressions as arguments in a
program that will be invoked as a command, use PARSE in the program.
Alternatively, you can enclose the arguments within parentheses and invoke the
program either as a user-defined function or with CALL. When the program is
invoked with CALL, the return value is discarded.

CALLTYPE Function
You can use CALLTYPE to determine whether a program was invoked as a
function, as a command, or by using CALL.

ARGCOUNT

ARCSIN to CHARLIST 8-11

Examples

Example 8–4 Checking the Number of Arguments

In the following example, the program, a user-defined function, verifies that three
arguments are passed. When the number of arguments passed is not equal to 3, the
program terminates with -1 as a return value.

DEFINE threearg PROGRAM INTEGER
LD User-defined function expecting three arguments
PROGRAM
ARGUMENT division TEXT
ARGUMENT product TEXT
ARGUMENT month MONTH
IF ARGCOUNT NE 3

THEN RETURN -1
ELSE
DO
...

ARGFR

8-12 Oracle OLAP DML Reference

ARGFR

Within an OLAP DML program, the ARGFR function lets you reference the
arguments that are passed to a program. The function returns a group of one or
more arguments, beginning with the specified argument number, as a single text
value. You can use ARGFR only within a program that is invoked as a command,
not as a user-defined function or with a CALL statement.

Return Value
TEXT

Syntax
ARGFR(n)

Arguments

n
The number by position of the first argument in the group of arguments you want
to reference. ARGFR(1) returns the first argument and all subsequent arguments,
ARGFR(2) returns the second argument and all subsequent arguments, and so
forth. When there are fewer than n arguments, ARGFR returns a null value. ARGFR
also returns a null value when n is 0 (zero) or negative.

Note: Use an ARGUMENT statement to define arguments in a
program and to negate the need for using the ARGFR function to
reference arguments passed to the program. For more information
on how to use the ARGUMENT to define arguments that are
passed to a program, see "Declaring Arguments that Will be Passed
Into a Program" on page 8-20.

Important: When you want to pass NTEXT arguments, be sure to
declare them using ARGUMENT instead of using ARGFR. With
ARGFR, NTEXT arguments are converted to TEXT, and this can
result in data loss when the NTEXT values cannot be represented in
the database character set.

ARGFR

ARCSIN to CHARLIST 8-13

Notes

Ampersand Substitution
The ARGFR function is often preceded by an ampersand (&) in a program line to
allow flexibility in specifying arguments; in other words, to tell Oracle OLAP not to
pass the literal contents of ARGFR into the program, but what the contents point to.
See "Passing Arguments Using ARG and ARGFR" on page 8-14.

Argument Requirements
When a program is invoked as a command -- that is, without parentheses around
the arguments -- Oracle OLAP counts each word and punctuation mark on the
command line as a separate argument. Therefore, you cannot include arithmetic
expressions, functions, qualified data references, or IF...THEN...ELSE... statements
as arguments in the program.

When you want to include any of these types of expressions as arguments in a
program invoked as a command, you must include a PARSE statement in the
program.

ARG and ARGS Functions
To reference a single argument, use ARG, or to reference all the arguments, use
ARGS.

ARGCOUNT Function
A program can include ARGCOUNT to verify the number of arguments passed to
the program.

Commas or Spaces as Delimiters
In most cases, you can use either commas or spaces between arguments. However,
arguments may need to be separated with commas when those arguments include
parentheses or negative numbers. Without commas, Oracle OLAP might interpret
parenthetical expressions as qualified data references and negative signs as
subtraction.

CALLTYPE Function
You can use CALLTYPE to determine whether a program was invoked as a
function, as a command, or by using CALL.

ARGFR

8-14 Oracle OLAP DML Reference

Examples

Example 8–5 Passing Arguments Using ARG and ARGFR

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any product and any period of months, so you do not want
to limit the product and month dimensions to specific values in the program.
Instead, you can use the LIMIT command using ARG for the product argument
and an ARGFR function for the month argument. This way, these items can be
specified when the program is run.

When ARGFR is included in the LIMIT command preceded by an ampersand (&),
Oracle OLAP substitutes the values of &ARGFR before the command is executed
and, as a result, treats the whole argument as a phrase of the LIMIT command. The
salesreport program has a LIMIT command that includes &ARGFR.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH product month district
TRAP ON cleanup
LIMIT product TO UPCASE(ARG(1))
LIMIT month TO &ARGFR(2)
LIMIT district TO ALL
REPORT grandtotals DOWN district sales
cleanup:
POP product month district
END

The command line for the salesrpt program must include two or more
arguments. The first argument is the product for the report, and the second and
subsequent arguments are the months. In the LIMIT month statement, the
&ARGFR(2) function returns the months that were specified as arguments on the
command line.

The following statement executes the salesrpt program, specifying Jan96,
Feb96, Mar96, and Apr96 for the values of month.

salesrpt 'Canoes' 'Jan96' TO 'Apr96'

ARGFR

ARCSIN to CHARLIST 8-15

The statement produces the following output.

PRODUCT: CANOES
-------------------SALES------------------
-------------------MONTH------------------

DISTRICT Jan96 Feb96 Mar96 Apr96
------- ---------- ---------- ---------- ---------
Boston 70,489.44 82,237.68 97,622.28 134,265.60
Atlanta 56,271.40 61,828.33 77,217.62 109,253.38
Chicago 48,661.74 54,424.94 68,815.71 93,045.46
Dallas 35,244.72 40,218.43 46,810.68 64,031.28
Denver 44,456.41 50,623.19 57,013.01 78,038.13
Seattle 67,085.12 74,834.29 87,820.04 119,858.56

---------- ---------- ---------- ----------
322,208.83 364,166.86 435,299.34 598,492.41
========== ========== ========== ==========

The following statement specifies the first three months of 1996.

salesrpt 'Tents' quarter 'Q1.96'

The statement produces the following output.

PRODUCT: TENTS
-------------SALES-------------
-------------MONTH-------------

DISTRICT Jan96 Feb96 Mar96
-------------- ---------- ---------- ---------
Boston 50,808.96 34,641.59 45,742.21
Atlanta 46,174.92 50,553.52 58,787.82
Chicago 31,279.78 31,492.35 42,439.52
Dallas 50,974.46 53,702.75 71,998.57
Denver 35,582.82 32,984.10 44,421.14
Seattle 45,678.41 43,094.80 54,164.06

---------- ---------- ---------
260,499.35 246,469.11 317,553.32
========== ========== ==========

ARGS

8-16 Oracle OLAP DML Reference

ARGS

Within an OLAP DML program, the ARGS function lets you reference the
arguments that are passed to a program. The function returns all the arguments as a
single text value. You can use the ARGS function only within a program that is be
invoked as a command, not as a user-defined function or with a CALL statement.

Return Value
TEXT

Syntax
ARGS

Notes

No Arguments
When no arguments have been specified for the program, ARGS returns a null
value.

Note: Use an ARGUMENT statement to define arguments in a
program and to negate the need for using the ARGS function to
reference arguments passed to the program. For more information
on how to use the ARGUMENT to define arguments that are
passed to a program, see "Declaring Arguments that Will be Passed
Into a Program" on page 8-20.

Important: When you want to pass NTEXT arguments, be sure to
declare them using ARGUMENT instead of using ARGS. With
ARGS, NTEXT arguments are converted to TEXT, and this can
result in data loss when the NTEXT values cannot be represented in
the database character set.

ARGS

ARCSIN to CHARLIST 8-17

Ampersand Substitution
The ARGS function is often preceded by an ampersand (&) in a program line to
allow flexibility in specifying arguments; in other words, to tell Oracle OLAP not to
pass the literal contents of ARGS into the program, but what the contents point to.
(See "Passing Arguments Using ARGS" on page 8-17.

ARGFR Function
To reference a single argument use ARG, or to reference a group of arguments
beginning with a specified argument use ARGFR.

ARGCOUNT Function
A program can include an ARGCOUNT function to verify the number of arguments
passed to the program.

Commas or Spaces as Delimiters
In most cases, either commas or spaces can be used between arguments. However,
arguments may need to be separated with commas when those arguments include
parentheses or negative numbers. Without commas, Oracle OLAP might interpret
parenthetical expressions as qualified data references and negative signs as
subtraction.

CALLTYPE Function
You can use CALLTYPE to determine whether a program was invoked as a
function, as a command, or by using CALL.

Examples

Example 8–6 Passing Arguments Using ARGS

Assume you have a program that produces a simple sales report. You want to be
able to produce this report for any month, so you do not want to limit the month
dimension to any fixed month in the program. You can use the ARGS function in
your LIMIT command so that the months for the report can be supplied as an
argument when the program is run.

When ARGS is included in the LIMIT command preceded by an ampersand (&),
Oracle OLAP substitutes the values of &ARGS before the command is executed and,

ARGS

8-18 Oracle OLAP DML Reference

as a result, treats the whole argument as a phrase of the LIMIT command. The
salesreport program has a LIMIT command that includes &ARGS.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH month product district
TRAP ON cleanup
LIMIT month TO &ARGS
LIMIT product TO 'CANOES'
LIMIT district TO ALL
REPORT grandtotals DOWN district sales
cleanup:
POP month product district
END

When you execute the following statement, the LIMIT command will use the values
Jan96 and Feb96 for the month dimension.

salesrpt 'Jan96' 'Feb96'

The statement produces the following output.

PRODUCT: CANOES
--------SALES--------
--------MONTH--------

DISTRICT Jan96 Feb96

Boston 70,489.44 82,237.68
Atlanta 56,271.40 61,828.33
Chicago 48,661.74 54,424.94
Dallas 35,244.72 40,218.43
Denver 44,456.41 50,623.19
Seattle 67,085.12 74,834.29

---------- ---------- --
322,208.83 364,166.86

========== ========== ==

ARGUMENT

ARCSIN to CHARLIST 8-19

ARGUMENT

The ARGUMENT statement declares an argument that is expected by a program.
Within the program, the argument is stored in a structure similar to a variable or
valueset. The argument is initialized with the value that was passed when the
program was invoked. An argument exists only while the program is running.

The ARGUMENT statement is used only in programs, and it must precede the first
executable line in the program. Be careful to distinguish the ARG abbreviation of
the ARGUMENT statement from the ARG function.

Syntax
ARGUMENT name {datatype|dimension|VALUESET dim}

Arguments

name
The name by which the argument will be referenced in the program. An argument
cannot have the same name as a local variable or valueset. You name an argument
according to the rules for naming analytic workspace objects (see the DEFINE
command).

datatype
The data type of the argument, which indicates the kind of data to be stored. You
can specify any of the data types that are listed and described in the DEFINE
VARIABLE entry. Also, when you want to the program to be able to receive an
argument without converting it to a specific datatype, you can also specify
WORKSHEET for the data type.

Important: When you declare an argument to be of type NTEXT,
and a TEXT value is passed into the program, Oracle OLAP
converts the TEXT value to NTEXT. Similarly, when you declare an
argument to be of type TEXT, and an NTEXT value is passed into
the program, Oracle OLAP converts the NTEXT value to TEXT.
Data can be lost when NTEXT is converted to TEXT.

ARGUMENT

8-20 Oracle OLAP DML Reference

dimension
The name of a dimension, whose value will be contained in the argument. The
argument will hold a single value of the dimension. Assigning a value that does not
currently exist in the dimension causes an error.

VALUESET dim
Indicates that name is a valueset. The keyword dim specifies the dimension for
which the valueset holds values. Argument valuesets can be used within the
program in the same way you would use a valueset in the analytic workspace.

Notes

The Life Span of an Argument
An argument exists only while the program in which it is declared is running.
When the program terminates, the argument ceases to exist and its value is lost.
Therefore, an argument is not an analytic workspace object.

A program can terminate when a RETURN or SIGNAL statement, or at the last line
of the program executes. When the program calls a subprogram, the original
program is temporarily suspended and the argument still exists when the
subprogram ends and control returns to the original program. A program that calls
itself recursively has separate arguments for each running copy of the program.

Declaring Arguments that Will be Passed Into a Program
When declaring arguments that are passed into a program special considerations
apply.

Arguments Passed by Value Arguments are passed into a program by value. This
means that the called program is given only the value of an argument, without
access to any analytic workspace object to which it might be related. Therefore, you
can change an argument value within the called program without affecting any
value outside the program. You can think of an argument variable or valueset as a
conveniently initialized local variable or local valueset.

Argument Processing for a Function When a program is invoked either with a
CALL statement or as a function, the following two-step process occurs:

1. The specified data types are established. Argument expressions specified by the
calling program are evaluated left to right, and their data types are identified.
An expression representing a dimension value can be a text (TEXT or ID),

ARGUMENT

ARCSIN to CHARLIST 8-21

numeric (INTEGER, DECIMAL, and so on), or RELATION value. An error in
one argument expression stops the process.

2. Each specified data type is matched with the declared data type. Argument
expressions are matched positionally with the declared arguments. The first
argument expression is matched with the first declared argument, the second
argument expression with the second argument, and so on. Each expression is
converted in turn to the declared data type of the declared argument.

When an argument is declared as a dimension value, the matching value passed
from the calling program can be TEXT or ID (representing a value of the specified
dimension), numeric (representing a logical dimension position), or RELATION
(representing a physical dimension position). The RELATION method is the way
Oracle OLAP passes along dimension values that are the result of evaluating a
dimension name or relation name used as the matching value. When the matching
value is a noninteger numeric value (for example, DECIMAL), it is rounded to the
nearest integer to represent a logical dimension position.

When an argument is declared as something other than a dimension value, and the
matching value from the calling program is a RELATION value, an error will occur.
When you want to pass a RELATION value and receive it as a TEXT argument, use
CONVERT to convert the value in the program's argument list.

When an argument is declared as a valueset of a dimension, only the name of a
valueset of that dimension will be accepted as an argument.

When an error occurs in either the first or second step, the program is not executed.

Argument Processing for a Command When a program is invoked as a
standalone command with its arguments not enclosed by parentheses, the
arguments are matched positionally with the declared arguments. The called
program can reference the specified arguments either as declared arguments or
through the ARG (n), ARGS, and ARGFR (n) functions. In this situation, the
arguments are passed as text strings, not by value.

Extra Arguments When the calling program specifies more arguments than there
are declarations in the called program, the extra arguments are ignored. When the
calling program specifies fewer arguments than there are declarations in the called
program, the extra arguments are given NA values.

Duplicate Names
Ordinarily, when you give an argument the same name as an analytic workspace
object, the argument (not the analytic workspace object) will be referenced within

ARGUMENT

8-22 Oracle OLAP DML Reference

the program. Exceptions to this rule occur only when the statement in which the
reference is made requires an analytic workspace object as an argument. The
following OLAP DML statements require an analytic workspace object to be
specified as an argument.

CONSIDER
COPYDFN
DEFINE
DELETE
DESCRIBE
EXPORT
IMPORT
LOAD
MOVE
POP
PUSH
RENAME
STATUS

CALLTYPE Function
You can use the CALLTYPE function to determine whether a program was invoked
as a function, as a command, or by using a CALL statement.

No Arguments in Formulas
You cannot use declared arguments in a FORMULA.

Examples

Example 8–7 Passing an Argument to a User-Defined Function

Sometimes verifying user input to the GET function can become complicated. The
usual method involves a line of code such as the following one.

SHOW GET(INT VERIFY VALUE GT 0 AND VALUE LT 100 -
IFNOT 'The value must be between 1 and 100')

ARGUMENT

ARCSIN to CHARLIST 8-23

You can create a user-defined function to make the GET expression simpler. For
example, the following program can be used as a function to check for values
between 0 and 100.

DEFINE verit PROGRAM BOOLEAN
PROGRAM
ARGUMENT uservalue INT
TRAP ON haderror NOPRINT
IF uservalue GT 100

THEN SIGNAL toobig 'The value must be 100 or smaller.'
ELSE IF uservalue LT 0

THEN SIGNAL toosmall 'The value must be 0 or greater.'
RETURN TRUE

haderror:
RETURN FALSE

END

The following GET expression uses the verit function.

SHOW GET(INT VERIFY VERIT(VALUE) IFNOT ERRORTEXT)

Example 8–8 Passing Multiple Arguments

Suppose, in the product.rpt program, that you want to supply a second
argument that specifies the column width for the data columns in the report. In the
product.rpt program, you would add a second ARGUMENT statement to
declare the INTEGER argument to be used in setting the value of the COLWIDTH
option.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
NASPELL = natext
COLWIDTH = widthamt

To specify eight-character columns, you could run the product.rpt program with
the following statement.

CALL product.rpt ('Missing' 8)

When the product.rpt program also requires the name of a product as a third
argument, then in the product.rpt program you would add a third ARGUMENT

ARGUMENT

8-24 Oracle OLAP DML Reference

statement to handle the product argument, and you would set the status of the
product dimension using this argument.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod PRODUCT
NASPELL = natext
COLWIDTH = widthamt
LIMIT product TO rptprod

You can run the product.rpt program with the following statement.

CALL product.rpt ('Missing' 8 'TENTS')

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

Example 8–9 Using the ARGUMENT Statement

Suppose you are writing a program, called product.rpt. The product.rpt
program produces a report, and you want to supply an argument to the report
program that specifies the text that should appear for an NA value in the report. In
the product.rpt program, you can use the declared argument natext in an
ARGUMENT statement to set the NASPELL option to the value provided as an
argument.

ARGUMENT natext TEXT
NASPELL = natext

To specify Missing as the text for NA values, you can execute the following
statement.

CALL product.rpt ('Missing')

In this example, literal text enclosed in single quotes provides the value of the text
argument. However, any other type of text expression works equally well, as shown
in the next example.

DEFINE natemp VARIABLE TEXT TEMP
natemp = 'Missing'
CALL product.rpt (natemp)

ARGUMENT

ARCSIN to CHARLIST 8-25

Example 8–10 Passing the Text of an Expression

Suppose you have a program named custom.rpt that includes a REPORT
statement, but you want to be able to use the program to present the values of an
expression, such as sales - expense, as well as single variables.

custom.rpt 'sales - expense'

Note that you must enclose the expression in single quotation marks. Because the
expression contains punctuation (the minus sign), the quotation marks are
necessary to indicate that the entire expression is a single argument.

In the custom.rpt program, you could use the following statements to produce a
report of this expression.

ARGUMENT rptexp TEXT
REPORT &rptexp

For an example of using ampersand substitution to pass multiple dimension values,
see "Using Ampersand Substitution with LIMIT" on page 16-17.

Example 8–11 Passing Workspace Object Names and Keywords

Suppose you design a program called sales.rpt that produces a report on a
variable that is specified as an argument and sorts the product dimension in the
order that is specified in another argument. You would run the sales.rpt
program by executing a statement like the following one.

sales.rpt units d

In the sales.rpt program, you can use the following statements.

ARGUMENT varname TEXT
ARGUMENT sortkey TEXT
SORT product &sortkey &varname
REPORT &varname

After substituting the arguments, these statements are executed in the sales.rpt
program.

SORT product D units
REPORT units

ASCII

8-26 Oracle OLAP DML Reference

ASCII

The ASCII function returns the decimal representation of the first character of an
expression.

Return Value
INTEGER.

Syntax
ASCII (text-exp)

Arguments

text-exp
A text expression.

Notes

Returning EBCDIC Values
When your database character set is 7-bit ASCII, then this function returns an ASCII
value. When your database character set is EBCDIC Code, then this function returns
an EBCDIC value. There is no corresponding EBCDIC character function

Examples
The following example returns the ASCII decimal equivalent of the letter "Q":

SHOW ASCII('Q')
81

AVERAGE

ARCSIN to CHARLIST 8-27

AVERAGE

The AVERAGE function calculates the average of the values of an expression.

Return Value
DECIMAL

Syntax
AVERAGE(expression [[STATUS] dimensions])

Arguments

expression
The expression whose values are to be averaged.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the expression, the STATUS keyword might be required in order for
Oracle OLAP to process the function successfully, or the STATUS keyword might
provide a performance enhancement. See "The STATUS Keyword" on page 8-28.

dimensions
The dimensions of the result. By default, AVERAGE returns a single value. When
you indicate one or more dimensions for the results, AVERAGE calculates an
average for each value of the dimensions that are specified and returns an array of
values. Each dimension must be either a dimension of expression or related to one of
its dimensions. When it is a related dimension, you can specify the name of the
relation instead of the dimension. This makes it possible for you to choose which
relation is used when there is more than one.

AVERAGE

8-28 Oracle OLAP DML Reference

Notes

NA Values
AVERAGE is affected by the NASKIP option. When NASKIP is set to YES (the
default), AVERAGE ignores NA values and returns the average of the values that are
not NA. When NASKIP is set to NO, AVERAGE returns NA when any value of the
expression is NA. When all the values of the expression are NA, AVERAGE returns
NA for either setting of NASKIP.

Averaging Over a Dimension of Type DAY, WEEK, MONTH, QUARTER, or
YEAR
When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimension that has one of these
types as a related dimension. Oracle OLAP uses the implicit relation between the
two dimensions. To control the mapping of one of these types of dimensions to
another (for example, from weeks to months), you can define an explicit relation
between the two dimensions and specify the name of the relation as the dimension
argument to the AVERAGE function.

For each time period in the related dimension, Oracle OLAP averages the data for
all the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods. To control the
way in which data is aggregated or allocated between the periods of two
dimensions, you can use the TCONVERT function.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the expression, Oracle OLAP creates a temporary variable to use
while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the expression are
limited to a few values and are physically fragmented, you can specify the STATUS
keyword to improve the performance of the function.

When you use the AVERAGE function with the STATUS keyword for an expression
that requires going outside of the status for results (for example, with the LEAD or
LAG functions or with a qualified data reference), the results outside of the status
will be returned as NA.

AVERAGE

ARCSIN to CHARLIST 8-29

Examples

Example 8–12 Calculating Average Monthly Sales

This example shows how to calculate the average monthly sales of sportswear for
each sales district.

LIMIT product TO 'SPORTSWEAR'
REPORT W 14 HEADING 'Average Sales' AVERAGE(sales district)

The preceding statements produce the following output.

DISTRICT Average Sales
----------- --------------
Boston 69,150.41
Atlanta 151,192.36
Chicago 95,692.99
Dallas 162,242.89
Denver 88,892.72
Seattle 54,092.32

You might also want to see the average monthly sales for each region. Since the
region dimension is related to the district dimension, you can specify region
instead of district as a dimension for the results of AVERAGE.

AW command

8-30 Oracle OLAP DML Reference

AW command

The syntax of the AW command varies depending on the task that you want to
perform.

AW ALIASLIST
AW ALLOCATE
AW ATTACH
AW CREATE
AW DELETE
AW DETACH
AW LIST
AW SEGMENTSIZE

Notes

Triggering Program Execution When an AW Statement Executes
When a program named TRIGGER_AW exists in the analytic workspace, the
execution of any AW ATTACH, AW CREATE, AW DELETE, or AW DETACH
statement automatically executes that program. See "Trigger Programs" on
page 1-14 and TRIGGER_AW, for more information.

When an AW ATTACH statement executes Oracle OLAP checks for other programs
as well. See "Programs Executed When Attaching Analytic Workspaces" on
page 8-39 for more information.

AW command

ARCSIN to CHARLIST 8-31

AW ALIASLIST

The AW ALIASLIST command assigns or deletes one or more workspace alias for
the specified attached workspace or, when no workspace is specified, for the current
workspace. ALIAS indicates that the alias or aliases should be assigned, and
UNALIAS indicates that the alias or aliases should be deleted.

Syntax
AW ALIASLIST [workspace] {ALIAS|UNALIAS} alias1, alias2, ...

Arguments

workspace
The name of the analytic workspace. You can specify either a workspace name or a
workspace alias, depending on the keywords you are using.

ALIAS
Assigns one or more workspace alias for the specified attached workspace or, when
no workspace is specified, for the current workspace. ALIAS indicates that the alias
or aliases should be assigned, and UNALIAS indicates that the alias or aliases
should be deleted.

All aliases for a given workspace are automatically deleted when you detach a
workspace. Therefore, each time you attach an unattached workspace, you must
reassign its aliases.

UNALIAS
Deletes one or more workspace alias for the specified attached workspace or, when
no workspace is specified, for the current workspace.

alias1
alias2
When you assign an alias, keep in mind the following rules for workspace aliases:
Aliases can contain only letters, numerals, and underscores; they cannot begin with
a numeral; they cannot be reserved words in the OLAP DML; and they can be no
more than 26 characters in length. (Use RESERVED to identify reserved words.) All
characters must come from the database character set.

AW ALIASLIST

8-32 Oracle OLAP DML Reference

Notes

Duration of Alias
All aliases for a given workspace are automatically deleted when you detach a
workspace. Therefore, each time you attach an unattached workspace, you must
reassign its aliases.

No Current Workspace
Your session does not have to have a current workspace. When you start Oracle
OLAP without specifying a workspace name, the EXPRESS workspace will be first
on the list, but there is no current workspace until you specify one with the AW
ATTACH statement. (You can make the EXPRESS workspace current by specifying
its name in the AW ATTACH statement.)

EXPRESS Workspace
When your database is installed with the OLAP option, the EXPRESS workspace is
always attached in read-only mode in your session. It never automatically becomes
the current workspace, even when it is the first or only workspace in your
workspace list, because it is for internal use by Oracle OLAP. You can make the
EXPRESS workspace the current workspace by explicitly attaching it, but this is not
recommended. You cannot detach the EXPRESS workspace.

Examples

Example 8–13 Assigning an Alias

The following statement assigns sdemo as an alias for the demo workspace, which
was created by a user named scott. The full name of the workspace is specified
because the current user is not scott.

AW ALIASLIST scott.demo ALIAS sdemo

In the following statement, the user named scott assigns mydemo as an alias for
the same workspace. This statement can specify only the name of the work space
(not the full name), because the current user is scott.

AW ALIASLIST demo ALIAS mydemo

AW command

ARCSIN to CHARLIST 8-33

AW ALLOCATE

The AW ALLOCATE command allocates space for your workspace.

Syntax
AW ALLOCATE n [K, M, or G] [workspace]

Arguments

n
The amount of space to allocate.

workspace
The name of the analytic workspace. You can specify either a workspace name or a
workspace alias.

AW ATTACH

8-34 Oracle OLAP DML Reference

AW ATTACH

The AW ATTACH command attaches a workspace to your session. Oracle OLAP
makes the specified workspace the current one. Previously attached workspaces
move down in the list of attached workspaces to make room for the new current
one at the top of the list.

When you attach more than one workspace, the code and data in all the attached
workspaces are available during your session. The current workspace is first on the
workspace list, which Oracle OLAP keeps for your session.

Syntax
AW ATTACH workspace -

[ONATTACH [progname]|NOONATTCH] -

[RO|RW|RWX|MULTI] [WAIT|NOWAIT] -

[AUTOGO [progname]|NOAUTOGO] -

[AFTER workspace|BEFORE workspace|LAST|FIRST] -

[PASSWORD password]

Arguments

workspace
The name of the analytic workspace. When you use the ATTACH keyword to attach
a workspace that is not already attached, you must specify the workspace name.
Again this is because no alias is assigned. However, when you use the ATTACH
keyword on an already attached workspace (for example, in order to change its
position in the workspace list), you can use an assigned alias

Note: When an AW ATTACH statement executes, it can trigger
the execution of several other programs. See "Programs Executed
When Attaching Analytic Workspaces" on page 8-39 for more
information.

AW command

ARCSIN to CHARLIST 8-35

ONATTCH [progname]
An Onattach program automatically executes when the workspace is started:

■ When you specify the ONATTCH keyword without following it with a
program name, Oracle OLAP looks in the workspace for a program named
ONATTACH and executes it if it exists. This syntax is provided for clarity in your
programs. You can get the same results by not specifying ONATTACH.

■ When you specify the ONATTCH keyword and you follow it with a program
name, Oracle OLAP looks in the workspace for a program of that name. When
it exists, Oracle OLAP executes that program, even when a program named
ONATTACH exists in the workspace. See "Programs Executed When Attaching
Analytic Workspaces" on page 8-39 for more information.

NOONATTACH
Specifying NOONATTACH indicates that when a program named ONATTACH exists
in the workspace, Oracle OLAP should not execute that program.

AUTOGO progname
When you do not specify progname, the AUTOGO clause automatically runs the
program specified a program named AUTOGO if one exists in the attached
workspace. When you do specify progname, the AUTOGO clause automatically runs
the specified program in the attached program. See "Programs Executed When
Attaching Analytic Workspaces" on page 8-39 for more information.

NOAUTOGO
Specifying NOAUTOGO indicates that there is no Autogo program. This syntax is
provided for clarity in your programs. You can get the same results by not
specifying AUTOGO progname.

 RO
Specifies that the workspace is attached in read-only access mode. (Default) Users
can make private changes to the data in the workspace to perform what-if analysis
but cannot commit any of these changes.

A workspace that is attached read-only can be accessed simultaneously by several
sessions. The read-only attach mode is compatible with the read/write and
multiwriter access mode. A user can attach an analytic workspace in read-only
mode when other users have the workspace attached in either read/write and
multiwriter access mode. Likewise, a user cannot attach an analytic workspace in
read/write exclusive mode when another user has it attached in read-only mode.
When you attach a workspace with read-only access, Oracle OLAP executes a
program called PERMIT_READ, when it finds one in the workspace.

AW ATTACH

8-36 Oracle OLAP DML Reference

RW
Specifies that the workspace is attached in read/write access mode. Only one user
can have an analytic workspace open in read/write at a time. The user has to
commit either all or none of the changes made to the workspace.

A workspace that is attached read/write non-exclusive can be accessed
simultaneously by several sessions. The read/write non-exclusive attach mode is
only compatible with the read-only access mode. A user can attach an analytic
workspace in read/write mode when other users have the workspace attached in
read-only mode; however, a user not attach an analytic workspace in read/write
mode when another user has it attached in any other mode. Likewise, a user cannot
attach an analytic workspace in any mode other than read-only when another user
has it attached in read/write non-exclusive mode. When you attach a workspace
with read/write access, Oracle OLAP executes a program called PERMIT_WRITE,
when it finds one in the workspace. See "Permission Programs" on page 8-40.

RWX
Specifies that the workspace is attached in read/write exclusive access mode. Only
one user can have an analytic workspace open in read/write exclusive at a time.
The user has to commit either all or none of the changes made to the workspace.

A workspace that is attached read/write exclusive cannot be accessed by any other
sessions. The read/write exclusive attach mode is not compatible with any other
access modes. A user cannot attach an analytic workspace in read/write exclusive
mode when another user has it attached in any mode. Likewise, a user cannot
attach an analytic workspace in any other mode when another user has it attached
in read/write exclusive mode. When you attach a workspace with read/write
access, Oracle OLAP executes a program called PERMIT_WRITE, when it finds one
in the workspace. See "Permission Programs" on page 8-40.

MULTI
Specifies that the workspace is attached in multiwriter access mode. A workspace
that is attached in multiwriter mode can be access simultaneously by several
sessions. In multiwriter mode, users can simultaneously modify the same analytic
workspace in a controlled manner by specifying specify the attachment mode
(read-only or read/write) for individual variables, relations, valuesets, and
dimensions.

See: Table 8–1, " Statements for Managing Objects When Attached
in Multiwriter Mode" on page 8-38 for a list of the OLAP DML
statements that you use to manipulate objects in an analytic
workspace that is attached in multiwriter mode,.

AW command

ARCSIN to CHARLIST 8-37

The multiwriter attach mode is only compatible with read-only and multiwriter
modes. A user cannot attach an analytic workspace in multiwriter mode when
another user has it attached in read/write or exclusive modes. Likewise, a user
cannot attach an analytic workspace in read/write or exclusive mode when another
user has it attached in multiwriter mode.

WAIT
NOWAIT
Specifies whether Oracle OLAP waits for a workspace to become available for
access when you request access to a workspace that is being used with read/write
exclusive access or when you request read/write access to a workspace that is
already being used with read/write non-exclusive access. NOWAIT (the default)
causes Oracle OLAP to produce an error message indicating that the workspace is
unavailable. When you specify WAIT, Oracle OLAP will wait for the workspace to
become available for access. The number of seconds that Oracle OLAP will wait for
access depends on the value of the Oracle OLAP option AWWAITTIME. For more
information, see AWWAITTIME and "Workspace Sharing" on page 8-41.

FIRST
Makes the workspace you are attaching the current workspace in the workspace
list. (Default)

LAST
Puts the workspace after the current workspace in the workspace list and before the
EXPRESS workspace. When there are other workspaces attached before the
EXPRESS workspace, the specified workspace is attached after them. When there
are no workspaces before the EXPRESS workspace, LAST makes the specified
workspace the current one. LAST ignores any workspaces after the EXPRESS
workspace.

AFTER workspace
BEFORE workspace
Let you specify the position in the workspace list of the newly attached workspace
relative to a workspace that is already attached. Use AFTER, rather than LAST, to
attach a workspace after the EXPRESS workspace. When specifying BEFORE puts
the workspace first, the workspace becomes the current one.

The order of the workspace list determines the order in which workspaces will be
searched when Oracle OLAP looks for programs or objects named in programs.

AW ATTACH

8-38 Oracle OLAP DML Reference

PASSWORD password
Specifies a password to be checked in a permission program in order to give or
deny access to the workspace being attached. See "Permission Programs" on
page 8-40.

Notes

Attaching Many Workspaces
Attaching more than one workspace to your session provides access to programs
and data in all of the attached workspaces. You can look at and change data or edit
programs in any of the workspaces. As long as the workspace is not attached
read-only, you can update your changes.

Attaching Many Workspaces: Naming Objects Naming objects requires more care
when you attach more than one workspace. When you request an object by name,
either with a DESCRIBE statement or by referring to it in a statement or program,
Oracle OLAP searches all the active workspaces in order until it finds the named
object. When you intend to use several workspaces together, do not give the same
name to objects in different workspaces, unless you are prepared to use qualified
object names.

Attaching Many Workspaces: LIST Keyword The names of all attached
workspaces are kept on the workspace list. You can view the list using AW LIST.

Attaching in Multiwriter Mode
When you are attached in multiwriter mode, you use the OLAP DML statements
listed in Table 8–1 to manipulate analytic workspace objects.

Table 8–1 Statements for Managing Objects When Attached in Multiwriter Mode

Statement Description

ACQUIRE When attached in multiwriter mode, acquires and (optionally)
resynchronizes the specified objects so that their changes can
be updated and committed.

RELEASE When attached in multiwriter mode, changes the access mode
of the specified variables, relations, valuesets, or dimensions
from read/write (acquired) access to read-only access.

RESYNC When attached in multiwriter mode, drops private changes for
the specified variables, relations, valuesets, and dimensions
and promotes them so that the user now sees the data from the
latest visible generations.

AW command

ARCSIN to CHARLIST 8-39

Programs Executed When Attaching Analytic Workspaces
When you attach a workspace, Oracle OLAP looks for and executes the following
programs in the order indicated:

1. Onattach program. A program that Oracle OLAP looks for and executes when
you attach an analytic workspace using an AW ATTACH statement in either of
the following situations:

■ When you attach an analytic workspace that contains a program named
ONATTACH and you do not include the NOONATTCH keyword in the
AW statement or when the AW statement includes an ONATTACH clause
that does not specify a program name, Oracle OLAP executes the
ONATTACH program.

■ When the AW statement includes an ONATTCH clause that specifies a
program name, Oracle OLAP looks in the workspace for a program of that
name. When it exists, Oracle OLAP executes that program.

2. Permission programs. Programs that Oracle OLAP looks for and executes varies
depending on the attachment mode specified in the AW ATTACH statement:

a. When you request that an analytic workspace be attached in read-only
mode, Oracle OLAP checks for a program named PERMIT_READ.

b. When you request that an analytic workspace be attached in exclusive or
non-exclusive read/write mode, Oracle OLAP checks for a program named
PERMIT_WRITE.

3. Autogo program. A program that Oracle OLAP looks for and executes when
you attach an analytic workspace using an AW ATTACH statement with the
AUTOGO clause.

4. TRIGGER_AW program. A trigger program that you create and that Oracle
OLAP checks for by name when an AW command executes.

REVERT When attached in multiwriter mode, drops all changes made to
the specified objects since they were last updated,
resynchronized, or acquired, or since the analytic workspace
was attached

.

Table 8–1 (Cont.) Statements for Managing Objects When Attached in Multiwriter

Statement Description

AW ATTACH

8-40 Oracle OLAP DML Reference

Using ATTACH on an Already-Attached Workspace
Reattaching an attached workspace with a AW ATTACH workspace statement does
not cause Oracle OLAP to bring a new copy of the workspace into working
memory. Instead, Oracle OLAP takes the following actions:

1. Makes the workspace the current workspace.

2. Runs an Autogo program, when you specify the AUTOGO keyword

However, when you have made any changes to data during the session, they are not
discarded when you reattach an active workspace. Furthermore, current aliases for
the workspace are not changed.

Conflicts between Workspace Names and Aliases
You cannot attach a workspace that is in your schema and whose name is the same
as an assigned alias. Similarly, you cannot assign an alias that duplicates the name
of an attached workspace that is in your schema. Furthermore, you cannot assign
the same alias to two attached workspaces.

In an AW DELETE statement, when you specify a workspace name (for a
workspace that is not attached) and the name is the same as an assigned alias,
Oracle OLAP interprets the name as an alias and reports an error.

EXPRESS Workspace
When your database is installed with the OLAP option, the EXPRESS workspace is
always attached in read-only mode in your session. It never automatically becomes
the current workspace, even when it is the first or only workspace in your
workspace list, because it is for internal use by Oracle OLAP. You can make the
EXPRESS workspace the current workspace by explicitly attaching it, but this is not
recommended. You cannot detach the EXPRESS workspace.

Permission Programs
Keep the following points in mind when working with permission programs.

Specifying Permission to Access Workspace Objects You can specify permission
to access workspace objects with PERMIT statements. You can specify PERMIT
statements, and the values of the permission conditions on which permission is
based, in the workspace permission programs PERMIT_READ and
PERMIT_WRITE. All the objects referred to in the workspace permission programs
or in the permission expressions must exist within the same workspace. (See
PERMIT.)

AW command

ARCSIN to CHARLIST 8-41

Permission Programs: Naming You create the workspace permission programs as
user-defined Boolean functions in the workspace to which you want to control
access. PERMIT_READ must be the name of the program for attaching read-only.
PERMIT_WRITE must be the name of the program for attaching read/write. When
a workspace permission program executes, it must return YES in order for the
workspace to be attached.

Permission Programs: In Different Workspaces When you have workspace
permission programs defined in workspaces that are currently attached, Oracle
OLAP executes the one in the workspace that you are attaching. However, when
you have workspace permission programs in more than one currently attached
workspace, you must take special care when you edit them or use them in any other
way, to ensure that you access the appropriate version.

Permission Programs: Running When you specify a password when attaching the
workspace, it is passed as an argument to the workspace permission program.

Permission Programs: Copying to and from Analytic Workspaces When you
export PERMIT_READ or PERMIT_WRITE programs which are hidden, they are
empty when imported. Additionally, when you outfile PERMIT_READ or
PERMIT_WRITE programs which are hidden, then they are empty when infiled.

Read-Only Workspaces
To protect a workspace from inadvertent changes, you can specify RO access when
attaching it. You can use a read-only workspace in the same way as an ordinary
workspace; you can even make changes to it during your session. However, you
cannot save the changes in your session by updating. The UPDATE will have no
effect. This protects data you are sure you do not want to change.

Workspace Sharing
Unless the workspace is already attached exclusive and your user ID has the
appropriate access rights, you can get read-only access to a workspace, no matter
how many other users are using it. When another user has read/write access and
uses the UPDATE and COMMIT statements, your view of the workspace does not
change. However, you can access their committed changes by detaching the
workspace and attaching it again.

Tip: Rename PERMIT_READ and PERMIT_WRITE programs
before using EXPORT (to EIF) or OUTFILE After copying the
programs to an analytic workspace using IMPORT (from EIF) or
INFILE.

AW ATTACH

8-42 Oracle OLAP DML Reference

Examples

Example 8–14 Startup Programs

Assume that you have created an analytic workspace named awtest that contains
five programs named PERMIT_READ, PERMIT_WRITE, ONATTACH, MYATTACH, and
AUTOGO that have the following definitions.

DEFINE PERMIT_READ PROGRAM BOOLEAN
PROGRAM
SHOW 'permit_read program executing'
AW LIST
RETURN YES
END

DEFINE PERMIT_WRITE PROGRAM BOOLEAN
PROGRAM
SHOW 'permit_write program executing'
AW LIST
RETURN YES
END

DEFINE ONATTACH PROGRAM BOOLEAN
PROGRAM
SHOW 'onattach program executing'
AW LIST
RETURN YES
END

DEFINE MYATTACH PROGRAM BOOLEAN
PROGRAM
SHOW 'myattach program executing'
AW LIST
RETURN YES
END

DEFINE AUTOGO PROGRAM
PROGRAM
SHOW 'autogo program executing'
AW LIST
END

AW command

ARCSIN to CHARLIST 8-43

The programs that execute when you attach awtest vary depending on the
attachment mode and keywords in the AW ATTACH statement:

■ When you attach awtest in read/write mode using the following statements.

AW DETACH awtest
AW ATTACH awtest RW

First the PERMIT_WRITE program executes, and then the ONATTACH program
executes.

permit_write program executing
AWTEST R/W CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
onattach program executing
AWTEST R/W CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

■ When you attach awtest in read-only mode using the following statements.

AW DETACH axuserwtest
AW ATTACH awtest NOONATTACH RO

Only the PERMIT_READ program executes.

permit_read program executing
AWTEST R/O UNCHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

■ When you attach awtest in read-only mode using the following statements.

AW DETACH awtest
AW ATTACH awtest RO

First the PERMIT_READ program executes, and then the ONATTACH program
executes.

permit_read program executing
AWTEST R/O CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
onattach program executing
AWTEST R/O CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW ATTACH

8-44 Oracle OLAP DML Reference

■ When you attach awtest in read-only mode using the following statements.

AW DETACH awtest
AW ATTACH awtest ONATTACH myattach RO

First the PERMIT_READ program executes, and then the MYATTACH program
executes.

permit_read program executing
AWTEST R/O CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
myattach program executing
AWTEST R/O CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

■ When you attach awtest in multi mode using the following statements.

AW DETACH awtest
AW ATTACH awtest MULTI

First the PERMIT_WRITE program executes, and then the ONATTACH program
executes.

permit_write program executing
AWTEST R/M CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
onattach program executing
AWTEST R/M CHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

■ When you attach awtest in read-only mode using the following statements.l

AW DETACH awtest
AW ATTACH awtest AUTOGO

First the PERMIT_WRITE program executes. Secondly, the ONATTACH program
executes. Finally, the AUTOGO program executes.

permit_write program executing
AWTEST R/O UNCHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
onattach program executing
AWTEST R/O UNCHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS
autogo program executing
AWTEST R/O UNCHANGED XUSER.AWTEST
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW command

ARCSIN to CHARLIST 8-45

Example 8–15 Attaching an Analytic Workspace Using an ONATTACH Program

Suppose you have two workspaces of sales data, one for expenses and one for
revenue. You have a third workspace called analysis contains programs to
analyze the data. Your analysis workspace has the following ONATTACH program
to attach the other two.

DEFINE onattach PROGRAM
PROGRAM
AW ATTACH expenses RW AFTER analysis
AW ATTACH revenues RW AFTER analysis
END

To run the ONATTACH program, attach the analysis workspace with the following
statement.

AW ATTACH analysis

When you issue an AW LIST statement, you can see from the following output, that
all three of your analytic workspaces are attached.

ANALYSIS R/W CHANGED XUSER.ANALYSIS
REVENUE R/W UNCHANGED XUSER.REVENUES
EXPENSES R/W UNCHANGED XUSER.EXPENSES
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW CREATE

8-46 Oracle OLAP DML Reference

AW CREATE

The AW CREATE command creates a new workspace and make it the current
workspace in your session. It is important to note that Oracle OLAP automatically
executes a COMMIT as part of its procedure for creating a workspace. Previously
attached workspaces move down in the list of attached workspaces to make room
for the new one at the top of the list. Oracle suggests that you use the TABLESPACE
argument to create your workspace in a tablespace that has been prepared for this
purpose. Ask your DBA which tablespace you should use.

Syntax
AW CREATE workspace [position] [UNPARTITIONED|PARTITIONS n] -

[SEGMENTSIZE n [K, M, or G]] [TABLESPACE tblspname]

where position specifies the workspace's position in the workspace list and is one of
the following values. (FIRST is the default.)

AFTER workspace
BEFORE workspace
LAST
FIRST

Arguments

workspace
The name of the analytic workspace. You must specify the name. You cannot specify
an alias because no alias is assigned when you are creating. When you create a
workspace, keep in mind the following rules for workspace names: Workspace
names can contain only letters, numerals, and underscores; they cannot begin with
a numeral; they cannot be reserved words in the DML; and they can be no more
than 26 characters in length. (Use RESERVED to identify reserved words.) All
characters must come from the database character set.

Note: When a program named TRIGGER_AW exists in the
analytic workspace, the execution of an AW CREATE statement
automatically executes that program.

AW command

ARCSIN to CHARLIST 8-47

FIRST
Makes the workspace you are attaching the current workspace. (Default)

LAST
Puts the workspace after the current workspace and before the EXPRESS
workspace. When there are other workspaces attached before the EXPRESS
workspace, the specified workspace is attached after them. When there are no
workspaces before the EXPRESS workspace, LAST makes the specified workspace
the current one. LAST ignores any workspaces after the EXPRESS workspace.

AFTER
BEFORE
Specify the position of the newly attached workspace relative to a workspace that is
already attached. Use AFTER, rather than LAST, to attach a workspace after the
EXPRESS workspace. When specifying BEFORE puts the workspace first, the
workspace becomes the current one.

The order of the workspace list determines the order in which workspaces will be
searched when Oracle OLAP looks for programs or objects named in programs.

UNPARTITIONED
Specifies that the relational table that is the analytic workspace is not a partitioned
table.

partitionS n
Specifies that the relational table that is the analytic workspace is a hash partitioned
table with n partitions. Specifying a value of 0 (zero) for n is the same as specifying
UNPARTITIONED. The default value of n is 8.

SEGMENTSIZE n [K, M, or G]
With the CREATE keyword, this argument sets the maximum size of each segment
for the workspace being created. When you do not specify K, M, or G, the value you
specify for n is interpreted as bytes. When you specify K, M, or G after the value n,
the value is interpreted as kilobytes, megabytes, or gigabytes, respectively.

TABLESPACE tblspname
Specifies the name of an Oracle Database tablespace in which the analytic
workspace is created.

AW CREATE

8-48 Oracle OLAP DML Reference

Notes

Security and Permissions
You can add security to analytic workspaces at several levels:

■ At the relational table level.

■ At the analytic workspace level and workspace object level as described in
"Restricting Accessing Using Analytic Workspace Attachment Modes" on
page 8-49.

■ At the analytic workspace object level and value level as described in
"Restricting Access Using OLAP DML Permission Programs" on page 8-49.

Granting Access Using SQL Statements An analytic workspace is a
multidimensional data source that is stored as a relational table of LOBs. The name
of the relational table that is the analytic workspace is AW$ followed by the OLAP
DML name of the analytic workspace.

When you first create an analytic workspace using an OLAP DML AW CREATE
statement, you are the only user who has access that workspace. When you want
others to use the workspace, you must give them access to the relational table that is
the analytic workspace use an SQL GRANT statement:

■ To give read access to another user, execute a statement like the following one in
SQL. In this example, the workspace name is demo and the user's name is
Scott.

GRANT SELECT ON aw$demo TO Scott

■ To give write access to another user, execute a SQL statement like the following
one.

GRANT UPDATE ON aw$demo TO Scott

As in any SQL GRANT statement, you can specify a group or role instead of a user.

AW command

ARCSIN to CHARLIST 8-49

Restricting Accessing Using Analytic Workspace Attachment Modes When you
attach an analytic workspace using the AW ATTACH statement, the mode that you
attach it in determines the access that have to the analytic workspace objects:

■ Read-only mode — When an analytic workspace is attached in read-only access
mode, users can make private changes to the data in the workspace to perform
what-if analysis, but cannot commit any of these changes.

■ Read/write nonexclusive mode—Only one user can have an analytic
workspace attached in read/write nonexclusive mode at a time. The user has to
commit either all or none of the changes made to the workspace.

■ Read/write exclusive mode—Only one user can have an analytic workspace
attached in read/write exclusive at a time. The user has to commit either all or
none of the changes made to the workspace.

■ Multiwriter mode —A workspace that is attached in multiwriter mode can be
accessed simultaneously by several sessions. In multiwriter mode, users can
simultaneously modify the same analytic workspace in a controlled manner by
specifying the attachment mode (read-only or read/write) for individual
objects.

When users first attach an analytic workspace in multiwriter mode, all objects
in the workspace are read-only. Users can make private changes to the data in
the workspace to perform what-if analysis but you cannot update or commit
any of these changes. Using the OLAP DML statements described in Table 8–1,
" Statements for Managing Objects When Attached in Multiwriter Mode" on
page 8-38, users manipulate the attachment mode of individual objects (for
example, change the a variable from read-only to write access).

Restricting Access Using OLAP DML Permission Programs Permission programs
are programs that you write that give permission to users to access workspace data.
Permission programs do not exist within an analytic workspace unless you define
and write them as described in "Permission Programs" on page 1-12.

When a user attaches an analytic workspace, Oracle OLAP checks to see if a
permission program that is appropriate for the attachment mode exists. (The
permission program for each attachment mode must have a particular name as
outlined in Table 8–2, " Names of Permission Programs for Different Attachment
Modes".) When an appropriate permission program exists, Oracle OLAP executes
the program. When a user specifies a password when attaching the analytic
workspace, then the password is passed as an argument to the permission program
for processing.

AW CREATE

8-50 Oracle OLAP DML Reference

Permission programs are not the only programs that are executed when a user
attaches to an analytic workspace. For more information, see "Startup Programs" on
page 1-11.

Examples

Example 8–16 Creating and Starting a Workspace

You can use the AW command with the CREATE keyword to create and start a new
workspace.

AW CREATE mywork

Table 8–2 Names of Permission Programs for Different Attachment Modes

Attachment Modes Name of Program

Multiwriter, Read-only, and Read/write ONATTACH

Read-only PERMIT_READ

Read/write PERMIT_WRITE

Note: A dimension surrogate has the access permissions of its
dimension. Use a PERMIT on a dimension to grant or deny
permission to access the values of a dimension surrogate for that
dimension.

AW command

ARCSIN to CHARLIST 8-51

AW DELETE

The AW DELETE command deletes the specified workspace from the database. It is
important to note that Oracle OLAP automatically executes a COMMIT as part of
its procedure for deleting a workspace. The DELETE keyword executes successfully
only when no user has the workspace attached. Therefore, detach the workspace
before executing this statement.

Syntax
AW DELETE workspace

Arguments

workspace
The name of the analytic workspace. You must specify the name; you cannot specify
an alias.

Notes

Deleting an Unattached Workspace
When you attempt to delete an unattached workspace and the name is the same as
an assigned alias, Oracle OLAP interprets the name as an alias and reports an error.

Examples

Example 8–17 Deleting a Workspace

You can use the AW command with the DELETE keyword to delete a workspace.

AW DELETE mywork

Note: When a program named TRIGGER_AW exists in the
analytic workspace, the execution of an AW DELETE statement
automatically executes that program.

AW DETACH

8-52 Oracle OLAP DML Reference

AW DETACH

The AW DETACH command removes a workspace from the workspace list. When
you remove the first workspace, the second workspace becomes the current
workspace (unless it is the EXPRESS workspace). When you detach a workspace,
changes that were made before an UPDATE was issued remain in the database and
become permanent with the next COMMIT. When changes were made after the
UPDATE was issued, they are discarded.

Syntax
AW DETACH workspace

Arguments

workspace
The name of the analytic workspace. You can specify either a workspace name or a
workspace alias, depending on the keywords you are using.

Notes

EXPRESS Workspace
You cannot detach the EXPRESS workspace.

Examples

Example 8–18 Detaching a Workspace

You can use the AW command with the DETACH keyword to detach a workspace.

AW DETACH expense

Note: When a program named TRIGGER_AW exists in the
analytic workspace, the execution of an AW DETACH statement
automatically executes that program.

AW command

ARCSIN to CHARLIST 8-53

AW LIST

The AW LIST command sends to the current outfile a list of the active workspaces,
along with their update status.

Syntax
AW LIST

Notes

Output Produced by AW LIST
The first workspace in the list is the current workspace, unless you do not have a
current workspace. The meaning of the update status, CHANGED or
UNCHANGED, depends on whether the workspace is attached with read/write or
read-only access and whether or not the workspace is being shared with other
users. The update status displayed by AW LIST is as follows:

■ An unshared workspace in read/write mode -- The update status is CHANGED
when you have made changes since attaching the workspace or since your last
update.

■ An unshared workspace in read-only mode -- The status is always
UNCHANGED because you cannot update it.

■ A shared workspace in read/write mode -- The status is CHANGED when you
have made changes since attaching the workspace or since your last update.
This is the same as for an unshared workspace in read/write mode.

■ A shared workspace in read-only mode -- The status is CHANGED when
another user has updated it since you accessed it. To access the new objects or
data, you must detach and reattach the workspace after the other user commits
his or her changes. As long as you keep the workspace attached, your view of
the workspace remains unchanged.

Current Workspace
The name of the current workspace is first on the workspace list and is the name
returned by the AW(NAME) function. (See AW function for details.) The NAME
dimension includes only the objects in the current workspace. Programs such as
AWDESCRIBE and LISTBY list only objects in the current workspace. When a
workspace is active but not current, you can change and update its data, edit and
run its programs, and modify its objects.

AW LIST

8-54 Oracle OLAP DML Reference

EXPRESS Workspace
When your database is equipped with the OLAP option, the EXPRESS workspace is
always attached in read-only mode in your session. It never automatically becomes
the current workspace, even when it is the first or only workspace in your
workspace list, because it is for internal use by Oracle OLAP. You can make the
EXPRESS workspace the current workspace by explicitly attaching it, but this is not
recommended. You cannot detach the EXPRESS workspace.

Examples
Assume that you have just connected to Oracle OLAP using the OLAP Worksheet.
You issue an AW LIST statement that returns a value showing that the only
attached analytic workspace is EXPRESS.

AW LIST
EXPRESS R/O UNCHANGED SYS.EXPRESS

Now you create a new analytic workspace and issue another AW LIST statement.
You can see that both the EXPRESS analytic workspace and the newly created
analytic workspace are attached.

AW CREATE myaw
AW LIST
MYAW R/W UNCHANGED MYNAME.MYAW
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW command

ARCSIN to CHARLIST 8-55

AW SEGMENTSIZE

The AW SEGMENTSIZE command sets up a workspace for multiple segments.

Syntax
AW SEGMENTSIZE n [K, M, or G] [workspace]

Arguments

workspace
The name of the analytic workspace. You can specify either a workspace name or a
workspace alias, depending on the keywords you are using.

SEGMENTSIZE n [K, M, or G] [workspace]
Sets the maximum size of each segment for a specified workspace or, when no
workspace is specified, for the current workspace.

When the current workspace already has several segments, setting SEGMENTSIZE
affects only the most recent one and has no effect on previous ones. Previous
segments may have various sizes, determined by the SEGMENTSIZE setting at the
time each one was created. When you do not specify K, M, or G, the value you
specify for n is interpreted as bytes. When you specify K, M, or G after the value n,
the value is interpreted as kilobytes, megabytes, or gigabytes, respectively.

AW function

8-56 Oracle OLAP DML Reference

AW function

The AW function returns information about currently attached workspaces.

Return Value
The return value depends on the keyword you specify, as described in Table 8–3,
" Keywords for AW Function" on page 8-56.

Syntax
AW(keyword [workspace])

Arguments

keyword
Indicates the specific information you want. The keywords that you can use with
the AW function are listed in Table 8–3, " Keywords for AW Function" with the data
type of the value they return and the meaning of the information.

Table 8–3 Keywords for AW Function

Keyword Type Information Returned

ACQUIRED TEXT When an analytic workspace is attached in
multiwriter mode, returns the names of any acquired
variables and dimensions in the analytic workspace

AGGMAP TEXT A list of all aggmap objects in the workspace. When
there are several, Oracle OLAP returns a multiline text
value with each object name on a separate line.

ALIASLIST TEXT A list of currently assigned aliases for the workspace.
When there are several, Oracle OLAP returns a
multiline text value with each alias on a separate line.

ATTACHED BOOLEAN Indicates whether the specified workspace is attached.
The workspace argument is required.

CHANGED BOOLEAN When you have read/write access to the workspace,
indicates whether you have made changes since the
last time the workspace was updated. When you have
read-only access to the workspace, indicates whether
another user has updated the workspace and
committed the changes since you attached it.

AW function

ARCSIN to CHARLIST 8-57

COMPOSITE TEXT A list of all named composite objects in the specified
workspace.

DATE DATE The date of your most recent update in the current
session. When you have not updated in the current
session, it returns the date of the most recent commit
before you attached the workspace. When you have
attached a shared workspace as read-only, DATE does
not take into account any updates or commits that
have occurred since you attached the workspace.

DIMENSION TEXT A list of all the dimensions defined in the workspace.
When there are several dimensions, Oracle OLAP
returns a multiline text value with each dimension
name on a separate line.

EXISTS BOOLEAN Indicates whether the specified analytic workspace
has been defined in the Oracle Database.

FORMULA TEXT A list of all the formulas defined in the workspace.
When there are several formulas, Oracle OLAP
returns a multiline text value with each formula name
on a separate line.

FULLNAME TEXT The full name of the specified workspace. The full
name includes the schema that contains the
workspace.

ISUPDATED TEXT When the specified analytic workspace is not attached
in multiwriter mode, returns TRUE when the
workspace is updated but not committed. When he
specified analytic workspace is attached in
multiwriter mode, returns TRUE when at least one
variable or dimension belonging to the workspace is
updated but not committed.

LIST TEXT A list of all currently attached workspaces. Each line
of the multiline text value contains the name of a
workspace.

LISTNAMES TEXT A list of all the objects defined in the workspace. Each
line of the multiline text value contains the name of a
workspace object.

MODEL TEXT A list of all the models defined in the workspace.
When there are several models, Oracle OLAP returns
a multiline text value with each model name on a
separate line.

Table 8–3 (Cont.) Keywords for AW Function

Keyword Type Information Returned

AW function

8-58 Oracle OLAP DML Reference

MULTI TEXT Indicates if you have multi-writer access to the
analytic workspace.

NAME TEXT The name of the current workspace.

OPTION TEXT A list of all the Oracle OLAP options defined in the
EXPRESS workspace. When the workspace is not
EXPRESS, AW(OPTION) returns NA, because options
are defined only in the EXPRESS workspace. For the
EXPRESS workspace, AW(OPTION) returns a
multiline text value with each option name on a
separate line.

PROGRAM TEXT A list of all the programs defined in the workspace.
When there are several programs, Oracle OLAP
returns a multiline text value with each program
name on a separate line.

RELATION TEXT A list of all the relations defined in the workspace.
When there are several relations, Oracle OLAP returns
a multiline text value with each relation name on a
separate line

RO TEXT Indicates whether you have read-only access to the
workspace.

RW TEXT Indicates whether you have read/write access to the
workspace.

SEGMENTSIZE DECIMAL The current maximum segment size for the
workspace. It is the most recent value specified using
an AW SEGMENTSIZE statement.

SHARED BOOLEAN Indicates whether the workspace is being shared by
other users.

TIME ID The time of your most recent update in the current
session. When you have not updated in the current
session, it returns the time of the most recent commit
before you attached the workspace. When you have
attached a shared workspace as read-only, TIME does
not take into account any updates or commits that
have occurred since you attached the workspace.

VALUSET TEXT A list of all the valuesets that are defined in the
workspace. When there are several valuesets, Oracle
OLAP returns a multiline text value with each
valueset name on a separate line.

Table 8–3 (Cont.) Keywords for AW Function

Keyword Type Information Returned

AW function

ARCSIN to CHARLIST 8-59

workspace
A text expression that indicates the name of the workspace for which you want
information. When you do not specify this argument, the AW function ordinarily
returns information about the current workspace. The ATTACHED, LIST, and
NAME keywords are exceptions to this rule.

Notes

Status Information
You can use the SHARED, CHANGED, RO, and RW keywords to get information
about the current status of a shared workspace. You can check if SHARED, RO, and
CHANGED are TRUE to find out if another user has updated a workspace since you
attached it.

Examples

Example 8–19 Ascertaining the Active Workspace

The following program line checks which workspace is currently active so the
program can choose the appropriate data to report. With this method, you can use
the same report program in several workspaces, each containing different data.

REPORT IF AW(NAME) EQ 'mysales' THEN mysales ELSE gensales

VARIABLE TEXT A list of all the variables defined in the workspace.
When there are several variables, Oracle OLAP
returns a multiline text value with each variable name
on a separate line.

WORKSHEET TEXT A list of all the worksheet objects defined in the
workspace. When there are several worksheets,
Oracle OLAP returns a multiline text value with each
worksheet name on a separate line. This keyword will
not be available in the Oracle 10i release and later.

Table 8–3 (Cont.) Keywords for AW Function

Keyword Type Information Returned

AWDESCRIBE

8-60 Oracle OLAP DML Reference

AWDESCRIBE

The AWDESCRIBE program sends information about the current analytic
workspace to the current outfile. After a summary page, it provides a report in two
parts:

■ An alphabetic list of analytic workspace objects showing name, type, and
description.

■ A list of object definitions by object type. Each definition includes the
information you would see when you used the DESCRIBE statement. It also
includes a "Referenced By" list, which indicates any programs or other
compilable objects that call or access the object. In addition, compilable objects
have a "References To" list, indicating the analytic workspace objects that they
call or access.

Syntax
AWDESCRIBE

Notes

Information in Referenced By List
The AWDESCRIBE command does not provide information in the "Referenced By"
and "References To" list for implicit references. For example: When a program
contains a LIMIT command to limit a dimension by a related dimension,
AWDESCRIBE does not list the relation for those dimensions in the "References To"
list for that program.

AWDESCRIBE

ARCSIN to CHARLIST 8-61

Examples

Example 8–20 Describing a Workspace

The following example shows a portion of the output of AWDESCRIBE for a
workspace named demo.

DEMO Workspace Listing
=====================

Last updated: 25Jun96 Time: 09:46:50
Print date: 27Aug96 Time: 10:30:11
DEMO contains:

11 DIMENSIONS
19 VARIABLES
1 PROGRAM
4 RELATIONS
2 VALUESETS

This report is in two parts:
- Object Listing: An alphabetic list of workspace objects,
beginning on the next page.

- Object Descriptions: Detailed descriptions of all workspace
objects, sorted by object type and alphabetically by name.

Object List Page 2
Workspace: DEMO Updated: 25Jun96 At: 09:46:50 ACTUAL

NAME TYPE DESCRIPTION
____ ____ ___________
ACTUAL VARIABLE Actual $ Financials
ADVERTISING VARIABLE Total Advertising Dollars
BUDGET VARIABLE Budgeted $ Financials
CHOICE DIMENSION List of choices
CHOICEDESC VARIABLE Description line for the choices
DEMOVER VARIABLE DEMO Workspace Version
DISTRICT DIMENSION
DIVISION DIMENSION Division
DIVISION.PRODUCT RELATION DIVISION for each PRODUCT
EXPENSE VARIABLE Total Production & Distribution Cost
FCST VARIABLE Forecasted $ Financials
INDUSTRY.SALES VARIABLE Total Industry Sales Revenue
LINE DIMENSION Lineitem
MARKET DIMENSION Geography Dim with Embedded Totals
MARKET.MARKET RELATION Self-relation for the Market Dim

AWDESCRIBE

8-62 Oracle OLAP DML Reference

MARKETLEVEL DIMENSION Geography Level
MLV.MARKET RELATION
MONTH DIMENSION
NAME.LINE VARIABLE Lineitem Names for Reporting
NAME.PRODUCT VARIABLE Product Names for Reporting Purposes
NATIONAL.SALES VARIABLE Projected Total U.S. Dollar Sales
NOT.IMPLEMENTED PROGRAM
PRICE VARIABLE Wholesale Unit Selling Price
PRODUCT DIMENSION Sporting Goods Products
PRODUCT.MEMO VARIABLE Product Analysis Memo
PRODUCTSET VALUESET Valueset for Sporting Goods Products
QUARTER DIMENSION
QUARTERSET VALUESET
REGION DIMENSION Sales Region
REGION.DISTRICT RELATION REGION for each DISTRICT
SALES VARIABLE Sales Revenue
SALES.FORECAST VARIABLE Forecasted Unit Sales
SALES.PLAN VARIABLE Budgeted Sales Revenue
SHARE VARIABLE Market Share (Based on Dollar Sales)
UNITS VARIABLE Actual Unit Shipments
UNITS.M VARIABLE
YEAR DIMENSION

Description of DIMENSIONS Page 3
Workspace: DEMO Updated: 25Jun96 At: 09:46:50 CHOICE

DEFINE CHOICE DIMENSION TEXT
LD List of choices

Referenced By:
NONE

DEFINE DISTRICT DIMENSION TEXT
Referenced By:

NONE

DEFINE DIVISION DIMENSION TEXT
LD Division

Referenced By:
NONE

...

AWWAITTIME

ARCSIN to CHARLIST 8-63

AWWAITTIME

The AWWAITTIME option holds the number of seconds that a AW ATTACH
command with the WAIT keyword waits for an analytic workspace to become
available for access. The default value of AWWAITTIME is 20 seconds.

Data type
INTEGER

Syntax
AWWAITTIME = seconds

Arguments

seconds
The number of seconds to wait for an analytic workspace to be available.

Notes

Workspace Sharing
When your user ID has the appropriate access rights and that no user has
read/write exclusive access to the workspace, you can get read-only access to a
workspace, no matter how many other users are using it. When another user has
read/write access and commits the workspace, your view of the workspace does
not change; you must detach and reattach the workspace to see the changes.

AW WAIT or NOWAIT
When attaching a workspace using the AW ATTACH command, you can specify the
WAIT or NOWAIT keyword. When you request access to a workspace that is being
used by another session, NOWAIT (the default) causes an error message to be
produced indicating that the workspace is unavailable. To wait for the workspace to
become available for access, use WAIT. The number of seconds to wait is
determined by the value of the AWWAITTIME option.

BACK

8-64 Oracle OLAP DML Reference

BACK

The BACK function returns the names of all currently executing programs, listed
one name on each line in a multiline text value. When more than one program is
executing, this means that one program has called another in a series of nested
executions.

The first name in the return value is that of the program containing the call to
BACK. The last name is that of the initial program, which made the first call to
another program.

BACK can only be used in a program.

Return Value
TEXT

Syntax
BACK

Notes

BACK Function and BACK Command
In previous releases, the OLAP DML included a command named BACK, which
worked only in the interactive debugging facility through OLAP Worksheet. This
BACK command is not currently available, but the BACK function (documented
here) is available.

BACK

ARCSIN to CHARLIST 8-65

Examples

Example 8–21 Debugging a Program Using the BACK Function

The following example uses three programs. program1 calls program2, and
program2 calls program3.

DEFINE program1 PROGRAM
PROGRAM
SHOW 'This is program number 1'
CALL program2
END
DEFINE program2 PROGRAM
PROGRAM
SHOW 'This is program number 2'
CALL program3
END
DEFINE program3 PROGRAM
PROGRAM
SHOW 'This is program number 3'
SHOW 'These programs are currently executing:'
SHOW BACK
END

Executing program1 produces the following output.

This is program number 1
This is program number 2
This is program number 3
These programs are currently executing:
PROGRAM3
PROGRAM2
PROGRAM1

BADLINE

8-66 Oracle OLAP DML Reference

BADLINE

When a program, model, or input file is executing, the BADLINE option controls
whether Oracle OLAP records, in the current outfile, the line that caused an error.

Data type
BOOLEAN

Syntax
BADLINE = {YES|NO}

Arguments

YES
When an error occurs during the execution of a program, model, or input file,
Oracle OLAP records in the current outfile the name of the program, model, or file
in which the error occurred and the line that caused the error. When an error
message is included in the output, the BADLINE information appears immediately
after the error message.

NO
When an error occurs in a program, model, or input file, Oracle OLAP does not
record the error in the current outfile. (Default)

Examples

Example 8–22 Using the BADLINE Option

In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM
VARIABLE myint1 INTEGER
VARIABLE myint2 INTEGER
myint1 = 0
myint2 = 250/myint1
END

See also: PROGRAM, MODEL, and INFILE.

BADLINE

ARCSIN to CHARLIST 8-67

When you run the program when the DIVIDEBYZERO option is set to NO, then an
error occurs because division by zero is not allowed. When BADLINE is set to YES,
the following messages are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMO!TEST PROGRAM:
myint2 = 250/myint1

Example 8–23 Finding Errors in Program Lines

In a simple program called test, the variable myint1 is divided by 0 (zero).

DEFINE test PROGRAM
PROGRAM
VARIABLE myint1 INTEGER
VARIABLE myint2 INTEGER
myint1 = 0
myint2 = 250/myint1
END

When you run the program, an error occurs because division by zero is not allowed
(that is, when DIVIDEBYZERO is set to NO).

When BADLINE is set to NO only the error is recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When BADLINE is set to YES, the line that causes the error and the name of the
program in which the error occurred are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)
In TESTBAD PROGRAM:
myint2 = 250/myint1
In EDDE.RUNCMD PROGRAM:

BASEDIM

8-68 Oracle OLAP DML Reference

BASEDIM

The BASEDIM function returns the name of the dimension from which the current
value of a concat dimension comes.

Return Value
TEXT

Syntax
BASEDIM(concatdim [LEAF])

Arguments

concatdim
Specifies the concat dimension for which you want the names of the base or
component dimensions. The data type of the values returned is TEXT.

LEAF
The LEAF keyword causes BASEDIM to return the names of the component
dimensions of the concatdim dimension. See "Using the LEAF Keyword" on
page 8-68.

Notes

Using the LEAF Keyword
The base dimensions of a concat dimension are the simple, conjoint, or other concat
dimensions that you specify with the basedimlist argument when you define the
concat. Simple dimensions and conjoint dimensions are the bottom-level
components, or leaves, of a concat dimension. When you specify a concat
dimension as a base dimension when defining a concat, then the base dimensions of
that inner concat are component dimensions of the outer concat. Using the LEAF
keyword results in BASEDIM returning the names of the component simple and
conjoint dimensions of the inner concat dimension.

When the base dimensions are all simple dimensions or conjoint dimensions, then
the base dimensions are the bottom-level components and therefore BASEDIM
returns the names of those dimensions whether or not you use the LEAF keyword.

BASEDIM

ARCSIN to CHARLIST 8-69

Looping Over the Dimension
BASEDIM is dimensioned by the concatdim dimension so the function automatically
loops over the dimension.

Examples

Example 8–24 Returning Base Dimension Names

In this example the product dimension is limited to two values, the district
dimension is limited to its first three values and the region dimension has only
three values. The example defines a nonunique concat dimension with region and
district as its base dimensions and then defines another nonunique concat
dimension with product and the first concat dimension as its base dimensions.
The example then gets the names of the base dimensions of the outer concat.

LIMIT district TO 'Boston' TO 'Chicago'
LIMIT product TO 'Tents''Canoes'
DEFINE region.district DIMENSION CONCAT(region district)
DEFINE product.region.district DIMENSION CONCAT(product region.district)
REPORT BASEDIM(product.district.region)

The preceding statements return the following.

PRODUCT
PRODUCT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT

Example 8–25 Returning Component Dimension Names

This example uses the same objects as the previous example. It gets the names of the
component dimensions of the concat dimension.

REPORT BASEDIM(product.region.district LEAF)

BASEDIM

8-70 Oracle OLAP DML Reference

The preceding statement returns the following.

PRODUCT
PRODUCT
REGION
REGION
REGION
DISTRICT
DISTRICT
DISTRICT

BASEVAL

ARCSIN to CHARLIST 8-71

BASEVAL

The BASEVAL function returns the values of the base dimensions of a concat
dimension. When a base dimension is a concat dimension, then the values of its
base dimensions are returned, also.

Return Value
The following are the rules that determine the data types of the values returned by
BASEVAL:

■ The data type of the return value is NTEXT when any of the component
dimensions of concatdim is of type NTEXT, or when any component dimension
is a conjoint that uses a simple dimension of type NTEXT.

■ The data type of the return value is the data type of the component dimensions
when all of the component dimensions have the same data type and when none
of the component dimensions is a conjoint.

■ The data type of the return value is TEXT in all other cases.

Syntax
BASEVAL(concatdim)

Arguments

concatdim
Specifies the concat dimension for which you want the base values. The data types
of the values returned depend on the data types of the base dimensions of the
concat dimension.

Notes

Looping Over the Dimension
BASEVAL is dimensioned by the concatdim dimension so the function automatically
loops over the dimension.

BASEVAL

8-72 Oracle OLAP DML Reference

Examples

Example 8–26 Returning NTEXT Values

The following example creates two simple dimensions and a nonunique concat
dimension, then gets the values of the concat dimension.

DEFINE textdim DIMENSION TEXT
DEFINE ntextdim DIMENSION NTEXT
MAINTAIN textdim ADD 'v1' 'v2'
MAINTAIN ntextdim ADD 'n1' 'n2'
DEFINE concatdim DIMENSION CONCAT(textdim ntextdim)
REPORT w 18 BASEVAL(concatdim)

The preceding statement returns the following.

CONCATDIM BASEVAL(CONCATDIM)
-------------------- ------------------
<textdim: v1> v1
<textdim: v2> v2
<ntextdim: n1> n1
<ntextdim: n2> n2

The data type of the returned values is NTEXT. The BASEVAL function converted
the v1 and v2 TEXT values into NTEXT values before returning them.

Example 8–27 Returning the Base Values of a Base Concat Dimension

This example defines the simple dimensions state and city and adds values to
them. It defines a nonunique concat dimension, statecity, with state and city
as the bases and then defines another nonunique concat dimension, geog, with
region, district, and statecity as its bases. Finally, the REPORT statement
returns the values returned by the BASEVAL function.

DEFINE city DIMENSION TEXT
DEFINE state DIMENSION TEXT
MAINTAIN city ADD 'Boston' 'Worcester' 'Portsmouth' 'Portland' -
'Burlington' 'Hartford' 'New York' 'Albany'

MAINTAIN state ADD 'MA' 'NH' 'ME' 'VT' 'CT' 'NY'
DEFINE statecity DIMENSION CONCAT(state city)
DEFINE geog DIMENSION CONCAT(region district statecity)
LCOLWIDTH = 20
REPORT W 16 BASEVAL(geog)

BASEVAL

ARCSIN to CHARLIST 8-73

The preceding statement returns the following.

GEOG BASEVAL(GEOG)
-------------------- ----------------
<region: East> East
<region: Central> Central
<region: West> West
<district: Boston> Boston
<district: Atlanta> Atlanta
<district: Chicago> Chicago
<district: Dallas> Dallas
<district: Denver> Denver
<district: Seattle> Seattle
<state: MA> MA
<state: NH> NH
<state: ME> ME
<state: VT> VT
<state: CT> CT
<state: NY> NY
<city: Boston> Boston
<city: Worcester> Worcester
<city: Portsmouth> Portsmouth
<city: Portland> Portland
<city: Burlington> Burlington
<city: Hartford> Hartford
<city: New York> New York
<city: Albany> Albany

BEGINDATE

8-74 Oracle OLAP DML Reference

BEGINDATE

The BEGINDATE function returns the beginning date of the first time period for
which an expression has a non-NA value.

Return Value
DATE

Syntax
BEGINDATE(expression)

Arguments

expression
The expression must have exactly one dimension that has a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

Notes

NA Values
When all the values of the expression are NA, BEGINDATE returns NA.

How BEGINDATE Works
BEGINDATE returns the first date of the first time period in dimension status for
which the expression has a non-NA value. For example, assume that an expression is
dimensioned by month, and that Jan97 is the first dimension value for which the
expression has a non-NA value. In this case, BEGINDATE returns the date January
1, 1997.

Note: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR. You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

BEGINDATE

ARCSIN to CHARLIST 8-75

Format of the Date
When you display the result returned by BEGINDATE, Oracle OLAP formats the
date according to the date template in the DATEFORMAT option. When the day of
the week or the name of the month is used in the date template, Oracle OLAP uses
the day names specified in the DAYNAMES option and the month names specified
in the MONTHNAMES option. You can use the result returned by BEGINDATE
anywhere that a DATE value is expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. Oracle OLAP
automatically converts the date to a text value, using the current template in the
DATEFORMAT option to format the text value. When you want to override the
current DATEFORMAT template, you can convert the date result to text by using
the CONVERT function with a date-format argument.

Retrieving the Last Valid Date
The ENDDATE function, which returns the last date for which an expression has a
non-NA value.

Examples

Example 8–28 Finding the Beginning Date

The following statements limit the values in the month, product, and district
dimensions, then send the first date for which the units variable contains a non-NA
value for unit sales of tents in the Chicago district to the current outfile.

LIMIT month TO ALL
LIMIT product TO 'TENTS'
LIMIT district TO 'CHICAGO'
SHOW BEGINDATE(units)

These statements produce the following output.

01JAN95

BITAND

8-76 Oracle OLAP DML Reference

BITAND

BITAND computes an AND operation on the bits of two integers. This function is
commonly used with the DECODE function.

Return Value
INTEGER

Syntax
BITAND (argument1 , argument2)

Arguments

argument1
A nonnegative INTEGER.

argument2
A nonnegative INTEGER.

BLANK

ARCSIN to CHARLIST 8-77

BLANK

The BLANK command sends one or more blank lines to the current outfile. BLANK
is normally used only in programs. For example, in a report program, BLANK is
commonly used to insert blank lines that separate headings from data or that
separate groups of data from one another.

Syntax
BLANK [n]

Arguments

n
An INTEGER expression with a value of 0 (zero) or higher, that specifies how many
blank lines should be inserted. When you omit n, Oracle OLAP inserts one blank
line. NA produces an error.

Examples

Example 8–29 Inserting Blank Lines

This example inserts two blank lines between the title of a report and the column
headings. The following lines are from a report program.

LSIZE = 50
HEADING WIDTH LSIZE CENTER 'Quarterly Sales Report'
BLANK 2
ROW WIDTH 20 'Unit Sales' ACROSS month -

'Jan96' TO 'Mar96': month

The program produces the following output.

Quarterly Sales Report

Unit Sales Jan96 Feb96 Mar96

BLANKSTRIP

8-78 Oracle OLAP DML Reference

BLANKSTRIP

The BLANKSTRIP function removes leading or trailing blank spaces from text
values. BLANKSTRIP is useful for such purposes as removing unwanted blank
spaces from fixed-length fields in an imported worksheet.

Return Value
TEXT or NTEXT

Syntax
BLANKSTRIP(text-expression [TRAILING|LEADING|BOTH])

Arguments

text-expression
A text expression from which to remove blank spaces. When you specify a TEXT
expression, the return value is TEXT. When you specify an NTEXT expression, the
return value is NTEXT.

TRAILING
Removes blank spaces at the end of the text.

LEADING
Removes blank spaces at the beginning of the text.

BOTH
Removes both leading and trailing spaces.

Examples

Example 8–30 Stripping Leading and Trailing Blanks

In this example, we remove both leading and trailing blank spaces from the field
prodlabel in an imported worksheet and store the results in a variable called
product.

product = BLANKSTRIP(prodlabel, BOTH)

BMARGIN

ARCSIN to CHARLIST 8-79

BMARGIN

The BMARGIN option defines the number of blank lines for the bottom margin of
output pages. BMARGIN is meaningful only when PAGING is set to YES and only
for output from statements such as REPORT and DESCRIBE. The BMARGIN option
is usually set in the initialization section of report programs.

Data type
INTEGER

Syntax
BMARGIN = n

Arguments

n
An INTEGER expression that specifies the number of lines that you want to set
aside for the bottom margin in a report. The default is 1.

Notes

Output to the Default Outfile
When you set BMARGIN for the default outfile, the new value remains in effect
until you reset it, regardless of intervening OUTFILE statements that send output to
a file. That is, the value of BMARGIN is automatically saved for the default outfile.

Output to a File
To set BMARGIN for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set BMARGIN to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
BMARGIN returns to its default value of 1 for the file.

BMARGIN

8-80 Oracle OLAP DML Reference

Examples

Example 8–31 Setting the Bottom Margin of a Report Page

Suppose you want to be able to make notes on the bottom of a report page. You can
set a large bottom margin of 5 lines. Here is the statement that you would include in
the initialization section of your report program.

BMARGIN = 5

BREAK

ARCSIN to CHARLIST 8-81

BREAK

The BREAK command transfers program control from within a SWITCH, FOR, or
WHILE statement to the statement immediately following the DOEND associated
with SWITCH, FOR, or WHILE. You can use BREAK only within OLAP DML
programs and only with the SWITCH, FOR, or WHILE statements.

Syntax
BREAK

Notes

TEMPSTAT Statement and BREAK Statement
Within a FOR loop of a program, when a DO ... DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

Examples

Example 8–32 Using BREAK with SWITCH

The following lines from a program include a SWITCH statement with two case
labels. The last statement under each case label is BREAK, which ensures that
execution does not continue from one set of case statements to the next. Each
BREAK statement transfers control to the statement that follows DOEND.

SWITCH userchoice
DESCRIPTION 'MARKET REPORT\NFINANCE REPORT\NNO REPORT')
DO

CASE 'market':
...
BREAK

CASE 'finance':
...
BREAK

DEFAULT:
...
BREAK

DOEND
cleanup:

...

CALENDARWEEK

8-82 Oracle OLAP DML Reference

CALENDARWEEK

The CALENDARWEEK option determines whether weeks should be aligned with
the actual calendar year.

Data type
BOOLEAN

Syntax
CALENDARWEEK = {YES|NO}

Arguments

YES
Specifies that weeks are aligned with the calendar year. For example, if you have
defined a dimension of type WEEK, Oracle OLAP numbers its values so that the
first week in the calendar year is week 1, the second week in the calendar year is
week 2, and so on. Weeks are aligned with the calendar year regardless of any
beginning or ending date specified in the WEEK dimension definition.

NO
Specifies that weeks are not aligned with the calendar year. Instead, weeks are
numbered so that they are aligned with the date specified in the dimension
definition. For example, if you have defined a dimension of type WEEK with a
beginning or ending date, its values are numbered so that the week corresponding
to the date in the dimension definition is week 1, the following week is week 2, and
so on.

Note: You can only use this function with dimensions of type
WEEK. You cannot use this function for time dimensions that are
implemented as hierarchical dimensions of type TEXT.

CALENDARWEEK

ARCSIN to CHARLIST 8-83

Notes

Fiscal Years
Setting CALENDARWEEK to NO causes weeks to be numbered so that the number
1 is assigned to the week beginning or ending on the date specified in the DEFINE
DIMENSION statement. This week is then assigned to a fiscal year, which is the
calendar year of the first January 1 on or after the week's starting date. For example,
if you define a dimension of type WEEK with a starting date of 02Jan1996 (or,
equivalently, an ending date of 08Jan1996), the week starting 02Jan1996 will be
considered week 1 of fiscal year 1997. If, by contrast, you had given the dimension
a starting date between 02Jan1995 and 01Jan1996, then the week starting on
that date would be week 1 of fiscal year 1996.

Examples

Example 8–33 Aligning Weeks with the Calendar Year

The following statements define a dimension of type WEEK, define its ending date,
add values to the dimension, and produce a report.

DEFINE week dimension WEEK ENDING '18Jan97'
MAINTAIN week ADD '21Dec96' '25Jan97'
REPORT W 22 CONVERT(week DATE)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
w51.96 21Dec96
w52.96 28Dec96
w1.97 04Jan97
w2.97 11Jan97
w3.97 18Jan97
w4.97 25Jan97

CALENDARWEEK

8-84 Oracle OLAP DML Reference

Example 8–34 Aligning Weeks with a Specified Ending Date

The following statements set the CALENDARWEEK option to NO, which aligns the
weeks with the ending date that is specified in the definition of the week dimension
in "Aligning Weeks with the Calendar Year" on page 8-83.

CALENDARWEEK = NO
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
w50.97 21Dec96
w51.97 28Dec96
w52.97 04Jan97
w53.97 11Jan97
w1.98 18Jan97
w2.98 25Jan97

CALL

ARCSIN to CHARLIST 8-85

CALL

The CALL command invokes a program. When the program has arguments, which
are always enclosed in parentheses, it passes these arguments to the called program.

Syntax
CALL program-name [(arg ...)]

Arguments

program-name
The name of the program to be called.

arg
One or more optional arguments expected by the called program. These arguments
can be declared in the called program with ARGUMENT, or they can be referenced
in the program with ARCTAN2. When the program uses the ARGUMENT
statement, when you use CALL to invoke the program, specify the arguments so
that they match the positions of the arguments declared in the called program.

Notes

Dimension Arguments
When you pass a dimension value or dimension name as an argument, you must
enclose the exact text value in single quotes, for example, 'Jan96'. When the
program arguments are declared with the ARGUMENT statement, you can pass a
text expression that evaluates to a text value.

Program Return Values
When you use CALL to invoke a program that returns a value, the return value is
discarded. A program can use the CALLTYPE function to determine whether it was
invoked as a function, as a command, or by using CALL.

ARGUMENT Command or ARG Function
The called program can process arguments using either the ARGUMENT statement
or the ARG function. In a program that has been invoked with CALL or as a
function, the ARGS and ARGFR functions always return NA.

CALL

8-86 Oracle OLAP DML Reference

When CALL invokes a program whose arguments are not declared with the
ARGUMENT statement, the arguments passed can be referenced with the ARG
function. However, the ARG function is a text function and, as a result, interprets all
arguments passed as text values. When you want to pass NTEXT arguments, be
sure to declare them using ARGUMENT instead of using ARG. With ARG, NTEXT
arguments are converted to TEXT, and this can result in data loss when the NTEXT
values cannot be represented in the database character set.

ARGUMENT Statement Processing
When a program is invoked with CALL or as a function, the following two-step
process occurs. When an error occurs in either step, the program is not executed.

1. The specified data types are established. Argument expressions specified by the
calling program are evaluated left to right, and their data types are identified.
Any expression representing a dimension value can be a text (TEXT or ID),
numeric (INTEGER, DECIMAL, and so on), or RELATION value. An error in
one argument expression stops the process.

2. Each specified data type is matched with the declared data type. Argument
expressions are matched by position with the declared arguments in the called
program. The first argument expression is matched with the first declared
argument variable, the second argument expression is matched with the second
declared argument variable, and so on. Each expression is converted in turn to
the declared data type of the argument variable.

When an argument variable is declared as a dimension value, the matching value
passed from the calling program can be TEXT or ID (representing a value of the
specified dimension), numeric (representing a logical dimension position), or
RELATION (representing a physical dimension position).When the matching value
is a non-integer numeric value (for example, DECIMAL), it is rounded to the
nearest INTEGER to represent a logical dimension position.

When an argument variable is declared as something other than a dimension value,
and the matching value from the calling program is a RELATION value, an error
will occur. When you want to pass a RELATION value that will be received as a
TEXT argument, use the CONVERT function to convert the value in the program's
argument list.

ARGUMENT Statement with Extra Arguments
When the calling program specifies more arguments than are declared in the called
program, the extra arguments are ignored. When the calling program specifies
fewer arguments than are declared in the called program, the extra argument
variables are given NA values.

CALL

ARCSIN to CHARLIST 8-87

ARGUMENT Statement Passing by Value
When arguments are declared with the ARGUMENT statement, they are passed by
value to a program. As a result, the called program is given only the value of an
argument, without access to any analytic workspace object to which it might be
related. However, when the name of an analytic workspace object is specified as an
argument enclosed in single quotes, the value of the analytic workspace object is not
passed. Instead, the name of the object is passed as a text string. See Example 8–35,
"Calling a Program or Function" on page 8-87.

Examples

Example 8–35 Calling a Program or Function

This example illustrates how two programs, roundup.p and roundup.f, are used
in different ways to evaluate data and produce output.

roundup.p accepts the name of a decimal variable as a text string and produces a
report of that variable's values rounded to the nearest INTEGER. roundup.f also
accepts the name of a decimal variable. However, instead of passing the name of the
variable as a text string, the variable's value is passed as an argument. roundup.f
does not produce a report. Instead, it returns each of the values of the decimal
variable, rounded to the nearest INTEGER.

roundup.p is invoked using CALL and includes a REPORT statement. In contrast,
roundup.f is invoked as a user-defined function whose return value is then used
as an argument to a REPORT statement.

The roundup.p program uses ARGUMENT to declare a text argument. When
invoked, roundup.p uses the argument as the name of a decimal variable. The
calling program passes the name of the variable in order to give the called program
access to all the values of the dimensioned variable. When the calling program
passed the variable itself, instead of its name, only a single value would have been
accessible to the called program. This program does not return a value; it produces
a report.

DEFINE roundup.p PROGRAM INTEGER
PROGRAM
ARGUMENT varname TEXT
Report Down Line Across Month: Heading 'VARNAME' -

IF INTPART(&varname) EQ &varname -
THEN &varname ELSE INTPART(&varname) + 1

END

CALL

8-88 Oracle OLAP DML Reference

The following statements

LIMIT division TO 1
LIMIT month TO 1 TO 4
DECIMALS = 0
CALL roundup.p('actual')

produce the following report.

DIVISION: CAMPING
----------------- Varname------------------
-------------------MONTH-------------------

LINE Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
revenue 533,363 572,797 707,198 968,858
cogs 360,811 400,902 478,982 641,716
gross.margin 172,553 171,895 228,217 327,143
marketing 37,370 38,867 51,224 69,439
selling 89,008 86,458 102,233 139,567
r.d 24,308 23,400 39,943 57,186
opr.income 21,868 23,171 34,819 60,952
taxes 15,971 16,320 23,030 27,584
net.income 5,898 6,851 11,789 33,368

Another way to produce the same report is to write a user-defined function that can
be used as an argument to the REPORT statement as illustrated in the following
program named roundup.f.

DEFINE roundup.f PROGRAM INTEGER
PROGRAM
ARGUMENT realval DECIMAL
IF realval EQ INTPART(realval)
THEN RETURN INTPART(realval)
ELSE RETURN INTPART(realval) + 1
END

The following statements

LIMIT division TO 1
LIMIT month TO 1 TO 4
DECIMALS = 0
REPORT DOWN line ACROSS month: roundup.f(actual)

CALL

ARCSIN to CHARLIST 8-89

produce the following report.

DIVISION: CAMPING
------------ ROUNDUP.F(ACTUAL)-------------
-------------------MONTH-------------------

LINE Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
revenue 533,363 572,797 707,198 968,858
cogs 360,811 400,902 478,982 641,716
gross.margin 172,553 171,895 228,217 327,143
marketing 37,370 38,867 51,224 69,439
selling 89,008 86,458 102,233 139,567
r.d 24,308 23,400 39,943 57,186
opr.income 21,868 23,171 34,819 60,952
taxes 15,971 16,320 23,030 27,584
net.income 5,898 6,851 11,789 33,368

(Compare the roundup.f program with the roundup.p program. roundup.f
returns a value; it does not produce a report.)

CALLTYPE

8-90 Oracle OLAP DML Reference

CALLTYPE

Within an OLAP DML program, the CALLTYPE function indicates whether a
program was invoked as a function, as a command, by using a CALL statement, or
triggered by the execution of an OLAP DML statement.

The return value of CALLTYPE is either FUNCTION, COMMAND, or CALL. CALLTYPE
is for use only within programs.

Return Value
TEXT

The return value of CALLTYPE is:

■ FUNCTION when the program was invoked as a function that returns a value.

■ COMMAND when the program was invoked as a a command.

■ CALL when the program was invoked using a CALL statement.

■ TRIGGER when the program is a trigger program (that is, when a TRIGGER
command associated the program with an object event) was invoked in
response to a OLAP DML statement.

Syntax
CALLTYPE

Notes

Handling Arguments
The CALLTYPE function is helpful when you want to find out how your program
has been called, so that you can handle appropriately any arguments that have been
passed. See ARGUMENT for information on the differences in argument handling
that depend on how a program is invoked. See CALL for information on calling
programs.

CALLTYPE

ARCSIN to CHARLIST 8-91

Examples

Example 8–36 Determining the Calling Method

This sample program, called myprog, demonstrates how CALLTYPE returns
different values depending on how the program is invoked.

DEFINE myprog PROGRAM
PROGRAM
SHOW CALLTYPE
RETURN('This is the return value')
END

The following statements invoke myprog: 1) as command; 2) with a CALL
statement; 3) as a function.

myprog
CALL myprog
SHOW myprog

The three statements send the following output to the current outfile. Note that the
return value of myprog appears only when the program is called as a function.

COMMAND
CALL
FUNCTION
This is the return value

CATEGORIZE

8-92 Oracle OLAP DML Reference

CATEGORIZE

The CATEGORIZE function groups the values of a numeric expression into
categories. You define the categories by specifying a series of increasing numeric
values. The result that CATEGORIZE returns is dimensioned by all the dimensions
of expression. For each cell in expression, CATEGORIZE returns one of the following:
the category in which the number falls, zero (0) for a value below the range of the
first category, minus one (-1) for a value above the range of the last category, or NA
for an NA value.

Return Value
DECIMAL

Syntax
CATEGORIZE(expression {values|group-expression})

where:

values
has the following syntax:

bottom-value [next-lowest-break-value] top-value

Arguments

expression
The numeric expression whose values are to be categorized.

bottom-value
A number that specifies the lowest number in the series and sets the bottom limit of
category 1.

next-lowest-break-value
A number that specifies the beginning of the range of the next category.

top-value
A number that specifies the highest number in the series and sets the upper limit of
the highest category.

CATEGORIZE

ARCSIN to CHARLIST 8-93

group-expression
A one-dimensional numeric expression that defines the break values for the
categories.

Examples

Example 8–37 Specifying Category Range Values

These examples use the following geography and items dimensions and sales2
variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the sales2 variable has the following data values.

-------------SALES2-------------
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

This statement reports the result of categorizing the sales2 variable.

REPORT CATEGORIZE(sales2 10 15 20 25)

The preceding statement produces the following output.

-CATEGORIZE(SALES2 10 15 20 25)-
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 -1.00 2.00 1.00
Item2 1.00 3.00 2.00
Item3 2.00 3.00 3.00
Item4 -1.00 3.00 3.00
Item5 NA 0.00 3.00

CATEGORIZE

8-94 Oracle OLAP DML Reference

Example 8–38 Specifying a Group-Expression

These statements define a groups dimension and a groupval variable.

DEFINE groups DIMENSION TEXT
MAINTAIN groups ADD 'Grp1' 'Grp2' 'Grp3' 'Grp4'
DEFINE groupvals DECIMAL <groups>
groupvals(groups 'Grp1') = 10
groupvals(groups 'Grp2') = 15
groupvals(groups 'Grp3') = 20
groupvals(groups 'Grp4') = 25

This statement reports the result of calling the CATEGORIZE function with the
sales variable as the expression argument and the groupvals variable as the
group-expression argument of the call.

REPORT CATEGORIZE(sales, groupvals)

The preceding statement produces the same output as the statement in the
"Specifying Category Range Values" on page 8-93.

CDA

ARCSIN to CHARLIST 8-95

CDA

With the CDA command, you can identify or change the current directory object for
your session.

With an established current directory object, you can specify a file identifier in a
DML file access statement without including the name of the directory object. Some
examples of file access statements are FILECOPY, FILEMOVE, FILEDELETE,
EXPORT, and IMPORT.

Syntax
CDA [directory-alias]

Arguments

directory-alias
A text expression that specifies the directory object that you want to be the current
one for your session.

When you do not specify this argument, CDA sends the name of the current
directory object to the current outfile. When there is no current directory object, the
statement reports that fact.

Notes

Specifying a File Identifier with an Established Current Directory Object
The following statement moves the file log.txt from your session's current
directory object to file oldlog.txt in a directory object called backup.

FILECOPY 'log.txt' 'backup/oldlog.txt'

Setting Up a Directory Object
A database administrator must set up a directory object and give you access to it.

CDA

8-96 Oracle OLAP DML Reference

Examples

Example 8–39 Specifying the Current Directory Object

The following statement identifies mydir as the current directory object.

CDA 'mydir'

Example 8–40 Obtaining the Current Directory Object

The following statement causes the current directory object to be sent to the current
outfile.

CDA

This statement produces the following output.

The current directory is MYDIR.

CEIL

ARCSIN to CHARLIST 8-97

CEIL

The CEIL function returns the smallest whole number greater than or equal to a
specified number.

Return Value
NUMBER

Syntax
CEIL(n)

Arguments

n
A whole number (NUMBER datatype) that you specify.

Examples

Example 8–41 Displaying the Smallest Integer Greater Than or Equal to a Number

The following statements show results returned by CEIL.

The statement

SHOW CEIL(15.7)

produces the following result

16

The statement

SHOW CEIL(-6.457)

produces the following result.

-6

CHANGEBYTES

8-98 Oracle OLAP DML Reference

CHANGEBYTES

The CHANGEBYTES function changes one or more occurrences of a specified string
in a text expression to another string.

Return Value
TEXT

Syntax
CHANGEBYTES(text-expression oldtext newtext [number])

Arguments

text-expression
The expression in which bytes are to be changed. When text-expression is a multiline
TEXT value, CHANGEBYTES preserves the line breaks in the returned value.

oldtext
A text expression that contains one or more bytes that will be changed.

newtext
A text expression that contains one or more bytes that will replace oldtext.

number
An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use CHANGECHARS
instead of CHANGEBYTES.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of

CHANGEBYTES

ARCSIN to CHARLIST 8-99

type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Replacing Bytes in a Text Value
You can use REPLBYTES to replace bytes in a text value beginning at a certain byte.

Examples

Example 8–42 Changing Text Values Using Bytes

This example shows how to change one instance of a portion of a text value.

The statement

SHOW CHANGEBYTES('Hello there, Joe\nHello there, Jane',
'there', - 'to you', 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHANGECHARS

8-100 Oracle OLAP DML Reference

CHANGECHARS

The CHANGECHARS function changes one or more occurrences of a specified
string in a text expression to another string.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
CHANGECHARS(text-expression oldtext newtext [number] [UPCASE])

Arguments

text-expression
The expression in which characters are to be changed. When text-expression is a
multiline text value, CHANGECHARS preserves the line breaks in the returned
value.

oldtext
A text expression that contains one or more characters that will be changed.

See also: The following related functions:

■ CHANGEBYTES which you can use instead of
CHANGECHARS when you are using a multibyte character set

■ REPLCHARS which you can use to replace characters in a text
value beginning at a certain character

CHANGECHARS

ARCSIN to CHARLIST 8-101

newtext
A text expression that contains one or more characters that will replace oldtext.

number
An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

UPCASE
Specifies that CHANGECHARS should uppercase text-expression and oldtext before
trying to find a match. CHANGECHARS does not uppercase the return value.

Examples

Example 8–43 Changing the Values of Text Characters

This example shows how to change one instance of a portion of a text value.

The statement

SHOW CHANGECHARS('Hello there, Joe\nHello there, Jane',
'there', - 'to you', 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHARLIST

8-102 Oracle OLAP DML Reference

CHARLIST

The CHARLIST function transforms an expression into a multiline text value with a
separate line for each value of the original expression.

Return Value
TEXT or NTEXT

The data type of the return value depends on the data type of the expression:

■ When the expression is TEXT, the return value is TEXT.

■ When the expression is NTEXT, the return value is NTEXT.

■ When the expression has a data type other than TEXT or NTEXT, CHARLIST
automatically converts its values to TEXT to create the result.

Syntax
CHARLIST(expression [dimensions])

Arguments

expression
The expression to be transformed into a multiline text value.

dimensions
The dimensions of the return value. When you do not specify a dimension,
CHARLIST returns a single value. When you provide one or more dimensions for
the return value, CHARLIST returns a multiline text value for each value in the
current status list of the specified dimension. Each dimension must be an actual
dimension of the expression; it cannot be a related or base dimension.

Notes

Creating Lists of Workspace Objects
You can use CHARLIST with the NAME dimension to create lists of workspace
objects. Such lists are useful when you want to perform a task on a group of objects.
To create a list of objects, limit NAME to the names of the objects in which you are
interested (for example, worksheets). You can then use CHARLIST to loop over the

CHARLIST

ARCSIN to CHARLIST 8-103

NAME dimension and perform the task on each item in this group. You can use
CHARLIST in this way with any statement that can take a list of names as its
argument. See "Deleting Workspace Objects" on page 8-103.

Empty Composites
CHARLIST cannot return values of a variable dimensioned by a composite when
you have not assigned any values to the variable. In this case, the variable and the
composite are considered to be empty, and CHARLIST returns NA.

Examples

Example 8–44 Deleting Workspace Objects

Suppose you want to delete all objects of a certain type in your workspace, for
example, all worksheets. You can use CHARLIST and an ampersand (&) to do this.

LIMIT NAME TO OBJ(TYPE) EQ 'WORKSHEET'
DELETE &CHARLIST(NAME)

Example 8–45 Creating a List of Top Sales People

Assume you have stored the names of the sales people who sold the most for each
product in product.memo, a text variable with the dimensions of product and
month. You then want to create a list of top sales people broken out by product. To
do this, you can create a variable dimensioned by product and then use
CHARLIST with the product dimension to create a separate list of all the top sales
people for each product.

DEFINE topsales VARIABLE TEXT <product>
topsales = CHARLIST(product.memo product)

CHARLIST

8-104 Oracle OLAP DML Reference

CHGDFN to DDOF 9-1

9
CHGDFN to DDOF

This chapter contains the following OLAP DML statements:

■ CHGDFN

■ CHGDIMS

■ CLEAR

■ COALESCE

■ COLVAL

■ COLWIDTH

■ COMMAS

■ COMMIT

■ COMPILE

■ COMPILEMESSAGE

■ COMPILEWARN

■ CONSIDER

■ CONTEXT command

■ CONTEXT function

■ CONTINUE

■ CONVERT

■ COPYDFN

■ CORRELATION

■ COS

9-2 Oracle OLAP DML Reference

■ COSH

■ COUNT

■ CUMSUM

■ DATEFORMAT

■ DATEORDER

■ DAYABBRLEN

■ DAYNAMES

■ DAYOF

■ DBGOUTFILE

■ DDOF

CHGDFN

CHGDFN to DDOF 9-3

CHGDFN

The CHGDFN command enables you to change certain aspects of the definitions of
analytic workspace objects.

Before you can use CHGDFN to change the definition of an object, use CONSIDER
to make that object definition the current definition.

Syntax
CHGDFN desired-change

where desired-change is one of the following:

varname SEGWIDTH length-dim...

partitioned-varname {DROP | ADD } (partition-instance...)

partition-template {DEFINE | DELETE [CLEAR] } (partition-instance...)

partition-template RENAME PARTITION old-name new-name

{conjoint | composite} {HASH | BTREE | NOHASH}

concat BASE ADD dimensionlist

conjoint COMPOSITE

composite DIMENSION

dwmqy-dimname { {BEGINNING | ENDING} phase | {EARLIER | LATER} n}

concat [NOT] UNIQUE

Arguments

varname
The name of the variable whose segment size you want to set.

Note: You cannot use CHGDFN to change definitions of objects
that are in an analytic workspace that is attached in multiwriter
mode.

CHGDFN

9-4 Oracle OLAP DML Reference

SEGWIDTH
Indicates explicit sizing of a variable's segments. A segment is contiguous disk
space reserved for a portion of the total number of values a variable holds. The
number of segments in a variable affects the performance of data loading and data
accessing. See "Using CHGDFN SEGWIDTH" on page 9-7.

The segment size that you specify is used not only for the variable you designate as
varname, but also for all other variables and relations that are defined with the same
combination of dimensions and composites in the same order. The DEFINE
command sets the SEGWIDTH at the time it creates a variable or relation. Changing
the SEGWIDTH affects any new variable or relation that you subsequently create.
The changed SEGWIDTH setting does not apply to previously existing variables or
relations.

The time it takes to do data loads on a variable depends on how many pages are
brought into memory and then written back out. This number can be affected by
how a variable is divided into segments. Too many segments (thousands to
millions) can degrade performance. See "Reducing the Number of Segments" on
page 9-8.

The number of segments also affects data access. The time it takes to report a
variable depends on how many values are brought into memory. You decide how
many segments your variable should have based on your data loading and data
accessing patterns.

DEFINE provides default segments. In most cases, you can use the default segments
so that you do not have to use CHGDFN SEGWIDTH to manually control the size of
segments. However, you may be able to improve performance by specifying the
segment size instead of using the defaults.

When you are not sure what your segment size should be, use the maximum
anticipated number of values for each dimension or composite as the length
arguments to SEGWIDTH. Then only one segment will be created for the variable.

partitioned-varname
Specifies the name of a partitioned variable whose partitions you want to modify.

DROP partition-instance
ADD partition-instance
Removes or adds the specified partitions from the partitioned variable. See DEFINE
VARIABLE for a complete description of the partition-instance argument.

CHGDFN

CHGDFN to DDOF 9-5

DEFINE partition
DELETE [CLEAR] partition-instance
Removes or adds the specified partitions from the partition template object. See
DEFINE PARTITION TEMPLATE for a complete description of the partition-instance
argument.

When you include the optional CLEAR keyword, Oracle OLAP also drops any
corresponding partitions in the variables that are partitioned using the partition
template object. In other words, including CLEAR is the same as issuing an
additional CHGDFN statements to DROP the partition from the variables
partitoned by it.

RENAME PARTITION old-name new-name
Renames the specified partitions in the partition template object.

BASE ADD dimensionlist
Adds the dimension or dimensions specified by dimensionlist to the base dimensions
of the concat dimension.

length-dim...
Segment width is specified as the maximum number of values in each segment for
each dimension or composite in the variable's dimension list. The first length-dim is
the number of values for the dimension or composite in the first position of the
dimension list in the variable's definition (that is, the fastest-varying dimension or
composite), the second length-dim is the number of values for the dimension or
composite in the second position in the dimension list, and so on. See "Using
CHGDFN SEGWIDTH" on page 9-7.

conjoint
composite
For the index syntax, the name of the conjoint dimension or composite whose index
algorithm you want to change. For the conjoint-to-composite syntax, the name of the
conjoint dimension you want to change to a composite. For the composite-to-dim
syntax, the name of the composite you want to change to a conjoint dimension. You
cannot change a conjoint dimension to a composite when the conjoint is a
dimension of a formula.

HASH
BTREE
NOHASH
Indicates the index algorithm used to load and access values of your conjoint
dimension or composite without losing data in objects defined with the conjoint or

CHGDFN

9-6 Oracle OLAP DML Reference

composite. A composite cannot be changed to NOHASH. A conjoint can be
changed to NOHASH only when it was originally defined as HASH. See "Changing
Conjoints to NOHASH" on page 9-10.

HASH, NOHASH, and BTREE are different index algorithms used to load and
access the values of a conjoint dimension or composite. HASH is the default for
conjoints. The default for composites is determined by the SPARSEINDEX option,
which has a default value of BTREE. The index algorithm affects the performance of
loading and accessing large conjoints or composites. Performance varies depending
on your machine configuration, the organization of your data, and the design of
your application. You can do performance testing to determine which algorithm
provides the best performance for your situation. See "When to Use HASH" on
page 9-9, "When to Use NOHASH" on page 9-9, and "When to Use BTREE" on
page 9-9.

COMPOSITE
Indicates changing a conjoint dimension into a named composite. There are some
restrictions on changing conjoint dimensions to composites; when a conjoint has the
NOHASH index algorithm or when it has permissions, you cannot change it to a
composite.

DIMENSION
Indicates changing a named composite into a conjoint dimension.

dwmqy-dimname
Specifies or changes the phase of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR.

BEGINNING phase
ENDING phase
Specifies the beginning phase or ending phase of a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You must specify the phase as a date, giving the
month, day, and year, enclosed in single quotes, using any of the input styles that
are valid for variable values with a data type of DATE. When you specify a date
with an ambiguous meaning (such as '03 05 97'), the date is interpreted
according to the current setting of the DATEORDER option. For more information
about specifying dates, see DATEORDER.

CHGDFN

CHGDFN to DDOF 9-7

EARLIER n
LATER n
n is an INTEGER expression that increments or decrements the period on which the
DAY, WEEK, MONTH, QUARTER, or YEAR dimension's phase begins or ends. For
example, for a WEEK dimension whose current begin phase is Monday, specify
LATER 2 to change the phase to Wednesday.

[NOT] UNIQUE
When you include NOT, changes a unique concat dimension to a nonunique concat.
When you do not include NOT, changes a nonunique concat dimension to a unique
concat dimension. See DEFINE DIMENSION CONCAT for more information on
concat dimensions.

Notes

Using CHGDFN SEGWIDTH
Use the SEGWIDTH keyword with the CHGDFN command to specify the segment
size of a variable. For example, when you create a variable dimensioned by month
and product and set the SEGWIDTH of month to 150 and product to 90,000,
each segment will hold up to 150 x 90,000 values of the variable.

Suppose you have a variable called d.sales that is dimensioned by month and by
a composite with the base dimensions market and product. The definition of
d.sales looks like the following.

DEFINE d.sales VARIABLE DECIMAL <month SPARSE<market product>>

Suppose you want to have only one segment in the d.sales variable. You estimate
that the month dimension will eventually have 150 values and the composite will
have 100,000. The following statement will create one segment for the d.sales
variable.

CHGDFN d.sales SEGWIDTH 150 100000

When you wish, you can set the SEGWIDTH of one or more dimensions to 0. The
value of 0 for length-dim has a special meaning: Oracle OLAP will grow segments in
that dimension as needed, minimizing the number of segments but not changing
any existing segments.

When you do not use CHGDFN SEGWIDTH, the default behavior is to assign a
segwidth of 0 (zero) on non-composite dimensions and a large value for composites
that are not the slowest-varying in the dimension set. This allows new dimension

CHGDFN

9-8 Oracle OLAP DML Reference

and composite values to be added in most situations without greatly increasing the
number of segments and degrading performance.

You must specify a number, 0 (zero), or nonzero, for every dimension and
composite.

You can always specify 0 (zero for the slowest-varying dimension, because the data
for any values that are later added to that dimension will be appended to the
existing data in the variable's last segment. For example, a better way to specify
segment size for d.sales is to specify 0 for the slowest-varying dimension.

CHGDFN d.sales SEGWIDTH 150 0

Any composite that is not the slowest-varying dimension should have a nonzero
value. For example, suppose you have a variable called f.costs with the
following definition.

DEFINE f.costs VARIABLE DECIMAL <geog SPARSE<product channel> time>

You estimate the geog dimension will have 100 values and the composite will have
300,000. You do not have to estimate the number of values for the time dimension,
because it is the slowest-varying dimension. The following statement will create one
segment for the f.costs variable.

CHGDFN f.costs SEGWIDTH 100 300000 0

Reducing the Number of Segments
You can use OBJ (NUMSEGS) to find out if you have too many segments for objects
that have a particular dimension set. When you find that you do, you can reduce
the number of segments by following these steps:

1. Export the variables and relations that use this dimension set to an EIF file.

2. Execute a MAINTAIN DELETE ALL statement for one of the dimensions in the
dimension set.

3. Optimally, execute a CHGDFN command for one of the variables or relations
with this dimension set, and increase the value of the length arguments to the
SEGWIDTH keyword.

4. From the EIF file, import all the values you exported in Step 1.

CHGDFN

CHGDFN to DDOF 9-9

Adding Base Dimensions to a Concat Dimension
When you add one or more dimensions as base dimensions of a concat, then Oracle
OLAP appends the dimensions to the existing list of base dimensions of the concat.
Objects that are dimensioned by the concat, or objects that are dimensioned by a
concat that has the altered concat as a base dimension, gain additional NA values.
You cannot add as a base dimension a dimension that is already a component of the
concat dimension.

Changing Index Algorithms
Changing the index algorithm of a large conjoint dimension or composite from one
algorithm type to another may take a considerable amount of time. The CHGDFN
command cannot be interrupted.

When to Try Different Algorithms CHGDFN gives you an easy way to test using
different index algorithms in order to determine how each affects performance. You
can use CHGDFN to try using different algorithms when a data load for a conjoint
dimension takes longer than expected. For example, suppose a data load executes
well at first, then slows down drastically. Use CHGDFN to change the index
algorithm from BTREE to NOHASH. Try the data load again to determine whether
or not using NOHASH improves performance. You can then use CHGDFN to
change the index algorithm back to BTREE.

When to Use BTREE BTREE is a standard indexing method that is recommended
for composites and conjoint dimensions. Use BTREE as the default unless you are
an advanced user and have a special need that requires HASH or NOHASH. BTREE
tends to group similar values together, which results in better locality of access.

When to Use HASH HASH is a standard indexing method that can be used for
composites or conjoint dimensions that have only 2 or 3 base dimensions. One
advantage to using HASH is that it results in a small amount of code. However,
HASH is generally not recommended. Using HASH results in a very large index
table, which can be too large to fit into memory.

When to Use NOHASH You can use NOHASH with conjoint dimensions only. It
can be advantageous to use NOHASH when there is little memory available and the
conjoint dimension has only 2 or 3 base dimensions.

Also, you can use NOHASH when you load a very large initial amount of data.
When you use NOHASH, the data will be loaded in a way that makes it easy to
access that data after it has been loaded. Once the data is loaded, change the
definition of the conjoint dimension back to BTREE to ensure good performance.

CHGDFN

9-10 Oracle OLAP DML Reference

Otherwise, performance is likely to suffer, especially when the conjoint dimension
has 4 or more base dimensions. See "Changing Conjoints to NOHASH" on
page 9-10.

Changing Conjoints to NOHASH When you need to change a conjoint dimension
that was originally defined with the BTREE algorithm to a NOHASH conjoint, you
can use the following method:

1. Export the conjoint dimension and all the objects dimensioned by it to an EIF
file.

2. Delete all the objects dimensioned by the conjoint dimension, and then delete
the conjoint itself.

3. Redefine the conjoint as a NOHASH conjoint.

4. Import the conjoint dimension and the objects dimensioned by it from the EIF
file. The NOHASH attribute on the definition at the time of the import will
cause the conjoint dimension to be read in as a NOHASH conjoint.

Changing Unnamed Composites to Conjoints
When you want to change an unnamed composite into a conjoint dimension, you
can use the RENAME command to change the unnamed composite into a named
composite, and then use CHGDFN to change the named composite into a conjoint
dimension.

CHGDFN

CHGDFN to DDOF 9-11

Examples

Example 9–1 Adding an External Partition to a Variable

Assume that your analytic workspace has a sales variable with two external
partitions—one partition for sales in 2002 and another partition for sales in 2003.
The following definitions are used to define the sales variable.

DEFINE YEAR_2003 DIMENSION TEXT
DEFINE YEAR_2002 DIMENSION TEXT
DEFINE PRODUCT DIMENSION TEXT
DEFINE SALES_2003 VARIABLE DECIMAL <YEAR_2003 PRODUCT>
DEFINE SALES_2002 VARIABLE DECIMAL <YEAR_2002 PRODUCT>
DEFINE TIME DIMENSION CONCAT (YEAR_2003 YEAR_2002 YEAR_2004) UNIQUE
DEFINE PART_TEMP_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY CONCAT (TIME) -
 (PARTITION PARTITION_2002 <YEAR_2002 PRODUCT> -
 PARTITION PARTITION_2003 <YEAR_2003 PRODUCT>)
DEFINE SALES VARIABLE DECIMAL <PART_TEMP_SALES_BY_YEAR <TIME PRODUCT>> -
 (PARTITION PARTITION_2002 EXTERNAL SALES_2002 -
 PARTITION PARTITION_2003 EXTERNAL SALES_2003)

Assume that you want to add data for the year 2004 to sales. Before you can add
the data, you need to add an external partition to sales to hold data. To add an
external partition to sales, you take the following steps:

1. Issue the following DEFINE statements to add a definitions for a dimension for
the values for 2004 and a sales variable to hold 2004 data.

DEFINE YEAR_2004 DIMENSION TEXT
DEFINE SALES_2004 VARIABLE DECIMAL <YEAR_2004 PRODUCT>

2. Issue the following CHGDFN statements to add the year_2004 dimension to
the time dimension, a partition for 2004 to the partition template used by sales
and to the sales variable, itself.

CHGDFN time BASE ADD year_2004
CHGDFN part_temp_sales_by_year -
 DEFINE(PARTITION partition_2004 <year_2004 product>)
CHGDFN sales ADD (PARTITION partition_2004 EXTERNAL sales_2004)

CHGDFN

9-12 Oracle OLAP DML Reference

Now time, part_temp_sales_by_year, and sales have the following
definitions.

DEFINE TIME DIMENSION CONCAT (YEAR_2003 YEAR_2002 YEAR_2004) UNIQUE
DEFINE PART_TEMP_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY CONCAT (TIME) -
 (PARTITION PARTITION_2002 <YEAR_2002 PRODUCT> -
 PARTITION PARTITION_2003 <YEAR_2003 PRODUCT> -
 PARTITION PARTITION_2004 <YEAR_2004 PRODUCT>)
DEFINE SALES VARIABLE DECIMAL <PART_TEMP_SALES_BY_YEAR <TIME PRODUCT>> -
 (PARTITION PARTITION_2002 EXTERNAL SALES_2002 -
 PARTITION PARTITION_2003 EXTERNAL SALES_2003 -
 PARTITION PARTITION_2004 EXTERNAL SALES_2004)

3. After you populate the year_2004 dimension, you issue the following
REPORT statement. You can see that the sales variable has a partition for 2004
data.

REPORT DOWN PARTITION(part_temp_sales_by_year) time product sales

PARTITION(PART_TEMP_SALES_BY_YEAR) TIME PRODUCT SALES
----------------------------------- ---------- ---------- ----------
PARTITION_2002 01Jan2002 00001 14.44
...
PARTITION_2003 01Jan2003 00001 10.00
...
PARTITION_2004 01Jan2004 00001 NA
...
PARTITION_2004 Jan2004 00001 NA
...
PARTITION_2004 2004 00001 NA
PARTITION_2004 01Jan2004 00002 NA
...
PARTITION_2004 2004 00002 NA

Example 9–2 Changing the Phase of a YEAR Dimension

The following statements first create a dimension of type YEAR for a fiscal year,
then use CHGDFN to switch to a new time phase for the fiscal year.

DEFINE fiscal DIMENSION year BEGINNING '06 01 96'
CHGDFN fiscal BEGINNING '01 01 97'

CHGDFN

CHGDFN to DDOF 9-13

Example 9–3 Adding a Base Dimension to a Concat Dimension

The following statements create a nonunique concat dimension named
reg.dist.ccdim that has the region and district dimensions as its base
dimensions and report the values of the concat.

DEFINE reg.dist.ccdim DIMENSION CONCAT(region district)
REPORT W 22 reg.dist.ccdim

The preceding statement produces the following output.

REG.DIST.CCDIM

<region: East>
<region: Central>
<region: West>
<district: Boston>
<district: Atlanta>
<district: Chicago>
<district: Dallas>
<district: Denver>
<district: Seattle>

The following statements add the store_id dimension as a base to the concat
dimension and then report the values of the concat again.

CHGDFN reg.dist.ccd BASE ADD store_id
REPORT W 22 reg.dist.ccd

The preceding statement produces the following output.

REG.DIST.CCD

<region: East>
<region: Central>
<region: West>
<district: Boston>
...
<district: Seattle>
<store_id: 10>
<store_id: 20>
<store_id: 30>
<store_id: 100>
...
<store_id: 500>
<store_id: 510>

CHGDIMS

9-14 Oracle OLAP DML Reference

CHGDIMS

The CHGDIMS function changes the dimensionality of an expression or changes the
dimension status during the evaluation of expression.

Return Value
Data type of the original expression.

Syntax
CHGDIMS(expression { LIMIT valueset-list | TO dimension-list | ADD dimension-list })

Arguments

expression
The expression you want to modify.

LIMIT valueset-list
Sets the current status list of the dimensions of expression to the values specified by
valuelist while Oracle OLAP evaluates expression.

TO dimension-list
Specifies that Oracle OLAP evaluate the expression as though the dimensions of
expression are the dimensions specified by dimension-list.

ADD dimension-list
Specifies that Oracle OLAP evaluate the expression as though the dimensions of
expression are the dimensions of expression plus the dimensions specified by
dimension-list

Examples
Assume that you have the following objects in your analytic workspace.

DEFINE PRODUCT DIMENSION TEXT
DEFINE GEOG DIMENSION TEXT
DEFINE SALES VARIABLE INTEGER <PRODUCT GEOG>

CHGDIMS

CHGDFN to DDOF 9-15

Assume, also, that the sales variable has the following values.

 -------------------SALES-------------------
 ------------------PRODUCT------------------
GEOG Trousers Skirts Dresses Shoes
-------------- ---------- ---------- ---------- ----------
USA 13 20 32 18
Canada 17 32 15 28

The following lines of code show how the value returned by a TOTAL(sales)
expression varies depending on how you qualify that expression.

"Total over all dims with standard status
SHOW TOTAL(sales)
175

"Total over all dims using new status for product
SHOW CHGDIMS(TOTAL(sales) LLIMIT LIMIT(product TO FIRST 2))
82

"Total just over product
SHOW TOTAL(CHGDIMS(sales TO product))
83

CLEAR

9-16 Oracle OLAP DML Reference

CLEAR

The CLEAR command deletes the data that you specify for one or more variables.

Syntax
CLEAR [STATUS | {ALL [CACHE]}] [VALUES | {aggdata [USING aggmapname]}] FROM varname...

where aggdata is one or more of the following keywords that identifies the type of
aggregated data that you want deleted from the variable.

AGGREGATE
LEAVES
PRECOMPUTES
NONPRECOMPUTES

Arguments

STATUS
Specifies that only the data that is currently in status will be taken into
consideration. (Default)

ALL
Specifies that all of a variable's data will be taken into consideration regardless of
the current status.

CACHE
Empties the session cache (see "What is an Oracle OLAP Session Cache?" on
page 21-54 for details).

VALUES
Deletes all of a variable's stored data and replaces each deleted data value with an
NA value. (Default)

AGGREGATE
Deletes the data in all cells populated by the execution of an AGGREGATE
command or an AGGREGATE function.

CLEAR

CHGDFN to DDOF 9-17

PRECOMPUTES
For all variables except those dimensioned by a compressed composite, deletes any
data that was calculated when an AGGREGATE command executed and replaces
that data with NA values.

NONPRECOMPUTES
Deletes any data that was calculated on the fly when a AGGREGATE function
executed and replaces that data with NA values.

LEAVES
Deletes the detail-level data, meaning, the "leaf" data.

FROM varname
Specifies the name of the variable or variables from which data will be deleted.
When you specify more than one variable, then every variable must have exactly
the same dimensions in exactly the same order in its definition. In other words,
when you include multiple variables in one command, those variables must be
identical in their dimensionality.

USING aggmapname
Specifies the name of the aggmap that should be used. When you include this
phrase, the dimensionality of every variable included in the CLEAR command must
be identical to the dimensionality of the aggmap. In other words, every variable
definition must have the same dimensions in the same order as those in the
definition of the aggmap.

Examples

Example 9–4 Clearing a Variable's Data

The CLEAR command gives you an easy way to delete all of a variable's stored
data. Suppose you have defined a sales variable and loaded data into it. You then
find out that much of this data has changed. It will be more efficient to clear the
sales variable and reload all of the data than it would be to change the existing
data. You can do so with the following statement.

CLEAR ALL FROM sales

In this example, the VALUES keyword is assumed by default. Therefore, all of the
sales data is deleted and replaced with NA values.

CLEAR

9-18 Oracle OLAP DML Reference

Example 9–5 Clearing Aggregated Data

Suppose you have aggregated data for your sales and units variable, and you
have specified that all other data should be calculated on the fly.

The sales and units variables are defined with the same dimensions in the same
order: time, product, and geography. Therefore, they have been aggregated
with the sales.agg aggmap, which has the following definition.

DEFINE sales.agg AGGMAP <time, product, geography>

The sales.agg aggmap has the following contents.

RELATION time.r PRECOMPUTES (time ne 'YEAR99')
RELATION product.r PRECOMPUTES (product ne 'ALL')
RELATION geography.r

After aggregating both sales and units, you learn that there are certain
geographic regions that none of your users will access. Because geography is the
slowest-varying dimension, you can probably reduce the number of pages needed
to store data by deleting data for the geographic regions that no one will need. This
can reduce the size of your analytic workspace and possibly improve performance.

1. Set the status for each dimension. The only geographic regions that users will
need are New England, Europe, and Australasia. The following statements put
all time periods and all products for every geographic region in the current
status, except for the geographic regions that users need. In other words, the
following statements put all of the data that users do not need to access in
status.

LIMIT time TO ALL
LIMIT product TO ALL
LIMIT geography COMPLEMENT 'NewEngland' 'Europe' 'Australasia'

2. Use the following statement to delete the unneeded data.

CLEAR STATUS PRECOMPUTES FROM sales units USING sales.agg

CLEAR

CHGDFN to DDOF 9-19

Example 9–6 Clearing Cached Data

Data is cached when an aggmap specifies calculation on the fly and contains a
CACHE SESSION statement.

For example, suppose the sales.agg aggmap has the following contents.

RELATION time.r PRECOMPUTES (time ne 'YEAR99')
RELATION product.r PRECOMPUTES (product ne 'ALL')
RELATION geography.r
CACHE SESSION

Note that the sales.agg contains a CACHE SESSION command. This means that
Oracle OLAP calculates some of the data at the time a user requests it, and then
stores it in the session cache. To clear this data from the sales variable, use the
following statement.

CLEAR ALL CACHE FROM sales

COALESCE

9-20 Oracle OLAP DML Reference

COALESCE

The COALESCE function returns the first non-NA expression in a list of expressions,
or NA when all of the expressions evaluate to NA.

Return Value
Data type of the first argument.

Syntax
COALESCE (expr [, expr]...)

Arguments

expr
An expression.

COLVAL

CHGDFN to DDOF 9-21

COLVAL

The COLVAL function returns a numeric value from a column to the left of the
current column in the same row of a report. COLVAL can only be used in the ROW
command and the REPORT command.

Return Value
DECIMAL

Syntax
COLVAL(n)

Arguments

n
The number of the column in the current row whose value you want; n can be any
INTEGER expression.

Use a positive number to identify an absolute column number (counting left to right
from the left margin of the report). For example, COLVAL(2) identifies the second
column from the left margin of the report.

Use a negative number to identify a relative column number (counting right to left
from the current column). For example, COLVAL(-2) identifies the column that is
two columns to the left of the current column.

Notes

Absolute Column Numbers
In figuring an absolute column number, you must count all columns shown in the
report. For example, this means that when you are using a REPORT command that
produces a column of labels down the left side of the report, you count this column
of labels as column 1.

TEXT or ID Data
When the selected column (n) contains only a TEXT or ID value, COLVAL returns
NA.

COLVAL

9-22 Oracle OLAP DML Reference

Error Conditions
An error occurs when you specify the current column, a column to the right of the
current column, or a nonexistent column.

Examples

Example 9–7 Performing Column Calculations in a Report

Suppose in a report you want to show actual sales and planned sales, along with the
difference between the two. You can use the COLVAL function to calculate this
difference.

LIMIT month TO 'Jun96'
LIMIT district TO 'Boston'
FOR product

ROW product sales sales.plan COLVAL(2)-COLVAL(3)

These statements produce the following output.

Tents 95,120.83 80,138.18 14,982.65
Canoes 157,762.08 132,931.39 24,830.69
Racquets 97,174.44 84,758.46 12,415.98
Sportswear 79,630.20 73,568.52 6,061.68
Footwear 153,688.02 109,219.15 44,468.87

COLWIDTH

CHGDFN to DDOF 9-23

COLWIDTH

The COLWIDTH option controls the default width of data columns in report
output. For output from the ROW command and HEADING command,
COLWIDTH affects all columns except the first column. For output from REPORT,
COLWIDTH affects all data columns, as well as the label columns for a composite
or a conjoint dimension.

Data type
INTEGER

Syntax
COLWIDTH = n

Arguments

n
An INTEGER expression that specifies the desired column width in number of
characters. You can use an INTEGER literal or an expression that returns an
INTEGER value. The default is 10.

Notes

Label Columns in REPORT
By default, the REPORT command produces a column of dimension values labeling
the rows down the left side of the report. The default width of this label column is
controlled by the LCOLWIDTH option, which has a default value of 14 characters.
However, when the DOWN phrase in a REPORT command specifies a composite or
a conjoint dimension, Oracle OLAP creates a separate column for each base
dimension. The default width of these base dimension columns is controlled by the
COLWIDTH option.

COLWIDTH

9-24 Oracle OLAP DML Reference

Maximum Column Width
You can set COLWIDTH to any value from 1 to 4000.

Overriding COLWIDTH
For an individual column, the COLWIDTH value is always overridden by a WIDTH
attribute in a HEADING, REPORT, or ROW command.

Examples

Example 9–8 Setting the Default Column Width in a Report

Suppose you want to look at unit sales for six months. Since the data values are not
large, you do not need a width of 10 characters for your data columns. You can set
COLWIDTH to provide a narrower default column.

LIMIT district TO 'Atlanta'
LIMIT month TO 'Oct95' TO 'Mar96'
COLWIDTH = 6
REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA
------------------UNITS------------------
------------------MONTH------------------

PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
-------------- ------ ------ ------ ------ ------ ------
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

Note: The maximum width of a line in a report is 4000 characters.
Therefore, the combined width of all the columns of a report cannot
be greater than 4000 characters.

COMMAS

CHGDFN to DDOF 9-25

COMMAS

The COMMAS option controls the use of a character to separate thousands and
millions in numeric output. COMMAS affects all commands that produce output,
including the ROW command as well as HEADING, REPORT, and SHOW.

Data type
BOOLEAN

Syntax
COMMAS = {NO|YES}

Arguments

NO
Numeric output does not contain a character that separates thousands, millions,
and so on.

YES
Numeric output contains a character that separates thousands, millions, and so on.
(Default)

Notes

Overriding COMMAS
You can use the COMMA and NOCOMMA attributes of a HEADING, REPORT, or
ROW command to override the COMMAS setting.

Setting the Thousands Separator
The character that separates thousands and millions in numeric output is normally
a comma. However, it might be different depending on your NLS_TERRITORY
setting. The THOUSANDSCHAR option records the character that is currently
being used for separating thousands. The COMMAS option controls whether the
character appears in numeric output.

COMMAS

9-26 Oracle OLAP DML Reference

Examples

Example 9–9 Showing Numerical Data Without Commas

Suppose you want to look at the cost of goods sold, without commas in the data
values. You can set COMMAS to NO before producing your report.

COMMAS = NO
LIMIT line TO 'Cogs'
LIMIT month TO 'Jan96' 'Feb96'
REPORT DOWN division ACROSS month: DECIMAL 0 actual

These statements produce the following output.

LINE: COGS
-----ACTUAL------
------MONTH------

DIVISION Jan96 Feb96
-------------- -------- ----------
Camping 368044 385120
Sporting 287558 315299
Clothing 567767 610727

COMMIT

CHGDFN to DDOF 9-27

COMMIT

The COMMIT command executes a SQL COMMIT command. All changes made in
your database session are committed, whether they were made through Oracle
OLAP or through another form of access (such as SQL) to the database.

When you want changes that you have made in a workspace to be committed when
you execute the COMMIT command, then you must first update the workspace
using the UPDATE command. UPDATE moves changes from a temporary work
area to the database table in which the workspace is stored. Changes that have not
been moved to the table are not committed.

The COMMIT command only affects changes in workspaces that you have attached
in read/write access mode. After the command returns, all committed changes are
visible to other users who subsequently attach the workspace.

Syntax
COMMIT

Notes

Unsaved Changes
When you do not use the UPDATE and COMMIT commands, changes made to an
analytic workspace during your session are discarded when you end your Oracle
session.

SQL COMMIT Statement
When you execute a SQL COMMIT statement in your session outside Oracle OLAP,
this statement commits all updated changes in workspaces that you have attached
with read/write access.

Note: You can detach and reattach a workspace without losing
updated changes, even though they are not committed. This is
because the detaching and reattaching occur within a single
database session.

COMMIT

9-28 Oracle OLAP DML Reference

Automatic COMMIT
Many users execute DML statements using SQL*Plus® or OLAP Worksheet. Both of
these tools automatically execute a COMMIT statement when you end your session.

Shared Workspaces
When you have attached a shared workspace and another user has read/write
access, that user's UPDATE and COMMIT commands do not affect your view of the
workspace. Your view of the data remains the same as when you attached the
workspace. When you want access to the changes, you can detach the workspace
and reattach it.

Examples

Example 9–10 Saving All Changes to an Analytic Workspace

The following statements permanently save all analytic workspace changes made so
far in your session. The COMMIT command also saves database changes made in
your session outside Oracle OLAP.

UPDATE
COMMIT

COMPILE

CHGDFN to DDOF 9-29

COMPILE

The COMPILE command generates compiled code for a compilable object, such as a
program, formula, model, or aggmap without running it and saves the compiled
code in the analytic workspace. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running it.
COMPILE records the errors in the current outfile.

However, you are not required to use the COMPILE command before running a
compilable object. When you do not use the COMPILE command, Oracle OLAP
automatically compiles a compilable object the first time you run it after entering or
changing its contents. This automatic compilation is unnoticeable except for a slight
delay while it is happening.

Whether you compile an object explicitly with COMPILE or automatically through
running it, the code executes faster whenever you subsequently run the object
during the same session, because the code is already compiled. When you update
and commit your analytic workspace, the compiled code is saved as part of your
analytic workspace and can be used in later sessions. The code thus executes faster
the first time it is run in each later session.

Using the COMPILE command to compile code without running a compilable
object is especially useful when you are writing code that will be part of a read-only
analytic workspace (that is, a analytic workspace that people can use but not
update).

Syntax
COMPILE object-name

Arguments

object-name
The name of a compilable object that you want to compile.

Notes

Compilation Options
A number of options effect compilation. These options are listed in Table 9–1,
" Compilation Options" on page 9-30.

COMPILE

9-30 Oracle OLAP DML Reference

Deleted Objects
When you delete or rename an object in your analytic workspace, Oracle OLAP
automatically invalidates the compiled code for every statement in a program and
every formula and model that depends on that object. When you try to execute code
that refers to the deleted or renamed object, Oracle OLAP tries to compile the code
again. Unless you have defined a new object with the same name, you will receive
an error message at this time.

When you run a program that contains invalidated code, it is compiled and
executed one statement at a time. To save compiled code for the entire program, use
the COMPILE command to explicitly compile it.

Multiple Errors in a Line
When a single statement has more than one error, COMPILE finds only the first
error. However, COMPILE continues checking for format errors in subsequent
statements.

Advantages of Compiling
Explicit compilation using the COMPILE command offers several advantages over
automatic compilation:

■ For any compilable object, COMPILE generates compiled code without
executing the code in the object.

■ In a program or model, automatic compilation diagnoses an error only in the
first statement that contains an error. It then displays the error message and

Table 9–1 Compilation Options

Statement Description

COMPILEMESSAGE An option that specifies whether you want Oracle OLAP to
send to the current outfile non-fatal messages during execution
of the COMPILE command.

COMPILEWARN An option that controls whether Oracle OLAP records a
warning message in the current outfile when a compilable
object, such as an OLAP DML program or a model, is being
compiled automatically.

THIS_AW A read-only option that is the value of the workspace
name that Oracle OLAP uses when it replaces
occurrences of the THIS_AW keyword to create a
qualified object name.

COMPILE

CHGDFN to DDOF 9-31

halts the execution of a program or the analysis of a model. So each time a
program or model is automatically compiled, only a single error message is
displayed. In contrast, COMPILE checks every statement in a program or model
for correct format, and generates multiple error messages, one for each
statement that contains an error. (In programs, some types of statements cannot
be compiled, so they are exceptions. See "Errors COMPILE Does Not Catch" on
page 9-31.) Since COMPILE shows you every statement that contains at least
one error, this minimizes the number of times you must edit the code to correct
all errors.

■ For a model, you may want to examine the results of the compilation or set
options for handling simultaneous equations before you run the model.

Errors COMPILE Does Not Catch
Because the COMPILE command does not actually execute code, it can compile
code that, for reasons unrelated to format errors, might not be successfully executed
when the object were actually run. In a program, for example, you can compile the
following statement, even though 'joplin' is not a district.

LIMIT district TO 'joplin'

Although the statement compiles successfully, you will get an error message at
runtime.

Commands Not Compiled
In programs, certain statements cannot be compiled at all, and are therefore
interpreted each time they are executed. These include statements that contain
ampersand substitution, statements involving analytic workspace operations, and
any statement that calls a program as a command. (Statements that call a program
as a function or with the CALL command are compiled.)

PRGTRACE Option
You can use the PRGTRACE option to check which statements in a program have
been compiled. When you set PRGTRACE to YES and run a program, each
statement is recorded in the current outfile before it is executed. A compiled
statement is identified with an equal sign.

(PRG= program-name) statement

An uncompiled statement is identified with a colon.

(PRG: program-name) statement

COMPILE

9-32 Oracle OLAP DML Reference

Compiling Models
You can use the COMPILE command to compile a model. When you do not use the
COMPILE command before you run the model, Oracle OLAP automatically
compiles it before solving it. You can use the OBJ function with the ISCOMPILED
choice to test whether a model is compiled.

SHOW OBJ(ISCOMPILED 'myModel')

When you compile a model, Oracle OLAP checks for problems that are unique to
models. You receive an error message when any of the following occurs:

■ The model contains any statements other than DIMENSION (in models),
INCLUDE, and assignment (SET) statements.

■ The model contains both a DIMENSION command and an INCLUDE
command.

■ A DIMENSION or INCLUDE command is placed after the first equation in the
model.

■ The dimension values in a single dimension-based equation refer to two or
more different dimensions.

■ An equation refers to a name that the compiler cannot identify as an object in
any attached analytic workspace. When this error occurs, it may be because an
equation refers to the value of a dimension, but you have neglected to include
the dimension in a DIMENSION command. In addition, a DIMENSION
command may appear to be missing when you are compiling a model that
includes another model and the other model fails to compile. When a root
model (the innermost model in a hierarchy of included models) fails to compile,
the parent model is unable to inherit any DIMENSION commands from the root
model. In this case the compiler may report an error in the parent model when
the source of the error is actually in the root model. See INCLUDE for
additional information.

Resolving Names in Equations The model compiler examines each name in an
equation to determine the analytic workspace object to which the name refers. Since
you can use a variable and a dimension value in exactly the same way in a model
equation (basing calculations on it or assigning results to it), a name might be the
name of a variable or it might be a value of any dimension listed in a DIMENSION
(in models) statement.

To resolve each name reference, the compiler searches through the dimensions
listed in explicit or inherited DIMENSION statements, in the order they are listed,

COMPILE

CHGDFN to DDOF 9-33

to determine whether the name matches a dimension value of a listed dimension.
The search concludes as soon as a match is found.

Therefore, when two or more listed dimensions have a dimension value with the
same name, the compiler assumes that the value belongs to the dimension named
earliest in a DIMENSION statement.

Similarly, the model compiler might misinterpret the dimension to which a literal
integer value belongs. For example, the model compiler will assume that the literal
value '200' belongs to the first dimension that contains either a value at position
200 or the literal dimension value 200.

To avoid an incorrect identification, you can specify the desired dimension and
enclose the value in parentheses and single quotes. See "Formatting Ambiguous
Dimension Values" on page 21-64.

When the compiler finds that a name is not a value of any dimension specified in a
DIMENSION statement, it assumes that the name is the name of an analytic
workspace variable. When a variable with that name is not defined in any attached
analytic workspace, an error occurs.

Code for Looping Over Dimensions The model compiler determines the
dimensions over which the statements will loop. When an equation assigns results
to a variable, the compiler constructs code that loops over the dimensions (or bases
of a composite) of the variable.

When you run a model that contains dimension-based equations, the solution
variable that you specify can be dimensioned by more dimensions than are listed in
DIMENSION (in models) statements.

Evaluating Program Arguments When you specify the value of a model
dimension as an argument to a user-defined program, the compiler recognizes a
dependence introduced by this argument.

For example, an equation might use a program named weight that tests for certain
conditions and then weights and returns the Taxes line item based on those
conditions. In this example, a model equation might look like the following one.

Net.Income = Opr.Income - weight(Taxes)

The compiler correctly recognizes that Net.Income depends on Opr.Income and
Taxes. However, when the weight program refers to any dimension values or
variables that are not specified as program arguments, the compiler does not detect
any hidden dependencies introduced by these calculations.

COMPILE

9-34 Oracle OLAP DML Reference

Dependencies Between Equations The model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. When an equation indirectly depends on itself as the result of
the dependencies among equations, a cyclic dependence exists between the
equations.

The model compiler structures the model into blocks and orders the equations
within blocks and the blocks themselves to reflect dependencies. When you run the
model, it is solved one block at a time. The model compiler can produce three types
of solution blocks:

■ Simple Solution Blocks—Simple blocks are one of the three types of solution
blocks that the model compiler can produce. Simple blocks include equations
that are independent of each other and equations that have dependencies on
each other that are non-cyclic.

For example, when a block contains equations that solve for values A, B, and C,
a non-cyclic dependence can be illustrated as A>B>C. The arrows indicate that A
depends on B, and B depends on C.

■ Step Solutions Blocks—Step blocks are one of the three types of solution blocks
that the model compiler can produce. Step blocks include equations that have a
cyclic dependence that is a one-way dimensional dependence. A dimensional
dependence occurs when the data for the current dimension value depends on
data from previous or later dimension values. The dimensional dependence is
one-way when the data depends on previous values only or later values only,
but not both.

Dimensional dependence typically occurs over a time dimension. For example,
it is common for a line item value to depend on the value of the same line item
or a different line item in a previous time period. When a block contains
equations that solve for values A and B, a one-way dimensional dependence can
be illustrated as A>B>LAG(A). The arrows indicate that A depends on B, and B
depends on the value of A from a previous time period.

■ Simultaneous Solution Blocks—Simultaneous blocks are one of the three types
of solution blocks that the model compiler can produce.

When a model contains a block of simultaneous equations, COMPILE gives you
a warning message. In this case, you may want to check the settings of the
options that control simultaneous solutions before you run the model.
Table 17–1, "Model Options" on page 17-23 lists these options.

COMPILE

CHGDFN to DDOF 9-35

Simultaneous blocks include equations that have a cyclic dependence that is
other than one-way dimensional. The cyclic dependence may involve no
dimensional qualifiers at all, or it may be a two-way dimensional dependence.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as A>B>C>A. The arrows indicate that A depends on
B, B depends on C, and C depends on A.

An example of a cyclic dependence that is a two-way dimensional dependence
can be illustrated as A>LEAD(B)>LAG(A). The arrows indicate that A depends
on the value of B from a future period, while B depends on the value of A from a
previous period.

Order of Simultaneous Equations The solution of a simultaneous block of
equations is sensitive to the order of the equations. In general, you should rely on
the model compiler to determine the optimal order for the equations. In some cases,
however, you may be able to encourage convergence by placing the equations in a
particular order.

To force the compiler to leave the simultaneous equations in each block in the order
in which you place them, set the MODINPUTORDER option to YES before
compiling the model. (MODINPUTORDER has no effect on the order of equations
in simple blocks or step blocks.)

One-Way Dimensional Dependence
When dependence between equations is introduced through any of the following
structures, a one-way dimensional dependence occurs:

■ A one-way dimensional dependence can occur when you use a LAG or LEAD
function and when the argument for the number of time periods is a number.
(Otherwise, there may be a two-way dependence, involving both previous and
future dimension values, and the compiler assumes that a simultaneous
solution is required.) The following example illustrates the use of LAG.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

■ A one-way dimensional dependence also can occur when you use a
MOVINGAVERAGE, MOVINGMAX, MOVINGMIN, or MOVINGTOTAL
function, when that the start and stop arguments are nonzero numbers, and

COMPILE

9-36 Oracle OLAP DML Reference

when both the start and top arguments are positive or both are negative.
(Otherwise, two-way dimensional dependence is assumed.)

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = MOVINGAVERAGE(Opr.Income, -4, -1, 1, month)

Two-Way Dimensional Dependence
When dependence is introduced through any of the following structures, the model
compiler assumes that two-way dimensional dependence occurs:

■ A two-way dimensional dependence can occur when you use an aggregation
function, such as AVERAGE, TOTAL, ANY, or COUNT.

Opr.Income = Gross.Margin -
(TOTAL(Marketing + Selling + R.D))

Marketing = LAG(Opr.Income, 1, month)

■ A two-way dimensional dependence can occur when you use a time-series
function that requires a time-period argument, such as CUMSUM or LAG
(except for the specific functions and conditions described in "One-Way
Dimensional Dependence" on page 9-35.

■ A two-way dimensional dependence also can occur when you use a financial
function, such as DEPRSL or NPV.

A cyclic dependence across a time dimension that you introduce through a loan
or depreciation function may cause unexpected results. The loan functions
include FINTSCHED, FPMTSCHED, VINTSCHED, and VPMTSCHED. The
depreciation functions include DEPRDECL, DEPRDECLSW, DEPRSL, and
DEPRSOYD.

Obtaining Analysis Results After compiling a model, you can use the following
tools to obtain information about the results of the analysis performed by the
compiler:

■ The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks
with a cross-dimensional dependence, the report lists the dimensions involved
in the dependence.

■ The MODEL.DEPRT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence

COMPILE

CHGDFN to DDOF 9-37

is dimensional, the report gives the name of the dimension.

■ The INFO function lets you obtain specific items of information about the
structure of the model.

Multiple Analytic Workspaces
When you compile a compilable object that uses objects in another analytic
workspace, the second analytic workspace must be attached to your current Oracle
OLAP session. You can then run the compilable object with that analytic workspace
or another analytic workspace with objects of the same name and type attached.
Oracle OLAP checks that the objects have the same name, type (variable,
dimension, and so on), data type (INTEGER, TEXT, and so on), and dimensions as
the objects used to compile the compilable object.

When you have more than one active analytic workspace, do not have objects of the
same name in both analytic workspaces. For example, when you have an analytic
workspace of programs and two analytic workspaces with data about the products
TEA and COFFEE, both product analytic workspaces can have a MONTH
dimension and the programs can refer to MONTH. However, during your session,
attach only one product analytic workspace at a time so that there is only one
MONTH dimension.

OBJ Function
Use the OBJ function with the ISCOMPILED keyword to obtain information about
the compilation status of a compilable object.

COMPILEWARN Option
To have Oracle OLAP display a message when it compiles an object automatically,
you can set the COMPILEWARN option to YES.

COMPILEMESSAGE Option
You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP
to record non-fatal messages (those messages that indicate errors that do not
prevent a program from compiling) during execution of the COMPILE command.

Memory Use
In order for code to compile, all variables referenced in a program (with the
exception of variables in lines containing ampersand substitution) must be loaded
into memory. This means Oracle OLAP reads the definition of every variable you
use and stores it in a portion of available memory that is dedicated for storing object

COMPILE

9-38 Oracle OLAP DML Reference

definitions. When the compilation tries to bind a large variable, this may use a large
amount of memory and create a large EXPTEMP file. When the compilation tries to
bind a large number of large variables, it may fail and Oracle OLAP will record an
error message such as 'Insufficient Main Memory'. See LOAD for more information
about loading an object's definition into memory.

Compiling Aggregation Specifications
Compiling the aggmap object is important for aggregation performed at run-time
using the AGGREGATE function. Unless the compiled version of the aggmap has
been saved, the aggmap is recompiled by each session that uses it.

There are two ways you can compile an aggmap objects:

■ Issue a COMPILE statement.

A COMPILE statement is the only way to compile an aggmap object that will be
used by an AGGREGATE function. Explicitly compiling an aggmap is also
useful for finding syntax errors in the aggmap before attempting to use it to
generate data. The following statement compiles the sales.agg aggmap.

COMPILE gpct.aggmap

■ When you aggregate the data using an AGGREGATE command, include the
FUNCDATA phrase in the statement.

When you use the FUNCDATA phrase in an AGGREGATE command, Oracle
OLAP compiles the aggmap before it aggregates the data. For example, this
statement compiles and precalculates the aggregate data.

AGGREGATE sales USING gpct.aggmap FUNCDATA

Important: When some of the data is calculated on the fly, then
you must compile and save the aggmap after executing the
AGGREGATE command.

COMPILE

CHGDFN to DDOF 9-39

Examples

Example 9–11 Compiling a Program

The following is an example of a COMPILE command that compiles the myprog
program.

COMPILE myprog

Suppose you misspell the dimension month in a LIMIT command in the myprog
program.

LIMIT motnh TO LAST 6

When the COMPILE command encounters this command, it produces the following
message.

ERROR: (MXMSERR00) Analytic workspace object MOTNH does not exist.
In DEMO!MYPROG PROGRAM:
limit month to last 6

You can edit the program to correct the error and then try to compile it again.

Example 9–12 Finding Program Errors

This example shows a program called salesrpt that contains two errors.

DEFINE salesrpt PROGRAM
PROGRAM
ROW WIDTH 80 CENTER Monthly Report
BLANK 2
ROWW 'Total Sales' TOTAL(sales)
END

You can compile the program with the following statement.

COMPILE salesrpt

Oracle OLAP identifies both errors and records the following messages.

ERROR: You provided extra input starting at 'REPORT'.
In SALESRPT PROGRAM:
ROW WIDTH 80 CENTER Monthly Report
ERROR: ROWW is not a command.
In SALESRPT PROGRAM:
roww 'Total Sales' TOTAL(sales)

COMPILE

9-40 Oracle OLAP DML Reference

You can now edit the program to correct these errors, enclosing
'Monthly Report' in single quotes and correcting the spelling of ROWW. Then you
can compile the program again, and save the compiled code as part of your analytic
workspace.

COMPILEMESSAGE

CHGDFN to DDOF 9-41

COMPILEMESSAGE

You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP
to send to the current outfile non-fatal messages during execution of the COMPILE
command. Non-fatal messages are those indicating errors that do not prevent a
program from compiling.

Data type
BOOLEAN

Syntax
COMPILEMESSAGE = {YES|NO}

Arguments

YES
Indicates that Oracle OLAP should record non-fatal messages during execution of
the COMPILE command. (Default)

NO
Indicates that Oracle OLAP should suppress non-fatal messages during execution
of the COMPILE command.

Examples

Example 9–13 Suppressing Error Messages During Compilation

The following statement specifies that Oracle OLAP should suppress non-fatal
messages during execution of the COMPILE command.

COMPILEMESSAGE = NO

See also: For more information about compiling objects, see
COMPILE.

COMPILEWARN

9-42 Oracle OLAP DML Reference

COMPILEWARN

The COMPILEWARN option controls whether Oracle OLAP records a warning
message in the current outfile when a compilable object, such as a program or a
model, is being compiled automatically. When a compilable object has been
changed since the last time it was compiled or run, Oracle OLAP automatically
compiles it when you execute it.

Data type
BOOLEAN

Syntax
COMPILEWARN = {YES|NO}

Arguments

YES
Oracle OLAP records a message warning you that a compilable object is being
compiled automatically. The message explains why the compilation was necessary.

NO
Oracle OLAP does not record a message warning you that an object is being
compiled automatically. (Default)

Notes

Slower Response Time
Developing an Oracle OLAP application involves repeated editing of objects that
must be recompiled each time you test them. The compile warning lets you know
that the slower response of the application is because it is compiling code, and not
because of problems with the application. In deeply nested applications, you may
not even be aware that an object with new or revised code has been called.

COMPILEWARN

CHGDFN to DDOF 9-43

Conditions for Automatic Compilation
A compilable object will be automatically compiled in the following cases:

■ The first time it is executed after being edited.

■ The first time it is executed in a session when it was compiled in a previous
session after the last time the analytic workspace was updated and committed.

■ After an analytic workspace object referred to in the code has been renamed or
deleted. When the object name in the code has not been redefined, you will
receive an error message.

■ When the code refers to objects in another analytic workspace and the objects in
the currently attached analytic workspace do not have the same object type
(variable, relation, and so on), data type (INTEGER, TEXT, and so on), or
dimensions as the objects available when the code was previously compiled.

Updating Your Analytic Workspace
When you receive the compile warning, you should update and commit your
analytic workspace so the compiled code is saved as part of your analytic
workspace and can be used in later sessions.

COMPILE Command
When you use the COMPILE command to compile an object, Oracle OLAP does not
display the COMPILEWARN message.

OBJ Function
Use the OBJ function with the ISCOMPILED keyword to obtain information about
the compilation status of a compilable object.

Examples

Example 9–14 Specifying That You Want Compiler Warnings

When COMPILEWARN is set to YES, when you run the do_report program just
after editing it, Oracle OLAP places the following message in your current outfile
before the do_report output.

DO_REPORT is being automatically compiled.

CONSIDER

9-44 Oracle OLAP DML Reference

CONSIDER

The CONSIDER command identifies a definition as the current definition. This
enables you to add a description, value name format, formula, program, model,
permission, or property to the definition with an LD, VNF, EQ, PROGRAM,
MODEL, PERMIT, or PROPERTY command.

Syntax
CONSIDER name

Arguments

name
The name of a definition in the current workspace or in an attached workspace.

Notes

Replacing a Definition Component
When you use an LD, VNF, EQ, PROGRAM, MODEL, or PERMIT command to add
a component to the current definition, any existing value for that component is
discarded and replaced by the new value you specify. For the PROPERTY
command, the value is replaced only when you specify a new value for an existing
property name. Definitions can have more than one property.

Unsuccessful CONSIDER Commands
When the CONSIDER command you issue is unsuccessful, subsequent LD, VNF,
EQ, PROGRAM, MODEL, PERMIT, or PROPERTY commands produce an error.

Implicit CONSIDER Commands
The DEFINE, COPYDFN, and RENAME command automatically issue an implicit
CONSIDER command.

CONSIDER

CHGDFN to DDOF 9-45

Examples

Example 9–15 Adding a Description to an Analytic Workspace Object

This example adds a description (LD) to the definition for district. To add the
LD, you must first use CONSIDER to make district the current definition. The
statements

CONSIDER district
LD Sales Districts
DESCRIBE district

produce the following definition.

DEFINE district DIMENSION TEXT
LD Sales Districts

CONTEXT command

9-46 Oracle OLAP DML Reference

CONTEXT command

The CONTEXT command lets you create and use a context during your Oracle
OLAP session. A context is a means of preserving object values. After you create a
context, you can save the current status of dimensions and the values of options,
single-cell variables, valuesets, and single-cell relations in the context. You can then
restore some or all of the object values from the context.

You can use the CONTEXT function to obtain information about a context.

The CONTEXT command and function provide an alternative to the PUSH and
POP commands. With contexts, you can access and update the saved object values,
whereas PUSH and POP simply allow you to save and restore values.

Syntax
CONTEXT context-name [CREATE | APPLY | DISCARD | {SAVE |DROP|RESTORE} objects]

Arguments

context-name
A text expression that contains the name of the context.

CREATE
Creates a context with the name specified by context-name, which must be unique.

SAVE
Stores the values of the objects specified in objects in the context.

APPLY
Sets the appropriate objects to the values of all corresponding objects saved in the
context.

DISCARD
Deletes the context.

SAVE
Stores the values of the objects specified in objects in the context.

DROP
Drops the values of the objects specified in objects from the context.

CONTEXT command

CHGDFN to DDOF 9-47

RESTORE
Sets whatever objects you specify in objects to the values of the corresponding
objects saved in the context.

objects
One or more object names. Each object name must be separated by a space.

Notes

Persistence of a Context
A context exists only for the duration of an Oracle OLAP session. It is not an
analytic workspace object and therefore cannot be saved as part of any analytic
workspace.

Deleted Objects
When you delete an Oracle OLAP object during the session, it is also removed from
the context.

Detached Analytic Workspaces
When a context contains saved values for objects in a particular analytic workspace,
and you detach that analytic workspace, Oracle OLAP removes those objects from
the context. That context retains any saved values for Oracle OLAP options, as well
as objects from other analytic workspaces that are still attached.

NAME Dimension
You cannot use the CONTEXT command to save the values of the NAME
dimension. When you include NAME in the list of name(s) that you specify with the
SAVE keyword, Oracle OLAP produces an error message.

Long Lines
When you are listing several name(s) that will not fit on a single line, you may use
the continuation character to continue the CONTEXT command on additional lines.

Dimensioned Objects
You may save the values of single-cell variables and relations in a context. When
you try to save a dimensioned variable or relation, Oracle OLAP produces an error
message.

CONTEXT command

9-48 Oracle OLAP DML Reference

Naming Convention
A suggested programming practice is to name the context after the analytic
workspace with which it is associated.

Examples

Example 9–16 Saving Dimension Status

This example shows how you can use the CONTEXT command to save and restore
the status of a dimension. The following statements create a context that includes a
subset of the values in the product dimension.

LIMIT product TO 'Tents' 'Canoes'
CONTEXT 'democontext1' CREATE
CONTEXT 'democontext1' SAVE product

The following statements limit product to all its values and produce a report that
lists them all.

LIMIT product TO ALL
REPORT product

This is the report.

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

The following statements apply the saved context and produce a report that lists
only the values included in the context.

CONTEXT 'democontext1' APPLY
REPORT product

This is the new report.

PRODUCT

Tents
Canoes

CONTEXT function

CHGDFN to DDOF 9-49

CONTEXT function

The CONTEXT function lets you obtain information about object values that are
saved in a context. You must first create the context with the CONTEXT command.

Return Value
The data type of the return value of the CONTEXT function depends on the
arguments you provide. When you use the CONTEXT function without supplying
any arguments, it returns a multiline text value that contains the names of all the
contexts in the current session.

Syntax
CONTEXT ([context-name [UPDATE|name]])

Arguments

context-name
A text expression that contains the name of the context. Using the CONTEXT
function with only the context-name returns a multiline text value that contains the
names of all the objects saved in that context.

UPDATE
When you specify UPDATE with the CONTEXT function, the return value is the
number of times values have been saved or dropped from the context.

name
The name of an object whose value is saved in the context. When you specify name
with the CONTEXT function, the return value is the saved status or value of that
object.

Notes

Persistence of a Context
A context exists only for the duration of an Oracle OLAP session. It is not an
analytic workspace object and therefore cannot be saved as part of any analytic
workspace.

CONTEXT function

9-50 Oracle OLAP DML Reference

Detached Analytic Workspaces
When a context contains saved values for objects in a particular analytic workspace,
and you detach that analytic workspace, then Oracle OLAP removes those objects
from the context. That context retains any saved values for Oracle OLAP options, as
well as objects from other analytic workspaces that are still attached.

Examples

Example 9–17 Listing Context Names

In the following statement, the CONTEXT function returns the name of the only
context in the current session. This is the same context used in "Saving Dimension
Status" on page 9-48.

SHOW CONTEXT

The statement produces the following output.

democontext1

Example 9–18 Listing Objects in a Context

In the following statement, the CONTEXT function returns the name of the only
object included in the context named democontext1.

SHOW CONTEXT('democontext1')

The statement produces the following output.

PRODUCT

Example 9–19 Listing Saved Values

In the following statement, the CONTEXT function returns the values of the
product dimension that are saved in the context named democontext1.

SHOW CONTEXT('democontext1' product)

The statement produces the following output.

Tents
Canoes

CONTINUE

CHGDFN to DDOF 9-51

CONTINUE

The CONTINUE command transfers program control to the end of a FOR or
WHILE loop (just before the DO/DOEND command), allowing the loop to repeat.
You can use CONTINUE only within programs and only with FOR or WHILE.

For more information on controlling program execution, see also BREAK, FOR,
SWITCH, and WHILE.

Syntax
CONTINUE

Examples

Example 9–20 Skipping Over Code in a FOR Loop

In the following lines from a program, an IF command is used to test whether total
sales for a district exceed 5,000,000. When sales are more this amount, the program
goes on to produce a report for that district. However, when a district's sales are less
than the amount, the CONTINUE command is used to transfer control to the end of
the FOR loop (just before the DOEND command). No lines are produced for that
district, and the program goes on to test the next district in the status list.

...
FOR district

DO
IF TOTAL(sales, district) LT 5000000
THEN CONTINUE
... "(report commands for districts with total sales above 5,000,000)
DOEND

...

CONVERT

9-52 Oracle OLAP DML Reference

CONVERT

The CONVERT function converts values from one type of data to another.
CONVERT is primarily useful for changing values from a numeric or DATE data
type to a text data type, or vice versa.

Return Value
The return value depends on the value of the type argument.

Syntax
CONVERT(expression, type [argument...])

Arguments

expression
The expression or variable to be converted.

type
The type of data to which you want to convert expression. The keywords that
represent the types are described in Table 9–2, " Keywords for the type Argument of
the CONVERT Function".

Table 9–2 Keywords for the type Argument of the CONVERT Function

Keyword Description

TEXT Conversion to standard Oracle OLAP data types. Corresponds
to CHAR and VARCHAR2 data types in the Oracle relational
database. A TEXT character is encoded in the database
character set.

NTEXT Conversion to standard Oracle OLAP data types. Corresponds
to the NCHAR and NVARCHAR2 data types of the relational
database. An NTEXT character is encoded in UTF8 Unicode.
This encoding might be different from the NCHAR character
set of the database, which can be UTF16. A conversion from
NTEXT to TEXT can result in data loss when the NTEXT value
cannot be represented in the database character set.

ID Conversion to standard Oracle OLAP data types.

DATE Conversion to standard Oracle OLAP data types.

CONVERT

CHGDFN to DDOF 9-53

NUMBER Conversion to standard Oracle OLAP data types.

BOOLEAN Conversion to standard Oracle OLAP data types.

INTEGER Conversion to standard Oracle OLAP data types.

SHORTINTEGER Conversion to standard Oracle OLAP data types.

LONGINTEGER Conversion to standard Oracle OLAP data types.

DECIMAL Conversion to standard Oracle OLAP data types.

SHORTDECIMAL Conversion to standard Oracle OLAP data types.

DATETIME Conversion to standard Oracle OLAP data types.

BYTE Converts a single character into an ASCII integer value in the
range 0 to 255. Or BYTE converts an INTEGER within this
range into a character. An INTEGER outside this range is taken
modulo 256 and then converted; that is, 256 is subtracted from
the INTEGER until the remainder is less than 256, and that
within-range remainder is then converted into a character.

INFILE Encloses an ID, TEXT, DATE, or RELATION value within
single quotes, so that it can be read with an INFILE command.
This means that expression must have TEXT, ID, DATE, or
RELATION values. In the case of TEXT values with no
alphanumeric equivalent, INFILE converts them to the correct
escape sequences.

PACKED Converts a number to a decimal value and then to packed
format -- a text value 8 bytes long containing 15 digits and a
plus or minus sign. Fractions cannot be represented in packed
numbers; therefore the conversion process rounds decimal
numbers to the nearest integer. See "PACKED and BINARY
Conversion" on page 9-61.

Table 9–2 (Cont.) Keywords for the type Argument of the CONVERT Function

Keyword Description

CONVERT

9-54 Oracle OLAP DML Reference

argument
When you specify TEXT, NTEXT, ID, DATE, or INFILE for the type, you can specify
additional arguments to determine how the conversion should be done:

■ Numeric values to TEXT values

TEXT [decimal-int|DECIMALS [comma-bool|COMMAS [paren-bool|PARENS]]]

■ Numeric values to NTEXT values

NTEXT [decimal-int|DECIMALS [comma-bool|COMMAS [paren-bool|PARENS]]]

■ Numeric values to ID values

ID [decimal-int|DECIMALS]

■ DATE values to TEXT, NTEXT, or ID values

ID|TEXT|NTEXT ['date-format']

■ A DATE value or the values of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR with VNF

ID [dwmqy-dimension]|TEXT [dwmqy-dimension|'vnf']

■ TEXT, NTEXT, or ID values to DATE values

DATE [date-order|dwmqy-dimname]

■ INFILE conversion

INFILE [width-exp|LSIZE [escape-int|0]]

BINARY Does not indicate conversion to a standard Oracle data type
but allows additional conversion capabilities. BINARY does no
conversion. The internal representation of every value,
regardless of data type, is returned as a text value. For TEXT
data types, the result will be the value itself and will therefore
be of variable length. For ID and DECIMAL data types, the
result will be 8 bytes long; ID values will be blank filled, when
necessary. For BOOLEAN or INTEGER, the default result will
be 2 or 4 bytes long respectively (see the arguments
explanation for an additional argument that lets you vary the
width slightly). For all other data types, the result will be 4
bytes long. See "PACKED and BINARY Conversion" on
page 9-61.

Table 9–2 (Cont.) Keywords for the type Argument of the CONVERT Function

Keyword Description

CONVERT

CHGDFN to DDOF 9-55

■ When specifying BINARY with BOOLEAN or INTEGER data

BINARY [width-exp]

■ Onverting between TEXT and NTEXT values

NOXLATE

decimal-int
An INTEGER expression that controls the number of decimal places to be used
when converting numeric data to TEXT or ID values. When this argument is
omitted, CONVERT uses the current value of the DECIMALS option (the default is
2).

comma-bool
A Boolean expression that determines whether commas are used to mark thousands
and millions in the text representation of the numeric data. When the value of the
expression is YES, commas are used. When this argument is omitted, CONVERT
uses the current value of the COMMAS option (the default is YES).

paren-bool
A Boolean expression that determines whether negative values are enclosed in
parentheses in the text representation of the numeric data. When the value of the
expression is YES, parentheses are used; when the value is NO, a minus sign
precedes negative values. When this argument is omitted, CONVERT uses the
current value of the PARENS option (the default is NO).

date-format
A text expression that specifies the template to use when converting a DATE
expression to text. The template can include format specifications for any of the four
components of a date (day, month, year, and day of the week). Each component in
the template must be preceded by a left angle bracket (<)and followed by a right
angle bracket (>). You can include additional text before, after, or between the
components.

The valid formats for each date component are the same as the formats allowed in
the DATEFORMAT option.

In the following statement, CONVERT returns today's date as a text value that is
formatted by a date-format argument.

SHOW CONVERT(TODAY TEXT '<MM>-<DD>-<YY>')

CONVERT

9-56 Oracle OLAP DML Reference

In this example, today's date is March 31, 1998, and the SHOW command presents it
in the following format.

03-31-98

When you do not include the date-format argument, the format of the result is
determined by the current setting of the DATEFORMAT option.

dwmqy-dimension
The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR.
Oracle OLAP uses the VNF of dwmqy-dimension when converting a DATE value to a
TEXT or an ID value. When you have not specified the VNF of dwmqy-dimension,
Oracle OLAP uses its default VNF.

In the following statement, CONVERT returns today's date as a text value that is
formatted by the VNF of the YEAR dimension.

show convert(today text year)

In this example, today's date is March 31, 1998, and the SHOW command presents it
in the following format.

YR98

vnf
A text template that specifies the value name format to use when converting values
of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR to text. The
template can include format specifications for any of the components of a time
period. Time period components include all the components of a date (day, month,
year, and day of the week), plus the fiscal year and period components. The
template can also include the name of the DAY, WEEK, MONTH, QUARTER, or
YEAR dimension as a component. Each component in the template must be
preceded by a left angle bracket and followed by a right angle bracket. You can
include additional text before, after, or between the components.

The vnf argument to the CONVERT function is similar to the template in a VNF
command. However, a VNF command template must be designed for precise and
unambiguous interpretation of input, while the vnf argument is not so constrained.
Therefore, the format styles allowed in the vnf argument are more extensive than
those allowed in a VNF command template.

Valid format styles for a vnf argument include all the format styles allowed in the
template of a VNF command, plus all the format styles allowed in a DATEFORMAT
template. DATEFORMAT provides the following format styles that are not allowed

CONVERT

CHGDFN to DDOF 9-57

in VNF command templates but that are valid in the vnf argument to the CONVERT
function:

■ Ordinal styles for the day of the month (DT and DTL)

■ First-letter style for the month (MT)

■ Styles for the day of the week (W, WT, WTXT, WTXTL, WTEXT, and WTEXTL)

Append a B code to any of these formats to indicate that you want to display the
beginning day or month of the period, rather than the final day or month.

You can use any combination of VNF and DATEFORMAT format styles with for
any dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. This contrasts
with the template in a VNF command, in which only certain format combinations
are valid for each type of dimension.

In the following statement, CONVERT returns the current value of the MONTH
dimension as a text value that is formatted by a vnf argument.

SHOW CONVERT(month TEXT '<MTEXTL>, <YYYY>')

In this example, the first MONTH value in status is DEC97, and the SHOW
command presents it in the following format.

December, 1997

When you do not include the vnf argument, the format of the result is determined
by the VNF of the dimension whose values you are converting. When the
dimension has no VNF, the result is formatted according to the default VNF for the
type of dimension being converted.

date-order
A text expression that specifies how to interpret the specified text value as a DATE
value when the order of the text value's components (month, day, and year) is
ambiguous. The expression can be one of the following: 'MDY', 'DMY', 'YMD',
'YDM', 'MYD', or 'DYM'. Each letter represents a component of the date: M stands
for month, D stands for day, and Y stands for year.

dwmqy-dimname
The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR
whose VNF or default date-order determines how to interpret the specified text
value as a DATE value when the order of the text value's components is ambiguous.

CONVERT

9-58 Oracle OLAP DML Reference

The following examples show how you can control the conversion of a text
expression by using a date-order or dwmqy-dimname argument.

The following statements use the date-order argument.

SHOW CONVERT('1/3/98' DATE 'MDY')
SHOW CONVERT('1/3/98' DATE 'DMY')

These statements produce the following output.

03JAN98
01MAR98

The following statement uses the dwmqy-dimname argument. It specifies the qrtr
dimension, which was defined as a dimension of type QUARTER.

show convert('96-2' date qrtr)

The statement produces the following output.

31MAR96

The following statement also uses the dwmqy-dimname argument. It specifies the
fyear dimension, which has the following definition.

DEFINE fyear DIMENSION YEAR ENDING JUNE
VNF 'TY<ff>'

This statement

SHOW CONVERT('jan97' DATE fyear)

produces the following output.

30JUN97

When you do not include the date-order or dwmqy-dimname argument, any ambiguity
in the interpretation of a text expression is resolved by the current setting of the
DATEORDER option. Refer to the DATEORDER option for a complete description
of DATE values and how they are interpreted.

width-exp
An INTEGER expression that indicates the width of the output from CONVERT.
The minimum width is 7. The default width is the current value of the LSIZE
option. This argument is required when you specify the escape-int argument.

CONVERT

CHGDFN to DDOF 9-59

escape-int
Indicates whether escape sequences are to be used in the output. For this argument
you can specify one of the values listed in Table 9–3, " Values for escape-int
Argument of the CONVERT".

For more information on escape sequences in the OLAP DML, see "Escape
Sequences" on page 2-4.

width-exp
An INTEGER expression that controls the width of the converted result. It can
evaluate to 1, 2, or 4 bytes. The default width is 2 for BOOLEAN, or 4 for
INTEGER. When an integer is too large to fit in the specified width, the result is NA.
When the width is invalid or specified for some other data type, an error occurs.

NOXLATE
A keyword indicating that no character set conversion should be performed.
Instead, Oracle OLAP only tags the converted value with the target data type,
leaving the data as it was before the CONVERT function was called. Use this
keyword only when it is necessary to store binary data in a TEXT or NTEXT
variable.

Notes

INFILE Conversion
The maximum number of characters in a line is 4000. An error occurs when you try
an INFILE conversion that produces a line with more than 4000 characters. This can
occur when the source line exceeds 99 characters and enough of them need escape
sequences.

Table 9–3 Values for escape-int Argument of the CONVERT

Value Description

-1 Do not use escapes. Precede -1 with a comma (,-1) so that
Oracle OLAP does not subtract 1 from a preceding WIDTH
argument.

0 Use escapes for unprintable characters. (Default)

1 Use escapes for all characters.

CONVERT

9-60 Oracle OLAP DML Reference

Converting DATE Values
When you convert a DATE value to an INTEGER value, the result is the sequence
number that represents the date (the sequence number 1 represents
January 1, 1900). When you convert a DATE value to another numeric type, the
date's integer sequence number is converted to the specified numeric data type.

Converting INTEGER Values
When you convert an INTEGER value to a DATE value, the result is the date whose
sequence number matches the specified integer (January 1, 1900 is represented by
the sequence number 1). When you convert from another numeric type to a DATE
value, the number is converted to an INTEGER, then the INTEGER is converted to a
DATE value.

Converting DATE, DAY, WEEK, MONTH, QUARTER, or YEAR to ID
When you convert a value of a dimension of type DATE, DAY, WEEK, MONTH,
QUARTER, or YEAR to an ID value, and the result is more than eight characters
long, the result is truncated.

Converting Relation Values to INTEGER
When you convert a given value of a relation into an INTEGER value, the result
represents the position of the value in the relation's dimension. This behavior
reflects the fact that the values of a relation are dimension values, not TEXT values.

Converting Numbers to a DATE Value
When you convert a number to a DATE value and the result is outside the range of
valid dates, CONVERT returns NA. Valid dates range from January 1, 1900
(sequence number 1) to December 31, 9999 (sequence number 2,958,464).

Converting to INTEGER or SHORTINTEGER
When you try to convert a number larger than 2,147,483,647 or smaller than
-2,147,483,647 (the maximum and minimum integer values), to an INTEGER, you
get a result of NA.

Likewise, when you try to convert a number larger than 32,767 or smaller than
-32,768 to a SHORTINTEGER, you get a result of NA. For a value of type DATE, the
integer 32,767 represents the date September 17, 1992. Therefore, CONVERT returns
NA when you attempt to convert any date later than this to a SHORTINTEGER
value.

CONVERT

CHGDFN to DDOF 9-61

Converting a Null String
When you convert a null string to a BYTE, you get a result of 32. CONVERT returns
the same value for a null string ('') as it does for a blank string (' ').

PACKED and BINARY Conversion
The PACKED and BINARY types are useful for creating binary files that contain
PACKED and BINARY data. To create such a file, use FILEOPEN statement with the
BINARY keyword to open the file and FILEPUT to write values to it. You can use
the ROW function as an argument to the FILEPUT command to help format the file.

Examples

Example 9–21 Converting Decimal Values to Text

This example shows how to use the JOINCHARS and CONVERT functions together
to combine some text with the value of the variable price for a product and
month, and show the price without decimal places.

LIMIT month TO 'Jul96'
LIMIT product to 'Canoes'
SHOW JOINCHARS('Price of Canoes = $' CONVERT(price TEXT 0))
Price of Canoes = $200

Example 9–22 Converting Text Values to Escape Sequences

This example shows how to use the CONVERT function with the ESCAPEBASE
option to convert a TEXT value from its default decimal escape sequences to
hexadecimal escape sequences.

DEFINE textvar VARIABLE TEXT
textvar = 'testvalue'
SHOW CONVERT(textvar INFILE 9 1)
'\d116\d101\d115\d116\d118\d097\d108\d117\d101'
ESCAPEBASE = 'x'
SHOW CONVERT(textvar INFILE 9 1)
'\x74\x65\x73\x74\x76\x61\x6C\x75\x65'

COPYDFN

9-62 Oracle OLAP DML Reference

COPYDFN

The COPYDFN command defines a new object in the analytical workspace and uses
the same definition as a specified object in the current workspace or in an attached
workspace.

Syntax
COPYDFN newobject oldobject

Arguments

newobject
The name of the new object to define.

oldobject
The name of the object whose definition you want to copy.

Notes

Copying Objects
COPYDFN copies the DEFINE, LD, and PROPERTY lines for any type of object, and
it copies the formula (EQ) of a formula object, and the value name format (VNF) of
a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. COPYDFN also
copies the text of a program or model.

COPYDFN does not copy the PERMIT lines for any object, and it does not copy the
compiled code of a formula, program, or model.

Examples

Example 9–23 Copying Programs

The following statements use COPYDFN to create a new program, called newprog,
which is a copy of an existing one called oldprog. You could then edit newprog to

COPYDFN

CHGDFN to DDOF 9-63

create a slightly different program. The oldprog program has the following
definition.

DEFINE oldprog PROGRAM
LD Shows total sales for the top five months from high to low
PROGRAM
LIMIT district TO 'BOSTON'
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
REPORT TOTAL(sales, month)
END

The statements

COPYDFN newprog oldprog
DESCRIBE newprog

produce the following definition for newprog.

DEFINE newprog PROGRAM
LD Shows total sales for the top five months from high to low
PROGRAM
LIMIT district TO 'BOSTON'
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
REPORT TOTAL(sales, month)
END

CORRELATION

9-64 Oracle OLAP DML Reference

CORRELATION

The CORRELATION function returns the correlation coefficients for the pairs of
data values in two expressions. A correlation coefficient indicates the strength of
relationship between the data values. The closer the correlation coefficient is to
positive or negative 1, the stronger the relationship is between the data values in
the expressions. A correlation coefficient of 0 (zero) means no correlation and a +1
(plus one) or -1 (minus one) means a perfect correlation. A positive correlation
coefficient indicates that as the data values in one expression increase (or decrease),
the data values in the other expression also increase (or decrease). A negative
correlation coefficient indicates that as the data values in one expression increase,
the data values in other expression decrease.

Return Value
DECIMAL

Syntax
CORRELATION(expression1 expression2 [PEARSON|SPEARMAN|KENDALL] -

[BASEDON dimension-list])

Arguments

expression1
A dimensioned numeric expression with at least one dimension in common with
expression2.

expression2
A dimensioned numeric expression with at least one dimension in common with
expression1.

PEARSON
Calculates the Pearson product-moment correlation coefficient. Use this method
when the data is interval-level or ratios, such as units sold and price for each unit,
and the data values in the expressions have a linear relationship and are distributed
normally.

CORRELATION

CHGDFN to DDOF 9-65

SPEARMAN
Calculates Spearman's rho correlation coefficient. Use this nonparametric method
when the expressions do not have a linear relationship or a normal distribution. In
computing the correlation coefficient, this method ranks the data values in
expression1 and in expression2 and then compares the rank of each element in
expression1 to the corresponding element in expression2. This method assumes that
most of the values in the expressions are unique.

KENDALL
Calculates Kendall's tau correlation coefficient. This nonparametric method is
similar to the SPEARMAN method in that it also first ranks the data values in
expression1 and in expression2. The KENDALL method, however, compares the ranks
of each pair to the successive pairs. Use this method when few of the data values in
expression1 and in expression2 are unique.

BASEDON dimension-list
An optional list of dimensions along which CORRELATION computes the
correlation coefficient. Both expression1 and expression2 must be dimensioned by all
of the dimension-list dimensions. CORRELATION correlates the data values of
expression1 to those of expression2 along all of the dimension-list dimensions.
CORRELATION returns an array that contains one correlation coefficient for each
cell that is dimensioned by all of the dimensions of expression1 and expression2
except those in dimension-list.

When you do not specify a dimension-list argument, then CORRELATION computes
the correlation coefficient over all of the common dimensions of expression1 and
expression2. When all of the dimensions of the two expressions are the same, then
CORRELATION returns a single correlation coefficient. When either expression
contains dimensions that are not shared by the other expression, then
CORRELATION returns an array that contains one correlation coefficient for each
cell that is dimensioned by the dimensions of the expressions that are not shared.

Notes

The Effect of NASKIP
CORRELATION is affected by the NASKIP option. When NASKIP is set to YES (the
default), then CORRELATION ignores NA values. When NASKIP is set to NO, then
an NA value in the expressions results in a correlation coefficient of NA.

CORRELATION

9-66 Oracle OLAP DML Reference

Examples

Example 9–24 Correlating with the PEARSON Method

These examples use the units and price variables. The two dimensions of the
price variable, month and product, are shared by the units variable, which has
a third dimension, district.

The following CORRELATION statement does not specify a dimension-list
argument. The output of the CORRELATION function in the command is one
correlation coefficient for each of the dimension values in the dimension that the
variables do not have in common.

REPORT CORRELATION(units price pearson)

The preceding statement produces the following output.

CORRELATION
(UNITS
PRICE

DISTRICT PEARSON)
-------------- -----------
Boston -0.75
Atlanta -0.85
Chicago -0.83
Dallas -0.66
Denver -0.83
Seattle -0.69

The following statements limit the month and product dimensions.

LIMIT month to 'Jan96' TO 'Mar96'
LIMIT product TO 'Tents' TO 'Racquets'

CORRELATION

CHGDFN to DDOF 9-67

The following statement reports the correlation coefficient based on the product
dimension for the limited dimension values that are in status.

REPORT CORRELATION(units price pearson basedon product)

CORRELATION(UNITS PRICE PEARSON-
--------BASEDON PRODUCT)--------
-------------MONTH--------------

DISTRICT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------
Boston -0.96 -0.90 -0.89
Atlanta -0.97 -0.97 -0.97
Chicago -0.96 -0.95 -0.95
Dallas -0.98 -0.98 -0.99
Denver -0.97 -0.97 -0.97
Seattle -0.89 -0.83 -0.83

The following statement reports the correlation coefficient based on the month
dimension for the limited dimension values.

REPORT CORRELATION(units price pearson basedon month)

CORRELATION(UNITS PRICE PEARSON-
---------BASEDON MONTH)---------
------------PRODUCT-------------

DISTRICT Tents Canoes Racquets
-------------- ---------- ---------- ----------
Boston -0.59 -0.92 -0.55
Atlanta -0.73 -0.83 0.03
Chicago -0.91 -0.84 -0.68
Dallas -0.86 -0.92 0.31
Denver -0.98 -0.94 -0.67
Seattle -0.98 -0.89 -0.70

COS

9-68 Oracle OLAP DML Reference

COS

The COS function calculates the cosine of an angle expression. The result returned
by COS is a decimal value with the same dimensions as the specified expression.

Return Value
DECIMAL

Syntax
COS(angle-expression)

Arguments

angle-expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 9–25 Calculating the Cosine of an Angle in Radians

This example calculates the cosine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW COS(1)

produce the following result.

0.54030

Example 9–26 Calculating the Cosine of an Angle in Degrees

This example calculates the cosine of an angle of 60 degrees. Since 1 degree =
2 * (pi) / 360 radians, 60 degrees is about 60 * 2 * 3.14159 / 360
radians. The statement

SHOW COS(60 * 2 * 3.14159 / 360)

produces the following result.

0.50000

COSH

CHGDFN to DDOF 9-69

COSH

The COSH function calculates the hyperbolic cosine of an angle expression.

Return Value
DECIMAL

Syntax
COSH(expression)

Arguments

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 9–27 Calculating the Hyperbolic Cosine of an Angle

This example calculates the hyperbolic cosine of an angle of 1 radian. The
statements

DECIMALS = 5
SHOW COSH(1)

produce the following result.

1.54030

COUNT

9-70 Oracle OLAP DML Reference

COUNT

The COUNT function counts the number of TRUE values of a Boolean expression. It
returns 0 (zero) when no values of the expression are TRUE.

Return Value
INTEGER

Syntax
COUNT(boolean-expression [[STATUS] dimensions])

Arguments

boolean-expression
The Boolean expression whose TRUE values are to be counted.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the Boolean expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, the STATUS keyword might be required in
order for Oracle OLAP to process the function successfully, or the STATUS keyword
might provide a performance enhancement. See "The STATUS Keyword" on
page 9-71.

dimensions
The dimensions of the result. By default, COUNT returns a single count of all TRUE
values. When you indicate one or more dimensions for the results, COUNT counts
TRUE values along the dimensions that are specified and returns an array of values.
Each dimension must be either a dimension of boolean-expression or related to one of
its dimensions. When it is a related dimension, you can specify the name of the
relation instead of the dimension name. This enables you to choose which relation is
used when there is more than one.

See also: ANY, EVERY, and NONE.

COUNT

CHGDFN to DDOF 9-71

Notes

The Effect of NASKIP
COUNT is affected by the NASKIP option. When NASKIP is set to YES (the
default), COUNT returns the number of TRUE values of the Boolean expression,
regardless of how many other values are NA. When NASKIP is set to NO, COUNT
returns NA when any value of the expression is NA. When all the values of the
expression are NA, COUNT returns NA for either setting of NASKIP.

Data with a Time Dimension
When boolean-expression is dimensioned by a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH,
QUARTER, or YEAR dimension as a related dimension. Oracle OLAP uses the
implicit relation between the dimensions. To control the mapping of one DAY,
WEEK, MONTH, QUARTER, or YEAR dimension to another (for example, from
weeks to months), you can define an explicit relation between the two dimensions
and specify the name of the relation as the dimension argument to the COUNT
function.

For each time period in the related dimension, Oracle OLAP counts the TRUE data
values for all the source time periods that end in the target time period. This
method is used regardless of which dimension has the more aggregate time periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, Oracle OLAP creates a temporary variable to
use while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the Boolean expression
are limited to a few values and are physically fragmented, you can specify the
STATUS keyword to improve the performance of the function.

When you use the COUNT function with the STATUS keyword in an expression
that requires going outside of the status for results (for example, with the LEAD or
LAG functions or with a qualified data reference), the results outside of the status
will be returned as NA.

COUNT

9-72 Oracle OLAP DML Reference

Examples

Example 9–28 Counting True Values by District

You can use COUNT to find the number of months in which each district sold more
than 2,000 units of sportswear. To obtain a count for each district, specify district
as the dimension for the result.

LIMIT product TO 'SPORTSWEAR'
REPORT HEADING 'Count' COUNT(units GT 2000, district)

The preceding statement statements produce the following output.

DISTRICT Count
-------------- ----------
Boston 0
Atlanta 23
Chicago 11
Dallas 24
Denver 7
Seattle 0

CUMSUM

CHGDFN to DDOF 9-73

CUMSUM

The CUMSUM function computes cumulative totals over time or over another
dimension. When the data being totaled is one-dimensional, CUMSUM produces a
single series of totals, one for all values of the dimension. When the data has
dimensions other than the one being totaled over, CUMSUM produces a separate
series of totals for each combination of values in the status of the other dimensions.

By default, CUMSUM ignores the current status of the dimension over which it is
calculating totals. You can override this behavior by specifying the INSTAT
keyword.

Return Value
DECIMAL

Syntax
CUMSUM(cum-expression [STATUS] total-dim [reset-dim] [INSTAT])

Arguments

cum-expression
A numeric variable or calculation whose values you want to total, for example
UNITS.

STATUS
May be specified to improve the performance of CUMSUM when cum-expression has
more than one dimension. When you specify the STATUS keyword when the data
being totaled is one-dimensional, an error results. For more information, see "Using
the STATUS Keyword" on page 9-75.

total-dim
The dimension of cum-expression over which you want to total.

CUMSUM

9-74 Oracle OLAP DML Reference

reset-dim
Specifies that the cumulative totals in a series should start over with each new reset
dimension value, for example at the start of each new year. The reset dimension can
be any of the following:

■ Any dimension related to total-dim through an explicitly defined relation.

■ Any dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR,
when total-dim also has a type of DAY, WEEK, MONTH, QUARTER, or YEAR.
CUMSUM uses the implicit relation between the two dimensions, so they do
not need to be related through an explicit relation. See "Overriding an Implicit
Relation" on page 9-74.

■ A relation dimensioned by total-dim. CUMSUM uses the related dimension as
the reset dimension. This enables you to choose which relation is used when
there is more than one.

INSTAT
May be specified to cause CUMSUM to use only the values of total-dim that are
currently in status. When you do not specify INSTAT, CUMSUM produces a total
for all the values of total-dim, independent of its current status. See "Current Status
Ignored" on page 9-74.

Notes

Overriding an Implicit Relation
When you specify dimensions with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR for both the total-dim argument and the reset-dim argument, CUMSUM uses
the implicit relation between the two dimensions even when an explicit relation
exists. However, you can override the default and use the explicit relation by
specifying the name of the relation for the reset-dim argument.

Current Status Ignored
Unless you specify the INSTAT keyword, CUMSUM ignores the current status in
calculating totals. Suppose MONTH is the dimension being totaled over (and
INSTAT has not been specified). The CUMSUM total for a given month uses the
values for all preceding months, even when some are not in the status. When a reset
dimension is specified, the total for a given month uses the values for all preceding
months that correspond to the same value of the reset dimension (for example, all
preceding months in the same year). To calculate year-to-date totals, specify YEAR
as the reset dimension.

CUMSUM

CHGDFN to DDOF 9-75

NASKIP Option
CUMSUM is affected by the NASKIP option. When NASKIP is set to YES (the
default), CUMSUM ignores NA values and returns a cumulative total using the
available values. When NASKIP is set to NO, CUMSUM returns NA when any data
value has a value of NA. When all the values are NA, CUMSUM returns NA for either
setting of NASKIP.

Using the STATUS Keyword
When cum-expression is multidimensional, CUMSUM creates a temporary variable
to use while processing the function. When you specify the STATUS keyword,
CUMSUM uses the current status instead of the default status of the dimensions for
calculating the size of this temporary variable. When the dimensions of the
expression are limited to a few values and are physically fragmented, you can
improve the performance of CUMSUM by specifying STATUS.

When you use CUMSUM with the STATUS keyword in an expression that requires
going outside of status for results (for example, with the LEAD or LAG functions or
with a qualified data reference), the results outside of status will be returned as NA.

Examples

Example 9–29 Multiple CUMSUM Calculations

This example shows cumulative units totals for tents and canoes in the Atlanta
district for the first six months of 1996. The report shows the units figures
themselves, year-to-date totals calculated using year as the reset dimension, and
totals calculated with no reset dimension using all preceding months. Assume that
you issue the following statements.

LIMIT district TO 'Atlanta'
LIMIT product TO 'Tents' 'Canoes'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month units CUMSUM(units, month year) -

CUMSUM(units, month)

CUMSUM

9-76 Oracle OLAP DML Reference

The following report is displayed.

DISTRICT: ATLANTA
------------------------PRODUCT------------------------
---------TENTS------------- ---------CANOES------------

CUMSUM(UNI CUMSUM(UNI
TS, MONTH CUMSUM(UNI TS, MONTH CUMSUM(UNI

MONTH UNITS YEAR) TS, MONTH) UNITS YEAR) TS, MONTH)
----- -------- --------- ---------- ------- --------- ----------
Jan96 279 279 5,999 281 281 5,162
Feb96 305 584 6,304 309 590 5,471
Mar96 356 940 6,660 386 976 5,857
Apr96 537 1,477 7,197 546 1,522 6,403
May96 646 2,123 7,843 525 2,047 6,928
Jun96 760 2,883 8,603 608 2,655 7,536

The totals for CUMSUM(UNITS, MONTH) include values for all months beginning
with the first month, JAN95. The totals for CUMSUM(UNITS, MONTH YEAR)
include only the values starting with JAN96.

Example 9–30 Resetting for a Quarter

This example shows cumulative totals for the same products and district, for the
entire year 1996. Because quarter is specified as the reset dimension, totals start
accumulating at the beginning of each quarter. The cumulative totals for Jan96,
Apr96, Jul96, and Oct96 are the same as the units figures for those months.
Assume that you issue the following statements.

LIMIT district TO 'Atlanta'
LIMIT product TO 'Tents' 'Canoes'
limit month TO year 'Yr96'
REPORT DOWN month units CUMSUM(units, month quarter)

CUMSUM

CHGDFN to DDOF 9-77

A report displays.

DISTRICT: ATLANTA
------------------PRODUCT------------------
--------TENTS-------- -------CANOES--------

CUMSUM(UNI CUMSUM(UNI
TS, MONTH TS, MONTH

MONTH UNITS QUARTER) UNITS QUARTER)
------------ ---------- ---------- ---------- ----------
Jan96 279 279 281 281
Feb96 305 584 309 590
Mar96 356 940 386 976
Apr96 537 537 546 546
May96 646 1,183 525 1,071
Jun96 760 1,943 608 1,679
Jul96 852 852 626 626
Aug96 730 1,582 528 1,154
Sep96 620 2,202 520 1,674
Oct96 554 554 339 339
Nov96 380 934 309 648
Dec96 284 1,218 288 936

DATEFORMAT

9-78 Oracle OLAP DML Reference

DATEFORMAT

The DATEFORMAT option holds the template used for displaying DATE values
and converting DATE values to TEXT values. The template can include format
specifications for any of the four components of a date (day, month, year, and day of
the week). It can also include additional text.

Data type
TEXT

Syntax
DATEFORMAT = template

Arguments

template
A TEXT expression that specifies the template for displaying dates. Each component
in the template must be preceded by a left angle bracket and followed by a right
angle bracket. You can include additional text before, after, or between the
components. The default template is '<DD><MTXT><YY>'.

Table 9–4, " DATEFORMAT Templates for Day", Table 9–5, " DATEFORMAT
Templates for Week", Table 9–6, " DATEFORMAT Templates for Month", and
Table 9–7, " DATEFORMAT Templates for Year" present the valid formats for each
component. The tables provide two display examples, one for March 1, 1990 and
another for November 12, 2051.

See also: MONTHNAMES option, DAYNAMES option,
DATEORDER option.

DATEFORMAT

CHGDFN to DDOF 9-79

Table 9–5, " DATEFORMAT Templates for Week" presents the valid formats for
weeks. The table provides two display examples, one for March 1, 1990 and another
for November 12, 2051.

Note that when you specify a format of <WTXT>, <WTXTL>, <WTEXT>, or
<WTEXTL>, the case in which the value is specified in DAYNAMES effects the
displayed value:

■ When the name in DAYNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

■ When the name in DAYNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in DAYNAMES.

Table 9–4 DATEFORMAT Templates for Day

Format Meaning March 1, 1990 November 12, 2051

<D> One digit or two digits 1 12

<DD> Two digits 01 12

<DS> Space-padded, two digits 1 12

<DT> Ordinal, uppercase 1ST 12TH

<DTL> Ordinal, lowercase 1st 12th

Table 9–5 DATEFORMAT Templates for Week

Format Meaning March 1, 1990 November 12, 2051

<W> Numeric 4 1

<WT> First letter, uppercase W S

<WTXT> First three letters,
uppercase.

WED SUN

<WTXTL> First three letters,
lowercase

Wed Sun

<WTEXT> Full name, uppercase WEDNESDAY SUNDAY

<WTEXTL> Full name, lowercase Wednesday Sunday

DATEFORMAT

9-80 Oracle OLAP DML Reference

Table 9–6, " DATEFORMAT Templates for Month" presents the valid formats for
months. The table provides two display examples, one for March 1, 1990 and
another for November 12, 2051.

Note that when you specify a format of <MTXT> or <MTXTL>, the case in which the
value is specified in MONTHNAMES effects the displayed value:

■ When the name in MONTHNAMES is entered as all lowercase, the entire name
is converted to uppercase. Otherwise, the first letter is converted to uppercase
and the second and subsequent letters remain in their original case.

■ When the name in MONTHNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in MONTHNAMES.

Table 9–7, " DATEFORMAT Templates for Year" presents the valid formats for years.
The table provides two display examples, one for March 1, 1990 and another for
November 12, 2051.

Table 9–6 DATEFORMAT Templates for Month

Format Meaning March 1, 1990 November 12, 2051

<M> One digit or two digits 1 11

<MM> Two digits 03 11

<MS> Space-padded, two digits 3 11

<MT> First letter, uppercase M N

<MTXT> First three letters, uppercase MAR NOV

<MTXTL> First three letters, lowercase Mar Nov

Table 9–7 DATEFORMAT Templates for Year

Format Meaning March 1, 1990 November 12, 2051

<YY> Two digits or four digits 90 2051

<YYYY> Four digits 1990 2051

DATEFORMAT

CHGDFN to DDOF 9-81

Notes

Angle Brackets
To include an angle bracket as additional text in a template, specify two angle
brackets for each angle bracket to be included as text (for example, to display the
entire date in angle brackets, specify '<<<D><M><YY>>>').

Month and Day Names
The names used in the month component for the MT, MTXT, MTXTL, MTEXT, and
MTEXTL formats are drawn from the current setting of the MONTHNAMES
option. The names used in the day-of-the-week component for the WT, WTXT,
WTXTL, WTEXT, and WTEXTL formats are drawn from the current setting of the
DAYNAMES option.

Abbreviations
You can set the DAYABBRLEN and MONTHABBRLEN options to use abbreviations
of different lengths for day and month names.

Out-of-Range Years
When you specify the YY format, and a year outside the range of 1950 to 2049 is to
be displayed, the year is displayed in four digits.

DATE-to-TEXT Conversion
When you use a DATE value where a text value (TEXT or ID) is expected, or when
you store a DATE value in a TEXT variable, DATEFORMAT automatically converts
the DATE value to a TEXT value. The current template in the DATEFORMAT
option is used to format the text.

When you want to override the current DATEFORMAT template, you can convert
the DATE value to TEXT by using the CONVERT function with a date-format
argument. See the CONVERT function for an example.

Once a DATE value is stored in a TEXT variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

Time Dimension Values
The DATEFORMAT option does not affect the way values of dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR are displayed. The display of DAY,
WEEK, MONTH, QUARTER, and YEAR dimension values is controlled by a VNF

DATEFORMAT

9-82 Oracle OLAP DML Reference

(value name format) attached to the dimension definition, or by default conventions
for DAY, WEEK, MONTH, QUARTER, and YEAR dimensions.

Examples

Example 9–31 Changing the Format of Dates

Example: The following statements define a DATE variable and set its value to
March 24, 1997, then set the date format to two digits each in the order of day,
month, and year, and send the result to the current outfile.

DEFINE datevar VARIABLE DATE
datevar = '24Mar97'
DATEFORMAT = '<DD>/<MM>/<YY>'
SHOW datevar

These statements produce the following output.

24/03/97

Example: The following statements change the date format to month (text), day
(two digits), and year (four digits), and send the result to the current outfile.

DATEFORMAT = '<MTEXTL> <D>, <YYYY>'
SHOW DATEVAR

These statements produce the following output.

March 24, 1997

Example: The following commands change the date format to day of the week
(text), month (text), day (one or two digits), and year (four digits), and send the
result to the current outfile.

DATEFORMAT = '<WTEXTL> <MTEXTL> <D>, <YYYY>'
SHOW DATEVAR

These commands produce the following output.

Monday March 24, 1997

DATEFORMAT

CHGDFN to DDOF 9-83

Example 9–32 Including Text in the Format of a Date

The following statements save and then change the DATEFORMAT option to
include extra text for a workspace startup greeting.

PUSH DATEFORMAT
DATEFORMAT = 'Hello. Today is <wtextl>, the <dtl> -
OF <MTEXTL>.'
SHOW TODAY
POP DATEFORMAT

When today's date is May 30, 1997, the following output is sent to the current outfile
when the program is run.

Hello. Today is Friday, the 30th of May.

DATEORDER

9-84 Oracle OLAP DML Reference

DATEORDER

The DATEORDER option holds three characters that indicate the intended order of
the month, day, and year components of the DATE values in a workspace for those
cases in which their interpretation is ambiguous. Oracle OLAP automatically refers
to DATEORDER whenever you enter an ambiguous DATE value or convert one
from a text value. For information about date values, see notes.

Data type
ID

Syntax
DATEORDER = order

Arguments

order
One of the following text expressions: 'MDY', 'DMY', 'YMD', 'YDM', 'MYD',
'DYM'. Each letter represents a component of the date. M stands for the month, D for
the day, and Y for the year. The default date order is 'MDY'.

Notes

Date Values
A valid DATE value must fall between January 1, 1900, and December 31, 9999. It
must conform to one of the following three styles, which you can mix throughout a
session:

Numeric style -- Specify the day, month, and year as three integers with one or more
separators between them, using these rules:

■ The day and month components can have one digit or two digits.

■ For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

DATEORDER

CHGDFN to DDOF 9-85

■ To separate the components, you can use a space (), dash (-), slash (/), colon
(:), or comma (,).

■ Examples: '24/4/97' or '24-04-1997'

Packed numeric style -- Specify the day, month, and year as three integers with no
separators between them, using these rules:

■ The day and month components must have two digits. When the day or month
is less than 10, it must be preceded by a zero.

■ For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

■ You cannot use any separators between the date components.

■ Examples: '240497' or '04241997'

Month name style -- Specify the day and year as integers and the month as text, using
these rules:

■ The month component must match one of the names listed in the
MONTHNAMES option. You can abbreviate the month name to one letter or
more, when you supply enough letters to uniquely match the beginning of a
name in MONTHNAMES. The case of the letters in the month component
(uppercase or lowercase) does not need to match the case in MONTHNAMES.

■ The day component can have one digit or two digits.

■ For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

■ When the day and year components are adjacent, they must have at least one
separator between them. As separators, you can use a space (), dash (-), slash
(/), colon (:), or comma (,). When you want, you can place one or more
separators between the day and month or between the year and month.

■ Examples: '24APR97' or '24 ap 97' or 'April 24, 1997'

Valid Dates
To determine whether a text expression (such as an expression with a data type of
TEXT or ID) represents a valid DATE value, use the ISDATE program.

DATEORDER

9-86 Oracle OLAP DML Reference

Ambiguous Dates
When you enter an unambiguous DATE value or convert a text value that has only
one interpretation as a date, it is handled without consulting the DATEORDER
option. For example, in 03-24-97 the 97 can only refer to the year. Considering
what is left, the 24 cannot refer to the month, so it must be the day. Only 03 is left,
so it must be the month. When, however, the interpretation is ambiguous, as in the
value 3-5-97, the current value of DATEORDER is used to interpret the meaning
of each component.

TEXT-to-DATE Conversion
When you use a text value where a DATE value is expected, or when you store a
text value in a DATE variable, the text value must conform to one of the styles listed
earlier in this entry. Oracle OLAP automatically converts the text value to a DATE
value. When the meaning of the text value is ambiguous, the current setting of
DATEORDER is used to interpret the value.

To override the current DATEORDER setting in converting a text value to a DATE
value, use the CONVERT function with the date-order argument.

Essential Date Components
Suppose you want to assign a date value to a DAY, WEEK, MONTH, QUARTER, or
YEAR dimension using a MAINTAIN command or to a valueset using the LIMIT
command. When you specify the value in the form of a DATE expression or a text
literal, Oracle OLAP uses the DATEORDER option to interpret the value. When
supplying a text literal, you can use any valid input style for dates. However, you
need to supply only the date components that are necessary for identifying a time
period in the particular type of dimension or valueset you are using. For example,
for a MONTH dimension or its valueset, you can specify a complete date, such as
30jun97, or you can provide only the essential components, such as jun97 or
0697.

Time Dimension Phases
The DATEORDER option is used to interpret the phase argument to the DEFINE
DIMENSION command for DAY, WEEK, MONTH, QUARTER, and YEAR
dimensions.

DATEORDER

CHGDFN to DDOF 9-87

Examples

Example 9–33 Changing the Date Order

The following commands define and assign a value to a DATE variable, specify the
date format and the date order, and send the output to the current outfile.

DEFINE datevar VARIABLE DATE
dATEFORMAT = '<MTXT> <D>, <YYYY>'
DATEORDER = 'MDY'
DATEVAR = '3 5 1997'
SHOW DATEVAR

These commands produce the following output.

MAR 5, 1997

The following commands change the date order, and, therefore, the way the same
value of the DATE variable is interpreted.

DATEORDER = 'DMY'
SHOW DATEVAR

These commands produce the following output.

MAY 3, 1997

DAYABBRLEN

9-88 Oracle OLAP DML Reference

DAYABBRLEN

The DAYABBRLEN option specifies the number of characters to use for
abbreviations of day names that are stored in the DAYNAMES option. You can
specify how many characters to use for abbreviating particular day names when
you specify the <WT>, <WTXT>, and <WTXTL> formats with the DATEFORMAT text
option.

Data type
TEXT

Syntax
DAYABBRLEN = specification [;|, specification]...

where:

specification
Is a text expression that has the following form:

startpos [- endpos] : length

Arguments

startpos [- endpos]
Numbers that represent the first and last days whose abbreviation length is defined
by length. These numerical positions apply to the corresponding lines of text in the
DAYNAMES option. You can specify these ranges of values in reverse order, endpos
[-startpos], when you prefer.

The DAYNAMES option can have more than seven lines, so you can specify startpos
and endpos greater than seven in the setting of DAYABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
DAYNAMES option, then Oracle OLAP has no text values to abbreviate for that
range. When you later change your day names list so that startpos is valid, the
specified abbreviation is applied.

DAYABBRLEN

CHGDFN to DDOF 9-89

length
A number that specifies the length in characters (not bytes) of abbreviated day
names.

Notes

Abbreviation Lengths
You can define many different groups of days, each with different abbreviation
lengths. When you do so, separate the groups with a comma or a semicolon as
shown in the syntax.

Default Abbreviations
When you do not specify an abbreviation length for a given position in the
DAYNAMES option, or when you explicitly set a given position to zero, Oracle
OLAP uses the default abbreviation. The default abbreviations are one character for
<WT> and three characters for <WTXT> and <WTXTL>. Oracle OLAP never uses
abbreviations when you have designated the full name specifications <WTEXT> and
<WTEXTL>.

Ambiguous Day Names
You can use DAYABBRLEN to interpret ambiguous names, for example, whether
'T' stands for Tuesday or Thursday. When the DAYABBRLEN for Tuesday was 1
and for Thursday was 2, then 'T' would always match Tuesday, and it would
require at least 'Th' to match Thursday. This does not depend on the order of
Tuesday and Thursday in the week; it would work the same way when the two
days were reversed. If, on the other hand, the DAYABBRLEN for each of these was
2, then 'T' would not match either one, and you would have to enter at least 'Tu'
or 'Th' to get a match.

Examples

Example 9–34 Specifying Day Abbreviations

The following DAYABBRLEN setting specifies that the first five days of the week
are abbreviated with one character and the last two days are abbreviated with two
characters.

DAYABBRLEN = '1-5:1, 6-7:2'
DATEFORMAT = '<WTXT> <MTXT> <D>, <YYYY>'
SHOW CONVERT ('2 august 2005' DATE)

DAYABBRLEN

9-90 Oracle OLAP DML Reference

These commands product the following result, with Tuesday abbreviated to one
character:

T AUGUST 2, 2005

DAYNAMES

CHGDFN to DDOF 9-91

DAYNAMES

The DAYNAMES option holds the list of valid names for the days of the week. The
names are used to display values of type DATE or to convert DATE values to text.

Data type
TEXT

Syntax
DAYNAMES = name-list

Arguments

name-list
A multiline text expression that lists the names of the seven days of the week. Each
name occupies a separate line. Regardless of which day you are treating as the first
day of the week, the list must begin with the name for Sunday. The default value is
the list of English names for the days of the week, in uppercase.

Notes

Extra Sets of Names
You can include more than one set of seven names in your list. The eighth name is a
synonym for the first name, the ninth name is a synonym for the second name, and
so on.

How DAYNAMES Is Used
The DAYNAMES list is consulted when you display or convert a date using the
<WT>, <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL> formats. These formats are
specified in the DATEFORMAT option. When you have more than one set of day
names, Oracle OLAP chooses the synonym whose number of characters and
capitalization pattern best match the DATEFORMAT specification.

Abbreviations
You can set the DAYABBRLEN option to control the number of characters used for
abbreviations of day names.

DAYNAMES

9-92 Oracle OLAP DML Reference

Examples

Example 9–35 Specifying Day Names

The following commands set DAYNAMES to the French names for the days of the
week and send the output to the current outfile.

DAYNAMES = 'dimanche\nlundi\n-
mardi\nmercredi\njeudi\nvendredi\nsamedi'
SHOW DAYNAMES

These commands produce the following output.

dimanche
lundi
mardi
mercredi
jeudi
vendredi
samedi

DAYOF

CHGDFN to DDOF 9-93

DAYOF

The DAYOF function returns an integer in the range of 1 through 7, giving the day
of the week on which a specified date falls. A result of 1 refers to Sunday. The result
has the same dimensions as the specified DATE expression.

Return Value
INTEGER

Syntax
DAYOF(date-expression)

Arguments

date-expression
An expression that has the DATE data type, or a text expression that specifies a
date. See "TEXT-to-DATE Conversion" on page 9-93.

Notes

TEXT-to-DATE Conversion
In place of a DATE expression, you can specify a text expression that has values that
conform to a valid input style for dates. DAYOF automatically converts the values
of the text expression to DATE values, using the current setting of the DATEORDER
option to resolve any ambiguity.

Examples

Example 9–36 Finding Today's Weekday

The following command sends the day of the week on which today's date falls to
the current outfile.

SHOW DAYOF(TODAY)

DAYOF

9-94 Oracle OLAP DML Reference

When today's date is January 15, 1997, which is a Wednesday, this command
produces the following output.

4

Example 9–37 Finding the Weekday of a Date

The following command sends the day of the week on which July 4 fell in 1996 to
the current outfile.

SHOW DAYOF('04jul96')

This command produces the following output.

5

DBGOUTFILE

CHGDFN to DDOF 9-95

DBGOUTFILE

The DBGOUTFILE command sends debugging information to a file. When you set
PRGTRACE and MODTRACE to YES, the file produced by DBGOUTFILE
interweaves each line of your program, model, or infile with its corresponding
output. When you set ECHOPROMPT to YES, the debugging file also includes error
messages. The abbreviation for DBGOUTFILE is DOTF.

Syntax
DBGOUTFILE {EOF|[APPEND] file-id [NOCACHE]}

Arguments

EOF
Closes the current debugging file, and debugging output is no longer sent to a file.

file-id
Specifies the file identifier of the file to receive the debugging output.

APPEND
Specifies that the output should be added to the end of an existing file. When you
omit this argument and a file exists with the specified name, the new output
replaces the current contents of the file.

NOCACHE
Specifies that Oracle OLAP should write to the debugging file each time a line is
executed. Without this keyword, Oracle OLAP reduces file I/O activity by saving
text and writing it periodically to the file.

The NOCACHE keyword slows performance significantly, but it ensures that the
debugging file records every line as soon as it is executed. When you are debugging
a program that aborts after a certain line, NOCACHE ensures that you see every
line that was executed.

DBGOUTFILE

9-96 Oracle OLAP DML Reference

Notes

PRGTRACE and MODTRACE Options
By setting PRGTRACE to YES, you specify that you want every line of a program
written to the debugging file. Setting MODTRACE to YES has the same effect for
models. For more information about these options, see their entries.

ECHOPROMPT Option
Setting ECHOPROMPT to YES specifies that you want not only input lines, but also
error messages, to appear in the debugging file. For more information about these
options, see their entries.

Examples

Example 9–38 Debugging with a Debugging File

The following commands create a useful debugging file called debug.txt in the
current directory object.

PRGTRACE = yes
ECHOPROMPT = yes
DBGOUTFILE 'debug.txt'

After executing these commands, you can run your program as usual. To close the
debugging file, execute this command.

DBGOUTFILE EOF

In the following sample program, the first LIMIT command has a syntax error.

DEFINE ERROR_TRAP PROGRAM
PROGRAM
TRAP ON traplabel
LIMIT month TO FIRST badarg
LIMIT product TO FIRST 3
LIMIT district TO FIRST 3
REPORT sales
traplabel:
SIGNAL ERRORNAME ERRORTEXT
END

DBGOUTFILE

CHGDFN to DDOF 9-97

With PRGTRACE and ECHOPROMPT both set to YES and with DBGOUTFILE set to
send debugging output to a file called debug.txt, the following text is sent to the
debug.txt file when you execute the error_trap program.

(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) TRAP ON traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) LIMIT month TO FIRST badarg
ERROR: BADARG does not exist in any attached database.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) SIGNAL ERRORNAME ERRORTEXT
ERROR: BADARG does not exist in any attached database.

Example 9–39 Sending Debugging Information to a File

The following is the text of a program whose first LIMIT command has a syntax
error.

DEFINE error_trap PROGRAM
PROGRAM
TRAP ON traplabel
LIMIT month TO FIRST BADARG
LIMIT product TO FIRST 3
LIMIT district TO FIRST 3
REPORT sales
traplabel:
SIGNAL ERRORNAME ERRORTEXT
END

The following command sends debugging information to a file named debug.txt.

DBGOUTFILE 'debug.txt'

With PRGTRACE and ECHOPROMPT both set to YES, Oracle OLAP sends the
following text to the debug.txt file when you execute the ERROR_TRAP

DBGOUTFILE

9-98 Oracle OLAP DML Reference

program. The last line in the file is the command to stop recording the debugging
information.

error_trap
(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) trap on traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) limit month to first badarg
ERROR: BADARG does not exist in any attached workspace.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) signal errorname errortext
ERROR: BADARG does not exist in any attached workspace.
dbgoutfile eof

DDOF

CHGDFN to DDOF 9-99

DDOF

The DDOF function returns an integer in the range of 1 through 31, giving the day
of the month on which a specified date falls. The result returned by DDOF has the
same dimensions as the specified DATE expression.

Return Value
INTEGER

Syntax
DDOF(date-expression)

Arguments

date-expression
An expression that has the DATE data type, or a text expression that specifies a
date. See "TEXT-to-DATE Conversion" on page 9-99.

Notes

TEXT-to-DATE Conversion
In place of a DATE expression, you can specify a text expression that has values that
conform to a valid input style for dates. The values of the text expressions are
automatically converted to DATE values using the current setting of the
DATEORDER option to resolve any ambiguity.

Examples

Example 9–40 Finding Today's Day of the Month

The following command returns the day of the month on which today's date falls.

SHOW DDOF(TODAY)

When today's date is September 8, 2000, this command produces the following
output.

8

DDOF

9-100 Oracle OLAP DML Reference

DECIMALCHAR to DELETE 10-1

10
DECIMALCHAR to DELETE

This chapter contains the following OLAP DML statements:

■ DECIMALCHAR

■ DECIMALOVERFLOW

■ DECIMALS

■ DECODE

■ DECODE

■ DEFINE

■ DEFINE AGGMAP

■ DEFINE COMPOSITE

■ DEFINE DIMENSION

■ DEFINE FORMULA

■ DEFINE MODEL

■ DEFINE PARTITION TEMPLATE

■ DEFINE PROGRAM

■ DEFINE RELATION

■ DEFINE SURROGATE

■ DEFINE VALUESET

■ DEFINE VARIABLE

■ DEFINE WORKSHEET

■ DELETE

DECIMALCHAR

10-2 Oracle OLAP DML Reference

DECIMALCHAR

(Read-only) The DECIMALCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option.

Data type
ID

Syntax
DECIMALCHAR

Notes

Format for Decimal Input
DECIMALCHAR only affects the way Oracle OLAP formats numbers in output.
When you format numbers for input, use a period (.) for the decimal marker. To
use a different decimal marker, enclose the value in single quotes and use the
TO_NUMBER function to convert the value from text to a valid number.

The Thousands Marker
The THOUSANDSCHAR option lets you check the value of the thousands marker.

Examples

Example 10–1 Identifying the Decimal and Thousands Markers

The statements in this example show the DECIMALCHAR and
THOUSANDSCHAR values.

■ The following statement might produce a comma as output.

SHOW THOUSANDSCHAR

■ The following statement might produce a period as output.

SHOW DECIMALCHAR

DECIMALCHAR

DECIMALCHAR to DELETE 10-3

■ With these values, the following statement might produce the output that
follows it it.

SHOW TOTAL(sales)
63,181,743.50

DECIMALOVERFLOW

10-4 Oracle OLAP DML Reference

DECIMALOVERFLOW

The DECIMALOVERFLOW option controls the result of arithmetic operations that
produce out-of-range numbers. Decimal numbers are stored as a mantissa and an
exponent. Decimal overflow occurs when the result of a calculation is very large
and can no longer be represented by the exponent portion of the decimal
representation.

Data type
BOOLEAN

Syntax
DECIMALOVERFLOW = YES|NO

Arguments

YES
Allows overflow. A calculation that generates overflow will execute without error,
and the results of the calculation will be NA.

NO
Disallows overflow. A calculation involving overflow will stop executing, and an
error message will be produced. (Default)

Examples

Example 10–2 The Effect of DECIMALOVERFLOW

This example shows the effect of changing the value of the DECIMALOVERFLOW
option.

When you execute a SHOW command such as the following without changing
DECIMALOVERFLOW from its default value of NO, an error occurs.

SHOW 1000000.0 ** 133

DECIMALOVERFLOW

DECIMALCHAR to DELETE 10-5

When you change DECIMALOVERFLOW to YES, the same statement executes
without an error and produces NA as the result of the operation. The statements

DECIMALOVERFLOW = YES
SHOW 1000000.0 ** 133

produce the following result.

NA

DECIMALS

10-6 Oracle OLAP DML Reference

DECIMALS

The DECIMALS option controls the number of decimal places that are shown in
numeric output. Values are rounded to fit the specified number of decimal places.

Data type
INTEGER

Syntax
DECIMALS = n

Arguments

n
An integer expression that specifies the number of decimal places to include in all
output of DECIMAL and SHORTDECIMAL values; n can be any number in the
range 0 to 40 or the number 255. A value of 255 produces "best presentation"
formats. (See "Best Presentation Formats" on page 10-7.) The default is 2.

Notes

Showing INTEGER Data
The setting of DECIMALS does not affect the format of INTEGER values in output.
INTEGER values are shown with no decimal places, unless you explicitly apply a
DECIMAL attribute to them in a HEADING, REPORT, or ROW command.

DECIMALS

DECIMALCHAR to DELETE 10-7

Best Presentation Formats
When you set DECIMALS to 255, you are specifying the following formats for
numbers:

■ SHORTDECIMAL values are shown with as many decimal places as can fit into
an overall total of 7 significant digits.

■ DECIMAL values are shown with as many decimal places as can fit into 15
significant digits.

Both DECIMAL and SHORTDECIMAL values are rounded to the last decimal place
that is shown, and trailing decimal zeros are dropped. See "Comparing 2 Decimal
Places with Best Presentation Format" on page 10-7.

Examples

Example 10–3 Showing Data with No Decimal Places

To show no decimal places in numeric output, set the DECIMALS option to 0 (zero)
before you produce your report.

DECIMALS = 0
LIMIT line TO 'COGS'
LIMIT month TO 'Jan96' 'Feb96'
REPORT DOWN division ACROSS month: budget

These statements produce the following output.

LINE: COGS
-------BUDGET--------
--------MONTH--------

DIVISION Jan96 Feb96
-------------- ---------- ----------
Camping 355,933 385,308
Sporting 279,773 323,982
Clothing 528,370 546,468

Example 10–4 Comparing 2 Decimal Places with Best Presentation Format

This example contrasts the effects of setting DECIMALS to 2 and setting it to 255
("best presentation" format).

DECIMALS

10-8 Oracle OLAP DML Reference

The OLAP DML statements

DECIMALS = 2
SHOW JOINCHARS(1.1 'A')

produce the following output.

1.10A

The OLAP DML statements

DECIMALS = 255
SHOW JOINCHARS(1.1 'A')

produce the following output.

1.1A

DECODE

DECIMALCHAR to DELETE 10-9

DECODE

The DECODE function compares one expression to one or more other expressions
and, when the base expression is equal to a search expression, returns the
corresponding result expression; or, when no match is found, returns the default
expression when it is specified, or NA when it is not.

 Return Value
The data type of the first search argument.

 Syntax
 DECODE (expr , search, result [, search , result]... [, default])

Arguments

expr
The expression to be searched.

search
An expression to search for.

result
The expression to return when expression is equal to search.

default
An expression to return when expression is not equal to search.

Notes

Order of Value Evaluation
The search, result, and default values can be derived from expressions. The function
evaluates each search value only before comparing it to expr, rather than evaluating
all search values before comparing any of them with expr. Consequently, the
function never evaluates a search when a previous search is equal to expr.

DECODE

10-10 Oracle OLAP DML Reference

Automatic Data Type Conversion Before Searching for Values
The function automatically converts expr and each search value to the data type of
the first search value before comparing. The function automatically converts the
return value to the same data type as the first result.

 Decoding NA Values
The DECODE function considers two NAs to be equivalent. When expr is NA, then
the function returns the result of the first search that is also NA.

DEFAULTAWSEGSIZE

DECIMALCHAR to DELETE 10-11

DEFAULTAWSEGSIZE

The DEFAULTAWSEGSIZE option holds the default maximum segment size for an
analytic workspace created in your database session. The setting is in effect for the
duration of your session. For each new session, DEFAULTAWSEGSIZE reverts to
the default value.

Syntax
DEFAULTAWSEGSIZE = n

Arguments

n
A number of bytes.

Notes

AW SEGMENTSIZE Command and AW(SEGMENTSIZE) Function
To change the maximum size for new segments in an existing workspace, use the
AW command with the SEGMENTSIZE keyword. To discover the current
maximum size for new segments, use the AW function with the SEGMENTSIZE
keyword.

Examples

Example 10–5 Displaying the Maximum Segment Size for a Session

The following statement lists the current maximum segment size for workspaces.

SHOW DEFAULTAWSIZE

Example 10–6 Setting the Maximum Segment Size for a Session

The following statement sets the maximum segment size to approximately 1/2
gigabyte.

DEFAULTAWSIZE = 536870910

DEFINE

10-12 Oracle OLAP DML Reference

DEFINE

The DEFINE command adds a new object to the analytic workspace. This entry
describes the DEFINE command in general. The following entries discuss the use of
the DEFINE command for creating specific types of object:

■ DEFINE AGGMAP

■ DEFINE COMPOSITE

■ DEFINE DIMENSION

■ DEFINE DIMENSION (simple)

■ DEFINE DIMENSION (conjoint)

■ DEFINE DIMENSION CONCAT

■ DEFINE DIMENSION ALIASOF

■ DEFINE FORMULA

■ DEFINE MODEL

■ DEFINE PARTITION TEMPLATE

■ DEFINE PROGRAM

■ DEFINE RELATION

■ DEFINE SURROGATE

■ DEFINE VALUESET

■ DEFINE VARIABLE

■ DEFINE WORKSHEET

Syntax
DEFINE name object-type attributes [AW workspace] [SESSION]

DEFINE

DECIMALCHAR to DELETE 10-13

Arguments

name
A TEXT expression that is the name for the new object. Follow these guidelines
when specifying a value for name:

■ The name must consist of 1 to 64 characters. When you are using a multibyte
character set, you can still specify 64 characters even when this requires more
than 64 bytes. Each character may be a letter (A-Z), a number (0-9), an underline
(_), or a dot (.). However, the following restrictions apply to the use of these
characters:

■ The name cannot consist of a single dot (.) character or a single underscore
(_) character.

■ The name cannot duplicate a reserved word. For more information on
identifying reserved words, see RESERVED.

■ The first character in the name cannot be a number.

■ The first character cannot be a dot (.) when the second character is a
number.

■ By default Oracle OLAP creates the definition in the current workspace. To
create the definition in a different attached workspace, you can specify a
qualified object name for name or you can use the AW argument to specify the
workspace. Do not use both.

object-type
The type of object being defined. The default is VARIABLE. The object types are
discussed in the subsections for the DEFINE command.

attributes
Attributes are different for each type of object. The attributes are listed in the entry
for each object type.

Caution: Oracle OLAP does not warn you when you create an
object that has the same name as an existing object in another
attached workspace.

DEFINE

10-14 Oracle OLAP DML Reference

AW workspace
The name of an attached workspace in which you wish to define the object. You can
also specify a noncurrent attached workspace using a qualified object name for
name. Do not use this phrase when qualified object name for name.

SESSION
Specifies that the object exists only in the current session. The object is created in the
EXPRESS analytic workspace to which you have read-only access. When you close
the current session, the object no longer exists.

Notes

Modifying Object Definitions
To modify an existing object definition, use CHGDFN.

Extending Object Definitions
A DEFINE statement defines a basic object definition.You can extend that definition
to include a calculation specification, a long definition, properties, permissions,
format information, and triggers.

Use DESCRIBE to view the basic definition of an object, its calculation specification,
a long definition, properties, permissions, format information. To view the complete
definition of an object (including its properties and triggers), use FULLDSC.

Adding a Calculation Specification A DEFINE statement to create a definition for
an aggmap object, formula, model or program merely creates a definition for the
object. It does not define the calculation specification for the object. After you define
the object, you must explicitly add the calculation specification. You can add the
specification using an Edit window in the OLAP Worksheet or using one of the
following OLAP DML statements:

■ AGGMAP to add an aggregation specification to the definition of an aggmap
object.

■ ALLOCMAP to add an allocation specification to the definition of an aggmap
object.

■ EQ to add a calculation specification to the definition of a formula.

■ MODEL to add a calculation specification to the definition of a model.

■ PROGRAM to add a calculation specification to the definition of a program.

DEFINE

DECIMALCHAR to DELETE 10-15

Adding a Long Description Use LD to add a long description to the definition of
an object.

Adding Properties to Objects Use PROPERTY to add one or more properties to
the definition of an object.

Adding Permissions Use PERMIT to specify permissions for an object.

Adding Triggers Use the TRIGGER command to specify triggers for an object.

Triggering Program Execution When DEFINE Executes
Using a TRIGGER_DEFINE program, you can make the DEFINE command an
event that will automatically execute an OLAP DML program. See "Trigger
Programs" on page 1-14 for more information.

The NAME Dimension
When you execute a DEFINE command with the NAME dimension limited to less
than all its values, the status of NAME is automatically limited to ALL.

Viewing Session Objects
Objects created with the SESSION keyword are stored in the analytic workspace
named EXPRESS instead of the current analytic workspace. Therefore, statements
that operate against the current analytic workspace (such as LISTNAMES) do not
list session objects unless you do one of the following:

■ Specify the EXPRESS analytic workspace in the statement (such as LISTNAMES
AW EXPRESS)

■ Make the EXPRESS analytic workspace the current analytic workspace by
issuing an AW ATTACH EXPRESS statement.

DEFINE AGGMAP

10-16 Oracle OLAP DML Reference

DEFINE AGGMAP

The DEFINE command with the AGGMAP keyword adds a new aggmap object to
an analytic workspace. An aggmap object is a specification for how Oracle OLAP
allocates or aggregates variable data.

Syntax
DEFINE aggname AGGMAP [<dims...>][AW workspace][SESSION]

Arguments

aggname
The name of the object that you are defining. For general information about this
argument, see the main entry for the DEFINE command.

AGGMAP
The object type when you are defining an aggmap.

dims
(Optional; retained for compatibility with earlier software versions.) When defining
an aggmap object for aggregation (that is, an AGGMAP type aggmap), the names of
the dimensions. You cannot specify a conjoint dimension as a base dimension in the
definition or specification for the aggmap.

AW workspace
The name of an attached workspace in which you wish to define the object. For
more about this argument, see the main entry for the DEFINE command.

Note: Defining an aggmap merely creates an aggmap object in the
analytic workspace; it does not define the calculation specification.
The aggmap specification can either specify how to aggregate or
how to allocate data:

■ For information on coding an aggregation specification, see
AGGMAP.

■ For information on coding an allocation specification, see
ALLOCMAP.

DEFINE

DECIMALCHAR to DELETE 10-17

SESSION
Specifies that the object exists only in the current session. For more information
about this argument, see the main entry for the DEFINE command.

Notes

Creating Temporary or Custom Aggregates
Most aggmap objects are defined to calculate variable values that are dimensioned
by permanent dimension members (that is, dimension members that persist from
one session to another). However, at runtime, users might wish to aggregate or
allocate data for their own use for forecasting or what-if analysis, or just because
they want to view the data in an unforeseen way. Adding temporary members to
dimensions and aggregating or allocating data for those members is sometimes
called creating temporary or custom aggregates or allocations. For an example of
creating temporary aggregates, see Example 16–38, "Creating Calculated Dimension
Members with Aggregated Values" on page 16-84.

Examples

Example 10–7 Creating an Aggmap for Aggregation

Suppose you define a sales variable with the following statement.

DEFINE sales VARIABLE <time, product, geography>

Assume also that you have defined an aggmap named sales.agg with the
following definition and specification.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'All')
RELATION geography.r
CACHE STORE
END

The sales.agg aggregation specification contains the preceding three RELATION
statements and a CACHE statements. In this example, you are specifying that all of
the data for the time.r hierarchy of the time dimension should be aggregated,
except for any data that has a time dimension value of Year99. All of the data for
the product.r hierarchy of the product dimension should be aggregated, except
for any data that has the product dimension value of ALL. (In this example, the

DEFINE AGGMAP

10-18 Oracle OLAP DML Reference

product dimension has a dimension value named ALL that represents all products
in the hierarchy.) All geography dimension values are aggregated. The CACHE
STORE command specifies that any data that is rolled up on the fly should be
calculated just once and stored in the cache for other access requests during the
same session.

Note that users should not have write access to the analytic workspace when
CACHE STORE is set, because the data calculated during the session may be saved
inadvertently.

In this example, any data value that dimensioned by a Year99 time value or an
ALL product dimension value is calculated on the fly.

You can now use the sales.agg aggmap with an AGGREGATE command, such as
the following.

AGGREGATE sales USING sales.agg

Example 10–8 Creating an Aggmap for Allocation

Suppose you have a sales variable that you defined with the following statement.

DEFINE sales VARIABLE <time, product, geography>

To allocate data from a source to cells in the sales variable that are specified by the
time and product dimension hierarchies, you have created an ASCII disk file
called salesalloc.txt, which contains the following aggmap definition and
specification.

DEFINE sales.alloc AGGMAP
ALLOCMAP
RELATION time.r OPERATOR EVEN
RELATION product.r operator EVEN NAOPERATOR HEVEN
SOURCEVAL ZERO
CHILDLOCK DETECT
END

To include the sales.alloc aggmap in your workspace, execute the following
statement.

INFILE 'salesalloc.txt'

The sales.alloc aggmap is now defined, and it contains the preceding two
RELATION commands, the SOURCEVAL command and the CHILDLOCK
command. You end the entry of statements into the aggmap with the END
command. In this example, you are specifying that the first allocation of source

DEFINE

DECIMALCHAR to DELETE 10-19

values occurs down the time dimension hierarchy and that the source value is
divided evenly between the target cells at each level of the allocation. The second
allocation occurs down the product dimension hierarchy, with the source value
again divided evenly between the target cells at each level of the allocation, and
when the allocation encounters a deadlock, the source values is divided evenly
between the target cells of the hierarchy including cells that have a basis value of
NA. With the SOURCEVAL command you specify that after the allocation,
ALLOCATE sets the value of each source cell to zero. With the CHILDLOCK
command you specify that ALLOCATE detects the existence of locks on both a
parent and a child element of a dimension hierarchy.

You can now use the sales.alloc aggmap with an ALLOCATE command, such
as the following.

ALLOCATE sales USING sales.alloc

The preceding statement does not specify a basis or a target object so ALLOCATE
uses the sales variable as the source, the basis, and the target of the allocation.

DEFINE COMPOSITE

10-20 Oracle OLAP DML Reference

DEFINE COMPOSITE

The DEFINE command with the COMPOSITE keyword adds a new named
composite to an analytic workspace.

Conceptually, you can think of a composite consisting of two structures:

■ The composite object itself. The composite contains the dimension-value
combinations (that is, a composite tuples) that Oracle OLAP uses to determine
the structure of any variables dimensioned by the composite.

■ An index between the composite values and its base dimension values.

You define a variable using one or more composites when you want to reduce the
amount of NA values stored in the variable. Reducing the sparsity of a variable in
this way results in more efficient data storage as discussed in "B-Tree and Hash
Composites" on page 10-22.

Syntax
DEFINE name COMPOSITE <dims...> [AW workspace] [index-algorithm] [SESSION]

where:

index-algorithm specifies the algorithm that Oracle OLAP uses to create an index that
relates the composite values to its base dimension values. When you omit this
optional argument, Oracle OLAP uses the value specified by the SPARSEINDEX
option. Valid values for index-algorithm are:

BTREE
COMPRESSED
HASH

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

Note: Oracle OLAP also supports the use of unnamed composites
as described in "Unnamed Composites" on page 10-24.

DEFINE

DECIMALCHAR to DELETE 10-21

COMPOSITE
The object type when you are defining a named composite.

dims
The names of two or more dimensions or b-tree or hash composites that you want
to be the base dimensions of the composite. When you specify COMPRESSED as the
value of index-algorith , at least one of the dimensions must be a hierarchal
dimension.

The order of the dimensions in dims varies by the value you specify for
index-algorithm:

■ For b-tree or hash composites, specify the dimensions in fastest to
slowest-varying order as discussed in "Effect of Dimension Order on Variable
Storage" on page 10-74.

■ For compressed composites, specify the dimensions in order by hierarchy depth
and the degree of aggregation—shallowest to deepest, least to most aggregated.
When these requirements conflict, experiment to determine the most effective
order. Use values returned by OBJ function with the PHYSVALS keyword to
evaluate the results of your experimentation.

You must define all the dimensions and named composites used in the list before
defining the composite. DEFINE will automatically create any unnamed composites
in the list for you.

AW workspace
The name of an attached workspace in which you wish to define the object. For
more information about this argument, see the main entry for the DEFINE
command.

BTREE
Specifies the creation of a b-tree index to relate composite values to base dimension
values. BTREE is the standard indexing method for composites.

COMPRESSED
Specifies the creation of a compressed index to relate composite values to base
dimension values. You specify COMPRESSED only when you want to create a

Note: A compressed composite cannot be a base dimension of
another composite. You cannot specify a compressed composite as
one of the dimensions in dims.

DEFINE COMPOSITE

10-22 Oracle OLAP DML Reference

composite for a variable that will be aggregated using the AGGREGATE command
and when at least one hierarchical dimension is specified in dims. (See "Compressed
Composites" on page 10-23 for more information.)

HASH
Specifies the creation of a hash index to relate composite values to base dimension
values. HASH is rarely used and, then, typically, only when the composite has two
or three dimensions.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

B-Tree and Hash Composites
For a variable that is dimensioned by a b-tree or hash composite, Oracle OLAP
creates variable cells only for those dimension values that are stored in the tuples of
the composite; it does not create a cell for every value in the base dimensions. Data
for the variable is stored in order, cell by cell, for each tuple in the composite. From
the perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. This means that when
you define a variable with one regular dimension and one composite, the data for
the variable is stored as though it was a two-dimensional variable.

Before Oracle OLAP populates a cell in a variable dimensioned by a b-tree or hash
composite, it first determines if the dimension-value combination for that variable
cell is already in the composite (that is, if the composite tuple exists). When the
composite tuple exists, Oracle OLAP stores the data in the variable using the
existing composite structure. When the composite tuple does not exist, then Oracle
OLAP populates the composite and the composite index before it stores the data in
the variable. For an example of populating a variable with a composite, see
Example 10–29, "Defining a Variable That Uses a Named B-Tree Composite" on
page 1-14.

Unshared and Shared Composites
The actual sparsity of a variable dimensioned by a composite varies depending on
whether or not the composite is an unshared composite or a shared composite:

■ An unshared composite is a b-tree, hash, or compressed composite that is used
to dimension only one variable. An unshared composite is populated only
when the variable that uses it is populated. Consequently, an unshared

DEFINE

DECIMALCHAR to DELETE 10-23

composite perfectly reflects the sparsity of the variable that it is used to
dimension. It only has the dimension value combinations for each non-NA value
in that variable.

■ A shared composite is a b-tree or hash composite that is used to dimension
more than one variable. (A compressed composite can dimension only one
variable or one partition of a variable. A compressed composite cannot be a
shared composite.) A shared composite is populated when any of the variables
that use it are populated. A shared composite has all of the dimension value
combinations for non-NA values for all of the variables that it dimensions. A
shared composite reflects the sparsity of all of the variable that it is used to
dimension. Typically, therefore, variables dimensioned by shared composites
are not perfectly sparse variables.

When the size of variables is important, when you have variables that will be sparse
along the same dimensions, but will have significantly different patterns of sparsity,
define different composites for the different variables.

Compressed Composites
In some cases, when you aggregate data in a variable dimensioned by a composite
defined with one or more hierarchical dimension, one parent node may have only
one descendant node — and so on all the way up to the top level. When a variable
has a good deal of this type of sparsity, use a compressed composite as the
dimension of the variable. Dimensioning this type of variable with a compressed
composite creates the smallest possible variable, composite, and composite
index—much smaller than if you dimension a variable with a b-tree or hash
composite.

This reduction in size does not occur at the detail level. Oracle OLAP creates
composite values for detail level the same way for all composites. A composite
contains one composite tuple for each set of base dimension values that identifies
non-NA detail data in the variables that use it.

The reduction in size occurs for those sets of base dimension values that identify
non-NA data at higher levels of hierarchical dimensions. Oracle OLAP populates
these higher-level values differently depending on whether a variable is
dimensioned by a b-tree, hash, or compressed composite:

■ For variables dimensioned by b-tree and hash composites, Oracle OLAP creates
composite tuples for non-NA data at higher levels the same way that it does for
non-NA data at the detail level. There is one composite tuple (with its own
physical position) for each set of base dimension values that identifies non-NA

DEFINE COMPOSITE

10-24 Oracle OLAP DML Reference

data. The composite index contains all of the index entries needed to relate the
composite tuple to the base dimension values.

■ For variables dimensioned by compressed composites, Oracle OLAP reduces
redundancy in the variable, composite, and composite index by using
the"intelligence" of the AGGREGATE command that populates the variable. For
sets of base dimension values that represent parent nodes, Oracle OLAP creates
a physical position in the composite only for those tuples that represent a parent
with more than one descendant. Oracle OLAP then creates an index between
this composite structure and the base dimensions and uses this composite
structure as the dimension of the variable. Since the actual structure of a
compressed composite is smaller than that of a b-tree or hash composite, a
variable dimensioned by a compressed composite is also smaller than a variable
dimensioned by a b-tree or hash composite. Also, since the index for a
compressed composite only has nodes for parents with more than one
descendant, the index of a compressed composite has fewer levels and is
smaller than the index of a b-tree composite.

Although performance varies depending on the depth of the hierarchies and the
order of the dimensions in the composite, aggregating variables defined with
compressed composites is typically much faster than aggregating variables defined
with b-tree or hash composites.

Unnamed Composites
Oracle OLAP automatically defines an unnamed composite when a DEFINE
VARIABLE statement with a SPARSE <dimlist> phrase executes. An unnamed
composite can have either a b-tree or hash index. The type of index is determined
by the value of the SPARSEINDEX option at the time that Oracle OLAP defines an
unnamed composite.

Once Oracle OLAP has created a definition for an unnamed composite for a certain
dimension list, it uses that composite any time you define a variable with the same
SPARSE <dimlist> phrase. Thus all variables that are defined with the same SPARSE
<dimlist> phrase share the same unnamed composite. For more information on
sharing composites, see "Unshared and Shared Composites" on page 10-22.

Examples

Example 10–9 Creating a Named B-Tree Composite

Assume that the value of SPARSEINDEX is BTREE. The following statements define
two objects: a named composite that has a b-tree index and base dimensions of

DEFINE

DECIMALCHAR to DELETE 10-25

market and a variable called expenses that is dimensioned by the month
dimension and the market.product composite.

DEFINE market.product COMPOSITE <market product>
DEFINE expenses DECIMAL <month market.product <market product>>

DEFINE DIMENSION

10-26 Oracle OLAP DML Reference

DEFINE DIMENSION

The DEFINE command with the DIMENSION keyword adds a new dimension
object to an analytic workspace. A dimension is a list of values that provides an
index to the data.

Because the syntax of the DEFINE DIMENSION command is different depending
on the type of the dimension that you are defining, four separate entries are
provided:

■ DEFINE DIMENSION (simple) for defining a dimension with unique values of
the same data type.

■ DEFINE DIMENSION (DWMQY) for defining a non-hierarchical dimension
whose values represent a time period (day, week, month, quarter, or year).

■ DEFINE DIMENSION (conjoint) for defining a dimension over two or more
other base dimensions when the base dimesnions do not contain duplicate
values or have different data types and when you want to explicitly specify the
dimension value combinations.

■ DEFINE DIMENSION CONCAT for defining a dimension over two or more
other base dimension when the base dimensions contain duplicate values or
different data types or when you want Oracle OLAP to automatically populate
the dimension value combinations.

■ DEFINE DIMENSION ALIASOF for defining an alias for a simple dimension.

DEFINE DIMENSION (simple)
The DEFINE DIMENSION (simple) command defines a simple dimension. A
simple dimension is a list of unique data values with the same data type. A simple
dimension can be a flat dimension or a hierarchical dimension that contains values
from different levels of a hierarchy.

Syntax
DEFINE name DIMENSION type [TEMP] [AW workspace] [SESSION]

Tip: To create a hierarchical dimension using duplicate values or
values of different data types, use a concat dimension as described
in DEFINE DIMENSION CONCAT.

DEFINE

DECIMALCHAR to DELETE 10-27

where:

type is the data type of the dimension. The syntax of type varies depending on the
data type:

TEXT [WIDTH n]

NTEXT [WIDTH n]

ID

INTEGER

NUMBER(precision [, scale])

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a dimension.

TEXT
Specifies that the values of the dimension have the TEXT data type which is
equivalent to the CHAR and VARCHAR2 data types in the Oracle database. This
data type stores up to 4000 bytes for each line in the database character set.

NTEXT
Specifies that the values of the dimension have the NTEXT data type which is
equivalent to the NCHAR and NVARCHAR2 data types in the Oracle Database.
This data type stores up to 4000 bytes for each line in UTF-8 character encoding.

ID
Specifies a special text data type that stores up to 8 single-byte characters for each
line in the database character set.

WIDTH n
For TEXT or NTEXT dimensions, the width, in bytes, of the storage area of each
value of an object. Valid width values are 1 through 4000. Specify a fixed width
only when you are certain that the values of a particular dimension are of similar
size. When a value exceeds the specified width, it will be truncated.

DEFINE DIMENSION

10-28 Oracle OLAP DML Reference

INTEGER
Specifies that the values of the dimension have the INTEGER data type. The data
type for a dimension with values that are identified by their numeric position (1, 2,
and so on). A data type of INTEGER means that the dimension has no character
values. For ease of use, you should use a text or time period data type, when
possible.

NUMBER
Specifies that the values of the dimension have the NUMBER data type. A
NUMBER dimension differs from other dimensions in that its values cannot be
specified by position, only by value. To specify the values of a NUMBER dimension
by position, you can define an INTEGER type dimension surrogate for the
NUMBER dimension.

precision
The total number of digits a value of type NUMBER can have.

scale
The number of digits a value of type NUMBER can have to the right of a decimal
point. For example, when you specify a precision of 7 and a scale of 2, then the
highest value that the dimension can have is 99999.99. When you do not specify a
scale value, then the scale is 0.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you wish to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

DEFINE

DECIMALCHAR to DELETE 10-29

Examples

Example: Defining a Simple Dimension
This example adds the dimension city to a workspace. You can attach a
description to the object immediately after defining it. (You can also add the
description later when you use the CONSIDER and LD commands.) After defining
the dimension city, you can give it values with the MAINTAIN command.

The statements

DEFINE city DIMENSION ID
LD List of cities
MAINTAIN city ADD 'Boston' 'Chicago' 'Dallas' 'Seattle'
DESCRIBE city

produce the following definition.

DEFINE city DIMENSION ID
LD List of cities

DEFINE DIMENSION (DWMQY)
The DEFINE DIMENSION (DWMQY) command defines a special type of
dimension whose values represent time periods.

Syntax
DEFINE name DIMENSION dwmqy [TEMP] [AW workspace] [SESSION]

Note: After defining a DWMQY dimension, you can use the VNF
command to add a value name format to the dimension's
definition. The VNF command controls the format for entering
dimension values as well as the format for showing them in output.

Note: When you want to aggregate over time do not define the
time dimension as a DWMQY dimension since you cannot
aggregate over dimensions of this type. Instead, define the time
dimension as a hierarchical dimension of type TEXT or NTEXT.

DEFINE DIMENSION

10-30 Oracle OLAP DML Reference

where:

dwmqy is the time period of the dimension. The valid types for dwmqy are DAY,
WEEK, MONTH, QUARTER, and YEAR. Each type indicates the span of the time
period represented by the individual dimension values of the dimension. The
syntax of dwmqy varies depending on the type:

DAY

[multiple] WEEK [BEGINNING [phase]| ENDING [phase]]

[multiple] MONTH [BEGINNING phase | ENDING phase]

QUARTER [BEGINNING phase | ENDING phase]

YEAR [BEGINNING phase | ENDING phase]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a dimension.

multiple
For the WEEK and MONTH types, specifies time periods that span a multiple
number of weeks or months. With the WEEK keyword, multiple can be an integer
from 2 to 52. With the MONTH keyword, multiple can be 2, 3, 4, or 6.

BEGINNING phase
ENDING phase
Specifies the beginning or ending phase of a WEEK, MONTH, QUARTER, or YEAR
dimension:

■ For single weeks, phase can be a day of the week (corresponding to a name in
the DAYNAMES option) or a date.

■ For multiple weeks, phase must be a date.

■ For months, quarters, or years, phase must be a month, expressed as a month
name (corresponding to a name in the MONTHNAMES option) or as a date.

When you specify phase as a date, you give the month, day, and year, enclosed in
single quotes, using any of the input styles that are valid for variable values with a
data type of DATE. When you specify a date with an ambiguous meaning (such as

DEFINE

DECIMALCHAR to DELETE 10-31

'03 05 97'), the date is interpreted according to the current setting of the
DATEORDER option.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you wish to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

Implicit Relations Between DAY, WEEK, MONTH, QUARTER, and YEAR
Dimensions
When you define two or more dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR, Oracle OLAP automatically defines implicit relations between
the values of the dimensions. For example, when you define a dimension of type
MONTH and a dimension of type YEAR, Oracle OLAP automatically defines a
relation that associates all the MONTH values that fall within a particular year with
the corresponding value of the YEAR dimension.

Note: When you define a multiple-period dimension of type
WEEK but you do not specify a BEGINNING or an ENDING
argument, DEFINE automatically supplies a phase that begins with
the date '31DEC1899'.

DEFINE DIMENSION

10-32 Oracle OLAP DML Reference

Using BEGINNING or ENDING Phase to Organize Data by Fiscal Calendar
For dimensions of type MONTH, QUARTER, and YEAR, the BEGINNING phase or
ENDING phase argument is especially useful for data organized on a fiscal-year
calendar.

By specifying a phase for a dimension of type MONTH or QUARTER, you identify
the time period that is the first or last period within a year. For example, when you
define a dimension of type MONTH with an ending phase of June, then June is
identified as the twelfth month of the year. When a dimension of type QUARTER
has an ending phase of June, the quarter ending in June is identified as the fourth
quarter of the year. When you give a dimension a VNF that includes a period code,
you can enter or report dimension values according to their period within the year.

By default, the single or multiple weeks in a dimension of type WEEK end on
Saturday. The BEGINNING phase or ENDING phase argument lets you specify the
day of the week on which each period begins or ends. For multiple-week periods,
the phase argument also controls the starting or ending date for grouping the weeks
into periods. By default, the starting point for grouping multiple weeks is December
31, 1899 (a Sunday).

However, the phase argument does not determine the period that is counted as the
first period within a year. For dimensions of type WEEK, Period 1 in a given
calendar year is always the first period that ends in that year. For example, suppose
you specify a dimension of type WEEK with a four-week period ending on
June 7, 1997. DEFINE works backward and forward from this date, forming weeks
into four-week periods. For 1997, Period 1 will be the period beginning on
December 22, 1996 and ending on January 18, 1997.

Examples

Example 10–10 Defining a YEAR Dimension

The following statement defines a dimension of type YEAR that will hold values for
fiscal years that end on June 30.

DEFINE fyear DIMENSION YEAR ENDING june

After defining the dimension, you can give it a description and a VNF (value name
format). You can use the MAINTAIN command to give values to the dimension.

LD Fiscal years ending June 30
VNF 'FY<ff>'
MAINTAIN fyear ADD 'FY97' 'FY00'

DEFINE

DECIMALCHAR to DELETE 10-33

Example 10–11 Using the Default Phrase for Date in an ENDING Phrase

This example illustrates how DEFINE automatically supplies a phase that begins
with the date '31DEC1899' when you define a multiple-period dimension of type
WEEK but you do not specify a BEGINNING phase or an ENDING phase argument.
Assume that you issue the following statements

DEFINE twoweek DIMENSION 2 WEEK
DESCRIBE TWOWEEK

When you issue a DESCRIBE statement for twoweek, the following output is
produced.

DEFINE twoweek DIMENSION 2 WEEK ENDING '13Jan1900'

DEFINE DIMENSION (conjoint)
The DEFINE DIMENSION (conjoint) command defines a conjoint dimension.

Conceptually, you can think of a conjoint dimension consisting of two structures:

■ The dimension object itself. The values of the dimension are combinations of
values of two or more other dimensions (that is, a conjoint tuples) that Oracle
OLAP uses to determine the structure of any variables dimensioned by the
conjoint dimension.

■ An index between the conjoint dimension values and its base dimension values.

Composites are another object that you can use to dimension a variable using a list
of dimension value combinations. See "Differences Between Conjoint Dimensions
and Composites" on page 36 for a discussion of the major differences between
composites and conjoint dimensions.

Syntax
DEFINE name DIMENSION <dims. . .> index-algorithm [AW workspace] [SESSION]

where:

index-algorithm specifies the algorithm that Oracle OLAP uses to create the index into
the conjoint dimension. Valid values for index-algorithm are:

BTREE
NOHASH
HASH

DEFINE DIMENSION

10-34 Oracle OLAP DML Reference

Arguments

name
The name of the conjoint dimension you are defining. For general information
about this argument, see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a conjoint dimension.

dims
One or more previously defined dimensions that are the base dimensions of the
conjoint dimension. Specify the dimensions in fastest to slowest-varying order as
discussed in "Effect of Dimension Order on Variable Storage" on page 10-74. You
must enclose the dimension list in angle brackets.

Typically, a base dimension of a conjoint dimension is a simple dimension, but it can
also be another conjoint dimension. You cannot have as base dimensions a simple
dimension and a conjoint or concat dimension that has same simple dimension as
one of its bases. For example, the following definitions are permissible.

DEFINE conjointdim.a DIMENSION <simpledim.b, simpledim.c>
DEFINE conjointdim.b DIMENSION <simpledim.a, simpledim.b>
DEFINE conjointdim.c DIMENSION <simpledim.a, conjointdim.a>

However, the following definition is not permitted because the same simple
dimension, simpledim.a, is a base dimension of conjointdim.d and a
component of concatdim.a.

DEFINE conjointdim.d DIMENSION <simpledim.a, concatdim.a>

The following definition is not permitted because the same simple dimension is a
base dimension of conjointdim.e and a base dimension of conjointdim.a.

DEFINE conjointdim.e DIMENSION <simpledim.a, conjointdim.b>

DEFINE

DECIMALCHAR to DELETE 10-35

BTREE
Specifies the creation of a b-tree index to relate conjoint values to base dimension
values. Typically, you specify BTREE as the index algorithm for a conjoint
dimension.

NOHASH
Specifies that Oracle OALP does not create an index for the conjoint dimension, but
instead uses internal structures to relate conjoint values to base dimension values.

HASH
(Not recommended.) Specifies the creation of a has index to relate conjoint values to
base dimension values. (Default)

AW workspace
The name of an attached analytic workspace in which you wish to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

Note: When you are unsure whether to specify BTREE or
NOHASH, use NOHASH, since you can always use the CHGDFN
command to change a NOHASH conjoint into a BTREE conjoint,
while you can use the CHGDFN command to change a BTREE
conjoint into a NOHASH conjoint only when the conjoint was
originally defined as a NOHASH conjoint.

Note: Because no index is created for NOHASH, NOHASH
decreases the number of structures associated with the conjoint
dimension; and, in many cases, decreases the time it takes to load
and access conjoint dimension values. However, NOHASH is used
infrequently, as it is a complicated algorithm that, on occasion, can
result in unpredictable performance.

Important: Even though HASH is the default, typically, you
specify BTREE as the index algorithm for a conjoint dimension.
When your conjoint dimension has more than 3 base dimensions,
for best performance, use BTREE instead of HASH.

DEFINE DIMENSION

10-36 Oracle OLAP DML Reference

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

Differences Between Conjoint Dimensions and Composites
You can use either a composite or a conjoint dimension to dimension a variable with
a list of dimension value combinations. Keep the following points in mind when
deciding on which type of object to use:

■ Object population maintenance—Conjoint dimensions offer the most control,
while composites provide the greatest ease of use:

■ Oracle OLAP determines the dimension value combinations stored in a
composite. Oracle OLAP populates a composite automatically when a
variable dimensioned by composite is populated.

■ You determine the dimension value combinations that are stored in a
composite. You must explicitly populate and maintain a conjoint dimension
using MAINTAIN statements the same way you populate and maintain
other dimensions.

■ Dimension operations —You can perform dimension operations on conjoint
dimensions, but not composites; however, you can only perform dimension
operations on the base dimensions of composites. For example, you can LIMIT
conjoint dimensions, but you must limit the base dimensions of a composite to
limit your view to a subset of composite values; and you can define relations
using conjoint dimensions, but not composites.

For more information on composites, see DEFINE COMPOSITE.

Relationship of Conjoint Dimensions to Base Dimensions
The values of the conjoint dimension are related to the base dimensions. You can
specify data in a variable dimensioned by the conjoint dimension using the conjoint
value combinations, the individual values of the base dimensions, or other
dimensions related to either of the base dimensions of the conjoint dimension.

Defining a Subset of a Dimensions Values
You can have a conjoint dimension with only one base dimension, which enables
you to create a subset of that dimension's values. You must still enclose that one
base dimension within angle brackets.

DEFINE

DECIMALCHAR to DELETE 10-37

Using Conjoint Dimension Values in Expressions
To refer to the value of a conjoint dimension in an expression, specify the value
following these guidelines:

■ Enclose the entire dimension value specification in angle brackets and then
enclose this entire specification in single quotes; do not enclose the individual
values in single quotes.

■ Use the exact upper- and lowercase spellings for the base dimension values.

■ When the specification includes a text value with an embedded blank, you must
separate the dimension values with commas.

For example, when item.org is a conjoint dimension with base dimensions item
and org, use the following format to refer to values of item.org.

'<Expenses, Direct Sales>'

Examples

Example 10–12 Defining a Conjoint Dimension

Assume that you have defined and populated the simple dimensions city, state,
and region and that they have the following values.

CITY STATE REGION
--------- ---------- ------
Princeton New Jersey East
Newark New Jersey Central
Patterson New York
New York Illinois
Chicago Indiana

To define a conjoint dimension named cityandstate and add values to it use the
following OLAP DML statements.

DEFINE cityandstate DIMENSION <city state>
MAINTAIN cityandstate add <'Princeton' 'New Jersey'>
MAINTAIN cityandstate add <'Newark' 'New Jersey'>
MAINTAIN cityandstate add <'Patterson' 'New Jersey'>
MAINTAIN cityandstate add <'New York' 'New York'>
MAINTAIN cityandstate add <'Chicago' 'Illinois'>
MAINTAIN cityandstate add <'Princeton' 'Indiana'>

DEFINE DIMENSION

10-38 Oracle OLAP DML Reference

DEFINE DIMENSION CONCAT
The DEFINE DIMENSION CONCAT commands defines a concat dimension. A
concat dimension is a dimension that groups a set of base dimensions with
duplicate values or different data types into one dimension.

When there are duplicate data values, you create a non-unique concat dimensions.
For example, you would create a nonunique dimension for a geography hierarchy
when "New York" is both the value at the city level and at the state level. When all
of the data values in all of the base dimensions are unique, you can create a unique
concat dimension.

Syntax
DEFINE name DIMENSION CONCAT(basedimlist. . .)[UNIQUE] [TEMP] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

DIMENSION CONCAT
The object type when you are defining a concat dimension.

basedimlist
One or more previously-defined dimensions that are the base dimensions of the
concat dimension. Specify the dimensions in fastest to slowest-varying order as
discussed in "Effect of Dimension Order on Variable Storage" on page 10-74. You
must enclose the dimension list in parenthesis.

Note: The way that you specify the values of concat dimension
varies depending on whether or not the concat dimension is a
unique or nonunique concat dimension. See Values of CONCAT
Dimensions on page 10-40 for more information.

DEFINE

DECIMALCHAR to DELETE 10-39

The types of dimensions that can be base dimensions varies depending on whether
you are defining a unique or nonunique concat dimension:

■ When defining a non-unique concat dimension, a base dimension can be a
simple dimension of any data type, a conjoint dimension, or another concat
dimension.

■ When defining a unique concat dimension, a base dimension can be a simple
dimension of type TEXT or ID, or another unique concat dimension as long as
the data values of all of the base dimensions are unique and not duplicated in
any of the base dimensions.

A composite cannot be the base dimension of a concat dimension.

Simple dimensions and conjoint dimensions are the bottom-level components of a
concat dimension. When you specify a concat dimension as a base dimension when
defining a concat, then the base dimensions of that inner concat are component
dimensions of the outer concat.

The same dimension cannot appear more than once in the component dimensions
of a concat dimension. However, in a concat, a conjoint dimension is an indivisible
unit and Oracle OLAP does not consider the base dimensions of a conjoint in the
definition of the concat. Therefore, a simple dimension can be a base dimension of a
conjoint and that conjoint and the same simple dimension can be base dimensions
(or components) of a concat dimension.

For example, the following definitions are permissible.

DEFINE conjointdim.a DIMENSION <simpledim.b, simpledim.c>
DEFINE conjointdim.b DIMENSION <simpledim.a, simpledim.b>
DEFINE conjointdim.c DIMENSION <simpledim.a, conjointdim.a>
DEFINE concatdim.a DIMENSION CONCAT (simpledim.a, conjointdim.a)
DEFINE concatdim.b DIMENSION CONCAT (simpledim.a, conjointdim.b)
DEFINE concatdim.c DIMENSION CONCAT (simpledim.b, conjointdim.b)
DEFINE concatdim.d DIMENSION CONCAT (simpledim.a, concatdim.c)

In the definition of concatdim.a, the base dimensions are simpledim.a and
conjointdim.a. In the definition of concatdim.d, the base dimensions are
simpledim.a and concatdim.c. The component dimensions of concatdim.d
are simpledim.a, simpledim.b, and conjointdim.b. simpledim.a and
simpledim.b appear only once as component dimensions even though they are
the base dimensions of conjointdim.b because the base dimensions of a conjoint
are not component dimensions of a concat.

DEFINE DIMENSION

10-40 Oracle OLAP DML Reference

However, the following definition is not permitted because the same simple
dimension is a base dimension of concatdim.e and a component of
concatdim.e because it is a base dimension of concatdim.b.

DEFINE concatdim.e DIMENSION CONCAT (simpledim.a, concatdim.b)

UNIQUE
Specifies that the text values of the base dimensions are unique. When you specify
this keyword, the dimensions listed in basedimlist must be either simple text or ID
dimensions or unique concat dimensions.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you wish to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

Values of CONCAT Dimensions
Once you have defined a unique CONCAT dimension, you can refer to its values
simply by specifying the values of the base dimensions.

Note: The simple dimensions in the basedimlist argument, and the
simple dimensions that are base dimensions of any conjoint
dimensions or concat dimensions in basedimlist, cannot have an
INTEGER data type.

DEFINE

DECIMALCHAR to DELETE 10-41

However, you must specify the values of a nonunique CONCAT dimension as a
concatonation of the name of the base dimensions and the base dimension values
separated by a colon (:) and a space and enclosed in angle brackets(<>). In an
expression, use the following format.

<BASE_DIMENSION_NAME: base_dimension value>

For example, assume that you have defined the base dimensions named city and
state and, a CONCAT dimension for them named geog. When you report on the
geog dimension, the values of geog include the names of the base dimensions along
with the values.

DEFINE city DIMENSION TEXT
DEFINE state DIMENSION TEXT
DEFINE geog DIMENSION CONCAT(city state)
MAINTAIN city ADD 'New York'
MAINTAIN state ADD 'New York'
REPORT geog

 GEOG

<CITY: New York>
<STATE: New York>

Examples

Example 10–13 Defining a CONCAT Dimension

Assume that you have defined and populated the simple dimensions city, state,
and region and that they have the following values.

CITY STATE REGION
--------- ---------- ------
Princeton New Jersey East
Newark New Jersey Central
Patterson New York
New York Illinois
Chicago Indiana

You define a concat dimension based on these dimensions using the following
OLAP DML statement.

DEFINE geog DIMENSION CONCAT(region cityandstate)

DEFINE DIMENSION

10-42 Oracle OLAP DML Reference

The values of geog are the following.

<REGION: East>
<REGION: Central>
<CITYANDSTATE: <Princeton New Jersey>>
<CITYANDSTATE: <Newark New Jersey>>
<CITYANDSTATE: <Patterson New Jersey>>
<CITYANDSTATE: <New York New York>>
<CITYANDSTATE: <Chicago Illinois>>
<CITYANDSTATE: <Princeton Indiana>>

DEFINE DIMENSION ALIASOF
The DEFINE DIMENSION ALIASOF command defines a dimension alias for a
simple dimension. An alias dimension has the same type and values as its base
dimension. Typically, you define an alias dimension when you want to dimension a
variable by the same dimension twice.

Additionally, You can use the LIMIT command to limit alias dimensions and define
variables and relations using an alias dimension. However, you cannot maintain an
alias dimension directly; instead you maintain its base dimension using
MAINTAIN.

Syntax
DEFINE name DIMENSION ALIASOF dimension [TEMP] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

DIMENSION ALIASOF
The object type when you are defining a dimension. Indicates that the dimension
being defined is an alias for another dimension.

dimension
The name of a simple dimension for which you want to define an alias. This
dimension cannot be a concat or conjoint dimension, composite, or surrogate.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain

DEFINE

DECIMALCHAR to DELETE 10-43

values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you wish to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Examples

Example 10–14 Defining an Alias Dimension

Assume that your department has multiple projects that employees participate in
and that an employee may be a leader of one project and a participant in another.
Assume also that you want to track the hours that each employee participates in a
project as either a leader or a participant. In order to keep track of this information,
you can design a variable that is dimensioned by the time you want to track by (in
this example, year), project, and two dimensions for employee—one dimension
named employee for employee as participant and another dimension named
leader for employee as leader. The following definitions support this structure.

DEFINE year DIMENSION TEXT
DEFINE project DIMENSION TEXT
DEFINE employee DIMENSION TEXT
DEFINE leader DIMENSION ALIASOF employee
DEFINE hours VARIABLE INTEGER <year project employee leader>

The following statements populate all of the dimensions.

MAINTAIN year ADD '2001' '2002' '2003'
MAINTAIN project ADD 'projA' 'projB'
MAINTAIN employee add 'Adams' 'Baker' 'Charles'

Note that you do not have to explicitly populate the alias dimension (that is,
leader). When you populate the employee dimension, it's alias dimension

DEFINE DIMENSION

10-44 Oracle OLAP DML Reference

leader, is also populate as you can see when you issue REPORT statements for all
four dimensions.

YEAR

2001
2002
2003

PROJECT

projA
projB

EMPLOYEE

Adams
Baker
Charles

LEADER

Adams
Baker
Charles

You can limit a dimension without limiting its alias; or limit an alias without
limiting the dimension for which it is an alias. For example, when you issue the

DEFINE

DECIMALCHAR to DELETE 10-45

following statements to limit employee to Adams for project ProjA in year 2001, a
report displays all of the leaders of the projects that Adams participates in.

LIMIT year TO '2001'
LIMIT employee TO 'Adams'
LIMIT project TO 'projA'
REPORT DOWN leader ACROSS employee: hours

PROJECT: projA
YEAR: 2001
 --HOURS---
 -EMPLOYEE-
LEADER Adams
-------------- ----------
Adams 1
Baker 2
Charles 1

On the other hand, when you limit leader to Adams for project ProjA in year
2001, a report displays all of the employees of the projects that Adams leads.

LIMIT employee TO ALL
LIMIT leader TO 'Adams'
LIMIT project TO 'projA'
REPORT DOWN leader ACROSS employee: hours

PROJECT: projA
YEAR: 2001
 -------------HOURS--------------
 ------------EMPLOYEE------------
LEADER Adams Baker Charles
-------------- ---------- ---------- ----------
Adams 1 3 3

DEFINE FORMULA

10-46 Oracle OLAP DML Reference

DEFINE FORMULA

The DEFINE command with the FORMULA keyword adds a new formula object to
an analytic workspace. You define a formula to save an expression. A formula can
take the place of an expression you use repeatedly. The name of the formula takes
the place of the text of the expression. Oracle OLAP does not store the data for a
formula in a variable; instead it is calculated at runtime each time it is requested.

Syntax
DEFINE name FORMULA {expression|datatype [<dimensions...>]} [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

FORMULA
The object type when you are defining a formula.

expression
The calculation to be performed to produce values when you use the formula. It can
be any valid expression, including a constant or the name of a variable as described
in Chapter 3, "Expressions".

You can specify an expression for a formula when you define it or after you define
using an EQ statement. When you define a formula without specify an expression, a
formula returns NA with the specified data type.

datatype
The intended data type for the formula. You can use any of the data types that
apply to variables. The datatype argument is optional. When you include an
expression in the formula definition, you do not specify a value. DEFINE
automatically determines the data type.

See also: "Formulas" on page 4-1

Note: Oracle OLAP does not automatically convert text in a
formula to uppercase.

DEFINE

DECIMALCHAR to DELETE 10-47

However, when you do not include an expression in the definition, you must
specify the data type. When you add the expression later using an EQ statement, its
data type should match the type you specify now. When it does not, DEFINE
converts the output to the specified type.

dimensions
The dimensions of the formula. Enclose the list in angle brackets. The dimensions
argument is optional. When the formula is a single-cell value, you do not specify
any dimensions. Also, when you include an expression in the definition, you do not
specify a value. DEFINE automatically determines the dimensions.

However, when you do not include an expression in the definition, you must
specify the dimensions. When you add the expression later using an EQ statement,
the expression must have the same dimensions as the formula definition. When it
does not, DEFINE forces the output to have the specified dimensions.

AW workspace
The name of an attached workspace in which you wish to define the formula. When
the formula is dimensioned, it must be defined in the same workspace as its
dimensions. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

Effect of Changing the Characteristics of Objects Used by a Formula
When you change the name, data type, or dimensions of any of the objects used by
a formula, the formula is not automatically updated. The formula causes an error
when objects it refers to have been deleted or are now the wrong data type.

Tip: You can determine the data type of an expression before
adding it to a formula by using the PARSE command and INFO
(PARSE) function.

Restriction: You cannot define a formula that is dimensioned by a
composite.

DEFINE FORMULA

10-48 Oracle OLAP DML Reference

Storing Complex Expressions and Calculations
To define a very complex calculation, you can define a program that uses a
RETURN command to return a value. You can then use the program as a function
wherever you would use an expression or formula.

Examples

Example 10–15 Defining a Formula

This example adds a formula named sales.diff to a workspace. This formula
calculates the percent difference between total sales for the current year and last
year.

The statements

DEFINE sales.diff FORMULA LAGPCT(TOTAL(actual year) 1 year)
DESCRIBE sales.diff

produce the following definition.

DEFINE sales.diff FORMULA DECIMAL <year>
EQ lagpct(TOTAL(actual year) 1 year)

DEFINE

DECIMALCHAR to DELETE 10-49

DEFINE MODEL

The DEFINE command with the MODEL keyword adds a new model object to an
analytic workspace. A model is a set of interrelated equations. The calculations in
an equation can be based either on variables or on dimension values. You can assign
the results of the calculations directly to a variable or you can specify a dimension
value for which data is being calculated. For example, in a financial application, all
the equations might be based on the values of a line item dimension, and data
would be calculated for line items such as total expenses and net income.

Syntax
DEFINE name MODEL [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

MODEL
The object type when you are defining a model.

AW workspace
The name of an attached workspace in which you wish to define the object. For
more information about this argument, see the main entry for the DEFINE
command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Note: Defining a model merely creates a model object in the
analytic workspace. You must also code a specification for the
model, as described in MODEL.

DEFINE MODEL

10-50 Oracle OLAP DML Reference

Examples

Example 10–16 Defining a Simple Model

This example shows a simple model named income.calc that calculates the line
items in an income statement. The model equations are based on the line
dimension in the demo workspace. First, define the model and give it an LD.

DEFINE income.calc MODEL
LD Model for calculating Income Statement items

Then use the MODEL command to enter the specification for the model. For this
example, you can enter model lines such as the ones in the following model
description.

DEFINE income.calc MODEL
LD Model for calculating Income Statement items
MODEL
dimension line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing+selling+r.d)
gross.margin = revenue - cogs
END

To solve the model for the actual variable, enter data in actual for the input line
items (Revenue, Cogs, Marketing, Selling, R.D, and Taxes). Then execute the
following statement.

income.calc actual

DEFINE

DECIMALCHAR to DELETE 10-51

DEFINE PARTITION TEMPLATE

The DEFINE command with the PARTITION TEMPLATE keywords adds a new
partition template object to an analytic workspace. A partition template is a
specification for the partitions of a partitioned variable. A partitioned variable is
stored as multiple rows in the relational table of LOBs that is the analytic
workspace—each partition is a row in the table.

You define both partitioned and unpartitioned variables using DEFINE VARIABLE
statements. You must define a partition template object before you can define a
partitioned variable.

Syntax
DEFINE name PARTITION TEMPLATE <dimlist> PARTITION BY

{RANGE|LIST|CONCAT} (dims_partitioned_by) ([partition_definition_statement...]) [AW
workspace]

where:

partition_definition_statement defines a partition. The syntax varies depending on
whether you specify RANGE, LIST, or CONCAT:

■ When you specify RANGE, the syntax for partition_definition_statements is:

PARTITION partition-name VALUES LESS THAN const-exp <partition-dimlist>

■ When you specify LIST, the syntax for partition_definition_statements is:

PARTITION partition-name VALUES ([valuelist)] <partition-dimlist>

■ When you specify CONCAT, the syntax for partition_definition_statements is:

PARTITION partition-name <partition_basedimlist>

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

dimlist
A list of all of the logical dimensions for the variable that you are partitioning. You
must enclose the names of the dimensions in a single set of angle brackets (< >). You

DEFINE PARTITION TEMPLATE

10-52 Oracle OLAP DML Reference

must define a dimension before you can include it in the definition of a partition
template.

PARTITION BY RANGE
Indicates partitioning by values within a specified range. The syntax for
partition_definition_statements is:

PARTITION partition-name VALUES LESS THAN const-exp <partition-dimlist>

PARTITION BY LIST
Indicates partitioning by listed values. The syntax for partition_definition_statements is:

PARTITION partition-name VALUES [(valuelist)] <partition-dimlist>

PARTITION BY CONCAT
Indicates partitioning by base dimensions of a concat dimension. The syntax for
partition_definition_statements is:

PARTITION partition-name <partition_basedimlist>

dims_partitioned_by
The subset of dimensions specified by dimlist that actually specify the partitions of
the variable. For range and list partitioning (that is, when you specify either the
RANGE or LIST keywords), you can specify only one dimension for
dims_partitioned_by.

PARTITION partition-name
The name of the partition.

VALUES LESS THAN
Indicates that you are specifying a RANGE partition by comparing values.

constant-exp
A constant expression that has the same data type as the data type of the dimension
specified for dims_partitioned_by.

partition-dimlist
A list of all of the of dimensions of the partition template object (although the
dimensions may be members of a composite). You must enclose the names of the

Note: You cannot partition a variable along an INTEGER
dimension.

DEFINE

DECIMALCHAR to DELETE 10-53

dimensions in a single set of angle brackets (< >). Use this argument to specify the
composite (if any) used to dimension the partitions that correspond to
partition-name. When you do not specify a value then the partition is dimensioned
densely by all of the of dimensions of the partition template object.

VALUES
Indicates that you are specify a LIST partition by specifying values.

valuelist
A list of dimension values, separated by commas. You must surround text values
with single quotes (for example, 'mytext'). Specify values of conjoints by specify
the values of the base dimensions, separated by a comma, in a single set of angle
brackets (for example, <'Value1', 'Value2'>). Specify values of nonunique
concat dimensions by specify the values of the base dimensions, separated by a
colon, in a single set of angle brackets (for example, <'Value1': 'Value2'>).

basepartition-dimlist
A list of dimensions for the partition enclosed in a single set of angle brackets (< >).
For every dimension of the partition template, basepartition-dimlist must include
either that dimension, a base of that dimension, a concat of the base dimensions of
that dimension, or a composite that includes that dimension, its base, or concat
dimension of its base dimensions. In other words, basepartition-dimlist must have the
same number of logical dimensions as the partition template itself (that is, the
dimensions in dimlist).

Each listed dimension must be one of the following:

■ A partition template object with the appropriate dimensionality specified for its
dimlist parameter.

■ A base dimension for one of the dimensions listed in dims_partitioned_by.

■ A dimension of the partition template that is not in dims_partitioned_by.

■ A composite consisting of dimensions of partition template object with the
appropriate dimensionality specified for its dimlist parameter, a base dimension
for one of the dimensions listed in dims_partitioned_by, or a dimension in dimlist
that is not in dims_partitioned_by.

Tip: I f you want to use a valueset object to specify values, do not
specify values for valuelist. Instead, omit valuelist from the partition
template definition and use a MAINTAIN MOVE TO PARTITION
statement to specify values for the partition.

DEFINE PARTITION TEMPLATE

10-54 Oracle OLAP DML Reference

Examples

See: Examples of defining partition template objects are
integrated into the following examples of defining partitioned
variables:

■ Example 10–26, "Defining a Variable with Internal Partitions"
on page 10-77.

■ Example 10–27, "Defining a Variable with External Partitions"
on page 10-80.

DEFINE

DECIMALCHAR to DELETE 10-55

DEFINE PROGRAM

The DEFINE command with the PROGRAM keyword adds a new OLAP DML
program object to an analytic workspace. An OLAP DML program is a collection of
OLAP DML statements that helps you accomplish some workspace management or
analysis task.

Syntax
DEFINE name PROGRAM [datatype|dimension] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

PROGRAM
The object type when you are defining a program.

datatype
The data type of the value to be returned by the program when it is called as a
function. You can use any of the data types that apply to variables.

dimension
The name of a dimension, whose value the program returns when it is called as a
function. The return value is a single value of the dimension, not a position
(integer). The dimension must be defined in the same workspace as the program.

AW workspace
The name of an attached workspace in which you wish to define the program.
When the program returns a dimension, the program must be defined in the same
workspace as the dimension. For general information about this argument, see the
main entry for the DEFINE command.

Note: Defining a program merely creates a program object in the
analytic workspace. You must also code the actual lines of the
program, beginning with PROGRAM command.

DEFINE PROGRAM

10-56 Oracle OLAP DML Reference

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists.

Notes

Returning Values
Use a RETURN command in a program when you want it to return a value. The
argument to the RETURN command is an expression that specifies the value to
return. When the expression does not match the declared data type or dimension,
the value is converted (if possible) to the declared data type or dimension value.

When you do not specify a data type or dimension in the definition of a program,
its return value is treated as worksheet data. This means Oracle OLAP converts any
return value to the data type required by the calling context. This may lead to
unexpected results.

For a program to return a value, you must call the program as a function. That is,
you must use it as an expression in a command. In the following example, the
program isrecent is being treated as a function. It is an argument to the REPORT
command.

REPORT isrecent(actual)

When the program returns values of a dimension, the program is in the output of
the LISTBY function, and OBJ(ISBY) is TRUE for the dimension.

See the entries for the ARGUMENT, CALL, and RETURN commands for more
information about programs as user-defined functions.

Returning NA
When you call the program as a function, but it does not use the RETURN
command to provide a return value, the program returns NA.

DEFINE

DECIMALCHAR to DELETE 10-57

Examples

Example 10–17 Basing Program Flow on Test Results

The saleseval program tests whether total sales for a month exceeds total
planned sales for the month. The program executes different statements based on
the results of the test.

DEFINE SALESEVAL PROGRAM
PROGRAM
ARGUMENT onemonth MONTH
VARIABLE excess DECIMAL
ALLSTAT
LIMIT month TO onemonth
IF TOTAL(sales, month) GT TOTAL(sales.plan, month)

THEN DO
excess = (TOTAL(sales, month) -
- TOTAL(sales.plan, month)) -
/ TOTAL(sales.plan, month) * 100

SHOW JOINCHARS('Sales exceeded plan by ' excess '%.')
DOEND

ELSE SHOW JOINCHARS('We\'re not meeting plan. ' -
'Let\'s get working!')

REPORT DOWN product W 10 ACROSS district: sales - sales.plan
END

When total sales for the month exceeds total planned sales for the month, the THEN
command lines are executed. The program calculates the percentage by which
actual sales exceeds planned sales and places the result in a numeric variable called
excess. The program then sends the results to the current outfile. The
JOINCHARS function is used to combine the calculated expression excess with
the text expression "Sales exceeded plan by" in the output.

When total sales does not exceed planned sales, the ELSE command line is executed
and a different message is produced.

After the THEN or ELSE command lines are executed, control flows to the next line
in the program, and a report of sales in excess of plan is produced.

DEFINE RELATION

10-58 Oracle OLAP DML Reference

DEFINE RELATION

The DEFINE command with the RELATION keyword adds a new relation object to
an analytic workspace. A relation describes a correspondence between the values of
two or more dimensions. It can have dimensions, just like a variable, but the values
of the relation must be values from the related dimension.

Syntax
DEFINE name RELATION related-dim [<dimensions...>] [TEMP] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

RELATION
The object type when you are defining a relation.

related-dim
Specifies the dimension to which one or more dimensions are related. A relation is
normally used to store information about the relationship between two dimensions;
for example, the cities that belong in each region.

In the definition, the dimension having fewer values is normally specified as the
related dimension (for example, regions). The dimension having more values is
normally specified as a dimension of the relation (for example, cities).

<dimensions...>
The names of the dimensions of the relation. You must enclose the names of the
dimensions in a single set of angle brackets (< >). You must define a dimension
before including it in the definition of a relation. Do not include composites in the
dimension list.

Restriction: Oracle OLAP does not support the use of composites
as dimensions for relations. Do not attempt to define them.

DEFINE

DECIMALCHAR to DELETE 10-59

TEMP
Indicates that the values of the relation are only temporary. The relation is defined
in the current workspace and can contain values during the current session.
However, when you update and commit the workspace, only the definition of the
relation is saved. When you end the session or switch to another workspace, the
data values are discarded. Each time you start the workspace, the values of a
temporary relation are NA.

AW workspace
The name of an attached workspace in which you wish to define the relation. The
relation must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. This differs from the TEMP keyword, which specifies
that the values are temporary but the object definition remains in the workspace in
which you create it.

Notes

Implicit Relations Between DAY, WEEK, MONTH, QUARTER, and YEAR
Dimensions
When you define two or more dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, Oracle OLAP automatically defines implicit relations between
the values of the dimensions. For example, when you define a dimension of type
MONTH and a dimension of type YEAR, Oracle OLAP automatically defines a
relation that associates all the MONTH values that fall within a particular year with
the corresponding value of the dimension of type YEAR.

Examples

Example 10–18 Creating, Populating, and Totaling by a Relation

The following example defines a relation between division and product, stores
the values of the relation, and then totals units by division, even though units
is dimensioned by product. The following statement defines the div.prod
relation.

DEFINE div.prod RELATION division <product>

DEFINE RELATION

10-60 Oracle OLAP DML Reference

The following statements store values of division in div.prod.

LIMIT product TO 'Tents' 'Canoes'
div.prod = 'Camping'
LIMIT product TO 'Racquets'
div.prod = 'Sporting'
LIMIT product TO 'Sportswear' 'Footwear'
div.prod = 'Clothing'

You can use a REPORT command to see the values stored in div.prod.

report div.prod

This statement produces the following output.

PRODUCT DIV.PROD
------------- ----------
Tents Camping
Canoes Camping
Racquets Sporting
Sportswear Clothing
Footwear Clothing

The div.prod relation lets you look at division totals in a report, even though the
data is dimensioned by product.

REPORT TOTAL(units division)

DEFINE

DECIMALCHAR to DELETE 10-61

DEFINE SURROGATE

The DEFINE command with the SURROGATE keyword adds a a new surrogate
object to an analytic workspace. A surrogate provides an alternative set of values
for a dimension. You can use a surrogate rather than a dimension in a model, in a
LIMIT command, in a qualified data reference, or in data loading with statements
such as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT.

Syntax
DEFINE name SURROGATE targetname type [AW workspace] [SESSION]

where:

type has the following syntax:

[TEXT|NTEXT] [WIDTH n]|ID|INTEGER|NUMBER (precision[, scale])

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

SURROGATE
The object type when you are defining a dimension surrogate.

Note: You cannot specify a dimension surrogate as the dimension
or related dimension argument when you define a concat
dimension, a formula, a program, a relation, a valueset, or a
variable. Additionally, in data loading you cannot create new
dimension values using a dimension surrogate.

DEFINE SURROGATE

10-62 Oracle OLAP DML Reference

targetname
The name of the dimension for which you are creating a surrogate.

TEXT
NTEXT
ID
The data type for a dimension surrogate with text values. When all the values of a
dimension surrogate are eight single-byte characters or less, give it a data type of
ID. When one or more dimension values has more than eight single-byte characters,
you must give it a data type of TEXT or NTEXT. For greater efficiency and ease of
use, you should give dimensions a data type of ID whenever possible.

WIDTH n
For TEXT or NTEXT dimension surrogate, the width, in bytes, of the storage area of
each value of an object. Valid width values are 1 through 4000. Specify a fixed width
only when you are certain that the values of a particular dimension surrogate are of
similar size. When a value exceeds the specified width, Oracle OLAP truncates it.

INTEGER
The data type for a dimension surrogate with values that are the ordinal positions
(1, 2, and so on) of the values in its dimension. You might create an INTEGER type
dimension surrogate for a NUMBER type dimension so that you can specify
dimension values by position instead of by the value of the dimension. When you
define an INTEGER type dimension surrogate, Oracle OLAP automatically assigns
an integer value to the surrogate for each of the positions in the dimension.

NUMBER
Specifies that the dimension surrogate has a data type of NUMBER.

precision
Specifies the total number of characters in the value of a dimension surrogate of
type NUMBER.

Note: Keep the following restrictions in mind when determining a
target for your surrogate:

■ You cannot create a surrogate for a dimension that has a type of
DAY, WEEK, MONTH, QUARTER, or YEAR or for a
composite.

■ When you create a surrogate for a conjoint, you cannot convert
the conjoint to a composite.

DEFINE

DECIMALCHAR to DELETE 10-63

scale
Specifies the number of characters that can be to the right of a decimal point of a
dimension surrogate of type NUMBER.

AW workspace
The name of an attached workspace in which you wish to define the dimension
surrogate. The dimension for which you define the surrogate must be defined in the
same workspace. For general information about this argument, see the main entry
for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the
current session, the object no longer exists. Use this keyword when the definition of
the targetname dimension includes SESSION.

Examples

Example 10–19 Creating an INTEGER Dimension Surrogate

The following statement creates an INTEGER type dimension surrogate for the
store_id dimension.

DEFINE storepos SURROGATE store_id INTEGER

Example 10–20 Creating a NUMBER Dimension Surrogate

The following statement creates an NUMBER type dimension surrogate for the
product dimension, which is a TEXT dimension that has product names as values.
The precision argument to the NUMBER keyword specifies that a value in prodnum
can have no more than seven characters and the scale argument specifies that no
more than three characters can be to the right of the decimal point.

DEFINE prodnum SURROGATE product NUMBER(7, 3)

The following statement sets the first value of prodnum to 1083.375.

prodnum(product 1) = 1083.375

DEFINE VALUESET

10-64 Oracle OLAP DML Reference

DEFINE VALUESET

The DEFINE command with the VALUESET keyword adds a new valueset object to
an analytic workspace. A valueset contains a list of dimension values for a
dimension. The values in a valueset can be saved across sessions. When you begin a
new session or start up a workspace, each dimension has all values in the status.
You can then limit a dimension to the values stored in the valueset for that
dimension.

Syntax
DEFINE name VALUESET dimension [<dims...>] [TEMP] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

VALUESET
The object type when you are defining a valueset.

dimension
The name of the dimension whose values you want to store in the valueset.

dims
The names of the dimensions, if any, of the valueset. You must define a dimension
before you include it in the definition of a valueset.

TEMP
Indicates that the valueset's values are only temporary. The valueset has a definition
in the current workspace and can contain values during the current session.
However, when you update and commit, only the definition of the valueset is
saved. When you end the session or switch to another workspace, the values are
discarded. Each time you start the workspace, the value of a temporary valueset is
null.

Note: When you first define a valueset, its value is null. You must
eplicitly assign values to the valueset as described in "Assigning
Values to a Valueset" on page 10-65.

DEFINE

DECIMALCHAR to DELETE 10-65

AW workspace
The name of an attached workspace in which you wish to define the valueset. The
valueset must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. This differs from the TEMP keyword, which specifies
that the values are temporary but the object definition remains in the workspace in
which you create it.

Notes

Assigning Values to a Valueset
When you first define a valueset, its value is null. Use the LIMIT command to
assign values to the valueset or to change its values. Use the STATUS command and
functions such as STATFIRST, INSTAT, and VALUES to work with a valueset.

Examples

Example 10–21 Creating and Assigning Values to a Valueset

This example adds the valueset named lineset to the demonstration workspace.
The lineset valueset is dimensioned by line, and therefore it can be limited by
the current values of the line dimension. The LD command attaches a description
to the object.

The statements

LIMIT line TO FIRST 2
STATUS line

produce the following output.

The current status of LINE is:
REVENUE, COGS

The statements

DEFINE lineset VALUESET line
LD Valueset for LINE dimension values
LIMIT lineset TO line
SHOW VALUES(lineset)

DEFINE VALUESET

10-66 Oracle OLAP DML Reference

produce the following output.

Revenue
Cogs

Example 10–22 Creating and Assigning Values to a Multidmensional Valueset

Assume that your analytic workspace has the variables and dimensions with the
following definitions.

DEFINE geography DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <geography product>
DEFINE salestax VARIABLE DECIMAL <geography>

Assume also that the analytic workspace contains the following dimensions whose
values are the names of variables and dimensions within the workspace.

DEFINE all_variables DIMENSION TEXT
MAINTAIN all_variables ADD 'sales' 'salestax'
DEFINE all_dims DIMENSION TEXT
MAINTAIN all_dims ADD 'geography' 'product'

The following statement creates a valueset for the values of all_variables and
all_dims.

DEFINE variables_dims VALUESET all_dims <all_variables>
REPORT values(variables_dims)

ALL_VARIABLES VALUES(VARIABLES_DIMS)
---------------- ------------------------------
sales geography
 product
salestax geography
 product

DEFINE

DECIMALCHAR to DELETE 10-67

To create a multidimensional valueset that has the correct dimensions related to the
variables that use them, you issue the following statement that uses a QDR to limit
the all_dims values for the salestax value of all_variables.

LIMIT variables_dims(all_variables 'salestax') TO 'geography'
REPORT values(variables_dims)

ALL_VARIABLES VALUES(VARIABLES_DIMS)
---------------- ------------------------------
sales geography
 product
salestax geography

DEFINE VARIABLE

10-68 Oracle OLAP DML Reference

DEFINE VARIABLE

The DEFINE command with the VARIABLE keyword adds a new variable object to
an analytic workspace. Variables store one type of data, which can be numeric, text,
Boolean, or dates. Beside the data type of a variable, the definition that you create
for a variable also determines the following characteristics of the variable:

■ Dimensionality

■ Permanent or temporary

■ Unpartitioned or partitioned

You can also define local variables in programs using a VARIABLE statement. These
variables exist only as long as the program is running.

Syntax
DEFINE name [VARIABLE] datatype [<dims...>] [PERMANENT | TEMP] -

[(partition-instance...)] [WIDTH n] [AW workspace] [SESSION]

where:

partition-instance has the following syntax.

PARTITION partition-name [{INTERNAL [TEMP | PERMANENT] } | {EXTERNAL target}]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

VARIABLE
The object type when you are defining a variable. You do not have to include the
word VARIABLE, because it is the default.

datatype
The kind of data to be stored in the variable. The data types, their abbreviations,
and the range of acceptable values are shown in Table 10–1, " Valid Data Types for
Variables".

DEFINE

DECIMALCHAR to DELETE 10-69

Table 10–1 Valid Data Types for Variables

Data Type Abbreviation Values

INTEGER INT Whole numbers in the range of (-2**31) to
(2**31)-1

LONGINTEGER LONGINT Whole numbers in the range of (-2**63) to
(2**63)-1

SHORTINTEGER SHORTINT Whole numbers in the range of (-2**15) to
(2**15)-1

NUMBER [(p,[s])] None Decimal numbers with up to 38 significant digits, as
defined by the precision and scale where precision (p)
is a whole number between 1 and 38 and scale (s) is a
whole number between -84 and 127

DECIMAL DEC Decimal numbers with up to 15 significant digits

SHORTDECIMAL SHORT Decimal numbers with up to seven significant digits

TEXT None TEXT data type values (with no WIDTH setting) of one
or more lines with no more than 4000 bytes for each
line. Text values, with WIDTH set, of 1 line with no
more than 4000 bytes (See "Values on Each Page" on
page 10-75.) The TEXT data type corresponds to CHAR
and VARCHAR2 data types in the Oracle relational
database. TEXT characters are encoded in the database
character set

NTEXT None NTEXT data type values with the same restrictions as
TEXT data type values. The NTEXT data type
corresponds to NCHAR and NVARCHAR2 data types
in the Oracle relational database. However, an NTEXT
character is always encoded in UTF8 Unicode. This
encoding might be different from the NCHAR
character set of the database, which can be UTF16. (See
"Text Data Types" on page 2-3.)

ID None ID data type values of one line with no more than eight
characters

BOOLEAN BOOL Logical YES/NO values (valid synonyms are ON/OFF
and TRUE/FALSE)

DATE None Dates between Jan 1, 1000 A.D. and Dec 31, 9999 A.D.

DATETIME None Dates between Jan 1, 4712 B.C. and Dec 31, 9999 A.D.,
and times in hours, minutes, and seconds

DEFINE VARIABLE

10-70 Oracle OLAP DML Reference

dim
The dimensions of the variable. A dimension may be one of the following:

■ A simple, concat, conjoint, or alias dimension that you have previously defined
using a DEFINE DIMENSION statement. In this case, you specify the name of
the dimension.

■ A partition template object that you have previously defined using a DEFINE
PARTITION TEMPLATE statement. In this case, you specify the value using the
following syntax.

<partition-template-name<dims>>

The dimensions that you specify for dims must be the same dimensions as those
of partition_template.

■ A named or unnamed composite. In this case, you specify the value using the
following syntax.

{SPARSE|composite-name} <sparsedims...>

where:

■ SPARSE indicates that you want Oracle OLAP to create an unnamed
composite and use it when dimensioning the variable. For a discussion of
unnamed composites, see "Unnamed Composites" on page 10-24.

■ composite-name is the name of a named composite previously defined using
a DEFINE COMPOSITE statement.

■ sparsedims are the names, separated by commas, of the dimensions for
which the named or unnamed composite is created. You must enclose the
names of the dimensions in a single set of angle brackets (< >).

Note: The order in which you list the dims of a variable is the
default order of the dimensions and behavior of a variety of
statements (such as REPORT, and UNRAVEL) and effects how the
data for the variable is stored (as discussed in "Effect of Dimension
Order on Variable Storage" on page 10-74. Also, When you define
more than one object with the same dimensions, most operations
will work much more efficiently when you list the dimensions in
the same order in each definition.

DEFINE

DECIMALCHAR to DELETE 10-71

PERMANENT
TEMP
Specifies that a variable or a partition of a variable is either permanent or
temporary. After you update and commit, the definition of both permanent and
temporary variables and partitions is always saved between sessions. Specifying
permanent or temporary determines whether or not the values of a variable or
partition of a variable are saved or discarded, after you update and commit, when
you leave end your session or switch to another workspace:

■ Permanent variables and partitions—Oracle OLAP saves the data values or a
permanent variable or permanent partitions. When you start the workspace, the
data values or a permanent variable or permanent partitions are the same as
they were at the last commit.

■ Temporary variables and partitions—Oracle OLAP discards the data values of a
temporary variable or temporary partition. Each time you start the workspace,
the values of a temporary variable or temporary partition are NA.

Keep the following points in mind when specifying the PERMANENT and TEMP
keywords:

■ By default, a variable is permanent.

■ Temporary variables can be dimensioned by partition template objects or by
temporary dimensions.

■ External partitions of a variable have the permanence of the variable that they
represent.

■ By default, a top-level internal partition of a variable has the same permanence
as the variable that contains it. Specifically, an internal partition of a temporary
variable is a temporary partition unless you use the PEMANENT keyword to
make it a permanent partition, and an internal partition of a permanent variable
is a permanent partition unless you use the TEMPORARY keyword to make it a
temporary partition. To indicate different behavior, use either the
PERMANENT or TEMP keyword.

■ By default, an internal subpartition has the same permanence as its parent
partition. To indicate different behavior, use either the PERMANENT or TEMP
keyword.

WIDTH n
(You can abbreviate WIDTH as W.) The width, in bytes, of the storage area for each
value of a variable. When you are using a multibyte character set, be sure to specify
the number of bytes, not characters.

DEFINE VARIABLE

10-72 Oracle OLAP DML Reference

You specify fixed widths to create faster and more compact data storage formats.
You can specify fixed widths for dimensioned TEXT, NTEXT, and INTEGER
variables only, as described in the following list:

■ For dimensioned TEXT and NTEXT variables, you can specify a width from 1
byte through 4000 bytes. Specify a fixed width for such variables only when you
are certain that the values of a particular variable are of similar size. You cannot
assign a width to a scalar variable.

■ For dimensioned INTEGER variables, you can specify a width of 1 byte only.
Define a fixed width INTEGER variable only when you are certain that all the
values for that variable are between -128 and 127.

The default widths for variables are as follows: 2 bytes for SHORTINTEGER, 4
bytes for DATE, INTEGER, and SHORTDECIMAL, and 8 bytes for DECIMAL and
ID. TEXT and NTEXT variables that do not have fixed widths are stored on two sets
of pages. The first set contains 4-byte cells, each of which points to the actual text
value that is stored in the other set of pages. The default width of 4 bytes for TEXT
and NTEXT variables is for these 4-byte cells.

partition-name
The name of the partition.

INTERNAL
(Default) Indicates that this partition is not a previously defined variable.

EXTERNAL
Indicates that this partition is a previously defined variable that is a base dimension
of concat dimension by which the variable is partitioned.

target
The name of the variable that is the external partition.

AW workspace
The name of an attached workspace in which you wish to define the variable. When
the variable is dimensioned, it must be defined in the same workspace as its

Note: You can only use this keyword when variable is
dimensioned by a partition template object that was defined using
a DEFINE PARTITION TEMPLATE statement that included the
PARTITION BY CONCAT clause.

DEFINE

DECIMALCHAR to DELETE 10-73

dimensions. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. This differs from the TEMP keyword, which specifies
that the values are temporary but the object definition remains in the workspace in
which you create it.

Notes

Variable Size
Theoretically, a variable can contain up to 2**63 cells and a TEXT or NTEXT
variable can contain up to 2 billion bytes. However, certain considerations apply
when defining large variables, as described in "Values on Each Page" on page 10-75.

Variable Properties
As with other types of objects, you can set properties on variables with the
PROPERTY command. For dimensioned variables the $NATRIGGER and
$STORETRIGGERVAL properties have special meaning.

How Variable Data is Stored
How variable data is stored in an analytic workspace is determined by the
following:

■ Whether or not the variable is dimensioned by a composite or a conjoint
dimension.

■ The order in which the dimensions for the variable are defined.

■ Whether or not the variable is defined as a partitioned variable.

■ Whether or not the variable is stored in segments of default size or of an explicit
size.

Effect of Composites and Conjoint Dimensions on Variable Storage When a
variable is dimensioned by regular dimensions, Oracle OLAP creates a cell in the
variable for each set of its dimension values. When a cell is empty, then the cell is
said to contain an NA value. In some cases, this can result in a sparse variable—that

DEFINE VARIABLE

10-74 Oracle OLAP DML Reference

is, a variable in which a relatively high percentage of cells are empty. There are two
types of sparsity:

■ Controlled sparsity occurs when a range of one or more dimensions has no
data; for example, a new variable dimensioned by month for which you do not
have data for past months.

■ Random sparsity occurs when some combinations of dimension values never
have any data. For example, a district might only sell certain products and
never have data for other products. Other districts might sell some of those
products and other ones, too.

You can reduce the number of empty cells by dimensioning a variable with one or
more composites or conjoint dimensions. Composites and conjoint dimensions are
lists of dimension value combinations. For variables dimensioned by these objects
Oracle OLAP does not create a variable cell for every value in the base dimensions.
Instead, it creates cells only for those dimension values that are stored in the list of
dimension value combinations of the composite or conjoint dimension. See DEFINE
COMPOSITE and DEFINE DIMENSION (conjoint) for more information.

Effect of Dimension Order on Variable Storage The order in which you list the
dimensions in an unpartitioned variable definition determines how the data of that
variable is stored and accessed. The first dimension in the variable definition is the
fastest-varying dimension, and the last dimension is the slowest-varying
dimension.

For example, assume your analytic workspace has an opcosts variable that
contains the operating costs, by month, of each city in which you have offices. In the
following definition for the opcosts variable, month is the fastest-varying
dimension and city is the slowest-varying dimension.

DEFINE opcosts VARIABLE DECIMAL <month city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered together. For
example, for the opcosts variable, the values for Boston for all the months are
stored in a sequence, and then it stores the values for Chicago for all the months in a
sequence, and so on. Thus the month values vary fastest in the opcosts variable,
as shown in the following table.

Note: Special considerations apply when you dimension a
variable by a compressed composite, see "Defining Variables with
Compressed Composites" on page 10-75 for more information.

DEFINE

DECIMALCHAR to DELETE 10-75

When you define variables and other dimensioned objects, and when you write
programs that loop over multidimensional expressions in nested loops, you should
always try to maximize performance by matching the fastest-varying dimension
with the inner loop.

Effect of Partitioning on Storage Each unpartitioned data object is a single row in
the table that is an analytic workspace. Variables defined as partitioned variables
are stored as multiple rows in the table. Each partition is a single row. Within a
partition, the way that the variable's data is stored is determined by the order in
which the dimensions for the variable are defined and the type of segments used by
the variable.

Effect of Segment Type on Storage Within a partition, variable data is stored in
segments. A segment is continuous disk space. By default, the segment sizes of a
variable are automatically determined by Oracle OLAP. Each segment is the exactly
the amount of continuous disk space needed to store all of the values assigned by a
single OLAP DML statement.You can explicitly specify a segment size for a variable
using the SEGWIDTH keyword of the CHGDFN command. In this case, when you
assign values to a variable, Oracle OLAP stores the data assigned by multiple OLAP
DML statements into a segment until the segment is full.

Values on Each Page Pages are the units of storage in a analytic workspace. To
calculate the maximum number of values for a variable of a given width that will fit
on one page, use the VALSPERPAGE program.

Defining Variables with Compressed Composites Keep the following points in
mind when defining a variable that is dimensioned by a compressed composite:

■ A compressed composite can dimension only one variable or one partition of a
variable. A compressed composite cannot be a shared composite.

■ The compressed composite must be the last dimension in the variable's
dimension list of the DEFINE VARIABLE statement that defines the variable.

■ The partitions of a variable dimensioned by a compressed composite must
respect the parent-child relationships of the hierarchical dimensions. When an
AGGREGATE command executes, data cannot be aggregated across partitions.
To check to see if a variable is partitioned correctly, use the PARTITIONCHECK
function.

DEFINE VARIABLE

10-76 Oracle OLAP DML Reference

Examples

Example 10–23 Defining a Variable

This example adds the variable population to a workspace. It is dimensioned by
city, which has already been defined in the workspace. The LD Command
attaches a description to the object. The statements

DEFINE population INTEGER <city>
LD Population in each city
DESCRIBE population

produce the following description.

DEFINE POPULATION VARIABLE INTEGER <CITY>
LD Population in each city

Example 10–24 Defining a Single-Cell Variable

The following is a definition for a variable named newdata which is a single
Boolean value. It has no dimensions. An application might set it to YES when new
data is added to the workspace and to NO after a user views the data.

DEFINE newdata BOOLEAN
newdata = YES

Example 10–25 Defining NUMBER Variables

The following statement defines a NUMBER variable named sales and
dimensioned by product and geography with a precision of 16 digits and a scale
of 4 digits.

DEFINE sales VARIABLE NUMBER (16,4) <product, geography>

The following statements define a NUMBER variable named numvar with 5
significant digits and 2 decimal places. The number 1234567 is out of its range.

DEFINE numvar VARIABLE NUMBER (5, 2)
numvar = 1234567
SHOW numvar
NA

DEFINE

DECIMALCHAR to DELETE 10-77

A negative scale defines a NUMBER variable named numnegvar with 5 significant
digits and 2 rounded digits to the left of the decimal point. The number 1,234,567 is
rounded up.

DEFINE numnegvar VARIABLE NUMBER (5, -2)
numnegvar = 1234567
SHOW numnegvar
1,234,600.00

Example 10–26 Defining a Variable with Internal Partitions

Assume that you want to define a sales variable that is dimensioned by product
and time and that is partitioned so that each year's detail (day) data is in a separate
partition and the summary (month and year) data is in yet another partition.

Assume that the analytic workspace contains a products dimension, a time
dimension that is a simple hierarchical dimension with three levels of data (day,
month, and year), and a time_parentrel relation that represents the child-parent
relationships between the values of time.

DEFINE TIME DIMENSION TEXT
DEFINE PRODUCT DIMENSION TEXT
DEFINE TIME_PARENTREL RELATION TIME <TIME>

DEFINE VARIABLE

10-78 Oracle OLAP DML Reference

For simplicity's sake, in this example the time and product dimensions are only
partially populated and have only the following values.

TIME

2003
2002
Dec2003
Jan2003
Dec2002
Jan2002
31Dec2003
01Dec2003
31Jan2003
01Jan2003
31Dec2002
01Dec2002
31Jan2002
01Jan2002

PRODUCT

00001
00002

To create the partitioned variable, take the following steps:

1. Define a partition template that defines one partition for each year's data.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2003 VALUES -
('2003','Dec2003','Jan2003', 31Dec2003',01Dec2003','31Jan2003','01Jan2003')-
 PARTITION TIME_2002 VALUES -
('2002','Dec2002','Jan2002', 31Dec2002',01Dec2002','31Jan2002','01Jan2002'))

(note that for simplicity's sake, only some of each year's dimension values are
specified for each partition in this example. Typically, when you want to specify
a large number of values for a partition, you do not do so within the DEFINE
PARTITION STATEMENT statement. Instead, you define the partition without
specifying any values, and then later specify the values using MAINTAIN ADD
TO PARTITION or MAINTAIN MOVE TO PARTITION statements as
illustrated in Example 16–50, "Specifying the Values of a Partition Using
Valuesets" on page 16-108.)

DEFINE

DECIMALCHAR to DELETE 10-79

2. Define a partitioned sales variable with the partitions defined by the partition
template named partition_sales_by_year.

DEFINE sales DECIMAL <partition_sales_by_year<time product>>

3. After you populate sales with day values, you can issue the following REPORT
statement to see which sales values are in which partition.

REPORT DOWN PARTITION(partition_sales_by_year) time product sales

PARTITION(PARTITION_SALES_BY_YEAR) TIME PRODUCT SALES
----------------------------------- ---------- ---------- ----------
TIME_2003 2003 00001 NA
TIME_2003 Dec2003 00001 NA
TIME_2003 Jan2003 00001 NA
TIME_2003 31Dec2003 00001 14.78
TIME_2003 01Dec2003 00001 15.52
TIME_2003 31Jan2003 00001 13.61
TIME_2003 01Jan2003 00001 10.39
TIME_2003 2003 00002 NA
TIME_2003 Dec2003 00002 NA
TIME_2003 Jan2003 00002 NA
TIME_2003 31Dec2003 00002 16.05
TIME_2003 01Dec2003 00002 12.27
TIME_2003 31Jan2003 00002 10.83
TIME_2003 01Jan2003 00002 11.07
TIME_2002 2002 00001 NA
TIME_2002 Dec2002 00001 NA
TIME_2002 Jan2002 00001 NA
TIME_2002 31Dec2002 00001 18.80
TIME_2002 01Dec2002 00001 13.64
TIME_2002 31Jan2002 00001 12.41
TIME_2002 01Jan2002 00001 16.97
TIME_2002 2002 00002 NA
TIME_2002 Dec2002 00002 NA
TIME_2002 Jan2002 00002 NA
TIME_2002 31Dec2002 00002 17.47
TIME_2002 01Dec2002 00002 16.58
TIME_2002 31Jan2002 00002 18.94
TIME_2002 01Jan2002 00002 18.36

DEFINE VARIABLE

10-80 Oracle OLAP DML Reference

Example 10–27 Defining a Variable with External Partitions

Assume you have an analytic workspace that contains individual sales variables for
each years data.

DEFINE year_2003 DIMENSION TEXT
DEFINE year_2002 DIMENSION TEXT
DEFINE year_2003_PARENTREL RELATION year_2003 <year_2003>
DEFINE year_2002_PARENTREL RELATION year_2002 <year_2002>
DEFINE sales_2003 VARIABLE DECIMAL <year_2003 product>
DEFINE sales_2002 VARIABLE DECIMAL <year_2002 product>

Assume also that you want to logically combine the sales data into a single variable
that has sales data for all years. To do this you add the following definitions to the
analytic workspace:

■ A definition for a concat dimension that has the time-related dimensions of
sales_2002 and sales_2003 as base dimensions.

DEFINE time DIMENSION CONCAT (year_2003 Year_2002) UNIQUE

■ A definition for the relation that specifies the child-parent relationship of the
values of the time hierarchy.

DEFINE time_parentrel RELATION time <time>

■ A partition template object that defines the partitions for each year's sales data
(that is, sales_2002 and sales_2003).

DEFINE part_temp_sales_by_year PARTITION TEMPLATE <time product> -
 PARTITION BY CONCAT (time)-
 (PARTITION partition_2002 <year_2002 product>, -
 PARTITION partition_2003 <year_2003 product>)

■ A sales variable with external partitions for sales_2002 and sales_2003.

DEFINE sales DECIMAL <part_temp_sales_by_year<time product>> -
 (PARTITION partition_2002 EXTERNAL sales_2002,-
 PARTITION partition_2003 EXTERNAL sales_2003)

DEFINE

DECIMALCHAR to DELETE 10-81

When you issue the following REPORT statement you can see the values in the
partitions of sales.

REPORT DOWN PARTITION(part_temp_sales_by_year) time product sales

PARTITION(PART_TEMP_SALES_BY_YEAR) TIME PRODUCT SALES
----------------------------------- ---------- ---------- ----------
PARTITION_2002 01Jan2002 00001 14.44
PARTITION_2002 31Jan2002 00001 15.55
PARTITION_2002 01Dec2002 00001 11.39
PARTITION_2002 31Dec2002 00001 10.53
PARTITION_2002 Jan2002 00001 29.99
PARTITION_2002 Dec2002 00001 21.92
PARTITION_2002 2002 00001 51.91
PARTITION_2002 01Jan2002 00002 11.03
PARTITION_2002 31Jan2002 00002 12.20
PARTITION_2002 01Dec2002 00002 12.80
PARTITION_2002 31Dec2002 00002 13.77
PARTITION_2002 Jan2002 00002 23.23
PARTITION_2002 Dec2002 00002 26.57
PARTITION_2002 2002 00002 49.80
PARTITION_2003 01Jan2003 00001 10.00
PARTITION_2003 31Jan2003 00001 10.88
PARTITION_2003 01Dec2003 00001 NA
PARTITION_2003 31Dec2003 00001 NA
PARTITION_2003 Jan2003 00001 20.88
PARTITION_2003 Dec2003 00001 NA
PARTITION_2003 2003 00001 NA
PARTITION_2003 01Jan2003 00002 15.21
PARTITION_2003 31Jan2003 00002 13.37
PARTITION_2003 01Dec2003 00002 NA
PARTITION_2003 31Dec2003 00002 NA
PARTITION_2003 Jan2003 00002 28.58
PARTITION_2003 Dec2003 00002 NA
PARTITION_2003 2003 00002 NA

Example 10–28 Defining a Fixed-Width TEXT Variable

The following statement defines a TEXT variable named lastname dimensioned
by employee. Values in lastname are limited to 20 characters, so that longer
values are truncated.

DEFINE lastname TEXT <employee> WIDTH 20

DEFINE VARIABLE

10-82 Oracle OLAP DML Reference

Example 10–29 Defining a Variable That Uses a Named B-Tree Composite

Assume that you have the following dimensions in your analytic workspace.

DEFINE month DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE region DIMENSION TEXT

When your company does promotional marketing for certain products in some but
not all regions, then your variable data will be sparse along the product and
region dimensions. Therefore, suppose you define a composite named proddist,
whose base dimensions are product and region. There are dimension-value
combinations in the composite only for those values that have data. For example,
when you run a promotion for tents but not skis, then the composite includes the
tents and region combinations, but not the skis and region combinations.

The following statement creates a b-tree composite named proddist whose base
dimensions are product and district, and a variable called promo that is
dimensioned by month and proddist.

DEFINE proddist COMPOSITE <product region>
DEFINE promo VARIABLE INTEGER <month proddist <product district>>

DEFINE

DECIMALCHAR to DELETE 10-83

For simplicity's sake assume that you have only stored the following dimension
data in your analytic workspace.

PRODUCT

Tents
Skis

REGION

Northeast
Southwest

MONTH

Jan2003
Feb2003
Mar2003
Apr2003
May2003
Jun2003
Jul2003
Aug2003
Sep2003
Oct2003
Nov2003
Dec2003

You decide to run a promotional sales for skis in the Northeast region in the month
of September, 2003 at a cost of $5,000. Once you populate promo with this, promo
contains only 12 cells—each cell is dimensioned by a value of month and the
composite tuple value of <'Skis' 'Northeast'> for proddist. The cell for
September 2003 contains the value $5,000, and all of the other cells contain NA. No
other NA values are stored in promo; there are no cells are created for any other
values of product or region.

DEFINE WORKSHEET

10-84 Oracle OLAP DML Reference

DEFINE WORKSHEET

The DEFINE command with the WORKSHEET keyword adds a new worksheet
object to an analytic workspace. A worksheet, like a spreadsheet, is a
two-dimensional object that is dimensioned by a worksheet row and a worksheet
column. It can temporarily store data that you want to transfer between spreadsheet
packages and workspace dimensions and variables.

Syntax
DEFINE name WORKSHEET [<column-dim row-dim>] [TEMP] [AW workspace] [SESSION]

Arguments

name
The name of the object you are defining. For general information about this
argument, see the main entry for the DEFINE command.

WORKSHEET
The object type when you are defining a worksheet.

<column-dim row-dim>
The names of the dimensions of the worksheet. When you supply this argument,
you must give the names of two integer dimensions for column-dim and row-dim.
When you omit this argument, the worksheet will be dimensioned automatically by
WKSCOL and WKSROW. See "Worksheet Dimensions" on page 10-85 for more
information

TEMP
Indicates that the worksheet is only temporary. The worksheet is defined in the
specified workspace and can contain values during the current session. However,
when you update and commit, only the definition of the worksheet is saved. When
you end your session or switch to another workspace, the data values are discarded.

AW workspace
The name of an attached workspace in which you wish to define the worksheet. The
worksheet must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

DEFINE

DECIMALCHAR to DELETE 10-85

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. This differs from the TEMP keyword, which specifies
that the values are temporary but the object definition remains in the workspace in
which you create it.

Notes

Worksheet Dimensions
A worksheet is always dimensioned by two dimensions that represent a worksheet
row and a worksheet column. The worksheet row and a worksheet column
dimensions can either be automatically created by Oracle OLAP or explicitly
created by you.

■ When you have not created worksheet row and a worksheet column
dimensions and specified their names in the column-dim and row-dimt
arguments of DEFINE WORKSHEET, Oracle OLAP automatically creates the
following dimensions:

■ For the worksheet row, an INTEGER dimension named WKSROW with
values from 1 to 63.

■ For the worksheet column, an INTEGER dimension named WKSROW with
values from 1 to 63.

WKSCOL and WKSROW do not appear in the worksheet description. (For
information on how to create a worksheet description, see DESCRIBE.)

■ You create worksheet row and a worksheet column dimensions the same way
you create any other simple dimension by issuing the following statements:

1. Create two simple INTEGER dimensions using a DEFINE DIMENSION
(simple) statement.

2. Populate the dimensions with the number of rows and columns that you
want in your worksheet using a MAINTAIN statement.

Note: When WKSCOL and WKSROW already exist in any attached
workspace, Oracle OLAP cannot create them in the current
worksheet. In this case, the DEFINE WORKSHEET command will
fail to create a worksheet with these default dimensions.

DEFINE WORKSHEET

10-86 Oracle OLAP DML Reference

Adding Worksheet Cells Automatically
When you import a file that requires more cells than are available, the worksheet
dimensions are maintained automatically. For this reason, you should avoid using
the worksheet dimensions for other types of objects.

You can also add or delete values from worksheet row and a worksheet column
dimensions with the MAINTAIN command, which changes the number of cells in
the worksheet.

Examples

Example 10–30 Defining a Worksheet

These statements define a temporary worksheet named travelexp, which is
dimensioned by columns and rows.

DEFINE itemsheet WORKSHEET
DEFINE columns INT DIMENSION
MAINTAIN columns ADD 5
DEFINE rows INT DIMENSION
MAINTAIN rows ADD 10
DEFINE travelexp WORKSHEET <columns rows> TEMPORARY

Example 10–31 Importing Spreadsheet Data

You can import data from a spreadsheet to a worksheet. When all the cells contain
the same type of data, you can use UNRAVEL to transfer the data to a variable with
one statement. You can also limit the worksheet dimensions to a smaller group of
cells and use UNRAVEL to transfer each group to a separate variable. To transfer
imported data from a worksheet named itemsheet to a variable named items,
you might use the following statements.

DEFINE itemsheet WORKSHEET
IMPORT itemsheet FROM dif FILE 'file name'
LIMIT WKSCOL TO FIRST 3
LIMIT WKSROW TO FIRST 10
items = UNRAVEL(itemsheet)

DELETE

DECIMALCHAR to DELETE 10-87

DELETE

The DELETE command deletes one or more objects from a workspace. The deletion
becomes permanent when you execute the UPDATE and COMMIT commands.

Syntax
DELETE name... [AW workspace]

Arguments

name...
The names of one or more objects, separated by spaces or commas. DELETE
removes the definitions of these objects from the appropriate workspace.

You can specify a qualified object name to indicate the attached workspace in which
each object can be found. In this way, you can specify different workspaces for
different objects that you are deleting. As an alternative, you can use the AW
argument to specify the workspace in which all of the objects can be found. Do not
use both qualified object names and the AW argument in the same DELETE
command.

When you do not use a qualified object name or the AW argument to specify a
workspace, objects are deleted in the current workspace.

AW workspace
The name of an attached workspace in which you wish to delete all the specified
objects. When you do not use a qualified object name or the AW argument to
specify a workspace, objects are deleted in the current workspace.

Note: Oracle OLAP does not warn you when you delete an object
that has the same name as an existing object in another attached
workspace.

DELETE

10-88 Oracle OLAP DML Reference

Notes

Deleting Associated Objects
To delete a dimension or a composite, you must first delete all the objects that are
dimensioned by it and any objects that use it. Since a dimension surrogate cannot
dimension other objects, you can delete a dimension surrogate at any time. Deleting
a surrogate does not affect the dimension for which it is a surrogate.

Status of NAME
When you use the DELETE command when the NAME dimension is limited to less
than all its values, DELETE automatically sets the status of NAME to ALL.

Renaming Before Deleting
When you see an error message when you try to delete an object, then the name of
that object might be a reserved word. (Use RESERVED to identify reserved words.)
When this is the case, use the RENAME command to give the object a new name,
and then delete it.

Deleting and PERMIT
You cannot delete an object when a PERMIT command denies you the right to
change its permission.

Examples

Example 10–32 Deleting a Dimension

Suppose you have a dimension named city and a variable named population
that you want to delete. The variable population is the only object that is
dimensioned by or makes use of city, so you can delete them both together when
you place the variable before the dimension in the DELETE command.

DELETE population city

Placing city before population in the preceding statement would produce an
error.

DEPRDECL to EXISTS 11-1

11
DEPRDECL to EXISTS

This chapter contains the following OLAP DML statements:

■ DEPRDECL

■ DEPRDECLSW

■ DEPRSL

■ DEPRSOYD

■ DESCRIBE

■ DIVIDEBYZERO

■ DO ... DOEND

■ DSECONDS

■ ECHOPROMPT

■ EDIT

■ EIFBYTES

■ EIFEXTENSIONPATH

■ EIFNAMES

■ EIFSHORTNAMES

■ EIFTYPES

■ EIFUPDBYTES

■ EIFVERSION

■ END

■ ENDDATE

11-2 Oracle OLAP DML Reference

■ ENDOF

■ EQ

■ ERRNAMES

■ ERRORNAME

■ ERRORTEXT

■ ESCAPEBASE

■ EVERSION

■ EVERY

■ EXISTS

■ EXP

DEPRDECL

DEPRDECL to EXISTS 11-3

DEPRDECL

The DEPRDECL function calculates the depreciation expenses for a series of assets.
DEPRDECL uses the declining balance method to depreciate the assets over the
specified lifetime of the assets. The starting value and ending value are specified for
the assets acquired in each time period.

Return Value
DECIMAL

Syntax
DEPRDECL(start-exp end-exp n [decline-factor [{FULL|HALF|portion-exp} [time-dimension]]])

Arguments

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time
dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1996 have a
salvage value of $200, then the value of end-exp for 1996 is $200.

n
An integer expression that contains the number of periods for the depreciation life
of the assets. The n expression can have any of the non-time dimensions of start-exp,
but it cannot have a time dimension.

DEPRDECL

11-4 Oracle OLAP DML Reference

decline-factor
A numeric expression that gives the declining balance rate to use for calculating the
depreciation expenses. The decline-factor expression can have any of the non-time
dimensions of start-exp, but it cannot have a time dimension.

A factor of 2 indicates a double declining balance. The default is 2.

FULL
Specifies that the full amount of a time period's depreciation expense is charged to
the time period in which assets were acquired. Charges the full amount to all of the
assets in the series. (Default)

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. You might want to use HALF when assets
are acquired during the second half of the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or
YEAR, the time-dimension argument is optional.

Notes

How Result Is Dimensioned
The result returned by DEPRDECL is dimensioned by all the dimensions of
start-exp.

Using Optional Arguments
When you include either of the two final optional arguments (FULL or HALF or
portion and time-dimension), you must also include the preceding optional
arguments.

DEPRDECL

DEPRDECL to EXISTS 11-5

Depreciation for a Given Time Period
DEPRDECL calculates the depreciation expense for a given time period as the sum
of that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it
was acquired.

The HALF Argument
When you specify HALF as the portion of depreciation expenses to charge to the
period of acquisition, the HALF factor is applied to each period. Half of each
period's full depreciation is rolled to the next period, and the final half period of
depreciation takes place in the time period n + 1.

Calculation Method Used
For each time period, DEPRDECL calculates the declining balance depreciation
expense by multiplying the current value of an asset by the decline-factor and
dividing the result by the number of periods in the lifetime of an asset. However,
when the calculation for a specific time period results in an asset's current value
going below the ending value, then the depreciation expense is adjusted. In this
instance, the depreciation expense is calculated as the current value minus the
ending value.

Low Ending Value
When the ending value specified for an asset is low enough that the depreciation
expense for the last period does not need to be adjusted, then the total depreciation
expense over all the periods will usually be less than the starting value minus the
specified ending value.

High Ending Value
When the ending value specified for an asset is relatively high, then an asset might
be totally depreciated in fewer periods than were specified for the lifetime of the
depreciation. In this instance, when you want the depreciation expense applied
across the specified lifetime of the depreciation, you can lower the decline-factor.

NA Mismatch Errors
When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

DEPRDECL

11-6 Oracle OLAP DML Reference

NASKIP Option Settings
DEPRDECL is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRDECL treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRDECL returns NA for all affected time periods.

Dimension Limits Ignored
The DEPRDECL calculation begins with the first time dimension value, regardless
of how the status of that dimension may be limited. For example, suppose start-exp
is dimensioned by year, and the values of year range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year so
that it does not include Yr95.

Another Declining-Balance Method
The pure declining-balance method of depreciation used by DEPRDECL is not the
most widely used form of the declining-balance method. For a more commonly
used form of the declining-balance method, see the DEPRDECLSW function, which
uses a combination of the declining-balance and straight-line methods.

Related Functions
The DEPRSL function, which uses the straight-line method to calculate depreciation
expenses, and the DEPRSOYD function, which uses the sum-of-years'-digits
method to calculate depreciation expenses.

Examples

Example 11–1 Using DEPRDECL to Calculate Depreciation Expenses for Assets
Acquired in a Single Period

This example shows how to use DEPRDECL to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

DEPRDECL

DEPRDECL to EXISTS 11-7

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The assets variable contains the starting value of the assets acquired in 1995. The
salvage variable contains the ending value of the assets acquired in 1995.

The following statement reports asset and salvage values, along with depreciation
expenses for the assets. Note that the call to DEPRDECL to calculate the
depreciation expenses specifies an asset lifetime of 5 periods (in this case, years) and
a decline factor of 2 (double-declining balance).

REPORT assets salvage W 12 HEADING 'Depreciation' -
DEPRDECL(assets salvage 5 2 FULL year)

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 144.00
Yr98 0.00 0.00 86.40
Yr99 0.00 0.00 29.60
Yr00 0.00 0.00 0.00

In this example, the depreciation expense for 1999 is adjusted so that the current
asset value does not fall below the salvage value. The current asset value is
calculated by subtracting the accumulated depreciation expense from the starting
asset value. For example, for 1998 the accumulated depreciation expense is $870.40
($400.00 + $240.00 + $144.00 + $86.40 = $870.40). This means the current asset value
for 1998 is $129.60 ($1,000.00 - $870.40 = $129.60). In this example, the depreciation
expense is usually calculated by multiplying the current asset value by 2 and then
dividing the result by 5. Now, if $129.60 is multiplied by 2, then divided by 5, the
resulting depreciation expense is $51.84. If this depreciation expense is subtracted
from the 1998 current asset value of $129.60, the current asset value for 1999 would
be $77.76, which is below the salvage value of $100. Instead of letting the current
asset value fall below the salvage value, the DEPRDECL function subtracts the

DEPRDECL

11-8 Oracle OLAP DML Reference

salvage value ($100.00) from the current asset value ($129.60) to calculate the
depreciation expense ($29.60).

Example 11–2 Using DEPRDECL to Calculate the Depreciation Expenses for Assets
Acquired in Multiple Periods

You can also use DEPRDECL to calculate the depreciation expenses for a series of
assets.

Suppose you change the values for the year 1997 in the variables assets and
salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997

The following statement reports the values of assets and salvage, and uses
DEPRDECL to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years, and a decline factor of 2 (double declining balance).

REPORT assets SALVAGE W 12 HEADING 'Depreciation' -
DEPRDECL(assets salvage 5 2 FULL year)

This statement produces the following output. (Notice that the depreciation expense
increases in 1997 due to the assets acquired in that year.)

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 500.00 50.00 344.00
Yr98 0.00 0.00 206.00
Yr99 0.00 0.00 101.00
Yr00 0.00 0.00 43.20
Yr01 0.00 0.00 14.80
Yr02 0.00 0.00 0.00

DEPRDECLSW

DEPRDECL to EXISTS 11-9

DEPRDECLSW

The DEPRDECLSW function calculates the depreciation expenses for a series of
assets. DEPRDECLSW uses a variation on the declining balance method to
depreciate assets over the specified lifetime of the assets. DEPRDECLSW begins by
using the declining balance method, then switches over to the straight-line method
at one of the following points in the time series:

■ The first period for which straight-line depreciation over the remaining periods
exceeds the declining balance depreciation for those periods (the default)

■ The period specified by the switch-period argument

Return Value
DECIMAL

Syntax
DEPRDECLSW(start-exp end-exp n

[decline-factor [{FULL|HALF| portion-exp} [switch-period [time-dimension]]]])

Arguments

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time
dimensions.

end-exp
A numeric expression that contains the ending value of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1990 have a
salvage value of $200, then the value of end-exp for 1990 is $200.

DEPRDECLSW

11-10 Oracle OLAP DML Reference

n
An integer expression that contains the number of periods for the depreciation life
of the assets. The n expression can have any of the non-time dimensions of start-exp,
but it cannot have a time dimension.

decline-factor
A numeric expression that gives the declining balance rate to use for calculating the
depreciation expenses. The decline-factor expression can have any of the non-time
dimensions of start-exp, but it cannot have a time dimension.

A factor of 2 indicates a double declining balance. The default is 2.

FULL
Specifies that the full amount of a time period's depreciation expense is charged to
the time period in which assets were acquired. Charges the full amount to all of the
assets in the series. (Default)

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. You might want to use HALF when assets
are acquired during the second half of the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

switch-period
An integer expression that indicates the time period in which the calculation should
switch to the straight-line method. The switch-period argument is optional.

A common accounting practice is to switch to a straight-line method in the first
period for which straight-line depreciation over the remaining periods exceeds the
declining-balance depreciation. You can specify this behavior by not specifying the
switch-period argument.

When the switch-period argument is not specified or has a value of NA or 0, the
calculation switches from the declining method to the straight-line method in the
first period for which straight-line depreciation over the remaining periods exceeds
the declining-balance depreciation.

DEPRDECLSW

DEPRDECL to EXISTS 11-11

When you want to specify different switch periods for different assets, you can
supply an expression that is dimensioned by any of the non-time dimensions of
start-exp.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or
YEAR, the time-dimension argument is optional.

Notes

Calculation Does Not Switch
When switch-period is less than 0 or greater than the number of periods in the
depreciation schedule, the calculation does not switch. In this case, the
DEPRDECLSW function behaves just like the DEPRDECL function.

How Result Is Dimensioned
The result returned by DEPRDECLSW is dimensioned by all the dimensions of
start-exp.

Using Optional Arguments
When you include any of the final three optional arguments (FULL or HALF or
portion, switch-period, or time-dimension), you must also include the preceding
optional arguments.

Depreciation for a Given Time Period
DEPRDECLSW calculates the depreciation expense for a given time period as the
sum of that period's depreciation expenses for all assets in the series that are not yet
fully depreciated. The first period of depreciation for an asset is the period in which
it was acquired.

The HALF Argument
When you specify HALF as the portion of depreciation expenses to charge to the
period of acquisition, the HALF factor is applied to each period. Half of each
period's full depreciation is rolled to the next period, and the final half period of
depreciation takes place in the time period n + 1.

DEPRDECLSW

11-12 Oracle OLAP DML Reference

Calculation Method Used
For each time period in which DEPRDECLSW is calculating depreciation according
to the declining balance method, it calculates the depreciation expense by
multiplying the current value of an asset by the decline-factor and dividing the result
by the number of periods in the lifetime of the asset. When DEPRDECLSW switches
to the straight-line method, it subtracts the depreciation expense (from previous
periods) from the value of an asset and divides the resulting amount by the number
of periods left in the lifetime of the asset. However, when the depreciation expense
calculated for a specific time period would result in an asset's current value going
below its ending value, then the depreciation expense is adjusted. In this instance,
the depreciation expense is calculated as the current value minus the ending value.

Straight-Line Method
The straight-line method as used by DEPRDECLSW differs from the traditional
straight-line method as used by DEPRSL. Unlike other methods of depreciation, the
declining-balance methods of depreciation ignore the salvage value for an asset
until the period in which the calculated depreciation would exceed the remaining
depreciable value. This holds true for DEPRDECLSW even after it switches from the
declining-balance method to the straight-line method. For example, suppose the
beginning value for an asset is 16,000 and the salvage value is 1,000 over 5 periods.
The total depreciation through the periods using declining balance method (here
the first three) is 11,544. The straight-line calculations for the remaining periods
would be based on the overall remaining value of 16,000 minus 11,544 (3,456),
rather than the overall value minus the salvage value (2,456). Thus the depreciation
for the last two periods would be 1,728; but for the very last period the salvage
value is subtracted out and thus is 728.

Most Common Declining-balance Method
This variation on the declining-balance method is the most commonly used form of
declining-balance depreciation methods.

Unexpected-Balance Method
When the ending value specified for an asset is relatively high, then an asset might
be totally depreciated in fewer periods than were specified for the lifetime of the
depreciation. In this instance, when you want the depreciation expense applied
across the specified lifetime of the depreciation, you can lower the decline-factor.

DEPRDECLSW

DEPRDECL to EXISTS 11-13

NA Mismatch Errors
When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

NASKIP Option Settings
DEPRDECLSW is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRDECLSW treats the values as zeros when calculating the depreciation
expenses. When NASKIP is NO, DEPRDECLSW returns NA for all affected time
periods.

Dimension Limits Ignored
The DEPRDECLSW calculation begins with the first time dimension value,
regardless of how the status of that dimension may be limited. For example,
suppose start-exp is dimensioned by year, and the values of year range from Yr95
to Yr99. The calculation always begins with Yr95, even when you limit the status
of year so that it does not include Yr95.

Examples

Example 11–3 Using DEPRDECLSW to Calculate Depreciation Expenses for Assets
Acquired in a Single Period

This example shows how to use DEPRDECLSW to calculate depreciation expenses
for assets acquired in a single time period. It also shows the behavior of
DEPRDECLSW when you do not specify a switch period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

DEPRDECLSW

11-14 Oracle OLAP DML Reference

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
------- ---------- -----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of the assets acquired in 1995.
salvage contains the ending value of the assets acquired in 1995.

The following statement reports the values of assets and salvage, and uses
DEPRDECLSW to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years, and a decline factor of 2 (double declining balance). The
statement does not specify a switch-period argument. Because of this, DEPRDECLSW
will use the default for switch-period, which is to switch from the declining balance
method of depreciation in the first period for which straight-line depreciation over
the remaining periods exceeds the declining-balance depreciation.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRDECLSW (assets salvage 5 2 FULL)

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
------- ---------- ----------- --------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 144.00
Yr98 0.00 0.00 108.00
Yr99 0.00 0.00 8.00
Yr00 0.00 0.00 0.00

Example 11–4 Specifying the Switch Period

Alternatively, you can specify the period in which the switch occurs.

To switch from the declining balance method to the straight-line method of
depreciation in the third year (Yr97), specify 3 as the switch period, as shown in
the following statement.

REPORT assets salvage W 12 HEADING 'DEPRECIATION' -
 DEPRDECLSW (assets salvage 5 2 FULL 3 year)

DEPRDECLSW

DEPRDECL to EXISTS 11-15

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------- ---------- ----------- --------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 120.00
Yr98 0.00 0.00 120.00
Yr99 0.00 0.00 20.00
Yr00 0.00 0.00 0.00

Example 11–5 Using DEPRDECLSW to Calculate the Depreciation Expenses for
Assets Acquired in Multiple Periods

You can use DEPRDECLSW to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets
and salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRDECLSW to calculate the
depreciation expenses specifies an asset lifetime of 5 periods (in this case, years) and
a decline factor of 2 (double-declining balance). The statement does not specify a
switch-period argument. Because of this, DEPRDECLSW will use the default for
switch-period, which is to switch from the declining balance method of depreciation
in the first period for which straight-line depreciation over the remaining periods
exceeds the declining-balance depreciation.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRDECLSW(assets salvage 5 2 FULL)

DEPRDECLSW

11-16 Oracle OLAP DML Reference

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100. 00 400.00
Yr96 0.00 0.00 240.00
Yr97 500.00 50.00 344.00
Yr98 0.00 0.00 228.00
Yr99 0.00 0.00 80.00
Yr00 0.00 0.00 54.00
Yr01 0.00 0.00 4.00
Yr02 0.00 0.00 0.00

Notice that the depreciation expense increases in 1997 due to the assets acquired in
that year.

DEPRSL

DEPRDECL to EXISTS 11-17

DEPRSL

The DEPRSL function calculates the depreciation expenses for a series of assets.
DEPRSL uses the straight-line method to depreciate the assets over the specified
lifetime of the assets. The starting and ending values are specified for the assets
acquired in each time period.

Return Value
DECIMAL

Syntax
DEPRSL(start-exp end-exp n [{FULL|HALF| portion-exp} [time-dimension]])

Arguments

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time
dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1995 have a
salvage value of $200, then the value of end-exp for 1995 is $200.

n
An integer expression that contains the depreciation lifetime of the assets. The n
expression can have any of the non-time dimensions of start-exp, but it cannot have
a time dimension.

DEPRSL

11-18 Oracle OLAP DML Reference

FULL
Specifies that the full amount of a time period's depreciation expense is charged to
the time period in which assets were acquired. Charges the full amount to all of the
assets in the series. (Default)

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. You might want to use HALF when assets
are acquired during the second half of the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or
YEAR, the time-dimension argument is optional.

Notes

How Result Is Dimensioned
The result returned by DEPRSL is dimensioned by all the dimensions of start-exp.

Using Optional Arguments
When you include the optional time-dimension argument, you must also include the
preceding optional argument (FULL or HALF or portion).

Depreciation for a Given Time Period
DEPRSL calculates the depreciation expense for a given time period as the sum of
that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it
was acquired.

The HALF Argument
When you specify HALF as the portion of depreciation expenses to charge to the
period of acquisition, the HALF factor is applied to each period. Half of each

DEPRSL

DEPRDECL to EXISTS 11-19

period's full depreciation expense is rolled to the next period, and the final half
period of depreciation takes place in the time period n + 1.

NA Mismatch Errors
When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

NASKIP Option Settings
DEPRSL is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRSL treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRSL returns NA for all affected time periods.

Dimension Limits Ignored
The DEPRSL calculation begins with the first time dimension value, regardless of
how the status of that dimension may be limited. For example, suppose start-exp is
dimensioned by year, and the values of year, range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year, so
that it does not include Yr95.

Related Functions
The DEPRDECL function, which uses the pure declining-balance method to
calculate depreciation expenses; the DEPRDECLSW function, which uses a more
widely used variation on the declining-balance method to calculate depreciation
expenses; and the DEPRSOYD function, which uses the sums-of-years'-digits
method to calculate depreciation expenses.

Examples

Example 11–6 Using DEPRSL to Calculate Depreciation Expenses for Assets
Acquired in a Single Period

This example shows how to use DEPRSL to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

DEPRSL

11-20 Oracle OLAP DML Reference

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of assets acquired in 1995. The
variable salvage contains the ending value of the assets acquired in 1995.

The following statement reports the values of assets and salvage, and uses DEPRSL
to calculate depreciation expenses for each year, specifying an asset lifetime of 5
years.

REPORT assets salvage W 12 HEADING 'Depreciation' -
DEPRSL(assets salvage 5 FULL year)

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 180.00
Yr96 0.00 0.00 180.00
Yr97 0.00 0.00 180.00
Yr98 0.00 0.00 180.00
Yr99 0.00 0.00 180.00
Yr00 0.00 0.00 0.00

DEPRSL

DEPRDECL to EXISTS 11-21

Example 11–7 Using DEPRSL to Calculate the Depreciation Expenses for Assets
Acquired in Multiple Periods

You can also use DEPRSL to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets
and salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRSL to calculate the depreciation
expenses specifies an asset lifetime of 5 periods (in this case, years).

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSL(assets salvage 5 FULL year)

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ------------- --------------------
Yr95 1,000.00 100.00 180.00
Yr96 0.00 0.00 180.00
Yr97 500.00 50.00 270.00
Yr98 0.00 0.00 270.00
Yr99 0.00 0.00 270.00
Yr00 0.00 0.00 90.00
Yr01 0.00 0.00 90.00
Yr02 0.00 0.00 0.00

The assets acquired in 1995 were fully depreciated in 1999. Therefore, for 2000 and
2001, DEPRSL returns a figure that includes the depreciation expense for the assets
acquired in 1997 only.

DEPRSOYD

11-22 Oracle OLAP DML Reference

DEPRSOYD

The DEPRSOYD function calculates the depreciation expenses for a series of assets.
DEPRSOYD uses the sum-of-years'-digits method to depreciate the assets over the
specified lifetime of the assets. The starting and ending values are specified for the
assets acquired in each time period.

Return Value
DECIMAL

Syntax
DEPRSOYD(start-exp end-exp n [{FULL|HALF| portion-exp} [time-dimension]])

Arguments

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time
dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1995 have a
salvage value of $200, then the value of end-exp for 1995 is $200.

n
An integer expression that contains the depreciation lifetime of the assets. The n
expression can have any of the non-time dimensions of start-exp, but it cannot have
a time dimension.

DEPRSOYD

DEPRDECL to EXISTS 11-23

FULL
Specifies that the full amount of a time period's depreciation expense is charged to
the time period in which assets were acquired. Charges the full amount to all of the
assets in the series. (Default)

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. You might want to use HALF when assets
are acquired during the second half of the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are
dimensioned.When the time dimension has a type of DAY, WEEK, MONTH,
QUARTER, or YEAR, the time-dimension argument is optional.

Notes

How Result Is Dimensioned
The result returned by DEPRSOYD is dimensioned by all the dimensions of
start-exp.

Using Optional Arguments
When you include the optional time-dimension argument, you must also include the
preceding optional argument (FULL or HALF or portion).

Depreciation for a Given Time Period
DEPRSOYD calculates the depreciation expense for a given time period as the sum
of that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it
was acquired.

DEPRSOYD

11-24 Oracle OLAP DML Reference

Calculation Method Used
For each time period in the lifetime of an asset, DEPRSOYD bases the depreciation
expense calculation on a specific cut of the total amount to be depreciated. The
value of the cut is such that the full depreciation expense can be achieved over the
lifetime of an asset by multiplying the cut by the number of time periods not yet
depreciated.

For example, when the lifetime of an asset is 5 years, then DEPRSOYD calculates
the cut, x, as follows.

5x + 4x + 3x + 2x + 1x = total depreciation

In this case, the cut is 1/15th of the total depreciation. When the initial asset is
$1,000 and its salvage value is $100, then the total depreciation is $900.00, and x is
$60 ($900/15). For the first time period, the depreciation is $300 ($60 x 5). For the
second time period, the depreciation is $240 ($60 x 4) and so on.

The HALF Argument
When you specify HALF as the portion of depreciation expenses to charge to the
period of acquisition, the HALF factor is applied to each period. Half of each
period's full depreciation expense is rolled to the next period, and the final half
period of depreciation expense takes place in the n + 1 time period.

NA Mismatch Errors
When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

NASKIP Option Settings
DEPRSOYD is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRSOYD treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRSOYD returns NA for all affected time periods.

Dimension Limits Ignored
The DEPRSOYD calculation begins with the first time dimension value, regardless
of how the status of that dimension may be limited. For example, suppose start-exp
is dimensioned by year, and the values of year range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year so
that it does not include Yr95.

DEPRSOYD

DEPRDECL to EXISTS 11-25

Related Functions
The DEPRDECL function, which uses the pure declining-balance method to
calculate depreciation expenses; the DEPRDECLSW function, which uses a more
widely used variation on the declining-balance method to calculate depreciation
expenses; and the DEPRSL function, which uses the straight-line method to
calculate depreciation expenses.

Examples

Example 11–8 Using DEPRSOYD to Calculate Depreciation Expenses for Assets
Acquired in a Single Period

This example shows how to use DEPRSOYD to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of assets acquired in 1995. The
variable salvage contains the ending value of the assets acquired in 1995.

The following statement reports the values of assets and salvage, and uses
DEPRSOYD to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSOYD(assets salvage 5 FULL year)

DEPRSOYD

11-26 Oracle OLAP DML Reference

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 380.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 180.00
Yr98 0.00 0.00 120.00
Yr99 0.00 0.00 60.00
Yr00 0.00 0.00 0.00

Example 11–9 Using DEPRSOYD to Calculate the Depreciation Expenses for Assets
Acquired in Multiple Periods

You can also use DEPRSOYD to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets
and salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRSOYD to calculate the
depreciation expenses specifies an asset lifetime of 5 periods (in this case, years).

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSOYD(assets salvage 5 FULL year)

DEPRSOYD

DEPRDECL to EXISTS 11-27

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 300.00
Yr96 0.00 0.00 240.00
Yr97 500.00 50.00 330.00
Yr98 0.00 0.00 240.00
Yr99 0.00 0.00 160.00
Yr00 0.00 0.00 60.00
Yr01 0.00 0.00 30.00
Yr02 0.00 0.00 0.00

Notice that as a result of the second asset, the depreciation expenses increase in
1997. The depreciation is the total depreciation of $180.00 ($60 x 3) for the first asset
and $150.00 ($30 x 5) for the second asset.

DESCRIBE

11-28 Oracle OLAP DML Reference

DESCRIBE

The DESCRIBE command produces a report that shows the definition of one or
more workspace objects.

Syntax
DESCRIBE [names]

Arguments

names
The names of one or more workspace objects, separated by spaces or commas.
DESCRIBE includes the definition of each specified object in its report. When you
omit this argument, DESCRIBE shows the definition of all objects in the current
status of NAME.

Notes

Output of DESCRIBE
The object definition that you see in the output from a DESCRIBE command might
include a description (LD), a value name format (VNF) for a time dimension, an
expression associated with a FORMULA, permission specified with PERMIT
commands, trigger programs associated with the object (TRIGGER command), or
the contents of a calculation specification (for example, the contents of a program or
model).

Limiting the Objects Described
Normally, the status of NAME is ALL, so DESCRIBE with no argument produces a
report that includes the definitions of all objects in your current workspace.
However, you can use the LIMIT command in combination with DESCRIBE to
report the definitions of a particular group of objects in your workspace. First use
LIMIT to limit the status of the NAME dimension to the names of the objects whose
definitions you want to see. Then execute a DESCRIBE command with no
arguments to produce a report of the definitions. See Example 11–11, "Describing
All Relations" on page 11-30.

DESCRIBE

DEPRDECL to EXISTS 11-29

Paginated Output
You can produce paginated output with the DESCRIBE command by setting
PAGING to YES before using DESCRIBE.

DESCRIBE and PERMIT
You can use DESCRIBE to show the definition of an object even when you do not
have permission to access the object or to change its permission. However, when a
PERMIT command denies you the right to change the permission of an object,
DESCRIBE does not include the permission associated with the definition of the
object.

Describing Worksheets
For a worksheet definition, the DESCRIBE report does not include the default
dimensions, WKSCOL and WKSROW. However, it does include user-defined
dimensions when they have been used to define a worksheet. See Example 11–12,
"Describing a Worksheet" on page 11-31.

Describing Object Properties
The object definitions in the output from the DESCRIBE command do not include
the properties associated with objects. To include properties, you must use the
FULLDSC command. See the entries for FULLDSC and PROPERTY.

Creating Objects with DESCRIBE Output
You can use the output from the DESCRIBE command to create objects in other
workspaces, because each line of the output is a valid statement. For example, you
can execute an OUTFILE command to send subsequent output to a file, and then
execute a DESCRIBE command. You can then access another workspace and use the
INFILE command to read the DESCRIBE output. The same object will be created in
that workspace.

Describing Composites and Conjoints
When you define a composite or conjoint that uses an index type other than the
default, the DESCRIBE command displays the index type. When you use the
default index type (HASH for conjoints, BTREE for composites), that information is
not displayed.

DESCRIBE

11-30 Oracle OLAP DML Reference

Describing Width of Dimensioned BOOLEAN Variables
Dimensioned BOOLEAN variables that are in older 1 or 2 byte formats are listed as
WIDTH 1 and WIDTH 2. The width of BOOLEAN variables created in the new
single-bit format is not listed.

Examples

Example 11–10 Describing Variables

This example produces a report of the definitions of the two variables, sales and
price. The statement

DESCRIBE sales price

produces the following output.

DEFINE SALES VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
LD Sales Revenue
DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price

Example 11–11 Describing All Relations

Suppose you want to look at the definitions of all the relations in your workspace.
First limit the NAME dimension, using the OBJ function. After limiting NAME, use
DESCRIBE with no arguments to produce a report of the definitions. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
describe

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT
DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT
DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>
DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Since the values returned by OBJ(TYPE) are always in uppercase, you have to use
'RELATION' rather than 'relation' in your LIMIT command to obtain a match.

DESCRIBE

DEPRDECL to EXISTS 11-31

Example 11–12 Describing a Worksheet

The dimensions of a worksheet appear in the description only when they are
user-defined dimensions. The default dimensions WKSCOL and WKSROW are not
included in the description. The statements

DEFINE work1 WORKSHEET
DEFINE columns DIMENSION INTEGER
DEFINE rows DIMENSION INTEGER
DEFINE work2 WORKSHEET <columns rows>
DESCRIBE work1 work2

produce the following output.

DEFINE WORK1 WORKSHEET
DEFINE WORK2 WORKSHEET <COLUMNS ROWS>

DIVIDEBYZERO

11-32 Oracle OLAP DML Reference

DIVIDEBYZERO

The DIVIDEBYZERO option controls the result of division by zero.

Data type
BOOLEAN

Syntax
DIVIDEBYZERO = YES|NO

Arguments

YES
Allows division by zero. A statement involving division by zero will execute
without error; however, the result of the division by zero will be NA. When you are
dividing by a dimensioned variable or expression, setting DIVIDEBYZERO to YES
enables you to get results for most of the expression's values when a few
calculations might involve dividing by zero.

NO
Disallows division by zero. A statement involving division by zero will stop
executing and produce an error message. (Default)

Notes

Negative Powers of Zero
Raising zero to a negative power (for example, 0 ** -2) is division by zero.

Statements Affected by DIVIDEBYZERO
AGGREGATE command and AGGREGATE function

DIVIDEBYZERO

DEPRDECL to EXISTS 11-33

Examples

Example 11–13 The Effect of DIVIDEBYZERO

This example shows the effect of changing the value of the DIVIDEBYZERO option.

When you execute a SHOW command, such as the following, without changing the
DIVIDEBYZERO option from its default value of NO, Oracle OLAP attempts to
divide 100 by 0 and then produces an error message.

SHOW 100 / 0

When you change DIVIDEBYZERO to YES, the same statement executes without
error and produces NA as the result of the division. The statements

DIVIDEBYZERO = YES
SHOW 100 / 0

produce the following result.

NA

DO ... DOEND

11-34 Oracle OLAP DML Reference

DO ... DOEND

The DO and DOEND commands bracket a group of one or more statements in a
program. DO and DOEND are normally used to bracket one of the following:

■ A group of statements that are to be executed under a condition specified by an
IF command

■ A group of statements in a repeating loop introduced by FOR or WHILE

■ The CASE labels for a SWITCH command.

DO and DOEND are like opening and closing parentheses; you cannot use one
without the other. You can use DO and DOEND only within programs.

Syntax
DO

statement1

...

statementN

DOEND

Arguments

statement
One or more OLAP DML statements, user-defined programs, or both.

Notes

Nesting
You can put one DO statement inside another to nest groups of statements. You can
nest as many groups as you want, if each DO statement has a corresponding
DOEND to indicate the end of its statement group.

TEMPSTAT Command and DOEND Command
Within a FOR loop of a program, when a DO/DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

DO ... DOEND

DEPRDECL to EXISTS 11-35

Examples

Example 11–14 DO and DOEND with the FOR Command

Suppose you want to use the ROW command to produce a report that shows the
unit sales of tents for each of 2 months. Use DO ... DOEND and DOEND to bracket
the ROW and BITAND commands you want to execute repeatedly for each value of
the month dimension. You might write the following program.

LIMIT month TO 'Jan96' to 'Feb96'
ROW district
ROW UNDER '-' VALONLY name.product
FOR month

DO
ROW INDENT 5 month WIDTH 6 UNITS
BLANK

DOEND

The program produces the following output.

BOSTON
3-Person Tents

Jan96 307
Feb96 209

DSECONDS

11-36 Oracle OLAP DML Reference

DSECONDS

(Read-only) The DSECONDS option holds the number of seconds since January 1,
1970. The value of DSECONDS is in decimal (not integer form). In most cases,
depending on your operating system, the decimal places after the second one have
a value of zero because the measurement cannot be accurate at a more detailed
level.

As an aid to enhancing a program's speed, DSECONDS can be used to determine
how much time elapses while the program is running.

Data type
DECIMAL

Syntax
DSECONDS

Notes

Related Statements
For information about holding the number of seconds in integer form, see the
SECONDS command. For information about programs, see the PROGRAM
command.

DSECONDS

DEPRDECL to EXISTS 11-37

Examples

Example 11–15 Timing a Program

The following program puts the value of DSECONDS at the start of the program in
a variable called t1 and then displays the difference between t1 and the value of
DSECONDS at the end of the program.

DEFINE prodsummary PROGRAM
PROGRAM
VARIABLE t1 DECIMAL
t1 = dseconds
LIMIT product TO ALL
BLANK
FOR product
DO
ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL 0 LSET -
'$'WIDTH 18 <RSET ' (Actual)' sales rset ' (Plan)' sales.plan>

DOEND
BLANK
ROW WIDTH 35 LSET 'The program took ' rset ' seconds.' -
(dseconds - t1)
END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

The program took .20 seconds.

ECHOPROMPT

11-38 Oracle OLAP DML Reference

ECHOPROMPT

The ECHOPROMPT option determines whether or not input lines and error
messages should be echoed to the current outfile. When ECHOPROMPT is set to
YES and you have specified a debugging file with DBGOUTFILE, the input lines
and error messages are echoed to the debugging file instead of the current outfile.

Data type
BOOLEAN

Syntax
ECHOPROMPT = {YES|NO}

Arguments

YES
Input lines and error messages are echoed to the current outfile or the debugging
file specified by DBGOUTFILE.

NO
Input lines and error messages do not appear in the current outfile or in the
debugging file. (Default)

Notes

ECHOPROMPT
The ECHOPROMPT option causes input, as well as error messages, to be echoed to
the current outfile, or to the debugging file when there is one.

Current and Default Outfiles
The current outfile is the destination for the output of statements, such as REPORT
and DESCRIBE, that produce text. When you have not used the OUTFILE
command to send output to a file, Oracle OLAP uses your default outfile.

ECHOPROMPT

DEPRDECL to EXISTS 11-39

Examples

Example 11–16 Using ECHOPROMPT

Suppose you want to have all input lines and error messages included in the disk
file that will contain your output. Set ECHOPROMPT to YES before issuing the
OUTFILE command that will send the output to the disk file. In the following
statements, the disk file is in the current directory object.

ECHOPROMPT = YES
OUTFILE 'newcalc.dat'

EDIT

11-40 Oracle OLAP DML Reference

EDIT

The EDIT command displays an OLAP Worksheet Edit window. The command is
available only when you are using OLAP Worksheet to access Oracle OLAP.

For information about using an OLAP Worksheet Edit window, see the OLAP
Worksheet Help.

Syntax
EDIT [PROGRAM|MODEL|AGGMAP|FORMULA] object-name

Arguments

PROGRAM
MODEL
AGGMAP
FORMULA
Indicates whether the object to be edited is a program, a model, an aggmap, or a
formula.

object-name
A text expression that specifies the name of an existing program, model, aggmap, or
formula. Before editing one of these objects, use the DEFINE command to create it
in an analytic workspace.

Notes

Specifying the Type of an Aggmap
There are two types of aggmaps, one for aggregating data and another for allocating
data. You can obtain the type of an aggmap by using the AGGMAPINFO function
with the MAPTYPE keyword.

When an aggmap is first created, its type is NA. Once you use either the AGGMAP
or the ALLOCMAP command to reference the new aggmap, Oracle OLAP specifies
its type. When you use the EDIT command on an aggmap whose type has not yet
been specified, OLAP Worksheet assumes that it is to be used for aggregating data.

EDIT

DEPRDECL to EXISTS 11-41

When you plan to use an aggmap for allocating data, use the following statements
to identify it as an allocation specification before the first time you open an OLAP
Worksheet Edit window for it.

CONSIDER aggmap-name
ALLOCMAP 'END'

The ALLOCMAP command causes Oracle OLAP to record the fact that this aggmap
is for allocating data.

Examples

Example 11–17 Editing a Program

The following statement, executed in the OLAP Worksheet, places the myprog
program in an OLAP Worksheet EDIT window.

EDIT myprog

Example 11–18 Editing a Model

The following statement, executed in the OLAP Worksheet, places a model called
myModel in an OLAP Worksheet Edit window.

EDIT MODEL myModel

EIFBYTES

11-42 Oracle OLAP DML Reference

EIFBYTES

(Read-only) The EIFBYTES option holds the number of bytes read by the most
recent IMPORT (from EIF) command or written by the most recent EXPORT (to EIF)
command.

Data type
INTEGER

Syntax
EIFBYTES

Examples

Example 11–19 Finding Out the Number of Bytes

To find out how many bytes of information were exported to an EIF file when you
exported the dimensions of the demo workspace, you use the following statements.

LIMIT name TO OBJ(TYPE) EQ 'DIMENSION'
EXPORT ALL TO EIF FILE 'myfile.eif'
SHOW EIFBYTES

The SHOW command produces the following output.

2,038

EIFEXTENSIONPATH

DEPRDECL to EXISTS 11-43

EIFEXTENSIONPATH

The EIFEXTENSIONPATH option contains a list of directory objects that identify
the locations where EIF extension files should be created.

Data type
TEXT

Syntax
EIFEXTENSIONPATH = path-expression

Arguments

path-expression
A text expression that contains one or more directory object names. When you
specify multiple aliases, you must enter each one on a separate line. Specify
multiple aliases in the order in which they should be used for storing EIF extension
files.

Notes

When Extension Files Are Created
When the size of an EIF file grows beyond the size specified for EIF files by the
FILESIZE argument to the EXPORT (to EIF) command, or the current disk or
location becomes full, an EIF extension file is created.

Before creating a new extension file, the location specified by EIFEXTENSIONPATH
is checked for sufficient disk space. The required amount of disk space is the
amount specified for FILESIZE in the EXPORT (to EIF). When no value has been
specified for FILESIZE, then a check is made for at least 80K of disk space (the
minimum size allowed by FILESIZE). When there is insufficient disk space,
checking continues through the list until a location with enough available disk
space is found.

Multiple Paths in EIFEXTENSIONPATH
When EIFEXTENSIONPATH contains multiple directory objects, the first extension
file is created in the first alias in the list. The second extension file is created in the

EIFEXTENSIONPATH

11-44 Oracle OLAP DML Reference

second alias on the list, and so on. When the end of the list is reached, the process
starts over again at the beginning. When EIFEXTENSIONPATH contains a single
directory object, all extension files are created in that location.

Identifying Files and Directories
When specifying files and directories in OLAP DML statements, it is good practice
to always enclose them in single quotes.

Examples

Example 11–20 Establishing a Location for Extension Files

The following statement establishes the eifext directory object as the location in
which EIF extension files should be created.

EIFEXTENSIONPATH = 'eifext'

EIFNAMES

DEPRDECL to EXISTS 11-45

EIFNAMES

The EIFNAMES option holds a list of the names of all the objects imported by the
most recent IMPORT (from EIF) command.

Data type
TEXT

Syntax
EIFNAMES

Notes

Related Statements
IMPORT (from EIF) and EIFTYPES.

Examples

Checking What You Have Imported
Suppose you have exported the units variable and the productset valueset from
the demo analytic workspace to a file called myfile.eif. After importing the
contents of the file into a new workspace, you can use the EIFNAMES option to see
the names of the objects you have just imported.

The following statements

AW CREATE mytest
IMPORT ALL FROM EIF FILE 'myfile.eif'
SHOW EIFNAMES

produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

EIFSHORTNAMES

11-46 Oracle OLAP DML Reference

EIFSHORTNAMES

The EIFSHORTNAMES option controls the structure of the extension of EIF
overflow (extension) file names.

Data type
BOOLEAN

Syntax
EIFSHORTNAMES = YES|NO

Arguments

YES
Sets the extension of EIF overflow (extension) file names to xx, where each x is an
automatically assigned lowercase letter between a and z.

NO
Sets the extension of EIF overflow (extension) file names to ennn, where nnn is a
three-digit number beginning with 001.(Default)

Notes

EIF Extension File Names
By default, EIF extension file names have the structure filename.ennn, where nnn is a
three-digit number beginning with 001, to distinguish them from workspace
extension file names.

For example, when an EIF file is named export.eif, the extension files are named
export.e001, export.e002, and so on.

When EIFSHORTNAMES is set to YES, the extension files are named export._aa,
export._ab, and so on.

EIFSHORTNAMES

DEPRDECL to EXISTS 11-47

Examples

Example 11–21 Limiting the Extension of a File Name to Three Characters

The following statement specifies that the file extension for EIF extension file names
must be in the form xx.

EIFSHORTNAMES = YES

EIFTYPES

11-48 Oracle OLAP DML Reference

EIFTYPES

The EIFTYPES option holds a list of the types of objects that are contained in the list
produced by the EIFNAMES option. The types are listed in the same order as the
corresponding object names in the EIFNAMES list.

Data type
TEXT

Syntax
EIFTYPES

Notes

Related Statements
IMPORT (from EIF) and EIFNAMES.

Examples

Example 11–22 Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from
an analytic workspace named demo to a file called myfile.eif. After importing
the contents of the file into a new workspace, you can use the EIFNAMES and
EIFTYPES options to see the names and object types of the objects you have just
imported.

Create the workspace and import the objects with these statements.

AW CREATE mytest
IMPORT ALL FROM EIF FILE 'myfile.eif'

EIFTYPES

DEPRDECL to EXISTS 11-49

Send the names of the imported objects to the current outfile with this statement

SHOW EIFNAMES

to produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

Send the types of the imported objects to the current outfile with this statement

SHOW EIFTYPES

to produce this output.

DIMENSION
DIMENSION
DIMENSION
VARIABLE
VALUESET

EIFUPDBYTES

11-50 Oracle OLAP DML Reference

EIFUPDBYTES

The EIFUPDBYTES option controls the frequency of updates when you are using
the IMPORT (from EIF) command with its UPDATE keyword. The value of
EIFUPDBYTES has an effect only when the UPDATE keyword is specified in this
command.

Data type
INTEGER

Syntax
EIFUPDBYTES = n

Arguments

n
An integer expression that specifies the minimum number of bytes to be read
between updates, during an import. When EIFUPDBYTES has a value of 0, an
update is triggered after each analytic workspace object is imported. When
EIFUPDBYTES has a value greater than 0, an update is triggered each time the
specified number of bytes is imported. The default is 0 (zero).

Examples

Example 11–23 Reducing Update Frequency

In the following example, the UPDATE keyword in the IMPORT (from EIF)
command ensures that updates will occur periodically. The setting of
EIFUPDBYTES ensures that the updates will not occur too often.

EIFUPDBYTES = 500000
IMPORT ALL FROM EIF FILE 'finance.eif' UPDATE

EIFVERSION

DEPRDECL to EXISTS 11-51

EIFVERSION

The EIFVERSION option is used with the EXPORT (to EIF) and IMPORT (from EIF)
commands to copy data between different versions of Express® Server or Oracle
OLAP. The version from which the data is exported is referred to as the source. The
version to which the data is imported is referred to as the target.

Before you use the EXPORT command to export data to an EIF file, you use the
EIFVERSION option to specify the internal version or build number of the target.
Then, when you use EXPORT to copy data from the source to an EIF file, the data
will be in a format that can be imported by the target.

You can use the EVERSION function to determine the internal version or build
number of the target.

Syntax
EIFVERSION = n

Arguments

n
The internal version or build number of an Express Server or Oracle OLAP process.
This is the target into which you want the data imported.

By default, EIFVERSION is set to the internal version or build number of the
current process.

Notes

Versions Later Than a Specified Version
Generally, you can import data from an EIF file into any target that has a later
version number than the one you specify for the EIF file with EIFVERSION.

Versions Earlier Than the Current Version
When you set EIFVERSION to a value that is lower than the default version (that is,
the version number of the current process), and you try to export data that the
earlier version cannot manage, an error is generated. For example, when you try to
export an aggmap to a 6.2 version of Express Server, an error is generated because
Express Server 6.2 cannot manage aggmaps.

EIFVERSION

11-52 Oracle OLAP DML Reference

Examples

Example 11–24 Exporting and Importing Between Different Versions

This example shows how to use EIFVERSION when you want to export data from
Oracle OLAP to an EIF file and then import it into Express Server version 6.2.0.

This statement (issued from the target 6.2.0 Express Server)

SHOW EVERSION

returns the following version and build information

Module Mgr, Version: 6.2.0.0.0, Build: 60232
OES Kernel, Version: 6.2.0.0.0, Build: 60232

The following statements export the data from Oracle OLAP (which has a higher
build number than 60232) to an EIF file that can be read in Express 6.2.0

EIFVERSION = 60232
EXPORT ALL TO EIF FILE 'myeif.eif'

END

DEPRDECL to EXISTS 11-53

END

The END command marks the end of the specification for an aggmap, a model, or a
program.

You do not need to type the END command when you enter the specification for
one of these objects in the OLAP Worksheet Edit window, because OLAP Worksheet
automatically adds the END command when you save the object. However, when
you execute an aggmap, a model, or a program using the INFILE command, you
must ensure that the file includes the END command.

Syntax
END

ENDDATE

11-54 Oracle OLAP DML Reference

ENDDATE

The ENDDATE function returns the ending date of the last time period for which an
expression has a non-NA value.

Return Value
DATE

Syntax
ENDDATE(expression)

Arguments

expression
The expression must have exactly one dimension that has the type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

Notes

NA Values
When all the values of the expression are NA, ENDDATE returns NA.

How ENDDATE Works
ENDDATE returns the final date of the last time period in the dimension status for
which the expression has a non-NA value. For example, when an expression is
dimensioned by MONTH, and when DEC98 is the last dimension value for which
the expression has a non-NA value, ENDDATE returns the date
December 31, 1998.

Note: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR.You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

ENDDATE

DEPRDECL to EXISTS 11-55

Format of the Date
When you display the result returned by ENDDATE, the date is formatted
according to the date template in the DATEFORMAT option. When the day of the
week or the name of the month is used in the date template, the day names
specified in the DAYNAMES option and the month names specified in the
MONTHNAMES option are used. You can use the result returned by ENDDATE
anywhere that a DATE value is expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. The date is automatically
converted to a text value, using the current template in the DATEFORMAT option
to format the text value. When you want to override the current DATEFORMAT
template, you can convert the date result to text by using the CONVERT function
with a date-format argument.

Retrieving the First Valid Date
The BEGINDATE function, which returns the first date for which an expression has
a non-NA value.

Examples

Example 11–25 Finding the End Date

The following statements limit the values of the dimensions of the units variable,
then sends the last date associated with a non-NA value to the current outfile.

LIMIT month TO ALL
LIMIT product TO 'Tents'
LIMIT district TO 'Chicago'
SHOW ENDDATE(units)

These statements produce the following output.

31DEC96

ENDOF

11-56 Oracle OLAP DML Reference

ENDOF

The ENDOF function returns the last date of a time period in dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR.

Return Value
DATE

Syntax
ENDOF(dwmqy-dimension)

Arguments

dwmqy-dimension
A dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. When you have
explicitly defined your own relation between dimensions of this type, you can use
the name of this time relation here.

Notes

How ENDOF Works
ENDOF returns the last date of the time period that is first in the current status list
of the dwmqy-dimension.

Phased or Multiple Periods
ENDOF is particularly useful when the dimension has a phase that differs from the
default or when the time periods are formed from multiple weeks or years. For
example, when the dimension has four-week time periods, the ENDOF function
identifies the final date of a particular four-week period.

Note: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR.You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

ENDOF

DEPRDECL to EXISTS 11-57

Format of the Date
When you display the result returned by ENDOF, the date is formatted according to
the date template in the DATEFORMAT option. When the day of the week or the
name of the month is used in the date template, the day names specified in the
DAYNAMES option and the month names specified in the MONTHNAMES option
are used. You can use the result returned by ENDOF anywhere that a DATE value is
expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. The date is converted
automatically to a text value, using the current template in the DATEFORMAT
option to format the text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Retrieving the First Date of a Time Period
The STARTOF function, which returns the first date of a time period.

Examples

Example 11–26 Finding the Fiscal Year End Date

The following statements define a year dimension (called taxyear, for a tax year
that begins in July), add dimension values for tax years 1998 through 2000, and
produce a report showing the last date of each tax year.

DEFINE taxyear DIMENSION YEAR BEGINNING july
VNF 'TY<ffb>'
MAINTAIN taxyear ADD '01july98' '01july00'
REPORT W 14 ENDOF(taxyear)

These statements produce the following output.

TAXYEAR ENDOF(TAXYEAR)
-------------- --------------
TY98 30JUN99
TY99 30JUN00
TY00 30JUN01

EQ

11-58 Oracle OLAP DML Reference

EQ

The EQ command specifies a new expression for an already defined formula. In
order to assign an EQ to a formula definition, the definition must be the one most
recently defined or considered during the current session. When it is not, you must
first use a CONSIDER command to make it the current definition.

An alternative to the EQ command is the EDIT FORMULA command, which is
available only in OLAP Worksheet. The EDIT FORMULA command opens an Edit
window in which you can add, delete, or change the expression to be calculated for
a formula.

Be sure to distinguish between the EQ command described here and the EQ
operator used to compare values of the same type.

Syntax
EQ [expression]

Arguments

expression
The calculation that will be performed to produce values when you use the formula.
When you do not specify an expression, the EQ command sets the expression to NA.
The formula text is not converted to uppercase.

Notes

Using EQ
You can use EQ to add an expression to a formula that had no expression before, or
to replace the old expression with a new one.

Data Type and Dimensions
The data type and dimensions of the new expression should match the specified
data type and dimensions in the definition of the formula. When they do not, the
resulting values are converted to the formula's data type and the results are forced
into the formula's dimensionality. The DESCRIBE command shows the formula's
data type and dimensions. You can find out the data type and dimensions of the
new expression by parsing it. See Example 11–28, "Using PARSE with EQ" on
page 11-59.

EQ

DEPRDECL to EXISTS 11-59

You cannot use the EQ command to change the data type or dimensions of a
formula. To make changes in these, you must delete the formula and redefine it.

Examples

Example 11–27 Adding an EQ

This example specifies a new expression for the f1 formula with the following
definition.

DEFINE f1 FORMULA INTEGER <month line division>
EQ actual * 2

The statements

CONSIDER f1
EQ actual * 3
DESCRIBE f1

produce the following definition of the formula with a new EQ.

DEFINE F1 FORMULA INTEGER <MONTH LINE DIVISION>
EQ actual * 3

Example 11–28 Using PARSE with EQ

The following example supposes that your workspace already has a formula named
line.totals. The PARSE and SHOW INFO (PARSE) statements check the
dimensionality and data type of an expression. The CONSIDER and EQ statements
assign the expression to the line.totals formula. The line.totals formulas
has the following definition.

DEFINE line.totals FORMULA DECIMAL <year line>

The statements

PARSE 'total(actual line year)'
SHOW INFO(PARSE DIMENSION)

produce the following output.

YEAR
LINE

EQ

11-60 Oracle OLAP DML Reference

The statement

SHOW INFO(PARSE DATA)

produces the following output.

DECIMAL

The output from INFO(PARSE) shows that the expression has the same
dimensionality and data type as the line.totals formula. The statements

CONSIDER line.totals
EQ TOTAL(actual line year)
DESCRIBE line.totals

show the definition of line.totals with its new EQ.

DEFINE LINE.TOTALS FORMULA DECIMAL <YEAR LINE>
EQ total(actual line year)

ERRNAMES

DEPRDECL to EXISTS 11-61

ERRNAMES

The ERRNAMES option controls whether the value of the ERRORTEXT option
contains the name of the error (that is, the value of the ERRORNAME option) as
well as the text of the error message.

Data type
BOOLEAN

Syntax
ERRNAMES = {NO|YES}

Arguments

NO
When you set ERRNAMES to NO, ERRORTEXT contains only the text of the error
message.

YES
When you set ERRNAMES to YES (the default), ERRORTEXT contains the name
and the text of the error message.

Notes

Related Statements
ERRORNAME, ERRORTEXT, and TRAP.

Examples

Example 11–29 ERRORTEXT Value Depending on ERRNAMES Setting

Suppose that you run the following program.

VARIABLE myint INTEGER
myint = 35/0
SHOW ERRORTEXT

ERRNAMES

11-62 Oracle OLAP DML Reference

When the value of ERRNAMES is set to YES, the program returns the following
value for ERRORTEXT:

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When the value of ERRNAMES is set to NO, the program returns the following
value for ERRORTEXT:

ERROR: A division by zero was attempted. (If you want NA to be
returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

ERRORNAME

DEPRDECL to EXISTS 11-63

ERRORNAME

The ERRORNAME option holds the name of the first error that occurs when you
execute a program or when you execute an OLAP DML statement.

Data type
TEXT

Syntax
ERRORNAME

Notes

ERRORNAME and TRAP
ERRORNAME is often used in programs in conjunction with the TRAP command
for handling errors. See Example 11–30, "Using ERRORNAME with TRAP" on
page 11-64.

ERRORTEXT Option
The text of the error whose name is contained in ERRORNAME is contained in the
option ERRORTEXT.

ERRNAMES Option
The ERRNAMES option controls whether the value of the ERRORTEXT option
contains the name of the error (that is, the value of the ERRORNAME option) as
well as the text of the error message.

ERRORNAME and SIGNAL
You can create your own error conditions in a program with the SIGNAL command.
SIGNAL sets ERRORNAME and ERRORTEXT to the values you specify.

SIGNAL PRGERR
You can use the special name PRGERR to communicate to a calling program that an
error has occurred. The command SIGNAL PRGERR sets ERRORNAME to a blank
value and passes an error condition to the calling program without causing another

ERRORNAME

11-64 Oracle OLAP DML Reference

error message to be displayed. For information on using SIGNAL to pass an Oracle
OLAP error up a chain of nested programs, see the TRAP command.

Oracle OLAP Error Messages
The analytic workspace has a list of Oracle OLAP error messages with their
associated names. The messages are contained in the variable _MSGTEXT, which is
dimensioned by _MSGID. To produce this list, execute the following statement.

REPORT WIDTH 60 _MSGTEXT

Examples

Example 11–30 Using ERRORNAME with TRAP

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error name to the current outfile.

DEFINE myreport PROGRAM
LD Monthly Report
PROGRAM
TRAP ON CLEANUP NOPRINT
PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

...
POP month DECIMALS LSIZE PAGESIZE
RETURN
CLEANUP:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT
END

ERRORTEXT

DEPRDECL to EXISTS 11-65

ERRORTEXT

The ERRORTEXT option holds the text of the first error message that occurs when
you execute a program or a statement.

Data type
TEXT

Syntax
ERRORTEXT

Examples

Example 11–31 ERRORTEXT with the SIGNAL Command

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error message to the current outfile.

DEFINE myreport PROGRAM
LD Monthly Report
PROGRAM
TRAP ON CLEANUP NOPRINT
PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

...
POP month DECIMALS LSIZE PAGESIZE
RETURN
CLEANUP:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT
END

Note: The name of the error whose message is found in
ERRORTEXT is contained in the option ERRORNAME. See the
entries for ERRORNAME and TRAP for more information about
handling Oracle OLAP errors. The ERRNAMES option controls
whether the value of the ERRORTEXT option contains the name of
the error (that is, the value of the ERRORNAME option) as well as
the text of the error message.

ESCAPEBASE

11-66 Oracle OLAP DML Reference

ESCAPEBASE

The ESCAPEBASE option specifies the type of escape that is produced by the
INFILE keyword of the CONVERT function.

Syntax
ESCAPEBASE = 'escape-type'

Arguments

escape-type
Specify 'd' for decimal escape, 'x' for hexadecimal escape.

The default escape type is decimal, which produces the integer value for a character
in the following form.

'\dnnn'

A hexadecimal escape is the integer value for a character in the following form.

'\xnn'

Examples
For an example of using ESCAPEBASE with CONVERT to convert a text value to an
escape sequence, see Example 9–22, "Converting Text Values to Escape Sequences"
on page 9-61.

EVERSION

DEPRDECL to EXISTS 11-67

EVERSION

The EVERSION function returns a text value that specifies the internal Oracle
OLAP build number.

Return Value
TEXT

Syntax
EVERSION

Notes

EVERSION and Major Releases
The build number in the output of the EVERSION function is not the Oracle
Database version number. The EVERSION value does not change only with major
releases of the database.

Examples

Example 11–32 Obtaining the Version Number

The following statement produces text output that indicates the Oracle OLAP build
number.

SHOW EVERSION

This statement produces output like the following.

Oracle OLAP Build 80020

EVERY

11-68 Oracle OLAP DML Reference

EVERY

The EVERY function returns YES when every value of a Boolean expression is
TRUE. It returns NO when any value of the expression is FALSE.

Return Value
BOOLEAN

Syntax
EVERY(boolean-expression [[STATUS] dimensions])

Arguments

boolean-expression
The Boolean expression whose values are to be evaluated.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the Boolean expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, the STATUS keyword might be required in
order for Oracle OLAP to process the function successfully, or the STATUS keyword
might provide a performance enhancement. See "The STATUS Keyword" on
page 11-70.

dimensions
The dimensions of the result. By default, EVERY returns a single value. When you
indicate one or more dimensions for the results, EVERY tests for TRUE values along
the dimensions that are specified and returns an array of values. Each dimension
must be either a dimension of boolean-expression or related to one of its dimensions.
When it is a related dimension, you can specify the name of the relation instead of
the dimension name. This enables you to choose which relation is used when there
is more than one.

See also: ANY, COUNT, and NONE

EVERY

DEPRDECL to EXISTS 11-69

Notes

NA Values
When the Boolean expression involves an NA value, EVERY returns a YES or NO
result when it can, as shown in Table 11–1, " YES and NO Values Returned by
EVERY When the Boolean Expression Includes an NA Value"

However, in cases where a YES or NO result would be misleading, EVERY returns
NA. For example, when you test whether an NA value is greater than a non-NA value,
EVERY returns NA.

The Effect of NASKIP
EVERY is affected by the NASKIP option. When NASKIP is set to YES (the default),
EVERY ignores NA values and returns YES when every value of the expression that
is not NA is TRUE and returns NO when any values are not TRUE. When NASKIP is
set to NO, EVERY returns NA when any value of the expression is NA. When all the
values of the expression are NA, EVERY returns NA for either setting of NASKIP.

Data with a Time Dimension
When boolean-expression is dimensioned by dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH,
QUARTER, or YEAR dimension as a related dimension. Oracle OLAP uses the
implicit relation between the dimensions. To control the mapping of one DAY,
WEEK, MONTH, QUARTER, or YEAR dimension to another (for example, from
weeks to months), you can define an explicit relation between the two dimensions
and specify the name of the relation as the dimension argument to the EVERY
function.

Table 11–1 YES and NO Values Returned by EVERY When the Boolean Expression
Includes an NA Value

Boolean Expression Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

EVERY

11-70 Oracle OLAP DML Reference

For each time period in the related dimension, Oracle OLAP tests the data values
for all the source time periods that end in the target time period. This method is
used regardless of which dimension has the more aggregate time periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, Oracle OLAP creates a temporary variable to
use while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the Boolean expression
are limited to a few values and are physically fragmented, you can specify the
STATUS keyword to improve the performance of the function.

When you use EVERY with the STATUS keyword in an expression that requires
going outside of the status for results (for example, with the LEAD or LAG
functions or with a qualified data reference), the results outside of the status will be
returned as NA.

Examples

Example 11–33 Testing for All-True Values by District

You can use the EVERY function to test whether each district's sales of sportswear
have exceeded $50,000 in every month. To have the results dimensioned by district,
specify district as the second argument to EVERY.

LIMIT product TO 'Sportswear'
REPORT HEADING 'Top Sales' EVERY(sales GT 50000, district)

The preceding statements produce the following output.

DISTRICT Top Sales
-------------- ----------
Boston No
Atlanta Yes
Chicago Yes
Dallas Yes
Denver Yes
Seattle NO

EVERY

DEPRDECL to EXISTS 11-71

Example 11–34 Testing for All-True Values by Region

You might also want to find out the regions for which every district has sportswear
sales that exceed $50,000 in every month. Since the region dimension is related to
the district dimension, you can specify region instead of district as a
dimension for the results of EVERY.

REPORT HEADING 'Top Sales' EVERY(sales GT 50000, region)

The preceding statement produces the following output.

REGION Top Sales
-------------- ----------
East No
Central Yes
West NO

EXISTS

11-72 Oracle OLAP DML Reference

EXISTS

The EXISTS function determines whether an object is defined in any attached
workspace. The EXISTS function is useful in a program to test whether a definition
exists before you try to use it.

Return Value
BOOLEAN

Syntax
EXISTS(name-expression)

Arguments

name-expression
A text expression that specifies the name you want to test.

Notes

Specifying More Than One Name
When name-expression contains the names of more than one object, EXISTS returns
NO even when all the objects specified by name-expression exist in attached
workspaces.

Examples

Example 11–35 Using EXISTS

This example tests whether the variable actual has been defined in any attached
workspace. The statement

SHOW EXISTS('actual')

produces the following result.

YES

EXP

DEPRDECL to EXISTS 11-73

EXP

The EXP function returns e raised to the nth power, where e equals
2.71828183....

Return Value
NUMBER

 Syntax
 EXP (n)

Arguments

n
The power by which you want to raise e.

 Examples
The following example returns e to the 4th power.

SHOW EXP(4)

54.59815

EXP

11-74 Oracle OLAP DML Reference

EXPORT to FILEMOVE 12-1

12
EXPORT to FILEMOVE

This chapter contains the following OLAP DML statements:

■ EXPORT

■ EXPORT (to EIF)

■ EXPORT (to spreadsheet)

■ EXPTRACE

■ EXTBYTES

■ EXTCHARS

■ EXTCOLS

■ EXTLINES

■ FCCLOSE

■ FCEXEC

■ FCOPEN

■ FCQUERY

■ FCSET

■ FETCH

■ FILECLOSE

■ FILECOPY

■ FILEDELETE

■ FILEERROR

■ FILEGET

12-2 Oracle OLAP DML Reference

■ FILEMOVE

EXPORT

EXPORT to FILEMOVE 12-3

EXPORT

The EXPORT command copies workspace objects from your analytic workspace to
an external file. You can use EXPORT to copy both data and object definitions from
your workspace to an EIF file, or you can use it to copy an OLAP DML worksheet
object to a spreadsheet file.

Because the syntax of the EXPORT command is different depending on whether it is
being used to produce an EIF file or a spreadsheet file, two separate entries are
provided:

■ EXPORT (to EIF))

■ EXPORT (to spreadsheet)

EXPORT (to EIF)

12-4 Oracle OLAP DML Reference

EXPORT (to EIF)

The EXPORT (to EIF) command copies data and definitions from your Oracle OLAP
analytic workspace to an EIF file. EXPORT also copies all dimensions of the
exported data, even when you do not specify them in the command. The status of
the data's dimensions in Oracle OLAP determines which values are exported. For
information on exporting data dimensioned by unnamed composites, see
"Unnamed Composites" on page 12-9.

EXPORT (to EIF) is commonly used in conjunction with IMPORT (from EIF) to copy
parts of one Oracle OLAP workspace to another. You export objects from the source
workspace to an EIF file and then import the objects from the EIF file into the target
workspace. The source and target workspaces can reside on the same platform or on
different platforms. When you transfer an EIF file between computers, use a binary
transfer to overcome file-format incompatibilities between platforms. The EIF file
must have been created with the EIFVERSION set to a version that is less than or
equal to the version number of the target workspace. See EIFVERSION for
information about verifying the target version number.

Syntax
EXPORT export_item TO EIF FILE file-id [LIST] [NOPROP] -

[NOREWRITE|REWRITE] [FILESIZE n [K, M, or G]] -

[NOTEMPDATA] [NLS_CHARSET charset-exp]

where:

export_item is one of the following:

name [AS newname]

exp [SCATTER AS scattername [TYPE scattertype] [EXCLUDING (concatbasedim . . .)]

exp AS name [EXCLUDING (concatbasedim . . .)]

ALL

Arguments

name
The name of an analytic workspace object or option to be exported. You can list
more than one name for export.

EXPORT

EXPORT to FILEMOVE 12-5

AS newname
 Specifies a new name for the analytic workspace object or option. When you
specify an expression, or a local variable, or a local valueset, then you must use AS
name to provide a name for the object that IMPORT (from EIF) will use to receive
the data

exp
An expression to be computed and exported. You can list more than one name at a
time for export.

SCATTER AS scattername [TYPE scattertype]
When you want to export a large multidimensional object that may require multiple
passes to write into memory, then you can use SCATTER AS scattername to improve
file I/O performance. You must first define one or two new single-dimension text
variables (scattername and scattertype) and assign text values and their
corresponding data types to scattername. When you use SCATTER AS scattername,
this tells Oracle OLAP to export the multidimensional expression as separate
variables in the slices you have specified in scattername. When each of the slice
variables is to have the same data type, you can simply make exp have that data
type, in which case you will not need to use TYPE scattertype.

EXCLUDING (concatbasedim . . .)
The EXCLUDING phrase applies only to a concat dimension that you specify with
the name argument. The value you specify for concatbasedim, specifies the base
dimensions of the concat that Oracle OLAP does not export.

ALL
Specifies that Oracle OLAP exports all the objects currently in the status of NAME
(and, therefore, not necessarily all objects in the workspace).

TO EIF FILE
Indicates that you want to create an EIF file.

file-id
A text expression that represents the name of the file. The name must be in a
standard format for a file identifier.

Important: You cannot rename dimensions.

EXPORT (to EIF)

12-6 Oracle OLAP DML Reference

LIST
Sends to the current outfile the definition of each object as it begins to export it. For
dimensions, EXPORT indicates the number of values being exported, and for
composites, it lists the number of dimension value combinations. EXPORT also
produces a message that shows the total number of bytes read every two minutes
and at the end of the export procedure.

NOPROP
Prevents any properties that you have assigned to each object using a PROPERTY
from being written to the EIF file.

NOREWRITE
REWRITE
Specifies whether EXPORT will overwrite the target file when it already exists.
NOREWRITE (the default) leaves an existing target file intact and sends an error
message to the current outfile. REWRITE causes EXPORT to replace the existing file
with the new EIF file.

FILESIZE n [K|M|G]
Sets the maximum size of each component file (main file and extension files) for EIF
files. When a file's size grows beyond the value of FILESIZE or the current disk or
location becomes full, Oracle OLAP creates an EIF extension file. See"EIF Extension
Files" on page 12-9.

FILESIZE affects component files created after it is set. Previous component files
may have various sizes, determined by the FILESIZE setting at the time each one
was created or by the size it reached when its disk was full.

When you do not specify K, M, or G, the value you specify for n is interpreted as
bytes. When you specify K, M, or G after the value n, the value is interpreted as
kilobytes, megabytes, or gigabytes, respectively.

You can set FILESIZE to any value between 81,920 bytes (80K) and 2,147,479,552
bytes (2G).

NOTEMPDATA
Prevents data in TEMP variables from being written to the EIF file.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when exporting text data to
the file specified by file-id. This allows Oracle OLAP to convert the data accurately
into that character set. This argument must be the last one specified. When this
argument is omitted, then Oracle OLAP exports the data in the database character
set, which is recorded in the NLS_LANG option.

EXPORT

EXPORT to FILEMOVE 12-7

Notes

EIF Options
A number of options determine how EIF files are imported and exported. These
options are listed in Table 12–1, " EIF Options" on page 12-7.

Relations
When you export a relation, EXPORT sends out the definition and the values in
status for the related dimension as well as the dimensions of the relation.

Conjoint Dimensions
When you export a conjoint dimension, make sure that the status of the base
dimensions and the status of the conjoint dimension match. Since there is an
implicit relation between conjoint and base dimensions, Oracle OLAP exports the
base dimensions with the conjoint dimension, but it cannot export all the conjoint
dimension values in the current status when the related base values are not also in
status.

Table 12–1 EIF Options

Statements Description

EIFEXTENSIONPATH An option that contains a list of directory objects that identify
the locations where EIF extension files should be created.

EIFNAMES An option that contains a list of the names of all the objects
imported by the most recent IMPORT (from EIF) command.

EIFSHORTNAMES An option that controls the structure of the extension of EIF
overflow (extension) file names.

EIFTYPES An option that contains a list of the types of objects that are
contained in the list produced by the EIFNAMES option.

EIFUPDBYTES An option that controls the frequency of updates when you are
using the IMPORT (from EIF) command with its UPDATE
keyword.

EIFVERSION Used with the EXPORT (to EIF) and IMPORT (from EIF)
commands, an option that specifies the EIF version when
copying data between different versions of Express Server or
Oracle OLAP.

EXPORT (to EIF)

12-8 Oracle OLAP DML Reference

Concat Dimensions
When you export a concat dimension without using the EXCLUDING phrase or
when you implicitly export a concat because you are exporting a variable
dimensioned by the concat, an expression that uses the concat, or a concat of which
the concat is a component, then Oracle OLAP exports each component of the concat
dimension. Oracle OLAP uses the current status of each simple or conjoint
component dimension when exporting the component. It does not use the status of
the concat dimension when exporting the simple or conjoint components.

When you export a concat dimension using the EXCLUDING phrase, then the
definition of the concat dimension that Oracle OLAP exports does not include the
base dimensions that you specify with the concatbasedim argument. When you also
export a variable or expression that uses the concat dimension, then the definition
of the exported expression or variable uses the altered concat dimension definition.
Oracle OLAP does not export variable or expression values that correspond to the
excluded base dimensions.

You cannot use the EXCLUDING phrase with the EXPORT ALL keyword.

Dimension Surrogates
When you export a dimension surrogate, Oracle OLAP also exports the dimension
of the surrogate.

Reducing Workspace Size
When you have added and then deleted many objects or dimension values, you
might want to use EXPORT (from EIF) in conjunction with the IMPORT (from EIF)
command to remove extra space from your analytic workspace. You can make your
workspace smaller, perhaps substantially so. To do this, use the EXPORT command
with the ALL keyword to put all the data in an EIF file, create another workspace
with a different name, and then import the EIF file into the new workspace. You can
then delete the old workspace and refer to the new one with the same workspace
alias that you used for the original one.

Preserving Conjoint Type
When you export a HASH, BTREE, or NOHASH conjoint dimension to an EIF file,
the conjoint type is exported along with its definition in the EIF file. When you then
import the conjoint dimension into an analytic workspace, Oracle OLAP preserves
the conjoint type when you import into a new dimension or a dimension already
using that conjoint type. When you import the dimension into an existing
dimension that does not use the same conjoint type, Oracle OLAP does not preserve
the original conjoint type that was saved in the EIF file.

EXPORT

EXPORT to FILEMOVE 12-9

Unnamed Composites
When you define variables or other objects with the SPARSE keyword in the
dimension list, Oracle OLAP creates an unnamed composite that corresponds to the
SPARSE dimension list. When you export or import an object with the unnamed
composite in its definition, the composite is automatically exported or imported
with the object. Because the unnamed composite is not a regular workspace object,
you cannot import or export it independently.

EIF Extension Files
EIF extension file names have the structure filename.ennn, where nnn is a three-digit
number beginning with 001. For example, assume you have an EIF file named
export.eif, the extension files are named export.e001, export.e002, and so
on. You can set the extension to three characters by using the EIFSHORTNAMES
option. Extension files are created in the same directory object as the original EIF
file, unless you specify a different one with the EIFEXTENSIONPATH option.

Variable Segments Specified with SEGWIDTH
When you use the SEGWIDTH keyword of the CHGDFN command to specify the
length of variable segments, segment information cannot be exported and imported
automatically. You can save your SEGWIDTH settings by exporting the entire
workspace, creating a new workspace, importing only the workspace objects into
the new workspace, specifying segmentation, and then importing the variable data
into the new workspace.

Duplicate Object Names
When you want to export two objects that have the same name from two different
workspaces, you must rename one of them in the EIF file by exporting it with the
AS keyword. Objects in an EIF file cannot have duplicate names.

Permission Programs: Copying to and from Analytic Workspaces When you
export PERMIT_READ or PERMIT_WRITE programs which are hidden, they are
empty when imported. Additionally, when you outfile PERMIT_READ or
PERMIT_WRITE programs which are hidden, then they are empty when infiled.

Tip: Rename PERMIT_READ and PERMIT_WRITE programs
before using EXPORT to EIF or OUTFILE After copying the
programs to an analytic workspace using IMPORT (from EIF) or
INFILE.

EXPORT (to EIF)

12-10 Oracle OLAP DML Reference

TEXT and NTEXT
You can export and import TEXT and NTEXT values. Both data types can be
exported to a single EIF file.

■ Exported TEXT values are stored in the EIF file using the character set specified
for the file in the EXPORT command.

■ Exported NTEXT values are stored in the EIF file as NTEXT (UTF8 Unicode).

■ NTEXT values imported into TEXT objects are converted into the database
character set. This can result in data loss when the NTEXT values cannot be
represented in the database character set.

■ TEXT values imported into NTEXT objects are converted into the NTEXT (UTF8
Unicode) character set.

Examples

Example 12–1 Exporting Variables

Suppose you want to export the values in status and the dimensions of two
variables called actual and budget from your current Oracle OLAP workspace to
a disk file called finance.eif in your current directory object. Use the following
statement.

EXPORT actual budget TO EIF FILE 'finance.eif'

Example 12–2 Exporting a Large Object

Suppose you want to export a large, multidimensional object that is likely to require
multiple passes to write into memory. To improve file I/O performance, you can
create a single-dimension variable to tell Oracle OLAP how to slice the
multidimensional variable into smaller pieces.

Suppose the large object is the SALES variable, which is dimensioned by month,
product, and district. To specify how sales should be sliced, create a
single-dimension variable, as shown in the following statement.

DEFINE salescatter VARIABLE TEXT <district>

Because salescatter is dimensioned by district, this will tell Oracle OLAP to
divide sales into district slices. Because district has six values, sales will
be divided into six slices. Each slice must be named. To do so, assign values to each
district in salescatter. You can then assign the appropriate data type to each
slice, for example, by using a QDR (qualified data reference), when desired.

EXPORT

EXPORT to FILEMOVE 12-11

To export SALES, execute the following statement.

EXPORT sales SCATTER AS salescatter TYPE TYPEVAR -
TO EIF FILE 'slice.eif'

To import the variables, specify which of the named slices you want, as in the
following statement.

IMPORT dist1 dist2 dist3 dist4 dist5 dist6 -
FROM EIF FILE 'slice.eif'

Alternatively, you can import all of the variables.

IMPORT ALL FROM EIF FILE 'slice.eif'

EXPORT (to spreadsheet)

12-12 Oracle OLAP DML Reference

EXPORT (to spreadsheet)

The EXPORT (to spreadsheet) command copies an Oracle OLAP worksheet object
that you have created to a spreadsheet file and automatically translate it into the
appropriate format. An analytic worksheet's dimensions form the columns and
rows of the spreadsheet file. The current status of these dimensions determines
which part of a worksheet is exported.

You can also export an analytic worksheet to an EIF file as described in EXPORT (to
EIF). EXPORT (to spreadsheet) is commonly used to copy part of your Oracle OLAP
workspace into a file that can be read by other software, such as Lotus 1-2-3, or
Symphony.

Syntax
EXPORT worksheetname TO {WKS|WK1|WRK|WR1|DIF} FILE file-id -

[STATRANK] [NOREWRITE|REWRITE] [NLS_CHARSET charset-exp]

Arguments

worksheetname
An Oracle OLAP worksheet object that you have created. In any one EXPORT (to
spreadsheet) command, you can export only one worksheetname to one spreadsheet
file.

TO WKS
TO WK1
TO WRK
TO WR1
TO DIF
Indicates that you want to export an Oracle OLAP worksheet to a 1-2-3 file, version
1 (WKS) or version 2 (WK1); a Symphony file, version 1.0 (WRK) or version 1.1 (WR1);
or a data interchange format file (DIF).

FILE file-id
A text expression that represents the name of the file you are creating. The name
must be in a standard format for a file identifier.

STATRANK
Specifies that the row and column numbers exported with worksheet data should
be the current status rankings of the WKSROW and WKSCOL dimensions.

EXPORT

EXPORT to FILEMOVE 12-13

NOREWRITE
REWRITE
NOREWRITE (the default) leaves the existing file intact and displays an error.
When you specify REWRITE, EXPORT overwrites the target file when it already
exists.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when exporting text data to
the worksheet file specified by file-id. This allows Oracle OLAP to convert the data
accurately into that character set. For information about the character sets that you
can specify, see the Oracle Database Globalization Support Guide. This argument must
be the last one specified. When this argument is omitted, then Oracle OLAP exports
the data in the database character set, which is recorded in the NLS_LANG option.

Examples

Example 12–3 Limiting Before Exporting

This example exports part of a pricing worksheet by limiting its dimensions,
WKSCOL and WKSROW, before the EXPORT command.

LIMIT WKSCOL TO 2 TO 4
LIMIT WKSROW TO 3 TO 4
EXPORT pricing TO WRK FILE 'price1.wrk'

EXPTRACE

12-14 Oracle OLAP DML Reference

EXPTRACE

The EXPTRACE option controls whether system DML programs are traced when
the PRGTRACE option is set to YES. The EXPTRACE option can be set to YES to
help debug a user-defined program that calls system programs.

Data type
BOOLEAN

Syntax
EXPTRACE = {YES|NO}

Arguments

YES
All programs are traced, including system DML programs.

NO
System DML programs are not traced. Only programs other than system DML
programs are traced.

Notes

How to Identify System DML Programs
Some OLAP DML statements are implemented as system DML programs. To send
to the current outfile a list of system DML programs affected by EXPTRACE, issue
the following statement.

SHOW AW(PROGRAM 'express')

Examples

Example 12–4 Tracing System DML Programs

After the following statements are issued, system DML programs such as
LISTNAMES and ALLSTAT are traced in addition to user-defined programs.

PRGTRACE = YES
EXPTRACE = YES

EXTBYTES

EXPORT to FILEMOVE 12-15

EXTBYTES

The EXTBYTES function extracts a portion of a text expression.

Return Value
TEXT

Syntax
EXTBYTES(text-expression [start [length]])

Arguments

text-expression
The expression from which a portion is to be extracted. When text-expression is a
multiline TEXT value, EXTBYTES preserves the line breaks in the returned value.

start
An integer that represents the byte position at which to begin extracting. The
position of the first byte in text-expression is 1. When you omit this argument,
EXTBYTES starts with the first byte.

length
An integer that represents the number of bytes to be extracted. When length is not
specified, or exceeds the number of bytes from start to the end of text-expression, the
part from start to the end of text-expression is extracted.

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use the EXTCHARS
function instead of the EXTBYTES function.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

EXTBYTES

12-16 Oracle OLAP DML Reference

Examples

Example 12–5 Extracting Text Characters Using Bytes

This example shows how to extract portions of text from the TEXT value
'hellotherejoe'.

■ The statement

SHOW EXTBYTES('hellotherejoe', 6, 5)

produces the following output.

there

■ The statement

SHOW EXTBYTES('hellotherejoe', 11)

produces the following output.

joe

EXTCHARS

EXPORT to FILEMOVE 12-17

EXTCHARS

The EXTCHARS function extracts a portion of a text expression.

Return Value
TEXT or NTEXT

Syntax
EXTCHARS(text-expression [start [length]])

Arguments

text-expression
The expression from which a portion is to be extracted. When text-expression is a
multiline text value, EXTCHARS preserves the line breaks in the returned value.

When you specify a TEXT expression, the return value is TEXT. When you specify
an NTEXT expression, the return value is NTEXT.

start
An integer that represents the character position at which to begin extracting. The
position of the first character in text-expression is 1. When you omit this argument,
EXTCHARS starts with the first character.

length
An integer that represents the number of characters to be extracted. When length is
not specified, or exceeds the number of characters from start to the end of
text-expression, the part from start to the end of text-expression is extracted.

Notes

multibyte Characters
When you are using a multibyte character set, you can use the EXTBYTES function
instead of the EXTCHARS function.

EXTCHARS

12-18 Oracle OLAP DML Reference

Examples

Example 12–6 Extracting Text Characters

This example shows how to extract portions of text from the TEXT value
'hellotherejoe'.

■ The statement

SHOW EXTCHARS('hellotherejoe', 6, 5)

produces the following output.

there

■ The statement

SHOW EXTCHARS('hellotherejoe', 11)

produces the following output.

joe

EXTCOLS

EXPORT to FILEMOVE 12-19

EXTCOLS

The EXTCOLS function extracts specified columns from each line of a multiline text
value. The function returns a multiline text value that includes only the extracted
columns.

Columns refer to the character positions in each line of a multiline text value. The
first character in each line is in column one, the second is in column two, and so on.

Return Value
TEXT or NTEXT

Syntax
EXTCOLS(text-expression [start [numcols]])

Arguments

text-expression
The text expression from which the specified columns should be extracted. When
text-expression is a multiline text value, the characters in the specified columns are
extracted from each one of its lines.

When you specify a TEXT expression, the return value is TEXT. When you specify
an NTEXT expression, the return value is NTEXT.

start
AnINTEGER, between 1 and 4000, that represents the column position at which to
begin extracting. The column position of the first character in each line of
text-expression is 1.

numcols
An INTEGER that represents the number of columns to be extracted. When you do
not specify numcols, EXTCOLS extracts all the characters from the starting column
to the end of each line.

EXTCOLS

12-20 Oracle OLAP DML Reference

Notes

Number of Lines Returned
EXTCOLS always returns a text value that has the same number of lines as
text-expression, though some of the lines may be empty.

Start Column Beyond the End of a Line
When you specify a starting column that is to the right of the last character in a
given line in text expression, the corresponding line in the return value will be empty.

Numcols That Goes Beyond the End of a Line
When you specify a length that exceeds the number of characters that follow the
starting position in a given line in text expression, the corresponding line in the
return value will include only existing characters. EXTCOLS does not return spaces
at the end of the line to fill in the missing columns.

Examples

Example 12–7 Extracting Text Columns

In this example, four columns are extracted from each line of citylist, starting
from the second column.

DEFINE citylist VARIABLE TEXT
citylist = 'Boston\nHouston\nChicago'

■ The statement

SHOW citylist

produces the following output.

Boston
Houston
Chicago

EXTCOLS

EXPORT to FILEMOVE 12-21

■ The statement

SHOW EXTCOLS(citylist 2 4)

produces the following output.

osto
oust
hica

EXTLINES

12-22 Oracle OLAP DML Reference

EXTLINES

The EXTLINES function extracts lines from a multiline text expression.

Return Value
TEXT or NTEXT

Syntax
EXTLINES(text-expression [start [numlines]])

Arguments

text-expression
A multiline text expression from whose values one or more lines are to be extracted.

When you specify a TEXT expression, the return value is TEXT. When you specify
an NTEXT expression, the return value is NTEXT.

start
An integer that represents the line number at which to begin extracting. The
position of the first line in text-expression is 1. When you omit this argument,
EXTLINES begins with line 1.

numlines
An integer representing the number of lines to be extracted. When you do not
specify numlines, or when you specify a number greater than the number of lines
from start to the end of text-expression, all the lines from start to the end of
text-expression are copied.

Examples

Example 12–8 Extracting One Text Line

This example shows how to extract the second line from a multiline text value in a
variable called mktglist. The mktglist variable has the following values.

Salespeople
Products
Services

EXTLINES

EXPORT to FILEMOVE 12-23

The statement

SHOW EXTLINES(mktglist 2 1)

produces the following output.

Products

FCCLOSE

12-24 Oracle OLAP DML Reference

FCCLOSE

The FCCLOSE command closes a forecasting context. When Oracle OLAP closes a
forecasting context, only data in the variables specified in the FCEXEC command
remain available to applications. Oracle OLAP purges all other data, including
temporary pages, associated with the forecast.

You must use the FCCLOSE command in combination with other OLAP DML
statements as outlined in "Forecasting Programs" on page 1-16. For additional
information about forecasting and forecasting methods, we suggest the latest
editions of the books listed in "Further Reading on Forecasting" on page 12-33.

Syntax
FCCLOSE handle-expression

Arguments

handle-expression
An INTEGER expression that is the handle to forecast context previously opened
using the FCOPEN function.

Examples
For a full example of a forecasting program, see Example 12–10, "A Forecasting
Program". on page 43.

FCEXEC

EXPORT to FILEMOVE 12-25

FCEXEC

The FCEXEC command executes a forecast based on the parameters options
specified by the FCSET command for the forecast. The FCEXEC command
implicitly loops over all the dimensions of the expression other than the time
dimension.

You must use the FCEXEC command in combination with other OLAP DML
statements as outlined in "Forecasting Programs" on page 1-16. For additional
information about forecasting and forecasting methods, we suggest the latest
editions of the books listed in "Further Reading on Forecasting" on page 12-33.

Syntax
FCEXEC handle-expression [choice] time-series-expression

where:

choice is one or more of the following:

TIME time-dimension

TRADINGDAYS expression

INTO name

SEASONAL name

SMSEASONAL name

BACKCAST

Arguments

handle-expression
An INTEGER expression that specifies the handle to a forecasting context
previously opened using the FCOPEN function.

TIME time-dimension
The name of the time dimension. You do not have to specify this parameter when
one dimension of the time-series-expression is of type DAY, WEEK, MONTH,
QUARTER, or YEAR.

FCEXEC

12-26 Oracle OLAP DML Reference

TRADINGDAYS expression
An INTEGER expression that specifies the number of business days in the unit of
time of the time data type (that is, DAY, WEEK, MONTH, or YEAR) of the
time-series-expression. By default the value is the total number of days in the unit
of time.

INTO name
The name of the Oracle OLAP variable in which Oracle OLAP stores the forecast
data. This variable must be dimensioned by the time dimension and any other
dimensions of the time-series-expression that have more than one value in status.
(This variable can have additional dimensions. However, in this case, when Oracle
OLAP executes the forecast, it limits each of these additional dimensions to the first
value in the dimension's status list.).

SEASONAL name
The name of the variable that Oracle OLAP populates with the data that represents
seasonal factors. Oracle OLAP produces only one cycle of factors and stores these
values into this variable beginning with the first time period in status. This variable
must be dimensioned by the time dimension and any other dimensions of the
time-series-expression that have more than one value in status. (This variable can
have additional dimensions. However, in this case, when Oracle OLAP executes the
forecast, it limits each of these additional dimensions to the first value in the
dimension's status list.)

SMSEASONAL name
The name of the variable that Oracle OLAP populates with the data that represents
smoothed seasonal factors. Oracle OLAP produces only one cycle of factors and
stores these values into this variable beginning with the first time period in status;
all other values are set to NA. This variable must be dimensioned by the time
dimension and any other dimensions of the time-series-expression that have more
than one value in status. (This variable can have additional dimensions. However,
in this case, when Oracle OLAP executes the forecast, it limits each of these
additional dimensions to the first value in the dimension's status list.)

Important: When you do not specify INTO and the
time-series-expression names an Oracle OLAP variable, Oracle OLAP
populates the input variable with the output data of the forecast,
thus overwriting the original data.

FCEXEC

EXPORT to FILEMOVE 12-27

BACKCAST
The BACKCAST keyword specifies that Oracle OLAP returns fitted historical data.
Typically this data is available only for a subset of the historical periods (sometimes
called the "fit window"). Oracle OLAP sets the value of the data that corresponds to
the historical time periods that are outside of the fit window to NA.

time-series-expression
An expression that specifies the data from which FCEXEC calculates values. The
time-series-expression must be a numeric expression that is dimensioned by
time-dimension. The time-series-expression may also be dimensioned by other
dimensions. In this case, FCEXEC implicitly loops over all the dimensions of the
expression other than the time dimension. The maximum status length of the
time-series-expression is 5000.

Notes

Forecasting a Single Value
The FCEXEC command implicitly loops over all the dimensions of the time-series
expression other than the time dimension. When you want to forecast only one
value of a multidimensional time-series expression, then you must limit the status
of all non-time dimensions to a single value before you execute the FCEXEC
command.

Examples
For a full example of a forecasting program, see Example 12–10, "A Forecasting
Program". on page 43.

Important: When you specify a value for BACKCAST and do not
specify a value for INTO variable, Oracle OLAP populates the
source variable with the backcasted data, thus overwriting the
original data.

FCOPEN

12-28 Oracle OLAP DML Reference

FCOPEN

The FCOPEN function creates a forecasting context and returns a handle to this
context.

You must use the FCOPEN function in combination with other OLAP DML
statements as outlined in "Forecasting Programs" on page 1-16. For additional
information about forecasting and forecasting methods, we suggest the latest
editions of the books listed in "Further Reading on Forecasting" on page 12-33.

Return Value
INTEGER

Syntax
FCOPEN(text-expression [prototype-handle])

Arguments

text-expression
The name of the forecasting context.

prototype-handle
An INTEGER expression that is the handle to a different forecasting context that
was previously-created using the FCOPEN function. Oracle OLAP initializes the
new forecasting context with the same options as the forecasting context specified
by this parameter. (See FCSET for descriptions of the options that specify the
characteristics of a forecasting context.)

Examples
For a full example of a forecasting program, see Example 12–10, "A Forecasting
Program". on page 43.

FCQUERY

EXPORT to FILEMOVE 12-29

FCQUERY

The FCQUERY function queries the results of a forecast created when the FCEXEC
command executed.

You must use the FCQUERY function in combination with other OLAP DML
statements as outlined in "Forecasting Programs" on page 1-16. For additional
information about forecasting and forecasting methods, we suggest the latest
editions of the books listed in "Further Reading on Forecasting" on page 12-33.

Return Value
The return value depends on the option that you use as described in the tables for
this entry.

Syntax
FCQUERY(HANDLELIST|handle-expression option -

[TRIAL trial-num] [CYCLE cycle-num])

Arguments

HANDLELIST
When you specify the HANDLELIST keyword, the FCQUERY function returns a
multiline text expression that is a list of the handles to forecasting contexts that are
currently open.

handle-expression
An INTEGER expression that is the handle to forecast context that you want to
query and that was previously opened using the FCOPEN function.

option
The specific information that you want to retrieve:

■ When you want information about the options specified for the entire forecast,
do not use the TRIAL keyword. In this case, option can be any of the options
that you can specify using the FCSET command and any of the options listed in

FCQUERY

12-30 Oracle OLAP DML Reference

Table 12–2, " Options That You Can Specify for the Entire Forecast" on
page 12-30.

■ When you want information about a specific trial, use the TRIAL trial-num
phrase. In this case, option can be any of the options listed in Table 12–3,
" Options That You Can Specify for an Individual Trial" on page 12-30.

Table 12–2 Options That You Can Specify for the Entire Forecast

Keyword Return type Description

HANDLEID TEXT The name of the forecasting context when a value
was specified when the forecasting context was
opened using the FCOPEN command; or NA when
no name was specified at that time.

TRIALSRUN INTEGER The number of trials for which data is available; or
NA when no trials were run.

Table 12–3 Options That You Can Specify for an Individual Trial

Option Return Value Description

ALLOCLAST BOOLEAN Indicates whether the risk of over-adjustment
should be reduced by allocating, instead of
forecasting, the last cycle.

ALPHA DOUBLE The value of Alpha for this trial of the forecast.
Alpha is the level or baseline parameter that is used
for the Single Exponential Smoothing, Double
Exponential Smoothing, and Holt-Winters
forecasting methods.

BETA DOUBLE The value of Beta for this trial of the forecast. Beta
is the trend parameter that controls the estimate of
the trend. Beta is used for the Double Exponential
Smoothing and Holt-Winters forecasting methods.

COMPSMOOTH BOOLEAN Indicates whether optimization should be done on
the median smoothed data series.

CYCDECAY DOUBLE The value of the cyclic decay parameter for this
trial of the forecast. Cyclical decay pertains to how
seriously Oracle OLAP considers deviations from
baseline activity when it performs linear and
nonlinear regressions.

FCQUERY

EXPORT to FILEMOVE 12-31

GAMMA DOUBLE The value of Gamma for this trial of the forecast.
Gamma is the seasonal parameter that is used for
the Holt-Winters forecasting method.

HISTUSED INTEGER The number of historical periods actually used,
after all leading NA values are bypassed.

MAD DOUBLE The mean absolute deviation (MAD) for this trial of
the forecast.

MAPE DOUBLE The mean average percent error (MAPE) for this
trial of the forecast.

MAXFCFACTOR DECIMAL The upper bound of the forecast data.

METHOD TEXT The forecasting method that Oracle OLAP used for
this trial of the forecast. See the METHOD option of
the FCSET command for descriptions of the various
methods.

MINFCFACTOR DECIMAL The lower bound of the forecast data.

MPTDECAY DOUBLE The value of the parameter that Oracle OLAP used
when it adjusted the decay of estimates of base
values that were used when it unraveled the
predictions on the moving periodic total (MPT)
series for this trial of the forecast.

NCYCLES INTEGER The number of cycles specified using the
PERIODICITY argument to FCSET.

PERIODICITY INTEGER The length, in periods, of one or more cycles. The
return value depends on the way you call the
FCQUERY function:

When you specify the CYCLE argument,
PERIODICITY returns the number of periods in the
specified cycle.

When you do not specify the CYCLE argument and
FCSET ALLOCLAST is NO, PERIODICITY returns
the product of all cycle lengths.

When you do not specify the CYCLE argument and
FCSET ALLOCLAST is YES, PERIODICITY returns
the product of all cycle lengths leaving out the
length of the last (least aggregate) cycle.

RMSE DOUBLE The root mean squared error (RMSE) for this trial of
the forecast.

Table 12–3 (Cont.) Options That You Can Specify for an Individual Trial

Option Return Value Description

FCQUERY

12-32 Oracle OLAP DML Reference

trial-num
An INTEGER expression that is the number of the trial for which you want to
retrieve information.

cycle-num
An INTEGER expression that specifies a cycle for which you want information from
the PERIODICITY option (see Table 12–3, " Options That You Can Specify for an
Individual Trial" on page 12-30). When you specified a series of cycles using the
PERIODICITY argument in the FCSET command, then the value of cycle-num
indicates the position of the cycle of interest in the specified series. For example,
assume that FCSET PERIODICITY <52,7> was specified. In this case, a cycle-num
of 1 returns 52 and a cycle-num of 2 returns 7. When you did not specify a series of
cycles using the PERIODICITY argument in the FCSET command, then it is
unnecessary to specify this argument.

Notes

Using Options
You can retrieve information about the options specified for the entire forecast or
information about a specific trial.

■ When you want information about the options specified for the entire forecast,
do not use the TRIAL keyword. In this case, option can be HANDLEID,
TRIALSRUN, or any of the options that you can specify using the FCSET
command.

SMOOTHING BOOLEAN Indicates whether Oracle OLAP smoothed the data
for this trial of the forecast. YES indicates that
Oracle OLAP smoothed the data; NO indicates that
Oracle OLAP did not smooth the data.

TRANSFORM TEXT The data filter that Oracle OLAP used for this trial
of the forecast. See the TRANSFORM option of the
FCSET command for descriptions of the various
filters.

TRENDHOLD DOUBLE The value of the trend hold parameter for this trial
of the forecast. trend hold parameter that indicates
trend reliability in Double Exponential Smoothing
and Holt-Winters forecasting methods.

Table 12–3 (Cont.) Options That You Can Specify for an Individual Trial

Option Return Value Description

FCQUERY

EXPORT to FILEMOVE 12-33

■ When you want information about a specific trial, use the TRIAL trial-num
phrase. In this case, option can be ALPHA, BETA, CYCDECAY, GAMMA, MAD,
MAPE, METHOD, MPTDECAY, RMSE, SMOOTHING, TRANSFORM, or
TRENDHOLD.

Accessing Dimensioned Data
When more than one time series was in status when the FCEXEC command was
executed, then the TRIALSRUN and the NTRIAL-dimensioned data are also be
dimensioned by the extra dimensions of the time-series expression. Although
Oracle OLAP treats the value returned by the FCQUERY function as a scalar
expression, you can access its dimensioned data in any of the following ways:

■ In a FOR loop, FCQUERY returns data for the current values of the FOR
dimensions

■ In a QUAL function, FCQUERY returns data for the specified values of the
qualified dimensions.

■ In all other cases, FCQUERY returns data for the first value in status of each of
its dimensions.

Further Reading on Forecasting
For additional information about forecasting and forecasting methods, we suggest
the latest editions of the following books.

■ Levenbach, Hans, and Cleary, James P. The Beginning Forecaster. Belmont, CA:
Lifetime Learning Publications.

■ Mosteller, Frederick, and Tukey, John W. Data Analysis and Regression. Reading,
MA: Addison-Wesley Publishing Co. Inc.

■ Makridakis, Spyros, and Wheelwright, Steven C. Interactive Forecasting. San
Francisco, CA: Holden-Day Inc.

FCQUERY

12-34 Oracle OLAP DML Reference

Examples

Example 12–9 Querying a Forecast

The autofcst program illustrated in Example 12–10, "A Forecasting Program". on
page 43 calls a program named queryall. The queryall program retrieves the
characteristics of the trials of the forecast using the following code.

DEFINE queryall PROGRAM
PROGRAM
VARIABLE numtrials INTEGER
VARIABLE loopindx INTEGER
numtrials = FCQUERY(hndl trialsrun)
row numtrials 'TRIALS'
loopindx = 1
WHILE loopindx LE numtrials
DO
ROW loopindx 'METHOD' FCQUERY(hndl method trial loopindx)
ROW loopindx 'TRANSFORM' FCQUERY(hndl transform trial loopindx)
ROW loopindx 'SMOOTHING' FCQUERY(hndl smoothing trial loopindx)
ROW loopindx 'ALPHA' FCQUERY(hndl alpha trial loopindx)
ROW loopindx 'BETA' FCQUERY(hndl beta trial loopindx)
ROW loopindx 'GAMMA' FCQUERY(hndl gamma trial loopindx)
ROW loopindx 'TRENDHOLD' FCQUERY(hndl trendhold trial loopindx)
ROW loopindx 'CYCDECAY' FCQUERY(hndl cycdecay trial loopindx)
row loopindx 'MPTDECAY' FCQUERY(hndl mptdecay trial loopindx)
ROW loopindx 'MAD' FCQUERY(hndl mad trial loopindx)
ROW loopindx 'MAPE' FCQUERY(hndl mape trial loopindx)
ROW loopindx 'RMSE' FCQUERY(hndl rmse trial loopindx)
loopindx = loopindx + 1

DOEND
END

FCQUERY

EXPORT to FILEMOVE 12-35

A sample report created from the output of the QUERYALL program follows.

3 TRIALS
1 METHOD HOLT/WINTERS
1 TRANSFORM TRNOSEA
1 SMOOTHING NO
1 ALPHA 0.2
1 BETA 0.3
1 GAMMA 0.3
1 TRENDHOLD 0.8
1 CYCDECAY -1
1 MPTDECAY -1
1 MAD 324.97047
1 MAPE 23.6192147
1 RMSE 389.40202
2 METHOD HOLT/WINTERS
2 TRANSFORM TRNOSEA
2 SMOOTHING NO
2 ALPHA 0.2
2 BETA 0.3
2 GAMMA 0.2
2 TRENDHOLD 0.8
2 CYCDECAY -1
2 MPTDECAY -1
2 MAD 324.97047
2 MAPE 23.6192147
2 RMSE 389.40202
3 METHOD HOLT/WINTERS
3 TRANSFORM TRNOSEA
3 SMOOTHING NO
3 ALPHA 0.2
3 BETA 0.3
3 GAMMA 0.1
3 TRENDHOLD 0.8
3 CYCDECAY -1
3 MPTDECAY -1
3 MAD 324.97047
3 MAPE 23.6192147
3 RMSE 389.40202

FCSET

12-36 Oracle OLAP DML Reference

FCSET

You must use the FCSET command in combination with other OLAP DML
statements as outlined in "Forecasting Programs" on page 1-16. For additional
information about forecasting and forecasting methods, we suggest the latest
editions of the books listed in "Further Reading on Forecasting" on page 12-33.

Syntax
FCSET handle-expression

where

handle expression is one of the following:

ALLOCLAST {YES|NO}
ALPHA {MAX|MIN|STEP} decimal
APPROACH {'APPAUTO'|'APPMANUAL'|'APPHYBRID'}
BETA {MAX|MIN|STEP} decimal
COMPSMOOTH {YES|NO}
CYCDECAY {MAX|MIN} decimal
GAMMA {MAX|MIN|STEP} decimal
HISTPERIODS integer
MAXFACTOR decimal
METHOD method-text-expression
MINFCFACTOR decimal
MPTDECAY {MAX|MIN} decimal
NTRIALS integer
PERIODICITY cycle-spec
RATIO decimal
SMOOTHING {YES|NO}
TRANSFORM {'TRNOSEA'|'TRSEA'|'TRMPT'}
TRENDHOLD {MAX|MIN|STEP} decimal
WINDOWLEN integer

Arguments

ALLOCLAST {NO|YES}
Indicates whether the risk of over-adjustment should be reduced by allocating,
instead of forecasting, the last cycle.

FCSET

EXPORT to FILEMOVE 12-37

■ NO specifies that the last cycle should be forecast. (Default)

■ YES specifies that only the average value for one period of the cycle is forecast.
That average value is then multiplied by factors to give the remaining points in
that period. For example, when the last cycle has 24-hour periods, only an
average hourly value is forecast, which is then multiplied by 24 hourly factors
to give the value for each hour.

ALPHA {MAX|MIN|STEP} decimal
Specifies the value for Alpha.

■ MAX specifies the maximum value of Alpha. Alpha is the level or baseline
parameter that is used for the Single Exponential Smoothing, Double
Exponential Smoothing, and Holt-Winters forecasting methods. You can specify
any decimal value from 0.0 through 1.0. The default value is 0.3.

■ MIN specifies the minimum value of Alpha. You can specify any decimal value
from 0.0 through 1.0. The default value is 0.1.

■ STEP specifies the value of the interval that Oracle OLAP uses when it
determines the value of Alpha. You can specify any decimal value from 0.05
through 0.2 as long as the value evenly divides the difference between ALPHA
MAX and ALPHA MIN. The default value is 0.1.

APPROACH {'APPAUTO'|'APPMANUAL'|'APPHYBRID'}
Specifies the approach that Oracle OLAP takes when the it executes the forecast.

■ 'APPAUTO' indicates that Oracle OLAP tests all of the possible models and
options for these models and chooses and uses the model that best fits the data.
(Default)

■ 'APPMANUAL' indicates that Oracle OLAP creates a forecast using the values
specified in the FCSET commands for this forecasting context.

■ 'APPHYBRID' indicates that, using the options that are specified in the FCSET
commands for this forecasting context as the base options, Oracle OLAP tests all
of the possible models and options for these models and chooses and uses the
model that best fits the data.

BETA {MAX|MIN|STEP} decimal
Specifies the value of Beta.

■ MAX specifies the maximum value of Beta. Beta is the trend parameter that
controls the estimate of the trend. Beta is used for the Double Exponential
Smoothing and Holt-Winters forecasting methods. You can specify any decimal
value from 0.0 through 1.0. The default value is 0.3.

FCSET

12-38 Oracle OLAP DML Reference

■ MIN specifies the minimum value of Beta. You can specify any decimal value
from 0.0 through 1.0. The default value is 0.1.

■ STEP specifies the value of the interval that Oracle OLAP uses when it
determines the value of Beta. You can specify any decimal value from 0.05
through 0.2 as long as the value evenly divides the difference between BETA
MAX and BETA MIN. The default value is 0.1.

COMPSMOOTH {YES|NO}
Indicates whether optimization should be done on the median smoothed data
series.

■ NO specifies that the methods are done using the original historical time series
data. (Default)

■ YES specifies that optimization is done on the median smoothed data series,
which results in more smoothed or "baseline" forecasts.

CYCDECAY {MAX|MIN} decimal
Specifies the value of the cyclical decay.

■ MAX specifies the maximum value of the cyclical decay parameter. Cyclical
decay pertains to how seriously Oracle OLAP considers deviations from
baseline activity when it performs linear and nonlinear regressions. You can
specify any decimal value from 0.2 through 1.0 as long as the difference
between CYCDECAY MIN and CYCDECAY MAX is evenly divided by 0.4. The
default value is 1.0.

■ MIN specifies the minimum value of the cyclical decay parameter. You can
specify any decimal value from 0.2 through 1.0 as long as the difference
between CYCDECAY MIN and CYCDECAY MAX is evenly divided by 0.4. The
default value is 0.2.

GAMMA {MAX|MIN|STEP} decimal
Specifies the value of Gamma.

■ MAX specifies the maximum value of Gamma. Gamma is the seasonal parameter
that is used for the Holt-Winters forecasting method. You can specify any
decimal value from 0.0 through 1.0. The default value is 0.3.

■ MIN specifies the minimum value of Gamma. You can specify any decimal value
from 0.0 through 1.0. The default value is 0.1.

■ STEP specifies the value of the interval that Oracle OLAP uses when it
determines the value of Gamma. You can specify any decimal value from 0.05

FCSET

EXPORT to FILEMOVE 12-39

through 0.2 as long as the value evenly divides the difference between GAMMA
MAX and GAMMA MIN. The default value is 0.1.

HISTPERIODS integer
The number of historical periods. You can specify any integer value from 1 through
50000, which is the maximum number of time dimension values that can be
present in the time-series expression specified in the FCEXEC command.

MAXFCFACTOR decimal
Specifies the upper bound on the forecast data. The number you specify indicates a
multiple of the largest value in the historical series. For example, when you specify
10.0, the upper bound will be 10 times the largest value in the historical series. The
default value is 100.0.

METHOD 'method''
Specifies the method that you want Oracle OLAP to use. You can specify one of the
following keywords for method:

■ AUTOMATIC specifies that Oracle OLAP should determine and use the method
that is the best fit for the data. (Default)

■ LINREG specifies the linear regression method in which a linear relationship
(y=a*x+b) is fitted to the data.

■ NLREG1 specifies the nonlinear regression method 1 in which a linear
relationship (y'=a*x'+b) is fitted to a transformation of the original data; in
this case, x'=log(x) and y'=log(y). This results in the development of a
polynomial model between x and y(y=c*x^a).

■ NLREG2 specifies the nonlinear regression method 2 in which a linear
relationship (y'=a*x'+b) is fitted to a transformation of the original data; in
this case, x'=x and y'=ln(y). This results in the development of an
exponential model between x and y(y=c*e^ax).

■ NLREG3 specifies the nonlinear regression method 3 in which a linear
relationship (y'=a*x'+b) is fitted to a transformation of the original data; in
this case, x'=log(x) and y'=y. This results in the development of a
logarithmic model between x and y(y=a*log(x)+b).

■ NLREG4 specifies the nonlinear regression method 4 in which a linear
relationship (y'=a*x'+b) is fitted to a transformation of the original data; in
this case, x'=1/x and y'=1/y. This results in the development of an
asymptotic curve (y=x/(a+bx)).

FCSET

12-40 Oracle OLAP DML Reference

■ NLREG5 specifies the nonlinear regression method 5 in which a linear
relationship (y'=a'*x+b) is fitted to a transformation of the original data; in
this case, x'=x and y'=ln(y/(K-y)). This results in the development of an
exponential asymptotic curve (y=cKe^ax/(1+ce^ax)).

■ SESMOOTH specifies the single exponential smoothing method in which the
current estimate is taken as a geometrically weighted average of past values,
and all future values are given this same value. This method is intended for
short term forecasts of non-seasonal data.

■ DESMOOTH specifies the double exponential smoothing method in which the
current estimate is taken as a geometrically weighted average of past values,
and this is added to a trend term calculated by the same method. Single
exponential smoothing is therefore applied to both the series and the trend
term.

■ HOLT/WINTERS specifies the Holt-Winters method that is used on seasonal data,
in which double exponential smoothing methods with trend damping are
combined with multiplicative seasonal factors, which are estimated using single
exponential smoothing.

MINFCFACTOR decimal
Specifies the lower bound on the forecast data. The number you specify indicates a
multiple of the smallest value in the historical series. You can specify any decimal
value from 0.0 through 1.0. For example, when you specify 0.5 the lower bound
will be half the smallest value in the historical series. The default value is 0.0.

MPTDECAY {MAX|MIN} decimal
Specifies the value of the parameter that Oracle OLAP uses when it adjusts the
decay of estimates of base values that it uses when it unravels the predictions on a
moving periodic total (MPT) series.

■ MAX specifies the maximum value of the parameter that Oracle OLAP uses
when it adjusts the decay of estimates of base values that it uses when it
unravels the predictions on a moving periodic total (MPT) series. You can
specify any decimal value from 0.2 through 1.0 as long as the difference
between MPTDECAY MIN and MPTDECAY MAX is evenly divided by 0.4.
The default value is 1.0.

■ MIN specifies the minimum value of the parameter that Oracle OLAP uses when
it adjusts the decay of estimates of base values that it uses when it unravels the
predictions on a moving periodic total (MPT) series. You can specify any
decimal value from 0.2 through 1.0 as long as the difference between

FCSET

EXPORT to FILEMOVE 12-41

MPTDECAY MIN and MPTDECAY MAX is evenly divided by 0.4. The default
value is 0.2.

NTRIALS integer
Specifies the number of trials that Oracle OLAP runs to determine the forecast. You
can specify any integer value from 1 through 3. The default value is 3.

PERIODICITY cycle-spec
Specifies either the number of periods for a single cycle or the number of periods in
each of a set of nested cycles.

You do not have to specify this parameter when you are using a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR. In this case, Oracle OLAP derives the
periodicity from the number of time dimension periods that constitute a year (for
example, there are 26 WEEK periods in a year).

When you are not using a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR, the default value for cycle-spec is 1, which specifies that the data is not
grouped at all (that is, each period is logically independent).

Cycles are groupings of time periods that repeat through the time span of the data.
For example, daily periods can be grouped into a weekly cycle and weekly periods
can be grouped into a yearly cycle. In this case, the cycles are said to be nested, with
the yearly cycle more aggregate than the weekly cycle, and the weekly cycle more
detailed than the yearly cycle. By specifying cycles at a more detailed level, you
allow OLAP to conduct a finer-grained search for factors that affect the data.

■ To specify a single cycle, set cycle-spec to an integer from 1 through 25000. The
integer indicates the number of periods into which the cycle should be divided.
For example, the INTEGER 12 specifies that the cycle should be divided into 12
periods.

■ To specify a series of nested cycles, set cycle-spec to a series of up to six integers
enclosed in parentheses and separated by commas. Each value in the series is
the number of periods in one of the nested cycles. The cycles are ordered from
most aggregate to least aggregate. For example, when cycle-spec is (52,7), this
indicates two cycles in which the most aggregate cycle is divided into 52
periods and each of those periods is divided into seven periods. In this
example, the year is divided into 52 weeks, and each of those weeks is divided
into seven days.

RATIO decimal
Specifies the ratio of the size of the window that Oracle OLAP uses for smoothing
and the total number of historical periods. Oracle OLAP uses this value to

FCSET

12-42 Oracle OLAP DML Reference

determine the number of backcast periods. You can specify any decimal value from
1/26 through 1/2. The default value is 1/3.

SMOOTHING {YES|NO}
Indicates whether Oracle OLAP should smooth the data for the forecast. The default
value is NO. Specify YES when you want Oracle OLAP to smooth the data.

TRANSFORM {'TRNOSEA'|'TRSEA'|'TRMPT'}
The data filter that Oracle OLAP uses when executing the forecast.

■ 'TRNOSEA' indicates that Oracle OLAP will not seasonally adjust the data.
(Default)

■ 'TRSEA' indicates that Oracle OLAP will transform using a filter that seasonally
adjusts the data.

■ 'TRMPT' indicates that Oracle OLAP will transform using a moving periodic total
(MPT) filter.

TRENDHOLD {MAX|MIN|STEP} decimal
Specifies the value of the trend.

■ MAX specifies the maximum value of the trend hold parameter that indicates
trend reliability in Double Exponential Smoothing and Holt-Winters forecasting
methods. You can specify any decimal value from 0.0 through 1.0. The
default value is 0.8.

■ MIN specifies the minimum value of the trend hold parameter. You can specify
any decimal value from 0.0 through 1. 0. The default value is 0.4.

■ STEP specifies the value of the interval that Oracle OLAP uses when it
determines the value of the trend hold parameter. You can specify any decimal
value from 0.1 through 0.2. The value of TRENDHOLD STEP must evenly
divide the difference between TRENDHOLD MAX and TRENDHOLD MIN.
The default value is 0.2

WINDOWLEN integer
Specifies the number of points that Oracle OLAP uses when it determines median
values when it performs median smoothing. Median smoothing eliminates extreme
variations in the data by replacing each data point in a series by the median value of
itself and its neighbors. You can specify any integer value from 1 through 13. The
default value is 3.

FCSET

EXPORT to FILEMOVE 12-43

Examples

Example 12–10 A Forecasting Program

Suppose you define a program named autofcst program to perform a forecast
from the data that is in an input variable named fcin1. The fcin1 variable is
dimensioned by a time dimension named timedim. Assume that you have defined
a program named autofcst with the following definition and specification.

DEFINE autofcst PROGRAM
PROGRAM
" Using the Automatic forecasting method
" Suppose you want to create a forecast from the data in
" an input variable named fcin1 that is dimensionsed by
" a time dimension named timedim.
"
" Open a forecasting context
hndl = FCOPEN('MyForecast')
" Initialize the target variables
fcout1 = NA
fcseas1 = NA
fcsmseas1 = NA
" Specify that the forecast be of the AUTOMATIC type
fcset hndl method 'automatic'
" Execute the forecast
FCEXEC hndl time timedim INTO fcout1 -

seasonal fcseas1 smseasonal fcsmseas1 backcast fcin1
" Create a report showing the input and output of the forecast
REPORT DOWN timedim fcin1 fcout1 fcseas1 fcsmseas1
" Run a program named queryall to retrieve the characteristics
" of the forecasting trials
QUERYALL
" Close the forecasting context
FCCLOSE hndl
END

The autofcst program opens a forecasting context, sets the option of the forecast
to AUTOMATIC, reports on the forecasted data, and queries and reports the
characteristics of the various trials that Oracle OLAP performed to determine the
method to use, and closes the forecasting context.

FCSET

12-44 Oracle OLAP DML Reference

The autofcst program contains the following report command that displays a
report of the input to and the output from the forecast.

REPORT DOWN timedim fcin1 fcout1 fcseas1 fcsmseas1

The sample report created by this statement follows.

TIMEDIM FCIN1 FCOUT1 FCSEAS1 FCSMSEAS1
-------------- ---------- ---------- ---------- ----------
Jan97 NA NA 1.06725482 1.02926773
Feb97 NA NA .978607917 .945762221
Mar97 NA NA 1.12699278 .860505188
Apr97 NA NA .576219022 .905284834
May97 NA NA .920601317 .907019312
Jun97 NA NA 0.91118344 1.0580697
Jul97 NA NA 1.07886483 1.05597234
Aug97 NA NA 1.08101034 1.054612
Sep97 NA NA 1.08077427 1.05361672
Oct97 2,914 NA 1.08351799 1.05380407
Nov97 2,500 NA 1.01126778 1.04504316
Dec97 2,504 NA 1.08370549 1.03104272
Jan98 3,333 NA NA NA
Feb98 2,512 NA NA NA
Mar98 2,888 NA NA NA
...
Jan01 NA 3,371.7631 NA NA
Feb01 NA 2,736.4811 NA NA
Mar01 NA 3,408.3656 NA NA
Apr01 NA 714.277175 NA NA
May01 NA 2,502.9315 NA NA
Jun01 NA 3,195.3626 NA NA
Jul01 NA 3,911.6058 NA NA
Aug01 NA 4,000.651 NA NA
Sep01 NA 4,220.2658 NA NA
Oct01 NA 3,416.0208 NA NA
Nov01 NA 2,827.3943 NA NA
Dec01 NA 2,990.8629 NA NA

The queryall program and a sample report created from its output is shown in
"Querying a Forecast" on page 12-34.

FETCH

EXPORT to FILEMOVE 12-45

FETCH

The FETCH command specifies how analytic workspace data is retrieved for use in
the relational table created by the OLAP_TABLE function which you use to access
analytic workspace data using SQL.

You can only use the FETCH command in the OLAP_command parameter of the
OLAP_TABLE function; you cannot use it in any other context. For more information
on the OLAP_TABLE function, see the Oracle OLAP Reference.

Within the OLAP_TABLE function, the FETCH keyword specifies explicitly how
analytic workspace data is mapped to a table object. The FETCH keyword is
provided for Express applications that are migrating to the Oracle Database.

When using FETCH as an argument in OLAP_TABLE, you must enter the entire
statement on one line, without line breaks or continuation marks of any type.

To fetch or import data from an relational table into analytic workspace objects
using SQL commands embedded in the OLAP DML, use the OLAP DML SQL
command.

Syntax
FETCH expression... [TAG tag-exp] [LABELED] [data-order]

where:

data-order is one of the following:

USING <order-dim...>
ACROSS across-dim...
DOWN down-dim...
ACROSS across-dim... DOWN down-dim...

Note: Use the FETCH keyword in OLAP_TABLE only when you
are upgrading an Express application that used the FETCH
command for SNAPI. When you are upgrading an Express
application, note that the syntax is the same here as in Express 6.3.
You can use the same FETCH commands that you used previously.

FETCH

12-46 Oracle OLAP DML Reference

Arguments

expression...
One expression for each target column, in the same order they appear in the row
definition. Separate expressions with spaces or commas.

TAG tag-exp
This keyword is ignored; it is retained in the syntax only for backward
compatibility.

LABELED
This keyword is ignored; it is retained in the syntax only for backward
compatibility. All fetches are labeled.

USING <order-dim...>
Orders the data block according to the dimension list specified in <order-dim...>.
Specify dimensions or composites or a combination of the two within angle
brackets. Dimensions are ordered from fastest to slowest varying, with the first
dimension being the fastest varying. When you specify a USING clause, then you
cannot specify ACROSS or DOWN.

ACROSS across-dim...
Orders the data block in columns and rows and specifies the column dimensions.
For across-dim, specify a list of one or more dimensions, composites, the NONE
keyword, or a combination of these. When you specify two or more ACROSS
dimensions, then they vary from slowest to fastest, with the first dimension being
the slowest.

When you specify ACROSS but not DOWN, then all unspecified dimensions
default to DOWN dimensions, which vary from fastest to slowest in the order that
the dimensions appear in the object definitions. However, adding the NONE
keyword to the ACROSS dimension list fetches only the first value in status for the
unspecified DOWN dimensions.

When you specify an ACROSS clause, then you cannot specify a USING clause.

DOWN down-dim...
Orders the data block in columns and rows and specifies the row dimensions. For
down-dim, specify a list of one or more dimensions, composites, the NONE keyword,
or a combination of these. When you specify two or more DOWN dimensions, then
they vary from slowest to fastest, with the first dimension being the slowest.

When you specify DOWN but not ACROSS, then all unspecified dimensions
default to ACROSS dimensions, which vary from fastest to slowest in the order that

FETCH

EXPORT to FILEMOVE 12-47

the dimensions appear in the object definitions. However, adding the NONE
keyword to the DOWN dimension list fetches only the first value in status for the
unspecified ACROSS dimensions.

When you specify a DOWN clause, you cannot specify a USING clause.

Notes

Default Data Order
When you do not specify a USING or DOWN/ACROSS clause, the dimensions of
the data vary from fastest to slowest in the order they are listed in the workspace
object definitions.

Using Expressions with Different Dimensionality
 When you specify multiple expressions with different dimensionality in one
FETCH command, the ordering of the dimensions from fastest to slowest varying is
not predictable.

Maximum Size of Data Block
You can use MAXFETCH to set an upper limit on the size of a data block generated
by FETCH.

Variables Defined with Composites
For variables defined with composites, you can specify the composites in place of
the base dimensions in the ACROSS, DOWN, and USING clauses of FETCH. This
minimizes the number of NA fields in the resulting data block. When a variable has
been defined with a named composite, you can specify the name of the composite
after the USING, DOWN or ACROSS keyword. You specify unnamed composites
with the syntax used to define them. For example, a variable d.sales with the
following definition

DEFINE d.sales VARIABLE DECIMAL <month SPARSE<product district>>

could be fetched with the expression SPARSE<product district> immediately
following a USING, DOWN, or ACROSS keyword.

Performance Tip for Variables Dimensioned by Composites
By default, when FETCH explicitly loops over a composite, it sorts the composite
values according to the current order of the values in the composite's base
dimensions. The task of sorting requires some processing time, so when variables

FETCH

12-48 Oracle OLAP DML Reference

are large, performance can be affected. When your variable is very large, and you
are more concerned about performance than about the order in which FETCH
output is produced, you can set the SORTCOMPOSITE option to NO.

Examples
For an example of using FETCH in OLAP_TABLE, see the Oracle OLAP Reference.

FILECLOSE

EXPORT to FILEMOVE 12-49

FILECLOSE

The FILECLOSE command closes an open file. When the file has not been opened,
an error occurs.

Syntax
FILECLOSE fileunit

Arguments

fileunit
An INTEGER fileunit number assigned to an open file by a previous call to the
FILEOPEN function or by an OUTFILE command.

Notes

LOG Command
You must use the LOG command with the EOF keyword, rather than FILECLOSE,
to close a file that was opened with the LOG command.

Examples

Example 12–11 Program That Opens and Closes a File

Suppose you have a program called READFILE that takes a file name as its first
argument. The following lines from the program open the file and then close it.

fil.unit = FILEOPEN(arg(1), read)
... (Commands to read and process data)

FILECLOSE fil.unit

FILECOPY

12-50 Oracle OLAP DML Reference

FILECOPY

The FILECOPY command copies the contents of one file (the source file) to another
file (the target file). When the target file already exists, the file is overwritten with
the copy.

Syntax
FILECOPY source-file-name target-file-name

Arguments

source-file-name
A text expression specifying the name of the file you want to copy from. Unless the
file is in the current directory, you must include the name of the directory object in
the name of the file.

target-file-name
A text expression specifying the name of the file you want to copy to. Unless the file
is in the current directory, you must include the name of the directory object in the
name of the file.

Examples

Example 12–12 Copying a File

The following statement copies the file log.txt from your session's current
directory object to file oldlog.txt in the same directory.

FILECOPY 'log.txt' 'oldlog.txt'

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

FILEDELETE

EXPORT to FILEMOVE 12-51

FILEDELETE

The FILEDELETE command deletes a file from the operating system disk space.

Syntax
FILEDELETE file-name

Arguments

file-name
A text expression specifying the name of the file you want to delete. Unless the file
is in the current directory, you must include the name of the directory object in the
name of the file.

Notes

DELETE and FILEDELETE
The FILEDELETE command differs from the DELETE command in that
FILEDELETE deletes a file from the operating system, while DELETE deletes an
object in a database.

Examples

Example 12–13 Specifying the File Using a Variable

The following statement deletes the file whose name is stored in a text variable
called filevar.

FILEDELETE filevar

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

FILEERROR

12-52 Oracle OLAP DML Reference

FILEERROR

The FILEERROR function returns information about the first error that occurred
when you are processing a record from an input file with the data reading
statements FILEREAD and FILEVIEW. It can tell you what type of error occurred
and where Oracle OLAP was in the record. The keyword you specify as an
argument determines the kind of information that is returned.

You should call FILEERROR once to find out the type of error. Then, you can call
FILEERROR again to get more details about what caused the error. The return
values for the type of error are also FILEERROR keywords. When FILEERROR
returns a value other than NA, then you would probably call FILEERROR a second
time using the return value itself as an argument.

Return Value
Returns various values depending on the type of error that occurred as outlined in
Table 12–4, "Types of Errors Returned by FILEERROR" on page 12-52.

Syntax
FILEERROR (TYPE|POSITION|WIDTH|VALUE|DIMENSION)

Arguments

TYPE
Returns a text expression that specifies the type of error that has occurred. The types
of errors and their meanings are listed in Table 12–4, "Types of Errors Returned by
FILEERROR".

Table 12–4 Types of Errors Returned by FILEERROR

Return Value Meaning

DIMENSION The data reading statements tried to set the status of a dimension (through
an implicit or explicit MATCH attribute), but the specified position or value
did not exist.

NA No error occurred in the processing of the current record.

FILEERROR

EXPORT to FILEMOVE 12-53

POSITION
Returns an INTEGER that is the column number (for RULED records) or field
number (for STRUCTURED records) when the error occurred.

WIDTH
Returns an INTEGER that is the current field width. It will return NA when NA was
specified as the width or the error was a POSITION error. A POSITION error stops
processing before the width can be evaluated.

VALUE
When the error type is VALUE, it returns a text expression that is the value that
could not be converted. When the data is packed, the invalid value is shown as
hexadecimal escapes. When the error type is DIMENSION, it returns the value that
did not match any existing dimension value. For other error types, it returns NA.

DIMENSION
When the error type was DIMENSION, it returns a text expression that is the name
of the dimension that had no matching dimension values. For other error types, it
returns NA.

POSITION The data reading program tried to read from an invalid location in the
record. A POSITION error can occur when the field or column is before the
beginning of the record or when the field extends past the end of the record.
An error beyond the end of the record occurs only for binary or packed data;
for symbolic (textual) data, the data reading statements pad short records
with blanks.

VALUE The value could not be converted to the requested data type. For packed
data, this means the record had an invalid hexadecimal digit.

WIDTH The data reading statements specified an invalid field width. Invalid widths
depend on the format of the data, which can be symbolic, packed, or binary:

■ For symbolic format, the width is invalid when it is less than 1 or when
it is NA. Note that NA is acceptable for ID data.

■ For packed format, the width is invalid when it is less than 1, greater
than 8, or NA.

For binary format, the width requirement depends on whether the data is
integer or decimal (floating-point). Integer data must have a width of 1, 2, or
4. Decimal data must have a width of 4 or 8.

Table 12–4 Types of Errors Returned by FILEERROR

Return Value Meaning

FILEERROR

12-54 Oracle OLAP DML Reference

Notes

Flow of Control
When an error occurs in FILEREAD or FILEVIEW, processing of the current record
stops and Oracle OLAP displays an appropriate error message. Then, when your
program has a trap label, control branches to the label where you might call
FILEERROR to investigate the problem. When you branch back to a FILEREAD or
FILENEXT function, processing continues with the next record. When there are
more errors in the record, they will not be evaluated.

Error Messages
Set ECHOPROMPT to YES in your data reading program when you want error
messages to be displayed in the current outfile. When the error occurred during
FILEREAD or FILEVIEW, any evaluation by FILEERROR occurs after the error
message.

Fileerror Abbreviation
The abbreviation for FILEERROR is FILEERR.

Examples

Example 12–14 Error-Handling with TRAP

This example shows a sample trap label (ERROR:) and the error-handling code that
follows it. (For information on error trapping and trap labels, see the TRAP
command.) The code checks whether the file has been opened. If so, it checks
whether the error that caused the branch is a data reading error. When it is, the
program calls FILEERROR in a SHOW command to display information about the
error. The body of the program (not shown) contains code that opens the file and

FILEERROR

EXPORT to FILEMOVE 12-55

assigns a file unit number to the variable fil.unit. ERRTYPE is a local variable
that is declared at the beginning of the program.

error:
IF fil.unit EQ NA
THEN DO
POPLEVEL 'save'
RETURN

DOEND
IF ERRORNAME NE 'attn'
THEN DO
ERRTYPE = FILEERROR(TYPE)
IF ERRTYPE NE NA
THEN SHOW JOINCHARS('Error in record ' RECNO(fil.unit) -

' in column ' FILEERROR(POSITION) ': ' -
ERRTYPE ' ' FILEERROR(&ERRTYPE))

TRAP ON ERROR
GOTO NEXT

DOEND
FILECLOSE fil.unit
POPLEVEL 'save'
RETURN

FILEGET

12-56 Oracle OLAP DML Reference

FILEGET

The FILEGET function returns text from a file that has been opened for reading.
When FILEGET reaches the end of the file, it returns NA.

Return Value
TEXT

Syntax
FILEGET(fileunit [LENGTH intexpression])

Arguments

fileunit
A fileunit INTEGER assigned to a file opened for reading in a previous call to the
FILEOPEN function.

LENGTH intexpression
An INTEGER expression specifying the number of bytes FILEGET should read from
the file. When an end-of-line character is reached in the input file, FILEGET simply
starts a new line in the result it is constructing. When LENGTH is omitted, FILEGET
reads one line or record regardless of how many bytes it contains.

Notes

Binary Files
When you use the FILEGET function with a binary file, you will get an error.

TEXT, Not NTEXT
All text read with FILEGET is translated into the database character set. FILEGET
cannot read data that cannot be represented in the database character set.

FILEGET

EXPORT to FILEMOVE 12-57

Examples

Example 12–15 Program for Reading a File

Suppose you have a program called readfile that takes a file name as its
argument. It opens the file, reads the lines of the file, adds them to a multiline text
variable named wholetext, then closes it. readfile uses local variables to store
the fileunit number and each line of the file as it is read.

DEFINE wholetext VARIABLE TEXT
LD Multiline text variable
DEFINE readfile PROGRAM
LD Program to store data from a file in a multiline text variable
PROGRAM
VARIABLE fil.unit INTEGER "Local Var To Store File Unit
VARIABLE fil.text TEXT "Local Var To Store Single Lines
FIL.UNIT = FILEOPEN(ARG(1) READ)
FIL.TEXT = FILEGET(fil.unit) "Read The First Line
WHILE fil.text NE NA "Test For End-of-file
DO
wholetext = JOINLINES(wholetext, fil.text)
fil.text = FILEGET(fil.unit) "Read The Next Line
DOEND

FILECLOSE fil.unit
END

FILEMOVE

12-58 Oracle OLAP DML Reference

FILEMOVE

The FILEMOVE command changes the name or location of a file that you specify.
The new file name may be the same or different from the original name.

Syntax
FILEMOVE old-file-name new-file-name

Arguments

old-file-name
A text expression specifying the name of the file you want to move or rename.
Unless the file is in the current directory, you must include the name of the directory
object in the name of the file.

new-file-name
A text expression specifying the new name or location for the file. Unless the file is
in the current directory, you must include the name of the directory object in the
name of the file.

Examples

Moving a File
The following statement moves the file log.txt from your session's current
directory object to file oldlog.txt in a directory object called backup.

FILECOPY 'log.txt' 'backup/oldlog.txt'

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

FILENEXT to FULLDSC 13-1

13
FILENEXT to FULLDSC

This chapter contains the following OLAP DML statements:

■ FILENEXT

■ FILEOPEN

■ FILEPAGE

■ FILEPUT

■ FILEQUERY

■ FILEREAD

■ FILESET

■ FILEVIEW

■ FILTERLINES

■ FINDBYTES

■ FINDCHARS

■ FINDLINES

■ FINTSCHED

■ FLOOR

■ FOR

■ FORECAST

■ FORECAST.REPORT

■ FPMTSCHED

■ FULLDSC

FILENEXT

13-2 Oracle OLAP DML Reference

FILENEXT

The FILENEXT function makes a record available for processing by the FILEVIEW
command. It returns YES when it was able to read a record and NO when it reached
the end of the file.

Return Value
BOOLEAN

Syntax
FILENEXT(fileunit)

Arguments

fileunit
A fileunit number assigned to a file that is opened for reading in a previous call to
the FILEOPEN function or by the OUTFILE command.

Notes

Opening and Closing Files
Before you can get records from a file with FILENEXT, use the FILEOPEN function
to open the file for reading (READ mode). When you are finished, close the file with
the FILECLOSE command.

Processing Data
After reading a record with FILENEXT, use the FILEVIEW command to process the
record. FILEVIEW processes input data and assigns the data to analytic workspace
objects or local variables according to a description of each field. You can call
FILEVIEW more than once for continued processing of the same record. To process
another record, call FILENEXT again.

Automatic Looping
When all the records are being processed in essentially the same way, the
FILEREAD command is easier to use because it loops over the records in a file
automatically.

FILENEXT

FILENEXT to FULLDSC 13-3

Writing Records
To write selected records to an output file, see the FILEPUT command.

Record Numbers
Use the RECNO function to get the current record number for any file that is
opened for read-only access.

Reading Binary and Text Files
When you did not specify BINARY for the file when you opened it, FILENEXT
reads data up to and including the next newline character. When you specified
BINARY for the file when you opened it, you must use FILESET to set LSIZE to the
appropriate record length before using the FILENEXT function. Then, FILENEXT
reads data one record at a time.

Examples

Example 13–1 Program That Uses FILENEXT

Suppose you receive monthly sales data in a file with the following record layout.

Column Width Format Data

1 1 Text Division code
2 10 Text District name
12 10 Text Product name
30 4 Packed binary Sales in dollars
34 4 Packed binary Sales in units

You want to process records only for your division, whose code is A. The following
program excerpt opens the file, reads the lines of the file, determines if the data is

FILENEXT

13-4 Oracle OLAP DML Reference

for division A and, if so, reads the sales data, then closes the file. The file name is
given as an argument on the statement line after the program name.

VARIABLE fil.unit INTEGER
. . .
fil.unit = FILEOPEN(arg(1) READ)
LIMIT month TO &arg(2)

WHILE FILENEXT(fil.unit)
DO
FILEVIEW fil.unit WIDTH 1 rectype
IF rectype EQ 'A'
THEN FILEVIEW fil.unit COLUMN 2 WIDTH 10 district -

WIDTH 10 product -
COLUMN 30 WIDTH 4 BINARY sales -
WIDTH 4 BINARY UNITS

DOEND
FILECLOSE fil.unit

FILEOPEN

FILENEXT to FULLDSC 13-5

FILEOPEN

The FILEOPEN function opens a file, assigns it a fileunit number (an arbitrary
integer), and returns that number. You use the fileunit number, rather than a file
name, in any further references to the file. When Oracle OLAP cannot open the file,
an error occurs.

Return Value
INTEGER

Syntax
FILEOPEN(file-name {READ|WRITE|APPEND} [BINARY]) [NLS_CHARSET charset-exp]

Arguments

file-name
A text expression specifying the name of the file you want to open. Unless the file is
in the current directory, you must include the name of the directory object in the
name of the file.

READ
Opens the file for reading. (Abbreviated R)

WRITE
Opens the file for writing. File access begins at the top of the file. Therefore, opening
an existing file in WRITE mode erases its contents completely even before anything
is written to the file. (Abbreviated W)

APPEND
Opens the file for writing. File access begins at the end of the file, and data is added
to the existing contents.

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

FILEOPEN

13-6 Oracle OLAP DML Reference

BINARY
Opens a binary-format file (a file with packed or binary data). When you specify
BINARY, Oracle OLAP considers every character in the file to be data. Rather than
using newline characters to tell when records end, it assumes records of a fixed
length, which you can set with FILESET(...LSIZE). The default record length is 80.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when reading data from the
file specified by file-name. When this argument is omitted, then Oracle OLAP
handles the data in the file as having the database character set, which is recorded
in the NLS_LANG option.

Notes

Multiple File Units
You can open as many files at the same time as your operating system allows.

Access Modes
The mode of access, READ, WRITE, or APPEND, must be appropriate to the file.

OUTFILE Command
The OUTFILE command also opens a file and assigns an arbitrary integer as the
fileunit number.

Case Sensitive File Names
When specifying a file name, be sure to match upper, lower, and mixed case exactly
with the name of the file you want to open -- unless your operating system makes
no case distinctions.

Examples

Example 13–2 FILEOPEN with an Argument Passed into a Program

The following line from a program opens a file whose name was specified as a
program argument and saves the fileunit number in the variable fil.unit.

fil.unit = FILEOPEN(ARG(1), READ)

FILEOPEN

FILENEXT to FULLDSC 13-7

Example 13–3 FILEOPEN with a Binary File

The following statements open a binary file and set the record length.

VARIABLE filenum INTEGER
filenum = FILEOPEN('mydata' READ BINARY)
FILESET filenum LSIZE 132

FILEPAGE

13-8 Oracle OLAP DML Reference

FILEPAGE

The FILEPAGE command forces a page break in your output when PAGING is on.
FILEPAGE can send the page break conditionally, depending on how many lines are
left on the current page

Syntax
FILEPAGE fileunit [n]

Arguments

fileunit
A fileunit number assigned to a file that is opened in WRITE or APPEND mode by
a previous call to the FILEOPEN function or by the OUTFILE command.

n
A positive integer expression that indicates a page break should occur when there
are fewer than n lines left on the page. When the number of lines left equals or
exceeds n, or n equals zero, no page break occurs. When n is greater than
PAGESIZE, a page break occurs when LINENUM is not zero. When n is negative or
omitted, a page break always occurs.

Oracle OLAP calculates the number of available lines left on the page using the
values of the options that specify the page size, the current line number, and the
bottom margin. The number, which is stored in LINESLEFT, is calculated according
to the following formula.

LINESLEFT = PAGESIZE - LINENUM - BMARGIN

Notes

PAGE Command
The PAGE command has the same effect as specifying the FILEPAGE command for
the fileunit number OUTFILEUNIT, which is the number of the current outfile
destination. The following two statements are equivalent.

FILEPAGE OUTFILEUNIT
PAGE

FILEPAGE

FILENEXT to FULLDSC 13-9

Examples

Example 13–4 Using the FILEPAGE Command

In the following program fragment, you might send a FILEPAGE command when
you know the next group of products will not fit on the page. The program takes as
arguments the name of the output file, and three month dimension values.

fil.unit = FILEOPEN(ARG(1) WRITE)
LIMIT month TO &ARG(2) &ARG(3) &ARG(4)
COMMAS = NO
DECIMALS = 0
FOR district
DO
FILEPAGE fil.unit STATLEN(product)
FOR product
DO
FIL.TEXT = product
FOR month
JOINCHARS(fil.text ' ' CONVERT(sales TEXT))

FILEPUT fil.unit fil.text
DOEND
FILEPUT fil.unit ''

DOEND
FILECLOSE fil.unit

FILEPUT

13-10 Oracle OLAP DML Reference

FILEPUT

The FILEPUT command writes data that is specified in a text expression to a file
that is opened in WRITE or APPEND mode.

Syntax
FILEPUT fileunit {text-exp|FROM infileunit} [EOL|NOEOL]

Arguments

fileunit
A fileunit number assigned to a file that is opened for writing (WRITE or APPEND
mode) by a previous call to the FILEOPEN function or by the OUTFILE command.

text-exp
A text expression that contains data for output.

FROM infileunit
Transfers a record read from infileunit by the FILENEXT function directly to the file
specified by fileunit.

EOL
Specifies that a newline character is appended to the output string and written to
the file. (Default)

NOEOL
Specifies that no newline character is added to the text written to the file.

Notes

FROM Keyword
The keyword phrase FROM infileunit lets you write selected records to an output
file while continuing to process data with the FILEVIEW command.

Binary Files
When you use the keyword phrase FROM infileunit, you cannot mix binary and
non-binary files. When either file was opened with the BINARY keyword, the other
must be binary too.

FILEPUT

FILENEXT to FULLDSC 13-11

NTEXT Values
When you specify NTEXT data to be written to a file, FILEPUT translates the text to
the character set of the file. When that character set cannot represent all of the
NTEXT characters, then data is lost.

Examples

Example 13–5 Writing Data to a File Using FILEPUT

Following is an example of a program that writes a file of sales data for three
months. The name of the file is the first argument. The following program excerpt
opens the file, writes the lines of data to the file, then closes it. This program takes
four arguments on the statement line after the program name: the file name of the
input data, and three month names.

DEFINE salesdata PROGRAM
LD Write Sales Data To File. Args: File Name, 3 Month Names
PROGRAM
VARIABLE fil.unit INTEGER
VARIABLE fil.text TEXT
fil.unit = FILEOPEN(ARG(1) WRITE)
LIMIT month TO &ARG(2) &ARG(3) &ARG(4)
LIMIT product TO ALL
LIMIT district TO ALL
COMMAS = NO
DECIMALS = 0
FOR district
DO
FOR product
DO
fil.text = product
FOR month
fil.text = JOINCHARS(fil.text ' ' -
CONVERT(sales TEXT))

FILEPUT fil.unit fil.text
DOEND
FILEPUT fil.unit ''

DOEND

FILECLOSE fil.unit
END

FILEPUT

13-12 Oracle OLAP DML Reference

Example 13–6 Preprocessing Data

The following example uses a data file with the 1996 sales figures for the products
sold in each district. Only the records that begin with "A" are important right now,
but you want to save the rest of the records in a separate file for later processing.
The following program excerpt uses FILENEXT to retrieve each record and
FILEVIEW to find out what kind of record it is. A second FILEVIEW command
processes the record when it is type "A." When not, a FILEPUT command writes it
to the output file.

DEFINE rectype VARIABLE ID
LD One Letter Code Identifying The Record Type
VARIABLE in.unit INTEGER
VARIABLE out.unit INTEGER
. . .
in.unit = FILEOPEN(GET(TEXT PROMPT 'Input Filename: ') READ)
out.unit = FILEOPEN(GET(TEXT PROMPT 'Output Filename: ') -

WRITE)

WHILE FILENEXT(in.unit)
DO
FILEVIEW in.unit WIDTH 1 rectype
IF rectype EQ 'A'
THEN FILEVIEW COLUMN 2 WIDTH 8 district SPACE 2 -
WIDTH 8 product ACROSS month year Yr96: saleS

ELSE FILEPUT out.unit FROM in.unit
DOEND

FILECLOSE in.unit
FILECLOSE out.unit
. . .
END

FILEQUERY

FILENEXT to FULLDSC 13-13

FILEQUERY

The FILEQUERY function returns information about a file. The attribute argument
you specify in your FILEQUERY function call determines the type of information
that is returned.

Return Value
The data type of the return value depends on the attribute you specify. See
Table 13–1, " File Attributes Returned by FILEQUERY" on page 13-14 for more
information.

Syntax
FILEQUERY(file-id attrib-arg)

Arguments

file-id
A fileunit number or a file name.

■ A fileunit number is a number that Oracle OLAP assigned to a file you opened
through a previous call to the FILEOPEN function or through the OUTFILE
command. You can use the return value of the FILEOPEN function or the value
of the OUTFILEUNIT option.

■ A file name is a text expression specifying the name of the file you want to
move or rename. Unless the file is in the current directory, you must include the
name of the directory object in the name of the file.

Some attributes require that you specify a fileunit number; others require the file
name. In many cases, you can specify either. Table 13–1, " File Attributes Returned
by FILEQUERY" on page 13-14 lists the valid keywords for attrib-arg and, for each

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

FILEQUERY

13-14 Oracle OLAP DML Reference

keyword, provides a description and indicates whether you specify a
file-unit-number of a file-name for the file-id argument.

attrib-arg
Specifies the type of information you want to retrieve about the file. The data type
of FILEQUERY's return value depends on the attribute you specify. The attribute
you specify must be appropriate for the file; otherwise, an error occurs. Table 13–1,
" File Attributes Returned by FILEQUERY" on page 13-14 lists the valid keywords
for attrib-arg and, for each keyword, provides a description and indicates whether
you specify a file-unit-number of a file-name for the file-id argument.

Table 13–1 File Attributes Returned by FILEQUERY

Keyword Return Values Return Data Type file-id Argument

APPEND TRUE when the file is open for writing at the end (that is,
TRUE for APPEND and WRITE); FALSE when it is not.

BOOLEAN Fileunit number

BMARGIN The number of blank lines that form the bottom margin. INTEGER Fileunit number

CHANGED TRUE when the file's archive bit is set; FALSE when it is not. BOOLEAN Fileunit number
or file name

DATE The date that the file was last modified DATE Fileunit number
or file name

EOF TRUE when end-of-file has been reached; FALSE when it is
not.

BOOLEAN Fileunit number

EXISTS TRUE when the file exists; FALSE when it is not. BOOLEAN Fileunit number
or file name

FILENAME The file name associated with the fileunit. TEXT Fileunit number

LINENUM The current line number. Resets after each pagebreak when
PAGING is on; keeps incrementing when PAGING is off.
When file is currently open in READ mode, returns the
current record number.

INTEGER Fileunit number

LINESLEFT The number of lines left on the page. INTEGER Fileunit number

LSIZE For a file that is open for writing, the line length for the
standard Oracle OLAP page heading. (See the STDHDR
program.) For a fileunit that is open for reading, specifies the
record length for binary input files.

INTEGER Fileunit number

NAMELIST The name of the file (such as demo), without an extension. TEXT Fileunit number
or file name

NLS_CHARSET The character set being used for this fileunit. See the
FILEOPEN command for more information.

TEXT Fileunit number

NUMBYTES The size of the file in bytes. INTEGER Fileunit number
or file name

FILEQUERY

FILENEXT to FULLDSC 13-15

Notes

Related OLAP DML Statements
Before specifying a fileunit with the FILEQUERY function, use FILEOPEN or
OUTFILE to open the file.

ORIGIN Attribute
The ORIGIN attribute identifies the computer on which a file was originally
created. You must use the FILESET command to set ORIGIN when the file

ORIGIN The type of computer on which the file was created. TEXT Fileunit number

PAGENUM The current page number. See "Paging Attributes" on
page 13-16.

INTEGER Fileunit number

PAGEPRG The Oracle OLAP program or statement that produces
headings when output is paged. See "Paging Attributes" on
page 13-16.

TEXT Fileunit number

PAGESIZE The number of lines on each page. See "Paging Attributes" on
page 13-16.

INTEGER Fileunit number

PAGING TRUE when the output is formatted in pages; FALSE when it
is not. See "Paging Attributes" on page 13-16.

BOOLEAN Fileunit number

PAUSEATPAGEEND TRUE when Oracle OLAP will pause after each page; FALSE
when it will not. See "Paging Attributes" on page 13-16.

BOOLEAN Fileunit number

R[EAD] TRUE when the file is open for reading; FALSE when it is not. BOOLEAN Fileunit number

RO TRUE when the file's read-only attribute is set; FALSE when it
is not.

BOOLEAN Fileunit number
or file name

SPECLIST The name and extension of the file. TEXT Fileunit number
or file name

TABEXPAND TRUE when the tab characters will be expanded when the file
is read by FILEGET or FILEREAD; FALSE when they will
not. See "Tab Treatment" on page 13-16.

BOOLEAN Fileunit number
or file name

TIME The time that the file was last modified. DATETIME Fileunit number
or file name

TMARGIN The number of blank lines that form the top margin. INTEGER Fileunit number

UNIT The file unit for the specified file name. INTEGER File name

W[RITE] TRUE when the file is open for writing; FALSE when it is not. BOOLEAN Fileunit number

Table 13–1 (Cont.) File Attributes Returned by FILEQUERY

Keyword Return Values Return Data Type file-id Argument

FILEQUERY

13-16 Oracle OLAP DML Reference

originated on another type of computer. This attribute is relevant only for files that
are open for reading.

Listing Open Files
You can use the LISTFILES command to see a list of which open files can be
referenced by the FILEQUERY function.

Tab Treatment
When you want tab characters in the source file to be expanded when read by
FILEGET or FILEREAD, you can specify the TABEXPAND attribute with the
FILESET command. When TABEXPAND is zero, tab characters will not be
expanded. A value greater than 0 indicates the distance, in bytes, between tab stops.
The default value of TABEXPAND is 8.

Paging Attributes
The paging attributes apply only to files that currently, unless otherwise noted, have
PAGING set to YES and are open in WRITE mode -- such as files opened with
FILEOPEN(...WRITE) or FILEOPEN(...APPEND). You can set any of the paging
attributes with the FILESET command.

Using FILEQUERY EOF
Use FILEQUERY with the EOF attribute where you used FILESTATUS in previous
Oracle OLAP versions.

File Name Conventions
When specifying a file name, use the file naming conventions for your operating
system. For example, it might be necessary to type upper, lower, and mixed case
letters to match the name of the file for which you want information.

Wildcard Characters
(Unix only) When querying for Unix file names, wildcard characters (that is, * ?)
are allowed when searching with the NAMELIST, SPECLIST, and EXISTS attribute
arguments.

FILEQUERY

FILENEXT to FULLDSC 13-17

Examples

Example 13–7 Setting Paging Options for a File Opened for Writing

The following statements show how the paging options are set for a file opened for
writing.

DEFINE fil.unit INTEGER
fil.unit = FILEOPEN('REPORT' WRITE)

■ The statement

SHOW FILEQUERY(fil.unit PAGING)

produces the following output.

YES

■ The statement

SHOW FILEQUERY(fil.unit PAGESIZE)

produces the following output.

66

■ The statement

SHOW FILEQUERY(fil.unit TMARGIN)

produces the following output.

5

■ The statement

SHOW FILEQUERY(fil.unit LINESLEFT)

produces the following output.

61

The following statement closes the file.

FILECLOSE fil.unit

FILEREAD

13-18 Oracle OLAP DML Reference

FILEREAD

The FILEREAD command reads records from an input file and processes data
according to action statements that you specify. FILEREAD handles binary and
packed decimal data, as well as text. It can handle decimal data written in
E-notation (such as .1E+9) or M-notation (such as 10M). It can convert the data to
any appropriate data type before storing it in an Oracle OLAP variable, dimension,
composite, or relation.

Syntax
FILEREAD fileunit [STOPAFTER n] [file-format] {[attribute...] action-statement1}

[[attribute...] action-statementN...]

where:

file-format specifies the format of the records in the input file as follows:

RULED|CSV [DELIMITER dchar]|STRUCTURED [TEXTSTART schar] -

[TEXTEND echar] [DELIMITER dchar]

attribute provide information that is used by action statements. For example,
attributes can be used to locate a field in the input record, format the data from that
field, convert the data to a different data type, or specify how the data should be
processed as a dimension value in Oracle OLAP. For information on the placement
of attributes in action statements, see "Field Attributes" on page 13-34. An attribute
can be one or more of the following:

COLUMN n | COL n

SPACE n | SP n

FIELD n | FLD n

WIDTH n | W n

INTEGER | SHORTINTEGER | DECIMAL | SHORTDECIMAL | NUMBER | TEXT | ID | DATE | VNF
| RAW DATE | BOOLEAN

MATCH | APPEND [LAST | FIRST | BEFORE pos | AFTER pos] | ASSIGN

BINARY | PACKED | SYMBOLIC

TRANSLATE | NOTRANSLATE |

FILEREAD

FILENEXT to FULLDSC 13-19

SCALE n

ZPUNCH | ZPUNCHL

LSET 'text'

RSET 'text'

NOSTRIP | STRIP | LSTRIP | RSTRIP

NAVALUE val

NASPELL 'text'

ZSPELL 'text'

YESSPELL 'text'

NOSPELL 'text'

ZEROFILL

action-statements perform processing, such as assignment statements and IF
statements. For example, an action statement can compare dimension values with
values retrieved from the input record, assign data to one or more cells in a
dimensioned variable, or simply increment a counter. An action-statement can be one
of the following:

assignment-statement

IF-statement

SELECT-statement

ACROSS-statement: action-statement

<action-statement-group>

Arguments

fileunit
A fileunit number assigned to a file that is opened for reading (READ mode) by a
previous call to the FILEOPEN function.

STOPAFTER n
The number of records to read from the input file. When STOPAFTER is left out, or
specified with a negative number or an NA, FILEREAD processes the whole file. See
"STOPAFTER Keyword" on page 13-30.

FILEREAD

13-20 Oracle OLAP DML Reference

RULED
Specifies that the record is organized in fixed-width columns, that is,
character-by-character or byte-by-byte. All lines must have exactly the same format.
RULED is the default file format. Use the COLUMN, SPACE, and WIDTH attributes
to specify the location of the data in the records.

CSV [DELIMITER dchar]
CSV specifies that the data is in CSV (comma-delimited values) format. You must
use the FIELD and SPACE attributes to specify the location of the data in the record.

dchar is a text expression that specifies a single character that you want Oracle
OLAP to interpret as the general field delimiter in a structured file. Oracle OLAP
uses the general field delimiter to identify both numeric and text fields. The default
character is a comma (,).

CSV files are a common output format that is generated by spreadsheet programs.
Each line of characters in a source file is treated as a single record. Each field in the
record is separated by a comma by default. You can use the DELIMITER keyword to
specify some other character as field delimiter.

When a group of characters in the input record is enclosed by double quotation
marks, all of the following rules apply:

■ When the group includes the delimiter character, it is treated as a literal instead
of as a delimiter.

■ When a double quotation mark (") is included in the group of characters, then it
must be followed by another double quotation mark.

■ When a linefeed character (\n) is included in the group of characters, then it is
ignored.

■ Any spaces or tabs that occur before or after the double quotation marks that
enclose the group of characters will be ignored.

STRUCTURED
Specifies that the record is in "structured prn" format. You must use the FIELD and
SPACE attributes to specify the location of the data in the record.

Structured files are a common output format for PC software. They are text files in
which the fields are composed of groups of characters. A group of characters is
defined by two conditions: text enclosed in double quotes, or a sequence of
numbers that is uninterrupted except by a decimal point. This means that an
unquoted sequence of numbers containing a decimal point will be stored as a single
value; however, an unquoted sequence of numbers containing commas or other
delimiters to mark off thousands will be split into several values rather than stored

FILEREAD

FILENEXT to FULLDSC 13-21

as a single value. Any unquoted, non-numeric characters are ignored, except a
minus sign that immediately precedes a number is considered to be part of the
number. A space cannot separate the minus sign from the number.

When your file format does not conform to the pattern described here, you can use
the TEXTSTART, TEXTEND, and DELIMITER keywords that let you customize the
delimiters FILEREAD uses to identify the start and end of each field.

TEXTSTART schar
Specifies a single character that you want Oracle OLAP to interpret as the start of a
text field in a structured file. schar is the value of the character. The default character
is a double quote (").

TEXTEND echar
Specifies a single character that you want Oracle OLAP to interpret as the end of a
text field in a structured file. echarr is the value of the character. The default
character is a double quote (").

DELIMITER dchar
Specifies a single character that you want Oracle OLAP to interpret as the general
field delimiter in a structured file. Oracle OLAP uses the general field delimiter to
identify both numeric and text fields. dchar is the value of the character. The default
character is a comma (,).

COLUMN n
COL n
The column in which the field starts in the input record. By default, field 1 begins in
column 1 and subsequent fields begin in the column following the previous field.
The current field's default column is the sum of the previous field's first column
plus its width plus any spaces specified for the current field.

SPACE n
SP n
The number of spaces between a field and the preceding field. In a structured PRN
file, the number of fields between the preceding and current field. The default is 0.

FIELD n
FLD n
In a structured PRN file only, the field from which to extract the data.

FILEREAD

13-22 Oracle OLAP DML Reference

WIDTH n
W n
The number of columns the field occupies in the input record. The default is
derived from the data type according to the following list:

■ BINARY input format with INTEGER, SHORTINTEGER, or SHORTDECIMAL
target data type has a default of 4 columns.

■ BINARY input format with DECIMAL or NUMBER target data type has a
default of 8 columns.

■ BINARY input format with BOOLEAN target data type has a default of 2
columns.

■ PACKED input format with any type of target data type has no default.

■ SYMBOLIC input format with ID target data type has a default of 8 columns.

■ SYMBOLIC input format with a target data type that is not ID has no default.

When there is no default, WIDTH must be included for ruled records or FILEREAD
generates an error. (Structured records do not require a WIDTH specification.)

The maximum width is 4000 characters for text input.

INTEGER
SHORTINTEGER
DECIMAL
SHORTDECIMAL
NUMBER
TEXT
ID
DATE
VNF
RAW DATE
BOOLEAN
For text data, the data type to which the input is converted before it is stored in
your analytic workspace.

■ Except for dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR,
the default is the data type of the target object.

■ For dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, the
default is VNF.

■ For DATE variables and dimensions of type DAY, WEEK, MONTH, QUARTER,
and YEAR, RAW DATE indicates the input values are positive integers that

FILEREAD

FILENEXT to FULLDSC 13-23

represent the number of days since December 31, 1899, or negative integers that
represent the number of days before December 31, 1899.

■ For binary data, the data type of the data in the input record.

See "NTEXT Values" on page 13-34.

MATCH
APPEND
ASSIGN
When the target object is a dimension, these attributes specify whether or not to add
new dimension values. For each record processed, the dimension is temporarily
limited to the value in the record.

When the target object is a dimension and you do not specify a dimension attribute,
then values in the input field must match current dimension values. When the value
does not exist, FILEREAD generates an error. This attribute also applies when the
target object is a a dimension surrogate.

The field contains new dimension values and may contain existing values as well.
New values are added to the dimension list and the status is limited to the current
value. The status is set to ALL after FILEREAD finishes. For time dimensions,
Oracle OLAP automatically fills in any "missing" periods between the existing ones
and the new ones. This attribute does not apply when the target object is a a
dimension surrogate because you cannot directly add values to a surrogate.

This attribute applies only to a dimension surrogate. It assigns the new value to the
surrogate.

LAST
When the target object is a non-time dimension and the dimension attribute is
APPEND, adds the value to the end of the dimension list.

FIRST
When the target object is a non-time dimension and the dimension attribute is
APPEND, adds the value to the beginning of the list.

BEFORE pos
When the target object is a non-time dimension and the dimension attribute is
APPEND, adds the value before the specified value or integer position.

AFTER pos
When the target object is a non-time dimension and the dimension attribute is
APPEND, adds the value after the specified value or integer position.

FILEREAD

13-24 Oracle OLAP DML Reference

SYMBOLIC
Specifies that the format of the input field is ASCII or EBCDIC text.

BINARY
Specifies that the format of the input field is binary.

PACKED
Specifies that the format of the input field is packed decimal.

TRANSLATE
Specifies that Oracle OLAP translates the data from the format of the original
operating system, as identified by a FILESET ORIGIN statement

NOTRANSLATE
Specifies that Oracle OLAP does not translate the data from the format of the
original operating system, as identified by a FILESET ORIGIN statement.

SCALE n
The number of digits to the right of the assumed decimal or binary point. The
default is 0. When the input data is text, a decimal point in the input overrides the
number specified by SCALE.

ZPUNCH
Specifies that the input is zone overpunched.

ZPUNCHL
Specifies that the input is zone overpunched on the left.

LSET 'text'
For text input and TEXT or ID target objects, adds text to the left of the value before
storing. When text is multiline, only the first line is used. By default, no text is
appended

RSET 'text'
For text input and TEXT or ID target objects, adds text to the right of the value
before storing. When text is multiline, only the first line is used. By default, no text
is appended.

NOSTRIP
For text input specifies that no spaces (or nulls) are stripped from the input.

FILEREAD

FILENEXT to FULLDSC 13-25

STRIP
For text input specifies that spaces (and nulls) are stripped from both left and right
of the input.

LSTRIP
For text input specifies that spaces and nulls are stripped from the left of the input.

RSTRIP
For text input specifies that spaces and nulls are stripped from the right of the
input.

NAVALUE val
For binary or packed input, specifies that when the input is the specified numeric
value, NA is assigned to the target object.

NASPELL 'text'
For text input, specifies that Oracle OLAP stores text as NA. When the input is the
specified text, NA is assigned to the target object. Text can be a multiline string
listing several possible NA values. In addition to the values specified for text, when
the input is NA, then NA is assigned to the target object.

ZSPELL 'text'
For textual numeric input, specifies that Oracle OLAP stores text as 0. When the
input is the specified text, zero is assigned to the target object. Text can be a
multiline string that lists several possible zero values. In addition to the values
specified for text, when the input is 0, then 0 is assigned to the target object.

YESSPELL 'text'
For text input that is BOOLEAN, specifies that Oracle OLAP stores text as YES.
When the input is text then YES is assigned to the target object. Text can be a
multiline string that lists several possible YES values. In addition to the values
specified in text, when the input is YES, ON, or TRUE, YES is assigned to the target
object.

NOSPELL 'text'
For text input that is BOOLEAN, specifies that Oracle OLAP stores text as NO.
When the input is text then NO is assigned to the target object. Text can be a
multiline string that lists several possible NO values. In addition to the values
specified in 'text,' when the input is NO, OFF, or FALSE, NO is assigned to the
target object.

FILEREAD

13-26 Oracle OLAP DML Reference

ZEROFILL
For text numeric input, specifies that Oracle OLAP fills any spaces in the resulting
text with zeros. Any spaces in the input are replaced with zeros. The default is no
filling with zeros.

action-statement
You may specify one or more action statements to be performed each time a record
is retrieved from the input file. Typically, you will use action statements to set
dimension status and assign data retrieved from the input record to a target object
in Oracle OLAP. However, you may specify action statements that do not reference
the data in the input record. For example, one of your action statements might be an
assignment statement that simply increments a counter. Alternatively, an action
statement might use the input data in some kind of processing, but not actually
assign it to a target object in Oracle OLAP.

In your list of action statements, be sure to process dimensions before variables.
FILEREAD processes each action statement from left to right for each input record.
When an action statement performs dimension processing, the resulting status
remains in effect for subsequent action statements. When you do not first specify
action statements that limit a variable's dimensions, FILEREAD uses the first value
in status to target a cell in the variable. Unless you specify an ACROSS phrase,
FILEREAD assigns a single value from a field in an input record to a single cell in
an Oracle OLAP variable. By default, FILEREAD does not loop over a variable's
dimensions when assigning data to the variable. See "Field Order" on page 13-29.

Use the VALUE keyword in FILEREAD action statements to represent the value in a
particular field of the input record. VALUE represents this data, formatted
according to the FILEREAD attributes you have specified. When the field in the
record is blank, FILEREAD considers its value to be NA. By default, the data type of
VALUE is the data type of the target object. However, you can specify a different
data type with an attribute keyword.

Note: When you have already specified action statements for use
with FILEREAD, you can reuse the code with SQL FETCH and SQL
IMPORT by simply adjusting the assignment statements and
eliminating the VALUE keyword (if necessary). Most of the
FILEREAD attributes (with the exception of the attributes that
control dimension processing) are not meaningful for SQL loading
and are ignored when executing within SQL FETCH and SQL
IMPORT.

FILEREAD

FILENEXT to FULLDSC 13-27

assignment-statement
An assignment statement lets you assign a value to an Oracle OLAP object. An
assignment statement has the following form.

object [= expression]

object is the target where the data will be assigned and stored. The object can be an
Oracle OLAP variable, dimension, dimension surrogate, composite, or relation.

 expression is the source of the data value to be assigned to the target.

IF-statement
An IF statement lets you perform some action depending on whether a Boolean
expression is TRUE or FALSE. An IF statement has the following form.

IF bool-exp

THEN action

[ELSE action]

IF evaluates the Boolean expression. When it is TRUE, the THEN action occurs.
When it is FALSE, the ELSE action (if specified) occurs. When the Boolean
expression is NA, no action occurs.

An action can be one of the following:

■ NULL (no action occurs)

■ An assignment statement

■ A SELECT statement

■ An IF statement

■ A DO … DOEND statement containing action-statements

A FILEREAD IF statement may contain invocations of the VALUE keyword. You
can use a FILEREAD IF statement to process varying record types (such as records
with different structures or different target objects) with one FILEREAD command.

Important: In a SQL FETCH or a SQL IMPORT assignment
statement, the expression component is not optional. However, a
FILEREAD assignment statement may consist only of an object
name. In this case, the input data is assigned directly to object. An
expression in a FILEREAD assignment statement may include the
VALUE keyword.

FILEREAD

13-28 Oracle OLAP DML Reference

In FILEREAD, the VALUE keyword can be used more than once to represent
different values from the same record. For each instance, specify the column from
which to read each value.

SELECT statement
A SELECT statement lets you perform some action based on the value of an
expression. A SELECT statement has the following form.

SELECT select-expression

[WHEN expression1 action

[WHEN expression2 action . . .]

[ELSE action]

SELECT evaluates the SELECT expression and then sequentially compares the
result with the WHEN expressions. When the first match is found, the associated
action occurs. When no match is found, the ELSE action (if specified) occurs.

An action for a SELECT statement is the same as an action for an IF statement.

A FILEREAD SELECT statement may contain invocations of the VALUE keyword.
You can use a FILEREAD SELECT statement to process varying record types (such
as records with different structures or different target objects) with one FILEREAD
command.

ACROSS-statement: action-statement
An ACROSS statement causes the following action statement to execute once for
every value in status of the ACROSS dimension. When you want the looping to
apply to more than one action statement, enclose the action statements in angle
brackets. An ACROSS statement has the following form.

ACROSS dimension [limit-clause]:

action-statement

limit-clause temporarily changes the status of dimension, as long as you are not in a
FOR loop over dimension. The new status is in effect only for the duration of the SQL
FETCH command. The format of limit-clause is as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|TO] valuelist

To specify the temporary status, insert any of the LIMIT command keywords (the
default is TO) along with an appropriate list of dimension values or related
dimensions. You can use any valid LIMIT clause (see LIMIT command for further

FILEREAD

FILENEXT to FULLDSC 13-29

information). The following example limits month to the last six values, no matter
what the current status of month is.

ACROSS month last 6: units

In a FILEREAD ACROSS statement, you can specify attributes to indicate the
position in the record where Oracle OLAP will begin reading the fields specified by
the ACROSS phrase. To specify the position, use the attributes FIELD, SPACE, and
COLUMN. A position attribute is optional when the series of fields specified in the
ACROSS phrase begins in the next field for structured records, or the next byte for
ruled records.

<action-statement-group>
You can group several action statements together by enclosing them in angle
brackets. An action-statement-group has the following form.

<action-statement1 -

[action-statement2 . . .]>

A typical use for action statement groups is after an ACROSS statement. With the
angle bracket syntax, you can cause more than one action statement to execute for
every value in status of the ACROSS dimension.

Notes

Reading One Record at a Time
As an alternative to FILEREAD, you can use the FILENEXT function to read one
record at a time with one or more FILEVIEW commands to process the fields in the
record.

Related OLAP DML Statements
Before you can process data from a file with FILEREAD, use the FILEOPEN
function to open the file for reading (READ mode). When you are finished, close the
file with the FILECLOSE command.

Field Order
When an input record contains both dimension values and variable data, the
dimension values must be the first fields that are read in the record, and the variable
data values must be read after those dimension values. To do this, you can either
order the fields in the input record itself or you can use FILEREAD attributes to
specify the field positions explicitly. (See the description for the attribute argument.)

FILEREAD

13-30 Oracle OLAP DML Reference

To organize the input records so that you do not need to use position attributes with
FILEREAD, put all of the dimension values in the first fields of the record and put
the variable data values in the last fields of the record. For example, suppose that
you have data for two variables (units and sales) that share the same
dimensions in the same order (time, product, and geography). In this case, the
first three fields in the input record should contain dimension values, while the
fourth and fifth fields should contain variable data, such as in the following sample
input record.

Sep99 Snowshoes Boston 35 5565.95

STOPAFTER Keyword
By default, FILEREAD automatically reads all the records in a file in sequential
order. When you want to process only the first part of a file, use the STOPAFTER
keyword. FILEREAD processes the number of records you specify, then stops. You
can then close the file.

When you want to skip the first part of the file and process the remaining records,
you can use the STOPAFTER keyword and omit the field descriptions. FILEREAD
will read the number of records you specify without processing the data. Then you
issue a second FILEREAD command with field descriptions for processing the
input. The following program lines illustrate this method.

lIMIT district TO 'Boston'
unit = FILEOPEN('bostdata' READ)
FILEREAD unit STOPAFTER 25
FILEREAD unit WIDTH 8 product SPACE 2 ACROSS month 13 TO 24:-

WIDTH 4 PACKED sales

Dimension Maintenance
When the target object of a field description is a dimension, you can specify
whether or not to use the data in the file to add values to the dimension. The
dimension attributes are MATCH and APPEND. When you are adding values to a
dimension with APPEND, you can specify a dimension position attribute (LAST,
FIRST, BEFORE pos, AFTER pos) immediately after APPEND.

In an assignment statement of the form object=expression, dimension
attributes cannot appear on the right side of the equal sign, but must be specified
before the target object. The only exception is when dimensions as target objects
also appear on the right side, such as when you are maintaining a conjoint

FILEREAD

FILENEXT to FULLDSC 13-31

dimension. See Example 13–12, "Maintaining Conjoint Dimensions with File Data"
on page 13-38.

Dimension Position Numbers
When your input data consists of dimension position numbers, rather than
dimension values, specify the conversion type as INTEGER in the field description,
even though the dimension has a type of TEXT, ID, DAY, WEEK, MONTH,
QUARTER, or YEAR.

FILEREAD unit COLUMN 1 WIDTH 8 INTEGER month

When the input contains position numbers, you cannot use the APPEND keyword
to add new values to a dimension of type TEXT, ID, DAY, WEEK, MONTH,
QUARTER, or YEAR, because the new position numbers have no associated value
to be added.

Conjoint Dimension Maintenance
When a conjoint dimension is the target object, you can read its values using one of
the two methods:

■ Method One—When the input contains values or position numbers of the base
dimensions, you must specify a dimension list surrounded by angle brackets
after the equal sign, as shown in the following two sample lines.

FILEREAD unit proddist = <COL 1 W 10 product COL 20 -
W 8 district>

FILEREAD unit proddist = <COL 1 W 10 INTEGER product COL 20 -
W 8 INTEGER district>

The preceding examples show values of the product and district
dimensions being used to designate a value of the proddist concat dimension
You could also use the APPEND attribute when you needed to maintain any of
the dimensions. However, when you needed to process the values of product
or district first, so that the syntax would require an equal sign inside the
angle brackets, you would have to use an alternative method. (Nested equal
signs are not allowed.) For this method you would read and process the base
dimension values first, and then use the dimensions, without any field
attributes, in the dimension list for the conjoint dimension. For example, to

FILEREAD

13-32 Oracle OLAP DML Reference

convert the base dimension values of a conjoint dimension to uppercase, use a
statement similar to the following.

FILEREAD unit COL 14 W 8 product = UPCASE(VALUE) -
COL 5 W 8 district = UPCASE(VALUE) -
proddist = <product, district>

■ Method Two—When the input contains position numbers of the conjoint
dimension itself, you must specify the INTEGER keyword.

FILEREAD unit INTEGER proddist

FILEREAD with Variables Dimensioned by Composites
When reading data into a variable dimensioned by a composite, FILEREAD
automatically creates any missing target cells that are being assigned non-NA values.
This process also adds to the composite all the dimension value combinations that
correspond to those new cells. Thus, both the target object and the composite might
be larger after an assignment.

Variables Dimensioned by Composites and Efficiency
When you use the automatic composite maintenance feature of FILEREAD to load
data into variables dimensioned by composites, you should be aware of potential
performance problems that might later occur when you attempt to access the
variables' data. The position of a composite in the dimension list of a variable
indicates whether or not performance might later become an issue.

When the composite appears at the end of the dimension list in the variable's
definition (the slowest-varying position), you can use FILEREAD just as you would
for a variable whose dimension list does not include composites. For example, you
could use the same FILEREAD commands to read data into the variables newsales
and newsales.cp (with the following definitions) without sacrificing efficiency.

DEFINE newsales VARIABLE DECIMAL <product district month>
DEFINE newsales.cp VARIABLE DECIMAL <product SPARSE<district month>>

newsales.cp is dimensioned by three dimensions, the last two of which are in a
composite. When, however, you have a variable like newsales2.cp (with the
following definition) there can be performance implications for accessing data
loaded with FILEREAD.

DEFINE newsales.cp VARIABLE DECIMAL <SPARSE<district month> product >

FILEREAD

FILENEXT to FULLDSC 13-33

In this case, you can use one of two methods to avoid performance problems. Refer
to "Prevent Performance Problems: Method One" on page 13-33 and "Prevent
Performance Problems: Method Two" on page 13-33.

Prevent Performance Problems: Method One
You can use CHGDFN with the SEGWIDTH keyword to change the segment size
for the variable before using FILEREAD. CHGDFN SEGWIDTH lets you specify the
size of a variable's segments. A segment is a portion of the total number of values a
variable holds. The number of segments in a variable affects the performance of
data loading and data accessing.

The segment size that you specify with a CHGDFN SEGWIDTH statement is used
not only for the variable you designate as varname, but also for all other variables
and relations that are defined with the same combination of dimensions and
composites in the same order.

Prevent Performance Problems: Method Two
Alternatively, you can explicitly add composite values just as you would for a
conjoint dimension. You can use this method both for named and unnamed
composites. See "Composite Maintenance" on page 13-33.

Composite Maintenance
When you wish to explicitly maintain composites with FILEREAD, use the same
syntax that you use to maintain conjoint dimensions. When the composite is
unnamed, refer to it with the form SPARSE<dim1 dim2 ...>. See "FILEREAD
with Variables Dimensioned by Composites" on page 13-32 and "Variables
Dimensioned by Composites and Efficiency" on page 13-32 to evaluate the
advantages of explicit versus automatic composite maintenance with FILEREAD.

Time Dimensions
When the target object of a field is a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, the default conversion type is VNF. Therefore, you do not
need to specify a conversion type when the input values are formatted according to
the VNF of the target dimension (or the default VNF when the dimension does not
have a VNF of its own).

When the target object of a field is a DATE variable or a dimension of type DAY,
WEEK, MONTH, QUARTER, and YEAR, FILEREAD will interpret the values
correctly when they are in a valid input style for dates as described in
DATEORDER. For dimensions of type DAY, WEEK, MONTH, QUARTER, and

FILEREAD

13-34 Oracle OLAP DML Reference

YEAR, you must specify DATE as the conversion type. For values of a DATE
variable, DATE is the default conversion type, so the DATE keyword is optional.

FILEREAD will also interpret values of a time dimension or a DATE variable
correctly when they are integers that represent dates (1 = January 1, 1900). In
this case, you must specify RAW DATE as the conversion type.

Blank Fields
When a field is blank, its value is NA and NA is assigned to the target variable.
Examples of blank fields are a text field filled with spaces, a field that begins
beyond the end of the record, or a field in a structured file that has nothing, not
even a space, between the field delimiters.

Field Attributes
Normally, the field attributes immediately precede the target object or the
expression on the right of the equal sign.

attributes object

However, when you want an attribute to apply to several fields, specify the
attribute followed by the list of target objects surrounded by angle brackets. You can
also include attributes that apply to one of the objects by typing them inside the
brackets before the object to which they apply.

attributes0 <attributes1 object1=expression object2 attributes3 object3>

Angle brackets are also used to surround the base values of a conjoint dimension
value.

Error Handling
When FILEREAD encounters an error, you can control what happens with an error
trap and appropriate processing. Errors can be caused by attempts to convert data
to an incompatible data type or by encountering invalid dimension values. You can
use the FILEERROR function to get more information about what caused the error.
After processing the error, you can use the TRAP command to turn error trapping
back on and GOTO to branch back to the FILEREAD command. Processing
continues with the next record. See Example 13–10, "Error Handling" on page 13-37.

NTEXT Values
When you specify a target object of type NTEXT for data from a structured or CSV
file, FILEREAD translates the data from the file into the database character set
before storing the values (even though they are assigned to an NTEXT object). This

FILEREAD

FILENEXT to FULLDSC 13-35

can result in data loss when the data from the file cannot be represented in the
database character set. For data from a ruled file, which has fixed-width columns,
FILEREAD does not translate into the database characters set, so there is no data
loss.

Examples

Example 13–8 Dimension Values and Data

Suppose your analytic workspace contains six-character product identification
numbers. You need to import both product names and a value for the number of
units sold each month. The data file for the last quarter has the following format.

Jan951234aa00Chocolate Chip Cookies 123
Jan951099bb00Oatmeal Cookies 145
Jan952355cc00Sugar Cookies 223
Jan955553ee00Ginger Snap Cookies 233
Feb951234aa00Chocolate Chip Cookies 123
Feb951099bb00Oatmeal Cookies O145
Feb952355cc00Sugar Cookies SS223
Feb955553ee00Ginger Snap Cookies G233
Mar952355cc00Sugar oCookies 223
Mar955553ee00Ginger Snap Cookies 233
Mar953222dd00Brownies 432

The dimension and variables have the following definitions.

DEFINE month DIMENSION MONTH
DEFINE productid DIMENSION ID
DEFINE productname VARIABLE TEXT <productid>
DEFINE units.sold VARIABLE INTEGER <month productid>

The following program uses FILEREAD to add any new values for month and
productid to the analytic workspace and to put the data in the correct

FILEREAD

13-36 Oracle OLAP DML Reference

variables.You should maintain dimensions in one FILEREAD command, close the
file, and process it again to get the associated data.

DEFINE read.product PROGRAM
PROGRAM
VARIABLE fi INT
fi = FILEOPEN('Dr.Dat' READ)
FILEREAD fi COLUMN 1 APPEND WIDTH 5 month -

COLUMN 6 APPEND WIDTH 6 productid
FILECLOSE fi

fi = FILEOPEN('Dr.Dat' READ)
FILEREAD fi COLUMN 1 WIDTH 5 month -

COLUMN 6 WIDTH 6 productid -
COLUMN 12 WIDTH 30 productname -
COLUMN 44 WIDTH 22 units.sold

FILECLOSE fi
END

Example 13–9 Dimension Surrogate Values

This example uses one FILEREAD operation to add a value to the product
dimension and assign a value to prodnum, which is a NUMBER dimension
surrogate for the product dimension. It uses a second FILEREAD to assign a value
to the units variable, which is dimensioned by month, product, and district.
The data file for the dimension and surrogate values has the following format.

Kiyaks400

The following statements define a fileunit, open the file, read its contents and
append a value to the product dimension and assign a value to the prodnum
surrogate, and close the file.

DEFINE funit INT
funit = FILEOPEN('Ds.Dat' READ)
FILEREAD funit COL 1 APPEND W 6 product COL 7 ASSIGN W 3 prodnum
FILECLOSE funit

The data file for the variable value has the following format.

Jan02400Boston416

FILEREAD

FILENEXT to FULLDSC 13-37

The following statements open the file, read its contents, match the value of the
prodnum surrogate and assign a value to the units variable, and close the file.

funit = FILEOPEN('Var.Dat' READ)
FILEREAD funit COL 1 W 5 month COL 6 MATCH W 3 prodnum -
COL 9 W 6 district COL 15 W 3 INTEGER units

FILECLOSE funit

Example 13–10 Error Handling

When your input file has data that does not match the format specifications, or
when it has a dimension value that is not part of the analytic workspace when you
are using the default MATCH attribute, you will get an error. You can use error
processing at the trap label to check for that kind of error, skip the bad record, and
continue processing the file. You can also use the FILEPUT command to store the
bad records in a separate file (see FILEPUT).

In the following example, the statements at the trap label check whether the file was
successfully opened (fil.unit has an integer value) and whether the user
interrupted the program. When these are not the reason for the error, the program

FILEREAD

13-38 Oracle OLAP DML Reference

assumes it encountered a bad record, resets the trap, and branches back to the
FILEREAD command to continue processing with the next record.

DEFINE read.price PROGRAM
PROGRAM
VARIABLE fil.unit INTEGER
TRAP ON ERROR
fil.unit = FILEOPEN(ARG(1) READ)
LIMIT month TO &ARG(2)
NEXT:
FILEREAD fil.unit -
WIDTH 8 product -
WIDTH 4 BINARY price

FILECLOSE fil.unit
RETURN
error:
IF fil.unit EQ NA
THEN RETURN

IF ERRORNAME NE 'attn' AND ERRORNAME NE 'quit'
THEN DO
SHOW JOINCHARS('Record ' RECNO(fil.unit) ' is Invalid.')
TRAP ON ERROR
GOTO NEXT

DOEND
FILECLOSE fil.unit
END

Example 13–11 Preprocessing File Data Before Assigning to a Workspace Object

You can also process the data in each field before assigning it to a variable or
dimension in the analytic workspace. Suppose your data file has product identifiers
that are six-digit numbers, and your analytic workspace has a product dimension
whose values are these same product numbers, preceded by a "P." You can process
the identifiers in the file by adding a "P" at the beginning of each value.

FILEREAD unit COLUMN 1 WIDTH 6 APPEND LSET 'p' product

Example 13–12 Maintaining Conjoint Dimensions with File Data

To maintain a conjoint dimension with FILEREAD, you first maintain its base
dimensions by appending any new values from the input file. Then you assign the
resulting combination of base dimension values to the conjoint dimension. The
following example gets base dimension values from two separate fields, appends

FILEREAD

FILENEXT to FULLDSC 13-39

the values to the base dimensions, then appends the combination to the conjoint
dimension.

FILEREAD unit APPEND proddist = <W 8 product, W 8 district>

In the preceding statement, the angle brackets automatically cause APPEND to
apply to all three dimensions. When you do not want to add new values to the base
dimensions, but want only to add new conjoint dimension values, you must
explicitly state the keyword MATCH or change the order of the target objects, as
shown in the two following statements.

fileread unit APPEND proddist = <W 8 MATCH product,W 8 MATCH district>

or

FILEREAD unit W 8 product W 8 district APPEND proddist = <product, district>

Example 13–13 Reading Data From a Structured PRN File

Suppose you want to read data from a structured PRN file with values of the
product dimension in field two, values of the district dimension in field three,
and several months of sales values beginning in field six. You could read the first 10
records in the file with the following statement.

FILEREAD unit STOPAFTER 10 STRUCTURED FIELD 2 product -
district FIELD 6 ACROSS month: sales

FILESET

13-40 Oracle OLAP DML Reference

FILESET

The FILESET command sets the paging attributes of a specified fileunit.

Syntax
FILESET fileunit attrib-arg1 exp1 [attrib-argN expN ...]

where:

attrib-arg is one of the following:

BMARGIN

LINENUM

LSIZE

ORIGIN

PAGENUM

PAGEPRG

PAGESIZE

PAGING

PAUSEATPAGEEND

TABEXPAND

TMARGIN

Arguments

fileunit
A fileunit number that is assigned to a file opened in a previous call to the
FILEOPEN function or by the OUTFILE command. You can set attributes only for
an open file. An attribute argument specifies the file characteristic to change. The
attribute must be appropriate for the fileunit specified; otherwise, Oracle OLAP
returns an error. You can set several attributes in one FILESET command by listing
the attribute name and its new value in pairs.

BMARGIN
Specifies the number of blank lines that make up the bottom margin.

FILESET

FILENEXT to FULLDSC 13-41

LINENUM
Specifies the current line number. Resets after each pagebreak when PAGING is on;
otherwise, keeps incrementing.

LSIZE
Specifies the maximum line length for text output files, or the record length for
binary input files.

ORIGIN
Specifies the type of system on which the file was created. See "ORIGIN Attribute"
on page 13-42.

PAGENUM
Specifies the current page number.

PAGEPRG
Specifies the OLAP DML program that produces page titles and headings when
output is paged.

PAGESIZE
Specifies the number of lines on each page.

PAGING
Specifies if the output is formatted in pages.

PAUSEATPAGEEND
Specifies if Oracle OLAP should pause after each page.

TABEXPAND
Specifies if tab characters should be expanded. See "Tab Treatment" on page 13-42.

TMARGIN
Specifies the number of blank lines that make up the top margin.

exp
An expression that contains the new value for the attribute being set. The data type
of the expression must be the same as the data type of the attribute.

FILESET

13-42 Oracle OLAP DML Reference

Notes

OUTFILE Command
When you use an OUTFILE filename command, it is easier to set paging attributes
for the file by using the regular Oracle OLAP paging options from the command
line instead of FILESET. When you prefer FILESET, you can identify the file by
simply using the OUTFILEUNIT option. For example, these statements

OUTFILE FILENAME
PAGING = YES

are equivalent to these statements,

OUTFILE FILENAME
FILESET OUTFILEUNIT PAGING YES

Multiple Open File Units
You can have as many files open at the same time as your operating system allows.

Tab Treatment
When you want tab characters in the source file to be expanded when read by
FILEGET or FILEREAD, you can specify the TABEXPAND attribute. When
TABEXPAND is zero, tab characters will not be expanded. A value greater than 0
indicates the distance, in bytes, between tab stops. The default value of
TABEXPAND is 8.

ORIGIN Attribute
The default value of the ORIGIN attribute reflects the system you are currently
working on, so you must set ORIGIN when the file originated on a different system.
The setting of ORIGIN affects how data reading statements interpret the files. For
example, data reading statements use this information to decide whether bytes of
binary data need to be reversed, and so forth. Table 13–2, " Values for ORIGIN
Clause of FILESET" will help you make the right choice. When your system is not
listed, try using PC or HP as the value of ORIGIN. When one value does not work,
the other one should.

FILESET

FILENEXT to FULLDSC 13-43

Examples

Example 13–14 Setting Paging for a Report

When you are sending output to a report in a disk file, you might set the following
attributes to indicate that the report is organized in pages and that the first page
is 1.

DEFINE fil.unit INTEGER
fil.unit = FILEOPEN('REPORT' WRITE)
FILESET fil.unit PAGING YES PAGENUM 1

Table 13–2 Values for ORIGIN Clause of FILESET

Value Hardware or Operating System

ALPHA Any DEC workstation using an Alpha processor

AVMS A DEC Alpha processor running on VM

HP HP MPE XL

HPS700 HP Series 700 Workstation

HPS800 HP Series 800 Workstation

IBMPC An Intel processor running DOS, Windows, or Windows N

INTEL5 Any Intel5 processor running Unix

MIPS Any MIPS machine

MVS IBM MVS/TSO

NTALPHA A DEC Alpha processor running Windows NT

PC An Intel processor running DOS, Windows, or Windows NT

RS6000 Any IBM RS6000 processor running IBM AIX

SOLARIS2 Any workstation running Solaris2

SUNOS4 Any workstation running SunOS4

VAX VAX VMS (floating point in G format only)

VM VM/CMS

FILEVIEW

13-44 Oracle OLAP DML Reference

FILEVIEW

The FILEVIEW command works in conjunction with the FILENEXT function to
read one record at a time of an input file, process the data, and store the data in
Oracle OLAP dimensions and variables according to the descriptions of the fields.
Use FILENEXT to read the record, then use one or more FILEVIEW commands to
process the fields as needed. FILEVIEW has the same attributes as FILEREAD for
specifying the format of the input and the processing of the output.

Syntax
FILEVIEW fileunit [field-desc...]

Arguments

fileunit
A fileunit number that is assigned to a file opened for reading (READ mode) in a
previous call to the FILEOPEN function.

field-desc
A field description describes how to process one or more fields in each input record.
Attributes in the field description specify how to format the input data. FILEVIEW
reads each field according to the format specification and assigns the input data to
the specified object. You can assign the data to the object directly or you can specify
an expression to manipulate the data before you assign it. One field description can
assign data from one input field to one Oracle OLAP object. Alternately you can use
the ACROSS keyword to assign several values in the input record to a variable that
is dimensioned by the fastest varying dimension. Because field attributes include
the column number in the input record, you can process input fields in any order.

The format for the field description is as follows.

[[pos] ACROSS dim [limit-clause]:] [attribs] object [= exp]

pos
One or more attributes that specify the position in the record where Oracle OLAP
will begin reading the fields specified by the ACROSS description. To specify the
position, use the attributes FIELD, SPACE, and COLUMN (see FILEREAD). The pos
argument is optional when the series of fields specified in the ACROSS phrase
begins in the next field for structured records, or the next byte for ruled records.

FILEVIEW

FILENEXT to FULLDSC 13-45

ACROSS dim [limit-clause]:
Specifies the dimension of one or more data fields in the input record. FILEVIEW
assigns the data in the fields to a variable according to the values in the current
status of dim. Typically, each field description processes one value. However, using
the ACROSS keyword, you can process one input value for each dimension value
currently in the status.

limit-clause lets you temporarily change the status of the fastest varying dimension,
as long as you are not in a FOR loop over the that dimension. The new status is in
effect only for the duration of the FILEVIEW command. The format of limit-clause is
as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|TO|INSERT] valuelist

To specify the temporary status, insert any of the LIMIT keywords (the default is
TO) along with an appropriate list of dimension values or related dimensions. You
can use any valid LIMIT clause (see the LIMIT command for further information).
The following example limits month to the last six values, no matter what the
current status of month is.

across month last 6: units

attribs
One or more attributes that tell Oracle OLAP the position in the record and the
format of the input data. (See FILEREAD for an explanation of the available
attributes.)

object [= exp]
An Oracle OLAP variable, dimension, or relation to which the input data is
assigned. When = exp is missing, the data is assigned implicitly to the object. When
= exp is present, the data is processed according to the expression and then assigned
to object.

You can use the keyword VALUE to represent the value in a particular field of a
record. VALUE represents the data from the file, formatted according to the
FILEREAD attributes you use. When the field in the record is blank, FILEREAD
considers its value to be NA. By default, the data type of VALUE is the data type of
the target object. However, you can specify a different data type with an attribute
keyword. VALUE can be used more than once to represent different values from the
same record. For each instance, specify the column from which to read each value,
as shown in the following example code.

sales = if col 1 w 1 text value eq 'A' then col 2 w 8 value -
else col 10 w 8 value

FILEVIEW

13-46 Oracle OLAP DML Reference

In this example, the default data type of VALUE is decimal, which is the data type
of the target object sales. However, the first instance of VALUE is compared to a
text expression, so you must use the attribute TEXT to specify its data type.

SELECT exp
The SELECT field-description keyword processes varying record types (such as
records with different structures or different target objects) with one FILEVIEW
command. Within a field description, you can use the following syntax:

SELECT exp -

[WHEN exp action [WHEN exp action ...]] -

[ELSE action]

IF bool-exp THEN action [ELSE action]

DO

field-desc

[field-desc]

...

DOEND

The action argument is one of the following:

■ NULL (no action occurs)

■ field-description, including nested IF and SELECT statements.

SELECT evaluates the first expression, which may contain invocations of the
VALUE keyword, and which has a default data type of TEXT. SELECT then
sequentially compares the result with the WHEN expressions. When the first match
is found, the associated action occurs. When no match is found, the ELSE action (if
specified) occurs.

IF bool-exp
The IF field-description keyword processes varying record types (such as records
with different structures or different target objects) with one FILEVIEW command.
Within a field description, you can use the following syntax:

IF bool-exp THEN action [ELSE action]

action is the same as described for SELECT.

IF evaluates the Boolean expression, which may contain invocations of the VALUE
keyword. IF performs the THEN action when the expression is TRUE or the ELSE

FILEVIEW

FILENEXT to FULLDSC 13-47

action, if specified, when the expression is FALSE. No action occurs when the
expression is NA.

Notes

Related OLAP DML Statements
Before you can process data from a file with FILEVIEW, use the FILEOPEN function
to open the file for reading (READ mode). Use the FILENEST function to read a
record for processing. When you are finished, close the file with the FILECLOSE
command.

Record Order
FILEVIEW can process the fields in a record in any order. List the field descriptions
in the order you want to process them, identifying the fields with explicit column
numbers. You can also use several FILEVIEW commands on the same record to do
different processing depending on the data you find in the record.

Alternative OLAP DML Statement
When you want to process all the records in a file in the same way, without
complicated optional processing, the FILEREAD command is easier to use.

Dimension Values
When the target object of a field description is a dimension, you can specify
whether the data in the file will be used to add values to the dimension or not. The
dimension attributes are MATCH and APPEND:

■ MATCH -- Any value encountered in a field must already be a value of the
dimension. FILEVIEW temporarily limits status to that value. When it is not
already a dimension value, FILEVIEW generates an error. After the FILEVIEW
command, the dimension status is the same as before the command.

■ APPEND -- The values in the field can already exist or they can be new. When
the value exists, FILEVIEW limits status to that value; when it does not,
FILEVIEW adds the value and then limits status. The dimension is limited to
ALL when FILEVIEW is finished.

For more information about handling dimensions, see FILEREAD.

Error Handling
When FILEVIEW encounters an error, you can control what happens with an error
trap and appropriate processing. Errors can be caused by attempts to convert data

FILEVIEW

13-48 Oracle OLAP DML Reference

to an incompatible data type or by encountering invalid dimension values. You can
use the FILEERROR function to find out what type of error occurred. After
processing the error, you can use GOTO to branch back to the FILEVIEW command.

Attribute List
For a complete list of the attributes for FILEVIEW and FILEREAD and for more
information about processing NA values, reading date values, reading
multidimensional data, storing NTEXT values, and specifying attributes, see
FILEREAD.

FILEVIEW with Composites
The discussions of composites and variables dimensioned by composites in
FILEREAD also apply to FILEVIEW.

Examples

Example 13–15 Varying Months

The following program processes an input file that contains sales data for a variable
number of months. The file has the following records:

Record 1 -- Title (to be ignored).

Record 2 -- Column labels. Month names are used to set the status of month. The
number of months is unknown before processing the file.

Record 3 -- Dashes underlining column labels (to be ignored).

Record 4 -- Blank.

Record 5 to end -- There are three record types for Record 5—one for each type of
line to be read.

One record type for Record 5 represents a detail line with the contents shown in the
following table.

Column Width Format Data

1 8 Symbolic District name or blank (When
the district name is blank on a
detail line, the most recent line
containing a district determines
the current district.)

10 10 Symbolic Product name

FILEVIEW

FILENEXT to FULLDSC 13-49

Another record type in Record 5 represents a totals line with the contents shown in
the following table.

A third record type of Record 5 contains dashes or equal signs as row separators as
illustrated in the following table.

21 10 Symbolic Sales for first month

33 10 Symbolic Sales for second month

45 To end of record Symbolic Sales for additional months

Column Width Data

1 18 Blank

21 To end of record Totals

Column Width Data

1 18 Blank

21 To end of record Dashes (--) or equal signs (==)

Column Width Format Data

FILEVIEW

13-50 Oracle OLAP DML Reference

This is a report of the sample file.

This is the Title
Jan95 Feb95 Mar95 Apr95
---------- ---------- ---------- ----------

Boston Tents 32,153.52 32,536.30 43,062.75 57,608.39
Canoes 66,013.92 76,083.84 91,748.16 125,594.28
Racquets 52,420.86 56,837.88 58,838.04 69,338.88
Sportswear 53,194.70 58,913.40 62,797.80 67,869.10
Footwear 91,406.82 86,827.32 100,199.46 107,526.66

---------- ---------- ---------- ----------
295,189.82 311,198.74 356,646.21 427,937.31
---------- ---------- ---------- ----------

Atlanta Tents 40,674.20 44,236.55 51,227.06 78,469.37
.
.
.

Footwear 53,284.54 57,331.30 59,144.76 70,516.98
---------- ---------- ---------- ----------
231,780.46 245,812.33 275,622.68 355,784.92
---------- ---------- ---------- ----------
1,813,326 1,985,731 2,185,174 2,638,409
========== ========== ========== ==========

The program figures out which months are covered in the file, then reads the detail
lines and assigns the sales data to the appropriate district and month. The program

FILEVIEW

FILENEXT to FULLDSC 13-51

ignores total lines and underlines when FILEVIEW finds columns 1 through 19
blank. The program takes the name of the data file as an argument.

DEFINE salesdata PROGRAM
LD Store Several Months of Sales Data in an Analytic Workspace
PROGRAM
VARIABLE fil.unit INTEGER
VARIABLE flag BOOLEAN
VARIABLE mname TEXT
VARIABLE label TEXT
VARIABLE savedist TEXT

TRAP ON error NOPRINT
PUSH month district
fil.unit = FILEOPEN(ARG(1) READ)

IF FILENEXT(fil.unit) NE YES "Skip Record 1
THEN SIGNAL noread

IF FILENEXT(fil.unit) NE YES "Process Record 2
THEN SIGNAL noread

FILEVIEW fil.unit COLUMN 21 ACROSS month: -
WIDTH 10 mname = JOINLINES(mname VALUE)

LIMIT month TO mname
IF FILENEXT(fil.unit) NE YES "Skip Record 3
THEN SIGNAL noread

IF FILENEXT(fil.unit) NE YES "Skip Record 4
THEN SIGNAL noread

WHILE FILENEXT(fil.unit) "Process Record 5 To End Of File
DO
"Store Value In Local Label Variable
FILEVIEW fil.unit COLUMN 1 WIDTH 18 label
IF label NE NA "Check For NA (Blank Field)
THEN DO "Get District Value If Present
IF EXTCHARS(label, 1, 8) NE ' '

"Set District Status
THEN savedist = BLANKSTRIP(EXTCHARS(label, 1, 8))

FILEVIEW fil.unit -
COLUMN 1 WIDTH 8 district = IF VALUE NE NA THEN -

VALUE ELSE savedist -
COLUMN 10 WIDTH 10 product -
COLUMN 19 ACROSS month: WIDTH 10 SPACE 2 -

SCALE 2 newsales
DOEND

NEXT:

FILEVIEW

13-52 Oracle OLAP DML Reference

DOEND

FILECLOSE fil.unit
POP month district
RETURN
error:
IF fil.unit EQ NA
THEN SHOW JOINCHARS('Can\'t Open Data File ' ARG(1) '.')

ELSE IF ERRORNAME NE 'attn' AND ERRORNAME NE 'QUIT'
THEN DO
SHOW JOINCHARS('RECORD ' RECNO(fil.unit) ' is invalid.')
GOTO NEXT

DOEND
ELSE IF ERRORNAME EQ 'noread'
THEN DO
SHOW 'File Too Short.'
FILECLOSE fil.unit

DOEND
ELSE DO
SHOW 'Data Import Interrupted.'
FILECLOSE fil.unit

DOEND
POP month district
RETURN

Example 13–16 Additional Processing

When you want to save the dimension value that FILEVIEW read for display or
further processing, you can read the field again and save the value in a variable.
These lines in a program display the name of the month that FILEVIEW read. The
FILEVIEW command saves the month value in column 1 in a variable called mname.

WHILE FILENEXT(fil.unit)
DO
FILEVIEW fil.unit WIDTH 8 month WIDTH 5 INTEGER units -

COLUMN 1 WIDTH 8 mname
SHOW mname PROMPT

DOEND

Example 13–17 Using the VALUE Keyword as a Function

Suppose you want to read and report data from a disk file similar to the following,
named numbers.dat, which has columns 15 characters wide.

1.0 2.0 3.0 4.0 5.0
-1.0 -2.0 -3.0 -4.0 -5.0

FILEVIEW

FILENEXT to FULLDSC 13-53

 0.0 0.0 1.43900000E+03 1.39900000E+03

You can read this data using the VALUE keyword as a function with FILEVIEW in a
program similar to the following one (named try). However, this first example
does not work. The FILEVIEW command will skip fields. The reason for the data
skipping is that each time FILEREAD fetches a field from the current record, it
updates the column pointer to point past the field. When the next fetch does not
specify a position (using the COLUMN, SPACE, or FIELD attribute), data will be
read from the default position established by the previous fetch. This usually
desirable behavior will not work when more than one fetch is needed to perform a
single assignment. This happens when the VALUE function is coded twice in the
same IF...THEN...ELSE block, as shown here. The NAMELIST and DIRLIST
attributes return one value for multiple versions of a particular file name in the
directory. The NAMELIST attribute also returns only one value for multiple files in
the directory with the same root file name but different file types.

DEFINE try PROGRAM
PROGRAM
VARIABLE funit INTEGER
DEFINE dvar VARIABLE DECIMAL <year>
PUSH year
LIMIT year TO LAST 5
TRAP ON ERROR
funit=FILEOPEN('numbers.dat' R)

WHILE FILENEXT(funit)
DO
FILEVIEW funit ACROSS year: W 15 TEXT dvar = -

IF FINDCHARS(VALUE, 'e') EQ 0 - "Incorrect Use of Value
THEN CONVERT(VALUE, dec) - "Results in Skipped
ELSE -9999.99 "Fields
REPORT DOWN year dvar

DOEND
error:
FILECLOSE funit
DELETE dvar
POP year
END

When you execute the try program,

try

FILEVIEW

13-54 Oracle OLAP DML Reference

the output skips numbers, as in the following.

YEAR DVAR
------------- ----------
Yr93 2.00
Yr94 4.00
Yr95 NA
Yr96 -9,999.99
Yr97 -9,999.99

YEAR DVAR
------------- ----------
Yr93 -2.00
Yr94 -4.00
Yr95 NA
Yr96 -9,999.99
Yr97 -9,999.99

YEAR DVAR
------------- ----------
Yr93 0.00
Yr94 -9,999.99
Yr95 -9,999.99
Yr96 -9,999.99
Yr97 -9,999.99

However, when the SPACE attribute is used to make the second VALUE back up
some distance so it reads the same field that the first VALUE read, everything works
fine. SPACE can be used in the preceding sample program by changing the THEN
clause to the following:

THEN CONVERT(SPACE -15 VALUE, dec) -

Now when you execute the program,

try

FILEVIEW

FILENEXT to FULLDSC 13-55

the output will look like this.

YEAR DVAR
------------- ----------
Yr93 1.00
Yr94 2.00
Yr95 3.00
Yr96 4.00
Yr97 5.00

YEAR DVAR
------------- ----------
Yr93 -1.00
Yr94 -2.00
Yr95 -3.00
Yr96 -4.00
Yr97 -5.00

YEAR DVAR
------------- ----------
Yr93 0.00
Yr94 0.00
Yr95 -9,999.99
Yr96 -9,999.99
Yr97 -9,999.99

FILTERLINES

13-56 Oracle OLAP DML Reference

FILTERLINES

The FILTERLINES function applies a filter expression that you create to each line of
a multiline text expression.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
FILTERLINES(source-expression filter-expression)

Arguments

source-expression
A multiline text expression whose lines should be modified according to
filter-expression.

filter-expression
An expression to be applied as a filter to each line of source-expression. The terms of
the filter expression dictate the processing that FILTERLINES will perform on each
line of the source expression.

The filter expression may produce NA, which means that there is no line in the
resulting text expression corresponding to the current line of the source expression.

You can use the keyword VALUE in your filter expression to represent the current
line of the source expression.

FILTERLINES

FILENEXT to FULLDSC 13-57

Notes

The Result of FILTERLINES
FILTERLINES returns a text expression composed of the lines that result from the
action of the filter expression on each line of the source expression. The filter
expression may return multiline text for any or all of the input source lines. None of
these lines will be acted on again by the filter expression.

Examples

Example 13–18 Removing Extension From File Names

The following example shows how FILTERLINES could be used on a list of file
names to produce a list of those same file names without extensions.

With a multiline text variable named filelist that evaluates to

myfile1.txt
file2.txt
myfile3
file4.txt

the statement

SHOW FILTERLINES(FILELIST -
IF FINDCHARS(VALUE '.') GT 0 -

THEN EXTCHARS(VALUE 1 FINDCHARS(VALUE '.') -1) -
ELSE VALUE)

produces the following output.

myfile1
file2
myfile3
file4

FINDBYTES

13-58 Oracle OLAP DML Reference

FINDBYTES

The FINDBYTES function returns the byte position of the beginning of a specified
group of bytes within a text expression.

Return Value
INTEGER

Syntax
FINDBYTES(text-expression, bytes [starting-pos [LINENUM]])

Arguments

text-expression
The text expression in which you are searching for the specified bytes. The value of
text-expression can be a multiline value. In this case, FINDBYTES searches all lines
for the specified bytes. The match must be exact, including a match of upper- and
lowercase characters.

bytes
The group of bytes for which you are searching. When bytes is a multiline value,
FINDBYTES ignores all lines except the first one.

When bytes is not found in text-expression, FINDBYTES returns zero. When the
group of bytes occurs more than once, FINDBYTES returns the position of its first
occurrence.

starting-pos
An INTEGER expression that specifies the byte position where the search in
text-expression should start. The default is at position 1 (the first byte) in
text-expression.

LINENUM
Specifies that FINDBYTES should return the line number instead of the byte
position of the beginning of the specified text.

FINDBYTES

FILENEXT to FULLDSC 13-59

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use the FINDCHARS
function instead of the FINDBYTES function.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Examples

Example 13–19 Finding the Starting Position of a Byte Group

This example shows how to find the starting position of various groups of bytes in
the literal TEXT value hellotherejoe.

The statement

SHOW FINDBYTES('hellotherejoe', 'joe')

produces the following output.

11

The statement

SHOW FINDBYTES('hellotherejoe', 'al')

produces the following output.

0

FINDCHARS

13-60 Oracle OLAP DML Reference

FINDCHARS

The FINDCHARS function returns the character position of the beginning of a
specified group of characters within a text expression.

Return Value
INTEGER

Syntax
FINDCHARS(text-expression, characters [starting-pos [LINENUM]])

Arguments

text-expression
The text expression in which you are searching for the specified characters.
Text-expression can be a multiline value. In this case, FINDCHARS searches all lines
for the specified characters. The match must be exact, including a match of upper-
and lowercase characters. See "TEXT and NTEXT" on page 13-61.

characters
The group of characters for which you are searching. When characters is a multiline
value, FINDCHARS ignores all lines except the first one.

When characters is not found in text-expression, FINDCHARS returns zero. When the
group of characters occurs more than once, FINDCHARS returns the position of its
first occurrence.

starting-pos
An INTEGER expression that specifies the character position where the search in
text-exp should start. The default is at position 1 (the first character) in text-exp.

LINENUM
Specifies that FINDCHARS should return the line number instead of the character
position of the beginning of the specified text.

FINDCHARS

FILENEXT to FULLDSC 13-61

Notes

multibyte Characters
When you are using a multibyte character set, you can use the FINDBYTES function
instead of the FINDCHARS function.

TEXT and NTEXT
FINDCHARS accepts TEXT values and NTEXT values as arguments. When only
one argument is NTEXT, then FINDCHARS automatically converts the other
argument to NTEXT before performing the function operation.

Examples

Example 13–20 Finding the Starting Position of a Character Group

This example shows how to find the starting position of various groups of
characters in the literal TEXT value hellotherejoe.

The statement

SHOW FINDCHARS('hellotherejoe', 'joe')

produces the following output.

11

The statement

SHOW FINDCHARS('hellotherejoe', 'al')

produces the following output.

0

FINDLINES

13-62 Oracle OLAP DML Reference

FINDLINES

The FINDLINES function determines the position of one or more lines in a multiline
text expression.

Return Value
INTEGER

Syntax
FINDLINES(text-expression, lines)

Arguments

text-expression
A text expression within whose values you want to locate a certain line or group of
lines. FINDLINES searches text-expression for the specified lines. The match must be
exact, including a match of uppercase and lowercase characters. See "TEXT and
NTEXT" on page 13-63.

lines
A second text expression containing the line(s) for which you are searching. When
lines is not found in text-expression, FINDLINES returns 0. When lines occurs more
than once, FINDLINES returns the line number of its first occurrence.

Notes

Finding Multiple Lines
When you specify two or more lines, FINDLINES searches for all the specified lines
as a single continuous block in text-expression. When all the lines occur in
text-expression, but are not in a continuous block, FINDLINES returns 0 (not found).

NA Values
When the value of text-expression is NA, FINDLINES returns NA.

FINDLINES

FILENEXT to FULLDSC 13-63

TEXT and NTEXT
FINDLINES accepts TEXT values and NTEXT values as arguments. When only one
argument is NTEXT, then FINDLINES automatically converts the other argument to
NTEXT before performing the function operation.

Examples

Example 13–21 Finding Two Sequential Lines

This example shows how to find the location of the two lines "products" and
"services" in a multiline value in a TEXT variable called newlist. The newlistT
variable has the following values.

salespeople
products
services
regions
priorities

The characters "\n" in the lines argument to the following FINDLINES function call
indicates a line break to show that "product" and "services" are separate lines.

SHOW FINDLINES(newlist, 'products\nservices')

The result of this statement is

2

FINTSCHED

13-64 Oracle OLAP DML Reference

FINTSCHED

The FINTSCHED function calculates the interest portion of the payments on a series
of fixed-rate installment loans that are paid off over a specified number of time
periods. For each time period, you specify the amount of the loans incurred during
that time period and a single interest rate that will apply to those loans over their
lifetime.

Return Value
DECIMAL

Syntax
FINTSCHED(loans, rates, n, [time-dimension])

Arguments

loans
A numeric expression that contains the initial amounts of the loans. When loans
does not have a time dimension, or when loans is dimensioned by more than one
time dimension, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a
different time dimension. When rates is dimensioned by a time dimension, you
specify the interest rate in each time period that will apply to the loans incurred in
that period. The interest rate for the time period in which a loan is incurred applies
throughout the lifetime of that loan. The rates are expressed as decimals; for
example, a 5 percent rate is expressed as.05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be a dimensioned variable, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period
of the dimension specified in the time-dimension argument. For example, one
payment is made each month when loans is dimensioned by MONTH.

FINTSCHED

FILENEXT to FULLDSC 13-65

time-dimension
The name of the dimension along which the interest payments are calculated. When
the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR, the
time-dimension argument is optional, unless loans has more than one time dimension.

Notes

The Dimensions of the Result
The result returned by the FINTSCHED function is dimensioned by the union of all
the dimensions of loans, rates, n, and the dimension used as the time-dimension
argument.

Time Period Results
FINTSCHED calculates the result for a given time period as the sum of the interest
due on each loan that is incurred or outstanding in that period.

NA Mismatch Error
When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

NASKIP Option
FINTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
FINTSCHED depends on whether the corresponding interest rate has a value of NA
or a value other than NA. Table 13–3, " Effect of NASKIP When Loan or Rate Values
are NA for a Time Period" illustrates how NASKIP affects the results when a loan or
rate value is NA for a given time period.

Table 13–3 Effect of NASKIP When Loan or Rate Values are NA for a Time Period

Loan Value Rate Value
Result When NASKIP =
YES Result When NASKIP = NO

Non-NA NA Error Error

NA Non-NA Interest values

(NA loan value is treated as
zero)

NA for the affected time
periods

NA NA NA for affected time periods NA for the affected time
periods

FINTSCHED

13-66 Oracle OLAP DML Reference

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997 but both have values other than NA for succeeding
years. When the number of payments is 3, FINTSCHED returns NA for 1997, 1998,
and 1999. For 2000, FINTSCHED returns the interest portion of the payment due for
loans incurred in 1998, 1999, and 2000.

Time Dimensions
The FINTSCHED calculation begins with the first time dimension value, regardless
of how the status of that dimension may be limited. For example, suppose loans is
dimensioned by year, and the values of year range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year so
that it does not include Yr95.

However, when loans is not dimensioned by the time dimension, the FINTSCHED
calculation begins with the first value in the current status of the time dimension.
For example, suppose loans is not dimensioned by year, but year is specified as
time-dimension. When the status of year is limited to Yr97 to Yr99, the calculation
begins with Yr97 instead of Yr95.

Related Functions
The VINTSCHED function, which calculates the interest portion of the payments on
a series of variable-rate loans, and the FPMTSCHED and VPMTSCHED functions,
which calculate the payment schedules (principal plus interest) for fixed-rate and
variable-rate loans.

Examples

Example 13–22 Calculating Interest

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

FINTSCHED

FILENEXT to FULLDSC 13-67

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.00
Yr99 0.00 0.00

For each year, loans contains the initial value of the fixed-rate loan incurred during
that year. For each year, the value of rates is the interest rate that will be charged
for any loans incurred in that year; for those loans, this same rate is charged each
year until the loans are paid off.

The following statement specifies that each loan is to be paid off in three payments,
calculates the interest portion of the payments on the loans,

REPORT W 20 HEADING 'Payment' FINTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 5.00
Yr96 15.41
Yr97 30.98
Yr98 18.70
Yr99 7.48

The interest payment for 1995 is interest on the loan of $100 incurred in 1995, at 5
percent. The interest payment for 1996 is the sum of the interest on the remaining
principal of the 1995 loan, at 5 percent, plus interest on the loan of $200 incurred in
1996, at 6 percent. The 1997 interest payment is the sum of the interest on the
remaining principal of the 1995 loan, at 5 percent; interest on the remaining
principal of the 1996 loan, at 6 percent; and interest on the loan of $300 incurred in
1997, at 7 percent. Since the 1995 loan is paid off in 1997, the payment for 1998
represents interest on the remaining principal of the 1996 and 1997 loans. In 1999,
the interest payment is on the remaining principal of the 1997 loan.

FLOOR

13-68 Oracle OLAP DML Reference

FLOOR

The FLOOR function returns the largest whole number equal to or less than a
specified number.

Return Value
NUMBER

Syntax
FLOOR(n)

Arguments

n
A whole number (NUMBER data type) that you specify.

Examples

Example 13–23 Displaying the Largest Integer Equal to or Less Than a Number

The following statements show results returned by the FLOOR function.

■ The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(15.7)

15

■ The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(4)

4

■ The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(-6.457)

-7

FOR

FILENEXT to FULLDSC 13-69

FOR

The FOR command specifies one or more dimensions whose status will control the
repetition of one or more statements. These statements, along with the FOR
command itself, are often called a FOR loop. You can use the FOR command only
within programs.

Syntax
FOR dimension...

statement

Arguments

dimension
One or more dimensions whose current status controls the repetition of one or more
statements. The statements are repeated for each combination of the values of the
specified dimensions in the current status. When two or more dimensions are
specified, the first one varies the slowest. You can specify a composite instead of a
dimension.

statement
The statement to be repeated. To repeat two or more statements, enclose them
between DO and DOEND.

DO
statement1

...
statementN

DOEND

When you are repeating only one statement after FOR, you can omit DO and
DOEND.

FOR

13-70 Oracle OLAP DML Reference

Notes

FOR Dimension
A FOR statement loops over the values in status of the specified dimension. After
the last dimension value, dimension status is restored to what it was before the
loop, and execution of the program resumes with the next statement.

Status Inside a Loop
The TEMPSTAT command limits the dimension you are looping over inside a FOR
loop or inside a loop that is automatically generated by the REPORT command.

No Sorting
Because current status defines and controls a FOR loop, you cannot sort the FOR
dimension within the loop.

Assignment Statements and Other Looping Statements
An OLAP DML assignment statement (SET), and some other OLAP DML
statements automatically loop over dimension status and do so more efficiently
than a FOR loop. Be careful not to cause extra looping by putting an assignment
statement or one of these statements in a FOR loop.

Branching
You can use the BREAK, CONTINUE, and GOTO commands to branch within, or
out of, a FOR loop, thereby altering the sequence of statement execution.

Nested FOR Commands
FOR commands can be nested within a FOR loop to any depth, as long as matching
DO and DOEND commands are supplied where appropriate.

Related Statements
See also DO ... DOEND, IF...THEN...ELSE, WHILE, and RETURN.

FOR

FILENEXT to FULLDSC 13-71

Examples

Example 13–24 Repeating ROW Commands

In a report program, you want to show the unit sales of tents for each of three
months. Use the following FOR command with a DO/DOEND sequence to repeat
ROW commands and BITAND commands for each value of the month dimension.

LIMIT product TO tents
LIMIT month TO 'Jan96' TO 'Mar96'
ROW district
ROW UNDER '-' VALONLY name.product
BLANK
FOR month

DO
ROW INDENT 5 month WIDTH 6 UNITS
BLANK

DOEND

The program lines produce the following report.

BOSTON
3-Person Tents

Jan96 307
Feb96 209
Mar96 277

Example 13–25 Using the FOR Command for Looping Over Values

The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing the FOR command. For example, you can produce a series of output lines
that show the price for each product.

LIMIT month TO FIRST 1
LIMIT product TO ALL
FOR product
SHOW JOINCHARS('Price for ' product ': $' price)

Each output line has the following format.

Price for TENTS: $165.50

FOR

13-72 Oracle OLAP DML Reference

When your data is multidimensional, you can specify more than one dimension in a
FOR command to control the order of processing. For example, you can use the
following command to control the order in which dimension values of the units
data are processed.

FOR month district product
 units = ...

When this assignment statement is executed, the month dimension varies the
slowest, the district dimension varies the next slowest, and the product
dimension varies the fastest. Thus, a loop is performed over all products for the first
district before doing the next district, and over all districts for the first month before
doing the next month.

Within the FOR loop, each specified dimension is temporarily limited to a single
value while it executes the commands in the loop. You can therefore work with
specific combinations of dimension values within the loop.

Example 13–26 Using DO/DOEND in a FOR Loop

When actual figures for unit sales are stored in a variable called units and
projected figures for unit sales are stored in a variable called units.plan, then the
code in your loop can compare these figures for the same combination of dimension
values.

LIMIT month TO FIRST 1
LIMIT product TO ALL
LIMIT district TO ALL
FOR district product
 DO
 IF (units.plan - units)/units.plan GT .1
 THEN SHOW JOINCHARS(-
 'Unit sales for ' product ' in ' -
 district ' are not within 10% of plan.')
 DOEND

These lines of code are processed in the following manner.

1. The data is limited to a specific month.

2. All the districts and products are placed in status, and the FOR loop is entered.

FOR

FILENEXT to FULLDSC 13-73

3. In the FOR loop, the actual figure is tested against the planned figure. When the
unit sales figure for Tents in Boston is more than 10 percent below the
planned figure, then the following message is sent to the current outfile.

Unit sales for TENTS in BOSTON are not within 10% of plan.

4. After processing all the products, the FOR loop is complete for the first district.

5. The loop is executed for the second district, and so on.

Note that while the FOR loop executes, each dimension that is specified in a
FOR command is limited temporarily to a single value. When you specify
district in the FOR loop, but not product, then all the values of product
are in status while the FOR loop executes. The IF...THEN...ELSE command then
tests data for only the first value of the product dimension.

FORECAST

13-74 Oracle OLAP DML Reference

FORECAST

Use the FORECAST command to forecast data by one of three methods:
straight-line trend, exponential growth, or Holt-Winters extrapolation. FORECAST
performs the calculation according to the method you specify and optionally stores
the result in a variable in your analytic workspace.

You can then execute FORECAST.REPORT to produce a standard report of the
forecast. You can also use the INFO function to obtain portions of the results for use
in your own customized reports or for further analysis.

Syntax
FORECAST [LENGTH n] -

[METHOD {TREND|EXPONENTIAL|WINTERS PERIODICITY p [argument...]}] -

[TIME dimension] [FCNAME name] time-series

where:
argument is one or more of the following:

ALPHA n

BETA n

GAMMA n

STSMOOTHED n STSEASONAL n-series STTREND n

FCSMOOTHED name

FCSEASONAL name

FCTREND name

Note: Most applications forecast data using a forecasting context
rather than using the FORECAST command. See "Using a
Forecasting Context" on page 13-77 for more information.

FORECAST

FILENEXT to FULLDSC 13-75

Arguments

LENGTH n
Specifies the number of periods to forecast. The default is zero. When you supply a
LENGTH, you must also supply the FCNAME option.

METHOD TREND
Specifies that the forecasting technique is a straight-line extrapolation of historical
data. (Default)

 METHOD EXPONENTIAL
Specifies that the forecasting technique is an extrapolation of historical data using a
constant period-to-period percentage growth.

METHOD WINTERS
Specifies that the forecasting technique is the Holt-Winters method, an
extrapolation method that allows for both a linear trend and seasonal fluctuations
in the data. Oracle OLAP first constructs three statistically related series for each
time period of the historical data. (See "Holt-Winters Constructed Series" on
page 13-78.) Then, Oracle OLAP produces a forecast from the three series for the
specified number of periods into the future.

You can supply several arguments that affect the results of the Holt-Winters
forecast. The only required one is PERIODICITY. For the others, Oracle OLAP
chooses a reasonable value based on the data available.

PERIODICITY p
The length of the seasonal cycle, where p is an expression that specifies an integer
greater than or equal to 2. For example, when the data you are analyzing has
monthly values, then p is 12.

PERIODICITY is required when you use the METHOD WINTERS keyword.

ALPHA n
BETA n
GAMMA n
Smoothing constants for the first three series calculated for the Holt-Winters
forecast (See "Holt-Winters Constructed Series" on page 13-78). ALPHA is for the
smoothed data series; BETA is for the seasonal index series; and GAMMA is for the
trend series. The value n is a decimal expression greater than 0 and less than or
equal to 1. Each value is optional. When you omit one, Oracle OLAP calculates an
optimal smoothing constant for that series that minimizes the Mean Absolute
Percent Error of the one-period-ahead forecasts in the historical time periods.

FORECAST

13-76 Oracle OLAP DML Reference

STSMOOTHED n STSEASONAL n-series STTREND n
STSMOOTHED specifies the starting value of the smoothed data series (See
"Holt-Winters Constructed Series" on page 13-78). The value n is a decimal
expression greater than 0. When you specify STSMOOTHED, you must also specify
STSEASONAL and STTREND. When you omit it, Oracle OLAP calculates a starting
value.

STSEASONAL specifies the starting values for the seasonal index series (See
"Holt-Winters Constructed Series" on page 13-78). N-series is an array of decimal
values, one for each period in a seasonal cycle. The number of values needed is the
same as the number specified for PERIODICITY (See "Holt-Winters Starting Values"
on page 13-79). When you specify STSEASONAL, you must also specify
STSMOOTHED and STTREND. When you omit it, Oracle OLAP calculates the
starting values.

STTREND specifies the starting value of the trend series (See "Holt-Winters
Constructed Series" on page 13-78). N is a decimal value. When you specify
STTREND, you must also specify STSMOOTHED and STSEASONAL. When you
omit it, Oracle OLAP calculates a starting value.

FCSMOOTHED name
FCSEASONAL name
FCTREND name
Numeric variables in which Oracle OLAP can store the data calculated for the
smoothed data series, the seasonal index series, and the trend series (See
"Holt-Winters Constructed Series" on page 13-78). The variable specified by name
must have the TIME dimension as one of its dimensions. The series calculations
produce DECIMAL results, but Oracle OLAP will convert the values to the data
type of name before storing them. You can save any or all of the preliminary series.
When you do not save a series, Oracle OLAP discards the values after completing
the forecast.

TIME dimension
The name of the dimension considered to be the time dimension. The current status
of dimension determines the number of periods of historical data used to calculate
the forecast. The status of the time dimension must be an increasing, consecutive
range of values. LENGTH specifies how many values immediately beyond this
range will be forecast.

When time-series has only one dimension, the time dimension will default to that.
When time-series has more than one dimension, and one of the dimensions has a
type of DAY, WEEK, MONTH, QUARTER, or YEAR, the time dimension will
default to that. Otherwise, you must specify the time dimension, even when the

FORECAST

FILENEXT to FULLDSC 13-77

additional dimensions are limited to a single value. FORECAST only uses the first
value in the status for dimensions other than the time dimension.

FCNAME name
The name of a numeric variable in which to store the values calculated by
FORECAST. Name must be dimensioned by the time dimension; it can have other
dimensions as well. When the data type of name is not decimal, FORECAST
converts the values to the appropriate data type.

Fitted values, which correspond to the historical data, are stored in name for the
current status of the time dimension. Forecasted values are stored in name for the
number of periods specified by LENGTH. These forecasted periods immediately
follow the current status of the time dimension.

For the Holt-Winters method, the fitted values are one-period-ahead forecasts
calculated at the previous period. The final forecasted values are extrapolated from
the fitted data.

For the TREND and EXPONENTIAL methods, FORECAST obtains the fitted values
by evaluating the regression equation over the current status of the time dimension.

time-series
An expression that specifies the time series to be forecast. Time-series must be a
numeric expression that is dimensioned by the time dimension. When time-series
has other dimensions, FORECAST uses the first value only in their current status.
The time-series is the historical data from which FORECAST calculates fitted and
forecasted values. (See the explanation for FCNAME.)

Notes

Using a Forecasting Context
Instead of calculating a simple forecast using the FORECAST command, you can
perform more complex forecasting using a forecasting context that you manipulate
with the following OLAP DML statements:

1. FCOPEN function -- Creates a forecasting context.

2. FCSET command -- Specifies the characteristics of a forecast.

3. FCEXEC command -- Executes a forecast and populates Oracle OLAP variables
with forecasting data.

4. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

FORECAST

13-78 Oracle OLAP DML Reference

5. FCCLOSE command -- Closes a forecasting context.

Forecasting Multidimensional Expressions
When you want to forecast all the values of a multidimensional expression, you can
use a program that puts the FORECAST command inside one or more FOR loops to
loop over all the remaining dimensions of the expression.

Obtaining Portions of Results
YOu can obtain portions of the results of FORECAST for your own reports or
further analysis, using an INFO statement.

Order of Arguments
You can specify the arguments for FORECAST in any order, except that time-series,
the expression specifying the data to be forecast, must be last.

Time-series Data Handling
Each method has its own criteria for handling the input data specified in time-series.

■ TREND -- Requires at least two values that are not NA; accepts zero and
negative values; ignores NA values

■ EXPONENTIAL -- Requires at least two positive values; ignores zero, negative,
and NA values

■ WINTERS -- Accepts zero and negative values; fills in NA values by calculating
a weighted moving average

Zero Values
All methods allow zero values in the historical data, specified by time-series, but
those time periods are excluded from the Mean Absolute Percent Error (MAPE)
calculation.

Holt-Winters Constructed Series
The Holt-Winters forecasting method constructs three statistically related series,
which are used to make the actual forecast. These series are:

1. The smoothed data series, which is the original data with seasonal effects and
random error removed.

2. The seasonal index series, which is the seasonal effect for each period. A value
greater than one represents a seasonal increase in the data for that period, and a
value less than one is a seasonal decrease in the data. The Holt-Winters method

FORECAST

FILENEXT to FULLDSC 13-79

allows seasonal effects to vary over time, so there is a seasonal index value for
every historical period.

3. The trend series, which is the change in the data for each period with the
seasonal effects and random error removed. The Holt-Winters method allows
the trend effect to vary over time, so there is a trend value for every historical
period.

Holt-Winters Omitted Arguments
For the Holt-Winters method, when you omit the STSMOOTHED, STTREND, and
STSEASONAL phrases, Oracle OLAP calculates the necessary starting values using
an algorithm from Statistical Methods for Forecasting by Abraham and Ledolter (See
"Further Reading on Forecasting" on page 12-33). You should let Oracle OLAP
calculate the starting values when you have little experience with Holt-Winters
forecasting.

Holt-Winters Starting Values
When you specify starting values, Oracle OLAP obtains the STSEASONAL starting
values by unraveling the values to make a list. The list must have at least the
number of values as specified by PERIODICITY. Any more values are ignored;
fewer values cause an error. The STSEASONAL expression can be multidimensional
and does not have to have the same dimensions as the historical data. (For
information about the order of the list when a dimensioned expression is unraveled,
see UNRAVEL.)

Getting Calculated Values
You can find out the values that Oracle OLAP calculates for ALPHA, BETA, and
GAMMA and for STSMOOTHED, STSEASONAL, and STTREND by using the
INFO function.

Further Reading
For additional information about forecasting and forecasting methods, we suggest
the latest editions of the books listed in "Further Reading on Forecasting" on
page 12-33.

FORECAST

13-80 Oracle OLAP DML Reference

Examples

Example 13–27 Using the EXPONENTIAL Method

The following statements create a variable called fcst.sales, limit the
dimensions of the sales variable, use the EXPONENTIAL method to forecast
sportswear sales for the Chicago district for 1997, and store the results of the
calculation in fcst.sales.

DEFINE fcst.sales DECIMAL <month>
LIMIT product TO 'Sportswear'
LIMIT district TO 'Chicago'
LIMIT month TO 'Jan95' TO 'Dec96'
FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst.sales -
time month sales

You can now execute FORECAST.REPORT as illustrated in "Report of Forecast
Using the EXPONENTIAL Method" on page 13-81 to see the values that have been
generated.

Example 13–28 Using the WINTERS Method

The following statements limit the month dimension, then calculate a forecast that
takes into account seasonal influences, using the WINTERS method.

DEFINE fcst.sales DECIMAL <montH>
LIMIT month TO year 'Yr95' 'Yr96'
FORECAST LENGTH 12 METHOD WINTERS -
PERIODICITY 12, ALPHA .5, BETA .5, GAMMA .5 -
time month, FCNAME fcst.sales, sales

You can now execute FORECAST.REPORT as illustrated in "Report of Forecast
Using the WINTERS Method" on page 13-82 to see the values that have been
generated.

FORECAST.REPORT

FILENEXT to FULLDSC 13-81

FORECAST.REPORT

The FORECAST.REPORT program produces a standard report of a forecast created
using the FORECAST command.

The report shows the parameters of the forecast, including the forecast formula and
Mean Absolute Percent Error, followed by a display of the forecasted values. To
produce this report, type the following.

Syntax
FORECAST.REPORT

Examples

Example 13–29 Report of Forecast Using the EXPONENTIAL Method

Assume that you have performed the forecast illustrated in "Using the
EXPONENTIAL Method" on page 13-80. Running the FORECAST.REPORT
program for that forecast produces the following report.

Forecasting Analysis
====================

Variable to Forecast: SALES
Forecast dimension: MONTH

Forecast method: EXPONENTIAL
Mean absolute percent error: 16.64%

Forecast Equation: SALES = 87718.0009541883 *
(1.00553383457899 ** MONTH)

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 88,203.42
Feb95 80,071.75 88,691.52
Mar95 78,812.69 89,182.33
Apr95 97,413.26 89,675.85
May95 94,406.65 90,172.10
...

Dec96 72,095.02 100,140.38
...

FORECAST.REPORT

13-82 Oracle OLAP DML Reference

Example 13–30 Report of Forecast Using the WINTERS Method

Assume that you have performed the forecast illustrated in Example 13–28, "Using
the WINTERS Method" on page 13-80. Running the FORECAST.REPORT program
for that forecast produces the following report.

Forecasting Analysis
====================

Variable to Forecast: SALES
Forecast dimension: MONTH

Forecast method: WINTERS
Alpha: 0.50
Beta: 0.50
Gamma: 0.50

Periodicity: 12
Mean absolute percent error: 0.20%

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 72,154.67
Feb95 80,071.75 80,027.51
Mar95 78,812.69 79,171.08
Apr95 97,413.26 97,200.81
May95 94,406.65 94,464.71
....
Dec97 77,867.23

FPMTSCHED

FILENEXT to FULLDSC 13-83

FPMTSCHED

The FPMTSCHED function calculates a payment schedule (principal plus interest)
for paying off a series of fixed-rate installment loans over a specified number of
time periods. For each time period, you specify the amount of the loans incurred
during that time period and a single interest rate that will apply to those loans over
their lifetime.

Return Value
DECIMAL

Syntax
FPMTSCHED(loans, rates, n, [time-dimension])

Arguments

loans
A numeric expression that contains the initial amounts of the loans. When loans
does not have a time dimension, or when loans is dimensioned by more than one
time dimension, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a
different time dimension. When rates is dimensioned by a time dimension, you
specify the interest rate in each time period that will apply to the loans incurred in
that period. The interest rate for the time period in which a loan is incurred applies
throughout the lifetime of that loan. The rates are expressed as decimals; for
example, a 5 percent rate is expressed as.05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period
of the dimension specified in the time-dimension argument. For example, one
payment each month is made when loans is dimensioned by month.

FPMTSCHED

13-84 Oracle OLAP DML Reference

time-dimension
The name of the dimension along which the interest payments are calculated. When
the time dimension for loans has a type of DAY, WEEK, MONTH, QUARTER, or
YEAR, the time-dimension argument is optional, unless loans has more than one time
dimension.

Notes

Dimensions of the Result
The result returned by the FPMTSCHED function is dimensioned by the union of all
the dimensions of loans and rates and the dimension used as the time-dimension
argument.

Time-Period Payment Calculation
FPMTSCHED calculates the payment for a given time period as the sum of the
principal and interest due on each loan that is incurred or outstanding in that
period.

NA Mismatch Error
When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

NASKIP Option
FPMTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
FPMTSCHED depends on whether the corresponding interest rate has a value of NA
or a value other than NA. Table 13–3, " Effect of NASKIP When Loan or Rate Values
are NA for a Time Period" on page 13-65 illustrates how NASKIP affects the results
when a loan or rate value is NA for a given time period.

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997 but both have values other than NA for succeeding
years. When the number of payments is 3, FPMTSCHED returns NA for 1997, 1998,
and 1999. For 2000, FPMTSCHED returns the payment due for loans incurred in
1998, 1999, and 2000.

Time Dimensions
The FPMTSCHED calculation begins with the first time dimension value, regardless
of how the status of that dimension may be limited. For example, suppose loans is
dimensioned by year, and the values of year range from Yr95 to Yr99. The

FPMTSCHED

FILENEXT to FULLDSC 13-85

calculation always begins with Yr95, even when you limit the status of year so
that it does not include Yr95.

However, when loans is not dimensioned by the time dimension, the FPMTSCHED
calculation begins with the first value in the current status of the time dimension.
For example, suppose loans is not dimensioned by year, but year is specified as
time-dimension. When the status of year is limited to Yr97 to Yr99, the calculation
begins with Yr97 instead of Yr95.

Related Functions
The VPMTSCHED function, which calculates the payment schedule for a series of
variable-rate loans, and the FINTSCHED and VINTSCHED functions, which
calculate the interest portion of the payments on fixed-rate and variable-rate loans.

Examples

Example 13–31 Calculating a Payment Schedule

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

year loans rates
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.00
Yr99 0.00 0.00

For each year, loans contains the initial value of the fixed-rate loan incurred during
that year. For each year, the value of rates is the interest rate that will be charged
for any loans incurred in that year; for those loans, this same rate is charged each
year until the loans are paid off.

The following statement specifies that each loan is to be paid off in three payments,
calculates the schedule for paying off the principal and interest on the loans,

REPORT W 20 HEADING 'Payment' FPMTSCHED(loans, rates, 3, year)

FPMTSCHED

13-86 Oracle OLAP DML Reference

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 36.72
Yr96 111.54
Yr97 225.86
Yr98 189.14
Yr99 114.32

The payment for 1995 is the principal due on the loan of $100 incurred in 1995, plus
interest on the loan at 5 percent. The payment due in 1996 is the sum of the second
payment on the loan incurred in 1995 (principal plus 5 percent interest), plus the
first payment on the loan of $200 incurred in 1996 (principal plus 6 percent interest).
The 1997 payment is the sum of the third and final payment on the loan incurred in
1995, the second of the three payments on the 1996 loan, and the first payment on
the loan of $300 incurred in 1997 (principal plus 7 percent interest). Since the 1995
loan is paid off in 1997, the payment for 1998 covers the principal and interest for
the 1996 and 1997 loans. The payment for 1999 is the final payment of principal and
interest for the 1997 loan.

Example 13–32 Determining Monthly Payments

The following statement determines what the monthly payments would be on a
$125,000 loan with an 8.75 percent annual interest rate,

SHOW FPMTSCHED(125000, .0875/12, 360, month)

and produces the following output.

983.38

FULLDSC

FILENEXT to FULLDSC 13-87

FULLDSC

The FULLDSC program produces a report that lists the definition of one or more
workspace objects, including the properties and triggers of the object(s).

Syntax
FULLDSC [names]

Arguments

names
The names of one or more workspace objects, separated by spaces or commas.
FULLDSC shows the full definition of each object specified. When you omit this
argument, FULLDSC shows the definition of all objects in the current status of the
NAME dimension.

Notes

Output of FULLDSC
The FULLDSC program is an extension to the DESCRIBE command. That is, the
object definition that you list with FULLDSC includes the definition components
that are listed by the DESCRIBE command, followed by any properties that are
assigned to the object. Each property is listed on its own line with the word
PROPERTY, the name of the property, and its value.

Limiting the Objects Described
Normally, the status of NAME is ALL, so FULLDSC with no argument produces a
report that includes the definitions of all objects in your current workspace.
However, you can use the LIMIT command in combination with FULLDSC to
report the definitions of a particular group of objects in your workspace. Use LIMIT
first to limit the status of the NAME dimension to the names of the objects whose
definitions you want to see. Then execute a FULLDSC command with no arguments
to list the definitions.

Paginated Output
You can produce paginated output with the FULLDSC command by setting
PAGING to YES before using FULLDSC.

FULLDSC

13-88 Oracle OLAP DML Reference

Creating Objects with FULLDSC Output
You can use the output from the FULLDSC command to create objects in other
workspaces, because each line of the output is a valid statement. For example, you
can execute an OUTFILE command to send subsequent output to a file, and then
execute the FULLDSC command. You can then access another workspace, and use
the INFILE command to read the FULLDSC output. The same object will be created
in that workspace.

The output produced by FULLDSC might not exactly reproduce the original
PROPERTY commands that created the properties of the object because the original
name and value expressions are not saved. In addition, FULLDSC sets the
DECIMALS option to 255, which drops trailing zeros. See "Listing the Properties of
a Variable" on page 13-88.

Examples

Example 13–33 Listing the Properties of a Variable

This example produces a report of the full definition of the actual variable, to
which the properties DECPLACE and REPPRG have been added. The statement

FULLDSC actual

produces the following output.

DEFINE ACTUAL VARIABLE DECIMAL <LINE DIVISION MONTH>
LD Actual $ Financials
PROPERTY 'DECPLACE' 4
PROPERTY 'REPPRG' 'qtrrep'

Suppose the DECPLACE property had been specified with the following statement,
where PRPNAME is a variable whose value is DECPLACE.

PROPERTY prpname 4.00

The output from FULLDSC would be the same as that shown in the preceding
example; the value 4.00 would be shown as 4. Therefore, when you created an object
using the INFILE technique with the FULLDSC output, the newly created property
value would have a type of INTEGER (based on the value 4) even though the
original property value had a type of DECIMAL (based on the value 4.00). In most
cases, this difference is immaterial, because the appropriate conversions are
performed when the property values are used.

See Also: Example 24–5, "Describing Triggers" on page 24-15

GET to IMPORT 14-1

14
GET to IMPORT

This chapter contains the following OLAP DML statements:

■ GET

■ GOTO

■ GREATEST

■ GROUPINGID

■ GROWRATE

■ HEADING

■ HIDE

■ HIERCHECK

■ HIERHEIGHT command

■ HIERHEIGHT function

■ IF...THEN...ELSE

■ IMPORT

■ IMPORT (from EIF)

■ IMPORT (from text)

■ IMPORT (from spreadsheet)

GET

14-2 Oracle OLAP DML Reference

GET

The GET function requests input from the current input stream. The input may be a
single item of data, a dimension value, an analytic workspace object, or simply the
next item in the input stream. The simplest form of the GET function requests a
value of a certain data type.

GET(datatype)

GET also provides several arguments that verify the input.

Because GET is a function, it must be used in a command. It also may be used in an
assignment statement to store the input in a variable for later use, or in a LIMIT
command to set the status of a dimension. GET can be used in programs to request
information necessary for the completion of the program.

Return Value
The return value depends on the input that you request, as described in the syntax.

Syntax
GET({RAW TEXT|[NEW|VALID|POSLIST] input} -

[VERIFY condition-exp [IFNOT result-exp]])

where:

input is one of the following:

dim-name

NAME

datatype

Arguments

dim-name
A text expression specifying the name of a dimension. When you specify dim-name,
GET requests a value of this dimension as input and verifies that the input is a valid
value of the dimension.

GET

GET to IMPORT 14-3

RAW TEXT
Specifies that GET should return the next item in the input stream exactly as it is
entered. See "GET with RAW TEXT" on page 14-6.

NEW dim-name
The NEW keyword with the dim-name argument causes GET to request a new value
for the dimension. When requesting a dimension value with NEW, GET verifies that
the input is not already a value of the dimension.

VALID dim-name
The VALID keyword with the dim-name argument causes GET to request either a
new value or an existing value of the dimension. When requesting a dimension
value with VALID, GET verifies that the input is either an existing dimension value
or a valid new dimension value.

POSLIST dim-name
The POSLIST keyword with the dim-name argument causes GET to request a
dimension value identified by its position in the dimension. When requesting a
dimension value with POSLIST, GET verifies that the input is an existing position
number in the dimension. See "GET with POSLIST" on page 14-6.

NAME
Indicates that GET is requesting the name of an object in the current analytic
workspace. When you specify NAME, GET verifies that the input is an object that
exists in the current analytic workspace. The object name must not be enclosed in
single quotes, and it must follow the rules for valid object names explained in the
main DEFINE entry. GET automatically converts the object name to uppercase.

NEW NAME
The NEW NAME keywords cause GET to request a name for a new analytic
workspace object. When requesting an analytic workspace object name with NEW,
GET verifies that the input is not already the name of an object in any attached
analytic workspace (including EXPRESS.DB).

VALID NAME
The VALID NAME keywords cause GET to request a name for an analytic
workspace object. When requesting an analytic workspace object name with VALID,
GET verifies that the input follows the rules for valid object names, even when there
is no current analytic workspace and regardless of whether the name already exists.

GET

14-4 Oracle OLAP DML Reference

POSLIST NAME
The POSLIST NAME keywords cause GET to request an analytic workspace object
name identified by its position in the NAME dimension. When requesting an
analytic workspace object name with POSLIST, GET verifies that the input is an
existing position number in the NAME dimension.

datatype
Specifies the type of data being requested by GET. This can be any of the Oracle
OLAP data types: INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL,
BOOLEAN, ID, TEXT, or DATE. GET accepts a value of NA when requesting any
data type.

VERIFY condition-exp [IFNOT result-exp]
With VERIFY, you can specify a Boolean condition that must be satisfied by the
input to GET. The keyword VALUE may be used in condition-exp to test the input
before any assignment is made. For example, when requesting a value of LSIZE, the
Boolean condition might be as follows.

VALUE NE NA AND VALUE GE 1 AND VALUE LE 80

The IFNOT clause specifies a text expression to provide for occasions when the
input does not satisfy condition-exp. For example, you might jump to an
error-handling routine in your program. When you do not use IFNOT and an error
occurs, GET produces an error message and then resumes waiting for input.

Notes

Current Input Stream
Oracle OLAP obtains statements for processing from the current input stream. You
can override your default input stream with an INFILE command. INFILE causes
Oracle OLAP to read input from a file. Each line of the infile must contain a single
statement.

Input from INFILE
When the GET function is in an infile, Oracle OLAP considers the next line in the
infile to be the input to GET. You must be sure you supply the expected input for
GET in the line or lines following the statement that invokes the GET function.

For example, suppose your infile contains a line invoking a report program that
calls GET to obtain the number of decimal places to use. The infile then continues
with other statements. When you do not put the desired number of decimal places
on the line following the program call, GET will examine line after line in the infile

GET

GET to IMPORT 14-5

looking for the expected numeric response, rather than executing those lines as
commands. See "Using GET to Obtain a Password" on page 14-6.

INTEGER Dimension Values
When GET requests a value of an INTEGER dimension, the input should usually be
in the form of a dimension-value position number

Non-INTEGER Dimension Values
Non-integer dimension values must be entered in uppercase and enclosed in single
quotes.

Time Dimension Values
Values of time dimensions may be entered in the format of the dimension's VNF (or
in the format of the default VNF when the dimension does not have a VNF of its
own) or as a date. See VNF for an explanation of how to enter values in a VNF
format. See DATEORDER for an explanation the valid input styles for entering
values as dates.

Whether you use the VNF format or specify the value as a date, you need to specify
only the date components that are relevant for this type of time dimension. For
example, for a MONTH dimension, you need to supply only the month and year.

TEXT or ID Values
TEXT and ID values provided as input to GET retain the case in which they were
entered. You do not need to enclose TEXT and ID values in quotes unless they begin
with single or double quotes, or contain embedded blanks or escape sequences,
such as \dnnn or \n. (Remember to precede any single quote in the value with a
backslash (\') so Oracle OLAP will interpret it literally.)

DATE Values
When GET requests a DATE value, you can provide the input in any of the valid
styles for dates, as explained in DATEORDER. Oracle OLAP uses the current value
of the DATEORDER option to resolve any ambiguity in the DATE value.

Numeric Values
GET rounds a SHORTDECIMAL or DECIMAL value when converting it into an
INTEGER value. When GET requests an INTEGER or SHORTINTEGER value and
the input is a number beyond the range for that data type, GET produces an error
message and resumes waiting for input.

GET

14-6 Oracle OLAP DML Reference

GET with RAW TEXT
When GET requests RAW TEXT input and no input is provided, GET returns a null
string (''). For any type of information other than RAW TEXT, GET waits until
input is provided.

GET with POSLIST
When you use the POSLIST keyword with the GET function, Oracle OLAP requires
that you enter a position value to identify the dimension value rather than the
dimension name. The syntax for the POSLIST keyword depends on whether you
are using the GET function with either an assignment statement created using an
assignment statement or the LIMIT command. When you want to set a variable
equal to the result of a GET function, use the following syntax.

expression = GET(POSLIST dimension)

When you want to limit a dimension to a value returned by a GET function, you
specify the POSLIST keyword twice, as shown in the following syntax.

LIMIT dimension TO POSLIST GET(POSLIST dimension)

Examples

Example 14–1 Using GET to Obtain a Password

Suppose you have written an Oracle OLAP program called myconn. This program
contains a call to GET that requests a password.

DEFINE myconn PROGRAM
PROGRAM
...
PASSWORD = GET(TEXT)
...
END

GOTO

GET to IMPORT 14-7

GOTO

Within an OLAP DML program, the GOTO command alters the sequence of
statement execution within a program.

Syntax
GOTO label

Arguments

label
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label" on page 14-7. Execution of the program branches to the
line directly following the specified label.

Note that label, as specified in GOTO, must not be followed by a colon. However, the
actual label elsewhere in the program must end with a colon.

Notes

Guidelines for Constructing a Label
When you use control structures to branch to a particular location, you must
provide a label for the location in order to identify it clearly. When creating a label,
follow these guidelines:

■ The first character in the label must be a letter, period (.), or underscore (_).

■ The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

■ A label must be followed immediately by a colon (:).

■ Make sure that the first eight bytes in the label are unique. (Remember that, in
your character set, a byte might or might not be equivalent to one character.) A
label can contain up to 3999 bytes (the maximum length of a text line minus
1 byte for the colon that identifies a label). However, because only the first eight
bytes of a label name are used, you can experience problems with label names
greater than eight bytes when the first eight bytes are not unique.

GOTO

14-8 Oracle OLAP DML Reference

Missing GOTO Label
When an actual label that corresponds to label does not exist elsewhere in the same
program, execution stops with an error.

GOTO with IF and WHILE
The GOTO command can be used with IF...THEN...ELSE and WHILE to set up
conditional branching, using the following syntax.

IF boolean-expression

THEN GOTO label1

ELSE GOTO label2

However, to preserve the clarity of your programming logic, you should minimize
your use of GOTO. You can often replace GOTO with one or more statements
executed conditionally using FOR, IF...THEN...ELSE, or WHILE. You can also use
the SWITCH command to handle different cases within the same program.

GOTO with FOR
You can use the GOTO command in a FOR loop to branch within, or out of, the
loop. This changes the sequence of statement execution, depending on where the
GOTO command and the label are positioned.

■ A GOTO in a FOR loop that branches to a label within the same loop makes
execution continue at the label without affecting the current dimension status.
Subsequent repetitions of the loop continue normally. To branch to the end of
the loop, just before the DOEND command, you should consider using the
CONTINUE command instead.

■ A GOTO in a FOR loop that branches to a label outside the loop terminates the
effect of the FOR command. Execution continues at the specified label and
dimension status is restored to what it was before the loop. To branch to the
statement immediately following the DOEND of a loop, you should consider
using the BREAK command instead.

When you use a GOTO command outside a FOR loop to branch into the loop (that
is, to a label inside the loop), an error occurs after execution passes through the rest
of the loop once.

TEMPSTAT Command and GOTO Command
Within a FOR loop of a program, when a DO ... DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

GOTO

GET to IMPORT 14-9

Alternatives to the GOTO Command
While GOTO makes it easy to branch within a program, frequent use of it can
obscure the logic of your program, making it difficult to follow its flow. This is
particularly true when you have a complex program with several labels and GOTO
commands that skip over large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

Sometimes a GOTO command is the best programming technique, but often there
are better alternatives. For example:

■ Instead of using GOTO commands in an FOR command, you can often place
your alternative sets of commands between DO ... DOEND commands within
the IF...THEN...ELSE command itself.

■ When each set of commands is long or you want to use them in more than one
place in your program, then you might consider placing them in subprograms.
Then, you can use the IF...THEN...ELSE command to choose between two
different programs, or use the SWITCH command to choose among many
different programs.

"Using the FOR Command for Looping Over Values" on page 13-71 illustrates how
the FOR command loops over values. "Using DO/DOEND in a FOR Loop" on
page 13-72 illustrates using DO ... DOEND within a FOR loop.

Examples

Example 14–2 Using GOTO with IF

This example shows a program that will produce a report for one of three areas,
depending on what argument the user supplies when running the program. When
the user specifies EAST, WEST, or CENTRAL, execution branches to a corresponding
label, and the statements following it (statement group 1, 2, or 3) are executed.

GOTO

14-10 Oracle OLAP DML Reference

When the user specifies anything else, execution branches to the argerror label,
after which statements will handle the error.

DEFINE flexrpt PROGRAM
PROGRAM
IF NOT INLIST('East\nWest\nCentral', UPCASE(ARG(1)))

THEN GOTO argerror

SWITCH &UPCASE(ARG(1))
DO
CASE 'EAST':

..." (statement group 1)
BREAK

CASE 'WEST':
... "(statement group 2)
BREAK

CASE 'CENTRAL':
..." (statement group 3)
BREAK

DOEND

argerror:
..." statements to handle error)

END

GREATEST

GET to IMPORT 14-11

GREATEST

The GREATEST function returns the largest expression in a list of expressions. All
expressions after the first are implicitly converted to the data type of the first
expression before the comparison.

To retrieve the smallest expression in a list of expressions, use LEAST.

Return Value
The data type of the first expression.

Syntax
GREATEST (expr [, expr]...)

Arguments

expr
An expression.

 Examples

Example 14–3 Finding the Longest Text Expressions

The following statement selects the longest string.

SHOW GREATEST ('Harry', 'Harriot', 'Harold')
Harriot

Example 14–4 Finding the Largest Numerical Expression

The following statement selects the number with the greatest value.

SHOW GREATEST (5, 3, 18)
18

GROUPINGID

14-12 Oracle OLAP DML Reference

GROUPINGID

The GROUPINGID command populates a previously-defined object with the
grouping ids for the values of a hierarchical dimension. A grouping id is a numeric
value that corresponds to a level of a hierarchical dimension. The grouping id for
the lowest-level of the hierarchy is 0 (zero).

Grouping ids are especially useful for identifying values of different levels of a
hierarchical dimension. Dimension values in the same level of the hierarchy have
the same value for their grouping id. Selecting dimension values for a specific level
is easier with grouping ids because the desired values can be identified with a
single condition of groupingid = n. Typically, you use the GROUPINGID command
when you are planning on accessing in analytic workspace data in SQL using the
OLAP_TABLE function.

Syntax
GROUPINGID [family-relation] INTO destination-object -

{USING level-relation} [INHIERARCHY {inh-variable | inh-valueset}] [LEVELORDER lo-valueset]

where destination-object is one of the following:

grouping-relation
grouping-variable
grouping-surrogate

Arguments

family-relation
A self-relation for a hierarchical dimension. This self-relation is dimensioned by a
hierarchical dimension. The values of the self-relation are the parents of each value
in the hierarchical dimension. The family-relation argument is optional only when
you use the GROUPINGID statement to populate a surrogate and the
GROUPINGID statement includes a LEVELORDER clause.

grouping-relation
The name of a previously-defined relation. One of the dimensions of
grouping-relation must be the hierarchical dimension. The values of grouping-relation

See also: The GROUPING_ID function in for more information on
grouping ids.

GROUPINGID

GET to IMPORT 14-13

are calculated and populated when the GROUPINGID statement executes. See
DEFINE RELATION for information on defining relations.

grouping-variable
The name of a previously-defined numeric variable. One of the dimensions of
grouping-variable must be the hierarchical dimension. The data type of
grouping-variable can be any numeric type including NUMBER. The values of
grouping-variable are calculated and populated when the GROUPINGID statement
executes.See DEFINE VARIABLE for information on defining variables.

grouping-surrogate
The name of a previously-defined surrogate for the hierarchical dimension. The
values of grouping-surrogate are calculated and populated when the GROUPINGID
statement executes. See DEFINE SURROGATE for information on defining
surrogates.

USING
Specifies that the level of the values of the hierarchical dimension are to be
considered when creating grouping ids.

level-relation
A relation that is dimensioned by the hierarchical dimension. For each value of the
hierarchical dimension, the relation has its value the name of the level for the
dimension's value.

INHIERARCHY
Specifies that only some of the values of the hierarchical dimension are to be
considered when creating grouping ids.

inh-variable
A BOOLEAN variable that is dimensioned by the hierarchical dimension and, when
the hierarchical dimension is a multi-hierarchical dimension, by a dimension that is
the names of the hierarchies. The values of the variable are TRUE when the
dimension value is in a hierarchy and FALSE when it is not.

inh-valueset
The name of a valueset object whose values identify the hierarchical dimension
values to be considered when creating grouping ids. Values not included in the
valueset are ignored.

LEVELORDER
Specifies the top-down order of the levels when creating grouping ids.

GROUPINGID

14-14 Oracle OLAP DML Reference

lo-valueset
The name of a valueset object whose values are the names of the levels to be used
when creating grouping ids. The order of the values in the valueset object determine
the grouping id assigned.

Notes

GROUPINGID with the OLAP_TABLE Function
Typically, you use the GROUPINGID command when you are planning on
accessing analytic workspace data in SQL using the OLAP_TABLE function. For
more information on the OLAP_TABLE function see the Oracle OLAP Reference.

Examples

Example 14–5 Using GROUPINGID to Populate a Variable with Grouping Ids

Assume that you have the following objects in your analytic workspace.

DEFINE geography DIMENSION TEXT WIDTH 12
LD Geography Dimension Values
DEFINE geography.parent RELATION geography <geography>
LD Child-parent relation for geography
DEFINE geography.hierarchyid DIMENSION INTEGER
LD Dimension whose values are ids for hierarchies in geography

To create a grouping id variable for the Standard hierarchy of geography, define a
child-parent relation of only those values that are in the hierarchy whose grouping
ids you want to generate, and define a variable to hold the grouping ids. Examples
of these definitions follow.

DEFINE geog.gid INTEGER VARIABLE <geography>
DEFINE geography.newparent RELATION geography <geography>

GROUPINGID

GET to IMPORT 14-15

Then populate these variables using statements similar to these.

AW DETACH myaw
AW ATTACH myaw ro
PUSH OKNULLSTATUS
OKNULLSTATUS = TRUE
" Populate the child-parent relation for hierarchy 1
geography.newparent = geography.parent(geography.hierarchyid 1)
" Populate the grouping id variables
GROUPINGID geography.newparent INTO geog.gid
" Save changes to analytic workspace
POP OKNULLSTATUS
ALLSTAT
UPDATE
COMMIT

GROUPINGID

14-16 Oracle OLAP DML Reference

Reports for the new objects created by this code (geography.newparent and
GEOG.GID) follow.

REPORT geography.newparent

GEOGRAPHY GEOGRAPHY.NEWPARENT
---------------- ----------------
World NA
Americas World
Canada Americas
Toronto Canada
Montreal Canada
Ottawa Canada
Vancouver Canada
Edmonton Canada
Calgary Canada
Usa Americas
Boston Usa
Losangeles Usa
Dallas Usa
Denver Usa
Newyork Usa
Chicago Usa
Seattle Usa
Mexico Americas
... ...
Japan Asia
Tokyo Japan
Osaka Japan
Kyoto Japan
China Asia
Beijing China
Shanghai China
... ...
India Asia
Ireland Europe
Taiwan Asia
Thailand Asia

REPORT geog.gid
GEOGRAPHY GEOG.GID
---------------- ----------------
World 7
Americas 3
Canada 1

GROUPINGID

GET to IMPORT 14-17

Toronto 0
Montreal 0
Ottawa 0
Vancouver 0
Edmonton 0
Calgary 0
Usa 1
Boston 0
Losangeles 0
Dallas 0
Denver 0
Newyork 0
Chicago 0
Seattle 0
Mexico 1
... ...
Japan 1
Tokyo 0
Osaka 0
Kyoto 0
China 1
Beijing 0
Shanghai 0
... ...
India 1
Ireland 1
Taiwan 1
Thailand 1

GROWRATE

14-18 Oracle OLAP DML Reference

GROWRATE

The GROWRATE function calculates the growth rate of a time-series expression,
based on the first and last values of the series.

Return Value
DECIMAL

Syntax
GROWRATE(expression [time-dimension])

Arguments

expression
A numeric expression for which you want to calculate the growth rate. The
expression must be dimensioned by a time dimension.

time-dimension
The name of the time dimension by which expression is dimensioned. When the time
dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR, the
time-dimension argument is optional, unless loans has more than one time dimension.

Notes

Dimensions of the Result
The result returned by GROWRATE is dimensioned by all the dimensions of
expression except the time dimension.

Understanding the Calculation
GROWRATE bases its calculation on the values of expression that correspond to the
first and last values in the status of the time dimension. The intervening values of
expression are ignored. GROWRATE uses the following calculation.

GROWRATE = (last/first)1/(n-1) - 1

In the exponent, n is the number of values in the status of the time dimension.

GROWRATE

GET to IMPORT 14-19

The Expression Argument
The following rules apply to the first and last values of expression:

■ The first value of expression cannot be zero. (This is to avoid a division by zero
in the GROWRATE calculation.)

■ The first and last values of expression must both be positive or both negative. (Or
the last value of expression can be zero, regardless of whether the first value is
positive or negative.)

■ Neither the first value nor the last value of expression can be NA.

Examples

Example 14–6 Determining Growth Rate

The following statements limit the dimensions of the actual variable and produce
a report.

LIMIT month TO 'Dec95' TO 'Mar96'
LIMIT line TO 'net.income'
REPORT DOWN division ACROSS month: actual

These statements produce the following report.

LINE: NET.INCOME
------------------ACTUAL-------------------
-------------------MONTH-------------------

DIVISION Dec95 Jan96 Feb96 Mar96
-------------- ---------- ---------- ---------- ----------
Camping 4,378.09 19,915.13 22,510.38 34,731.63
Sporting 6,297.02 13,180.29 17,429.17 18,819.14
Clothing 87,471.74 107,257.85 133,566.01 127,132.55

The statement REPORT W 20 GROWRATE(actual)produces a report that shows
the growth rate of the actual net income in the demo workspace between December
1995 and March 1996.

--GROWRATE(ACTUAL)--
--------LINE--------

DIVISION NET.INCOME
-------------- --------------------
Camping 0.99
Sporting 0.44
Clothing 0.13

HEADING

14-20 Oracle OLAP DML Reference

HEADING

The HEADING command produces titles and column headings for a report. The
heading output is sent to the current outfile. The form of the HEADING command
is the same as that of the ROW command. When you use HEADING, however,
Oracle OLAP does not add any numeric values from the heading to column
subtotals or grand totals.

Frequently, HEADING commands are used in a PAGEPRG program to produce
titles or column headings on each page of a report.

Syntax
HEADING [attribs] {expression1|SKIP}, [attribs] {expressionN|SKIP}

Arguments

attribs
The attributes that specify the format for each column. (See ROW command for a
list and detailed explanation of the available attributes.)

expression
The text to be used as a column heading. To use literal text for a column heading,
enclose the text in single quotes. (See ROW command for more information on
using expressions, attributes, and ACROSS groups to produce columns.)

SKIP
Used in place of an expression to indicate that the column is to be left blank.

Notes

Creating Titles
To create a title or subtitle in a report, use HEADING to produce a single "column"
with a width equal to the setting of the LSIZE option. You can then center your text
within this "column" to produce a centered title.

Maximum Heading Width
The maximum width of any line in a report, including a heading line, is 4000
characters.

HEADING

GET to IMPORT 14-21

Improving Report Performance
When you know ahead of time that you will not need the subtitling capability of the
ROW command, using the HEADING command instead of ROW to produce the
lines of your report can provide a time savings, since Oracle OLAP will not be
keeping track of subtotals.

ROW Command Notes
The notes for the ROW command also apply to the HEADING command (with the
exception of the note on row and column arithmetic in ROW).

Examples

Example 14–7 Producing Column Headings

In a report, you want to have headings for your columns. You can use a HEADING
command such as the following in your program.

HEADING UNDER '-' CENTER <WIDTH 15 'Product' -
ACROSS district FIRST 3: district>

This command produces the following result.

Product Atlanta Boston Chicago
--------------- ---------- ---------- ----------

HIDE

14-22 Oracle OLAP DML Reference

HIDE

The HIDE command hides the text of a program, so that you cannot display it using
the DESCRIBE command, the EDIT command, or the OBJ function. You can
perform all other actions on the program, including executing, compiling,
renaming, or exporting.

When you hide a program, you supply a seed expression, which Oracle OLAP uses
to encrypt the program text. You can use this seed expression later with the
UNHIDE command to make the text visible.

Syntax
HIDE prog-name seed-exp

Arguments

prog-name
The name of the program whose text you want to hide. Do not enclose the program
name in quotes.

seed-exp
A single-line text expression to be used as a seed value in the encryption of the
program text. Do not specify NA for this value.

Keep a record of this seed expression, so that you can use it later with the UNHIDE
command. The seed expression you specify in the UNHIDE command must be
byte-for-byte the same value as you used in this command. Also, the seed
expression is case-sensitive, so record uppercase and lowercase characters carefully.

Notes

Exporting and Importing with the Seed
When you export and import a hidden program, the text remains hidden in the
analytic workspace in which it is imported. It retains the same seed expression for
use with the UNHIDE command.

Forgetting the Seed Expression
When you want to use the UNHIDE command on a program but you have
forgotten the seed expression, you can call Oracle OLAP Products Technical

HIDE

GET to IMPORT 14-23

Support for help in solving your problem. Before calling, make a connection to
Oracle OLAP from OLAP Worksheet and attach the analytic workspace that
contains the hidden program.

Examples

Example 14–8 Hiding Program Text

The following example hides the text of a program called sales_rpt.

HIDE sales_rpt 'Crystal'

HIERCHECK

14-24 Oracle OLAP DML Reference

HIERCHECK

The HIERCHECK program checks the parent relation of a hierarchical dimension to
make sure it has no loops. A hierarchical dimension's parent relation specifies the
parent for each of the dimension's values. A loop will occur when a dimension
value has inadvertently been specified as its own ancestor or descendant in the
parent relation. When you execute a ROLLUP command or a AGGREGATE
command that uses a parent relation with a loop, an error message will be returned
when the loop is identified.

You can call HIERCHECK as a command or as a Boolean function. When called as a
function, HIERCHECK returns YES when the parent relation "passes" the check (for
example, it contains no loops), and NO when it fails the check (it does contain loops).

Return Value
BOOLEAN

Syntax

When Used as a Command
HIERCHECK relation-name [NOSTATUS]

When Used as a Function or with CALL
HIERCHECK ('relation-name' [NOSTATUS])

Arguments

relation-name
A text expression indicating the name of the parent relation to be checked.

You can use OLAP DML statements to create a parent relation. To do so, you define
a relation that relates a dimension to itself, and then you can specify the parent of
each dimension value in the relation. This makes the dimension hierarchical.

NOSTATUS
Specifies that the current status of any extra dimensions on a parent relation is
ignored, so that all the hierarchies of a multi-dimensional parent relation will be
checked for infinite loops.

HIERCHECK

GET to IMPORT 14-25

When a parent relation has been defined with one or more extra dimensions (that is,
with dimensions other than the required embedded total dimension), you can create
and name more than one hierarchy within the parent relation. Each of the values of
the extra dimension(s) can represent a different hierarchy. The hierarchies use the
same dimension values, but the way in which those dimension values relate to each
other is different in each hierarchy within the relation.

You can use the LIMIT command on the extra dimension(s) of a parent relation to
select which of the parent relation's multiple hierarchies are in status. When a
parent relation has multiple hierarchies and the current status of the extra
dimension(s) on the parent relation does not include all of those hierarchies,
NOSTATUS ignores the current status and checks every hierarchy of the parent
relation for loops.

Notes

Why You Should Use HIERCHECK
It is a good strategy to use HIERCHECK at the time you build your hierarchies as a
way to verify that they are valid. In other words, you should not attempt to roll up a
variable's data unless you have already verified that its dimensions' hierarchies are
structured correctly.

Why ROLLUP and AGGREGATE Use HIERCHECK
The ROLLUP command and the AGGREGATE command both use HIERCHECK in
order to prevent infinite looping once the command has been executed.

When to Use HIERCHECK
You should check a parent relation for loops after you set up the levels of a
hierarchical dimension, before you load data into any variable that is dimensioned
by the hierarchical dimension, or before you use the ROLLUP or AGGREGATE
command for the first time with a variable. Although it is possible to roll up a
variable without first having checked the parent relations of all of its hierarchical
dimensions with HIERCHECK, you should make it a practice to use HIERCHECK
first.

For example, suppose you accidentally create a hierarchy that is invalid. You then
fail to use HIERCHECK to check that hierarchy. Now, suppose you submit a rollup
program as a batch job to run overnight. When you check on the batch job the next
morning, you will see that the job failed to run because when the ROLLUP
command was called, HIERCHECK detected a loop, which prevented the ROLLUP
command from running to completion. In this case, you will have lost a night's

HIERCHECK

14-26 Oracle OLAP DML Reference

work because you did not use HIERCHECK at the time when you created your
hierarchies. In other words, using HIERCHECK yourself (instead of waiting for the
ROLLUP or the AGGREGATE command to do it for you) will save you time and
effort.

Using HIERCHECK as a Function
You may use HIERCHECK as a function. When the parent relation has no loops, the
return value is YES. When HIERCHECK detects a loop, the return value is NO.
When you call it as a function, HIERCHECK does not signal an error when it finds a
loop.

Using HIERCHECK as a Command
When you use HIERCHECK as a command or with the CALL command, it signals
an error when it finds a loop in the parent relation. The error message identifies the
dimension values that are involved in the loop, the name of the hierarchy (referred
to as the "extra dimension values") in which the loop occurs (when the parent
relation has one or more named hierarchies), and the name of the parent relation in
which the loop was found. When a parent relation has no loops, no message is
displayed. See Example 14–9, "Checking for Loops" on page 14-27.

Checking the Result
When you call HIERCHECK as a function, you get the result as a Boolean return
value. When you call HIERCHECK as a command or with the CALL command, you
can check a Boolean variable called HIERCHK.LOOPFND to determine the result.
When a loop is found, the value is YES. When HIERCHECK did not terminate
normally (for example, because a bad argument was passed in), the value is NA.
When HIERCHECK runs successfully and no loops are found, the value is NO.

The Problem Dimension Values
When HIERCHECK finds a loop in a parent relation, the names of all dimension
values that are involved in that loop are stored in a variable named
HIERCHK.LOOPVALS. You can check the value of this variable and use this
information to determine where the looping problem lies.

The Problem Hierarchy
When HIERCHECK finds a loop and your parent relation has more than one
hierarchy, the name of the hierarchy in which a loop is found is stored in a variable
called HIERCHK.XTRADIMS. You can check the value of this variable to find out
which hierarchy you should check for the looping problem.

HIERCHECK

GET to IMPORT 14-27

Multiple Loops
HIERCHECK detects the presence of loops, but it does not report multiple loops.
While the name of every dimension value involved in a loop will be stored in
HIERCHK.LOOPVALS, that does not mean that those dimension values are all part
of the same loop; they may be involved in separate loops. Once you have detected
and fixed a looping problem, it is important to use HIERCHECK again to check the
parent relation until it is loop-free.

Examples

Example 14–9 Checking for Loops

This example shows how to create a parent relation and check it for loops. You
would begin by defining a dimension and adding values to it.

DEFINE geography DIMENSION ID
MAINTAIN geography ADD 'U.S.'
MAINTAIN geography ADD 'East' 'Central' 'West'
MAINTAIN geography ADD 'Boston' 'Atlanta' 'Chicago' 'Dallas' 'Denver' 'Seattle'

Next, relate the dimension to itself. The following statement defines a parent
relation called GEOG.GEOG, which relates the GEOGRAPHY dimension to itself.

define geog.geog RELATION geography <geography>

You would then specify the hierarchy of the dimension values. In this example,
there will be three levels in the hierarchy: country, regions, and cities. When you
specify the hierarchy, you assign parent dimension values (such as East) to child
dimension values (such as Boston) for every level except the highest level. To do
this, you store values in the relation. First, group the children together with a LIMIT
command, then assign a parent to those children.

LIMIT geography TO 'East' 'Central' 'West'
geog.geog = 'U.S.'
LIMIT geography TO 'Boston' 'Atlanta'
geog.geog = 'East'
LIMIT geography TO 'Chicago' 'Dallas'
geog.geog = 'Central'
LIMIT geography TO 'Denver' 'Seattle'
geog.geog = 'West'

HIERCHECK

14-28 Oracle OLAP DML Reference

Now you can check for loops in the parent relation geog.geog, as shown by the
following statement.

HIERCHECK geog.geog

In this case, HIERCHECK produces no message output, which means there are no
loops in geog.geog. It sets HIERCHK.LOOPFND to NO, and leaves
HIERCHK.LOOPVALS and HIERCHK.XTRADIMS set to NA.

Now suppose the following mistake had been made in the storing of values in the
relation.

LIMIT geography TO 'East' 'Central' 'West'
geog.geog = 'East'

The preceding statements inadvertently make East its own parent, which would
cause a ROLLUP command to loop infinitely. When you now check the geog.geog
relation for loops, the following statement produces the following error message.

HIERCHECK geog.geog
ERROR: HIERCHECK has detected one or more loops in the hierarchy represented by
GEOG.GEOG. The values involved are 'East'.

HIERHEIGHT command

GET to IMPORT 14-29

HIERHEIGHT command

The HIERHEIGHT command populates a previously-defined relation with the
values of a specified hierarchical dimension by level. Typically, you use the
HIERHEIGHT command when you are preparing an analytic workspace for access
using the OLAP_TABLE function.

To retrieve the value of a node (by level) for the value of a hierarchical dimension,
use the HIERHEIGHT function.

Syntax
HIERHEIGHT familyrelation [(qdrlist)] INTO{hierheight-relation -

 [USING level-relation[A | D]] [INHIERARCHY { inh-variable| inh-valueset}]

Arguments

family-relation
A child-parent self-relation for the hierarchical dimension. This relation can have
multiple dimensions; however, one of the dimensions of family-relation must be the
hierarchical dimension. The values of the family-relation are the values of the
hierarchical dimension that is the parent of each set of dimension values

qdrlist
A list of QDRs that limits the values of family-relation. Specify the QDRs as described
in "Form of a Qualified Data Reference" on page 3-33. When you do not specify a
value for qdrlist, HIERHEIGHT uses the values of family-relation that are in current
status.

hierheight-relation
A previously -defined relation that the HIERHEIGHT command populates when it
executes. This relation can have multiple dimensions; however, it must be
dimensioned by the dimensions of family-relation and one other dimension that
represents the levels of the hierarchical dimension. The actual constuct of the
dimension that represents the levels of the hierarchical dimension varies depending
on whether or not the HIERHEIGHT statement includes the USING phrase:

■ When the HIERHEIGHT statement includes the USING phrase, the dimension
that represents the levels of the hierarchical dimension is a dimension that
contains the names of the levels.

HIERHEIGHT command

14-30 Oracle OLAP DML Reference

■ When the HIERHEIGHT statement does not include the USING phrase, the
dimension that represents the levels of the hierarchical dimension is an
INTEGER dimension that has as values the depth of the level.

When hierheight-relation is populated before the HIERHEIGHT command executes,
the command depopulates it before computing new values.

level-relation
A relation that is a dimensioned by the hierarchical dimension and (when the
hierarchical dimension is a multi-hierarchical dimension) by a dimension that is the
names of the hierarchies. The values of the relation are values of a dimension that
represents the levels of the hierarchy. This dimension typically is a TEXT or ID
dimension that has the names of the levels as values.

A
Ascending order.

D
Descending order. (Default)

inh-variable
A BOOLEAN variable that is dimensioned by the hierarchical dimension and, when
the hierarchical dimension is a multi-hierarchical dimension, by a dimension that is
the names of the hierarchies. The values of the variable are TRUE when the
dimension value is in a hierarchy and FALSE when it is not.

inh-valueset
The name of a valueset object whose values are the hierarchical dimension values to
be considered when creating grouping ids. Values not included in the valueset are
ignored.

Notes

HIERHEIGHT with the OLAP_TABLE Function
Typically, you use the HIERHEIGHT command when you are preparing an analytic
workspace for access using the OLAP_TABLE function.

HIERHEIGHT command

GET to IMPORT 14-31

Examples

Example 14–10 Creating a Relational Representation of a Geography Hierarchy

Assume that there is an analytic workspace named myaw that has a Geography
hierarchy defined with analytic objects with the following definitions.

DEFINE geog.hierdim DIMENSION TEXT
LD Hierarchy names for Geography hierarchies

DEFINE geog.leveldim DIMENSION TEXT
LD List of levels for GEOGRAPHY hierarchies

DEFINE geography DIMENSION TEXT WIDTH 12
LD Values for the Geography hierarchies

DEFINE geog.levelrel RELATION geog.leveldim <geography geog.hierdim>
LD Level of each value in the Geography hierarchies

DEFINE geog.parent RELATION geography <geography geog.hierdim>
LD Child-parent relation for the Geography hierarchies

DEFINE geog.familyrel RELATION geography <geography geog.leveldim geog.hierdim>
LD Geography values by level and hierarchy

These objects have the following structures.

GEOGRAPHY

World
Americas
Canada
USA
Toronto
Montreal
Boston
LosAngeles

GEOG.HIERDIM

Standard
Consolidated

HIERHEIGHT command

14-32 Oracle OLAP DML Reference

GEOG.LEVELDIM

World
Continent
Country
City
Consolidated
Continent
Consolidated
Country

 ------------GEOG.LEVELREL------------
 ------------GEOG.HIERDIM-------------
GEOGRAPHY Standard Consolidated
------------------ ------------------ ------------------
World World NA
Americas Continent Consolidated
 Continent
Canada Country Consolidated
 Country
USA Country Consolidated
 Country
Toronto City NA
Montreal City NA
Boston City NA
LosAngeles City NA

 -------------GEOG.PARENT-------------
 ------------GEOG.HIERDIM-------------
GEOGRAPHY Standard Consolidated
------------------ ------------------ ------------------
World NA NA
Americas World NA
Canada Americas Americas
USA Americas Americas
Toronto Canada NA
Montreal Canada NA
Boston USA NA
LosAngeles USA NA

To create a family relation of the Geography hierarchy you define an analytic
workspace object with the following definition.

DEFINE geog.familyrel RELATION geography <geography geog.leveldim geog.hierdim>
LD Geography values by level and hierarchy

HIERHEIGHT command

GET to IMPORT 14-33

Then you use the HIERHEIGHT command as illustrated in the following statement
to populate the object.

HIERHEIGHT geog.parent INTO geog.familyrel USING geog.levelrel

By issuing the REPORT command, you can display the relational representations of
both the Standard and Consolidated hierarchies of the geography dimension.

REPORT DOWN geography geog.familyrel

GEOG.HIERDIM: Standard
 -------------------------------GEOG.FAMILYREL--------------------------------
 --------------------------------GEOG.LEVELDIM--------------------------------
 Consolidated Consolidated
GEOGRAPHY World Continent Country City Continent Country
------------ ------------ ------------ ------------ ------------ ------------ ------------
World World NA NA NA NA NA
Americas World Americas NA NA NA NA
Canada World Americas Canada NA NA NA
USA World Americas USA NA NA NA
Toronto World Americas Canada Toronto NA NA
Montreal World Americas Canada Montreal NA NA
Boston World Americas USA Boston NA NA
LosAngeles World Americas USA LosAngeles NA NA

GEOG.HIERDIM: Consolidated
 -------------------------------GEOG.FAMILYREL--------------------------------
 --------------------------------GEOG.LEVELDIM--------------------------------
 Consolidated Consolidated
GEOGRAPHY World Continent Country City Continent Country
------------ ------------ ------------ ------------ ------------ ------------ ------------
World NA NA NA NA NA NA
Americas NA NA NA NA Americas NA
Canada NA NA NA NA Americas Canada
USA NA NA NA NA Americas USA
Toronto NA NA NA NA NA NA
Montreal NA NA NA NA NA NA
Boston NA NA NA NA NA NA
LosAngeles NA NA NA NA NA NA

HIERHEIGHT function

14-34 Oracle OLAP DML Reference

HIERHEIGHT function

The HIERHEIGHT function returns the value of a node at a specified level for the
first value in the current status list of a hierarchical dimension.

To populate a previously-defined relation with the values of a specified hierarchical
dimension by level, use the HIERHEIGHT command.

Syntax
HIERHEIGHT(family-relation [,] level)

Return Value
The data type returned by HIERHEIGHT is the data type of the dimension value of
family-relation.

Arguments

family-relation
A child-parent self-relation for the hierarchical dimension. The values of
family-relation are the parents.

level
An INTEGER value that represents a level of the hierarchical dimension. The
value 1 (one) represents the lowest-level of the hierarchical dimension.

Notes

Limiting the Hierarchical Dimension
The HIERHEIGHT function always returns a single value of the hierarchical
dimension. When you do not limit the hierarchical dimension to a single value
before calling the HIERHEIGHT function, the HIERHEIGHT function executes
against the first value in the current status list of the dimension. Typically, you
either limit the hierarchical dimension to a single value before you call the
HIERHEIGHT function or you use the HIERHEIGHT function after FOR command
in order to execute the HIERHEIGHT function for each value of the hierarchical
dimension.

HIERHEIGHT function

GET to IMPORT 14-35

Examples

Example 14–11 Using HIERHEIGHT as a Simple Command

Assume that your analytic workspace has a hierarchical dimension named
geography and a relation named g0.stanparent that is a self-relation of the
geography values for the Standard hierarchy of geography.

DEFINE g0.newparent RELATION geography <geography>
LD Parent-child when hierarchy of geography is 1

HIERHEIGHT function

14-36 Oracle OLAP DML Reference

Issuing a report command like REPORT g0.stanparent displays the values in
g0.stanparent.

GEOGRAPHY G0.STANPARENT
---------------- ----------------
World NA
Americas World
Canada Americas
Toronto Canada
Montreal Canada
Ottawa Canada
... ...
USA Americas
Boston USA
LosAngeles USA
... ...
Mexico Americas
Mexicocity Mexico
Argentina Americas
BuenosAires Argentina
Brazil Americas
Saopaulo Brazil
Colombia Americas
Bogota Colombia
Australia World
East.Aust Australia
Sydney East.Aust
Madrid Spain
Budapest Hungary
Athens Greece
Vienna Austria
Melbourne East.Aust
Central.aust Australia
Tai-pei Taiwan
Singapore Asia
Adelaide Central.Aust
Bangkok Thailand
West.aust Australia
Newdelhi India
Perth West.Aust
Bombay India
Malaysia Asia
Europe World
France Europe

HIERHEIGHT function

GET to IMPORT 14-37

Caen France
Paris France

Now you limit GEOGRAPHY to the value Americas by issuing the following
OLAP DML statement.

LIMIT geography TO 'Americas'

When you use the HIERHEIGHT function to find the node for Americas for the
lowest-level of the hierarchy (level 1) by issuing the following OLAP DML
statement.

REPORT HIERHEIGHT(g0.stanparent 1)

The following report is produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

When you use the HIERHEIGHT function to find the node for Americas for the
highest-level of the hierarchy (level 4) by issuing the following OLAP DML
statement.

REPORT HIERHEIGHT(g0.stanparent 4)

The following report is produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

HIERHEIGHT function

14-38 Oracle OLAP DML Reference

When you use the HIERHEIGHT function to find the node for Americas for the
levels 2 and 3 of the hierarchy by issuing the following OLAP DML statements.

REPORT HIERHEIGHT(g0.stanparent 2)
REPORT HIERHEIGHT(g0.stanparent 3)

The following reports are produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Americas

Notice that the output for each level corresponds in between the values that are
created for a relation created using HIERHEIGHT command. For example, assume
you created a relation named geog.stanhierrel for the standard hierarchy for
geography and limit geography to 'Americas. A report of geog.stanhierrel
would show the same geography values for each level.

LIMIT geography TO 'AMERICAS'
REPORT DOWN geography geog.stanhierrel

---------------------------GEOG.STANHIERREL--------------------
----------------------------GEOG.LVLDIM------------------------

GEOGRAPHY 1 2 3 4
---------------- ---------------- ---------------- ---------------- ------------
Americas NA NA Americas World

HIERHEIGHT function

GET to IMPORT 14-39

Example 14–12 Using HIERHEIGHT After a FOR Command

Assume that your analytic workspace has a program named findnodes that finds
the nodes of all of the geography values in status.

DEFINE FINDNODES PROGRAM
PROGRAM
VARIABLE level INTEGER
FOR geography
DO
counter = 1
WHILE counter LE statlen(geog.lvldim)
DO
REPORT HIERHEIGHT(g0.stanparent level)
level = level + 1
DOEND
DOEND
END

Assume also that you limit geography to Americas and Asia and call the
HIERHEIGHT function for each level of the Standard hierarchy by issuing the
following OLAP statements.

LIMIT geography TO 'Americas', 'Asia'
CALL findnodes

HIERHEIGHT function

14-40 Oracle OLAP DML Reference

The output of the findnodes program for the geography values Americas and
Asia is follows. The program first reports on the value of each level for Americas
is provided. Then it reports on the value of each level for Asia.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Americas

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Asia

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

HIERHEIGHT function

GET to IMPORT 14-41

Notice that the output for each level corresponds in between the values that are
created for a relation created using the HIERHEIGHT command

LIMIT geography TO 'Americas' 'Asia'
REPORT DOWN geography geog.stanhierrel

---------------------------GEOG.STANHIERREL--------------------
----------------------------GEOG.LVLDIM------------------------

GEOGRAPHY 1 2 3 4
---------------- ---------------- ---------------- ---------------- ------------
Americas NA NA Americas World
Asia NA NA Asia World

IF...THEN...ELSE

14-42 Oracle OLAP DML Reference

IF...THEN...ELSE

The IF...THEN...ELSE command executes one or more commands in a program
when a specified condition is met. Optionally, it also executes an alternative
command or group of commands when the condition is not met. You can use IF
only within programs.

You can also use IF as a conditional operator in an expression. See "IF as a
Conditional Operator" on page 14-43.

Syntax
IF boolean-expression

THEN statement1

[ELSE statement2]

Arguments

boolean-expression
Any valid Boolean expression that returns either TRUE or FALSE.

THEN statement1
Oracle OLAP executes the statement1 argument when the Boolean expression is
TRUE. The statement1 must be on the same line as THEN.

ELSE statement2
Oracle OLAP executes the statement2 argument when the Boolean expression is
FALSE. The statement2 must be on the same line as ELSE. When you omit the
ELSE phrase, execution continues with the statement after the whole IF...THEN...
command in the program.

Notes

IF with DO
You can use the IF command for conditional execution of two or more statements by
following the THEN or ELSE (or both) keywords with a DO ... DOEND sequence.
See Example 14–13, "Using IF...THEN...ELSE" on page 14-43.

IF...THEN...ELSE

GET to IMPORT 14-43

IF as a Conditional Operator
When you use IF as a conditional operator in an expression, it has the following
format. ELSE is required when IF is used as an operator.

IF boolean-exp THEN exp1 ELSE exp2

In most cases, exp1 and exp2 must be of the same basic data type (numeric, text, or
Boolean). The value of the whole expression is the value of either exp1 or exp2.

However, when the data type of either exp1 or exp2 is DATE, it is possible for the
other expression to have a numeric or text data type. Because Oracle OLAP expects
both data types to be DATE, it will convert the numeric or text value to a DATE.

Single or Multiple Lines
When IF is used as an expression, the THEN and ELSE keywords must be on the
same line as IF. When used as a command, THEN and ELSE must be on separate
lines.

Examples

Example 14–13 Using IF...THEN...ELSE

The following lines from a program illustrate the use of IF...THEN...ELSE.... When
the Boolean expression ANY(DOLLARS LT 200000) is TRUE, the statements
following THEN (statement group 1) are executed. When the expression is
FALSE, the statements following ELSE (statement group 2) are executed
instead.

IF ANY(DOLLARS LT 200000)
THEN DO
... " (statement group 1)
DOEND

ELSE DO
... "(statement group 2)
DOEND

Example 14–14 Using IF as a Conditional Operator

In a program that produces a report, you would like to report a previous year's
actual expenses or the current year's budget, depending on the year passed to the
program as an argument. A conditional expression in a JOINCHARS function
produces a heading with the word Actual or Budget. Another conditional

IF...THEN...ELSE

14-44 Oracle OLAP DML Reference

expression selects the variable to report. The program would include the following
lines.

ARGUMENT cur.year year

LIMIT month TO year cur.year
REPORT -

HEADING JOINCHARS('Expenses: ' -
IF cur.year LT 'Yr95' -
THEN 'Actual FOR ' -
ELSE 'Budget FOR ', -
cur.year) -

IF cur.year LT 'Yr95' THEN actual ELSE budget

IMPORT

GET to IMPORT 14-45

IMPORT

The IMPORT command transfers data to an analytic workspace from a text file, a
spreadsheet, or another analytic workspace from an EIF file.

Because the syntax of the IMPORT command is different depending on where the
data to be imported is located, separate topics are provided for different types of
source files:

■ IMPORT (from EIF)

■ IMPORT (from text)

■ IMPORT (from spreadsheet)

IMPORT (from EIF)

14-46 Oracle OLAP DML Reference

IMPORT (from EIF)

You can use the IMPORT (from EIF) command to copy data and definitions into
your Oracle OLAP analytic workspace from an EIF file. IMPORT also copies any
dimensions of the imported data that do not already exist in your workspace, even
when you do not specify them in the command. For information on importing
variables dimensioned by composites, see "Unnamed Composites" on page 14-54.

IMPORT (from EIF) is commonly used in conjunction with EXPORT (to EIF) to copy
parts of one Oracle OLAP analytic workspace to another; you export objects from
the source workspace to an EIF file and then import the objects from the EIF file into
the target workspace. The source and target workspaces can reside on the same
platform or on different platforms. When you transfer an EIF file between
computers, you use a binary transfer to overcome file-format incompatibilities
between platforms. The EIF file must have been created with the EIFVERSION set
to a version that is less than or equal to the version number of the target workspace.
Use EVERSION to verify the target version number.

You can also use IMPORT to store information in the EIFNAMES and EIFTYPES
options.

Syntax
IMPORT import_item FROM EIF FILE file-id [INTO workspace] -

[MATCH [STATUS]|APPEND|REPLACE [DELETE]] [LIST [ONLY]] [DATA] -

[DFNS] [UPDATE] [NOPROP] [NASKIP] [NLS_CHARSET charset-exp]

where:

import_item is one of the following:

name [AS newname]

ALL

Arguments

name [AS newname]
The name of an analytic workspace object to be imported from an EIF file to an
attached workspace. You cannot specify a qualified object name for the object,
because the object is not yet in any workspace. You can list more than one name at a

IMPORT

GET to IMPORT 14-47

time. See the INTO workspace argument for information about where the object will
be imported.

AS newname can be used to rename any type of object being imported except
dimensions.

When you have exported a multidimensional object as separate variables, list all the
variable names. (See the SCATTER AS keyword in the EXPORT (to EIF).)

ALL
Indicates that you want to import all the objects contained in the EIF file. (Default)

See the INTO workspace argument for information about where the objects will be
imported.

INTO workspace
A workspace name that identifies the attached workspace into which objects will be
imported. When the objects exist in the specified workspace, then their data will be
overwritten by the imported data. When the objects do not already exist, IMPORT
creates them it in the specified workspace. IMPORT ignores identically named
objects when they exist in other attached workspaces.

When you do not specify this argument, then Oracle OLAP does the following:

■ When you have not previously defined the objects being imported in an
attached workspace, then IMPORT defines them automatically in the current
workspace.

■ When the objects already exist in any attached workspace, then IMPORT
overwrites the data they contain with the imported data.

FROM EIF FILE file-id
Identifies the file you want to import. File-id is a text expression that represents the
name of the file. The name must be in a standard format for a file identifier.

MATCH [STATUS]
Indicates that the IMPORT command should bring in only the data associated with
dimension values that match those already in the target workspace. For dimensions
other than time dimensions, be sure that corresponding dimension values are
spelled and capitalized identically in the EIF file and your target workspace when
you want them to match; for example, Tents does not match TENTS. For time
dimensions, Oracle OLAP identifies dimension values by the dates they represent
rather than by the way they are displayed. Therefore, time dimension values in the
EIF file will automatically match time dimension values in your workspace when
they represent the same time periods. When you specify MATCH STATUS, IMPORT

IMPORT (from EIF)

14-48 Oracle OLAP DML Reference

only imports data associated with the values included in the current status of that
dimension. When the dimension is limited in the target workspace, Oracle OLAP
ignores any data in the EIF file associated with the values excluded from the status.

APPEND
Indicates that the IMPORT command should bring in all the dimension values,
along with associated data, regardless of whether or not the dimension values
match those already present in the target workspace. APPEND adds those that do
not match to those already present; it adds new values to the end of the list of
dimension values. For time dimensions, APPEND also adds dimension values to fill
in any gaps between the dimension values in your target workspace and the new
ones. (Default)

REPLACE [DELETE]
Indicates that, for objects already defined in the workspace, IMPORT should keep
the existing dimension values that match the dimension values in the EIF file.
IMPORT deletes dimension values (and their data) that do not match dimension
values in the EIF file. IMPORT replaces the associated data for the dimension values
kept as part of the new dimension when the associated data variables are included
in the EIF file. For text dimensions, the order of the dimension values in the EIF file
is also adapted.

When you specify REPLACE DELETE, no matching takes place. Before importing a
dimension, Oracle OLAP performs a MAINTAIN DELETE ALL, which discards all
data associated with the existing dimension, as well as the dimension values.

LIST
LIST ONLY
Produces a list of the definitions. For dimensions, the output lists the number of
values in each dimension, as they are imported into the target workspace. For
composites, the output lists the number of dimension value combinations. IMPORT
also indicates the number of bytes read and the elapsed time every two minutes or,
in any case, at the end of the import procedure.

Important: Be careful when using the REPLACE keyword. When
you replace the values of a dimension, all variables and relations in
the target workspace dimensioned by it are affected. When a
variable or relation is not being imported at the same time,
replacing the values of one of its dimensions could result in the loss
of its data.

IMPORT

GET to IMPORT 14-49

When you define a conjoint or composite that uses an index type other than the
default, the IMPORT LIST command displays the index type. When you use the
default index type (HASH for conjoints, BTREE for composites), that information is
not displayed.

EXPORT (to EIF) sends the list to the current outfile. When you specify LIST ONLY,
you get only the listing without actually importing anything.

ONLY
Causes Oracle OLAP to place the correct values in the EIFNAMES and EIFTYPES
options without actually importing them. However, Oracle OLAP does not produce
a full listing of the object definitions. To produce the list, specify the LIST keyword
before the ONLY keyword.

DATA
Indicates that, for objects that already exist in the target workspace, IMPORT should
update only the data associated with those objects. For formulas that already exist,
IMPORT updates their EQ expressions. Objects that IMPORT creates in the target
workspace are created with their full definitions, as well as any associated data. You
can specify both DATA and DFNS, but when neither is specified, the default is
DATA.

DFNS
Indicates that, for objects that already exist in the target workspace, IMPORT should
just update definitions and leave data unchanged. The components of the definition
affected by IMPORT DFNS are: LD Command, VNF, and PROPERTY. Objects that
IMPORT creates in the target workspace still get their data. You can specify both
DATA and DFNS, but when neither is specified, the default is DATA.

UPDATE
Indicates that IMPORT should execute an UPDATE command after importing each
object. This can be useful when importing large EIF files that would otherwise cause
Oracle OLAP to run out of memory. To control the frequency of updates, use the
EIFUPDBYTES option.

NOPROP
Prevents any properties that you have assigned to each object from being read from
the EIF file.

NASKIP
Specifies that composite tuples (indexes) that contain only NA data should not be
imported into the target workspace. This argument has no effect on tuples that
already exist in the workspace.

IMPORT (from EIF)

14-50 Oracle OLAP DML Reference

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when importing text data from
the file specified by file-id. Normally, an EIF file contains its own specification of its
character set, so that this argument is not needed. However, when the EIF file
specifies the character set incorrectly or is missing the character set specification,
then you must use this argument to specify the character set correctly. For
information about the character sets that you can specify, see the Oracle Database
Globalization Support Guide.

This argument must be the last one specified. When this argument is omitted, and
Oracle OLAP is unable to determine the character set from the EIF file itself, then
Oracle OLAP imports the data using the database character set, which is recorded
in the NLS_LANG option.

Notes

EIF Options
A number of options determine how EIF files are imported and exported. These
options are listed in Table 12–1, " EIF Options" on page 12-7.

Separate IMPORT Commands
The MATCH, APPEND, REPLACE, DATA, and DFNS arguments you specify affect
all the objects you name to be imported. When you want to treat different objects in
different ways, use separate IMPORT commands.

Relations
When you are importing a relation, IMPORT also brings in the definition and values
for the related dimension as well.

Concat Dimensions
When you import a concat dimension into an analytic workspace and the concat
dimension and none of its component dimensions already exist in the analytic
workspace, then Oracle OLAP imports the concat dimension, its component
dimensions, and the definitions of all of the dimensions.

When you import a concat dimension that does not already exist but one or more of
its component dimensions already exist in the analytic workspace, then Oracle
OLAP imports the concat dimension and any new component dimensions and their
definitions. For the component dimensions that already exist in the analytic
workspace, Oracle OLAP imports the component dimensions as it does other

IMPORT

GET to IMPORT 14-51

dimensions, obeying any MATCH, APPEND, REPLACE specifications in the
IMPORT command.

When you import a concat dimension with a name and a definition of a concat
dimension that already exists in the analytic workspace, then Oracle OLAP imports
the concat dimension as it does other dimension.

When you import a concat dimension with the same name as one that already exists
in the analytic workspace but the definition of the imported concat dimension is
different than the definition of the existing concat dimension, then the definition of
the existing concat dimension does not change and the definitions of the component
dimensions of the existing concat dimension do not change. Only the component
dimensions of the imported concat dimension that are also component dimensions
of the existing concat dimension are imported. When the imported concat
dimension does not share any component dimensions with the existing concat
dimension, an error condition occurs. When you are importing any objects that are
dimensioned by the concat dimension, then Oracle OLAP imports only the values
of the object that correspond to the values of the imported dimensions.

Dimension Surrogates
You can import or export a dimension surrogate to or from an Express Interchange
File (EIF). In those operations, a dimension surrogate behaves like a variable that is
dimensioned by the dimension of the surrogate. In an EXPORT operation, the
dimension for which the surrogate is defined is also exported. In an IMPORT
operation, the dimension for which the surrogate is defined is imported but you can
use the MATCH, STATUS, DATA, DFNS, APPEND, and REPLACE keywords to
affect which values are imported.

Importing a dimension surrogates also imports the definition and values for the
dimension for which it is a surrogate. When a dimension with the same definition
already exists in the current analytic workspace, then the effects of the IMPORT
keywords such as MATCH, APPEND, REPLACE, DATA, and DFNS are the same
for the surrogate as they would be for a variable dimensioned by the dimension.
When the name and definition of the imported surrogate is the same as a dimension
surrogate that already exists in the current analytic workspace and when the
imported surrogate has a value that is identical to a value in the existing surrogate,
an error condition occurs.

You can import an INTEGER dimension surrogate when no object of the same name
exists in the current analytic workspace or when you use the DFNS keyword.
Importing an INTEGER dimension surrogate affects existing INTEGER dimension
surrogates when the implicit importing of the dimension of the imported surrogate
changes the values of the existing dimension.

IMPORT (from EIF)

14-52 Oracle OLAP DML Reference

APPEND Versus REPLACE
When you are importing an INTEGER dimension that already exists in your target
workspace, the following considerations apply.

■ When the imported INTEGER dimension is larger than the existing one,
APPEND and REPLACE have the same effect. The dimension will end up with
the number of values in the larger, imported dimension.

■ When the imported INTEGER dimension is smaller, REPLACE drops the
appropriate dimension values from the end of the dimension, along with any
associated data, while APPEND leaves the existing dimension values alone.

INTEGER and SHORTINTEGER Data Types
The IMPORT command translates between the INTEGER and SHORTINTEGER
data types. When you are importing a variable with one of these data types from an
EIF file and it already exists in your workspace as the other type, Oracle OLAP
converts the data automatically. The maximum SHORTINTEGER value is 32,767
and the minimum is -32,767. When you import an INTEGER value that exceeds
these limits into a SHORTINTEGER variable, the result is NA.

TEXT and ID Data Types
When the EIF file you are importing contains ID data that you want to import into
TEXT dimensions, variables, relations, or valuesets, Oracle OLAP automatically
converts the ID data to text during the import process.

Existing Programs and Models
When you are importing a program or model that already exists in your workspace,
you must specify DFNS. A program or a model is a definition only; it does not have
any data. The default option DATA does not import the source code when it already
exists.

When you define a program, you may specify a data type or a dimension name,
which is used when the program is called as a function. When you specify a data
type, it determines the data type of the return value. When you specify a dimension
name, the return value is a single value of that dimension. When you import an
existing program, the data type or the dimension in the imported program
definition and the existing program definition must match. Otherwise, Oracle
OLAP produces an error message.

IMPORT

GET to IMPORT 14-53

PERMIT Commands
The PERMIT commands associated with an object are imported with the object
definition. You can see them when you describe the object. However, permission
conditions are not evaluated when the object is imported.

When an object with the same name already exists in the target workspace and you
specify the DFNS keyword, the PERMIT commands for the object are updated.
However, you must execute a PERMITRESET to put the new permission into effect.
When an object with the same name already exists in the target workspace and you
do not specify the DFNS keyword, the PERMIT commands for the object are not
updated. When there is no pre-existing object in the target workspace, and you
import with or without the DFNS keyword, the PERMIT commands for the object
are updated, but you must execute a PERMITRESET to put the new permission into
effect. (See the PERMIT command.)

When you export and import an entire workspace, then update, detach, and
reattach the workspace, Oracle OLAP will ensure that all the permissions that were
in effect before exporting are in place in the target workspace.

Permission Programs: Copying to and from Analytic Workspaces When you
export PERMIT_READ or PERMIT_WRITE programs which are hidden, they are
empty when imported. Additionally, when you outfilePERMIT_READ or
PERMIT_WRITE programs which are hidden, then they are empty when infiled.

Reducing Workspace Size
You can use IMPORT in conjunction with the EXPORT command to compact an
entire workspace at once. To do this, first export the workspace and then import it
under a different name. You can then delete the old workspace and rename the new
one with the original name.

Preserving Conjoint Type
When you export a HASH, BTREE, or NOHASH conjoint dimension to an EIF file,
the conjoint type is exported along with the definition in the EIF file. When you
then import the conjoint dimension into a workspace, Oracle OLAP preserves the
conjoint type when you import into a new dimension or a dimension already using
that conjoint type. When you import the dimension into an existing dimension that

Tip: Rename PERMIT_READ and PERMIT_WRITE programs
before using EXPORT (to EIF) or OUTFILE After copying the
programs to an analytic workspace using IMPORT (to EIF) or
INFILE.

IMPORT (from EIF)

14-54 Oracle OLAP DML Reference

does not use the same conjoint type, Oracle OLAP does not preserve the original
conjoint type that was saved in the EIF file.

EIFBYTES, EIFNAMES, and EIFTYPES
You can use the EIFBYTES option to learn the number of bytes read or written by
the most recent IMPORT (EIF File) command. You can use the EIFNAMES option to
get a list of the names of all the objects imported by the most recent IMPORT
command and use the EIFTYPES option to learn the types of objects in that list.

The following format causes IMPORT to store information about the specified
objects into the EIFNAMES and EIFTYPES options without actually importing the
objects. IMPORT places a list of the object names specified by the IMPORT
command in the EIFNAMES option. IMPORT also places a list of the type of each
object listed in EIFNAMES into the EIFTYPES option. You may use the LIST
keyword to send to the current outfile a full listing of the object definitions.

IMPORT name FROM EIF FILE file-id [LIST] ONLY

For more information, see the entries for EIFBYTES, EIFNAMES, and EIFTYPES.

Unnamed Composites
When you define variables or other objects with the SPARSE keyword in the
dimension list, Oracle OLAP creates an unnamed composite that corresponds to the
SPARSE dimension list. When you export or import an object with the unnamed
composite in its definition, the composite is automatically exported or imported
with the object. Since the unnamed composite is not a regular workspace object, you
cannot import or export it independently.

Variable Segments Specified with SEGWIDTH
When you use the SEGWIDTH keyword of the CHGDFN command to specify the
length of variable segments, segment information cannot be exported and imported
automatically. You can save your SEGWIDTH settings by exporting the entire
workspace, creating a new workspace, importing only the workspace objects into
the new workspace, specifying segmentation, and then importing the variable data
into the new workspace.

TEXT and NTEXT
You can export and import TEXT and NTEXT values. Both data types can be
exported to a single EIF file.

■ Exported TEXT values are stored in the EIF file using the character set specified
for the file in the EXPORT (to EIF) command.

IMPORT

GET to IMPORT 14-55

■ Exported NTEXT values are stored in the EIF file as NTEXT (UTF8 Unicode).

■ NTEXT values imported into TEXT objects are converted into the database
character set. This can result in data loss when the NTEXT values cannot be
represented in the database character set.

■ TEXT values imported into NTEXT objects are converted into the NTEXT (UTF8
Unicode) character set.

Examples

Example 14–15 Importing Dimensions from an EIF File

This example shows how to import the contents and dimensions of two variables
into the current Oracle OLAP workspace from a disk file called finance.eif in
the current directory object.

IMPORT actual budget FROM EIF FILE 'finance.eif'

Example 14–16 IIMPORTING a Concat Dimension

This example shows the result of importing a concat dimension that has a definition
that is different than a concat dimension that already exists in the current analytic
workspace. Suppose that the DESCRIBE command returns the following definitions
for dimensions and variables in the current analytic workspace.

DEFINE city TEXT DIMENSION
DEFINE state TEXT DIMENSION
DEFINE country TEXT DIMENSION
DEFINE locality DIMENSION CONCAT (city, state)
DEFINE geog DIMENSION CONCAT (locality, country)
DEFINE sales INTEGER VARIABLE <geog>

The following statement reports the sales data.

REPORT sales

The preceding statement produces the following results.

GEOG SALES
------------------- -----
<city: Boston> 1000
<city: Springfield> 2000
<state: Ma> 3000
<country: Usa> 4000

IMPORT (from EIF)

14-56 Oracle OLAP DML Reference

The DESCRIBE command returns the following definitions for dimensions and
variables in the diffconcat.eif file.

DEFINE CITY TEXT DIMENSION
DEFINE REGION TEXT DIMENSION
DEFINE COUNTRY TEXT DIMENSION
DEFINE GEOG DIMENSION CONCAT (CITY, REGION, COUNTRY)
DEFINE SALES INTEGER VARIABLE <GEOG>

The following statement reports the sales data for the dimension values in the
analytic workspace from which you exported the concat dimension that is in the
diffconcat.eif file.

REPORT sales

The preceding statement produces the following results.

GEOG SALES
------------------ -----
<city: Boston> 1111
<city: Worcester> 2222
<region: East> 3333
<country: Usa> 4444

The following statement imports the sales variable from the diffconcat.eif
file and implicitly imports the concat dimension geog. The APPEND keyword
causes Oracle OLAP to add the value Worcester to the city dimension. After
that, it imports new values for sales that correspond to <city: Boston>,
<city: Worcester>, and <country: Usa>.

IMPORT sales FROM EIF FILE diffconcat.eif APPEND

After the import operation, reporting the SALES values produces the following
results.

GEOG SALES
------------------- -----
<city: Boston> 1111
<city: Springfield> 2000
<city: Worcester> 2222
<state: Ma> 3000
<country: Usa> 4444

IMPORT

GET to IMPORT 14-57

IMPORT (from text)

You can use the IMPORT (from text) command to copy data from a text file into an
Oracle OLAP worksheet object. A worksheet's rows are similar to the lines of a text
file.

IMPORT is commonly used to copy text files into an analytic workspace from other
software products.

Normally, you should use the FILEREAD command for text files instead of
IMPORT. FILEREAD is more efficient and does not require a worksheet object or
separate handling of each column of data.

Syntax
IMPORT worksheetname FROM [TEXT|STRUCTURED|RULED [RULER ruler-exp] -

PRN FILE file-id [STOPAFTER n] [TEXTSTART schar] [TEXTEND echar] -

[DELIMITER dchar] [NLS_CHARSET charset-exp]

Arguments

worksheetname
A text expression that specifies the name of an Oracle OLAP worksheet object.
When you have not previously defined worksheetname in your workspace, IMPORT
will define it for you automatically, using the default dimensions WKSCOL and
WKSROW. Any previous contents of worksheetname will be overwritten. In any one
IMPORT command, you can import only one worksheetname from one text file.

FROM . . . PRN
Indicates that you want to import your Oracle OLAP worksheet from a text file.

TEXT
Imports a whole source file as-is into an Oracle OLAP worksheet on a line-by-line
basis. The source file is copied into a single wide worksheet column with a data
type of TEXT. The column is always column 1 of the worksheet. Each line in the
source file is imported into a separate cell on a separate row in the first column,
using as many rows as there are lines in the source file. A blank line in the source
file produces a TEXT value with zero characters (a null) in the corresponding row of
the worksheet's first column. (TEXT is the default.)

IMPORT (from text)

14-58 Oracle OLAP DML Reference

STRUCTURED
Imports a source file into a target worksheet on a cell-by-cell basis, automatically
performing three functions:

1. Each line of characters in the source file is copied into a single row of the target
worksheet.

2. Each group of characters on a line in the source file is copied into a separate
TEXT cell on the target worksheet row. A group of characters is defined by two
conditions: an uninterrupted (except by a decimal point) sequence of numbers,
or enclosure in double quotes. This means that numbers containing commas to
mark off thousands will be split up into different cells unless the commas are
first removed.

3. Any non-numeric characters not enclosed in double quotes are ignored, except
minus signs that immediately precede numbers and so are copied into the same
TEXT cell along with the numbers. (Be sure there are no spaces between a
minus sign and its number in the source file.)

A blank line in the source file results in an NA in the first cell of the corresponding
worksheet row.

When your file format does not conform to the pattern described here, you can use
the TEXTSTART, TEXTEND, and DELIMITER keywords. These arguments let you
customize the delimiters IMPORT uses to identify the start and end of each field.

RULED
Indicates import of a file on a column-by-column basis into worksheet cells of
various data types. Every line in the source file must follow the same pattern of data
along its length as every other line in the file. You describe this data pattern to
Oracle OLAP in the one-line ruler-exp using the RULER keyword. IMPORT loops
over each line in the source file and copies its contents into a corresponding pattern
of cells on a row of the target worksheet, one row for each line. As ruler-exp loops
over successive lines in the source file, it adds row after row to the target worksheet,
building vertical columns of similar cells as it goes along. Status messages are sent to
the current outfile every 20 rows, starting with the message 20 rows processed.

When the source file contains records that follow several different patterns of
character groups, you will have to use the less exacting options, STRUCTURED or
TEXT, to import the data.

IMPORT

GET to IMPORT 14-59

RULER ruler-exp
Used only with the RULED keyword to specify the data type, length, and repeat
count of each character group in the record pattern of the source file. Ruler-exp
consists of a list of character-group specifications. Each character-group
specification must be separated by a comma (,), by backslash N (\n), or by a
space(). You do not have to include enough specifications to account for all the
characters in the basic record pattern (or line pattern) of the source file; RULER will
step to the next record as soon as it runs out of specifications on each line,
regardless of how far it is from the end of the current record. Remember to enclose
literal text in single quotes.

The specifications for groups of characters are of three types: T for TEXT, A for
numeric (INTEGER or DECIMAL), and S for skip or ignore. The formats for these
types are shown in Table 14–1, " Character-Group Specifications for IMPORT from
Text" on page 14-59.

Table 14–1 Character-Group Specifications for IMPORT from Text

Format Description

[mm]Tnn Specifies that Oracle OLAP should copy mm groups (default = 1) of nn
characters (bytes) apiece as TEXT. Specifying a group (or groups) of 0
characters leaves an empty cell(s) in the corresponding position in the
worksheet. Each group may consist of up to 400098 characters. Trailing blanks
are stripped.

[mm]Ann Specifies that Oracle OLAP should copy mm groups (default = 1) of nn
characters (bytes) apiece and try to convert each group to a number. When a
character group cannot be converted to a number, it is copied into a TEXT cell
and any trailing blanks are stripped. A valid number includes anything you can
type for a GET(DECIMAL) function except NA.

Commas embedded in a number before a period (decimal point) are ignored.
This means that multiple numbers separated only by commas or two numbers
separated only by a single period are treated as parts of a single number (when
you want the numbers treated separately, insert spaces between them in the
source file). Leading dollar signs ($) and trailing percent signs (%) are ignored,
and leading and trailing spaces are stripped. Multiple periods are treated as
excess decimal points and ignored (to undo the effects of dotfill). For
example,...17... is treated as though the field is 17.

Numbers preceded by a hyphen, or a hyphen and spaces, and numbers
enclosed in parentheses, are treated as negative. Specifying a group (or groups)
of 0 (zero) characters leaves an empty cell (or cells) in the corresponding
position in the worksheet. Each group may consist of up to 4000 characters.

IMPORT (from text)

14-60 Oracle OLAP DML Reference

FILE file-id
Identifies the file you want to import. File-id is a text expression that represents the
name of the file. The name must be in a standard format for a file identifier.

STOPAFTER n
Specifies that no more than n records should be read from the file. When
STOPAFTER is omitted, Oracle OLAP will read the whole file.

TEXTSTART schar
The schar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the start of a text field in a structured file. The
default character is a double quote (").

TEXTEND echar
The echar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the end of a text field in a structured file. The
default character is a double quote (").

DELIMITER dchar
The dchar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the general field delimiter in a structured file.
Oracle OLAP uses the general field delimiter to identify both numeric and text
fields. The default character is a comma (,).

NLS_CHARSET charset-exp
Specifies the character setthat Oracle OLAP will use when importing text data from
the file specified by file-id. This allows Oracle OLAP to convert the data accurately
from that character set. This argument must be the last one specified. When this
argument is omitted, and Oracle OLAP is unable to determine the character set
from the file itself, then Oracle OLAP imports the data in the database character set,
which is recorded in the NLS_LANG option.

[mm]Snn Specifies that Oracle OLAP should skip or ignore mm groups of nn characters
(bytes). The limit for nn is 32,767. (You would probably only use mm to expand
this limit to handle a very long record.)

Table 14–1 (Cont.) Character-Group Specifications for IMPORT from Text

Format Description

IMPORT

GET to IMPORT 14-61

Notes

WKSROW and WKSCOL Dimensions
The WKSROW (the default worksheet row) dimension of an Oracle OLAP worksheet
corresponds to the lines of a text file. The WKSCOL (the default worksheet column)
dimension of a worksheet divides each row into cells that can be used to separate
data types when there are potentially several types on each line of the source file.
WKSROW and WKSCOL are INTEGER dimensions with values of 1, 2, 3, and so on.

Minimum Worksheet Size
Oracle OLAP sets up a minimum-size worksheet that is 63 cells square, regardless
of whether or not all the cells are used. When the source text file requires an Oracle
OLAP worksheet larger than the minimum, IMPORT automatically increases the
dimension values of WKSCOL and WKSROW as needed.

Importing Numbers
When importing a number from a text file, IMPORT gives it an INTEGER data type.

File Transfer to Another Computer
When the file you are importing originated on another computer, ensure that its
character set is appropriate. When you transfer a text file to another computer, the
communications program handling the transfer makes any necessary character
translations; for example, from ASCII to EBCDIC. You should set the parameters of
the transfer program so that the resulting file is in the correct character set for the
receiving computer.

Examples

Example 14–17 Importing Columns Without the RULER Keyword

Suppose you have a file named abctxt in your current directory. It has 10
five-digit groups of integers, followed by a group of 20 characters of text. To import
this file into an Oracle OLAP worksheet called sheet1, use the following
statement.

IMPORT sheet1 FROM RULED PRN FILE 'abctxt' ruler '10a5, t20'

The actual format for the file name must follow the conventions for your operating
system.

IMPORT (from text)

14-62 Oracle OLAP DML Reference

Example 14–18 Importing Columns with the RULER Keyword

Suppose a file called mix has no line delimiters, with records containing 100
characters apiece. Each record has the character distribution illustrated in the
following table.

To import this file into an Oracle OLAP worksheet called sheet2, use the following
statement.

DEFINE sheet2 WORKSHEET temp
IMPORT sheet2 FROM RULED PRN FILE 'mix' RULER -

's10, a7, s11, 2t1, a5'

Character Content

1 - 10 To be ignored

11 - 17 Decimal number

18 - 28 To be ignored

29 - 30 Two single-character code

31 - 35 Integer

36 - 100 To be ignored

IMPORT

GET to IMPORT 14-63

IMPORT (from spreadsheet)

You can use the IMPORT (from spreadsheet) command to copy data (not formulas)
from a spreadsheet file into an Oracle OLAP worksheet object. A worksheet's
dimensions are similar to the columns and rows of a spreadsheet. IMPORT always
copies an entire spreadsheet file at a time.

IMPORT is commonly used to copy data from other software products (for
example, a Lotus spreadsheet) into an Oracle OLAP workspace.

Syntax
IMPORT worksheetname FROM source [INTO workspace]

where:

source is one of the following:

WKS FILE file-id [NLS_CHARSET charset-exp]

WK1 FILE file-id [NLS_CHARSET charset-exp]

WRK FILE file-id [NLS_CHARSET charset-exp]

WR1 FILE file-id [NLS_CHARSET charset-exp]

DIF FILE file-id [NLS_CHARSET charset-exp]

CSV FILE file-id [STOPAFTER n|DELIMITER dchar|NLS_CHARSET charset-exp]

Arguments

worksheetname
An Oracle OLAP worksheet object. In any one IMPORT command, you can import
only one worksheetname from one spreadsheet file. You can specify a qualified object
name for the worksheet; however, when you specify the INTO worksheet argument,
the target workspace specified must be identical. See the INTO workspace argument
for information about where the worksheet object will be imported.

IMPORT (from spreadsheet)

14-64 Oracle OLAP DML Reference

FROM WKS
FROM WK1
FROM WRK
FROM WR1
FROM DIF
Indicates that you want to import your Oracle OLAP worksheet from a 1-2-3 file,
Version 1 (WKS) or Version 2 (WK1); a Symphony file, Version 1.0 (WRK) or Version 1.1
(WR1); or a data interchange format file (DIF).

Oracle OLAP does not recognize numbers in E format (exponential notation) in DIF
files.

INTO workspace
A workspace name that identifies the attached workspace into which data will be
imported. When worksheetname exists in the specified workspace, then its data will
be overwritten by the imported data. When worksheetname does not already exist,
IMPORT creates it in the specified workspace. IMPORT ignores an identically
named worksheet when it exists in another attached workspace.

When you do not specify this argument, then Oracle OLAP does the following:

■ When you have not previously defined worksheetname in an attached
workspace, IMPORT defines it automatically in the current workspace using the
default dimensions WKSCOL and WKSROW.

■ When worksheetname already exists in any attached workspace, IMPORT
overwrites the data it contains with the imported data.

FILE file-id
Identifies the file you want to import. The file-id argument is a text expression that
represents the name of the file. The name must be in a standard format for a file
identifier.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when importing text data from
the file specified by file-id. This allows Oracle OLAP to convert the data accurately
from that character set. This argument must be the last one specified. When this
argument is omitted, and Oracle OLAP is unable to determine the character set
from the worksheet itself, then Oracle OLAP imports the data in the database
character set, which is recorded in the NLS_LANG option.

FROM CSV FILE file-id [STOPAFTER n] [DELIMITER dchar]
Indicates that you want to import from a source file on a cell-by-cell basis. See "CSV
Import" on page 14-65.

IMPORT

GET to IMPORT 14-65

STOPAFTER n specifies that no more than n records should be read from the file.
When STOPAFTER is omitted, Oracle OLAP will read the whole file.

DELIMITER dchar identifies the single character (dchar) that you want Oracle OLAP
to interpret as the general field delimiter. The default value is comma.

Notes

WKSCOL and WKSROW Dimensions
The default dimensions of an Oracle OLAP worksheet are WKSCOL and WKSROW,
which correspond to the columns and rows of a spreadsheet. WKSCOL and
WKSROW are INTEGER dimensions with values of 1, 2, 3, and so on. When these
dimensions already exist in an attached workspace but not in the current
workspace, the IMPORT command will fail when it tries to create these dimensions.
You can prevent this problem by first defining the worksheet with different
dimensions. (See "Worksheet Dimensions" on page 10-85 for more information.)

Addition of Cells when Needed
When the source spreadsheet contains more cells than are defined by the
dimensions of the worksheet, IMPORT automatically adds dimension values to
provide the required number of cells.

Empty and NA Cells
IMPORT merges the source file with the worksheet on a cell-by-cell basis. Cells
from the source file that are not empty, even when they just contain NA, overwrite
the contents of the corresponding cells in the worksheet; empty cells in the source
file do not overwrite the worksheet; source-file cells beyond the end of the current
worksheet are appended to it so that no data is discarded.

Numbers in DIF Files
When importing any number from DIF files, IMPORT gives it a DECIMAL data
type.

CSV Import
The CSV import option automatically performs the following functions when
importing from a source file into the cells of a worksheet:

■ Each line of characters in the source file is copied into a single row in the target
worksheet.

IMPORT (from spreadsheet)

14-66 Oracle OLAP DML Reference

■ Each group of characters on a line in the source file is copied into a separate
TEXT cell in the target worksheet row, and groups are separated by the
delimiter character.

When a group of characters is inside double quotation marks:

■ A delimiter character found in this group is treated as a literal.

■ When a double quotation mark occurs within this group, it must be followed by
another double quotation mark.

■ A linefeed (\n) found within the group is ignored.

■ Spaces or tabs found before a starting quotation mark and after an end
quotation mark are ignored.

TEXT, not NTEXT
All imported text is rendered in the database character set in the worksheet object.
The NTEXT data type is not supported in worksheets.

Examples

Example 14–19 Importing a DIF File

This example shows how to import a spreadsheet in DIF format in a file called
mortgage.dif. We define the worksheet first as a temporary object, which saves
memory and storage space. IMPORT would define the worksheet sheet1
automatically when it did not already exist. When it had already been used in a
previous IMPORT command, any data in it would be overwritten with new data.

DEFINE sheet1 WORKSHEET TEMP
IMPORT sheet1 FROM DIF FILE 'mortgage.dif'

INF_STOP_ON_ERROR to LIKEESCAPE 15-1

15
INF_STOP_ON_ERROR to LIKEESCAPE

This chapter contains the following OLAP DML statements:

■ INF_STOP_ON_ERROR

■ INFILE

■ INFO

■ INFO (FORECAST)

■ INFO (MODEL)

■ INFO (PARSE)

■ INFO (REGRESS)

■ INITCAP

■ INLIST

■ INSBYTES

■ INSCHARS

■ INSCOLS

■ INSLINES

■ INSTAT

■ INSTR

■ INSTRB

■ INTPART

■ IRR

■ ISDATE

15-2 Oracle OLAP DML Reference

■ ISVALUE

■ JOINBYTES

■ JOINCHARS

■ JOINCOLS

■ JOINLINES

■ KEY

■ LAG

■ LAGABSPCT

■ LAGDIF

■ LAGPCT

■ LARGEST

■ LAST_DAY

■ LCOLWIDTH

■ LD

■ LEAD

■ LEAST

■ LIKECASE

■ LIKEESCAPE

INF_STOP_ON_ERROR

INF_STOP_ON_ERROR to LIKEESCAPE 15-3

INF_STOP_ON_ERROR

The INF_STOP_ON_ERROR option specifies the behavior of Oracle OLAP when an
error is reached when reading from a file using the INFILE command.

Syntax
INF_STOP_ON_ERROR = {YES|NO}

Arguments

YES
When an error occurs, report the error and stop reading from the file.

NO
When an error occurs, report the error and continue reading from the file.

Example

Example 15–1 Using INF_STOP_ON_ERROR with DBMS_EXECUTE

Assume that you have an file named attachmyaw.inf that includes the following
OLAP DML statement that detaches an analytic workspace named myaw

AW DETACH myaw

Assume that the myaw workspace is not attached when a SQL application issues the
DBMS_AW.EXECUTE statement with the OLAP DML INFILE command to read the
attachmyaw.infinfile file.

INF_STOP_ON_ERROR

15-4 Oracle OLAP DML Reference

When the INF_STOP_ON_ERR option is set to NO then the error Analytic
workspace MYAW is not attached is reported, Oracle OLAP continues to
read the file, and the DBMS_AW.EXECUTE procedure completes successfully.

DBMS_AW.EXECUTE('INF_STOP_ON_ERR = NO ');
DBMS_AW.EXECUTE('INFILE attachmyaw.inf');

The current directory is MYDIR.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.

PL/SQL procedure successfully completed.

When the INF_STOP_ON_ERR option is set to YES then the error Analytic
workspace MYAW is not attached is reported, Oracle OLAP stops reading
the file, and the DBMS_AW.EXECUTE procedure aborts.

DBMS_AW.EXECUTE('INF_STOP_ON_ERR = YES ');
DBMS_AW.EXECUTE('INFILE attachmyaw.inf');

The current directory is MYSPL.
DECLARE
 *
ERROR at line 1:
ORA-35166: (ORA-34344) Analytic workspace MYAW is not attached.
ORA-06512: at "SYS.DBMS_AW", line 27
ORA-06512: at "SYS.DBMS_AW", line 115
ORA-06512: at line 8

INFILE

INF_STOP_ON_ERROR to LIKEESCAPE 15-5

INFILE

The INFILE command causes Oracle OLAP to read statement input from a specified
file.

Syntax
INFILE {file-id|EOF} [NOW] [NLS_CHARSET charset-exp]

Arguments

file-id
The name of a file from which to read input. File-id is a text expression that
represents the name of the file. The name must be in a standard format for a file
identifier.

The input file must contain only OLAP DML statements, along with appropriate
responses to any prompts generated by the statements. Each statement or response
must appear on a separate line in the file.

EOF
Terminates the reading of input from the current file and causes Oracle OLAP to
resume reading input from the location from which the INFILE command was
executed. Use of INFILE EOF is optional. See "About the Input File" on page 15-6
and "INFILE with Both NOW and EOF" on page 15-7.

NOW
Indicates that Oracle OLAP should open the input file specified in the INFILE and
read its statements immediately upon encountering the INFILE instead of waiting
until the program containing the INFILE is finished. This has the effect of nesting
the input file's statements within the program. See "INFILE with Both NOW and
EOF" on page 15-7. This argument must be specified after file-id.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when reading data from the
file specified by file-id. This allows Oracle OLAP to convert the data accurately into
the current character set, as identified by the NLS_LANG option. This argument
must be specified after file-id. When this argument is omitted, then Oracle OLAP
handles the data in the file as having the database character set, which is recorded
in the NLS_LANG option.

INFILE

15-6 Oracle OLAP DML Reference

Notes

File Reading and Writing Options
A number of options are important during file read and write operations. These
options are listed in Table 15–1, " File Reading and Writing Options" on page 15-6.

About the Input File
When the end of the input file is reached, Oracle OLAP resumes reading input from
the location from which the INFILE command was executed. This could be another
input file. You do not need to end the input file with the statement INFILE EOF.

INFILE ignores trailing blanks at the end of a line, or between the last text on a line
and a continuation mark. INFILE also ignores blank lines.

When you use the NOW keyword and the input file ends with a continued
statement, the statement is ignored. For example, if the file ends with "show - ,"
Oracle OLAP ignores the SHOW command.

Using INFILE in a Program
When you include an INFILE command without the NOW keyword in a program,
the INFILE command is not executed until the program has finished executing. In a
nested program, it is not executed until all the programs involved have finished
executing. Also, when several INFILE commands have been executed by a program,
the input files are read in the opposite order from which they were specified.

For example, assume that program.a calls program.b which calls program.c,
and each program contains two INFILE commands, one before and one after the

Table 15–1 File Reading and Writing Options

Statement Description

ECHOPROMPT An option that determines whether or not input lines and error
messages should be echoed to the current outfile.

INF_STOP_ON_ERROR An option that specifies the behavior of Oracle OLAP when an
error is reached when reading from a file using the INFILE
command

ESCAPEBASE An option that contains the type of escape that is produced by
the INFILE keyword of the CONVERT function.

OUTFILEUNIT (Read-only) An option that contains the file unit number of the
current OUTFILE destination, set by the last OUTFILE
command.

INFILE

INF_STOP_ON_ERROR to LIKEESCAPE 15-7

call to the next program (as illustrated in the following code). In this case, the order
of execution is: a2, b2, c2, c1, b1, a1.

program.a
INFILE a1
"

program.b
INFILE b1
"

program.c
INFILE c1
INFILE c2

"
INFILE b2

"
INFILE a2

When you include an INFILE command in a program with the NOW keyword, the
INFILE command executes immediately. However, INFILE with the NOW keyword
requires more space than usual on the program stack. To conserve stack space, you
should use the NOW keyword only when it is necessary.

INFILE with NOW Outside of Programs
The NOW keyword is intended for use within programs, but you can use it at any
time. When you use it when the input file would not ordinarily be deferred, the
NOW keyword has no visible effect. However, since it requires extra stack space,
you should not use it in these situations.

INFILE with Both NOW and EOF
When you use both the NOW and EOF keywords, the NOW keyword is ignored.

Displaying Infiled Statements and Responses
When you want the statements from a disk file to be copied to a debugging file as
they are executed, see DBGOUTFILE.

Permission Programs: Copying to and from Analytic Workspaces When you
export PERMIT_READ or PERMIT_WRITE programs which are hidden, they are

INFILE

15-8 Oracle OLAP DML Reference

empty when imported. Additionally, when you outfile PERMIT_READ or
PERMIT_WRITE programs which are hidden, then they are empty when infiled.

Examples

Example 15–2 Reading the Input File Immediately

The following line of code in a program causes the file called newdefs to be read in
immediately.

INFILE newdefs NOW

Tip: Rename PERMIT_READ and PERMIT_WRITE programs
before using EXPORT (to EIF) or OUTFILE After copying the
programs to an analytic workspace using IMPORT (from EIF) or
INFILE.

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-9

INFO

The INFO function obtains information that has been produced by the FORECAST,
PARSE, or REGRESS command or that has been produced for a model in your
analytic workspace.

Because the syntax of the INFO function is different depending on the type of
information being obtained, four separate entries are provided:

■ INFO (FORECAST)

■ INFO (MODEL)

■ INFO (PARSE)

■ INFO (REGRESS)

INFO (FORECAST)

15-10 Oracle OLAP DML Reference

INFO (FORECAST)

The INFO (FORECAST) function obtains information produced by the FORECAST
command and stored internally by Oracle OLAP. Through the use of keywords,
INFO lets you extract specific pieces of information about the forecast you have
calculated.

Return Value
The return value depends on the keyword you use, as described in the tables in this
entry. INFO returns NA when you use an index that is out of range or for any choice
that does not apply to the forecasting method last used. For example, when your
forecast formula has two coefficients and you request the twelfth one, INFO returns
NA.

Syntax
INFO(FORECAST choice [index])

Arguments

FORECAST
Indicates that you want to obtain information produced by the FORECAST
command.

choice
The specific information you want. The choices available for FORECAST are listed
in Table 15–2, " Choices for All Methods", Table 15–3, " Choices for TREND and
EXPONENTIAL Forecasts", and Table 15–4, " Choices for WINTERS Forecasts".
Choices marked as indexed require the index argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, a trend equation might have several

Note: Before using INFO, familiarize yourself with
FORECAST.REPORTthat is a standard report of its results, which
may give you all the information you need. INFO is useful
primarily for creating customized reports or for performing further
analysis on the results.

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-11

coefficients. You would use index to specify which coefficient you want information
about. When you omit index for a choice that requires it, an error occurs.

Table 15–2 Choices for All Methods

Keyword Type Indexed? Meaning

AVAILABLE BOOL No Is there a computed forecast for which to
obtain information?

DEPENDENT TEXT No The variable or expression being forecast.

METHOD TEXT No The forecast method.

MAPE DEC No The mean absolute percent error (a measure
of goodness of fit).

LENGTH INT No The number of forecast periods calculated.

TIME TEXT No The dimension along which forecasting is
performed.

FCNAME TEXT No The name of the variable that contains the
fitted and forecasted values (NA when no
forecasts were saved).

Table 15–3 Choices for TREND and EXPONENTIAL Forecasts

Keyword Type Indexed? Meaning

FORMULA TEXT No The text of the forecasting equation.

NUMCOEFS INT No The number of coefficients.

COEFFICIENT DEC Yes The specified coefficient in the forecasting
equation; index specifies which one you want.

Table 15–4 Choices for WINTERS Forecasts

Keyword Type Indexed? Meaning

PERIODICITY INT No The number of periods in a seasonal cycle.

ALPHA DEC No The smoothing constant for the smoothed
data series.

BETA DEC No The smoothing constant for the seasonal
index series.

INFO (FORECAST)

15-12 Oracle OLAP DML Reference

Notes

Determining Results Availability
When you try to extract information without having calculated a forecast, INFO
produces an error. You can use the keyword AVAILABLE to determine whether any
results are currently available.

Examples

Example 15–3 Getting Forecast Information

In this example, suppose you forecasted sales.

The following statements limit the dimensions of the sales variable, then obtain
the formula for your forecast.

LIMIT product TO 'Sportswear'
LIMIT district TO 'Chicago'
LIMIT month TO 'Jan95' TO 'Dec96'
FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst time -
month sales
SHOW INFO(FORECAST FORMULA)

GAMMA DEC No The smoothing constant for the trend series.

STSMOOTHED DEC No The starting value of the smoothed data
series.

STSEASONAL DEC Yes The starting values for the seasonal index
series; index specifies which one you want.

STTREND DEC No The starting value for the trend series.

FCSMOOTHED TEXT No The variable that holds the smoothed data
series.

FCSEASONAL TEXT No The variable that holds the seasonal index
series.

FCTREND TEXT No The variable that holds the trend series.

Table 15–4 (Cont.) Choices for WINTERS Forecasts

Keyword Type Indexed? Meaning

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-13

These statements produce the following output.

87718.0009541865 * (1.005533834579 ** MONTH)

The next statement obtains the mean absolute percent error for your forecast.

SHOW INFO(FORECAST MAPE)

This statement produces the following output.

.17

INFO (MODEL)

15-14 Oracle OLAP DML Reference

INFO (MODEL)

The INFO (MODEL) function obtains information that is produced for the models
in your analytic workspace and stored internally by Oracle OLAP. Through the use
of keywords, INFO lets you extract specific pieces of information about the
structure of a compiled model or the status of a model that you have run in your
current session.

Return Value
The return value depends on the keyword you use, as described in the tables in this
entry. INFO returns NA when you use an index that is out of range or when you
request information that is not relevant. For example, if the model contains 5
statements and you request information about statement 6, INFO returns NA; or if
you specify the DIMENSION REFERENCE choice when the assignment target is
actually a variable, INFO returns NA.

Syntax
INFO(MODEL choice [index1 [index2 [index3]]])

where:

index is an argument specifies the result you want for a choice that can have several
different results. Depending on the keyword choice, you can supply one or more of
the following index arguments:

block-num
dimension-num
element-num
model-num
qualifier-num
source-num
stmnt-num

Note: Before using INFO, familiarize yourself with the reports
created by MODEL.COMPRPT, MODEL.DEPRT, and
MODEL.XEQRPT that might give you all the information you need.

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-15

Arguments

MODEL
Indicates that you want to obtain information about a model in your analytic
workspace. INFO returns information about the model that you have most recently
defined or considered in the current session (see the DEFINE MODEL and
CONSIDER commands).

choice
A keyword that specifies the information you want. The choices available for
models are listed in the following tables that represent different informational
categories:

■ Table 15–5, " INFO (MODEL) Choices to Retrieve General Information About
the Model"

■ Table 15–6, "INFO (MODEL) Choices to Retrieve Information about the
Structure of the Model"

■ Table 15–7, " INFO (MODEL) Choices to Retrieve Information about Target,
Sources, and Dependencies". These choices provide information about
statements that are equations. Equations have the form assignment target =
expression. The expression can refer to one or more data sources. Assignment
targets and data sources can be either variables or dimension values, and they
can have qualifiers that affect their dimensionality.

■ Table 15–8, "I NFO (MODEL) Choices to Retreive Information About Execution
Status". All of these choices (except XEQSTATUS) are relevant only after running
a model with a simultaneous block. When the current model has not been
compiled, Oracle OLAP returns an error when you use any choice except
AVAILABLE or NAME.

Each table consists of three columns that provide the following information:
keyword, data type of returned value; index argument associated with the
keyword.

INFO (MODEL)

15-16 Oracle OLAP DML Reference

Table 15–5 INFO (MODEL) Choices to Retrieve General Information About the Model

Keyword(s) Data Type Index Argument(s); Meaning

AVAILABLE BOOL (No arguments)

Is there a model for which information
is available?

NAME TEXT [MODEL model-num]

Without model-num (or with model-num
equal to 0), the name of the current
model. With model-num greater than 0,
the name of the included model that is
the specified model-num within the
current model.

COUNT STATEMENTS INT (No arguments)

The number of statements in the
current model. The count includes
comments, equations, and
DIMENSION and INCLUDE
commands (if any), it but does not
include the statements in an included
model.

STATEMENT TEXT stmnt-num

The text of statement stmnt-num.

SIMULTANEOUS BOOL (No arguments)

Does the current model contain a
simultaneous block?

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-17

Table 15–6 INFO (MODEL) Choices to Retrieve Information about the Structure of the
Model

Keyword(s) Data Type Index Argument(s); Meaning

COUNT ELEMENTS INT [BLOCK block-num]

Without block-num, the number of blocks in the
current model. With block-num, the total number of
statements and nested blocks within block
block-num in the current model.

When you request further information about a
particular element (for example, with the TYPE
ELEMENT choice), you always specify the block
number to which the element belongs as well as
the number of the element within that block.

TYPE ELEMENT TEXT element-num BLOCK block-num

Returns BLOCK or STATEMENT, depending on
whether element element-num of block block-num is
a nested block or a statement.

NUMBER BLOCK INT element-num BLOCK block-num

The block number of the nested block that is
element element-num of block block-num.

TYPE BLOCK TEXT block-num

Returns SIMPLE, STEP-FORWARD,
STEP-BACKWARD, or SIMULTANEOUS,
depending on the execution type of block
block-num.

COUNT DIMS INT [BLOCK block-num]

Without block-num, the number of model
dimensions of the current model. With block-num,
the number of step-forward, step-backward, or
simultaneous dimensions of block block-num
within the current model.

DIMENSION TEXT dimension-num [BLOCK block-num]

Without block-num, the name of model dimension
dimension-num of the current model. With
block-num, the name of the specified step-forward,
step-backward, or simultaneous dimension of
block block-num.

INFO (MODEL)

15-18 Oracle OLAP DML Reference

NUMBER STATEMENT INT element-num BLOCK block-num

The statement number of the statement that is
element element-num of block block-num.

The statement number refers to the position of the
statement within its own model. To request further
information about the statement (for example, with
the HIDDEN choice), its model must be the model
that you are currently considering.

HIDDEN BOOL stmnt-num

Has statement stmnt-num been masked by a
subsequent statement?

NUMBER MODEL INT element-num BLOCK block-num

The number of the included model from which the
statement that is element element-num of block
block-num is taken.

Table 15–7 INFO (MODEL) Choices to Retrieve Information about Target, Sources,
and Dependencies

Keyword(s) Data Type Index Argument(s); Meaning

COUNT SOURCES INT STATEMENT stmnt-num

The number of data sources in statement
stmnt-num within the current model.

TYPE REFERENCE TEXT STATEMENT stmnt-num [SOURCE source-num]

Without source-num, the object type of the
assignment target of statement stmnt-num. With
source-num, the object type of data source
source-num in statement stmnt-num. The object
type is VARIABLE when the reference is to a
variable. The type is DIMENSION when the
reference is to the value of a dimension.

Table 15–6 INFO (MODEL) Choices to Retrieve Information about the Structure of the
Model

Keyword(s) Data Type Index Argument(s); Meaning

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-19

VARIABLE REFERENCE TEXT STATEMENT stmnt-num [SOURCE source-num]

Without source-num, the name of the variable that
is the assignment target of statement stmnt-num.
With source-num, the name of the variable that is
data source source-num in statement stmnt-num.

VALUE REFERENCE TEXT STATEMENT stmnt-num [SOURCE source-num]

Without source-num, the dimension value that is
the assignment target of statement stmnt-num.
With source-num, the dimension value that is data
source source-num in statement stmnt-num.

DIMENSION
REFERENCE

TEXT STATEMENT stmnt-num [SOURCE source-num]

Without source-num, the model dimension of the
target dimension value in statement stmnt-num.
With source-num, the model dimension of source
dimension value source-num in statement
stmnt-num.

COUNT QUALIFIERS INT STATEMENT stmnt-num [SOURCE source-num]

Without source-num, the number of qualifiers of
the assignment target in statement stmnt-num.
With source-num, the number of qualifiers of data
source source-num in statement stmnt-num.

TYPE QUALIFIER TEXT qualifier-num STATEMENT stmnt-num [SOURCE
source-num]

Without source-num, the qualifier type of qualifier
qualifier-num of the target of statement stmnt-num.
With source-num, the qualifier type of qualifier
qualifier-num of data source source-num in
statement stmnt-num. The qualifier type can
indicate dimensional dependence: LAG (previous
dimension values only), LEAD (later values only),
BOTH (both previous and later values), and
VARIABLE (either previous or later values,
depending on the value of a variable when the
model is run). The qualifier type can also be QDR
(qualified data reference).

Table 15–7 (Cont.) INFO (MODEL) Choices to Retrieve Information about Target,
Sources, and Dependencies

Keyword(s) Data Type Index Argument(s); Meaning

INFO (MODEL)

15-20 Oracle OLAP DML Reference

DIMENSION
QUALIFIER

TEXT qualifier-num STATEMENT stmnt-num [SOURCE
source-num]

Without source-num, the dimension of qualifier
qualifier-num of the assignment target in
statement stmnt-num. With source-num, the
dimension of qualifier qualifier-num of data source
source-num in statement stmnt-num.

Table 15–8 I NFO (MODEL) Choices to Retreive Information About Execution Status

Keyword(s) Data Type Index Argument(s); Meaning

XEQSTATUS TEXT [BLOCK block-num]

Without block-num, the execution status of the
model as a whole; when the model has not been
run, the status is NOT EXECUTED. With
block-num, the execution status of block block-num;
when the model has not been run, an error is
returned. When the model has been run, the
status for the model as a whole or for a block can
be SOLVED, DIVERGED, or FAILED TO
CONVERGE. The status of an outer-level block
can be EXECUTION INCOMPLETE when a
nested block within it diverged or failed to
converge.

COUNT ITERATIONS INT BLOCK block-num

The number of iterations that were performed for
block block-num before it was solved or it
diverged or failed to converge.

DAMP DEC (No arguments)

The value of the MODDAMP option when the
model was run. (Relevant only when the solution
method is GAUSS.)

DIVERGSTMT INT BLOCK block-num

The element number of the statement that
diverged during the calculations for block
block-num.

Table 15–7 (Cont.) INFO (MODEL) Choices to Retrieve Information about Target,
Sources, and Dependencies

Keyword(s) Data Type Index Argument(s); Meaning

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-21

block-num
An INTEGER expression that specifies the block for which you want information.
Block-num corresponds to the block numbers that are identified in the report
produced by the MODEL.COMPRPT program.

dimension-num
An INTEGER expression that specifies the model dimension or block dimension for
which you want information. For the model as a whole, the first dimension listed
for the model is dimension-num 1, and so on. For example, assume that the
MODEL.COMPRPT specifies the model dimensions as <line month>. In this
case, line is dimension-num 1 and month is dimension-num 2. For a simultaneous
block in the current model, the first dimension of the block is dimension-num 1, and
so on. A step-forward or step-backward block has a single dimension, so the
dimension of the block is always dimension-num 1. To see a list of the dimensions for
the model as a whole and for each block of the model, you can run the
MODEL.COMPRPT program.

element-num
An INTEGER expression that specifies the element for which you want information.
When you request information about an element, you always specify the block

GAMMA INT (No arguments)

The value of the MODGAMMA option when the
model was run.

MAXITERS INT (No arguments)

The value of the MODMAXITERS option when
the model was run.

OVERFLOW INT (No arguments)

The value of the MODOVERFLOW option when
the model was run.

SIMULTYPE TEXT (No arguments)

The value of the MODSIMULTYPE option when
the model was run: AITKENS or GAUSS.

TOLERANCE INT (No arguments)

The value of the MODTOLERANCE option when
the model was run.

Table 15–8 I(Cont.) NFO (MODEL) Choices to Retreive Information About Execution

Keyword(s) Data Type Index Argument(s); Meaning

INFO (MODEL)

15-22 Oracle OLAP DML Reference

number to which the element belongs. An element is either a statement in the
specified block, or it is a nested block within the specified block. The element
numbers correspond to the order of the statements and blocks in the compiled
model. You can run the MODEL.COMPRPT program to see the list of elements in
the compiled model.

For example, suppose the current model has the following compiled structure.

block 1
statement a
block 2
statement b
statement c
END block 2

statement d
END block 1

When you request information about block 1 in the preceding model,
statement a is element-num 1; block 2 is element-num 2; and statement d is
element-num 3. When you request information about block 2, statement b is
element-num 1 and statement c is element-num 2.

model-num
For a hierarchy of included models, an INTEGER expression that specifies the
model for which you want information. The model you are currently considering is
model-num 0 (zero), the model it includes is model-num 1, and so on. The root model
has the highest model number in the hierarchy.

qualifier-num
An INTEGER expression that specifies the qualifier for which you want
information. Qualifiers change the dimensionality of a variable or dimension value
reference. The reference can be qualified by a function, such as LAG, LEAD, or
TOTAL or by a qualified data reference (QDR). To see the qualifiers for a statement,
you can run the MODEL.DEPRT program for the model that contains the statement.

For each equation in the model, the MODEL.DEPRT report lists the assignment
target and its qualifiers on one line, followed by the data sources. Each data source
is listed on a separate line, together with its qualifiers. The MODEL.DEPRTreport
also specifies the type of each qualifier: LAG, LEAD, BOTH, VARIABLE, or QDR
(see the TYPE QUALIFIER choice in the third group of INFO keyword choices).

For the target and each source, qualifier-num corresponds to the order in which the
qualifiers are listed in the MODEL.DEPRT report.

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-23

source-num
An INTEGER expression that specifies the data source for which you want
information. In a calculation, each reference to a variable or a dimension value is
counted as a source of data for the assignment target. A constant value is not
counted as a source.

To see the data sources in a statement, you can run the MODEL.DEPRT program for
the model that contains the statement. For each equation in the model, the
MODEL.DEPRT report lists the assignment target on one line, followed by its data
sources. Each data source is listed on a separate line.

stmnt-num
An INTEGER expression that specifies the statement for which you want
information. Stmnt-num always refers to a statement from the model you are
currently considering. It does not refer to a statement taken from an included
model.

To see the statement numbers in the current model, you can run the
MODEL.COMPRPT program. To the left of each statement, the report lists the
model from which the statement is taken and the statement number within that
model.

Notes

Determining Results Availability
You can use the keyword AVAILABLE to determine whether any model results are
currently available. When you try to extract any other information without having
considered or defined a model in your current session, INFO produces an error.

Examples

Example 15–4 Getting Qualifier Information

Assume that the following statement is statement 3 of a model called
income.plan.

budget(line revenue) = LAG(actual(line revenue), 1, month) -
+ plan.factor

INFO (MODEL)

15-24 Oracle OLAP DML Reference

You can run the MODEL.DEPRPT program to see the qualifiers of the target and
sources in this statement.

MODEL.DEPRPT income.plan

This statement produces the following output.

MODEL INCOME.PLAN
...
3 BUDGET(QDR <LINE>):

ACTUAL(LAG <MONTH>)(QDR <LINE>)
PLAN.FACTOR

...

This report shows that the assignment target, budget, has two data sources,
actual and plan.factor.

Example 15–5 Checking Qualifier Information

The following statements make INCOME.PLAN the current model and check the
number and type of the qualifiers of the assignment target of statement 3.

CONSIDER income.plan
SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3)

These statements produce the following output.

1

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 1 STATEMENT 3)

produces the following output.

QDR

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-25

Example 15–6 Checking Different Data Sources

The following statements check the number and type of the qualifiers of the two
data sources in statement 3.

The OLAP DML statement

SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3 SOURCE 1)

produces the following output.

2

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 1 STATEMENT 3 SOURCE 1)

produces the following output.

LAG

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 2 STATEMENT 3 SOURCE 1)

produces the following output.

QDR

The OLAP DML statement

SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3 SOURCE 2)

produces the following output.

0

INFO (PARSE)

15-26 Oracle OLAP DML Reference

INFO (PARSE)

The INFO (PARSE) function obtains information produced by the PARSE command
and stored internally by Oracle OLAP. Through the use of keywords, INFO lets you
extract specific pieces of information about the expression that you have parsed.

Return Value
The return value depends on the keyword you use, as described in Table 15–9.
When you try to extract unavailable information or use an an index that is out of
range, INFO returns NA. For example, if you parse a phrase that contains four
expressions and then ask for the twelfth FORMULA, INFO will return NA.

Syntax
INFO(PARSE choice [index])

Arguments

PARSE
Indicates that you want to obtain information produced by the PARSE command.

choice
The specific information you want. The choices available for PARSE are listed in
Table 15–9, " INFO PARSE Keywords". Choices marked as indexed can take the
optional index argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, when you parse text that contains three
expressions, each expression has its own formula and data type. You would use
index to specify which expression you are interested in.

When you omit index, INFO returns all the information as a multiline value.

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-27

Examples

Example 15–7 Getting Parsed Information

In a simple report program, you want to allow the user to specify the data to be
reported as an argument to the program. You want to allow the user to specify an
expression, as well as the name of a data variable. You cannot process expression
arguments with the ARGS command, so you use PARSE and INFO to parse the
program arguments and produce the report.

Table 15–9 INFO PARSE Keywords

Keyword Type Indexed? Meaning

PARSEABLE BOOL No Was Oracle OLAP able to parse the text?

ERRORTEXT TEXT No The text of an error message when the
expressions were not parsed.

NUMFORMULAS INT No The number of expressions (formulas) that
were parsed.

NUMDIMS INT No The number of dimensions in the union of
all the expressions that were parsed.

FORMULA TEXT Yes The text (formula) of the specified
expression; index specifies which one you
want.

DATA TEXT Yes The data type of the specified expression.

TYPE TEXT Yes The type of object of the specified
expression; when the expression is the name
of an object, it returns the type; when the
expression is a qualified data reference, it
returns QDR; when the expression is
anything else, it returns EXP.

DIMENSION TEXT Yes The name of the specified dimension in the
union of all dimensions of the expressions.

INFO (PARSE)

15-28 Oracle OLAP DML Reference

The following statements create a simple report program.

DEFINE report1 PROGRAM
PROGRAM
PUSH month product district DECIMALS
DECIMALS = 0
LIMIT month TO FIRST 2
LIMIT product TO ALL
LIMIT district TO 'Chicago'
PARSE ARGS
REPORT ACROSS month: WIDTH 8 <&INFO(PARSE FORMULA 1) -

WIDTH 13 &INFO(PARSE FORMULA 2)>
POP month product district DECIMALS
END

When users run the program, they can supply either the name of a variable (sales)
or an expression (sales-expense) or both as arguments.

The following statement

REPORT1 sales sales-expense

produces the following output.

DISTRICT: CHICAGO
--------------------MONTH--------------------
--------Jan95--------- --------Feb95---------

PRODUCT SALES SALES-EXPENSE SALES SALES-EXPENSE
------------ -------- ------------- -------- -------------
Tents 29,099 1,595 29,010 1,505
Canoes 45,278 292 50,596 477
Racquets 54,270 1,400 58,158 1,863
Sportswear 72,123 7,719 80,072 9,333
Footwear 90,288 8,117 96,539 13,847

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-29

INFO (REGRESS)

The INFO (REGRESS) function obtains information produced by the REGRESS
command and stored internally by Oracle OLAP. Through the use of keywords,
INFO lets you extract specific pieces of information about the regression you have
calculated.

Return Value
The return value depends on the keyword you use, as described in Table 15–10,
" INFO REGRESS Keywords".

Syntax
INFO(REGRESS choice [index])

Arguments

REGRESS
Indicates that you want to obtain information produced by the REGRESS command.

choice
The specific information you want. The choices available for REGRESS are listed in
Table 15–10, " INFO REGRESS Keywords". Choices marked as indexed require the
index argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, in a regression there may be more than
one independent variable. You would use index to specify which independent
variable you want information about. When you omit index for a choice that
requires it, an error occurs.

Note: Before using INFO, familiarize yourself with
REGRESS.REPORT that produces a standard report of its results,
which might give you all the information you need. INFO is useful
primarily for creating customized reports or for performing further
analysis on the results

INFO (REGRESS)

15-30 Oracle OLAP DML Reference

Table 15–10 INFO REGRESS Keywords

Keyword Type Indexed? Meaning

AVAILABLE BOOL No Is there a computed regression from
which to extract information?

DEPENDENT TEXT No The name of the dependent variable in
the regression.

NOINTERCEPT BOOL No Was the regression calculated with the
intercept suppressed?

WEIGHTED BOOL No Was the last regression weighted?

WEIGHT TEXT No The expression used to weight the last
regression.

NUMCOEFS INT No The number of coefficients.

INDEPENDENT TEXT Yes An independent variable; index
specifies which one you want (Intercept
will be first unless it was suppressed).

COEFFICIENT DEC Yes An estimated coefficient; index specifies
which one you want.

STDERROR DEC Yes The standard error of an estimated
coefficient; index specifies which one
you want.

TRATIO DEC Yes The t-ratio for an estimated coefficient;
index specifies which one you want.

NUMOBS INT No The number of observations that were
used.

FRATIO DEC No The F-ratio for the regression.

RBSQ DEC No The corrected R-squared for the
regression.

FORMULA TEXT No The regression formula.

STDERROREST DEC No The standard error of estimate for the
regression

RESET BOOL Use when you want to reset the original
state of AVAILABLE back to NO

INFO

INF_STOP_ON_ERROR to LIKEESCAPE 15-31

Notes

Determining Results Availability
When you try to extract information without having performed a regression, INFO
produces an error. You can use the keyword AVAILABLE to determine whether any
results are currently available. Once a successful regression has run, AVAILABLE
remains true even when one or more unsuccessful regressions follow, because the
results of the previous successful regression are still available. AVAILABLE will
remain true until you use RESET to change the AVAILABLE state back to its
original value of NO.

NA Results Due to Index
INFO returns NA when you use an index that is out of range. For example, when
your regression has five independent variables and you request the coefficient of
the twelfth one, INFO returns NA.

Examples

Example 15–8 Getting Regression Information

The following statement sends the third coefficient from your most recently
calculated regression to the current outfile.

SHOW INFO(REGRESS COEFFICIENT 3)

This statement produces the following result.

7.55

INITCAP

15-32 Oracle OLAP DML Reference

INITCAP

The INITCAP function returns a specified text expression, with the first letter of
each word in uppercase and all other letters in lowercase. Words are delimited by
white space or characters that are not alphanumeric.

Return Value
The same data type as the expression.

Syntax
INITCAP (text-exp)

Arguments

text-exp
A text expression.

Examples
The following example capitalizes each word in the string.

SHOW INITCAP('the soap')
The Soap

INLIST

INF_STOP_ON_ERROR to LIKEESCAPE 15-33

INLIST

The INLIST function determines whether every line of a text value is a line in a
second text value. Normally, INLIST is used to determine whether all the lines of a
list (in the form of a multiline text value) can be found in a master list (in the form
of a second multiline text value).

INLIST accepts TEXT values and NTEXT values as arguments. When only one
argument is NTEXT, then INLIST automatically converts the other argument to
NTEXT before performing the function operation.

Return Value
BOOLEAN

Syntax
INLIST(masterlist list)

Arguments

masterlist
A multiline text expression to which the lines of list are compared.

list
A multiline text expression whose lines are compared with the lines of masterlist.
When every line of list can be found as a line of masterlist, INLIST returns the value
YES. When one or more lines of list are not found in masterlist, INLIST returns the
value NO.

INLIST

15-34 Oracle OLAP DML Reference

Examples

Example 15–9 Comparing a List to a Master List

This example shows how to use INLIST to determine whether the lines of one list
can be found in a master list. The master list in this case is a multiline text value in a
variable called depts. The depts variable has the following values.

Marketing
Purchasing
Accounting
Engineering
Personnel

The first function call compares a list, which is specified as a text literal, with the
master list.

INLIST(depts, 'Accounting\nPersonnel')

The return value is

YES

The second function call compares a variable newlist that has the following
values,

Development
Accounting

with the master list in depts.

INLIST(depts, newlist)

The return value is

NO

INSBYTES

INF_STOP_ON_ERROR to LIKEESCAPE 15-35

INSBYTES

The INSBYTES function inserts one or more bytes into a text expression.

When you are using a single-byte character set, you can use INSCHARS.

Return Value
TEXT

Syntax
INSBYTES(text-expression bytes [after])

Arguments

text-expression
A TEXT expression into which the bytes are to be inserted. When text-expression is a
multiline TEXT value, INSBYTES preserves the line breaks in the returned value.

bytes
One or more bytes that you insert into text-expression.

after
An integer that represents the byte position after which the specified bytes are to be
inserted. The position of the first byte in text-expression is 1. To insert bytes at the
beginning of the text, specify 0 for after. When you omit this argument, INSBYTES
inserts the bytes after the last byte in text-expression.

When you specify a value for after that is greater than the length of text-expression,
INSBYTES adds blanks to the last line of text-expression. The number of inserted
blanks is the difference between the value of after and the length of text-expression.
For example, insbytes('abc' 'def' 4) inserts one blank space before adding
def to abc, resulting in:

abc def

INSBYTES

15-36 Oracle OLAP DML Reference

Examples

Example 15–10 Inserting Bytes in Text

This example shows how to insert the bytes there in the TEXT value hellojoe.

The function

INSBYTES('hellojoe', 'there', 5)

returns the following value.

hellotherejoe

INSCHARS

INF_STOP_ON_ERROR to LIKEESCAPE 15-37

INSCHARS

The INSCHARS function inserts one or more characters into a text expression.

When you are using a multibyte character set, you can use the INSBYTES function
instead of the INSCHARS function.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
INSCHARS(text-expression characters [after])

Arguments

text-expression
The expression into which the characters are to be inserted. When text-expression is a
multiline TEXT value, INSCHARS preserves the line breaks in the returned value.

characters
One or more characters that you insert into text-expression.

after
An integer that represents the character position after which the specified characters
are to be inserted. The position of the first character in text-expression is 1. To insert
characters at the beginning of the text, specify 0 for after. When you omit this
argument, INSCHARS inserts the characters after the last character in
text-expression.

INSCHARS

15-38 Oracle OLAP DML Reference

When you specify a value for after that is greater than the length of text-expression,
INSCHARS adds blanks to the last line of text-expression. The number of inserted
blanks is the difference between the value of after and the length of text-expression.
For example, INSCHARS('abc' 'def' 4) inserts one blank before adding
'def' to 'abc', resulting in:

abc def

Examples

Example 15–11 Inserting Characters in Text

This example shows how to insert the characters there in the TEXT value
hellojoe.

The function

INSCHARS('hellojoe', 'there', 5)

returns the following value.

hellotherejoe

INSCOLS

INF_STOP_ON_ERROR to LIKEESCAPE 15-39

INSCOLS

The INSCOLS function inserts into the columns of a multiline TEXT value all the
columns of another TEXT value. The inserted columns are placed after the column
position you specify, and the original columns in each line are moved to the right.
The function returns a multiline TEXT value composed of the resulting columns.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
INSCOLS(text-expression columns [after])

Arguments

text-expression
The expression into which you want to insert columns.

columns
The expression containing one or more columns in each line. All the columns of this
expression will be inserted into the corresponding lines of text-expression.

after
An integer between 0 and 4,000 representing the column position after which
columns should be inserted. The column position of the first character in each line
is 1. When you do not specify after, insertion begins at the end of each line. The total
length of a line cannot exceed 4,000 columns of single-byte characters or 2,000
columns of double-byte characters.

INSCOLS

15-40 Oracle OLAP DML Reference

Notes

Number of Lines Returned
The number of lines in the return value is always the same as the number of lines in
text-expression. When the columns TEXT expression has fewer lines, INSCOLS
repeats its last line in each subsequent line of the return value.

After Column Beyond the End of a Line
When you specify an after column that is to the right of the last character in a given
line in text-expression, the corresponding line in the return value will have spaces
filling in the intervening columns.

Examples

Example 15–12 Inserting Text Columns

In the following example, a color code (stored in the multiline TEXT value
itemcolor) is inserted into item identifiers that are stored in the itemid text
value. The columns are inserted after Column 3.

itemcolor has the following value.

Blu
Red
Gre
Ora

itemid has the following value.

542-Fra
379-Eng
968-USA
369-Can

The INSCOLS function call

INSCOLS(itemid itemcolor 3)

returns the following.

542Blu-Fra
379Red-Eng
968Gre-USA
369Ora-Can

INSLINES

INF_STOP_ON_ERROR to LIKEESCAPE 15-41

INSLINES

The INSLINES function inserts one or more lines into a multiline text expression.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
INSLINES(text-expression lines [after])

Arguments

text-expression
A multiline expression into whose values one or more lines are to be inserted.

lines
An expression that represents one or more lines of text that you insert into
text-expression.

after
An integer that represents the line number after which the specified lines are to be
inserted. The position of the first line in text-expression is 1 (one). To insert lines at
the very beginning, specify 0 (zero) for after. When you omit this argument,
INSLINES inserts the new lines after the last line of text-expression.

INSLINES

15-42 Oracle OLAP DML Reference

Examples

Example 15–13 Inserting Text Lines

This example shows how to insert a new line into a multiline text value in a variable
called mktglist with the following value.

Salespeople
Products
Services

The INSLINES function

INSLINES(mktglist, 'Advertising', 2)

returns the following.

Salespeople
Products
Advertising
Services

INSTAT

INF_STOP_ON_ERROR to LIKEESCAPE 15-43

INSTAT

The INSTAT function checks whether a dimension or dimension surrogate value is
in the current status list or whether a dimension value is in a valueset.

Return Value
BOOLEAN

YES if the value is in the current status list or in a valueset and NO if it is not.

Syntax
INSTAT(dimension, value)

Arguments

dimension
The name of the dimension, dimension surrogate, or valueset.

value
The dimension or dimension surrogate value you want to test, either a text literal
(enclosed in single quotes) or an expression that specifies the value. To specify the
value of a conjoint dimension or a concat dimension, enclose the value in angle
brackets. For a conjoint dimension, separate the base dimension values with a
comma and space. For a concat dimension, separate the base dimension and its
value with a colon and a space.

Notes

Checking an Invalid Value
When you specify a dimension name and value in an INSTAT command, Oracle
OLAP tells you whether that value is in the current status list for that dimension.
Conversely, theISVALUE function tells you whether an item is a value of a
dimension, regardless of whether it is in the status. INSTAT produces an error when
value is not a dimension value, but ISVALUE simply returns a value of FALSE.

INSTAT

15-44 Oracle OLAP DML Reference

Examples

Example 15–14 Checking Current Status

In the following example, a program accepts a value of the month dimension as an
argument. The first lines of the program use INSTAT to check whether the
dimension value that was passed as an argument is in the current status for month.
When it is, the program calls a report program. When it is not, the program
branches to its error-handling section.

ARGUMENT onemonth month

IF INSTAT(month onemonth)
THEN sales_report
ELSE GOTO error

...

Example 15–15 Using INSTAT When the Dimension is a Conjoint Dimension

When the dimension that you specify is a conjoint dimension, then the entire value
must be enclosed in single quotes. For example, suppose the analytic workspace
already has a region dimension and a product dimension. The region
dimension values include East, Central, and West. The product dimension
values include Tents, Canoes, and Racquets.

The following statements define a conjoint dimension, and add values to it.

DEFINE reg.prod DIMENSION <geography product>
MAINTAIN reg.prod ADD <'East', 'Tents'> <'West', 'Canoes'>

To specify base positions, use a statement such as the following.

SHOW INSTAT(reg.prod '<1, 1>')
YES

To specify base text values, use a statement such as the following.

SHOW INSTAT(reg.prod '<\'East\', \'Tents\'>')
YES

Example 15–16 Using INSTAT When the Dimension is a Concat Dimension

When the dimension that you specify is a concat dimension, then you must enclose
the entire <component dimension: dimension value> pair in single quotes.

INSTAT

INF_STOP_ON_ERROR to LIKEESCAPE 15-45

The following statement defines a concat dimension that has as its base dimensions
region and product.

DEFINE reg.prod.ccdim DIMENSION CONCAT(region product)

A report of reg.prod.ccdim returns the following.

REG.PROD.CCDIM

<region: East>
<region: Central>
<region: West>
<product: Tents>
<product: Canoes>
<product: Racquets>

To specify a base dimension position, use a statement such as the following.

SHOW INSTAT(reg.prod.ccdim '<product: 3>')
yes

To specify base dimension text values, use a statement such as the following.

SHOW INSTAT(reg.prod.ccdim '<product: Tents>')
YES

INSTR

15-46 Oracle OLAP DML Reference

INSTR

The INSTR function searches a string for a substring using characters and returns
the position in the string that is the first character of a specified occurrence of the
substring. INSTR calculates strings using characters as defined by the input
character set.

To search a string for a substring using bytes, use INSTR.

Return Value
A nonzero INTEGER when the search is successful or 0 (zero) when it is not.

Syntax
INSTR (string , substring [, position [, occurrence]])

Arguments

string
The text expression to search.

substring
The string to search for.

position
A nonzero INTEGER indicating the character of string where the function begins the
search. When position is negative, then INSTR counts and searches backward from
the end of string. The default value of position is 1, which means that the function
begins searching at the first character of string.

occurrence
An INTEGER indicating which occurrence of string the function should search for.
The value of occurrence must be positive. The default values of occurrence is 1,
meaning the function searches for the first occurrence of substring.

INSTR

INF_STOP_ON_ERROR to LIKEESCAPE 15-47

Examples

Example 15–17 Searching Forward for a String

The following example searches the string "Corporate Floor", beginning with the
third character, for the string "or". It returns the position in "Corporate Floor" at
which the second occurrence of "or" begins.

SHOW INSTR('Corporate Floor','or', 3, 2)
14

Example 15–18 Searching Backward for a String

In this next example, the function counts backward from the last character to the
third character from the end, which is the first "o" in "Floor". The function then
searches backward for the second occurrence of "or", and finds that this second
occurrence begins with the second character in the search string.

SHOW INSTR('Corporate Floor','or', -3, 2)
2

INSTRB

15-48 Oracle OLAP DML Reference

INSTRB

The INSTRB function searches a string for a substring using bytes and returns the
position in the string that is the first byte of a specified occurrence of the substring.

To search a string for a substring using characters, use INSTR.

Return Value
A nonzero INTEGER when the search is successful or 0 (zero) when it is not.

Syntax
INSTRB (string , substring [, position [, occurrence]])

Arguments

string
The text expression to search.

substring
The string to search for.

position
A nonzero INTEGER indicating the byte of string where the function begins the
search. When position is negative, then INSTRB counts and searches backward from
the end of string. The default value of position is 1, which means that the function
begins searching at the first byte of string.

occurrence
An INTEGER indicating which occurrence of string the function should search for.
The value of occurrence must be positive. The default values of occurrence is 1,
meaning the function searches for the first occurrence of substring.

Examples
This example assumes a double-byte database character set.

SHOW INSTRB('Corporate Floor','or',5,2)
27

INTPART

INF_STOP_ON_ERROR to LIKEESCAPE 15-49

INTPART

The INTPART function calculates the integer part of a decimal number by
truncating its decimal fraction.

Return Value
INTEGER

Syntax
INTPART(expression)

Arguments

expression
The decimal expression whose integer part is to be returned.

Notes

Large Values
When expression has a value larger than is allowed for an integer (a value between
-2,147,483,647 and 2,147,483,647), INTPART returns an NA value.

Examples

Example 15–19 Calculating the Integer Part of a Decimal Number

The following example shows the integer part of the number 3.14. The statement

show intpart(3.14)

produces the following result.

3

IRR

15-50 Oracle OLAP DML Reference

IRR

The IRR function computes the internal rate of return associated with a series of
cash flow values. Each value of the result is calculated to be the discount rate for
each period that makes the net present value of the corresponding cash flows equal
to zero.

Return Value
DECIMAL

Syntax
IRR(cashflows, [time-dimension])

Arguments

cashflows
A numeric expression dimensioned by time-dimension, that specifies the series of
cash flow values.

time-dimension
A name that specifies the time dimension. When cashflows has a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, the time-dimension argument is
optional. IRR automatically uses the DAY, WEEK, MONTH, QUARTER, or YEAR
dimension of cashflows when you do not specify a value for time-dimension.

Notes

The Dimensions of the Result
The result returned by the IRR function is dimensioned by all the dimensions of
cashflows except its time dimension. When cashflows is dimensioned only by the time
dimension, IRR returns a single value.

The Result Value
The internal rate of return calculated by the IRR function is expressed as a decimal,
so an 8.25 percent internal rate of return produces a result value of .0825.

IRR

INF_STOP_ON_ERROR to LIKEESCAPE 15-51

Cash Flow Occurrences
All the cash flows used to compute a result value are assumed to occur at the same
relative point within the period with which they are associated.

Ignored Cash Flows
Cash flows that corresponds to out-of-status dimension positions are ignored.

NASKIP Option Settings
IRR is affected by the NASKIP option. When NASKIP is set to YES (the default),
IRR ignores NA values and computes the internal rate of return using the cash flows
that are available. When NASKIP is set to NO, IRR returns NA when any cash flow
has a value of NA. When all the cash flows are NA, IRR returns NA for either setting
of NASKIP.

Multiple Discount Rates
Some series of cash flows have multiple discount rates, which make the net present
value equal to zero. In such cases, IRR will find and return only one of these
discount rates as the internal rate of return. When there is only a single solution and
it is between -99.9 percent and 10,000 percent, the IRR function will find it. When
IRR cannot calculate an internal rate of return, the corresponding value in the result
is NA.

Examples

Example 15–20 Calculating the Internal Rate of Return

The following statements create a dimension called project, add values to it, and
create a variable called cflow, which is dimensioned by year and project.

DEFINE project DIMENSION TEXT
MAINTAIN project ADD 'a' 'b' 'c' 'd' 'e'
DEFINE cflow VARIABLE DECIMAL <project year>

IRR

15-52 Oracle OLAP DML Reference

Once you have assigned the following values to CFLOW,

------------------------CFLOW----------------------
-----------------------PROJECT---------------------

YEAR a b c d e
-------------- ---------- ---------- ---------- ---------- -------
Yr95 -200.00 -200.00 -300.00 -100.00 -200.00
Yr96 100.00 150.00 200.00 25.00 25.00
Yr97 100.00 400.00 200.00 100.00 200.00

then the following statement

REPORT IRR(cflow, year)

produces the following report of the internal rate of return.

IRR(CFLOW,
PROJECT YEAR)
-------------- ----------
a 0.00
b 0.84
c 0.22
d 0.13
E 0.06

ISDATE

INF_STOP_ON_ERROR to LIKEESCAPE 15-53

ISDATE

The ISDATE program determines whether a text expression represents a valid date.
ISDATE acts as a BOOLEAN function, returning YES when the text expression does
represent a valid date and NO when it does not. ISDATE does not convert the text
expression to a DATE formula. ISDATE only tests a text expression to see if it can be
converted to a DATE value. You must use CONVERT to make the conversion.

Return Value
BOOLEAN

Syntax
ISDATE(test-date)

Arguments

test-date
A single-line ID or TEXT expression to be examined to see if it represents a valid
date, as defined by the DATE data type.

Notes

Valid Date Styles
For a description of the valid styles for entering dates, see DATEORDER.

Examples

Example 15–21 Testing a Text Expression

In the following statement, the ISDATE program tests a literal text expression to see
if it is a valid date, and the output is sent to the current outfile.

SHOW ISDATE('3 5 1995')

This statement produces the following output.

YES

ISVALUE

15-54 Oracle OLAP DML Reference

ISVALUE

The ISVALUE function tests whether a dimension or a composite has a specified
value.

Return Value
BOOLEAN

Syntax
ISVALUE(name, value)

Arguments

name
The name of the dimension or the composite to be checked.

When the composite is unnamed, use the SPARSE keyword to refer to the
composite (for example, SPARSE <market product>).

value
The value you want to test, either a text literal or text expression for an ID or TEXT
dimension, an integer for an INTEGER dimension, or a combination of values
enclosed by angle brackets for composites and conjoint dimensions.

Notes

Compared to INSTAT
ISVALUE tells you whether an item is a value of a dimension, but not whether a
dimension value is in the current status. The INSTAT function, on the other hand,
tells you whether a value of a dimension is in the current status of the dimension.

Examples

Example 15–22 Testing Valid Values

Suppose you want to find out if Packs is a value of the product dimension. The
following statement produces the answer YES or NO.

SHOW ISVALUE(product, 'Packs')

ISVALUE

INF_STOP_ON_ERROR to LIKEESCAPE 15-55

Example 15–23 Embedding Quoted Strings

You can embed quoted strings within a quoted string, which is necessary when
there are special characters in a base dimension value of a composite or conjoint
dimension, such as Joe's Deli. Suppose you want to find out if New York and
Apple Sauce are a valid combination of base dimension values in the markprod
conjoint dimension. The following statement produces the answer YES or NO.

SHOW ISVALUE(markprod, '<\'New York\' \'Apple Sauce\'>')

When embedded quoted strings have a further level of embedding, you must use
backslashes before each special character, such as the apostrophe and the backslash
that must precede it in "Joe's Deli," as shown in the following statement.

SHOW ISVALUE(markprod, '<\'Joe\\\'s Deli\' \'Apple Sauce\'>')

Example 15–24 Testing Logical Position Numbers

You can test for the logical position numbers of base dimension values in a conjoint
dimension. For example, suppose market and product are the base dimensions of
the conjoint dimension markprod. The following statement tests whether or not
there is a value assigned to the combination of the fourth market dimension value
and the third product dimension value.

SHOW ISVALUE(markprod, '<4 3>')

JOINBYTES

15-56 Oracle OLAP DML Reference

JOINBYTES

The JOINBYTES function joins two or more text values as a single line.

Return Value
TEXT

Syntax
JOINBYTES(first-expression, next-expression...)

Arguments

first-expression
An expression to which JOINBYTES joins next-expression. When the first-expression
has a data type other than TEXT, JOINBYTES converts it to TEXT. See "Converting
Expressions to TEXT" on page 15-56.

next-expression…
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT, JOINBYTES converts it to TEXT.

Notes

Converting Expressions to TEXT
When the data type of an expression is not TEXT, JOINBYTES automatically
converts its value to TEXT before concatenating it with the other values. For
example, when you put a number in a JOINBYTES function, the number is
automatically converted to TEXT and no extra step is needed to accomplish this.
The format of the result depends on the settings of the COMMAS, DECIMALS, and
PARENS options. (When PARENS is set to YES, a space is inserted wherever a
parenthesis would appear between joined expressions.)

NA Values
JOINBYTES ignores any arguments that have a value of NA.

JOINBYTES

INF_STOP_ON_ERROR to LIKEESCAPE 15-57

Maximum Length of Joined Line
The maximum length of a joined line is 4,000 bytes. When the length of the joined
line exceeds 4,000, JOINBYTES automatically breaks the line and puts the remaining
bytes on the next line. The line break could occur between the two bytes of a
double-byte character. JOINBYTES would then end one line with the first byte of
the double-byte character and start the next line with the second byte of the
character.

Line Breaks
JOINBYTES removes line breaks from the text it joins. To preserve the breaks in a
multiline text expression, use the INSCHARS function.

Single-Byte Characters
When you are using a single-byte character set, you can use the JOINCHARS
function instead of the JOINBYTES function.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Examples

Example 15–25 Using JOINBYTES to Concatenate Values

This example shows how you can use JOINBYTES to combine text with the current
values of the two variables name.product and price. The variable price has a
data type of DECIMAL; however, JOINBYTES automatically converts its value to
TEXT in order to join it with the other text values.

LIMIT product TO 'Canoes'
LIMIT month TO 'Dec96'

The JOINBYTES function

JOINBYTES('Current Price for ' name.product ' is: $' price)

returns the following value.

Current Price for Aluminum Canoes is: $200.03

JOINCHARS

15-58 Oracle OLAP DML Reference

JOINCHARS

The JOINCHARS function joins two or more text values as a single line.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
JOINCHARS(first-expression, next-expression...)

Arguments

first-expression
An expression to which JOINCHARS joins next-expression. When the first-expression
has a data type other than TEXT or NTEXT, JOINCHARS converts it to TEXT. See
"Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT or NTEXT, JOINCHARS converts it
to TEXT. See "Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

Notes

Converting Expressions That Are not TEXT or NTEXT
When the data type of an expression is not TEXT or NTEXT, JOINCHARS
automatically converts its value to TEXT before concatenating it with the other

JOINCHARS

INF_STOP_ON_ERROR to LIKEESCAPE 15-59

values. For example, when you put a number in a JOINCHARS function, the
number is automatically converted to TEXT and no extra step is needed to
accomplish this. The format of the result depends on the settings of the COMMAS,
DECIMALS, and PARENS options. (When PARENS is set to YES, a space is inserted
wherever a parenthesis would appear between joined expressions.)

NA Values
JOINCHARS ignores any arguments that have a value of NA.

Maximum Length of Joined Line
The maximum length of a joined line is 4,000 bytes. When the length of the joined
line exceeds 4,000 bytes, JOINCHARS automatically breaks the line and puts the
remaining characters on the next line. When the line break would occur between the
two bytes of a double-byte character, JOINCHARS does not split the double-byte
character. It puts both bytes of the double-byte character on the next line.

Line Breaks
JOINCHARS removes line breaks from the text it joins. To preserve the breaks in a
multiline text expression, use the INSCHARS function.

multibyte Characters
When you are using a multibyte character set, you can use the JOINBYTES function
instead of the JOINCHARS function.

Examples

Example 15–26 Using JOINCHARS to Concatonate Values

This example shows how you can use JOINCHARS to combine text with the current
values of the two variables name.product and price. The variable price has a
data type of DECIMAL; however, JOINCHARS automatically converts its value to
TEXT in order to join it with the other text values.

LIMIT product TO 'Canoes'
LIMIT month TO 'Dec96'

JOINCHARS

15-60 Oracle OLAP DML Reference

The JOINCHARS function

JOINCHARS('Current Price for ' name.product ' is: $' price)

returns the following value.

Current Price for Aluminum Canoes is: $200.03

JOINCOLS

INF_STOP_ON_ERROR to LIKEESCAPE 15-61

JOINCOLS

The JOINCOLS function joins the corresponding lines of two or more multiline text
values. The function returns a multiline text value composed of the concatenated
lines.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
JOINCOLS(first-expression, next-expression...)

Arguments

first-expression
An expression whose lines JOINCOLS joins with those of next-expression. When the
expression has a data type other than TEXT or NTEXT, JOINCOLS converts it to
TEXT. See "Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT or NTEXT, JOINCOLS converts it to
TEXT. See "Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

JOINCOLS

15-62 Oracle OLAP DML Reference

Notes

Converting Expressions That Are Not TEXT or N TEXT
When the data type of an expression is not TEXT or NTEXT, JOINCOLS
automatically converts its value to TEXT before concatenating it with the other
values. So when you put a number in a JOINCOLS function, the number is
automatically converted to TEXT. The format of the result depends on the settings
of the COMMAS and DECIMALS options.

NA Values
JOINCOLS ignores any arguments that have a value of NA.

Number of Lines Returned
The number of lines in the return value is always the same as that in the argument
expression that has the most lines. When a given argument expression has fewer
lines, JOINCOLS repeats its last line in each subsequent line of the return value.
This repeating feature is useful when an argument expression is a single-line
separator, such as a space or hyphen. See Example 15–27, "Joining the Columns of
Two Text Expressions" on page 15-62.

Maximum Length of Joined Line
A single concatenated line cannot exceed 498 bytes.

Examples

Example 15–27 Joining the Columns of Two Text Expressions

In the following example, each line in citylist is joined with a quoted text value,
and the corresponding line from cityreps.

citylist has the following values.

Boston
Houston
Chicago
Denver

JOINCOLS

INF_STOP_ON_ERROR to LIKEESCAPE 15-63

cityrep has the following values.

Brady
Lopez
Alfonso
Cody

The JOINCOLS function

JOINCOLS(citylist ' -- ' cityreps)

returns the following.

Boston -- Brady
Houston -- Lopez
Chicago -- Alfonso
Denver -- Cody

JOINLINES

15-64 Oracle OLAP DML Reference

JOINLINES

The JOINLINES function joins the values of two or more text expressions into a
single multiline value. When multiline text values are joined, all the lines of the first
expression appear first, followed by all the lines of the second expression, and so
forth. Normally the arguments for JOINLINES are text values, but they can have
other data types.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
JOINLINES(first-expression next-expression...)

Arguments

first-expression
An expression to which JOINLINES adds next-expression. When the expression has a
data type other than TEXT or NTEXT, JOINLINES converts it to TEXT. See
"Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT, JOINLINES converts it to TEXT. See
"Converting Expressions That Are not TEXT or NTEXT" on page 15-58.

JOINLINES

INF_STOP_ON_ERROR to LIKEESCAPE 15-65

Notes

Converting Expressions That Are Not TEXT or NTEXT
When the data type of an expression is not TEXT or NTEXT, JOINLINES
automatically converts its value to TEXT before concatenating it with the other
values. So when you put a number in a JOINLINES function, the number is
automatically converted to TEXT and no extra step is need to accomplish this. The
format of the result depends on the settings of the COMMAS and DECIMALS
options.

NA Values
JOINLINES ignores any arguments that have a value of NA.

Examples

Example 15–28 Joining the Lines of Two Text Expressions

This example shows how to make a new list by adding the value Regions to the
end of a variable called mktglist.

mktglist has the following initial values.

Salespeople
Products
Services

The statement

newlist = JOINLINES(mktglist 'Regions')

assigns the following to newlist.

Salespeople
Products
Services
Regions

KEY

15-66 Oracle OLAP DML Reference

KEY

The KEY function returns the value of the specified base dimension for a value of a
conjoint dimension or a composite.

Return Value
The return value depends on the data type of the specified base dimension.

Syntax
KEY(dimension-exp, base-dimension-exp)

Arguments

dimension-exp
An expression that specifies a value of a conjoint dimension or a composite. When
you specify the conjoint dimension itself, KEY uses the first value in status. When
you specify the composite itself, KEY uses the first value in status for every base
dimension in the composite.

base-dimension-exp
An expression that specifies the name of a base dimension of the previously
specified conjoint dimension or composite for which you want to know the
dimension value.

Examples

Example 15–29 Reporting with a Conjoint

Suppose you want to produce a report of data dimensioned by a conjoint
dimension. You can label each row with the base values of each conjoint dimension
value with the KEY function. Each base value occupies its own column and you
have more control over the layout.

KEY

INF_STOP_ON_ERROR to LIKEESCAPE 15-67

The following program excerpt loops over the conjoint dimension proddist,
whose values are a combination of product and district. Assume also that
there is a variable named dsales which is dimensioned by proddist.

DEFINE proddist DIMENSION <product district>
LD Conjoint dimension made up of combinations of product and district values
DEFINE dsales VARIABLE DECIMAL <month proddist>
LD Sparse sales data made dense by dimensioning by conjoint dimension proddist

The program excerpt shows dsales for three months. The base values of the
conjoint dimension value each occupy their own column. For contrast, the second
loop uses the conjoint dimension directly, without the KEY function. The conjoint
dimension values are displayed in one column, with angle brackets.

LIMIT month TO FIRST 3
FOR proddist
ROW KEY(proddist district) KEY(proddist product) ACROSS month: dsales

BLANK 2
FOR proddist
ROW W 25 proddist ACROSS month: dsales

The program produces the following report.

Boston Tents 32,153.52 32,536.30 43,062.75
Denver Canoes 45,467.80 51,737.01 58,437.11
Atlanta Sportswear 114,446.26 123,164.92 138,601.64
<Tents, Boston> 32,153.52 32,536.30 43,062.75
<Canoes, Denver> 45,467.80 51,737.01 58,437.11
<Sportswear, Atlanta> 114,446.26 123,164.92 138,601.64

LAG

15-68 Oracle OLAP DML Reference

LAG

The LAG function returns the values of a dimensioned variable or expression at a
specified offset of a dimension prior to the current value of that dimension.
Typically, you use the LAG function to retrieve values for a previous time period.

See also LAGABSPCT, LAGDIF, LAGPCT, and LEAD.

Return Value
The data type of the variable argument or NA when you try to lag prior to the first
period of a time dimension.

Syntax
LAG(tariable n, dimension, [STATUS|NOSTATUS|limit-clause])

Arguments

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAG uses this value to
determine the number of values that LAG should go back in dimension to retrieve
the value of variable. (See "Negative n Value" on page 15-69.) To count the values,
LAG uses the default status, unless you use the STATUS keyword or the limit-clause
argument to specify a different dimension status list.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level
(for example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAG to use that dimension, you can omit the dimension
argument.

LAG

INF_STOP_ON_ERROR to LIKEESCAPE 15-69

STATUS
Specifies that LAG should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

NOSTATUS
Specifies that LAG should use the default status (that is, a list all the dimension
values in their original order) when computing the lag.

limit-clause
Specifies that LAG should use the default status limited by limit-clause when
computing the lag. You can use any valid LIMIT clause (see the entry for the LIMIT
command for further information). To specify that LAG should use the current
status limited by limit-clause when computing the lag, specify a LIMIT function for
limit-clause.

Notes

Negative n Value
Normally, n is a positive integer that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n,
it indicates the number of time periods after the current one. In effect, using a
negative value for n turns LAG into a LEAD function.

Assigning Results to time-series
Use care when assigning the results of LAG back into the time-series variable.
Results are assigned one cell at a time, so you can overwrite the whole array with
the first value returned, instead of moving all the values over n positions. You can,
however, use LAG to calculate a series of values based on the initial value.

LAG

15-70 Oracle OLAP DML Reference

Examples

Example 15–30 Using LAG

Assume that you have a sales variable that is dimensioned by three dimensions of
the TEXT type (named product, district, and time). The time dimension is a
hierarchical dimension with the following values.

1999
2000
Jan1999
Feb1999
...
Dec1999
Jan2000
Feb2000
...
Dec2000

Also, assume that there is a dimension named timelevels that has as values the
names of the levels of the time dimension (that is, Month and Year) and a relation
named timelevelrel that is dimensioned by time and that has values from
timelevels (that is, the related dimension of timelevelrel is timelevels). A
report of timelevelrel shows these relationships.

TIME TIMELEVELREL
-------------- ------------
1999 Year
2000 Year
Jan1999 Month
Feb1999 Month
... ...
Dec1999 Month
Jan2000 Month
Feb2000 Month
... ...
Dec2000 Month

Suppose you want to compare racquet sales in Dallas for the first two months of
2000 with sales for the corresponding months of 1999. You can use the LAG function

LAG

INF_STOP_ON_ERROR to LIKEESCAPE 15-71

to produce the values from 1999 in the same report with the 2000 values. The
following statements

LIMIT product TO 'racquets'
LIMIT district TO 'Dallas'
LIMIT time TO 'Jan2000' 'Feb2000'-
REPORT DOWN time sales HEADING 'Last Year' LAG(sales, 12, time, -
 LEVELREL timelevelrel)

produce this report.

DISTRICT: DALLAS
 -------PRODUCT-------
 ------RACQUETS-------
TIME SALES Last Year
-------------- ---------- ----------
Jan2000 125,879.86 118,686.75
Feb2000 150,833.64 142,305.99

LAGABSPCT

15-72 Oracle OLAP DML Reference

LAGABSPCT

The LAGABSPCT function returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a dimension prior to the
current value of that dimension and the current value of the dimensioned variable
or expression.

Return Value
DECIMAL or NA when you try to lag prior to the first period of a time dimension.

Syntax
LAGABSPCT(variable, n, dimension, [STATUS|NOSTATUS|limit-clause])

Arguments

time-series
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAGABSPCT uses this
value to determine the number of values that LAGABSPCT should go back in
dimension to retrieve the value of variable. (See "Negative n Value" on page 15-73.)
To count the values, LAGABSPCT uses the default status, unless you use the
STATUS keyword or the limit-clause argument to specify a different dimension
status list.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level
(for example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAGABSPCT to use that dimension, you can omit the
dimension argument.

LAGABSPCT

INF_STOP_ON_ERROR to LIKEESCAPE 15-73

STATUS
Specifies that LAGABSPCT should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing
the lag.

NOSTATUS
Specifies that LAGABSPCT should use the default status (that is, a list all the
dimension values in their original order) when computing the lag.

limit-clause
Specifies that LAGABSPCT should use the default status limited by limit-clause
when computing the lag. You can use any valid LIMIT clause (see the entry for the
LIMIT command for further information). To specify that LAGABSPCT should use
the current status limited by limit-clause when computing the lag, specify a LIMIT
function for limit-clause.

Notes

Formula Used
To obtain its results, LAGABSPCT uses the following formula.

(currentvalue - previousvalue) / ABS(previousvalue)

DIVIDEBYZERO Option
When the previous value of the time series used by LAGABSPCT is zero, the result
LAGABSPCT returns is determined by the DIVIDEBYZERO option. When
DIVIDEBYZERO is set to NO, an error occurs. When DIVIDEBYZERO is set to YES,
LAGABSPCT returns NA.

Percentage Points
LAGABSPCT returns a decimal value that corresponds to a percent difference. To
represent this value as percentage points, you can multiply it by 100. See "Using
LAGDIF and LAGABSPCT" on page 15-74.

Negative n Value
Normally, n is a positive integer that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n,
it indicates the number of time periods after the current one. In this case,

LAGABSPCT

15-74 Oracle OLAP DML Reference

LAGABSPCT compares the current value of the time series with a subsequent
value.

NASKIP2 Is Ignored
LAGABSPCT ignores NASKIP2. NASKIP2 does not control how NA values are
treated in OLAP DML functions. It only controls arithmetic operations (involving
the + (plus) and - (minus) operators) that are executed at the command line and in
programs, models, and formulas.

Absolute Value
Unlike the LAGPCT function, which always uses the sign of the previous period
value in calculating the result, LAGABSPCT uses the absolute value of the previous
period value and therefore provides the direction of the percentage difference.

Related Functions
See also LAG, LAGDIF, and LAGPCT.

Examples

Example 15–31 Using LAGDIF and LAGABSPCT

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, and dimensions called district and products. Assume
also that there is a dimension named timelevels that contains the names of the
levels of the time dimension (that is, Month and Year) and a relation named
timelevelrel that is dimensioned by time and that has values from
timelevels (that is, the related dimension of timelevelrel is timelevels).

You want to compare sales for racquets in Dallas for the January, 2000 and the
previous year. You can use theLAG function to display sales from the previous
years. You can use the LAGABSPCT function to calculate the percentage difference
between the two months and indicate the direction of the change. For example,
when sales increase, the percentage difference LAGABSPCT returns is positive.
When sales decrease, the percentage difference LAGABSPCT returns is negative.

You can also use the LAGPCT function to calculate the percentage difference
between two years. You can multiply the values returned by LAGABSPCT by 100 to
display them as percentage points.

LAGABSPCT

INF_STOP_ON_ERROR to LIKEESCAPE 15-75

The following statements

ALLSTAT
LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT time TO 'Jan2000'
REPORT DOWN time sales -
HEADING 'Last Jan' LAG(sales, 12, time, time LEVELREL timelevelrel)-
HEADING 'Lagdif' LAGDIF(sales, 12, time, time LEVELREL timelevelrel)-
HEADING 'Lagabspct' rset '%' d 0 LAGABSPCT(sales, 12, time, -
 time LEVELREL timelevelrel) * 100

produce this report.

DISTRICT: Dallas
 ------------------PRODUCT------------------
 -----------------Racquets------------------
TIME SALES Last Jan Lagdif Lagabspct
-------------- ---------- ---------- ---------- ----------
Jan2000 125,879.86 118,686.75 7,193.11 6%

LAGDIF

15-76 Oracle OLAP DML Reference

LAGDIF

The LAGDIF function returns the difference between the value of a dimensioned
variable or expression at a specified offset of a dimension prior to the current value
of that dimension and the current value of the dimensioned variable or expression.

Return Value
DECIMAL or NA when you try to lag prior to the first period of a time dimension.

Syntax
LAGDIF(variable, n, dimension, [STATUS|NOSTATUS|limit-clause])

Arguments

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAGDIF uses this value
to determine the number of values that LAGDIF should go back in dimension to
retrieve the value of variable. (See "Negative n Value" on page 15-77.) To count the
values, LAGDIF uses the default status, unless you use the STATUS keyword or the
limit-clause argument to specify a different dimension status list.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level
(for example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want LAGDIF to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAGDIF should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

LAGDIF

INF_STOP_ON_ERROR to LIKEESCAPE 15-77

NOSTATUS
Specifies that LAGDIF should use the default status (that is, a list all the dimension
values in their original order) when computing the lag.

limit-clause
Specifies that LAGDIF should use the default status limited by limit-clause when
computing the lag. You can use any valid LIMIT clause (see the entry for the LIMIT
command for further information). To specify that LAGDIF should use the current
status limited by limit-clause when computing the lag, specify a LIMIT function for
limit-clause.

Notes

NASKIP2 Is Ignored
LAGDIF ignores NASKIP2. NASKIP2 does not control how NA values are treated in
OLAP DML functions. It only controls arithmetic operations (involving the + (plus)
and - (minus) operators) that are executed at the command line and in programs,
models, and formulas.

Negative n Value
Normally, n is a positive integer that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n,
it indicates the number of time periods after the current one. In this case, LAGDIF
compares the current value of the time series with a subsequent value.

Examples
For an example of using LAGDIF, see Example 15–31, "Using LAGDIF and
LAGABSPCT" on page 15-74.

LAGPCT

15-78 Oracle OLAP DML Reference

LAGPCT

The LAGPCT function returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a dimension prior to the
current value of that dimension and the current value of the dimensioned variable
or expression.

Return Value
DECIMAL or NA when you try to lag prior to the first period of a dimension of a
time dimension.

Syntax
LAGPCT(variable, n, [dimension], [STATUS|NOSTATUS|limit-clause])

Arguments

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAGPCT uses this value
to determine the number of values that LAGPCT should go back in dimension to
retrieve the value of variable. (See "Negative n Value" on page 15-79.) To count the
values, LAGPCT uses the default status, unless you use the STATUS keyword or the
limit-clause argument to specify a different dimension status.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level
(for example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER or YEAR.

When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAGPCT to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAGPCT should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

LAGPCT

INF_STOP_ON_ERROR to LIKEESCAPE 15-79

NOSTATUS
Specifies that LAGPCT should use the default status (that is, a list all the dimension
values in their original order) when computing the lag.

limit-clause
Specifies that LAGPCT should use the default status limited by limit-clause when
computing the lag. You can use any valid LIMIT clause (see the entry for the LIMIT
command for further information). To specify that LAGPCT should use the current
status limited by limit-clause when computing the lag, specify a LIMIT function for
limit-clause.

Notes

Formula Used
To obtain its results, LAGPCT uses the following formula.

(currentvalue - previousvalue) / previousvalue

DIVIDEBYZERO Option
When the previous value of the time series used by LAGPCT is zero, the result
LAGPCT returns is determined by the DIVIDEBYZERO option. When
DIVIDEBYZERO is set to NO, an error occurs. When DIVIDEBYZERO is set to YES,
LAGPCT returns NA.

Percentage Points
LAGPCT returns a decimal value that corresponds to a percent difference. To
represent this value as percentage points, you can multiply it by 100. See "Using
LAGPCT" on page 15-80.

Negative n Value
Normally, n is a positive integer that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n,
it indicates the number of time periods after the current one. In this case, LAGPCT
compares the current value of the time series with a subsequent value.

NASKIP2 Is Ignored
LAGPCT ignores NASKIP2. NASKIP2 does not control how NA values are treated in
OLAP DML functions. It only controls arithmetic operations involving the + (plus)

LAGPCT

15-80 Oracle OLAP DML Reference

and - (minus) operators that are executed at the command line and in programs,
models, and formulas.

Examples

Example 15–32 Using LAGPCT

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, and dimensions called district and products. Assume
also that there is a dimension named timelevels that contains the names of the
levels of the time dimension (that is, Month and Year) and a relation named
timelevelrel that is dimensioned by time and that has values from
timelevels (that is, the related dimension of timelevelrel is timelevels).

You can compare racquet sales in Dallas for 2000 with sales for 1999. You can use
the LAG function to show values from 1999 in the same report with the 2000 values.
You can use the LAGPCT function to calculate the percentage difference between
the two. You can multiply the value LAGPCT returns by 100 and include a percent
sign to display the difference as percentage points.

The following statements

ALLSTAT
LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT TIME TO '2000'
REPORT DOWN time sales HEADING 'Last Year' -
LAG(sales, 1, time, time LEVELREL timelevelrel)-
HEADING 'LAGPCT (Decimal Format)' -
LAGPCT(sales, 1, time LEVELREL timelevelrel) -
HEADING 'LAGPCT (Percent Format)' rset '%' -
LAGPCT(sales, 1, time LEVELREL timelevelrel) * 100

produce this report.

DISTRICT: Dallas
 ------------------PRODUCT------------------
 -----------------racquets------------------
 LAGPCT LAGPCT
 (Decimal (Percent
TIME SALES Last Year Format) Format)
-------------- ---------- ---------- ---------- ----------
2000 93,000,003 89,000,891 0.04 4.49%

LARGEST

INF_STOP_ON_ERROR to LIKEESCAPE 15-81

LARGEST

The LARGEST function returns the largest value of an expression. You can use this
function to compare numeric values or date values.

Return Value
The data type of the expression. It can be INTEGER, LONGINT, DECIMAL, or
DATE.

Syntax
LARGEST(expression [[STATUS] dimensions])

Arguments

expression
The expression whose largest value is to be returned.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the expression, the STATUS keyword might be required in order for
Oracle OLAP to process the function successfully, or the STATUS keyword might
provide a performance enhancement. See "The STATUS Keyword" on page 15-82.

dimensions
The dimensions of the result. By default, LARGEST returns a single value. When
you indicate one or more dimensions for the results, LARGEST calculates the
largest value along the dimensions that are specified and returns an array of values.
Each dimension must be either a dimension of expression or related to one of its
dimensions. When it is a related dimension, you can specify the name of the relation
instead of the dimension name. This enables you to choose which relation is used
when there is more than one.

LARGEST

15-82 Oracle OLAP DML Reference

Notes

NA Values
LARGEST is affected by the NASKIP option. When NASKIP is set to YES (the
default), LARGEST ignores NA values and returns the largest value or values that
are not NA. When NASKIP is set to NO, LARGEST returns NA when any value of the
expression is NA. When all the values of the expression are NA, LARGEST returns NA
for either setting of NASKIP.

Calculating Over a Time Dimension
When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH, QUARTER,
or YEAR dimension as a related dimension. Oracle OLAP uses the implicit relation
between the dimensions. To control the mapping of one DAY, WEEK, MONTH,
QUARTER, or YEAR dimension to another (for example, from weeks to months),
you can define an explicit relation between the two dimensions and specify the
name of the relation as the dimension argument to the LARGEST function.

For each time period in the related dimension, Oracle OLAP finds the largest data
value in any source time period that ends in the target time period. This method is
used regardless of which dimension has the more aggregate periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the expression, Oracle OLAP creates a temporary variable to use
while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the expression are
limited to a few values and are physically fragmented, you can specify the STATUS
keyword to improve the performance of the function.

When you use the LARGEST function with the STATUS keyword for an expression
that requires going outside of the status for results (for example, with the LEAD or
LAG functions or with a qualified data reference), the results outside of the status
will be returned as NA.

LARGEST

INF_STOP_ON_ERROR to LIKEESCAPE 15-83

Examples

Example 15–33 Finding the Largest Monthly Sales

This example uses the LARGEST function to find the largest monthly sportswear
sales for each district during the first half of 1996. To see the largest sales figure for
each district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'Largest Sales' LARGEST(sales district)

The preceding statements produce the following output.

Largest
DISTRICT Sales
-------------- ----------
Boston 79,630.20
Atlanta 177,967.49
Chicago 112,792.78
Dallas 175,716.31
Denver 97,236.88
Seattle 60,322.88

LAST_DAY

15-84 Oracle OLAP DML Reference

LAST_DAY

The LAST_DAY function returns the last day of the month in which a particular
date falls.

Return Value
DATETIME

Syntax
LAST_DAY(datetime-expression)

Arguments

datetime-expression
An expression that has the DATETIME data type.

Examples

Example 15–34 Calculating Remaining Days in a Month

The following statement calculates how many days remain between today's date
and the end of the month.

SHOW JOINCHARS('Days left: ' LAST_DAY(SYSDATE) - SYSDATE)

When today's date is September 8, 2000, then this statement returns the following.

Days left: 22

LCOLWIDTH

INF_STOP_ON_ERROR to LIKEESCAPE 15-85

LCOLWIDTH

The LCOLWIDTH option controls the default width of the label column in reports.
For output from ROW command and HEADING, LCOLWIDTH affects the first
column. For output from REPORT, LCOLWIDTH affects the first column except
when the first column is a data column or part of a set of columns that represent the
base dimensions of a composite or a conjoint dimension.

Data type
INTEGER

Syntax
LCOLWIDTH = n

Arguments

n
An integer expression that specifies the desired column width in number of
characters. You can use an integer literal or an expression that returns an integer
value. The default is 14.

Notes

Label Columns in REPORT
By default, the REPORT command produces a column of dimension values that
label the rows down the left side of the report. The default width of this label
column is controlled by the LCOLWIDTH option. However, when the values of a
composite or a conjoint dimension are shown down the report, Oracle OLAP creates
a separate column for each base dimension. The default width of these base
dimension columns is controlled by the COLWIDTH option, which has a default
value of 10 characters.

LCOLWIDTH

15-86 Oracle OLAP DML Reference

Maximum Column Width
You can set LCOLWIDTH to any value from 1 to 4000.

Overriding LCOLWIDTH
You can override the LCOLWIDTH value for the label column by using the WIDTH
attribute in a HEADING, REPORT, or ROW command.

Examples

Example 15–35 Setting Default Column Widths

Suppose you want to look at unit sales for six months. Since the longest product
name is 10 characters, you do not need the default width of 14 for your label
column. Also, since the sales figures are not large, you do not need a width of 10
characters for your data columns. You can set LCOLWIDTH and COLWIDTH to
give smaller default column widths.

LIMIT district TO 'Atlanta'
LIMIT month TO 'Oct95' TO 'Mar96'
LCOLWIDTH = 10
COLWIDTH = 6
REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA
------------------UNITS------------------
------------------MONTH------------------

PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
---------- ------ ------ ------ ------ ------ ------
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

Important: The maximum width of a line in a report is 4000
characters. Therefore, the combined width of all the columns of a
report cannot be greater than 4000 characters

LD

INF_STOP_ON_ERROR to LIKEESCAPE 15-87

LD

The LD command adds the description to the current object definition. The
description consists of text that you specify to describe the object. You can assign a
description to any type of definition.

Syntax
LD [text]

Arguments

text
The text of the description you want to assign to the definition. When text is
omitted, any existing description for the current definition is deleted.

Notes

Specifying the LD
You can create a multiline description by using a hyphen as a continuation
character. However, you cannot create a description with an initial blank line with
the LD command.

Examples

Example 15–36 Adding a Description to the Definition of a Variable

This example changes the description associated with the variable units. First,
execute the CONSIDER command to make units the current definition. Then use
the LD command to assign a new description. The units variable has the following
definition.

DEFINE units VARIABLE INTEGER <month product district>
LD Actual Unit Shipments

Tip: The current object definition is the definition of the object that
has been most recently defined or considered during the current
session. To make an object definition the current definition, use a
CONSIDER command.

LD

15-88 Oracle OLAP DML Reference

The statements

CONSIDER units
ld Actual Unit Shipments for Each Division
DESCRIBE units

produce the following definition for units.

DEFINE units VARIABLE INTEGER <month product district>
LD Actual Unit Shipments for Each Division

LEAD

INF_STOP_ON_ERROR to LIKEESCAPE 15-89

LEAD

The LEAD function returns the values of a dimensioned variable or expression at a
specified offset of a dimension subsequent to the current value of that dimension.
Typically, you use the LEAD function to retrieve values for a future time period.

Return Value
The data type of the variable argument or NA when you try to retrieve a value from
beyond the last period defined for the time dimension.

Syntax
LEAD(variable, n, [time-dimension], [[STATUS|NOSTATUS|limit-clause])

Arguments

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lead. LEAD uses this value to
determine the number of values that LEAD should go ahead in dimension to
retrieve the value of variable. (See "Negative n Value" on page 15-90.) To count the
values, LEAD uses the default status, unless you use the STATUS keyword or the
limit-clause argument to specify a different dimension status.

dimension
The dimension along which the lead occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level
(for example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want LEAD to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LEAD should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lead.

LEAD

15-90 Oracle OLAP DML Reference

NOSTATUS
Specifies that LEAD should use the default status (that is, a list all the dimension
values in their original order) when computing the lead.

limit-clause
Specifies that LEAD should use the default status limited by limit-clause when
computing the lead. You can use any valid LIMIT clause (see the entry for the
LIMIT command for further information). To specify that LEAD should use the
current status limited by limit-clause when computing the lead, specify a LIMIT
function for limit-clause.

Notes

Negative n Value
Normally, n is a positive integer that indicates the number of time periods (or
dimension values) after the current one. When you specify a negative value for n, it
indicates the number of time periods before the current one. In effect, using a
negative value for n turns LEAD into a LAG function.

Examples

Example 15–37 Using LEAD

Assume that you have a sales variable that is dimensioned by three dimensions of
the TEXT type (named product, district, and time). The time dimension is a
hierarchical dimension with the following values.

1999
2000
Jan1999
Feb1999
...
Dec1999
Jan2000
Feb2000
...
Dec2000

Also, assume that there is a dimension named timelevels that contains the
names of the levels of the time dimension (that is, Month and Year) and a relation
named timelevelrel that is dimensioned by time and that has values from

LEAD

INF_STOP_ON_ERROR to LIKEESCAPE 15-91

timelevels (that is, the related dimension of timelevelrel is timelevels). A
report of timelevelrel shows these relationships.

TIME TIMELEVELREL
-------------- ------------
1999 Year
2000 Year
Jan1999 Month
Feb1999 Month
... ...
Dec1999 Month
Jan2000 Month
Feb2000 Month
... ...
Dec2000 Month

Suppose you want to compare racquet sales in Dallas for the first two months of
1999 with sales for the corresponding months of 2000. You can use the LEAD
function to produce the values from 2000 in the same report with the 1999 values.
The following statements

LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT time TO 'JAN1999' 'FEB1999'
REPORT DOWN time sales HEADING 'Following Year' LEAD(sales, 12, time, time
LEVELREL timelevelrel)

produce this report.

DISTRICT: DALLAS
 -------PRODUCT-------
 ------RACQUETS-------
TIME SALES Following Year
-------------- ---------- ---------------------
Jan2000 118,686.75 125,879.86
Feb2000 142,305.99 150,833.64

LEAST

15-92 Oracle OLAP DML Reference

LEAST

The LEAST function returns the smallest expression in a list of expressions. All
expressions after the first are implicitly converted to the data type of the first
expression before the comparison.

To retrieve the largest expression in a list of expressions, use GREATEST.

Return Value
The data type of the first expression.

Syntax
LEAST (expr [, expr]...)

Arguments

expr
An expression.

Examples

Example 15–38 Finding the Shortest Text Expressions

The following statement returns the shortest string.

SHOW LEAST('Harry','Harriot','Harold')
Harry

Example 15–39 Finding the Smallest Numerical Expressions

The following statement selects the number with the smallest value.

SHOW LEAST (5, 3, 18)
3

LIKECASE

INF_STOP_ON_ERROR to LIKEESCAPE 15-93

LIKECASE

The LIKECASE option controls whether the LIKE operator is case sensitive.

Data type
BOOLEAN

Syntax
LIKECASE = {YES|NO}

Arguments

YES
Specifies that the LIKE operator is case sensitive. (Default)

NO
Specifies that the LIKE operator is not case sensitive.

Notes

Newline Characters
The LIKENL option controls whether the LIKE operator recognizes newline
characters.

Examples

Example 15–40 The Effect of LIKECASE

The following statements show the use of the LIKECASE option.

LIKECASE = YES
SHOW 'oracle' LIKE 'Oracle%'

The output of this SHOW command is

NO

LIKECASE

15-94 Oracle OLAP DML Reference

The SHOW command

SHOW 'ORACLE' LIKE '%orc%'

produces the following output.

NO

The statements

LIKECASE = NO
SHOW 'ORACLE' like 'orc%'

produce the following output.

YES

LIKEESCAPE

INF_STOP_ON_ERROR to LIKEESCAPE 15-95

LIKEESCAPE

The LIKEESCAPE option lets you specify an escape character for the LIKE operator.

Data type
ID

Syntax
LIKEESCAPE = char

Arguments

char
A text expression that specifies the character to use as an escape character in a LIKE
text comparison. The default is no escape character.

The LIKE escape character affects the LISTNAMES program, which accepts a LIKE
argument that it uses in a LIKE text comparison.

Notes

Using the Escape Character
The LIKE escape character lets you find text expressions that contain the LIKE
operator wildcard characters, which are an underscore (_), which matches any
single character, and a percent character (%), which matches any string of zero or
more characters.

To include an underscore or percent character in a text comparison, first specify an
escape character with the LIKEESCAPE option. Then, in your LIKE expression,
precede the underscore or percent character with the LIKEESCAPE character you
specified.

You might want to avoid using a backslash (\) as the LIKE escape character,
because the backslash is the standard OLAP DML escape character. You would
therefore need to have two backslashes to indicate that LIKEESCAPE should treat
the second backslash as a literal character.

LIKEESCAPE

15-96 Oracle OLAP DML Reference

Examples

Example 15–41 Using an Escape Character with the LIKE Operator

This example demonstrates how to specify an escape character and how to use it
with the LIKE operator.

Suppose you have a variable named prodstat that contains the following text
values.

DEFINE prodstat TEXT <product>
prodstat(product 'Tents') = -
'What are the results of the fabric testing?'
prodstat(product 'Canoes') = -
'How has the flooding affected distribution?'
prodstat(product 'Racquets') = -
'The best-selling model is Whack_it!'
prodstat(product 'Sportswear') = -
'90% of the stock is ready to ship.'
prodstat(product 'Footwear') = -
'When are the new styles going to be ready?'

Suppose you have the following program, named findeschar, to find certain
characters in the text contained in the cells of the prodstat variable. The program
uses the LIKE operator.

ARGUMENT findstring TEXT
FOR product

IF prodstat LIKE findstring
THEN SHOW JOINCHARS(product ' - ' prodstat)

Before the program can find a text value that contains a percent character (%) or an
underscore (_), you must specify an escape character by using the LIKEESCAPE
option. Suppose you want to use a question mark (?) as the escape character. Before
you set the escape character to a question mark, the following statement finds text
that contains a question mark.

CALL findeschar('%?%') "Find any text that contains a question mark.

The preceding statement produces the following output.

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

LIKEESCAPE

INF_STOP_ON_ERROR to LIKEESCAPE 15-97

The following statements specify the question mark (?) as the escape character and
then call the FINDESCHAR program.

LIKEESCAPE = '?'
CALL findeschar('%?%') "Find any text that ends with a percent character.

The preceding statement does not find any text because none of the text values in
prodstat ends in a percent character. To find any text that contains a percent
character, the following statement adds another wildcard character. LIKEESCAPE
interprets the first percent character as the wildcard that matches zero or more
characters, the second percent character as the literal percent character (%) because
it is preceded by the question mark escape character, and the third percent character
as another wildcard character. The result is that LIKEESCAPE looks for a percent
character preceded by and followed by zero or more characters.

CALL findeschar('%?%%') "Find any text that contains a percent character.

The preceding statement produces the following output.

Sportswear - 90% of the stock is ready to ship.

The following statement finds text that contains an underscore.

CALL findeschar('%?%') "Find any text that contains an underscore.

The preceding statement produces the following output.

Racquets - The best-selling model is Whack_it!

The following statement doubles the escape character to find text that contains the
escape character.

CALL findeschar('%??%') "Find any text that contains a question mark.

The preceding statement produces the following output.

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

Example 15–42 Using an Escape Character with the LISTNAMES Program

This example demonstrates how to find the name of an object that contains a LIKE
argument wildcard character. These following statements use the LIKEESCAPE

LIKEESCAPE

15-98 Oracle OLAP DML Reference

option to specify an escape character, define a couple of object names that contain
an underscore, and then list the dimensions whose names include an underscore.

LIKEESCAPE = '?'
DEFINE my_textdim DIMENSION TEXT
DEFINE my_intdim DIMENSION INTEGER
LISTNAMES DIMENSION LIKE '%?%'

The preceding statement produces the following output.

3 DIMENSIONs

MY_INTDIM
MY_TEXTDIM
_DE_LANGDIM

LIKENL to MAX 16-1

16
LIKENL to MAX

This chapter contains the following OLAP DML statements:

■ LIKENL

■ LIMIT command

■ LIMIT command (using values)

■ LIMIT command (using LEVELREL)

■ LIMIT command (using related dimension)

■ LIMIT command (using parent relation)

■ LIMIT command (NOCONVERT)

■ LIMIT command (using POSLIST)

■ LIMIT function

■ LIMITMAPINFO

■ LIMIT.SORTREL

■ LINENUM

■ LINESLEFT

■ LISTBY

■ LISTFILES

■ LISTNAMES

■ LOAD

■ LOG command

■ LOG function

16-2 Oracle OLAP DML Reference

■ LOG10

■ LOWCASE

■ LPAD

■ LSIZE

■ LTRIM

■ MAINTAIN

■ MAINTAIN ADD

■ MAINTAIN DELETE

■ MAINTAIN MERGE

■ MAINTAIN MOVE

■ MAINTAIN RENAME

■ MAKEDATE

■ MAX

LIKENL

LIKENL to MAX 16-3

LIKENL

The LIKENL option controls whether the LIKE operator recognizes newline
characters between lines of a text expression, when deciding whether a text value is
like a text pattern. The LIKENL option applies to the text expressions on either side
of the LIKE operator.

Data type
BOOLEAN

Syntax
LIKENL = {YES|NO}

Arguments

YES
Specifies that the LIKE operator recognizes newline characters between lines of a
text expression. (Default)

NO
Specifies that the LIKE operator ignores newline characters between lines of a text
expression. Newline characters are ignored in both of the expressions being
compared.

Notes

Newline Characters
In the OLAP DML, the representation of a newline character is "\n".

Case Sensitivity
The setting of LIKECASE controls whether the LIKE operator is case sensitive.

LIKENL

16-4 Oracle OLAP DML Reference

Examples

Example 16–1 The Effect of LIKENL

The following statements show the use of the LIKENL option:

■ The statement

SHOW textvar

produces the following output.

Hello
world

■ The statements

LIKENL = YES
SHOW textvar LIKE '%low%'

produce the following output.

NO

■ The statement

SHOW 'Hello\nworld' LIKE '%\n%'

produces the following output.

YES

■ The statement

SHOW 'Hello\nworld' LIKE '%low%'

produces the following output.

NO

■ The statements

LIKENL = NO
SHOW textvar LIKE '%low%'

produce the following output.

YES

LIKENL

LIKENL to MAX 16-5

■ The statement

SHOW 'Hello\nworld' LIKE '%\n%'

produces the following output.

YES

■ The statement

SHOW 'Hello\nworld' LIKE '%low%'

produces the following output.

YES

LIMIT command

16-6 Oracle OLAP DML Reference

LIMIT command

The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valueset. You use LIMIT to restrict the data values
you are working on by temporarily limiting the range of the dimensions of the data.
Using LIMIT, you create a current status list for a dimension. The current status list
of a dimension is an ordered list of currently accessible values for the dimension.
Values that are in the current status list of a dimension are said to be "in status." For
more information on dimension status and its importance when working with
analytic workspace data, see "Working with Subsets of Data" on page 3-30.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type [limit-clause] [IFNONE label]

where:

limit-type is one of the following keywords that specify how Oracle OLAP should
modify the current status list:

TO
ADD
INSERT [FIRST|LAST|BEFORE position|AFTER position]
KEEP
REMOVE
COMPLEMENT
SORT

limit-clause specifies the values to use for the limit. There are several types of
limit-clause:

{inclusive_val_args....| exclusive_val_args}

LEVELREL level-relation [valueset2]

related-dimension [related-dimension-valuelist]

[family-keyword] USING parent-relation [inclusive_val_args]

NOCONVERT [{unrelated-dimension|numeric-valueset}]

POSLIST poslist-exp

LIMIT command

LIKENL to MAX 16-7

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
Specifies the name of the component of the concat dimension whose values are used
to determine the limit. When you specify a value for concat-component, the limit sets
the status of the specified concat dimension using the values of dimension which is a
component of the concat dimension. This limit-clause applies only when dimension is
a concat dimension. The status of a concat dimension and of its component
dimensions are not shared. Changing the status of a component dimension after
you have used that dimension as the limit-clause in setting the status of a concat
dimension does not change the status of the concat dimension.

TO
Replaces the status of a dimension or valueset with the values specified by the
limit-clause arguments. The TO keyword selects values from the default status of a
dimension in the same order as they appear in the LIMIT command or in the order
implied by the valuelist argument. When you use arguments that imply ordering,
the ordering of the values is based on their positions in the default status.

ADD
Expands the status of a dimension or valueset by adding the values specified by the
limit-clause arguments that are not already in status. The ADD keywords selects
values from the default status of a dimension in the same order as they appear in
the LIMIT command or in the order implied by the valuelist argument. When you
use arguments that imply ordering, the ordering of the values is based on their
positions in the default status. ADD adds unique dimension values in the specified
order at the end of the current status list or valueset list.

INSERT
Expands the status of a dimension or valueset by inserting the values specified by
the limit-clause arguments in a specified position in the current status. The INSERT
keyword selects values from the default status of a dimension in the same order as
they appear in the LIMIT command or in the order implied by the valuelist
argument.

LIMIT command

16-8 Oracle OLAP DML Reference

When you use arguments that imply ordering (for example,value1 TO value2),
the ordering of the values is based on their positions in the default status. INSERT
adds values to a specified position in the current status. When an added value is
already in status, it is removed from its position in the current status and added in
the order in which it appears in the valuelist, preserving the order of the added
values.

FIRST
Inserts the new values before the first value in status.

LAST
Inserts new values after the last value in status.

BEFORE
AFTER
Specifies whether new values Oracle OLAP inserts new values before or after
position in the current status.

position
A dimension value in the current status, a character expression whose value is a
dimension value in the current status, or an integer expression whose value
represents the position of a dimension value in the default status.

KEEP
Reduces the status of a dimension or valueset by keeping only the values specified
by the limit-clause arguments. Oracle OLAP performs the selection based on the
current dimension status. KEEP preserves the current order of values among the
values that remain in the status.

REMOVE
Reduces the status of a dimension or a valueset by removing the values specified by
the limit-clause arguments. Oracle OLAP performs the selection based on the current
dimension status. KEEP preserves the current order of values among the values that
remain in the status.

COMPLEMENT
Replaces the status of a dimension or valueset with the values that are not specified
by the limit-clause arguments. When you do not specify any arguments after
COMPLEMENT, status is replaced by all values not now in status. Oracle OLAP
performs the selection based on the current dimension status. COMPLEMENT
leaves dimension values that remain in their default order. (Abbreviated COMP)

LIMIT command

LIKENL to MAX 16-9

SORT
Sorts the values of a dimension or valueset according to the limit-clause arguments.
LIMIT creates a temporary list of values based on the limit-clause arguments, and
uses this list to sort the current status list. Any values not present in the temporary
list are moved to the end of the current status list.

limit-clause
Specifies the values to use for the limit. There are several types of limit clauses.
Because the complete syntax for each type of limit clause is complex, subsequent
entries discuss the LIMIT command with each type of clause:

LIMIT command (using values)
LIMIT command (using LEVELREL)
LIMIT command (using related dimension)
LIMIT command (using parent relation)
LIMIT command (NOCONVERT)
LIMIT command (using POSLIST)

IFNONE
(For use only within an OLAP DML program) Specifies that program execution
should branch to label when the requested status has null status or is based on a
related dimension that turns out to have null status (that is, to have no values). In
either case, the null status is not put into effect when program execution branches.
Instead, the original status, before the LIMIT command was executed, is retained.
This is true even when OKNULLSTATUS is YES. Within an OLAP DML program,
you cannot use both IFNONE and NULL in the same command.

label
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label" on page 14-7. Execution of the program branches to the
line directly following the specified label.

Note that label, as specified in IFNONE, must not be followed by a colon. However,
the actual label elsewhere in the program must end with a colon.

Notes

Specifying a Value of a Concat Dimension
To specify a value of a nonunique concat dimension, use the following syntax.

 <base-dimension: value>.

LIMIT command

16-10 Oracle OLAP DML Reference

Default Status List
When you first attach an analytic workspace, the current status list of each
dimension consists of all of the values of the dimension that have read permission,
in the order in which the values are stored. This list of values is called the default
status list for the dimension.

Unique Values
LIMIT selects only unique values of a dimension. When a value appears more than
once in a LIMIT command, it is placed in status in the order of its first appearance.
For example, the following lines.

LIMIT time TO 'Jan97', 'Feb97', 'Jan97'
STATUS time

produce this output.

The current status of TIME is:
JAN97, FEB97

Nonexistent Values
Oracle OLAP does not signal an error when you try to set the status of a dimension
or valueset that has no values, unless you explicitly list values that do not exist. For
example, assume that you have not added any values to a newly defined dimension
WEEK. In this case, the statement LIMIT week TO FIRST 10 does not cause an
error. However, LIMIT week TO 'Pete' causes an error because Pete is not a
value. Similarly, LIMIT week TO 20 causes an error because week does not have
a value at position 20.

Empty Status
Oracle OLAP allows the status of a dimension or valueset to be set to null (empty
status) only when you have explicitly specified that you want null status to be
permitted. You can give this permission in either of two ways:

■ Set the OKNULLSTATUS option to YES. This specification indicates that null
status should be allowed whenever it occurs (except when the IFNONE
argument is present in a LIMIT command).

■ Use the NULL keyword in a LIMIT command to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or
KEEP NULL. This specification indicates that null status should be allowed for
this LIMIT command only.

LIMIT command

LIKENL to MAX 16-11

When you have not used either of these two methods to give permission for null
status and you execute a LIMIT command that would result in null status, Oracle
OLAP does not change the status to null when it executes the statement. Instead,
Oracle OLAP leaves the status as it was before the statement was issued and either
signals an error (when IFNONE is not present) or branches to the IFNONE label
(when IFNONE is present).

An IFNONE argument indicates that you do not want program execution to take its
normal course when a dimension's status were to be set to null. Therefore, when
IFNONE is present, Oracle OLAP branches to the IFNONE label and does not set
the status to null, even when OKNULLSTATUS is YES. When the NULL keyword is
present together with IFNONE, Oracle OLAP signals the inconsistency with an
error.

IFNONE requires the use of unstructured programming techniques. Oracle OLAP
now provides alternative structured techniques, so the use of IFNONE is
discouraged. IFNONE has been retained for compatibility with previous versions of
Oracle OLAP.

Limiting a Conjoint
To limit a conjoint dimension to a value list, you can use the following
constructions:

■ Specify the actual values, surrounding each combination with angle brackets

LIMIT proddist TO '<Tents, Boston>' -
'<Footwear, Denver>'

■ Use a variable name for the values, surrounding the combination with angle
brackets.

prodname = 'Canoes'
distname = 'Seattle'
LIMIT proddist To <prodname, distname>

■ Create a multiline list, where each line is a combination surrounded by angle
brackets.

namelist = '<Tents Boston>\n<Footwear, -
Denver>\n <Canoes, Seattle>'

LIMIT proddist TO namelist

LIMIT command

16-12 Oracle OLAP DML Reference

■ Use the implicit relation between a conjoint dimension and its base dimension
to limit the conjoint dimension. For example, use the following statement to
limit PRODDIST to all conjoint values having "Canoes" as one of its base values.

LIMIT proddist TO product 'Canoes'

For an example of how you can limit a conjoint dimension that has a concat base
dimension, see Example 16–13, "Limiting a Conjoint Dimension with a Concat Base
Dimension" on page 16-28.

Limiting a Concat
You can define a concat dimension using simple dimensions, conjoint dimensions,
and other concat dimensions as the base dimensions of the concat. The syntax for
limiting a concat dimension to one of its values is the following.

LIMIT concatdim TO <base-dim: value>

For example, the concat dimension reg.dist.ccdim has the simple dimensions
region and district as its base dimensions. The following statement sets the
status of reg.dist.ccdim to two of its values, region: East and
district: Atlanta.

LIMIT reg.dist.ccdim TO <region: 'East'> <district: 'Atlanta'>

For other methods of setting the status of a concat dimension, see Example 16–4,
"Limiting a Concat Dimension" on page 16-14.

Alternative to Branching Using an IFNONE Label
As an alternative to branching to an IFNONE label, you can also handle null status
for a dimension with the OKNULLSTATUS option. When you set OKNULLSTATUS
to YES, then you are allowed to set the status of a dimension to null. You can then

Note: You can use logical position numbers for base dimension
values in a conjoint dimension. "Using INSTAT When the
Dimension is a Conjoint Dimension" on page 15-44 illustrates using
logical position numbers

LIMIT command

LIKENL to MAX 16-13

check for null status and execute appropriate commands with an IF...THEN...ELSE
command, or you can handle null status as one of the cases in a SWITCH command.

OKNULLSTATUS = YES
LIMIT month TO sales GT salesnum
IF STATLEN(month) LT 1
 THEN GOTO showerr

Examples

Example 16–2 Adding and Removing Values

These lines add values to the status for the month dimension.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT month ADD 'Jul96' 'Sep96'

Issuing a STATUS month statement produces this output.

The current status of MONTH is:
Jan96 TO Jul96, Sep96

This line removes values from the status for the month dimension.

LIMIT month REMOVE 'Jan96' TO 'Mar96'

Now, issuing a STATUS month statement produces this output

The current status of MONTH is:
Apr96 TO Jul96, Sep96

Example 16–3 Limiting with a Dimension Surrogate

A dimension and any dimension surrogates for it share the same status.

For example, assume that there is a NUMBER dimension named store_id that
has the values 25, 410, 150, 205, 310, and 10. It also uses storepos, an
INTEGER dimension surrogate for store_id. The dimension surrogate storepos
has the values 1, 2, 3, 4, 5, and 6. A TEXT dimension surrogate for store_id is
storename. It has the text values Raoul's - Boston, Poldy's Potpourri,

LIMIT command

16-14 Oracle OLAP DML Reference

Molly's Emporium, Raoul's - Atlanta, Kinch's Kitchen Supplies,
and Raoul's - Chicago. The following statements are equivalent.

LIMIT store_id TO 25 410 150
LIMIT store_id TO storepos 1 2 3
LIMIT storepos TO 1 TO 3
LIMIT storepos TO first 3
LIMIT storename TO first 3
LIMIT storename TO 'Raoul\'s - Boston' TO 'Molly\'s Emporium'
LIMIT store_id TO storename storepos 1 2 3
LIMIT storename TO store_id 25 TO 150

The following statements set the status of the NUMBER type store_id dimension
by limiting storename, which is a TEXT dimension surrogate for store_id, and
report the values of store_id.

LIMIT storename TO 'Raoul\'s Sweets' TO 'Henry\'s Flowers'
REPORT store_id

The preceding statement produces the following output.

STORE_ID

10
20
30

Example 16–4 Limiting a Concat Dimension

In the following examples, the concat dimension reg.dist.ccdim has the simple
dimensions region and district as its base dimensions. A concat dimension has
an implicit relation to each of its component dimensions.

■ The following statement sets the status of the concat dimension using the
related dimension syntax and specifying the positions of the component
(related) dimension.

LIMIT reg.dist.ccdim TO district 1, 4, 5

Issuing a STATUS reg.dist.ccdim statement produces the following output.

The current status of REG.DIST.CCDIM is:
<DISTRICT: BOSTON>, <DISTRICT: DALLAS>, <DISTRICT: DENVER>

LIMIT command

LIKENL to MAX 16-15

■ The following statement limits the concat dimension directly to the values
specified by positions of the concat dimension.

LIMIT reg.dist.ccdim TO 1, 4, 5

Issuing a STATUS reg.dist.ccdim statement produces the following output.

The current status of REG.DIST.CCDIM is:
<REGION: EAST>, <DISTRICT: BOSTON>, <DISTRICT: ATLANTA>

■ The following statements set the status of district and then limit
reg.dist.ccdim to the status of district.

LIMIT district TO LAST 3
LIMIT reg.dist.ccdim TO district

Issuing a REPORT reg.dist.ccdim statement produces the following output.

REG.DIST.CCDIM

<district: Dallas>
<district: Denver>
<district: Seattle>

■ In the following statement, the limit-clause argument is a list of values of the
concat dimension.

LIMIT reg.dist.ccdim TO <region: 'East'> <district:
'Boston'> <district: 'Atlanta'>

■ The following statements define a valueset for reg.dist.ccdim, store the
current status of the concat dimension in the valueset, reset the status of the
concat to ALL, and then limit the concat to the valueset and report the values of
the concat in status.

DEFINE regdist.vset VALUESET reg.dist.ccdim
LIMIT regdist.vset TO reg.dist.ccdim
LIMIT reg.dist.ccdim TO ALL
LIMIT reg.dist.ccdim TO regdist.vset
RPR W 22 reg.dist.ccdim

LIMIT command

16-16 Oracle OLAP DML Reference

The preceding statements produce the following result.

REG.DIST.CCDIM

<region: East>
<district: Boston>
<district: Atlanta>

You can also limit a concat dimension using a valueset of one of its component
dimensions.

■ When the component dimensions contain identical values, you can limit the
concat dimension to those values by using a Boolean expression. When the
district and region dimensions both have New York as a value, then the
following statement limits the reg.dist.ccdim to those values.

LIMIT reg.dist.ccdim TO BASEVAL(reg.dist.ccdim) EQ 'New York'

■ In the following example, the concat dimension geog has the simple dimension
region and the conjoint dimension cityandstate as its base dimensions.
The following statement sets the status of the concat dimension by limiting the
conjoint base dimension.

LIMIT geog TO cityandstate <'Princeton' 'New Jersey'> -
 <'Patterson' 'New Jersey'>

Issuing a STATUS geog statement produces the following output.

The current status of GEOG is:
<CITYANDSTATE: <PRINCETON, NEW JERSEY>, <CITYANDSTATE: <PATTERSON, NEW
JERSEY>>

■ The following statements sets the status of the concat dimension by limiting the
conjoint base dimension by specifying a value of a base dimension of the
conjoint dimension.

LIMIT geog TO cityandstate city 'Princeton'
RPR W 30 geog

The preceding statement produces the following output.

GEOG

<cityandstate: <Princeton, New Jersey>>
<cityandstate: <Princeton, Indiana>>

LIMIT command

LIKENL to MAX 16-17

Example 16–5 Limiting with a Worksheet

This example shows how to limit a dimension to the values that are contained in a
column of a worksheet. Here the dimension month is limited to the values that are
contained in the first column of the worksheet workitem. The following statements
produce a workitem report, which is shown following the statements.

LIMIT month TO ALL
LIMIT wkscol TO 1
LIMIT wksrow TO workitem NE NA
REPORT workitem

-WORKITEM-
--WKSCOL--

WKSROW 1
-------------- ----------

1 Jan96
2 Feb96
3 Mar96
4 Apr96
5 May96
6 Jun96
7 Jul96
8 Aug96
9 Sep96

10 Oct96
11 Nov96
12 Dec96

The following statement limits the month dimension to the values that are listed in
the first column of workitem.

LIMIT month TO CHARLIST(workitem)

Issuing a STATUS month statement produces the following output.

The current status of MONTH is:
Jan96 TO Dec96

Example 16–6 Using Ampersand Substitution with LIMIT

Assume that you want specify exactly two products for a program named
product.rpt. In this cae, you could declare two dimension-value arguments to
handle them. But when you want to be able to specify any number of products
using LIMIT commands, then you can use a single argument with ampersand
substitution.

LIMIT command

16-18 Oracle OLAP DML Reference

Suppose you use the following commands in your program.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod TEXT
 ...
LIMIT product TO &rptprod

You can run the program and specify that you want the first three products in the
report.

CALL product.rpt ('Missing' 8 'first 3')

The single quotation marks are necessary to indicate that "first 3" should be taken as
a single argument, rather than two separate arguments separated by a space. The
ampersand causes the LIMIT command to interpret 'first 3' as a keyword
expression rather than as a dimension value.

Example 16–7 Branching on Null Status

Your program might try to set or refine the status of the product dimension to
include only the products for which unit sales are greater than 500. When no
products have unit sales of more than 500, then you can use the IFNONE keyword to
specify that execution branch to the novals label.

LIMIT product KEEP units GT 500 IFNONE novals

In the commands following the novals label, you can handle the special situation
in which no products have units sales greater than 500.

LIMIT command

LIKENL to MAX 16-19

LIMIT command (using values)

A LIMIT command with a using values limit clause assigns valules to a valueset or
sets the current status list of a dimension or dimension surrogates to:

■ Specified value or values. The values can be any of the following:

■ Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

■ Ranges of dimension values, expressed as value1 TO value2.

■ Integer values that represent the logical positions of dimension values,
expressed as comma-delimited integers.

■ Ranges of INTEGER values that represent the logical positions of
dimension values, expressed as value1 TO value2.

■ Valuesets.

■ Values for which a Boolean expression is TRUE.

■ The top or bottom performers of a dimension based on a criterion

■ The top or bottom performers of a dimension, by percentage, based on a
criterion represented as an expression

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type -

{inclusive_val_args....| exclusive_val_args} [IFNONE label]

where:

inclusive_val_args is one or more of the following constructs:

intvaluelist

text-expression

value1 TO value2

valuelist

valueset

exclusive_val_args is one of the following constructs:

ALL

LIMIT command (using values)

16-20 Oracle OLAP DML Reference

boolean-expression

{BOTTOM|TOP} n BASEDON expression

{BOTTOM|TOP} n-percent PERCENTOF expression

{FIRST|LAST|NTH} n

LONGLIST

NULL

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list.
(See the main entry for LIMIT command for a list and descriptions of these
keywords.)

intvaluelist
A list of one or more integers, or the name of a single-cell variable that holds a
numeric value. Separate the values with commas (,). Numeric values with decimal
places (SHORTDECIMAL or DECIMAL values) are automatically truncated to
integers before being used as dimension values. An integer specifies a dimension
value by its logical position in the full set of dimension values. You cannot specify a
NUMBER dimension value by an integer position. When the values of the
NUMBER dimension are integers, then you can set the status of the dimension by
specifying dimension values, as in intvalue1, intvalue2 and so on.

text-expression
A multiline text expression, each line of which is a value of dimension.

LIMIT command

LIKENL to MAX 16-21

value1 TO value2
Specifies a range of dimension values where value1 and value2 can be either
dimension values or integers. Such a range can be increasing (for example, 1 to 10)
or decreasing (for example, 10 to 1). The status of the dimension or valueset is
assigned accordingly. You cannot specify the values of a NUMBER dimension by
using INTEGER positions. Instead, you can define an INTEGER dimension
surrogate for the NUMBER dimension and limit the dimension by the positions of
the surrogate.

valuelist
A list of one or more values of dimension. A dimension value can be specified as a
text expression whose value is a valid dimension value. For a NUMBER dimension,
dimension values are numbers. For dimensions with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR, dimension values can also be specified as DATE
expressions.

valueset
An analytic workspace valueset object that is a saved list that holds the values for
the dimension whose status is being set. You cannot define a valueset for a
dimension surrogate, therefore you cannot specify a valueset when setting the
status of a dimension surrogate. However, when you limit a dimension with a
valueset, then you automatically limit to the same set any dimension surrogates of
that dimension.

ALL
Specifies that all dimension values in the default status are to be included in the
status. The default status is made up of all dimension values for which read
permission is granted, in the same order as when the dimension was last
maintained. When you start up an analytic workspace, the status for each
dimension in your analytic workspace is the default status. Changing the read
permission for a dimension with PERMIT or PERMITRESET commands changes
the default status for the dimension.

boolean-expression
An expression whose TRUE values are used by Oracle OLAP when limiting the
dimension or status. The boolean-expression must be dimensioned by the dimension
whose status is being set. For a dimension surrogate, the Boolean expression is
evaluated over the dimension for which it is a surrogate. The data types of the
expressions you are comparing in the Boolean expression must be similar. See the
CONVERT function for information on converting data types. To correctly use
LIMIT with a Boolean expression you need to understand how it works with a
Boolean expression that has with more than one dimension, see "How LIMIT

LIMIT command (using values)

16-22 Oracle OLAP DML Reference

handles Boolean expressions with more than one dimension" on page 16-24 for
details.

BOTTOM n BASEDON expression
TOP n BASEDON expression
Specifies that the status of a dimension or valueset is set based on a criterion, where
n is the number of values to select and expression is the criterion on which to base
the selection. All dimensions of expression other than the one whose status is being
set must be limited to a single value. TOP results in the status sorted in descending
order, BOTTOM results in the status sorted in ascending order. You cannot use a
composite after the BASEDON keyword. When you attempt to do so, an error
message will be displayed.

BOTTOM n-percent PERCENTOF expression
TOP n-percent PERCENTOF expression
Specifies that the status of a dimension or valueset is set by finding the top or
bottom performers based on a criterion represented as an expression. This
construction sorts values and adds them to the status that is based on their
contribution, by percentage, to an expression.

For example, the following statement sorts products in descending order by each
product's contribution to TOTAL(sales) and then add values to the status, starting
from the top, until the cumulative total of sales by product reaches or exceeds 30
percent of all sales.

LIMIT product TO TOP 30 PERCENTOF TOTAL(sales, product)

FIRST n
LAST n
NTH n
Specifies the first n, last n or nth values in the dimension's full set of values when
used with TO, ADD, COMPLEMENT, or INSERT. When used with KEEP or
REMOVE, specifies the first n, last n or nth values in the current status.

Important: Do not use a criterion expression that causes a side
effect or changes its own value.

LIMIT command

LIKENL to MAX 16-23

LONGLIST
Indicates that there can be up to 2,000 arguments in the LIMIT command. When
there are less than 300 arguments, LONGLIST is not needed.

NULL
Indicates an empty dimension or valueset list. Using this keyword with the TO or
KEEP arguments removes all values from the current status, leaving an empty
dimension or valueset list, even when OKNULLSTATUS is NO. You cannot use
IFNONE and NULL in the same LIMIT command. ADD, INSERT, and REMOVE
NULL leave status unchanged. COMPLEMENT NULL places all values in status.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Notes

Considerations When Specifying Values
Keep the following points in mind when specifying values in limit-clause:

■ You can embed quoted strings within a quoted string, which is necessary when
there are special characters in a base dimension value of a composite or conjoint
dimension, such as Joe's Deli. See the Example 15–23, "Embedding Quoted
Strings" on page 15-55 for an example of embedded quoted strings.

■ When the dimension has the NTEXT data type and an argument that represents
a dimension value has the TEXT data type, LIMIT converts the argument value
to NTEXT. Similarly, when the dimension has the TEXT data type and an
argument that represents a dimension value has the NTEXT data type, LIMIT
converts the argument value to TEXT; however, in this case, the conversion can

Important: It can happen that the last item in status, based on a
PERCENTOF criterion, is one of a number of dimension values
having the same associated criterion value. In this case, LIMIT
includes all dimension values with that criterion value in the
resulting status, even when that causes the total of the criterion
value to far exceed the specified percentage.

LIMIT command (using values)

16-24 Oracle OLAP DML Reference

result in data loss when the NTEXT value cannot be represented in the database
character set.

■ When you specify a value of a dimension with a type of DAY, WEEK, MONTH,
QUARTER, or YEAR, the value can be in the format specified by the VNF
(value name format) for the dimension (or in the default VNF for the type of
dimension you are limiting when the dimension does not have a VNF) or in a
valid input style for DATE values.

You only need to provide the date components that are relevant for the type of
dimension you are limiting. For a DAY or WEEK dimension, you must supply
the day, month, and year components. For a MONTH or QUARTER dimension,
you only need to supply the month and year (for example, Jun95 or 0695 for
June 1995). For a YEAR dimension, you only need to specify the year (for
example, 95 for 1995). The valid input styles for dates are discussed in
DATEORDER.

When you specify a DATE expression or a text value that represents a complete
date, you can specify any date that falls within the time period that is
represented by the desired dimension value. Oracle OLAP uses the
DATEORDERR option to resolve any ambiguities.

How LIMIT handles Boolean expressions with more than one dimension
In the following LIMIT command, the sales variable is dimensioned by three
dimensions: product, district, and month.

LIMIT product TO sales GT 90000

The result of the previous LIMIT command is evident when the district and
month dimensions are limited to a single value, as they are when you execute these
statements.

LIMIT month TO 'Jan95'
LIMIT district TO 'Boston'
STATUS product

The STATUS command produces the following output.

The current status of PRODUCT is:
Footwear

In this case, the resulting status is all of the products whose sales exceed $90,000 for
the month of January 1995 in the Boston district, which is only Footwear.

LIMIT command

LIKENL to MAX 16-25

Consider the following example in which the MONTH dimension is not limited to a
single value.

LIMIT product TO ALL
LIMIT month TO 'Jan95' 'Feb95' 'Mar95'
LIMIT district TO 'Boston'

When you execute a REPORT sales statement, you can see the BOSTON sales
figures for three months.

DISTRICT: BOSTON
-------------SALES--------------
-------------MONTH--------------

PRODUCT Jan95 Feb95 Mar95
-------------- ---------- ---------- ----------
Tents 32,153.52 32,536.30 43,062.75
Canoes 66,013.92 76,083.84 91,748.16
Racquets 52,420.86 56,837.88 58,838.04
Sportswear 53,194.70 58,913.40 62,797.80
Footwear 91,406.82 86,827.32 100,199.46

However, the following LIMIT and STATUS commands produce the output shown
following them. Again, only Footwear is in the status for month.

LIMIT product TO sales GT 90000
STATUS product

The current status of PRODUCT is:
Footwear

In this case, each product has three sales figures, one for each month. For each
product, LIMIT evaluates the sales data for only the first month in status. A product
is added to the status when its sales data exceeds $90,000 in that month.

When you would like all months evaluated for each product, you can use the
EVERY, ANY, or NONE functions. For example, the following LIMIT command
adds a product to the status when any of its months has a sales figure that exceeds
$90,000.

LIMIT product TO ANY(sales GT 90000, product)

In this case a STATUS product statement produces the following output.

The current status of product is:
Canoes, Footwear

LIMIT command (using values)

16-26 Oracle OLAP DML Reference

Limiting Using Implicit Relations
Every dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR is
related to all other dimensions of this type through an implicit relation. When you
limit the values of one DAY, WEEK, MONTH, QUARTER, or YEAR dimension by
specifying another DAY, WEEK, MONTH, QUARTER, or YEAR dimension as the
related-dimension, Oracle OLAP uses the implicit relation by default. However, when
an explicit relation is defined between the two of these types of dimensions, you can
override the default by specifying the name of the explicit relation as the
related-dimension. For example, you can issue the following statement.

LIMIT month TO quarter year

This statement temporarily limits quarter to year, then limits month to
quarter, and finally, restores quarter to its original status.

Examples

Example 16–8 Limiting with a Literal Value

This example shows how to limit the status of a dimension to one or more values
(the value1, value2 construction of valuelist).

LIMIT month TO 'Jan96'

Example 16–9 Limiting with a Boolean Expression

You can limit a dimension or valueset according to the values of a Boolean
expression. In this example, the values of the TOTALL function are broken out by
product and compared to a constant. The LIMIT command sets the status to all the
products whose sales, totaled for all months and districts, are greater than 12
million.

LIMIT product TO TOTAL(sales product) GT 12000000

Example 16–10 Limiting with a Formula

When you use the same criterion frequently to limit a dimension, you can save the
expression as a formula and use the name of the formula as the limit expression.

DEFINE criterion FORMULA TOTAL(sales product) GT 12000000
LIMIT product TO criterion

LIMIT command

LIKENL to MAX 16-27

Example 16–11 Limiting with a Valueset

You can save a status list in a valueset and use those values later to limit the status.
When it takes several LIMIT commands to produce the status list you want, the
valueset keeps you from having to repeat those LIMIT commands each time you
need the same list. The following statements limit district to the districts in
which sportswear sales exceeded $1,000,000 in 1996. The status is saved in the
valueset sports.district, and you can limit district to the same list with
one LIMIT command.

DEFINE sports.district VALUESET district
LIMIT product TO 'Sportswear'
LIMIT month TO year 'Yr96'
LIMIT sports.district TO TOTAL(sales district) GT 1000000
LIMIT district TO sports.district

Issuing a STATUS district statement produces this output.

The current status of DISTRICT is:
ATLANTA TO DENVER

Example 16–12 Limiting with a Variable

Here the TOP and BASEDON keywords are used to limit the status of a dimension,
using the values of a variable as a criterion. The status list is sorted in descending
order according to the values of sales.

LIMIT product TO 'Sportswear'
LIMIT month TO 'Jul96'
LIMIT district TO TOP 2 BASEDON sales

The following REPORT command

REPORT DOWN district sales

produces this output, which shows the results of the LIMIT commands.

PRODUCT: SPORTSWEAR
--SALES---
--MONTH---

DISTRICT Jul96
-------------- ----------
Dallas 220,416.81
Atlanta 211,666.14

LIMIT command (using values)

16-28 Oracle OLAP DML Reference

Example 16–13 Limiting a Conjoint Dimension with a Concat Base Dimension

In the following examples, prod.regdist is a conjoint dimension that has the
product simple dimension and the reg.dist.ccdim concat dimension as its
base dimensions. The conjoint dimension prod.regdist has the following values.

Tents <region: East>
Tents <region: West>
Canoes <region: East>
Canoes <region: West>
Tents <district: Boston>
Tents <district: Atlanta>
Tents <district: Denver>
Canoes <district: Atlanta>
Canoes <district: Seattle>

You can set the status of a conjoint that has a concat dimension as a base dimension
by specifying the concat dimension, one of its component dimensions, and a value
of the component dimension as the LIMIT limit-clause as in the following statement.

LIMIT prod.regdist TO reg.proddist.ccdim district 'Atlanta'
RPR W 20 prod.regdist

The preceding statement produces the following output.

--------------PROD.REGDIST---------------
PRODUCT REG.DIST.CCDIM

-------------------- --------------------
Tents <district: Atlanta>
Canoes <district: Atlanta>

You can also set the status of the conjoint by specifying its values as in the following
statement.

LIMIT prod.regdist TO <'Tents' '<region: East>'> <'Tents' '<district: Boston>'>
RPR W 20 prod.regdist

The preceding statement produces the following output.

--------------PROD.REGDIST---------------
PRODUCT REG.DIST.CCDIM

-------------------- --------------------
Tents <region: East>
Tents <district: Boston>

LIMIT command

LIKENL to MAX 16-29

LIMIT command (using LEVELREL)

A LIMIT command with that uses only dimension values that are at the same level
as the current level of the hierarchical dimension or dimension surrogate when
setting status or assigning values to a valueset.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type-

LEVELREL level-relation [valueset2] -

[IFNONE label]

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list.
(See the main entry for LIMIT command for a list and descriptions of these
keywords.)

LEVELREL
Sets the status of a hierarchical dimension to all of the values of the hierarchical
dimension that are at the same level as the current value of the dimension; or, that
limits a hierarchical dimension to those values of the hierarchical dimension that are
at the same level as the current value of the dimension and that are also in a
specified valueset.

level-relation
Specifies the name of a level relation for the hierarchical dimension you want to
limit. A level relation is a relation between a hierarchical dimension and another

LIMIT command (using LEVELREL)

16-30 Oracle OLAP DML Reference

dimension (sometimes called the level dimension) that has the names of the levels
of the hierarchy as values. A level relation is dimensioned by the hierarchical
dimension and has the values of the level dimension. For example, assume that
there is hierarchical TEXT dimension named time, a level dimension for time
named tlevelS, and a level relation named time.tlevels that is dimensioned
by time. Assume also that the time dimension has a unique value for months and
years and the tlevels dimension has two values Month and Year. In this case,
for each month value (for example, Feb 97), the time.tlevels relation has a
value of Month; and, for each year value (for example, 1997), the time.tlevels
relation has a value of Year.

valueset2
Specifies the name of a valueset object is dimensioned by the level dimension for
the hierarchical dimension that you want to limit. Assume that there are the objects
described in the description of the level-relation parameter. Additionally, assume that
you have defined a valueset named bestsalesyear that is dimensioned by
tlevels and, for each value, contains only the values of time that pertain to the
year with the best sales year (for example, 1998). In this case, for Month,
bestsalesyear would have a list of all of the months in 1998 (that is, Jan98
through Dec98 and for Year would have only one value (1998).

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Examples

Example 16–14 Limiting to a Single Time Period of a Hierarchical Time Dimension

Assume that you have defined a hierarchical text dimension named time, a level
dimension named timelevels that has Month and Year as values, and a relation
named timelevelsrel that is dimensioned by time and that has timelevels as
a related dimension (that is, for each value of the time dimension, timelevelsre
contains a value of either Month or Year) When you wanted to limit the values of
time that are already in status to only those values that are at the same level as
Jan99, you can issue the following statement:

LIMIT time TO LEVELREL timelevelsrel

LIMIT command

LIKENL to MAX 16-31

LIMIT command (using related dimension)

A LIMIT command with a related-dimension limit clause that uses the values of a
different related dimension to assign values to a valueset or to set the status of one
dimension or a dimension surrogate.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type-

related-dimension [related-dimension-valuelist] -

[IFNONE label]

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list.
(See the main entry for LIMIT command for a list and descriptions of these
keywords.)

related-dimension
Specifies the name of a relation or a dimension that is related to the dimension
being limited. Using a relation name enables you to choose which relation is used
when there is more than one. You can also specify as related-dimension a dimension
surrogate for the dimension you are limiting or a dimension surrogate of the related
dimension. For example, dimsurr is a dimension surrogate of dim2 and dim2 is
related to dim1. The dimension surrogate dimsurr has the values Dsv1, Dsv2,
Dsv3 and Dsv4. The following statement limits dim1 by specifying values of
dimsurr.

LIMIT dim1 TO dimsurr dsv1 dsv3

LIMIT command (using related dimension)

16-32 Oracle OLAP DML Reference

related-dimension-valuelist
The values of the related dimension or a dimension surrogate for the related
dimension or the dimension specified using the syntax shown in LIMIT command
(using values). When this argument is present in a LIMIT command, status is
obtained by selecting the values of the dimension being limited, which are related
to the related-dimension values. When valuelist is omitted, the current status of
related-dimension is used.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Notes

Limiting to a Related Dimension Is a Two-Step Process
When you limit a dimension or valueset to a related dimension, the resulting status
is determined in a two-step process:

1. The dimension values are arranged in the order of the values of the related
dimension.

2. When there is more than one value of the dimension for any value of the related
dimension, those values are arranged in the order of their default status.

Suppressing the Sort When Limiting to a Related Dimension
You can suppress the sort that occurs when you limit a dimension or valueset to a
related dimension by setting LIMIT.SORTREL to NO. This can significantly improve
performance when the dimension you are limiting is large.

Multiple Relations in a LIMIT Command
Oracle OLAP expects values that are from the dimension being limited. When you
specify a related dimension and there is more than one relation between the two
dimensions, Oracle OLAP chooses the relation in which the related dimension is the

Note: When LIMIT.SORTREL is NO, printed output of a dimension
may not appear in logical order.

LIMIT command

LIKENL to MAX 16-33

dimension being limited. For example, you might have two relations between
district and region, as follows.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD The region each district belongs to

DEFINE DISTRICT.REGION RELATION DISTRICT <REGION>
LD The primary district in each region

When a workspace contains both of these relations, you can no longer simply
specify the following statement in order to limit district to one region.

LIMIT district TO region 'East'

In the preceding statement, Oracle OLAP will use the relation district.region,
which holds one district value for each region, because it holds district values.
However, the relation region.district, which holds region values, is the one
that will produce the desired result. You must limit region first and then limit
district, specifying that you want to use the first relation.

LIMIT region TO 'EAST'
LIMIT district TO region.district

Examples

Example 16–15 Limiting with a Related Dimension

Here the status of a dimension is limited using a related dimension (rel-dim
argument). This statement limits district to Boston and Atlanta, which are in
the East region.

LIMIT district TO region 'East'

This statement limits product to Sportswear and Footwear, which are in the
division that appears last in the list of division values.

LIMIT product TO division LAST 1

LIMIT command (using parent relation)

16-34 Oracle OLAP DML Reference

LIMIT command (using parent relation)

A LIMIT command that uses a parent relation in its limit clause to set the status of a
hierarchical dimension or its dimension surrogate, or assigns vallues to a valueset,
based on family relationships within the hierarchy.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type-

[family-keyword] USING parent-relation [inclusive_val_args] -

[IFNONE label]

where family-keyword has one of the following constructs:

PARENTS

CHILDREN

ANCESTORS

DESCENDANTS

HIERARCHY [INVERTED] [NOORIGIN] [SKIP n] [DEPTH n] [RUN textexp]]

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list.
(See the main entry for LIMIT command for a list and descriptions of these
keywords.)

LIMIT command

LIKENL to MAX 16-35

PARENTS
Finds the parent of each value in valuelist. For a dimension, when there is no
valuelist, finds the parent for each value in status. For a valueset, when there is no
valuelist, it finds the parent of each value in the valueset. It uses the parent-relation to
look up the parent.

CHILDREN
Finds the children of each value in valuelist. For a dimension, when there is no
valuelist, finds the children for each value in status. For a valueset, when there is no
valuelist, it finds the children of each value in the valueset. It uses the parent-relation
to look up the children.

ANCESTORS
Finds the ancestors (that is, parents, grandparents, and so on) of each value in
valuelist. For a dimension, when there is no valuelist, it finds the ancestors of each
value in status. For a valueset, when there is no valuelist, it finds the ancestors of
each value in the valueset. In other words it finds "parents" for the values and the
"parents of the parents" until there are no new parents.

DESCENDANTS
Finds the descendants (that is, children, grandchildren, and so on) of each value in
valuelist. For a dimension, when there is no valuelist, it finds descendants for each
value in status. For a valueset, when there is no valuelist, it finds the descendants of
each value in the valueset. In other words, it finds the children of the values and the
children of the children until there are no new children.

HIERARCHY
Finds the descendants (that is, children, grandchildren, and so on) based on a
particular parent-relation. The difference is the order of the values. DESCENDANTS
groups the values by level (all children, then all grandchildren, and so on);
HIERARCHY places each group of children next to its parent. HIERARCHY
includes the original values (that is, those in status before the LIMIT command was
executed) in status.

INVERTED
Indicates that children should be listed before their parents. By default, children are
listed after their parents.

NOORIGIN
Excludes the original values from the status. The default is to include original
values.

LIMIT command (using parent relation)

16-36 Oracle OLAP DML Reference

SKIP
Skips n generations for each value in valuelist. For dimensions, when there is no
valuelist, it skips n generations for each value in status. For a valueset, when there is
no valuelist, it skips n generations for each value in the valueset. This keyword, in
combination with DEPTH, is helpful when drilling down; see Example 16–17,
"Drilling Down Using SKIP and DEPT".

DEPTH
Includes n generations down from each value of valuelist. For dimensions, when
there is no valuelist, it includes n generations for each value in status. For a valueset,
when there is no valuelist, it includes n generations of each value in the valueset.
The default depth value is 99. This keyword, in combination with SKIP, is helpful
when drilling down on values.

RUN
Executes a statement, represented as a text expression, every time a group of
children is constructed. For example, you can sort each group of children based on
information stored in an Oracle OLAP variable. In the following statement, markets
will be sorted in increasing order based on unit sales every time a group of children
is constructed.

LIMIT market TO HIERARCHY RUN 'SORT market a unit.m' USING -
market.market

USING
Specifies the values to use when determining parent values.

parent-relation
Specifies the name of a child-parent self-relation for the dimension. For each
dimension value, the relation holds another value of the dimension which is its
parent dimension value (the one immediately above it in a given hierarchy). This
parent relation can have more than one dimension.

inclusive_val_args
Specifies the values to use when determining the parent values. You can specify any
inclusive valuelist argument as described in the syntax of the inclusive_val_args
argument for the valuelist clause for limit-clause, for a list of inclusive arguments. To

Note: In this example, when you use KEEP or REMOVE instead
of TO with your LIMIT command, the SORT command would have
no effect.

LIMIT command

LIKENL to MAX 16-37

limit a dimension surrogate, use the parent relation for the dimension for which it is
a surrogate.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Examples

Example 16–16 A Simple Drill Down

This example drills down on districts from the region level of the market
dimension. First, the market dimension, which has embedded totals at the district,
region, and total U.S. level, is limited to the region level data. This is done using the
relation mlv.market, which is a relation between market and market.level.

Issuing a REPORT mlv.market statement produces the following output, which
shows the values of mlv.market.

MARKET MLV.MARKET
-------------- ----------
Totus Totus
East Region
Boston District
Atlanta District
Central Region
Chicago District
Dallas District
West Region
Denver District
Seattle District

The following LIMIT command limits the values of MARKET, and the STATUS
command produces the values currently in status. The output of STATUS is shown
following the statements.

LIMIT market TO mlv.market 'Region'
STATUS market

The current status of MARKET is:
EAST, CENTRAL, WEST

LIMIT command (using parent relation)

16-38 Oracle OLAP DML Reference

To drill down on the district level data from the region level, you can use LIMIT
with the CHILDREN keyword. The following example uses a parent-relation called
market.market to perform the drill down. For each value of the market
dimension, this relation contains the name of its parent.

DEFINE market.market RELATION market <market>
LD Self-relation for the Market Dimension

A report of market.market produces the following output.

MARKET MARKET.MARKET
-------------- -------------
Totus NA
East Totus
Boston Central
Atlanta East
Central Totus
Chicago Central
Dallas Central
West Totus
Denver West
Seattle West

You can limit market to the children of the East, Central, and West regions by
using the CHILDREN keyword with LIMIT.

LIMIT market TO mlv.market 'Region'
Limit market TO CHILDREN USING market.market

A report of market produces the following output.

MARKET

Boston
Atlanta
Chicago
Dallas
Denver
Seattle

Example 16–17 Drilling Down Using SKIP and DEPT

Consider the following statement.

LIMIT market TO HIERARCHY DEPTH 2 SKIP 1 USING market.market 'Totus'

LIMIT command

LIKENL to MAX 16-39

Oracle OLAP will look in the child-parent relation (market.market) to find the
children and the grandchildren (DEPTH 2) of Totus and it will discard the first
generation (SKIP 1). The resulting status follows.

Totus
Boston
Atlanta
Chicago
Dallas
Denver
Seattle

Note that Totus is included in status. With HIERARCHY, the original values are
included in status.

LIMIT command (NOCONVERT)

16-40 Oracle OLAP DML Reference

LIMIT command (NOCONVERT)

The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valueset.

A LIMIT command with the NOCONVERT keyword sets the status of one
dimension based on the numeric position of values in a different dimension.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type -

NOCONVERT [{unrelated-dimension|numeric-valueset}] -

[IFNONE label]

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list.
(See the main entry for LIMIT command for a list and descriptions of these
keywords.)

NOCONVERT
Sets the status of a dimension based on the numeric position of the specified values
in the status list of an another dimension.

unrelated-dimension
Specifies the name of a dimension not related to the dimension being limited. Using
this argument specifies that the status of a dimension or valueset is set based on the
numeric position of each value in status of the unrelated-dimension. This is
particularly useful when the two dimensions are in different analytic workspaces

LIMIT command

LIKENL to MAX 16-41

(for example, when a one-to-one correspondence exists between the product
dimension in two analytic workspaces)

numeric-valueset
Specifies the a numeric valueset. When you use this argument, NOCONVERT sets
the status based on the numeric values in the valueset. The numeric values
represent the positions of the values in the default status of the dimension.

IFNONE label
(For use only within an OLAP DML program) Specifies that program execution
should branch to label when the requested status has null status or is based on a
related dimension that turns out to have null status (that is, to have no values). (See
the main entry for LIMIT command for complete description of this phrase.)

LIMIT command (using POSLIST)

16-42 Oracle OLAP DML Reference

LIMIT command (using POSLIST)

The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valueset.

A LIMIT command with the POSLIST keyword sets the status of a dimension based
on the position of the values within that dimension.

Syntax
LIMIT {dimension|valueset} [concat-component] limit-type -

POSLIST poslist-exp [IFNONE label]

Arguments

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete
description of this argument.)

limit-type
One of the standard keywords (documented in the main entry for LIMIT command)
that specifies how Oracle OLAP should modify the current status list.

POSLIST poslist-textexp
Sets the status of a dimension based on the position of a value within a dimension.
poslist-textexp is a text expression, each line of which is a numeric value that
evaluates to a numeric position of the dimension being limited.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

LIMIT function

LIKENL to MAX 16-43

LIMIT function

The LIMIT function returns the dimension or dimension surrogate values that result
from a specified LIMIT command. A dimension and any surrogate for that
dimension share the same status. In this entry, references to dimensions apply
equally to dimension surrogates, except where noted. The LIMIT function does not
change the status of a dimension or a valueset. The LIMIT function operates on the
current status.

Return Value
The return value varies depending on the use of the function and whether or not
you specify the INTEGER keyword. When the LIMIT function is an argument to an
OLAP DML statement (includingr a user-defined command or function) that
expects a valueset, it returns a valueset. When the LIMIT function returns an empty
valueset, it returns it as a valueset with null status. In all other cases, the LIMIT
function returns either a TEXT value or an INTEGER value depending on whether
or not you include the INTEGER keyword. When it returns a TEXT value that
represents empty status, it returns it as NA.

Syntax
LIMIT([INTEGER] {dimension|valueset} -

{TO|ADD|INSERT|KEEP|REMOVE|COMPLEMENT} -

[limit-clause] [IFNONE label])

where:

limit-clause is one of the following:

valuelist

concat-component [valuelist]

LEVELREL relation [valueset]

related-dimension [related-dimension-valuelist]

family-phrase

NOCONVERT {unrelated-dimension|valueset}]

POSLIST poslist-exp

LIMIT function

16-44 Oracle OLAP DML Reference

Arguments
See the LIMIT command for a complete description of all arguments other than the
INTEGER keyword.

INTEGER
When you use the INTEGER keyword, the function returns the position numbers of
the values in the default dimension status rather than the names. When you use
INTEGER with a valueset, the function returns the position numbers of the values
in the default dimension status, not in the valueset.

Notes

Nesting the LIMIT Function
Use the following syntax to return the result of several LIMIT commands for the
same dimension by nesting the LIMIT function.

LIMIT (LIMIT (LIMIT (lim-exp1) lim-exp2) lim-exp3)

Use this nested construction to find the status of a series of LIMIT commands. For
example, to see the status of the following commands

LIMIT product TO division 'Camping'
LIMIT product KEEP -

EVERY(sales GT 50000, product)
LIMIT product KEEP FIRST 1

you execute this statement.

REPORT LIMIT(LIMIT(LIMIT(product TO -
division 'Camping') KEEP EVERY -
(sales GT 50000, product))KEEP FIRST 1)

Limiting with a Component of a Concat Dimension
You can limit a concat dimension to the current status of one of its component
dimensions as in the following statement.

LIMIT(reg.dist.ccdim TO district)

You can also limit a concat dimension to a set of the values of one of its component
dimensions as in the following statement.

LIMIT(reg.dist.ccdim TO district 'Boston' 'Chicago' 'Seattle')

LIMIT function

LIKENL to MAX 16-45

Returning Multidimensional Results
The LIMIT function returns multidimensional results when evaluating
multidimensional expressions. In the following example, the sales variable has
three dimensions: product, district, and month.

LIMIT product TO ALL
LIMIT district TO 'Boston'
LIMIT month TO 'Jan95' 'Feb95' 'Mar95'

A REPORT sales statement produces the following output.

DISTRICT: BOSTON
-------------SALES--------------
-------------MONTH--------------

PRODUCT Jan95 Feb95 Mar95
--------- ---------- ---------- ----------
Tents 32,153.52 32,536.30 43,062.75
Canoes 66,013.92 76,083.84 91,748.16
Racquets 52,420.86 56,837.88 58,838.04
Sportswear 53,194.70 58,913.40 62,797.80
Footwear 91,406.82 86,827.32 100,199.46

Suppose you want a list of products whose sales exceed $90,000 for the status
shown in the preceding report. The LIMIT function will evaluate the product sales
in each month and district combination and will produce a list that is dimensioned
by the months and districts in status.

A REPORT limit (product TO sales GT 90000) statement produces the
following output.

---LIMIT (PRODUCT TO SALES GT---
-------------90000)-------------
-------------MONTH--------------

DISTRICT Jan95 Feb95 Mar95
--------- ---------- ---------- ----------
Boston Footwear NA Canoes

Footwear

TEXT and NTEXT
When the dimension has the NTEXT data type and an argument that represents a
dimension value has the TEXT data type, the LIMIT function converts the argument
value to NTEXT. Similarly, when the dimension has the TEXT data type and an
argument that represents a dimension value has the NTEXT data type, LIMIT

LIMIT function

16-46 Oracle OLAP DML Reference

converts the argument value to TEXT; however, in this case, the conversion can
result in data loss when the NTEXT value cannot be represented in the database
character set.

Examples

Example 16–18 Returning Multidimensional Results

This example prints a report of the products whose sales were greater than $50,000
in the first two months of 1995 in Boston and Atlanta. Notice that the LIMIT
function returns multidimensional results.

These statements

LIMIT month TO 'Jan95' 'Feb95'
LIMIT district TO 'Boston' 'Atlanta'
LIMIT product TO ALL
REPORT LIMIT (product TO sales GT 50000)

produce this report.

--LIMIT (PRODUCT TO--
---SALES GT 50000)---
--------MONTH--------

DISTRICT JAn95 Feb95
-------------- ---------- ----------
Boston Canoes Canoes

Racquets Racquets
Sportswear Sportswear
Footwear Footwear

Atlanta Racquets Canoes
Sportswear Racquets
Footwear Sportswear

Footwear

Example 16–19 LIMIT Command with the LIMIT Function

The following example shows the LIMIT function being used as an argument to the
LIMIT command. The result of the LIMIT function is converted to a valueset.

ALLSTAT
LIMIT month TO LIMIT (LIMIT (month TO LAST 10) KEEP FIRST 3)

LIMIT function

LIKENL to MAX 16-47

After the preceding LIMIT command, a STATUS month statement produces this
output.

The current status of MONTH is:
MAR97 TO MAY97

LIMITMAPINFO

16-48 Oracle OLAP DML Reference

LIMITMAPINFO

The LIMITMAPINFO function returns the analytic workspace expression that a
specified limit map uses to map data into a specified column of a relational table.

Return Value
A TEXT expression.

Syntax
LIMITMAPINFO ([aw], limit-map, column-name)

Arguments

aw
The name of the analytic workspace that contains the analytic workspace object.

limit-map
The limit map as a text expression.

column-name
The name of the column of a relational table as it appears in limit-map.

LIMITMAPINFO

LIKENL to MAX 16-49

Examples

Example 16–20 Retrieving the Name of a Dimension

Assume that you have an analytic workspace named myaw that contains a text
variable named mylimitmap that is a limit map that maps some of the analytic
workspace data to a relational table with a column named et_product.

MEASURE sales FROM aw_f.sales
DIMENSION et_chan FROM aw_channel WITH
HIERARCHY aw_channel.parent
GID gid_chan FROM aw_channel.gid
DIMENSION et_prod FROM aw_product WITH
HIERARCHY aw_product.parent
GID gid_prod FROM aw_prod.gid
DIMENSION et_geog FROM aw_geography WITH
HIERARCHY aw_geography.parent
GID gid_geog FROM aw_geog.gid
DIMENSION et_time FROM aw_time WITH
HIERARCHY time.parent
GID gid_time FROM aw_time.gid

To retrieve the name of the analytic workspace object from which data for the
et_prod column will be retrieved, you issue the following OLAP DML statement.

show LIMITMAPINFO ('myaw', mylimitmap, 'et_prod')

The following value displays because the et_prod column is mapped to the
aw_product dimension.

aw_product

LIMIT.SORTREL

16-50 Oracle OLAP DML Reference

LIMIT.SORTREL

The LIMIT.SORTREL option controls whether or not a sort is done when you limit a
dimension to a related dimension.

Data type
BOOLEAN

Syntax
LIMIT.SORTREL = {YES|NO}

Arguments

YES
Oracle OLAP performs a sort when you limit a dimension to a related dimension.

NO
Oracle OLAP does not perform a sort when limiting to a related dimension.

Notes

The Sorting Explained
Normally, when you limit a dimension to a related dimension, the values of the
dimension being limited are arranged in the order of the related dimension. When
there is more than one value of the first dimension related to a value of the related
dimension, the values are sorted in the order of the default status of the first
dimension. It is this sort that LIMIT.SORTREL suppresses.

Output Lists when LIMIT.SORTREL Is NO
When LIMIT.SORTREL is NO, the output for any given dimension may not list
values in logical order.

LIMIT.SORTREL

LIKENL to MAX 16-51

Examples

Example 16–21 Efficient Processing

You are performing calculations on a variable dimensioned by a large dimension
named product. Your product dimension has all levels of the product hierarchy
embedded in it: category, vendor, brand, and so on. You are performing the
calculations one level at a time, using the relationship between product and
productlevel. Because the order of the dimension values is not important for the
calculations and because you are limiting product using a related dimension, you
use LIMIT.SORTREL to suppress unnecessary sorting. This makes the process more
efficient.

LIMIT.SORTREL = NO

LINENUM

16-52 Oracle OLAP DML Reference

LINENUM

The LINENUM option contains the current line number of the output. Its value is
incremented automatically as output lines are produced. The LINENUM option is
meaningful only when PAGING is set to YES and only for output from commands
such as REPORT and LISTNAMES.

Data type
INTEGER

Syntax
LINENUM = n

Arguments

n
An integer expression. Normally you do not want to set LINENUM explicitly, but
just want to check its current value.

Notes

Starting a New Page
When PAGING is set to YES, LINENUM increases by 1 after each line of output.
When LINENUM equals PAGESIZE minus BMARGIN, a new page automatically
begins.

At the beginning of each new page, LINENUM is automatically reset to 1.

LINENUM Compared to PAGESIZE
Since the lines in the bottom margin are included in PAGESIZE, LINENUM can
never reach PAGESIZE when BMARGIN is set to a number greater than 0 (zero).

The Effect of PAGING
When PAGING is set to NO (its default), the value of the LINENUM option
continues to increment as more output lines are produced. When you set PAGING
to YES, LINENUM is set to 1 and it begins counting lines on the current page.

LINENUM

LIKENL to MAX 16-53

The Effect of OUTFILE
When you use the OUTFILE command to direct output to a file, LINENUM is set to
1 for the file. When you use OUTFILE with the EOF keyword to redirect output to
the default outfile, LINENUM will contain the value that it last held for the default
outfile.

Sending LINENUM in Output
When you produce output that contains the value of LINENUM, and a new page is
created by this output, the value of LINENUM will be recorded as 1 when your
output consists of a single line. However, when the output is a multiline value, the
value of LINENUM may be recorded as a value that is larger than PAGESIZE.

Related Function
When the line number you are interested in obtaining is the current record number
of a file that is opened for reading, see the RECNO function.

Examples

Example 16–22 Keeping the Heading Size Constant

Suppose you have a heading that varies between one and two lines from page to
page. Regardless of this variation, you want to draw a line across the page at a
constant position below the heading. Include the following statement in the page
heading program that you use with your report program.

WHILE LINENUM LT 5
BLANK
ROW W LSIZE ROW CENTER '--------------------------------'

LINESLEFT

16-54 Oracle OLAP DML Reference

LINESLEFT

(Read-only) The LINESLEFT option contains the number of lines left on the current
page. The LINESLEFT option is meaningful only when PAGING is set to YES and
only for output from commands such as REPORT and LISTNAMES.

Data type
INTEGER

Syntax
LINESLEFT

Notes

Controlling Page Breaks
LINESLEFT is used primarily in report programs to check the number of lines left
on a particular page. When the number of lines left is less than that required for a
part of the report that you do not want interrupted by a page break, you can then
use the PAGE command to skip to a new page.

The Effect of PAGESIZE
When you change the value of PAGESIZE, the value of LINESLEFT is adjusted
accordingly. First, LINESLEFT is subtracted from the old value of PAGESIZE, which
gives the lines already used. This result is then subtracted from the new value of
PAGESIZE which gives the new value of LINESLEFT. When LINESLEFT becomes
less than 1 as a result, a new page is started at the next output line.

The Effect of PAGING
When you set PAGING to NO, LINESLEFT is set to the value of PAGESIZE, and it
keeps this value until PAGING is set to YES. When you set PAGING to YES,
LINESLEFT begins counting the lines on the current page.

The Effect of OUTFILE
When you use the OUTFILE command to direct output to a file, LINESLEFT is set
to 66 for the file, to match the default value of PAGESIZE. When you set PAGESIZE
to a new value for the current outfile, LINESLEFT will be adjusted accordingly. For

LINESLEFT

LIKENL to MAX 16-55

example, assume that you direct output to a file and then set PAGESIZE to 40. In
this case, Oracle OLAP will set LINESLEFT to 40 for the file. This ensures that the
first line of output to the file will trigger a new page when PAGING is set to YES.

When you use the OUTFILE command with the EOF keyword to redirect output to
the default outfile, LINESLEFT will contain the value that it last held for the default
outfile.

Sending LINESLEFT in Output
When you produce output that contains the value of LINESLEFT, the lines that
contain this value are never included in the value recorded for LINESLEFT.

Examples

Example 16–23 Including a Footnote

In a report, you want a one-line footnote preceded by two blank lines at the bottom
of a page. Use the following statements to generate the footnote when three lines
remain on the page.

IF LINESLEFT EQ 3
THEN DO
BLANK 2
ROW W 50 'Subject To Change Without Notice.'
DOEND

LISTBY

16-56 Oracle OLAP DML Reference

LISTBY

The LISTBY program produces a report of the names of all objects in a workspace
that are dimensioned by or related to one or more specified dimensions or
composites. You can use LISTBY with a dimension or composite in any attached
workspace.

Syntax
LISTBY dimensions

Arguments

dimensions
A list of one or more dimensions or composites, separated by spaces. When you list
more than one dimension, all the dimensions must be in the same workspace.
LISTBY returns a list of objects that are dimensioned by all the dimensions you
specify. When you specify an unnamed composite, use the following format:

LISTBY SPARSE dim1 dim2 ...

Notes

Composites and Conjoint Dimensions
The report produced by LISTBY includes any named or unnamed composite, or
conjoint dimension, whose base dimension list includes the dimensions you specify.

The report also includes any object whose dimension list includes a named or
unnamed composite that in turn has the specified dimensions as base dimensions.

Examples

Example 16–24 Using LISTBY

LISTBY is used here to list the name of every object that is dimensioned by or
related to product. The statement

LISTBY product

LISTBY

LIKENL to MAX 16-57

produces the following output.

15 objects dimensioned by or related to PRODUCT
--
ADVERTISING DIVISION.PRODUCT EXPENSE
INDUSTRY.SALES NAME.PRODUCT NATIONAL.SALES
PRICE PRODUCT.MEMO PRODUCTSET
SALES SALES.FORECAST SALES.PLAN
SHARE UNITS UNITS.M

Example 16–25 Specifying More Than One Dimension

In this example LISTBY is used to list the name of every object that is dimensioned
by or related to both product and market. The statement

LISTBY product market

produces the following output.

1 objects dimensioned by or related to PRODUCT, MARKET
--
UNITS.M

LISTFILES

16-58 Oracle OLAP DML Reference

LISTFILES

The LISTFILES command lists all the open files that can be referenced by the
FILEQUERY function. This includes all files opened by FILEOPEN, OUTFILE, and
LOG command.

Syntax
LISTFILES

Examples

Example 16–26 Listing Open Files

The following example shows how to use the LISTFILES command to see which
open files can be referenced by the FILEQUERY function.

DEFINE fil.unit VARIABLE INTEGER
fil.unit = FILEOPEN('report' WRITE)
LISTFILES

These statements produce the following output.

10 w D:\WINNT35\SYSTEM32\report

LISTNAMES

LIKENL to MAX 16-59

LISTNAMES

The LISTNAMES program produces a report that lists the names of the objects in a
workspace. You can limit the list to particular types of objects, and you can have the
names for each type of object listed in alphabetical order.

Syntax
LISTNAMES [AW workspace|'*'] [objtype-list|ALL] -

[SORTED|UNSORTED] [LIKE 'pattern']

Arguments

AW workspace
AW '*'
Specifies the name of an attached workspace whose objects you want to list. When
you omit the workspace name, LISTNAMES lists the objects in the current
workspace. When you use the '*' (asterisk) argument instead of a workspace
name, LISTNAMES produces a separate report for each attached workspace.

objtype-list
ALL
Specifies one or more of the following types of objects whose names you want to
list: AGGMAP, COMPOSITE, DIMENSION, FORMULA, MODEL, OPTION,
PROGRAM, RELATION, VALUESET, VARIABLE, and WORKSHEET. You can
include a trailing "S" on any object type, for example, DIMENSIONS. You can list
these object types in any order. ALL (the default) specifies that the names of objects
of all these types should be listed.

SORTED
UNSORTED
SORTED (the default, abbreviated SORT) specifies that the object names should be
sorted alphabetically. UNSORTED (abbreviated UNSORT) specifies that the object
names should not be sorted alphabetically.

LIKE 'pattern'
Compares the names of the definitions in a workspace to the text pattern you
specify and lists the names that match. A definition name is like a text pattern when
corresponding characters match. Besides literal matching, LIKE lets you use

LISTNAMES

16-60 Oracle OLAP DML Reference

wildcard characters to match more than one character in a string. An underscore (_)
character in a pattern matches any single character. A percent (%) character in a
pattern matches zero or more characters.

Examples

Example 16–27 Listing of DEMO Workspace Objects

This example lists the dimensions, variables, and relations in the current workspace.
The statement

LISTNAMES dimension variable relation

produces the following output for the DEMO workspace.

10 DIMENSIONs 18 VARIABLEs 4 RELATIONs
---------------- ---------------- ----------------
DISTRICT ACTUAL DIVISION.PRODUCT
DIVISION ADVERTISING MARKET.MARKET
LINE BUDGET MLV.MARKET
MARKET DEMOVER REGION.DISTRICT
MARKETLEVEL EXPENSE
MONTH FCST
PRODUCT INDUSTRY.SALES
QUARTER NAME.LINE
REGION NAME.PRODUCT
YEAR NATIONAL.SALES

PRICE
PRODUCT.MEMO
SALES
SALES.FORECAST
SALES.PLAN
SHARE
UNITS
UNITS.M

LOAD

LIKENL to MAX 16-61

LOAD

The LOAD command loads the definition of a program, formula, or model into
memory. It is usually used in startup programs, to save time when a program is first
used in a session.

Syntax
LOAD object. . .

Arguments

object. . .
The name of a program, formula, or model.

Notes

Definitions Loaded on First Use
All of the objects in an analytic workspace (except for programs, formulas, and
models) are loaded into memory when the analytic workspace is attached.
Programs, models, and formulas are loaded into memory when first used or when
requested using the LOAD command. The time required for loading is small but
perceptible, and an application builder fine-tuning a system might want to preload
objects in a startup program so that the application runs up to speed from the
beginning of a session.

Effect of Loading Many Objects
Loading too many objects into memory can cause Oracle OLAP to run out of
memory when it processes a long statement. It is best to use LOAD sparingly,
choosing the objects for maximum effect.

LOAD Does Not Compile Programs
When a program is not compiled, LOAD does not automatically compile it. For best
performance, you should always compile the program and save the compiled code
by updating your workspace. Then when you load the program in another session
(for example, with an AUTOGO program), the program will be ready to run. See
COMPILE for more information about compilation.

LOAD

16-62 Oracle OLAP DML Reference

Examples

Example 16–28 Loading Two Programs

The following statement loads the two programs choose.months and
sales.rpt.

LOAD choose.months sales.rpt

Example 16–29 Loading All the Programs in a Workspace

The following statements load all the programs in the analytic workspace.

LIMIT NAME TO OBJ(TYPE) EQ 'program'
LOAD &VALUES(NAME)

LOG command

LIKENL to MAX 16-63

LOG command

The LOG command starts or stops the recording of a session to a disk file. All lines
of input and output are recorded.

Syntax
LOG [APPEND] {file-id|EOF|SAVE}

Arguments

APPEND
When file-id already exists, appends the record of your session to the end of its
current contents. APPEND has no effect when the file does not already exist or
when you specify EOF.

When file-id already exists and you omit APPEND, LOG replaces the contents of
file-id with the new session record.

file-id
A file identifier that specifies a disk file in which to record the session. File-id is a
text expression that represents the name of the file. The name must be in a standard
format for a file identifier. When a log file is already open, specifying a new file-id
closes the previous file. Enclose the file identifier in single quotes.

EOF
Stops recording of the session and closes any opened log record file.

SAVE
Forces Oracle OLAP to update the log file. Lines of input and output are not always
written to disk as they are generated. Instead, the lines are stored temporarily then
written to disk periodically. LOG SAVE effectively issues the LOG EOF and
LOG APPEND file-id commands. This ensures that all appropriate lines are
written to disk by closing the log file and reopening it. Additional lines of input and
output are appended to the file.

LOG command

16-64 Oracle OLAP DML Reference

Notes

Automatic Closing of a Log File
When you use LOG file-id to start recording in a disk file, LOG closes any log
record file that is currently open. This happens even when the new file is not
actually opened (as when you specify an invalid 'file-id' in the LOG command).

Examples

Example 16–30 Keeping a Log File

To record your session in a file called session.log, use a statement like the
following.

LOG 'session.log'

LOG function

LIKENL to MAX 16-65

LOG function

The LOG function computes the natural logarithm of an expression.

Return Value
DECIMAL

Syntax
LOG(expression)

Arguments

expression
The value of expression must be greater than zero. When the value is equal to or less
than zero, LOG returns an NA value.

Examples

Example 16–31 Calculating a Natural Logarithm

In this example the LOG function is used to calculate the natural logarithm of the
expression 4,000 + 6,000. The statements

DECIMALS = 5
SHOW LOG(4000 + 6000)

produce the following result.

9.21034

LOG10

16-66 Oracle OLAP DML Reference

LOG10

The LOG10 function computes the logarithm base 10 of an expression.

Return Value
DECIMAL

Syntax
LOG10(expression)

Arguments

expression
The value of expression must be greater than zero. When the value is equal to or less
than 0 (zero), LOG10 returns an NA value.

Examples

Example 16–32 Calculating a Base 10 Logarithm

This example uses the LOG10 function to calculate the base 10 logarithm of 1,000.
The statement

SHOW LOG10(1000)

produces the following result.

3.00

LOWCASE

LIKENL to MAX 16-67

LOWCASE

The LOWCASE function converts all alphabetic characters in a text expression into
lowercase.

Return Value
TEXT or NTEXT

When the expression is TEXT, the return value is TEXT. When the expression is
NTEXT, the return value is NTEXT

Syntax
LOWCASE(text-expression)

Arguments

text-expression
The text expression whose characters are to be converted.

Examples

Example 16–33 Converting Part of an Expression to Lowercase

Suppose you get some new data to add to a mailing list. In the existing mailing list,
people's names have only the first letter capitalized. In the new data, however, the
whole name is capitalized. You can use LOWCASE to make the new data
correspond to the current data with a statement similar to the following.

lastname = JOINCHARS(EXTCHARS(lastname, 1, 1), -
LOWCASE(EXTCHARS(lastname, 2, NUMCHARS(lastname))))

LPAD

16-68 Oracle OLAP DML Reference

LPAD

The LPAD function returns an expression, left-padded to a specified length with the
specified characters; or, when the expression to be padded is longer than the length
specified after padding, only that portion of the expression that fits into the
specified length.

To right-pad a text expression, use RPAD.

Return Value
TEXT or NTEXT based on the data type of the expression you want to pad (text-exp).

Syntax
LPAD (text-exp , length [, pad-exp])

Arguments

text-exp
A text expression that you want to pad.

length
The total length of the return value as it is displayed on your screen. In most
character sets, this is also the number of characters in the return value. However, in
some multibyte character sets, the display length of a character string can differ
from the number of characters in the string.

 When you specify a value for length that is shorter than the length of text-exp, then
this function returns only that portion of the expression that fits into the specified
length.

pad-exp
A text expression that specifies the padding characters. The default value of pad-exp
is a single blank.

Examples
The following example left-pads a string with the characters "*" and ".":

SHOW LPAD('Page 1',15,'*.')
..*.*.*Page 1

LSIZE

LIKENL to MAX 16-69

LSIZE

The LSIZE option defines the line size within which the STDHDR program centers
the standard header. LSIZE can be set in the initialization section of a report
program.

Data type
INTEGER

Syntax
LSIZE = n

Arguments

n
An integer expression that specifies the line size within which the STDHDR
program centers the standard header, or the maximum line size for output from the
HEADING command. The default is 80 characters for a line.

Notes

Centering Report Segments
Since STDHDR centers the running page heading within the width of LSIZE, you
can use it in conjunction with LSIZE to center parts of your report. (Start by setting
LSIZE to the width of the longest line in your report.)

Creating Centered Headings
You can use LSIZE in centering your own headings for each page or at the
beginning of a section. Start by setting LSIZE to the width of your line. Then use the
HEADING command with a WIDTH of LSIZE and the keyword CENTER before
the text of your heading. See Example 16–34, "Centering a Heading" on page 16-70.

Maximum Line Width
The maximum width of any line in a report, including a heading line, is 4000
characters. Therefore, it generally makes sense to set LSIZE to a value of 4000 or
less.

LSIZE

16-70 Oracle OLAP DML Reference

Output to the Default Outfile
When you set LSIZE for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a
file. That is, the value of LSIZE is automatically saved for the default outfile.

Output to a File
To set LSIZE for a file, first make the file your current outfile by specifying its name
in an OUTFILE command, then set LSIZE to the desired value. The new value
remains in effect until you reset it or until you use an OUTFILE command to direct
output to a different outfile. When you direct output to a different outfile, LSIZE
returns to its default value of 80 for the file.

Examples

Example 16–34 Centering a Heading

Suppose you design a quarterly sales report to have a short line width of 50
characters so that readers have plenty of room to make notes in the margins. To
center your headings, include the following lines near the beginning of your report
program.

PAGEPRG = 'stdhdr'
LSIZE = 50
PAGING = YES
PAGE
HEADING WIDTH LSIZE CENTER 'Quarterly Sales'

The following output will be produced at the beginning of the report.

96/05/13 15:05:16 PAGE 1

Quarterly Sales

LTRIM

LIKENL to MAX 16-71

LTRIM

The LTRIM function removes characters from the left of a text expression, with all
the leftmost characters that appear in another text expression removed. The
function begins scanning the base text expression from its first character and
removes all characters that appear in the trim expression until reaching a character
that is not in the trim expression and then returns the result.

To trailing characters, use RTRIM. To trim both leading or trailing characters, use
TRIM.

Return Value
TEXT or NTEXT based on the data type of the first argument.

Syntax
LTRIM (text-exp [, trim-exp])

Arguments

text-exp
A text expression that you want trimmed.

trim-exp
A text expression that is the characters to trim. The default value of trim-exp is a
single blank.

Examples
The following example trims all of the left-most x's and y's from a string:

SHOW LTRIM('xyxxxyLast Word','xy')
Last Word

MAINTAIN

16-72 Oracle OLAP DML Reference

MAINTAIN

The MAINTAIN command enters and maintains the values of dimensions,
composites, and partition template objects.

Syntax
MAINTAIN object {ADD|DELETE|RENAME|MOVE|MERGE} args

The keywords that you can use with the MAINTAIN command varies by object:

■ MAINTAIN dimension {ADD|DELETE|RENAME|MOVE|MERGE} args

The keyword that you can use varies by the type of dimension that you want to
maintain:

■ With a non-concat dimension, you can use the ADD, DELETE, RENAME,
MOVE, or MERGE keywords to add, delete, rename, move, or merge
non-concat dimension values. You can also use the ADD keyword to add
temporary calculated members to a dimension.

■ With a concat dimension, you can only use the MOVE keyword to move
concat dimension values.

■ MAINTAIN composite {ADD|DELETE|MERGE} args

■ MAINTAIN partition-template {ADD|DELETE|MOVE} args

The specific syntax varies by keyword. Consequently, there are separate topics for
each keyword of the MAINTAIN command:

MAINTAIN ADD
MAINTAIN DELETE
MAINTAIN MERGE
MAINTAIN MOVE
MAINTAIN RENAME

Note: You can also issue a MAINTAIN statement for a surrogate
dimension that has a Maintain trigger. In this case, Oracle OALP
only executes the Maintain trigger program; no other action occurs.
See "Trigger Programs" on page 1-14 for more information for more
information. Issuing a MAINTAIN statement for a surrogate
dimension that does not have a Maintain trigger, returns an error.

MAINTAIN

LIKENL to MAX 16-73

For information that applies to the MAINTAIN command in general, see the Notes
in this topic.

Notes

Triggering Program Execution When MAINTAIN Executes
Using the TRIGGER command, you can make the MAINTAIN command an event
that automatically executes an OLAP DML program. See "Trigger Programs" on
page 1-14 for more information.

Automatic Status Reset
When you use the ADD, DELETE, MERGE, or MOVE keyword to maintain a
dimension or composite whose status is not currently ALL, the MAINTAIN
command automatically resets status to ALL before performing the maintenance
function. However, when you use the RENAME keyword to maintain a dimension
whose status is not currently ALL, the MAINTAIN command does not change the
status of the dimension.

Maintain Permission
You cannot perform maintenance on a dimension when a PERMIT MAINTAIN
command denies maintain permission for the dimension. Maintain permission is
implicitly denied whenever read permission is restricted for a dimension, even
when you specify maintain permission for the dimension. (See the PERMIT
command.)

TEXT and NTEXT
When the dimension has the NTEXT data type and an argument that represents a
dimension value has the TEXT data type, MAINTAIN converts the argument value
to NTEXT. Similarly, when the dimension has the TEXT data type and an argument
that represents a dimension value has the NTEXT data type, the LIMIT command
converts the argument value to TEXT; however, in this case, the conversion can
result in data loss when the NTEXT value cannot be represented in the database
character set.

MAINTAIN

16-74 Oracle OLAP DML Reference

Maintaining Dimensions in Multiwriter Analytic Workspaces
Keep the following points in mind when maintaining dimensions in an analytic
workspace that is attached in multiwriter mode:

■ You cannot update a variable when any of its dimensions have been acquired
and modified.

■ Reverting a dimension after adding dimension values is not recommended
since it can result in suboptimal space allocation for variables dimensioned by
the dimension.

■ When an acquired variable is dimensioned by an acquired dimension that has
been maintained, you cannot update the variable until the dimension is
updated or released.

■ You do not need to acquire composites in order for them to be maintained,
Oracle OLAP automatically performs concurrent dimension maintenance for
the composite dimensions.

Maintaining Dimensions in an Analytic Workspace Attached in Multiwriter
Before you can maintain dimensions in an analytic workspace that is attached in
multiwriter mode, you must first acquire the dimension using the ACQUIRE
command.

For example, assume that user A and user B both need to perform what-if
computations on both actuals and budget. After performing the what-if
computations, user A needs to modify actuals and B needs to modify budget.
Finally, both user A and user B need to add a new time dimension value and add
data corresponding to that new dimension value to actuals or budget.

User A issues the following OLAP DML statements.

AW ATTACH myworkspace MULTI
...make modifications
ACQUIRE actuals
...make more modifications
ACQUIRE time
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = ...
UPDATE MULTI actuals, time
COMMIT
RELEASE actuals, time
AW DETACH myworkspace

MAINTAIN

LIKENL to MAX 16-75

User B issues the following OLAP DML statements.

AW ATTACH myworkspace MULTI
...make modifications
ACQUIRE budget
...make more modifications
ACQUIRE time--> failed
ACQUIRE RESYNC time WAIT
MAINTAIN time ADD 'Y2003'
budget (time 'Y2003', ...) = ...
UPDATE MULTI budget, time
COMMIT
RELEASE budget, time
AW DETACH myworkspace

MAINTAIN and Dimension Surrogates
You cannot use the MAINTAIN command on a dimension surrogate. You can only
use MAINTAIN to add values to or delete them from a dimension. However, when
you add or delete a dimension value, then Oracle OLAP adds or removes a position
from surrogates of that dimension. When you add a position to a dimension, the
corresponding position in a surrogate for that dimension receives an NA value.

Maintaining a Concat Dimension
A concat dimension contains the values of its component dimensions. You do not
directly add, merge, or delete the values of a concat dimension with the MAINTAIN
command. Instead, when you add, merge, or delete values from a component
dimension of the concat, Oracle OLAP automatically adds or deletes the values
from the concat dimension. You can use the MOVE keyword of the MAINTAIN
command to change the order of the values of a concat dimension.

MAINTAIN ADD

16-76 Oracle OLAP DML Reference

MAINTAIN ADD

The MAINTAIN command with the ADD keyword adds new TEXT, ID, and
INTEGER values to a non-concat dimension, composite, or partition; or adds a new
temporary calculated member to a dimension.

Syntax
The syntax for using the MAINTAIN command with the ADD keyword depends on
the type of the object being maintained and whether you are adding a permanent or
temporary member.

For this reason, the following separate entries are provided for MAINTAIN ADD:

■ MAINTAIN ADD for TEXT, ID, and INTEGER Values

■ MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values

■ MAINTAIN ADD SESSION

■ MAINTAIN ADD TO PARTITION

MAINTAIN ADD for TEXT, ID, and INTEGER Values
The MAINTAIN command with the ADD keyword adds new TEXT, ID, or
INTEGER values to a non-concat dimension or composite.

Note: You can also issue a MAINTAIN ADD for TEXT, ID, and
INTEGER Values statement for a surrogate dimension that has a
Maintain trigger. In this case, Oracle OALP only executes the
Maintain trigger program one time for each value; no other action
occurs. See "Trigger Programs" on page 1-14 for more information
for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns
an error.

MAINTAIN

LIKENL to MAX 16-77

Syntax
MAINTAIN composite|dimension ADD valuelist [FIRST|LAST|BEFORE position|AFTER position]

Arguments

dimension
A non-concat dimension, already defined in an attached analytic workspace.

composite
A composite. When the composite is a named composite, it must be defined in an
attached analytic workspace. When the composite is unnamed, it must have been
used in defining an object in an attached analytic workspace. Use the SPARSE
keyword to refer to an unnamed composite (for example, SPARSE <market
product>).

ADD valuelist
Specifies that the values in valuelist are to be added to the dimension or composite:

■ When you use this argument to add values to a composite or a dimension of
type TEXT or ID, the valuelist can be text literals or a TEXT or ID expression.
When it is a multiline text expression, each element (line) is treated as a separate
value.Do not add null dimension values (empty single quotes) or values that
consists of spaces only, because there is no way you can refer to such values in
the future.

■ When dimension is INTEGER, valuelist can be an integer quantity, such as 5 or
100.

FIRST
LAST
Specify the logical position at which dimension values will be added. FIRST
indicates that the new values will be inserted before any existing values. LAST

Note: You can also issue this MAINTAIN ADD statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program one time for
each value in valuelist; no other action occurs. See "Trigger
Programs" on page 1-14 for more information for more information.
Issuing a MAINTAIN statement for a surrogate dimension that
does not have a Maintain trigger, returns an error.

MAINTAIN ADD

16-78 Oracle OLAP DML Reference

indicates that new values will be added at the end of the current values. LAST is the
default. When you are adding a certain quantity of integers to an INTEGER
dimension, that quantity of integers will be added before or at the end of any
existing integers (depending on your specification), and all the integers in the
resulting series will be automatically adjusted into simple numerical order.

All values specified before the keyword FIRST or LAST are placed in that position,
not just the one value immediately preceding the keyword in your command.

BEFORE position
AFTER position
Specify a position before or after which the dimension values are to be added. For
position you can specify an existing dimension value, a character expression whose
value is an existing dimension value, or an integer expression whose value
represents the position of a dimension value. When you are adding a certain
quantity of integers to an INTEGER dimension, that quantity of integers will be
added before or after the integer position you specify, and the integers in the whole
of the resulting series will be automatically adjusted into simple numerical order.

All values specified before the keywords BEFORE or AFTER are placed in that
position, not just the one value immediately preceding the keyword in your
command.

Notes

Sequence for Integer Dimension
When you use MAINTAIN to add values in an integer dimension, the values are
renumbered to keep the normal sequence of integers (1, 2, 3, ...).

Conjoint Dimensions and Composites
Each value of a conjoint dimension or composite is a combination of values from
each of the dimensions (and composites, if any) in its dimension list. To add values
to a conjoint dimension or composite, specify each value combination enclosed in
angle brackets. The values in a given combination must be in the same order as the
dimensions and composites in the definition of the conjoint dimension or
composite. Each dimension value in the combination must already exist as a value
in the corresponding base dimension. However, when a composite value in the
combination does not exist, Oracle OLAP will automatically add the value to the
appropriate composite.

MAINTAIN

LIKENL to MAX 16-79

Examples

Example 16–35 Adding Values to a TEXT Dimension

This statement adds Omaha and Seattle to the end of the dimension values for the
city dimension.

MAINTAIN city ADD 'Omaha' 'Seattle'

This statement adds Atlanta at the beginning of the list of cities and inserts
Peoria after Omaha.

MAINTAIN city ADD 'Atlanta' FIRST, 'Peoria' AFTER 'Omaha'

Here the value of the TEXT variable textvar is inserted before the fifth dimension
value of city. When you assign the value Columbus to textvar, you must make
sure it is in mixed case, because you want the dimension value to be in mixed case.

textvar = 'Columbus'
MAINTAIN city ADD textvar BEFORE 5

Example 16–36 Adding Values to a Conjoint Dimension

The following is an example of adding values to a conjoint dimension.

DEFINE proddist DIMENSION <product, district>
MAINTAIN proddist ADD <'Tents' 'Boston'> <'Footwear' 'Denver'>

You can also assign a value of a base dimension to a text variable and use the name
of the variable inside the angle brackets.

prodname = 'Canoes'
distname = 'Seattle'
MAINTAIN proddist ADD <prodname, distname>

MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values
The MAINTAIN command with the ADD keyword adds new values to a dimension
of type DAY, WEEK, MONTH, QUARTER, and YEAR.

Syntax
MAINTAIN dimension ADD {valuelist|{n PERIODS FIRST}|{n PERIODS LAST}}

MAINTAIN ADD

16-80 Oracle OLAP DML Reference

Arguments

dimension
A non-concat dimension, already defined in an attached analytic workspace.

ADD valuelist
Specifies that the values in valuelist are to be added to the dimension. When
dimension is of type DAY, WEEK, MONTH, QUARTER, or YEAR, then valuelist can
be text constants or a TEXT, ID, or DATE expression. When the values are TEXT,
they can be in the format specified by the VNF (value name format) for the
dimension (or in the default format for the type of dimension you are maintaining
when the dimension does not have a VNF) or in a valid input style for date values.
When the values are specified as a TEXT expression, each element or line is treated
as a separate value.

When the values are in the format specified by the VNF or in the default format for
this type of dimension, each value explicitly indicates the time period you want to
add. For example, assume that the VNF for a month dimension is '<MTXT><YY>'.
In this case, the value JAN99 represents the month January 1999.

When you specify a value for a DAY, WEEK, MONTH, QUARTER, or YEAR
dimension as a date, you must provide only the date components that are relevant
for the type of dimension you are maintaining. For a DAY or WEEK dimension, you
must supply the day, month, and year components. For a MONTH or QUARTER
dimension, you must supply only the month and year (for example, 'JUN98' or
'0698' for June 1998). For a YEAR dimension, you must specify only the year (for
example, '98' for 1998). For information about the valid input styles for dates, see
DATEORDER.

When you add a dimension value by specifying a DATE expression or a TEXT value
that represents a complete date, you can specify any date that falls within the time
period you want to add. For example, to add the month January 1999, you can
specify any date from '01JAN99' through '31JAN99'. Oracle OLAP uses the
DATEORDER option to resolve any ambiguities.

When adding values to a DAY, WEEK, MONTH, QUARTER, or YEAR dimension
that does not yet have values, you must specify only the first and last values you
want to add for the dimension. Oracle OLAP automatically fills in the gaps with
appropriate values for the intervening time periods.

When a DAY, WEEK, MONTH, QUARTER, or YEAR dimension already has values,
you can add values only at the beginning or the end of the existing list. To add
values, you must specify only the first or last value you want to add. Oracle OLAP
automatically fills in the gap between the existing list and the value you specify.

MAINTAIN

LIKENL to MAX 16-81

n PERIODS FIRST
n PERIODS LAST
Specifies a number of periods to add at the beginning or end of an existing list of
dimension values.

Examples

Example 16–37 Adding Values to Dimension of Type QUARTER

In this example you define a new QUARTER dimension, called qtr, and you add
dimension values for the quarters in 1998 and 1999. You only need to add the first
and last dimension values you want. Oracle OLAP fills in the intervening values. To
add the first and last quarters, you can specify any dates that fall within those
quarters.

DEFINE qtr DIMENSION QUARTER
MAINTAIN qtr ADD '01jan98' '31dec99'

MAINTAIN ADD SESSION
The MAINTAIN command with the ADD SESSION keywords adds a temporary
calculated member to a dimension and applies it to the specified objects; or applies
a previously-defined calculated member to the specified objects. The calculated
member and it's definition do not persist from session to session; both are deleted at
the end of the session in which they are created.

Syntax
MAINTAIN dimension ADD SESSION member_name [= calculation] -

 [STEP DIMENSION (stepdim...)][apply-to]

where:

calculation is one of the following:

model-equation

AGGREGATION (dimension-members....)

apply-to specifies the basis on which the custom aggregation is added using one of
the following phrases:

APPLY TO AGGMAP aggmaps

APPLY FOR VARIABLE variables

MAINTAIN ADD

16-82 Oracle OLAP DML Reference

APPLY WITH RELATION relations

Arguments

dimension
A dimension that is already defined in an attached analytic workspace. You can
specify any type of dimension for dimension except a non-unique concat dimension
or a base dimension of either a unique or non-unique concat dimension.

ADD SESSION
ADD SESSION indicates maintenance of a temporary calculated member.

member-name
Specifies the name of the temporary calculated member.

=
Indicates that you are defining a new calculated member.

model-equation
A text expression that specifies the calculation used as a dynamic model to calculate
custom member values. (See SET for more information about model equations.)

AGGREGATION
Indicates that the temporary calculated member is added as a custom aggregation
using the specified dimension members. This clause effectively modifies the
RELATION statement of aggmap objects that are the aggregation specification for
variables dimensioned by dimension. Consequently, a MAINTAIN ADD SESSION
statement that contains an AGGREGATION clause must also contain an APPLY
WITH RELATION clause.

dimension-members
A text expression that specifies one or more dimension values to be used by the
custom aggregation. When using a literal to specify more than one dimension
member, separate the values with commas

STEP DIMENSIONS
Indicates that the calculation is a time-series function (see "Time-Series Functions"
on page A-14).

MAINTAIN

LIKENL to MAX 16-83

stepdim
A text expression that specifies the dimension along which the time-series function
is calculated. When using a literal to specify more than one dimension name,
separate the names with commas.

APPLY TO AGGMAP
Indicates that the calculated temporary member is added only to the aggmaps
identified by aggmaps.

aggmaps
A text expression that specifies the name of one or more aggmap objects to which
the temporary calculated member is added. When using a literal to specify more
than one aggmap object, separate the names with commas. The temporary
calculated member is added to each of the specified aggmap objects.

APPLY FOR VARIABLE
Indicates that the temporary calculated member is added only to the variables
identified by variables.

variables
A text expression that specifies the one or more variable names for which the
temporary calculated member is added to. When using a literal to specify more than
one variable name, separate the names with commas. The temporary calculated
member is added to the default aggmap object of each specified variable.

APPLY WITH RELATION
Indicates that the temporary calculated member is added only to those aggmap
objects whose aggregation specification contains a RELATION command for the
relation specified by relation.

relation
A text expression that specifies the name of the relation for which a temporary
calculated member should be added.

Important: When a specified variable does not have a default
aggmap, using this clause generates an error. Use AGGMAP SET or
$AGGMAP to specify a default aggmap for the variable.

MAINTAIN ADD

16-84 Oracle OLAP DML Reference

Notes

Finding Out Information About Temporary Calculated Members
Once you have added a temporary calculated member using the MAINTAIN
command, you can use AGGMAPINFO to discover the temporary calculated
members you have added, the equations used to calculate members, and the
dimension members used in the right-hand side of equations used to calculate
custom members.

Examples

Example 16–38 Creating Calculated Dimension Members with Aggregated Values

Assume that an analytic workspace has a dimension named letter and a variable
named my_quantity with the following definitions and permanent values.

DEFINE letter DIMENSION TEXT
DEFINE my_quantity VARIABLE DECIMAL <letter>

LETTER MY_QUANTITY
-------------- ------------------------------
A 10.00
B 100.00

You can define temporary dimension members for the letter dimension and
aggregate data in my_quantity for those members following these steps:

1. Determine the aggregation that you want to perform and define and populate
the necessary supporting objects.

a. Create an empty child-parent relation for the letter dimension

DEFINE letter.parentrel RELATION letter <letter>

LETTER LETTER.PARENTREL
-------------- ------------------------------
A NA
B NA

MAINTAIN

LIKENL to MAX 16-85

b. Define a simple model to be used to calculate values associated with the
letter dimension

DEFINE my_model MODEL
MODEL
 DIMENSION letter
 END

c. Define and compile a simple aggmap to be used to calculate my_quantity
values associated with the letter dimension

DEFINE my_aggmap AGGMAP
AGGMAP
 RELATION letter.parentrel PRECOMPUTE(NA)
 MODEL my_model PRECOMPUTE(NA)
 END

COMPILE my_aggmap

d. Define a variable to contain the definition for the custom aggregation, This
new variable will be the same as my_quantity except that has
my_aggmap as its default aggmap.

DEFINE my_quantity_definition VARIABLE DECIMAL <letter>

CONSIDER my_quantity_definition
PROPERTY '$AGGMAP' 'my_aggmap'

REPORT my_quantity_definition

LETTER MY_QUANTITY_DEFINITION
-------------- ------------------------------
A NA
B NA

2. Add temporary members to the letter dimension and specify how variable
values for those members are to be calculated.

MAINTAIN letter ADD SESSION 'C' = 'A' * 'B'
MAINTAIN letter ADD SESSION 'D' = AGGREGATION('A', 'B') -
 APPLY TO AGGMAP my_aggmap
MAINTAIN letter ADD SESSION 'E' = 'C' + 'D' -
 APPLY WITH RELATION letter.parentrel
MAINTAIN letter ADD SESSION 'F' = 10 * 'E' -
 APPLY FOR VARIABLE my_quantity_definition

MAINTAIN ADD

16-86 Oracle OLAP DML Reference

A report of the letter dimension shows the new dimension members.

LETTER

A
B
C
D
E
F

3. Aggregate my_quantity using the aggmap object named my_aggmap.

REPORT AGGREGATE(my_quantity USING my_aggmap)

 AGGREGATE(MY_QUANTITY USING
LETTER MY_AGGMAP)
-------------- ------------------------------
A 10.00
B 100.00
C 1,000.00
D 110.00
E 1,110.00
F 11,100.00

Assume now that you issue the UPDATE and COMMIT statements to update and
commit your analytic workspace. Then you detach the analytic workspace and end
your session.

MAINTAIN

LIKENL to MAX 16-87

Later you start a new session and attach the same analytic workspace. When you
ask for a description of the analytic workspace you can see that all of the objects that
were in the analytic workspace when the UPDATE was issued still exist.

DEFINE LETTER DIMENSION TEXT

DEFINE LETTER.PARENTREL RELATION LETTER <LETTER>

DEFINE MY_QUANTITY VARIABLE DECIMAL <LETTER>

DEFINE MY_MODEL MODEL
MODEL
DIMENSION letter
END

DEFINE MY_AGGMAP AGGMAP
AGGMAP
RELATION letter.parentrel PRECOMPUTE(NA)
MODEL my_model PRECOMPUTE(NA)
END

DEFINE MY_QUANTITY_DEFINITION VARIABLE DECIMAL <LETTER>

MAINTAIN ADD

16-88 Oracle OLAP DML Reference

However, when you report on the letter dimension and the my_quantity
variable, the temporary dimension members that you added in the previous session
and their related values in the my_quantity variable do not exist.

LETTER

A
B

REPORT letter.parentrel

LETTER LETTER.PARENTREL
-------------- ------------------------------
A NA
B NA

REPORT my_quantity

LETTER MY_QUANTITY
-------------- ------------------------------
A 10.00
B 100.00

LETTER MY_QUANTITY_DEFINITION
-------------- ------------------------------
A NA
B NA

REPORT AGGREGATE(my_quantity USING my_aggmap)

 AGGREGATE(MY_QUANTITY USING
LETTER MY_AGGMAP)
-------------- ------------------------------
A 10.00
B 100.00

MAINTAIN ADD TO PARTITION
The MAINTAIN ADD TO PARTITION statement adds previously-populated
dimension or composite values to a partition of a previously-defined partition
template object.

Tip: Use MAINTAIN MOVE TO PARTITION to maintain
partition values when you have already populated a partitioned
variable.

MAINTAIN

LIKENL to MAX 16-89

Syntax
MAINTAIN partition-template ADD TO PARTITION partition valuelist

Arguments

partition-template
A text expression that is the name of a previously-defined partition template object.

ADD TO PARTITION
Specifies that values are to be added to the partition.

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

valuelist
Text literals or a TEXT or ID expression specifying the values to be added. When it
is a TEXT expression, each element (line) is treated as a separate value. The values
in the expression are added exactly as they are typed.

For a concat dimension, you can specify a value of the concat dimension, or the
name of a component dimension and a value or position of that dimension. You can
use the values of a dimension surrogate as the values of value.

Note that you cannot partition along an INTEGER dimension.

TO
Indicates a range of values.

Examples
For an example of adding values to a partition, see Example 16–44, "Adding and
Deleting Partition Values" on page 16-99.

MAINTAIN DELETE

16-90 Oracle OLAP DML Reference

MAINTAIN DELETE

The MAINTAIN command with the DELETE keyword deletes members from
non-concat dimensions and composites; or deletes the data of
previously-partitioned variables from one partition to another as it changes the
dimension or composite values defined for a partition in the partition template
which the variables are dimensioned.

Syntax
The syntax for using the DELETE keyword of the MAINTAIN command to delete
members varies depending on the type of object from which you are deleting the
members. For this reason, the following separate entries are provided for
MAINTAIN DELETE:

■ MAINTAIN DELETE dimension

■ MAINTAIN DELETE composite

■ MAINTAIN DELETE FROM PARTITION

MAINTAIN DELETE dimension
The MAINTAIN command with the DELETE keyword deletes dimension members
from non-concat dimensions.

Note: You can also issue a MAINTAIN DELETE statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program; no other action
occurs. See "Trigger Programs" on page 1-14 for more information
for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns
an error.

MAINTAIN

LIKENL to MAX 16-91

Syntax
MAINTAIN dimension DELETE dim-arg

where dim-arg is one of the following constructs:

value [[TO] value]

ALL

rel-dim [valuelist]

{FIRST | LAST} n

n PERIODS {FIRST | LAST}

boolean-expression

{BOTTOM | TOP} n BASEDON exp

LONGLIST

NTH n

{BOTTOM | TOP} n-percent PERCENTOF expression

NOCONVERT nonconarg

POSLIST poslistarg

family-phrase

valueset

Note: You can also issue a MAINTAIN DELETE statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program; no other action
occurs. See "Trigger Programs" on page 1-14 for more information
for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns
an error.

See also: MAINTAIN DELETE composite

MAINTAIN DELETE

16-92 Oracle OLAP DML Reference

Arguments

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be deleted.

value [[TO] value]
Specifies one value, a list of values, or a range of values (using TO to specify an
inclusive range) to be deleted from the values of a dimension. For value you can
specify an existing value, a text expression whose value is an existing value, a
valueset (containing one or more dimension names), or (except for a NUMBER
dimension) an integer expression whose value represents the position of a
dimension value. For dimensions of type DAY, WEEK, MONTH, QUARTER, and
YEAR, value can also be a DATE expression or a text expression that represents a
date; Oracle OLAP deletes the time period within which the date falls. For
dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, you can delete
values only from the beginning or the end of the existing list of values. When you
delete a certain quantity of integers from an INTEGER dimension, the integers in
the whole of the resulting series will be automatically adjusted into simple
numerical order.

ALL
Deletes all dimension values. This does not delete the definition of the dimension or
composite itself.

rel-dim [valuelist]
Deletes the dimension values that are related to the listed values of a related
dimension. The valuelist can be one value, a list of values, or a range of values (using
TO to specify an inclusive range). When you omit valuelist, all values related to the
current status of rel-dim are deleted.

For dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, the related
values must be deleted from the beginning or the end of the existing list. For
example, assume that the first values in the month dimension are the months of
1995. In this case, you can maintain month by specifying year as the rel-dim and
Yr95 as the valuelist of years.

Instead of specifying a dimension name for rel-dim, you can specify the name of the
relation. This enables you to choose which relation is used when there is more than
one. You cannot supply a valuelist when you specify the name of a relation.

Every dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR is related to
all other dimensions of those type through an implicit relation. When you delete

MAINTAIN

LIKENL to MAX 16-93

values of one DAY, WEEK, MONTH, QUARTER, or YEAR dimension by specifying
another dimension with one of those types as the rel-dim, Oracle OLAP uses the
implicit relation by default. However, when an explicit relation is defined between
the two DAY, WEEK, MONTH, QUARTER, or YEAR dimensions, you can override
the default by specifying the name of the explicit relation as the rel-dim.

FIRST n
LAST n
Deletes the first or last n dimension values in the list; n can be any numeric
expression. DECIMAL and SHORTDECIMAL values are truncated to integers.
When you delete a certain quantity of integers from an INTEGER dimension, the
integers in the whole of the resulting series will be automatically adjusted into
simple numerical order.

n PERIODS FIRST
n PERIODS LAST
These arguments are only valid for dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR dimension. Specifying this argument deletes the first or last n
values in the list; n can be any numeric expression. DECIMAL and
SHORTDECIMAL values are truncated to integers. The n PERIODS FIRST and n
PERIODS LAST arguments have the same effect as, but are faster than, the FIRST n
and LAST n arguments.

boolean-expression
Deletes all dimension values for which the Boolean expression is TRUE. The
boolean-expression must be dimensioned by the dimension from which you the values
deleted. When it has additional dimensions, their status must each be limited to one
value. When you use the boolean-expression argument with a dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR, values that meet the criterion will be
deleted only when they are at the beginning or the end of the list of dimension
values.

TOP n BASEDON exp
BOTTOM n BASEDON exp
Deletes the top or bottom n values of the dimension based on the highest (TOP) or
lowest (BOTTOM) values in exp. The expression must be dimensioned by the
dimension or the composite from which you the values deleted. When it has
additional dimensions, their status must each be limited to one value. When you
use TOP n BASEDON exp or BOTTOM n BASEDON exp for a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, values that meet the criterion will be
deleted only when they are at the beginning or end of the list of dimension values.

MAINTAIN DELETE

16-94 Oracle OLAP DML Reference

LONGLIST
Indicates a long list (up to 2,000 values) of individual dimension values to delete.
When there are fewer than 300 values, LONGLIST is not needed.

NTH n
Deletes the nth value in a dimension's full set of values.

BOTTOM n-percent PERCENTOF expression
TOP n-percent PERCENTOF expression
Deletes values of a dimension by finding the top or bottom performers based on a
criterion. This construction sorts values and deletes them based on their
contribution, by percentage, to an expression. For example:

MAINTAIN product DELETE TOP 30 PERCENTOF TOTAL(sales, product)

will sort products in descending order by each product's contribution to
TOTAL(sales, product) and then deletes the product, starting from the top,
until the cumulative total of sales by product reaches or exceeds 30 percent of all
sales.

NOCONVERT noconargs
Deletes a dimension value based on its numeric position. NOCONVERT takes an
argument whose values are the numeric positions to be deleted in the maintained
dimension. See the explanation of LIMIT command (NOCONVERT).

POSLIST poslist-exp
Deletes a dimension value based on its numeric position. POSLIST takes a text
argument whose values are the numeric positions to be deleted in the maintained
dimension. See the explanation of LIMIT command (using POSLIST).

family phrase
Deletes a dimension value based on its family tree. See the explanation of LIMIT
command (using parent relation).

valueset
Deletes the values in the dimension that match the values in the valueset.

MAINTAIN

LIKENL to MAX 16-95

Notes

Deleting Temporary Calculated Members From Dimensions
When you use a MAINTAIN DELETE statement to delete a temporary calculated
member, Oracle OLAP:

1. Deletes the member from the dimension.

2. Removes the calculation from all aggmap objects that currently contain the
corresponding calculation.

Dimension Surrogates
You cannot use a dimension surrogate as the dimension argument of a
MAINTAIN DELETE command. However, you can use a dimension surrogate a
value within the command.

Sequence for Integer Dimension
When you use MAINTAIN to delete values in an integer dimension, the values are
renumbered to keep the normal sequence of integers (1, 2, 3, ...).

Examples

Example 16–39 Deleting Dimension Values by Value

This statement deletes Omaha and Newark from the values for city.

MAINTAIN city DELETE 'Omaha' 'Newark'

Example 16–40 Deleting the First Five Values of a Dimension

In this example, you use the INTEGER variable intvar to remove the first five
cities from the dimension city.

intvar = 5
MAINTAIN city DELETE FIRST intvar

Example 16–41 Deleting Dimension Values Based on a Boolean Expression

Here you remove from city all those cities with a population of less than 75,000
people. You use the variable population.c, which contains the population for
each city.

MAINTAIN city DELETE population.c LT 75000

MAINTAIN DELETE

16-96 Oracle OLAP DML Reference

Example 16–42 Deleting Dimension Values Using Surrogate to Specify Values

Assume that prodid is a NUMBER dimension and prodtype is a TEXT dimension
surrogate for prodid. Assume also that the values of prodid are 17, 40, and 56.
The values of prodtype are Two-Person Tent, Three-person Tent, and
Four-person Tent. The following statement deletes a value from prodid and
from its surrogate.

MAINTAIN prodid DELETE prodid(prodtype 'Three-Person Tent')

Example 16–43 Deleting Related MONTH Values

In this example, you use the related dimension quarter to remove values of the
dimension month. All months related to the values of quarter currently in the
status are deleted.

LIMIT quarter TO FIRST 1
MAINTAIN month DELETE quarter

MAINTAIN DELETE composite
The MAINTAIN command with the DELETE keyword deletes dimension members
from composites.

Syntax
MAINTAIN composite DELETE comp-arg

where comp-arg is one of the following constructs:

valuelist

ALL

base-dim [valuelist]

boolean-expression

{TOP | BOTTOM} n BASEDON exp

{TOP | BOTTOM} n-percent PERCENTOF expression

LONGLIST

See also: MAINTAIN DELETE dimension

MAINTAIN

LIKENL to MAX 16-97

Arguments

composite
A composite whose values are to be deleted. When the composite is a named
composite, it must be defined in an attached analytic workspace. When the
composite is unnamed, it must have been used in defining an object in an attached
analytic workspace.

Use the SPARSE keyword to refer to an unnamed composite (for example,
SPARSE <market product>).

valuelist
Specifies one or more values to be deleted from the composite. The valuelist can be
text constants or a text expression.

ALL
Deletes all composite values. This does not delete the definition of the composite
itself.

base-dim [valuelist]
Deletes the values that include the listed values of a base dimension of the
composite. The argument valuelist can be one value, a list of values, or a range of
values (using TO to specify an inclusive range). You cannot use position numbers to
specify a range of values. When you omit valuelist, Oracle OLAP deletes all values
that include base-dim values currently in status.

boolean-expression
Deletes all composite values for which the Boolean expression is TRUE. The
boolean-expression must be dimensioned by the dimension or the composite from which
you the values deleted. When it has additional dimensions, their status must each
be limited to one value.

TOP n BASEDON exp
BOTTOM n BASEDON exp
Deletes the top or bottom n values based on the highest (TOP) or lowest (BOTTOM)
values in exp. The expression must be dimensioned by the composite from which you
the values deleted. When it has additional dimensions, their status must each be
limited to one value.

MAINTAIN DELETE

16-98 Oracle OLAP DML Reference

BOTTOM n-percent PERCENTOF expression
TOP n-percent PERCENTOF expression
Deletes values by finding the top or bottom performers based on a criterion. This
construction sorts values and deletes them based on their contribution, by
percentage, to an expression.

LONGLIST
Indicates a long list (up to 2,000 values) of individual values to delete. When there
are fewer than 300 values, LONGLIST is not needed.

MAINTAIN DELETE FROM PARTITION
The MAINTAIN DELETE FROM PARTITION command deletes the data of
previously-partitioned variables from one partition to another as it changes the
dimension or composite values defined for a partition in the partition template
which the variables are dimensioned.

Syntax
MAINTAIN partition-template DELETE FROM PARTITION partition { dim-arg| comp-arg}

Arguments

partition-template
A text expression that is the name of a previously-defined partition template object.

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

DELETE FROM PARTITION
Specifies that values are to be deleted from the partition and from partitioned
variables dimensioned using a partition template that includes the partition.

dim-args
Specifies the values of a dimension that to use when deleting partitioned variable
values and when redefining the values that are in the partition You can use any of
the constructs specified for the dim-arg argument in MAINTAIN DELETE
dimension.

Tip: Use MAINTAIN MOVE TO PARTITION to maintain
partition values when you have already populated a partitioned
variable.

MAINTAIN

LIKENL to MAX 16-99

comp--args
Specifies the values of a composite to use when deleting partitioned variable values
and when redefining the values that are in the partition You can use any of the
constructs specified for the comp-arg argument in MAINTAIN DELETE composite.

Examples

Example 16–44 Adding and Deleting Partition Values

Assume that you have defined the following objects in your analytic workspace. on

DEFINE time DIMENSION TEXT
DEFINE time_parentrel RELATION time <time>
DEFINE product DIMENSION TEXT
DEFINE partition_sales_by_year PARTITION TEMPLATE <time product> -
 PARTITION BY LIST (time) -
 (PARTITION time_2004 VALUES ('2004', 'Dec2004', 'Jan2004', '31Dec2004', -
 '01Dec2004', '31Jan2004', '01Jan2004') <TIME PRODUCT> -
 PARTITION time_2003 VALUES ('2003', 'Dec2003', 'Jan2003', '31Dec2003', -
 '01Dec2003', '31Jan2003', '01Jan2003') <TIME PRODUCT> -
 PARTITION time_2002 VALUES ('2002', 'Dec2002', 'Jan2002', '31Dec2002', -
 '01Dec2002', '31Jan2002', '01Jan2002') <TIME PRODUCT>)

Assume that instead of having all sales values dimensioned levels by all time values
of a year in a partition, you want to have partitions by days and by summary time
values (month and year). To change partition_sales_by_year to reflect this
new partitioning scheme, you issue the following statements.

"Create the new partition
CHGDFN partition_sales_by_year DEFINE -
 (PARTITION partition_month_years VALUES () <time product>)
"Delete the values for months and years from the partitions for years
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2004 '2004'-
 'Dec2004' 'Jan2004'
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2003 '2003'-
 'Dec2003''Jan2003'
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2002 '2002'-
 'Dec2002' 'Jan2002'
"Add the month and year values to the new partition for summary values
MAINTAIN partition_sales_by_year ADD TO PARTITION partition_month_years '2004'-
 'Dec2004' 'Jan2004' '2003' 'Dec2003''Jan2003' '2002' 'Dec2002' 'Jan2002'

MAINTAIN DELETE

16-100 Oracle OLAP DML Reference

The partition_sales_by_year partition template object now has the
following definition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2004 VALUES ('31Dec2004', '01Dec2004', '31Jan2004', -
 '01Jan2004') <TIME PRODUCT> -
 PARTITION TIME_2003 VALUES ('31Dec2003', '01Dec2003', '31Jan2003', -
 '01Jan2003') <TIME PRODUCT> -
 PARTITION TIME_2002 VALUES ('31Dec2002', '01Dec2002', '31Jan2002', -
 '01Jan2002') <TIME PRODUCT> -
 PARTITION PARTITION_MONTH_YEARS VALUES ('2004', 'Dec2004', 'Jan2004', -
 '2003', 'Dec2003', 'Jan2003', '2002', 'Dec2002', 'Jan2002')-
 <TIME PRODUCT>)

MAINTAIN

LIKENL to MAX 16-101

MAINTAIN MERGE

The MAINTAIN command with the MERGE keyword provides a quick way to
make sure all dimension or composite values on a separate list are included in a
non-concat dimension or composite. Using the MERGE keyword with the
MAINTAIN command automatically adds the new values from the list and ignores
the duplicates. This method of entering dimension values can save a significant
amount of time when you have a large number of values to enter.

You can use MERGE with dimensions of any data type, including DAY, WEEK,
MONTH, QUARTER, and YEAR dimensions. However, since Oracle OLAP
provides a quick way of adding values of DAY, WEEK, MONTH, QUARTER, and
YEAR dimensions through the ADD keyword, the MERGE keyword may not be as
useful with DAY, WEEK, MONTH, QUARTER, and YEAR dimensions as it is with
TEXT or ID dimensions.

At the same time as you are merging values into a dimension, you can also update a
relation that involves that dimension.

Syntax
MAINTAIN dimension|composite MERGE exp [RELATE relation]

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be entered or changed.

composite
A composite whose values are to be added, deleted, or merged. When the
composite is a named composite, it must be defined in an attached analytic
workspace. When the composite is unnamed, it must have been used in defining an
object in an attached analytic workspace. Use the SPARSE keyword to refer to an
unnamed composite (for example, SPARSE <market product>).

Note: You can also issue this MAINTAIN MERGE statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program one time for
each value in exp; no other action occurs. See "Trigger Programs" on
page 1-14 for more information for more information. Issuing a
MAINTAIN statement for a surrogate dimension that does not have
a Maintain trigger, returns an error.

MAINTAIN MERGE

16-102 Oracle OLAP DML Reference

exp
Specifies an expression whose values are to be merged with dimension; for example,
the name of a dimensioned text variable that contains dimension values, or a
single-cell text variable whose value is a multiline list of dimension values.
MAINTAIN MERGE ignores any NAs in exp. When dimension is an integer
dimension, then exp specifies the number of values that you want in the dimension.
When the actual total is less, MAINTAIN MERGE adds enough values to reach the
specified total. For example, when an integer dimension has 10 positions, MERGE 5
has no effect; but MERGE 15 would add 5 values.

RELATE relation
Specifies a relation to be updated as new values from exp are merged into dimension.
At least one of the dimensions of exp must also appear in the definition of relation.
When exp is a single-cell value, you cannot use the RELATE phrase.

Examples

Example 16–45 Using the MERGE Keyword with Composites

Suppose you want to define a composite that is made up of all combinations of the
first three values of the product dimension and the first five values of the
district dimension. You can efficiently include all 15 values with the following
statements.

DEFINE comp_proddist COMPOSITE <product district>
LIMIT product TO FIRST 3
LIMIT district TO FIRST 5
MAINTAIN comp_proddist MERGE <product district>

This method works with conjoint dimensions as well.

MAINTAIN

LIKENL to MAX 16-103

MAINTAIN MOVE

A MAINTAIN command with the MOVE keyword has different effects depending
on the object on which it operates:

■ When maintaining a dimension, MAINTAIN MOVE changes the position of
one or more values in a non-concat dimension or a dimension of type TEXT, ID,
or INTEGER or adds previously-populated dimension or composite values to a
partition

■ When maintaining a partition, MAINTAIN MOVE moves the data of a
previously-partitioned variables from one partition to another as it changes the
dimension or composite values defined for a partition in the partition template
which the variables are dimensioned.

Syntax
The syntax for using the MAINTAIN command with the MOVE keyword depends
on the type of the object being maintained.

For this reason, the following separate entries are provided for MAINTAIN MOVE:

■ MAINTAIN MOVE dimension value

■ MAINTAIN MOVE TO PARTITION

MAINTAIN MOVE dimension value
A simple MAINTAIN MOVE statement changes the position of one or more values
in a non-concat dimension or a dimension of type TEXT, ID, or INTEGER. You

Note: You can also issue a MAINTAIN MOVE dimension value
statement for a surrogate dimension that has a Maintain trigger. In
this case, Oracle OALP only executes the Maintain trigger program;
no other action occurs. See "Trigger Programs" on page 1-14 for
more information for more information. Issuing a MAINTAIN
statement for a surrogate dimension that does not have a Maintain
trigger, returns an error.

MAINTAIN MOVE

16-104 Oracle OLAP DML Reference

cannot use the MOVE keyword of the MAINTAIN command with composites or
with dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR.

Syntax
MAINTAIN dimension MOVE value [TO value] {FIRST|LAST|BEFORE position|AFTER position}

Arguments

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be entered or changed. The dimension must be of type TEXT, ID, or
INTEGER. You cannot specify a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR.

value
Specifies one or more values of dimension. You can specify these values as:

■ A literal value.

■ An expression whose value is a dimension value.

■ For all dimensions except NUMBER dimensions, an INTEGER expression
whose value represents the position of a dimension value.

■ A valueset.

For a concat dimension, you can specify a value of the concat dimension, or the
name of a component dimension and a value or position of that dimension.

TO
Indicates a range of values.

Note: You can also issue a MAINTAIN MOVE statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program; no other action
occurs. See "Trigger Programs" on page 1-14 for more information
for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns
an error.

MAINTAIN

LIKENL to MAX 16-105

FIRST
LAST
Specify the position to which values will be moved. FIRST indicates that the values
are to be moved to the beginning of the value list. LAST (the default) indicates that
the values are to be moved to the end of the value list. When you are moving a
certain quantity of integers in an INTEGER dimension, that quantity of integers will
be moved to the beginning or to the end of the existing series of integers, and the
integers in the whole of the resulting series will be automatically adjusted into
simple numerical order.

BEFORE position
AFTER position
Specify a position before or after which the dimension values are to be moved. For
position you can specify an existing dimension value, a character expression whose
value is an existing dimension value, or an integer expression whose value
represents the position of a dimension value. When you move a certain quantity of
integers in an INTEGER dimension, then that quantity of integers moves before or
after the integer position you specify, and the integers in the whole of the resulting
series automatically adjust into simple numerical order.

For a concat dimension, you can specify as position a value of the concat dimension
or the position of a value in a component dimension. See "Sorting Values" on
page 16-106.

Notes

Dimension Surrogates
You cannot use a dimension surrogate as the dimension argument of a MAINTAIN
MOVE command. However, you can use a dimension surrogate values as a value to
within the statement.

For example, assume that prodid is a NUMBER dimension and prodtype is a
TEXT dimension surrogate for prodid. The values of prodid are 17, 40, and 56.
Assume also that the values of prodtype are Two-Person Tent,
Three-Person Tent, and Four-Person Tent. The following statement moves
the last value to the first position in both the dimension and its surrogate.

MAINTAIN prodid MOVE prodid(prodtype 'Four-Person Tent') FIRST

MAINTAIN MOVE

16-106 Oracle OLAP DML Reference

Sorting Values
You can sort the values of a dimension with the following statements.

LIMIT dimension TO ALL
SORT dimension A sort-criterion
MAINTAIN dimension MOVE VALUES(dimension) FIRST

The sorting criterion can be any expression you choose (see the SORT command). To
sort the dimension alphabetically, use the dimension itself as the criterion (see
Example 16–48, "Moving Dimension Values into Sorted Order" on page 16-106.
After using the SORT command to sort the dimension values, you use the
MAINTAIN command to make the sorted order permanent.

You can use the SORT command for a temporary sort of the values of a dimension
with a type of DAY, WEEK, MONTH, QUARTER, or YEAR. For example, you might
want to use the sorted order in a report. However, you cannot use the MAINTAIN
command to save the sorted order as the permanent order of a dimension with the
type of DAY, WEEK, MONTH, QUARTER, or YEAR. The values of these types of
dimensions must be stored in increasing chronological order.

Examples

Example 16–46 Moving a Dimension Value to a Specific Position

This statement moves the position of the city Houston to the position following the
fifth dimension value.

MAINTAIN city MOVE 'Houston' AFTER 5

Example 16–47 Moving a Dimension Value to the End of the Status List

In this example, you use the TEXT variable textvar to move Seattle to the end
of the list of cities.

textvar = 'Seattle'
MAINTAIN city MOVE textvar LAST

Example 16–48 Moving Dimension Values into Sorted Order

Here you put the values of city in alphabetical order.

SORT city A city
MAINTAIN city MOVE VALUES(city) FIRST

MAINTAIN

LIKENL to MAX 16-107

Example 16–49 Moving Values of Concat Dimensions

The following statement moves the reg.dist.ccdim concat dimension value
<district: 'Denver'> after the concat dimension value <region: 'West'>.

MAINTAIN reg.dist.ccdim MOVE <district: 'Denver'> AFTER <region: 'West'>

The following statement moves the concat dimension value
<district: 'Denver'> after the position that corresponds to the first value of
the component district dimension. If the first value in the status of district
is Atlanta, then <district: 'Denver'> moves after the value
<district: 'Atlanta'> in the concat dimension.

MAINTAIN reg.dist.ccdim MOVE <district: 'Denver'> AFTER <district: 1>

The following statement moves the concat dimension value
<district: 'Dallas'> after the third value of the concat dimension.

MAINTAIN reg.dist.ccdim MOVE <district: 'Dallas'> AFTER 3

MAINTAIN MOVE TO PARTITION
A MAINTAIN MOVE TO PARTITION statement combines both add and move
capabilities: You can use a MAINTAIN MOVE TO PARTITION statement to:

■ Add previously-populated dimension or composite values to a partition in the
same manner as MAINTAIN ADD TO PARTITION

■ Change the dimension or composite values defined for a partition in the
partition template by which the variables are dimensioned and, at the same
time, move the data of a previously-partitioned variables dimensioned by those
dimensions and composites from one partition to another.

Syntax
MAINTAIN partition-template MOVE TO PARTITION partition value [TO value]

Arguments

partition-template
A text expression that is the name of a previously-defined partition template object.

MOVE TO PARTITION
Specifies that values are to be added to the partition or moved from one partition to
another.

MAINTAIN MOVE

16-108 Oracle OLAP DML Reference

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

value
Specifies one or more values of a previously-populated dimension or composite.
You can specify these values as:

■ A literal value.

■ An expression whose value is a dimension value.

■ For all dimensions except NUMBER dimensions, an INTEGER expression
whose value represents the position of a dimension value.

■ A valueset.

For a concat dimension, you can specify a value of the concat dimension, or the
name of a component dimension and a value or position of that dimension. You can
use the values of a dimension surrogate as the values of value.

TO
Indicates a range of values.

Examples

Example 16–50 Specifying the Values of a Partition Using Valuesets

Assume that you have defined a partition template object with the following
definition that does not specify the actual dimension values for each partition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2004 VALUES () <TIME PRODUCT> -
 PARTITION TIME_2003 VALUES () <TIME PRODUCT> -
 PARTITION TIME_2002 VALUES () <TIME PRODUCT>)

MAINTAIN

LIKENL to MAX 16-109

To specify the values of each partition using valuesets, you take the following steps:

1. Define a valueset for each year's values.

DEFINE vs_2004 VALUESET time
LIMIT vs_2004 to '01Dec2004' '31Dec2004' '01Jan2004''31Jan2004' -
 'Jan2004' 'Dec2004' '2004'
DEFINE vs_2003 VALUESET time
LIMIT vs_2003 to '01Dec2003' '31Dec2003' '01Jan2003''31Jan2003' -
 'Jan2003' 'Dec2003' '2003'
DEFINE vs_2002 VALUESET time
LIMIT vs_2002 to '01Dec2002' '31Dec2002' '01Jan2002''31Jan2002' -
 'Jan2002' 'Dec2002' '2002'

2. Using MAINTAIN MOVE statements, specify values for the partitions of the
partition template.

MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2004 vs_2004
MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2003 vs_2003
MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2002 vs_2002

When you issue a DESCRIBE statement, you can see that the description of the
partition_sales_by_year partition template now includes the appropriate
values of time in each partition definition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2004 VALUES -
('2004','Dec2004','Jan2004', 31Dec2004',01Dec2004','31Jan2004','01Jan2004')-
 PARTITION TIME_2003 VALUES -
('2003','Dec2003','Jan2003', 31Dec2003',01Dec2003','31Jan2003','01Jan2003')-
 PARTITION TIME_2002 VALUES -

 ('2002','Dec2002','Jan2002', 31Dec2002',01Dec2002','31Jan2002','01Jan2002'))

MAINTAIN RENAME

16-110 Oracle OLAP DML Reference

MAINTAIN RENAME

The MAINTAIN command with the RENAME keyword changes the spelling of one
or more dimension values. You cannot use RENAME keyword with a composite or
with dimensions of type INTEGER, DAY, WEEK, MONTH, QUARTER, or YEAR.

Syntax
MAINTAIN dimension RENAME {value new-value}...

Arguments

dimension
A non-concat dimension of type TEXT or ID that is already defined in an attached
analytic workspace and whose values are to be renamed. You cannot specify a
dimension of type INTEGER, DAY, WEEK, MONTH, QUARTER, or YEAR.

value
Specifies an existing dimension value to be renamed. You can specify a dimension
value, a character expression whose value is a dimension value, or an integer
expression whose value represents the position of a dimension value.

new-value
A text constant or a TEXT or ID expression that is the new spelling for the
dimension value.

Note: You can also issue a MAINTAIN RENAME statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle
OALP only executes the Maintain trigger program; no other action
occurs. See "Trigger Programs" on page 1-14 for more information
for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns
an error.

MAINTAIN

LIKENL to MAX 16-111

Examples

Example 16–51 Renaming Values of a TEXT Dimension

This statement changes the spelling of the cities Chic and Bost to Chicago and
Boston.

MAINTAIN city RENAME 'Chic' 'Chicago' 'Bost' 'Boston'

In this example you use the TEXT variable textvar to change the second city to
Atlanta.

textvar = 'Atlanta'
MAINTAIN city RENAME 2 textvar

MAKEDATE

16-112 Oracle OLAP DML Reference

MAKEDATE

The MAKEDATE function returns the DATE value that corresponds to specified
integer values for a year, month, and day.

Return Value
DATE

Syntax
MAKEDATE(year month day)

Arguments

year
An integer expression that represents the year of the test date. For any year, you can
specify the year as a four-digit number in the range 1000 to 9999. For years in the
range 1950 to 2049 (the default) or some other range (as set through the
YRABSTART option), you have the alternative of specifying a two-digit number
that represents the last two digits of the year (96 represents 1996, for example).

month
Any integer expression, normally in the range 1 to 12. When you specify an integer
less than 1 or greater than 12, MAKEDATE returns a date in a year prior to or later
than the year specified by the integer expression for year.

For example, if the arguments to MAKEDATE are (97 14 21), MAKEDATE returns
the date February 21, 1998 since, in effect, February 1998 is the fourteenth
month of 1997.

day
An integer expression in the range 1 to 31.

Notes

Format of the Date
When you display the result returned by MAKEDATE, the date is formatted
according to the date template in the DATEFORMAT option. When the day of the
week or the name of the month is used in the date template, the day names

MAKEDATE

LIKENL to MAX 16-113

specified in the DAYNAMES option and the month names specified in the
MONTHNAMES option are used. You can use the result returned by MAKEDATE
anywhere that a DATE value is expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. The date is converted
automatically to a text value, using the current template in the DATEFORMAT
option to format the text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Invalid Dates
When the arguments to MAKEDATE do not represent a valid date between
January 1, 1000, and December 31, 9999, MAKEDATE returns an NA value.

Examples

Example 16–52 Converting Integers to a Date

The following statements specify the date format and send the output to the current
outfile.

DATEFORMAT = '<mtextl> <d>, <yyyy>'
SHOW MAKEDATE(97 11 14)

These statements produce the following output.

November 14, 1997

Example 16–53 Calculating a Date Using YYOR, MMOF, and DDOF Functions

The following statement calculates the date one year from today, and sends the
output to the current outfile. The TODAY function returns today's date. The
INTEGER functions YYOF, MMOF, and DDOF return the INTEGER values that
correspond to the year, month, and day of today's date.

SHOW MAKEDATE(YYOF(TODAY) + 1 MMOF(TODAY) DDOF(TODAY))

When today's date is January 15, 1995, this statement produces the following
output.

January 15, 1996

MAX

16-114 Oracle OLAP DML Reference

MAX

The MAX function calculates the larger value of two expressions.

Return Value
DECIMAL

Syntax
MAX(expression1, expression2)

Arguments

expression1
One expression to be compared.

expression2
The other expression to be compared.

Notes

Dimensions of the Result
Ordinarily, the dimensions of both the expressions you want to compare and the
results of MAX are the same. When the dimensions of one expression are a subset of
the other's dimensions, then the results of MAX are dimensioned by the larger set of
dimensions. In any case, the results of MAX are dimensioned by the union of the
dimensions of the two expressions.

MAX

LIKENL to MAX 16-115

Examples

Example 16–54 Calculating Whether Actual or Budget Values Are Larger

Suppose, for each of the first six months of 1996, you want to find whether the
actual value or the budget value is larger for the line item Cost of Goods Sold
(Cogs) in the Sporting division.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month actual budget MAX(actual budget)

The preceding statements produce the following output.

DIVISION: SPORTING
--------------LINE--------------
--------------COGS--------------

MAX
(ACTUAL

MONTH ACTUAL BUDGET BUDGET)
-------------- ---------- ---------- ----------
Jan96 287,557.87 279,773.01 287,557.87
Feb96 315,298.82 323,981.56 323,981.56
Mar96 326,184.87 302,177.88 326,184.87
Apr96 394,544.27 386,100.82 394,544.27
May96 449,862.25 433,997.89 449,862.25
Jun96 457,347.55 448,042.45 457,347.55

MAX

16-116 Oracle OLAP DML Reference

MAXBYTES to MODTRACE 17-1

17
MAXBYTES to MODTRACE

This chapter contains the following OLAP DML statements:

■ MAXBYTES

■ MAXCHARS

■ MAXFETCH

■ MEDIAN

■ MIN

■ MMOF

■ MODDAMP

■ MODE

■ MODEL

■ MODEL.COMPRPT

■ MODEL.DEPRT

■ MODEL.XEQRPT

■ MODGAMMA

■ MODINPUTORDER

■ MODMAXITERS

■ MODOVERFLOW

■ MODSIMULTYPE

■ MODTOLERANCE

■ MODTRACE

MAXBYTES

17-2 Oracle OLAP DML Reference

MAXBYTES

The MAXBYTES function counts the number of bytes in the longest line of a
multiline text expression. The result returned by MAXBYTES has the same
dimensions as the specified expression.

Return Value
INTEGER

Syntax
MAXBYTES(text-expression)

Arguments

text-expression
The text expression whose bytes for each line are to be counted.

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use the MAXCHARS
function instead of the MAXBYTES function.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Examples

Example 17–1 Finding the Length of the Longest Line Using Bytes

You would like to know the length of the longest line in a text variable called
mytext. The following example shows the value of the variable and the result
returned by MAXBYTES.

MAXBYTES

MAXBYTES to MODTRACE 17-3

The statement

SHOW mytext

produces the following output.

This is a multiline text variable.
The longest line is this one in the middle.
The third line is short.

The statement

SHOW MAXBYTES(mytext)

produces the following output.

43

MAXCHARS

17-4 Oracle OLAP DML Reference

MAXCHARS

The MAXCHARS function counts the number of characters in the longest line of a
multiline text expression. The result returned by MAXCHARS has the same
dimensions as the specified expression.

Return Value
INTEGER

Syntax
MAXCHARS(text-expression)

Arguments

text-expression
The text expression whose characters for each line are to be counted.

Notes

multibyte Characters
When you are using a multibyte character set, you can use the MAXBYTES function
instead of the MAXCHARS function.

TEXT and NTEXT
MAXCHARS accepts either a TEXT or NTEXT argument. It does not perform an
automatic conversion to either data type. It returns the information that is correct
for the data type of the specified argument.

Examples

Example 17–2 Finding the Length of the Longest Line Using Characters

You would like to know the length of the longest line in a text variable called
mytext. The following example shows the value of the variable and the result
returned by MAXCHARS.

MAXCHARS

MAXBYTES to MODTRACE 17-5

The statement

SHOW mytext

produces the following output.

This is a multiline text variable.
The longest line is this one in the middle.
The third line is short.

The statement

SHOW MAXCHARS(mytext)

produces the following output.

43

MAXFETCH

17-6 Oracle OLAP DML Reference

MAXFETCH

The MAXFETCH option sets an upper limit on the size of a data block generated by
a FETCH command specified in the OLAP_command parameter of the OLAP_TABLE
function. For more information on the FETCH command, see FETCH. For more
information on the OLAP_TABLE function, see the Oracle OLAP Reference.

Return Value
 INTEGER

Syntax
MAXFETCH = integer-expression

Arguments

integer-expression
An expression representing the maximum size in bytes of a data block generated by
FETCH. The minimum value for MAXFETCH is 1K (approximately 1,000 bytes),
and the maximum value is 2GB (approximately 2,000,000,000 bytes). The default
value of MAXFETCH is 256K.

Notes

Improving Performance of Queries Using OLAP_TABLE
The setting of MAXFETCH can effect the performance of queries using the
OLAP_TABLE function. Large queries with joins of OLAP_TABLE function may run
faster with higher settings. However, larger settings use more memory which can
cause slower performance when there are multiple users. The setting of
MAXFETCH does not affect a SELECT using only one OLAP_TABLE function.

MAXFETCH can cause a FETCH error
When FETCH cannot package a data block within the size limit set by MAXFETCH,
it produces an error, and no data is returned to the client. By setting MAXFETCH,
you can produce an error, rather than run out of memory, when you attempt to
fetch too much data.

MAXFETCH

MAXBYTES to MODTRACE 17-7

Examples

Limiting Data Blocks to 4K
The following statement limits the size of data blocks to 4K.

 MAXFETCH = 4096

MEDIAN

17-8 Oracle OLAP DML Reference

MEDIAN

The MEDIAN function calculates the median of the values of an expression. The
median is the middle number in a given sequence of numbers.

Return Value
DECIMAL

Syntax
MEDIAN(expression [dimensions])

Arguments

expression
The expression whose median value is to be calculated.

dimensions
The dimensions of the result. By default, MEDIAN returns a single value. When
you indicate one or more dimensions for the results, MEDIAN calculates a median
for each value of the dimensions that are specified and returns an array of values.
Each dimension must be a dimension of expression. You cannot use a related
dimension as the dimensions argument.

Notes

NA Values
MEDIAN is affected by the NASKIP option. When NASKIP is set to YES (the
default), MEDIAN ignores NA values and returns the median of the values that are
not NA. When NASKIP is set to NO, MEDIAN returns NA when any value of the
expression is NA. When all the values of the expression are NA, MEDIAN returns NA
for either setting of NASKIP.

MEDIAN

MAXBYTES to MODTRACE 17-9

Examples

Example 17–3 Calculating Median Monthly Sales

This example shows how to calculate the median monthly sales of sportswear for
each sales district.

LIMIT product TO 'Sportswear'
REPORT W 12 HEADING 'Median Sales' MEDIAN(sales district)

The preceding statements produce the following output.

DISTRICT Median Sales
----------------- ------------
Boston 67,923.05
Atlanta 152,186.52
Chicago 94,372.06
Dallas 160,854.60
Denver 86,745.40
Seattle 53,950.28

MIN

17-10 Oracle OLAP DML Reference

MIN

The MIN function calculates the smaller value of two expressions.

Return Value
DECIMAL

Syntax
MIN(expression1, expression2)

Arguments

expression1
One expression to be compared.

expression2
The other expression to be compared.

Notes

Dimensions of the Result
Ordinarily, the dimensions of both the expressions you want to compare and the
results of MIN are the same. When the dimensions of one expression are a subset of
the other's dimensions, then the results of MIN are dimensioned by the larger set of
dimensions. In any case, the results of MIN are dimensioned by the union of the
dimensions of the two expressions.

MIN

MAXBYTES to MODTRACE 17-11

Examples

Example 17–4 Calculating Whether Actual or Budget Values Are Smaller

Suppose, for each of the first six months of 1996, you want to find whether the
actual value or the budget value is smaller for the line item Cost of Goods Sold
(Cogs) in the Sporting division.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month actual budget MIN(actual budget)

The preceding statements produce the following output.

DIVISION: SPORTING
--------------LINE--------------
--------------COGS--------------

MIN
(ACTUAL

MONTH ACTUAL BUDGET BUDGET)
-------------- ---------- ---------- ----------
Jan96 287,557.87 279,773.01 279,773.01
Feb96 315,298.82 323,981.56 315,298.82
Mar96 326,184.87 302,177.88 302,177.88
Apr96 394,544.27 386,100.82 386,100.82
May96 449,862.25 433,997.89 433,997.89
Jun96 457,347.55 448,042.45 448,042.45

MMOF

17-12 Oracle OLAP DML Reference

MMOF

The MMOF function returns an integer in the range of 1 to 12, giving the month in
which a specified date falls. The result returned by MMOF has the same dimensions
as the specified DATE expression.

Return Value
INTEGER

Syntax
MMOF(date-expression)

Arguments

date-expression
An expression that has the DATE data type, or a text expression that specifies a
date. See "TEXT-to-DATE Conversion" on page 17-12.

Notes

TEXT-to-DATE Conversion
In place of a DATE expression, you can specify a text expression that has values that
conform to a valid input style for dates. The values of the text expression are
converted automatically to DATE values, using the current setting of the
DATEORDER option to resolve any ambiguity.

Examples

Example 17–5 Finding the Current Month

The following statement determines the month in which today's date falls.

SHOW MMOF(TODAY)

When today's date is January 15, 1996, this statement produces the following
output.

1

MODDAMP

MAXBYTES to MODTRACE 17-13

MODDAMP

The MODDAMP option specifies a weighting factor that damps out oscillations
between iterations when you use the Gauss-Seidel method for solving simultaneous
equations in a model. MODDAMP can allow the solution of models that would
otherwise never converge because the oscillation between equations is stable. In
these cases, the oscillations never decay without damping.

With the Gauss-Seidel method, Oracle OLAP tests each model equation for
convergence or divergence in each iteration over a block of simultaneous equations.
The tests are made by comparing the results of the current iteration to the results
from the previous iteration. When MODDAMP specifies a weighting factor that is
greater than zero, the value that Oracle OLAP tests and stores after each iteration is
a weighted average of the current and previous results. For equations that oscillate
between iterations, you can therefore use MODDAMP to damp out the oscillations
and either prevent divergence or speed up the convergence of the equations.

Data type
DECIMAL

Syntax
MODDAMP = {n|0.00}

Arguments

n
A decimal value, greater than or equal to zero and less than one, that specifies the
weighting factor. The closer MODDAMP is to 0.00, the more weight is given to the

MODDAMP

17-14 Oracle OLAP DML Reference

value from the current iteration. The default value is 0.00, which gives full weight to
the current iteration.

When MODDAMP is greater than zero, Oracle OLAP calculates the weighted
average for the current iteration as follows.

calcvalue * (1 - MODDAMP) + weightavg

where:

calcvalue is the value calculated from the model equation in the current iteration.

weightavg is the weighted average calculated in the previous iteration.

See "Stored Weighted Average" on page 17-14.

Notes

Specifying the Solution Method
The MODDAMP option is used only with the Gauss-Seidel method for solving
simultaneous equations. The MODSIMULTYPE option determines the solution
method that is being used. The possible settings for MODSIMULTYPE are GAUSS,
for the Gauss-Seidel method, and AITKENS, for the Aitkens delta-squared method.

Increasing Convergence Speed
MODDAMP is used in calculating the results of all model equations in every
simultaneous block, whether they oscillate between iterations or not. For equations
that do not oscillate, convergence is slowed down when the value of MODDAMP is
greater than zero. Therefore, when your model contains some equations that
oscillate and some that do not, you might be able to speed up overall convergence
by setting MODDAMP to a small nonzero value, such as 0.20. A small nonzero
value will slow down the convergence of non-oscillating equations only slightly,
while speeding up the convergence of oscillating equations.

Stored Weighted Average
When the model equation does not converge or diverge on the current iteration, the
weighted average calculated in the current iteration is stored. In the next iteration,
Oracle OLAP uses this stored average as weightavg (that is, the weighted average
calculated in the previous iteration) in the formula for the weighted average.

In the first iteration over a block, Oracle OLAP uses the starting value of the target
variable (or dimension value) as the weightavg (that is, the weighted average
calculated in the previous iteration).

MODDAMP

MAXBYTES to MODTRACE 17-15

Iteration Results Compared
In tests for convergence and divergence in each iteration, Oracle OLAP compares
the results of the current iteration to the results from the previous iteration. When
MODDAMP is greater than zero, Oracle OLAP tests a comparison value that is
calculated as follows.

(weightavg - weightavg) / (weightavg PLUS MODGAMMA)

where weightavg is the weighted average calculated in the previous iteration

For an explanation of the test for convergence, see MODTOLERANCE. For an
explanation of the test for divergence, see MODOVERFLOW.

Options to Control the Solution of Simultaneous Blocks
Altering the value of MODDAMP is just one of the steps you can take in attempting
to speed up or attain convergence of a simultaneous block. MODEL lists additional
options that you can use to control the solution of simultaneous blocks and
provides information on running and debugging models.

Examples

Example 17–6 Using the Default MODDAMP Value

The following statements trace a model called income.bud, specify that the
Gauss-Seidel method should be used for solving simultaneous blocks, limit a
dimension, and run the income.bud model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.bud budget

MODDAMP

17-16 Oracle OLAP DML Reference

These statements produce the following output.

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.BUD) ITERATION 1: EVALUATION
(MOD= INCOME.BUD) revenue = marketing * 300 - cogs

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 35) = 368.650399101

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 36) = 369.209604252

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 37) = 368.718556135

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 38) = 369.149674626

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 39) = 368.771110244

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 40) = 369.103479583
(MOD= INCOME.BUD) END BLOCK 1

The MODDAMP option is set to its default value of 0.00. The equation for the
Revenue line item converged in 40 iterations over a block of simultaneous
equations. In the trace lines, you can see the results that were calculated for the
Revenue line item in the final 6 iterations.

Example 17–7 Setting MODDAMP to Speed Up the Convergence of a Model

The following statements change the value of MODDAMP and run the
income.bud model.

MODDAMP = 0.2
income.bud budget

MODDAMP

MAXBYTES to MODTRACE 17-17

These statements produce the following output.

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.BUD) ITERATION 1: EVALUATION
(MOD= INCOME.BUD) revenue = marketing * 300 - cogs
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 1) = 276.200000000

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 2) = 416.187139753

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 3) = 368.021098186

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 4) = 367.209906847

...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 5) = 369.271224267
...

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 6) = 368.965397407
(MOD= INCOME.BUD) END BLOCK 1

In "Using the Default MODDAMP Value" on page 17-15, the equation for the
Revenue line item converged in 40 iterations. With MODDAMP set to 0.2 in the
current example, the same equation converged in just 6 iterations.

MODE

17-18 Oracle OLAP DML Reference

MODE

The MODE function returns the mode (the most frequently occurring value) of a
numeric expression. When there are no duplicate values in the data, then MODE
returns NA.

Return Value
DECIMAL

Syntax
MODE(expression [dimensions])

Arguments

expression
The numeric expression whose mode is to be calculated.

dimensions
The dimensions of the result. When you do not specify any dimensions, MODE
calculates the mode over all the dimensions of expression and it returns a single
value. When you specify one or more dimensions (but fewer than all of the
dimensions of expression) in the dimension argument, then MODE calculates the
mode for each value of the dimensions that you specified and returns an array of
values. Each dimension must be a dimension of expression.

Notes

The Effect of NASKIP
MODE is not affected by the NASKIP option.

More Than One Set of Duplicate Values
When multiple values qualify as having the greatest number of occurrences in the
expression, then MODE sorts the values and returns the lowest one. For example,
for the data series {4,5,2,3,7,4,6,2,1}, the mode for the series is 2 even though 2 and 4
both occur twice.

MODE

MAXBYTES to MODTRACE 17-19

Examples

Example 17–8 Reporting the Mode

These examples use the following geography and items dimensions and sales2
variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the sales2 variable has the following data values.

-------------SALES2-------------
-----------GEOGRAPHY------------

ITEMS G1 G2 G3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

■ This statement reports the mode that is calculated over the geography
dimension.

REPORT W 22 MODE(sales2, geography)

The preceding statement produces the following output.

MODE(SALES2,
GEOGRAPHY GEOGRAPHY)
-------------- ----------------------
g1 30.00
g2 20.00
g3 NA

■ This statement reports the mode that is calculated over the items dimension.

REPORT W 18 MODE(sales2, items)

MODE

17-20 Oracle OLAP DML Reference

The preceding statement produces the following output.

MODE(SALES2,
ITEMS ITEMS)
-------------- ------------------
Item1 NA
Item2 NA
Item3 NA
Item4 25.00
ITEM5 NA

■ This statement reports the mode that is calculated over all of the dimensions of
the sales2 variable.

REPORT MODE(sales2)

The preceding statement produces the following output.

Mode

15

MODEL

MAXBYTES to MODTRACE 17-21

MODEL

The MODEL command enters a completely new specification into a new or existing
model object. When the model already has a specification, Oracle OLAP overwrites
it.

The MODEL command assigns the specification to the most recently defined or
considered model (see the DEFINE MODEL and CONSIDER commands). In order
for it to do this, there must be a current definition, so you must have defined or
considered model during your current session before executing the MODEL
command.

Adding a specification to a model object is just one step in modeling data which is
discussed in "Models" on page 10.

Syntax
MODEL specification

Arguments

specification
A multiline text expression that contains one or more of the following OLAP DML
statements:

Assignment statement (SET)
DIMENSION (in models)
INCLUDE

The maximum number of lines you can have in a model is 4,000. Separate
statements with newline delimiters (\n), or use JOINLINES.

For a discussion of designing a model specification, see "Model Specification" on
page 17-22.

MODEL

17-22 Oracle OLAP DML Reference

Notes

Model Specification
The model specification consists of the following OLAP DML statements:

1. One of the following:

■ Exactly one INCLUDE statement that specifies the name of another model
to include. See "Nesting Models" on page 4-11 for more information.

■ One or more DIMENSION (in models) statements coded following the
"Guidelines for Writing DIMENSION Statements in a Model" on page 17-32.

2. One or more SET commands or equations written following the "Rules for
Equations in Models" on page 21-61. The maximum number of lines you can
have in a model is 4,000.

3. A final END statement that indicates the end of the model specification. (Omit
when coding the specification in an Edit window of the OLAP Worksheet.)

MODEL Statement in an Aggregation Specification
Within an aggmap, you can use a special MODEL statement to execute a predefined
model. (See MODEL (in an aggregation) for more information.

Model Options
A number of options effect how a model solves simultaneous blocks. These options
are listed in Table 17–1, "Model Options" on page 17-23.

Note: When a model contains an INCLUDE statement, then it
cannot contain any DIMENSION statements. However, the model
referenced in the INCLUDE statement or the root model in a
hierarchy must contain the DIMENSION statements needed by the
parent model(s).

See also: "Dimension Status and Model Equations" on page 4-12
for information on how Oracle OLAP processes equations in a
model.

MODEL

MAXBYTES to MODTRACE 17-23

Methods of Calculating Data Within a Variable
Both models and aggmap objects calculate data values within a variable based on
relationships among dimension members. When a parent-child relationship exists
among dimension members (that is, the dimension has a hierarchical structure) and
all aggregate values can be calculated using the same method, then you can use a
RELATION (for aggregation) statement within an aggregation specification to
calculate the values. However, when the dimension is not hierarchical and different
equations are needed to calculate the values, then you must define a model. You can
use a MODEL (in an aggregation) to execute the MODEL within an aggregation
specification or you can run a model at the command line using the syntax shown
in "Running a Model" on page 4-15.

Table 17–1 Model Options

Option Purpose

MODDAMP For the Gauss-Seidel solution method, specifies a weighting
factor that damps out oscillations between iterations.

MODERROR Specifies the action to be taken when a model equation
diverges or a block fails to converge. The possible values are
STOP, CONTINUE, and DEBUG.

MODGAMMA A comparison factor that is used in testing for convergence and
divergence. It controls the degree to which the tests compare
the absolute amount of change between iterations versus the
proportional change. This option is useful in models that test
very small values.

MODINPUTORDER Specifies whether equations in a simultaneous block are
executed in the order in which you place them in the model or
in an order determined by the model compiler.

MODMAXITERS The maximum number of iterations to perform in seeking a
solution for a block.

MODOVERFLOW A value that is used in testing for divergence. It controls how
large the change in the results must be between iterations for
an equation to be considered to have diverged.

MODSIMULTYPE The solution method to use. The possible values are AITKENS
(for the Aitkens delta-squared method) and GAUSS (for the
Gauss-Seidel method).

MODTOLERANCE A value that is used in testing for convergence. It controls how
closely the results must match between iterations for an
equation to be considered to have converged.

MODEL

17-24 Oracle OLAP DML Reference

Deleting a Model Specification
You can remove the specification of a model without deleting the model definition.
Consider the model with the CONSIDER command. Then issue a MODEL
command and enter the word END as the model specification.

Examples

Example 17–9 Model Specified in a Program

In the following example, a simple model is created (or overwritten) in a program
called myprog. The first line in the program defines or considers the model. The
second line contains the MODEL command, which provides the lines of the model.

This model calculates the line items in a budget. The model equations are based on
a line dimension.

DEFINE myprog PROGRAM
PROGRAM
IF NOT EXISTS('myModel')
 THEN DEFINE myModel
 ELSE CONSIDER myModel
MODEL JOINLINES(-
 'DIMENSION line month' -
 'Opr.Income = Gross.Margin - Marketing' -
 'Gross.Margin = Revenue - Cogs' -
 'Revenue = LAG(Revenue, 1, month) * 1.02' -
 'Cogs = LAG(Cogs, 1, MONTH) * 1.01' -
 'Marketing = LAG(Opr.Income, 1, month) * 0.20' -
 'END')
END

MODEL

MAXBYTES to MODTRACE 17-25

Example 17–10 Model from an Input File

This example presents the text of the same simple model, but it is stored in an ASCII
disk file called budget.txt.

DEFINE income.budget MODEL
MODEL
DIMENSION line month
Opr.Income = Gross.Margin - Marketing
Gross.Margin = Revenue - Cogs
Revenue = LAG(Revenue, 1, month) * 1.02
Cogs = LAG(Cogs, 1, month) * 1.01
Marketing = LAG(Opr.Income, 1, month) * 0.20
END

To include the income.budget model in your analytic workspace, execute the
following statement in which myinpfiles is a directory object.

INFILE 'myinpfiles/budget.txt'

Example 17–11 Creating a Model

Suppose that you define a model, called income.calc, that calculates line items in
the income statement.

define income.calc model
ld Calculate line items in income statement

After defining the model, you can use the MODEL command or the OLAP Worksheet
editor to enter the specification for the model. A model specification can contain
DIMENSION commands, assignment statements and comments. All the DIMENSION
commands must come before the first equation. For the current example, you can
specify the lines shown in the following model.

DEFINE INCOME.CALC MODEL
LD Calculate line items in income statement
MODEL
DIMENSION line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing + selling + r.d)
gross.margin = revenue - cogs
END

When you write the equations in a model, you can place them in any order. When
you compile the model, either with the COMPILE command or by running the
model, the order in which the model equations are solved is determined. When the

MODEL

17-26 Oracle OLAP DML Reference

calculated results of one equation are used as input to another equation, then the
equations are solved in the order in which they are needed.

To run the income.calc model and use actual as the solution variable, you
execute the following command.

income.calc actual

When the solution variable has dimensions other than the dimensions on which
model equations are based, then a loop is performed automatically over the current
status list of each of those dimensions. For example, actual is dimensioned by
month and division, as well as by line. When division is limited to ALL, and
month is limited to OCT96 to DEC96, then the income.calc model is solved for
the three months in the status for each of the divisions.

Example 17–12 Building a Scenario Model

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the following example.

You can call the scenario dimension scenario and give it values that represent the
scenarios you want to calculate.

These commands give scenario the values optimistic, pessimistic and
bestguess.

DEFINE scenario DIMENSION TEXT
LD Names of scenarios
MAINTAIN scenario ADD optimistic pessimistic bestguess

These commands create a variable named plan dimensioned by three other
dimensions (month, line, and division) in addition to the scenario
dimension.

DEFINE plan DECIMAL <month line division scenario>
LD Scenarios for financials

For this example, you need to enter input data, such as revenue and cost of goods
sold, into the plan variable.

MODEL

MAXBYTES to MODTRACE 17-27

For the best-guess data, you can use the data in the budget variable. Limit the
line dimension to the input line items, and then copy the budget data into the
plan variable.

LIMIT scenario TO 'BESTGUESS'
LIMIT line TO 'REVENUE' 'COGS' 'MARKETING' 'SELLING' 'R.D'
plan = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be fifteen percent higher than best-guess data,
and pessimistic data might be twelve percent less than best-guess data. With line
still limited to the input line items, execute the following commands.

plan(scenario 'OPTIMISTIC') = 1.15 * plan(scenario 'BESTGUESS')
plan(scenario 'PESSIMISTIC') = .88 * plan(scenario 'BESTGUESS')

The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in
the budget.calc model shown earlier in this chapter.

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by scenario and place
the appropriate values in the variable. When the name of your variable is cogsval,
then your model might include the following equation for calculating the cogs line
item.

cogs = cogsval * revenue

By using variables dimensioned by scenario, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You
can define a variable dimensioned by division to hold the values for each
division. For example, when labor costs vary from division to division, then you
might dimension cogsval by division as well as by scenario.

When you run your model, you specify plan as the solution variable. For example,
when your model is called scenario.calc, then you solve the model with this
command.

scenario.calc plan

MODEL

17-28 Oracle OLAP DML Reference

A loop is performed automatically over the current status list of each of the
dimensions of plan. Therefore, when the scenario dimension is limited to ALL
when you run the scenario.calc model, then the model is solved for all three
scenarios: optimistic, pessimistic, and bestguess.

MODEL

MAXBYTES to MODTRACE 17-29

DIMENSION (in models)

The DIMENSION statement at the beginning of a model tells Oracle OLAP the
names of one or more dimensions to which the model assigns data or to which it
refers in dimension-based equations. A dimension-based equation assigns the
results of a calculation to a target that is represented by one or more values of a
dimension.

Syntax
DIMENSION dimension1 [, dimensionN]

Arguments

dimension
One or more dimensions, including base dimensions of composites, on which
model equations are based. You can specify the name of a dimension surrogate
instead of the dimension for which is a surrogate. You can then use the values of the
surrogate instead of the values of the dimension.

Notes

Dimension-Based Equations
When an equation (SET) assigns data to a dimension value or refers to dimension
values in its calculations, it is called a dimension-based equation. Note that a
dimension-based equation does not need to refer to the dimension itself, but only to
the values of the dimension. Therefore, when the model contains any
dimension-based equations, you must specify the name of each of these dimensions
in a DIMENSION statement at the beginning of the model. This allows Oracle
OLAP to determine the dimension to which each dimension value belongs. You can
specify the name of a dimension surrogate instead of the dimension for which it is a
surrogate. You can then use the values of the surrogate instead of the values of the
dimension.

In addition, when a model contains any dimension-based equations, you must
supply the name of a solution variable when you run the model. The solution
variable is both the source and the target of data for the model. It holds the input
data used in dimension-based calculations, and Oracle OLAP stores the calculation
results in designated values of the solution variable. The solution variable is
generally dimensioned by all the dimensions on which the model equations are

DIMENSION (in models)

17-30 Oracle OLAP DML Reference

based. For example, in a financial application, the model might be based on the
line dimension, and the solution variable might be actual, which has line as
one of its dimensions.

Dimension-based equations provide flexibility in modeling. Since you do not need
to specify the modeling variable until you solve a model, you can run the same
model with different solution variables. For example, you might run the same
model with the actual variable, with a "best case" budget variable, and with a
"worst case" budget variable.

A dimension must be specified in a DIMENSION command when a
dimension-based equation refers to a value of the dimension either as a source of
the data used in the calculation or as the target to which the results will be assigned.
In the following example, Gross.Margin, Revenue, and Cogs are values of the
line dimension, so line is specified in a DIMENSION command.

DIMENSION line
Gross.Margin = Revenue - Cogs

Dimension is a Function Argument
A dimension must be specified in a DIMENSION command when the dimension is
an argument to a function that uses a dimension value as its data source. In the
following example, month must be specified in a DIMENSION command.

DIMENSION line, month
Revenue = lag(Revenue, 1, month) * 1.05

The writer of the preceding model expects to use a solution variable that is
dimensioned by line and month. Therefore, when the model is run, the LAG
function will operate on a solution variable that has the specified time dimension
(month) as one of its dimensions. However, since the model compiler cannot
anticipate the time dimension of the solution variable, you must specify it in a
DIMENSION command. When you fail to include month in a DIMENSION
command, an error occurs when you attempt to compile the model.

In a function that operates on time-series data (such as MOVINGTOTAL or LAG),
the dimension argument is optional when the dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. For example, you can omit month from the LAG
function in the preceding example. However, you must still specify the appropriate
time dimension in a DIMENSION command.

MODEL

MAXBYTES to MODTRACE 17-31

Solution Variable
When you run a model that contains dimension-based equations, you specify a
solution variable, which is both the source and the target of data for the model. The
solution variable is generally dimensioned by all the dimensions that are listed in
the DIMENSION commands used in the model. Or, when a solution variable is
dimensioned by a composite, the DIMENSION commands can list base dimensions
of the composite. The DIMENSION commands can be explicit in the model or
inherited through an included model. See "Incompatibility with INCLUDE" on
page 17-31.

Working with Composites
When you expect to run a model with a solution variable that has a composite in its
dimension list, you can specify a base dimension of the composite in a DIMENSION
command. Your model equations will assign results to values of the base
dimension. Oracle OLAP automatically creates any new values that are needed in
the composite.

Multiple DIMENSION Commands
You can include a separate DIMENSION command for every dimension referred to
or used in dimension-based equations, or you can specify all the dimensions in a
single DIMENSION command.

Location of Commands
You must place all the DIMENSION commands at the beginning of the model,
before any equations.

Incompatibility with INCLUDE
When a model contains an INCLUDE statement, it cannot contain any DIMENSION
commands. The INCLUDE statement specifies another model to include in the
current model. In this case, the current model inherits its DIMENSION commands,
if any, from the included model. For more information in including models, see
INCLUDE.

Inherited DIMENSION commands must satisfy all the requirements specified for
explicit DIMENSION commands. See "Guidelines for Writing DIMENSION
Statements in a Model" on page 17-32.

DIMENSION (in models)

17-32 Oracle OLAP DML Reference

Dimension Order
When more than one dimension is specified by the DIMENSION commands in a
model, the order in which the dimensions are listed is important:

■ When a model equation contains a name that might be a dimension value,
Oracle OLAP searches through the dimensions that appear in the model's
explicit or inherited DIMENSION commands, in the order you list the
dimensions, to determine whether the name matches a dimension value of a
listed dimension. The search concludes as soon as a match is found. Therefore,
when two or more listed dimensions have a dimension value with the same
name, Oracle OLAP assumes that the value belongs to the dimension specified
earliest in a DIMENSION command. When the name does not match a value of
a listed dimension, Oracle OLAP then searches through the variables in the
attached workspaces to find a match.

■ When model equations assign results to values of a target dimension, Oracle
OLAP constructs code that will loop over the values of the other, non-target,
dimensions listed in the DIMENSION commands. The non-target dimension
listed first in the DIMENSION commands is treated as the slowest-varying
dimension. For example, when MONTH is the first non-target dimension listed
in a DIMENSION command and DIVISION is the second, Oracle OLAP loops
through all the divisions for the first month, then all the divisions for the second
month, and so on.

Guidelines for Writing DIMENSION Statements in a Model
When you write DIMENSION statements, you should keep these points in mind:

■ In the DIMENSION statements, you must list the names of all the dimensions on
which model equations are based. In the following example, gross.margin,
revenue, and cogs are values of the line dimension, so line is specified in a
DIMENSION statement.

DIMENSION line
gross.margin = revenue - cogs

■ DIMENSION statements must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, month
must be specified in a DIMENSION statement.

DIMENSION line, month
revenue = LAG(revenue, 1, month) * 1.05

■ When a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions

MODEL

MAXBYTES to MODTRACE 17-33

listed in the DIMENSION statements. The nontarget dimension listed first in the
DIMENSION statements is treated as the slowest-varying dimension.

■ A model executes most efficiently when you observe the following guidelines
for coordinating the dimensions in DIMENSION statements and the dimensions
of the solution variable:

■ List the target dimension of the model as the first dimension in the
DIMENSION statements and as the last dimension in the definition of the
solution variable.

■ In DIMENSION statements, list the nontarget dimensions in the reverse order
of their appearance in the definition of the solution variable. This means
that the fastest-varying and slowest-varying nontarget dimensions are in
the same order in the model and in the solution variable.

■ When the solution variable has dimensions that are not used or referred to in
model equations, then do not include them in DIMENSION statements.

■ When your analytic workspace contains a variable whose name is the same as a
dimension value, or when the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Since you
can use a variable and a dimension value in exactly the same way in a model
equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

■ Your DIMENSION statements are used to determine whether each name
reference in an assignment statement is a variable or a dimension value.
"Compiling a Model" on page 4-14 explains how the name references are
resolved.

See Also: "Models" on page 4-10, SET, and MODEL for
information on:

■ Entering statements in a model

■ How to refer to values of dimensions

■ Explanation of how Oracle OLAP constructs code from the
statements

■ Explanation of how Oracle OLAP handles the situation in
which the solution variable has more dimensions or fewer
dimensions than are listed in DIMENSION commands

DIMENSION (in models)

17-34 Oracle OLAP DML Reference

Examples

Example 17–13 Simplified Model for Budget Estimates

The following statements define a simplified model that estimates budget values for
the items on an income statement.

DEFINE income.budget MODEL
LD Model for estimating budget line items
MODEL
dimension line, month
Revenue = 1.05 * LAG(Revenue 1 month)
Gross.Margin = Revenue - Cogs
Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Net.Income = Opr.Income - Taxes
END

The model equations are based on the line dimension, so line is specified in the
DIMENSION command. The dimension month is the time dimension in the LAG
function that operates on REVENUE values, so month is also specified in the
DIMENSION command.

When you run the model, Oracle OLAP loops over the values in the current status
of the month dimension.

MODEL

MAXBYTES to MODTRACE 17-35

INCLUDE

The INCLUDE command includes one model within another model. You can use
the INCLUDE command only within models.

Syntax
INCLUDE model

Arguments

model
The name of a model to include in the current model. The current model is referred
to as the parent model. The model that you include is referred to as the base model.

Notes

Limitations
A model can contain only one INCLUDE command, and the INCLUDE command
can specify the name of just one base model to be included.

Nesting Models
You can nest models by placing an INCLUDE command in a base model. For
example, model myModel1 can include model myModel2, and model myModel2
can include model myModel3. The nested models form a hierarchy. In this example,
myModel1 is at the top of the hierarchy, and myModel3 is at the root.

A base model cannot include a model at a higher level in the hierarchy. In the
preceding example, myModel2 cannot include myModel1, and myModel3 cannot
include myModel1 or myModel2.

Incompatibility with DIMENSION
When a model contains an INCLUDE command, it cannot contain any
DIMENSION (in models) commands. A parent model inherits its dimensions, if
any, from the DIMENSION commands in the root model of the included hierarchy.
For example, suppose model myModel1 includes model myModel2, and model
myModel2 includes model myModel3. When model myModel3 contains one or
more DIMENSION commands, then models myModel1 and myModel2 both inherit
their dimensions from the DIMENSION commands in model myModel3.

INCLUDE

17-36 Oracle OLAP DML Reference

Location
You must place the INCLUDE command before any equations in the model.

Dependencies Among Equations
When compiling a model that contains an INCLUDE command, the compiler
considers the dependencies among the equations from all the included models
when it orders and blocks the equations. Therefore, when you run the
MODEL.COMPRPT program to examine the results of the compilation or when you
set the MODTRACE option to YES before running the parent model, you might find
that equations from different levels in the hierarchy of included models are
interspersed. See Example 17–15, "Producing a Compilation Report" on page 17-39.

When the compiler finds no dependencies among the equations from the included
models, it executes the equations in the root model first and the equations in the
parent model last.

Compiling a Parent Model
When you compile a parent model, the compiler will compile all the base models
under it in the included hierarchy when compiled code does not already exist.
When the compiler detects an error in an included model, neither it nor any model
above it in the hierarchy is compiled. When the root model of the included
hierarchy contains an error, the higher-level models are unable to inherit any
DIMENSION (in models) commands from the root model. In this case, the compiler
might report an error in a parent model when the source of the error is actually in
the root model. For example, the compiler might report that a target dimension
value does not exist in any attached analytic workspace.

On the other hand, when the compiler detects an error in a parent model but finds
no errors in the included models, the included models are compiled even though
the parent model is not.

Modular Models
The INCLUDE command creates modular models. When certain equations are
common to several models, you can place these equations in a separate model and
include that model in other models as needed.

Facilitating What-If Analyses
The INCLUDE command also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations.

MODEL

MAXBYTES to MODTRACE 17-37

Masking Equations
To support what-if analyses, Oracle OLAP allows equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed. When you run the
MODEL.COMPRPT program after compiling the model, you will see that the masked
equation is not shown in the report on the compiled model.

Masking can take place when an equation assigns a value to a variable or dimension
value that is also the target of a previous equation. The masking rules are as follows:

■ When the target in the earlier equation is qualified exactly the same as the
target in the later equation, the earlier equation is masked and the later
equation is executed. The following example illustrates two equations with
targets that are identically qualified.

Equation from a base model: BUDGET(LINE REVENUE) = 5000
Equation from the parent model: BUDGET(LINE REVENUE) = 3500

In this example, the equation from the base model is masked and the equation
from the parent model is executed.

■ When the target in the earlier equation is more qualified than the target in the
later equation, the earlier equation is masked. The later equation is executed.

The target that is more qualified is the one that will affect the fewest dimension
values. Consider the following equations from a base model and a parent
model.

Equation from a base model: BUDGET(LINE REVENUE) = 2500
Equation from the parent model: BUDGET = 4000

The equation from the base model is more qualified because it assigns data only
for the REVENUE value of the LINE dimension. The equation from the parent
model assigns data to all the values of the LINE dimension. In this example, the
equation from the base model is masked and the equation from the parent
model is executed.

■ When the target in the earlier equation is less qualified than the target in the
later equation, no masking takes place. Both equations are executed.

Consider the following equations from a base model and a parent model.

Equation from a base model: BUDGET = LAG(ACTUAL, 1, MONTH)
Equation from the parent model: BUDGET(LINE REVENUE) = 6500
Equation from the parent model: BUDGET(LINE COGS) = 4000

INCLUDE

17-38 Oracle OLAP DML Reference

The equation from the base model assigns data to all the values of the LINE
dimension. The equations from the parent model are more qualified because
each assigns data only for a single value of the LINE dimension. In this
example, the equation from the base model is executed first, and then the
equations from the parent model are executed.

This functionality enables you to assign a large number of values with one
equation and use subsequent equations to replace or test individual values.

■ When the target in the earlier equation is qualified differently from the target in
the later equation, no masking takes place. Both equations are executed. In the
following example, both equations are executed.

Equation from a base model: BUDGET(LINE REVENUE) = 5000
Equation from the parent model: BUDGET(LINE COGS) = 4500

Examples

Example 17–14 Including a Model

This example shows a parent model named income.plan that includes a base
model named base.lines.

DEFINE income.plan MODEL
MODEL
INCLUDE base.lines
revenue = LAG(revenue, 1, month) * 1.02
cogs = LAG(cogs, 1, month) * 1.01
taxes = 0.3 * opr.income
END

DEFINE BASE.LINES MODEL
MODEL
DIMENSION line month
net.income = opr.income - taxes
opr.income = gross.margin - marketing
gross.margin = revenue - cogs
END

MODEL

MAXBYTES to MODTRACE 17-39

Example 17–15 Producing a Compilation Report

The following statements compile the parent model and produce a compilation
report.

COMPILE income.plan
MODEL.COMPRPT income.plan

These statements produce the following output.

MODEL INCOME.PLAN <LINE MONTH>
BLOCK 1 (SIMPLE)

INCOME.PLAN 2: revenue = lag(revenue, 1, month) * 1.02
INCOME.PLAN 3: cogs = lag(cogs, 1, month) * 1.01
BASE.LINES 4: gross.margin = revenue - cogs
BASE.LINES 3: opr.income = gross.margin - marketing
INCOME.PLAN 4: taxes = 0.3 * opr.income
BASE.LINES 2: net.income = opr.income - taxes

END BLOCK 1

MODEL.COMPRPT

17-40 Oracle OLAP DML Reference

MODEL.COMPRPT

The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks with
a cross-dimensional dependence, the report lists the dimensions involved in the
dependence.

Syntax
MODEL.COMPRPT

Examples

Example 17–16 A Compilation Report for the income.budget Model

The MODEL.COMPRPT program produces a compilation report that shows the
block structure of the model that you specify as the program argument and the
order of equations within each block. Each equation is identified with the name of
the model and its statement number within that model.

The following statements compile the model and invoke MODEL.COMPRPT.

COMPILE income.budget
MODEL.COMPRPT income.budget

The MODEL.COMPRPT statement produces the following compilation report.

MODEL INCOME.BUDGET <LINE MONTH>
BLOCK 1 (SIMPLE)

INCOME.BUDGET 4: revenue = lag(revenue, 1, month) * 1.02
INCOME.BUDGET 5: cogs = lag(cogs, 1, month) * 1.01
INCOME.BUDGET 3: gross.margin = revenue - cogs

BLOCK 2 (STEP-FORWARD <MONTH>)
INCOME.BUDGET 6: marketing = lag(opr.income, 1, month) * 0.20
INCOME.BUDGET 2: opr.income = gross.margin - marketing

END BLOCK 2
END BLOCK 1

MODEL.COMPRPT

MAXBYTES to MODTRACE 17-41

Example 17–17 A Compilation Report for the income.est Model

The following statement runs the MODEL.COMPRPT program, which produces a
compilation report for a model named income.est.

MODEL.COMPRPT income.est

The compilation report contains the following output.

MODEL INCOME.EST <LINE MONTH>
BLOCK 1 (STEP-FORWARD <MONTH>)

INCOME.EST 5: revenue = lag(revenue,1,month)+2*lag(marketing,1,month)
INCOME.EST 4: gross.margin = revenue - cogs

BLOCK 2 (SIMULTANEOUS)
INCOME.EST 2: net.income = opr.income - taxes
INCOME.EST 3: opr.income = gross.margin - marketing - selling - r.d
INCOME.EST 6: marketing = .15 * net.income
INCOME.EST 7: taxes = .3 * opr.income

END BLOCK 2
END BLOCK 1

MODEL.DEPRT

17-42 Oracle OLAP DML Reference

MODEL.DEPRT

The MODEL.DEPRPT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

Syntax
MODEL.DEPRT

Examples

Example 17–18 Producing a Dependency Report

The MODEL.DEPRPT program produces a dependency report that lists the
variables and dimension values that are the assignment target and data sources for
each model equation. For each equation, the assignment target and each data source
is listed on a separate line. When a target or data source is a dimension value, its
line is marked by an asterisk enclosed in square brackets ([*]).

When a target or data source depends on a qualifier, the report specifies the
dimension of the qualifier and indicates the type of dependence. The type of
dependence can be any of the following:

■ LAG -- One-way dependence on previous dimension values

■ LEAD -- One-way dependence on later dimension values

■ BOTH -- Two-way dependence on both previous and later values

■ VARIABLE -- Dependence on either previous or later values, depending on the
value of a variable when the model is run

■ QDR -- Qualified data reference

MODEL.DEPRT

MAXBYTES to MODTRACE 17-43

Assume that you want to produce a dependency report for the income.budget
model. The following statement and report illustrate this process.

MODEL.DEPRPT income.budget

MODEL INCOME.BUDGET <LINE MONTH>
2 [*](LINE OPR.INCOME):

[*](LINE GROSS.MARGIN)
[*](LINE MARKETING)

3 [*](LINE GROSS.MARGIN):
[*](LINE REVENUE)
[*](LINE COGS)

4 [*](LINE REVENUE):
[*](LINE REVENUE)(LAG <MONTH>)

5 [*](LINE COGS):
[*](LINE COGS)(LAG <MONTH>)

6 [*](LINE MARKETING):
[*](LINE OPR.INCOME)(LAG <MONTH>)

The data sources in statements 4, 5, and 6 have a LAG dependence on the month
dimension.

MODEL.XEQRPT

17-44 Oracle OLAP DML Reference

MODEL.XEQRPT

The MODEL.XEQRPT program produces a report about the execution of the model.
The report specifies the block where the solution failed and shows the values of the
model options that were used in solving simultaneous blocks.

Syntax
MODEL.XEQRPT

Notes

Running MODEL.XEQRPT
Before you can run the MODEL.XEQRPT program, you must

1. Set MODERROR to STOP or CONTINUE.

2. Execute the model.

When the model halts because of an error, run the MODEL.XEQRPT program.

Effect of MODERROR on MODEL.XEQRPT
The results returned by MODEL.XEQRPT vary depending on the setting of
MODERROR:

■ When MODERROR is set to STOP and execution of the model halts because of
an error, you can run the MODEL.XEQRPT program to produce a report about
the execution of the model. The report specifies the block where the solution
failed and shows the values of the model options that were used in solving
simultaneous blocks.

■ When MODERROR is set to CONTINUE and one of the blocks in the model is a
simultaneous block that either diverges or fails to converge, Oracle OLAP
executes any remaining blocks in the model.

Moreover, Oracle OLAP executes the model for the remaining values in the
status of any additional dimensions of the solution variable that are not
dimensions of the model. In this case, when you run the MODEL.XEQRPT
program when Oracle OLAP finishes executing the model, you will see a report
on the solution for the final values of the additional dimensions.

MODEL.XEQRPT

MAXBYTES to MODTRACE 17-45

When the simultaneous blocks in the model converged when the model was
executed for the final values of the additional dimensions, then MODEL.XEQRPT
will report that the blocks were solved, even though an earlier execution of the
model for another dimension value might have failed. When you wish to see
the MODEL.XEQRPT for the dimension values where the failure occurred, you
can set MODERROR to STOP and rerun the model.

Examples

Example 17–19 Producing an Execution Report for the income.est Model

After running the income.est model, you can use the MODEL.XEQRPT program to
produce a report on the execution of the model.

The following statement runs the MODEL.XEQRPT program, which produces an
execution report for the model.

MODEL.XEQRPT income.est

The execution report contains the following output.

MODEL INCOME.EST <LINE MONTH>
Solution status: SOLVED
Model options in use:

MODSIMULTYPE: AITKENS
MODMAXITERS: 50
MODTOLERANCE: 3
MODOVERFLOW: 3
MODGAMMA: 1

BLOCK 1 (STEP-FORWARD <MONTH>)
Solution status: SOLVED

BLOCK 2 (SIMULTANEOUS)
Solution status: SOLVED
Iterations: 15

The report shows the values of the model options that were used in solving the
simultaneous blocks and indicates whether each block was solved.

MODERROR

17-46 Oracle OLAP DML Reference

MODERROR

The MODERROR option determines the action that Oracle OLAP takes when a
block of simultaneous equations in a model cannot be solved within a specified
number of iterations.

Data type
ID

Syntax
MODERROR = {'STOP'|'CONTINUE'}

Arguments

'STOP'
Oracle OLAP sends an error message to the current outfile and stops executing the
model. (Default)

'CONTINUE'
Oracle OLAP sends a warning message to the current outfile, stops executing the
current block, and resumes execution at the next block in the model.

Notes

Block-Solution Failure
When every equation in a simultaneous block passes a convergence test, the block is
considered solved. When any equation diverges or fails to converge within a
specified number of iterations, the solution of the block fails and an error occurs.
MODERROR controls the action that Oracle OLAP takes when an error occurs.

Attaining Convergence
When an error occurs, you might be able to attain convergence for the block by
changing the value of one or more options that control the solution of simultaneous

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODERROR

MAXBYTES to MODTRACE 17-47

blocks. For example, you can increase the number of iterations that will be
attempted or you can change the criteria used in testing for convergence and
divergence.

Using 'STOP'
When MODERROR is set to STOP and execution of the model halts because of an
error, you can run the MODEL.XEQRPT program to produce a report about the
execution of the model. The report specifies the block where the solution failed and
shows the values of the model options that were used in solving simultaneous
blocks.

Using 'CONTINUE'
When MODERROR is set to CONTINUE and one of the blocks in the model is a
simultaneous block that either diverges or fails to converge, Oracle OLAP executes
any remaining blocks in the model.

Moreover, Oracle OLAP executes the model for the remaining values in the status of
any additional dimensions of the solution variable that are not dimensions of the
model. In this case, when you run the MODEL.XEQRPT program when Oracle
OLAP finishes executing the model, you will see a report on the solution for the
final values of the additional dimensions.

When the simultaneous blocks in the model converged when the model was
executed for the final values of the additional dimensions, then MODEL.XEQRPT
will report that the blocks were solved, even though an earlier execution of the
model for another dimension value might have failed. When you wish to see the
MODEL.XEQRPT for the dimension values where the failure occurred, you can set
MODERROR to STOP and rerun the model.

Diagnosing a Problem
You can also use the MODTRACE option to help diagnose a problem in a
simultaneous block. When you set MODTRACE to YES, Oracle OLAP records each
equation in the current outfile before executing it and then records the results of the
calculation in the current outfile. By examining the trace, you can observe progress
and problems as they develop during the solution process.

MODERROR

17-48 Oracle OLAP DML Reference

Examples

Example 17–20 Debugging a Model

This example assumes that you are connected through OLAP Worksheet and enter
the following statements in the Command Input window. The statements set
MODERROR to DEBUG so that you will be able to debug the myModel model
(which contains a block of simultaneous equations) when the simultaneous block
fails to converge.

MODERROR = 'DEBUG'
myModel actual

When the simultaneous block fails to converge, you can type an Oracle OLAP or
debugger command in the Command Input window in OLAP Worksheet. Since the
solution variable, actual, is dimensioned by division, you might want to
display the current value of division.

SHOW division
Camping

MODGAMMA

MAXBYTES to MODTRACE 17-49

MODGAMMA

The MODGAMMA option specifies a value to use in testing how much an equation
in a simultaneous block of a model is changing between iterations. MODGAMMA
controls the degree to which the test compares the absolute amount of the change
between iterations versus the proportional change. MODGAMMA is especially
important in testing equations that result in very small values.

Data type
INTEGER

Syntax
MODGAMMA = {n|1}

Arguments

n
An integer value to use in testing for convergence and divergence. As Oracle OLAP
calculates each equation in a simultaneous block, it constructs a comparison value
that is based on the results of the equation for the current iteration and the previous
iteration. When the comparison value passes a tolerance test, the equation is
considered to have converged. When the comparison value meets an overflow test,
the equation is considered to have diverged.

The comparison value that is tested is as follows.

(thisResult - prevResult) DIVIDED BY (prevResult PLUS MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration.

Oracle OLAP calculates the absolute value of the enclosed expression. The default
value of MODGAMMA is 1.

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODGAMMA

17-50 Oracle OLAP DML Reference

Notes

Testing Convergence
In the test for convergence, the MODTOLERANCE option determines how closely
the results of an equation must match between successive iterations. With the
default value of 3 for MODTOLERANCE, the equation is considered to have
converged when the comparison value is less than 0.001.

Testing Divergence
In the test for divergence, the MODOVERFLOW option determines how dissimilar
the results of an equation must be in successive iterations. With the default value
of 3 for MODOVERFLOW, the equation is considered to have diverged when the
comparison value is greater than 1000.

Comparison Value
The comparison value that Oracle OLAP evaluates in tests of convergence and
divergence is fundamentally a proportional value. It expresses the change between
iterations as a proportion of the previous results. In the test for convergence, the
change between iterations must be small in proportion to the previous results. In
the test for divergence, the change between iterations must be large in proportion to
the previous results. By testing a proportional value, rather than testing the absolute
amount of change, Oracle OLAP can apply the same test criteria to all equations,
regardless of the magnitude of the equation results.

However, the comparison value that Oracle OLAP tests is not strictly proportional.
When the results of an equation are very close to zero, the denominator of a strictly
proportional comparison value would also be very close to zero, and thus the
comparison value itself would generally be large. Therefore, the test for
convergence would be difficult to satisfy, while the test for divergence would be
easy to meet. To solve this problem, Oracle OLAP adds the value of MODGAMMA
to the denominator of the comparison value. When the default value of 1 is used for
MODGAMMA, the effect of MODGAMMA is as follows:

■ When the equation results are close to zero, the denominator is close to one and
the test is essentially a test of the absolute change between iterations.

■ When the equation results are very large, the effect of adding MODGAMMA to
the denominator is negligible, and the test is close to being a strictly
proportional test.

MODGAMMA

MAXBYTES to MODTRACE 17-51

Controlling Test Sensitivity
For equation values close to zero, you can control the sensitivity to the tests for
convergence and divergence by changing the value of MODGAMMA. When
equation values are very small, you essentially scale the changes in model values
between iterations when you change the value of MODGAMMA. For example,
when you change MODGAMMA from 1 to 2, the comparison value is essentially
cut in half. As a consequence, you reduce the likelihood that divergence will occur.

Increasing Convergence Speed
The default value of MODGAMMA is appropriate in most situations. When you
increase the value of MODGAMMA, the model equations will converge more
quickly, but the results will be less precise. The smaller the equation value, the more
pronounced is the effect of increasing MODGAMMA; convergence is attained
relatively more quickly for small model values, while more precision is lost.

You can also force the simultaneous blocks of a model to converge more quickly by
decreasing the value of MODTOLERANCE and thereby relaxing the test for
convergence. However, when you do this, you sacrifice the precision of all the
results, not just the results of equations with small values.

Therefore, when a model contains some equations with large values and some
equations with very small values, it might be preferable to increase MODGAMMA
rather than decreasing MODTOLERANCE. By increasing MODGAMMA, you
might be able to force equations with small values to converge more quickly while
retaining the precision of equations with large values.

Examples

Example 17–21 Using the Default MODGAMMA Value

The following statements specify a trace for a model called income.bud, specify
that the Gauss-Seidel method should be used for solving simultaneous blocks, limit
a dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.bud budget

MODGAMMA

17-52 Oracle OLAP DML Reference

These statements produce the following output.

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 16) = 0.026243533
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 17) = 0.024054312
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 18) = 0.025788293
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 19) = 0.024390642
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 20) = 0.025501664
...

(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 21) = 0.024608562

In the trace, you can see the results that were calculated for the NET.INCOME line
item in the final six iterations over a block of simultaneous equations.

The value of MODTOLERANCE is its default value of 3. This means that for an
equation to pass the convergence test, its comparison value must be less than .001.

MODGAMMA is set to its default value of 1. The equation for the NET.INCOME
line item passed the convergence test in the twenty-first iteration. The comparison
value for Net.Income in the twenty-first iteration was calculated as follows.

(0.024608562967 - 0.025501664970 = 0.00087) / (0.025501664970 + 1)

Example 17–22 Setting MODGAMMA to Speed up the Convergence of a Model

The following statements change the MODGAMMA setting and run the
income.bud model.

MODGAMMA = 2
income.bud budget

With MODGAMMA set to 2, the equation for Net.Income converges in the
eighteenth iteration. The comparison value for Net.Income in the eighteenth
iteration is calculated as follows.

(0.025788293304 - 0.024054312748 = 0.00086) / (0.024054312748 + 2)

MODINPUTORDER

MAXBYTES to MODTRACE 17-53

MODINPUTORDER

The MODINPUTORDER option controls whether the equations in a simultaneous
block of a model are executed in the order in which you place them or in an order
determined by the model compiler. MODINPUTORDER has no effect on the order
of equations in simple blocks and step blocks.

Data type
BOOLEAN

Syntax
MODINPUTORDER = {YES|NO}

Arguments

YES
The equations in a simultaneous block of a model are executed in the order in which
they appear in the model.

NO
The equations in a simultaneous block are executed in an order determined by the
model compiler. (Default)

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODINPUTORDER

17-54 Oracle OLAP DML Reference

Examples

Example 17–23 Using the Default Order

The following statements define the income.calc model.

DEFINE income.calc MODEL
MODEL
DIMENSION line month
Net.Income = Opr.Income - Taxes
Opr.Income = Gross.Margin - TOTAL(Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)
Gross.Margin = Revenue - Cogs
END

The following statements compile the model and produce a compilation report
using the MODEL.COMPRPT program.

COMPILE income.calc
MODEL.COMPRPT income.calc

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>
BLOCK 1 (SIMPLE)

INCOME.CALC 5: gross.margin = revenue - cogs
BLOCK 2 (SIMULTANEOUS <MONTH>)

INCOME.CALC 4: marketing = lag(opr.income, 1, month)
INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)

END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes

END BLOCK 1

When you compile income.calc with MODINPUTORDER set to its default value
of NO, you can see that the compiler reverses the order of the equations in the
simultaneous block.

Example 17–24 Changing the MODINPUT Value

The following statements set the value of MODINPUTORDER to YES, compile the
model, and produce a compilation report.

MODINPUTORDER = YES
COMPILE income.calc
MODEL.COMPRPT income.calc

MODINPUTORDER

MAXBYTES to MODTRACE 17-55

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>
BLOCK 1 (SIMPLE)

INCOME.CALC 5: gross.margin = revenue - cogs
BLOCK 2 (SIMULTANEOUS <MONTH>)

INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)
INCOME.CALC 4: marketing = lag(opr.income, 1, month)

END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes

END BLOCK 1

You can see that the compiler leaves the simultaneous equations in the order in
which you placed them.

MODMAXITERS

17-56 Oracle OLAP DML Reference

MODMAXITERS

The MODMAXITERS option determines the maximum number of iterations Oracle
OLAP will perform in attempting to solve a block of simultaneous equations in a
model.

Data type
INTEGER

Syntax
MODMAXITERS = {n|50}

Arguments

n
A positive integer value that indicates the maximum number of iterations Oracle
OLAP should perform in attempting to solve a simultaneous block. The default
is 50.

Notes

Reporting Model Execution Results
When any equation in a simultaneous block diverges or fails to converge within the
number of iterations specified by MODMAXITERS, the solution of the block fails
and an error occurs. You can use the MODEL.XEQRPT program to produce a report
on the results of the model's execution. The report indicates whether a simultaneous
block diverged or failed to converge. When a block failed to converge, you can
experiment with increasing the value of MODMAXITERS to see if convergence can
be attained.

Attaining Convergence
Increasing the value of MODMAXITERS is just one of the steps you can take in
attempting to attain convergence for a simultaneous block. For example, you can

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODMAXITERS

MAXBYTES to MODTRACE 17-57

also experiment with changing the criteria used in testing for convergence and
divergence.

Diagnosing a Problem
To see the results of each calculation as Oracle OLAP executes a model, set the
MODTRACE option to YES before you run the model. Oracle OLAP records each
equation in the current outfile before executing it and then records the results of the
calculation in the current outfile. By examining the trace, you can observe progress
and problems as they develop during the solution process.

Examples

Example 17–25 Model with MODMAXITERS

Suppose a model named MYMODEL contains a block of simultaneous equations
that failed to converge within 50 iterations. The following statements increase the
value of MODMAXITERS and run the model again.

MODMAXITERS = 100
myModel actual

MODOVERFLOW

17-58 Oracle OLAP DML Reference

MODOVERFLOW

The MODOVERFLOW option is used in testing whether any equation in a
simultaneous block of a model has diverged. MODOVERFLOW determines how
dissimilar the results of an equation must be in successive iterations for the
equation to be considered to have diverged.

Data type
INTEGER

Syntax
MODOVERFLOW = {n|3}

Arguments

n
An integer value to use in testing for divergence. As Oracle OLAP calculates each
equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value meets a divergence test, the equation is considered to have
diverged.

The comparison value that is tested is as follows.

(thisResult - prevResult) / (prevResult + MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration

In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of
MODGAMMA is 1.

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODOVERFLOW

MAXBYTES to MODTRACE 17-59

In the divergence test, Oracle OLAP tests whether the comparison value is greater
than 10 to the power of MODOVERFLOW. The calculation for this test is as follows.

Comparison value > 10**MODOVERFLOW

For the equation to be considered to have diverged, the comparison value must
meet the test described earlier. The default value of MODOVERFLOW is 3. With
this default, the comparison value meets the test when it is greater than 1000.

Notes

Equation Divergence
When an equation diverges, an error occurs. The MODERROR option controls the
action that Oracle OLAP takes when an error occurs.

Attaining Convergence
Even when the results of an equation change drastically between successive
iterations in the early stages of a solution, the equation might eventually converge.
Therefore, when an equation diverges, you can try increasing the value of
MODOVERFLOW. You might thereby prevent the equation from meeting the
divergence test in a situation where a successful solution can actually be attained.

Faster Divergence During Development
While you are developing a model, you can sometimes save time by using a small
value for MODOVERFLOW. When Oracle OLAP is performing many iterations
over a particular simultaneous block, a smaller value of MODOVERFLOW can
cause rapid divergence of that block. When you set the MODOVERFLOW option to
CONTINUE, execution of the model will continue when the divergence occurs, and
you can concentrate on debugging the other blocks in the model. After you have
debugged the model, you can use a larger value for MODOVERFLOW.

MODOVERFLOW

17-60 Oracle OLAP DML Reference

Examples

Example 17–26 Using the Default MODOVERFLOW Value

The following statements specify a trace for a model called income.est, limit a
dimension, and run the model.

MODTRACE = YES
LIMIT division TO 'Camping'
income.est budget

These statements produce the following output.

(MOD= INCOME.EST) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.EST) ITERATION 1: EVALUATION
(MOD= INCOME.EST) selling = marketing * 3
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 1) = 3
...

(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 2) = -997
...

(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 3) = 6.00902708124
...

(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 49) = 34.2715693388
...

(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 50) = -7.22300601861

In the trace, you can see the results that were calculated for the Selling line item
in the first three iterations and the forty-ninth and fiftieth iterations over a block of
simultaneous equations. The block failed to converge after 50 iterations.

The value of MODOVERFLOW is its default value of 3. This means that for an
equation to meet the divergence test, its comparison value must be greater
than 1000.

Example 17–27 Speeding Up the Divergence

The following statements change the MODOVERFLOW setting and run the
income.est model.

MODOVERFLOW = 2
income.est budget

With MODOVERFLOW set to 2, any comparison value of more than 100 meets the
test for divergence. In this example, the equation for Selling meets the test in the

MODOVERFLOW

MAXBYTES to MODTRACE 17-61

second iteration. In the second iteration, Oracle OLAP calculates the comparison
value for Selling as follows.

(-997 - 3) / (3 + 1) = 250

Since this comparison value is greater than 100, the equation for Selling diverges
in the second iteration.

MODSIMULTYPE

17-62 Oracle OLAP DML Reference

MODSIMULTYPE

The MODSIMULTYPE option specifies the method to use for solving simultaneous
blocks in a model.

Data type
ID

Syntax
MODSIMULTYPE = {'AITKENS'|'GAUSS'}

Arguments

'AITKENS'
Oracle OLAP uses the Aitkens delta-squared solution method. In the first two of
every three iterations over a block of simultaneous equations, the equations are
solved using the values from the previous iteration, and the results are tested for
convergence and divergence. In every third iteration, the results are obtained not by
solving the equations, but by making a next-guess calculation. This calculation uses
the results of the previous three iterations. The results of the guesses are not tested
for convergence and divergence, and the solution always continues to the next
iteration. (Default)

'GAUSS'
Oracle OLAP uses the Gauss-Seidel solution method. Equations in a simultaneous
block are solved in each iteration over the block. The results are tested for
convergence and divergence in each iteration.

Notes

Solving Simultaneous Blocks
Oracle OLAP uses an iterative method to solve the equations in a simultaneous
block. In each iteration, except the next-guess iterations in an Aitkens solution, a
comparison value is calculated from the result of the current iteration and the result

See: Table 17–1, "Model Options" on page 17-23 for descriptions
of all of the options that control the solution of simultaneous
blocks.

MODSIMULTYPE

MAXBYTES to MODTRACE 17-63

of the previous iteration. When the comparison value falls within a specified
tolerance (see the MODTOLERANCE option), the equation is considered to have
converged. When the comparison value is too great (see the MODOVERFLOW
option), the equation is considered to have diverged and solution of the block ends.

When all equations in a block converge, the block is considered solved. When any
equation diverges or when any equation fails to converge after a specified number
of iterations (see the MODMAXITERS option), solution of the block (and of the
model) fails and Oracle OLAP generates an error.

Next-Guess Calculation
The Aitkens method requires three values to perform a next-guess calculation.
Therefore, in the first three iterations over a simultaneous block, Oracle OLAP
solves the equations. The fourth iteration is a next-guess iteration that uses the
results from the first three iterations in its calculation.

Thereafter, every third iteration is a next-guess iteration that calculates results by
using the previous guess and the equation results from the intervening two
iterations. For example, the seventh iteration makes a next-guess calculation that is
based on the guess from the fourth iteration and the equation results from the fifth
and sixth iterations.

Memory Required
The Aitkens method usually speeds convergence, and it generally produces more
accurate results than the Gauss-Seidel method. However, the Aitkens method
requires more memory because the results of three previous iterations are stored.

In general, you should use the Aitkens method. You should use the Gauss-Seidel
method only when limited memory is a problem on your system.

Handling NA Values
In calculating equation results and making next-guess calculations, Oracle OLAP
observes the setting of the NASKIP2 option. NASKIP2 controls how NA values are
handled when + (plus) and - (minus) operations are performed. The setting of
NASKIP2 is important when you specify a solution variable that contains NA values.
Since the values in the solution variable are used as the initial values in the first
iteration over a simultaneous block, the results of the equations might be NA when
there are NA values in the solution variable. An NA result in the first iteration might
also produce NA results in later iterations. Therefore, to avoid obtaining NA for the
results, you can make sure that the solution variable does not contain NA values or
you can set NASKIP2 to YES before running the model.

MODSIMULTYPE

17-64 Oracle OLAP DML Reference

Data Type Problems
A simultaneous equation might fail to converge when it assigns data to a variable
with an INTEGER data type or when you specify a solution variable with an
INTEGER data type for a dimension-based model. Oracle OLAP converts the data
to decimal values when it calculates the equation in each iteration, but the results
are stored in the INTEGER variable between iterations. This has the effect of
rounding the values and thereby interfering with a progression toward
convergence.

Function Problems
A simultaneous equation might fail to converge when it contains a function that
produces rounded values (such as INSTRB or ROUND) or when it contains a
function that introduces discontinuities in the data (such as MAX or MIN).

Starting-Value Problems
The solution of a simultaneous block is sensitive to starting values. For example,
when a model has a proportional relationship between two model values, then
starting values close to zero will inhibit convergence. You should thus attempt to
use starting values that are reasonable for the equations being solved.

Order of Equations
The solution of a simultaneous block is also sensitive to the order of the equations.
When you compile a model, the model compiler determines an optimal equation
order that is based on the dependencies among the equations.

To force the equations in a simultaneous block to be solved in a particular order,
you can write the equations in the desired order and set the MODINPUTORDER
option to YES before compiling the model. When MODINPUTORDER is YES, the
model compiler leaves the equations in a simultaneous block in the order in which
they appear in the model.

By placing simultaneous equations in a particular order and setting
MODINPUTORDER to YES before compiling the model, you might be able to
encourage convergence in some models. In general, however, it is preferable to rely
on the model compiler to order the equations.

Producing an Execution Report
After running a model, you can use the MODEL.XEQRPT program to produce a
report about the execution of the model.

MODSIMULTYPE

MAXBYTES to MODTRACE 17-65

Examples

Example 17–28 Economizing on Memory Requirements

When a model named budget98 is a complex model that will iterate over a large
number of dimension values in a simultaneous block, you can economize on the
memory requirements of the model solution by using the Gauss-Seidel method.

The following statements specify the Gauss-Seidel method and run the model.

MODSIMULTYPE = 'GAUSS'
budget98 budget

MODTOLERANCE

17-66 Oracle OLAP DML Reference

MODTOLERANCE

The MODTOLERANCE option is used in testing whether each equation in a
simultaneous block of a model has converged. MODTOLERANCE determines how
closely the results of an equation must match between successive iterations for the
equation to be considered to have converged.

Data type
INTEGER

Syntax
MODTOLERANCE = {n|3}

Arguments

n
An integer value to use in testing for convergence. As Oracle OLAP calculates each
equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value passes a tolerance test, the equation is considered to have
converged.

The comparison value that is tested is as follows.

(thisResult - prevResult) / (prevResult+ MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration

In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of
MODGAMMA is 1.

In the tolerance test, Oracle OLAP tests whether the comparison value is less
than 10 to the negative power of MODTOLERANCE. The calculation for this test is
as follows.

Comparison value < 10**-MODTOLERANCE

MODTOLERANCE

MAXBYTES to MODTRACE 17-67

An equivalent way of writing this calculation is as follows.

Comparison value < (1 / (10**MODTOLERANCE))

For the equation to be considered to have converged, the comparison value must
meet the test described earlier. The default value of MODTOLERANCE is 3. With
this default, the comparison value meets the test when it is less than 0.001.

Notes

Failure to Converge
When an equation fails to converge after a specified number of iterations, an error
occurs. The MODMAXITERS option controls the maximum number of iterations
that are attempted. The MODERROR option controls the action that Oracle OLAP
takes when an error occurs.

Precision of Results
Since MODTOLERANCE controls how closely results of an equation must match
between iterations, it therefore controls the precision of the results of the solution. A
small value of MODTOLERANCE will result in less precision, while a large value
will provide more precision.

Large and Small Values
When a model contains some equations with large values and some equations with
very small values, it might be preferable to increase the value of the MODGAMMA
option rather than decreasing MODTOLERANCE. By increasing MODGAMMA,
you might be able to force equations with small values to converge more quickly
while retaining the precision of equations with large values.

Faster Convergence During Development
While you are developing a model, you might want to use a small value for
MODTOLERANCE. While this gives less precise results, the model equations will
converge more quickly. After you have debugged the model, you can increase the
value of MODTOLERANCE and thereby increase the precision of the final results.

Options for Controlling the Solution of Simultaneous Blocks
For a list of all the options that you can use to control the solution of simultaneous
blocks, see Table 17–1, "Model Options" on page 17-23.

MODTOLERANCE

17-68 Oracle OLAP DML Reference

Examples

Example 17–29 Using the Default MODTOLERANCE Value

The following statements specify a trace for a model called income.plan, specify
that the Gauss-Seidel method should be used for solving simultaneous blocks, limit
a dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.plan budget

These statements produce the following output.

(MOD= INCOME.PLAN) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.PLAN) ITERATION 1: EVALUATION
(MOD= INCOME.PLAN) marketing = .15 * net.income
(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 1) = 11887.403671736
...

(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 6) = 73379.713232251
...

(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 7) = 73474.784648631
...

(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 8) = 73446.025848156
(MOD= INCOME.PLAN) END BLOCK 1

In the trace, you can see the results that were calculated for the Marketing line
item in the final three iterations over a block of simultaneous equations.

MODTOLERANCE is set to its default value of 3. This means that for an equation
to pass the convergence test, its comparison value must be less than 0.001. In the
seventh iteration, Oracle OLAP calculates the comparison value for Marketing as
follows.

(73474.784648631100 - 73379.713232251300) / (73379.713232251300 + 1) = 0.0013

This comparison value is greater than 0.001, so it did not pass the test for
convergence.

In the eighth iteration, Oracle OLAP calculated the comparison value as follows.

(73446.025848156700 - 73474.784648631100) /(73474.784648631100 + 1) = 0.0004

Since this comparison value is less than 0.001, it passed the convergence test.

MODTOLERANCE

MAXBYTES to MODTRACE 17-69

Example 17–30 Setting MODTOLERANCE to Speed Up the Convergence of a Model

The following statements change the MODTOLERANCE value and run the
income.bud model.

MODTOLERANCE = 2
income.plan budget

With MODTOLERANCE set to 2, any comparison value of less than 0.01 will pass
the test for convergence. In this example, the equation for Marketing passes the
test in the seventh iteration.

MODTRACE

17-70 Oracle OLAP DML Reference

MODTRACE

The MODTRACE option controls whether each equation in a model is recorded in a
file during execution of the model. MODTRACE is used primarily as a debugging
tool to uncover problems by tracing the execution of a model.

Data type
BOOLEAN

Syntax
MODTRACE = {YES|NO}

Arguments

YES
Oracle OLAP sends the text of each model equation to the current outfile before
calculating the model equation, and then sends the results of the calculation to the
current outfile.

When you have used the DBGOUTFILE command to specify a debugging file,
Oracle OLAP sends MODTRACE output to the debugging file instead of the current
outfile.

NO
Oracle OLAP does not send the text of model equations and results to a file while a
model executes. (Default)

Notes

Previewing the Solution Order
MODTRACE sends the equations of a model to the current outfile in the order in
which they are being solved. Before you run the model, you might want to use the
MODEL.COMPRPT program to get a preview of the solution order. A preview can
be especially helpful when the model is large and complex. The MODEL.COMPRPT
program, which you can run after compiling a model, produces a report that shows
how the compiler has organized the model equations into blocks and the order in
which the blocks and equations will be solved.

MODTRACE

MAXBYTES to MODTRACE 17-71

Understanding Trace Information
MODTRACE shows the name of the current model on each line of the trace. The
trace includes the following types of lines.

■ Block. A block line gives the block number and block type of the block that is
about to be executed. The type of block can be simple, step-forward,
step-backward, or simultaneous. For a step-forward or step-backward block,
the block line specifies the dimension being stepped over. For a simultaneous
block with a cross-dimensional dependency, the block line specifies the
dimensions involved in the dependency. See MODEL for information on blocks
in a model.

■ Iteration. These lines occur in simultaneous blocks and specify the number of
the iteration that is about to be performed for the current block. When you are
using the Aitkens solution method, the next-guess iterations are identified. (The
MODSIMULTYPE option determines the solution method being used.)

■ Equation. The equation that is about to be calculated.

■ Results. A results line follows each equation line and shows the results assigned
by the equation. It shows the variable to which the results were assigned and
the current value of each model dimension. In a simultaneous block, it also
shows the current iteration number. For example, when actual is the solution
variable and the model dimensions are line and month, a results line in a
simultaneous block might look like the following one.

(MOD= INCOME.CALC) ACTUAL (LINE OPR.INCOME MONTH 'JAN96'
ITER 1) = 108.9600000

Dimension-Based Equations
When you run a model that contains dimension-based equations, Oracle OLAP
automatically loops over all the dimensions of the solution variable. In the trace, the
results lines show the current value of each dimension listed in a DIMENSION
statement, but they do not show the current values of extra dimensions that are not
listed in DIMENSION statement. (See DIMENSION (in models) for more
information about using DIMENSION statements.)

Thus, when the model dimensions are line and month, and when the solution
variable is dimensioned by line, month, and division, the current value of
division is not shown in the results lines. Oracle OLAP executes the entire model
for the first value in the status of division, then for the second value in the status,
and so on.

MODTRACE

17-72 Oracle OLAP DML Reference

When you run a model that assigns values to variables, Oracle OLAP automatically
loops over all the dimensions (or bases of a composite) of those variables. In this
case, the current value of each of the variable's dimensions is shown in the trace.

Additional Tool for Debugging
The INFO function lets you obtain specific items of information about the structure
of the compiled model and the solution status of a model you have run. See INFO
(MODEL).

Examples

Example 17–31 Debugging a Model with MODTRACE

The following statements define a model named income.budget.

DEFINE income.budget MODEL
LD Model for estimating budget items
MODEL
DIMENSION line month
Opr.Income = Gross.Margin - Marketing
Gross.Margin = Revenue - Cogs
Revenue = LAG(Revenue, 1, month) * 1.02
Cogs = LAG(Cogs, 1, month) * 1.01
Marketing = LAG(Opr.Income, 1, month) * 0.20
END

This model estimates budget line items on an income statement. The model
equations are based on a line dimension.

The following statements compile the model and run the MODEL.COMPRPT
program.

COMPILE income.budget
MODEL.COMPRPT income.budget

MODTRACE

MAXBYTES to MODTRACE 17-73

The MODEL.COMPRPT statement produces the following compilation report.

MODEL INCOME.BUDGET <LINE MONTH>
BLOCK 1 (SIMPLE)

INCOME.BUDGET 4: revenue = lag(revenue, 1, month) * 1.02
INCOME.BUDGET 5: cogs = lag(cogs, 1, month) * 1.01
INCOME.BUDGET 3: gross.margin = revenue - cogs

BLOCK 2 (STEP-FORWARD <MONTH>)
INCOME.BUDGET 6: marketing = lag(opr.income, 1, month) * 0.20
INCOME.BUDGET 2: opr.income = gross.margin - marketing

END BLOCK 2
END BLOCK 1

When you want to debug this model, you can trace its execution, line by line, by
turning on MODTRACE before running the model.

The following statements limit dimensions, specify tracing, and run the model.

LIMIT month TO 'Jan97' TO 'Mar97'
LIMIT division TO 'Camping'
MODTRACE = YES
income.budget budget

MODTRACE

17-74 Oracle OLAP DML Reference

These statements produce the following line-by-line results.

(MOD= INCOME.BUDGET) BLOCK 1: SIMPLE
(MOD= INCOME.BUDGET) revenue = lag(revenue, 1, month) * 1.02
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'JAN97') = 744491.1966
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'FEB97') = 759381.020532
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'MAR97') = 774568.64094264
(MOD= INCOME.BUDGET) cogs = lag(cogs, 1, month) * 1.01
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'JAN97') = 382386.2323
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'FEB97') = 386210.094623
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'MAR97') = 390072.19556923
(MOD= INCOME.BUDGET) gross.margin = revenue - cogs
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'JAN97') = 362104.9643
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'FEB97') = 373170.925909
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'MAR97') = 384496.44537341
(MOD= INCOME.BUDGET) BLOCK 2 STEP-FORWARD <MONTH>
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'JAN97') = 39938.192
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'JAN97') = 322166.7723
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'FEB97') = 64433.35446
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'FEB97') = 308737.571449
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'MAR97') = 61747.5142898
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'MAR97') = 322748.93108361
(MOD= INCOME.BUDGET) END BLOCK 2
(MOD= INCOME.BUDGET) END BLOCK 1

In Block 1, which is a simple block, Oracle OLAP solved the equations one at a time,
looping over the three values in the status of month as it solved each equation. In
Block 2, which is a step-forward block over the month dimension, Oracle OLAP
stepped over the values in the status of month, solving all the equations in the block
for each month in turn.

MONITOR to NVL2 18-1

18
MONITOR to NVL2

This chapter contains the following OLAP DML statements:

■ MONITOR

■ MONTHABBRLEN

■ MONTHNAMES

■ MONTHS_BETWEEN

■ MOVE

■ MOVINGAVERAGE

■ MOVINGMAX

■ MOVINGMIN

■ MOVINGTOTAL

■ MULTIPATHHIER

■ NAFILL

■ NAME

■ NASKIP

■ NASKIP2

■ NASPELL

■ NEW_TIME

■ NEXT_DAY

■ NLS Options

■ NONE

18-2 Oracle OLAP DML Reference

■ NORMAL

■ NOSPELL

■ NPV

■ NULLIF

■ NUMBYTES

■ NUMCHARS

■ NUMLINES

■ NVL

■ NVL2

MONITOR

MONITOR to NVL2 18-3

MONITOR

The MONITOR command records data on the performance cost of each line in a
specified program. To get meaningful information from MONITOR, your session
must be the only one running in Oracle OLAP. Furthermore, the accuracy of the
results of MONITOR decreases as more processes are started on the host computer.

You use the MONITOR command first to specify a program for monitoring; then
you run the program and use MONITOR again to obtain the results. When the
program executes a given line repeatedly, MONITOR records the cumulative cost of
all the executions on the single line of its monitor list that is devoted to that
program line.

A line of code is considered to have a high performance cost when it takes a long
time to execute. Use the TRACKPRG command to identify programs that have
relatively high costs and then use MONITOR to identify the time-consuming lines
within those programs. When you wish, you can use both TRACKPRG and
MONITOR simultaneously.

Syntax
MONITOR ON [ALL|awlist] | OFF | INIT | FILE [[APPEND] file-name] | RESET

Arguments

ON
Starts looking for the specified programs to be run so that Oracle OLAP can gather
line-by-line timing data in a monitor list. (It continues the current monitoring
process without interruption when monitoring is already on, or resumes with a gap
when monitoring was off.)

When you do not specify either ALL or awlist, the default is the program specified
in the last MONITOR ON statement that did specify one. When there was no such
command in your current session, no data is collected and no error is produced.

ALL
Specifies that all programs are monitored.

awlist
The fully-qualified name of one or more analytic workspaces (optionally separated
by commas) whose programs you want monitored.

MONITOR

18-4 Oracle OLAP DML Reference

OFF
Stops monitoring the specified program and freezes any timing data currently in the
monitor list. This lets you immediately, or later in your session, send the list to the
current outfile or to a text file.

RESET
(Useful only when monitoring is on.) Retains the program name that is currently
specified for monitoring and the Oracle OLAP memory that is allocated for the
current monitor list, but discards any timing data currently in the list. In addition,
RESET causes MONITOR to again begin waiting for you to run the same program.
When you do, MONITOR automatically gathers new timing data into a new
monitor list for the same program in the same memory allocation as before.

INIT
(Useful only when monitoring is on.) Initializes the monitoring environment.
Initialization consists of discarding the program name and the timing data
associated with the current monitor list, and releasing the Oracle OLAP memory
previously used for that list so it can be used for other purposes or for collecting
new data in a new monitor list.

FILE
Specifies that the timing data that is currently in the monitor list is sent to a file.

APPEND
Specifies that the timing data is appended to an existing file. When you omit this
argument, the new output replaces the current contents of the file.

file-name
A text expression that is the name of the file to receive the output. Unless the file is
in the current directory, you must include the name of the directory object in the
name of the file. When file-name is specified, the data is sent to the named text file.
FILE has no effect on the monitor list, so you can send the same list repeatedly to
different destinations. When file-name is omitted, Oracle OLAP sends the timing
data that is currently in the monitor list to the current outfile.

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

MONITOR

MONITOR to NVL2 18-5

Notes

Monitor List
Each entry (that is, line) in the monitor list focuses on the execution of a single
program line, regardless of how many times it is executed. Each entry is divided
into the following four sections:

■ Cumulative total time of all executions in seconds, in columns 1 through 11

■ Number of times executed, in columns 12 through 18

■ Line number, in columns 19 through 23

■ Text of the line, in column 24 and subsequent columns

Here is a sample of MONITOR output with column numbers included for reference.

12345678901234567890123456789012345678901234567890

60 1 1 push name
30 1 2 trap on GETOUT noprint
51 1 3 limit name to obj(type) eq 'DIMENSION'
0 1 4 for name
0 0 5 do
450 6 6 limit &name to ALL ifnone BYPASS
0 0 7 BYPASS:
0 0 8 doend
0 0 9 GETOUT:
0 1 10 pop name

MONITOR

18-6 Oracle OLAP DML Reference

The following is the full description of the program used for the preceding output.
Note that in the output, the line with the LIMIT command is truncated because it is
too long to fit.

DEFINE allstat PROGRAM
LD Program to set the status of all dimensions in the analytic workspace to ALL
PROGRAM
PUSH NAME
TRAP ON getout NOPRINT
LIMIT NAME TO OBJ(TYPE) EQ 'Dimension' IFNONE getout
FOR NAME

DO
LIMIT &NAME TO ALL IFNONE bypass

bypass:
DOEND

getout:
POP NAME
END

Attaching, Detaching, and Reattaching Analytic Workspaces
When Oracle OLAP executes a program in an analytic workspace that has been
attached, detached, a new block of data is collected.

Truncated Statement Lines
When a program line is too long, the MONITOR output truncates it. Continuation
lines do not appear in the output.

Producing a Report
When you want to produce an Oracle OLAP report from the timing data in the
MONITOR file, you can write a program that uses the FILEREAD command to read
the data into an Oracle OLAP variable, and then use Oracle OLAP reporting
capabilities to produce a report. You can use the TRACKREPORT program as a
model. However, keep in mind that the TRACKREPORT program was written to
produce a report on TRACKPRG output, not MONITOR output.

Bracketing Lines
When you just want to time a particular line or group of lines in a program, you can
insert MONITOR ON and MONITOR OFF statements in the program to bracket just the
line or lines in which you are interested.

MONITOR

MONITOR to NVL2 18-7

Nested Programs
When you do not want to run a nested program by itself, you can specify its name
in a MONITOR ON statement and then run the program that calls it. MONITOR will
gather timing data only for the specified (nested) program. When the specified
program is called more than once, for each program line, MONITOR will
accumulate the total seconds taken by all the times the line was run and provide the
number of times it was run.

When you just want to time a particular execution of a nested program that is called
more than once, you can insert MONITOR ON and MONITOR OFF statements in the
calling program to bracket the single call in which you are interested.

Very Small Programs
You might not be able to reproduce the results exactly for very small programs.
When the CPU interrupts processing to do other tasks, that time is a greater
percentage of the total execution time.

Unit of Measure
The MONITOR and TRACKPRG commands use milliseconds as the unit for
recording execution time. The execution time does not include time spent on I/O
and time spent waiting for the next statement.

Examples

Example 18–1 Collecting Timing Data Using MONITOR

In this example, MONITOR is used to collect timing data on the execution of the
individual lines of code in prog1 and then to send the data to a text file. The
MONITOR ON statement is then used to discard the prog1 timing data and start
collecting data on prog2. After the data for prog2 is sent to a second file,
MONITOR INIT is used to discard the current monitor list and release the memory
used for it.

MONITOR ON prog1
prog1
MONITOR FILE prog1.mon
MONITOR ON prog2
prog2
MONITOR OFF
MONITOR FILE prog2.mon
MONITOR INIT

MONTHABBRLEN

18-8 Oracle OLAP DML Reference

MONTHABBRLEN

The MONTHABBRLEN option specifies the number of characters to use for
abbreviations of month names that are stored in the MONTHNAMES option. You
can specify how many characters to use for abbreviating particular month names
when you specify the <MT>, <MTXT>, and <MTXTL> formats with the
DATEFORMAT text option or the VNF (value name format) command used for a
dimension of type dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR.

Data type
TEXT

Syntax
MONTHABBRLEN = specification [;|, specification]...

where:

specification is a text expression that has the following form:

startpos [- endpos] : length

Arguments

startpos [-endpos]
Numbers that represent the first and last months whose abbreviation length is
defined by length. These numerical positions apply to the corresponding lines of text
in the MONTHNAMES option. You can specify these ranges of values in reverse
order, endpos [-startpos], if you prefer.

The MONTHNAMES option can have more than 12 lines, so you can specify
startpos and endpos greater than 12 in the setting of MONTHABBRLEN. When you
specify a range where neither startpos nor endpos has a corresponding text value in
the MONTHNAMES option, MONTHABBRLEN has no text values to abbreviate
for that range. When you later change your month names list so that startpos is
valid, the specified abbreviation is applied.

length
A number that specifies the length in characters (not bytes) of abbreviated month
names.

MONTHABBRLEN

MONITOR to NVL2 18-9

Notes

Abbreviation Lengths
You can define many different groups of months, each with different abbreviation
lengths. When you do so, separate the groups with a comma or a semicolon as
shown in the syntax.

Default Abbreviations
When you do not specify an abbreviation length for a given position in the
MONTHNAMES option, or when you explicitly set a given position to zero, the
default abbreviation is used. The default abbreviations are one character for <MT>
and three characters for <MTXT> and <MTXTL>. Abbreviations are never used when
you have designated the full name specifications <MTEXT> and <MTEXTL>.

Ambiguous Month Names
You can use MONTHABBRLEN to interpret ambiguous names, for example,
whether A stands for April or August. When the MONTHABBRLEN for April
was 1 and for August was 2, then A would always match April, and it would
require at least Au to match August. This does not depend on the order of April
and August in the year; it would work the same way when the two months were
reversed. If, on the other hand, the MONTHABBRLEN for each of these was 2, then
A would not match either one, and you would have to enter at least Ap or Au to get
a match.

Examples

Example 18–2 Specifying Month Abbreviations

The following MONTHABBRLEN setting specifies that the first 10 months of the
year are abbreviated to one character and the last 2 months are abbreviated to two
characters.

MONTHABBRLEN = '1-10:1, 11-12:2'
SHOW CONVERT ('2 August 2005' DATE)

These statements product the following result, with August abbreviated to the letter
A.

02A05

MONTHNAMES

18-10 Oracle OLAP DML Reference

MONTHNAMES

The MONTHNAMES option holds the list of valid names for months that is used in
handling values with a DATE data type and values of dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR. The list of names is used to interpret dates
that are entered and to format dates that are displayed or converted to text values.

Data type
TEXT

Syntax
MONTHNAMES = name-list

Arguments

name-list
A multiline text expression that lists the names of the 12 months of the year. Each
month name occupies a separate line. Regardless of which month you are treating
as the first month of the year, the list must begin with the name for January. The
default value is the list of English month names, all in capital letters.

Notes

Extra Sets of Names
You can include more than 1 set of 12 names in your list. Any name in the list is
considered a valid name for input. The thirteenth name is a synonym for the first
name, the fourteenth name is a synonym for the second name, and so on.

How MONTHNAMES Is Used
The MONTHNAMES list is used when you enter a date that includes a month name
or abbreviation. See DATEORDER for a discussion of methods for entering DATE
values.

The MONTHNAMES list is also used when you display or convert a date using the
<MT>, <MTXT>, <MTXTL>, <MTEXT>, or <MTEXTL> formats. These formats are
specified in the DATEFORMAT option. When you have more than one set of month

MONTHNAMES

MONITOR to NVL2 18-11

names, Oracle OLAP chooses the synonym whose number of characters and
capitalization pattern best match the DATEFORMAT specification.

Abbreviations
You can set the MONTHABBRLEN option to control the number of characters used
for abbreviations of month names.

Examples

Example 18–3 Specifying Two Sets of Month Names

The following statement creates two sets of month names, one in uppercase English
and the second in lowercase French.

MONTHNAMES = -
'JANUARY -
...
DECEMBER -
janvier -
...
decembre'

Example 18–4 Specifying English Month Names

The following statements define a DATE variable, assign a value to that variable,
assign a setting to DATEFORMAT, and send the output to the current outfile. The
DATEFORMAT value includes <MTEXT>, which specifies uppercase, so the English
month names are used.

DEFINE datevar DATE
datevar = '27feb98'
DATEFORMAT = '<MTEXT> <D>, <YYYY>'
SHOW datevar

These statements produce the following output.

FEBRUARY 27, 1998

MONTHNAMES

18-12 Oracle OLAP DML Reference

Example 18–5 Specifying French Month Names

The following statements assign a new setting to DATEFORMAT and send the
output to the current outfile. The DATEFORMAT value includes <MTEXTL>, which
specifies lowercase, so the French month names are used.

DATEFORMAT = 'le <D> <MTEXTL> <YYYY>'
SHOW datevar

These statements produce the following output.

le 27 fevrier 1998

MONTHS_BETWEEN

MONITOR to NVL2 18-13

MONTHS_BETWEEN

The MONTHS_BETWEEN function calculates the number of months between two
dates. When the two dates have the same day component or are both the last day of
the month, then the return value is a whole number. Otherwise, the return value
includes a fraction that considers the difference in the days based on a 31-day
month. The return value is positive when the first date is later than the second date,
and negative when the first date is earlier than the second date.

Return Value
NUMBER

Syntax
MONTHS_BETWEEN(datetime_expression1, datetime_expression2)

Arguments

datetime-expression1
One expression that has the DATETIME data type, or a text expression that specifies
a date.

datetime-expression2
A second expression that has the DATETIME data type, or a text expression that
specifies a date.

Examples

Example 18–6 Calculating the Number of Months Between Dates

The following statement calculates the number of months between March 26, 2004,
and July 6, 2001.

SHOW months_between('06Jul2005' '17Jul2003')
23.65

MONTHS_BETWEEN

18-14 Oracle OLAP DML Reference

Example 18–7 Last Days

The return value is a whole number when both dates are the last day of the month.

SHOW months_between('29Feb2000', '30Sep2000')
-7.00

MOVE

MONITOR to NVL2 18-15

MOVE

The MOVE command moves an object name to a new position in the NAME
dimension of a workspace. The reorganizing effect of the MOVE command on the
workspace is cosmetic. That is, no physical changes take place in workspace
storage. Users often reorganize workspace objects so the output from DESCRIBE is
easier to read.

Syntax
MOVE name... {FIRST|LAST|{BEFORE|AFTER} name2} [AW workspace]

Arguments

name...
The names of one or more objects to move. You can specify the names individually,
or use one of the following forms to specify a group of names:

name TO name
FIRST n
LAST n
boolean-expression (dimensioned by NAME)

You can specify a qualified object name to indicate the attached workspace in which
the object resides. As an alternative, you can use the AW argument to specify the
workspace. Do not use both.

When you do not use a qualified object name or the AW argument to specify a
workspace, Oracle OLAP looks for the object in the current workspace.

FIRST
LAST
The logical position in the NAME dimension to which Oracle OLAP moves the
objects specified by the name argument. Specifying FIRST moves the objects to the
beginning of the NAME dimension. Specifying LAST (the default) moves the names
to the end of the NAME dimension.

BEFORE name2
AFTER name2
The position before or after a particular object (name2) to which Oracle OLAP moves
the objects specified by the name argument.

MOVE

18-16 Oracle OLAP DML Reference

AW workspace
The name of an attached workspace in which you wish to move the object. When
you do not use a qualified object name or the AW argument to specify a workspace,
objects are moved in the current workspace.

Notes

Alphabetizing Your Objects
You can arrange your workspace objects alphabetically with the following
statements, which work on the NAME dimension.

SORT NAME A NAME
MOVE CHARLIST(NAME) FIRST

Examples

Example 18–8 Moving a Relation

This example shows how to move the relation desc.product after product. The
OLAP DML statement

SHOW CHARLIST(NAME)

produces the following list (annotation has been added).

product <--- Position of product
district
division
line
region
marketlevel
market
month
year
quarter
desc.product <--- Old position of desc.product
region.district
division.product
...

MOVE

MONITOR to NVL2 18-17

The following statements

MOVE desc.product AFTER product
SHOW CHARLIST(NAME)

change the workspace order and produce the following list (annotation has been
added).

product <--- Position of product
desc.product <--- New position of desc.product
district
division
line
region
marketlevel
market
month
year
quarter
region.district
division.product
...

MOVINGAVERAGE

18-18 Oracle OLAP DML Reference

MOVINGAVERAGE

The MOVINGAVERAGE function (abbreviated MVAVG) computes a series of
averages for the values of a dimensioned variable or expression over a specified
dimension. For each dimension value in status, MOVINGAVERAGE computes the
average of the data in the range specified, relative to the current dimension value.

When the data being averaged has only one dimension, MOVINGAVERAGE
produces a single series of averages, one for each dimension value in status. When
the data has dimensions other than the one being averaged over,
MOVINGAVERAGE produces a separate series of averages for each combination of
values in the status list of the other dimensions.

Return Value
DECIMAL

Syntax
MOVINGAVERAGE(expression, start, stop, step, -

[dimension [STATUS|limit-clause]])

Arguments

expression
A numeric variable or calculation whose values you want to average; for example,
units or sales-expense.

start
A whole number that specifies the starting point of the range over which you want
to average. The range is specified relative to the current value of dimension. Zero (0)
refers to the current value, and -1 refers to the value preceding the current value. A
comma is required before a negative start number.

Each average is based on data for a specified range of dimension values preceding,
including, or following the one for which the average is being calculated. To count
the values in the range, MOVINGAVERAGE uses the default status, unless you use
the STATUS keyword or the limit-clause argument to specify a different dimension
status.

MOVINGAVERAGE

MONITOR to NVL2 18-19

stop
A whole number that specifies the ending point of the range over which you want
to average. A negative stop number must be preceded by a comma.

step
A positive whole number that specifies whether to average over every value in the
range, every other value, every third value, and so on. A value of 1 for step means
average over every value. A value of 2 means average over the first value, the third
value, the fifth value, and so on. For example, when the current month is Jun96
and the start and stop values are -3 and 3, a step value of 2 means average over
Mar96, May96, Jul96, and Sep96.

dimension
The dimension over which the moving average is calculated. While this can be any
dimension, it is typically a hierarchical time dimension of type TEXT that is limited
to a single level (for example, the month or year level) or a dimension with a type of
DAY, WEEK, MONTH, QUARTER, or YEAR.

When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGAVERAGE to use that dimension, you can omit
the dimension argument.

STATUS
Specifies that MOVINGAVERAGE should use the current status list (that is, only
the dimension values currently in status in their current status order) when
calculating the moving average.

limit-clause
Specifies that MOVINGAVERAGE should use the default status limited by
limit-clause when calculating the moving average. You can use any valid LIMIT
clause (see the entry for the LIMIT command for further information). To specify
that MOVINGAVERAGE should use the current status limited by limit-clause when
calculating the moving average, specify a LIMIT function for limit-clause.

Notes

NASKIP Option
MOVINGAVERAGE is affected by the NASKIP option. When NASKIP is set to YES
(the default), MOVINGAVERAGE ignores NA values and returns the average of the
values that are not NA. Likewise, when some dimension values do not exist for a
given range, MOVINGAVERAGE returns the average using whatever values do
exist.

MOVINGAVERAGE

18-20 Oracle OLAP DML Reference

Suppose, for example, that Jan96 is the first month value in the workspace. When
the current period being calculated is Feb95 and the range is -3 to -1, Jan95 is the
only month in the range -3 to -1. The average for Feb95 therefore uses only the
Jan95 value.

When NASKIP is set to NO, MOVINGAVERAGE returns NA when any value in the
current range has a value of NA, or when there are any dimension values that do not
exist in the range.

When all data values for a calculation are NA, or when no dimension values exist in
the specified range, MOVINGAVERAGE returns NA for either setting of NASKIP.

Examples

Example 18–9 Calculating a Moving Average

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, a dimension named product, a dimension named
timelevelnames that contains the names of the levels of time (for example,
Quarter and Year), and a relation named time.levelrels that relates the
values of time to the values of timelevelnames. Assume also that using the
following statements you limit product to Womens - Trousers and time to
quarters from Q4-1999 to present.

LIMIT product TO 'Womens - Trousers'
LIMIT timelevelnames TO 'Quarter'
LIMIT time TO time.levelrels
LIMIT time REMOVE 'Q1-1999' 'Q2-1999' 'Q3-1999'

After you have limited product and sales, you issue the following report
statement.

REPORT DOWN time sales -
HEADING 'Running Yearly\nTotal' MOVINGTOTAL(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Minimum\nQuarter' MOVINGMIN(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Maximum\nQuarter' MOVINGMAX(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Average\nQuarter' MOVINGAVERAGE(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels)

MOVINGAVERAGE

MONITOR to NVL2 18-21

The following report was created by the preceding statement.

 -----------------------PRODUCT------------------------
 ------------------Womens - Trousers-------------------
 Running
 Yearly Minimum Maximum Average
TIME SALES Total Quarter Quarter Quarter
-------------- ---------- ---------- ---------- ---------- ----------
Q4-1999 416 1,386 233 480 346.50
Q1-2000 465 1,851 233 480 370.20
Q2-2000 351 1,969 257 480 393.80
Q3-2000 403 2,115 351 480 423.00
Q4-2000 281 1,916 281 465 383.20
Q1-2001 419 1,919 281 465 383.80
Q2-2001 349 1,803 281 419 360.60
Q3-2001 467 1,919 281 467 383.80
Q4-2001 484 2,000 281 484 400.00
Q1-2002 362 2,081 349 484 416.20
Q2-2002 237 1,899 237 484 379.80
Q3-2002 497 2,047 237 497 409.40
Q4-2002 390 1,970 237 497 394.00

MOVINGMAX

18-22 Oracle OLAP DML Reference

MOVINGMAX

The MOVINGMAX function (abbreviated MVMAX) returns a series of maximum
values of a dimensioned variable or expression over a specified dimension. For each
dimension value in status, MOVINGMAX searches the data for the maximum value
in the range specified, relative to the current dimension value.

When the variable or expression has only the specified dimension, MOVINGMAX
produces a single series of maximum values, one for each dimension value in the
status. When the variable or expression has dimensions other than the one
specified, MOVINGMAX produces a separate series of maximum values for each
combination of values in the status list of the other dimensions

Return Value
DECIMAL

Syntax
MOVINGMAX(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Arguments

expression
A numeric variable or calculation from whose values you want to find the
maximum values; for example, units or sales-expense.

start
A whole number that specifies the starting point of the range over which you want
to search. The range is specified relative to the current value of dimension. Zero (0)
refers to the current value, and -1 refers to the period preceding the current value.
A comma is required before a negative start number.

Each maximum value is based on data for a specified range of dimension values
preceding, including, or following the one for which the maximum value is being
returned. To count the values in the range, MOVINGMAX uses the default status,
unless you use the STATUS keyword or the limit-clause argument to specify a
different dimension status.

MOVINGMAX

MONITOR to NVL2 18-23

stop
A whole number that specifies the ending point of the range over which you want
to search. A negative stop number must be preceded by a comma.

step
A positive whole number that specifies whether to search every value in the range,
every other value, every third value, and so on. A value of 1 for step means search
every value. A value of 2 means check the first value, the third value, the fifth
value, and so on. For example, when the current month is Jun96 and the start and
stop values are -3 and 3, a step value of 2 means search the months Mar96, May96,
Jul96, and Sep96 and return the maximum value that occurs in one of those four
months.

dimension
The dimension over which the moving maximum is calculated. While this can be
any dimension, it is typically a hierarchical time dimension of type TEXT that is
limited to a single level (for example, the month or year level) or a dimension with a
type of DAY, WEEK, MONTH, Quarter, or YEAR.

When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGMAX to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGMAX should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating
the moving maximum.

limit-clause
Specifies that MOVINGMAX should use the default status limited by limit-clause
when calculating the moving maximum. You can use any valid LIMIT clause (see
the entry for the LIMIT command for further information). To specify that
MOVINGMAX should use the current status limited by limit-clause when
calculating the moving maximum, specify a LIMIT function for limit-clause.

Notes

NASKIP Option
MOVINGMAX is affected by the NASKIP option. When NASKIP is set to YES (the
default), MOVINGMAX ignores NA values and returns the maximum value.
Likewise, when some dimension values do not exist for a given range,
MOVINGMAX returns the maximum value using whatever values do exist.

MOVINGMAX

18-24 Oracle OLAP DML Reference

Suppose, for example, that Jan96 is the first month value in the workspace. When
the current period is Feb96 and the range is -3 to -1, Jan96 is the only month in
the range -3 to -1. The maximum for Feb96 therefore uses only the Jan96 value.

When NASKIPis set to NO, MOVINGMAX returns NA when any value in the current
range has a value of NA or when there are any dimension values that do not exist in
the range.

When all data values for a calculation are NA, or when no dimension values exist in
the specified range, MOVINGMAX returns NA for either setting of NASKIP.

Examples
For an example of calculating maximum sales, see Example 18–9, "Calculating a
Moving Average" on page 18-20.

MOVINGMIN

MONITOR to NVL2 18-25

MOVINGMIN

The MOVINGMIN function (abbreviated MVMIN) returns a series of minimum
values for the values of a dimensioned variable or expression over a specified
dimension. For each dimension value in status, MOVINGMIN searches the data for
the minimum value in the range specified, relative to the current dimension value.

When the variable or expression has only the specified dimension, MOVINGMIN
produces a single series of minimum values, one for each dimension value in the
status. When the variable or expression has dimensions other than the one
specified, MOVINGMIN produces a separate series of minimum values for each
combination of values in the status list of the other dimensions.

Return Value
DECIMAL

Syntax
MOVINGMIN(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Arguments

expression
A numeric variable or calculation from whose values you want to find the
minimum values; for example, UNITS or SALES-EXPENSE.

start
A whole number that specifies the starting point of the range over which you want
to search. The range is specified relative to the current value of dimension. Zero (0)
refers to the current value, and -1 refers to the value preceding the current value. A
comma is required before a negative start number.

Each minimum value is based on data for a specified range of dimension values
preceding, including, or following the one for which the minimum value is being
returned. To count the values in the range, MOVINGMIN uses the default status,
unless you use the STATUS keyword or the limit-clause argument to specify a
different dimension status.

MOVINGMIN

18-26 Oracle OLAP DML Reference

stop
A whole number that specifies the ending point of the range over which you want
to search. A negative stop number must be preceded by a comma.

step
A positive whole number that specifies whether to search every value in the range,
or every other value, or every third value, and so on. A value of 1 for step means
search every value. A value of 2 means check the first value, the third value, the
fifth value, and so on. For example, when the current month is Jun96 and the start
and stop values are -3 and 3, a step value of 2 means search the months Mar96,
May96, Jul96 and Sep96 and return the minimum value that occurs in one of
those four months.

dimension
The dimension over which the moving minimum is calculated. While this can be
any dimension, it is typically a hierarchical time dimension of type TEXT that is
limited to a single level (for example, the month or year level) or a dimension with a
type of DAY, WEEK, MONTH, Quarter, or YEAR.

When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGMIN to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGMIN should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating
the moving minimum.

limit-clause
Specifies that MOVINGMIN should use the default status limited by limit-clause
when calculating the moving minimum. You can use any valid LIMIT clause (see
the entry for the LIMIT command for further information). To specify that
MOVINGMIN should use the current status limited by limit-clause when
calculating the moving minimum, specify a LIMIT function for limit-clause.

Notes

NASKIP Option
MOVINGMIN is affected by the NASKIP option. When NASKIP is set to YES (the
default), MOVINGMIN ignores NA values and returns the minimum value.
Likewise, when some dimension values do not exist for a given range,
MOVINGMIN returns the minimum value using whatever values do exist.

MOVINGMIN

MONITOR to NVL2 18-27

Suppose, for example, that Jan95 is the first month value in the workspace. When
the current period is Feb95 and the range is -3 to -1, Jan95 is the only month in
the range -3 to -1. The minimum value for Feb95 therefore uses only the Jan95
value.

When NASKIP is set to NO, MOVINGMIN returns NA when any value in the current
range has a value of NA or when there are any dimension values that do not exist in
the range.

When all data values for a calculation are NA, or when no dimension values exist in
the specified range, MOVINGMIN returns NA for either setting of NASKIP.

Examples
For an example of calculating minimum sales, see Example 18–9, "Calculating a
Moving Average" on page 18-20.

MOVINGTOTAL

18-28 Oracle OLAP DML Reference

MOVINGTOTAL

The MOVINGTOTAL function (abbreviated MVTOT) computes a series of totals for
the values of a dimensioned variable or expression over a specified dimension. For
each dimension value in status, MOVINGTOTAL computes the total of the data in
the range specified, relative to the current dimension value.

When the variable or expression has only the specified dimension, MOVINGTOTAL
produces a single series of totals, one for each dimension value in the status. When
the variable or expression has dimensions other than the one specified,
MOVINGTOTAL produces a separate series of totals for each combination of values
in the status list of the other dimensions.

Return Value
DECIMAL

Syntax
MOVINGTOTAL(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Arguments

expression
A numeric variable or calculation whose values you want to total; for example,
UNITS or SALES-EXPENSE.

start
A whole number that specifies the starting point of the range over which you want
to total. The range is specified relative to the current value. Zero (0)refers to the
current value, and -1 refers to the value preceding the current value. A comma is
required before a negative start number.

Each total is based on data for a specified range of dimension values preceding,
including, or following the one for which the total is being calculated. To count the
values in the range, MOVINGTOTAL uses the default status, unless you use the
STATUS keyword or the limit-clause argument to specify a different dimension
status.

MOVINGTOTAL

MONITOR to NVL2 18-29

stop
A whole number that specifies the ending point of the range over which you want
to total. A negative stop number must be preceded by a comma.

step
A positive whole number that specifies whether to total over every value in the
range, every other value, every third value, and so on. A value of 1 for step means
total over every value. A value of 2 means total over the first value, the third value,
the fifth value, and so on. When the current month is Jun96 and the start and stop
values are -3 and 3, a step value of 2 means total over Mar96, May96, Jul96, and
Sep96.

dimension
The dimension over which the moving total is calculated. While this can be any
dimension, it is typically a time dimension.

When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGTOTAL to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGTOTAL should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating
the moving total.

limit-clause
Specifies that MOVINGTOTAL should use the default status limited by limit-clause
when calculating the moving total. You can use any valid LIMIT clause (see the
entry for the LIMIT command for further information). To specify that
MOVINGTOTAL should use the current status limited by limit-clause when
calculating the moving total, specify a LIMIT function for limit-clause.

Notes

NASKIP Option
MOVINGTOTAL is affected by the NASKIP option. When NASKIP is set to YES
(the default), MOVINGTOTAL ignores NA values and returns the total of the values
that are not NA. Likewise, when some dimension values do not exist for a given
range, MOVINGTOTAL returns the total using whatever values do exist.

MOVINGTOTAL

18-30 Oracle OLAP DML Reference

Suppose, for example, that Jan95 is the first month value in the workspace. When
the current period is Feb95 and the range is -3 to -1, Jan95 is the only month in
the range -3 to -1. The total for Feb95 therefore uses only the Jan95 value.

When NASKIPis set to NO, MOVINGTOTAL returns NA when any value in the
current range has a value of NA or when there are any dimension values that do not
exist in the range.

When all data values for a calculation are NA, or when no dimension values exist in
the specified range, MOVINGTOTAL returns NA for either setting of NASKIP.

Examples
For an example of calculating a moving total sales, see Example 18–9, "Calculating a
Moving Average" on page 18-20.

MULTIPATHHIER

MONITOR to NVL2 18-31

MULTIPATHHIER

The MULTIPATHHIER option specifies that a given cell that contains detail data
can have more than one path into a cell that contains aggregated data. Certain
calculations require this kind of multiple-path aggregation.

Syntax
MULTIPATHHIER = {YES|NO}

Arguments

YES
Allows a detail data cell to aggregate in multiple paths to the same ancestor cell.

NO
Disallows a detail data cell to aggregate in multiple paths to the same ancestor cell.
(Default)

Notes

When to Use MULTIPATHHIER
The only time you should set the MULTIPATHHIER option to YES is when a
calculation requires the use of multiple paths.

Interpreting an XSHIERCK01 Error Message
When you use the AGGREGATE command, dimension hierarchies are
automatically checked for circularity. When MULTIPATHHIER is set to NO, or when
the default of NO has not been changed, then the following error message is
displayed when a detail data cell uses multiple paths to the same aggregate data
cell.

ERROR: (XSHIERCK01) One or more loops have been detected
in your hierarchy n over N. The loops include 2 items
(UNDIRECTED: X and Y).

In the preceding error message, X is the name of the detail data cell, and Y is the
name of the ancestor cell into which the detail data cell takes more than one path to

MULTIPATHHIER

18-32 Oracle OLAP DML Reference

aggregate. For more information, see Example 18–10, "Defining Multiple Paths in a
Hierarchy" on page 18-32.

This error message is displayed because the multiple paths taken by the detail data
cell have been interpreted as a circular hierarchy. When this is a mistake and you
did not intend to create multiple paths, then change the hierarchy. Otherwise, set
the MULTIPATHHIER option to YES.

Examples

Example 18–10 Defining Multiple Paths in a Hierarchy

This example shows how you can define multiple paths in a hierarchy, the error
message that results when you attempt to aggregate data, how to interpret that
message, and how to resolve the problem.

The following statements create two paths from a detail data cell to an ancestor cell
that contains aggregated data.

DEFINE geog TEXT DIMENSION
DEFINE path INTEGER DIMENSION
DEFINE geog.geog RELATION geog <geog path>
MAINTAIN geog ADD 'A1' 'b1' 'b2' 'Top'
MAINTAIN path ADD 2
geog.geog(geog 'A1' path 1) = 'B1'
geog.geog(geog 'A1' path 2) = 'B2'
geog.geog(geog 'B1' path 1) = 'Top'
geog.geog(geog 'B2' path 1) = 'Top'

First, a geography dimension named geog and a second dimension named path
are defined.

A relation named geog.geog is defined, in which the geography dimension is
dimensioned by itself and the path dimension.

Dimension values named A1, B1, B2, and Top are added to the geog dimension.

Two dimension values are added to the path dimension. Because path was
defined with an integer data type, the dimension values that are automatically
assigned to it are the integers 1 and 2.

Finally, the hierarchy for the geog dimension is created. The A1 dimension value is
the detail data. The B1 and B2 dimension values are the second level of the
hierarchy. The Top dimension value is the top of the hierarchy.

MULTIPATHHIER

MONITOR to NVL2 18-33

A1 has two aggregation paths: A1 aggregates into B1, which aggregates into Top;
A1 aggregates into B2, which aggregates into Top.

The following statements define a variable named myvar, assign a data value of 1
to its detail data level (A1), and define an aggmap for that variable.

DEFINE myvar INTEGER VARIABLE <geog>
myvar(geog 'A1') = 1
DEFINE myvar.aggmap <geog>
AGGMAP 'RELATION geog.geog'

An attempt to aggregate myvar generates the following error message.

AGGREGATE myvar USING myvar.aggmap
ERROR: (XSHIERCK01) One or more loops have been detected
in your hierarchy GEOG.GEOG over GEOG. The loops include 2
items (UNDIRECTED: A1 and TOP).

The multiple paths of aggregation that have been created for A1 have been
interpreted as a circular hierarchy, because the MULTIPATHHIER option is
currently set to NO.

When you had made a mistake and created these multiple paths by mistake, you
would fix the problem in the hierarchy.

However, in this case, the multiple paths have been created because a calculation
requires them. Therefore, the solution is to set MULTIPATHHIER to YES. Now you
can execute the AGGREGATE command without error.

NAFILL

18-34 Oracle OLAP DML Reference

NAFILL

The NAFILL function returns the values of the source expression with any NA
values replaced with the specified fill expression.

Return Value
The value returned is the same data type as source-expression.

Syntax
NAFILL(source-expression fill-expression)

Arguments

source-expression
The expression being evaluated. For values of source-expression that do not equal NA,
NAFILL returns the corresponding values of source-expression. Source-expression
determines the dimensions and data type of the result.

fill-expression
The expression to be substituted in the return value. Fill-expression must have the
same data type as source-expression. Fill-expression is only evaluated for values of
source-expression that equal NA.

Notes

Mismatched Data Types
When the fill and source expressions do not have the same data type, Oracle OLAP
converts the fill expression to the data type of the source expression when possible.
Otherwise, an error is produced.

Functions in the Fill Expression
You can use any functions in the fill expression as long as they return the same data
type as the source expression.

NA Fill Expression
When both the source and fill expressions equal NA, then NAFILL returns NA.

NAFILL

MONITOR to NVL2 18-35

NATRIGGER Takes Precedence Over NAFILL
Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NAFILL function. When the $NATRIGGER expression is NA, then the NAFILL
function has an effect.

Examples

Example 18–11 Filling NA Values with Zeros

Suppose you have NA values in the variable sales and you want to calculate an
average that counts those values as zeros. Ordinarily, AVERAGE ignores NA values
and does not count them in the number of values being averaged. You can use
NAFILL inside the AVERAGE function to temporarily treat those values as zeros so
they will count in calculating the average.

REPORT AVERAGE(NAFILL(sales 0.0))

NAME

18-36 Oracle OLAP DML Reference

NAME

NAME is a special dimension that is used to organize the list of objects in a
workspace. Its values are the names of the objects defined in the workspace.

Data type
TEXT

Syntax
NAME

Notes

LIMIT and STATUS with NAME
To see the names of all your workspace objects, use the LISTNAMES command. To
see only some of the names, first limit the NAME dimension to the values in which
you are interested, then use the STATUS command or the STATLIST function. See
Example 18–12, "Listing Dimensions" on page 18-37.

Changing the Values of NAME
You cannot change the values of the NAME dimension with the MAINTAIN
command. You must use DEFINE, DELETE, MOVE, or RENAME to change its
values. Also, you cannot define an object dimensioned by NAME.

Listing Objects in an Attached Workspace
When you are have more than one workspace attached, the values in the NAME
dimension include only the objects in the current workspace, which is listed first on
the workspace list. You cannot list the objects in another attached workspace unless
you make it the current workspace by reattaching it with the FIRST keyword. See
AW ATTACH for more information.

NAME Dimension and QONs
You cannot use a qualified object name to specify the NAME dimension of a
workspace that is not the current workspace, for example when you are using the
LIMIT command on the NAME dimension.

NAME

MONITOR to NVL2 18-37

TEXT, Not NTEXT
All object names must have the TEXT data type, not the NTEXT data type.
Therefore, object names cannot contain characters that do not exist in the database
character set.

Examples

Example 18–12 Listing Dimensions

Suppose you want a list of all the dimensions in a workspace. First, use the LIMIT
command and the OBJ function to limit the status of the NAME dimension. Then
use the STATUS command to produce a list of dimensions. Since the values
returned by OBJ(TYPE) are always in uppercase, you must use 'DIMENSION' (not
'dimension') in the LIMIT command to get a match. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'DIMENSION'
STATUS NAME

produce the following output.

The current status of NAME is:
PRODUCT, DISTRICT, DIVISION, LINE, REGION, MARKETLEVEL, MARKET,
MONTH, YEAR, QUARTER

Example 18–13 Listing Relations

Suppose you want to see the definitions of all the relations in a workspace. Use the
LIMIT command and the OBJ function to select these names. Then use DESCRIBE
to produce a list of their definitions. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT

DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

NASKIP

18-38 Oracle OLAP DML Reference

NASKIP

The NASKIP option controls whether NA values are considered as input to
aggregation functions.

Data type
BOOLEAN

Syntax
NASKIP = NO|YES

Arguments

NO
NA values are considered by aggregation functions. When any of the values being
considered are NA, the function returns NA for that value.

YES
NA values are ignored by aggregation functions. Only expressions with actual
values are used in calculations. (Default)

Notes

Statements Affected by NASKIP
The following OLAP DML statements are affected by NASKIP.

AGGREGATE command
AGGREGATE function
ANY
AVERAGE
COUNT
CUMSUM
DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD
EVERY
FINTSCHED

NASKIP

MONITOR to NVL2 18-39

FPMTSCHED
IRR
LARGEST
MEDIAN
MOVINGAVERAGE
MOVINGMAX
MOVINGMIN
MOVINGTOTAL
NONE
NPV
SMALLEST
STDDEV
TCONVERT
TOTAL
VINTSCHED
VPMTSCHED

Other statements are not affected by the setting of NASKIP, they always ignore NA
values.

Arithmetic Operators in Function Arguments
NASKIP does not affect arithmetic operators; the NASKIP2 option controls how NA
values are treated with the + (plus) and - (minus) operators. When NASKIP2 is set
to YES, zeroes are substituted for NA values in arithmetic operations with the +
(plus) and - (minus) operators. This means that when a + (plus) and - (minus)
operator are used in an expression argument to an aggregation function, the result of
the calculation depends on the settings of both NASKIP and NASKIP2.

$NATRIGGER Takes Precedence over NAFILL or NA Options
An $NATRIGGER property expression is evaluated before the NAFILL function or
the NASKIP, NASKIP2, or NASPELLoption is applied. When the $NATRIGGER
expression is NA, the NAFILL function and the NA options have an effect.

Related Statements
NASKIP2.

NASKIP

18-40 Oracle OLAP DML Reference

Examples

Example 18–14 The Effect of NASKIP on the TOTAL Function

In the demo workspace, the 1997 values for sales are NA. The TOTAL function
returns different results depending on the setting of NASKIP.

The statements

ALLSTAT
NASKIP = YES
SHOW TOTAL(sales)

produce the following result.

63,181,743.50

In contrast, the OLAP DML statements

NASKIP = NO
SHOW TOTAL(sales)

produce the following result.

NA

Example 18–15 The Effect of NASKIP on the MOVINGMIN Function

This example aggregates values for three months: the current month and the two
months before it. The first report of SALES shows the NA values for months in 1997.
When NASKIP is YES, the MOVINGMIN function returns NA only for March 1997
because all the values considered for that month were NA. When NASKIP is NO, the
third statement (REPORT DOWN month sales) shows NA values for January through
March 1997, because at least one value considered by MOVINGMIN for those
months was NA.

LIMIT district TO 'Seattle'
LIMIT month TO 'Jul96' TO 'Mar97'
REPORT DOWN month sales

NASKIP

MONITOR to NVL2 18-41

The preceding statements produce the following report of SALES data.

DISTRICT: SEATTLE
------------------------SALES-------------------------
-----------------------PRODUCT------------------------

MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ---------
Jul96 123,700.17 157,274.03 60,198.52 78,305.97 78,019.87
Aug96 120,650.72 128,660.89 45,046.71 66,853.26 83,347.55
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 99,464.05
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,537.58
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

The statements

NASKIP = YES
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for March 1997.

DISTRICT: SEATTLE
-----------MOVINGMIN(SALES -2, 0, 1, MONTH)-----------
---------------------PRODUCT--------------------------

MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ---------
Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Feb97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Mar97 NA NA NA NA NA

NASKIP

18-42 Oracle OLAP DML Reference

The statements

NASKIP = NO
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for January through
March 1997.

DISTRICT: SEATTLE
----------MOVINGMIN(SALES -2, 0, 1, MONTH)-------------
------------------------PRODUCT------------------------

MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ----------
Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

NASKIP2

MONITOR to NVL2 18-43

NASKIP2

The NASKIP2 option controls how NA values are treated in arithmetic operations
with the + (plus) and - (minus) operators. The result is NA when any operand is NA
unless NASKIP2 is set to YES.

Data type
BOOLEAN

Syntax
NASKIP2 = YES|NO

Arguments

YES
Zeroes are substituted for NA values in arithmetic operations using the + (plus) and
- (minus) operators. The two special cases of NA + NA and NA - NA both result in NA.

NO
NA values are treated as NAs in arithmetic operations using the + (plus) and -
(minus) operators. When any of the operands being considered is NA, the arithmetic
operation evaluates to NA. (Default)

Notes

Operators in Function Arguments
NASKIP2 is independent of NASKIP. NASKIP2 applies only to arithmetic
operations with the + (plus) and - (minus) operators. NASKIP applies only to
aggregation functions. However, when an expression argument to an aggregation
function contains a+ (plus) and - (minus) operator, the results of the calculation
depend on both NASKIP and NASKIP2. See "The Effects of NASKIP2 and NASKIP"
on page 18-44.

NASKIP2

18-44 Oracle OLAP DML Reference

How NASKIP2 Works
The following four lines show four steps in the evaluation of a complex expression
that contains NAs when NASKIP2 is set to YES.

3 * (NA + NA) - 5 * (NA + 3)
3 * NA - 5 * 3
NA - 15

-15

$NATRIGGER Takes Precedence over NAFILL or NA Options
An $NATRIGGER property expression is evaluated before the NAFILL function or
the NASKIP, NASKIP2, or NASPELL option is applied. When the $NATRIGGER
expression is NA, the NAFILL function and the NA options have an effect.

Examples

Example 18–16 The Effects of NASKIP2 and NASKIP

In the following example, INTEGER variables X and Z, dimensioned by the
INTEGER dimension INTDIM, have the values shown in the second and third
columns of the report. The sum of X + Z is given for each combination of NASKIP
and NASKIP2 settings, starting with their defaults. The example also shows that
when the + (plus) operator is used in the expression argument to the TOTAL
function, the results that are returned by TOTAL depend on the settings of both
NASKIP and NASKIP2.

Example 18–17 NASKIP Set to YES, NASKIP2 Set to NO

In the first set of examples, NASKIP is set to YES, which means NA values are
ignored by the TOTAL function. NASKIP2 is set to NO, which means that the result
of a + (plus) operation will be NA when any of the operands are NA.

NASKIP = YES
NASKIP2 = NO
COLWIDTH = 5
REPORT LEFT W 6 DOWN intdim x, z, x + z

NASKIP2

MONITOR to NVL2 18-45

These statements produce the following output. With NASKIP2 set to NO, the
expression X + Z evaluates to NA when either X or Z is NA.

INTDIM X Z x + z
------ ----- ----- -----
1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

13

The next statement uses the + (plus) operator to add the results that are returned by
two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

18

Example 18–18 NASKIP Set to YES, NASKIP2 Set to YES

In the next set of examples, NASKIP is again set to YES, which means NA values are
ignored by the TOTAL function. NASKIP2 is now set to YES, which means that NA
values are ignored by the + (plus) operator

NASKIP = YES
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following output. With NASKIP2 set to YES, NA
values are ignored when the expression X + Z is evaluated.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 2
2 3 NA 3
3 7 6 13

NASKIP2

18-46 Oracle OLAP DML Reference

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

18

The next statement uses the + (plus) operator to add the results that are returned by
two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

18

Example 18–19 NASKIP Set to NO, NASKIP2 Set to YES

In the next set of examples, NASKIP is set to NO, which means that when any values
considered by the TOTAL function are NA, TOTAL will return NA. NASKIP2 is again
set to YES, which means that NA values are ignored by the + (plus) operator.

NASKIP = NO
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following result.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 2
2 3 NA 3
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

18

NASKIP2

MONITOR to NVL2 18-47

The next statement uses the + (plus) operator to add the results that are returned by
two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

NA

Example 18–20 NASKIP Set to NO, NASKIP Set to NO

In the final set of examples, NASKIP is again set to NO, which means that when any
values considered by the TOTAL function are NA, TOTAL will return NA. NASKIP2
is now set to NO, which means that the result of a + (plus) operation will be NA when
any of the operands are NA.

NASKIP = NO
NASKIP2 = NO
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following result.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

NA

The next statement uses the + (plus) operator to add the results that are returned by
two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

NA

NASPELL

18-48 Oracle OLAP DML Reference

NASPELL

The NASPELL option controls the spelling that is used for NA values in output.

Data type
TEXT

Syntax
NASPELL = {'text'|'NA'}

Arguments

text
The spelling to use for any NA value in output. When you specify an expression
rather than a text literal, you can omit the single quotes. The default is NA.

Notes

Setting NASPELL to "0"
Setting NASPELL to the text character 0 (zero) causes NA values to appear as 0.
However, they are still treated as NAs in calculations.

Assigning NA Values
NASPELL affects only Oracle OLAP output; it does not affect the way you assign an
NA value. For example, even when you have set NASPELL to NONE, you assign an
NA value as follows.

var1 = NA

$NATRIGGER Takes Precedence over NASPELL
Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NASPELL option. When the $NATRIGGER expression is NA, then the NASPELL
option has an effect.

NASPELL

MONITOR to NVL2 18-49

Examples

Example 18–21 Showing NA Values as "NONE"

Suppose you have a variable called current.month, which has a value of NA
whenever no current month has been specified. In this case, you would like the
value to appear as None rather than NA.

When NASPELL is set to its default value of NA, the OLAP DML statement

SHOW current.month

produces the following output.

NA

In contrast, the OLAP DML statements

NASPELL = 'None'
SHOW current.month

produce the following output.

None

NEW_TIME

18-50 Oracle OLAP DML Reference

NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another.

Return Value
DATETIME

Syntax
NEW_TIME(datetime-exp this_zone new_zone)

Arguments

this_zone
A text expression that indicates the time zone from which you want to convert
datetime-exp. It must be a valid time zone, as listed in the following table.

new_zone
A text expression that indicates the time zone into which you want to convert
datetime-exp. It is the time zone of the return value. It must be a valid time zone, as
listed in Table 18–1, " Time Zones".

Table 18–1 Time Zones

AST Atlantic Standard Time

ADT Atlantic Daylight Time

BST Bering Standard Time

BDT Bering Daylight Time

CST Central Standard Time

CDT Central Daylight Time

EST Eastern Standard Time

EDT Eastern Daylight Time

GMT Greenwich Mean Time

HST Alaska-Hawaii Standard Time

HDT Alaska-Hawaii Daylight Time

NEW_TIME

MONITOR to NVL2 18-51

Examples

Example 18–22 Using the Current Time of day

The SYSDATE function returns the current date and time to the NEW_TIME
function.

SHOW new_time(SYSDATE 'EST' 'PST')

When the date and time in Eastern Standard Time are October 20, 2000, at 1:20
A.M., then the date in Pacific Standard Time, which is three hours earlier, is
October 19, 2000. Because SYSDATE uses the format specified by
NLS_DATE_FORMAT, which by default only shows the date, the time is not
displayed.

19-OCT-00

Example 18–23 Specifying the Time of day

In the following example, the TO_DATE function converts a text string to a valid
date and time. The TO_CHAR function includes a date format that temporarily
overrides the date format specified by the NLS_DATE_FORMAT option.

SHOW TO_CHAR(NEW_TIME(TO_DATE('11-27-00 22:15:00', 'MM-DD-YY HH24:MI:SS'), -
'HST' 'PST') 'MM-DD-YY HH24:MI:SS')

This statement converts November 27 at 10:15 P.M. (22:15:00) Alaska-Hawaii
Standard Time to November 28 at 12:15 A.M. (00:15:00) Pacific Standard Time. The

MST Mountain Standard Time

MDT Mountain Daylight Time

NST Newfoundland Standard Time

PST Pacific Standard Time

PDT Pacific Daylight Time

YST Yukon Standard Time

YDT Yukon Daylight Time

Table 18–1 (Cont.) Time Zones

AST Atlantic Standard Time

NEW_TIME

18-52 Oracle OLAP DML Reference

date format specified in the TO_CHAR function allows the time to be displayed
along with the date.

11-28-00 00:15:00

Alternatively, you can change the value of NLS_DATE_FORMAT.

NLS_DATE_FORMAT = 'MM-DD-YY HH24:MI:SS'

Then this statement produces the same result, without requiring the use of
TO_CHAR.

SHOW NEW_TIME(TO_DATE('11-27-00 22:15:00', 'MM-DD-YY HH24:MI:SS'), -
'HST' 'PST')

NEXT_DAY

MONITOR to NVL2 18-53

NEXT_DAY

The NEXT_DAY function returns the date of the first instance of a particular day of
the week that follows the specified date.

Return Value
DATETIME

Syntax
NEXT_DAY(datetime-expression, weekday)

Arguments

datetime-expression
An expression that has the DATETIME data type.

weekday
A text expression that identifies a day of the week (for example, Monday). Valid
names are controlled by the NLS_DATE_LANGUAGE option.

Examples

Example 18–24 Getting a Future Date

The following statement returns the date of the first Tuesday following today's date.

SHOW NEXT_DAY(SYSDATE, 'Tues')

When today is Friday, September 8, 2000, then the following Tuesday is:

11-SEP-00

NLS Options

18-54 Oracle OLAP DML Reference

NLS Options

Oracle bases its globalization support on the values of parameters that begin with
NLS. The Oracle OLAP DML includes a number options that correspond to these
parameters.

Within a session, you can dynamically modify the value of some of these NLS
parameters by setting them using the OLAP DML options described in Table 18–2,
" OLAP DML NLS Options" or by using the SQL statement ALTER SESSION SET
option = value.

Table 18–2 OLAP DML NLS Options

Option Name Description

NLS_CALENDAR The calendar for the session.

NLS_CURRENCY The local currency symbol for the L number format
element for the session.

NLS_DATE_FORMAT The default format for DATETIME values.

NLS_DATE_LANGUAGE The language for days, months, and similar
language-dependent DATE format elements.

NLS_DUAL_CURRENCY A second currency symbol in addition to the local
currency symbol (which is identified by
NLS_CURRENCY). It is used primarily to identify the
Euro symbol.

NLS_ISO_CURRENCY The international currency symbol for the C number
format element.

NLS_LANG The current language, territory, and database character
set, which are determined by session-wide
globalization parameters.

NLS_LANGUAGE The current language for the session.

NLS_NUMERIC_CHARACTERS The decimal marker and thousands group marker for
the session.

NLS_SORT the sequence of character values used when sorting or
comparing text.

NLS_TERRITORY The current territory for the session.

NLS Options

MONITOR to NVL2 18-55

Data Type
TEXT

Syntax
option-name = option-value

Arguments
See Oracle Database SQL Reference for more information about NLS parameters,
including valid values.

Notes

Date Formats
The calendar system affects the input format for the TO_DATE function and the
output produced by the TO_CHAR function.

Default Value of NLS_CURRENCY
The default value of NLS_CURRENCY controlled by the value of the
NLS_TERRITORY option. Resetting NLS_TERRITORY restores NLS_CURRENCY
to its default setting

Output Formats
The TO_CHAR and TO_NUMBER functions use the value of NLS_CURRENCY as
their default currency symbol. Both functions can accept an optional
NLS_CURRENCY argument that overrides the NLS_CURRENCY option.

Date Formats
NLS_DATE_LANGUAGE specifies the language to use for the spelling of day and
month names and date abbreviations (a.m., p.m., AD, BC) returned by the
TO_DATE function and the output produced by the TO_CHAR function.

Default Value of NLS_DUAL_CURENCH
The default value is the dual currency symbol defined in the territory of your
current language environment which is controlled by the value of the
NLS_TERRITORY option. Resetting NLS_TERRITORY restores
NLS_DUAL_CURRENCY to its default setting.

NLS Options

18-56 Oracle OLAP DML Reference

Supported Symbols
When you want to identify the Euro symbol as the value of
NLS_DUAL_CURRENCY, the instance character set must support that symbol.

Number Formats
The value of NLS_DUAL_CURRENCY takes the place of the letter U in a number
format model. See the TO_NUMBER function for a description of number format
elements.

Default Value of NLS_ISO_CURRENCY
The NLS_TERRITORY option sets the default value for NLS_ISO_CURRENCY.
Resetting NLS_TERRITORY restores NLS_ISO_CURRENCY to its default value

ISO Currency Symbols
Local currency symbols can be ambiguous. For example, a dollar sign ($) can
indicate Canadian dollars, U.S. dollars, or Australian dollars. ISO 4217 defines a
unique three-character code for each currency, composed of a two-character country
code and a one-character currency designator. For example, the code for Canadian
dollars is CAD (CA for Canada, and D for dollars). Similarly, the code for U.S. dollars
is USD, and for Australian dollars in AUD.

Output Format
The TO_CHAR and TO_NUMBER functions use the value of
NLS_ISO_CURRENCY for the C number format element. These functions can
accept an optional NLS_ISO_CURRENCY argument that overrides the
NLS_ISO_CURRENCY option.

Default Values
The NLS_LANGUAGE setting controls the default values of the
NLS_DATE_LANGUAGE and NLS_SORT parameters, as well as the default values
for messages, day and month names, symbols for AD, BC, a.m., and p.m., and the
default sorting mechanism. Some of these default values can be overridden
individually by other OLAP DML options. See "Locale Settings" on page 18-57.

Interaction with NLS_LANG
The value of NLS_LANGUAGE sets the language component of the read-only
NLS_LANG option.

NLS Options

MONITOR to NVL2 18-57

Locale Settings
NLS_LANGUAGE sets the default values for the NLS_DATE_LANGUAGE and
NLS_SORT options. It also affects the results of the TO_CHAR function.

YESSPELL and NOSPELL
The values of the read-only YESSPELL and NOSPELL options reflect the
NLS_LANGUAGE setting.

Date Formats
The value of NLS_LANGUAGE controls whether the AD and BC era designators
use periods after the letters. You can change this element of the date format by
using the TO_CHAR function.

Default Value of NLS_NUMERIC_CHARACTERS
The appropriate decimal and thousands markers vary from one geographic area to
the next. Thus, the default value of NLS_NUMERIC_CHARACTERS is determined
by the value of the NLS_TERRITORY option. Resetting NLS_TERRITORY restores
NLS_NUMERIC_CHARACTERS to its default value

Format of Numeric Input
NLS_NUMERIC_CHARACTERS affects only the display of numeric data. When
supplying values for input to an OLAP DML statement, do not use a thousands
group marker, and use a period (.) for the decimal marker. To use a different
markers for input data, enclose the value in single quotes and use the TO_NUMBER
function to convert the value from text to a valid number.

Effect on Other Options
A change to NLS_NUMERIC_CHARACTERS causes an equivalent change in either
the THOUSANDSCHAR option, the DECIMALCHAR option, or both.

Output Format Overrides
The TO_CHAR, and TO_NUMBER functions have an optional
NLS_NUMERIC_CHARACTERS argument that overrides the
NLS_NUMERIC_CHARACTERS option.

Performance
Linguistically correct sorting is slower than binary sorting.

NLS Options

18-58 Oracle OLAP DML Reference

Asian Languages
East Asian languages are typically sorted by their binary values, since linguistically
appropriate sorting is often too difficult and complex to be feasible.

Comparison Operators
The value of NLS_SORT affects the GT, GE, LT, and LE operators.

Sorting Statements
The value of NLS_SORT affects the SORT command and the SORTLINES function.

Default Values
The setting of NLS_TERRITORY controls the default values of the thousands
separator, the decimal marker, the currency symbol, and the sort order. These
default values can be overridden individually by other OLAP DML options. See
"Locale Settings" on page 18-57.

Interaction with NLS_LANG
The value of NLS_TERRITORY sets the territory component of the read-only
NLS_LANG option.

Locale Settings
NLS_TERRITORY sets the default values for the NLS_DATE_FORMAT,
NLS_CURRENCY, NLS_ISO_CURRENCY, NLS_NUMERIC_CHARACTERS, and
NLS_DUAL_CURRENCY options. Setting NLS_TERRITORY will reset these
options to their default values.

Numeric Formatting
NLS_TERRITORY affects numeric formatting in the TO_CHAR function.

Date Formatting
NLS_TERRITORY affects date formatting in the TO_DATE function.

Examples

Example 18–25 Changing Calendar Systems

The following statement sets NLS_CALENDAR to the Thai Buddha calendar.

NLS_CALENDAR = 'THAI BUDDHA'

NLS Options

MONITOR to NVL2 18-59

Example 18–26 Setting the Language for Dates

The following statements set the language for dates to Spanish and change the
default date format.

NLS_DATE_LANGUAGE = 'SPANISH'
NLS_DATE_FORMAT = 'Month DD, YYYY'

A SHOW SYSDATE statement now generates the date in Spanish.

Septiembre 08, 2000

Example 18–27 Setting the Second Currency Symbol

The following statement sets NLS_DUAL_CURRENCY to the symbol for pounds
sterling.

NLS_DUAL_CURRENCY = '
£
'

Example 18–28 Setting the International Currency Symbol

The following statement changes the ISO symbol to French francs (FRF).

NLS_ISO_CURRENCY = 'FRANCE'

Example 18–29 Checking the Current Value

A SHOW NLS_LANG statement might produce the following.

AMERICAN_AMERICA.WE8ISO8859P1

Example 18–30 Effects of Changing NLS_LANGUAGE

In this example, the NLS_LANG option is initially set to:

AMERICAN_AMERICA.WE8ISO8859P1

The value of YESSPELL is yes.

NLS Options

18-60 Oracle OLAP DML Reference

A change to the language setting:

NLS_LANGUAGE = 'FRENCH'

changes the value of NLS_LANG to:

FRENCH_AMERICAN.WE8ISO8859P1

The value of YESSPELL is now oui.

Example 18–31 Changing the Decimal Marker to a Comma

The following statement changes the decimal marker to a comma, and the
thousands marker to a space.

NLS_NUMERIC_CHARACTERS = ', '

The result of the following statement

show 1234.56

is now

1 234,56

Example 18–32 Binary and Linguistic Sorts

A dimension named words has the following values.

cerveza, Colorado, cheremoya, llama, luna, lago

This example shows the results of a binary sort.

NLS_SORT = 'BINARY'
SORT words A words
STATUS words
The current status of WORDS is:
Colorado, cerveza, cheremoya, lago, llama, luna

A Spanish language sort results in this order.

NLS_SORT = 'SPANISH'
SORT words A words
STATUS words
The current status of WORDS is:
cerveza, cheremoya, Colorado, lago, llama, luna

NLS Options

MONITOR to NVL2 18-61

An extended Spanish language sort results in this order.

NLS_SORT = 'XSPANISH'
SORT words A words
STATUS words
The current status of WORDS is:
cerveza TO cheremoya, lago TO llama

Example 18–33 Effects of Changing NLS_TERRITORY

In this example, the NLS_LANG option is initially set to:

AMERICAN_AMERICA.WE8ISO8859P1

The thousands marker is a comma (,), and the decimal marker is a period (.).

SHOW TO_NUMBER('12345')
12,345.00

A change to the territory setting:

NLS_TERRITORY = 'FRANCE'

changes the value of NLS_LANG to:

AMERICAN_FRANCE.WE8ISO8859P1

The thousands marker is now a period (.), and the decimal marker is a comma (,).

SHOW TO_NUMBER('12345')
12.345,00

NONE

18-62 Oracle OLAP DML Reference

NONE

The NONE function returns YES when no values of a Boolean expression are TRUE.
It returns NO when any value of the expression is TRUE.

Return Value
BOOLEAN

Syntax
NONE(boolean-expression [[STATUS] dimensions])

Arguments

boolean-expression
The Boolean expression to be evaluated.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the Boolean expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, the STATUS keyword might be required in
order for Oracle OLAP to process the function successfully, or the STATUS keyword
might provide a performance enhancement. See "The STATUS Keyword" on
page 18-64.

dimensions
The dimensions of the result. By default, NONE returns a single value. When you
indicate one or more dimensions for the result, NONE tests for TRUE values along
the dimensions that are specified and returns an array of values. Each dimension
must be either a dimension of boolean-expression or related to one of its dimensions.
When it is a related dimension, you can specify the name of the relation instead of
the dimension name. This enables you to choose which relation is used when there
is more than one.

NONE

MONITOR to NVL2 18-63

Notes

NA Values
When the Boolean expression involves an NA value, NONE returns a YES or NO
result when it can, as shown in the following table.

However, in cases where a YES or NO result would be misleading, NONE returns
NA. For example, when you test whether an NA value is greater than a non-NA value,
NONE returns NA.

The Effect of NASKIP
NONE is affected by the NASKIP option. When NASKIP is set to YES (the default),
NONE ignores NA values and returns YES when no value of the Boolean expression
is TRUE and returns NO when any values are TRUE. When NASKIP is set to NO,
NONE returns NA when any value of the expression is NA. When all the values of
the expression are NA, NONE returns NA for either setting of NASKIP.

Data with a Time Dimension
When boolean-expression is dimensioned by a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH,
QUARTER, or YEAR dimension as a related dimension. Oracle OLAP uses the
implicit relation between the dimensions. To control the mapping of one DAY,
WEEK, MONTH, QUARTER, or YEAR dimension to another (for example, from
weeks to months), you can define an explicit relation between the two dimensions
and specify the name of the relation as the dimension argument to the NONE
function.

Boolean expression Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

NONE

18-64 Oracle OLAP DML Reference

For each time period in the related dimension, Oracle OLAP tests the data values
for all the source time periods that end in the target time period. This method is
used regardless of which dimension has the more aggregate time periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the Boolean expression, Oracle OLAP creates a temporary variable to
use while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the Boolean expression
are limited to a few values and are physically fragmented, you can specify the
STATUS keyword to improve the performance of the function.

When you use NONE with the STATUS keyword in an expression that requires
going outside of the status for results (for example, with the LEAD or LAG
functions or with a qualified data reference), the results outside of the status will be
returned as NA.

Related Statements
ANY, COUNT, and EVERY.

Examples

Example 18–34 Testing for No True Values by District

Suppose you want to find out which districts had no months in which sales fell
below $50,000. Use the NONE function to determine whether the Boolean
expression (SALES LT 50000) is TRUE for no months. To have the results
dimensioned by district, specify district as the second argument to NONE.

LIMIT product TO 'Sportswear'
REPORT NONE(sales LT 50000, district)

NONE

MONITOR to NVL2 18-65

The preceding statements produce the following output.

NONE(SALES
LT 50000,

DISTRICT DISTRICT)
-------------- ----------
Boston NO
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

Example 18–35 Testing for No True Values by Region

You might also want to find out which regions had no months in which no districts
had sportswear sales of less than $50,000. Since the region dimension is related to
the district dimension, you can specify region instead of district as a
dimension for the results of ANY.

REPORT NONE(sales LT 50000, region)

The preceding statement produces the following output.

NONE(SALES
LT 50000,

REGION REGION)
-------------- ----------
East NO
Central YES
West NO

NORMAL

18-66 Oracle OLAP DML Reference

NORMAL

The NORMAL function returns a random value from a normal distribution with a
specified mean and standard deviation. The result returned by NORMAL is
dimensioned by all the dimensions of the mean and standard deviation expressions.

Return Value
DECIMAL

Syntax
NORMAL(mean standard-deviation)

Arguments

mean
A numeric expression that represents the mean of a normal distribution.

standard-deviation
A numeric expression that represents the standard deviation of a normal
distribution.

Notes

NA Values
When mean is NA, NORMAL returns NA. When standard-deviation is NA, NORMAL
returns the mean.

Examples

Example 18–36 Showing Random Values

Each of the following examples shows a random number that might be returned
from a normal distribution with a mean of 0 and a standard deviation of 1.

NORMAL

MONITOR to NVL2 18-67

The statement

SHOW NORMAL(0 1)

might produce the following result.

-0.75

When you execute the same statement again

SHOW NORMAL(0 1)

it might produce the following result.

0.87

The following examples show a random number that might be returned from a
normal distribution with a mean of 250 and a standard deviation of 50.

The statement

SHOW NORMAL(250 50)

might produce the following result.

262.24

When you execute the same statement again

SHOW NORMAL(250 50)

it might produce the following result.

217.02

NOSPELL

18-68 Oracle OLAP DML Reference

NOSPELL

(Read-only) The NOSPELL option holds the text that is used for FALSE Boolean
values in the output of OLAP DML statements.

The value of the NOSPELL option is the word for "no" in the current language, as
specified by the NLS_LANGUAGE option. For example, when NLS_LANGUAGE
is set to "American," then the default value of NOSPELL is NO.

Data type
TEXT

Syntax
NOSPELL

Examples

Example 18–37 Seeing the Effect of the NOSPELL Option

Suppose you have a variable called BOOLVAR that currently has a value of NO.
When "non" is the word for "no" in the language specified by the NLS_LANGUAGE
option,

SHOW boolvar

produces the following output.

non

NPV

MONITOR to NVL2 18-69

NPV

The NPV function computes the net present value of a series of cash flow values.

Return Value
DECIMAL

Syntax
NPV(cashflows, discount-rate, [time-dimension])

Arguments

cashflows
A numeric expression that is dimensioned by time-dimension and specifies the series
of cash flow values.

discount-rate
A numeric expression that specifies the interest rate for each period to be used to
discount the cash flow values. It can either be a single value or an array of values
with one or more non-time dimensions. You should express the discount rate as a
decimal quantity; for example, 8.25 percent as .0825.

time-dimension
A name that specifies the time dimension. When cashflows has a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, NPV will automatically use that
dimension, and you can omit the time-dimension argument.

Notes

The Dimensions of the Result
The result returned by the NPV function is dimensioned by all the dimensions of
cashflows except its time dimension. When cashflows is dimensioned only by the time
dimension, NPV returns a single value.

Cash Flow Occurrences
All cash flows are assumed to occur at the beginning of the time period with which
they are associated.

NPV

18-70 Oracle OLAP DML Reference

Cash Flows Discounted
The cash flows are discounted back to the beginning of the earliest time period that
appears in the current status of the time dimension.

Ignored Cash Flows
NPV ignores cash flows that corresponds to out-of-status dimension positions.

NASKIP Option Settings
NPV is affected by the NASKIP option. When NASKIP is set to YES (the default),
NPV ignores NA cash flows and computes net present value using the cash flows
that are available. When NASKIP is set to NO, NPV returns NA when any cash flow
has a value of NA. When all the cash flows are NA, NPV returns NA for either setting
of NASKIP.

NA Discount Rate
When the discount rate used to compute a result value is equal to NA, then that
result value is NA.

Negative Discount Rates
NPV accepts any positive discount rate, and it also accepts a negative discount rate
when the rate is greater than minus one (that is, rate > -1). When you supply a
negative rate, you must precede it with a comma.

Cash Flow Timing
Different assumptions about the intra-period timing of the cash flows, or the base
time point for the present value calculations, can be accommodated by multiplying
the result of the NPV function by the following quantity: one plus the discount rate,
raised to an appropriate positive or negative power.

Examples

Example 18–38 Computing the Net Present Value

The following statements create a dimension called project, add values to it, and
create a variable called cflow, which is dimensioned by year and project.

DEFINE project DIMENSION TEXT
MAINTAIN project ADD 'a' 'b' 'c' 'd' 'e'
DEFINE cflow VARIABLE DECIMAL <project year>

NPV

MONITOR to NVL2 18-71

When you assign the following values to CFLOW,

------------------------CFLOW----------------------
-----------------------PROJECT---------------------

YEAR a b c d e
------------ ---------- ---------- ---------- ---------- -------
Yr95 -200.00 -200.00 -300.00 -100.00 -200.00
Yr96 100.00 150.00 200.00 25.00 25.00
Yr97 100.00 400.00 200.00 100.00 200.00

then the following statement

REPORT NPV(cflow, .08, year)

uses a discount rate of 8 percent to create the following report of the net present
value of the cflow data.

NPV(CFLOW,
PROJECT .08, YEAR)
-------------- ----------
a -21.67
b 281.82
c 56.65
d 8.88
e -5.38

NULLIF

18-72 Oracle OLAP DML Reference

NULLIF

The NULLIF function compares one expression with another and returns NA when
the expressions are equal, or the base expression when they are not.

Return Value
NA when the expressions are equal, or the base expression when they are not.

Syntax
NULLIF (expr1 , expr2)

Arguments

expr1
An expression. The base expression for the comparison

expr2
An expression to compare to expr1.

NUMBYTES

MONITOR to NVL2 18-73

NUMBYTES

The NUMBYTES function counts the number of bytes in a text expression. When
the value is a multiline text value, NUMBYTES returns the total number of bytes in
all the lines. The result returned by NUMBYTES has the same dimensions as the
specified expression.

Return Value
INTEGER

Syntax
NUMBYTES(text-expression)

Arguments

text-expression
The text expression whose bytes are to be counted.

Notes

Single-Byte Characters
When you are using a single-byte character, you can use the NUMCHARS function
instead of the NUMBYTES function.

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Examples

Example 18–39 Counting the Bytes in the Longest Name

You would like to know the length of the names of your products so you can specify
the appropriate width for the label column in a report. You can use the NUMBYTES
function in combination with the LARGEST function to find the length of the

NUMBYTES

18-74 Oracle OLAP DML Reference

longest label. Then use that value to set the column size. The following statements
in a program find the longest name and use the byte count to format a report.

firstcol = LARGEST(NUMBYTES(name.product))+1
LIMIT month TO FIRST 3
FOR product

DO
ROW WIDTH FIRSTCOL name.product WIDTH 6 ACROSS month -
FIRST 3: units

DOEND

When the program is run, it produces the following output.

3-Person Tents 200 203 269
Aluminum Canoes 347 400 482
Tennis Racquets 992 1,076 1,114
Warm-up Suits 1,096 1,214 1,294
Running Shoes 2,532 2,405 2,775

NUMCHARS

MONITOR to NVL2 18-75

NUMCHARS

The NUMCHARS function counts the number of characters in a text expression.
When the value is a multiline text value, NUMCHARS returns the total number of
characters in all the lines. The result returned by NUMCHARS has the same
dimensions as the specified expression.

Return Value
INTEGER

Syntax
NUMCHARS(text-expression)

Arguments

text-expression
The text expression whose characters are to be counted.

Notes

multibyte Characters
When you are using a multibyte character set, you can use the NULLIF function
instead of the NUMCHARS function.

TEXT and NTEXT
NUMCHARS accepts either a TEXT or NTEXT argument. It does not perform an
automatic conversion to either data type. It returns the information that is correct
for the data type of the specified argument.

Examples

Example 18–40 Counting the Characters in the Longest Name

You would like to know the length of the names of your products so you can specify
the appropriate width for the label column in a report. You can use the
NUMCHARS function in combination with the LARGEST function to find the
length of the longest label. Then use that value to set the column size. The following

NUMCHARS

18-76 Oracle OLAP DML Reference

statements in a program find the longest name and use the character count to
format a report.

firstcol = LARGEST(NUMCHARS(name.product))+1
LIMIT month TO FIRST 3
FOR product

DO
ROW WIDTH FIRSTCOL name.product WIDTH 6 ACROSS month -
FIRST 3: units

DOEND

When the program is run, it produces the following output.

3-Person Tents 200 203 269
Aluminum Canoes 347 400 482
Tennis Racquets 992 1,076 1,114
Warm-up Suits 1,096 1,214 1,294
Running Shoes 2,532 2,405 2,775

NUMLINES

MONITOR to NVL2 18-77

NUMLINES

The NUMLINES function counts the number of lines in each value of a text
expression. The result returned by NUMLINES has the same dimensions as the
specified expression.

NUMLINES accepts either a TEXT or NTEXT argument. It does not perform an
automatic conversion to either data type.

Return Value
INTEGER

Syntax
NUMLINES(text-expression)

Arguments

text-expression
The text expression whose lines are to be counted.

Examples

Example 18–41 Counting the Number of Lines

In this example, you want to determine the number of lines in the multiline text
variable LASTNAMES. The LASTNAMES variable has the following values.

Adamson
Jones
Smith
Taylor

The statement

SHOW NUMLINES(lastnames)

produces the following output.

4

NVL

18-78 Oracle OLAP DML Reference

NVL

The NVL function replaces a NA value with a string.

To evaluate a specified expression and replace a non-NA value with one value and a
NA value with another, use NVL2.

Return Value
The specified replacement value when the value of the base expression is NA, or the
base expression when the value of the base expression is not NA. The data type of
the return value is always the same as the data type of the base expression.

Syntax
NVL (exp , replacement-exp)

Arguments

expr
The expression that you want to replace when it has a NA value.

replacement-exp
The value with which you want to replace a NA value.

NVL2

MONITOR to NVL2 18-79

NVL2

The NVL2 function returns one value when the value of a specified expression is
not NA, or another value when the value of the specified expression is NA.

To merely replace a NA value with a string, use NVL.

Return Value
The data type of the return value is always the data type of expr2 (that is, the
expression whose value is returned when the value of expr1 is not NA).

Syntax
NVL2 (expr1 , expr2 , expr3)

Arguments

expr1
The expression whose value this function evaluates.

expr2
An expression whose value is returned when the value of expr1 is not NA.

expr3
An expression whose value is returned when the value of expr1 is NA.

Notes

Comparing Values of Different Data Types
When the data types of expr2 and expr3 are different, then the function converts
expr3 to the data type of expr2 before comparing them.

NVL2

18-80 Oracle OLAP DML Reference

OBJ to QUAL 19-1

19
OBJ to QUAL

This chapter contains the following OLAP DML statements:

■ OBJ

■ OBJLIST

■ OBSCURE

■ OKFORLIMIT

■ OKNULLSTATUS

■ ONATTACH

■ OUTFILE

■ OUTFILEUNIT

■ PAGE

■ PAGENUM

■ PAGEPRG

■ PAGESIZE

■ PAGING

■ PARENS

■ PARSE

■ PARTITIONCHECK

■ PERCENTAGE

■ PERMIT

■ PERMIT_READ

19-2 Oracle OLAP DML Reference

■ PERMIT_WRITE

■ PERMITERROR

■ PERMITRESET

■ POP

■ POPLEVEL

■ POUTFILEUNIT

■ PRGTRACE

■ PROGRAM

■ PROPERTY

■ PUSH

■ PUSHLEVEL

■ QUAL

OBJ

OBJ to QUAL 19-3

OBJ

The OBJ function returns information about a workspace object.

Return Value
The return value depends on the choice keyword.

Syntax
OBJ(choice [object-name])

where choice is one of the following keywords that indicates the type of information
you want:

AGGMAP
AGGMAPLIST
ALIASLIST
ALIASOF
AW
AWLIST
BTREE
BTREE SHARED
CACHECOUNT var-name
CACHEEMPTY var-name
CLASS
DATA
DFNDIMS
DIMMAX
DIMS
DIMTYPE
DISKSIZE
FORMULA
HASCACHE var-name
HASH
HASPROPERTY prop-name
HIDDEN program-name
INORDER
ISBY [RECURSIVE] dimension-name [object-name]
ISCOMPILED
KVSIZE

OBJ

19-4 Oracle OLAP DML Reference

LD
MODEL
NAPAGES
NOHASH
NUMDELS
NUMDFNDIMS
NUMDIMS
NUMSEGS
NUMVALS
OWNSPACE
PARTBY
PARTDIMS partitions
PARTITION partitions
PARTMETH
PARTNAMES
PARTRANGE partitions
PERIOD
PHYSVALS
PMTMAINTAIN
PMTPERMIT
PMTREAD
PMTWRITE
PRECISION
PROGRAM
PROPERTY prop-name
PROPERTYLIST
PROPERTYTYPE prop-name
REFERS text-expression
SCALE
SEGWIDTH {dimension-name | ALL}
SPARSE
SURROGATELIST {surrogate|dimension}
TRIGGER [triggering-event]
TYPE
VALSIZE
VNF
WIDTH

OBJ

OBJ to QUAL 19-5

Arguments

AGGMAP
Returns a TEXT value which is the specification of the aggmap that you specify.

AGGMAPLIST
Returns a TEXT value which is the aggmap objects in the formula that you specify.

ALIASLIST
Returns a TEXT value which is the alias dimensions for the dimension that you
specify.

ALIASOF
Returns a TEXT value which is the base dimension for the alias dimension that you
specify.

AW
Returns a TEXT value which is the name of an attached workspace that contains an
object with the specified name. When the specified object is in only one attached
workspace, AW returns the name of the workspace. When the specified object is in
more than one attached workspace, AW still returns only one workspace name. You
must use the AWLIST keyword to get all the relevant workspace names. When the
object is not in any attached workspace, AW returns NA.

AWLIST
Returns a multiline TEXT value each line of which is the name of an attached
workspace that contains an object with the specified name. When you specify a
qualified object name for the object, AWLIST returns only the relevant workspace
name. When no workspace contains the specified object, AW returns NA.

BTREE
Returns a BOOLEAN value that indicates whether a conjoint dimension or a
composite is using the BTREE index algorithm to load and access data. For other
types of objects, it returns NA.

CACHEEMPTY var-name
Returns a BOOLEAN value that indicates whether a session cache has been emptied
of data for var-name which is a text expression that specifies the name of the
variable. A cache can be emptied by using the CLEAR command with the CACHE
keyword. When var-name is not a variable or when it has no session cache, then
CACHEEMPTY returns NA. (For more information on the session cache, see "What
is an Oracle OLAP Session Cache?" on page 21-54.)

OBJ

19-6 Oracle OLAP DML Reference

CACHECOUNT var-name
Returns a LONG INTEGER value which is the number of non-NA cells in the session
cache for var-name which is a text expression that specifies the name of the variable.
When var-name is not a variable or when it does not have a no session cache, then
CACHECOUNT returns NA. (For more information on the session cache, see "What
is an Oracle OLAP Session Cache?" on page 21-54.)

CLASS
Returns a TEXT value which is the storage class of an object. Possible return values
are:

■ TEMPORARY — An object whose values are not saved in the workspace;
applicable to valuesets, variables, relations, and worksheets.

■ null — A permanent object whose values, when modified, are stored in a new
place in the workspace until you update and are then included in the update;
applicable to all object types.

DATA
Returns a TEXT value which is the data type of an object.

■ For dimensions, variables, and formulas, possible values are INTEGER,
SHORTINTEGER, LONGINTEGER, DECIMAL, NUMBER, SHORT (for
SHORTDECIMAL), BOOLEAN, ID, TEXT, NTEXT, DATE or DATETIME.

■ For a relation, DATA returns the name of the related dimension.

■ For a concat or conjoint dimension or a composite, it returns the names of the
base dimensions of an object as a multiline text value.

■ For a program defined with a data type, it returns the name of the data type.

■ For a valueset, it returns the name of the dimension for which the valueset was
defined.

■ For other types of objects, it returns NA.

DFNDIMS
Returns a TEXT value which is a multiline text value that contains the names of the
dimensions and composites in the dimension list that is used to define an object. An

Tip: To find out the type of time period represented by
dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR,
use the PERIOD choice.

OBJ

OBJ to QUAL 19-7

object defined with a dimension list could be a variable, relation, formula, valueset,
concat or conjoint dimension, dimension surrogate, or composite.

■ The name returned for an unnamed composite is the form used in the object
definition: SPARSE<dim1 dim2 ...>.

■ For a dimension surrogate, DFNDIMS returns the name of the dimension for
which the surrogate was defined.

■ When no dimension list was used when an object was defined, DFNDIMS
returns NA.

DIMMAX
Returns an INTEGER value which is the number of values in a dimension. For other
object types, DIMMAX returns 0 (zero). When you use the DIMMAX choice with a
dimension that has a read permission that restricts access to the dimension values,
the result that OBJ returns depends on whether the dimension has previously been
loaded. Permissions are evaluated when an object is loaded. Generally, the first time
you refer to an object in your session, Oracle OLAP loads the object and evaluates
its permissions. However, the OBJ function does not load objects, since it is just
providing information about them. When you use DIMMAX with a dimension that
has not yet been loaded, the result reflects the entire number of values in the
dimension, regardless of whether the dimension has read permissions. When a
dimension with permissions has already been loaded, then the DIMMAX choice
reflects the permitted size. To ensure that the DIMMAX choice returns the permitted
size, you can execute a LOAD command before using the OBJ function.

DIMS
Returns a multiline TEXT value that contains the names of the dimensions of an
object:

■ For dimensions, simple, concat, or conjoint, DIMS returns the name of the
dimension itself. To find out the base dimensions of a concat or conjoint
dimension, use the DATA choice.

■ For composites, it returns a multiline text value listing the base dimensions of
the composite.

■ For a dimension surrogate, it returns the name of the dimension for which the
surrogate was defined.

■ For other objects, it returns a multiline text value that contains the names of the
dimensions of the object.

■ When an object has no dimensions, it returns NA.

OBJ

19-8 Oracle OLAP DML Reference

DIMTYPE
Returns one of the following TEXT values:

■ For a concat dimension, returns CONCAT.

■ For a conjoint dimension, returns, CONJOINT.

■ For a composite, returns, COMPOSITE.

■ For a simple dimension, returns the data type of the dimension.

■ For a partition template object, returns PARTITION TEMPLATE.

■ For all other objects, returns NA.

FORMULA
Returns a TEXT value which is the expression in the definition of a formula. When
the object is not a formula, FORMULA returns NA.

HASCACHE variable-name
Returns a BOOLEAN value that indicates whether a session cache that is local to the
session has been established to store data for variable-name which is a text expression
that specifies the name of the variable. When variable-name is not a variable,
HASCACHE returns NA. (For more information on the session cache, see "What is
an Oracle OLAP Session Cache?" on page 21-54.)

HASH
Returns a BOOLEAN value that indicates whether a conjoint dimension or a
composite is using the HASH index algorithm to load and access data. For other
types of objects, it returns NA.

HASPROPERTY prop-name
Returns a BOOLEAN value that indicates whether the property specified by
prop-name exists for an object. (Abbreviated HASPRP)

HIDDEN program-name
Returns a BOOLEAN value that indicates whether the text of the program specified
by program-name has been hidden. (See the entries for the HIDE and UNHIDE
commands.) For other types of objects, it returns NA.

ISBY [RECURSIVE] dimension-name [object-name]
When you supply both arguments returns a BOOLEAN value that answers the
question: Is the specified object (object-name) dimensioned by or related to or a
surrogate for the specified dimension (dimension-name)? Returns a BOOLEAN value
that indicates whether an object is dimensioned by the dimension you specify in

OBJ

OBJ to QUAL 19-9

dimension-name; or when the object is an aggmap, whether the specified dimension
is a dimension of any relations or models in the aggmap.

■ RECURSIVE specifies that Oracle OLAP should search for dimension-name in the
base dimensions of the specified object, at any level. the. See Example 19–1,
"OBJ With ISBY" on page 19-17.

■ dimension-name is a text expression that is the name of a dimension. (Oracle
OLAP automatically converts the name to uppercase.) When dimension-name is a
composite, the value returned by ISBY indicates whether or not an object was
defined with the composite.

■ object-name is a text expression that is a dimension surrogate, variable, relation,
or valueset name to learn if that object is dimensioned by or related to or a
surrogate for the specified dimension. You can omit object-name when you are
looping through the list of workspace objects to obtain information about more
than one object, or when you are using OBJ to limit the NAME dimension.

ISCOMPILED
Returns a BOOLEAN value that indicates information about the compilation status
of a compilable object (such as a program, model, or formula). The value returned
depends on the type of object and on whether a compilation error was found in that
object. For example:

■ For programs, returns YES when the program has been processed by the
compiler since the last time it was modified. A return value of YES does not
necessarily indicate that all lines of the program are compiled. See COMPILE
for more information.

■ For formulas, returns YES only when the formula was compiled without
finding a single error and when the formula can be saved. When the formula
contains ampersand substitution, it cannot be saved. When the formula is
empty, the ISCOMPILED choice returns NO.

■ For models, returns YES only when the model was compiled without a single
error found or when the model is empty.

■ For programs, formulas, and models, returns NO when you delete an object that
the program, formula, or model references.

For non-compilable objects, ISCOMPILED returns NA.

KVSIZE
Returns an INTEGER value which is the number of pages currently allocated to
hash and BTREE indexes.

OBJ

19-10 Oracle OLAP DML Reference

LD
Returns a TEXT value which is LD (long description) of an object. When the object
does not have an LD, it returns NA.

MODEL
Returns a TEXT value which is the specification of a model. For other types of
objects, it returns NA.

NOHASH
Returns a BOOLEAN value that indicates whether a conjoint dimension uses the
NOHASH index algorithm to load and access data. For other types of objects, it
returns NA.

NUMDFNDIMS
Returns an INTEGER value which is the number of dimensions or composites in the
dimension list used to define an object. For this count, each composite counts as
one, and the dimensions within the dimension list of the composite are not counted.
An object defined with a dimension list could be a variable, relation, formula,
valueset, concat or conjoint dimension, dimension surrogate, or composite. When
no dimension list was used when defining the object (as for single-cell variables,
programs, and so on.), it returns 0 (zero).

NUMDIMS
Returns an INTEGER value which is one of the following depending on the type of
object:

■ For a dimensioned object, the number of dimensions.

■ For all types of dimensions and dimension surrogates, NUMDIMS returns 1.

■ For a composite, it returns the number of base dimensions.

■ For objects with no dimensions, it returns 0 (zero).

NUMVALS
Returns an INTEGER value that is the number of values or cells in the object. For a
compressed composite or a variable dimensioned by a compressed composite,
returns an INTEGER value that is the number of logical values in the object (that is,
the value that would be returned if the composite was a b-tree composite). To
retrieve the number of physical cells, use the PHYSVALS keyword.

OWNSPACE
Returns a BOOLEAN value that indicates whether a conjoint dimension or a
composite is using private page space to store BTREE nodes, when that object is

OBJ

OBJ to QUAL 19-11

using the BTREE index algorithm. In addition, whether the data that is associated
with a composite, a conjoint dimension, a variable-width text dimension, a relation,
or a variable-width text variable is stored in one or more private page spaces that
are associated with that object.

PARTBY
When name is the name of a partitioned variable or a partition template object,
returns the names of the partition dimensions as a multiline text value (one line for
each dimension). For all other object types, returns NA.

PARTDIMS partitions
When name is the name of a partition template or a partitioned variable, returns the
names of the dimensions of the specified partitions as a multiline text value (one
line for each dimension). For all other object types, returns NA.

partitions is a multiline text value (one line for each partition name) that specifies
which partitions you're asking about. When you specify a partition name that is not
a valid partition in partitions, an error occurs.

PARTITION partitions
When name is the name of a partitioned variable or a partition template object,
returns a textual description of the specified partitions. When called on a partition
template, the returned description is similar to the DEFINE PARTITION
TEMPLATE statement. When called on a partitioned variable, the returned
description is similar to the DEFINE VARIABLE statement. For all other object
types, returns NA.

partitions is a multiline text value (one line for partition name) that specifies which
partitions you're asking about.When you specify a partition name that is not a valid
partition in partitions, an error occurs.

PARTMETH
When name is the name of a partition template or a partitioned variable, returns a
text value that is the method (RANGE, LIST, or CONCAT) by which it is partitioned.
For all other object types, returns NA.

PARTNAMES
When name is the name of a partition template, returns a multiline VARCHAR
containing the names of all the defined partitions. When name is the name of a
partitioned variable, returns a multiline VARCHAR containing the names of all the
partitions of the variable. For all other object types, returns NA.

OBJ

19-12 Oracle OLAP DML Reference

PARTRANGE partitions [name]
When name is the name of a a RANGE partition template or a RANGE partitioned
variable, returns the values of the LESS THAN clause for each of the specified
partitions. The return value is a multiline text value (one line for each partition). For
all other kinds of partition templates and partitioned variables and all other object
types, returns NA.

partitions is a multiline text value (one line for each partition name) that specifies
which partitions you're asking about. When you specify a partition name that is not
a valid partition in partitions, an error occurs.

PERIOD
For dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, returns a
TEXT value which is the type of the dimension plus an indication of multiple
periods or phasing, if any. For objects other than DAY, WEEK, MONTH, QUARTER,
or YEAR dimensions, it returns NA.

PHYSVALS
For a compressed composite or a variable dimensioned by a compressed composite,
returns an INTEGER value that is the number of physical cells in the object. To
retrieve the number of logical values, use the NUMVALS keyword.

PMTMAINTAIN
Returns a TEXT value which is the permission condition for the maintain
permission associated with a dimension. When there is no maintain permission for
the dimension, it returns NA.

PMTPERMIT
Returns a TEXT value which is the permission condition for the permit permission
associated with an object. When there is no permit permission for the object, it
returns NA.

Note: Not all of the partitions defined by a partition template
necessarily exist in each partitioned variable. Calling
OBJ(PARTNAMES)on a partitioned variable returns only those
partitions that actually exist.

OBJ

OBJ to QUAL 19-13

PMTREAD
Returns a TEXT value which is the permission condition for the read permission
associated with an object. When there is no read permission for the object, it returns
NA.

PMTWRITE
Returns a TEXT value which is the permission condition for the write permission
associated with an object. When there is no write permission for the object, it
returns NA.

PRECISION
Returns an INTEGER value which is the precision of a NUMBER dimension or
variable. The precision is the total number of digits. When the variable was defined
without a precision specification, then OBJ returns NA.

PROGRAM
Returns a TEXT value which is the text of a program. For other types of objects, it
returns NA.

PROPERTY prop-name
The value of the property specified by prop-name which is a text expression that
specifies the name of the property. The data type of the return value is determined
at runtime. (See "Converting Values Returned by OBJ (PROPERTY)" on page 19-16
for more information.) When the named property does not exist, it returns NA. See
the PROPERTYTYPE argument. (Abbreviated PRP)

PROPERTYLIST
Returns a TEXT value which is a multiline text value that lists the properties
associated with an object, one property on a line. The names are in uppercase letters
and are stored in the collating sequence for ASCII characters. For objects without
properties, it returns NA. (Abbreviated PRPLIST)

PROPERTYTYPE prop-name
 The data type of prop-name which is a text expression that specifies the name of the
property The type is derived from the expression used in the PROPERTY command.
Possible return values are BOOLEAN, TEXT, ID, DATE, DATETIME, NUMBER,
INTEGER, LONGINTEGER, DECIMAL, and SHORT.When the named property does
not exist or has a value of NA, it returns NA. (Abbreviated PRPTYPE)

REFERS text-expression
Returns a multiline TEXT value which is the words found in a compilable object (for
example, a program) that match the ones you specify in text-expression. REFERS

OBJ

19-14 Oracle OLAP DML Reference

returns NA when it does not find any of the specified words, when the specified
object is not a compilable object, or when the workspace does not contain any
compilable objects. When you supply both arguments, REFERS searches only the
specified object for the listed words. When you omit object-name, REFERS searches
all the compilable objects in the current workspace.

■ text-expression is a multiline TEXT expression that is the words for which it
should search. Each line in the text value is considered a separate word to be
searched for.

The search is not case-sensitive; REFERS treats TEXTVAR and Textvar as the same
word. REFERS ignores all text that is included in a comment or enclosed in single
quotes.

When, for text-expression, you specify a list of words that is the result of the OBJLIST
function, you can produce a cross-reference for compilable objects in the current
workspace.

SCALE
Returns an INTEGER value which is the scale of a NUMBER dimension or variable.
A positive scale indicates the number of digits to the right of the decimal point. A
negative scale indicates the number of rounded digits to the left of the decimal
point. When the variable was defined without a scale specification, then OBJ returns
NA.

SEGWIDTH {dimension-name | ALL}
Returns a single or multiline TEXT value which is default or user-specified segment
size of a variable that has more than one dimension and that is associated with
either a particular dimension or all dimensions. Each line begins with a
segment-size (up to 11 digits) followed by the name of the associated dimension or
composite. The dimension name is not included in the line when you specify a
dimension and its dimensioned object. In that case only the segment value is
returned. When the segment size is reported as zero, it means the default segment
size is in effect, and therefore you may need to use CHGDFN to set an appropriate
size for the variable's segments. When applied to an object other than a variable,
this choice returns NA.

Tip: When you omit object-name, use REPORT, rather than SHOW,
to produce the output. Because the return value of OBJ(REFERS) is
dimensioned by the NAME dimension, the REPORT command will
return output for each object in the workspace.

OBJ

OBJ to QUAL 19-15

■ dimension-name is a text expression that is the name of a dimension.

■ ALL specifies all dimensions.

SPARSE
Returns a TEXT value which is a multiline text value that lists the composites used
in the definition of an object.

SURROGATELIST surrogate|dimension
Returns a TEXT value which is a multiline text value that lists the surrogates
defined for a dimension. The object-name can be the name of a surrogate or a
dimension. When no surrogates are defined for the dimension, then OBJ returns NA.

TRIGGER [triggering-event]
Specify the triggering-event using one of the following keywords:

MAINTAIN
DELETE
PROPERTY
ASSIGN
BEFORE_UPDATE
AFTER_UPDATE

TRIGGER without a triggering-event keyword returns a TEXT value which consists
of all the triggering-event keywords and trigger programs names associated with the
object; or NA when the object does not have any trigger programs associated with it.
TRIGGER with a triggering-event keyword returns a TEXT value that is the names of
the trigger programs associated with the object event.

TYPE
Returns a TEXT value which is the object type of an object. Possible values include
AGGMAP, COMPOSITE, DIMENSION, FORMULA, MODEL, OPTION, PARTITION
TEMPLATE, PROGRAM, RELATION, SURROGATE, VALUESET, VARIABLE and
WORKSHEET.

VNF
Returns a TEXT value which is the VNF (value name format) of a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR. For other types of objects, and for
DAY, WEEK, MONTH, QUARTER, and YEAR dimensions with no VNF, it returns
NA.

OBJ

19-16 Oracle OLAP DML Reference

WIDTH
Returns an INTEGER value which is the width, in bytes, of the storage area of each
value of an object:

■ For dimensioned INTEGER and BOOLEAN variables that you defined with a
width, it returns 1.

■ For dimensioned text variables and text dimensions that you defined with a
width, it returns an integer between 1 and 4000, which identifies the defined
width.

■ For all other objects, it returns NA.

object-name
A text expression that contains the name of the object in which you are interested.
The object can be in any attached workspace. When you specify object-name as a text
literal, you must enclose it in single quotes. (Oracle OLAP automatically converts
the name to uppercase.) When you specify the name of a program as the object-name
and you omit the quotes, Oracle OLAP runs the program and uses its return value
as the name of the object to be supplied as object-name.

You can omit object-name when you are using the OBJ function as part of a
statement, such as the LIMIT command, that loops through the NAME dimension.
In this case, the return value is dimensioned by the NAME dimension in the current
workspace.

Notes

Matching the Case of the Return Value
When you are checking the value returned by OBJ in a Boolean expression, you
must be careful to check for the exact value returned by the OBJ function. This
means you must match uppercase and lowercase exactly. For example, OBJ(DATA)
returns the data type in uppercase.

OBJ(DATA) EQ 'INTEGER'

This is particularly important when you are limiting NAME to a particular group of
objects. See Example 19–4, "Using OBJ to Select Objects" on page 19-19.

Converting Values Returned by OBJ (PROPERTY)
The return value of OBJ(PROPERTY) is like a worksheet value whose data type is
determined at runtime. In some cases, the statement calling OBJ(PROPERTY) makes

OBJ

OBJ to QUAL 19-17

assumptions about its return value. In the following example, market is a
dimension of TEXT values and max is a property with an INTEGER value.

LIMIT market TO OBJ(PROPERTY 'max' 'market')

Because the data type of the property is not the same data type as the dimension,
the LIMIT command produces an error message stating that the return value is not
a valid dimension value. To solve this problem, use the CONVERT function.

LIMIT market TO CONVERT(OBJ(PROPERTY 'max' 'market') INTEGER)

Examples

Example 19–1 OBJ With ISBY

For example, the following statement limits NAME to all the objects dimensioned
by month.

LIMIT NAME TO OBJ(ISBY 'month')

You can use ISBY to find out if a dimension is a base dimension of a concat or
conjoint dimension or a composite. For example, assume that you had a conjoint
dimension named proddist whose base dimensions were product and
district. In this case, the following statement returns YES.

SHOW OBJ(ISBY 'district' 'proddist')

You can use ISBY to find out if a dimension is a dimension of a relation or a model
used in an aggmap. For example, assume that you had an aggmap called myaggmap
and you wanted to find out if a dimension named mydimension was used in any
relations or models within myaggmap. In this case, you could issue the following
statement.

SHOW OBJ(ISBY 'mydimension' 'myaggmap')

To determine whether a specified dimension is a base dimension at any level, you
must use ISBY with the RECURSIVE keyword. For example, assume that you had a
conjoint dimension named proddist.mon whose base dimensions were
proddist and month and a variable proddist.sales dimensioned by
proddist. In this case, each of the following statements would return NO.

SHOW OBJ(ISBY 'district' 'proddist.mon')
SHOW OBJ(ISBY 'district' 'proddist.sales')

OBJ

19-18 Oracle OLAP DML Reference

However, when you use ISBY with the RECURSIVE keyword, each of the following
statements would return YES.

SHOW OBJ(ISBY RECURSIVE 'district' 'proddist.mon')
SHOW OBJ(ISBY RECURSIVE 'district' 'proddist.sales')

Example 19–2 Getting Information about a Variable

This example illustrates the use of several choices of the OBJ function to obtain
information about the variable sales. The definition of sales is as follows.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue

■ The statement

SHOW OBJ(TYPE 'sales')

produces the following output.

VARIABLE

■ The statement

SHOW OBJ(DATA 'sales')

produces the following output.

DECIMAL

■ The statement

SHOW OBJ(DIMS 'sales')

produces the following output.

MONTH
PRODUCT
DISTRICT

■ The statement

SHOW OBJ(ISBY 'product' 'sales')

produces the following output.

YES

OBJ

OBJ to QUAL 19-19

■ The statement

SHOW OBJ(LD 'sales')

produces the following output.

Sales Revenue

Example 19–3 Returning the Name of the Object or the Type of the Object

Suppose textvar is a variable whose value is geog, which is the name of a
dimension. Whether you enclose the word textvar in quotation marks determines
whether the following OBJ function calls return the word VARIABLE (the type of
object textvar is) or DIMENSION (the type of object geog is).

SHOW OBJ(TYPE 'textvar')
VARIABLE

SHOW OBJ(TYPE textvar)
DIMENSION

Example 19–4 Using OBJ to Select Objects

This example uses OBJ and DESCRIBE to look at the definitions of all the relations
in a workspace. The Oracle OLAP statements

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT

DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Example 19–5 Counting Compiled Objects

The following statements count how many compilable objects in your workspace
are compiled and how many are not compiled. Each statement loops over the
objects in the current workspace. The OBJ function returns YES for each object that

OBJ

19-20 Oracle OLAP DML Reference

is compiled, NO for each compilable object that is not compiled, and NA for objects
that are not compilable. When NASKIP is YES (the default), the COUNT function in
the first statement counts the number of YES values that are returned by OBJ, and in
the second statement it counts the number of NO values that are returned.

SHOW COUNT(OBJ(ISCOMPILED))
SHOW COUNT(NOT OBJ(ISCOMPILED))

Example 19–6 OBJ with REFERS

The following statement searches the compilable objects in the current workspace
for references to the objects in all the attached workspaces. The output lists the
non-compilable objects in the current workspace too, but the return value for them
is NA.

REPORT OBJ(REFERS OBJLIST(AW(LIST)))

In the following example, OBJ(REFERS) tells you whether var1, var2, or var3
appears in the myprog program. The return value of OBJ(REFERS) is a multiline
text value that contains the references it finds. When only var1 and var3 appear in
the program, then the return value contains those two names, each on a separate
line. The statement

SHOW OBJ(REFERS 'var1\nvar2\nvar3' 'myprog')

produces the following output.

VAR1
VAR3

When you do not specify the name of a program or formula to be searched,
OBJ(REFERS) returns a single-line or multiline text value for each object in the

OBJ

OBJ to QUAL 19-21

NAME dimension of the current workspace. For objects that are not programs or
formulas, NA is returned. The statement

REPORT OBJ(REFERS 'var1\nvar2\nvar3')

produces the following output.

OBJ(REFERS
'var1
var2

NAME var3')
-------------- ----------
PRODUCT NA
DISTRICT NA
DIVISION NA
LINE NA
QUARTER NA
REGION NA
YEAR NA
MONTH NA

...
MYPROG VAR1

VAR3
VAR1 NA
VAR2 NA
VAR3 NA

Example 19–7 OBJ with PROPERTY

In the following example, OBJ(PROPERTY) returns information about the
decplace property of the actual variable. (See PROPERTY.) The user created this
property to store the number of decimal places and now wants to obtain that value
to produce a report of the actual variable.

OBJ

19-22 Oracle OLAP DML Reference

The statements

CONSIDER actual
PROPERTY 'decplace' 4
LIMIT month TO FIRST 1
LIMIT division TO 'Camping'
REPORT ACROSS month W 20 DECIMAL OBJ(PROPERTY 'decplace' -
'actual') actual

produce the following output.

DIVISION: CAMPING
-------ACTUAL-------
-------MONTH--------

LINE JAN 95
-------------- --------------------
Revenue 533,362.8800
Cogs 360,810.6600
Gross.Margin 172,552.2200
Marketing 37,369.5000
Selling 89,007.3800
R.D 24,307.5000
Opr.Income 21,867.8400
Taxes 15,970.3900
Net.Income 5,897.4500

Example 19–8 OBJ with SEGWIDTH

The following statements show how to change and display segment size values for
all of a variable's dimensions.

CHGDFN sales SEGWIDTH 150 5000 50
SHOW OBJ(SEGWIDTH ALL 'sales')

These statements produce the following output.

150 MONTH
5000 PRODUCT
50 DISTRICT

The following statement shows how to obtain the segment size value for a specific
dimension.

SHOW OBJ(SEGWIDTH 'product' 'sales')

OBJ

OBJ to QUAL 19-23

This statement produces the following output.

5000

The following statement shows how to obtain a list of segment sizes for every
multidimensional variable or relation associated with the dimension.

When object-name is not specified, you need to use REPORT rather than SHOW to
obtain a value for each object in the NAME dimension.

REPORT OBJ(SEGWIDTH 'product')

This statement produces the following output.

NAME OBJ(SEGWIDTH 'product')
-------------- -----------------------
SALES 5000
SALES.FORECAST 5000
SALES.PLAN 5000
SHARE 5000
UNITS 5000
UNITS.M 0

...

The following statement shows how to produce a list of segment sizes for all
dimensions in the current workspace.

REPORT OBJ(SEGWIDTH ALL)

This statement produces the following output.

NAME OBJ(SEGWIDTH ALL)
-------------- -----------------
SALES 150 MONTH

5000 PRODUCT
50 DISTRICT

SALES.FORECAST 150 MONTH
5000 PRODUCT
50 DISTRICT

...

OBJLIST

19-24 Oracle OLAP DML Reference

OBJLIST

The OBJLIST function provides a list of the objects that are contained in one or more
workspaces that you specify. The specified workspaces must be currently attached
when you use the function.

The result, a multiline TEXT value, can be used as an argument to the OBJ function
with the REFERS keyword. This usage helps in producing a cross-reference list for
compilable objects, such as programs and models, in the current workspace.

Return Value
TEXT

Syntax
OBJLIST[(text-expression)]

Arguments

text-expression
A text expression that contains a single name or several names of currently attached
workspaces. Each workspace name must be on a separate line of a multiline TEXT
value. When you do not supply this argument, OBJLIST uses the current workspace
name.

Notes

Output from OBJLIST
The list of workspace objects returned by OBJLIST has duplicates removed and it is
sorted in ascending order.

Listing All Workspace Objects
OBJLIST always returns the names of all the objects in a given workspace, even
when you have limited its NAME dimension.

When a Workspace Is Not Attached
When text-expression includes the name of a workspace that is not attached, OBJLIST
does not return a value. Instead, it signals an error.

OBJLIST

OBJ to QUAL 19-25

Examples

Example 19–9 Listing Objects in Three Workspaces

In the following example, OBJLIST returns a multiline TEXT value that includes all
the objects in the three workspaces specified: mycode, mydata, and mytools. The
statement

SHOW OBJLIST('mycode\nmydata\nmytools')

produces the following output.

ACTUAL
ADDFIVE
ADVERTISING
BUDGET
CITYLIST
CITYREPINIT
CITYREPS

...
YEAR

Example 19–10 Listing Referenced Objects

In the following example, OBJ(REFERS) returns a multiline TEXT value that
contains every object from the mycode, mydata, and mytools workspaces that is
referenced in the myprog program. The statement

SHOW OBJ(REFERS OBJLIST('mycode\nmydata\nmytools') 'myprog')

produces the following output.

ACTUAL
BUDGET
...
YEAR

OBSCURE

19-26 Oracle OLAP DML Reference

OBSCURE

The OBSCURE function provides two mechanisms for encrypting a single-line text
expression. Depending on the mechanism you use, OBSCURE can also restore the
encrypted value to its original form.

Return Value
TEXT

Syntax
OBSCURE({HASH|HIDE|UNHIDE} [TEXT] seed-exp input-exp)

Arguments

HASH
Specifies that Oracle OLAP encrypts the input text expression according to the seed
expression that you specify. With the HASH keyword:

■ Encrypted values cannot be restored to their original form.

■ The same seed expression and input text always produce the same result.

A typical application would be a local password validation scheme. You can use
OBSCURE with the HASH keyword to encrypt passwords, store them, and then
validate the passwords presented by users against the stored encrypted values. See
Example 19–11, "Using HASH" on page 19-28.

Note: The return value of the OBSCURE function always has a
text data type. However, unless you specify the TEXT keyword, the
actual value returned by OBSCURE(HASH) and OBSCURE(HIDE) is
binary. When you want to be able to manage these encrypted
values as text (for example, when you want to be able to store them
in a text file), you must specify the TEXT keyword. See
Example 19–13, "Generating Text Data" on page 19-29.

OBSCURE

OBJ to QUAL 19-27

HIDE
Specifies that Oracle OLAP encrypts the input text expression according to the seed
expression that you specify. With the HIDE keyword:

■ Encrypted values can be restored to their original form with UNHIDE.

■ The same seed expression and input text always produce different results.

The HIDE keyword provides a mechanism for storing values in encrypted form
while actually comparing their unencrypted values. A typical application would be a
remote password validation scheme. You could use OBSCURE with the HIDE
keyword to store passwords in encrypted form on a local system. You could then
pass them in encrypted form to a remote system for validation against unencrypted
criteria on the host. See Example 19–12, "Using HIDE" on page 19-28.

UNHIDE
When specified with the original seed expression, restores values encrypted with
the HIDE keyword to their original form. See "Restoring Text" on page 19-27.

TEXT
The TEXT keyword causes OBSCURE to convert binary data to text, such that the
return value consists only of text data. When you do not specify the TEXT keyword,
the output of OBSCURE is binary data. See "Restoring Text" on page 19-27, and
"Generating Text Data" on page 19-29.

seed-exp
A single-line text expression that is used as a seed value in the encryption of the
input text expression.

input-exp
A single-line text expression to be encrypted or restored by OBSCURE.

Notes

Restoring Text
When you have used OBSCURE(HIDE) with the TEXT keyword to encrypt a text
expression, you must also specify the TEXT keyword with OBSCURE(UNHIDE) to
restore the encrypted expression to its original form.

OBSCURE and C2 Security
The OBSCURE function does not conform to the C2 security level specified by the
Department of Defense.

OBSCURE

19-28 Oracle OLAP DML Reference

Case Sensitivity
Both the seed expression and the text expression that you provide as input to
OBSCURE are case-sensitive.

Examples

Example 19–11 Using HASH

The following example shows how you could use the HASH keyword to store a
password in encrypted form in the variable first_user. When a new user
attempts to log in, his password is encrypted with the HASH keyword and
compared to the value stored in first_user. When the values are the same, the
program validate_user, which allows the new user to log in, is invoked.

passvar = 'JoeSmith'
first_user = OBSCURE(HASH 'lxyz' passvar)
...
'Run a login procedure that assigns a password
'presented by a user to the variable NEW_USER
'and checks it against the stored encrypted value
...
IF OBSCURE(HASH 'xyz' new_user) EQ first_user

THEN validate_user
ELSE deny_access

Example 19–12 Using HIDE

You can encrypt the name JSmith with the seed expression'abc and restore it to its
original form, using the following statements.

DEFINE pswobsc VARIABLE TEXT
pswobsc = OBSCURE(HIDE 'abc' 'JSmith')
SHOW OBSCURE(UNHIDE 'abc' pswobsc)

This SHOW statement generates the following output.

jsmith

OBSCURE

OBJ to QUAL 19-29

Example 19–13 Generating Text Data

The following statements illustrate the use of the TEXT keyword.

DEFINE encrypted_text VARIABLE TEXT
DEFINE unencrypted_text VARIABLE TEXT

unencrypted_text = 'max'
encrypted_text = OBSCURE(HIDE TEXT 'XXXX' unencrypted_text)
SHOW encrypted_text

This SHOW statement generates the following output.

c5WF/XfABuY

The same statements without the TEXT keyword would produce binary output
from the SHOW statement.

OKFORLIMIT

19-30 Oracle OLAP DML Reference

OKFORLIMIT

The OKFORLIMIT option controls whether you can limit the dimension you are
looping over within an explicit FOR loop.

Data type
BOOLEAN

Syntax
OKFORLIMIT = {NO|YES}

Arguments

NO
You cannot limit the dimension you are looping over within an explicit FOR loop.
(Default)

YES
You can limit the dimension you are looping over within an explicit FOR loop.

Notes

Related Statements
See the TEMPSTAT command to set the status of the dimension you are looping
over in a loop that is generated by a REPORT command.

OKFORLIMIT

OBJ to QUAL 19-31

Examples

Example 19–14 Allowing Limits Within a Loop

The following program excerpt sets OKFORLIMIT to YES, thereby allowing the
user to limit market within a FOR loop.

...
OKFORLIMIT = YES
FOR market

DO
LIMIT market TO CHILDREN USING market.market
REPORT market

DOEND
...

OKNULLSTATUS

19-32 Oracle OLAP DML Reference

OKNULLSTATUS

The OKNULLSTATUS option determines whether Oracle OLAP allows a dimension
status list to be set to null. The default is to not allow an empty status list. When
null status lists are not allowed, Oracle OLAP produces an error message when you
execute a LIMIT command that would result in a null status list.

Data type
BOOLEAN

Syntax
OKNULLSTATUS = {YES|NO}

Arguments

YES
Indicates that null status lists are allowed. With this setting, when you execute a
LIMIT command (without the IFNONE argument) that results in a dimension status
list being null, the status list is set to null, and no error message is produced.

NO
Indicates that null status lists are not allowed. With this setting, when you execute a
LIMIT command (without the IFNONE argument and without the NULL keyword)
that would result in a dimension status list being null, the status list is not changed
and an error message is produced. (Default)

Notes

Conditions When OKNULLSTATUS Has No Effect
The value of OKNULLSTATUS has no effect in the following situations.

■ When a LIMIT command includes an IFNONE argument. An IFNONE
argument indicates that program execution should not take its normal course
when a dimension status list or valueset were to be set to null. Therefore, when
IFNONE is present, Oracle OLAP branches to the IFNONE label and does not
set the status list or valueset to null, even when OKNULLSTATUS is YES.

OKNULLSTATUS

OBJ to QUAL 19-33

■ When a LIMIT command uses the NULL keyword to set a dimension status list
to null. The status list is set to null, and no error message is produced, even
when OKNULLSTATUS is NO.

■ When a LIMIT command sets a valueset to null (unless the IFNONE argument
is used). The valueset is set to null, and no error message is produced, even
when OKNULLSTATUS is NO.

■ When a LIMIT function is specified to return a null dimension status list. The
value returned is NA, and no error message is produced, even when
OKNULLSTATUS is NO.

NULL Status
See the LIMIT command for more information about using null status in
dimensions and valuesets.

Examples

Example 19–15 Using OKNULLSTATUS

The following statement turns off error messages about the null status of
dimensions and allows dimension status lists to be set to null.

OKNULLSTATUS = YES

ONATTACH

19-34 Oracle OLAP DML Reference

ONATTACH

A program that you write and that Oracle OLAP checks for by name when an AW
ATTACH statement executes. Depending on the value returned by the program,
Oracle OLAP executes the code within the program immediately after attaching the
analytic workspace.

Returns
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic
workspace; or FALSE when it has not or when the onattach program has thrown
an exception.

Syntax
To define a program with the name ONATTACH use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

ONATTACH ({READ|WRITE|EXCLUSIVE|MULTI} password)

Arguments
See AW ATTACH for explanations of the attachment modes (that is, READ, WRITE,
EXCLUSIVE, and MULTI) and password.

Note: Oracle OLAP checks for other programs when a user
attaches a workspace. See "Programs Executed When Attaching
Analytic Workspaces" on page 8-39 for more information.

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

ONATTACH

OBJ to QUAL 19-35

Notes

Creating an ONATTACH program
A program with the name of onattach does not exist within an analytic
workspace unless you define and write one. You write a onattach as a
user-defined functions that returns a BOOLEAN value. You can use the return value
to indicate to Oracle OLAP whether or not the user has the right to attach the
workspace.

Depending on the statements in the onattach program, the user is granted or
denied access to specific objects or sets of object values.For multiwriter attachment,
you can use ACQUIRE statements to provide access to individual workspace
objects. For read-only and read/write attachment, you can use PERMIT commands
that grant or restrict access to individual workspace objects

Examples
For examples of how attachment programs behave, see Example 8–14, "Startup
Programs" on page 8-42.

Note: All of the objects referred to in a given onattach program
must exist in the same analytic workspace.

OUTFILE

19-36 Oracle OLAP DML Reference

OUTFILE

The OUTFILE command lets you redirect the text output of statements to a file.

Syntax
OUTFILE [APPEND|EOF] file-name [NOCACHE] [NLS_CHARSET charset-exp]

Arguments

APPEND
Specifies that the output should be added to the end of an existing disk file. When
you omit this argument, the new output replaces the current contents of the file.
APPEND has no effect when the file does not already exist or when you specify
EOF.

file-name
A text expression that is the name of the file to which output should be written.
Unless the file is in the current directory, you must include the name of the directory
object in the name of the file.

EOF
The current outfile is closed and output is redirected to the default outfile.

NOCACHE
Specifies that Oracle OLAP should write lines to the outfile as they are generated.
Without this keyword, Oracle OLAP reduces file I/O activity by saving text and
writing it periodically to the file. The NOCACHE keyword slows performance
significantly, but it ensures that every line is immediately recorded in the outfile.
This argument must be specified afterfile-name

Note: Directory objects are defined in the database, and they
control access to directories and file in those directories. You can
use the CDA command to identify and specify a current directory
object. Contact your Oracle DBA for access rights to a directory
object where your database user name can read and write files.

OUTFILE

OBJ to QUAL 19-37

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP will use when writing data to the file
specified by file-name. This allows Oracle OLAP to convert the data accurately into
that character set. This argument must be specified after file-name. When this
argument is omitted, then Oracle OLAP writes the data to the file in the database
character set, which is recorded in the NLS_LANG option.

Notes

File Reading and Writing Options
A number of options are important during file read and write operations. These
options are listed in Table 15–1, " File Reading and Writing Options" on page 15-6.

Permission Programs: Copying to and from Analytic Workspaces When you
export PERMIT_READ or PERMIT_WRITE programs which are hidden, they are
empty when imported. Additionally, when you outfile PERMIT_READ or PERMIT_
WRITE programs which are hidden, then they are empty when infiled.

Current Outfile Identifier
As a first step, every OUTFILE command closes the current outfile. When OUTFILE
opens a new outfile on disk, it automatically assigns to it an arbitrary integer as its
file unit number. The current file unit number is held in the OUTFILEUNIT option.

Appending to an Outfile
When you send output to a file and then send output to a second file, the first file
does not remain open. To resume sending output to the first file, you must execute
another OUTFILE command and include the APPEND file-name phrase.

Automatic Closing of Outfile
When you use OUTFILE file-name to direct output to a disk file, OUTFILE closes any
outfile currently open. This happens even when the new file is not actually opened
(as when you specify an invalid file-name in the OUTFILE command).

Tip: Rename PERMIT_READ and PERMIT_WRITE programs
before using EXPORT (to EIF) or OUTFILE. After copying the
programs to an analytic workspace using IMPORT (from EIF) or
INFILE.

OUTFILE

19-38 Oracle OLAP DML Reference

Paging Options and Redirected Output
The paging options control the organization of text output in pages. Examples are:
BMARGIN, LINENUM, LINESLEFT, PAGESIZE, PAGENUM, PAGEPRG, PAGING,
TMARGIN, and LSIZE. The paging options have a separate value for each separate
outfile. When you set one of the paging options to control output to a disk file, the
new value remains in effect until you use the OUTFILE command again to redirect
output. At this point, the paging option returns to its default value. Therefore, when
you want a paging option to have a particular value for a disk file, you generally
have set it after you execute the OUTFILE command.

Line Length
The maximum line length in Oracle OLAP is 4000 characters.

Current and Default Outfiles
The current outfile is the destination for the output of statements, such as REPORT
and DESCRIBE, that produce text. When you have not used the OUTFILE
command to send output to a file, Oracle OLAP uses your default outfile.

Examples

Example 19–16 Sending a Report to an Output File

In this example, you want to send the output of a REPORT command to an output
file.

OUTFILE 'budget.rpt'
REPORT budget
OUTFILE EOF

Example 19–17 Directing Output to a File

Suppose you have a program called year.end.sales, and you want to save the
report it creates in a file. Type the following commands to write a file of the report.
In this example, userfiles is a directory object and yearend.txt is the name of
the file.

OUTFILE 'userfiles/yearend.txt'
year.end.sales
OUTFILE EOF

Now the file contains the year.end.sales report. You can add more reports to
the same file with the APPEND keyword for OUTFILE. Suppose you have another

OUTFILE

OBJ to QUAL 19-39

program called year.end.expenses. Add its report to the file with the following
commands. Remember that without APPEND, the OUTFILE command overwrites
the expense report.

OUTFILE APPEND 'userfiles/yearend.txt'
year.end.expenses
OUTFILE EOF

OUTFILEUNIT

19-40 Oracle OLAP DML Reference

OUTFILEUNIT

(Read-only) The OUTFILEUNIT option holds the file unit number of the current
OUTFILE destination, set by the last OUTFILE command. The first time you
redirect output to a given file, OUTFILE assigns that file an arbitrary integer as a file
unit number.

Data type
INTEGER

Syntax
OUTFILEUNIT

Notes

OUTFILE and OUTFILEUNIT
You automatically change the setting of OUTFILEUNIT whenever you specify a
different file with the OUTFILE command. For example, after the statement
OUTFILE myfilename, the value of OUTFILEUNIT is the file unit number
assigned to myfilename.

Examples

Example 19–18 Using OUTFILEUNIT with FILEQUERY

Suppose you have saved the file unit number for a file in a variable called filenum.
Your current outfile is another disk file. You want to set the value of PAGEPRG for
the first file to the value that it has for the current outfile. Because the file unit
number for the current outfile is contained in the OUTFILEUNIT option, you can
use FILEQUERY with the OUTFILEUNIT number to get the PAGEPRG setting for
the current outfile.

FILESET filenum PAGEPRG FILEQUERY(OUTFILEUNIT PAGEPRG)

PAGE

OBJ to QUAL 19-41

PAGE

The PAGE command forces a page break in output when PAGING is set to YES. An
optional argument to PAGE specifies a conditional page break based on how many
lines are left on the page.

The PAGE command is commonly used in report programs. It is meaningful only
when PAGING is set to YES and only for output from statements such as REPORT
and LISTNAMES.

Syntax
PAGE [n]

Arguments

n
A positive integer expression that indicates that a page break should occur only
when there are fewer than n lines left on the current page. When the number of lines
left equals or exceeds n, no page break occurs. See Example 19–19, "Keeping Lines
Together" on page 19-42.

Notes

Top of Page
No page break occurs when you are already at the top of a page when the PAGE
command is executed.

Producing the Header
The PAGE command signals that further output should be produced on a new
page, but it does not produce a header on the new page unless there is further
output. When there is further output, Oracle OLAP produces the heading that is
defined by the current PAGEPRG program and then starts producing the output.

PAGE

19-42 Oracle OLAP DML Reference

Examples

Example 19–19 Keeping Lines Together

Suppose you have 12 lines of data that would be hard to read when interrupted by a
page break, so you want to prevent such an interruption. Use the PAGE 12
statement immediately before the statements that produce the 12 lines of data. A
page break will occur before the 12 lines of data only when there are less than 12
lines left on the page. When there are 12 lines or more left at that point, output will
continue on the same page.

Example 19–20 Forcing a Page Break

The following lines from a report program force a page break at the start of each
loop for district. This makes the report for each district start at the top of a page.
(The report program uses a heading program called report.head to create a
customized heading. See PAGEPRG for information on customized heading
programs.)

PUSH PAGING PAGEPRG
PAGING = YES
PAGEPRG = 'report.head'
FOR district

DO
PAGE
ROW district
BLANK
FOR month

ROW WIDTH 8 month sales sales.plan
DOEND

PAGE
POP PAGING PAGEPRG

PAGENUM

OBJ to QUAL 19-43

PAGENUM

The PAGENUM option holds the current page number of output. You can use
PAGENUM with PAGEPRG to produce the page number on each page of a report.
The PAGENUM option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data type
INTEGER

Syntax
PAGENUM = n

Arguments

n
An integer expression that specifies the page number to use for the next page of
output. The default is 1.

Notes

Starting with Page 1
When you are sending output to the default outfile, set both PAGENUM and
LINENUM to 1 whenever you want to produce a report starting on page 1. You can
set these options in the initialization section of your report program. When you use
an OUTFILE command to send output to a file, PAGENUM is automatically set to
1.

Setting PAGENUM in Mid-Page
The value of PAGENUM is incremented automatically when the last line of output
has been generated on a page. When you set PAGENUM when an output page is
only partially full, the value of PAGENUM will be incremented by 1 before the next
page is produced. This means you usually have to set PAGENUM to a value of one
less than the number you want to show on the following page.

PAGENUM

19-44 Oracle OLAP DML Reference

The Effect of PAGING
When you set PAGING to NO, PAGENUM stops counting and keeps its last value.
When you reset PAGING to YES, PAGENUM resumes counting at the page number
where it left off.

The Effect of OUTFILE
When you use the OUTFILE command to direct output to a file, PAGENUM is set
to 1 for the file. When you use the OUTFILE command with the EOF keyword to
redirect output to the default outfile, PAGENUM will contain the number that it last
held for the default outfile.

Examples

Example 19–21 Changing the Heading for Page 2

Suppose you want each page of a report to have a standard running page heading
and a custom title, and pages after the first page to also have the heading
"(Continued)". You can define a page heading program called report.head that
uses the PAGENUM value to determine when to add the "(Continued)" heading.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
PAGING = YES
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
IF PAGENUM GT 1

THEN HEADING WIDTH LSIZE CENTER '(Continued)'
BLANK
END

In your report program, set the PAGEPRG option to use the report.head
program.

PAGEPRG = 'report.head'

When you run the report program, each page after the first page starts with a
heading such as the following.

15JAN95 15:05:16 Page 2
Annual Sales Report

(Continued)

PAGEPRG

OBJ to QUAL 19-45

PAGEPRG

The PAGEPRG option holds the name of a program or the text of a statement to be
executed at the beginning of each page of output. You can use this program or
statement to create titles and column headings on multiple pages of a report. A
program can also contain other statements appropriate for execution at the start of
every page. Normally, you set the value of PAGEPRG in the initialization section of
a report program.

The PAGEPRG option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data type
TEXT

Syntax
PAGEPRG = {'program'|'statement'|'NONE'|'STDHDR'}

Arguments

program
The name of a program to be executed after every page break. When you specify the
program name as a text expression, you can omit the single quotes.

statement
The text of a statement to be executed after every page break. When you specify the
statement as a text expression, you can omit the single quotes.

NONE
Indicates that no statement or program is executed automatically after a page break.

STDHDR
Makes STDHDR the program name that PAGEPRG stores. You can also set
PAGEPRG to 'DEFAULT' to make STDHDR the program name that PAGEPRG
stores. STDHDR produces a heading with the date and time on the left and the page
number on the right. (Default)

PAGEPRG

19-46 Oracle OLAP DML Reference

Notes

Using STDHDR in a Header Program
When you create a PAGEPRG program, you can include the STDHDR program as a
line in the program. Generally, you place STDHDR before the other statements that
will produce the custom heading. See Example 19–22, "Creating a Custom Heading"
on page 19-47.

Keeping Header Information Current
You can use Oracle OLAP features such as TODAY, TOD, and PAGENUM in a
program that is specified by the PAGEPRG option. You can also have a header
program that accepts arguments, such as the title for a particular report. In this case
you would set the PAGEPRG option to a text expression that invokes the report
header program with arguments. See Example 19–23, "Using Program Arguments"
on page 19-47.

Output to the Default Outfile
When you set PAGEPRG for the default outfile, the new value remains in effect
until you reset it, regardless of intervening OUTFILE commands that send output to
a file. That is, the value of PAGEPRG is automatically saved for the default outfile.

Output to a File
To set PAGEPRG for a file, first make the file your current outfile by specifying its
name in an OUTFILE command, then set PAGEPRG to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE command to
direct output to a different outfile. When you direct output to a different outfile,
PAGEPRG returns to its default value of 'STDHDR' for the file.

PAGEPRG

OBJ to QUAL 19-47

Examples

Example 19–22 Creating a Custom Heading

Suppose you want each page of a report to include both the standard running page
heading and the title "Annual Sales Report." To accomplish this, create a program
called report.head.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
IF PAGENUM GT 1

THEN HEADING WIDTH LSIZE CENTER '(Continued)'
BLANK
END

Specify this program to execute after every page break by setting the PAGEPRG
option in the report program. You can include PUSH and POP commands to save
the PAGEPRG setting that is active.

PUSH PAGEPRG PAGING
PAGEPRG = 'report.head'
PAGING = YES

... (body of report program)
POP PAGEPRG PAGING

When you run the report, each page will contain the following heading.

15JAN98 15:05:16 Page 1

Annual Sales Report

Each page after the first page will also contain the subheading "(Continued)"
because of the PAGENUM test in the IF statement.

Example 19–23 Using Program Arguments

As an alternative to specifying the report name in the report.head program, you
can pass the report name to the report.head program from your report program.
You can do this by setting the PAGEPRG option to a text expression that invokes the

PAGEPRG

19-48 Oracle OLAP DML Reference

report.head program with the report name as an argument. Suppose your report
program contains the following statement.

PAGEPRG = 'CALL report.head(\'Annual Sales Report\')'

Then you can change the first few lines of the report.head program to the following.

ARGUMENT titlevar TEXT
STDHDR
BLANK
HEADING WIDTH LSIZE CENTER titlevar

PAGESIZE

OBJ to QUAL 19-49

PAGESIZE

The PAGESIZE option specifies the size of a page of output. The value of PAGESIZE
is the number of output lines to be produced on each page. PAGESIZE is usually
used in the initialization section of report programs. The PAGESIZE option is
meaningful only when PAGING is set to YES and only for output from statements
such as REPORT and LISTNAMES.

Data type
INTEGER

Syntax
PAGESIZE = n

Arguments

n
An integer expression that specifies the number of output lines on a page; n
includes the top and bottom margins (controlled by the TMARGIN and BMARGIN
options). The default is 66 lines, which is suitable for printing report output on 8
1/2" by 11" paper.

Notes

Usable Output Lines
When you use the standard heading and the default settings for the PAGESIZE,
TMARGIN, and BMARGIN options, the total number of usable output lines is 61.

Output Lines
Lines from PAGESIZE 66
Lines for TMARGIN - 2
Lines for the standard heading - 2
Lines for BMARGIN - 1
Lines available for output 61

PAGESIZE

19-50 Oracle OLAP DML Reference

Eliminating Headings and Page Breaks
You can produce pages with no headings by using the statement PAGEPRG='NONE'
or suppress page breaks entirely by using the statement PAGING = NO.

Forcing a Page Break
When PAGING is set to YES, you can force a page break at any point in a page of
output by using a PAGE command.

The Effect of PAGESIZE on LINESLEFT
PAGESIZE also controls the LINESLEFT option. When PAGESIZE is changed,
Oracle OLAP adjusts LINESLEFT accordingly.

Output to the Default Outfile
When you set PAGESIZE for the default outfile, the new value remains in effect
until you reset it, regardless of intervening OUTFILE commands that send output to
a file. That is, the value of PAGESIZE is automatically saved for the default outfile.

Output to a File
To set PAGESIZE for a file, first make the file your current outfile by specifying its
name in an OUTFILE command, then set PAGESIZE to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE command to
direct output to a different outfile. When you direct output to a different outfile,
PAGESIZE returns to its default value of 66 for the file.

Examples

Example 19–24 Printing on Legal Paper

In this example, you want to produce a report that you will print on legal-size paper
(8 1/2" by 14"). Include the following statement in the initialization section of your
report program.

PAGESIZE = 84

PAGING

OBJ to QUAL 19-51

PAGING

The PAGING option controls the production of paged output in Oracle OLAP.
When you set PAGING to YES, output from statements such as DESCRIBE,
REPORT, ROW command, HEADING, SHOW, and LISTNAMES is produced in a
page-oriented format. Output is produced in page-size segments with standard top
and bottom margins and headings. You can use a variety of paging-related options
to change the size of the page, the size of the margins, and the headings on each
page.

Paging is useful primarily for making output more attractive when you plan to
print output that you send to a file. However, you can also send paged output to the
default outfile. Normally you would set the PAGING option in the initialization
section of a report program to turn paging on for your report.

Data type
BOOLEAN

Syntax
PAGING = {YES|NO}

Arguments

YES
Produces output with page breaks, top and bottom margins, and page headings.

NO
Produces output that contains no page breaks, top and bottom margins, or page
headings. Output is continuous, one line after another. (Default)

Notes

Output to the Default Outfile
When you set PAGING for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a
file. That is, the value of PAGING is automatically saved for the default outfile.

PAGING

19-52 Oracle OLAP DML Reference

Output to a Different File
To set PAGING for a file, first make the file your current outfile by specifying its
name in an OUTFILE command, then set PAGING to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE command to
direct output to a different outfile. When you direct output to a different outfile,
PAGING returns to its default value of NO for the file.

Paging-Related Options
Oracle OLAP uses default values for page length, page headings, and top and
bottom margins. You can change these values by setting the PAGESIZE, PAGEPRG,
TMARGIN, and BMARGIN options. Other paging options that become meaningful
when PAGING is turned on are LINENUM, LINESLEFT, and PAGENUM.

Paging for the Current Outfile
The value of PAGING for the current outfile determines whether the paging-related
options will be used. You must set PAGING to YES for the current outfile in order to
make the paging options take effect.

Changing Outfiles
When you use the OUTFILE command to direct output to a file, all the
paging-related options are set to their default values for the file. When you use the
OUTFILE command with the EOF keyword to redirect output to the default outfile,
the paging-related options will contain the values that they last held for the default
outfile.

The LINENUM Option
When you set PAGING to NO, the value of the LINENUM option continues to
increment as more output lines are produced. When you set PAGING to YES,
LINENUM is set to 1 and it begins counting lines on the current page.

The LINESLEFT Option
When you set PAGING to NO, the LINESLEFT option is set to PAGESIZE, and it
keeps this value until PAGING is set to YES. When you set PAGING to YES,
LINESLEFT begins counting the lines left on the current page.

The PAGENUM Option
When you set PAGING to NO, the PAGENUM option stops counting and retains its
current value. When you set PAGING to YES, PAGENUM resumes counting at the
page number where it left off.

PAGING

OBJ to QUAL 19-53

Examples

Example 19–25 Setting Paging Options

Suppose you are writing a report program and you want to control page breaks and
the top margin. You can include the following lines in the initialization section of
your program. These lines send output to a file named repfile.txt, turn the
PAGING option on, and change the page size and top margin.

OUTFILE 'repfile.txt'
PAGING = YES
PAGESIZE = 84
TMARGIN = 6

PARENS

19-54 Oracle OLAP DML Reference

PARENS

The PARENS option controls whether negative numbers are represented in output
with parentheses or a minus sign.

Data type
BOOLEAN

Syntax
PARENS = {YES|NO}

Arguments

YES
Encloses negative values in parentheses, instead of using a minus sign.

NO
Uses a minus sign to represent negative values. (Default)

Notes

Overriding PARENS
The setting of the PARENS option is overridden by a PAREN or NOPAREN
attribute in a HEADING, REPORT, or ROW command. The PAREN attribute
specifies the use of parentheses; the NOPAREN attribute specifies the use of a
minus sign.

Allowing Space for Parentheses
When you use parentheses to represent negative values in a report, Oracle OLAP
lines up the positive and negative values in the column. To do this, it reserves the
right-most character in each numeric column for the closing parenthesis. The
column is always reserved, even when there are no negative values in the output.
Consequently, each value requires more space than when you use the minus sign,
and you might need to increase your column width to accommodate your data.

PARENS

OBJ to QUAL 19-55

Examples

Example 19–26 Showing Negative Values in Parentheses

In a report, you would like to show negative values in parentheses, so you first set
PARENS to YES.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
LIMIT month TO 'Jan96' TO 'Jun96'
PARENS = YES
DECIMALS = 0
REPORT DOWN month budget actual budget-actual

These statements produce the following output.

DIVISION: SPORTING
--------------LINE--------------
--------------COGS--------------

BUDGET-ACT
MONTH BUDGET ACTUAL UAL
-------------- ---------- ---------- ----------
Jan96 279,773 287,558 (7,785)
Feb96 323,982 315,299 8,683
Mar96 302,178 326,185 (24,007)
Apr96 386,101 394,544 (8,443)
May96 433,998 449,862 (15,864)
Jun96 448,042 457,348 (9,305)

PARSE

19-56 Oracle OLAP DML Reference

PARSE

Use the PARSE command to parse a specified group of expressions. When the
argument can be parsed, PARSE determines the number of expressions in it and
their text, object type, data type, and the number and names of their dimensions.
This information is stored internally by Oracle OLAP, but can be obtained with the
INFO function.

The PARSE command is especially useful when you want to accept expressions as
arguments to a program.

Syntax
PARSE text-expression

Arguments

text-expression
A text expression that contains one or more smaller expressions to be parsed. When
you are processing program arguments, you can specify ARGS as the text
expression that contains all the arguments for the program.

Notes

Obtaining Information Produced by the PARSE Command
See INFO for an explanation of how to obtain the information produced by the
PARSE command.

Examples

Example 19–27 Parsing the Arguments to a Program

In a simple report program, you want to specify the data to be reported as an
argument to the program. You want to be able to specify an expression, as well as
the name of a data variable.

Suppose you want to display each of the arguments with a different column width,
which means you must process the arguments individually. The ARGS function can

PARSE

OBJ to QUAL 19-57

only process them together. So you use PARSE and INFO to parse the arguments
and produce individual columns for each of them. Here is a sample program.

DEFINE report1 PROGRAM
PROGRAM
PUSH month product district DECIMALS
DECIMALS = 0
LIMIT month TO FIRST 2
LIMIT product TO ALL
LIMIT district TO 'Chicago'
PARSE ARGS
REPORT ACROSS month WIDTH 8 <&INFO(PARSE FORMULA 1) -

WIDTH 13 &INFO(PARSE FORMULA 2)>
POP month product district DECIMALS
END

When you run the program, you can supply either the names of variables (such as
sales) or expressions (such as sales-expense) or one of each as arguments. The
following REPORT statement produces the illustrated report.

report1 sales sales-expense

DISTRICT: CHICAGO
--------------------MONTH--------------------
--------JAN95--------- --------FEB95---------

PRODUCT SALES SALES-EXPENSE SALES SALES-EXPENSE
------------ -------- ------------- -------- -------------
Tents 29,099 1,595 29,010 1,505
Canoes 45,278 292 50,596 477
Racquets 54,270 1,400 58,158 1,863
Sportswear 72,123 7,719 80,072 9,333
Footwear 90,288 8,117 96,539 13,847

PARTITIONCHECK

19-58 Oracle OLAP DML Reference

PARTITIONCHECK

The PARTITIONCHECK function identifies whether an aggmap object is
compatible with the partitioning specified by a partition template object.

Aggregation can cross partitions,; however the data flow must always be in one
direction. The data cannot go both in and out of the same partition; this processing
causes Oracle OLAP to produce an error during the aggregation.

Return Value
BOOLEAN.

YES when Oracle OLAP would not issue an error when aggregating a variable
partitioned using the specified partition template using the specified aggmap; or NO
when an error would occur.

Syntax
PARITITONCHECK (aggmap parttition-template)

Arguments

aggmap
A text expression that is the name of an aggmap object.

partition-template
A text expression that is the name of the partition template object that you want to
check for compatibility with aggregation.

PARTITIONCHECK

OBJ to QUAL 19-59

Examples
Assume that you have the following objects defined in your analytic workspace.

DEFINE YEAR_2003 DIMENSION TEXT
DEFINE YEAR_2002 DIMENSION TEXT
DEFINE PRODUCT DIMENSION TEXT
DEFINE SALES_2003 VARIABLE DECIMAL <YEAR_2003 PRODUCT>
DEFINE SALES_2002 VARIABLE DECIMAL <YEAR_2002 PRODUCT>
DEFINE TIME DIMENSION CONCAT (YEAR_2003 YEAR_2002) UNIQUE
DEFINE TIME_PARENTREL RELATION TIME <TIME>
DEFINE PART_TEMP_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY CONCAT (TIME) -
 (PARTITION PARTITION_2002 <YEAR_2002 PRODUCT> -
 PARTITION PARTITION_2003 <YEAR_2003 PRODUCT>)
DEFINE SALES VARIABLE DECIMAL <PART_TEMP_SALES_BY_YEAR <TIME PRODUCT>> -
 (PARTITION PARTITION_2002 EXTERNAL SALES_2002 -
 PARTITION PARTITION_2003 EXTERNAL SALES_2003)
DEFINE AGG_SALES AGGMAP
 AGGMAP
 RELATION time_parentrel OPERATOR SUM
 END

To determine if sales is partitioned in such a way that you can use agg_sales to
aggregate it, issue the following statement. Since the statement returns a value of
YES, you can safely use agg_sales to aggregate sales.

SHOW PARTITIONCHECK (agg_sales part_temp_sales_by_year)
yes

PERCENTAGE

19-60 Oracle OLAP DML Reference

PERCENTAGE

The PERCENTAGE function computes the percent of total for each value in a
numeric expression.

Return Value
DECIMAL

Syntax
PERCENTAGE(expression [BASEDON dimension-list])

Arguments

expression
The numeric expression for which percent figures are to be computed.

BASEDON dimension-list
An optional list of one or more of the dimensions of expression on which to base the
percentage for each value. When you do not specify the dimensions, then
PERCENTAGE bases the percentage on the total of all of the values of all of the
dimensions of expression.

Notes

The Effect of NASKIP
PERCENTAGE is affected by the NASKIP option. When NASKIP is set to YES (the
default), then PERCENTAGE ignores NA values. When NASKIP is set to NO, then
PERCENTAGE returns NA for any cell in expression whose value is NA.

PERCENTAGE

OBJ to QUAL 19-61

Examples

Example 19–28 Calculating the Percentage

The following statements s limit the month and district dimensions, and report
the data values, with subtotals, for the units variable.

LIMIT month TO 'Jul96' TO 'Sep96'
LIMIT district TO 'Denver'
REPORT SUBTOTALS W 8 units

The preceding statement produces the following output.

DISTRICT: DENVER
----------UNITS-----------
----------MONTH-----------

PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 608 517 441
Canoes 467 363 411
Racquets 3,006 2,836 2,838
Sportswear 2,395 2,039 2,138
Footwear 1,581 1,532 1,667
-------------- -------- -------- --------
TOTAL DENVER 8,057 7,287 7,495

This statement reports the percentage that each month value represents of the total
month values for each of the product values that are in status. The total of the
values that PERCENTAGE returns for each product value is 1.

REPORT SUBTOTALS W 8 DOWN month PERCENTAGE(units BASEDON month)

The preceding statement produces the following output.

DISTRICT: DENVER
-----------PERCENTAGE(UNITS BASEDON MONTH)------------
-----------------------PRODUCT------------------------

MONTH Tents Canoes Racquets Sportswear Footwear
-------- ---------- ---------- ---------- ---------- ----------
Jul96 0.39 0.38 0.35 0.36 0.33
Aug96 0.33 0.29 0.33 0.31 0.32
Sep96 0.28 0.33 0.33 0.33 0.35
-------- ---------- ---------- ---------- ---------- ----------
TOTAL 1.00 1.00 1.00 1.00 1.00
DENVER

PERCENTAGE

19-62 Oracle OLAP DML Reference

This statement reports the percentage that each product value represents of the
total product values for each of the month values that are in status.

REPORT SUBTOTALS W 8 PERCENTAGE(units BASEDON product)

The preceding statement produces the following output.

DISTRICT: DENVER
-PERCENTAGE(UNITS BASEDON-
---------PRODUCT)---------
----------MONTH-----------

PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 0.08 0.07 0.06
Canoes 0.06 0.05 0.05
Racquets 0.37 0.39 0.38
Sportswear 0.30 0.28 0.29
Footwear 0.20 0.21 0.22
-------------- -------- -------- --------
TOTAL DENVER 1.00 1.00 1.00

This statement reports the percentage based on all of the dimensions of the units
variable. The total of all of the values that PERCENTAGE returns is 1.

REPORT SUBTOTALS W 8 PERCENTAGE(units)

The preceding statement produces the following output.

DISTRICT: DENVER
----PERCENTAGE(UNITS)-----
----------MONTH-----------

PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 0.03 0.02 0.02
Canoes 0.02 0.02 0.02
Racquets 0.13 0.12 0.12
Sportswear 0.10 0.09 0.09
Footwear 0.07 0.07 0.07
-------------- -------- -------- --------
TOTAL DENVER 0.35 0.32 0.33

The total for all of the values for both the product and month dimensions is 1.00.

PERMIT

OBJ to QUAL 19-63

PERMIT

The PERMIT command lets you control access to analytic workspace objects. You
can use PERMIT commands in Oracle OLAP security applications that specify
workspace access rights for many users. You can also use PERMIT as a general
scoping tool in other types of applications. Scoping restricts the view of workspace
objects.

With the PERMIT command, you can grant or deny read-only and read/write
access permission for workspace objects and for specific values of dimensions and
dimensioned objects. You can also use PERMIT to grant or deny permission to
maintain dimensions and to change permission for workspace objects.

The PERMIT command assigns permission to the object most recently defined or
considered. When the definition of the object is not the current one, first use a
CONSIDER command before issuing PERMIT commands for the object.

Syntax
PERMIT {READ|WRITE|MNT|PERMIT} [WHEN permission-condition...]

Arguments

READ
Grants permission to read an object or values in a dimension or dimensioned object,
depending on the permission conditions. You can specify read permission either
with a single-cell permission condition or with dimensioned permission conditions.

When you grant read permission for an object, write permission is also allowed for
the values you can read, unless you deny it with an explicit PERMIT WRITE
statement.

To completely deny access to an object, you can specify PERMIT READ with a
single-cell permission condition that evaluates to NO. To restrict access to a subset of
values in a dimension or dimensioned object, you can specify PERMIT READ with
dimensioned permission conditions. To restore full access to an object, issue a

Note: When using PERMIT, it is important that you not lock out
the DBA user, which must have access to everything in the
workspace at all times.

PERMIT

19-64 Oracle OLAP DML Reference

PERMIT READ command with no WHEN clause or with a single-cell permission
condition that evaluates to YES.

WRITE
Grants permission to modify an object or values of a dimensioned object,
depending on the permission conditions. Write permission is not meaningful for
dimensions, except to provide write access to objects dimensioned by the
dimension. You can specify write permission either with a single-cell permission
condition or with dimensioned permission conditions.

When you do not specify a PERMIT READ command in addition to the PERMIT
WRITE, then read permission is provided by default for the object. In this case,
when the object is dimensioned and write permission only applies to some of its
values, the values with write permission are available for read/write access and the
values without write permission are available for read-only access.

MNT
Grants permission to maintain a dimension. Maintain permission always applies to
the entire dimension, and is based on a single-cell permission condition. Maintain
permission is automatically denied when there is restricted read permission for the
dimension, even when you specify maintain permission.

PERMIT
Grants permission to use the PERMIT command to change the read, write,
maintain, or permit permission for the object. Permit permission always applies to
the entire object, and is based on a single-cell permission condition. Whether or not
there is read, write, or maintain permission for an object, permit permission is
always allowed unless explicitly denied with a PERMIT PERMIT statement with a
permission condition that evaluates to NO.

WHEN permission-condition...
The conditions for granting read, write, maintain, or permit permission consist of
one or more Boolean expressions. When you omit the WHEN clause and execute a
PERMIT READ, PERMIT WRITE, or PERMIT MNT statement, Oracle OLAP will
restore full read, write, or maintain permission.

When permission applies to an object without dimensionality or to all the values of
a dimensioned object, or when you are specifying permit or maintain permission,
the permission condition consists of a single Boolean value. When you specify a
dimensioned Boolean expression in this case, PERMIT uses the first value in status.

PERMIT

OBJ to QUAL 19-65

When permission applies to individual cells within a dimensioned object, the
permission condition consists of a Boolean variable dimensioned by some or all of
the dimensions of the object.

When read or write permission applies to dimension values or slices of a
dimensioned object, the permission conditions consist of dimensioned Boolean
expressions with the following format.

WHEN dimensioned_permission_condition1

[BY dimensioned_permission_condition2

BY dimensioned_permission_condition3...]

Each dimensioned permission condition consists of a Boolean expression
dimensioned by one of the dimensions of the object. When a Boolean expression has
any extra dimensions in addition to one of the object dimensions, PERMIT takes the
first value in status to determine which column of Boolean values to use. The
intersection of the YES values for each dimension (a logical AND of the conditions) is
the subset of values within the object to which the permission applies. When any of
the object dimensions are not represented by a dimensioned permission condition,
then Oracle OLAP assumes YES for all those dimension values.

Notes

PERMIT Commands and Objects
You can apply up to four PERMIT commands to an object, one for read, write,
maintain, and permit permission. PERMIT commands must exist within the same
workspace as the objects for which they control permission.

Resetting Permission
When you want to keep the existing PERMIT commands for an object, but you want
Oracle OLAP to recalculate the permission conditions associated with them, issue a
PERMITRESET command. The new permission conditions will be evaluated upon
next reference to the object. See "Reevaluating Single-Cell Permission Conditions"
on page 19-66 and "Permission and the OBJ Function" on page 19-66.

Changing Permission
Provided you have permit permission for an object, you can change its permission
by issuing new PERMIT commands for it. The new permission will be evaluated
upon next reference to the object. See "Permission and the OBJ Function" on
page 19-66.

PERMIT

19-66 Oracle OLAP DML Reference

Reevaluating Single-Cell Permission Conditions
When you are targeting any object but a dimension for permission, and the
permission condition consists of a single Boolean variable, any changes to that
variable affect the permission immediately. You do not need to execute a
PERMITRESET in this case.

Permission and the OBJ Function
In general, Oracle OLAP evaluates permission upon next reference to the object.
However, the OBJ function is an exception to this rule. The OBJ function provides
information about a workspace object that you specify. Since OBJ does not load the
object into memory, it does not reflect any changes to the object permission since the
last time it was loaded. When you want OBJ to provide information based on new
permission criteria, execute a LOAD command before the OBJ.

Workspace Permission Programs
You can specify values for the variables of permission conditions in the workspace
permission programs, PERMIT_READ and PERMIT_WRITE. These programs are
user-defined functions which cause the AW ATTACH command to either attach or
not attach the workspace, depending on the return value of the program.

When a user attaches the workspace RO (read-only), Oracle OLAP runs PERMIT_
READ, if it exists. When a user attaches the workspace RW (read/write), Oracle
OLAP runs PERMIT_WRITE, if it exists.

When you specify a password with the AW command, it is passed as an argument
to the workspace permission program. The workspace permission programs run
before AUTOGO. Permission specified in the workspace permission programs only
pertains to objects in the workspace being attached.

Workspace Permission Programs: Evaluating Permission
Within the workspace permission programs, permission is not evaluated upon first
reference to an object, as it is in every other context. Permission is only evaluated
within a workspace permission program when you issue an explicit PERMIT or
PERMITRESET command and then reference the targeted object. AW ATTACH
executes a PERMITRESET immediately after executing a workspace permission
program. This causes the workspace to be attached with all permission
implemented.

Workspace Permission Programs: In More Than One Workspace
When you have workspace permission programs defined in workspaces that are
currently attached, Oracle OLAP executes the one in the workspace that you are

PERMIT

OBJ to QUAL 19-67

attaching. However, when you have workspace permission programs in more than
one currently attached workspace, you need to take special care when you edit
them or use them in any other way, to ensure that you access the appropriate
version.

Read/Write Permission
When the only PERMIT command for an object is a PERMIT WRITE, then read
permission is provided by default for the object. The default read permission is
provided independent of the value of the permission condition(s) for the
PERMIT WRITE statement. This means that a PERMIT WRITE with a single-cell
permission condition which evaluates to NO provides read-only access to an
undimensioned object or to all the values of a dimensioned object. When the only
PERMIT command for an object is a PERMIT WRITE with dimensioned permission
conditions, it designates some values for read/write access and the remaining
values for read-only access. See Example 19–29, "Variable Permission" on
page 19-70.

Write But Not Read
Oracle OLAP does not prevent you from establishing write permission for values
that you cannot read within a dimensioned object. When you have both a
PERMIT READ and a PERMIT WRITE statement for a dimensioned object, and some
of the values which satisfy the permission conditions for write do not fall within the
subset of values which satisfy the permission conditions for read, then those values
may be modified but not seen.

Default Status
The dimension values that satisfy the permission condition for PERMIT READ
constitute the default status for the dimension. When Oracle OLAP loops over the
dimension, it only includes those values with read permission. For example, a
LIMIT ALL statement provides only those values. A reference to integer position
means the position within the set of values with read permission. The same
principle also applies to QDRs, LAG and LEAD references, and UNRAVEL.

Note: Dimensions with an INTEGER data type have values
identified by their numeric position. PERMIT renumbers INTEGER
dimensions to keep the normal sequence of integers (1, 2, 3, ...).
When this behavior is not desirable, you should use a text or
time-period data type.

PERMIT

19-68 Oracle OLAP DML Reference

All dimensioned data is affected by the read permission on its dimensions. The
values of dimensioned objects that correspond to dimension values without read
permission are inaccessible.

Dimension Permission
Write permission is only meaningful for dimensions in providing write access to
objects dimensioned by the dimension. In order for write permission associated
with a dimension to apply to objects dimensioned by it, there must be at least one
PERMIT command associated with the dimensioned object. When you want a
dimensioned object to inherit write permission from its dimensions but you do not
want it to have permission of its own, which could interact with the dimension
permission, you can simply use a PERMIT READ with a single-cell permission
condition that evaluates to YES. Dimension permission interacts with permission
for objects dimensioned by it in the following ways:

■ When there is read or write permission associated with a dimension, but no
permission restriction associated with an object dimensioned by that
dimension, then the permission for the dimensioned object is the same as the
dimension permission.

■ When there is read permission associated with both the dimension and the
dimensioned object, Oracle OLAP determines the values with read permission
in the object by taking the intersection of the values with read permission in the
dimension and the values with read permission in the object.

■ When there is write permission associated with both the dimension and the
dimensioned object, Oracle OLAP determines the values with write permission
in the object by taking the intersection of the values with read permission in the
dimension, the values with write permission in the dimension, and the values
with write permission in the object.

Assigning Access Permissions to a Concat Dimension
Use the PERMIT command to grant or deny access to dimension values. Access
restrictions that you apply to the concat dimension are added to any restrictions
that already exist on the component dimensions.

Relations, Valuesets, and Worksheets
You can specify permission based on a single-cell permission condition for relations,
valuesets, and worksheets. When there is restricted write permission for a
dimension of a relation, it does not affect the relation. Restricted write permission
on the dimension from which a valueset derives does not affect permission on the
valueset.

PERMIT

OBJ to QUAL 19-69

Programs, Models, and Formulas
You can specify read and write permission for programs, models, and formulas
with a single-cell permission condition. When you have read/write permission for a
program, model, or formula, you can both edit and run it. When you have
read-only permission, you can run it but not change it.

Change Permission Authority
You should avoid specifying a PERMIT PERMIT statement with a Boolean value as a
permission condition (for example, YES or NO). Instead specify the permission
condition as a Boolean variable, a function that returns a Boolean result, or a
Boolean value calculated by comparison operators. In this way, when permit
permission has been denied, you can restore it by setting the value of the Boolean
and executing a PERMITRESET command. When you do lock up an object and are
unable to modify its permission, you can specify permit permission for it in the
workspace permission program for that workspace, then detach and reattach the
workspace. For more information on workspace permission programs, see
"Workspace Permission Programs" on page 19-66.

Determining Permission
The permission associated with an object is provided, like an LD, when you
describe it using a DESCRIBE statement. The only exception is when you are denied
permit permission for the object. In this case, no permission is provided when you
describe it.

Scoping
As a tool for scoping within application programs, PERMIT has several advantages
over the LIMIT command. To restrict the scope of a dimensioned object according to
a Boolean expression, you have to use two LIMIT statements, a LIMIT and a
LIMIT KEEP. You only need one PERMIT command to do the same thing.
Moreover, application users cannot change the restricted scope set by PERMIT
commands in application programs. Application users can easily change the scope
set by LIMIT commands in application programs simply by executing more LIMIT
commands.

Permission Violations
You can use the PERMITERROR option to control the way Oracle OLAP handles
attempted violations of the permission established by PERMIT commands for
variables. The default value of PERMITERROR is YES, meaning that Oracle OLAP
will signal an error when a user attempts to access a value for which permission is
denied. When you set PERMITERROR to NO, Oracle OLAP simply denies access

PERMIT

19-70 Oracle OLAP DML Reference

without signaling an error condition. This is useful when you want to do a report of
a dimensioned variable for which you have partial permission without limiting the
dimensions to the permitted values up front. With PERMITERROR set to NO, values
for which you do not have read permission appear as NA values in the report.

Permissions and Concat Dimensions
You can use the PERMIT command to assign permissions to a concat dimension.
Any access restrictions on a concat dimension are in addition to the restrictions on
its component dimensions. To have access to a value of the concat dimension, you
must have permission to access the value in the concat itself and in all the
components that contain the value.

Permissions and Dimension Surrogates
You cannot use the PERMIT command on a dimension surrogate. The access
permissions of a dimension apply to all dimension surrogates defined for that
dimension.

Examples

Example 19–29 Variable Permission

For a variable sales dimensioned by month, product, and district, you might
have three dimensioned permission conditions in the form of three variables as
illustrated in the following report.

MONTH.BOOL<MONTH> PROD.BOOL<PRODUCT> DISTRICT.BOOL<DISTRICT>
----------------- ------------------ -----------------------
Jan95 NO Tents YES Boston NO
Feb95 YES Canoes YES Atlanta NO
Mar95 NO Racquets NO Chicago YES
...

When the YES values shown in the preceding example are the only YES values in
the permission conditions, the following PERMIT command provides read/write
access to sales data for tents and canoes sold in Chicago in Feb95. In the absence
of a PERMIT READ statement for sales, Oracle OLAP provides read-only
permission for all the other values of sales.

PERMIT WRITE WHEN district.bool BY prod.bool BY month.bool

PERMIT

OBJ to QUAL 19-71

You can restore full write permission with the following PERMIT command.

PERMIT WRITE

When there is no restricted write permission for sales, the following PERMIT
command provides read/write access to sales data for tents and canoes sold in
Chicago in Feb95, and it causes all other values of sales to be invisible.

PERMIT READ WHEN district.bool BY prod.bool BY month.bool

Example 19–30 Dimensioned Permission Condition

To restrict access to the product dimension you need a permission condition
dimensioned by product. However, when the permission condition has a second
dimension, say authority, PERMIT selects the BOOLEAN values that pertain to
product based on the first value in status of authority. When you restrict read
permission on the authority dimension to one value, PERMIT uses that value to

PERMIT

19-72 Oracle OLAP DML Reference

determine the BOOLEAN values of the permission condition for product. The
REPORT commands produce the output that follows them.

DEFINE authority DIMENSION TEXT
MAINTAIN authority ADD OTHER DBA
DEFINE prod_authority VARIABLE BOOLEAN <product authority>
...
" Assign values to the variable
...
REPORT prod_authority

-----------------PROD_AUTHORITY------------------
--------------------PRODUCT----------------------

AUTHORITY Tents Canoes Racquets Sportswear Footwear
--------- ----- ------ -------- ---------- --------
Other NO NO YES YES YES
Dba YES YES YES YES YES

CONSIDER product
PERMIT READ WHEN prod_authority
PERMITERROR = NO
RPEPORT product

PRODUCT

Racquets
Sportswear
Footwear

CONSIDER authority
PERMIT READ WHEN AUTHORITY EQ 'dba'
PERMITRESET
Report product

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

PERMIT

OBJ to QUAL 19-73

Example 19–31 User-Defined Boolean Function

In the following example, usercheck is a user-defined Boolean function that
checks the current value of the variable thisuser against a list of user IDs.
usercheck returns NO when the current value of thisuser is not in the list. The
following PERMIT command applied to the sales variable provides read-only
access to all values of sales when usercheck returns NO. It provides read/write
access to all values of sales when usercheck returns YES.

PERMIT WRITE WHEN usercheck(thisuser)

The following PERMIT command, applied to the variable price, provides full
access to all values of price when usercheck returns YES. When it returns NO, it
denies all access to the price variable.

PERMIT READ WHEN usercheck(thisuser)

Example 19–32 Individual Cells

When you want to prevent access to one particular sales figure, say for racquets in
Boston in March of 1997, you can create a Boolean variable and use it in a PERMIT
command as illustrated in the following statements.

DEFINE sales.bool VARIABLE BOOLEAN <month product district>
sales.bool = yes
LIMIT month TO 'Mar97'
LIMIT product TO 'Racquets'
LIMIT district TO 'Boston'
sales.bool = no
CONSIDER sales
PERMIT READ WHEN sales.bool

Example 19–33 Individual Dimension Values

The following PERMIT commands applied to the district dimension prevent
access to all dimension values except Boston and Atlanta. They provide
read/write access for all data related to Boston and read-only access for all data
related to Atlanta. They also prevent anyone with a user ID not allowed by the
function usercheck (see Example 19–31, "User-Defined Boolean Function" on
page 19-73) from modifying the permission for district.

PERMIT READ WHEN district EQ 'Boston' OR district EQ 'Atlanta'
PERMIT WRITE WHEN district EQ 'Boston'
PERMIT PERMIT WHEN usercheck(thisuser)

PERMIT_READ

19-74 Oracle OLAP DML Reference

PERMIT_READ

A program that you write and that Oracle OLAP checks for by name when an AW
ATTACH read-only statement executes. Depending on the value returned by the
program, Oracle OLAP executes the code within the program after attaching the
analytic workspace.

Returns
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic
workspace; or FALSE when it has not or when the permit_read program has
thrown an exception

Syntax
To define a program with the name PERMIT_READ use the syntax shown in
DEFINE PROGRAM. Code the actual program as a user-defined function with the
the following argument.

PERMIT_READ (password)

Arguments
See AW ATTACH for an explanation of password.

Note: Oracle OLAP checks for other programs when a user
attaches a workspace. See "Startup Programs" on page 1-11 for more
information.

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

Note: When a user specifies a password when attaching the
analytic workspace, then the password is passed as an argument to
the program for processing.

PERMIT_READ

OBJ to QUAL 19-75

Notes

Creating a PERMIT_READ program
A program with the name of permit_read does not exist within an analytic
workspace unless you define and write one. You write a permit_read as a
user-defined functions that returns a BOOLEAN value. You can use the return value
to indicate to Oracle OLAP whether or not the user has the right to attach the
workspace.

Depending on the statements in the permit_read program the user is granted or
denied access to specific objects or sets of object values. Within permit_read
program, you can specify PERMIT commands that grant or restrict access to
individual workspace objects.

Examples
For examples of how attachment programs, see Example 8–14, "Startup Programs"
on page 8-42.

Note: All of the objects referred to in a given permit_read must
exist in the same analytic workspace.

PERMIT_WRITE

19-76 Oracle OLAP DML Reference

PERMIT_WRITE

A program that you write and that Oracle OLAP checks for by name when an AW
ATTACH read/write statement executes. Depending on the value returned by the
program, Oracle OLAP executes the code within the program after attaching the
analytic workspace.

Returns
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic
workspace; or FALSE when it has not or when the permit_write program has
thrown an exception

Syntax
To define a program with the name PERMIT_WRITE use the syntax shown in
DEFINE PROGRAM. Code the actual program as a user-defined function with the
following argument.

PERMIT_WRITE (password)

Arguments
See AW ATTACH for an explanation of password.

Note: Oracle OLAP checks for other programs when a user
attaches a workspace. See "Startup Programs" on page 1-11 for more
information.

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

Note: When a user specifies a password when attaching the
analytic workspace, then the password is passed as an argument to
the program for processing.

PERMIT_WRITE

OBJ to QUAL 19-77

Notes

Creating a permit_write program
A program with the name of permit_write does not exist within an analytic
workspace unless you define and write one. You write a permit_write as a
user-defined functions that returns a BOOLEAN value. You can use the return value
to indicate to Oracle OLAP whether or not the user has the right to attach the
workspace.

Depending on the statements in the permit_write program, the user is granted or
denied access to specific objects or sets of object values. Within permit_write
program, you can specify PERMIT commands that grant or restrict access to
individual workspace objects.

Examples
For examples of how attachment programs, see Example 8–14, "Startup Programs"
on page 8-42.

Note: All of the objects referred to in a given permit_write
must exist in the same analytic workspace.

PERMITERROR

19-78 Oracle OLAP DML Reference

PERMITERROR

The PERMITERROR option controls whether or not an error is signaled on
attempted access of a variable for which read or write permission is denied by a
PERMIT command.

Data type
BOOLEAN

Syntax
PERMITERROR = NO|YES

Arguments

NO
When you set PERMITERROR to NO, an error condition is not created on attempted
access of a variable for which read or write permission is denied with a PERMIT
command. Values for which you do not have read permission are displayed as NA's.
When you try to change a value for which you do not have write permission, the
request is ignored.

YES
When PERMITERROR is YES (the default), an error is signaled upon attempted
access of a variable for which read or write permission is denied with a PERMIT
command. The error, which can be trapped, terminates the Oracle OLAP operation
that initiated the illegal access.

Notes

Programs, Models, and Valuesets
The setting of PERMITERROR is ignored for violations of permission for objects
without dimensionality such as programs, models, and valuesets. Attempted access
of variables and relations with permission, whether or not they have
dimensionality, is always affected by the setting of PERMITERROR.

See Also: PERMIT and PERMITRESET.

PERMITERROR

OBJ to QUAL 19-79

Maintaining Dimensions
The setting of PERMITERROR is ignored for violations of maintain and permit
permission. Attempted violations of permission to maintain dimensions and to
change permission are always treated as errors. Attempted violations of read or
write permission for dimensions are, similarly, always treated as errors.

Obtaining Data Without Full Permission
When PERMITERROR is YES and you attempt to fetch a dimensioned variable that
contains values that do not have read permission, an error condition is created
when the first of those values is encountered. You can avoid creating an error
condition by limiting the dimensions in advance so that only permissible values are
in status, or by setting PERMITERROR to NO, before doing the report.

Examples

Example 19–34 Report Without Full Permission

In the following example, the read permission on the price variable prevents you
from seeing price data for any values of product other than Tents. However,
when you set PERMITERROR to NO, you can still do a report of the price variable
for Dec. 1996 without creating an error condition.

PERMITERROR = no
DESCRIBE price

The output of this statement is

DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price
PERMIT READ WHEN product eq 'Tents'

The statements

LIMIT month TO 'Dec96'
REPORT price

PERMITERROR

19-80 Oracle OLAP DML Reference

produce the following output.

----PRICE----
----MONTH----

PRODUCT DEC96
---------------- -------------
Tents 165.64
Canoes NA
Racquets NA
Sportswear NA
Footwear NA

The statements

PERMITERROR = yes
REPORT price

produce the following error,

ERROR: You do not have permission to read this value of PRICE

and the following output.

---PRICE---
---MONTH---

PRODUCT DEC96
--------------- -----------
Tents 165.64

PERMITRESET

OBJ to QUAL 19-81

PERMITRESET

The PERMITRESET command causes the values of permission conditions to be
reevaluated. Permission conditions consist of one or more Boolean expressions that
designate the criteria used by PERMIT commands associated with an object.

When permission conditions are dimensioned, they indicate which values of a
dimensioned object PERMIT will target for permission. A single-cell permission
condition can indicate any Boolean criterion, such as whether or not a particular
user may access the object.

When you want to keep the existing PERMIT commands for an object, but you want
the permission conditions associated with them to be recalculated, issue a
PERMITRESET command. The permission for that object will be based on the new
values of the permission conditions the next time you use the object in an OLAP
DML statement.

Syntax
PERMITRESET [object_name] [READ|WRITE]

Arguments

object_name
Specifies the name of an object for which permission conditions should be
reevaluated. When you do not specify an object name, the permission conditions for
all objects are reevaluated.

READ
Causes reevaluation of the permission conditions for PERMIT READ commands
only, or for the PERMIT READ command for the specified object.

WRITE
Causes reevaluation of the permission conditions for PERMIT WRITE commands
only, or for the PERMIT WRITE command for the specified object.

See also: PERMIT and PERMITERROR

PERMITRESET

19-82 Oracle OLAP DML Reference

Notes

Changing Permission
Provided you have permit permission for an object, you can change its permission
by issuing new PERMIT commands for it. The new permission will be evaluated
upon next reference to the object. See "Permission and the OBJ Function" on
page 19-82.

Reevaluating Single-Cell Permission Conditions
When you are targeting any object but a dimension for permission, and the
permission condition consists of a single Boolean variable, any changes to that
variable affect the permission immediately. You do not need to execute a
PERMITRESET in this case.

Permission and the OBJ Function
In general, permission are evaluated upon next reference to the object. However, the
OBJ function is an exception to this rule. The OBJ function provides information
about an analytic workspace object that you specify. Because OBJ does not load the
object into memory, it does not reflect any changes to the object's permission since
the last time it was loaded. When you want OBJ to provide information based on
new permission criteria, execute a LOAD command before the OBJ.

Examples

Example 19–35 Resetting Permission

In the following example, the user-defined Boolean function usercheck checks the
current value of the variable thisuser and returns YES only when it is greater
than 100. Access to the variable uservar is only allowed when thisuser is
greater than 100. However, when you change the value of thisuser to a value less
than or equal to 100 without resetting the permission for uservar, access is still
permitted.

The statement

DESCRIBE uservar

produces the following output.

DEFINE USERVAR VARIABLE INTEGER
PERMIT READ WHEN usercheck(thisuser)

PERMITRESET

OBJ to QUAL 19-83

The statement

SHOW uservar

produces the following output.

5

The statement

DESCRIBE usercheck

produces the following output.

DEFINE USERCHECK PROGRAM BOOLEAN
PROGRAM
ARG thisuser INT
TRAP ON errorexit NOPRINT
IF thisuser GT 100

THEN RETURN YES
ELSE RETURN NO
errorexit:

RETURN NO
END

The statement

DESCRIBE thisuser

produces the following output.

DEFINE THISUSER VARIABLE INTEGER

The statement

SHOW thisuser

produces the following output.

101

PERMITRESET

19-84 Oracle OLAP DML Reference

The statements

thisuser = 100
SHOW uservar

produces the following output.

5

The statements

PERMITRESET luservar READ
SHOW uservar

produce the following error.

ERROR: You do not have permission to read this value of USERVAR

POP

OBJ to QUAL 19-85

POP

The POP command restores the status of a dimension, the status of a valueset, or
the value of an option or single-cell variable that was saved with a previous PUSH
command.

PUSH and POP are commonly used within a program to make changes to options
and dimension status that apply only during the program's execution. Afterward,
the options and status are the same as they were before the execution of the
program.

Syntax
POP name1 [nameN]

Arguments

name
The name of a dimension, valueset, variable, or option that was specified in a
previous PUSH command, whose saved value you want to restore.

Notes

NAME Dimension
PUSH and POP also work for the NAME dimension.

Effect of the MAINTAIN Command
Using the MAINTAIN command with a dimension clears that dimension's pushed
status lists. For example, suppose you have pushed the dimension month several
times, with different limits each time. When you then use the MAINTAIN
command to perform any maintenance activity on the month dimension, Oracle
OLAP resets the status of month to ALL (the default), and popping that dimension
will have no effect.

Related Statements
POPLEVEL, PUSH, PUSHLEVEL, and CONTEXT command.

POP

19-86 Oracle OLAP DML Reference

Examples
For an example of using POP, see Example 19–44, "Saving and Restoring Values" on
page 19-101.

POPLEVEL

OBJ to QUAL 19-87

POPLEVEL

The POPLEVEL command restores all values saved with PUSH commands that
were executed since the last POPLEVEL command specifying the same marker.

You must use PUSHLEVEL to mark a starting point for a series of PUSH commands
before you can use POPLEVEL to restore the saved values. POPLEVEL itself marks
the end of the series. You can use POPLEVEL only within programs. (Abbreviated
PPL.)

Syntax
POPLEVEL marker-expression [DISCARD]

Arguments

marker-expression
A text value used as a marker. This must be exactly the same as the value used in
the corresponding PUSHLEVEL command to mark the start of a series of saved
values being popped.

DISCARD
Specifies that the pushed values for that level are discarded when you issue the
POPLEVEL command. When you do not specify DISCARD, the values that were
pushed are used to reset the pushed objects.

Notes

POPLEVEL and PUSH
Two possible uses for the POPLEVEL command are:

■ After a series of increasingly broadening or narrowing LIMIT commands, each
with a corresponding PUSH.

■ After a single extremely long and complicated PUSH command, or a series of
short ones given throughout a program, that may need a lot of editing.
PUSHLEVEL and POPLEVEL allow you to edit the arguments for a long and
complicated PUSH command without also having to edit a corresponding long
and complicated POP command.

POPLEVEL

19-88 Oracle OLAP DML Reference

Nesting
You can nest PUSHLEVEL and POPLEVEL pairs, as long as you specify a different
marker for each pair.

Duplicate Markers
When you specify the same marker for two or more PUSHLEVEL commands, a
POPLEVEL command specifying that same marker will restore values that were
saved only since the most recent PUSHLEVEL command.

Multiple PUSHLEVEL Commands
When you specify a different marker for two or more PUSHLEVEL commands, a
POPLEVEL command that specifies the marker of any PUSHLEVEL command
restores all the values that were saved since that command, including values that
were saved after later PUSHLEVEL commands.

Related Statements
POP, PUSH, PUSHLEVEL, and CONTEXT command.

Examples
To see a sample program using POPLEVEL, see the PUSHLEVEL example.

POUTFILEUNIT

OBJ to QUAL 19-89

POUTFILEUNIT

The POUTFILEUNIT option identifies a destination for status information about the
execution of many OLAP DML statements, including:

AGGREGATE command
AGGREGATE function
ALLOCATE
CLEAR
AW ATTACH
AW DETACH
UPDATE
IMPORT
EXPORT

When an OLAP DML statement is executed through SQL, using the
POUTFILEUNIT option enables you to see the work that the statement is doing as it
progresses instead of waiting until the execution of the SQL call is complete.

Syntax
POUTFILEUNIT = fileunit

Arguments

fileunit
Specifies a destination, such as an open disk file, to which Oracle OLAP sends
information on the progress of an operation. The fileunit can be the value of the
OUTFILEUNIT option or the results of the FILEOPEN function.

Note: Because POUTFILEUNIT does not have a default setting,
this information is not collected unless you set POUTFILEUNIT in
your session.

POUTFILEUNIT

19-90 Oracle OLAP DML Reference

Notes

Information Sent by ALLOCATE and AGGREGATE
ALLOCATE, the AGGREGATE command, and AGGREGATE function send the
following types of information:

■ Progress of the verification of the hierarchy of a dimension

■ Progress of the building of intermediate computation structures

■ The execution of the allocation or aggregation

■ Errors or anomalous behavior that Oracle OLAP encounters in allocating or
aggregating the source data to the target variable cells, such as skipped
deadlocks in an allocation.

Examples

Example 19–36 Using FILEOPEN to Open a File

The FILEOPEN command opens a file named progress.txt in the userfiles
directory object and returns the file handle to the POUTFILEUNIT option. The file
receives status messages from the AGGREGATE command. When the aggregation
is complete, the FILECLOSE command closes the file.

POUTFILEUNIT=FILEOPEN('userfiles/progress.txt' WRITE)
AGGREGATE sales units USING gpct.aggmap
FILECLOSE POUTFILEUNIT

Example 19–37 Viewing Progress in OLAP Worksheet

The following statement sets POUTFILEUNIT to the current outfile destination.
When the current outfile destination is the OLAP Worksheet window, remember
that you cannot do other work in your session until the operation completes.

POUTFILEUNIT=OUTFILEUNIT

PRGTRACE

OBJ to QUAL 19-91

PRGTRACE

The PRGTRACE option controls whether each line of a program is recorded in the
current outfile or in a debugging file during execution of the program. PRGTRACE
is primarily used as a debugging tool to uncover problems by tracing the execution
of a program.

System DML programs are not traced unless EXPTRACE is set to YES.

When you have used the DBGOUTFILE command to specify a debugging file,
Oracle OLAP sends PRGTRACE output to the debugging file instead of the current
outfile.

Data type
BOOLEAN

Syntax
PRGTRACE = {YES|NO}

Arguments

YES
Oracle OLAP records each line in a program before it is executed.

NO
Oracle OLAP does not record each line in a program. (Default)

Notes

PRGTRACE Output
PRGTRACE records the name of the current program at the beginning of each
program line. It includes an equals sign to indicate a compiled line.

(PRG= SALESREP) . . .

It includes a colon to indicate an uncompiled line.

(PRG: SALESREP) . . .

PRGTRACE

19-92 Oracle OLAP DML Reference

A compiled line is a line that has been translated into an efficient internal form,
whereas an uncompiled line has not. Oracle OLAP ordinarily stores lines in
compiled form to make programs work more efficiently, especially programs that
contain loops.

Uncompiled Program Lines
Oracle OLAP compiles a program before running it. Therefore, the only lines that
will be marked as uncompiled in the PRGTRACE output are lines that cannot be
compiled, such as lines that include ampersand substitution.

Examples

Example 19–38 Tracing Program Execution

Suppose you have a program called salesrep that produces a simple budget
report.

DEFINE salesrep PROGRAM
PROGRAM
PUSH month division line
TRAP ON cleanup
LIMIT month TO &ARGS
LIMIT division TO ALL
LIMIT line TO FIRST 1
REPORT DOWN division across month: dec 0 budget

cleanup:
POP month division line
END

When you want to debug this program, you can trace the execution of each of its
lines by turning on PRGTRACE and executing the program.

PRGTRACE = yes
salesrep FIRST 3

PRGTRACE

OBJ to QUAL 19-93

PRGTRACE produces the following output in the current outfile or debugging file.

(PRG= SALESREP) push month division line
(PRG= SALESREP) trap on cleanup
(PRG: SALESREP) limit month to &args
(PRG= SALESREP) limit division to all
(PRG= SALESREP) limit line to first 1
(PRG= SALESREP) report down division across month: dec0 budget
LINE: REVENUE

-------------BUDGET-------------
-------------MONTH--------------

DIVISION JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
CAMPING 679,149 707,945 780,994
SPORTING 482,771 517,387 525,368
CLOTHING 983,888 1,016,528 992,331
(PRG= SALESREP) cleanup:
(PRG= SALESREP) pop month division line

PROGRAM

19-94 Oracle OLAP DML Reference

PROGRAM

The PROGRAM command enters completely new contents into a new or existing
program. When the program already has lines of code, Oracle OLAP overwrites
them.

PROGRAM assigns contents to the most recently defined or considered program
object (see the DEFINE PROGRAM and CONSIDER commands).

Syntax
PROGRAM [contents]

Arguments

contents
A text expression that is the OLAP DML statements that are the lines of the
program. You can use most OLAP DML statements within a program. For brief
descriptions of statements that manage program flow-of-control and other
traditional programming tasks, see Table A–23, " Statements Used Only in OLAP
DML Programs" on page A-23 and Table A–24, "Statements Used Primarily in
OLAP DML Programs" on page A-25. For a discussion of writing, compiling, and
debugging OLAP DML programs, see Chapter 5, "OLAP DML Programs".

The maximum number of lines you can have in a program is 4,000. Separate
program lines with newline delimiters (\n), or use the JOINLINES function as
shown in "Program On the Fly" on page 19-96.

Examples

Example 19–39 User-Defined Function with Arguments

Suppose your analytic workspace contains a variable called units.plan, which is
dimensioned by the product, district, and month dimensions. The variable
holds INTEGER data that indicates the number of product units that are expected to
be sold.

See also: For a discussion of writing, compiling, and debugging
OLAP DML programs, see Chapter 5, "OLAP DML Programs".

PROGRAM

OBJ to QUAL 19-95

Suppose also that you define a program namedunits_goals_met. This program
is a user-defined function. It accepts three dimension-value arguments that specify a
given cell of the units.plan variable, and it accepts a fourth argument that
specifies the number of units that were actually sold for that cell. The program
returns a Boolean value to the calling program. It returns YES when the actual
figure comes up to within 10 percent of the planned figure; it returns NO when the
actual figure does not.

The definition of the units_goals_met program is follows.

DEFINE units_goal_met PROGRAM BOOLEAN
LD Tests whether actual units met the planned estimate
"Program Initialization
ARGUMENT userprod TEXT
ARGUMENT userdist TEXT
ARGUMENT usermonth TEXT
ARGUMENT userunits INTEGER
VARIABLE answer boolean
TRAP ON errorlabel
PUSH product district month
"Program Body
LIMIT product TO userprod
LIMIT district TO userdist
LIMIT month TO usermonth
IF (units.plan - userunits) / units.plan GT .10
 THEN answer = NO
 ELSE answer = YES
"Normal Exit
POP product district month
RETURN answer
"Abnormal Exit
errorlabel:
POP product district month
SIGNAL ERRORNAME ERRORTEXT
END

To execute the units_goal_met program and store the return value in a variable
called success, you can use an assignment statement (SET).

success = units_goal_met('TENTS' 'BOSTON' 'JUN96' 2000)

PROGRAM

19-96 Oracle OLAP DML Reference

Example 19–40 Program On the Fly

This example creates a flexible report program "on the fly" to avoid the inefficiencies
of a more conventional program using ampersand substitution. The conventional
program would contain the following loop.

FOR &dimname
ROW &dimname &varname

To avoid ampersand substitution, define a program, for example, STANDARDREP,
and leave it without any code in it, or with code that can be discarded. Then in your
report program, insert lines such as the following.

DEFINE myreport PROGRAM
LD Program to produce my report
PROGRAM
ARGUMENT dimname TEXT
ARGUMENT varname TEXT
...
CONSIDER standardrep
PROGRAM JOINLINES(JOINCHARS('FOR ', dimname) -

JOINCHARS(' ROW ', dimname, ' ', varname))
COMPILE standardrep
standardrep
...

Example 19–41 Program from an Input File

This example presents the text of a simple program that is in an ASCII disk file
called salesrep.inf. The first line in the file defines the program, the second line
contains the PROGRAM command, and the subsequent lines provide the lines of
the program.

DEFINE salesrep PROGRAM
PROGRAM
PUSH month product district
TRAP ON haderror
LIMIT month TO FIRST 3
LIMIT product TO FIRST 3
LIMIT district TO ALL
REPORT grandtotals sales
haderror:
POP month product district
END

PROGRAM

OBJ to QUAL 19-97

To include the salesrep program in your analytic workspace, you can execute the
following statement.

INFILE 'salesrep.inf'

You can create an input file from an existing program using the OUTFILE command

Example 19–42 Using OLAP Worksheet Instead of the PROGRAM Command

When you use OLAP Worksheet to create a new program, you can use the EDIT
command to display an Edit window where you can enter the contents. For
example, use the following statements to define a new program named salesrep
and display it in an Edit window.

DEFINE salesrep PROGRAM
EDIT salesrep

PROPERTY

19-98 Oracle OLAP DML Reference

PROPERTY

The PROPERTY command adds or deletes properties to the most recently defined
or considered object (see the DEFINE PROGRAM and CONSIDER commands). A
property is a named value that is associated with a given definition. You can assign
one or more properties to any type of definition. For example, you can assign a
property to an object so you know how many decimal places to use when preparing
a report on the object.

Syntax
PROPERTY { name value | DELETE {ALL | name} }

Arguments

name
A text expression that contains the name of the property. The property name can be
from 1 to 256 bytes long.

Property names have the TEXT data type, unless you include a Unicode escape
sequence in the value you specify for the name, or unless you explicitly convert the
value you specify to NTEXT (using the CONVERT or TO_NCHAR functions).

value
An expression that contains the value of the property. The property value can have
one of the following data types: NUMBER, INTEGER, LONGINTEGER, DECIMAL,
SHORTDECIMAL, TEXT, NTEXT, ID, BOOLEAN, DATE, or DATETIME. Oracle
OLAP determines the data type based on the value that you specify. For example,
when you specify YES, then Oracle OLAP assumes a type of BOOLEAN. When you
specify a date value that is stored in a variable of type DATE, then Oracle OLAP
assumes a type of DATE for the property.

Important: Do not create your own properties with names that
begin with a $ (dollar sign). Properties with names beginning with
a $ (dollar sign) are reserved for Oracle OLAP to use as "system"
properties that Oracle OLAP interprets in predetermined ways.

PROPERTY

OBJ to QUAL 19-99

DELETE ALL
DELETE name
Deletes either all of the properties of the object or only the property you specify for
name. You can specify only one name at a time.

Notes

Triggering Program Execution When PROPERTY Executes
Using the TRIGGER command, you can make the PROPERTY command an event
that automatically executes an OLAP DML program. See "Trigger Programs" on
page 1-14 for more information

Changing a Property Value
When you execute a PROPERTY command that assigns a new value to an existing
property name, then the new value overwrites the previous one.

Determining Property Values with OBJ
To use properties with OLAP DML statements, you must obtain the values by using
the property-related keywords of the OBJ function. For example, suppose a
property called decplace stores the number of decimal places to use when
reporting an object. When you execute the REPORT command, you can use the OBJ
function with the PROPERTY keyword to obtain the value of the decplace
property and use that value with the REPORT command's DECIMAL attribute.

Listing Property Values with FULLDSC
You can list the properties of an object by using the FULLDSC command. You can
use the output from FULLDSC to create new objects. See FULLDSC for more
information.

Examples

Example 19–43 Adding Properties to a Variable

The following statements add the properties decplace and prgname to the
actual variable and assign the decimal 4 as the value for the decplace property
and the text repprg as the value for the prgname property.

CONSIDER actual
PROPERTY 'decplace' 4
PROPERTY 'prgname' 'repprg'

PUSH

19-100 Oracle OLAP DML Reference

PUSH

The PUSH command saves the current status of a dimension, the status of a
valueset, or the value of an option or single-cell variable. You can then restore these
saved values and status at a later time with a POP command.

PUSH and POP are commonly used within a program to make changes to options
and dimension status that apply only during the program's execution. Afterward,
the options and status are the same as they were before the execution of the
program.

Syntax
PUSH name1 [name]

Arguments

name
The name of a dimension, valueset, option, or variable whose status or value you
want to save.

Notes

NAME Dimension
PUSH and POP also work for the NAME dimension.

Effect of the MAINTAIN Command
Using the MAINTAIN command with a dimension clears that dimension's pushed
status lists. For example, suppose you have pushed the dimension month several
times, with different limits each time. When you then use the MAINTAIN
command to perform any maintenance activity on the month dimension, Oracle
OLAP resets the status of month to ALL (the default), and popping that dimension
will have no effect.

See also: the following related commands:

■ POPLEVEL and PUSHLEVEL

■ CONTEXT command

PUSH

OBJ to QUAL 19-101

Examples

Example 19–44 Saving and Restoring Values

The following program uses PUSH and POP to produce sales figures without
decimal places for a specific selection of products, districts, and months, and then
restores the status settings and the value of DECIMALS to what they were before
the program was run.

DEFINE report1 PROGRAM
PROGRAM
TRAP ON cleanup
PUSH DECIMALS product district month

DECIMALS = 0
LIMIT product TO 'Sportswear' 'Footwear'
LIMIT district TO 'Atlanta' 'Dallas'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT sales

cleanup:
POP DECIMALS product district month
END

PUSHLEVEL

19-102 Oracle OLAP DML Reference

PUSHLEVEL

The PUSHLEVEL command marks the start of a series of PUSH commands. You
can then use a corresponding POPLEVEL command to restore all the values saved
by PUSHcommands that are executed after PUSHLEVEL. POPLEVEL must specify
the same marker as the PUSHLEVEL command that starts the series. You can use
PUSHLEVEL only within programs.

Syntax
PUSHLEVEL marker-expression

Arguments

marker-expression
A text value to mark the start of a series of PUSH commands all of whose saved
values are to be popped at once. A POPLEVEL command that specifies the exact
same marker-expression restores the whole series of saved values.

Notes

Nesting
You can nest PUSHLEVEL/POPLEVEL pairs, as long as you specify a different
marker for each pair, as illustrated in the following code.

PUSHLEVEL 'firstlevel'
PUSH PAGESIZE DECIMALS < saves values in FIRSTLEVEL
...
PUSHLEVEL 'secondlevel'
PUSH month product < Saves values in SECONDLEVEL
...
POPLEVEL 'secondlevel' < Restores values in SECONDLEVEL
...
POPLEVEL 'firstlevel' < Restores values in FIRSTLEVEL

You do not normally need more than one level in a single program. However,
Oracle OLAP automatically creates nested levels when one program calls another
program and each program contains a set of PUSHLEVEL and POPLEVEL
commands.

PUSHLEVEL

OBJ to QUAL 19-103

Duplicate Markers
When you specify the same marker for two or more PUSHLEVEL commands, a
POPLEVEL command specifying that same marker will restore values that were
saved only since the most recent PUSHLEVEL command.

Multiple PUSHLEVEL Commands
When you specify a different marker for two or more PUSHLEVEL commands, a
POPLEVEL command that specifies the marker of any PUSHLEVEL command
restores all the values that were saved since that command, including values that
were saved after later PUSHLEVEL commands.

Related Statements
POP PUSH, POPLEVEL, and CONVERT.

Examples

Example 19–45 Creating Level Markers

You can use the PUSHLEVEL command to establish a level marker called
firstlevel, and then use PUSH to save the current values.

PUSHLEVEL 'firstlevel'
PUSH month DECIMALS ZSPELL

The level marker can be any text that is enclosed in single quotation marks. It can
also be the name of a single-cell ID or TEXT variable, whose value becomes the
name of the level marker. In the exit sections of the program, you can then use the
POPLEVEL command to restore all the values you saved since establishing the
firstlevel marker.

POPLEVEL 'firstlevel'

Example 19–46 Nesting PUSHLEVEL and POPLEVEL Commands

You can nest PUSHLEVEL and POPLEVELcommands to save certain groups of
values in one place in a program and other groups of values in another place in a

PUSHLEVEL

19-104 Oracle OLAP DML Reference

program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

PUSHLEVEL 'firstlevel'
PUSH PAGESIZE DECIMALS "Saves values in FIRSTLEVEL
 ...
PUSHLEVEL 'secondlevel'
PUSH month product "Saves values in SECONDLEVEL
 ...
POPLEVEL 'secondlevel' "Restores values in SECONDLEVEL
 ...
POPLEVEL 'firstlevel' "Restores values in FIRSTLEVEL

Normally, you do not use more than one set of PUSHLEVEL and POPLEVEL
commands in a single program. However, the nesting feature comes into play
automatically when one program calls another program, and each program contains
a set of PUSHLEVEL and POPLEVEL commands.

Example 19–47 One-Step Restoration and Nested Levels

The following program uses PUSHLEVEL 'rpt1' to mark for one-step restoration
the original value of DECIMALS and the original status of month, product, and
district, even though these are pushed separately in the program.

To demonstrate nesting, the program includes a nested PUSHLEVEL-POPLEVEL
pair with 'rpt2' as its marker and some STATUS commands at various points.

PUSHLEVEL

OBJ to QUAL 19-105

You can compare the program's output with the program to see how the status is
affected.

DEFINE sales.RPT PROGRAM
PROGRAM
STATUS month product district

PUSHLEVEL 'rpt1'
PUSH DECIMALS month
DECIMALS = 0
LIMIT month TO 'Jan96'
REPORT WIDTH 8 DOWN district WIDTH 9 ACROSS product: expense
PUSH product
LIMIT product TO 'Racquets' 'Sportswear'
REPORT DOWN district ACROSS product: advertising

PUSHLEVEL 'rpt2'
PUSH district
LIMIT district TO 'Atlanta' 'Dallas' 'Chicago'
REPORT DOWN district ACROSS product: sales
BLANK
STATUS month product district
BLANK

POPLEVEL 'rpt2'
STATUS month product district
BLANK
POPLEVEL 'rpt1'

STATUS month product district
END

PUSHLEVEL

19-106 Oracle OLAP DML Reference

The sales.rpt program produces the following output.

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
ALL
MONTH: JAN96

---------------------EXPENSE---------------------
---------------------PRODUCT---------------------

DISTRICT Tents Canoes Racquets Sportswear Footwear
-------- --------- --------- --------- ---------- ----------
Boston 31,299 67,527 52,942 49,668 80,565
Atlanta 41,139 53,186 57,159 108,047 99,758
Chicago 27,768 45,621 53,756 65,055 81,639
Dallas 47,063 34,072 118,807 113,629 19,785
Denver 33,177 42,975 89,144 63,380 36,960
Seattle 41,043 64,009 26,719 38,970 46,900
Month: Jan96

-----ADVERTISING-----
-------PRODUCT-------

DISTRICT RAcquets Sportswear
-------------- ---------- ----------
Boston 3,784 3,352
Atlanta 4,384 9,509
Chicago 3,351 5,283
Dallas 8,700 8,340
Denver 6,215 4,654
Seattle 2,344 3,726
MONTH: Jan96

--------SALES--------
-------PRODUCT-------

DISTRICT Racquets Sportswear
-------------- ---------- ----------
Atlanta 61,895 129,616
Dallas 125,880 128,115
Chicago 58,649 77,490
The current status of MONTH is:
JAN96
The current status of PRODUCT is:
RACQUETS, SPORTSWEAR
The current status of DISTRICT is:
ATLANTA, DALLAS, CHICAGO

PUSHLEVEL

OBJ to QUAL 19-107

The current status of MONTH is:
JAN96
The current status of PRODUCT is:
RACQUETS, SPORTSWEAR
The current status of DISTRICT is:
ALL

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
ALL

QUAL

19-108 Oracle OLAP DML Reference

QUAL

The QUAL function lets you explicitly specify a qualified data reference (QDR). You
should use QUAL in cases where the syntax of a QDR is ambiguous and could
either be misinterpreted by Oracle OLAP or cause a syntax error.

QDRs provide a mechanism for limiting one or more dimensions of an expression
to a single value. QDRs are useful when you want to temporarily reference a value
that is not in the current status.

Return Value
The value that is returned has the same data type as the expression being qualified.

Syntax
QUAL(expression, dimname1 dimexp1 [, dimnameN dimexpN])

Arguments

expression
The expression being qualified. You should use QUAL to qualify complex
expressions that contain computation, function calls, or ampersand substitution.
You can also use QUAL when the expression is a simple variable name. However,
QUAL is not required for simple expressions, and you can use the following
standard QDR syntax.

expression(dimname1 dimexp1 [, dimname2 dimexp2 ...])

dimname
The dimension to be limited. You can specify one or more of the dimensions of the
expression. Each dimension must be paired with a dimexp. You can specify a
dimension surrogate instead of the dimension.

dimexp
An expression that represents the value to which the dimension should be limited.
The expression can be a value of the dimension, a text expression whose result is a
value of the dimension, a numeric expression whose result is the logical position of
a value of the dimension, or a relation of the dimension.

When the dimension being limited is a conjoint dimension, then dimexp must be
enclosed in angle brackets and must include a value for each of its base dimensions.

QUAL

OBJ to QUAL 19-109

When the dimension being limited is a concat dimension, then dimname and dimexp
can be one of the combinations listed in Table 19–1, "Valid dimname and dimexp
Combinations for Concat Dimensions".

Examples

Example 19–48 Using QUAL with MAX

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

Assume that you issue the following OLAP DML statements to limit the view of the
Cogs line data in the Sporting division to January 1996 through June 1996, and,
then, report by month on the maximum value of actual costs or budgeted costs or
MAX(actual,budget), actual costs, and budgeted costs for each month.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
REPORT DOWN month W 11 MAX(actual,budget) W 11 actual W 11 budget

Table 19–1 Valid dimname and dimexp Combinations for Concat Dimensions

dimname dimexp

The name of the concat dimension A value of the concat dimension

The name of the concat dimension The name of a base dimension

The name of a base dimension of the concat
dimension

A value of the base dimension

The name of a base dimension of the concat
dimension

The name of the concat dimension

QUAL

19-110 Oracle OLAP DML Reference

The preceding statements produce the following report.

DIVISION: SPORTING
---------------LINE----------------
---------------COGS----------------
MAX(ACTUAL,

MONTH BUDGET) ACTUAL BUDGET
-------------- ----------- ----------- -----------
Jan96 287,557.87 287,557.87 279,773.01
Feb96 323,981.56 315,298.82 323,981.56
Mar96 326,184.87 326,184.87 302,177.88
Apr96 394,544.27 394,544.27 386,100.82
May96 449,862.25 449,862.25 433,997.89
Jun96 457,347.55 457,347.55 448,042.45

Now consider how you might view the same figures for MAX(actual,budget)
without changing the status of line or division.

ALLSTAT
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'For Cogs in Sporting Division' DOWN month -

W 11 HEADING 'MAX(actual,budget)'-
QUAL(MAX(actual,budget), line 'Cogs', division 'Sporting')

For Cogs in
Sporting MAX(actual,
Division budget)
-------------- -----------
Jan96 287,557.87
Feb96 323,981.56
Mar96 326,184.87
Apr96 394,544.27
May96 449,862.25
Jun96 457,347.55

When you attempt to produce the same report with standard QDR syntax, Oracle
OLAP signals an error.

REPORT HEADING 'For Cogs in Sporting Division' DOWN month -
W 11 HEADING 'MAX(actual,budget)'-
MAX(actual,budget) (line cogs, division sporting)

The following error message is produced.

ERROR: A right parenthesis or an operator is expected after LINE.

QUAL

OBJ to QUAL 19-111

Example 19–49 Using QUAL with a Concat Dimension

The following example shows two ways of limiting the values of a concat
dimension in a QUAL function. The reg.dist.ccdim concat dimension has
region and district as its base dimensions. The rdsales variable is
dimensioned by month, product, and reg.dist.ccdim.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT product TO 'Tents' 'Canoes'

" Limit the concat by specifying one of its component dimensions
REPORT W 30 QUAL(rdsales * 2, month 'Feb96', district 'Boston')

These statements produce the following report.

 QUAL(RDSALES * 2, MONTH
PRODUCT 'Feb96', DISTRICT 'Boston')
-------------- ------------------------------
Tents 69,283.18
Canoes 164,475.36

" Limit the concat by specifying one of its values
REPORT W 30 QUAL(rdsales * 2, month 'Mar96', reg.dist.ccdim
'<district: Boston>')

 QUAL(RDSALES * 2, MONTH
 'Mar96', REG.DIST.CCDIM

PRODUCT '<district: Boston>')
-------------- ------------------------------
TENTS 91,484.42
CANOES 195,244.56

QUAL

19-112 Oracle OLAP DML Reference

RANDOM to REPORT 20-1

20
RANDOM to REPORT

This chapter contains the following OLAP DML statements:

■ RANDOM

■ RANDOM.SEED.1 and RANDOM.SEED.2

■ RANK

■ RECAP

■ RECNO

■ RECURSIVE

■ REDO

■ REEDIT

■ REGRESS

■ REGRESS.REPORT

■ RELEASE

■ REM

■ REMBYTES

■ REMCHARS

■ REMCOLS

■ REMLINES

■ RENAME

■ REPLBYTES

■ REPLCHARS

20-2 Oracle OLAP DML Reference

■ REPLCOLS

■ REPLLINES

■ REPORT

RANDOM

RANDOM to REPORT 20-3

RANDOM

The RANDOM function produces a number that is randomly distributed between
specified low and high boundaries. Randomly generated numbers are useful when
building and duplicating tests of applications. They are especially useful for
simulation and forecasting applications.

Return Value
DECIMAL

Syntax
RANDOM([lowbound] [highbound])

Arguments

lowbound
A numeric expression that specifies the lower boundary for the random number
series. The default is 0.

highbound
A numeric expression that specifies the upper boundary for the random number
series. The default is 1.

Notes

NA Values
When either lowbound or highbound is NA, the RANDOM function produces NA.

DECIMAL-to-INTEGER Conversion
When you use the RANDOM function to assign values to an INTEGER variable,
RANDOM produces decimal values that are rounded when assigned to the
variable.

Reproducing a Random Sequence
To compute the number, RANDOM uses the values of the options
RANDOM.SEED.1 and RANDOM.SEED.2, and then changes the values for the next
time.

RANDOM

20-4 Oracle OLAP DML Reference

When you want to reproduce the same sequence of random numbers when you are
developing and debugging your application programs, set RANDOM.SEED.1 and
RANDOM.SEED.2 to some specific values just before using RANDOM. To duplicate
the sequence, set these options to the same values just before using RANDOM again.
Then changes in the behavior of your programs will be caused by your changes to
the programs and not by differing sequences of random numbers.

Creating Seed Values
When you create your own seeds, set both RANDOM.SEED.1 and
RANDOM.SEED.2 to odd numbers. This practice enhances the randomness of the
numbers that are produced.

Examples

Example 20–1 Producing Random Numbers

This example assigns random numbers between 100 and 200 to a variable called
test, which is dimensioned by product.

test = RANDOM(100 200)
REPORT test

These statements produce a report such as the following.

PRODUCT TEST
-------------- ----------
Tents 122.93
Canoes 176.69
Racquets 168.32
Sportswear 150.92
Footwear 187.46

RANDOM.SEED.1 and RANDOM.SEED.2

RANDOM to REPORT 20-5

RANDOM.SEED.1 and RANDOM.SEED.2

The RANDOM.SEED.1 and RANDOM.SEED.2 options specify values used by
RANDOM when computing random numbers. To compute the number, RANDOM
uses the values of the options RANDOM.SEED.1 and RANDOM.SEED.2, and then
changes the values for the next time.

When you want to reproduce the same sequence of random numbers when you are
developing and debugging your application programs set RANDOM.SEED.1 and
RANDOM.SEED.2 to some specific values just before using RANDOM.

Data type
INTEGER

Syntax
RANDOM.SEED.1|RANDOM.SEED.2 = n

Arguments

n
An integer expression that specifies the value to use when generating random
numbers. The default is for RANDOM.SEED.1 is 12345 and RANDOM.SEED.2 is
1073.

Notes

Reproducing a Random Sequence
As illustrated in Example 20–1, "Producing Random Numbers" on page 20-4, when
you want to reproduce the same sequence of random numbers when you are
developing and debugging your application programs, set RANDOM.SEED.1 and
RANDOM.SEED.2 to some specific values just before using RANDOM. To duplicate
the sequence, set these options to the same values just before using RANDOM again.
Then changes in the behavior of your programs will be caused by your changes to
the programs and not by differing sequences of random numbers.

RANDOM.SEED.1 and RANDOM.SEED.2

20-6 Oracle OLAP DML Reference

Creating Seed Values
When you create your own seeds, set both RANDOM.SEED.1 and
RANDOM.SEED.2 to odd numbers. This practice enhances the randomness of the
numbers that are produced.

Examples

Example 20–2 Explicitly Seeding RANDOM for a Test

Assume that you have the following dimension and variable in your analytic
workspace

DEFINE id DIMENSION TEXT
DEFINE myvar VARIABLE INTEGER <id>

As shown in the following code, when you use RANDOM to populate myvar
without seeding it first. Oracle OLAP populates myvar with different values each
time the RANDOM executes.

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 11
a2 19
a3 14

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 16
a2 13
a3 12

Now, assume that you want to write a test that uses RANDOM to create predictable
values for myvar. As the following code illustrates, to ensure that the results of

RANDOM.SEED.1 and RANDOM.SEED.2

RANDOM to REPORT 20-7

RANDOM are the same from time to time, you must set the values of
RANDOM.SEED.1 and RANDOM.SEED.2 right before the execution of RANDOM.

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

The values that you set for RANDOM.SEED.1 and RANDOM.SEED.2 do not stay
the same throughout a session. As the following code illustrates, when you do not

RANDOM.SEED.1 and RANDOM.SEED.2

20-8 Oracle OLAP DML Reference

reseed with the same values before each execution, the values produced by
RANDOM are not the same.

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 11
a2 16
a3 20

RANK

RANDOM to REPORT 20-9

RANK

The RANK function computes the rank of values in a numeric expression.

Return Value
DECIMAL

Syntax
RANK(expression method [BASEDON dimension-list])

Arguments

expression
The numeric expression for which rankings are to be computed.

method
The method to use in computing the rank of the values in expression. The method
argument can be one of the following keywords. See also "Results of Method
Values" on page 20-10.

Table 20–1 Methods for Computing RANK

Method Description

MIN Identical values get the same minimum rank.

MAX Identical values get the same maximum rank.

AVERAGE Identical values get the same average rank.

PACKED Identical values get the same rank but the results are packed
into consecutive integers.

UNIQUE All values get a unique rank; for identical values the rank is
arbitrary.

PERCENTILE Values are ranked from 1 to 100, based on the relative
frequency of their occurrence in the expression.

DECILE Values are ranked from 1 to 10, based on the relative frequency
of their occurrence in the expression.

QUARTILE Values are ranked from 1 to 4, based on the relative frequency
of their occurrence in the expression.

RANK

20-10 Oracle OLAP DML Reference

BASEDON dimension-list
An optional list of one or more of the dimensions of expression to include in the
ranking. When you do not specify the dimensions, then RANK bases the ranking on
all of the dimensions of expression.

Notes

Results of Method Values
This note describes the results of the different methods of ranking values. The
results are based on the sales2 variable, which is described in "Ranking Values" on
page 20-11, with the geography dimension limited to G2 as the following
statements demonstrate.

LIMIT geography TO 'G2'
SORT items D sales2
REPORT DOWN geography sales2

The preceding statements produce the following output.

------------------------SALES2------------------------
------------------------ITEMS-------------------------

GEOGRAPHY ITEM4 ITEM2 ITEM3 ITEM1 ITEM5
-------------- ---------- ---------- ---------- ---------- ----------
G2 25.00 20.00 20.00 15.00 7.00

Table 20–2, " Results of Different Methods of Ranking" on page 20-10 shows the
results of the different methods of ranking that are produced by a statement of the
form

REPORT DOWN geography RANK(sales2 MIN BASEDON items)

with the different method keywords substituted for MIN.

Table 20–2 Results of Different Methods of Ranking

Methods
(ITEM4, G2)
= 25

(ITEM2, G2)
= 20

(ITEM3, G2)
= 20

(ITEM1,G2)
= 15

(ITEM5,G2)
= 7

MIN 1 2 2 4 5

MAX 1 3 3 4 5

AVERAGE 1 2.5 2.5 4 5

PACKED 1 2 2 3 4

UNIQUE 1 2 3 4 5

RANK

RANDOM to REPORT 20-11

Note that the value that is returned by the UNIQUE method for Item2 and Item3
can be either 2 or 3, since the RANK function randomly assigns a unique rank for
identical values in the expression.

Examples

Example 20–3 Ranking Values

These examples use the following geography and items dimensions and sales2
variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the SALES2 variable has the following data values.

-------------SALES2-------------
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

This statement reports the results of using the MIN method to rank the sales2
values based on the items dimension.

report rank(sales2 min basedon items)

PERCENTILE 100 62 62 25 1

DECILE 10 7 7 3 1

QUARTILE 4 3 3 1 1

Table 20–2 (Cont.) Results of Different Methods of Ranking

Methods
(ITEM4, G2)
= 25

(ITEM2, G2)
= 20

(ITEM3, G2)
= 20

(ITEM1,G2)
= 15

(ITEM5,G2)
= 7

RANK

20-12 Oracle OLAP DML Reference

The preceding statement produces the following output.

-RANK(SALES2 MIN BASEDON ITEMS)-
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 4.00 5.00
Item2 4.00 2.00 4.00
Item3 3.00 2.00 2.00
Item4 1.00 1.00 1.00
Item5 NA 5.00 3.00

This statement reports the results of using the MIN method to rank the sales2
values based on the geography dimension.

REPORT RANK(sales2 MIN BASEDON geography)

The preceding statement produces the following output.

----RANK(SALES2 MIN BASEDON-----
-----------GEOGRAPHY)-----------
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 2.00 3.00
Item2 3.00 1.00 2.00
Item3 3.00 2.00 1.00
Item4 1.00 2.00 2.00
Item5 NA 2.00 1.00

This statement reports the results of using the MIN method to rank the sales2
values based on all of its dimensions.

REPORT RANK(sales2, MIN)

The preceding statement produces the following output.

-------RANK(SALES2, MIN)--------
-----------GEOGRAPHY------------

ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 10.00 12.00
Item2 13.00 7.00 9.00
Item3 10.00 7.00 5.00
Item4 1.00 3.00 3.00
Item5 NA 14.00 6.00

RECAP

RANDOM to REPORT 20-13

RECAP

The RECAP command sends statements that were previously entered during the
current session to the current outfile or to a file that you specify. The statements are
copied from the command log, which is a list of up to 256 of the most recently
entered statements.

Syntax
RECAP [number|ALL] ['search-text'] [FILE file-id]

Arguments

number
A positive integer that indicates the number of statements to be provided. When
you specify search-text, RECAP provides this number of statements from the subset
that contains the search-text string. When you do not specify search-text, RECAP
provides this number of statements from the most recently executed portion of the
command log. The default number is 10.

ALL
When you specify search-text, ALL requests every statement that meets the search
requirements. When you do not specify search-text, ALL requests every statement in
the command log.

search-text
A quoted text literal. When you specify this argument, RECAP searches the
statements in the command log for the ones that contain search-text. The search is not
case-sensitive. These statements will then compose the subset from which RECAP
provides number or ALL statements.

FILE file-id
Writes the output of the RECAP command to the specified file. The file-id is a text
expression that represents the name of the file. The name must be in a standard
format for a file identifier.

RECAP

20-14 Oracle OLAP DML Reference

Notes

Order of search-text Argument
When you use both the search-text and the ALL or number arguments, you must
specify search-text second.

RECAP with No Argument
When you specify RECAP without an argument, the ten most recent statements are
provided.

Command Log
The command log is a list maintained internally by Oracle OLAP. It contains the
statements that were executed most recently in your session. The maximum number
of statements in the command log is 256. When you start a new session, the list is
empty.

Re-Executing Statements
You can use the output of RECAP to edit a previously executed statement with
REEDIT, or reexecute a previously executed statement with REDO.

Statements Not in Command Log
RECAP, REDO, and REEDIT commands are not included in the command log. But
the statements re-executed by REDO and re-edited by REEDIT are included.

Identifying Files and Directories
When specifying files and directories in OLAP DML statements, it is good practice
to always enclose them in single quotes.

Examples

Example 20–4 Obtaining the Last Three Statements Containing "actual"

The following RECAP command requests the three most recent statements that
included the text literal "actual."

RECAP 3 'actual'

RECAP

RANDOM to REPORT 20-15

This statement could produce the following output.

COMMAND LOG
3: dsc actual
5: report total(actual)
8: report average(actual)

RECNO

20-16 Oracle OLAP DML Reference

RECNO

The RECNO function reports the current record number of a file opened for
reading. It returns NA when Oracle OLAP has reached the end of the file.

Return Value
INTEGER

Syntax
RECNO(fileunit)

Arguments

fileunit
A file unit number assigned to a file opened for reading in a previous call to the
FILEOPEN function.

Notes

Opening Files
Before you can use the RECNO function, you must open the file for reading. When
the file unit number is not associated with an open file or the file has been opened
for writing, RECNO returns an error.

Using RECNO with FILEGET
RECNO is usually used with FILEREAD or FILENEXT, which read whole records.
When you are reading data from a file with the FILEGET function, which can read
partial records, RECNO returns the number of times you have read data from the
file, not the number of actual records.

LINENUM Option
See also the LINENUM option, which holds the current line number of output.

RECNO

RANDOM to REPORT 20-17

Records in Text Files
When the file is a text file, a record is delimited by a newline character. When the
file is a binary file, you must set the file's LSIZE attribute to the record length with
the FILESET command. TEXT is the default file type.

Examples

Example 20–5 Using RECNO with FILEREAD

In the following example code, the FILEREAD command maintains the integer
dimension, adding each record number associated with filename. The text
associated with each record number becomes each value of the variable textvar.

DEFINE dim1 INTEGER DIMENSION
DEFINE textvar TEXT <dim1>
x = FILEOPEN('filename' R)
FILEREAD x APPEND dim1 = RECNO(x) W 8 TEXTVAR

RECURSIVE

20-18 Oracle OLAP DML Reference

RECURSIVE

The RECURSIVE option controls the ability of a formula or $NATRIGGER
expression to call itself.

Syntax
RECURSIVE = {YES|NO}

Arguments

YES
Specifying YES allows a formula or $NATRIGGER expression to call itself. Set this
option to YES when you define a formula or an expression for the $NATRIGGER
property that uses a recursive method of computation.

NO
Specifying NO prevents a formula or $NATRIGGER expression from calling itself.
(Default) When you attempt to evaluate a recursive formula or $NATRIGGER
expression, then Oracle OLAP displays an error message, which states that the
RECURSIVE option is currently set to NO. Until the workspace contains a recursive
formula or $NATRIGGER expression, keep this option set to NO in order to detect
errors that could result in infinite looping behavior.

Notes

For Formulas and $NATRIGGER Expressions Only
When you set RECURSIVE to YES, only formulas and $NATRIGGER property
expressions are affected. This option does not affect programs; that is, a program
can be recursive regardless of the setting of the RECURSIVE option unless the
program is an $NATRIGGER expression. An $NATRIGGER expression cannot call
itself unless the RECURSIVE option is YES.

Limiting $NATRIGGER Recursion
You can limit the depth of recursion for $NATRIGGER property expressions with
the TRIGGERMAXDEPTH option, which sets the maximum number of
$NATRIGGER expressions that Oracle OLAP executes simultaneously.

REDO

RANDOM to REPORT 20-19

REDO

The REDO command re-executes a statement that you entered earlier in your
session. The statement is retrieved from the command log, which is a list of up to
256 statements that you have entered most recently during the current session.
REDO enables you to changes in the statement before it is re-executed.

Syntax
REDO [number|index] 'original' 'replacement' [specifier]

Arguments

number
A positive integer that indicates the number of the statement to be re-executed. You
can display the statements, with their numbers, using the RECAP command.

index
A negative integer or zero that indicates the position of the statement to be
re-executed relative to the end of the command log. The most recent statement is 0,
the one before that is -1, and so on. The default is 0.

original
A text literal that is part of the statement to be re-executed.

replacement
A text literal that should replace original when the statement is re-executed.

specifier
One of the specifiers listed in Table 20–3, " Valid Values for REDO specifier". Each
specifier indicates where text replacement should occur in the re-executed
statement.

Table 20–3 Valid Values for REDO specifier

Specifier Meaning

FIRST Indicates that only the first occurrence of original should be
changed to replacement.

LAST Indicates that only the last occurrence of original should be
changed to replacement.

REDO

20-20 Oracle OLAP DML Reference

The default is ALL. When you do not provide a specifier, all occurrences of original
will be changed to replacement.

Notes

REDO with No Argument
When you type REDO without an argument, the most recent statement will be
re-executed.

Command Log
The command log is a list maintained internally by Oracle OLAP. It contains the
statements executed most recently in your session. The maximum number of
statements in the command log is 256. When you start a new session, the list is
empty.

REDO and REEDIT
The REEDIT command is similar to REDO, except that the statement is not executed
after you edit it. It is placed in the command log so that you can edit it again.

Statements Not in the Command Log
RECAP, REDO, and REEDIT commands are not included in the command log. But
the statements re-executed by REDO and re-edited by REEDIT are included.

Case-Sensitivity
When matching original with the text of the statement to be re-executed, REDO
ignores case differences. For example, assume you specify AT as original, REDO will
match it with at, At, aT, or AT in the statement.

n A number indicating which occurrence of original should be
changed to replacement. For example, 3 indicates the third
occurrence.

ALL Indicates that all occurrences of original should be changed to
replacement

* Indicates that all occurrences of original should be changed to
replacement.

Table 20–3 (Cont.) Valid Values for REDO specifier

Specifier Meaning

REDO

RANDOM to REPORT 20-21

When replacing original with replacement, REDO retains the case of all characters in
replacement. For example, assume you specify ShOw as replacement, that is exactly
how it will appear in the re-executed statement.

Examples

Example 20–6 Redoing a Report

The following output is the result of recap 2 statement.

COMMAND LOG
6: fetch w 20 down division total(actual)
7: listnames

The following REDO statement re-executes the FETCH statement with a different
variable.

REDO 6 'actual' 'budget'

REEDIT

20-22 Oracle OLAP DML Reference

REEDIT

The REEDIT command edits a statement that you entered earlier in your session.
The statement is retrieved from the command log, which is a list of up to 256
statements that you have entered most recently during the current session. REEDIT
enables you to change the statement without executing it, so you can edit it
sequentially.

Syntax
REEDIT [number|index] 'original' 'replacement' [specifier]

Arguments

number
A positive integer that indicates the number of the statement to be edited. You can
display the statements, with their numbers, using the RECAP command.

index
A negative integer (or zero) that indicates the position of the statement to be edited
relative to the end of the command log. The most recent statement is 0, the one
before that is -1, and so on. The default is 0.

original
A text literal that is part of the statement to be edited.

replacement
A text literal that should replace original when the statement is edited.

specifier
One of the specifiers listed in Table 20–4, " Valid Values for REEDIT specifier". Each
specifier indicates where text replacement should occur in the edited statement.

Table 20–4 Valid Values for REEDIT specifier

Specifier Meaning

FIRST Indicates that only the first occurrence of original should be
changed to replacement.

LAST Indicates that only the last occurrence of original should be
changed to replacement.

REEDIT

RANDOM to REPORT 20-23

The default is ALL. When you do not provide a specifier, all occurrences of original
will be changed to replacement.

Notes

REEDIT with No number or index Argument
When you type REEDIT without number or index, the most recent statement will be
edited.

Command Log
The command log is a list maintained internally by Oracle OLAP. It contains the
statements executed most recently in your session. The maximum number of
statements in the command log is 256. When you start a new session, the list is
empty.

REDO and REEDIT
The REDO command is similar to REEDIT, except that the statement is executed
after you edit it.

Statements Not in the Command Log
RECAP, REDO, and REEDIT commands are not included in the command log. But
the statements re-executed by REDO and re-edited by REEDIT are included.

Case-Sensitivity
When matching original with the text of the statement to be edited, REEDIT ignores
case differences. For example, assume you specify AT as original, REEDIT will match
it with at, At, aT, or AT in the statement.

n A number indicating which occurrence of original should be
changed to replacement. For example, 3 indicates the third
occurrence.

ALL Indicates that all occurrences of original should be changed to
replacement

* Indicates that all occurrences of original should be changed to
replacement.

Table 20–4 (Cont.) Valid Values for REEDIT specifier

Specifier Meaning

REEDIT

20-24 Oracle OLAP DML Reference

When replacing original with replacement, REEDIT retains the case of all characters in
replacement. For example, assume you specify ShOw as replacement, that is exactly
how it will appear in the edited statement.

Examples

Example 20–7 Editing Multiple Values in a LIMIT Command

The following example illustrates why it could be helpful to use the REEDIT
command to edit a statement several times before executing it. With REEDIT
commands, you can edit multiple values in a LIMIT command before executing it.
When you enter a REDO command, the LIMIT command is executed.

The following output is the result of a recap 1 statement.

COMMAND LOG
6: limit mydim to 1 to 10, 15 to 20, 24 to 28, 33 to 40

The statement

REEDIT 6 '1' '2' FIRST

produces the following output.

7: limit mydim to 2 to 10 , 15 to 20, 24 to 28, 33 to 40

The statement

REEDIT 7 '15' '18'

produces the following output.

8: limit mydim to 2 to 10 , 18 to 20, 24 to 28, 33 to 40

The statement

REDO 8 '40' '41'

makes one more change and re-executes the LIMIT command with the new values.
It also produces the following output.

9: limit mydim to 2 to 10 , 18 to 20, 24 to 28, 33 to 41

REGRESS

RANDOM to REPORT 20-25

REGRESS

The REGRESS command calculates a simple multiple linear regression. The optional
WEIGHTBY keyword lets you calculate a weighted regression when some of the
data points are more reliable than others.

You can then execute REGRESS.REPORT to produce a standard report of the
regression. You can also use the INFO function to obtain portions of the results for
use in your own customized reports or for further analysis.

Syntax
REGRESS [NOINTERCEPT] dependent independent... [WEIGHTBY weight]

Arguments

NOINTERCEPT
Directs Oracle OLAP to suppress the constant term (intercept) in the regression
equation. The default is to calculate a constant term.

dependent
An expression to be used as the dependent variable in the regression.

In calculating the results, REGRESS loops over all the dimensions of the dependent
and independent variables.

independent
One or more expressions to be used as the independent variables (regressors) in the
regression.

WEIGHTBY weight
Specifies a weighted regression. The numeric expression weight supplies the weights
for each data point (observation). Giving higher weights to more reliable
observations results in a higher quality regression. WEIGHTBY must come last in
the REGRESS command.

Tip: To performing more complex regression analysis use a
forecasting context as discussed in "Forecasting Programs" on
page 1-16.

REGRESS

20-26 Oracle OLAP DML Reference

When weight is less than zero for any observation, an error occurs. When weight is
equal to zero for any observation, that observation is ignored in the calculation.
When WEIGHTBY is omitted, an unweighted regression is calculated.

Notes

Using a Forecasting Context
Instead of calculating a simple regression using the REGRESS command, you can
perform more complex regression analysis using a forecasting context that you
manipulate with the following OLAP DML statements:

1. FCOPEN function -- Creates a forecasting context.

2. FCSET command -- Specifies the characteristics of a forecast.

3. FCEXEC command -- Executes a forecast and populates Oracle OLAP variables
with forecasting data.

4. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

5. FCCLOSE command -- Closes a forecasting context.

Ignoring NA Values
In performing its calculations, the REGRESS command ignores any observation that
has an NA value.

Producing a Standard Report
The standard report for a regression shows the coefficient, standard error, and
T-ratio for each independent variable; as well as the R-square, F-Statistic, number of
observations, and standard error of estimate for the regression. To produce this
report, type the following.

REGRESS.REPORT

Obtaining Results
For information on how to obtain portions of the results of REGRESS for your own
reports or further analysis, use an INFO statement.

REGRESS

RANDOM to REPORT 20-27

Further Reading
For an explanation of the uses and interpretation of regression models, we suggest
the latest edition of the following book:

Draper, Norman, and Smith, Harry. Applied Regression Analysis. New York: John
Wiley & Sons, Inc.

Examples

Example 20–8 Simple Regression

The following statements limit the product dimension to Canoes, then use
regression to investigate the influence of advertising, price, and expense on the sales
of canoes.

LIMIT product TO 'Canoes'
REGRESS NOINTERCEPT sales advertising price expense

You can now execute REGRESS.REPORT as illustrated in Example 20–10, "Report
for a Simple Regression" on page 20-28 to see the results of the regression.

Example 20–9 Weighted Regression

The following statements use a weighted regression, in which districts are weighted
using a variable called reliability that has the following definition and values.

DEFINE reliability VARIABLE DECIMAL <district>

DISTRICT RELIABILITY
-------------- -----------
Boston 1.00
Atlanta 0.90
Chicago 1.00
Dallas 0.80
Denver 0.90
Seattle 0.60

The following statements perform the regression.

REGRESS NOINTERCEPT sales advertising price expense -
WEIGHTBY reliability

You can now execute REGRESS.REPORT as illustrated in Example 20–11, "Report
for a Weighted Regression" on page 20-29 to see the results of the regression.

REGRESS.REPORT

20-28 Oracle OLAP DML Reference

REGRESS.REPORT

The REGRESS.REPORT program produces a standard report of a regression
performed using the REGRESS command.

Syntax
REGRESS.REPORT

Examples

Example 20–10 Report for a Simple Regression

Assume that you have performed the simple regression illustrated in Example 20–8,
"Simple Regression" on page 20-27. You can now execute REGRESS.REPORT to see
the results of the regression.

Regression Analysis
===================

Dependent Variable: SALES
WEIGHTBY Variable: NONE

Regressor Coefficient Std. Error T-ratio
-------------------- ------------ ------------ --------
ADVERTISING 0.36 0.16 2.24
PRICE -8.66 1.80 -4.82
EXPENSE 1.05 0.01 79.69

Corrected R-square 1.00
F-Statistic (2, 141) NA
Number of observations 144
Standard error of estimate 1,477.16

REGRESS.REPORT

RANDOM to REPORT 20-29

Example 20–11 Report for a Weighted Regression

Assume that you have performed the simple regression illustrated in Example 20–9,
"Weighted Regression" on page 20-27. You can now execute REGRESS.REPORT to
see the results of the regression.

Regression Analysis
===================

Dependent Variable: SALES
WEIGHTBY Variable: RELIABILITY

Regressor Coefficient Std. Error T-ratio
-------------------- ------------ ------------ --------
ADVERTISING 0.44 0.17 2.64
PRICE -8.03 1.92 -4.19
EXPENSE 1.04 0.01 76.45

Corrected R-square 1.00
F-Statistic (2, 141) NA
Number of observations 144
Standard error of estimate 1,373.15

RELEASE

20-30 Oracle OLAP DML Reference

RELEASE

When an analytic workspace is attached in multiwriter mode, the RELEASE
command changes the access mode of the specified variables, relations, valuesets, or
dimensions from read/write (acquired) access to read-only access.

Syntax
RELEASE [objects] [analytic_workspaces]

Arguments
When no parameters are specified, all acquired variables in the current AW are
released.

objects

A list of one or more variables, relations, valuesets, or dimension names, separated
by commas, that you want to release.

analytic workspaces

A list of analytic workspace names, separated by commas. When you specify an
analytic workspace in this list, all acquired objects in that analytic workspace are
released after all pending changes are made to them. All changes made to the
variables, relations, valuesets, or dimensions before the RELEASE command
executes are preserved as private changes after the release command.

Notes

Releasing Non-Updated Objects
Similarly to using the DETACH command for analytic workspaces that has been
updated. using RELASE for objects that have been updated does not others to
acquire the object until you commit or roll back the transaction. It may still be useful
to release an object that has been updated before a commit when one wants to make
further what-if changes and later needs to use update command to update all
acquired variables.

Releasing a Dimension Causes the Dimension to Revert
When you release an acquired dimension, the dimension is automatically reverted
(see REVERT for an explanation of what it means to revert a dimension).

RELEASE

RANDOM to REPORT 20-31

As the following code illustrates, releasing an acquired dimension causes an
automatic revert.

User A issues the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC time WAIT
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = 37
REPORT time --> ..., 'Y2002'
SHOW actuals (time 'Y2002', ...) --> 37
RELEASE time
REPORT time --> ... (no 'Y2002')
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC actuals, time WAIT
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = 37
REPORT time --> ..., 'Y2002'
SHOW actuals (time 'Y2002', ...) --> 37
REVERT time
REPORT time --> ... (no 'Y2002')
MAINTAIN time ADD 'Y2002'
REPORT time --> ..., 'Y2002'
SHOW actuals (time 'Y2002', ...) --> NA

Examples

Example 20–12 Acquiring, Updating and Releasing Objects

A classic use of multiwriter attachment mode is to allow two users to modify two
different objects in the same analytic workspace. For example, assume that an
analytic workspace has two variables: actuals and budget. Assume also that one
user (user A) wants to modify actuals, while another user (user B) wants to
modify budget. In this case, after attaching the analytic workspace in the
multiwriter mode, each user acquires the desired variable, performs the desired
modification, updates, commits the changes, and then, either detaches the
workspace or releases the acquired variable.

RELEASE

20-32 Oracle OLAP DML Reference

User A executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
... make modifications
UPDATE MULTI actuals
COMMIT
RELEASE actuals
AW DETACH myworkspace

While, at the same time, User B executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE budget
…make modifications
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Example 20–13 Using RELEASE After UPDATE But Before COMMIT

Using a RELEASE statement does not always allow other users to acquire the
released variable. For example, when you have updated a variable but have not
committed the changes, the execution of a RELEASE statement has no effect on
other users until a commit occurs. However, when you use a simple UPDATE to
update all acquired variables, it can be useful to release a variable after updating it
but before committing it. When a variable is released after the first update, it is not
be included in the list of updated variables for the second update. The following
code illustrates situations where user B1 releases budget at different times.

Assume that User B1 issues the following statements

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
RELEASE budget
UPDATE
make changes C2
UPDATE
COMMIT

RELEASE

RANDOM to REPORT 20-33

User B2 could issue the following statements

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

User B2 gets budget and sees no changes and issues the following statements.

...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
RELEASE budget
make changes C2
UPDATE
COMMIT
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

Alternatively, User B2 gets budget and sees changes C1 and issues the following
statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
make changes C2
RELEASE budget
UPDATE
COMMIT
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

RELEASE

20-34 Oracle OLAP DML Reference

Or, as another alternative, User B2 gets budget and sees changes C1 and issues the
following statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
make changes C2
UPDATE
COMMIT
RELEASE budget
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

At this point, User B2 gets budget and sees changes C2

REM

RANDOM to REPORT 20-35

REM

The REM function returns the remainder after one numeric expression is divided by
another.

Return Value
DECIMAL

Syntax
REM(expression1 expression2)

Arguments

expression
REM returns the remainder of expression1 divided by expression2.

Examples

Example 20–14 Calculating a Remainder

This example illustrates the use of REM to find the remainder after 14 is divided
by 5. The statement

SHOW REM(14 5)

produces the following result.

4.00

REMBYTES

20-36 Oracle OLAP DML Reference

REMBYTES

The REMBYTES function removes one or more bytes from a text expression and
returns the value that remains.

Return Value
TEXT

Syntax
REMBYTES(text-expression start [length])

Arguments

text-expression
The expression from which REMBYTES removes bytes. When the characters to be
removed from text-expression contain embedded line breaks, these breaks are also
removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters removed.

start
An integer that represents the character position at which to begin removing
characters. The position of the first character in text-expression is 1. When the value
of start is greater than the length of text-expression, REMBYTES simply returns
text-expression.

length
An integer that represents the number of characters to be removed. When length is
not specified, only the character at start is removed.

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use the REMCHARS
function instead of the REMBYTES function.

REMBYTES

RANDOM to REPORT 20-37

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Examples

Example 20–15 Using REMBYTES to Remove a Substring

This example shows how to remove the substring there from the text value
hellotherejoe.

The statement

SHOW REMBYTES('hellotherejoe', 6, 5)

produces the following output.

hellojoe

Example 20–16 Removing a Single Byte

This example shows how to remove the character t from the text value
hellotherejoe.

SHOW REMBYTES('hellotherejoe', 6)

produces the following output.

helloherejoe

REMCHARS

20-38 Oracle OLAP DML Reference

REMCHARS

The REMCHARS function removes one or more characters from a text expression
and returns the value that remains.

Return Value
TEXT or NTEXT

Syntax
REMCHARS(text-expression start [length])

Arguments

text-expression
The expression from which REMCHARS removes characters. When the characters
to remove from text-expression contain embedded line breaks, these breaks are also
removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters removed.

When you specify a TEXT expression, the return value is TEXT. When you specify
an NTEXT expression, the return value is NTEXT.

start
An integer that represents the character position at which to begin removing
characters. The position of the first character in text-expression is 1. When the value
of start is greater than the length of text-expression, REMCHARS simply returns
text-expression.

length
An integer that represents the number of characters to be removed. When length is
not specified, only the character at start is removed.

Notes

multibyte Characters
When you are using a multibyte character set, you can use the REMBYTES function
instead of the REMCHARS function.

REMCHARS

RANDOM to REPORT 20-39

Examples

Example 20–17 Using REMCHARS to Remove a Substring

This example shows how to remove the substring there from the text value
hellotherejoe.

The statement

SHOW REMCHARS('hellotherejoe', 6, 5)

produces the following output.

hellojoe

Example 20–18 Removing a Single Character

This example shows how to remove the character t from the text value
hellotherejoe.

SHOW REMCHARS('hellotherejoe', 6)

produces the following output.

helloherejoe

REMCOLS

20-40 Oracle OLAP DML Reference

REMCOLS

The REMCOLS function removes specified columns from every line of a multiline
TEXT value. The function returns a multiline text value that includes only the
remaining columns.

Columns refer to the character positions in each line of a multiline TEXT value. The
first character in each line is in column one, the second is in column two, and so on.

Return Value
TEXT or NTEXT

Syntax
REMCOLS(text-expression start [length])

Arguments

text-expression
The text expression from which the specified columns should be removed. When
text-expression is a multiline TEXT value, the characters in the specified columns are
removed from each one of its lines.

When you specify a TEXT expression, the return value is TEXT. When you specify
an NTEXT expression, the return value is NTEXT.

start
An integer, between 1 and 4,000, representing the column position at which to begin
removing columns. The column position of the first character in each line of
text-expression is 1.

length
An integer representing the number of columns to be removed. When you do not
specify length, REMCOLS removes only the starting column.

Notes

Number of Lines Returned
REMCOLS always returns a TEXT value that has the same number of lines as
text-expression, though some of the lines may be empty.

REMCOLS

RANDOM to REPORT 20-41

Start Column Beyond the End of a Line
When you specify a starting column that is to the right of the last character in a
given line in text expression, the corresponding line in the return value will be
identical to the given line.

Length That Goes Beyond the End of a Line
When you specify a length that exceeds the number of characters that follow the
starting position in a given line in text expression, the corresponding line in the
return value will include only the characters that precede the starting column.

Examples

Example 20–19 Removing Text Columns

In the following example, four columns are removed from each line of CITYLIST,
starting from the second column.

DEFINE citylist VARIABLE TEXT
CITYLIST = 'Boston\nHouston\nChicago\nDenver'

The statement

SHOW citylist

produces the following output.

Boston
Houston
Chicago
Denver

The statement

SHOW REMCOLS(citylist 2 4)

produces the following output.

Bn
Hon
Cgo
Dr

REMLINES

20-42 Oracle OLAP DML Reference

REMLINES

The REMLINES function removes one or more lines from a multiline TEXT
expression and returns the value that remains.

Return Value
TEXT or NTEXT

Syntax
REMLINES(text-expression start [length])

Arguments

text-expression
A multiline text expression from whose values REMLINES removes one or more
lines. When you specify a TEXT expression, the return value is TEXT. When you
specify an NTEXT expression, the return value is NTEXT.

start
An integer that represents the line number at which to begin removing lines. The
position of the first line in text-expression is 1.

length
An integer that represents the number of lines to be extracted. When you do not
specify length, only the line at start is removed.

Examples

Example 20–20 Removing Text Lines

This example shows how to remove the second line from a multiline text value in a
variable called mktglist with the following values.

Salespeople
Products
Services

REMLINES

RANDOM to REPORT 20-43

The statement

SHOW REMLINES(mktglist, 2)

produces the following output.

Salespeople
Services

RENAME

20-44 Oracle OLAP DML Reference

RENAME

The RENAME command changes the name of an analytic workspace or an object in
an analytical workspace.

Syntax
RENAME oldname newname [AW workspace]

Arguments

oldname
The name of an existing analytic workspace or an existing object in an analytic
workspace. You can specify a qualified object name to indicate the attached
workspace in which the object resides. As an alternative, you can use the AW
keyword to specify the workspace. Do not use both.

When you do not use a qualified object name or the AW keyword to specify a
workspace, the object is renamed in the current workspace.

For an unnamed composite, use the same syntax that was used to create it. See
"Naming an Unnamed Composite" on page 20-45.

newname
The new name.

■ The new name of an analytic workspace cannot duplicate any other name of a
workspace in the schema in which the workspace is defined. Choose a name
according to the rules for naming analytic workspaces (see the AW command).

■ The new name of an analytic workspace object cannot duplicate any other name
in the workspace in which the object exists. Choose a name according to the
rules for naming analytic workspace objects (see the DEFINE command). To
change a named composite to an unnamed composite, use the SPARSE
keyword as the newname argument. See "Unnaming a Named Composite" on
page 20-45.

AW workspace
The name of an attached workspace in which you wish to rename the object. When
you do not use a qualified object name or the AW keyword to specify a workspace,
the object is renamed in the current workspace.

RENAME

RANDOM to REPORT 20-45

Notes

Updating Associated Objects
When you change the name of a variable, objects that use that variable, such as
formulas, are not automatically updated.

When you change the name of a dimension, the definitions of any objects that are
dimensioned by that dimension are automatically updated. Additionally, any
valuesets for the renamed dimension are automatically updated for the new name.

RENAME and PERMIT
You may not rename an object when a PERMIT command denies you the right to
change its permission. Renaming an object does not affect permission associated
with it.

Naming an Unnamed Composite
You can name an unnamed composite with the RENAME command. The following
example assigns the name m.prod to an unnamed composite that is dimensioned
by market and product.

RENAME SPARSE <market product> m.prod

Unnaming a Named Composite
You can change a named composite to an unnamed composite when the composite
has no properties or permission restrictions and when there is at least one object
dimensioned by it. In addition, there cannot be an unnamed composite with the
same dimensions in the same order as the named composite, and the named
composite cannot be used in the dimension list of any unnamed composite. To
change a named composite to an unnamed composite, use the SPARSE keyword as
the newname argument. The following example changes the named composite
m.prod to an unnamed composite.

RENAME m.prod SPARSE

Restrictions on Renaming Composites
You cannot rename a composite when it is a base dimension of an unnamed
composite, or when one of its base dimensions is an unnamed composite.

RENAME

20-46 Oracle OLAP DML Reference

Examples

Example 20–21 Renaming a Program

This statement changes the name of the program testreport to sales.report.

RENAME testreport sales.report

REPLBYTES

RANDOM to REPORT 20-47

REPLBYTES

The REPLBYTES function replaces one or more bytes in a text expression.

Return Value
TEXT

Syntax
REPLBYTES(text-expression replacement [start])

Arguments

text-expression
The expression in which REPLBYTES replaces bytes. When the bytes to replace
from text-expression contain embedded line breaks, these breaks are removed. Other
line breaks are preserved. Removed line breaks are not counted toward the total
number of bytes replaced. Line breaks in the replacement expression are retained in
the output of REPLBYTES, but are likewise not counted.

replacement
A text expression that contains one or more bytes that will replace existing bytes in
text-expression.

start
An integer that represents the byte position at which to begin replacing bytes. The
position of the first byte in text-expression is 1. When you omit this argument,
REPLBYTES starts with the first byte. REPLBYTES replaces as many bytes of
text-expression as are required for the bytes specified by replacement. When the value
of start is greater than the length of text-expression, REPLBYTES simply returns
text-expression.

Notes

Single-Byte Characters
When you are using a single-byte character set, you can use the REPLCHARS
function instead of the REPLBYTES function.

REPLBYTES

20-48 Oracle OLAP DML Reference

NTEXT Data Type
This function does not accept NTEXT arguments, because it is oriented toward
byte-manipulation instead of character manipulation. It always returns values of
type TEXT. When you must use this function on NTEXT values, use the CONVERT
or TO_CHAR function to convert the NTEXT value to TEXT.

Changing Occurrences of a Specified String in a Text Value
You can use the CHANGECHARS function to change one or more occurrences of a
specified string in a text value to another string.

Examples

Example 20–22 Replacing Text as Bytes

This example shows how to replace a portion of the text value
Hello there, Joe.

The statement

SHOW REPLBYTES('Hello there, Joe', 'Jane', 14)

produces the following output.

Hello there, Jane

Example 20–23 How REPLBYTES Handles Line Breaks

This example shows how REPLBYTES preserves but ignores line breaks.

var1 = JOINLINES('Hello' 'there' 'Joe')
var2 = JOINLINES('Hi' 'Jane')

The statement

SHOW REPLBYTES(var1 var2)

produces the following output.

Hi
Janehere
Joe

REPLBYTES has replaced the first 6 bytes of var1 (Hellot of HellothereJoe)
with the 6 bytes of var2 (HiJane). It has preserved the line breaks following Hi
(from var2) and there (from var1).

REPLBYTES

RANDOM to REPORT 20-49

To replace all 13 bytes in var1, you must specify 13 replacement bytes; for example,
you can add 7 spaces after Jane.

var2 = JOINLINES('Hi' 'Jane ')

The statement

SHOW REPLBYTES(var1 var2)

produces the following output.

Hi
Jane

REPLCHARS

20-50 Oracle OLAP DML Reference

REPLCHARS

The REPLCHARS function replaces one or more characters in a text expression.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
REPLCHARS(text-expression characters [start])

Arguments

text-expression
The expression in which characters are to be replaced. When the characters to be
replaced from text-expression contain embedded line breaks, these breaks are
removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters replaced. Line breaks in the replacement
expression are retained in the output of REPLCHARS, but are likewise not counted.

characters
A text expression that contains one or more characters that will replace existing
characters in text-expression.

start
An integer that represents the character position at which to begin replacing
characters. The position of the first character in text-expression is 1. When you omit
this argument, REPLCHARS starts with the first character. REPLCHARS replaces as
many characters of text-expression as are required for the specified new characters.

REPLCHARS

RANDOM to REPORT 20-51

When the value of start is greater than the length of text-expression, REPLCHARS
simply returns text-expression.

Notes

multibyte Characters
When you are using a multibyte character set, you can use the REPLBYTES function
instead of the REPLCHARS function.

Changing Occurrences of a Specified String in a Text Value
You can use the CHANGECHARS function to change one or more occurrences of a
specified string in a text value to another string.

Examples

Example 20–24 Replacing Text Characters

This example shows how to replace a portion of the text value
Hello there, Joe.

The statement

SHOW REPLCHARS('Hello there, Joe', 'Jane', 14)

produces the following output.

Hello there, Jane

Example 20–25 How REPLCHARS Handles Line Breaks

This example shows how REPLCHARS preserves but ignores line breaks.

var1 = JOINLINES('Hello' 'there' 'Joe')
var2 = JOINLINES('Hi' 'Jane')

The statement

show REPLCHARS(var1 var2)

produces the following output.

Hi
Janehere
Joe

REPLCHARS

20-52 Oracle OLAP DML Reference

REPLCHARS has replaced the first 6 characters of var1 (Hellot of
HellothereJoe) with the 6 characters of var2 (HiJane). It has preserved the line
breaks following Hi (from var2) and there (from var1).

To replace all 13 characters in var1, you must specify 13 replacement characters; for
example, you can add 7 spaces after Jane.

var2 = JOINLINES('Hi' 'Jane ')

The statement

SHOW REPLCHARS(var1 var2)

produces the following output.

Hi
Jane

REPLCOLS

RANDOM to REPORT 20-53

REPLCOLS

The REPLCOLS function replaces some or all of the character columns in one
multiline TEXT value with the columns of another. The function returns a multiline
TEXT value composed of the resulting lines.

Columns refer to the character positions in each line of a multiline TEXT value. The
first character in each line is in column one, the second is in column two, and so on.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
REPLCOLS(text-expression columns [start])

Arguments

text-expression
The text expression in which you want to replace one or more columns.

columns
A text expression containing one or more lines. This expression provides the
columns to replace some or all of the columns in text-expression.

start
An integer, between 1 and 4,000, representing the column position at which to begin
replacing. The column position of the first character in each line of text-expression
is 1. When you do not specify start, replacement begins with Column 1.

REPLCOLS

20-54 Oracle OLAP DML Reference

Notes

Number of Lines Returned
The number of lines in the return value is always the same as the number of lines in
text-expression. When the columns text expression has fewer lines, REPLCOLS
repeats its last line in each subsequent line of the return value.

Start Column Beyond the End of a Line
When you specify a starting column that is to the right of the last character in a
given line in text-expression, the corresponding line in the return value will have
spaces filling in the intervening columns. See Example 20–26, "Joining and Aligning
Columns" on page 20-54.

Examples

Example 20–26 Joining and Aligning Columns

In the following example, the citylist and cityreps lines are joined so that the
values are aligned, one under the other. The replacement begins at Column 11.
When JOINCOLS were used instead of REPLCOLS, the cityreps list would be
misaligned.

The statement

SHOW citylist

produces the following output.

Boston
Houston
Chicago
Denver

The statement

SHOW cityreps

produces the following output.

Brady
Lopez
Alfonso
Cody

REPLCOLS

RANDOM to REPORT 20-55

The statement

SHOW REPLCOLS(citylist cityreps 11)

produces the following output.

Boston Brady
Houston Lopez
Chicago Alfonso
Denver Cody

REPLLINES

20-56 Oracle OLAP DML Reference

REPLLINES

The REPLLINES function replaces one or more lines in a multiline TEXT expression.

Return Value
TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type
of the return value depends on the data type of the values specified for the
arguments:

■ When all arguments are TEXT values, the return value is TEXT.

■ When all arguments are NTEXT values, the return value is NTEXT.

■ When the arguments include both TEXT and NTEXT values, the function
converts all TEXT values to NTEXT before performing the function operation,
and the return value is NTEXT.

Syntax
REPLLINES(text-expression lines [start])

Arguments

text-expression
A multiline text expression in which you want to replace one or more lines.

lines
A text expression that contains one or more lines that will replace existing lines in
text-expression.

start
An integer that represents the line number at which to begin replacing. The position
of the first line in text-expression is 1. When you omit this argument, REPLLINES
starts with line 1. REPLLINES replaces as many lines of text-expression as are
required for the specified new lines.

REPLLINES

RANDOM to REPORT 20-57

Examples

Example 20–27 Replacing a Text Line

This example shows how to replace the second line in a multiline TEXT value in a
variable called mktglist.

The statement

SHOW mktglist

produces the following output.

Salespeople
Products
Services

The statement

SHOW REPLLINES(mktglist, 'advertising', 2)

produces the following output.

Salespeople
Advertising
Services

REPORT

20-58 Oracle OLAP DML Reference

REPORT

The REPORT command quickly produces output for one or more data expressions.
REPORT automatically loops over the dimensions of the data and formats the
output. Using this default layout, you can produce an attractive report with a single
short command. In addition, you can use REPORT command options to modify the
default format and produce a custom report. Output from the REPORT command is
sent to the current outfile.

To produce a default report, use this simple form.

REPORT expression . . .

You can also customize the layout that REPORT produces by using various options.
REPORT has an underlying format similar to ROW, and all of the options available
with the ROW command are available with REPORT.

Syntax
REPORT [NOHEAD] [GRANDTOTALS] [[SUBTOTALS] GROUP dimension] -

[[SUBTOTALS] [attributes] DOWN dimension] -

[[ROWTOTALS] ACROSS dimension [limit-clause]:] -

[SUBTOTALS] [attributes] expression(s)

Arguments

NOHEAD
Specifies that the report should contain no initial blank line and no headings.
NOHEAD must be the first argument to the REPORT command. It overrides any
HEADING arguments you specify in the command, as well as suppressing all
headings that the REPORT command normally generates automatically. The
NOHEAD keyword is useful for creating files that do not contain data or headings.

GRANDTOTALS
Includes a grand total for each numeric column at the end of your report. Unless
you include NOHEAD, GRANDTOTALS must be the first argument to the REPORT
command. When you include NOHEAD, GRANDTOTALS must be the second
argument to the REPORT command.

REPORT

RANDOM to REPORT 20-59

SUBTOTALS
Includes subtotals for numeric columns. A row of dashes precedes each row of
subtotals. You can get subtotals for a specific set of data by specifying the keyword
SUBTOTALS before the GROUP or DOWN keyword or before a data expression.

SUBTOTALS GROUP dimension
SUBTOTALS DOWN dimension
SUBTOTALS expression

When you specify SUBTOTALS for an expression or DOWN phrase, you get
subtotals for each GROUP dimension (or composite). When you specify
SUBTOTALS for a GROUP phrase, you get subtotals for the specified dimension
and for any slower-varying GROUP dimensions. The subtotals for a group appear
at the bottom of the last slice in the group.

GROUP dimension
Produces a separate group, or two-dimensional slice, of the data for each value of
dimension. You can use the GROUP keyword more than once to specify more than
one GROUP dimension (or composite). In this case, you produce a separate slice for
each combination of the values of the GROUP dimensions. Any GROUP phrases
must be specified before any DOWN or ACROSS phrases.

In place of dimension, you can specify a text expression in order to provide
formatted labels. The expression must be dimensioned only by the desired GROUP
dimension, and each value of the expression should be descriptive text that
corresponds to its associated dimension value. For information on providing
formatted labels for a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR, see "Formatting DAY, WEEK, MONTH, QUARTER, and YEAR Dimension
Values" on page 20-70.

DOWN dimension
Produces a column of dimension values labeling the rows down the left side of your
report. The default width of the label column is controlled by the LCOLWIDTH
option, which has a default value of 14 characters. When the DOWN phrase
specifies a composite or a conjoint dimension, Oracle OLAP creates a separate
column for each base dimension. The default width of the base dimension columns
is controlled by the COLWIDTH option, which has a default value of 10 characters.
You can override the default of any label column by using the WIDTH attribute in
REPORT (see Table 20–5, " Format Attributes for Data Values" on page 20-62). You
can have only one DOWN phrase. Any DOWN phrase must be specified before any
ACROSS phrase.

REPORT

20-60 Oracle OLAP DML Reference

When the DOWN dimension is a composite or a conjoint dimension, you can
provide a different width for each base dimension column by using the KEY
function. You can produce a label column for each base dimension with the KEY
function and use a separate WIDTH attribute for each column. For example, assume
that proddist is a composite with the base dimensions product and district.
In this case, you can use a statement similar to the following one.

REPORT DOWN < W 8 KEY(proddist, product) -
W 12 KEY(proddist, district) > . . .

In place of dimension you can specify a text expression in order to provide formatted
labels. The expression must be dimensioned only by the desired DOWN dimension,
and each value of the expression should be descriptive text that corresponds to its
associated dimension value. You can also use two or more text expressions (each
dimensioned only by the DOWN dimension) as the dimension argument by placing
them in angle brackets.

REPORT DOWN < expression1 expression2 > . . .

For information on providing formatted labels for a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, see "Formatting DAY, WEEK, MONTH, QUARTER,
and YEAR Dimension Values" on page 20-70. For information on suppressing a
label column, see "Suppressing a Column".

ROWTOTALS
Includes a column headed "TOTAL" at the right side of the report with a total for
each numeric row. You must specify ROWTOTALS before the ACROSS keyword.
Including a row total in your report does not imply either column subtotals or a
grand total. The keyword SUBTOTALS before an ACROSS phrase produces
subtotals for any DOWN and GROUP dimensions that are specified.

ACROSS dimension [limit-clause]:
Produces a row of headings across the top of your report, one for each value in
dimension. Under each heading, REPORT produces a column of data for the data
expression you specify. You can have more than one ACROSS dimension (or
composite) in the report, each followed by a colon.

You can nest different ACROSS dimensions for one data expression, as illustrated in
the following statement.

ACROSS district: ACROSS product: units

In place of dimension you can specify a text expression in order to provide formatted
labels. The expression must be dimensioned only by the desired ACROSS

REPORT

RANDOM to REPORT 20-61

dimension, and each value of the expression should be descriptive text that
corresponds to its associated dimension value. For information on providing
formatted labels for a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR, see "Formatting DAY, WEEK, MONTH, QUARTER, and YEAR Dimension
Values" on page 20-70.

When you specify a composite in the ACROSS phrase, you cannot include a
limit-clause argument. You must limit the base dimensions of a composite to the
desired values before you execute a REPORT command.

However, when you specify a dimension in the ACROSS phrase, limit-clause enables
you to change the status of that dimension. The new status will be in effect only for
the duration of the REPORT command. The format of limit-clause is as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|INSERT|TO] valuelist [IFNONE label]

To specify the temporary status, insert any of the LIMIT keywords (the default is
TO) along with an appropriate value list or related-dimension list. You can use any
valid LIMIT clause in valuelist (see the entry for the LIMIT command for further
information). The following example temporarily limits month to the last six values,
no matter what the current status of month is.

ACROSS month LAST 6: units

When the limits you specify result in an empty status for the dimension, an error
occurs (regardless of the setting of the OKNULLSTATUS option). However, when
you include the phrase IFNONE label, the error is suppressed and execution of your
program branches to the specified label, where you can handle the error.

attributes
One or more format attributes from Table 20–5, " Format Attributes for Data Values"
on page 20-62 that specify how to format the data. A group of attributes can apply
to one or more data expressions. See "Attributes for Formatting Data" on
page 20-67.

The purpose of negative attributes (such as NOPAREN) is to override options or
attributes that are more globally set. The negative attributes have an asterisk (*)
before their names in Table 20–5, " Format Attributes for Data Values" on
page 20-62.

expression . . .
The data to be shown in the report. The way the data looks depends on its data type
and the attributes you specify. You can specify more than one expression; the
expressions do not have to have the same dimensions.

REPORT

20-62 Oracle OLAP DML Reference

When you specify only one data expression, REPORT produces one data column for
each heading for the ACROSS dimension. However, when you want REPORT to
show two or more expressions under each heading, enclose the expressions in angle
brackets (< >).

ACROSS dimension: <expression1, expression2>

Table 20–5 Format Attributes for Data Values

Attribute Meaning

HEADING 'text' Specifies text to use in place of default column headings.

WIDTH n

(W n)

Makes the column n spaces wide. The default width for the first
column is the value of the LCOLWIDTH option. For other columns,
it is the value of the COLWIDTH option. The maximum width is
4000 characters. Columns with a width of 0 (zero) are suppressed.

SPACE n

(SP n)

Precedes the column with n spaces. The default for the first column
is 0; for other columns, 1.

INDENT n Indents the value n spaces within its column. The default is 0.

LEFT

(L)

Left-justifies the value within its column. This is the default for
TEXT data.

RIGHT

(R)

Right-justifies the value within its column. This is the default for
numeric and Boolean data.

CENTER

(C)

Centers the value within its column.

LSET 'text' Adds text to the left of the value.

*NOLSET Does not add anything to the left of the value. (Default

RSET 'text' Adds text to the right of the value.

*NORSET Does not add anything to the right of the value. (Default)

FILL 'char' Puts char into unused positions in the column. The default fill
character is a space.

DECIMAL n

(D n)

Shows n decimal places. Decimal places are separated by the
character currently recorded in the DECIMALCHAR option. The
default number of decimal places is controlled by the DECIMALS
option.

*NODECIMAL Shows the number of decimal places indicated by the DECIMALS
option. (Default)

REPORT

RANDOM to REPORT 20-63

COMMA Marks thousands and millions with commas or the character
currently recorded in the THOUSANDSCHAR option. The default
is controlled by the COMMAS option.

*NOCOMMA Does not mark thousands and millions.

PAREN Uses parentheses to indicate negative numbers. The default is
controlled by the PARENS option.

*NOPAREN Uses the minus sign to indicate negative numbers. The default is
controlled by the PARENS option.

LEADINGZERO Puts a leading zero before decimal numbers between -1 and 1.

*NOLEADINGZERO Suppresses leading zeros before decimal numbers between -1 and 1.

CNLEADINGZERO Puts a leading zero before decimal numbers between -1 and 1 when
it does not cut off any significant digits.

MNOTATION Always uses M-notation (divides values by one million and
appends "M").

CMNOTATION Conditionally uses M-notation, when needed to make a value fit in
a column.

*NOMNOTATION Does not use M-notation (uses asterisks for oversize values).

MDECIMAL n Shows n decimal places in numbers formatted with M-notation; n
can be any number from 0 to 16, or 255.

ENOTATION Always uses scientific notation, also called exponential notation or
E-notation (appends "E", and includes a sign before the exponent,
for example, .230E+2 or .230E-2).

CENOTATION Conditionally uses E-notation, when needed to make a value fit in a
column.

*NOENOTATION Does not use E-notation (defaults to conditional M-notation).

EDECIMAL n Shows n decimal places in numbers formatted with E-notation; n
can be any number from 0 to 16, or 255.

NASPELL 'text' Uses text in place of NA values. The default is controlled by the
NASPELL option.

*NONASPELL Spells NA values as indicated by the NASPELL option.

ZSPELL 'text' Uses text in place of zero numeric values. The default is controlled
by the ZSPELL option.

*NOZSPELL Spells zero values as indicated by the ZSPELL option.

Table 20–5 (Cont.) Format Attributes for Data Values

Attribute Meaning

REPORT

20-64 Oracle OLAP DML Reference

YESSPELL 'text' Text used for TRUE Boolean values. The default is recorded in the
YESSPELL option.

NOSPELL 'text' Text used for FALSE Boolean values. The default is recorded in the
NOSPELL option.

TRUNCATE

(TRUNC)

Truncates a character value to the column width when it does not fit
in the column.

*NOTRUNCATE

(NOTRUNC)

Creates additional lines when the character value does not fit in the
column.

FOLDUP For a multiline character value, places all but the last line above the
rest of the row, and the last line on the row with the other values;
also strips any leading or trailing spaces.

FOLDDOWN For a multiline character value, places the first line on the row with
the other values, and places additional lines below the rest of the
row; also strips any leading or trailing spaces.

VALONLY Underlines or overlines the value only. (Used with UNDER and
OVER.)

NOVALONLY Underlines or overlines the entire width of the column. (Used with
UNDER and OVER.)

UNDER textexp Underlines the value with the value of a character expression
(textexp). When textexp is a literal value, it must be enclosed in
single quotes. Useful literal values include: '-' to underline value
or column, '=' to double underline value or column, and '' to
indicate that a value or column is not underlined.

To underline only when a condition is met, for textexp use: IF
boolean-expression THEN '-' ELSE ''

OVER textexp Overlines the value with the value of a character expression
(textexp). When textexp is a literal value, it must be enclosed in
single quotes. Useful literal values include: '-' to overline value or
column, '=' to double overline value or column, and '' to indicate
that a value or column is does not have an overline.

To overline only when a condition is met, for textexp use:

IF boolean-expression THEN '-' ELSE ''

Table 20–5 (Cont.) Format Attributes for Data Values

Attribute Meaning

REPORT

RANDOM to REPORT 20-65

Notes

Report Options
A number of options effect reports created using the OLAP DML. These options are
listed in Table 20–6, " Report Options".

Table 20–6 Report Options

Statement Description

BMARGIN An option that specifies the number of blank lines for the
bottom margin of output pages.

COLWIDTH An option that controls the default width of data columns in
report output.

COMMAS An option that controls the use of a character to separate
thousands and millions in numeric output.

DECIMALCHAR (Read-only) An option that records the character that is used as
the decimal marker in output.

DECIMALS An option that controls the number of decimal places that are
shown in numeric output.

LCOLWIDTH An option that controls the default width of the label column
in reports.

LINENUM An option that contains the current line number of the output.

LINESLEFT (Read-only) An option that contains the number of lines left on
the current page.

LSIZE An option that specifies the line size within which the
STDHDR program centers the standard header.

NASPELL An option that controls the spelling that is used for NA values
in output.

NOSPELL (Read-only) An option that contains the text that is used for
FALSE Boolean values in the output of OLAP DML statements.

PAGENUM An option that contains the current page number of output.

PAGEPRG An option that contains the name of a program or the text of a
statement to be executed at the beginning of each page of
output.

PAGESIZE An option that contains the size of a page of output.

PAGING An option that controls the production of paged output in
Oracle OLAP.

REPORT

20-66 Oracle OLAP DML Reference

Default Layout
In determining the layout of its output, REPORT follows any layout keywords
(GROUP, DOWN, or ACROSS) that you specify in the statement. By default,
REPORT tries to format its output compactly. Normally, this means a
two-dimensional report of the data with one of the dimensions down the side and
the other across the top, much like a spreadsheet. Any additional dimensions of the
data form "slices" or separate two-dimensional segments, like a series of
spreadsheets.

When no layout keywords are specified, REPORT uses the following rules to
determine the layout:

■ The fastest-varying dimension in an expression (the one that appears first in the
definition of that expression) goes across, the next fastest goes down, and any
remaining dimensions become GROUP slices.

■ The order of dimensions in a list of two or more expressions is a simple
combination of the dimensions that appear in the definitions of the component
expressions. The original order is preserved as far as possible, subject to the rule
that repeated mentions of the same dimension are dropped. For example, the
dimensions of the combined variables price and industry.sales, where
price has the dimensions <month product> and industry.sales has the

PARENS An option that controls whether negative numbers are
represented in output with parentheses or a minus sign.

THOUSANDSCHAR (Read-only) An option that contains the character that is used
as the thousands group marker in output.

TMARGIN An option that defines the number of blank lines for the top
margin of output pages, above the running page heading when
PAGING is set to YES.

YESSPELL (Read-only) An option that specifies the text that is used for
TRUE Boolean values in the output of OLAP DML statements.

ZEROROW An option that controls suppresses report rows with numeric
values that are all NAs or all zeros or would be represented as
zeros.

ZSPELL An option that specifies the default text that is used for
representing numeric zero values in output produced by the
HEADING, REPORT, and ROW commands.

Table 20–6 (Cont.) Report Options

Statement Description

REPORT

RANDOM to REPORT 20-67

dimensions <quarter product region>, are
<month product quarter region>.

When you produce a report of data for a variable dimensioned by a composite,
REPORT automatically breaks out the data by the base dimensions of the composite
that is used in the definition of the variable. When a particular combination of base
dimension values does not exist in the composite, the report shows NA for the
corresponding data cell. See Example 20–32, "Reporting Data Dimensioned by
Composites" on page 20-74.

Layout Keywords
The layout keywords, GROUP, DOWN, and ACROSS, allow you to alter the default
layout by changing the way in which the data's dimensions are arranged down and
across the report.

When you specify some but not all of the dimensions of an expression in GROUP,
DOWN, or ACROSS phrases, REPORT follows the default layout as closely as
possible with the unspecified dimensions. (See "Default Layout" on page 20-66.)
When you want a different layout, the easiest way to get it is to specify exactly what
you want with the GROUP, DOWN, and ACROSS keywords.

When one of the dimensions has just one value in the status, you should specify it
in a GROUP phrase for a more pleasing layout.

When you specify a composite in a GROUP, DOWN, or ACROSS phrase, you can
override the default format of REPORT and break out the data by its composite. In
this case, when a particular combination of base dimension values does not exist in
the composite, the report does not include that combination. See Example 20–32,
"Reporting Data Dimensioned by Composites" on page 20-74.

The dimensions that you specify in GROUP, DOWN, and ACROSS phrases are not
required to be relevant to the data they loop over. See "Specifying Extra
Dimensions" on page 20-70.

Unnamed Composites
You can specify an unnamed composite as the dimension argument by using the
syntax that was used to create the unnamed composite.

Attributes for Formatting Data
You can use attributes to change the way the data is formatted. Attributes can apply
to one data expression or a group of expressions, depending on where you specify
them.

REPORT

20-68 Oracle OLAP DML Reference

■ When you do not specify any attributes, the default format is used for the data
values in a report. Oracle OLAP automatically determines the width of the
columns, the number of decimal places, whether commas are used to mark
thousands in numeric values, and so on. However, by including format
attributes prior to the data expression in your REPORT command, you can
change the way in which the values are formatted.

attributes expression

■ When you have several data expressions in your REPORT command, you can
specify different format attributes before each. When you want attributes to
apply to two or more data expressions, enclose the expressions in angle brackets
(< >).

attributes <expression1, expression2>

■ Attributes outside the brackets apply to all the expressions within the brackets.
However, you can also specify attributes for only one of the expressions (even
an attribute that contradicts one that applies to the group) within the brackets
by including them immediately before the expression.

attributes0 <attributes1 expression1, expression2>

In this case, attributes0 applies to both expression1 and expression2; while
attributes1 only applies to expression1.

■ You can specify attributes before an ACROSS phrase. Those attributes apply to
the data values within the scope of that particular ACROSS phrase.

attribs1 ACROSS dimen1: [attribs2 ACROSS dimen2:]

■ You can format the data in the labels column by specifying attributes before the
DOWN phrase.

attributes DOWN dimension

Table 20–5 shows attributes you can use to format values. Some attributes have a
corresponding option (indicated in Table 20–5) that you can use to control the
default.

Using Properties for Attributes
When a variable has a formatting property attached to its definition, you can use
the OBJ function to obtain the value of that property and use it as the value of an
attribute in the REPORT command.

REPORT

RANDOM to REPORT 20-69

HEADING Attribute
When you use the HEADING attribute, the position of the heading you specify will
vary depending on how many expressions it must span in your report. This means
that your heading may or may not replace a default heading.

When you use the HEADING attribute to specify a column title that is wider than
the column width, the text of the title will wrap within the width of its column.

Suppressing All-Zero Rows
The ZEROROW option controls whether rows of all-zero data are included in a
report.

INTEGER Data
The REPORT command suppresses decimal places in row and column totals of
INTEGER data unless you specify the DECIMAL attribute for the totaled
expression.

Decimal Values Between -1 and 1
When you set the DECIMAL attribute to 0 and you use the NOLEADINGZERO
keyword, any decimal values between -1 and 1 that are rounded to 0 will not be
shown.

Maximum Line Width
The maximum width of a line in a report is 4000 characters.

Width of Columns
For data columns (ACROSS), the default width is the value of the COLWIDTH
option (default is 10). The default width for the label column (DOWN) is the value
of the LCOLWIDTH option (default is 14). This default is used when you omit the
DOWN phrase or when you specify a simple dimension in the DOWN phrase.
When the DOWN phrase specifies a conjoint dimension or a composite, the default
label width is the width of the COLWIDTH option (default is 10) and there is a
separate column for each base dimension.

You can specify widths for specific columns by using the WIDTH attribute
(abbreviated W). For a composite or conjoint dimension, the WIDTH attribute
applies to each base dimension column. The total label width is the number of base
dimensions multiplied by the width you specify (plus one for the space between the
columns).

REPORT

20-70 Oracle OLAP DML Reference

When you use the default line width of 80 characters (determined by the LSIZE
option) and the default column width settings (with a single label column of 14
characters) a line of output can accommodate the labels column and six data
columns. The combined width of all the columns of a report cannot be greater than
4000 characters.

When a numeric value is too large to fit into a data column, REPORT rounds it off to
the nearest million with the symbol M at the right side of the cell. When a value is
still too large, REPORT replaces the value with a series of asterisks.

Suppressing a Column
You can suppress a column by specifying a column width of 0.

LSET or RSET with NA Values
When you use the LSET or RSET attribute with an expression that contains NA
values, the text you specify with LSET or RSET will not be included to the left or
right of any NA values.

Formatting DAY, WEEK, MONTH, QUARTER, and YEAR Dimension Values
When you use a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR as
the dimension in an ACROSS, DOWN, or GROUP phrase, you can use the
CONVERT function to override the dimension's VNF (or the default VNF) and
provide your own format for the dimension value names. To override the VNF, use
the CONVERT function with a vnf argument in place of the dimension argument to
the ACROSS, DOWN, or GROUP keyword. For example, in a report of units data,
you can format the labels for the month dimension by using the following
statement.

REPORT HEADING 'Month' DOWN -
CONVERT(month TEXT '<mtextl> <yyyy>') units

Specifying Extra Dimensions
The REPORT command uses whatever dimensions you specify in laying out the
report, regardless of whether the expressions to be shown are dimensioned by these
dimensions. When an expression is not dimensioned by one or more of the
dimensions specified, the values of that expression are repeated for each value of
the extra dimension. This fact is sometimes useful for comparisons.
SeeExample 20–31, "Repeating Price Data" on page 20-73.

REPORT

RANDOM to REPORT 20-71

Creating Running Totals
You can use the RUNTOTAL function within a REPORT command to create
running totals.

Decimal Overflow
When a "decimal overflow" condition occurs while subtotals are being accumulated
(that is, an out-of-range value is generated), all subtotals for the affected column are
set to NA and processing continues when the DECIMALOVERFLOW option is set to
YES. When DECIMALOVERFLOW is set to NO, an error occurs when a decimal
overflow condition occurs.

Performance Tip for Reporting Variables Dimensioned by Composites
By default, when REPORT explicitly loops over a composite, it sorts the composite
values according to the current order of the values in the composite's base
dimensions. The task of sorting requires some processing time, so when variables
are large, performance can be affected. When your variable is very large, and you
are more concerned about performance than about the order in which REPORT
output is produced, you can set the SORTCOMPOSITE option to NO.

NTEXT Values
The REPORT command is not equipped to deal with NTEXT values. Do not include
them in any part of a report.

Examples

Example 20–28 Creating a Default Report

This example shows how to look at product prices for the first three months of 1996.
You can use REPORT in its simplest form, without changing the default layout

LIMIT month TO 'Jan96' TO 'Mar96'
REPORT price

REPORT

20-72 Oracle OLAP DML Reference

These statements produce the following output.

--------------PRICE-------------
--------------MONTH-------------

PRODUCT Jan96 Feb96 Mar96
--------------- ---------- ---------- ----------
Tents 165.50 165.75 165.13
Canoes 200.25 200.09 200.05
Racquets 55.02 55.03 55.00
Sportswear 50.03 50.02 50.00
Footwear 38.01 38.01 38.01

Example 20–29 Including Column Totals

This example looks at unit sales for three districts for the first half of 1996, with
district across the report and a subtotal for each column. (By default, months
would be arranged across the report, since month is the fastest-varying dimension
of units.) To make the report more compact, specify a smaller column width of
8 characters.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT district TO 'Boston' 'Chicago' 'Dallas'
REPORT SUBTOTALS W 8 DOWN month -

ACROSS district: W 8 units

These statements produce the following output.

PRODUCT: TENTS
----------UNITS-----------
---------DISTRICT---------

MONTH Boston Chicago Dallas
-------- -------- -------- --------
Jan96 307 189 308
Feb96 209 190 324
Mar96 277 257 436
Apr96 372 318 560
May96 525 433 744
Jun96 576 466 838
-------- -------- -------- --------
TOTAL 2,266 1,853 3,210

...

REPORT produces a similar slice for each product.

REPORT

RANDOM to REPORT 20-73

Example 20–30 Comparing Two Variables

This example compares actual sportswear sales with the projected sales plan,
looking only at whole-dollar figures. It reports the actual and planned values
side-by-side for May and June, 1996, and provides a grand total of sales and
planned sales for all districts.

LIMIT product TO 'Sportswear'
LIMIT month TO 'May96' 'Jun96'
LIMIT district TO ALL
REPORT GRANDTOTALS W 12 DOWN district ACROSS month: -

DECIMAL 0 <sales sales.plan>

These statements produce the following output.

PRODUCT: SPORTSWEAR
-------------------MONTH-------------------
--------May96-------- --------Jun96--------

DISTRICT SALES SALES.PLAN SALES SALES.PLAN
------------ ---------- ---------- ---------- ----------
Boston 72,617 69,623 79,630 73,569
Atlanta 161,537 148,823 177,967 157,939
Chicago 101,873 94,545 112,793 97,427
Dallas 170,939 165,449 175,066 164,192
Denver 89,971 91,880 97,237 94,729
Seattle 57,713 55,905 60,323 56,808

---------- ---------- ---------- ----------
654,651 626,224 703,017 644,664

========== ========== ========== ==========

Example 20–31 Repeating Price Data

This example compares sales across three districts, and it includes the unit price
beside each sales figure for close comparison within each district. The REPORT
command specifies two expressions, sales and price. Since sales has three
dimensions, month, product, and district, the report shows these three
dimensions. However, price is not dimensioned by district. Therefore, the
report repeats the values of price for each district. The report for January 1995
shown.

LIMIT district TO FIRST 3
LIMIT product TO ALL
LIMIT month TO 'Jan95'
REPORT GROUP month W 10 DOWN product ACROSS district: -

<W 9 sales W 6 price>

REPORT

20-74 Oracle OLAP DML Reference

These statements produce the following output.

MONTH: Jan95
-------------------DISTRICT------------------------
-----Boston----- ----Atlanta----- -----Chicago----

PRODUCT SALES PRICE SALES PRICE SALES PRICE
---------- --------- ------ --------- ------ --------- ------
Tents 32,153.52 160.77 40,674.20 160.77 29,098.94 160.77
Canoes 66,013.92 190.24 49,462.88 190.24 45,277.56 190.24
Racquets 52,420.86 52.84 54,798.82 52.84 54,270.39 52.84
Sportswear 53,194.70 48.54 114,446.26 48.54 72,123.47 48.54
Footwear 91,406.82 36.10 100,540.28 36.10 90,287.70 36.10

Example 20–32 Reporting Data Dimensioned by Composites

In this example, d.sales is a variable whose dimension list includes the dimension
month and the unnamed composite SPARSE <product district>. The
unnamed composite contains no values for the base dimension combinations for the
Boston and Chicago districts and the Tents, Racquets, And Footwear
products. When you use the default form of the REPORT command to produce a
report of d.sales data, REPORT breaks out the report by month and by the base
dimensions of the unnamed composite (product and district). For the
combinations of base dimension values that do not exist in the composite, the report
shows NA for the corresponding data cells.

LIMIT month TO 'Jan96' TO 'Mar96'
LIMIT district TO 'Boston' 'Chicago'
REPORT d.sales

REPORT

RANDOM to REPORT 20-75

These statements produce the following output.

DISTRICT: Boston
------------D.SALES-------------
-------------MONTH--------------

PRODUCT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------
Tents NA NA NA
Canoes 70,489 82,238 97,622
Racquets NA NA NA
Sportswear 57,079 63,122 67,006
Footwear NA NA NA

DISTRICT: Chicago
------------D.SALES-------------
-------------MONTH--------------

PRODUCT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------
Tents NA NA NA
Canoes 48,662 54,425 68,816
Racquets NA NA NA
Sportswear 77,490 85,879 85,308
Footwear NA NA NA

By specifying the composite in an ACROSS, DOWN, or GROUP phrase, you can
override the default format of REPORT and break out the d.sales data by its
composite. In this case, the report only includes the data cells for which the
composite contains values.

REPORT DOWN SPARSE <product district> d.sales

This statement produces the following report.

------------D.SALES-------------
-------------MONTH--------------

PRODUCT DISTRICT Jan96 Feb96 Mar96
---------- ---------- ---------- ---------- ----------
Canoes Boston 70,489 82,238 97,622
Sportswear Boston 57,079 63,122 67,006
Canoes Chicago 48,662 54,425 68,816
Sportswear Chicago 77,490 85,879 85,308

Example 20–33 Reporting Values of Composites

To make it easy to examine the values that exist in a named or unnamed composite,
REPORT loops in a special way when you report the values of the composite.

REPORT

20-76 Oracle OLAP DML Reference

Instead of looping over all the values in the status for the base dimensions of the
composite, REPORT observes the status of the base dimensions, but loops over the
combinations of the base dimension values that exist in the composite. To see all the
values of the SPARSE<product district> composite, you can use the following
statements.

ALLSTAT
REPORT SPARSE <product district>

These statements produce a report of all the combinations of product and
district that exist in SPARSE<product district>.

RESERVED to SPARSEINDEX 21-1

21
RESERVED to SPARSEINDEX

This chapter contains the following OLAP DML statements:

■ RESERVED

■ RESYNC

■ RETURN

■ REVERT

■ ROLE

■ ROLLUP

■ ROOTOFNEGATIVE

■ ROUND

■ ROUND (for dates and time)

■ ROUND (for numbers)

■ ROW command

■ ROW function

■ RPAD

■ RTRIM

■ RUNTOTAL

■ SECONDS

■ SESSCACHE

■ SET

■ SET1

21-2 Oracle OLAP DML Reference

■ SHOW

■ SIGN

■ SIGNAL

■ SIN

■ SINH

■ SLEEP

■ SMALLEST

■ SMOOTH

■ SORT

■ SORTCOMPOSITE

■ SORTLINES

■ SPARSEINDEX

RESERVED

RESERVED to SPARSEINDEX 21-3

RESERVED

The RESERVED function can provide a list of all the words that are reserved
because they are known to the OLAP DML parser, or it can indicate whether or not
a word that you specify is known to the OLAP DML parser. Some other words are
also reserved as discussed in "Other Reserved Words" on page 21-3.

Return Value
Either a multiline text expression or BOOLEAN, depending on whether or not you
specify an argument to the function.

Syntax
RESERVED [(word-expression)]

Arguments

word-expression
A text expression that represents a word that may or may not be reserved in the
OLAP DML. When you specify word-expression, the RESERVED function returns a
BOOLEAN value indicating whether or not the word is reserved in OLAP DML.
When you do not specify an argument, RESERVED returns a TEXT value consisting
of all the reserved words in OLAP DML, with each word on a separate line.

Notes

Other Reserved Words
The RESERVED function only recognizes words known to the OLAP DML parser.
This does not include the names of option objects and some other objects in the
EXPRESS analytic workspace. The names of these objects are reserved in Oracle
OLAP, but are ignored by the RESERVED function. To identify the names of these
objects, issue the following statements.

AW ATTACH EXPRESS
LISTNAMES

RESERVED

21-4 Oracle OLAP DML Reference

NA is Reserved
When you specify NA for the argument, the RESERVED function returns NO. When
you specify NA, the RESERVED function returns YES.

Case-Sensitivity
The list of reserved words returned by the RESERVED function contains some
words in all uppercase and some in mixed case. Words all in uppercase are reserved
in their entirety. Words in mixed case can be abbreviated to the uppercase portion.
For such words, any subset of the word containing the uppercase portion is
reserved. For example, one of the words in the list returned by RESERVED is
CODEVERsion. The following are all reserved: codever, codeversi,
codeversio, and codeversion. However, codeve is not reserved.

Examples

Example 21–1 Determining If a Word Is Reserved

The following example shows how you can use the RESERVED function to
determine if a word is reserved in OLAP DML.

The function call

SHOW RESERVED('update')

returns the following value

YES

RESYNC

RESERVED to SPARSEINDEX 21-5

RESYNC

When an analytic workspace is attached in multiwriter mode, the RESYNC
command drops private changes for the specified variables, relations, valuesets, and
dimensions and promotes them so that the user now sees the data from the latest
visible generations. You can only resychronize read-only objects. Oracle OLAP
ignores any requests to resychronized acquired objects.

Syntax
RESYNC [objects] [analytic_workspaces]

Arguments
When no parameters are specified, all read-only objects in the current analytic
workspace are resychronized.

objects
A list of one or more variables, relations, valuesets, or dimension names, separated
by commas, that you want to resynchronize.

analytic_workspaces
A list of names, separated by commas, of one or more analytic workspaces
presently attached in multiwriter mode. Oracle OLAP resynchronizes all read-only
variables, relations, valuesets, and dimensions in a listed analytic workspace at the
same time.

Notes

Keeping Logical Relationship of Objects
When using RESYNC keep in mind the logical relationship of different objects to
avoid losing the logical consistency of the data by promoting some objects, but not
others to a new generation.

Resynchronizing Objects that Share a Composite Dimension
All objects that share a composite dimension must be resynchronized together.

RESYNC

21-6 Oracle OLAP DML Reference

Examples

Example 21–2 Resynchronizing Objects

In this example, user A is periodically updating actuals, while user R needs to
periodically check the latest view of the data. They could execute the following
OLAP DML statements.

User A could execute the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
...make modifications
UPDATE MULTI actuals
COMMIT
...make modification
UPDATE MULTI actuals
COMMIT

At the same time, user R could execute the following OLAP DML statements.

AW ATTACH myworkspace MULTI
...
RESYNC actuals
...
RESYNC actuals
...
RESYNC actuals
...

RETURN

RESERVED to SPARSEINDEX 21-7

RETURN

Within an OLAP DML program, the RETURN command terminates execution of a
program prior to its last line. You can optionally specify a value that the program
will return. The value should have the same data type or dimension that you
specified when you defined the program.

Syntax
RETURN [expression]

Arguments

expression
The expression to be returned to the calling program when the called program
terminates.

Notes

User-Defined Function
To return a value, a program must be called as a function. That is, it must be used as
an expression in a statement. The following is an example of a user-defined function
being used as an argument to the REPORT command.

REPORT ISRECENT(actual)

When a program is called with a CALL command or by using the standalone
command format, its return value is discarded.

Return Value Dimensionality
The value returned by a program is a single value, without any dimensions.
However, within the context of the command that calls a user-defined function, the
function expression has the dimensions of its arguments. For instance, in
"User-Defined Function" on page 21-7, when actual is dimensioned by line,
division and month, then the expression ISRECENT(actual) is also
dimensioned by line, division and month. Therefore, Oracle OLAP will call the
ISRECENT program once for every combination of line, division and month in
the current status.

RETURN

21-8 Oracle OLAP DML Reference

Return Value Data Type
When you specify a data type when you define a program, the return value will
have that data type. When you specify a dimension when you define a program, the
return value will be a single value in that dimension. When the expression in the
RETURN command does not match the declared data type or dimension, Oracle
OLAP will convert it to the declared data type.

When you do not specify a data type or dimension in the definition of a program,
its return value is treated as worksheet data. This means Oracle OLAP will convert
any return value to the data type that is required by the calling context. This may
lead to unexpected results.

Dimension Location
When the program returns values of a dimension, the dimension must be declared
in the same analytic workspace as the program. The program will be in the output
of the LISTBY program, and OBJ(ISBY) will be TRUE for the dimension.

No Return Value
When a program has been invoked as a function, but it does not provide a return
value, the value that is returned to the calling program is NA.

User-defined Functions
For more information about user-defined functions, see the entries for the
ARGUMENT, CALL, and DEFINE PROGRAMM commands.

Examples

Example 21–3 Terminating a Program Early

In this example, suppose you want a report program that will produce a report only
when a variable called newfigures is present in the current analytic workspace. In

RETURN

RESERVED to SPARSEINDEX 21-9

your program, you can use an IF command to check whether newfigures exists
and a RETURN to stop execution when it does not.

DEFINE sales.report PROGRAM
PROGRAM
IF NOT EXISTS('newfigures')

THEN DO
SHOW 'The new data is not yet available.'
RETURN

DOEND
PUSH month
TRAP ON cleanup
LIMIT month TO LAST 3
REPORT ACROSS month: newfigures

cleanup:
POP month
END

Now when you run the program without newfigures in the analytic workspace,
the program produces a message and the RETURN command terminates execution
of the program at that point.

Example 21–4 Returning a Value

The following program derives next year's budget figures from the actual
variable. It is a temporary calculation. You could call this program in a REPORT
command, thus calculating and reporting the budget figures without storing them
in an analytic workspace.

DEFINE budget.growth PROGRAM DECIMAL
PROGRAM
VARIABLE growth DECIMAL
VARIABLE factor DECIMAL
growth = TOTAL(actual(year 'Yr97') year) - TOTAL(actual(year -

'Yr96') year)
factor = (1 + growth) / TOTAL(actual(year 'Yr96') year)
RETURN TOTAL(actual(year 'Yr97') year) * (factor * factor/2)
END

REVERT

21-10 Oracle OLAP DML Reference

REVERT

The REVERT command drops all changes made to the specified objects since they
were last updated, resynchronized (using the RESYNC command), or acquired
using ACQUIRE the RESYNC phrase, or since the analytic workspace was attached.

Syntax
REVERT [objects] [analytic_workspaces]

Arguments
When you do not specify any parameters, all objects in the current analytic
workspace are reverted.

objects
A list of the names, separated by commas, of acquired variables, valuesets,
relations, or dimensions in an analytic workspace attached in multiwriter mode or a
list of variables, valuesets, relations, or dimensions in an analytic workspace
attached in read-only mode.

analytic workspaces
A list of names, separated by commas, of analytic workspaces attached in either
multiwriter or read-only mode. When you specify the name of an analytic
workspace attached in multiwriter mode, all acquired variables, valuesets, relations,
and dimensions in that workspace are reverted. When you specify the name of an
analytic workspace attached in read-only mode, all variables, valuesets, relations,
and dimensions in that workspace are reverted. Additionally, regardless of the
attachment mode (multiwriter or read-only), all temporary variables and
dimensions are emptied, all session-temporary objects are deleted, and all
workspace-specific status and environment is reset.

Notes

Reverting a Dimension After Adding Dimension Values
Reverting a dimension after adding dimension values is not recommended since it
can result in suboptimal space allocation for variables dimensioned by the
dimension.

REVERT

RESERVED to SPARSEINDEX 21-11

Examples

Example 21–5 Using REVERT to Undo Modifications

Assume that you have a variable named budget in an analytic workspace named
myworkspace. Assume, also, that you need to modify budget in several steps but
do not want to update the analytic workspace data until all steps are completed. For
each step, you want to run several models to find the one that produces desired
results. To perform this task, take the following steps:

1. Attach the analytic workspace in multiwriter mode.

2. Acquire budget.

3. For each step:

a. Run the appropriate models, performing revert operations between them
until you finds the desired model

b. Update budget.

4. Commit and release budget.

The following code accomplishes these tasks.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget
...try model 1a --> not acceptable
REVERT budget
...try model 1b --> ok. Done with Step 1
UPDATE MULTI budget
...try model 2a --> not acceptable
REVERT budget
...try model 2b --> not acceptable
REVERT budget
...try model 2c --> ok. Done with Step 2
UPDATE MULTI budget
...try model 3a --> ok. Done with Step 3. Done with all steps.
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

ROLE

21-12 Oracle OLAP DML Reference

ROLE

(Read-only) The ROLE option holds a list of Oracle Database roles associated with
the user ID under which an Oracle OLAP session is running.

Data type
TEXT

Syntax
ROLE

Examples

Example 21–6 Displaying a List of Groups or Roles

This statement displays a list of the roles associated with the current session
user ID.

SHOW ROLE

ROLLUP

RESERVED to SPARSEINDEX 21-13

ROLLUP

The ROLLUP command calculates totals for a hierarchy of values where each level
of the hierarchy is an aggregation of the values in the level below it.

The ROLLUP command only performs simple sum aggregation. Additionally, it
only aggregates data when the members of the hierarchy are contained in a single
rollup or "embedded-total" dimension, so called because it contains both a detail
(lowest) level and levels that are aggregations of lower levels. A relation between
the embedded-total dimension and itself, called a "parent relation," specifies the
arrangement of the hierarchy. For each value of the dimension, the parent relation
contains the value that is immediately above it in the hierarchy (that is, its "parent"
value).

Before using ROLLUP, make sure that the data variable that is dimensioned by the
embedded-total dimension has data for the lowest-level values in the hierarchy.
ROLLUP uses the data at the lowest level to calculate the totals for the higher levels.

Syntax
ROLLUP data [OVER embed-tot-dim] [USING parent-rel] [ZEROFILL]

Arguments

data
A numeric variable whose values are to be rolled up. When the variable has more
than one dimension, one of them must be the OVER dimension.

OVER embed-tot-dim
A dimension of data whose values form a hierarchy. When data has only one
dimension, then that dimension is the OVER dimension by default and you can
omit the OVER phrase.

Note: Most applications aggregate data using an aggmap object
rather than using the ROLLUP command. Aggmap objects allow
you to write complex aggregation specifications. See
"Aggregations" on page 4-2 for more information.

ROLLUP

21-14 Oracle OLAP DML Reference

USING parent-rel
A relation between the OVER dimension and itself, called a parent relation, that
specifies a hierarchy among the dimension values. For each dimension value, this
parent relation specifies another value of the dimension which is its immediate
parent. The parent relation holds NAs for the values at the highest level of the
hierarchy. When there is more than one relation between the OVER dimension and
itself, then you must specify the relation you want to use as the parent relation.

ZEROFILL
Specifies that parent totals should be set to zero when all of their child values are
NA. When you do not specify ZEROFILL, ROLLUP sets parent totals to NA when all
of their child values are NA.

Notes

Generation Levels in a Parent Relation
In the hierarchy specified by the parent relation, you can think of the lowest level as
the "child" values, all the other values as "parents," and each level as a "generation."
The relation specifies the parent at the next higher level for each dimension value.
The following example shows the values of an embedded-total rollup dimension
called area, that has three levels, and the values of the child-parent relation
area.area.

AREA AREA.AREA
---------- ----------

Level 1 -> Totalus NA
2 -> East Totalus
3 -> Boston East
3 -> Newyork East
2 -> South Totalus
3 -> Atlanta South

A hierarchy can consist of several trees, so that there is more than one value at
level 1. The value of the relation will be NA for all level-1 values, because these
values have no parent in the hierarchy.

Including Child Values in the Status List
ROLLUP always looks to the lowest level of a hierarchy to calculate results. It rolls
up only from the child values that are in the status list for the rollup dimension, but
it still rolls up through all the levels in the hierarchy.

ROLLUP

RESERVED to SPARSEINDEX 21-15

For example, suppose you use the area dimension and the area.area
child-parent relation described in "Generation Levels in a Parent Relation" on
page 21-14, and you change the data value for NewYork. When you then roll up
with only the child values for East in the status list (Boston and NewYork), the
rollup occurs without including the child value for South (Atlanta), but still
includes level 2 as it goes from level 3 to level 1 (TotalUS). When you want all the
child values included in rolling up to TotalUS, you must explicitly include all of
them in the status list. In the example, you would limit area and add Atlanta to
the status list.

Rolling Up from Changed Child Values
When the data has changed for some, but not all, of the child values in the
embedded-total rollup dimension, you can set the status to roll up just the values
that have changed. For example, assume your embedded-total dimension is called
d2, and its parent relation is called reld2, first limit d2 to the values that have
changed. Then use the following statements to add the appropriate additional
values to the status list.

LIMIT d2 ADD ANCESTORS USING reld2
LIMIT d2 ADD CHILDREN USING reld2

Non-Rollup Dimensions
When the data variable being rolled up has more than one dimension, then the
dimensions other than the rollup dimension are treated "normally." ROLLUP loops
over their status and repeats the aggregation for each of their values.

Generation-Skipping Hierarchies
ROLLUP automatically distinguishes between generations in the parent relation,
even to the extent of allowing generation-skipping hierarchies. For example, you can
have a four-level hierarchy (for example, neighborhoods, cities, states, and total
U.S.) that has a three-level branch (for example, Boston, Massachusetts, and total
U.S.).

Status of the Rollup Dimension
Because ROLLUP automatically distinguishes parent values from child values, you
can have all the values of the embedded-total rollup dimension in the status list
when you execute ROLLUP.

ROLLUP

21-16 Oracle OLAP DML Reference

Composites
When a variable includes a composite in its dimension list, you cannot roll up the
data over the composite. However, you can roll up data over a base dimension of
the composite. You specify which base dimension to loop over with the OVER
keyword. The parent relation must be a relation between the base dimension and
itself. When the composite is missing a value that is required for the rollup,
ROLLUP will create the missing value.

Converting a Composite to a Conjoint Dimension
When your data is sparse, it is usually better to define a variable with a composite
than with a conjoint dimension. However, in some situations you might find it
advantageous to convert the composite to a conjoint dimension before you execute
a ROLLUP command. When a variable is dimensioned by a conjoint dimension,
you can define a parent relation between the conjoint dimension and itself and roll
up the data over the conjoint dimension.

To convert a composite to a conjoint dimension, use the CHGDFN command.

Conjoint Dimensions
When a variable is dimensioned by a conjoint dimension, you can roll up the data
over the conjoint dimension, but you cannot roll up over a base dimension of the
conjoint. The parent relation must be a relation between the conjoint dimension and
itself.

Multidimensional Parent Relations
You can have a multidimensional parent relation that defines more than one
hierarchy, so that child values contribute to more than one higher-level total.
However, at each level, the hierarchies should each point to a separate higher-level
total, so that the data is not counted more than once at the higher level. See
Chapter 21–8, "Using a Multidimensional Relation" on page 21-19.

Avoiding Circular Hierarchies
The parent relation must not create a circular hierarchy. That is, the relation must not
contain any dimension values that are their own parent, either directly or indirectly.
A parent relation that creates a circular hierarchy would put the calculations of

Note: A multidimensional parent relation cannot share any
dimensions with the data variable other than the embedded-total
dimension.

ROLLUP

RESERVED to SPARSEINDEX 21-17

ROLLUP into an infinite loop. In your application, you should ensure that your
hierarchies are not circular. To do so, use the HIERCHECK program to check every
parent relation in your analytic workspace for circularity. You can use HIERCHECK
either as a command or as a function.

Improving Performance
When you feel that the ROLLUP command is taking longer than expected, consider
the following strategies:

■ When your data is sparse, define the data using a composite. Use only one
composite for each variable, and be sure to make the composite the
slowest-varying dimension (the last dimension in the list). It is a good idea to
keep the first dimension in the list dense, and put all the other dimensions into
a single composite.

■ Use the CHGDFN command with the SEGWIDTH keyword to specify the size
of a variable's segments.

■ Check the parent relation to make sure it does not define a circular hierarchy.
See "Avoiding Circular Hierarchies" on page 21-16.

■ Use the LIMIT command to limit the amount of data being rolled up at one
time. You can design a program that explicitly loops through a series of subsets
of the desired data.

■ Set the dimension status to selectively roll up the data. For example, when only
some values of a variable have changed, you only need to roll up the data over
the ancestors of those values. See "Rolling Up from Changed Child Values" on
page 21-15.

■ Execute an UPDATE command after every ROLLUP command.

Examples

Example 21–7 Rolling up Sales Data

This example illustrates the use of ROLLUP. You can create an embedded-total
geography dimension by combining the values in the district and region
dimensions. Another value, TotalUS, is the parent of the regions. The order of the

ROLLUP

21-18 Oracle OLAP DML Reference

dimension values does not matter because the parent relation (that you define later)
provides the parent-child information. After the following statements are executed.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'TotalUS' VALUES(region) -

VALUES(district)
REPORT geography

The following report is created.

GEOGRAPHY

TotalUS
East
Central
West
Boston
Atlanta
Chicago
Dallas
Denver
Seattle

Next, create the child-parent relation, geog.geog, which is the relation between
geography and itself.

DEFINE geog.geog RELATION geography <geography>

Each value of the geog.geog relation should be the parent of the corresponding
geography value. You can add the values that are shown in the following report.

GEOGRAPHY GEOG.GEOG
-------------- ----------
TotalUS NA
East TotalUS
Central TotalUS
West TotalUS
Boston East
Atlanta East
Chicago Central
Dallas Central
Denver West
Seattle West

Finally, you can define a variable, g.units, for the data that is currently held in the
units variable plus the totals for the higher levels. After limiting geography to

ROLLUP

RESERVED to SPARSEINDEX 21-19

the values of district, you can transfer the units data to g.units and use
ROLLUP to fill in the totals.

DEFINE g.units INTEGER <month product geography>
LIMIT geography TO VALUES(district NOSTATUS)
g.units = UNRAVEL(units)
ROLLUP g.units OVER geography USING geog.geog
LIMIT geography TO ALL
LIMIT product TO 'Tents'
LIMIT month TO 'Jan95' TO 'Jul95'
REPORT W 9 DOWN geography W 9 geog.geog ACROSS month: W 5 -

g.units

The preceding statements produce the following output.

PRODUCT: TENTS
------------------------G.UNITS----------------------
-------------------------MONTH------------------------

GEOGRAPHY GEOG.GEOG Jan95 Feb95 Mar95 Apr95 May95 Jun95 Jul95
--------- --------- ----- ----- ----- ----- ----- ----- -----
TotUS NA 1,429 1,440 1,860 2,534 3,378 3,779 4,058
East TotUS 453 479 589 848 1,092 1,248 1,315
Central TotUS 478 494 666 848 1,137 1,247 1,360
West TotUS 498 467 605 838 1,149 1,284 1,383
Boston East 200 203 269 359 507 556 545
Atlanta East 253 276 320 489 585 692 770
Chicago Central 181 181 247 304 416 443 461
Dallas Central 297 313 419 544 721 804 899
Denver West 227 210 283 358 497 573 642
Seattle West 271 257 322 480 652 711 741

Example 21–8 Using a Multidimensional Relation

In this example, we have defined a new dimension called area that includes the
values in the geography dimension that was created in "Rolling up Sales Data" on
page 21-17. In addition, area includes European and Asian regions and countries
that roll up into these regions.

There is also a multidimensional parent relation named area.area that defines
two hierarchies. The relation area.area has area for one of its dimensions, while
its other dimension, hier, holds a list of hierarchies. One of these hierarchies,
Nation, specifies continental and global totals. The second hierarchy, Corporate,
divides the child values into divisions and groups of divisions. When an area
value is not part of a hierarchy, area.areahier has an NA value for that area. The

ROLLUP

21-20 Oracle OLAP DML Reference

area.arearelation also has an NA for the top-level area in each hierarchy, since the
top level has no parent value. Executing a DESCRIBE area HIER a.ah statement

shows the following definitions that have been created in the analytic workspace.

DEFINE area DIMENSION TEXT
DEFINE hier DIMENSION TEXT
DEFINE area.area RELATION area <area hier>

Assume that a REPORT DOWN area W 20 area.area statement executes.

The resulting report shows the values of the multidimensional parent relation
area.area.

---------------AREA.AREA-----------------
------------------HIER-------------------

AREA NATION CORPORATE
-------------- -------------------- --------------------
Global NA NA
GroupI NA Global
GroupII NA Global
DivI NA GroupI
DivII NA GroupI
DivIII NA GroupII
TotalUS Global NA
TotInternation Global NA
TotalEurope TotInternation NA
Germany TotalEurope Divii
England TotalEurope DivI
Spain TotalEurope Diviii
France TotalEurope Diviii
TotalAsia TotInternation NA
India TotalAsia DivI
Malaysia TotalAsia Diviii
East TotalUS NA
Central TotalUS NA
West TotalUS NA
Boston East DivI
Atlanta East DivI
Chicago Central DivI
Dallas Central DivI
Denver West DivI
Seattle West DivI

ROLLUP

RESERVED to SPARSEINDEX 21-21

The analytic workspace also contains a variable named a.units that has area as
one of its dimensions. Its definition is as follows.

DEFINE a.units INTEGER <month product area>

After data has been loaded into a.units for the lowest level areas (the districts in
the United States and the countries of Europe and Asia), you can execute the
following ROLLUP command to roll up the data and fill in the totals in the
a.units variable. The command rolls up data over the area dimension, using the
multidimensional parent relation area.area. This aggregates data both in the
Nation hierarchy and in the Corporate hierarchy.

ROLLUP a.units OVER area USING area.area

When you use the following statements to produce a report of the a.units data,
the data for each of the two hierarchies (Nation and Corporate) will be shown on
separate pages of the report.

FOR hier
DO

LIMIT area TO a.ah NE NA
LIMIT area ADD 'Global'
REPORT DOWN area W 14 area.area ACROSS month: W 7 a.units

DOEND

ROOTOFNEGATIVE

21-22 Oracle OLAP DML Reference

ROOTOFNEGATIVE

The ROOTOFNEGATIVE option determines the result of any attempt to obtain a
root of a negative number.

Data type
BOOLEAN

Syntax
ROOTOFNEGATIVE = YES|NO

Arguments

YES
Allows any attempt to obtain a root of a negative number. This means that a
statement that attempts to obtain a root of a negative number will execute without
an error; however, the result of the attempt to obtain the root will be NA. When you
are working with a dimensioned variable or expression, setting
ROOTOFNEGATIVE to YES enables you to obtain the root of most of the
expression's values when a few of the values might be negative.

NO
Disallows any attempt to obtain a root of a negative number. Any statement that
attempts to obtain a root of a negative number will stop executing and an error
message will be produced. (Default)

Notes

Raising to a Noninteger Power
Raising a number to a noninteger power (for example, 5 ** 0.3 or 14 ** 2.7)
is an attempt to obtain a root.

Examples

Example 21–9 The Effect of ROOTOFNEGATIVE

The following example shows the effect of changing the value of the
ROOTOFNEGATIVE option.

ROOTOFNEGATIVE

RESERVED to SPARSEINDEX 21-23

The variable TESTNUMBER has a value of -56. When you execute a SHOW
command such as the following one, without changing the ROOTOFNEGATIVE
option from its default value of NO, an attempt is made to obtain the square root and
then an error message is produced.

SHOW SQRT(testnumber)

When you change ROOTOFNEGATIVE to YES, the same command executes
without error

ROOTOFNEGATIVE = YES
SHOW SQRT(testnumber)

and produces the following result.

NA

ROUND

21-24 Oracle OLAP DML Reference

ROUND

Depending on the syntax you specify, the ROUND function performs a numeric
operation or a date and time operation. Because the syntax for the ROUND function
differs for each type of operation, there are two topics for the ROUND function:

■ ROUND (for dates and time)

■ ROUND (for numbers)

ROUND

RESERVED to SPARSEINDEX 21-25

ROUND (for dates and time)

When a DATETIME expression is specified as an argument, the ROUND function
returns a date and time value rounded to a specified date format. When you do not
specify a format, the date and time value is rounded to the nearest day.

Return Value
DATETIME

Syntax
ROUND(datetime_exp, format)

Arguments

datetime-exp
An expression that identifies a date and time number.

format
A text expression that specifies one of the format models shown in the following
table. A format model indicates how the date and time number should be rounded.

Table 21–1 Format Models for ROUND for Dates and Time

Format Model Description

CC

SCC

One greater than the first two digits of a 4-digit year to indicate
the next century. For example, 1900 becomes 2000. S indicates
that BC dates are marked with a negative (-) prefix.

D

DAY

DY

Starting day of the week (1 to 7). The day of the week that is
number 1 is controlled by NLS_TERRITORY.

DD Day of month (1 to 31).

DDD Day of year (1 to 366).

HH

HH12

Hour of day (1 to 12).

HH24 Hour of day (0 to 23).

ROUND (for dates and time)

21-26 Oracle OLAP DML Reference

IW Same day of the week as the first day of the ISO year.

IYY

IY

I

Last 3, 2, or 1 digit(s) of ISO year.

IYYY 4-digit year based on the ISO standard.

J Julian day; that is, the number of days since January 1, 4712
BC.

MI Minute (0 to 59).

MM Two-digit numeric abbreviation of month (01 to 12, where
January is 01); month rounds up on the sixteenth day.

MON Abbreviated name of the month; month rounds up on the
sixteenth day.

MONTH Name of the month padded with blanks to 9 characters; month
rounds up on the sixteenth day.

Q Quarter of year (1, 2, 3, 4; JAN to MAR is Q1); quarter rounds
up on the sixteenth day of the second month of the quarter.

RM Roman numeral month (I to XII, where January is I); month
rounds up on the sixteenth day.

WW Same day of the week as the first day of the year.

W Same day of the week as the first day of the month.

YEAR

SYEAR

Nearest year, spelled out (rounds up on July 1). S indicates that
BC dates are marked with a negative (-) prefix.

YYYY

SYYYY

Nearest 4-digit year (rounds up on July 1). S indicates that BC
dates are marked with a negative (-) prefix.

YYY

YY

Y

Last 3, 2, or 1 digit(s) of nearest year (rounds up on July 1).

Table 21–1 (Cont.) Format Models for ROUND for Dates and Time

Format Model Description

ROUND

RESERVED to SPARSEINDEX 21-27

Examples

Example 21–10 Rounding to the Nearest Year

When the value of the NLS_DATE_FORMAT option is DD-MON-YY, then this
statement:

SHOW ROUND ('27-OCT-92','year')

returns this value:

01-JAN-93

ROUND (for numbers)

21-28 Oracle OLAP DML Reference

ROUND (for numbers)

When a number is specified as an argument, the ROUND function returns the
number rounded to the nearest multiple of a second number you specify or to the
number of decimal places indicated by the second number.

Return Value
DECIMAL (when the round type is MULTIPLE)

NUMBER (when the round type is DECIMAL)

Syntax
ROUND(number_exp roundvalue) [MULTIPLE|DECIMAL]

Arguments

number_exp
An expression that identifies the number to round.

roundvalue
A value that specifies the basis for rounding.

When the round type is MULTIPLE:

■ number_exp is rounded to the nearest multiple of roundvalue.

■ roundvalue can be an integer or decimal number.

When the round type is DECIMAL:

■ roundvalue specifies the number of places to the right or left of the decimal point
to which number_exp should be rounded. When roundvalue is positive, digits to
the right of the decimal point are rounded. When it is negative, digits to the left
of the decimal point are rounded.

■ When roundvalue is omitted, number_exp is rounded to 0 decimal places.

■ roundvalue must be an integer.

MULTIPLE
Specifies that rounding is performed by rounding to the nearest multiple of
roundvalue. (Default)

ROUND

RESERVED to SPARSEINDEX 21-29

DECIMAL
Specifies that rounding is performed by rounding to the number of decimal places
indicated by roundvalue.

Notes

Using ROUND to Compare Expressions
A DECIMAL value might be stored in a slightly different form than shows up at the
level of significant digits you are using. This small difference can cause unexpected
results when you are comparing two expressions. The problem can occur even
when you are comparing INTEGER expressions that involve calculations because
many calculations are done only after converting INTEGER values to DECIMAL
values. You do not generally see the difference in reports because reports usually
show only two or three decimal places.

For example, when you compare two numbers with the EQ or NE operators, you
probably want to ignore any difference caused by the least significant digits. When
expense was stored as 100.00000001, the least significant digit would not be
ignored by the simple form of the comparison.

The statement

SHOW expense EQ 100.00

produces the following result.

NO

However, you can use ROUND to force EQ or NE to ignore the least significant
digits.

SHOW ROUND(expense, .01) EQ 100.00

This statement produces the following result.

YES

Using ABS to Compare Expressions
When speed of calculation is important in your application, you may want to use
the ABS function with LT to compare numbers, instead of using ROUND with EQ
or NE. You can use LT and test whether the absolute difference between the two
numbers is less than what you regard as significant. For example, you can subtract

ROUND (for numbers)

21-30 Oracle OLAP DML Reference

the two numbers, use the absolute value function, and then compare the result
to .01.

The statement

SHOW ABS(expense - 100.00) LT .01

produces the following result.

YES

Examples

Example 21–11 Rounding to Different Multiples

The following statements show the results of rounding the expression 2/3 to
different multiples. The value of the DECIMALS setting is 2.

The statement

SHOW ROUND(2/3, .01)

produces the following result.

0.67

The statement

SHOW ROUND(2/3, .1)

produces the following result.

0.70

The statement

SHOW ROUND(2/3, .5)

produces the following result.

0.50

ROUND

RESERVED to SPARSEINDEX 21-31

Example 21–12 Rounding to the Nearest Thousand

The following example shows sales rounded to the nearest thousand.

LIMIT month TO FIRST 4
LIMIT district TO FIRST 1
REPORT ROUND(sales 1000)

These statements produce the following output.

DISTRICT: BOSTON
-------------ROUND(SALES 1000)-------------
-------------------MONTH-------------------

PRODUCT Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
Tents 32,000.00 33,000.00 43,000.00 58,000.00
Canoes 66,000.00 76,000.00 92,000.00 126,000.00
Racquets 52,000.00 57,000.00 59,000.00 69,000.00
Sportswear 53,000.00 59,000.00 63,000.00 68,000.00
Footwear 91,000.00 87,000.00 100,000.00 108,000.00

Example 21–13 Rounding to the Nearest Multiple of 12

To show units rounded to the nearest multiple of 12, use the following statements.

LIMIT month TO FIRST 4
LIMIT district TO FIRST 1
REPORT DECIMAL 0 ROUND(units 12)

These statements produce the following output.

DISTRICT: BOSTON
--------------ROUND(UNITS 12)--------------
-------------------MONTH-------------------

PRODUCT Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
Tents 204 204 264 360
Canoes 348 396 480 660
Racquets 996 1,080 1,116 1,308
Sportswear 1,092 1,212 1,296 1,404
Footwear 2,532 2,400 2,772 2,976

Example 21–14 Rounding to Decimal Places

The following statements show the results of rounding 15.193 to various decimal
places.

ROUND (for numbers)

21-32 Oracle OLAP DML Reference

The statement

ROUND(15.193, 1)

produces the following result

15.2

The statement

ROUND(15.193, -1)

produces the following result

20

ROW command

RESERVED to SPARSEINDEX 21-33

ROW command

The ROW command produces a line of data in cells, one after another in a single
row. A series of ROW commands that produce corresponding cells are often used to
build up columns of data. For this reason, we normally speak of the ROW
command as producing a line of columns. Output from the ROW command is sent
to the current outfile.

The ROW command is typically used in conjunction with other statements,
functions, and options that you can think of collectively as report-writing statements

The ROW command itself consists of a series of column descriptions that specify the
data to be produced and, optionally, the output format of the data.

In addition, ROW has a versatile capability for doing row and column arithmetic. It
can perform calculations and include the calculation results in the output. It can use
any kind of calculated expression in the column descriptions; and it can take
advantage of row and column totaling functions (see Table 21–3, " Row and Column
Arithmetic" on page 21-38).

ROW is primarily used in report programs to produce the lines of the report.

Syntax
ROW [attributes] [ACROSS dimension [limit-clause]:] {exp1|SKIP } -

[[attributes] [ACROSS dimension [limit-clause]:] {expn|SKIP }]

Arguments

attributes
One or more attributes for a column. Attributes are format specifications that
determine how the data value is formatted within the column. There is no limit to
the number of attributes that you can use to describe a column format. (See
Table 21–2, " Column Attributes for ROW" on page 21-35for an explanation of each
of the available attributes.) The default for some format attributes is determined by
the current setting of Oracle OLAP options (see Table 21–4, " Report-Related
Options" on page 21-38for a list of these options). ROW with no arguments
produces a blank line.

ROW command

21-34 Oracle OLAP DML Reference

ACROSS dimension [limit-clause]:
An ACROSS phrase lets you include more than one value of a dimensioned
expression in a single row by looping over one of the dimensions (or composites) of
the expression. Normally ROW just shows the value that corresponds to the first
dimension value within the current limits. With an ACROSS phrase, ROW produces
one data column for each dimension value currently in the status.

You can apply a single ACROSS phrase to multiple data expressions, or you can use
separate ACROSS phrases for different data expressions. See "Multiple Expressions"
on page 21-40 and "Separate ACROSS Phrases" on page 21-41.

When you show data for a variable dimensioned by a composite and you do not
include an ACROSS phrase, ROW shows output for all data cells that correspond to
the base dimension values of the composite. When a particular combination of base
dimension values does not exist in the composite, ROW shows NA for the
corresponding data cell. Likewise, when you specify one of the composite's base
dimensions in an ACROSS phrase, ROW shows NA for a data cell for which the
composite contains no value.

However, when you specify a composite in the ACROSS phrase, ROW shows
output only for data cells for which combinations of base dimension values exist in
the composite. This provides a more concise report that better reflects your data.

When the dimension specified in an ACROSS phrase has null status, ROW does not
produce any data columns for that ACROSS phrase.

When you specify a composite in the ACROSS phrase, you cannot include a
limit-clause argument. You must limit the base dimensions of a composite to the
desired values before you execute a ROW command.

However, when you specify a dimension in the ACROSS phrase, limit-clause enables
you to change the status of that dimension. The new status will be in effect only for
the duration of the ROW command. The format of limit-clause is as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|INSERT|TO] valuelist [IFNONE label]

To specify the temporary status, insert any of the LIMIT keywords (the default is
TO) along with an appropriate value list or related-dimension list. You can use any
valid LIMIT clause (see the entry for the LIMIT command for further information).
The following example temporarily limits month to the last six values, no matter
what the current status of month is.

ACROSS month LAST 6: units

When the limits you specify result in empty status for the dimension, an error
occurs. However, when you include the phrase IFNONE label, the error is

ROW command

RESERVED to SPARSEINDEX 21-35

suppressed and execution of your program branches to the specified label where
you can handle the error.

SKIP
Used in place of an expression to indicate that the column is to be left blank.

Table 21–2 Column Attributes for ROW

Attribute Meaning

WIDTH n

(W n)

Makes the column n spaces wide. The default width for the
first column is the value of the LCOLWIDTH option. For other
columns, it is the value of the COLWIDTH option. The
maximum width is 4000 characters. Columns with a width of
0 are suppressed.

SPACE n

(SP n)

Precedes the column with n spaces. The default for the first
column is 0; for other columns, 1.

INDENT n Indents the value n spaces within its column. The default is 0.

LEFT

(L)

Left-justifies the value within its column. This is the default
for TEXT data.

RIGHT

(R)

Right-justifies the value within its column. This is the default
for numeric and Boolean data.

CENTER

(C)

Centers the value within its column.

LSET 'text' Adds text to the left of the value.

NOLSET Does not add anything to the left of the value.

RSET 'text' Adds text to the right of the value.

NORSET Does not add anything to the right of the value.

FILL 'char' Puts char into unused positions in the column. The default fill
character is a space.

DECIMAL n

(D n)

Shows n decimal places. Decimal places are separated by the
character currently specified by the DECIMALCHAR option.
The default number of decimal places is controlled by the
DECIMALS option.

NODECIMAL Shows the number of decimal places indicated by the
DECIMALS option.

ROW command

21-36 Oracle OLAP DML Reference

COMMA Marks thousands and millions with commas or the character
currently recorded in the THOUSANDSCHAR option. The
default is controlled by the COMMAS option.

NOCOMMA Does not mark thousands and millions.

PAREN Uses parentheses to indicate negative numbers. The default is
controlled by the PARENS option.

NOPAREN Uses the minus sign to indicate negative numbers. The default
is controlled by the PARENS option.

LEADINGZERO Puts a leading zero before decimal numbers between -1
and 1.

NOLEADINGZERO Suppresses leading zeros before decimal numbers between -1
and 1.

CNLEADINGZERO Puts a leading zero before decimal numbers between -1 and 1
when it does not cut off any significant digits.

MNOTATION Always uses M-notation (divides values by one million and
appends M).

CMNOTATION Conditionally uses M-notation, when needed to make a value
fit in a column.

NOMNOTATION Does not use M-notation (uses asterisks for oversize values).

MDECIMAL n Shows n decimal places in numbers formatted with
M-notation; n can be any number from 0 to 16, or 255.

ENOTATION Always uses scientific notation, also called exponential
notation or E-notation (appends E, and includes a sign before
the exponent, for example, .230E+2 or .230E-2).

CENOTATION Conditionally uses E-notation, when needed to make a value
fit in a column.

NOENOTATION Does not use E-notation (defaults to conditional M-notation).

EDECIMAL n Shows n decimal places in numbers formatted with
E-notation; n can be any number from 0 to 16, or 255.

NASPELL 'text' Uses text in place of NA values. The default is controlled by the
NASPELL option.

NONASPELL Spells NA values as indicated by the NASPELL option.

ZSPELL 'text' Uses text in place of zero numeric values. The default is
controlled by the ZSPELL option.

Table 21–2 (Cont.) Column Attributes for ROW

Attribute Meaning

ROW command

RESERVED to SPARSEINDEX 21-37

NOZSPELL Spells zero values as indicated by theZSPELL option.

YESSPELL 'text' Text used for TRUE Boolean values. The default is recorded in
the YESSPELL option.

NOSPELL 'text' Text used for FALSE Boolean values. The default is recorded
in the NOSPELL option.

TRUNCATE

(TRUNC)

Truncates a character value to the column width when it does
not fit in the column.

NOTRUNCATE

(NOTRUNC)

Creates additional lines when the character value does not fit
in the column.

FOLDUP For a multiline character value, places all but the last line
above the rest of the row, and the last line on the row with the
other values; also strips any leading or trailing spaces.

FOLDDOWN For a multiline character value, places the first line on the row
with the other values, and places additional lines below the
rest of the row; also strips any leading or trailing spaces.

VALONLY Underlines or overlines the value only. (Used with UNDER
and OVER.)

NOVALONLY Underlines or overlines the entire width of the column. (Used
with UNDER and OVER.)

UNDER textexp Underlines the value or column with the value of a character
expression (textexp). When textexp is a literal value, it must be
enclosed in single quotes. Useful literal values include: '-' to
underline value or column, '=' to double underline value or
column, and '' to indicate that a value or column is not
underlined.

To underline only when a condition is met, for textexp use

IF boolean-expression THEN '-' ELSE ''

OVER textexp Overlines the value or column with the value of a character
expression (textexp). When textexp is a literal value, it must be
enclosed in single quotes. Useful literal values include: '-' to
overline value or column, '=' to double overline value or
column, and '' to indicate that a value or column is does not
have an overline

To overline only when a condition is met, for textexp use

IF boolean-expression THEN '-' ELSE ''

Table 21–2 (Cont.) Column Attributes for ROW

Attribute Meaning

ROW command

21-38 Oracle OLAP DML Reference

Use the functions that are listed in Table 21–3, " Row and Column Arithmetic" to
perform calculations on the values generated so far in a report.

The options that are listed in Table 21–4, " Report-Related Options" on page 21-38
affect the default format for a ROW command.

Table 21–3 Row and Column Arithmetic

Function Data Type Value Returned

COLVAL(n) DECIMAL Value in the nth column of the current row. When
n > 0, an absolute column number (from the left
margin, moving to the right). When n < 0, a relative
column number (from the current column, moving left).

RUNTOTAL(n)

n = 1,2, ...32

DECIMAL Total of all numbers generated in the current column
since the last SUBTOTAL or ZEROTOTAL for n. Does
not reset total for n to 0.

SUBTOTAL(n)

n = 1,2, ...32

DECIMAL Total of all numbers generated in the current column
since the last SUBTOTAL or ZEROTOTAL for n. Resets
total for n to 0.

Table 21–4 Report-Related Options

Option Meaning

COLWIDTH Column width for all but the first column when the WIDTH
attribute is not used. The default is 10.

COMMAS Specifies whether a thousands group separator is used when
neither the COMMA attribute nor the NOCOMMA attribute is
used. The default is YES (uses a separator).

DECIMALS Number of decimal places when the DECIMAL attribute is not
used. The default is 2.

LCOLWIDTH Column width for the first column when the WIDTH attribute is
not used. The default is 14.

LSIZE Defines the line size within which the STDHDR program centers
the standard header. The default is 80 characters.

NASPELL Text used for NA values when the NASPELL attribute is not
used. The default text is NA.

ROW command

RESERVED to SPARSEINDEX 21-39

Use the statements that are listed in Table 21–5, " OLAP DML Statements That Are
Compatible with the ROW Command" with the ROW command.

Notes

Report-Writing Commands
The ROW command and its associated options and commands are referred to
collectively as report-writing statements. Table 21–3, " Row and Column Arithmetic"

NLS_LANGUAGE Specifies the text used for TRUE and FALSE Boolean values.
These values are reflected in the YESSPELL and NOSPELL
options.

NLS_TERRITORY Specifies the character used for the decimal marker and the
thousands group separator. These values are reflected in the
DECIMALCHAR and THOUSANDSCHAR options.

PARENS Parentheses usage for negative numbers when neither the
PAREN attribute nor the NOPAREN attribute is used. The
default is NO (does not use parentheses; uses a minus sign).

ZEROROW Controls generation or suppression of rows in which all numeric
values are zero. The default is NO (generates zero rows).

ZSPELL Text used for zero values when theZSPELL attribute is not used.
The default text is OFF, which shows a zero (0).

Table 21–5 OLAP DML Statements That Are Compatible with the ROW Command

Command Action

BLANK n Produces n blank lines. The default is one line.

HEADING column-

description(s)

Produces titles and column headings for a report. Numeric
values in headings are not added to column totals.

PAGE Forces a page break in output when PAGING is set to YES.

ZEROTOTAL Resets all 32 totals to 0 for all columns.

ZEROTOTAL ALL col(s) Resets all 32 totals to 0 for the specified columns, or for all
columns when there are no column arguments.

ZEROTOTAL n col(s) Resets the indicated total (n) to 0 for the specified columns,
or for all columns when there are no column arguments.

Table 21–4 (Cont.) Report-Related Options

Option Meaning

ROW command

21-40 Oracle OLAP DML Reference

on page 21-38 lists functions you can use for performing row and column arithmetic
in reports. Table 21–4, " Report-Related Options" on page 21-38 lists report-related
options that determine the default format for ROW output. Table 21–5, " OLAP
DML Statements That Are Compatible with the ROW Command" on page 21-39
lists additional statements that are used in combination with ROW to create reports.

Paging Options
You can use the PAGING option and associated paging-related options to produce
your report program in a page-oriented format.

Maximum Row Width
The maximum width of any row in a report is 4000 characters.

Unnamed Composites
You can specify an unnamed composite as the dimension argument by using the
syntax that was used to create the unnamed composite.

Labels for Composites and Conjoint Dimensions
When you produce a report of data that has a composite or a conjoint dimension in
its dimension list, you can produce a label column for each base dimension by using
the KEY function. You can also provide a separate WIDTH attribute for each label
column. For example, when proddist is a composite with the base dimensions
product and district, you can use statements similar to the following ones.

FOR proddist
ROW W 12 KEY(proddist district) W 8 KEY(proddist product) ...

Multiple Expressions
When you want the same format attribute or ACROSS phrase to apply to more than
one data expression, you can enclose the expressions in angle brackets (< >) and
place the common attributes or ACROSS phrase immediately before the bracketed
expressions.

attributes <expression1, expression2, ...>

or

ACROSS dimension: <expression1, expression2, ...>

ROW command

RESERVED to SPARSEINDEX 21-41

When you have attributes that apply to only one of the expressions within the
brackets, place the specific attributes immediately before the expression.

attributes1 <expression1, attributes2 expression2>

When an attribute inside angle brackets (specific to a column) conflicts with an
attribute outside the brackets (common to several columns), the specific attribute
overrides the common attribute.

You can nest brackets to any depth, as long as you have an equal number of right
and left brackets.

Separate ACROSS Phrases
For data generated with an ACROSS phrase, you can produce all the columns for
one expression and then all the columns for additional expressions by using
separate ACROSS phrases.

ACROSS dim: expression1, ACROSS dim: expression2

You also can nest ACROSS phrases to show data columns for two or more
dimensions of an expression across a row.

ACROSS dim1: ACROSS dim2: expression

Using Properties for Attributes
When a variable has a formatting property attached to its definition, you can use
the OBJ function to obtain the value of that property and use it as the value of an
attribute in the ROW command.

Large Data Values
When a numeric value is too large to fit into a data cell, ROW rounds it off to the
nearest million with the symbol M at the right side of the cell. When a value is still
too large, ROW replaces the value with asterisks.

Decimal Values Between -1 and 1
When you set the DECIMAL attribute to 0 and you use the NOLEADINGZERO
keyword, any decimal values between -1 and 1 that are rounded to 0 will not be
shown.

ROW command

21-42 Oracle OLAP DML Reference

LSET or RSET with NA Values
When you use the LSET or RSET attribute with an expression that contains NA
values, the text you specify with LSET or RSET will not be included at the left or
right of any NA values.

Setting Options
When you plan to use Oracle OLAP options to format the data shown by ROW
commands within a program, set these options before they are used in the ROW
command so that they have the values you want to use. The following statements
set the DECIMALS option before the ROW command uses it to produce sales data.

DECIMALS = 0
ROW district month product sales

Row and Column Arithmetic
See Table 21–3, " Row and Column Arithmetic" on page 21-38 for a list of the
functions available for row and column arithmetic. You can use these functions to
perform calculations on the values already generated in a report. Oracle OLAP
maintains 32 running totals for each column, so you can include up to 32 levels of
subtotals in a report.

Decimal Overflow
When a "decimal overflow" condition occurs while subtotals are being accumulated
(that is, an out-of-range value is generated), all subtotals for the affected column are
set to NA and processing continues when the DECIMALOVERFLOW option is set to
YES. The subtotals for the column will continue to be NA until they are reset by a
ZEROTOTAL command. When DECIMALOVERFLOW is NO, an error occurs when
a decimal overflow condition occurs.

Processing Output from ROW
You can also use ROW as a function that returns the ROW output for further
processing, rather than sending the output to the current outfile. For more
information, see ROW function.

Improving Report Performance
When you know ahead of time that you will not need the subtotaling capability of
the ROW command, you can save execution time by using the HEADING
command instead of ROW to produce the lines of your report, since Oracle OLAP
will not be keeping track of subtotals.

ROW command

RESERVED to SPARSEINDEX 21-43

Performance Tip for Using ROW with Variables Dimensioned by Composites
By default, when ROW explicitly loops over a composite, or when ROW is executed
in a FOR loop that explicitly loops over a composite, Oracle OLAP sorts the
composite values according to the current order of the values in the composite's
base dimensions. The task of sorting requires some processing time, so when
variables are large, performance can be affected. When your variable is very large,
and you are more concerned about performance than about the order in which
ROW output is produced, you can set the SORTCOMPOSITE option to NO.

Using the ROW Command in a Program
For information on using the ROW command in a program, see the entries for FOR,
DO ... DOEND, and WHILE.

Examples

Example 21–15 Labeling Data Values

In this example, ROW produces a line of output that contains a value of sales,
along with the corresponding dimension values for district, month, and
product that identify it.

ROW W 8 district month product sales

The preceding statement produces the following row of output.

Boston Jan95 Tents 32,153.52

Example 21–16 Reporting Two Variables

The line of output produced by this ROW command contains the current dimension
value of district, followed by the values of sales and sales.plan for
Sportswear for each of the first two months of 1996.

LIMIT month TO 'Jan96' 'Feb96'
LIMIT product TO 'Sportswear'
ROW W 8 district ACROSS month: <sales sales.plan>

These statements produce the following row of output.

Boston 57,079.10 61,434.20 63,121.50 64,006.91

ROW command

21-44 Oracle OLAP DML Reference

Example 21–17 Formatting and Labeling the Output

In this ROW command, you want to see the actual and planned sales of tents for
June 1996. You want to limit the status of month only for this one ROW command,
so you include the value Jun96 in the ACROSS phrase. You format the values as
whole dollar amounts, and you also add a dollar sign to the values, along with
individual labels that identify the actual and planned figures.

LIMIT product TO 'Tents'
ROW WIDTH 15 name.product ACROSS month 'Jun96': -

DECIMAL 0 LSET '$' W 18 -
<RSET ' (actual)' sales -
RSET ' (plan)' sales.plan>

These statements produce the following row of output.

3-Person Tents $95,121 (actual) $80,138 (plan)

Example 21–18 Reporting on a Variable Dimensioned by a Composite

In this example, D.SALES is a variable whose dimension list includes the dimension
month and the unnamed composite SPARSE <product district>. By specifying
the composite in an ACROSS phrase of a ROW command, you can produce a report
that includes only the data cells for which the composite contains values.

LIMIT product TO ALL
LIMIT district TO 'Atlanta'
LIMIT month TO 'Jan96'
ROW ACROSS SPARSE <product district>: d.sales

ROW function

RESERVED to SPARSEINDEX 21-45

ROW function

The ROW function returns a line of data in cells, one after another in a single row. It
is identical to the ROW command, except that it returns a text value, instead of
sending the text to the current outfile.

The ROW function, just like the ROW command, consists of a series of column
descriptions that specify the data to be returned and, optionally, the way in which it
is to be formatted. The ROW function lets you assign the returned value to a text
variable, send it to your current outfile with the SHOW or REPORT command, or
process it further as an argument to one of the character manipulation functions.

Return Value
TEXT

Syntax
ROW([attribs] [ACROSS dimension [limit-clause]:] {exp1|SKIP} -

[[attribs] [ACROSS dimension [limit-clause]:] {expn|SKIP}])

See the ROW command for a complete description of the arguments.

The ROW function without any arguments returns a blank line.

Notes

ROW Command Attributes
You can use the same attributes that are available for the ROW command. Refer to
the ROW command entry for a table of attributes that format the data and a table of
functions that perform row and column arithmetic.

ROW Command Notes
The notes for the ROW command also apply to the ROW function.

ROW function

21-46 Oracle OLAP DML Reference

Examples

Example 21–19 Assigning Output to a Text Variable

The following assignment statement assigns three lines of output to the text variable
textvar.

textvar = ROW(OVER '-' UNDER '=' 'This is a Row.')
SHOW textvar

These statements produce the following output.

This is a Row.
==============

Example 21–20 Producing Multiple Rows of Output

You can use the ROW function with JOINLINES in a program to loop over a group
of dimension values and assign several rows of data to a text variable. Instead of
using the SHOW command in the following program excerpt, you could use the
contents of textvar for some other purpose.

LIMIT month TO 'Jan95' 'Feb95'
LIMIT district TO 'Boston' 'Atlanta' 'Chicago'
textvar = NA
textvar = ROW(W 8 SKIP ACROSS month: <month SKIP>)
textvar = JOINLINES(textvar ROW(W 8 SKIP ACROSS month: -

CENTER <'Sales' 'Plan'>))
FOR district
textvar = JOINLINES(textvar ROW(W 8 district ACROSS month: -

<sales sales.plan>))
SHOW textvar

These statements produce the following output.

OUTPUT:
Jan95 Feb95
Sales Plan Sales Plan

Boston 32,153.52 42,346.89 32,536.30 43,265.50
Atlanta 40,674.20 54,583.41 44,236.55 57,559.87
Chicago 29,098.94 36,834.37 29,010.20 37,667.66

RPAD

RESERVED to SPARSEINDEX 21-47

RPAD

The RPAD function returns an expression, right-padded to a specified length with
the specified characters; or, when the expression to be padded is longer than the
length specified after padding, only that portion of the expression that fits into the
specified length.

To left-pad a text expression, use LPAD.

Return Value
TEXT or NTEXT based on the data type of the expression you want to pad (text-exp).

Syntax
RPAD (text-exp , length [, pad-exp])

Arguments

text-exp
A text expression that you want to pad.

length
The total length of the return value as it is displayed on your terminal screen. In
most character sets, this is also the number of characters in the return value.
However, in some multibyte character sets, the display length of a character string
can differ from the number of characters in the string.

 When you specify a value for length that is shorter than the length of text-exp, then
this function truncates the expression to the specified length.

pad-exp
A text expression that specifies the padding characters. The default value of pad-exp
is a single blank.

Examples
The following example right-pads a name with the letters "ab" until it is 12
characters long.

SHOW RPAD('Morrison',12,'ab')
Morrisonabab

RTRIM

21-48 Oracle OLAP DML Reference

RTRIM

The RTRIM function removes characters from the right of a text expression, with all
the rightmost characters that appear in another text expression removed. The
function begins scanning the base text expression from its last character and
removes all characters that appear in the trim expression until reaching a character
that is not in the trim expression and then returns the result.

To leading characters, use LTRIM. To trim both leading or trailing characters, use
TRIM.

Return Value
TEXT or NTEXT based on the data type of the first argument.

Syntax
RTRIM (text-exp [, trim-exp])

Arguments

text-exp
A text expression that you want trimmed.

trim-exp
A text expression that is the characters to trim. The default value of trim-exp is a
single blank.

Examples
The following example trims all of the right-most a's from a string.

SHOW RTRIM('Last Wordxxyxy','xy')
Last Word

RUNTOTAL

RESERVED to SPARSEINDEX 21-49

RUNTOTAL

The RUNTOTAL function returns the running total of an expression. You can use
the RUNTOTAL function in a ROW command, ROW function, or REPORT
command to generate a running total of the value of an expression.

Return Value
DECIMAL

Syntax
RUNTOTAL(n)

Arguments

n
One of the 32 subtotals (1 to 32) that Oracle OLAP accumulates for the current
column of a report. RUNTOTAL returns the value of this subtotal for the specified
column, but does not reset the value of the subtotal to zero.

Notes

How RUNTOTAL Works
Unlike the SUBSTR function, RUNTOTAL does not reset the indicated subtotal to
zero, nor does it add the value returned by RUNTOTAL to the indicated subtotal.
However, the value returned by RUNTOTAL is added to the other 31 accumulating
totals for the current column.

Accessing Data from Another Column
You can obtain a running total of an expression shown in another column of a
report by adding that expression to RUNTOTAL. You can use the COALESCE
function to refer to the values in the other column. For example, to show the sales
for each month in the first data column of a row, and a cumulative total of sales in
the second data column, you could use this statement.

ROW month sales COLVAL(-1) + RUNTOTAL(1)

RUNTOTAL

21-50 Oracle OLAP DML Reference

Resetting Subtotals
When you use the ROW command to produce a report, you can use the
ZEROTOTAL command to reset any subtotal of any column to zero. Normally, you
should do this at the beginning of a report program to make sure all totals begin at
zero. The REPORT command automatically resets all subtotals to zero before
producing output.

Referring to Subtotals
The numbers by which the 32 subtotals are referenced (1 to 32) have no intrinsic
significance; all the subtotals are the same until you reference them.

NA Values
RUNTOTAL ignores NA values unless all values are NA. When all values are NA, the
total is NA.

Decimal Overflow
When a "decimal overflow" condition occurs while subtotals are being accumulated
(that is, an out-of-range value is generated), all subtotals for the affected column are
set to NA and processing continues when the DECIMALOVERFLOW option is set to
YES. The subtotals for the column will continue to be NA until they are reset by a
ZEROTOTAL command. When DECIMALOVERFLOW is NO, an error occurs when
a decimal overflow condition occurs.

Examples

Example 21–21 Calculating a Running Total in a Report

In a report, suppose you want column 2 to contain a running total of the values in
column 1.

Assume that you issue the following OLAP DML statements

ZEROTOTAL ALL
ROW W 4 R 2 RUNTOTAL(1) + COLVAL(1)
ROW W 4 R 5 RUNTOTAL(1) + COLVAL(1)
ROW W 4 R 3 RUNTOTAL(1) + COLVAL(1)

These statements produce the following output.

2 2.00
5 7.00
3 10.00

RUNTOTAL

RESERVED to SPARSEINDEX 21-51

Example 21–22 Calculating a Running Total over Two Districts

In this example, you want your report to contain the unit sales of tents for two
districts for the first six months of 1996. Along with the monthly sales figures, you
want to see a running total of tent sales for these two districts for the year to date.
To produce this cumulative total, use the RUNTOTAL function.

LIMIT product TO 'Tents'
LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT district TO 'Boston' 'Chicago'
REPORT ACROSS district: units -

DECIMAL 0 TOTAL(units, month)+RUNTOTAL(1)

These statements produce the following output.

PRODUCT: TENTS
--------UNITS--------
------DISTRICT-------

TOTAL(UNIT
S,

MONTH)+RUN
MONTH Boston Chicago TOTAL(1)
-------------- ---------- ---------- ----------
Jan96 307 189 496
Feb96 209 190 895
Mar96 277 257 1,429
Apr96 372 318 2,119
May96 525 433 3,077
Jun96 576 466 4,119

SECONDS

21-52 Oracle OLAP DML Reference

SECONDS

(Read-only) The SECONDS option holds the number of seconds since January 1,
1970. As an aid to enhancing a program's speed, SECONDS can be used to
determine how many real seconds elapse while the program is running.

Data type
INTEGER

Syntax
SECONDS

Notes

Related Statements
For information about holding the number of seconds in decimal form, see the
DSECONDS command. For information about programs, see the PROGRAM
command.

SECONDS

RESERVED to SPARSEINDEX 21-53

Examples

Example 21–23 Timing a Program

The following program puts the value of SECONDS at the start of the program in a
variable called t1, then displays the difference between t1 and the value of
SECONDS at the end of the program.

DEFINE prodsummary PROGRAM
PROGRAM
VARIABLE t1 INTEGER
t1 = seconds
LIMIT product TO ALL
BLANK
FOR product
DO
ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL 0 LSET -
'$'WIDTH 18 <RSET ' (actual)' sales RSET ' (plan)' sales.plan>

DOEND
BLANK
ROW WIDTH 35 LSET 'the program took ' RSET ' SECOND(s).' -
(SECONDS-t1)
END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

The program took 2 second(s).

SESSCACHE

21-54 Oracle OLAP DML Reference

SESSCACHE

Typically used only when debugging, the SESSCACHE option controls whether
Oracle OLAP creates an Oracle OLAP session cache described in "What is an Oracle
OLAP Session Cache?" on page 21-54.

Syntax
SESSCACHE = {YES|NO}

Arguments

YES
The session cache is created to hold the data described in "What is an Oracle OLAP
Session Cache?" on page 21-54.

NO
Oracle OLAP does not read or write to the session cache. When you specify NO,
caching does not occur even when you have specified caching by coding a CACHE
SESSION statement in the specification for one or more aggmap objects, by setting
one or more $VARCACHE properties to SESSION, or by setting the VARCACHE
option to SESSION.

Notes

What is an Oracle OLAP Session Cache?
An Oracle OLAP session cache is a special place in memory used to hold:

■ All data that was calculated on the fly when an AGGREGATE function
executed in the following situations:

■ The specification for the aggregation included a CACHE SESSION.

■ The specification for the aggregation did not include a CACHE SESSION
statement, but the variable being aggregated had a $VARCACHE property
with the value of SESSION.

■ The specification for the aggregation did not include a CACHE SESSION
statement and the variable being aggregated did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

SESSCACHE

RESERVED to SPARSEINDEX 21-55

■ The NA values (only) that were calculated when an AGGREGATE function
executed and the specification for the aggregation included a CACHE NA
statement.

■ All data that was calculated when a $NATRIGGER expression executed in the
following situations:

■ The variable with the $NATRIGGER property also had a $VARCACHE
property with the value of SESSION.

■ The variable with the $NATRIGGER property did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

There is one internal cache for a session. Cached data is ignored by UPDATE and
COMMIT statements. However, once data is cached, Oracle OLAP uses the values
in the cache for all calculations except when an AGGREGATE function with the
FORCECALC keyword executes. In this case, the FORCECALC keyword specifies
that Oracle OLAP recalculate the values.

When a session is terminated, its cache is cleared. To clear the session cache without
terminating the session, issue a CLEAR statement.

The effectiveness of a session cache is tracked in the V$AW_CALC dynamic
performance view which is discussed in the Oracle OLAP Reference.

SET

21-56 Oracle OLAP DML Reference

SET

The SET command, also called an assignment statement or the = command, assigns
one or more values to a variable, option, relation, or dimension surrogate. When an
object has one or more dimensions, teh SET command loops over the values in
status for each dimension of the target object and assigns a data value to the
corresponding cell of the target object.

When the target is an object defined with a composite in its dimension list, Oracle
OLAP automatically creates any missing target cells that are being assigned non-NA
values. This step also adds to the composite all the dimension value combinations
that correspond to those new cells. Thus, both the target object and the composite
might be larger after an assignment. When you want to assign values only to cells
that already exist in the target, use the ACROSS keyword.

Syntax
[SET] target-name [=] expression [ACROSS composite]

Arguments

SET
SET is optional. It is an older command form of this functionality, and is included
for compatibility.

target-name
The name of the target object where the data will be assigned and stored. For a list
of analytic workspace objects that can be a target object, see Table 21–6, " Use of
Analytic Workspace Objects in OLAP DML Assignment (SET) Statement".

=
The = (assignment or equal) operator assigns one or more values to a variable,
option, or relation.

See also: You can use UNRAVEL in conjunction with an
assignment statement to assign values of an expression into the
cells of a variable when the dimensions of the expression are not
the same as the dimensions of the variable.

SET

RESERVED to SPARSEINDEX 21-57

expression
The source of the data values to be assourcearget object, see Table 21–6, " Use of
Analytic Workspace Objects in OLAP DML Assignment (SET) Statement"

ACROSS composite
When you are assigning data to a variable dimensioned by a composite the default
behavior is to loop over all the values in status for each of the base dimensions of
the object. Oracle OLAP automatically creates any missing target cells that are being
assigned non-NA values, and it automatically adds the required dimension value
combinations to the composite.

When you want to assign values only to existing cells of a variable defined with a
composite, use the ACROSS keyword, which causes = to change the way it loops for
those dimensions of the target that are part of the composite. Instead of looping
over all possible combinations of the values in the status of those dimensions, =
loops only over those combinations of the values in the status that already exist in
the composite.

The ACROSS keyword is intended for specifying a composite. However, when you
specify a base dimension of the composite instead, be aware that the assignment
statement could add many values to your composite.

Notes

Triggering Program Execution When an Assignment Statement Executes
Using the TRIGGER command, you can make the SET command an event that
automatically executes an OLAP DML program. See "Trigger Programs" on
page 1-14 for more information

Dimensionality and Performance
When the target has more than one dimension, the = command loops over the
dimension values in the order in which they were added, regardless of their logical
order as reflected by the default status. In a multidimensional case, the looping is
over the compound dimension. The first dimension listed in the definition varies
the fastest. When you are setting the target to the values of an expression, Oracle
OLAP performs much more efficiently when the source expression has the same
dimensions, in the same order, as the target.

Differently Dimensioned Variables in an Expression
When an assignment statement involves a number of differently dimensioned
objects, the calculation can appear complicated. The following list outlines the

SET

21-58 Oracle OLAP DML Reference

process followed by a complicated assignment statement. When the command is
A = B, where A is the object being set to the expression B, Oracle OLAP first
determines the dimensions of A. Then it determines the status of those dimensions.
For each combination of dimension values in the status of those dimensions:

1. Oracle OLAP determines which single value of A (sometimes called a cell) is
going to be set.

2. For each component of the expression B (each variable, formula, function,
qualified data reference, or literal), Oracle OLAP determines the single value
that corresponds to the cell of A that is being set. When a component of the
expression is not dimensioned or is a literal, Oracle OLAP simply uses its value.
When a component of the expression has dimensions different from A, Oracle
OLAP uses the first value in the status of these dimensions.

3. Oracle OLAP performs the specified calculation on the single values obtained in
Step 2 and stores the result in the cell of A chosen in Step 1.

Using Objects in Assignment Statements
Table 21–6, " Use of Analytic Workspace Objects in OLAP DML Assignment (SET)
Statement" outlines the objects that you can use in assignment statements and
indicates whether you can use them as a target or source expression.

Assigning Values to Variables When you use an = (SET) statement to assign the
value of a single-cell expression to a single cell, a single value is stored. However,

Table 21–6 Use of Analytic Workspace Objects in OLAP DML Assignment (SET)
Statement

Object Target Expression Source Expression

Variable Yes Yes

Relation Yes Yes

Dimension Only in models Yes

Surrogate Yes Yes

Composite No Yes

Worksheet Yes Yes

Function No Yes

Formula Yes Yes

Valueset No Yes

SET

RESERVED to SPARSEINDEX 21-59

when you use an = statement to assign the value of a single-cell expression to a
target variable that has one or more dimensions, then the assignment loops over the
values in status for each dimension of the target variable and assigns a data value to
the corresponding cells of the variable.

When you assign a multiline value to a fixed-width text variable, then the variable
is set to the first line only. To assign a multiline value to a fixed-width text variable,
you use the JOINCHARS function to make the multiline value one line long. For
example, suppose you have a non-fixed-width text variable called textvar. The
statement

SHOW textvar

produces the following output, in which each line of the value in textvar is shown
as a separate line.

This is a variable
that has a multiline
text value.

To assign this value to a variable called fixedtext with a fixed width of 60 bytes
and show the value, you would use the following statements.

fixedtext = JOINCHARS(textvar)
SHOW fixedtext

These statements produce the following output, in which the value of textvar is
shown as a single line.

This is a variable that has a multiline text value.

When the actual number of bytes in the textvar variable's value exceeds the
width of the fixedtext variable, then the value of textvar will be truncated
when it is stored in fixedtext.

Assigning Values to Relations You can assign values to a relation using a SET
statement as illustrated in Example 21–25, "Assigning Values to a Relation" on
page 21-65. When executing the assignment statement, a loop is performed over the
values in status for each dimension of the target relation and assigns a data value to
the corresponding cell of the target relation.

SET

21-60 Oracle OLAP DML Reference

You can assign values to a relation with a text dimension by assigning one of the
following:

■ A text value of the dimension.

■ An INTEGER that represents the position of the dimension value in the default
status list of the dimension.

Assigning Values to Dimensions The only time you use an = statement to assign a
value to a dimension is when the result of a calculation in a model equation is
numeric. In this situation, you can use the = operator to assign the results to a
dimension value. However, equations (that is, expressions) in models differ in
several ways from expressions used in other contexts. See "Rules for Equations in
Models" on page 21-61 for information on using the assignment statement within
models.

Assigning Values to Dimension Surrogates You assign values to a dimension
surrogate with an = (SET) statement. For example, the following statements define
the dimension surrogate storename, which is a TEXT type surrogate for the
NUMBER type dimension store_id, assign a value to the fourth position of
storename, and then report the value of the surrogate for the fourth value of
store_id, which is 100.

DEFINE storename SURROGATE store_id TEXT
storename(storename 4) = 'Molly\'s Emporium'
REPORT W 25 storename(store_id 100)

STORENAME(STORE_ID 100)

Molly's Emporium

For example, when you define the INTEGER dimension surrogate intsurr for a
NUMBER dimension numdim that has five values, then a report of intsurr
produces the following.

INTSURR

1
2
3
4
5

Like a dimension, the values of a dimension surrogate must be unique. However,
unlike a dimension, a dimension surrogate can have NA values, unless it is an

SET

RESERVED to SPARSEINDEX 21-61

INTEGER type. The same value can be a value of the dimension and of any of its
surrogates.

Assigning Values to Specific Cells of a Data Object
You can use a QDR with the target of an = (SET) statement. This lets you assign a
value to specific cells in a variable or relation.

The following example assigns the value 10200 to the data cell of the sales
variable that is specified in the qualified data reference. When the variable named
sales does not already have a value in the cell associated with Boston, Tents,
and Jan99, then the value is assigned to the cell and thus it is added to the variable.
When a value already exists in the cell, the value 10200 overwrites the previous
value.

sales(market 'Boston' product 'Tents' month 'Jan99')= 1020

Expressions Dimensioned Conjoint Dimensions
When an expression is dimensioned by a conjoint dimension, Oracle OLAP uses the
dimension's relationship to its base dimension values to assign data to the correct
cells. You can set the values of a variable dimensioned by a conjoint dimension to an
expression dimensioned by one of its base dimensions. The converse is also true.
See "Compacting Your Data" on page 21-69.

TEXT and NTEXT Source and Target
When the source is of type TEXT and the target is of type NTEXT, Oracle OLAP
converts the TEXT value to NTEXT. Similarly, when the source is of type NTEXT
and the target is of type TEXT, Oracle OLAP converts the NTEXT value to TEXT.
Note that data can be lost when NTEXT is converted to TEXT.

Rules for Equations in Models
The equations in a model use an OLAP DML assignment statement to assign values
to variables or dimension values. Equations in models differ in several ways from
equations used in other contexts in Oracle OLAP:

■ In a model equation, you can use the name of a dimension value anywhere you
would normally use the name of a variable. You can base calculations on a
dimension value, and you can assign the results of a calculation to a dimension
value. When an equation refers directly to one or more dimension values, it is
called a dimension-based equation.

■ You cannot use ampersand substitution in model equations.

SET

21-62 Oracle OLAP DML Reference

■ You can include a program as a component in a calculation only when it is used
as a function.

■ Within a single dimension-based equation, all the dimension values must
belong to the same dimension.

■ When you assign the results of a calculation to a dimension value, the results
must be numeric.

■ Each dimension on which the model equations are based must be listed in a
DIMENSION (in models) statement. When the model contains an INCLUDE
command, the appropriate DIMENSION statements must be inherited from the
included model. When the model does not contain an INCLUDE command, it
must contain the appropriate DIMENSION statements. When you compile or
run the model, Oracle OLAP searches through the dimensions listed in explicit
or inherited DIMENSION statement to identify the dimension to which each
dimension value belongs.

Dimension Status and Model Equations When a model contains an assignment
statement to assigns data to a dimension value, then the dimension is limited
temporarily to that value, performs the calculation, and then restores the initial
status of the dimension.

Formatting Conjoint Dimension Values A special format is required when
dimension-based equations refer to values of a conjoint dimension:

■ Enclose the entire dimension value specification in angle brackets and then
enclose this entire specification in single quotes; do not enclose the individual
values in single quotes.

■ Use the exact upper- and lowercase spellings for the base dimension values.

■ When the specification includes a text value with an embedded blank, you must
separate the dimension values with commas.

For example, assume that item.org is a conjoint dimension with base dimensions
item and org. In this case, you use the following format to refer to values of
item.org.

'<Expenses, Direct Sales>'

Formatting Text Dimension Values When dimension-based equations refer to text
dimension values with embedded blanks or mixed upper- and lowercase letters,
enclose the dimension value in single quotes. Use the exact upper- and lowercase
spelling for the value.

SET

RESERVED to SPARSEINDEX 21-63

For example, assume that a text dimension named lineitem contains a value with
an embedded blank. In this case, you use the following format.

'Software Revenue'

Formatting DAY, WEEK, MONTH, QUARTER, YEAR Values When a model
equation is based on a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR, you must use the dimension's VNF (value name format), rather than a date
format, to specify the dimension's values. In addition, the VNF must format
dimension values as follows:

■ The value must start with a letter.

■ The value can only contain letters, digits, underscores, and periods.

When the WEEK, MONTH, QUARTER, YEAR dimension of type does not have a
VNF assigned to it, you can use the default VNF for the dimension. The entry for
the VNF command lists the default VNF for each of these dimension types, and it
explains how to assign a VNF to a dimension.

The default VNF for DAY dimensions is not acceptable because it specifies a digit as
the first character of each dimension value. For a DAY dimension, specify the
dimension name and enclose the value in parentheses and single quotes.

For example, for a DAY dimension named daydim, you can use the following
format.

daydim('01jul97')

Formatting INTEGER Dimension Values When dimension-based equations refer
to values of an INTEGER dimension, enclose the dimension value in single quotes.

For example, for an INTEGER dimension named intdim, use the following format
to refer to the first dimension value.

'1'

When the model is based on more than one dimension, the model compiler might
not be able to correctly identify the dimension to which a literal integer value
belongs. In this case, specify the name of the dimension and enclose the value in
parentheses and single quotes as described in "Formatting Ambiguous Dimension
Values" on page 21-64.

SET

21-64 Oracle OLAP DML Reference

Formatting Ambiguous Dimension Values In some cases the model compiler
might be unable to correctly identify the dimension to which a dimension value
belongs. For instance, this can happen under the following circumstances:

■ Two or more dimensions have a dimension value with the same name.

■ A DAY dimension uses the default VNF (which starts with a digit).

■ An integer value could be interpreted either as a position within a dimension or
as a literal integer value of a dimension.

In cases such as these, you can avoid ambiguity in model-based equations by
following these rules:

■ Enclose the dimension value in single quotes.

■ Enclose the quoted value in parentheses.

■ Precede the parentheses with the name of the dimension.

For example, for an INTEGER dimension named intdim, use the following format
to refer to the first dimension value.

intdim('1')

Examples

Example 21–24 Assigning Values to a Variable

For the first example, suppose you have defined two variables, units and price,
that are both dimensioned by product. The following example calculates dollar
sales (units times price) for each value in the product dimension. Using an
assignment statement, it stores the result in the variable sales, which is also
dimensioned by product.

sales = units*price

SET

RESERVED to SPARSEINDEX 21-65

For another example, assume the choicedesc variable is dimensioned by choice.
Before you enter data for the variable, the cells of the variable contain only NA
values.

CHOICE CHOICEDESC
-------------- --------------------
Report NA
Graph NA
Analyze NA
Data NA
Quit NA

Suppose you initialize the choicedesc variable using the following command.

choicedesc = JOINCHARS ('Description for ' choice)

Now all of the choicedesc cells of the variable contain the appropriate values.

CHOICE CHOICEDESC
-------------- -------------------------
Report Description for Report
Graph Description for Graph
Analyze Description for Analyze
Data Description for Data
Quit Description for Quit

The next example shows an expression that is dimensioned by time, product, and
district and is assigned to a new variable. The expression calculates a 2002 sales
plan based on unit sales in 2001.

DEFINE units.plan INTEGER <month product district>
LIMIT month TO 'DEC02'
units.plan = LAG(units 12 month) * 1.15

Example 21–25 Assigning Values to a Relation

Assume that your analytic workspace contains the following definitiions for a
hierarchical dimension for Geography named geog and a relation named

SET

21-66 Oracle OLAP DML Reference

geog_parentrel that contains values that represent the child-parent relationships in
the Geography hierarchy.

DEFINE geog DIMENSION TEXT
DEFINE geog_parentrel RELATION geog <geog>

You can use the following MAINTAIN ADD statements to populate the hierarchical
dimension.

" Populate the geog dimension with values for all levels
MAINTAIN geog ADD 'North America' 'Europe' 'United States' 'Canada' 'France'
'Germany'
MAINTAIN geog ADD 'Massachusetts' 'California' 'Quebec' 'Ontario'
MAINTAIN geog ADD 'Boston''Springfield' 'San Francisco''Los Angeles' 'Toronto'
'Ottawa'
MAINTAIN geog ADD 'Montreal''Quebec City' 'Paris' 'Marseilles' 'Bonn' 'Berlin'

You can use the following assignments statements to populate geog_parentrel.
Note that you must limit geog to the appropriate values before you assign values to
geog_parentrel.

" Limit geog (and therefore geog_parentrel) to countries and assign
" parent value (continent name) to those countries in geog_parentrel
LIMIT geog to 'United States' 'Canada'
geog_parentrel = 'North America'
LIMIT geog to ALL
LIMIT geog to 'France' 'Germany'
geog_parentrel = 'Europe'

" Limit geog (and therefore geog_parentrel) to states or provinces and assign
" parent value (country name) to those states or provinces in geog_parentrel
LIMIT geog to ALL
LIMIT geog to 'Massachusetts' 'California'
geog_parentrel = 'United States'
LIMIT geog to ALL
LIMIT geog to 'Quebec' 'Ontario'
geog_parentrel = 'Canada'

SET

RESERVED to SPARSEINDEX 21-67

" Limit geog (and therefore geog_parentrel) to cities and assign
" parent value (state, province, or country) to those cities in geog_parentrel
LIMIT geog to ALL
LIMIT geog to 'Boston' 'Springfield'
geog_parentrel = 'Massachusetts'
LIMIT geog to ALL
LIMIT geog to 'San Francisco' 'Los Angeles'
geog_parentrel = 'California'
LIMIT geog to ALL
LIMIT geog to 'Montreal' 'Quebec City'
geog_parentrel = 'Quebec'
LIMIT geog to ALL
LIMIT geog to 'Toronto' 'Ottawa'
geog_parentrel = 'Ontario'
LIMIT geog to ALL
LIMIT geog to 'Paris' 'Marseilles'
geog_parentrel = 'France'
LIMIT geog to ALL
LIMIT geog to 'Bonn' 'Berlin'
geog_parentrel = 'Germany'
LIMIT geog to ALL

SET

21-68 Oracle OLAP DML Reference

A report of geog_parentrel shows the values have been assigned.

COLWIDTH = 20
REPORT geog_parentrel
REPORT geog_parentrel

GEOG GEOG_PARENTREL
---------------- --------------------
North America NA
Europe NA
United States North America
Canada North America
France Europe
Germany Europe
Massachusetts United States
California United States
Quebec Canada
Ontario Canada
Boston Massachusetts
Springfield Massachusetts
San Francisco California
Los Angeles California
Toronto Ontario
Ottawa Ontario
Montreal Quebec
Quebec City Quebec
Paris France
Marseilles France
Bonn Germany
Berlin Germany

Example 21–26 Using a Qualified Data Reference

This example uses an assignment statement with a qualified data reference to assign
values to the variable budget. The values assigned to one budget line item
(Net.Income) are calculated as the difference between two other line items
(Opr.Income and Taxes), so you have to use a qualified data reference to obtain
the correct data values.

budget(line Net.Income)= budget(line Opr.Income) - budget(line Taxes)

SET

RESERVED to SPARSEINDEX 21-69

Example 21–27 Assigning Values to Variables with Composites

To have data assigned from sales only into existing data cells of sparse_sales,
whose associated dimension values are in status, use the following command.

sparse_sales = sales ACROSS SPARSE<product market>

The ACROSS keyword is particularly helpful when the source expression is a single
value. When there are no limits on the dimensions of sparse_sales, then an
assignment command like the following creates cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0

This defeats the purpose of a dimensioning a variable with a composite.

In contrast, the following command sets only existing cells of sparse_sales to 0
(zero).

sparse_sales = 0 ACROSS SPARSE<product market>

Example 21–28 Compacting Your Data

Suppose you only sell some of your products in each district. You currently have a
variable sales that has data for certain combinations of districts and products and
NA values for the rest. You can create a dense array of sales data by defining a
composite or a conjoint dimension and using it as a dimension of a new variable.
Use an assignment statement to assign the data directly to the new variable. When
the values of the composite or conjoint dimension include all the combinations with
data, you can then delete the original variable and save space in the analytic
workspace.

DEFINE proddist DIMENSION <product district>
MAINTAIN proddist ADD <'Tents' 'Boston'> <'Canoes' 'Seattle'> -

<'Sportswear' 'Atlanta'>
DEFINE sales.dense DECIMAL <month proddist>
sales.dense = sales
LIMIT month TO FIRST 4

SET

21-70 Oracle OLAP DML Reference

Issuing a REPORT sales.dense statement produces the following output.

----------------SALES.DENSE----------------
-----PRODDIST------ -------------------MONTH-------------------
PRODUCT DISTRICT Jan95 Feb95 Mar95 Apr95
-------- ---------- ---------- ---------- ---------- ----------
Tents Boston 32,153.52 32,536.30 43,062.75 57,608.39
Canoes Seattle 64,111.50 71,899.23 83,943.86 14,383.90
Sportswear Atlanta 114,446.26 123,164.92 138,601.64 141,365.66

An alternative method would be to use a composite instead of a conjoint dimension.
In this case, you could use the following statements.

DEFINE sales.compact DECIMAL <month SPARSE <product district>>
sales.compact = sales

Oracle OLAP automatically creates the unnamed composite when you define
sales.compact, and it automatically adds dimension value combinations to the
composite when you use an assignment statement. Oracle OLAP creates dimension
value combinations only for the non-NA values of sales.

SET1

RESERVED to SPARSEINDEX 21-71

SET1

The SET1 command assigns a single value to a variable, option, relation, or
dimension surrogate. When an object has one or more dimensions, the SET1
command assigns the value to the object cell that is in current status.

Since the SET1 command does not loop through a dimensioned object, you can use
it in Assign trigger programs to assign a value to an object.

Syntax
SET1 target-name = expression

Arguments

target-name
The name of the target object where the data will be assigned and stored. For a list
of analytic workspace objects that can be a target object, see Table 21–6, " Use of
Analytic Workspace Objects in OLAP DML Assignment (SET) Statement".

expression
The source of the data values to be assourcearget object, see Table 21–6, " Use of
Analytic Workspace Objects in OLAP DML Assignment (SET) Statement"

Examples
For an example of using SET1, see Example 24–9, "Setting Values in an ASSIGN
Trigger Program" on page 24-20.

SHOW

21-72 Oracle OLAP DML Reference

SHOW

The SHOW command shows a single value of an expression. Normally, you would
use SHOW to show the value of a single-cell variable or to show a message. SHOW
is useful in programs when you want to generate an error-like message without
creating an error condition. The output from SHOW is sent to the current outfile.

Syntax
SHOW expression [NONL]

Arguments

expression
The value you want to show. When expression is dimensioned, only the first value of
the expression is shown, based on the current status of its dimensions. When you
are showing a text literal, you must enclose the value in single quotes.

NONL
Indicates that a new line sequence should not be appended to the end of the value.
By default, SHOW appends a new line sequence.

Notes

Concatenating Output Lines
The NONL argument to SHOW is useful in programs. Using this argument you can
concatenate several values into a single line of output. To accomplish this, include
one or more SHOW commands with the NONL argument, followed by a single
SHOW command without the NONL argument. The values from all the SHOW
commands are concatenated into a single output value, in the order specified.
Depending on the length of the line, this value might actually produce more than
one line of output.

Generating Error Messages
SHOW can be used as an alternative to SIGNAL when you want to generate an
error message from a program. Unlike SIGNAL, SHOW produces a message
without signaling an error condition and thus halting execution of the program.
Your error message may be most useful when you send it to a debugging file. When

SHOW

RESERVED to SPARSEINDEX 21-73

you use the DBGOUTFILE command to direct messages to a debugging file, the
output from SHOW is sent to the debugging file as well as to your current outfile.

Showing Values of Composites
When SHOW is used with a named or unnamed composite, an NA value is shown
when the composite does not have a value that corresponds to the first values in the
status for its base dimensions. For example, the statement

SHOW SPARSE <market product>

will produce an NA value when the combination of the current values of market
and product does not exist in the composite.

Breaking Lines of Text
To break a text expression into two or more lines of output text, insert newline
delimiters (\n) at the appropriate places in the text.

NTEXT Values
The SHOW command converts NTEXT values to the character set of the outfile.
When an NTEXT value cannot be represented in the outfile character set, the
character is not displayed correctly.

Examples

Example 21–29 Showing the Value of an Option

This example uses SHOW to report the current value of the DECIMALS option. The
OLAP DML statement

SHOW DECIMALS

produces the following output.

2

SHOW

21-74 Oracle OLAP DML Reference

Example 21–30 Showing a Data Value

When you use SHOW to report the value of a dimensioned variable, only the first
value of the variable, based on the current status of its dimensions, is shown. The
OLAP DML statement

SHOW JOINCHARS('Actual = ' actual)

produces the following output.

Actual = 533,362,88

Example 21–31 Creating Error Messages Using SHOW

When you want to produce a warning message without branching to an error label,
then you can use the SHOW command.

select:
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN DO
 SHOW 'You can select no more than 9 months.'
 GOTO finish
 DOEND
REPORT DOWN district W 6 units
finish:
POP month
RETURN

SIGN

RESERVED to SPARSEINDEX 21-75

SIGN

The SIGN function returns a value that indicates when a specified number is less
than, equal to, or greater than 0 (zero).

Return Value
INTEGER. SIGN returns -1 when n<0, 0 (zero) when n=0, or 1 when n>0.

Syntax
SIGN (n)

Arguments

n
A numeric expression.

Examples
The following example indicates that the function's argument (-15) is less
than 0 (zero).

SHOW SIGN(-15)
 -1

SIGNAL

21-76 Oracle OLAP DML Reference

SIGNAL

The SIGNAL command produces an error message from within a program and
halts normal execution of the program. Oracle OLAP sends the error message to the
current outfile. When the program contains an active trap label, execution branches
to the label. Without a trap label, execution of the program terminates and, when
the program was called by another program, execution control returns to the calling
program.

Syntax
SIGNAL {errname [message]|STOP}

Arguments

errname
A TEXT expression that indicates the name of the error message to be produced.
When you execute the SIGNAL command, Oracle OLAP stores the errname in the
ERRORNAME option. Normally, the name of the error does not appear in the error
message. However, when you omit message, the error name (errname) will appear
along with a stock message as described in the message argument.

message
A TEXT expression that specifies the error message to be produced. When you omit
this argument, SIGNAL produces the following message.

ERROR: (errname) Please contact the administrator of your
Oracle Oracle OLAP application.

When you execute the SIGNAL command, Oracle OLAP stores message in the
ERRORTEXT option.

STOP
Immediately stops execution of all currently running programs. No error message is
produced. The error condition is not trapped by an active TRAP label.

SIGNAL

RESERVED to SPARSEINDEX 21-77

Notes

Error Message Format
When you supply a long line as your error message, you must add your own line
breaks to format the text. Type the newline escape sequence (\n) where you want
each line to end. You can type up to a limit of 6 lines or 4000 characters, whichever
you reach first. An error occurs when you try to supply a single line longer than
4000 characters.

Transfer of Control
SIGNAL creates an error condition that halts execution of a program. Control is
passed back up any chain of nested programs until it reaches a trap label in one of
the programs. See the TRAP command.

TRAP Labels
When you execute a SIGNAL command when TRAP is ON, execution branches to
the trap label. Any statements following the trap label in the program are then
executed.

PRGERR Argument
You can use the special name PRGERR to communicate to a calling program that an
error has occurred. The statement SIGNAL PRGERR sets ERRORNAME to a blank
value and passes an error condition to the calling program without causing another
error message to be displayed. For a complete explanation of how to use SIGNAL to
pass an error up a chain of nested programs, see the TRAP command.

Examples

Example 21–32 Signaling an Error

Suppose you have written a program that requires one argument. When no
argument is supplied, there is no purpose in running the program. Therefore, the
first thing the program does is check if an argument has been passed. When it has
not, the program terminates after sending an error message to the current outfile.

The following program lines check for the argument and signal an error when it is
not found.

IF ARGS EQ ''
THEN SIGNAL msg1 'You must supply an argument.'

SIGNAL

21-78 Oracle OLAP DML Reference

SIGNAL sends the following message to the current outfile.

ERROR: You must supply an argument.

Example 21–33 Signaling an Error When an Argument Value is Invalid

Suppose your program produces a report that can present from one to nine months
of data. You can signal an error when the program is called with an argument value
greater than nine. In this example, nummonths is the name of the argument that
must be no greater than nine.

select:
TRAP ON error
PUSH month
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN SIGNAL toomany -
 'You can specify no more than 9 months.'
REPORT DOWN district W 6 units
finish:
POP month
RETURN
error:
POP month
IF ERRORNAME EQ 'TOOMANY'
 THEN SHOW 'No report produced'

SIN

RESERVED to SPARSEINDEX 21-79

SIN

The SIN function calculates the sine of an angle expression. The result returned by
SIN is a decimal value with the same dimensions as the specified expression.

Return Value
DECIMAL

Syntax
SIN(angle-expression)

Arguments

angle-expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 21–34 Calculating the Sine of an Angle in Radians

This example calculates the sine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW SIN(1)

produce the following result.

0.84147

Example 21–35 Calculating the Sine of an Angle in Degrees

This example calculates the sine of an angle of 30 degrees. Since
1 degree = 2*(pi)/360 radians, 30 degrees is about 30*2*3.14159/360
radians. The OLAP DML statement

SHOW SIN(30 * 2 * 3.14159 / 360)

produces the following result.

0.50000

SINH

21-80 Oracle OLAP DML Reference

SINH

The SINH function calculates the hyperbolic sine of an angle expression.

Return Value
DECIMAL

Syntax
SINH(expression)

Arguments

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 21–36 Calculating the Hyperbolic Sine of an Angle

This example calculates the hyperbolic sine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW SINH(1)

produce the following result.

1.17520

SLEEP

RESERVED to SPARSEINDEX 21-81

SLEEP

Within an OLAP DML program, the SLEEP command suspends the operation of
Oracle OLAP for at least the specified number of seconds.

Syntax
SLEEP n

Arguments

n
A numeric expression that specifies the number of seconds for Oracle OLAP to
"sleep." Program execution will be suspended for at least this number of seconds.

Notes

SLEEP Rarely Used
SLEEP is rarely used in Oracle OLAP programs, because there is seldom a need to
suspend program execution.

Examples

Example 21–37 Suspending Program Execution

In a program, suppose you execute a statement that might take 10 seconds to
complete. You can follow that statement with this SLEEP command, which
suspends program execution for 10 seconds.

SLEEP 10

SMALLEST

21-82 Oracle OLAP DML Reference

SMALLEST

The SMALLEST function returns the smallest value of an expression. You can use
this function to compare numeric values or date values.

Return Value
The data type of the expression. It can be INTEGER, LONGINT, DECIMAL, or
DATE.

Syntax
SMALLEST(expression [[STATUS] dimensions])

Arguments

expression
The expression whose smallest value is to be returned.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the expression, the STATUS keyword might be required in order for
Oracle OLAP to process the function successfully, or the STATUS keyword might
provide a performance enhancement. See "The STATUS Keyword" on page 21-83.

dimensions
The dimensions of the result. By default, SMALLEST returns a single value. When
you indicate one or more dimensions for the results, SMALLEST calculates the
smallest value along the dimensions that are specified and returns an array of
values. Each dimension must be either a dimension of expression or related to one of
its dimensions. When it is a related dimension, you can specify the name of the
relation instead of the dimension name. This enables you to choose which relation is
used when there is more than one.

SMALLEST

RESERVED to SPARSEINDEX 21-83

Notes

NA Values
SMALLEST is affected by the NASKIP option. When NASKIP is set to YES (the
default), SMALLEST ignores NA values and returns the smallest value or values that
are not NA. When NASKIP is set to NO, SMALLEST returns NA when any value of
the expression is NA. When all the values of the expression are NA, SMALLEST
returns NA for either setting of NASKIP.

Calculating over a Time Dimension
When expression is dimensioned by dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH, QUARTER,
or YEAR dimension as a related dimension. Oracle OLAP uses the implicit relation
between the dimensions. To control the mapping of one DAY, WEEK, MONTH,
QUARTER, or YEAR dimension to another (for example, from weeks to months),
you can define an explicit relation between the two dimensions and specify the
name of the relation as the dimension argument to the SMALLEST function.

For each time period in the related dimension, Oracle OLAP finds the smallest data
value in any source time period that ends in the target time period. This method is
used regardless of which dimension has the more aggregate periods.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the expression, Oracle OLAP creates a temporary variable to use
while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
execute the function successfully. When the dimensions of the expression are
limited to a few values and are physically fragmented, you can specify the STATUS
keyword to improve the performance of the function.

When you use SMALLEST with the STATUS keyword for an expression that
requires going outside of the status for results (for example, with the LEAD or LAG
functions or with a qualified data reference), the results outside of the status will be
returned as NA.

SMALLEST

21-84 Oracle OLAP DML Reference

Examples

Example 21–38 Finding the Month with the Least Amount of Sportswear Sales

This example uses the SMALLEST function to find the smallest monthly sportswear
sales for three districts during the first half of 1996. To see the smallest sales figure
for each district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
LIMIT district TO FIRST 3
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'Smallest Sales' SMALLEST(sales district)

The preceding statements produce the following output.

Smallest
DISTRICT Sales
-------------- ----------
Boston 57,079.10
Atlanta 129,616.08
Chicago 77,489.51

SMOOTH

RESERVED to SPARSEINDEX 21-85

SMOOTH

The SMOOTH function computes a single or a double exponential smoothing of a
numeric expression.

Return Value
DECIMAL

Syntax
SMOOTH(expression {SINGLE alpha|DOUBLE alpha beta m} [BASEDON dimension-list])

Arguments

expression
The numeric expression whose values are to be smoothed.

SINGLE
DOUBLE
The method to use in the exponential smoothing of the values in expression. The
SINGLE method specifies single exponential smoothing and requires an alpha
argument. The DOUBLE method specifies double exponential smoothing (also
known as Holt's linear exponential smoothing) and requires an alpha argument, a
beta argument, and an m argument.

alpha
A number in the range from 0 to 1 that smooths the difference between the observed
data forecast and the last forecast. The higher the value, the more weight the most
recent forecast has, so smoothing decreases as the smoothing factor increases. A
smoothing factor of 0 completely smooths the forecasts and always returns the first
forecast, which is the first data observation. A smoothing factor of 1 produces no
smoothing at all and returns the previous data observation. (See "Results of alpha
Values" on page 21-86.)

beta
A number in the range from 0 to 1 that smooths the difference between the previous
forecast and the current forecast. As with the alpha argument, smoothing decreases
as the smoothing factor increases.

SMOOTH

21-86 Oracle OLAP DML Reference

m
A positive integer between 1 and the total number of periods of data in the data
series. The m argument specifies the number of periods on which to base the
forecasts.

BASEDON dimension-list
An optional list of one or more of the dimensions of expression to include in the
exponential smoothing. When you do not specify the dimensions, then SMOOTH
bases the smoothing on all of the dimensions of expression.

Notes

The Effect of NASKIP
SMOOTH is affected by the NASKIP option. When NASKIP is set to YES (the
default), then SMOOTH ignores NA values. When NASKIP is set to NO, then
SMOOTH returns NA for every forecast after the NA value.

Results of alpha Values
This note illustrates the results of using different alpha values for single exponential
smoothing. The results are based on the sales variable with the dimensions
limited by the following statements.

LIMIT month TO 'Jan96' TO 'Dec96'
LIMIT product TO 'Tents'
LIMIT district TO 'Boston'
REPORT DOWN month SMOOTH(sales, SINGLE, ALPHA, BASEDON month)

SMOOTH

RESERVED to SPARSEINDEX 21-87

The following table shows the data values of the sales variable and also shows the
results of the SMOOTH function in the preceding statement when the alpha
argument variable has the different values shown in the table.

MONTH

Sales of
tents in
Boston alpha = 0 alpha = .1 alpha = .5 alpha = .9

Jan96 50,808.96 NA NA NA NA

Feb96 34,641.59 50,808.96 50,808.96 50,808.96 50,808.96

Mar96 45,742.21 50,808.96 49,192.22 42,725.28 36,258.33

Apr96 61,436.19 50,808.96 48,847.22 44,233.74 44,793.82

May96 86,699.67 50,808.96 50,106.12 52,834.97 59,771.95

Jun96 95,120.83 50,808.96 53,765.47 69,767.32 84,006.90

Jul96 93,972.49 50,808.96 57,901.01 82,444.07 94,009.44

Aug96 94,738.05 50,808.96 61,508.16 88,208.28 93,976.18

Sep96 75,407.66 50,808.96 64,831.15 91,473.17 94,661.86

Oct96 70,622.91 50,808.96 65,888.80 83,440.41 77,333.08

Nov96 46,124.99 50,808.96 66,362.21 77,031.66 71,293.93

Dec96 36,938.27 50,808.96 64,338.49 61,578.33 48,641.88

SMOOTH

21-88 Oracle OLAP DML Reference

Examples

Example 21–39 Smoothing Values

These statements limit the dimensions of the sales variable, set the data column
width for reports, and report the data values for sales.

LIMIT month TO 'Jan96' TO 'Dec96'
LIMIT product TO 'Tents'
LIMIT district TO 'Boston'
COLWIDTH = 14

REPORT W 6 DOWN month sales

The preceding statements produce the following output.

DISTRICT: Boston
----SALES-----
---PRODUCT----

MONTH Tents
------ --------------
Jan96 50,808.96
Feb96 34,641.59
Mar96 45,742.21
Apr96 61,436.19
...
Nov96 46,124.99
Dec96 36,938.27

This statement reports the results of using the SMOOTH function on the sales
variable with the SINGLE method, a data smoothing factor of .5, and based on the
month dimension.

REPORT W 6 DOWN month SMOOTH(sales, SINGLE, .5, BASEDON month)

SMOOTH

RESERVED to SPARSEINDEX 21-89

The preceding statement produces the following output.

DISTRICT: Boston
SMOOTH(SALES,-
-SINGLE, .5,--
BASEDON MONTH)
---PRODUCT----

MONTH Tents
------ --------------
Jan96 NA
Feb96 50,808.96
Mar96 42,725.28
Apr96 44,233.74
...
Nov96 77,031.66
Dec96 61,578.33

SORT

21-90 Oracle OLAP DML Reference

SORT

The SORT command arranges the order of values in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Syntax
SORT dimension {A|D} criterion1 [{A|D} criterionN]

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

A
D
The order in which the values are to be sorted. A means ascending order
(alphabetical when the sorting criterion is TEXT, ID, or a relation), and D means
descending order (reverse alphabetical when the sorting criterion is TEXT, ID or a
relation).

criterion
The expression to be used as a sorting criterion. Each criterion must be dimensioned
by dimension. The first expression is the major sorting criterion. When the expression
is multidimensional, SORT uses the first value in status for all dimensions other
than the dimension being sorted. You cannot use a valueset as the sorting criterion.

Notes

Sorting a Dimension and a Valueset
When Oracle OLAP sorts a dimension, it sorts the temporary status list of a
dimension, not the data dimensioned by it. Since many OLAP DML statements
operate on data according to the current status of its dimensions, sorting a
dimension appears to have the effect of sorting data. A dimension and any
dimension surrogates for it share the same status. Therefore, a SORT command on a
dimension or any of its surrogates sorts them all.

SORT

RESERVED to SPARSEINDEX 21-91

When Oracle OLAP sorts a valueset, it sorts the actual values within the valueset.
When you execute UPDATE and COMMIT commands after sorting a valueset, the
values in the valueset are stored in that sorted order.

Sorting Alphabetically
To sort a TEXT or ID dimension or its valueset in alphabetical order, use the
dimension itself as the sorting criterion.

SORT district A district

Sort Order
The sort order for textual data in an alphabetical sort is controlled by the
NLS_SORT option.

Sorting a Time Dimension
The values of dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR are
stored internally as numbers. Therefore, when you sort a dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR dimension or its valueset in ascending
order, with the dimension itself as the sorting criterion, then the values in the status
list or valueset are placed in chronological order. When you sort a dimensions of
type DAY, WEEK, MONTH, QUARTER, and YEAR dimension or its valueset in
descending order, then the values are placed in reverse chronological order.

Sorting Based on a Relation
When you use a relation as your sorting criterion, then the sorting is done
alphabetically; that is, the dimension or valueset is sorted according to an
alphabetical list of the related dimension values. To use a relation as the sorting
criterion and keep the related dimension values in their original order, you must
use the following expression as your sorting criterion See Example 21–40, "Sorting
Based on a Relation" on page 21-92.

CONVERT(relation, INTEGER)

Sorting Conjoint Dimensions
You can sort a conjoint dimension or its valueset by criteria dimensioned by either
the conjoint dimension itself or by one of its base dimensions.

SORT

21-92 Oracle OLAP DML Reference

Sorting Concat Dimensions
You can sort a concat dimension or its valueset by criteria dimensioned by either the
concat dimension itself or by one of its component dimensions. See Example 21–41,
"Sorting Based on a Concat" on page 21-93 and Example 21–42, "Sorting Based on a
Component" on page 21-94.

Sorting a Worksheet
You cannot use a worksheet as a sort criterion. You must first use CONVERT to
specify the data type to which values of the worksheet should be converted.

Examples

Example 21–40 Sorting Based on a Relation

This example sorts districts according to their unit sales of tents for July 1996. They
are sorted first by the region to which they belong and then in descending order of
dollar sales. Notice that in the following SORT command, a relation is used as the
primary sorting criterion. This means that the districts are sorted by regions listed
alphabetically.

LIMIT month TO 'Jul96'
LIMIT product TO 'Tents'
SORT district A Region.District D sales

Assume you issue the following REPORT command.

REPORT DOWN district HEADING 'Region' region.district sales

The preceding statement produces the following report that reflects the work of the
SORT command.

PRODUCT: Tents
--------MONTH--------
--------JUL96--------

DISTRICT Region SALES
-------------- ---------- ----------
Dallas Central 154,914.23
Chicago Central 79,934.42
Atlanta East 140,711.00
Boston East 93,972.49
Seattle West 123,700.17
Denver West 100,413.49

SORT

RESERVED to SPARSEINDEX 21-93

In the following SORT command, CONVERT is used to keep the regions in their
original order.

SORT district A CONVERT(region.district INTEGER) D sales

Assume that you issue the following REPORT statement.

REPORT DOWN district HEADING 'Region' region.district sales

The preceding statement produces the following report that reflects the work of the
last SORT command.

PRODUCT: Tents
--------MONTH--------
--------JUL96--------

DISTRICT Region SALES
-------------- ---------- ----------
Atlanta East 140,711.00
Boston East 93,972.49
Dallas Central 154,914.23
Chicago Central 79,934.42
Seattle West 123,700.17
Denver West 100,413.49

When you want the dimension to keep the sorted order of its values permanently,
use the MAINTAIN command after you sort the dimension.

SORT district A district
MAINTAIN district MOVE VALUES(district) FIRST

Example 21–41 Sorting Based on a Concat

The following statements sort the concat dimension reg.dist.ccdim in
ascending order based on all of its values and report the result.

sort reg.dist.ccdim d reg.dist.ccdim
report reg.dist.ccdim

SORT

21-94 Oracle OLAP DML Reference

The preceding statement produces the following results.

REG.DIST.CCDIM

<Region: West>
<Region: East>
<Region: Central>
<District: Seattle>
<District: Denver>
<District: Dallas>
<District: Chicago>
<District: Boston>
<District: Atlanta>

The following statements sort the concat dimension reg.dist.ccdim in
ascending order based on all of its values and report the result.

SORT reg.dist.ccdim A reg.dist.ccdim
REPORT reg.dist.ccdim

The preceding statement produces the following results.

REG.DIST.CCDIM

<District: Atlanta>
<District: Boston>
<District: Chicago>
<District: Dallas>
<District: Denver>
<District: Seattle>
<Region: Central>
<Region: East>
<Region: West>

Example 21–42 Sorting Based on a Component

The following statements sort the concat dimension reg.dist.ccdim in
ascending order based on the values of one of its base dimensions and in
descending order based on the values of its other base dimension, and report the
result.

SORT reg.dist.ccdim A region D district
REPORT reg.dist.ccdim

SORT

RESERVED to SPARSEINDEX 21-95

The preceding statement produces the following results.

REG.DIST.CCDIM

<REGION: CENTRAL>
<REGION: EAST>
<REGION: WEST>
<DISTRICT: SEATTLE>
<DISTRICT: DENVER>
<DISTRICT: DALLAS>
<DISTRICT: CHICAGO>
<DISTRICT: BOSTON>
<DISTRICT: ATLANTA>

SORTCOMPOSITE

21-96 Oracle OLAP DML Reference

SORTCOMPOSITE

The SORTCOMPOSITE option indicates whether Oracle OLAP should perform
sorting on composite values when you issue a statement, such as REPORT, that
explicitly loops over the composite. The sorting brings the composite values in line
with the current order of the composite's base dimension values.

By default, SORTCOMPOSITE is set to YES, and Oracle OLAP performs the
required sorting. You set SORTCOMPOSITE to NO only when you do not care how
composite values are sorted and you want to save the processing time Oracle OLAP
would have spent on the sorting.

SORTCOMPOSETE affects Oracle OLAP behavior only when you have explicitly
specified that looping should occur over a composite, for example when you specify
the composite name after a DOWN or ACROSS keyword in a REPORT command.
Of course, when the composite has already been sorted according to the current
order of its base dimensions values, Oracle OLAP does not unnecessarily sort the
values again.

Syntax
SORTCOMPOSITE = {YES|NO}

Arguments

YES
In an explicitly specified loop over a composite, Oracle OLAP sorts the composite
values according to the order of the composite's base dimension values (when they
have not already been sorted in this way). The task of sorting requires some
processing time, so when variables are large, performance can be affected. (Default)

NO
In an explicitly specified loop over a composite, Oracle OLAP does not sort the
composite values according to the order of the composite's base dimension values.
Eliminating this sorting step can improve Oracle OLAP performance, when large
variables are involved. See "Results with SORTCOMPOSITE Set to NO" on
page 21-97.

SORTCOMPOSITE

RESERVED to SPARSEINDEX 21-97

Notes

Results with SORTCOMPOSITE Set to NO
When SORTCOMPOSITE is set to NO, the sort order of the composite value is
undefined. It is the order that demands the least processing effort from Oracle
OLAP, so it depends on the activities that have preceded the statement that requires
the looping. The order will differ from session to session and from time to time
within a session. It is not necessarily the default order for the values of the
composite.

Examples

Example 21–43 Sorting on a Composite

In the following example, a variable called coupon_count holds the number of
coupons that were redeemed for certain products in certain districts.
coupon_count is dimensioned by a composite called coupon_composite, which
holds the combinations of products and districts for which coupons were
distributed.

DEFINE coupon_composite COMPOSITE <product district>

DEFINE coupon_count VARIABLE -
INTEGER <month coupon_composite <product district>>

Assume that you issue the following statements.

SORTCOMPOSITE = YES
LIMIT month TO FIRST 1
SORT product D TOTAL(coupon_count, product)
REPORT DOWN coupon_composite W 15 coupon_count

With SORTCOMPOSITE set to YES, and after the following LIMIT and SORT
commands, the preceding REPORT command produces the following report. Notice

SORTCOMPOSITE

21-98 Oracle OLAP DML Reference

that the products are listed in decending order according to the total of Boston and
Chicago figures for each product.

-COUPON_COUNT--
-----MONTH-----

PRODUCT DISTRICT Jan95
---------- ---------- ---------------
Racquets Boston 93
Tents Boston 42
Canoes Boston 67
Sportswear Boston 29
Racquets Chicago 102
Tents Chicago 51

When SORTCOMPOSITE had been set to NO, Oracle OLAP would not necessarily
have looped over the product dimension according to the sorted values of
coupon_count. The looping order would have been the order that required the
least processing effort from Oracle OLAP. If coupon_count had been a very large
variable, the performance improvement might have been significant.

SORTLINES

RESERVED to SPARSEINDEX 21-99

SORTLINES

The SORTLINES function sorts the lines in a multiline TEXT value.

Return Value
TEXT or NTEXT

Syntax
SORTLINES(text-expression [A|D])

Arguments

text-expression
A multiline text expression whose lines SORTLINES sorts. When you specify a
TEXT expression, the return value is TEXT. When you specify an NTEXT
expression, the return value is NTEXT.

A
D
Specifies whether the sorting order should be ascending, or alphabetical (A), or
descending, or reverse alphabetical (D). The default is A (ascending).

Notes

Sort Order
The sort order is controlled by the NLS_SORT option.

SORTLINES

21-100 Oracle OLAP DML Reference

Examples

Example 21–44 Sorting Text Lines

This example shows how to sort the lines in a multiline text value in a variable
called MKTREGIONS.

The statement

SHOW mktregions

produces the following output.

New York
Boston
Atlanta
San Francisco

The statement

SHOW SORTLINES(mktregions)

produces the following output.

Atlanta
Boston
New York
San Francisco

SPARSEINDEX

RESERVED to SPARSEINDEX 21-101

SPARSEINDEX

The SPARSEINDEX option controls the type of index algorithm that composites use
to load and access their values. The value of SPARSEINDEX at the time a named
composite is defined, or an unnamed composite is created, determines the type of
algorithm the composite uses by default. See "Overriding the Default" on
page 21-102.

Choosing an index algorithm is important only in regard to performance issues.
Any recommendations are for the version of Oracle OLAP that is associated with
this documentation. You can test how using different algorithms affect performance
by using the CHGDFN command to change the algorithm for a composite (for
example, before loading data).

Data type
TEXT

Syntax
SPARSEINDEX = {'BTREE'|'HASH'}

Arguments

BTREE
HASH
Specifies the index algorithm that Oracle OLAP uses to load and access the values
of new composites that are defined or created. BTREE is the default algorithm.

Notes

When to Use BTREE
BTREE is a standard indexing method that is recommended for composites. Use
BTREE as the default unless you are an advanced user and have a special need that
requires HASH. BTREE tends to group similar values together, which results in
better locality of access.

SPARSEINDEX

21-102 Oracle OLAP DML Reference

When to Use HASH
HASH is a standard indexing method that should only be used when a composite
has only two or three base dimensions. HASH is generally not recommended for
composites. Using HASH results in a very large index table, which can be too large
to fit into memory.

Overriding the Default
When you define a named composite, you can specify either BTREE or HASH as its
index algorithm. When you specify an index algorithm in the DEFINE
COMPOSITEcommand, this overrides the default specified by the SPARSEINDEX
option. After you have defined a composite, you can also use the CHGDFN
command to change the composite's index algorithm to either BTREE or HASH.

NOHASH Unavailable
A composite cannot use the NOHASH index algorithm for loading and accessing its
values.

Examples

Example 21–45 Using the HASH Algorithm

The following example sets SPARSEINDEX to HASH so that composites that are
subsequently defined or created will use the HASH index algorithm by default.

SPARSEINDEX = 'HASH'

SQL to STATVAL 22-1

22
SQL to STATVAL

This chapter contains the following OLAP DML statements:

■ SQL

■ SQL CLEANUP

■ SQL CLOSE

■ SQL DECLARE CURSOR

■ SQL EXECUTE

■ SQL FETCH

■ SQL IMPORT

■ SQL OPEN

■ SQL PREPARE

■ SQL PROCEDURE

■ SQL SELECT

■ SQLBLOCKMAX

■ SQLCODE

■ SQLERRM

■ SQLMESSAGES

■ SQRT

■ STARTOF

■ STATALL

■ STATFIRST

22-2 Oracle OLAP DML Reference

■ STATLAST

■ STATLEN

■ STATLIST

■ STATMAX

■ STATMIN

■ STATRANK

■ STATUS

■ STATVAL

SQL

SQL to STATVAL 22-3

SQL

The SQL command passes instructions written in Structured Query Language (SQL)
to the relational manager from Oracle OLAP. Using the SQL command, you can
insert and update data in relational tables, retrieve data from relational tables into
analytic workspace objects, and execute stored procedures.

To use the SQL command, you must be familiar with SQL syntax and with the data
structures in your relational database. SQL*Plus Worksheet and Oracle Enterprise
Manager can be useful tools for browsing through your database.

This entry describes the SQL command in general, and subsequent entries discuss
the use of the OLAP DML SQL command for specific SQL statements:

■ SQL CLEANUP

■ SQL CLOSE.

■ SQL DECLARE CURSOR

■ SQL EXECUTE

■ SQL FETCH

■ SQL IMPORT

■ SQL OPEN

■ SQL PREPARE

■ SQL PROCEDURE

■ SQL SELECT

Syntax
SQL sql-statement

Arguments

sql-statement
For sql-statement you can specify most SQL statements that can be executed
dynamically, as well as several associated non-dynamic statements.You can also
specify PROCEDURE for a stored procedure as described in SQL PROCEDURE.

You cannot specify the following SQL statements for sql-statement :

SQL

22-4 Oracle OLAP DML Reference

■ COMMIT -- To commit your changes, issue the OLAP DML COMMIT command.

■ ROLLBACK -- You cannot rollback using the OLAP DML. When you specify SQL
ROLLBACK, you receive an error message stating that ROLLBACK is not
supported as an argument to the OLAP DML SQL command.

Oracle OLAP evaluates some SQL statements before sending them to the relational
manager. For example, Oracle OLAP evaluates SQL PREPARE and SQL EXECUTE,
and SQL statements that copy data from relational tables into analytic workspace
objects (See "Copying Relational Data into Analytic Workspace Objects" on
page 22-4 for a list of these statements).

Notes

Copying Relational Data into Analytic Workspace Objects
You can copy relational data into analytic workspace objects using either an implicit
cursor or an explicit cursor:

■ To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the SQL SELECT command. You can use this OLAP DML
command interactively in the OLAP Worksheet or within an OLAP DML
program.

■ To copy data from relational tables into analytic workspace objects using an
explicit cursor, use the following commands within an OLAP DML program in
the order indicated:

1. SQL DECLARE CURSOR defines a SQL cursor by associating it with a
SELECT statement or procedure.

2. SQL OPEN activates a SQL cursor.

Important: When you use the OLAP DML SQL command to
request a rollback in some other fashion (for example, using SQL
EXECUTE), Oracle OLAP issues a system error message,
abnormally terminates the OLAP DML program that issued the
command. Oracle OLAP also detaches, in an indeterminate state,
the analytic workspace that contains the OLAP DML program that
made the rollback request and any other attached analytic
workspaces with uncommitted updates.

SQL

SQL to STATVAL 22-5

3. SQL FETCH and SQL IMPORT retrieve and process data specified by a
cursor.

4. SQL CLOSE closes a SQL cursor.

5. SQL CLEANUP cancels all SQL cursor declarations and frees the memory
resources of an SQL cursor.

Oracle OLAP evaluates all of these statements before sending them to the relational
manager.

For the syntax of these statements, see the individual topics. For the syntax of other
SQL statements, refer to the Oracle Database SQL Reference.

SQL Embed Options
A number of options are available to you when embedding SQL. These options are
listed in Table 22–1, " Embedded SQL Options".

Software Support
Before you use the SQL command, ensure that you have access rights to the tables
that you want to use.

SQL Terminology
In this topic, OLAP DML is the "host language," an OLAP DML program is a "host
program," and an OLAP DML variable used within a SQL statement is a "host
variable." There are two types of host variables: input host variables and output
host variables. Host variable names must be preceded by a colon (for example,
:MYVAR).

Table 22–1 Embedded SQL Options

Statement Description

SQLBLOCKMAX An option that contains the maximum number of records
retrieved from an Oracle relational database at one time.

SQLCODE (Read-only) An option that contains the value returned by the
Oracle RDBMS after the most recently attempted SQL
operation.

SQLERRM (Read-only) After the Database reports an error and SQLCODE
has a nonzero value, an option that contains the text that
explains the problem.

SQLMESSAGES An option that determines whether error messages are sent to
the current output file.

SQL

22-6 Oracle OLAP DML Reference

Input Host Variables
Input host variables are values supplied by Oracle OLAP as parameters to a SQL
statement. They specify the data to be selected or provide values for data that is
being modified.

You can use input host variables in SQL WHERE clauses, parameter list for
procedures, UPDATE statements, and the value clause of INSERT.

When you specify a dimension or a dimensioned variable as an input host variable,
the first value in status is used; no implicit looping occurs, although you can use a
FOR or ACROSS command to loop through all of the values. An input host variable
can be any expression with an appropriate data type. The value of an input host
variable is taken when a cursor is opened, not when it is declared. See
Example 22–1, "Inserting Data in a Table" on page 22-7.

To update or insert relational CLOB and NCLOB data, you use WIDE in the host
variable for the OLAP DML expression as described in "Inserting Large Text Values
into a Table" on page 22-40.

Error Checking
Oracle OLAP can detect some syntax errors in the arguments to the SQL statement,
but most errors are detected by the Oracle RDBMS. Error codes and messages are
returned to Oracle OLAP. You should check the value of SQLCODE after each SQL
statement to determine when it resulted in an error. When it does cause an error
(that is when SQLCODE EQ -1), check the value of SQLERRM for information
about the cause of the error.

WHERE CURRENT OF cursor
SQL UPDATE statements can contain a WHERE clause, which specifies a particular
search condition. In addition to the search conditions typically used in SQL, the
phrase WHERE CURRENT OF cursor is supported for single tables and views that
include columns from only one table. The cursor must have been defined with the
FOR UPDATE clause.

Inserting Data into a Relational Table
Refer to the notes for SQL PREPARE and SQL EXECUTE.

Length Restriction
A SQL statement cannot exceed 128K bytes including the values of all non-text
input host variables.

SQL

SQL to STATVAL 22-7

Examples

Example 22–1 Inserting Data in a Table

You can use SQL statements such as the following to create a table and add rows to
that table. The SQL INSERT statement adds a row to the sales table using values
from the dimension salesperson and the variable dollars. It adds one row
using the first value of salesperson that is in status.

SQL CREATE TABLE sales (name CHAR(12), dollars INTEGER)
SQL INSERT INTO sales VALUES (:salesperson, :dollars)

SQL CLEANUP

22-8 Oracle OLAP DML Reference

SQL CLEANUP

The SQL CLEANUP command cancels all SQL cursor declarations and frees the
memory resources for all SQL cursors. After you have cancelled SQL cursors, you
cannot use them again unless you issue new SQL PREPARE, SQL DECLARE
CURSOR, and SQL OPEN commands.

Syntax
SQL CLEANUP

Notes

Related OLAP DML Commands
You use the SQL CLEANUP command in combination with other SQL commands
to copy data from relational tables into analytic workspace objects as outlined in
"Copying Relational Data into Analytic Workspace Objects" on page 22-4.

Examples
For an example of the use of SQL CLEANUP, see Example 22–11, "Fetching Data
into a Concat Dimension" on page 22-26.

SQL

SQL to STATVAL 22-9

SQL CLOSE

The SQL CLOSE command closes a SQL cursor. After you have closed a cursor, you
cannot use it again unless you issue a new SQL OPEN command.

Syntax
SQL CLOSE cursor

Arguments

cursor
The name of a cursor previously opened with a SQL OPEN command.

Notes

Related OLAP DML Commands
You use the SQL OPEN command in combination with other SQL commands to
copy data from relational tables into analytic workspace objects as outlined in
"Copying Relational Data into Analytic Workspace Objects" on page 22-4.

Redefining the Result Set
You can change the result set associated with a cursor by closing the cursor, setting
the value of an input host variable, and issuing a new SQL OPEN command. You
do not have to free the cursor and redeclare it.

SQL DECLARE CURSOR

22-10 Oracle OLAP DML Reference

SQL DECLARE CURSOR

The SQL DECLARE CURSOR command defines an explicit SQL cursor by
associating it with a SELECT statement or procedure. The SELECT statement
specifies the scope of the data (the rows and columns) selected by the cursor.

Two pseudo procedures, SQLTABLES and SQLCOLUMNS, allow you to obtain
information about tables and columns.

Syntax
SQL DECLARE cursor CURSOR FOR {select-statement [FOR UPDATE]|table-info}

where table-info can be used only when declaring a cursor for use by the SQL
FETCH command and is one of the following:

PROCEDURE SQLTABLES [owner, table]

PROCEDURE SQLCOLUMNS [owner, table, column]

Arguments

cursor
The name of the cursor you are defining. See "Cursor Names" on page 22-12.

select-statement
A SQL SELECT statement that identifies the data you want to associate with the
cursor. For the syntax of an SQL SELECT statement, refer to Oracle Database SQL
Reference.

FOR UPDATE
Indicates that SQL FETCH will be used to write data to the table. This clause is
required when the cursor will be used in an UPDATE statement with a WHERE
CURRENT OF cursor clause. The names of the columns to be updated can be listed
in an OF clause (for example, FOR UPDATE OF COL1, COL2, COL3).

Note: The FOR UPDATE clause is ignored by SQL IMPORT and
SQL SELECT.

SQL

SQL to STATVAL 22-11

PROCEDURE SQLTABLES
When declaring a cursor for use by SQL FETCH, calls the pseudo procedure
SQLTABLES, which returns information about tables. When declaring a cursor for
use by SQL IMPORT, you cannot use this clause.

PROCEDURE SQLCOLUMNS
When declaring a cursor for use by SQL FETCH, calls the pseudo procedure
SQLCOLUMNS, which returns information about columns. When declaring a cursor
for use by SQL IMPORT, you cannot use this clause.

owner
Literal text or the name of a host variable whose value specifies one or more
owners. This expression acts as a filter to limit the results to only tables belonging to
the specified owners. The keyword NULL or a host variable with an NA value
causes all table owners to be included in the results.

The expression can be specific, such as 'SCOTT', or it can contain wildcard
characters such as 'S%T' (all owners whose name begins with S and ends with T).
The value retains its case when it is passed to the database, so be sure to enter the
value with the appropriate use of upper- and lowercase letters. For example, Oracle
relational databases by default store all values in uppercase and will not match
'scott' or 'Scott' with 'SCOTT'.

table
Literal text or the name of a host variable whose value specifies one or more tables.
This expression acts as a filter to limit the results to only tables with the specified
names. The keyword NULL or a host variable with an NA value causes all tables to
be included in the results.

The expression can be specific, such as 'PAYROLL', or it can contain wildcard
characters such as '%ROLL' (all tables whose name ends with ROLL). The value
retains its case when it is passed to the database, so be sure to enter the value with
the appropriate use of upper- and lowercase letters. For example, Oracle relational
databases by default store all values in uppercase and will not match 'payroll'
or 'Payroll' with 'PAYROLL'.

column
Literal text or the name of a host variable whose value specifies one or more
columns. This expression acts as a filter to limit the results to only columns with the
specified names. The keyword NULL or a host variable with an NA value causes all
tables to be included in the results.

SQL DECLARE CURSOR

22-12 Oracle OLAP DML Reference

The expression can be specific, such as 'SALARY', or it can contain wildcard
characters such as 'SAL%' (all columns whose name begins with SAL). The value
retains its case when it is passed to the database, so be sure to enter the value with
the appropriate use of upper- and lowercase letters. For example, Oracle relational
databases by default store all values in uppercase and will not match 'salary' or
'Salary' with 'SALARY'.

Notes

Related OLAP DML Commands
You use the SQL DECLARE CURSOR command in combination with other SQL
commands to use an explicit cursor to copy data from relational tables into analytic
workspace objects as outlined in "Copying Relational Data into Analytic Workspace
Objects" on page 22-4.

General Restrictions
The following restrictions apply to the SQL DECLARE CURSOR command:

■ You can use it only in a program.

■ It cannot contain ampersand substitution.

Restrictions when Declaring a Cursor for Use by SQL IMPORT
When declaring a cursor to be used by the SQL IMPORT command, you can only
use the following simplified syntax.

SQL DECLARE cursor CURSOR FOR select-statement

where select-statement is a SQL SELECT statement that identifies the data you want
to associate with the cursor. You cannot use the FOR UPDATE clause or the
table-info clause.

Cursor Names
Cursor names can consist of 1 to 18 alphanumeric characters or the symbols @, _, $,
or #. A name that contains symbols @, $, or # must be enclosed in single quotes. The
first character cannot be a number or an underscore. Cursor names are internal to
Oracle OLAP. Unless you have issued a SQL CLEANUP statement, when you try to
declare a cursor with the same name as a previously declared cursor, but with a
different SQL SELECT command, an error is signaled.

SQL

SQL to STATVAL 22-13

Cursor's Result Set
A cursor's result set is determined at the time it is opened, and it is not updated
later. Therefore, when you change the value of an input host variable after you open
its cursor, the change does not affect the cursor's result set. A cursor remains open
until a SQL CLOSE command is executed for that cursor or until a SQL CLEANUP
command closes all cursors. A cursor is not automatically closed at the termination
of the program in which it was opened.

Optimizing Fetches
When fetching values into a multidimensional input variable, list the columns that
correspond to the dimensions in an ORDER BY clause in the select-statement
argument of the SQL DECLARE CURSOR command, with the slowest-varying
dimension first. This will optimize performance.

Ambiguous WHERE Clauses
The select-statement argument of a SQL DECLARE CURSOR command can include a
WHERE clause. Since both OLAP DML syntax and SQL syntax allow you to use
AND and OR, you should construct the clause clearly so that Oracle OLAP can
identify the end of an input host variable. For example, the following WHERE
clause is ambiguous, because the first host variable could be either ":MARKET AND
PRDCODE" or simply ":MARKET."

... SELECT ... WHERE mktcode = :market AND prdcode = :product

Use the following construction instead.

... SELECT ... WHERE :market = mktcode AND :product = prdcode

You can also use parenthesis to clarify the syntax, particularly when using a SQL
operator that is unknown in Oracle OLAP.

... SELECT ... WHERE (mktcode = :market) AND (prdcode LIKE :product)

SQLTABLES
SQLTABLES is a pseudo procedure that returns the following values for each table
that matches the search criterion. See Example 22–3, "Discovering Information
About Relational Tables" on page 22-15.

tableowner -- A text value identifying the owner of the table.

tablename -- A text value identifying the name of the table.

SQL DECLARE CURSOR

22-14 Oracle OLAP DML Reference

tabletype -- A text value identifying the type of table using one of the following:
TABLE, VIEW, SYSTEM TABLE, ALIAS, SYNONYM, LOCAL TEMPORARY,
GLOBAL TEMPORARY, or NA (indicating an unrecognized type).

SQLCOLUMNS
SQLCOLUMNS is a pseudo procedure that returns the following values for each
column that matches the search criterion. See Example 22–4, "Discovering
Information About the Columns of a Relational Table" on page 22-16.

tableowner -- A text value identifying the owner of the table.

tablename -- A text value identifying the name of the table.

colname -- A text value identifying the name of the column.

coltype -- A text value identifying the data type of the column.

olaptype -- A text value identifying the data type that most closely matches coltype.

length -- An integer value identifying the length of column values.

precision -- An integer value identifying the precision of numeric column values.

scale -- An integer value identifying the scale of column values.

nullable -- A text value of Y or N indicating whether the column can contain null
values.

Examples

Example 22–2 Testing for the Value of SQLCODE

Cursor c1 is declared for three columns in the table mkt, which is owned by user
sqldba. Values from the three columns are fetched into three analytic workspace
objects. The first host variable is the market dimension, which is temporarily
limited to the retrieved value. Because of the temporary status of market, the other
column values are assigned to the appropriate cells of the other host variables.

SQL

SQL to STATVAL 22-15

This example tests the value of SQLCODE in two places. A more complete program
would do more error checking.

DEFINE market DIMENSION TEXT
DEFINE mkt.desc TEXT <market>
DEFINE mkt.abbrev ID <market>
DEFINE sql.market PROGRAM
PROGRAM
TRAP ON ERROR
SQL DECLARE c1 cursor FOR -

SELECT mktcode, mktabbrev, mktdesc FROM sqldba.mkt
SQL OPEN c1
IF SQLCODE NE 0

THEN SIGNAL SQLERR 'open cursor failed.'
WHILE SQLCODE EQ 0

SQL FETCH c1 INTO :APPEND market, :mkt.abbrev, :mkt.desc
SQL CLOSE c1

...
RETURN
error:

...
END

Example 22–3 Discovering Information About Relational Tables

The following program fetches information about all tables owned by Scott.
Notice that the value of the ownername variable is set after the SQL DECLARE
cursor command; it can be set any time before the SQL OPEN command. The
tablename variable is not set, but is initialized automatically to NA, which is passed
as a null value.

DEFINE ownername TEXT "Search criteria
DEFINE tablename TEXT "Search criteria
DEFINE tblowner TEXT "Search results
DEFINE tblname TEXT "Search results
DEFINE tbltype TEXT "Search results

SQL DECLARE c1 CURSOR FOR PROCEDURE sqltables(:ownername, :tablename)
ownername = 'Scott'
SQL OPEN c1
WHILE SQLCODE EQ 0

DO
SQL FETCH c1 INTO :tblowner, :tblname, :tbltype

... "Process fetched values
DOEND

SQL DECLARE CURSOR

22-16 Oracle OLAP DML Reference

Example 22–4 Discovering Information About the Columns of a Relational Table

The following program fetches information about all columns in the employee
table owned by Scott. Notice that NULL (and not NA) is used for the value of the
third argument to SQLCOLUMNS since it is processed by the relational manager, not
Oracle OLAP.

DEFINE tblname TEXT "Search results
DEFINE tblowner TEXT "Search results
DEFINE colname TEXT "Search results
DEFINE coltype TEXT "Search results
DEFINE olaptype TEXT "Search results
DEFINE length INTEGER "Search results
DEFINE precision INTEGER "Search results
DEFINE scale INTEGER "Search results
DEFINE nullable TEXT "Search results

SQL DECLARE c1 CURSOR FOR PROCEDURE sqlcolumns('Scott', -
'Employee', NULL)

SQL OPEN c1
WHILE SQLCODE EQ 0

DO
SQL FETCH c1 INTO :tblowner, :tblname, :colname, :coltype, -
:olaptype, :length, :precision, :scale, :nullable

... "Process fetched values
DOEND

SQL

SQL to STATVAL 22-17

SQL EXECUTE

The SQL EXECUTE command executes SQL statements that have been compiled
using SQL PREPARE. Typically, the SQL statements that you precompile are
statements that will be executed repeatedly, particularly those involving input host
variables, such as INSERT, UPDATE, and DELETE.

Syntax
SQL EXECUTE statement-name

Arguments

statement-name
The name that you assigned to the executable code when you prepared it using SQL
PREPARE.

Notes

Restrictions
The SQL PREPARE and SQL EXECUTE commands can only be used within the
same DML program.

Examples

Example 22–5 Updating a Relational Table Using Analytic Workspace Data

The next example shows a simple update of a table using data stored in Oracle
OLAP. The market dimension is limited to one value at a time in the FOR loop. The
SQL phrase WHERE s.market=:market specifies that the sales value in the row
for that market is the value that is changed.

FOR market
SQL UPDATE mkt SET sales=:mkt.sales WHERE s.market=:market

SQL EXECUTE

22-18 Oracle OLAP DML Reference

An UPDATE statement should be used in a SQL PREPARE command and executed
in a FOR loop.

SQL PREPARE s2 FROM UPDATE mkt -
SET sales=:mkt.sales WHERE s.market=:market

FOR market
DO

SQL EXECUTE s2
IF SQLCODE NE 0
THEN BREAK

DOEND

SQL

SQL to STATVAL 22-19

SQL FETCH

The SQL FETCH command retrieves and processes data specified by a named SQL
cursor. SQL FETCH assigns the retrieved data to OLAP objects. When you include a
THEN clause, SQL FETCH may perform processing on the retrieved data.

Syntax
SQL FETCH cursor [LOOP [loopcount]] -

INTO :targets... [THEN action-statements...]

where:

targets is one or more of the following:

[MATCH] dimension|surrogate

APPEND [position] dimension

ASSIGN surrogate

variable | qualified data reference | relation | composite

position is one of the following:

AFTER dimension-value

BEFORE dimension-value

FIRST

LAST

Arguments

cursor
The name of a declared and opened cursor.

LOOP
Specifies that Oracle OLAP should implicitly loop over the rows obtained from a
relational table. For each row, Oracle OLAP copies the data in individual fields to
objects specified as target analytic workspace objects. When you include a LOOP
clause, SQL FETCH will continue processing rows until it reaches the end of the
active set specified by the cursor, or an error occurs, or loopcount is satisfied. In most
cases, you should use the LOOP clause to improve the performance of SQL FETCH.

SQL FETCH

22-20 Oracle OLAP DML Reference

When you do not specify a LOOP clause and the cursor contains more than one row
in its active set, you must code the SQL FETCH command within a WHILE loop.
This loop must be based on the value of the SQLCODE option, which returns a
nonzero value to indicate the end of the data or an error.

loopcount
Optional integer argument to the LOOP keyword. Loopcount controls how
SQL FETCH will loop over the rows from a relational table. Loopcount can be a
literal value, a host variable, or NA. When loopcount is less than or equal to zero, no
looping occurs and no data is fetched.

When you specify a LOOP clause without a value for loopcount, SQL FETCH will
continue reading rows and copying their contents to target analytic workspace
objects until there are no more rows or an error occurs. Internally, each row is
processed until SQLCODE is nonzero.

When you specify a literal value for loopcount, SQL FETCH will process the number
of rows specified by loopcount or until SQLCODE is nonzero.

When you specify a variable for loopcount, it must be in the form of a host variable
(preceded by a colon). This variable acts as both an input and an output host
variable. The initial value of loopcount specifies the number of rows that
SQL FETCH will attempt to process. Upon completion of the SQL FETCH,
loopcount contains the number of rows actually processed.

When you specify NA for loopcount, SQL FETCH will process rows until SQLCODE
is nonzero. However, upon completion of the SQL FETCH, loopcount will contain
the number of rows actually processed.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the
select-statement argument of the SQL DECLARE CURSOR command that declared
cursor. A target can be a variable, a qualified data reference, a relation, a dimension,
a composite, or a conjoint.

SQL

SQL to STATVAL 22-21

A target must be preceded by a colon. When the target is a dimension, it can include
the MATCH and APPEND keywords to specify dimension handling; in this case,
the colon precedes the keywords.

[MATCH] dimension
[MATCH] surrogate
Oracle OLAP does not perform dimension maintenance on the target dimension or
surrogate. It uses the incoming values to align data that is being fetched into
dimensioned objects. When a value from the relational database does not match any
value in the dimension or surrogate, an error is signaled. (Default)

APPEND [position] dimension
Oracle OLAP performs dimension maintenance on the target dimension, adding
new values to the dimension. It uses both old and new dimension values to align
data being fetched into dimensioned objects. By default, new values are added to
the end of a dimension or surrogate. The position can also be used to control how
dimension values are processed in action statements.

AFTER dimension-value
Any new values are added after dimension-value in the status list.

BEFORE dimension-value
Any new values are added immediately before dimension-value in the status list.

FIRST
Any new values are added to the beginning of the status list.

LAST
Any new values are added to the end of the status list.

ASSIGN surrogate
Assigns the values to the specified surrogate.

Important: The order in which you specify the target analytic
workspace objects effects dimension status. For each dimension
value, Oracle OLAP temporarily limits the status of the dimension
to the fetched value. Values are assigned to subsequent analytic
workspace objects according to this temporary status. See
"Conjoints as Target Analytic Workspace Objects" on page 22-22
and "Composites as Target Analytic Workspace Objects" on
page 22-23.

SQL FETCH

22-22 Oracle OLAP DML Reference

THEN action-statements
You may optionally include a THEN clause to specify any number of
action-statements to be performed each time a row of data is fetched and assigned to
target analytic workspace objects. An action-statement can be one of the following:

assignment-statement

IF statement

SELECT-statement

ACROSS statement: action-statement

<action-statement-group>

Refer to the SQL IMPORT command for a complete description of the syntax of
action-statements.

Notes

Related OLAP DML Commands
You use the SQL FETCH command in combination with other SQL commands to
copy data from relational tables into analytic workspace objects as outlined in
"Copying Relational Data into Analytic Workspace Objects" on page 22-4.

Effect of Order Targets on Dimension Status
For each dimension value, Oracle OLAP temporarily limits the status of the
dimension to the fetched value. Values are assigned to subsequent analytic
workspace objects according to this temporary status.

Differences Between SQL FETCH and SQL IMPORT
SQL FETCH and SQL IMPORT both copy data from relational tables into analytic
workspace objects. Although SQL FETCH offers the most functionality, SQL
IMPORT offers improved performance when copying large amounts of data from
relational tables into analytic workspace objects.

Conjoints as Target Analytic Workspace Objects
You can use a conjoint dimension as a target analytic workspace object, but you
must ensure that you select the same number of columns from the relational table as
there are simple base dimensions. When Oracle OLAP executes a SQL FETCH
command for a target that is a conjoint dimension, it uses the dimension order that
was specified when the conjoint was defined.

SQL

SQL to STATVAL 22-23

Composites as Target Analytic Workspace Objects
You can specify analytic workspace objects for composites just as you would for
dimensioned variables. For example, to fetch data into a variable var1
dimensioned by dim1 and dim2, you would specify the following list of target
analytic workspace objects.

:dim1 :dim2 :var1

To fetch data into a variable var2 dimensioned by a composite whose dimensions
are dim1 and dim2, you would specify the following list of target analytic
workspace objects.

:dim1 :dim2 :var2

Null Values
A null value in SQL is equivalent to an NA value in Oracle OLAP, so null values
fetched into target analytic workspace objects are given NA values. Since Oracle
OLAP handles null values in this way, the SQL command does not support
INDICATOR variables in the INTO clause of a SQL FETCH command. When
fetching null values into a dimension, however, Oracle OLAP discards the values
for the entire row.

Converting Oracle RDBMS Data Types into Oracle OLAP Data Types
Table 22–2, " RDBMS Data Type Conversion to OLAP DML Data Types" on
page 22-35 shows which Oracle RDBMS data types can be automatically converted
into Oracle OLAP data types. You must explicitly convert or cast other data types in
the SELECT statement within the SQL DECLARE CURSOR command.

Boolean Data
You can use Boolean variables as input and target analytic workspace objects for
OLAP SQL commands. In input host variables, Oracle OLAP treats Boolean values
as integers with a value of 1 (TRUE) or 0 (FALSE).

As target analytic workspace objects, Boolean variables can receive values from any
numeric (or bit) column in a relational table.

Date Data
When fetching text data into a DATE variable, the current setting of the
DATEORDER option is used to interpret the value. For example, a text value of

SQL FETCH

22-24 Oracle OLAP DML Reference

12-08-96 could be interpreted as December 8, 1996, or August 12, 1996, depending
on the setting of DATEORDER.

Unusable Data Types
You cannot transfer data with the following data types: RAW, LONG RAW, ROWID,
UROWID, BLOB, and BFILE.

Examples

Example 22–6 Fetching Data From Relational Tables -- A Simple SQL FETCH

he following program fragment shows the basic steps of declaring and opening a
cursor, and fetching the data. Relational data from the Prod_ID and Prod_Name
columns of the Products table are fetched into the prod dimension and
prod_label variable. The variable prod_label is dimensioned by prod. Notice
that the SQL FETCH command in this example does not include a LOOP clause; it
therefore retrieves a single row of data each time it is called.

VARIABLE set_price SHORT
set_price = 20

...
SQL DECLARE highprice CURSOR FOR SELECT Prod_ID, Prod_Name -

FROM Products WHERE suggested_price > :set_price
SQL OPEN highprice
WHILE SQLCODE EQ 0

SQL FETCH highprice INTO :prod, :prod_label

Example 22–7 Fetching Data From Relational Tables with a THEN Clause

The following program fragment shows the SQL FETCH command from the
previous example with the addition of the LOOP keyword and a THEN clause.
Because of the LOOP keyword, this SQL FETCH command does not need to run
within a WHILE loop. The action statement following the THEN keyword copies
any product names stored in prod_label that start with the letter A into a
multiline text variable called a_product.

SQL FETCH highprice LOOP INTO :prod, :prod_label -
THEN IF UPCASE(EXTCHARS(prod_label, 1, 1)) EQ 'a' -

THEN a_product = JOINLINES(a_product prod_label)

SQL

SQL to STATVAL 22-25

Example 22–8 Populating with Relational Data While Maintaining a Conjoint
Dimension

In this example, a conjoint dimension (named mpt) is used as a target analytic
workspace object. To populate a conjoint dimension, you must select values from
the relational database for each of its base dimensions. Here, the three base
dimensions are market, product, and time. Therefore, the SELECT statement
specifies the three corresponding columns (Mktcode, Prdcode, and Percode).
The program assumes that the market, product, and time dimensions are
already populated with up-to-date values; Oracle OLAP does not update the base
dimensions unless you explicitly specify them as target analytic workspace objects.

DEFINE mpt DIMENSION <market product time>
DEFINE sql.mpt PROGRAM
PROGRAM

...
SQL DECLARE c1 CURSOR FOR -

SELECT Mktcode, Prdcode, Percode FROM Sqldba.Data
IF SQLCODE NE 0

THEN SIGNAL sqlerrm
SQL OPEN c1
SQL FETCH c1 LOOP INTO :append mpt
SQL CLOSE c1

...
END

Example 22–9 Populating Data While Maintaining Base and Conjoint Dimensions

To retrieve current values for the base and conjoint dimensions, or to retrieve the
values for the first time, you can fetch the values for the base dimensions
immediately before you fetch the values for the conjoint dimension. In the following
example, the SQL DECLARE CURSOR and SQL FETCH commands have been
edited to fetch both base and conjoint dimension values. Notice that the number of
columns selected from the relational table must match the number of base
dimensions fetched. There are six column specifications in the SELECT statement.
The first three match the three base dimensions, and the last three match the
conjoint dimension itself.

SQL DECLARE c1 CURSOR FOR -
SELECT Mktcode, Prdcode, Percode, Mktcode, -

Prdcode, Percode FROM Sqldba.Data
...

SQL FETCH c1 LOOP INTO :APPEND market, :APPEND product, -
:APPEND time, :APPEND mpt

SQL FETCH

22-26 Oracle OLAP DML Reference

Example 22–10 Populating Variables with Relational Table Data while Maintaining
Dimensions

In the next example, variable dollars.mpt is dimensioned by the conjoint mpt,
and its values are populated in the same SQL FETCH command with the dimension
values. The SQL DECLARE CURSOR and SQL FETCH commands have been edited
again with the new column and target analytic workspace object added.

DEFINE dollars.mpt DECIMAL <mpt>
SQL DECLARE c1 CURSOR FOR -

SELECT Mktcode, Prdcode, Percode, Mktcode, Prdcode, -
Percode, Dollars FROM Sqldba.Data

...
SQL FETCH c1 LOOP INTO :APPEND market, :APPEND product, -

:APPEND time, :APPEND mpt, :DOLLARS.mpt

Example 22–11 Fetching Data into a Concat Dimension

Assume that a relational table has four columns of product data and that you decide
to create a Product hierarchy with four levels in your analytic workspace to hold
this data. The levels in the hierarchy (prod_id, prod_subcategory,
prod_category, and products_all) map to columns in the products tables.
The lowest level of the hierarchy is prod_id and the highest level is
products_all. There is also a column with supplier information in the table.

To hold the data in the analytic workspace you define a dimension was defined for
each level of the Product hierarchy, a concat dimension for the hierarchy itself, and a
child-parent relation between the values in the hierarchy. You also define a
dimension for the supplier data and a relation that holds the relationship between
suppliers and products with the following definitions.

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_prod_subcategory DIMENSION TEXT
DEFINE aw_prod_category DIMENSION TEXT
DEFINE aw_products_all DIMENSION TEXT
DEFINE aw_products DIMENSION CONCAT (aw_products_all -
 aw_prod_category -
 aw_prod_subcategory -
 aw_prod_id)
DEFINE aw_products.parents RELATION aw_products <aw_products>
DEFINE aw_supplier_id DIMENSION NUMBER (6)
DEFINE aw_prod_id.aw_supplier_id RELATION aw_supplier_id <aw_prod_id>

SQL

SQL to STATVAL 22-27

Assume that you write a program named get_products_hier that consists of the
following code.

' get_products_hier Program
ALLSTAT
" Fetch values into the products hierarchy
SQL DECLARE grabprods CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id -
 FROM sh.products
SQL OPEN grabprods
SQL IMPORT grabprods INTO :APPEND aw_products_all -
 :APPEND aw_prod_category -
 :APPEND aw_prod_subcategory -
 :APPEND aw_prod_id

SQL CLOSE grabprods
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
" Fetch values into supplier_id
SQL DECLARE grabsupid CURSOR FOR SELECT supplier_id -
 FROM sh.products
SQL OPEN grabsupid
SQL IMPORT grabsupid INTO :APPEND aw_supplier_id
SQL CLOSE grabsupid
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

" Populate self-relation for concat dimension
" and relation between aw_prod_id and aw_supplier_id
SQL DECLARE makerels CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id, -
 supplier_id -
 FROM sh.products
SQL OPEN makerels
SQL FETCH makerels LOOP INTO :MATCH aw_products_all -
 :MATCH aw_prod_category -
 :MATCH aw_prod_subcategory -

SQL FETCH

22-28 Oracle OLAP DML Reference

 :MATCH aw_prod_id -
 :MATCH aw_supplier_id -
 THEN aw_products.parents(aw_products aw_prod_id) -
 = aw_products(aw_prod_subcategory aw_prod_subcategory) -
 aw_products.parents(aw_products aw_prod_subcategory) -
 = aw_products(aw_prod_category aw_prod_category) -
 aw_products.parents(aw_products aw_prod_category) -
 = aw_products(aw_products_all aw_products_all) -
 aw_prod_id.aw_supplier_id = aw_supplier_id
SQL CLOSE makerels
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

The get_products_hier program copies the data from the dimension tables into
the base dimensions of the aw_products concat dimension using SQL FETCH
commands with the APPEND keyword. As the base dimensions of aw_products
are populated, Oracle OLAP automatically populates aw_products, itself. As the
THEN clause of the SQL FETCH command executes, Oracle OLAP fetches data into
the child-parent self-relation for aw_products. This program also populates the
aw_supplier_id dimension and its relation.

SQL

SQL to STATVAL 22-29

SQL IMPORT

The SQL IMPORT command retrieves and processes data specified by an explicit
SQL cursor. SQL IMPORT assigns the retrieved data to OLAP objects. When you
include a THEN clause, SQL IMPORT may perform processing on the retrieved
data SQL IMPORT is particularly effective in copying fact data from relational
tables into analytic workspace variables.

Syntax
SQL IMPORT cursor INTO :targets... [THEN action-statements...]

where:

targets is one or more of the following:

[MATCH|MATCHSKIPERR [[position]] {dimension|surrogate|valueset|relation}

APPEND dimension

ASSIGN surrogate

{variable|relation|qualified data reference}

action-statements is one of the following:

assignment-statement

IF-statement

SELECT-statement

ACROSS-statement: action-statement

<action-statement-group>

Arguments

cursor
The name of a declared cursor.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the

SQL IMPORT

22-30 Oracle OLAP DML Reference

select-statement argument of the SQL DECLARE CURSOR command that declared
cursor. A target can be a variable, a qualified data reference, a relation, a dimension,
or a composite.

MATCH
Oracle OLAP does not copy values from the corresponding relational table column
into the target dimension or surrogate. It merely uses the values to align data that is
being fetched into dimensioned objects. When a value from the relational database
does not match any value in the dimension, an error is signaled. (Default)

MATCHSKIPERR
Oracle OLAP does not copy values from the corresponding relational table column
into the target dimension or surrogate. It merely uses the values to align data that is
being fetched into dimensioned objects. When a value from the relational database
does not match any value in the dimension, the value is ignored and processing
continues without signaling an error.

position
The one-based logical position of the value.

APPEND
Oracle OLAP performs dimension maintenance on the target dimension, adding
new values from the corresponding relational table column to the dimension. It uses
both old and new dimension values to align data being fetched into dimensioned
objects. New values are added to the end of a dimension.

ASSIGN
Oracle OLAP assigns the corresponding relational value to the specified surrogate.

dimension
The name of the analytic workspace dimension.

surrogate
The name of an analytic workspace surrogate.

Important: The order in which you specify the analytic workspace
objects effects dimension status. For each dimension value, Oracle
OLAP temporarily limits the status of the dimension to the fetched
value. Values are assigned to subsequent analytic workspace
objects according to this temporary status.

SQL

SQL to STATVAL 22-31

valueset
The name of the analytic valueset.

relation
The name of the analytic workspace relation.

variable
The name of a variable.

qualified_data_reference
A QDR is a qualifier that limits one or more of the dimensions of a variable or a
relation to a single value. Oracle OLAP evaluates QDRs in a SQL IMPORT
command, as follows:

■ When the QDR includes an expression, the expression is evaluated only once
before the data is retrieved. In other words, the expression is, in essence, a
constant.

■ When the QDR includes a relation, the values of the QDR vary depending on
the status of the dimensions of that relation.

THEN action-statements
You may optionally include a THEN clause to specify any number of
action-statements to be performed each time a row of data is imported and assigned
to analytic workspace objects. Action statements may contain simple assignment
statements, conditional assignment statements, and assignments across dimensions.

Action statements allow you to examine and manipulate the fetched data on a
row-by-row basis. For example, you may want to specify temporary objects as
analytic workspace objects and only update your permanent objects once you have
performed certain actions on the row of fetched data. However, action statements
do not have to reference the imported data. For example, one of your action
statements might be an assignment statement that executes a user-defined function
(that is, a program) that performs complex processing and then simply increments a
counter.

A THEN clause can improve SQL loading performance by eliminating the need for
postprocessing upon completion of a SQL IMPORT.

SQL IMPORT

22-32 Oracle OLAP DML Reference

In your list of action statements, be sure to process dimensions before variables. Oracle
OLAP processes each action statement from left to right for each row in the
relational table. When an action statement performs dimension processing, the
resulting status remains in effect for subsequent action statements. When you do
not first specify action statements that limit a variable's dimensions, Oracle OLAP
uses the first value in status to target a cell in the variable. Unless you specify an
ACROSS phrase, Oracle OLAP assigns a single value from a row to a single cell in
an Oracle OLAP variable. By default, Oracle OLAP does not loop over a variable's
dimensions when assigning data to the variable.

assignment-statement
An assignment statement (SET) that assigns a value that is the result of an
expression to an Oracle OLAP object.

IF-statement
An IF...THEN...ELSE statement that performs some action depending on whether a
Boolean expression is TRUE or FALSE.

SELECT statement
A SQL SELECT statement lets you perform some action based on the value of an
expression. A SELECT statement has the following form.

Note: The syntax of an action statement within SQL IMPORT is
essentially the same as the syntax of an action statement within
FILEREAD. Exceptions are in the syntax of an assignment
statement and the use of the VALUE keyword. In SQL IMPORT
action statements, assignments must be explicit; they must include
a source, target, and equal sign. In FILEREAD action statements,
assignments may be implicit and specify only the target. The
VALUE keyword is supported in FILEREAD action statements, but
not in SQL IMPORT action statements. When you have already
specified action statements for use with FILEREAD, you can reuse
the code with SQL IMPORT by simply adjusting the assignment
statements and eliminating the VALUE keyword (if necessary).
Most of the attributes listed in FILEREAD (with the exception of the
attributes that control dimension processing) are not meaningful for
SQL loading and are ignored when executing within SQL IMPORT.

For best performance, within a THEN clause reference only the
data within the imported row.

SQL

SQL to STATVAL 22-33

SELECT select-expression

[WHEN expression1 action

[WHEN expression2 action . . .]

[ELSE action]

SELECT evaluates the SELECT expression and then sequentially compares the
result with the WHEN expressions. When the first match is found, the associated
action occurs. When no match is found, the ELSE action (if specified) occurs.

ACROSS-statement: action-statement
An ACROSS statement causes the following action statement to execute once for
every value in status of the ACROSS dimension. When you want the looping to
apply to more than one action statement, enclose the action statements in angle
brackets. An ACROSS statement has the following form.

ACROSS dimension [limit]:

action-statement

limit temporarily change the status of dimension, as long as you are not in a FOR
loop over dimension. The new status is in effect only for the duration of the SQL
FETCH command. The format of limit is as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|TO] limit-clause

To specify the temporary status, insert any of the LIMIT command keywords (the
default is TO) along with an appropriate list of dimension values or related
dimensions. You can use any valid LIMIT clause (see LIMIT command for further
information). The following example limits month to the last six values, no matter
what the current status of month is.

ACROSS month last 6: units

<action-statement-group>
You can group several action statements together by enclosing them in angle
brackets. An action-statement-group has the following form.

<action-statement1 -

[action-statement2 . . .]>

A typical use for action statement groups is after an ACROSS statement. With the
angle bracket syntax, you can cause more than one action statement to execute for
every value in status of the ACROSS dimension.

SQL IMPORT

22-34 Oracle OLAP DML Reference

Notes

Related OLAP DML Commands
You use the SQL IMPORT command in combination with other SQL commands to
copy data from relational tables into analytic workspace objects as outlined in
"Copying Relational Data into Analytic Workspace Objects" on page 22-4.

Effect of Order Targets on Dimension Status
For each dimension value, Oracle OLAP temporarily limits the status of the
dimension to the fetched value. Values are assigned to subsequent analytic
workspace objects according to this temporary status.

Differences Between SQL FETCH and SQL IMPORT
SQL FETCH and SQL IMPORT both copy data from relational tables into analytic
workspace objects. SQL IMPORT offers improved performance when copying large
amounts of data from relational tables into analytic workspace objects.

Restrictions When Declaring a Cursor for Use by SQL IMPORT
For the syntax to use when declaring a cursor for use by SQL IMPORT see the notes
for SQL DECLARE CURSOR.

Converting Oracle RDBMS Data Types into Oracle OLAP DML Data Types
Table 22–2, " RDBMS Data Type Conversion to OLAP DML Data Types" shows
which Oracle RDBMS data types the SQL IMPORT command automatically
converts into Oracle OLAP data types. You must explicitly convert or cast other
data types in the SELECT statement within the SQL DECLARE CURSOR command.

SQL

SQL to STATVAL 22-35

Boolean data
You can use Boolean variables as input and target analytic workspace objects for
OLAP SQL commands. In input host variables, Oracle OLAP treats Boolean values
as integers with a value of 1 (TRUE) or 0 (FALSE).

As target analytic workspace objects, Boolean variables can receive values from any
numeric (or bit) column in a relational table.

Date data
When importing text data into a DATE variable, the current setting of the
DATEORDER option is used to interpret the value. For example, a text value of
12-08-96 could be interpreted as December 8, 1996, or August 12, 1996, depending
on the setting of DATEORDER.

Unusable data types
You cannot transfer data with the following data types: RAW, LONG RAW, ROWID,
UROWID, BLOB, and BFILE.

Table 22–2 RDBMS Data Type Conversion to OLAP DML Data Types

Oracle RDBMS Data
Type

OLAP DML Dimension
Type

OLAP DML Variable Data
Type

CHAR, NCHAR,
NVARCHAR2,
VARCHAR2

TEXT [WIDTH n], ID,
NTEXT

TEXT, NTEXT

NUMBER NUMBER, INTEGER,
SHORTINTEGER,
LONGINTEGER

NUMBER, INTEGER,
BOOLEAN, SHORTINTEGER,
LONGINTEGER, DECIMAL,
SHORTDECIMAL

CLOB (only within
SQL FETCH and SQL
SELECT statements)

TEXT TEXT

NCLOB (only within
SQL FETCH and SQL
SELECT statements)

NTEXT NTEXT

DATE - DATE, DATETIME

SQL IMPORT

22-36 Oracle OLAP DML Reference

Examples

Example 22–12 Simple Import

The following program fragment shows the basic steps of declaring a cursor and
importing the data. Values from the Prod_ID and Prod_Name columns of the
Products relational table in the Sales -History (sh) database are fetched into the
prod_id dimension and prod_label analytic workspace variable. The
prod_label variable is dimensioned by prod_id.

SQL DECLARE productcur CURSOR FOR SELECT Prod_ID, Prod_Name FROM sh.Products
SQL OPEN productdur
SQL IMPORT productcur INTO :prod_id, :prod_label
SQL CLOSE productcur
SQL CLEANUP

SQL

SQL to STATVAL 22-37

SQL OPEN

The SQL OPEN command activates an explicitly-declared SQL cursor. When the
cursor is opened, SQL examines any input host variables used in the definition of
the specified cursor, determines the cursor's result set, and leaves the cursor in the
open state for use by SQL FETCH or SQL IMPORT. The cursor is positioned before
the first row of the result set.

Syntax
SQL OPEN cursor

Arguments

cursor
The name of a cursor previously declared in the same program. You cannot use
ampersand substitution.

Notes

Related OLAP DML Commands
You use the SQL OPEN command in combination with other SQL commands to
copy data from relational tables into analytic workspace objects as outlined in
"Copying Relational Data into Analytic Workspace Objects" on page 22-4.

Examples

Opening a Cursor
The following program fragment declares and opens a cursor named geolabels.

SQL DECLARE geolabels CURSOR FOR -
SELECT Store_ID, Store_Name, City FROM Stores

IF SQLCODE NE 0
THEN SIGNAL dclerror 'SQLERRM'

SQL OPEN geolabels
IF SQLCODE NE 0

THEN SIGNAL operror 'SQLERRM'

SQL PREPARE

22-38 Oracle OLAP DML Reference

SQL PREPARE

The SQL PREPARE command precompiles a SQL statement for later execution
using SQL EXECUTE. Typically, you use SQL PREPARE in programs to optimize
the processing of SQL statements that will be executed repeatedly, particularly those
involving input host variables, such as INSERT, UPDATE, and DELETE.

Syntax
SQL PREPARE statement-name FROM sql-statement [insert-options]

Arguments

statement-name
A name that you assign to the executable code produced from sql-statement. You can
redefine statement-name just by issuing another SQL PREPARE command.

sql-statement
The SQL statement that you want to precompile for more efficient execution. It
cannot contain ampersand substitution or variables that are undefined when the
program is compiled.

insert-options
The following options are optional when sql-statement is an INSERT statement:

DIRECT=YES|NO specifies if the insert is a direct-path INSERT. This option must be
the first option specified right aver the values phrase of the INSERT statement.
Setting this option to YES specifies that the insert will be a direct-path INSERT.
Direct-path INSERT enhances performance during INSERT operations and is
similar to the functionality of Oracle's direct-path loader utility, SQL*Loader. The
default value is NO which specifies a normal INSERT.

NOLOG=YES|NO specifies if logging occurs. Setting this option to YES specifies that
the redo information is not recorded in the redo log files which makes load-time
faster. The default value is NO which specifies logging mode.

PARTITION=(sub)partition-name specifies that only the segments related to the named
partition or subpartition are locked. When you specify this option, another session
can insert data to unrelated segments in the same table. When you do not specify
this option (the default), other sessions cannot insert data into the same table.

SQL

SQL to STATVAL 22-39

Notes

Restrictions
The SQL PREPARE and SQL EXECUTE commands can only be used within the
same OLAP DML program.

Improved Performance Using Direct-Path INSERT
When performing a direct-path INSERT, data is written directly into data files,
bypassing the buffer cache, free space in the existing data is not reused, and the
inserted data is appended after existing data in the table

Restrictions When Using Direct-Path INSERT
Direct-path INSERT is subject to a number of restrictions. When executing a
direct-path INSERT using the OLAP DML, transactions in the session issuing the
direct-path INSERT must be committed for the INSERT to execute successfully.
(You can use the SQL or OLAP DML COMMIT to commit transactions.)

Additionally, the general restrictions that apply to using direct-path INSERT in SQL
apply to preparing a direct-pathINSERT using the OLAP DML PREPARE
command:

■ The target table cannot be index organized or clustered.

■ The target table cannot contain object type or LOB columns.

■ The target table cannot have any triggers or referential integrity constraints
defined on it.

For more information on restrictions when using a direct-path INSERT, see the
discussion of the INSERT statement in Oracle Database SQL Reference.

Data Type Conversions
Table 22–3, "Automatic Data Type Conversion During Direct-Path Insertion" on
page 22-40 shows the automatic data type conversion performed during direct-path
insertion.

SQL PREPARE

22-40 Oracle OLAP DML Reference

Date Data
When inserting text data from Oracle OLAP into a column with a DATE data type,
you must use the default date format of DD MMM YY. You can use slashes (/) or
hyphens (-) as separators, as well as spaces. When the data is in a different format,
you can use the Oracle TO_DATE function in the SQL INSERT command.

Inserting Large Text Values into a Table
To insert more than 2K bytes of text data from Oracle OLAP into a CLOB or NCLOB
column, use the WIDE keyword before the name of the input host variable. When
the input host variable is TEXT, then the target data type is CLOB. When the input
host variable is NTEXT, then the target data type is NCLOB.

The following is the syntax of an input host variable with the WIDE keyword. See
Example 22–15, "Using the WIDE Keyword" on page 22-42 for an example.

:WIDE input-host-variable

See Example 22–15, "Using the WIDE Keyword" on page 22-42 for an example.

Note that the target table must conform to these guidelines:

■ Any number and combination of CLOB and NCLOB columns

■ No LONG columns

The RDBMS imposes some restrictions on large data types. Oracle OLAP will not
signal an error when you violate these restrictions. However, you might get
unexpected results. Refer to the Oracle Application Developer's Guide for restrictions
on large data types.

Table 22–3 Automatic Data Type Conversion During Direct-Path Insertion

Oracle RDBMS Oracle OLAP DML

CHAR(n), VARCHAR(n) TEXT

LONG TEXT with WIDE option

CHAR(8), VARCHAR(8) ID

DATE DATE

NUMBER(x,x) DECIMAL (SHORTDECIMAL)

INTEGER (or NUMBER(38) INTEGER (SHORTINTEGER)

NUMBER(1) BOOLEAN

SQL

SQL to STATVAL 22-41

Calculating the Number of Characters
You can calculate the number of characters that will be sent to the database from an
input host variable by using the following formula.

NUMCHARS(variable) + 2 * (NUMLINES(variable) - 1)

For example, the following statement shows the number of characters that will be
sent using bigvar as the input host variable.

SHOW NUMCHARS(bigvar) + 2 * (NUMLINES(bigvar) -1)

This formula counts the extra carriage return and line feed characters that Oracle
OLAP inserts between lines when passing the text to the database.

Examples

Example 22–13 Preparing a FOR Loop

To automatically add all the sales people from the salesperson dimension to the
relational table, you could write a program and put the SQL INSERT command in a
FOR loop.

FOR salesperson
SQL INSERT INTO Sales VALUES (:Salesperson, :Dollars)

When a statement includes input host variables and will be executed repeatedly,
such as in a FOR loop, you can make the statements more efficient by "preparing"
the SQL statement first. The INSERT statement becomes part of a PREPARE
statement.

SQL PREPARE s1 FROM INSERT INTO Sales VALUES -
(:Salesperson, :Dollars)

FOR Salesperson
DO

SQL EXECUTE s1
IF SQLCODE NE 0
THEN BREAK

DOEND

Example 22–14 Updating a Table

The next example shows a simple update of a table using data stored in an analytic
workspace. The market dimension is limited to one value at a time in the FOR

SQL PREPARE

22-42 Oracle OLAP DML Reference

loop. The SQL phrase WHERE S.Market=:market specifies that the sales value in
the row for that market is the value that is changed.

FOR market
SQL UPDATE Mkt SET Sales=:Mkt.Sales WHERE S.Market=:market

Like the INSERT statement in the previous example, an UPDATE statement should
be used in a PREPARE statement and executed in an ACROSS command or FOR
loop.

SQL PREPARE s2 FROM UPDATE mkt -
SET Sales=:mkt.sales WHERE s.market=:market

ACROSS market DO 'SQL EXECUTE s1'

Example 22–15 Using the WIDE Keyword

In both of the following statements, WIDE indicates that the target value is CLOB
when var1 is TEXT, or NCLOB when var1 is NTEXT.

SQL INSERT INTO CLOB_TEST values (:dim1 :WIDE var1)
SQL UPDATE CLOB_TEXT SET clob_col = :WIDE var1 WHERE key = 1

SQL

SQL to STATVAL 22-43

SQL PROCEDURE

The SQL PROCEDURE command executes procedures stored in the RDBMS.

Syntax
SQL PROCEDURE procedure-name (parameters)

where parameters is one or more of the following, separated by commas:

sql-parameter
:dml-parameter

Arguments

procedure-name
The name of the SQL stored procedure.

sql-parameter
The name of a variable in the RDBMS.

:dml-parameter
A host variable name preceded by a colon. Host variables are OLAP DML
expressions such as OLAP DML variables. See "SQL Terminology" on page 22-5 and
"Input Host Variables" on page 22-6 for more information on host variables.

Notes

Creating SQL Procedures using the OLAP DML
To create a stored procedure using the OLAP DML, issue an OLAP DML a SQL
statement with a SQL CREATE PROCEDURE statement as its argument. The syntax
for coding CREATE PROCEDURE as an argument within an OLAP DML a SQL
statement is slightly different than the syntax for coding CREATE PROCEDURE in

Note: You can also create SQL stored procedures using the OLAP
DML. See:

■ "Creating SQL Procedures using the OLAP DML" on
page 22-43

■ Example 22–16, "Creating a Stored Procedure" on page 22-44

SQL PROCEDURE

22-44 Oracle OLAP DML Reference

SQL proper. When coded as an arguments to an OLAP DML statements, use a tilde
(~) instead of a semicolon as a terminator, and two colons instead of one in an
assignment statement. See Example 22–16, "Creating a Stored Procedure" on
page 22-44.

Restrictions When Calling SQL Procedures using the OLAP DML
A stored procedure called using an OLAP DML SQL PROCEDURE statement
cannot contain output variables or transactions.

Examples

Example 22–16 Creating a Stored Procedure

The following example shows the syntax for creating a procedure named
new_products.

SQL CREATE OR REPLACE PROCEDURE new_products -
(id CHAR, name CHAR, cost NUMBER) AS -

price NUMBER~ -
BEGIN -

price ::= cost * 2.5~ -
INSERT INTO products -

VALUES(id, name, price)~ -
END~

Example 22–17 Executing a Stored Procedure

The following FOR loop executes a SQL stored procedure named new_products and
inserts data stored in dimensions and variables into a relational table. In this
example, prod is an Oracle OLAP dimension, and labels.p and cost.p are variables
dimensioned by prod.

FOR prod
DO

SQL PROCEDURE new_products(:prod, :labels.p, :cost.p)
IF SQLCODE NE 0

THEN BREAK
DOEND

SQL

SQL to STATVAL 22-45

SQL SELECT

The SQL SELECT command uses an implicit cursor to copy data from relational
tables into analytic workspace objects.

Syntax
SQL SELECT expressions FROM tables -

[WHERE predicates] [GROUP BY expressions] -

[ORDER BY expressions] [HAVING predicates] -

INTO :targets... [THEN action-statements...]

where:

targets is one or more of the following:

[MATCH] dimension|surrogate

APPEND [position] dimension

ASSIGN surrogate

variable|qualified data reference|relation|composite

position is one of the following:

Arguments

SELECT expressions FROM tables-
 [WHERE predicates] [GROUP BY expressions] -
 [ORDER BY expressions] [HAVING predicates]
A SQL SELECT statement that identifies the data you want to associate with the
cursor. For the syntax of an SQL SELECT statement, refer to the Oracle Database SQL
Reference.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the
SELECT statement. A target can be a variable, a qualified data reference, a relation,
a dimension, or a composite.

SQL SELECT

22-46 Oracle OLAP DML Reference

A target must be preceded by a colon. When the target is a dimension, it can include
the MATCH and APPEND keywords to specify dimension handling; in this case,
the colon precedes the keywords.

[MATCH] dimension
[MATCH] surrogate
Oracle OLAP does not perform dimension maintenance on the target dimension or
surrogate. It uses the incoming values to align data that is being fetched into
dimensioned objects. When a value from the relational database does not match any
value in the dimension or surrogate, an error is signaled. (Default)

APPEND [position] dimension
Oracle OLAP performs dimension maintenance on the target dimension, adding
new values to the dimension. It uses both old and new dimension values to align
data being fetched into dimensioned objects. By default, new values are added to
the end of a dimension or surrogate. The position can also be used to control how
dimension values are processed in action statements.

ASSIGN surrogate
Assigns the values to the specified surrogate.

THEN action-statements
You may optionally include a THEN clause to specify any number of
action-statements to be performed each time a row of data is fetched and assigned to
analytic workspace objects. An action-statement can be one of the following:

■ assignment-statement

■ IF statement

■ SELECT-statement

■ ACROSS statement: action-statement

■ <action-statement-group>

Important: The order in which you specify the analytic workspace
objects effects dimension status. For each dimension value, Oracle
OLAP temporarily limits the status of the dimension to the fetched
value. Values are assigned to subsequent analytic workspace
objects according to this temporary status. See "Conjoints as Target
Analytic Workspace Objects" on page 22-22 and "Composites as
Target Analytic Workspace Objects" on page 22-23.

SQL

SQL to STATVAL 22-47

Refer to the SQL IMPORT command for a complete description of the syntax of
action-statement.

Notes

Related OLAP DML Commands
You use the SQL SELECT command to copy data from relational tables into analytic
workspace objects using an implicit cursor. You can also use copy the data using an
explicit cursor using the OLAP DML commands outlined in "Copying Relational
Data into Analytic Workspace Objects" on page 22-4.

General Restrictions
The following restrictions apply to the SQL SELECT command cannot contain
ampersand substitution.

Optimizing Copies
When copying values from relational tables into a multidimensional input variable,
list the columns that correspond to the dimensions in an ORDER BY clause in the
select-statement argument of the SQL SELECT command, with the slowest-varying
dimension first. This will optimize performance.

Ambiguous WHERE Clauses
The select-statement argument of a SQL SELECT command can include a WHERE
clause. Since both OLAP DML syntax and SQL syntax allow you to use AND and
OR, you should construct the clause clearly so that Oracle OLAP can identify the
end of an input host variable. For example, the following WHERE clause is
ambiguous, because the first host variable could be either ":MARKET AND
PRDCODE" or simply ":MARKET."

... SELECT ... WHERE mktcode = :market AND prdcode = :product

Use the following construction instead.

... SELECT ... WHERE :market = mktcode AND :product = prdcode

You can also use parenthesis to clarify the syntax, particularly when using a SQL
operator that is unknown in Oracle OLAP.

... SELECT ... WHERE (mktcode = :market) AND (prdcode LIKE :product)

SQL SELECT

22-48 Oracle OLAP DML Reference

Converting Oracle RDBMS Data Types into Oracle OLAP Data Types
Table 22–2, " RDBMS Data Type Conversion to OLAP DML Data Types" on
page 22-35 shows which Oracle RDBMS data types can be automatically converted
into Oracle OLAP data types. You must explicitly convert or cast other data types in
the SELECT statement.

Examples

Example 22–18 Simple select

For example, assume that there is a relational table named sales with the
following description.

PROD_ID NOT NULL NUMBER(6)
CUST_ID NOT NULL NUMBER
TIME_ID NOT NULL DATE
CHANNEL_ID NOT NULL CHAR(1)
PROMO_ID NOT NULL NUMBER(6)
QUANTITY_SOLD NOT NULL NUMBER(3)
AMOUNT_SOLD NOT NULL NUMBER(10,2)

Assume also that your analytic workspace contains the following definitions for
corresponding analytic workspace objects.

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_cust_id DIMENSION NUMBER (6)
DEFINE aw_date DIMENSION TEXT
DEFINE aw_channel_id DIMENSION TEXT
DEFINE aw_promo_id DIMENSION NUMBER (6)
DEFINE aw_sales_dims COMPOSITE <aw_prod_id aw_cust_id -
 aw_channel_id aw_promo_id>
DEFINE aw_sales_quantity_sold VARIABLE NUMBER (3) <aw_date aw_sales_dims -
 <aw_prod_id aw_cust_id aw_date aw_channel_id aw_promo_id>>
DEFINE aw_sales_amount_sold VARIABLE NUMBER (10,2) <aw_date aw_sales_dims -
 <aw_prod_id aw_cust_id aw_date aw_channel_id aw_promo_id>>

To copy the data for product 415 from the sales table into the analytic workspace
objects, you execute the following statement in the OLAP worksheet.

SQL SELECT prod_id cust_id time_id channel_id promo_id quantity_sold -
amount_sold WHERE prod_id = 415 -
INTO :aw_prod_id, :aw_cust_id, :aw_date, -
:aw_channel_id, :aw_promo_id, :aw_sales_quantity_sold, :aw_sales_amount_sold

SQLBLOCKMAX

SQL to STATVAL 22-49

SQLBLOCKMAX

The SQLBLOCKMAX option controls the maximum number of records retrieved
from an Oracle relational database at one time. This option provides a means of
fine-tuning the performance of data fetches.

Data type
INTEGER

Syntax
SQLBLOCKMAX = records

Arguments

records
An integer that identifies the number of records you want fetched at one time.
While you can set SQLBLOCKMAX to any integer, no appreciable change in
performance results in setting it over 100. The default is 10 records.

Notes

Opening Cursors
Only cursors opened after SQLBLOCKMAX is reset will use the new block size.

Number of Records
When a program typically opens a cursor, reads one record, and closes the cursor,
you should set SQLBLOCKMAX to 1. Otherwise, the SQL FETCH command
retrieves 10 records and discards 9 of them. The same is true for other routine
fetches of less than 10 records.

Block Size
When your program is fetching small records, you can increase SQLBLOCKMAX to
reduce the number of blocks required for the fetch. Oracle OLAP fetches the data
into a 64K buffer. The block size in bytes is the number of records multiplied by the
size of the records. When the block size exceeds the 64K limit imposed by the buffer,

SQLBLOCKMAX

22-50 Oracle OLAP DML Reference

Oracle OLAP automatically reduces the number of records fetched. See
Example 22–19, "Defining a Cursor with SQLBLOCKMAX" on page 22-50.

Examples

Example 22–19 Defining a Cursor with SQLBLOCKMAX

The following program fragment defines a cursor for fetching 50-byte records from
a relational database. The new block size easily fits into Oracle OLAP's 64K buffer
(50 bytes * 100 = 50k block size).

SQLBLOCKMAX = 100
SQL DECLARE CURSOR c1 FOR SELECT * FROM mydata
SQL OPEN c1

SQLCODE

SQL to STATVAL 22-51

SQLCODE

(Read-only) The SQLCODE option holds the value returned by the Oracle RDBMS
after the most recently attempted SQL operation.

Return Value
INTEGER. 0 after a successful operation, -1 after an error, or 100 after all requested
rows have been fetched.

Syntax
SQLCODE

Notes

Signalling Errors
Oracle OLAP does not signal an error when SQLCODE becomes nonzero.
Therefore, your program must test the value of SQLCODE and take the appropriate
action. Since each SQL operation sets SQLCODE, you must test for errors after each
operation to avoid missing an error condition.

Specific Error Codes
You can write programs that look for a specific error code. For example, the most
common warning code is 100, which indicates that the cursor reached the end of its
table selection and the FETCH statement is complete.

Error Messages
After an error, the SQLERRM option typically contains an error message.

SQLCODE

22-52 Oracle OLAP DML Reference

Examples

Example 22–20 Using SQLCODE When Fetching Data

The following program fragment includes a WHILE loop that tests for the value of
SQLCODE and stops trying to fetch data when the end of the cursor's active set is
reached.

WHILE SQLCODE EQ 0
SQL FETCH cursor1 INTO :employee, :title

SQLERRM

SQL to STATVAL 22-53

SQLERRM

(Read-only) After the database reports an error and SQLCODE has a nonzero value,
the SQLERRM option usually contains text that explains the problem.

Data type
TEXT

Syntax
SQLERRM

Notes

Oracle Relational Manager
You can set the SQLMESSAGES option to YES to send the value of SQLERRM to the
current output file automatically.

Examples

Example 22–21 Displaying Error Messages

The following statements attempt to create a table and check for error messages
afterward.

SQL CREATE TABLE Products -
(Prod_ID CHAR(8) -
Prod_Name VARCHAR(30) -
Suggested_Price DECIMAL(10,2))

IF SQLCODE NE 0
SHOW SQLERRM

SQLERRM

22-54 Oracle OLAP DML Reference

Example 22–22 Sample Error Message

The following statement is incomplete and does not provide sufficient information
to create a table.

SQL CREATE TABLE Products

The Oracle RDBMS returns an error message such as the following.

ORA-00906: Missing left parenthesis.

SQLMESSAGES

SQL to STATVAL 22-55

SQLMESSAGES

The SQLMESSAGES option controls whether error messages are sent to the current
output file.

Data type
BOOLEAN

Syntax
SQLMESSAGES = {YES|NO}

Arguments

YES
Error messages are sent to the current output file.

NO
Error messages are only stored as values of SQLERRM. (Default)

Notes

Typical Usage
You will want to set SQLMESSAGES to YES while you are developing an
application so that you can diagnose errors quickly. When your application is in
use, you will probably want it to capture and handle errors in a different manner
with SQLMESSAGES set to NO.

SQRT

22-56 Oracle OLAP DML Reference

SQRT

The SQRT command computes the square root of an expression.

Return Value
DECIMAL

Syntax
SQRT(expression)

Arguments

expression
The numeric expression whose square root is to be computed.

Notes

Negative Expressions
When expression is negative and ROOTOFNEGATIVE is set to NO, an error occurs.
When expression is negative and ROOTOFNEGATIVE is set to YES, SQRT returns
the value NA.

Examples

Example 22–23 Calculating a Square Root

This example calculates the square root of 144. The statement

SHOW SQRT(144)

produces the following result.

12.00

STARTOF

SQL to STATVAL 22-57

STARTOF

The STARTOF function returns the starting date of a time period in a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR.

Return Value
DATE

Syntax
STARTOF(dwmqy-dimension)

Arguments

dwmqy-dimension
A dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. When you have
explicitly defined your own relation between dimensions of this type, you can use
the name of this time relation here.

Notes

How STARTOF Works
STARTOF returns the first date of the time period that is first in the current status
list of the dimension.

Phased or Multiple Periods
STARTOF is particularly useful when the dimension has a phase that differs from
the default or when the time periods are formed from multiple weeks or years. For
example, when the dimension has four-week time periods, the STARTOF function
identifies the starting date of a particular four-week period.

Important: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR.You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

STARTOF

22-58 Oracle OLAP DML Reference

Format of the Date
When you display the result returned by STARTOF, the date is formatted according
to the date template in the DATEFORMAT option. When the day of the week or the
name of the month is used in the date template, the day names specified in the
DAYNAMES option and the month names specified in the MONTHNAMES option
are used. You can use the result returned by STARTOF anywhere that a DATE value
is expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. Oracle OLAP
automatically converts the date to a text value, using the current template in the
DATEFORMAT option to format the text value. When you want to override the
current DATEFORMAT template, you can convert the date result to text by using
the CONVERT function with a date-format argument.

Retrieving the Last Valid Date of a Time Period
The ENDOF function, which returns the last date of a time period.

Examples

Example 22–24 Finding the Fiscal Year Starting Date

The following statements define a year dimension (called FYEAR, for a fiscal year
that ends in June), specify how the year will be formatted, add dimension values for
fiscal years 1996 through 1998, and produce a report of the starting date of each
fiscal year.

DEFINE fyear DIMENSION YEAR ENDING June
VNF 'FY<ff>'
MAINTAIN fyear ADD '30JUN96' '30JUN98'
REPORT W 14 STARTOF(fyear)

These statements produce the following output.

FYEAR STARTOF(FYEAR)
--------- --------------
FY96 01JUL95
FY97 01JUL96
FY98 01JUL97

STATALL

SQL to STATVAL 22-59

STATALL

 The STATALL function indicates whether default status is currently in effect for a
given dimension. That is, STATALL returns YES when STATLIST would return
ALL. Otherwise, STATALL returns NO.

Return Value
BOOLEAN

Syntax
STATALL(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension or dimension surrogate.

Notes

STATALL Compared to STATLIST
STATALL provides an alternative to running theSTATLIST program in order to
determine whether or not the status of a specified dimension is ALL.

Examples

Example 22–25 Using STATALL

With the following statement, you can see whether the status of the MONTH
dimension is ALL.

SHOW STATALL(month)

The return value is either YES or NO.

STATFIRST

22-60 Oracle OLAP DML Reference

STATFIRST

The STATFIRST function returns the first value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value
The data type returned by STATFIRST is either the data type of the dimension or
dimension surrogate value or an integer that indicates its position in the default
status list of the dimension.The dimension value returned by STATFIRST is
converted to a number or a text value, as appropriate to the context. See
Example 22–26, "Assigning value of STATFIRST to Variables of Different Types" on
page 22-60.

Syntax
STATFIRST(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

Examples

Example 22–26 Assigning value of STATFIRST to Variables of Different Types

The following statements

DEFINE textvar TEXT
textvar = STATFIRST(month)
SHOW textvar

produce this output.

Jun95

STATFIRST

SQL to STATVAL 22-61

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATFIRST(month)
SHOW INTVAR

produce this output.

6

Example 22–27 STATFIRST with KEEP

The following line from a program uses STATFIRST to limit month to all values in
the status up to a value that has been stored previously in a variable called
onemonth. The keyword KEEP means the new status is always a subset of the old
status.

LIMIT month KEEP STATFIRST(month) TO onemonth

STATFIRST is used here, rather than a particular month value, so that the limit can
work on any status list.

STATLAST

22-62 Oracle OLAP DML Reference

STATLAST

The STATLAST function returns the last value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value
The data type returned by STATLAST is either the data type of the dimension or
dimension surrogate value or an integer that indicates its position in the default
status list of the dimension. See "Automatic Data Conversion of Returned
Dimension Values" on page 22-62.

Syntax
STATLAST(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

Notes

Automatic Data Conversion of Returned Dimension Values
The dimension value returned by STATLAST is converted to a number or a text
value, as appropriate to the context. Suppose, for example, that jun95 is the sixth
month value but the last value in the current status list. The value of
STATLAST(month) can be assigned either to a text variable or a numeric variable.

The following statements

DEFINE textvar TEXT
TEXTVAR = statlast(MONTH)
SHOW textvar

produce this output.

Jun95

STATLAST

SQL to STATVAL 22-63

In contrast, these statements

DEFINE intvar INTEGER
INTVAR = STATLAST(month)
SHOW INTVAR

produce this output.

6

Examples

Example 22–28 Setting Status with STATLAST

The following line from a program uses STATLAST to limit month to the values in
the status, beginning with a month that has been stored previously in a variable
called onemonth, and ending with the last value in the status.

LIMIT month KEEP onemonth TO STATLAST(month)

STATLAST is used here, rather than a particular month value, so that the limit can
work on any status list.

STATLEN

22-64 Oracle OLAP DML Reference

STATLEN

The STATLEN function returns the number of values in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value
INTEGER

Syntax
STATLEN(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

Examples

Example 22–29 Counting Months in Status

The following statement sends to the current outfile the number of months in the
current status list of the month dimension.

SHOW STATLEN(month)

STATLIST

SQL to STATVAL 22-65

STATLIST

The STATLIST function returns a list of all values in the current status list of a
dimension or dimension surrogate, or in a valueset. You can format the list to a
specified width.

Return Value
STATLIST returns a list of TEXT values that contains either the dimension or
dimension surrogate values themselves (for example, Jan95) or numbers (for
example, 6) that represent the positions of the values in the default status list.

The returned values are in the form value TO value, for example, Jan96 TO Jun96.
When default status is in effect, it displays ALL. When the current status list or the
valueset is empty, it displays NULL.

Syntax
STATLIST(dimension [keyword] [width])

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

keyword
A keyword from Table 22–4, " Keywords for STATLIST". The keywords allow you to
specify the form in which you want the values in the current status list to appear.

Table 22–4 Keywords for STATLIST

Keyword Description

INTEGER Specifies that STATLIST should return the list of values in the
current status of a dimension in the form of the integer
positions of those values in the default status list of the
dimension.

TEXT Specifies that STATLIST should return the list of values in the
current status of a dimension in the form of the value names of
those values (Default).

STATLIST

22-66 Oracle OLAP DML Reference

width
An optional integer or integer expression that specifies the width of the list in
characters. When no width is specified, STATLIST uses the current value of the
LSIZE option. LSIZE has a default value of 80.

Notes

Compared to STATUS
The STATLIST function is employed by the STATUS command, which summarizes
the status of a dimension. Use STATLIST rather than STATUS when you want to
control the width or placement of the display.

Examples

Example 22–30 Producing a Status List with ROW

This example lists months in which total sales exceed $3,000,000.

These statements

LIMIT month TO TOTAL(sales, month) GE 3000000
ROW W 40 'Months with total sales over $3,000,000: '-

W 40 STATLIST(month, 40)

produce the following output.

Months with total sales over $3,000,000: Jun95 TO Sep95, May96 TO Sep96

Example 22–31 Producing a Status List with SHOW

The following STATLIST command formats dimension values to a 20-character
width.

LIMIT month TO 'Jan95' 'Mar95' 'May95' 'Jul96' 'Sep96' 'Nov96'
SHOW STATLIST(month 20)

These statements produce this output.

Jan95, Mar95, May95,
Jul96, Sep96, Nov96

STATLIST

SQL to STATVAL 22-67

This statement lists dimension positions.

SHOW STATLIST(month INTEGER 20)

This is the output.

1, 3, 5, 19, 21, 23

STATMAX

22-68 Oracle OLAP DML Reference

STATMAX

The STATMAX function returns the latest value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value
The data type returned by STATMAX is either the data type of the dimension or
dimension surrogate value or an integer that indicates its position in the default
status list of the dimension or surrogate. See "Automatic Conversion of Values
Returned by STATMAX" on page 22-68.

Syntax
STATMAX(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

Notes

Automatic Conversion of Values Returned by STATMAX
The value that STATMAX returns is converted to a number or a text value as
appropriate to the context. For example, suppose that the status of month is limited
to Jun95 to Dec95 and that Dec95 is the twelfth month in the default status list.
The value of STATMAX(month) can be assigned either to a text variable or a
numeric variable.

The following statements

DEFINE textvar TEXT
textvar = STATMAX(month)
SHOW textvar

produce this output.

Dec95

STATMAX

SQL to STATVAL 22-69

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATMAX(month)
SHOW intvar

produce this output.

12

Examples

Example 22–32 STATMAX Used in a Title

The following statements from a program use STATMAX to determine the latest of
the 10 months with the highest total sales.

LIMIT month TO BOTTOM 10 BASEDON TOTAL(sales, month)
SHOW JOINCHARS(STATMAX(month) ' is the latest month -
of the ten months with the lowest sales.')

SHOW JOINCHARS('the months range from ' STATMIN(month) ' to '-
STATMAX(month))

These statements produce the following sales report.

Dec96 is the latest month of the ten months with the lowest sales.
The months range from Jan95 to Dec96

When you used STATLAST instead of STATMAX, you could have produced a
different value, because the LIMIT command arranged the month values by
increasing sales rather than chronologically.

STATMIN

22-70 Oracle OLAP DML Reference

STATMIN

The STATMIN function returns the earliest value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value
Either a dimension or surrogate value or an integer that indicates the position of the
value in the default status list of the dimension or surrogate. The return value varies
depending on the dimension argument and the object receiving the return value. See
"Automatic Data Type Conversion of Values Returned by STATMIN" on page 22-70.

Syntax
STATMIN(dimension)

Arguments

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

Notes

Automatic Data Type Conversion of Values Returned by STATMIN
The dimension value that STATMIN returns is converted, if necessary, to a number
or a text value. For example, suppose the status of month is limited to Jun95 to
Dec95, and Jun95 is the sixth month value in the default status list. The value of
STATMIN(month) can be assigned either to a text variable, a numeric variable, or
DATE variable.

The following statements

DEFINE textvar TEXT
textvar = STATMIN(month)
SHOW textvar

produce this output.

Jun95

STATMIN

SQL to STATVAL 22-71

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATMIN(month)
SHOW intvar

produce this output.

6

Examples

Example 22–33 Using STATMIN in a Title

The following statements from a program use STATMIN to determine the earliest of
the 10 months with the highest total sales.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
SHOW JOINCHARS(STATMIN(month) ' is the earliest of the -
ten months with the highest sales.')

SHOW JOINCHARS('The months range from ' statmin(month) ' TO '-
statmax(month))

The preceding statements produce the following sales report.

May95 is the earliest of the ten months with the highest sales.
The months range from May95 to Sep96

Example 22–34 Comparing to STATFIRST

In the following example, you can see the difference between STATMIN and
STATFIRST, which returns the first value in the current status list.

Assume that you issue the following statements.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
REPORT WIDTH 20 TOTAL(sales, month)

STATMIN

22-72 Oracle OLAP DML Reference

When the proceeding statements execute, the following report is produced.

MONTH TOTAL(SALES, MONTH)
-------------- --------------------
Jul96 3,647,085.39
Jun96 3,458,438.30
Jul95 3,414,210.05
Aug96 3,246,601.97
Jun95 3,228,824.80
Sep96 3,215,883.93
May96 3,112,854.59
Aug95 3,044,694.29
Sep95 3,006,242.58
May95 2,908,539.45

Notice that the month values in this report are arranged by decreasing sales rather
than chronologically, and this is now the order in which they occur in the status list:

■ STATMIN gives the chronologically first value in the status (though it is
positionally last) as illustrated in the following statement and output.

SHOW STATMIN(month)
May95

■ STATFIRST gives the value that is positionally first in the status (though it is
chronologically eighth) as illustrated in the following statement and output.

SHOW STATFIRST(month)
Jul96

STATRANK

SQL to STATVAL 22-73

STATRANK

The STATRANK function returns the position of a dimension or dimension
surrogate value in the current status list or in a valueset.

Return Value
INTEGER

Syntax
STATRANK(dimension [value])

Arguments

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

value
The value you want to check, which is an appropriate data type for dimension. For
example, value can be a text expression for an ID or TEXT dimension, an integer for
an INTEGER dimension, a date for a time dimension, or a combination of values
enclosed by angle brackets for conjoint or concat dimensions. The value of a text
expression must have the same capitalization as the actual dimension value. When
you use a text expression, it must be a single-line value.

When you specify the value of a conjoint dimension, be sure to enclose the value in
angle brackets, and separate the base dimension values with a comma and space.
When you specify the value of a concat dimension, be sure to enclose the value in
angle brackets, and separate the base dimension name from the value with a colon
and space.

When you do not specify value, STATRANK returns the position of the current
value. When you specify the name of a valid dimension value that is not in the
current status list or in the valueset, STATRANK returns NA.

STATRANK

22-74 Oracle OLAP DML Reference

Examples

Example 22–35 Using STATRANK to Identify Position Numbers

Suppose you want to produce a report of the top five months by total sales,
displayed in order as a numbered list. You can use STATRANK to number each
month. Assume that you have written a report program with the following
defintion and contents.

DEFINE sales.rpt PROGRAM
PROGRAM
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
SHOW 'Top five months by total sales:'
for month

ROW WIDTH 4 JOINCHARS(STATRANK(month) '.') WIDTH 5 month
END

The report program produces the following output.

Top five months by total sales:
1. Jul96
2. Jun96
3. Jul95
4. Aug96
5. Jun95

After executing the sales.rpt program, you can use the SHOW command with
the STATRANK function to learn the position of a particular month within the top
five months by total sales.

The following statement

SHOW STATRANK(month Jun96)

produces this output.

2

Example 22–36 Using STATRANK When the Dimension Is a Conjoint Dimension

When the dimension that you specify is a conjoint dimension, then the entire value
must be enclosed in single quotes.

For example, suppose the analytic workspace already has a region dimension and
a product dimension. The region dimension values include East, Central,

STATRANK

SQL to STATVAL 22-75

and West. The product dimension values include Tents, Canoes, and
Racquets.

The following statements define a conjoint dimension, and add values to it.

DEFINE reg.prod DIMENSION <region product>
MAINTAIN reg.prod ADD <'East', 'Tents'> <'West', 'Canoes'>

To specify base positions, use a statement such as the following. Because the
position of East in the region dimension is 1 and the position of Tents in the
product dimension is 1, the following statement returns the position of the
corresponding reg.prod value.

SHOW STATRANK(reg.prod '<1, 1>')

1

To specify base text values, use a statement such as the following.

SHOW STATRANK(reg.prod '<\'East\', \'Tents\'>')

1

Example 22–37 Using STATRANK When the Dimension Is a Concat Dimension

When the dimension that you specify is a concat dimension, then the entire value
must be enclosed in single quotes. The following statement defines a concat
dimension named reg.prod.ccdim that has as its base dimensions region and
product.

DEFINE reg.prod.ccdim DIMENSION CONCAT(region product)

A report of reg.prod.ccdim returns the following.

REG.PROD.CCDIM

<Region: East>
<Region: Central>
<Region: West>
<Product: Tents>
<Product: Canoes>
<Product: Racquets>

STATRANK

22-76 Oracle OLAP DML Reference

To specify a base dimension position, use a statement such as the following. Because
the position of racquets in the product dimension is 3, the statement returns the
position in reg.prod.ccdim of the <product: Racquets> value.

SHOW STATRANK(reg.prod.ccdim '<product: 3>')

6

To specify base dimension text values, use a statement such as the following.

SHOW STATRANK(reg.prod.ccdim '<product: Tents>')

4

STATUS

SQL to STATVAL 22-77

STATUS

The STATUS program sends to the current outfile the status of one or more
dimensions, dimension surrogates, or valuesets, or the status of all dimensions in an
analytic workspace.

When you specify one or more dimension, dimension surrogate, or valueset names,
Oracle OLAP produces the status of only those objects. When you use the AW
keyword and specify the name of an attached analytic workspace, Oracle OLAP
produces the status of every dimension in that analytic workspace. When you do
not specify any argument, STATUS produces the current status of all the dimensions
(not dimension surrogates or valuesets) in the current analytic workspace.
However, STATUS does not display the status of the NAME dimension unless you
specify STATUS NAME.

Return Value
TEXT

Syntax
STATUS name... | AW [workspace-name]

Arguments

name
The name of a dimension or valueset in the analytic workspace. You can also specify
the name of a dimensioned analytic workspace object, such as a variable, formula,
relation, or named composite. In this case, the status of each dimension of name is
produced, unless the dimension is included in an unnamed composite.

AW [workspace-name]
Specifies that STATUS should produce the status of every dimension in
workspace-name; workspace-name is the name of an analytic workspace.

Notes

STATUS Output
When all values of a dimension are in the current status or in a valueset, in the
original order, STATUS displays ALL. STATUS shortens any series of three or more

STATUS

22-78 Oracle OLAP DML Reference

values in their original order to value-1 TO value-n. In the case of the dimension
NAME, however, STATUS does not shorten a series of three or more values.

Empty STATUS
When a dimension, dimension surrogate, or valueset has no values (for example, a
recently defined object for which you have not yet supplied values), STATUS
produces NULL for that dimension, dimension surrogate, or valueset. When you are
in an analytic workspace in which no objects have been defined, STATUS produces
the message, There are no dimensions in your current analytic
workspace.

Examples

Example 22–38 Discovering the Current Status of Certain Dimensions

Use STATUS to produce the current status of the dimensions month and district.

The following statement

STATUS month district

produces this output.

The current status of MONTH is:
Jan95 TO Dec96
The current status of DISTRICT is:
Boston, Chicago, Denver

Example 22–39 Discovering the Status of the Dimensions of a Variable

Use STATUS to produce the current status of all the dimensions of the variable
sales.

The following statement

STATUS sales

produces this output.

The current status of MONTH is:
Jan95 TO Dec96
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
Boston, Chicago, Denver

STATVAL

SQL to STATVAL 22-79

STATVAL

The STATVAL function returns the dimension value that corresponds to a specified
position in the current status list of a dimension or a dimension surrogate, or in a
valueset.

Return Value
The data type returned by STATVAL is either the data type of the dimension or
dimension surrogate value or an integer that indicates its position in the default
status list of the dimension. The dimension value that STATVAL returns is
converted to a number or a text value, as appropriate to the context. To ensure that
STATVAL returns an integer value, specify the INTEGER keyword. See
Example 22–41, "Ensuring that STATVAL Returns an INTEGER" on page 22-81.

Syntax
STATVAL(dimension position [INTEGER])

Arguments

dimension
A text expression whose value is the name of a dimension, a dimension surrogate,
or a valueset.

position
An integer or integer expression that specifies the position in the current status list
of a dimension or a valueset. When you specify a position that has no values,
STATVAL returns NA.

INTEGER
Specifies that STATVAL must return an integer that represents the position of the
dimension value in the default status list.

STATVAL

22-80 Oracle OLAP DML Reference

Notes

STATVAL in a FOR Loop
In a FOR loop over a dimension, the status is limited to a single dimension value for
each iteration of the loop. Therefore, STATVAL has a value only for position 1. For
other positions, STATVAL returns NA.

Examples

Example 22–40 STAVAL with Qualified Data References

Suppose you want to know the sales figures for the month ranked fifth among the
10 months with the highest total sales. After limiting month to the TOP 10, use
STATVAL in a qualified data reference to produce sales figures for the month
ranked fifth.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
REPORT month

These statements produce the following report.

MONTH

Jul96
Jun96
Jul95
Aug96
Jun95
Sep96
May96
Aug95
Sep95
MAY95

Using STATVAL in the following REPORT command produces a different report.

REPORT W 8 DOWN district HEADING -
JOINCHARS('Sales: 5th of Top Ten - ' STATVAL(month 5)) -
sales(month STATVAL(month 5))

STATVAL

SQL to STATVAL 22-81

This is the report produced by the preceding statement.

------------Sales: 5th of Top Ten - Jun95-------------
-----------------------PRODUCT------------------------

DISTRICT Tents Canoes Racquets Sportswear Footwear
-------- ---------- ---------- ---------- ---------- ----------
Boston 88,996.35 147,412.44 90,840.60 75,206.30 144,162.66
Atlanta 110,765.24 106,327.17 109,695.31 155,652.78 146,364.99
Chicago 70,908.96 108,039.05 100,030.29 104,900.66 148,386.81
Dallas 128,692.56 71,899.23 176,452.58 164,823.10 32,421.25
Denver 91,717.46 99,099.20 140,961.37 99,951.60 70,149.77
Seattle 113,806.48 143,037.62 54,926.87 57,739.03 75,457.04

Notice that the qualified data reference in the following statement means "sales for
the fifth month in the default status of month."

sales(month 5)

While the qualified data reference in the followng statement means "sales for the
fifth month in the current status of month."

sales(month STATVAL(month 5))

The following statements show the different values that are returned for a qualified
data reference of month and for STATVAL with month as an argument.

SHOW month(month 5)
SHOW STATVAL(month 5)

The preceding statements produce the following output.

May95
Jun95

Example 22–41 Ensuring that STATVAL Returns an INTEGER

Depending on the context, STATVAL may return an INTEGER value without your
specifying the INTEGER keyword.

The following statements

LIMIT month TO 'Jun95' TO 'Dec95'
SHOW STATVAL(month 3)

produce this output.

Aug95

STATVAL

22-82 Oracle OLAP DML Reference

With the INTEGER keyword,

SHOW STATVAL(month 3 INTEGER)

the following output is produced.

8

STDDEV to TRACKPRG 23-1

23
STDDEV to TRACKPRG

This chapter contains the following OLAP DML statements:

■ STDDEV

■ STDHDR

■ SUBSTR

■ SUBSTRB

■ SUBTOTAL

■ SWITCH

■ SYSDATE

■ SYSINFO

■ SYSTEM

■ TALLY

■ TAN

■ TANH

■ TCONVERT

■ TEMPSTAT

■ TEXTFILL

■ THIS_AW

■ THOUSANDSCHAR

■ TMARGIN

■ TO_CHAR

23-2 Oracle OLAP DML Reference

■ TO_DATE

■ TO_NCHAR

■ TO_NUMBER

■ TOD

■ TODAY

■ TOTAL

■ TRACEFILEUNIT

■ TRACKPRG

STDDEV

STDDEV to TRACKPRG 23-3

STDDEV

The STDDEV function calculates the standard deviation of the values of an
expression.

Return Value
DECIMAL

Syntax
STDDEV(expression [[STATUS] dimensions])

Arguments

expression
The numeric expression whose standard deviation is to be calculated.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the expression. (See the description of the dimensions
argumentw.) When you specify the STATUS keyword when this is not the case, then
an error results.

In cases where one or more of the dimensions of the result of the function are not
dimensions of the expression, the STATUS keyword may be required in order for the
function to be processed successfully, or the STATUS keyword may provide a
performance enhancement. See "The STATUS Keyword" on page 23-4.

dimensions
The dimensions of the result. By default, STDDEV returns a single value. When you
indicate one or more dimensions for the results, STDDEV calculates a standard
deviation along the specified dimension(s) and returns an array of values. Each
dimension must be either a dimension of expression or related to one of its
dimensions. When it is a related dimension, you can specify the name of the relation
instead of the dimension name. This enables you to choose the relation to use when
there is more than one.

STDDEV

23-4 Oracle OLAP DML Reference

Notes

NA Values
STDDEV is affected by the NASKIP option. When NASKIP is set to YES (the
default), STDDEV ignores NA values and returns the standard deviation of the
values that are not NA. When NASKIP is set to NO, STDDEV returns NA when any
value in the calculation is NA. When all data values for a calculation are NA,
STDDEV returns NA for either setting of NASKIP.

Calculating over a Time Dimension
When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimensions of type DAY, WEEK,
MONTH, QUARTER, or YEAR as a related dimension. Oracle OLAP uses the
implicit relation between the dimensions. To control the mapping of one
dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR to another (for
example, from weeks to months), you can define an explicit relation between the
two dimensions and specify the name of the relation as the dimension argument to
the STDDEV function.

For each time period in the related dimensions of type DAY, WEEK, MONTH,
QUARTER, and YEAR, Oracle OLAP calculates the standard deviation of the data
values of the source time periods that end in the target time period. This method is
used regardless of which dimension has the more aggregate time periods. To control
the way in which data is aggregated or allocated between the periods of two
dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, you can use the
TCONVERT function.

The STATUS Keyword
When one or more of the dimensions of the result of the function are not
dimensions of the expression, Oracle OLAP creates a temporary variable to use
while processing the function. When you specify the STATUS keyword, then Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
successfully execute the function. When the dimensions of the expression are
limited to a few values and are physically fragmented, you can specify the STATUS
keyword to improve the performance of the function.

When you use STDDEV with the STATUS keyword in an expression that requires
going outside of the status for results (for example, with the LEAD or LAG

STDDEV

STDDEV to TRACKPRG 23-5

functions or with a qualified data reference), the results outside of the status will be
returned as NA.

Examples

Example 23–1 Calculating the Standard Deviation of Monthly Sales

This example calculates the average number of tents sold during the first three
months of 1996, along with the standard deviation from that average.

LIMIT district TO ALL
LIMIT month TO 'Jan96' TO 'Mar96'
LIMIT product TO 'Tents'
REPORT HEADING 'Average' AVERAGE(units month) -

HEADING 'Stddev' STDDEV(JAN96 262.33 49.32
FEB96 247.83 57.37
MAR96 units month)

These statements produce the following output.

MONTH Average Stddev
-------------- ---------- ----------
Jan96 262.33 49.32
Feb96 247.83 57.37
Mar96 320.50 68.17

STDHDR

23-6 Oracle OLAP DML Reference

STDHDR

The STDHDR program generates the standard Oracle OLAP heading at the top of
every page of report output. The heading output is sent to the current outfile.

Syntax
STDHDR

Notes

The Standard Heading
The standard running page heading consists of two lines. The first line includes the
date and time on the left and the page number on the right. The second line is
blank.

Setting LSIZE
LSIZE must be set to a value of at least 29 before you use STDHDR. Otherwise the
heading will not look right. A value less than 26 produces an error. The default for
LSIZE is 80.

Creating a Custom Heading
When PAGING is set to YES, Oracle OLAP automatically inserts the standard
heading at the top of each page of output. To get a different heading you must write
a program that produces the heading and set the PAGEPRG option to the name of
that program. To return to the standard heading, set PAGEPRG to 'STDHDR'. (See
PAGEPRG for more information.)

Using STDHDR in a Heading Program
When you use PAGEPRG to specify a heading program, you can still use the
standard heading in your custom heading by executing STDHDR as part of your
program. Generally, you place STDHDR before the statements that produce your
customized heading. See Example 23–2, "Creating a Custom Heading for a Report"
on page 23-7.

STDHDR

STDDEV to TRACKPRG 23-7

The STDHDR Program
The STDHDR program uses the HEADING and BITAND commands, as follows.

HEADING L W 8 <CONVERT(TODAY, TEXT,'<DD><MTXTL><YY>') TOD> -
R W LSIZE-25 'Page ' L W 6 D 0 PAGENUM

BLANK

Examples

Example 23–2 Creating a Custom Heading for a Report

Suppose you would like each page of your report to include the standard header
and also the customized title "Annual Sales Report." To accomplish this, define a
small PAGEPRG program called report.head.

DEFINE report.head PROGRAM
PROGRAM
CALL STDHDR
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
END

In your report program, set PAGING to YES, and specify the preceding program to
execute after every page break by setting the PAGEPRG option to 'REPORT.HEAD'
(see the PAGEPRG option for further information). When you run the report, each
page will contain the following combination of the standard heading and your
custom heading.

18Jan97 15:05:16 PAGE 1

Annual Sales Report

SUBSTR

23-8 Oracle OLAP DML Reference

SUBSTR

The SUBSTR function returns a portion of string, beginning at a specified character
position, and a specified number of characters long. SUBSTR calculates lengths
using characters as defined by the input character set.

To retrieve a portion of string based on bytes, use SUBSTRB.

Return Value
The return value is the same data type as string.

Syntax
SUBSTR (string , position [, substring_length])

Arguments

string
A text expression that is the base string from which the substring is created.

position
The position at which the first character of the returned string begins.

■ When position is 0 (zero), then it is treated as 1.

■ When position is positive, then the function counts from the beginning of string
to find the first character.

■ When position is negative, then the function counts backward from the end of
string.

substring_length
The number of characters in the returned string. When you do not specify a value
for this argument, then the function returns all characters to the end of string. When
you specify a value that is less than 1, the function returns NA.

SUBSTR

STDDEV to TRACKPRG 23-9

Examples
The following example returns several specified substrings of "abcdefg".

SHOW SUBSTR('abcdefg',3,4)
cdef

SHOW SUBSTR('abcdefg',-5,4)
cdef

SUBSTRB

23-10 Oracle OLAP DML Reference

SUBSTRB

The SUBSTRB function returns a portion of string, beginning at a specified byte
position, and a specified number of bytes long.

To retrieve a portion of string based on characters, use SUBSTR.

Return Value
The return value is the same data type as string.

Syntax
SUBSTRB (string , position [, substring_length])

Arguments

string
A text expression that is the base string from which the substring is created.

position
The position at which the first byte of the returned string begins.

■ When position is 0 (zero), then it is treated as 1.

■ When position is positive, then the function counts from the beginning of string
to find the first byte.

■ When position is negative, then the function counts backward from the end of
string.

substring_length
The number of bytes in the returned string. When you do not specify a value for
this argument, then the function returns all bytes to the end of string. When you
specify a value that is less than 1, the function returns NA.

Examples
Assume a double-byte database character set.

SHOW SUBSTRB('abcdefg',5,4.2)
cd

SUBTOTAL

STDDEV to TRACKPRG 23-11

SUBTOTAL

The SUBTOTAL function returns the value of one of the subtotals accumulated in a
report. You normally use the SUBTOTAL function in a ROW command to include a
subtotal or grand total in the report. Since Oracle OLAP maintains 32 running totals
for each column, you can include up to 32 levels of subtotals

Return Value
DECIMAL

Syntax
SUBTOTAL(n)

Arguments

n
An integer value that indicates the level of a running total for each numeric column
in a report. For example, a "Total" may be a level 1 subtotal and a "Grand Total" may
be a level 2 subtotal. Because it is possible to have up to 32 levels of running totals
in a column, n must be an integer between 1 and 32. SUBTOTAL returns the value
of this subtotal for the current column and then resets the value of subtotal n to
zero.

Notes

Resetting Subtotals Automatically
When you use the SUBTOTAL function in a ROW command to include a subtotal of
the current column, the subtotal at that level is reset to zero.

Resetting Subtotals with ZEROTOTAL
When you use the ROW command to produce a report, you can use the
ZEROTOTAL command to reset any subtotal of any column to zero. Normally, you

Note: In the REPORT command, use the GRANDTOTALS and
SUBTOTALS keywords to include rows of grand totals and
subtotals.

SUBTOTAL

23-12 Oracle OLAP DML Reference

should do this at the beginning of a report program to make sure all totals begin at
zero.

Referring to Subtotals
The numbers by which the 32 subtotals are referenced (1 to 32) have no intrinsic
significance. All the subtotals are the same until you reference them.

NA Values
SUBTOTAL ignores NA values. When all values are NA, SUBTOTAL returns zero.

Decimal Overflow
When a "decimal overflow" condition occurs while subtotals are being accumulated
(that is, an out-of-range value is generated), all subtotals for the affected column are
set to NA and processing continues when the DECIMALOVERFLOW option is set to
YES. The subtotals for the column will continue to be NA until they are reset by a
ZEROTOTAL command. When DECIMALOVERFLOW is NO, an error occurs when
a decimal overflow condition occurs.

Examples

Example 23–3 Calculating Subtotals and Grand Totals in a Report

In a sales report, suppose you want to show a subtotal for each region. You also
want to see a grand total of all sales at the end of the report. You can use
SUBTOTAL(1) to produce the subtotal for each region. This subtotal is reset to 0
each time you use it, so it provides a separate subtotal for each region. At the end of

SUBTOTAL

STDDEV to TRACKPRG 23-13

the report you can use SUBTOTAL(2) to produce the grand total. Since you have
not yet used it in your report, it holds a total of the sales figures for all regions.

LIMIT month TO FIRST 3
LIMIT region TO ALL
ZEROTOTAL ALL
FOR region

DO
ROW region
LIMIT DISTRICT TO region
FOR district

DO
ROW INDENT 5 district ACROSS month: sales
DOEND

ROW INDENT 5 'Total' ACROSS month: OVER '-' SUBTOTAL(1)
BLANK
DOEND

ROW 'Grand Total' ACROSS month: OVER '=' SUBTOTAL(2)

The program produces the following output.

East
Boston 32,153.52 32,536.30 43,062.75
Atlanta 40,674.20 44,236.55 51,227.06

---------- ---------- ----------
Total 72,827.72 76,772.85 94,289.81

Central
Chicago 29,098.94 29,010.20 39,540.89
Dallas 47,747.98 50,166.81 67,075.44

---------- ---------- ----------
Total 76,846.92 79,177.01 106,616.33

West
Denver 36,494.25 33,658.24 45,303.93
Seattle 43,568.02 41,191.28 51,547.23

---------- ---------- ----------
Total 80,062.27 74,849.52 96,851.16

========== ========== ==========
Grand Total 229,736.91 230,799.38 297,757.30

SWITCH

23-14 Oracle OLAP DML Reference

SWITCH

The SWITCH command provides a multipath branch in a program. The specific
path taken during program execution depends on the value of the control
expression that is specified with SWITCH. You can use SWITCH only within
programs.

Syntax
SWITCH control-expression

DO

CASE case-expression1:

statement 1.1

...

statement 1.n

BREAK

CASE case-expression2:

statement 2.1

...

statement 2.n

BREAK

[DEFAULT:

statement n.1

...

statement n.n

BREAK]

DOEND

SWITCH

STDDEV to TRACKPRG 23-15

Arguments

control-expression
The control-expression argument determines the case label to which program control
is transferred by the SWITCH command. When the SWITCH command is executed,
control-expression is evaluated and compared with each of the CASE label
expressions in the program. When a match is found, control is transferred to that
case label. When no match is found, control transfers to the DEFAULT label (if
present) or to the statement following the DOEND for SWITCH.

CASE case-expression1, CASE case-expression2, ...
The CASE labels whose expressions (case-expression1, case-expression2, ...) specify the
different cases you want to handle. When control-expression matches case-expression,
program control is transferred to that CASE label. The CASE label expressions are
evaluated at the time the program is run, in the order they appear, until a match is
found.

The DEFAULT label is optional. It identifies a special case to which control should
be transferred when none of the case-expressions matches the control-expression. When
you omit DEFAULT, and no match is found, control is transferred to the statement
that follows the DOEND for SWITCH.

All the CASE labels (including DEFAULT) for a SWITCH command must be
included within a DO/DOEND bracket immediately following the SWITCH
command. Because case-expression is a label, it must be followed by a colon (:). The
statements to be executed in a given case must follow the label. Normally, the last
statement in a case should be BREAK, which transfers control from SWITCH to the
statement that follows the DOEND for SWITCH.

When you omit BREAK (or RETURN, SIGNAL, and so on) at the end of a case, the
program will go on to execute the statements for the next case as well. Normally,
you do not want this to happen. However, when you plan to execute the same
statements for two cases, you can use this to your advantage by placing both CASE
labels before the statements.

Notes

Control- and Case-Expressions
The SWITCH control-expression can have any data type, as can the case-expressions.
The various case-expressions can have different data types. When you specify the
name of a dimension (as a literal, non-quoted text expression) as the
control-expression or case-expression, Oracle OLAP uses the first value in the

SWITCH

23-16 Oracle OLAP DML Reference

dimension's current status list, not the dimension name, as it searches for a match.
When the dimension has no values in the status list, Oracle OLAP uses the value
NA. An NA control-expression will match the first NA case-expression.

Ampersand Substitution
Avoid using ampersand substitution in a SWITCH control-expression or in a CASE
label case-expression. Ampersands will produce unpredictable, and usually
undesirable, results.

Multiple SWITCH Commands
You can include more than one SWITCH command in a program. You can also nest
SWITCH commands. When a program contains multiple SWITCH commands, each
can have its own DEFAULT label, even when the SWITCH commands are nested.

Transferring Control
While BREAK is commonly used to transfer program control within a SWITCH
command, it is not the only such statement you can use. You can also use
statements such as CONTINUE, GOTO, RETURN, and SIGNAL. Keep in mind that
you can use CONTINUE only when the SWITCH command is within a FOR or
WHILE loop. See also the entries for these statements and for DO ... DOEND.

Examples

Example 23–4 Multipath Branching Using SWITCH in a Program

The following program lines produce one of several types of reports. Before the
SWITCH command, the program determines which type of report the user wants
and places the value Market or Finance in the variable userchoice. The
program switches to the case label that matches that name and produces the report.

SWITCH

STDDEV to TRACKPRG 23-17

When the report finishes, the BREAK command transfers control to the cleanup
section after the DOEND.

SWITCH userchoice
DO

CASE 'Market':
...
BREAK

CASE 'Finance':
...
BREAK

DEFAULT:
...
BREAK

DOEND
cleanup:
...

SYSDATE

23-18 Oracle OLAP DML Reference

SYSDATE

The SYSDATE function returns the current date and time. The format of the date is
controlled by the NLS_DATE_FORMAT option. The default datetime format
(DD-MM-RR) does not display the time.

Return Value
DATETIME

Syntax
SYSDATE

Examples

Example 23–5 Displaying the Current Date

The following statement:

SHOW SYSDATE

displays the current date:

08-Sep-00

SYSINFO

STDDEV to TRACKPRG 23-19

SYSINFO

The SYSINFO function provides information about the Oracle user ID for the
current session.

Return Value
TEXT

Syntax
SYSINFO (keyword)

where keyword is one of the following:

USER
ROLES
PROFILES
HOSTNAME
OSUSER
INSTNAME
PID
PROGNAME
CHOSTNAME
COSUSER
TERMNAME

Arguments

USER
Returns a TEXT value that indicates the user ID under which the Oracle Database
session is running.

ROLES
Returns a multiline TEXT value that lists the roles that apply to the user ID of the
session.

PROFILES
Returns a multiline TEXT value that lists the profiles that apply to the user ID of the
session.

SYSINFO

23-20 Oracle OLAP DML Reference

OSUSER
Returns TEXT value that indicates the operating system username under which the
Oracle Database server is running.

INSTNAME
Returns a TEXT value that is the instance name of the Oracle Database server.

PID
Returns a TEXT value that is the operating system id number of your Oracle
Database session.

HOSTNAME
Returns a TEXT value that is the hostname of the Oracle Database server.

PROGNAME
Returns a TEXT value that is identifies the client which is connecting to the Oracle
Database.

CHOSTNAME
Returns a TEXT value that is the host name of the client.

COSUSER
Returns a TEXT value that is the operating system user name of the client.

TERMNAME
Returns a TEXT value that is the terminal name of the client.

Notes

USERID Option and SYSINFO(USER) Function
The value of USERID is also the value that SYSINFO(USER) returns.

Examples

Example 23–6 Obtaining the User ID

You can use the SYSINFO function to obtain the user of the current session.

SHOW SYSINFO(USER)

produces output like the following.

Scott

SYSTEM

STDDEV to TRACKPRG 23-21

SYSTEM

The SYSTEM function identifies the platform on which Oracle OLAP is running.

Data type
TEXT

Syntax
SYSTEM

Notes

Relevance of the Platform
Because Oracle OLAP is incorporated in the Oracle Database, the operating system
on which it is running should not be an important factor in its behavior.

Examples

Example 23–7 Displaying the Platform

Issuing the following SYSTEM statement on Intel NT returns the value NTX86.

SHOW SYSTEM

NTX86

Note: All references to external files are made through directory
objects, which are not platform specific

TALLY

23-22 Oracle OLAP DML Reference

TALLY

The TALLY function counts the number of values of a dimension that correspond to
each value of one or more related dimensions.

Return Value
INTEGER

Syntax
TALLY(dimension [[STATUS] related-dimensions])

Arguments

dimension
A dimension whose values are to be counted. When you specify related-dimensions,
TALLY counts the number of values of dimension that correspond to each value of a
single related dimension, or to each combination of values of two or more related
dimensions. When you do not specify related-dimensions, TALLY counts the number
of values in the dimension. Only values in the current status of dimension are
counted.

STATUS
May be specified when using one or more related dimensions for the results of the
function. (See the description of the related-dimensions argument.) When you specify
the STATUS keyword without specifying related-dimensions, Oracle OLAP produces
an error.

When you use related dimensions, the STATUS keyword may be required in order
for Oracle OLAP to successfully process the function, or the STATUS keyword may
provide a performance enhancement. See "TALLY with STATUS" on page 23-23.

related-dimensions
One or more related dimensions for the results. These must be related to dimension.
Alternatively, you can specify the name of the relation instead of the dimension
name. This enables you to choose which relation is used when there is more than
one. When no related-dimensions are specified, TALLY returns the total number of
values in the current status of dimension.

TALLY

STDDEV to TRACKPRG 23-23

Notes

TALLY with NA
TALLY returns NA for any related-dimension position that has no dimension values
corresponding to it.

TALLY with Time Dimensions
When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR as a related-dimension. Oracle OLAP uses the implicit
relation between the dimensions. To control the mapping of one DAY, WEEK,
MONTH, QUARTER, or YEAR dimension to another (for example, from weeks to
months), you can define an explicit relation between the two dimensions and
specify the name of the relation as the related-dimension argument to the TALLY
function.

For each time period in the related dimension, Oracle OLAP tallies all the source
time periods that end in the target time period. This method is used regardless of
which dimension has the more aggregate time periods.

TALLY with STATUS
When you use TALLY with related dimensions, Oracle OLAP creates a temporary
variable to use while processing the function. When you specify the STATUS
keyword, then Oracle OLAP uses the current status instead of the default status of
the related dimensions for calculating the size of this temporary variable.

When the size of the temporary variable for the results of the function would exceed
2 gigabytes, you must specify the STATUS keyword in order for Oracle OLAP to
successfully execute the function. When dimension is limited to a few values that are
physically fragmented, you can specify the STATUS keyword to improve the
performance of the function.

When you use TALLY with the STATUS keyword in an expression that requires
going outside of the status for results (for example, with the LEAD or LAG
functions or with a qualified data reference), the results outside of the status will be
returned as NA.

TALLY

23-24 Oracle OLAP DML Reference

Examples

Example 23–8 Breaking Out TALLY Results

Here you use TALLY to determine how many products are produced by each
division. The division.product relation records the division to which each
product belongs. The following is a report of division.product.

PRODUCT DIVISION.PRODUCT

Tents Camping
Canoes Camping
Racquets Sporting
Sportswear Clothing
Footwear Clothing

The following statement includes TALLY to present the number of products
produced by each division.

REPORT HEADING 'Products' TALLY(product, division)

The statement produces this report.

DIVISION Products

Camping 2
Sporting 1
Clothing 2

TAN

STDDEV to TRACKPRG 23-25

TAN

The TAN function calculates the tangent of an angle expression.

Return Value
DECIMAL

Syntax
TAN(expression)

Arguments

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 23–9 Calculating the Tangent of an Angle

This example calculates the tangent of an angle of 1 radian. The statements

DECIMALS = 5
SHOW TAN(1)

produce the following result.

1.55741

TANH

23-26 Oracle OLAP DML Reference

TANH

The TANH function calculates the hyperbolic tangent of an angle expression.

Return Value
DECIMAL

Syntax
TANH(expression)

Arguments

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 23–10 Calculating the Hyperbolic Tangent of an Angle

This example calculates the hyperbolic tangent of an angle of 1 radian. The
statements

DECIMALS = 5
SHOW TANH(1)

produce the following result.

0.76159

TCONVERT

STDDEV to TRACKPRG 23-27

TCONVERT

The TCONVERT function converts time-series data from one dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR to another dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR. You can specify an aggregation method or
an allocation method to use in the conversion.

Return Value
The value returned by the TCONVERT function depends on the type of conversion
you specify and the type of the dimension being converted.

Syntax
TCONVERT(expression time-dimension method [method])

where:

method is one of following syntax:

SUM|AVERAGE|LAST [BY PERIOD|BY DAY] [STATUS|NOSTATUS]

SPLIT|REPEAT|INTERPOLATE [BY PERIOD|BY DAY]

Arguments

expression
An expression whose values you want to convert. Expression must be dimensioned
by a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. This
dimension is referred to as the source dimension. Usually expression is numeric, but
with some conversion methods you can also convert text data. See "Converting Text
Data" on page 23-33.

time-dimension
The DAY, WEEK, MONTH, QUARTER, or YEAR dimension to which you want to
convert the expression. This dimension is referred to as the target dimension.

Important: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR.You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

TCONVERT

23-28 Oracle OLAP DML Reference

method
The method to use for converting data from the source dimension to the target
dimension. You can specify an aggregation method or an allocation method:

■ Aggregation methods are SUM, AVERAGE, and LAST. They are typically used
to convert data from smaller time periods to larger time periods (for example,
months to years).

■ Allocation methods are SPLIT, REPEAT, and INTERPOLATE. They are typically
used to convert data from larger to smaller time periods (for example, years to
quarters). The allocation methods all use the full default status of the source
dimension to determine the periods that contribute to the allocation.

Except for a case in which the source dimension and target dimension have
overlapping periods of equal length (as with a calendar year and a fiscal year), you
can specify both an aggregation method and an allocation method. See "Compatible
Aggregation and Allocation Methods" on page 23-31 and "Using Both Aggregation
and Allocation" on page 23-32.

For all methods, results are calculated for the values in the current status of the
target dimension.

The results you obtain depend on the method you specify and on whether you
convert data between dimensions with periods of equal length or unequal length.
See "Using Both Aggregation and Allocation" on page 23-32, "Overlapping Periods
of Equal Length" on page 23-32, and "Substituting a Compatible Method" on
page 23-33.

SUM [BY PERIOD]
Aggregates data to a target period by totaling the data of the contributing source
periods. For each target period, SUM PERIOD returns the total for all the source
periods that end in the target period. SUM uses the implicit relation between the
source and target dimensions.

SUM BY DAY
Weights each source value according to the portion of target days it represents. For
each target period, SUM BY DAY multiplies each contributing source period value
by a weighting factor that has this form where source-days-in-target is the Number of

TCONVERT

STDDEV to TRACKPRG 23-29

source-period days that actually fall in target period and total-days-in-period is the
total number of days in source period:

source-days-in-target / total-days-in-period

SUM BY DAY then returns the total of these weighted source values. When you use
SUM BY DAY, the value of an individual source period may be apportioned across
adjacent target periods.

For example, suppose you convert weekly data to monthly data. When three days
of a week fall in January and four fall in February, then SUM BY DAY adds 3/7 of
the data for that week to the January total and 4/7 to the February total. In contrast,
SUM BY PERIOD adds the entire data value for the week to the February total
(since the week ends in February).

As another example, suppose you want to convert calendar year data to a fiscal year
ending in June. Calendar year 1996 (Cal96) is the only calendar year that ends in
fiscal year 1997 (Fy97). The SUM BY PERIOD method assigns the value for Cal96
to Fy97. In contrast, SUM BY DAY apportions the Cal96 value to the fiscal years
Fy96 and Fy97, according to the number of calendar days that fall in each fiscal
year. Of the 366 days of Cal96, 182 days (January 1 - June 30) fall in Fy96 and 184
days (July 1 - December 31) fall in Fy97. Therefore, for the CAL96 data,
SUM BY DAY uses a weighting factor of 182/366 for Fy96 and a factor of
184/366 for Fy97.

AVERAGE [BY PERIOD]
Aggregates data to a target period by averaging the data of the contributing source
periods. For each target period, AVERAGE BY PERIOD adds up the data from all
the source periods that end within the target period and divides this total by the
number of source periods. AVERAGE BY PERIOD uses the implicit relation
between the two time dimensions.

AVERAGE BY DAY
Weights the value of each contributing source period by the portion of target days it
represents. For each target period, AVERAGE BY DAY multiplies the value of each
source period by the number of days of that source period that actually fall within
the target period. The average is then calculated by adding these weighted source
values and dividing by the total number of days in the target period. When you use
AVERAGE BY DAY, the value of a single source period may be apportioned across
adjacent target periods.

TCONVERT

23-30 Oracle OLAP DML Reference

LAST [BY PERIOD]
For each target period, LAST BY PERIOD returns the data value from the last source
period that ends within the target period. It uses the implicit relation between the
source and target dimensions.

LAST BY DAY
Has the same effect as LAST BY PERIOD, provided you are converting data from
smaller periods to larger periods. See "Substituting a Compatible Method" on
page 23-33.

STATUS
Indicates that the current status of the source dimension is used. It is the default for
the SUM and AVERAGE methods.

NOSTATUS
Indicates that the full default status of the source dimension is used. It is the default
for the LAST method.

SPLIT [BY PERIOD]
Allocates data to target periods by splitting the data from the source periods.
SPLIT BY PERIOD divides a source value evenly among the target periods that
end in that source period. SPLIT BY PERIOD uses the implicit relation between the
two DAY, WEEK, MONTH, QUARTER, or YEAR dimensions.

SPLIT BY DAY
Weights each source value according to the portion of target days it represents. For
each target period, SPLIT BY DAY multiplies each contributing source period value
by a weighting factor that has this form where target-days-in-source is the Number of
target-period days that actually fall in source period and total-period-days is the total
number of days in source period:

target-days-in-source / total-period-days

SPLIT BY DAY then returns the total of these weighted source values. When you
use SPLIT BY DAY, the value of an individual source period may be apportioned
across adjacent target periods.

REPEAT
For each target period, REPEAT returns the value of a source period. The target
periods are the periods that end within the source period. REPEAT uses the implicit
relation between the source and target dimensions. REPEAT BY DAY has the same
effect as REPEAT BY PERIOD, provided you are converting data from larger time

TCONVERT

STDDEV to TRACKPRG 23-31

periods to smaller time periods. See "Substituting a Compatible Method" on
page 23-33.

INTERPOLATE [BY PERIOD]
The INTERPOLATE method allocates data to target periods by first calculating the
difference between the values of the current and previous source periods, and then
splitting the result incrementally over the target periods. INTERPOLATE divides
the difference between the current and previous source period values by the
number of target periods that end in the source period, and it increments each
target period by this amount.

INTERPOLATE BY DAY
For each target period, adds the value of the previous source period to a value that
is calculated as follows where end-days is the number of days from end of previous
source period to end of current target period and period-days is the total number of
days in current source period:

(end-days / period-days) * (current-source-value - previous-source-value)

When a target period has days that fall in more than one source period, a similar
calculation is made for each source period.

Notes

Dimensions of the Result
The results returned by TCONVERT are dimensioned by the target DAY, WEEK,
MONTH, QUARTER, or YEAR dimension and by all of expression dimensions that
are not DAY, WEEK, MONTH, QUARTER, or YEAR dimensions.

Status Used with Allocation
The STATUS and NOSTATUS keywords have no effect with the allocation methods.
The allocation methods always use the full default status of the source dimension to
determine the contributing periods.

Compatible Aggregation and Allocation Methods
Except for a case in which the source dimension and the target dimension have
overlapping periods of equal length, you can specify both an aggregation method
and an allocation method. However, the two methods must be compatible.

TCONVERT

23-32 Oracle OLAP DML Reference

Table 23–1, " Compatible Aggregation and Allocation Methods" shows the
compatible methods.

When you specify both an aggregation method and an allocation method, you can
specify BY PERIOD or BY DAY with either method. When you specify BY PERIOD
(explicitly or by default) for one method and BY DAY for the other method, BY DAY
takes precedence.

Using Both Aggregation and Allocation
When you specify both an aggregation method and a compatible allocation method,
Oracle OLAP handles this as follows:

■ When you convert data from smaller periods to larger periods, Oracle OLAP
uses the aggregation method (with BY DAY, if specified for either method).

■ When you convert data from larger periods to smaller periods, Oracle OLAP
uses the allocation method (with BY DAY, if specified for either method).

■ When you convert data between dimensions that have non-overlapping periods
of equal length, such as a quarter ending in March and a quarter ending in June,
the results of the aggregation and allocation methods will be identical.

Overlapping Periods of Equal Length
When you convert data between two dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR that have overlapping periods of equal length, such as a
calendar year and a fiscal year, or a quarter ending in March and a quarter ending
in April, you must specify either an aggregation method or allocation method, but
not both. For these dimensions, the compatible aggregation and allocation methods
may yield different results.

Table 23–1 Compatible Aggregation and Allocation Methods

Aggregation Compatible Allocation

SUM SPLIT

AVERAGE REPEAT

LAST INTERPOLATE

TCONVERT

STDDEV to TRACKPRG 23-33

For example, when you convert data from a calendar year dimension to a fiscal year
dimension that ends in June, the SUM and SPLIT methods will return different
results:

■ The SUM method totals up the data from the source periods that end in the
target period. Since the calendar year 1996 ends in fiscal year 1997, the SUM
method assigns the value for calendar year 1996 to fiscal year 1997.

■ The SPLIT method allocates a source data value to the target periods that end in
the source period. Since the fiscal year 1996 ends in calendar year 1996, the
SPLIT method assigns the value for calendar year 1996 to fiscal year 1996.

Substituting a Compatible Method
When you specify a single conversion method, and you use an aggregation method
to convert data from a larger period to a smaller period (for example, from months
to weeks) Oracle OLAP automatically uses the compatible allocation method in
place of the specified aggregation method. Similarly, when you use an allocation
method to convert data from a smaller period to a larger period, Oracle OLAP
automatically uses the compatible aggregation method. See "Compatible
Aggregation and Allocation Methods" on page 23-31.

Data Type of the Result
When possible, TCONVERT returns results that have the same data type as
expression. When expression is DECIMAL, the results are always DECIMAL. When
expression is INTEGER, the results are INTEGER when the required calculations do
not involve division. For example, when two dimensions are aligned (that is, they
have the same phase and are based on the same periods, such as a calendar year
dimension and a quarter dimension ending in December), the result is INTEGER
when you use the REPEAT method to convert an INTEGER expression from larger
periods to smaller periods. Similarly, the result is INTEGER when you use the SUM
or LAST method to convert the expression from smaller to larger periods.

Converting Text Data
You can also use TCONVERT to convert the values of a text expression when no
numeric calculations are needed for the conversion. For aligned dimensions, for
example, you can use the LAST method to convert text values from smaller periods
to larger periods, and you can use the REPEAT method to convert text values from
larger periods to smaller periods. You can also use the LAST and REPEAT methods
to convert text data between dimensions that have periods of equal length. When
you attempt to convert a text expression with a method that requires numeric
calculations, you will receive an error message.

TCONVERT

23-34 Oracle OLAP DML Reference

Methods for Financial Data
When you work with financial data, you can use an appropriate conversion method
for each type of data. Table 23–2, " Examples of Conversion Methods for Different
Types of Financial Data" gives some examples.

The Effect of NASKIP
TCONVERT is affected by the NASKIP option. When NASKIP is set to NO,
TCONVERT returns an NA value for any target period that receives contributions
from a source period with an NA value.

Examples

Example 23–11 Splitting Data Across Quarters

This example shows the effects of using the SPLIT method and the SPLIT BY DAY
method to allocate an annual budget revenue figure of $120,000 across the quarters
of the year 1996. An existing year dimension is the source dimension and an
existing quarter dimension is the target dimension.

The following statements

DEFINE budget.revenue DECIMAL <year>
budget.revenue(year 'Yr96') = 120000
LIMIT quarter TO year 'Yr96'
REPORT W 12 HEADING 'Split Evenly' -

TCONVERT(budget.revenue quarter SPLIT) -
W 12 HEADING 'Split by Day' -
TCONVERT(budget.revenue quarter Split by day)

Table 23–2 Examples of Conversion Methods for Different Types of Financial Data

Type of Financial Data Conversion Conversion Method

Revenue or expenses Month to year SUM

Stock quotations Day to quarter AVERAGE

Balance sheet items Month to quarter LAST

Quarterly tax payment Year to quarter SPLIT BY PERIOD

Money supply Year to quarter INTERPOLATE

TCONVERT

STDDEV to TRACKPRG 23-35

produce this report.

QUARTER Split Evenly Split by Day
-------------- ------------ ------------
Q1.96 30,000.00 29,836.07
Q2.96 30,000.00 29,836.07
Q3.96 30,000.00 30,163.93
Q4.96 30,000.00 30,163.93

Example 23–12 Aggregating Weekly Data to Monthly Using TCONVERT

This example aggregates weekly data to monthly data. First, define a week
dimension named week and add weeks that include the dates January 1, 1996 and
June 30, 1996 (Oracle OLAP automatically adds the intervening weeks).

DEFINE week DIMENSION WEEK
MAINTAIN week ADD '01Jan96' '30Jun96'

Next, define a variable named weekvar, dimensioned by week, and assign a value
of 7 to each week.

DEFINE weekvar DECIMAL <week>
weekvar = 7

The following statements show that December 31, 1995 is the beginning date of the
first week for which weekvar contains non-NA data and that July 6, 1996 is the
ending date of the final week for which weekvar contains non-NA data.

SHOW BEGINDATE(weekvar)
SHOW ENDDATE(weekvar)

The statements produce this output.

31Dec95
06Jul96

With these beginning and ending dates, when the data is converted to monthly
data, it will be aggregated over the months Dec95 through Jul96. The following
statements show the effects of using the SUM method and the SUM BY DAY
method to convert the weekly weekvar data to monthly data.

LIMIT month TO 'Jan96' TO 'Jul96'
REPORT HEADING 'Sum' TCONVERT(weekvar month SUM) -

HEADING 'Sum by Day' -
TCONVERT(weekvar month SUM BY day)

TCONVERT

23-36 Oracle OLAP DML Reference

These statements produce the following report.

MONTH Sum Sum by Day
-------------- ---------- ----------
Jan96 28.00 31.00
Feb96 28.00 29.00
Mar96 35.00 31.00
Apr96 28.00 30.00
May96 28.00 31.00
Jun96 35.00 30.00
Jul96 7.00 6.00

TEMPSTAT

STDDEV to TRACKPRG 23-37

TEMPSTAT

The TEMPSTAT command limits the dimension you are looping over, inside a FOR
loop or inside a loop that is generated by the REPORTcommand. Status is restored
after the statement following TEMPSTAT. When a DO ... DOEND phrase follows
TEMPSTAT, status is restored when the matched DOEND or a BREAK or GOTO
command is encountered. You can use TEMPSTAT only within programs.

Syntax
TEMPSTAT dimension...

statement block

Arguments

dimension(s)
One or more dimensions whose status you would like to temporarily change inside
a FOR loop or an automatic loop that is generated by the REPORTstatement.

statement block
One or more statements that change the status of the dimension. To execute more
than one statement under the temporary status, enclose them between DO ...
DOEND brackets.

Notes

Nesting
You can nest TEMPSTAT commands, one within another, and you can repeat the
same dimension within the nested TEMPSTAT commands.

Placement of TEMPSTAT
When you want to be able to change the status of a dimension while REPORT is
looping over it, you must place the TEMPSTAT command inside that REPORT loop
rather than before the REPORT command. For example, suppose you have written a
user-defined function called monthly_sales, which changes the status of month,
and monthly_sales is part of a REPORT command that is looping over month. In
this case the TEMPSTAT command must be inside the monthly_sales function in
order for a status change to take place. This is true even when the REPORT

TEMPSTAT

23-38 Oracle OLAP DML Reference

command is given within TEMPSTAT DO/DOEND brackets within a FOR loop
over MONTH.

POP and POPLEVEL Commands
Within the DO/DOEND brackets of a TEMPSTAT statement block, you cannot use
the POP command to pop a dimension that is protected by TEMPSTAT on the block
-- unless the matching PUSH command is also within the block.

Similarly, within the DO/DOEND brackets of a TEMPSTAT statement block, you
cannot use the POPLEVEL command to pop a dimension that is protected by
TEMPSTAT on the block -- unless one of two conditions is met: the matching
PUSHLEVEL command is also within the block, or the only pushes on the
dimension since the PUSHLEVEL command was given are also within the block.

Use Only LIMIT and CONTEXT Commands
Within the DO/DOEND brackets of a TEMPSTAT command, the only way to
change the status of a dimension within a loop over that dimension is with the
LIMIT or CONTEXT APPLY commands. (See LIMIT command and CONTEXT
command for details.) You cannot change the status of the dimension using POP or
POPLEVEL. You also cannot perform any operations that would add values to the
dimension, because adding values also changes the status of the dimension to ALL.
For example, MAINTAIN ADD, FILEREAD APPEND, and IMPORT (with new
values in the EIF file) add values to a dimension.

Examples

TEMPSTAT in a FOR Loop
The following program excerpt uses the TEMPSTAT command to limit the market
dimension within the FOR market loop.

FOR market
DO
TEMPSTAT market
DO
LIMIT market TO CHILDREN USING market.market
REPORT market
DOEND

DOEND

TEXTFILL

STDDEV to TRACKPRG 23-39

TEXTFILL

The TEXTFILL function reformats a text value to fit compactly into lines of a
specified width, regardless of its current format. TEXTFILL is commonly used to
reformat text with an unnecessarily ragged right margin or with a bad line width.

Return Value
TEXT or NTEXT

Syntax
TEXTFILL(text-expression, width)

Arguments

text-expression
A text expression to be reformatted to the specified width, regardless of the current
format of the data. When you specify a TEXT expression, the return value is TEXT.
When you specify an NTEXT expression, the return value is NTEXT.

width
The desired width of the reformatted data, entered as an integer value from
1 to 132.

Notes

How TEXTFILL Works
TEXTFILL joins lines of text while reformatting, whereas ROW and REPORT
reformat without joining lines. See Example 23–13, "The Effects of TEXTFILL on
ROW" on page 23-40.

Width Greater Than the Column Width
In a structured report, TEXTFILL reformats text-expression to the width you specify,
as long as that width is less than the width of the report column. When width is
greater than the column width, it is ignored by TEXTFILL, and the expression is
reformatted to the width of the column.

TEXTFILL

23-40 Oracle OLAP DML Reference

How Words are Handled
TEXTFILL fits as many words of text-expression as it can onto one line, placing just
one space between words and removing extra spaces between words. When a word
is longer than width, TEXTFILL breaks it across two or more lines. In this case there
may be extra spaces at the end of lines.

Permanent Reformatting
Rather than repeatedly reformatting a specific text variable, you can permanently
format it by assigning the result of the TEXTFILL function to the same text variable,
as shown in the following example.

textvar = TEXTFILL(textvar 12)

Examples

Example 23–13 The Effects of TEXTFILL on ROW

The following example shows the effect of TEXTFILL on a ROW command, using
the nicely formatted text variable textvar.

The statement

SHOW textvar

produces the following output.

You can use the following options to control the format of
your display.

BMARGIN Controls the bottom margin.
COLWIDTH Controls column width.
COMMAS Controls the use of commas in numbers.
DECIMALS Controls number of decimal places in numbers.
LSIZE Controls the maximum length of a line.
NASPELL Controls the spelling of NA values in output.

TEXTFILL

STDDEV to TRACKPRG 23-41

The ROW command

ROW W 50 textvar

produces the following output.

You can use the following options to control the
format of your
display.
BMARGIN Controls the bottom margin.
COLWIDTH Controls column width.
COMMAS Controls the use of commas in
numbers.
DECIMALS Controls the number of decimal
places in numbers.
LSIZE Controls the maximum length of a
line.
NASPELL Controls the spelling of NA values
in output.

By contrast, the ROW command with TEXTFILL

ROW W 50 TEXTFILL(textvar, 50)

produces the following output.

You can use the following options to control the
format of your display. BMARGIN Controls the
bottom margin. COLWIDTH Controls column width.
COMMAS Controls the use of commas in numbers.
DECIMALS Controls the number of decimal places in
numbers. LSIZE Controls the maximum length of a
line. NASPELL Controls the spelling of NA values
in output.

THIS_AW

23-42 Oracle OLAP DML Reference

THIS_AW

(Read-only)The THIS_AW option is the value of the workspace name that Oracle
OLAP uses when it replaces occurrences of the THIS_AW keyword to create a
qualified object name.

Data type
TEXT

Syntax
THIS_AW

THOUSANDSCHAR

STDDEV to TRACKPRG 23-43

THOUSANDSCHAR

(Read-only) The THOUSANDSCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option discussed in NLS Options on page 18-54.

Data type
ID

Syntax
THOUSANDSCHAR

Notes

Format for Numeric Input
The value of THOUSANDSCHAR only affects the way Oracle OLAP formats
numbers in output. It does not affect the way numbers should be formatted for
input.

The Decimal Marker
The DECIMALCHAR option lets you check the value of the decimal marker.

Examples

Example 23–14 Displaying the Decimal and Thousands Markers

The following statements show the DECIMALCHAR and THOUSANDSCHAR
values. Assume that you issue the following statements.

SHOW THOUSANDSCHAR
SHOW DECIMALCHAR

Assume that a comma is displayed as the marker for THOUSANDSCHAR and that
a period is displayed as the marker for DECIMALCHAR. With these values, the
following SHOW statement would produce the output shown below it.

SHOW TOTAL(sales)
63,181,743.50

TMARGIN

23-44 Oracle OLAP DML Reference

TMARGIN

The TMARGIN option defines the number of blank lines for the top margin of
output pages, above the running page heading. TMARGIN is meaningful only
when PAGING is set to YES and only for output from statements such as REPORT
and DESCRIBE. The TMARGIN option is usually set in the initialization section of
report programs.

Data type
INTEGER

Syntax
TMARGIN = n

Arguments

n
An integer expression that specifies the number of lines that you want to set aside
for the top margin in a report. The default is 2.

Notes

Producing the Top Margin Lines
The top margin lines are produced before the program that is defined by PAGEPRG,
if any, is run.

Output to the Default Outfile
When you set TMARGIN for the default outfile, the new value remains in effect
until you reset it, regardless of intervening OUTFILE commands that send output to
a file. That is, the value of TMARGIN is automatically saved for the default outfile.

Output to a File
To set TMARGIN for a file, first make the file your current outfile by specifying its
name in an OUTFILE command, then set TMARGIN to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE command to
direct output to a different outfile. When you direct output to a different outfile,
TMARGIN returns to its default value of 2 for the file.

TMARGIN

STDDEV to TRACKPRG 23-45

Examples

Example 23–15 Setting the Top Margin of a Report

In this example, you want to save space when you produce a long report, so you set
a small top margin of 1 line. Here is the statement that you would include in the
initialization section of your report program.

TMARGIN = 1

TO_CHAR

23-46 Oracle OLAP DML Reference

TO_CHAR

The TO_CHAR function converts a date, number, or NTEXT expression to a TEXT
expression in a specified format. This function is typically used to format output
data.

Return Value
TEXT

Syntax
TO_CHAR(datetime-exp, [datetime-fmt,] [option setting])

or

TO_CHAR(num-exp, [num-fmt,] [nlsparams])

or

TO_CHAR(ntext-exp)

Arguments

datetime-exp
A DATETIME expression to be converted to TEXT.

datetime-fmt
A text expression that identifies a date format model. This model specifies how the
conversion from a DATETIME data type to TEXT should be performed. For
information about date format models, see the Oracle Database SQL Reference and the
Oracle Database Globalization Support Guide. The default value of datetime-fmt is
controlled by the NLS_DATE_FORMAT option.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language that you want datetime-exp to be translated into. See
Example 23–18, "Displaying the Current Date and Time in Spanish" on page 23-49.
Do not use options that set other options. See "Specifying Options" on page 23-52.

TO_CHAR

STDDEV to TRACKPRG 23-47

num-exp
A numeric expression to be converted to TEXT.

num-fmt
A text expression that identifies a number format model. This model specifies how
the conversion from a numerical data type (NUMBER, INTEGER,
SHORTINTEGER, LONGINTEGER, DECIMAL, SHORTDECIMAL) to TEXT should
be performed. For information about number format models, see the Oracle Database
SQL Reference and the Oracle Database Globalization Support Guide.

The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS.

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in num-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol

NLS_ISO_CURRENCY territory

NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).

These parameters override the default values specified by the NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options. (See NLS
Options on page 18-54.)

ntext-exp
An NTEXT expression to be converted to TEXT. A conversion from NTEXT to TEXT
can result in data loss when the NTEXT value cannot be represented in the database
character set.

TO_CHAR

23-48 Oracle OLAP DML Reference

Notes

Similarity to SQL TO_CHAR Function
The OLAP DML TO_CHAR function has the same functionality as the SQL
TO_CHAR function. For more information about the SQL TO_CHAR function, see
Oracle Database SQL Reference.

Support for Numerical Data Types
The TO_CHAR function converts INTEGER, SHORTINTEGER, LONGINTEGER,
DECIMAL, and SHORTDECIMAL values to NUMBER before converting them to
TEXT. Thus, TO_CHAR converts NUMBER values faster than other numerical data
types.

Output Date Format
A converted date has the format specified by the NLS_DATE_FORMAT option.

Rounding
All number format models cause the number to be rounded to the specified number
of significant digits. Table 23–3, " Possible Effects of Rounding" identifies some of
the effects of rounding.

Specifying Options
Options that set other options should not be used in this statement. For example, do
not set NLS_DATE_LANGUAGE or NLS_TERRITORY. Set
NLS_DATE_LANGUAGE instead.

While TO_CHAR will save and restore the current setting of the specified option so
that it has a new value only for the duration of the statement, TO_CHAR cannot
save and restore any side effects of changing that option. For example,

Table 23–3 Possible Effects of Rounding

IF num-exp THEN the return value

has more significant digits to the left of the
decimal place than are specified in the format,

appears as pound signs (#).

is a very large positive value that cannot be
represented in the specified format,

is a tilde (~).

is a very small negative value that cannot be
represented in the specified format,

is a negative sign followed by a tilde (-~).

TO_CHAR

STDDEV to TRACKPRG 23-49

NLS_TERRITORY controls the value of NLS_DATE_FORMAT,
NLS_NUMERIC_CHARACTERS, NLS_CURRENCY, NLS_CALENDAR, and other
options. (See NLS Options on page 18-54.) When you change the value of
NLS_TERRITORY in a call to TO_CHAR, all of these options will be reset to their
territory-appropriate default values twice: once when NLS_TERRITORY is set to its
new value for the duration of the TO_CHAR command, and again when the saved
value of NLS_TERRITORY is restored.

Simple Data Type Conversion
For simple data type conversion, use CONVERT.

Examples

Example 23–16 Converting a Date to CHAR

This statement converts today's date and specifies the format.

SHOW TO_CHAR(SYSDATE, 'Month DD, YYYY HH24:MI:SS')

The specified date format allows the time to be displayed along with the date.

November 30, 2000 10:01:29

Example 23–17 Converting a Numerical Value to Text

This statement converts a number to text and specifies a space as the decimal
marker and a period as the thousands group marker.

SHOW TO_CHAR(1013.50, NA, NLS_NUMERIC_CHARACTERS ' .')

The value 1013.50 now appears like this:

1.013 50

Example 23–18 Displaying the Current Date and Time in Spanish

The following statements set the default language to Spanish and specify a new
date format.

NLS_DATE_LANGUAGE = 'spanish'
NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'

TO_CHAR

23-50 Oracle OLAP DML Reference

The following statement:

SHOW TO_CHAR(SYSDATE)

displays the current date and time in Spanish:

Viernes : Diciembre 01, 2000 08:21:17 AM

The NLS_DATE_LANGUAGE option changes the language for the duration of the
statement. The following statement:

SHOW TO_CHAR(SYSDATE, NA, NLS_DATE_LANGUAGE 'german')

Displays the date and time in German:

Freitag : Dezember 01, 2000 08:26:00 AM

TO_DATE

STDDEV to TRACKPRG 23-51

TO_DATE

The TO_DATE function converts a formatted TEXT or NTEXT expression to a
DATETIME value. This function is typically used to convert the formatted date
output of one application (which includes information such as month, day, and year
in any order and any language, and separators such as slashes, dashes, or spaces) so
that it can be used as input to another application.

Return Value
DATETIME

Syntax
TO_DATE(text-exp, [fmt,] [option setting])

Arguments

text-exp
The text expression that contains a date to be converted. The expression can have
the TEXT or NTEXT data type. A conversion from NTEXT can result in an incorrect
result when the NTEXT value cannot be interpreted as a date.

fmt
A text expression that identifies a date format model. This model specifies how the
conversion from text to DATE should be performed. For information about date
format models, see the Oracle Database SQL Reference and the Oracle Database
Globalization Support Guide.

The default value of fmt is the value of NLS_DATE_FORMAT.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language of text-exp when it is different from the session
language. See Example 23–20, "Specifying a Default Language and a Date Format"
on page 23-53. Do not use options that set other options. See "Specifying Options"
on page 23-52.

TO_DATE

23-52 Oracle OLAP DML Reference

Notes

Similarity to SQL TO_DATE Function
The OLAP DML TO_DATE function has the same functionality as the SQL
TO_DATE function. For more information about the SQL TO_DATE function, see
Oracle Database SQL Reference.

Capitalization
Capital letters in words, abbreviation, or Roman numerals in a format element
produce corresponding capitalization in the return value. For example, the format
element DAY produces MONDAY, Day produces Monday, and day produces monday.

Output Format
The date value generated by TO_DATE has the format specified by the
NLS_DATE_FORMAT option.

Default Date Format Values
The values of some format elements are determined by the value of the
NLS_TERRITORY option. The language used for months and days is controlled by
NLS_DATE_LANGUAGE.

Specifying Options
Options that set other options should not be used in this statement. For example, do
not set NLS_LANGUAGE or NLS_TERRITORY. Set NLS_DATE_LANGUAGE
instead. (See NLS Options on page 18-54 for more information on these options.)

While TO_DATE will save and restore the current setting of the specified option so
that it has a new value only for the duration of the statement, TO_DATE cannot
save and restore any side effects of changing that option. For example,
NLS_TERRITORY controls the value of NLS_DATE_FORMAT,
NLS_NUMERIC_CHARACTERS, NLS_CURRENCY, NLS_CALENDAR , and other
options. When you change the value of NLS_TERRITORY in a call to TO_DATE, all
of these options will be reset to their territory-appropriate default values twice: once
when NLS_TERRITORY is set to its new value for the duration of the TO_DATE
command, and again when the saved value of NLS_TERRITORY is restored.

Unrecognized Dates
When TO_DATE cannot construct a value with a valid DATE value using fmt, it
returns an error. For example, when an alphanumeric character appears in text-exp
where fmt indicates a punctuation character, then an error results.

TO_DATE

STDDEV to TRACKPRG 23-53

Simple Data Type Conversion
To convert dates with minimal formatting requirements, use CONVERT.

Examples

Example 23–19 Converting Text Values to DATE Values

The following statement converts January 15, 2002, 11:00 A.M. to the
default date format of 15JAN02, and stores that value in a DATE variable named
bonusdate.

bonusdate = TO_DATE('January 15, 2002, 11:00 A.M.', -
'Month dd, YYYY, HH:MI A.M.')

Example 23–20 Specifying a Default Language and a Date Format

The following statements set the default language to Spanish and specify a new
date format. The NLS_DATE_LANGUAGE option, when used in the TO_DATE
function, allows the American month name to be translated.

NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'
NLS_DATE_LANGUAGE = 'spanish'
SHOW TO_DATE('November 15, 2001', 'Month dd, yyyy', -

NLS_DATE_LANGUAGE 'american')

The date is translated from American to Spanish and displayed in the new date
format.

Jueves : Noviembre 15, 2001 12:00:00 AM

TO_NCHAR

23-54 Oracle OLAP DML Reference

TO_NCHAR

The TO_NCHAR function converts a TEXT expression, date, or number to NTEXT
in a specified format. This function is typically used to format output data.

Return Value
NTEXT

Syntax
TO_NCHAR(text-exp)

or

TO_NCHAR(datetime-exp, [datetime-fmt,] [option setting]

or

TO_NCHAR(num-exp, [num-fmt,] [nlsparams]

Arguments

text-exp
A TEXT expression to be converted to NTEXT.

datetime-exp
A DATETIME expression to be converted to NTEXT.

datetime-fmt
A text expression that identifies a date format model. This model specifies how the
conversion from a DATETIME data type to NTEXT should be performed. For
information about date format models, see the Oracle Database SQL Reference and the
Oracle Database Globalization Support Guide. The default value of datetime-fmt is
controlled by the NLS_DATE_FORMAT option.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language that you want datetime-exp to be translated into. See
Example 23–23, "Specifying the Default Language and a Date Format" on

TO_NCHAR

STDDEV to TRACKPRG 23-55

page 23-57. Do not use options that set other options. See "Specifying Options" on
page 23-56.

num-exp
A numeric expression to be converted to NTEXT.

num-fmt
A text expression that identifies a number format model. This model specifies how
the conversion from a numerical data type (NUMBER, INTEGER,
SHORTINTEGER, LONGINTEGER, DECIMAL, SHORTDECIMAL) to TEXT should
be performed. For information about number format models, see the Oracle Database
SQL Reference and the Oracle Database Globalization Support Guide.

The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS option.

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in num-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol

NLS_ISO_CURRENCY territory

NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).

These parameters override the default values specified by the NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options. (See NLS
Options on page 18-54.)

TO_NCHAR

23-56 Oracle OLAP DML Reference

Notes

NTEXT Always UTF8 Unicode
The return value of the TO_NCHAR function has the NTEXT data type, which is
always in UTF8 Unicode. This encoding might be different from the NCHAR
character set of the database, which can be UTF16.

Similarity to SQL TO_NCHAR Function
The OLAP DML TO_NCHAR function has functionality similar to that of the SQL
TO_NCHAR function. For more information about the SQL TO_NCHAR function, see
Oracle Database SQL Reference.

Support for Numerical Data Types
The TO_NCHAR function converts INTEGER, SHORTINTEGER, LONGINTEGER,
DECIMAL, and SHORTDECIMAL values to NUMBER before converting them to
NTEXT. Thus, TO_NCHAR converts NUMBER values faster than other numerical
data types.

Output Date Format
A converted date has the format specified by the NLS_DATE_FORMAT option. (See
NLS Options on page 18-54.)

Rounding
All number format models cause the number to be rounded to the specified number
of significant digits. Table 23–3, " Possible Effects of Rounding" on page 23-48
identifies some of the effects of rounding.

Specifying Options
Options that set other options should not be used in this command. For example, do
not set NLS_LANGUAGE or NLS_TERRITORY. Set NLS_DATE_LANGUAGE
instead.

While TO_NCHAR will save and restore the current setting of the specified option
so that it has a new value only for the duration of the command, TO_NCHAR
cannot save and restore any side effects of changing that option. For example,
NLS_TERRITORY controls the value of NLS_DATE_FORMATE,
NLS_NUMERIC_CHARACTERS, NLS_CURRENCY, NLS_CALENDAR, and other
options. When you change the value of NLS_TERRITORY in a call to TO_NCHAR,
all of these options will be reset to their territory-appropriate default values twice:
once when NLS_TERRITORY is set to its new value for the duration of the

TO_NCHAR

STDDEV to TRACKPRG 23-57

TO_NCHAR command, and again when the saved value of NLS_TERRITORY is
restored.

Simple Data Type Conversion
For simple data type conversion, use CONVERT.

Examples

Example 23–21 Date Conversion

This statement converts today's date and specifies the format.

SHOW TO_NCHAR(SYSDATE, 'Month DD, YYYY HH24:MI:SS')

The specified date format allows the time to be displayed along with the date.

November 30, 2000 10:01:29

Example 23–22 Converting Numerical Data to NTEXT Data

This statement converts a number to NTEXT and specifies a space as the decimal
marker and a period as the thousands group marker.

SHOW TO_NCHAR(1013.50, NA, NLS_NUMERIC_CHARACTERS ' .')

The value 1013.50 now appears like this:

1.013 50

Example 23–23 Specifying the Default Language and a Date Format

The following statements set the default language to Spanish and specify a new
date format.

NLS_DATE_LANGUAGE = 'spanish'
NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'

The following statement:

SHOW TO_NCHAR(SYSDATE)

Displays the current date and time in Spanish:

Viernes : Diciembre 01, 2000 08:21:17 AM

TO_NCHAR

23-58 Oracle OLAP DML Reference

The NLS_DATE_LANGUAGE option changes the language for the duration of the
statement. The following statement

SHOW TO_NCHAR(SYSDATE, NA, NLS_DATE_LANGUAGE 'german')

displays the date and time in German:

Freitag : Dezember 01, 2000 08:26:00 AM

TO_NUMBER

STDDEV to TRACKPRG 23-59

TO_NUMBER

The TO_NUMBER function converts a formatted TEXT or NTEXT expression to a
number. This function is typically used to convert the formatted numerical output
of one application (which includes currency symbols, decimal markers, thousands
group markers, and so forth) so that it can be used as input to another application.

Return Value
NUMBER. Negative return values contain a leading negative sign, and positive
values contain a leading space, unless the format model contains the MI, S, or PR
format elements.

Syntax
TO_NUMBER(text-exp, [fmt,] [nlsparams])

Arguments

text-exp
A text expression that contains a number to be converted. The expression can have
the TEXT or NTEXT data type. A conversion from NTEXT can result in an incorrect
result when the NTEXT value cannot be interpreted as a number.

fmt
A text expression that identifies a number format model. This model specifies how
the conversion to NUMBER should be performed. For information about number
format models, see the Oracle Database SQL Reference and the Oracle Database
Globalization Support Guide.

The default number format identifies a period (.) as the decimal marker and does
not recognize any other symbol.

TO_NUMBER

23-60 Oracle OLAP DML Reference

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in text-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol

NLS_ISO_CURRENCY territory

NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).

These parameters override the default values specified by th NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options. Refer to NLS
Options on page 18-54 for additional information.

Notes

Similarity to SQL TO_NUMBER Function
The OLAP DML TO_NUMBER function has the same functionality as the SQL
TO_NUMBER function. For more information about the SQL TO_NUMBER
function, see Oracle Database SQL Reference.

Default Number Format Values
The values of some formats are determined by the value of NLS_TERRITORY. (See
NLS Options on page 18-54.) .

Rounding
All number format models cause the number to be rounded to the specified number
of significant digits. Table 23–3, " Possible Effects of Rounding" on page 23-48
identifies some of the effects of rounding.

TO_NUMBER

STDDEV to TRACKPRG 23-61

Simple Data Type Conversion
To convert text with minimal formatting requirements, use CONVERT.

Examples

Example 23–24 Converting Text Data to Decimal Data

The following statements convert a text string to a DECIMAL data type by
identifying the local currency symbol (L), the thousands group separator (G) and the
decimal marker (D). The NLS_NUMERIC_CHARACTERS option identifies the
characters used for the G and D format, since they are different from the current
setting for the session.

DEFINE money VARIABLE DECIMAL
money = TO_NUMBER('$94 567,00', 'L999G999D00', NLS_NUMERIC_CHARACTERS ', ')
SHOW money

The output of this statement is:

94,567.00

TOD

23-62 Oracle OLAP DML Reference

TOD

The TOD function returns the current time of day in the form hh:mm:ss using a
24-hour format.

Return Value
ID

Syntax
TOD

Examples

Example 23–25 Displaying the Current Time

The following statement sends the current time of day to the current outfile.

show tod

This statement produces the following output.

17:30:46

TODAY

STDDEV to TRACKPRG 23-63

TODAY

The TODAY function returns the current date as a DATE value.

Return Value
DATE

Syntax
TODAY

Notes

Format of the Date
When you display the result returned by TODAY, the value has the format specified
by the date template in the DATEFORMAT option. When the day of the week or the
name of the month is used in the date template, TODAY uses the day names
specified in the DAYNAMES option and the month names specified in the
MONTHNAMES option. You can use the result returned by TODAY anywhere that
a DATE value is expected.

DATE-to-TEXT Conversion
You can also use the result where a text value is expected. TODAY automatically
converts the date to a text value, using the current template in the DATEFORMAT
option to format the text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Examples

Example 23–26 Displaying Today's Date

The following statements send the current date in DATE format to the current
outfile.

DATEFORMAT = '<wtextl> <mtextl> <d>, <yyyy>'
SHOW TODAY

TODAY

23-64 Oracle OLAP DML Reference

When the current date is January 15, 1996, then these statements produce the
following output.

Monday January 15, 1996

Example 23–27 Calculating a Date Using the TODAY Function

The following statement calculates the date 60 days from today.

SHOW TODAY + 60

When the current date is January 15, 1996, then this statement produces the
following output.

Friday March 15, 1996

TOTAL

STDDEV to TRACKPRG 23-65

TOTAL

The TOTAL function calculates the total of the values of an expression.

Return Value
The data type of the expression. It can be INTEGER, LONGINT, or DECIMAL.

Syntax
TOTAL(expression [[STATUS] dimensions])

Arguments

expression
The expression to be totalled.

STATUS
Can be specified when one or more of the dimensions of the result of the function
are not dimensions of the expression. (See the description of the dimensions
argument.) When you specify the STATUS keyword when this is not the case,
Oracle OLAP produces an error.

When one or more of the dimensions of the result of the function are not
dimensions of the expression, Oracle OLAP creates a temporary variable to use
while processing the function. When you specify the STATUS keyword, Oracle
OLAP uses the current status instead of the default status of the related dimensions
for calculating the size of this temporary variable. In this situation, the STATUS
keyword might be required in order for Oracle OLAP to process the function
successfully, or the STATUS keyword might provide a performance enhancement:

■ When the size of the temporary variable for the results of the function would
exceed the maximum size for an Oracle OLAP variable, you must specify the
STATUS keyword in order for Oracle OLAP to execute the function successfully.

■ When the dimensions of the expression are limited to a few values and are
physically fragmented, you can specify the STATUS keyword to improve the
performance of the function.

When you use TOTAL with the STATUS keyword for an expression that requires
going outside of the status for results (for example, with the LEAD or LAG

TOTAL

23-66 Oracle OLAP DML Reference

functions or with a qualified data reference), the results outside of the status will be
returned as NA.

dimensions
The dimensions of the result. By default, TOTAL returns a single value. When you
indicate one or more dimensions for the results, TOTAL calculates a total for each
value of the dimensions that are specified and returns an array of values. Each
dimension must be either a dimension of expression or related to one of its
dimensions. When it is a related dimension, you can specify the name of the relation
instead of the dimension name. This enables you to choose which relation is used
when there is more than one.

Notes

NA Values
TOTAL is affected by the NASKIP option. When NASKIP is set to YES (the default),
TOTAL ignores NA values and returns the sum of the values that are not NA. When
NASKIP is set to NO, TOTAL returns NA when any value in the calculation is NA.
When all data values for a calculation are NA, TOTAL returns NA for either setting of
NASKIP.

Aggregating to Higher Levels
When you specify related dimensions, TOTAL adds the values of an array across one
or more of its dimensions to obtain an array with fewer dimensions. Because of this,
TOTAL is useful for aggregating data from a lower level of detail to a higher level.

Totaling over a Time Dimension
When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH, QUARTER,
or YEAR dimension as a related dimension. Oracle OLAP uses the implicit relation
between the dimensions. To control the mapping of one DAY, WEEK, MONTH,
QUARTER, or YEAR dimension to another (for example, from weeks to months),
you can define an explicit relation between the two dimensions and specify the
name of the relation as the dimension argument to the TOTAL function.

For each time period in the related dimension, Oracle OLAP totals the data for all
the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods. To control the
way in which data is aggregated or allocated between the periods of two time
dimensions, you can use the TCONVERT function.

TOTAL

STDDEV to TRACKPRG 23-67

Multiple Relations in a TOTAL Function
When you break out the total by a related dimension, you are changing the
dimensionality of the expression, so Oracle OLAP expects values based on this new
dimensionality. It chooses the relation that holds values of that dimension.

When there is more than one relation that holds values of the expected dimension,
Oracle OLAP uses the one that was defined first. When there is no relation in which
the related dimension is the one expected, Oracle OLAP looks for a relation that is
dimensioned by the expected dimension.

For example, assume that there are two relations between district and region,
as follows.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD The region each district belongs to

DEFINE DISTRICT.REGION RELATION DISTRICT <REGION>
LD The primary district in each region

When a workspace had the two relations described earlier and you specified the
following TOTAL function, Oracle OLAP would use the relation
region.district by default, because it holds values of the specified dimension.

REPORT TOTAL(sales region)

Examples

Example 23–28 Totaling Sales over All Months

Suppose you would like to see the total sportswear sales for all months for each
district. Use the TOTAL function to calculate the total sales. To see a total for each
district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
REPORT W 15 HEADING 'Total Sales' TOTAL(sales district)

TOTAL

23-68 Oracle OLAP DML Reference

The preceding statements produce the following output.

DISTRICT Total Sales
-------------- ---------------
Boston 1,659,609.90
Atlanta 3,628,616.62
Chicago 2,296,631.81
Dallas 3,893,829.30
Denver 2,133,425.29
Seattle 1,298,215.59

TRACEFILEUNIT

STDDEV to TRACKPRG 23-69

TRACEFILEUNIT

(Read-only) The TRACEFILEUNIT option records the unit number of the Oracle
trace file. This is a writable output file that collects information about the activity in
the Oracle session.

Syntax
TRACEFILEUNIT

Notes

Use of the TRACEFILEUNIT Value
The unit number stored in the TRACEFILEUNIT option can be useful because you
might want to set the POUTFILEUNIT option to its value. You might also set the
OUTFILE or DBGOUTFILE options to this number.

Examples

Example 23–29 Setting POUTFILEUNIT to the Oracle Trace File

The following code sets the POUTFILEUNIT option to the value of
TRACEFILEUNIT option.

POUTFILE = TRACEFILEUNIT

TRACKPRG

23-70 Oracle OLAP DML Reference

TRACKPRG

The TRACKPRG command tracks the performance cost of every program that runs
while you have tracking turned on. To get meaningful information from
TRACKPRG, your session must be the only one running in Oracle OLAP.
Furthermore, the accuracy of the results of TRACKPRG decreases as more processes
are started on the host computer.

You turn TRACKPRG on, run the programs you want to track, and use TRACKPRG
again to obtain the results. Each time each program is executed, TRACKPRG stores
its cost data as one entry in its tracking list. When you execute another program, a
new entry is added to the list, which is maintained in Oracle OLAP memory (free
storage).

A program or line of code is considered to have a high performance cost when it
takes a long time to execute. Use TRACKPRG to identify programs that have
relatively high costs and then use the MONITOR command to identify the
time-consuming lines within those programs. When you wish, you can use both
commands simultaneously.

Syntax
TRACKPRG {ON|OFF|file|INIT}

where file is:

FILE [APPEND] [file-id]

Arguments

ON
Starts looking for programs to be run so it can gather their timing data in a tracking
list. (Continues the current tracking process without interruption when tracking is
already on, or resumes with a gap when tracking is off.)

OFF
Stops tracking programs and freezes any timing data currently in the tracking list.
This lets you immediately, or later in your session, send the list to the current outfile
or to a text file.

TRACKPRG

STDDEV to TRACKPRG 23-71

FILE
Specifies where to send the tracking list. TRACKPRG FILE has no effect on the
tracking list, so you can send the same list repeatedly to different destinations.

APPEND
Specifies that Oracle OLAP adds the tracking list to the contents of the file indicated
by file-id instead of replacing it.

file-id
Specifies the file to which Oracle OLAP sends the data. When you specify file-id,
Oracle OLAP sends to the named text file. When you omit file-id, Oracle OLAP
sends the timing data currently in the tracking list to the current outfile.

INIT
Discards the timing data in the current tracking list and releases the Oracle OLAP
memory that was used for that list (useful when you want the memory for other
purposes). Also, when tracking is on, resumes waiting for you to run programs so it
can gather their data into a completely new tracking list.

Notes

Single Execution
Each entry (that is, line) in the tracking list focuses on a single execution of a single
program.

Depth of the Call
Each entry records the depth of the call, if any, to the current program; that is, how
many program calls it has taken to get to the program reported on the current line.
In TRACKPRG output, the depth of the call is indicated by the indentation of the
program name. For each indented program, TRACKPRG also records the name of
the program that called it at the end of the entry.

Types of Timing Data
In each entry, TRACKPRG records two types of timing data:

■ Exclusive cost -- The time spent in this program, excluding the time spent on
any programs that are called by this one.

■ Inclusive cost -- The time spent in this program, including the time spent on any
programs that are called by this one.

This gives you the option of generating a report on both types of cost.

TRACKPRG

23-72 Oracle OLAP DML Reference

Entry Sections
In TRACKPRG output, each entry (line) is divided into the following four sections:

■ Program name, in character columns 1 through 38

■ Exclusive time, in columns 39 through 49

■ Inclusive time, in columns 50 through 60

■ Name of calling program, in columns 61 through 77

Here is a sample of TRACKPRG output (for the MAIN program) with column
numbers included for reference.

1234567890123456789012345678901234567890123456789012345678901234567890

MAIN 39.6198425 225.551453
COMM 43.793808 185.93161 MAIN
_C.SYS.INFO .112533569 .112533569 COMM
_C.SYS.INFO .087173462 .087173462 COMM
_C.MAIN 61.414505 141.938095 COMM
_C.CON 66.7147064 80.5235901 _C.MAIN
_C.SYS.DORETURN .032287598 .032287598 _C.CON

TRACKREPORT Program
When you want to use Oracle OLAP reporting capabilities to produce a report from
the timing data in the text file that is created by TRACKPRG, you can use the
TRACKREPORT program. It has the following syntax.

TRACKREPORT textfile-id

The textfile-id argument is the file id of the text file created by TRACKPRG from
which you want to generate a report. TRACKREPORT uses the FILEREAD

TRACKPRG

STDDEV to TRACKPRG 23-73

command to read the data into an Oracle OLAP variable, and then it uses Oracle
OLAP reporting capabilities to produce a report like the following sample.

Exclusive Inclusive Number of
Program name cost cost calls

____________________ __________ __________ __________

COMM 43.793808 185.93161 1
MAIN 39.6198425 225.551453 1
_C.CON 66.7147064 80.5235901 1
_C.ENV.PUTOPTS 1.15296936 1.15296936 1
_C.ENV.XLATEIN 6.32765198 6.32765198 1
_C.MAIN 61.414505 141.938095 1
_C.SYS.DORETURN .032287598 .032287598 1
_C.SYS.INFO .289932251 .289932251 3
_C.SYS.NOF10 .038269043 .038269043 1
_CONNECT 5.3609314 6.16748047 1
_CONNNONE .806549072 .806549072 1

When you want to further process the data from a TRACKPRG file, you can write
your own program using the TRACKREPORT program as a model.

Excluded Subprograms
When you do not want separate performance data on all the subprograms called by
the program you are timing, you can, within the overall program, turn tracking off
before calling any subprograms you want to exclude and then turn it back on before
calling any you want to include. You can do this repeatedly. Remember, however,
that the time taken by any excluded subprograms is assigned to the total "exclusive"
time for the overall program as well as to its "inclusive" time, since TRACKPRG has
not individually tracked the excluded subprograms.

Very Small Programs
You might not be able to reproduce the results exactly for very small programs.
When the CPU interrupts processing to do other tasks, that time is a greater
percentage of the total execution time.

Unit of Measure
The MONITOR and TRACKPRG commands use milliseconds as the unit for
recording execution time. The execution time does not include time spent on I/O
and time spent waiting for the next statement.

TRACKPRG

23-74 Oracle OLAP DML Reference

Examples

Example 23–30 Collecting Timing Data USING TRCKPRG

In this example, timing data on the mybjt program and all the programs it calls is
collected in a file called mybjttim.dat.

TRACKPRG ON
mybjt
TRACKPRG OFF
TRACKPRG FILE mybjttim.dat
TRACKPRG INIT
TRACKREPORT mybjttim.dat

Example 23–31 Using the INIT Keyword and TRACKREPORT

In this example, tracking is turned on to collect timing data about the execution of
prog1 and the data is sent to a file named prog1.trk. Then, the INIT keyword is
used to discard the existing tracking list so the data for a second program can be
collected and sent to a file. Throughout the procedure, tracking remains on. Finally,
after tracking is turned off and the INIT keyword is used to release the memory that
was used for the tracking list, the TRACKREPORT program is called to produce two
reports generated from the data stored in the two files.

TRACKPRG ON
prog1
TRACKPRG FILE prog1.trk
TRACKPRG INIT
prog2
TRACKPRG FILE prog2.trk
TRACKPRG OFF
TRACKPRG INIT
TRACKREPORT prog1.trk
TRACKREPORT prog2.trk

TRAP to ZSPELL 24-1

24
TRAP to ZSPELL

This chapter contains the following OLAP DML statements:

■ TRAP

■ TRIGGER command

■ TRIGGER function

■ TRIGGER_AFTER_UPDATE

■ TRIGGER_AW

■ TRIGGER_BEFORE_UPDATE

■ TRIGGER_DEFINE

■ TRIGGERASSIGN

■ TRIGGERMAXDEPTH

■ TRIGGERSTOREOK

■ TRIM

■ TRUNC

■ TRUNC (for dates and time)

■ TRUNC (for numbers)

■ UNHIDE

■ UNIQUELINES

■ UNRAVEL

■ UPCASE

■ UPDATE

24-2 Oracle OLAP DML Reference

■ USERID

■ USETRIGGERS

■ VALSPERPAGE

■ VALUES

■ VARCACHE

■ VARIABLE

■ VINTSCHED

■ VNF

■ VPMTSCHED

■ WEEKDAYSNEWYEAR

■ WEEKOF

■ WHILE

■ WIDTH_BUCKET

■ WKSDATA

■ YESSPELL

■ YRABSTART

■ YYOF

■ ZEROROW

■ ZEROTOTAL

■ ZSPELL

TRAP

TRAP to ZSPELL 24-3

TRAP

Within an OLAP DML program, the TRAP command causes program execution to
branch to a label when an error occurs in a program or when the user interrupts the
program. When execution branches to the trap label, that label is deactivated.

The label should be no longer than eight characters. It must start with a letter, dot,
or underscore, and the remaining characters must be letters, numbers, dots, or
underscores.

Syntax
TRAP {OFF|ON errorlabel [NOPRINT|PRINT]}

Arguments

OFF
Deactivates the trap label. Since only one trap label can be active at a time, you do
not supply errorlabel when setting TRAP OFF. When you try to include a label with
OFF, an error occurs.

ON errorlabel
Activates the trap label (errorlabel). When TRAP is active, any error in the program
will cause execution to branch to errorlabel.

errorlabel
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label" on page 14-7. Execution of the program branches to the
line directly following the specified label.

Note that errorlabel, as specified in ON, must not be followed by a colon. However,
the actual label elsewhere in the program must end with a colon.

NOPRINT
PRINT
Indicates whether to suppress output of the error message. NOPRINT suppresses
the message. PRINT (default) means that the error message is sent to the current
outfile before execution branches to the trap label. With the OFF keyword,
NOPRINT and PRINT are meaningless and produce an error.

TRAP

24-4 Oracle OLAP DML Reference

Notes

Activating a Trap Label
To activate a trap label, include a TRAP command at the beginning of your program
and specify a trap label in it. Then include this label later in your program.

Missing Label
When an actual trap label that corresponds to errorlabel does not exist elsewhere in
the same program, execution stops with an error.

Automatic Deactivation
When an error occurs in a program that contains a trap label, execution branches to
the label and the trap is deactivated. You do not have to execute an explicit
TRAP OFF command. Thus, an error occurring after execution has branched to the
label will not cause execution to branch to the same label again.

ERRORNAME and ERRORTEXT
In the statements that follow the trap label, you can check the name of the error that
has occurred by using the ERRORNAME option, which contains the name of the
first error occurring in the program. You can also check the error message for that
error by using the ERRORTEXT option (see the entries for ERRORNAME and
ERRORTEXT).

To find out what the value of ERRORNAME will be for specific error conditions,
you can check the dimension _MSGID, which is supplied as a part of Oracle OLAP.
The error messages are contained in the variable _MSGTEXT, which is dimensioned
by _MSGID. To see this list, execute the following statement.

REPORT W 60 _MSGTEXT

Passing an Error to a Calling Program
To pass an error to a calling program, you can use one of two methods. The method
you use depends on when you want the error message to be produced. With the
first method, Oracle OLAP produces the message immediately and then the error
condition is passed through the chain of programs. With the second method, Oracle
OLAP passes the error through the chain of programs first and then produces the
message. See "Passing an Error: Method One" on page 24-5 and "Passing an Error:
Method Two" on page 24-5 for details.

TRAP

TRAP to ZSPELL 24-5

With both methods, the appropriate error handling happens in each program in the
chain, and at some point Oracle OLAP sends an error message to the current outfile.

Passing an Error: Method One
Using this method, Oracle OLAP produces the message immediately and then the
error condition is passed through the chain of programs.

Use a TRAP command with the (default) PRINT option. When an error occurs,
Oracle OLAP produces an error message, and execution branches to the trap label.
After the trap label, perform whatever cleanup you want, and then execute the
following statement.

SIGNAL PRGERR

This creates an error condition that is passed up to the program from which the
current program was run. However, PRGERR does not produce an error message.
PRGERR sets the ERRORNAME option to a blank value.

When the calling program contains a trap label, execution branches to the label.
When each of the programs in a sequence of nested programs uses TRAP and
SIGNAL in this way, you can pass the error condition up through the entire
sequence of programs.

Passing an Error: Method Two
Using this method, Oracle OLAP passes the error through the chain of programs
first and then produces the message.

Use a TRAP command with the NOPRINT option. When an error occurs, execution
branches to the trap label, but the error message is suppressed. After the trap label,
perform whatever cleanup you want, then execute the following statement.

SIGNAL ERRORNAME ERRORTEXT

The options ERRORNAME and ERRORTEXT contain the name and message of the
original error, so this SIGNAL command reproduces the original error. The error is
then passed up to the program from which the current program was run.

When the calling program also contains a trap label, execution branches to its label.
When each of the programs in a sequence of nested programs uses
TRAP...NOPRINT and SIGNAL ERRORNAME ERRORTEXT in this way, you can pass
the error condition up through the entire sequence of programs. Oracle OLAP
produces the error message at the end of the chain.

TRAP

24-6 Oracle OLAP DML Reference

When you reach a level where you want to handle the error and continue the
application, omit the SIGNAL command. You can display your own message with
the SHOW command.

Examples

Example 24–1 Trapping a Program Error

The following program fragment uses the TRAP command to direct control to a
label where options and dimension status are set back to the values they had before
the program was executed and an error is signaled.

PUSH month DECIMALS LSIZE PAGESIZE
TRAP ON haderror NOPRINT
LIMIT month TO LAST 1

...
POP month DECIMALS LSIZE PAGESIZE
RETURN

haderror:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

Example 24–2 Producing a Program Error Message Immediately

To produce the error message immediately, use a TRAP command in each nested
program, but do not use the NOPRINT keyword. When an error occurs, an error
message is produced immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute a SIGNAL statement that includes the
PRGERR keyword.

SIGNAL PRGERR

When you use the PRGERR keyword in the SIGNAL statement, no error message is
produced, and the name PRGERR is not stored in ERRORNAME. The SIGNAL
command signals an error condition that is passed up to the program from which
the current program was run. When the calling program contains a trap label, then
execution branches to that label.

TRAP

TRAP to ZSPELL 24-7

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, you can pass the error condition up through the entire
chain. Each program has commands like these.

TRAP ON error
 ... "Body of program and normal exit commands
RETURN
error:
 ... "Error-handling and exit commands
SIGNAL PRGERR

Example 24–3 Producing a Program Error Message at the End of the Chain

To produce the error message at the end of a chain of nested programs, use a TRAP
statement that includes the NOPRINT keyword. When an error occurs in a nested
program, execution branches to the trap label, but the error message is suppressed.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute the following SIGNAL command.

SIGNAL ERRORNAME ERRORTEXT

The preceding SIGNAL statement contains includes ERRORNAME and
ERRORTEXT within it. The ERRORNAME option contains the name of the original
error, and the ERRORTEXT option contains the error message for the original error.
When the calling program contains a trap label, then execution branches to that
label.Consequently, the SIGNAL statement passes the original error name and error
text to the calling program.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, the original error message is produced at the end of the
chain. Each program has commands like the following.

TRAP ON error NOPRINT
 ... "Body of program and normal exit commands
RETURN
error:
 ... "Error-handling and exit commands
SIGNAL ERRORNAME ERRORTEXT

TRIGGER command

24-8 Oracle OLAP DML Reference

TRIGGER command

The TRIGGER command associates a previously-created program to an object and
identifies the object event that automatically executes the program; or a
disassociates a trigger program from the object.

In order to assign a trigger program to an object, the object must be the one most
recently defined or considered during the current session. When it is not, you must
first use a CONSIDER command to make it the current definition.

Syntax
TRIGGER {event-name [program-name] }... | {DELETE event-name}... | DELETE ALL

where event-name is one of the following:

MAINTAIN
DELETE
PROPERTY
ASSIGN
BEFORE_UPDATE
AFTER_UPDATE

You can use the same keyword many times in a single TRIGGER statement;
however, in this case, Oracle OLAP ignores all but the last occurrence of the
keyword. See "Multiple Occurrences of the Same Keyword" on page 24-10, for
details.

See also: "Trigger Programs" on page 1-14 for a general
discussion, and the following statements for more specific
information:

■ TRIGGER function, DESCRIBE command, and OBJ function
that retrieve information about triggers.

■ TRIGGER_AW, TRIGGER_DEFINE,
TRIGGER_AFTER_UPDATE, and
TRIGGER_BEFORE_UPDATE which are trigger programs that
you do not have to identify using the TRIGGER command.

■ USETRIGGERS option that you can use to disable all triggers.

TRIGGER command

TRAP to ZSPELL 24-9

Arguments

MAINTAIN
Specifies that the trigger for the program is a Maintain event. A Maintain event is
the execution of the MAINTAIN statement. As outlined in Table 24–5, "Subevents
for the MAINTAIN Event" on page 24-30, the Maintain event has several subevents
that correspond to the major keywords of the MAINTAIN command. Exactly when
a program triggered by a Maintain event is executed is dependent on the Maintain
subevent that triggered the program and the object type for which the Maintain
event is defined:.

■ Programs triggered by Maintain Add and Maintain Merge events on
dimensions and composites are executed after the entire MAINTAIN statement
executes.

■ Programs triggered by Maintain Add and Maintain Merge events on dimension
surrogates are executed multiple times—once afterr each value is added or
merged.

■ Programs triggered by other Maintain subevents are executed before the
MAINTAIN statement is executed.

DELETE
Specifies that the trigger for the program is a Delete event. A Delete event is a
DELETE statement for the object. Oracle OLAP executes the specified program
immediately before a DELETE statement deletes the object.

PROPERTY
Specifies that Oracle OLAP executes the specified program in response to a
Property event. A Property event is the execution of a PROPERTY statement to
create, modify, or delete an object property. A program that is triggered by a
Property event is executed before the statement that triggered it.

ASSIGN
Specifies that Oracle OLAP executes the specified program in response to a Assign
event. An Assign event is executed when SET assigns values to variable, relation,
worksheet object, or a formula. A program that is triggered by SET is executed each
time Oracle OLAP assigns a value to the object for which the event was defined.
Thus, a program triggered by an Assign event is often executed over and over again
as the assignment statements loops through a object assigning values.

TRIGGER command

24-10 Oracle OLAP DML Reference

UPDATE
When the object has been acquired using ACQUIRE in an analytic workspace that is
attached in multiwriter mode, specifies that Oracle OLAP executes the specified
program immediately after the object is updated.

program-name
The name of the trigger program. When omitted for an event, the event does not
trigger an action.

DELETE event-name
Deletes the triggers for the specified object events. Oracle OLAP disassociates the
trigger program from the specified object event.

DELETE ALL
Deletes all of the triggers for the specified object. Oracle OLAP disassociates the
trigger program from all events for object.

Notes

Multiple Occurrences of the Same Keyword
You can use all of the keywords in a single TRIGGER statement. However, if you
use the same keyword twice in a TRIGGER statement, then Oracle OLAP
recognized the last occurrence of the keyword; other occurrences are ignored.

For example, assume that you code the following TRIGGER statement.

TRIGGER PROPERTY progname1 PROPERTY progname2 PROPERTY progname3
When executing this TRIGGER statement, Oracle OLAP executes progname3
immediately before a property of the object is created, modified, or deleted; Oracle
OLAP does not execute progname1 or progname2.

No Support for Recursive Triggers
Oracle OLAP does not support recursive triggers. You must set the USETRIGGERS
option to NO before you issue the same DML statement within a trigger program
that triggered the program itself. For example, assume that you have written a
program named TRIGGER_MAINTAIN_ADD that is triggered by MAINTAIN ADD

Tip: To specify processing when the entire analytic workspace is
updated, create a TRIGGER_AFTER_UPDATE or
TRIGGER_BEFORE_UPDATE program.

TRIGGER command

TRAP to ZSPELL 24-11

statements. Within the TRIGGER_MAINTAIN_ADD program, you must set the
USETRIGGERS option to NO before you issue a MAINTAIN statement.

Characteristics of Trigger Programs
Trigger programs have certain characteristics depending on the statement that
triggers them. Some trigger programs execute before the triggering statement
executes; some after. Oracle OLAP passes arguments to programs triggered by some
statements, but not others. Oracle OLAP does not change dimension status before
most trigger programs execute, but does change dimension status before some
MAINTAIN statements trigger program execution. In most cases, you can give a
trigger program any name that you choose, but some events require a program with
a specific name.

Table 24–1, " Trigger Program Characteristics" on page 24-12 lists the OLAP DML
statements that trigger programs, the required name of the program (if any),
whether or not Oracle OLAP uses values returned by the program, and whether or
not Oracle OLAP passes arguments to the program.

Keep the following points in mind when designing trigger programs:

■ Triggers that execute before the DML statement—For trigger programs that
execute before the triggering OLAP DML statement executes, you can define
the trigger program as a user-defined function that returns a BOOLEAN value.
The value returned by the program determines whether or not Oracle OLAP
executes the statement that triggered the execution of the trigger program.
When the program returns FALSE, Oracle OLAP does not execute the triggering
statement; when it returns TRUE or NA, the triggering statement executes.

■ Arguments passed to trigger programs—Oracle OLAP passes arguments to
some trigger programs. These programs are identified in Table 24–1, " Trigger
Program Characteristics" on page 24-12. Descriptions of these arguments are
provided in Table 24–2, " Arguments Passed to Trigger Programs" on
page 24-13. Use the ARGUMENT command to declare these arguments in your
program. Use VARIABLE to define program variables for the values. Use the
WKSDATA function to retrieve the data type of an argument with a
WORKSHEET data type.

■ Assign trigger programs—Oracle OLAP executes a program triggered by an
Assign event each time it assigns a value to the object for which the event was
defined. Thus, a program triggered by an Assign event is often executed over
and over again as the assignment statements loops through a object assigning
values. With each execution, the value to be assigned is passed as argument1 to
the Assign trigger program. (See Table 24–2, " Arguments Passed to Trigger

TRIGGER command

24-12 Oracle OLAP DML Reference

Programs" on page 24-13 for more information and Example 24–8, "An ASSIGN
Trigger on a Variable" on page 24-17 for an example.) Within the Assign trigger
program, you can use aTRIGGERASSIGN command to assign a different value
than that specified by the assignment statement that triggered the execution of
the Assign trigger program.

You can only assign values to a formula when the formula has an Assign trigger
defined for it. When you assign a value to a formula with an Assign event,
Oracle OLAP executes the trigger program for the event for assigned value and
passes the assigned value to the trigger program. The Assign trigger does not
change the definition of the formula itself. See Example 24–10, "An ASSIGN
Trigger on a Formula" on page 24-24 for an example of an Assign trigger on a
formula.

■ Maintain trigger programs and dimension status —In some cases, Oracle OLAP
changes the status of the dimension being maintained when a Maintain event
triggers the execution of a program. See Table 24–3, "How Programs Triggered
by Maintain Events Effect Dimension Status" on page 24-14 for details.

■ Maintain triggers and dimension surrogates—Maintain triggers for dimension
surrogates are different than Maintain triggers for other objects. You can only
successfully issue a MAINTAIN statement against a dimension surrogate, when
the dimension surrogate has a Maintain trigger. Issuing a MAINTAIN statement
for a surrogate dimension that does not have a Maintain trigger, returns an
error. Also, for Maintain Add and Maintain Merge triggers, whether or not an
argument is passed to the program depends on the object on which the trigger
is defined:

■ For dimension surrogates with a Maintain trigger, Oracle OLAP executes
the trigger program one time for each value added or merged and passes
that value into the program.

■ For other objects with a Maintain trigger, Oracle OLAP executes the trigger
program only once after the MAINTAIN statement executes and no values
are passed into the program

Table 24–1 Trigger Program Characteristics

Triggering Statement (event) Program Name
Return
Values

Passed
Arguments

= command (SET) No required name No Yes

AW command TRIGGER_AW No No

DEFINE TRIGGER_DEFINE No No

TRIGGER command

TRAP to ZSPELL 24-13

MAINTAIN ADD No required name No No

MAINTAIN DELETE (not ALL) No required name Yes No

MAINTAIN DELETE ALL No required name Yes No

MAINTAIN MERGE No required name No No

MAINTAIN MOVE No required name Yes Yes

MAINTAIN RENAME No required name Yes Yes

PROPERTY No required name Yes Yes

UPDATE (Update AW) TRIGGER_AFTER_UPDATE No No

UPDATE (Update AW) TRIGGER_BEFORE_UPDATE Yes No

UPDATE (Update Multi) No required name No No

Table 24–2 Arguments Passed to Trigger Programs

Event Argument1 Argument2

Property When the PROPERTY statement is
assigning a property to an object, the
name of the property. When the
PROPERTY statement is deleting one or
more properties, the literal DELETE.
(TEXT data type)

When the value of argument1 is
DELETE, the name of the
property or the literal ALL. In all
other cases, the name of the
property. (WORKSHEET data
type)

Assignment The value that you want to assign.
When you know the data type of the
object to which the value is assigned,
specify that data type for the
argument. When you do not know the
actual data type, specify WORKSHEET as
the data type of the argument.

None. Oracle OLAP passes only
one argument to the program.

Maintain
Add

(Dimension surrogates only)
The value added. (WORKSHEET
data type)

Maintain
Rename

The dimension value that you want to
rename. (TEXT data type)

The new name of the dimension
member. (WORKSHEET data
type)

Table 24–1 (Cont.) Trigger Program Characteristics

Triggering Statement (event) Program Name
Return
Values

Passed
Arguments

TRIGGER command

24-14 Oracle OLAP DML Reference

Examples

Example 24–4 Creating Triggers

Assume that your analytic workspace contains a TEXT dimension named city and
that you want to create programs that will automatically execute when a
MAINTAIN statement executes against city or when a property is created or
deleted for city. To create these triggers, you issue the following statements.

"Define the trigger programs
DEFINE trigger_maintain_move_city PROGRAM BOOLEAN
DEFINE trigger_property_city PROGRAM BOOLEAN
"Associate the trigger programs to events for the city dimension
CONSIDER city
TRIGGER PROPERTY trigger_property_city
TRIGGER MAINTAIN rigger_maintain_move_city

Maintain
Merge

(Dimension surrogates only)
The value merged. (WORKSHEET
data type)

Maintain
Move

The position of the dimension value that
you want to move. (TEXT data type)

The literal BEFORE or AFTER.
(WORKSHEET data type)

Table 24–3 How Programs Triggered by Maintain Events Effect Dimension Status

Event Subevent Dimension Status Before Program Execution

Maintain Add Status set to dimension values just added.

Maintain Delete Status set to dimension values about to be deleted.

Maintain Delete All Current status is not changed.

Maintain Merge Status set to dimension values just merged.

Maintain Move Status set to dimension values about to be moved.

Maintain Rename Current status is not changed.

Table 24–2 (Cont.) Arguments Passed to Trigger Programs

Event Argument1 Argument2

TRIGGER command

TRAP to ZSPELL 24-15

Example 24–5 Describing Triggers

Assume that you have created the triggers for city as described in Example 24–4,
"Creating Triggers" on page 24-14. Later you want to see the description of the
triggers, to do so you cannot merely issue a DESCRIBE statement for your analytic
workspace. Instead, you must issue a FULLDSC statement.

DEFINE CITY DIMENSION TEXT
TRIGGER MAINTAIN RIGGER_MAINTAIN_MOVE_CITY -
 PROPERTY TRIGGER_PROPERTY_CITY

DEFINE TRIGGER_MAINTAIN_MOVE_CITY PROGRAM BOOLEAN

DEFINE TRIGGER_PROPERTY_CITY PROGRAM BOOLEAN

Example 24–6 Deleting Triggers

Assume that you have created the triggers described in Example 24–4, "Creating
Triggers" on page 24-14. Now you want to delete the MAINTAIN trigger for city.
To delete this trigger you issue the following statements.

CONSIDER city
TRIGGER DELETE MAINTAIN

When you issue a FULLDSC statement, you confirm that the MAINTAIN trigger for
city has been deleted although the trigger_maintain_move_city program
remains.

DEFINE CITY DIMENSION TEXT
TRIGGER PROPERTY TRIGGER_PROPERTY_CITY

DEFINE TRIGGER_MAINTAIN_MOVE_CITY PROGRAM BOOLEAN

DEFINE TRIGGER_PROPERTY_CITY PROGRAM BOOLEAN

To actually delete the trigger_maintain_move_city program you need to
issue the following statement.

DELETE TRIGGER_MAINTAIN_MOVE_CITY

Example 24–7 A MAINTAIN Trigger Program

Assume that you have a dimension with the following definition in your analytic
workspace.

DEFINE CITY DIMENSION TEXT

TRIGGER command

24-16 Oracle OLAP DML Reference

To create a Maintain trigger for city, you take the following steps:

1. Define the trigger program as a user-defined function. It can have any name
that you want. The following statement defines a program named
trigger_maintain_city.

DEFINE trigger_maintain_city PROGRAM BOOLEAN

2. Specify the content of the program.

PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

3. Issue a TRIGGER command to associate the trigger program with the city
dimension as a program to be executed when a Maintain event occurs.
Remember to use a CONSIDER statement to make the definition for city the
current definition.

CONSIDER city
TRIGGER MAINTAIN TRIGGER_MAINTAIN_CITY

When you issue a FULLDSC statement to see a full description of your analytic
workspace, you can see the definition of city (including its Maintain trigger) and
the trigger_maintain_city program.

DEFINE CITY DIMENSION TEXT
TRIGGER MAINTAIN TRIGGER_MAINTAIN_CITY

DEFINE TRIGGER_MAINTAIN_CITY PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

TRIGGER command

TRAP to ZSPELL 24-17

As illustrated in the following statements and output, when you issue MAINTAIN
statements for city, the trigger_maintain_city program executes.

MAINTAIN city ADD 'Boston' 'Houston' 'Dallas'

calltype = TRIGGER
triggering event = MAINTAIN
triggering subevent = ADD

REPORT city

CITY

Boston
Houston
Dallas

MAINTAIN city MOVE 'Dallas' to 2

calltype = TRIGGER
triggering event = MAINTAIN
triggering subevent = MOVE

REPORT city

CITY

Boston
Dallas
Houston

Example 24–8 An ASSIGN Trigger on a Variable

Assume. that your analytic workspace contains objects with the following
definitions.

DEFINE geog DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <geog>
DEFINE percent_sales VARIABLE INTEGER <geog>

TRIGGER command

24-18 Oracle OLAP DML Reference

The sales variable contains the values shown below. The percent_sales
variable is empty.

GEOG SALES
-------------- ----------
North America 0.59
Europe 9.35
Asia NA

Assume that you want specialized processing of values when you assign values to
percent_sales. To handle this processing automatically, you can create a Assign
trigger program for percent_sales by taking the following steps:

1. Create a trigger program that will execute each time you assign values to
percent_sales.

DEFINE TRIGGER_EQ PROGRAM BOOLEAN
PROGRAM
ARGUMENT datavalue WORKSHEET
show 'description of triggering object = '
DESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
SHOW JOINCHARS ('value being assigned = ' datavalue)
SHOW ' '
END

2. Add an assign trigger to percent_sales using the TRIGGER command.
Remember to first issue a CONSIDER command to make the definition for the e
percent_sales variable the current definition.

CONSIDER percent_sales
TRIGGER ASSIGN TRIGGER_EQ

3. Assign values to percent_sales.

percent_sales = (sales/TOTAL(sales))*100

TRIGGER command

TRAP to ZSPELL 24-19

Assigning values to percent_sales triggers the execution of the
trigger_eq program and produces the following output lines.

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned = 6
argument 2 =

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned = 94
argument 2 =

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned =
argument 2 =

Note: From the output you can see that Oracle OLAP called the
trigger_eq program three times—each time it assigned a value
to percent_sales.

TRIGGER command

24-20 Oracle OLAP DML Reference

4. When you issue REPORT commands for sales and percent_sales you can
see the result of the calculations. The percent_sales variable contains values
that are the percent of sales for each continent.

GEOG SALES
-------------- --------------------
North America 0.59
Europe 9.35
Asia NA

GEOG PERCENT_SALES
-------------- --------------------
North America 6
Europe 94
Asia NA

Example 24–9 Setting Values in an ASSIGN Trigger Program

Assume that you have the following objects in your analytic workspace.

DEFINE GEOGRAPHY DIMENSION TEXT WIDTH 12
LD Geography Dimension Values

DEFINE PRODUCT DIMENSION TEXT WIDTH 12
LD Product Dimension Values

DEFINE TIME DIMENSION TEXT WIDTH 12
LD Time Dimension Values

DEFINE CHANNEL DIMENSION TEXT WIDTH 12
LD Channel Dimension Values

DEFINE F.MARGIN FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
LD Margin
EQ f.sales-f.costs

DEFINE F.COSTS VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>
LD Costs

DEFINE F.SALES VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>
LD Sales

Note that f.costs, f.sales, and f.margin all have the same dimensions.

TRIGGER command

TRAP to ZSPELL 24-21

Now you add an Assign trigger to f.margin that will execute a program named
t.margin. The definition of f.margin is modified to the following definition.

DEFINE F.MARGIN FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
LD Margin
TRIGGER ASSIGN T.MARGIN
EQ f.sales-f.costs

Now you actually write the t.margin program. When an expression is assigned to
the f.margin formula, the program uses this value to compute new values for
f.costs and f.sales.

DEFINE T.MARGIN PROGRAM
PROGRAM
ARG newVal DECIMAL " The value passed to the program by the Assign trigger
VARIABLE t.valDiff DECIMAL " Difference between newVal and old value
VARIABLE t.costInc DECIMAL " Amount the difference makes to costs
"show the value of newVal
SHOW 'newVal = ' NONL
SHOW newVal
" Compute the difference between the current value and the new one
t.valDiff = newVal - f.margin
" Now increase costs proportional to their existing amounts
t.costInc = (newVal - f.margin) * (f.costs/f.sales)
" Adjust the values of sales and costs to get the new value
SET1 f.costs = f.costs + t.costInc

SET1 f.sales = f.sales + t.valDiff + t.costInc

SHOW geography NONL
SHOW ' ' NONL
SHOW product NONL
SHOW ' ' NONL
SHOW channel NONL
SHOW ' ' NONL
SHOW time NONL
SHOW ' f.costs = 'NONL
SHOW f.costs NONL
SHOW ' f.sales = 'NONL
SHOW f.sales
END

TRIGGER command

24-22 Oracle OLAP DML Reference

Now assume that you issue the following LIMIT statements to identify a subset of
data and issue a REPORT statement to report on the values of f.margin.

LIMIT t0.hierdim TO 'STANDARD'
LIMIT time TO t0.levelrel EQ 'L2'
LIMIT geography TO FIRST 1
LIMIT channel TO FIRST 1
LIMIT product TO FIRST 5
REPORT DOWN time ACROSS product: f.margin

GEOGRAPHY: WORLD
CHANNEL: TOTALCHANNEL
 -----------------------F.MARGIN-----------------------
 -----------------------PRODUCT------------------------
TIME TOTALPROD AUDIODIV PORTAUDIO PORTCD PORTST
-------------- ---------- ---------- ---------- ---------- ----------
Q1.96 54,713,974 29,603,546 5,379,661 2,480,914 1,615,708
Q2.96 63,919,784 34,594,087 6,331,848 2,869,265 1,931,785
Q3.96 58,303,490 31,543,152 5,792,725 2,616,515 1,795,701
Q4.96 71,197,892 38,383,878 7,059,581 3,163,804 2,232,880
Q1.97 55,489,723 29,989,262 5,368,237 2,491,475 1,607,344
Q2.97 41,687,908 22,532,979 4,070,725 1,855,992 1,245,161

Now you issue the following assignment statement that increase the value of
f.margin by 10% and report it

f.margin = f.margin * 1.1

The execution of this assignment statement triggers the execution of the Assign
trigger program named t.margin. The output of that program follows.

newVal = 60,185,371.40
WORLD TOTALPROD TOTALCHANNEL Q1.96 f.costs = 1,298,474.00 f.sales = 61,483,840.00
newVal = 32,563,900.67
WORLD AUDIODIV TOTALCHANNEL Q1.96 f.costs = 664,226.90 f.sales = 33,228,130.00
newVal = 5,917,626.67
WORLD PORTAUDIO TOTALCHANNEL Q1.96 f.costs = 97,976.04 f.sales = 6,015,603.00
newVal = 2,729,005.43
WORLD PORTCD TOTALCHANNEL Q1.96 f.costs = 34,301.53 f.sales = 2,763,307.00
newVal = 1,777,278.95
WORLD PORTST TOTALCHANNEL Q1.96 f.costs = 25,160.72 f.sales = 1,802,440.00
newVal = 70,311,762.13
WORLD TOTALPROD TOTALCHANNEL Q2.96 f.costs = 1,504,051.00 f.sales = 71,815,820.00
newVal = 38,053,495.70
WORLD AUDIODIV TOTALCHANNEL Q2.96 f.costs = 768,788.10 f.sales = 38,822,280.00
newVal = 6,965,032.86

TRIGGER command

TRAP to ZSPELL 24-23

WORLD PORTAUDIO TOTALCHANNEL Q2.96 f.costs = 114,558.20 f.sales = 7,079,591.00
newVal = 3,156,191.20
WORLD PORTCD TOTALCHANNEL Q2.96 f.costs = 39,256.88 f.sales = 3,195,448.00
newVal = 2,124,963.02
WORLD PORTST TOTALCHANNEL Q2.96 f.costs = 29,780.54 f.sales = 2,154,744.00
newVal = 64,133,838.86
WORLD TOTALPROD TOTALCHANNEL Q3.96 f.costs = 1,350,733.00 f.sales = 65,484,570.00
newVal = 34,697,467.06
WORLD AUDIODIV TOTALCHANNEL Q3.96 f.costs = 691,887.10 f.sales = 35,389,360.00
newVal = 6,371,997.63
WORLD PORTAUDIO TOTALCHANNEL Q3.96 f.costs = 103,203.70 f.sales = 6,475,202.00
newVal = 2,878,166.40
WORLD PORTCD TOTALCHANNEL Q3.96 f.costs = 35,358.18 f.sales = 2,913,525.00
newVal = 1,975,270.68
WORLD PORTST TOTALCHANNEL Q3.96 f.costs = 27,339.77 f.sales = 2,002,611.00
newVal = 78,317,681.06
WORLD TOTALPROD TOTALCHANNEL Q4.96 f.costs = 1,618,915.00 f.sales = 79,936,590.00
newVal = 42,222,265.94
WORLD AUDIODIV TOTALCHANNEL Q4.96 f.costs = 826,923.40 f.sales = 43,049,190.00
newVal = 7,765,539.34
WORLD PORTAUDIO TOTALCHANNEL Q4.96 f.costs = 123,269.50 f.sales = 7,888,809.00
newVal = 3,480,184.35
WORLD PORTCD TOTALCHANNEL Q4.96 f.costs = 41,998.90 f.sales = 3,522,183.00
newVal = 2,456,168.00
WORLD PORTST TOTALCHANNEL Q4.96 f.costs = 33,357.19 f.sales = 2,489,525.00
newVal = 61,038,695.03
WORLD TOTALPROD TOTALCHANNEL Q1.97 f.costs = 1,423,963.00 f.sales = 62,462,660.00
newVal = 32,988,187.65
WORLD AUDIODIV TOTALCHANNEL Q1.97 f.costs = 679,477.80 f.sales = 33,667,660.00
newVal = 5,905,060.56
WORLD PORTAUDIO TOTALCHANNEL Q1.97 f.costs = 158,854.40 f.sales = 6,063,915.00
newVal = 2,740,622.56
WORLD PORTCD TOTALCHANNEL Q1.97 f.costs = 53,144.41 f.sales = 2,793,767.00
newVal = 1,768,078.14
WORLD PORTST TOTALCHANNEL Q1.97 f.costs = 40,784.62 f.sales = 1,808,863.00
newVal = 45,856,698.46
WORLD TOTALPROD TOTALCHANNEL Q2.97 f.costs = 1,070,465.00 f.sales = 46,927,160.00
newVal = 24,786,276.35
WORLD AUDIODIV TOTALCHANNEL Q2.97 f.costs = 512,435.60 f.sales = 25,298,710.00
newVal = 4,477,797.64
WORLD PORTAUDIO TOTALCHANNEL Q2.97 f.costs = 118,791.70 f.sales = 4,596,590.00
newVal = 2,041,591.56
WORLD PORTCD TOTALCHANNEL Q2.97 f.costs = 39,287.77 f.sales = 2,080,879.00
newVal = 1,369,677.57
WORLD PORTST TOTALCHANNEL Q2.97 f.costs = 30,038.08 f.sales = 1,399,716.00

TRIGGER command

24-24 Oracle OLAP DML Reference

Example 24–10 An ASSIGN Trigger on a Formula

The way Oracle OLAP handles assigning values to a formula varies depending on
whether or not the formula has an Assign trigger as part of its definition.

Assume your analytic workspace contains objects with the following definitions
and values.

DEFINE GEOG.D DIMENSION TEXT

DEFINE SALES VARIABLE DECIMAL <GEOG.D>

DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
EQ sales+20

A report of f_modified_sales formula displays the following report that
contains the values computed by the formula.

REPORT f_modified_sales

 -------------F_MODIFIED_SALES--------------
 ------------------GEOG.D-------------------
TIME.D Boston Medford San Diego Sunnydale
-------- ---------- ---------- ---------- ----------
Jan76 0.00 1,000.00 2,000.00 3,000.00
Feb76 1,000.00 3,000.00 5,000.00 7,000.00
Mar76 2,000.00 5,000.00 8,000.00 11,000.00
76Q1 NA NA NA NA

The f_modified_sales formula does not presently have an Assign trigger on it.
Consequently, as illustrated in the following code, any attempt to assign values to
f_modified_sales results in an error.

f_modified_sales = 3
ORA-34142: You cannot assign values to a FORMULA.

TRIGGER command

TRAP to ZSPELL 24-25

To create an Assign trigger on f_modified_sales take the following steps:

1. Define the trigger program

DEFINE TRIGGER_ASSIGN_MODIFIED_SALES PROGRAM
PROGRAM
ARGUMENT datavalue NUMBER
SHOW 'description of triggering object = '
DESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('value being assigned = ' datavalue)
SHOW ' '
END

2. Add the Assign trigger to the definition of the formula using the following
statements.

CONSIDER f_modified_sales
TRIGGER ASSIGN trigger_assign_modified_sales

Issuing a FULLDSC f_modified_sales statement displays the new complete
definition for f_modified_sales.

DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales+20

TRIGGER command

24-26 Oracle OLAP DML Reference

3. Now when you issue the following statement to assign a value to
f_modified_sales, an error does not occur. Instead, the trigger program
executes 4 times, once for each dimension value of sales.

f_modified_sales = 3

description of triggering object =
DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales-1000
calltype = TRIGGER
triggering event = ASSIGN
value being assigned = 3.00

description of triggering object =
DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales-1000
calltype = TRIGGER
triggering event = ASSIGN
value being assigned = 3.00

description of triggering object =
DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales-1000
calltype = TRIGGER
triggering event = ASSIGN
value being assigned = 3.00

description of triggering object =
DEFINE F_MODIFIED_SALES FORMULA DECIMAL <GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales-1000
calltype = TRIGGER
triggering event = ASSIGN
value being assigned = 3.00

TRIGGER command

TRAP to ZSPELL 24-27

4. However, as issuing a REPORT statement for f_modified_salesd illustrates,
the values calculated by a simple execution of the formula have not changed.

REPORT f_modified_sales

GEOG.D F_MODIFIED_SALES
------------ -----------------------------------
Boston 30.00
Medford 32.21
San Diego 33.03
Sunnydale 38.32

TRIGGER function

24-28 Oracle OLAP DML Reference

TRIGGER function

The TRIGGER function retrieves the event, subevent, or name of the object or
analytic workspace that caused the execution of a trigger program (that is, a
TRIGGER_DEFINE, TRIGGER_AFTER_UPDATE, or TRIGGER_BEFORE_UPDATE
program, or any program identified as a trigger program using the TRIGGER command).

When the current program is a trigger program, the TRIGGER function returns the
trigger information for that program. When it is not, the TRIGGER function returns
trigger information for the most recently executed trigger program.

Return Values
TEXT

Syntax
TRIGGER (NAME | EVENT | SUBEVENT)

Return Values

NAME
For a program identified as a trigger program using the TRIGGER command, returns
the object for which the trigger program is association. For a TRIGGER_AW,
TRIGGER_DEFINE, TRIGGER_AFTER_UPDATE, or TRIGGER_BEFORE_UPDATE
program, returns the name of the analytic workspace that caused the program to
execute.

See also: "Trigger Programs" on page 1-14 and the following
statements:

■ TRIGGER command, DESCRIBE command, and OBJ function
that retrieve information about triggers.

■ TRIGGER_AW, TRIGGER_DEFINE,
TRIGGER_AFTER_UPDATE, and
TRIGGER_BEFORE_UPDATE which are trigger programs that
you do not have to identify using the TRIGGER command.

■ USETRIGGERS option that you can use to disable all triggers.

TRIGGER function

TRAP to ZSPELL 24-29

EVENT
Returns the name of the event (DML statement) that triggered the execution of the
program.

AW
MAINTAIN
DELETE
DEFINE
PROPERTY
ASSIGN
BEFORE_UPDATE
AFTER_UPDATE

For more information on trigger events, see TRIGGER command and
TRIGGER_DEFINE.

SUBEVENT
When the value returned by EVENT is MAINTAIN, AFTER_UPDATE or
BEFORE_UPDATE, returns more information on the OLAP DML command that
triggered the execution of the program. Valid subevents for AW are outlined in
Table 24–4, " Subevents for the AW Event" on page 24-29. Valid subevents for
MAINTAIN are outlined in Table 24–5, "Subevents for the MAINTAIN Event" on
page 24-30. Valid subevents for UPDATE are outlined in Table 24–6, "Subevents for
UPDATE Events" on page 24-30.

Table 24–4 Subevents for the AW Event

Subevent Description

CREATE Returned when a AW CREATE statement triggered the execution of the
program.

ATTACH Returned when a AW ATTACH statement triggered the execution of the
program.

DELETE Returned when a AW DELETE statement triggered the execution of the
program.

DETACH Returned when a AW DETACH statement triggered the execution of the
program.

TRIGGER function

24-30 Oracle OLAP DML Reference

Examples
For examples of using the TRIGGER function, see Example 24–12,
"TRIGGER_BEFORE_UPDATE Program" on page 24-35, Example 24–7, "A
MAINTAIN Trigger Program" on page 24-15, Example 24–11,
"TRIGGER_AFTER_UPDATE Program" on page 24-32, Example 24–13, "A
TRIGGER_DEFINE Program" on page 24-37, and Example 24–14, "Assigning an
Alternative Value using an Assign Trigger" on page 24-38.

Table 24–5 Subevents for the MAINTAIN Event

Subevent Description

ADD Returned when a MAINTAIN ADD statement triggered the execution
of the program.

DELETE Returned when any MAINTAIN DELETE statement except a
MAINTAIN DELETE ALL statement triggered the execution of the
program.

DELETE ALL Returned when a MAINTAIN DELETE ALL statement triggered the
execution of the program.

MERGE Returned when a MAINTAIN MERGE statement triggered the
execution of the program.

MOVE Returned when a MAINTAIN MOVE statement triggered the execution
of the program.

RENAME Returned when a MAINTAIN RENAME statement triggered the
execution of the program.

Table 24–6 Subevents for UPDATE Events

Subevent Description

AW Returned when an UPDATE statement triggered the execution of a
TRIGGER_AFTER_UPDATE or TRIGGER_BEFORE_UPDATE
program.

MULTI Returned when an UPDATE statement triggered the execution of a
program identified as a trigger program using the TRIGGER command
when an object is acquired in multiwriter mode.

TRIGGER_AFTER_UPDATE

TRAP to ZSPELL 24-31

TRIGGER_AFTER_UPDATE

A TRIGGER_AFTER_UPDATE program is a program that you create and that
Oracle OLAP checks for by name when an UPDATE statement executes. When the
program exists in the same analytic workspace that you are updating, Oracle OLAP
executes the program after executing the UPDATE.

Notes

No Support for Recursive Triggers
Oracle OLAP does not support recursive triggers. You must set the USETRIGGERS
option to NO before you issue an UPDATE statement within a
TRIGGER_AFTER_UPDATE program.

Syntax
To create a program with the name TRIGGER_AFTER_UPDATE, follow the
guidelines presented in "Trigger Programs" on page 1-14.

Note: The USETRIGGERS option must be set to its default value
of TRUE for a TRIGGER_AFTER_UPDATE program to execute

See also: A TRIGGER_AFTER_UPDATE program is only one of a
number of trigger programs that you can write. You can write other
trigger programs as described in TRIGGER command,
TRIGGER_BEFORE_UPDATE, TRIGGER_DEFINE, and "Trigger
Programs" on page 1-14.

TRIGGER_AFTER_UPDATE

24-32 Oracle OLAP DML Reference

Examples

Example 24–11 TRIGGER_AFTER_UPDATE Program

Assume you have defined the following program in your analytic workspace.

DEFINE TRIGGER_AFTER_UPDATE PROGRAM
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))

END

When you issue an UPDATE statement the program executes and displays the
following output.

calltype = TRIGGER
triggering event = AFTER_UPDATE
triggering subevent = AW

TRIGGER_AW

TRAP to ZSPELL 24-33

TRIGGER_AW

A TRIGGER_AW program is a program that you create and that Oracle OLAP
checks for by name when an AW command executes. When the program exists in
the same analytic workspace that you are updating, Oracle OLAP executes the
program and then, depending on the value returned by the program (if any), either
does nor does not update the workspace.

Return Value
You can write the program as a function that returns a BOOLEAN value. In this case,
when the program returns FALSE, Oracle OLAP does not execute the UPDATE
statement that triggered the execution of the TRIGGER_AW program; when the
program returns TRUE or NA, the AW command executes.

Notes

No Support for Recursive Triggers
Oracle OLAP does not support recursive triggers. You must set the USETRIGGERS
option to NO before you issue an AW command within a TRIGGER_AW program.

Syntax
To create a program with the name TRIGGER_AW, follow the guidelines presented
in"Trigger Programs" on page 1-14.

Note: The USETRIGGERS option must be set to its default value
of TRUE for a TRIGGER_AW program to execute

See also: A TRIGGER_AW program is only one of a number of
trigger programs that you can write. You can write other trigger
programs as described in "Trigger Programs" on page 1-14.

TRIGGER_BEFORE_UPDATE

24-34 Oracle OLAP DML Reference

TRIGGER_BEFORE_UPDATE

A TRIGGER_BEFORE_UPDATE program is a program that you create and that
Oracle OLAP checks for by name when an UPDATE statement executes. When the
program exists in the same analytic workspace that you are updating, Oracle OLAP
executes the program and then, depending on the value returned by the program (if
any), either does nor does not update the workspace.

Return Value
You can write the program as a function that returns a BOOLEAN value. In this case,
when the program returns FALSE, Oracle OLAP does not execute the UPDATE
statement that triggered the execution of the TRIGGER_BEFORE_UPDATE
program; when the program returns TRUE or NA, the UPDATE statement executes.

Notes

No Support for Recursive Triggers
Oracle OLAP does not support recursive triggers. You must set the USETRIGGERS
option to NO before you issue an UPDATE statement within a
TRIGGER_BEFORE_UPDATE program.

Syntax
To create a program with the name TRIGGER_UPDATE, follow the guidelines
presented in"Trigger Programs" on page 1-14.

Note: The USETRIGGERS option must be set to its default value
of TRUE for a TRIGGER_BEFORE_UPDATE program to execute

See also: A TRIGGER_BEFORE_UPDATE program is only one of
a number of trigger programs that you can write. You can write
other trigger programs as described in TRIGGER command,
TRIGGER_AFTER_UPDATE, TRIGGER_DEFINE, and "Trigger
Programs" on page 1-14.

TRIGGER_BEFORE_UPDATE

TRAP to ZSPELL 24-35

Examples

Example 24–12 TRIGGER_BEFORE_UPDATE Program

Assume that an analytic workspace named myaw has an
TRIGGER_BEFORE_UPDATE program with the following definition.

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

Assume that you define a TEXT variable named myvar and, then, issue an UPDATE
statement. The TRIGGER_BEFORE_UPDSATE program executes.

calltype = TRIGGER
triggering event = BEFORE_UPDATE
triggering subevent = AW

Because the program returned TRUE, the definition for myvar exists after you
detach and reattach the workspace.

AW DETACH myaw
AW ATTACH myaw
DESCRIBE

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

DEFINE MYVAR VARIABLE TEXT

However, if you modified the program so that it returned FALSE, then when you
detach and reattach the workspace, not only would the myvar definition not in the
workspace, the definition for the TRIGGER_BEFORE_UPDATE program would
also not be in the workspace.

TRIGGER_DEFINE

24-36 Oracle OLAP DML Reference

TRIGGER_DEFINE

A TRIGGER_DEFINE program is a program that you create and that Oracle OLAP
checks for by name when a DEFINE statement executes. When the program exists
in the same analytic workspace in which you are defining a new object, Oracle
OLAP executes the program.

Syntax
To create a program with the name TRIGGER_DEFINE, follow the guidelines
presented in "Trigger Programs" on page 1-14.

Notes

No Support for Recursive Triggers
Oracle OLAP does not support recursive triggers. You must set the USETRIGGERS
option to NO before you issue a DEFINE statement within a TRIGGER_DEFINE
program.

Note: The USETRIGGERS option must be set to its default value
of TRUE for a TRIGGER_DEFINE program to execute

See also: A TRIGGER_DEFINE program is only one of a number
of trigger programs that you can write. You can write other trigger
programs as described in TRIGGER command,
TRIGGER_AFTER_UPDATE, TRIGGER_BEFORE_UPDATE, and
"Trigger Programs" on page 1-14.

TRIGGER_DEFINE

TRAP to ZSPELL 24-37

Examples

Example 24–13 A TRIGGER_DEFINE Program

Assume that you have written a TRIGGER_DEFINE program with the following
description in your analytic workspace.

DEFINE TRIGGER_DEFINE PROGRAM
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('fully-qualified object name ='TRIGGER(NAME))
SHOW JOINCHARS ('type of object = 'OBJ(TYPE TRIGGER(NAME))
DESCRIBE &TRIGGER(NAME)
END

Assume, as shown in the following statements, that you issue a DEFINE VARIABLE
statement to define a variable named myvar. As shown by the output following the
statement, Oracle OLAP defines the variable and executes the TRIGGER_DEFINE
program.

DEFINE myvar VARIABLE TEXT
calltype = TRIGGER
triggering event = DEFINE
fully-qualified object name =MYAW!MYVAR
type of object = VARIABLE

DEFINE MYVAR VARIABLE TEXT

TRIGGERASSIGN

24-38 Oracle OLAP DML Reference

TRIGGERASSIGN

Within a program triggered by an Assign event, assigns a value that is different
from the value specified by the assignment statement that triggered the execution of
the program.

Data type
The data type of the object to which Oracle OLAP assigns the value.

Syntax
TRIGGERASSIGN value

Arguments

value
The value that you want assigned.

Examples

Example 24–14 Assigning an Alternative Value using an Assign Trigger

Assume that you have objects with the following descriptions in your analytic
workspace.

DEFINE GEOG.D DIMENSION TEXT
DEFINE TIME.D DIMENSION TEXT
DEFINE TIME.PARENTREL RELATION TIME.D <TIME.D>
DEFINE SALES VARIABLE DECIMAL <GEOG.D TIME.D>
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>

Note: The USETRIGGERS option must be set to its default value
of TRUE for this command to execute

See: "Trigger Programs" on page 1-14 and TRIGGER command
for more information about creating trigger programs for Assign
events.

TRIGGERASSIGN

TRAP to ZSPELL 24-39

Assume also that you have populated the sales variable with the values shown in
the following report, but that you have not yet populated the modified_sales
variable.

 -----------------------SALES-----------------------
 ----------------------GEOG.D-----------------------
TIME.D Boston Medford San Diego Sunnydale
------------ ------------ ------------ ------------ ------------
Jan76 1,000.00 2,000.00 3,000.00 4,000.00
Feb76 2,000.00 4,000.00 6,000.00 8,000.00
Mar76 3,000.00 6,000.00 9,000.00 12,000.00
76Q1 NA NA NA NA

Now you want to assign values to the modified_sales variable using various
expressions, however, you want to ensure that the values never are less than or
equal to 1,000. You can assure this processing by taking the following steps:

1. Create the following program that checks for values less than or equal to 1000
condition.

DEFINE TRIGGER_ASSIGN_MODIFIED_SALES PROGRAM
PROGRAM
ARGUMENT datavalue DECIMAL
IF datavalue LE 1000
 THEN TRIGGERASSIGN 1000
show 'description of triggering object = '
DESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
SHOW JOINCHARS ('value passed to program = ' datavalue)
SHOW ' '
END

2. Issue the following statements to add an Assign trigger to the
modified_sales variable. The trigger_assign_modified_sales
program is the trigger program.

CONSIDER modified_sales
TRIGGER ASSIGN trigger_assign_modified_sales

3. Assign values to modified_sales.

modified_sales = sales - 1000

TRIGGERASSIGN

24-40 Oracle OLAP DML Reference

4. This statement triggers the execution of the
trigger_assign_modified_sales program for each value that Oracle
OLAP assigns.

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 0.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 1,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 2,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 3,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 1,000.00

description of triggering object =

TRIGGERASSIGN

TRAP to ZSPELL 24-41

DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 3,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 5,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 7,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 2,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 5,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =

TRIGGERASSIGN

24-42 Oracle OLAP DML Reference

value passed to program = 8,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 11,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

TRIGGERASSIGN

TRAP to ZSPELL 24-43

5. The following report of modified_sales shows that all values are at least
1,000.

 ------------------MODIFIED_SALES-------------------
 ----------------------GEOG.D-----------------------
TIME.D Boston Medford San Diego Sunnydale
------------ ------------ ------------ ------------ ------------
Jan76 1,000.00 1,000.00 2,000.00 3,000.00
Feb76 1,000.00 3,000.00 5,000.00 7,000.00
Mar76 2,000.00 5,000.00 8,000.00 11,000.00
76Q1 NA NA NA NA

TRIGGERMAXDEPTH

24-44 Oracle OLAP DML Reference

TRIGGERMAXDEPTH

The TRIGGERMAXDEPTH option determines the maximum number of
$NATRIGGER property expressions that Oracle OLAP can execute simultaneously.

Data type
INTEGER

Syntax
TRIGGERMAXDEPTH = n

Arguments

n
An INTEGER expression that specifies the maximum number of $NATRIGGER
property expressions that can execute simultaneously. The default value is 50.

Notes

About the $NATRIGGER Property
The TRIGGERMAXDEPTH option works in conjunction with the $NATRIGGER
property of a variable.

Recursive Triggers
While an $NATRIGGER expression is executing, it cannot be invoked again by a
formula, program, or other $NATRIGGER expression that it invokes unless the
RECURSIVE option is set to YES. The TRIGGERMAXDEPTH option governs the
depth of recursion of $NATRIGGER expressions and prevents infinite recursions or
excessively deep recursions, which can cause Oracle OLAP to malfunction.

TRIGGERMAXDEPTH

TRAP to ZSPELL 24-45

Examples

Example 24–15 Setting the Maximum Trigger Depth

This example sets the maximum trigger depth, exceeds it, then sets the depth to a
higher value. Usually the TRIGGERMAXDEPTH value would be much higher
than 2, which is used in this example. The default value is 50.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 2
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v2 + 1'
DEFINE v2 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v3 + 1'
DEFINE v3 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v4 + 1'
DEFINE v4 DECIMAL <d1>
v4(d1 1) = 333.3
RECURSIVE = YES
TRIGGERMAXDEPTH = 2
SHOW v1

The preceding statements produce the following output.

ERROR: Depth of NA trigger calls exceeds allowable (maximum depth 2)

The following statements set the maximum trigger depth to a higher value and
show the value of the variable.

TRIGGERMAXDEPTH = 3
SHOW v1

The preceding statements produce the following output.

336.3

TRIGGERSTOREOK

24-46 Oracle OLAP DML Reference

TRIGGERSTOREOK

The TRIGGERSTOREOK option controls whether you can use
$STORETRIGGERVAL properties to specify that NA values in an object be
permanently replaced by the values specified by a $NATRIGGER property.

Data type
BOOLEAN

Syntax
TRIGGERSTOREOK = {NO|YES}

Arguments

NO
YES
Specifies whether or not NA values are permanently replaced with the
$NATRIGGER property expression that is set for a variable. The default value is NO.

For Oracle OLAP to permanently replace NA values for a variable with the valid
$NATRIGGER property expression that is set for the variable, you must set both the
TRIGGERSTOREOK option and the $STORETRIGGERVAL property for the
variable to YES.

Notes

About the $NATRIGGER and STORETRIGGERVAL Properties
The TRIGGERSTOREOK option works in conjunction with the $NATRIGGER and
$STORETRIGGERVAL properties of a variable.

Important: The value of the TRIGGERSTOREOK option is only
one factor that Oracle OLAP uses to determine what to do with
variable data that is the result of $NATRIGGER expression
execution. For a discussion of the other factors and their
interrelationship, see "How Oracle OLAP Determines Whether to
Store or Cache Results of $NATRIGGER" on page 6-21.

TRIGGERSTOREOK

TRAP to ZSPELL 24-47

Examples

Example 24–16 Replacing NA Values Temporarily

This example replaces the NA values in the cells of a variable temporarily. The
following statements define a dimension with three values and define a variable
dimensioned by the dimension. They add the $NATRIGGER property to the
variable, then put a value in one cell of the variable and leave the other cells empty,
so that their values are NA. Finally, they report the values in the cells of the variable.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' '500.0'
v1(d1 1) = 333.3

REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------

1 333.30
2 500.00
3 500.00

This statement deletes the $NATRIGGER property from the v1 variable.

CONSIDER v1
PROPERTY DELETE '$NATRIGGER'
REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------

1 333.30
2 NA
3 NA

Example 24–17 Replacing NA Values Permanently

The following statements add the $NATRIGGER property to the v1 variable that
was defined in the previous example and set the TRIGGERSTOREOK option and

TRIGGERSTOREOK

24-48 Oracle OLAP DML Reference

the $STORETRIGGERVAL properties to YES. They then report the values in the
cells of the variable.

CONSIDER v1
PROPERTY '$NATRIGGER' '800.0'
TRIGGERSTOREOK = YES
PROPERTY 'STORETRIGGERVAL' YES
REPORT v1

The preceding statements produce the following output.

D1 V1
-------------- ----------

1 333.30
2 800.00
3 800.00

The following statements delete the $NATRIGGER property from the v1 variable
and report the values in the cells of the variable.

CONSIDER v1
PROPERTY DELETE '$NATRIGGER'
REPORT v1

The preceding statements produce the following output.

D1 V1
-------------- ----------

1 333.30
2 800.00
3 800.00

TRIM

TRAP to ZSPELL 24-49

TRIM

The TRIM function enables you to trim leading or trailing characters (or both) from
a character string.

You can also trim leading characters using LTRIM and trailing characters using
RTRIM.

Return Value
The data type of the string you are trimming (that is, trim-source).

Syntax
TRIM ([{{LEADING|TRAILING|BOTH} [trim_character])|trim_character} FROM] trim_source)

Arguments

trim-character
An expression that specifies the values to be trimmed. This text expression can be
any of the text data types. When you do not specify a value, then the default value
is a blank space and the function removes leading and trailing blank spaces.

LEADING
Specifies that the function removes any leading characters equal to trim_character.

TRAILING
Specifies that the function removes any trailing characters equal to trim_character.

BOTH
Specifies that the function removes leading and trailing characters equal to
trim_character.

trim-source
An expression that is the value to be trimmed. This text expression can be any of the
text data types.

TRUNC

24-50 Oracle OLAP DML Reference

TRUNC

The TRUNC function truncates either a number or a date and time value. Because
the syntax of the TRUNC function is different depending on the whether it is being
used for a number or a date and time value, two separate entries are provided:

■ TRUNC (for dates and time)

■ TRUNC (for numbers)

TRUNC

TRAP to ZSPELL 24-51

TRUNC (for dates and time)

When you specify a date and time value as an argument, the TRUNC function
returns the date and time value truncated to a specified date format. When you do
not specify a format, the date and time value is truncated to the nearest day.

Return Value
DATETIME

Syntax
TRUNC (datetime_exp, fmt)

Arguments

datetime-exp
An expression that identifies a date and time number.

fmt
A text expression that specifies one of the format models shown in Table 24–7,
" Format Models for TRUNC for Dates and Time". A format model indicates how
the date and time number should be truncated.

Table 24–7 Format Models for TRUNC for Dates and Time

Format Model Description

CC

SCC

One greater than the first two digits of a 4-digit year to indicate the next
century. For example, 1900 becomes 2000. S prefixes BC dates with -.

D

DAY

DY

Starting day of the week (1 to 7). The day of the week that is number 1 is
controlled by NLS_TERRITORY (See NLS Options).

DD Day of month

TRUNC (for dates and time)

24-52 Oracle OLAP DML Reference

Examples

Example 24–18 Truncating to the Nearest Year

When the value of the NLS_DATE_FORMAT option is DD-MON-YY, then this
statement:

SHOW TRUNC ('27-OCT-92','YEAR')

returns this value:

01-JAN-92

TRUNC

TRAP to ZSPELL 24-53

TRUNC (for numbers)

When you specify a number as an argument, the TRUNC function truncates a
number to a specified number of decimal places.

Return Value
DECIMAL

Syntax
TRUNC (number, truncvalue)

Arguments

number
The number to truncate. The value specified for number must be followed by a
comma.

truncvalue
An INTEGER value that specifies the number of places to the right or left of the
decimal point to which number should be truncated. When truncvalue is positive,
digits to the right of the decimal point are truncated. When it is negative, digits to
the left of the decimal point are truncated (that is, made zero). When truncvalue is
omitted, number is truncated to 0 decimal places.

Examples

Example 24–19 Truncating to the Right of the Decimal Point

The following statement

SHOW TRUNC (15.79, 1)

returns this value

15.7

TRUNC (for numbers)

24-54 Oracle OLAP DML Reference

Example 24–20 Truncating to the Left of the Decimal Point

The following statement

SHOW TRUNC (15.79, -1)

returns this value

10

UNHIDE

TRAP to ZSPELL 24-55

UNHIDE

The UNHIDE command unhides the text of a program that has been made invisible
by using the HIDE command. To use UNHIDE, you must know the seed expression
that was used with the HIDE command when the program was hidden.

Syntax
UNHIDE prog-name seed-exp

Arguments

prog-name
The name of a program whose text has been made invisible by using the HIDE
command. Do not enclose the program name in quotes.

seed-exp
The single-line text expression that was used in the HIDE command when
"prog-name" was hidden. The seed expression must be byte-for-byte the same value
as you used in the HIDE command. Also, since the seed expression is case-sensitive,
specify uppercase and lowercase characters carefully.

Notes

Forgetting the Seed Expression
When you want to use the UNHIDE command on a program but you have
forgotten the seed expression, you can call Oracle OLAP Products Technical
Support for help in solving your problem. Before calling, make a connection to
Oracle OLAP from OLAP Worksheet, and in Oracle OLAP, attach the analytic
workspace that contains the hidden program.

Examples

Example 24–21 Unhiding Program Text

The following example unhides the text of a program called sales_rpt. The seed
expression crystal was used when the program was hidden using HIDE.

UNHIDE sales_rpt 'crystal'

UNIQUELINES

24-56 Oracle OLAP DML Reference

UNIQUELINES

The UNIQUELINES function removes duplicate lines in a multiline TEXT value and
sorts the lines in ascending order. The function returns a multiline TEXT value
composed of the resulting lines.

Return Value
TEXT or NTEXT

Syntax
UNIQUELINES(text-expression)

Arguments

text-expression
A multiline text expression from which UNIQUELINES removes duplicate lines
and in which it sorts the remaining lines. When you specify a TEXT expression, the
return value is TEXT. When you specify an NTEXT expression, the return value is
NTEXT.

Notes

Case Sensitivity
UNIQUELINES is case-sensitive when it checks for duplicates, and it compares all
characters, including spaces.

Sort Order
UNIQUELINES sorts the lines in ascending order.

Examples

Example 24–22 Removing Duplicate Text Lines

In the following example, one line is removed from the value of officelist, and
the lines are sorted.

UNIQUELINES

TRAP to ZSPELL 24-57

The statement

SHOW officelist

produces the following output.

MIAMI
Providence
Miami
Baltimore
Saratoga
Baltimore

The statement

show uniquelines(officelist)

produces the following output.

Baltimore
Miami
MIAMI
Providence
Saratoga

UNRAVEL

24-58 Oracle OLAP DML Reference

UNRAVEL

The UNRAVEL function is used in conjunction with an assignment statement to
copy the values of an expression into the cells of a variable when the dimensions of
the expression are not the same as the dimensions of the variable.

An assignment statement created using an assignment statement assigns the values
obtained from UNRAVEL by looping over the status of the dimensions of the target
variable. The first dimension listed in the variable's definition varies the fastest.
UNRAVEL obtains the values of the expression in the same way, looping over the
status of the dimensions of the expression with the first dimension varying the
fastest. You can alter the order in which UNRAVEL obtains its values by specifying
the dimensions over which to loop.

Return Value
The data type returned by UNRAVEL is the data type of the values specified by the
expression.

Syntax
UNRAVEL(expression [dimension1...])

Arguments

expression
The expression whose values are to be copied.

dimension
Specifies one or more dimensions over which to loop; the dimension specified first
will vary fastest as the data is unraveled.

Specifying dimensions in UNRAVEL overrides the default looping order, as well as
the extent of the unraveling of the expression. By default, unraveling extends
through all the dimensions of the expression. However, when you specify some but
not all the dimensions of the expression, any dimensions you have not specified do
not unravel. Instead, the unraveled values will include only the first value of each
of the omitted dimensions.

UNRAVEL

TRAP to ZSPELL 24-59

Notes

Performance Tip for Unraveling Variables Dimensioned by Composites
By default, when UNRAVEL loops over a composite, it sorts the composite values
according to the current order of the values in the composite's base dimensions. The
task of sorting requires some processing time, so when variables are large,
performance can be affected. When your variable is very large, and you are more
concerned about performance than about the order in which UNRAVEL output is
produced, you can set the SORTCOMPOSITE option to NO.

Moving Worksheet Data
One common use of UNRAVEL is to move data from a worksheet to a variable,
because the worksheet usually does not have the same dimensions as the variable.
See Example 24–23, "Copying Data from a Worksheet to a Variable" on page 24-59.

Filling Extra Target Cells
When there are still more cells in the target for the assignment statement (created
using an assignment statement) to fill after it has used the last value from the
expression, UNRAVEL starts over at the first value again.

Setting Status
Since the order in which unraveled values are assigned depends on the current
status of the dimensions of both the variable and the expression, be sure that the
appropriate LIMIT commands have been given so that the cells match up correctly.

Assigning Data Values
See SET for information on how data values are assigned.

Examples

Example 24–23 Copying Data from a Worksheet to a Variable

In an analytic workspace, you have imported some product price data from a
spreadsheet into a worksheet. You now want to transfer that data to a variable

UNRAVEL

24-60 Oracle OLAP DML Reference

called newprice. You can produce a report of a worksheet, called pricedata,
with these statements.

LIMIT wksrow TO 1 TO 6
LIMIT wkscol TO 1 2 3
REPORT pricedata

This is the report.

-----------PRICEDATA------------
-------------WKSCOL-------------

WKSROW 1 2 3
-------------- ---------- ---------- ----------

1 Jan95 Jan96
2 Tents 191.39 194.00
3 Canoes 279.92 300.00
4 Racquets 83.34 85.00
5 Sportswear 107.90 110.00
6 Footwear 183.18 195.00

As you can see, row 1 contains month labels, while column 1 contains product
labels. The variable newprice is dimensioned by month and product, as shown
in its definition.

DEFINE newprice VARIABLE DECIMAL <month product>
LD Wholesale Unit Selling Price

Even though the worksheet has different dimensions (wkscol and wksrow) than
newprice, the data contained in it is well organized for transferring to the variable.

However, you do not want to take data from all the rows and columns in the
worksheet, so limit wkscol and wksrow to the rows and columns that contain the
price data itself.

LIMIT wkscol TO 2 3
LIMIT wksrow TO 2 TO 6

Also, you only want to set values into the variable newprice for January 1995 and
January 1996. So first limit month to these values, then type the = command using
UNRAVEL to move the values from the worksheet to the variable.

LIMIT month TO 'Jan95' 'Jan96'
newprice = UNRAVEL(pricedata)

You do not have to specify dimensions in the UNRAVEL function because wkscol
is the fastest varying dimension. This means that both months will unravel for the

UNRAVEL

TRAP to ZSPELL 24-61

first product, then both months for the second product. Since the fastest-varying
dimension of the variable is month, SET assigns values to the variable in the same
order.

A report of newprice looks like this.

------NEWPRICE-------
--------MONTH--------

PRODUCT Jan95 Jan96
-------------- ---------- ----------
Tents 191.39 194.00
Canoes 279.92 300.00
Racquets 83.34 85.00
Sportswear 107.90 110.00
Footwear 183.18 195.00

UPCASE

24-62 Oracle OLAP DML Reference

UPCASE

The UPCASE function converts all alphabetic characters in a text expression into
uppercase. When you specify a TEXT expression, the return value is TEXT. When
you specify an NTEXT expression, the return value is NTEXT.

Return Value
TEXT or NTEXT

Syntax
UPCASE(text-expression)

Arguments

text-expression
The text expression whose characters are to be converted.

Examples

Example 24–24 Converting Part of a Text Expression to Uppercase

Suppose you get some new data to add to a mailing list. In the existing mailing list,
people's names have the first letter capitalized. In the new data, however, the whole
name is in lowercase. You can use UPCASE to make the new data correspond to the
current data with a statement similar to the following.

lastname = JOINCHARS(UPCASE(EXTCHARS(lastname, 1, 1)), -
EXTCHARS(lastname, 2, NUMCHARS(lastname)))

UPDATE

TRAP to ZSPELL 24-63

UPDATE

The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Typically, you use an
UPDATE command when you are finished making changes in a workspace;
however, you can also specify UPDATE commands periodically as you go along.
Your changes are not saved until you execute a COMMIT command, either from
Oracle OLAP or from SQL.

Syntax
UPDATE [MULTI [aquired_objects]] [analytic_workspaces]

Arguments
When you do not specify any parameters, the command updates all analytic
workspaces that are attached in read/write non-exclusive and read/write exclusive
modes and all acquired objects (that is, all acquired variables, relations, valuesets,
and dimensions) in all analytic workspaces that are attached in multiwriter mode.

acquired_objects
A list of the names of acquired objects, separated by commas, in analytic
workspaces attached in multiwriter mode. These objects can be any variable,
relation, valueset, or dimension that you have acquired using an ACQUIRE
statement.

workspaces
A list of names, separated by commas. of one or more workspaces attached in
read/write or multiwriter mode.

Important: you cannot update an object when it is dimensioned
by an acquired and maintained dimension unless you update that
dimension first.

UPDATE

24-64 Oracle OLAP DML Reference

Notes

Unsaved Changes
When you do not use the UPDATE and COMMIT commands, changes made to an
analytic workspace during your session are discarded when you end your Oracle
session.

Automatic COMMIT
Many users execute DML statements using SQL*Plus or OLAP Worksheet. Both of
these tools automatically execute a COMMIT statement when you end your session.

Triggering Program Execution When UPDATE Executes
Using the TRIGGER command, you can make the UPDATE command an event that
automatically executes an OLAP DML program. See "Trigger Programs" on
page 1-14 for more information

Shared Workspaces
When you have attached a shared workspace and another user has read/write
access, that user's UPDATE and COMMIT commands do not affect your view of the
workspace. Your view of the data remains the same as when you attached the
workspace. When you want access to the changes, you can detach the workspace
and reattach it.

Effect of the ROLLBACK Command
The OLAP DML does not provide a way to issue a SQL ROLLBACK statement;
however, you could execute one in your session from outside Oracle OLAP (for
example, through PL/SQL). When a ROLLBACK statement is executed in your
session, Oracle OLAP checks to see whether there are uncommitted updates in an
attached workspace.

■ When there are uncommitted updates (that is, you have made changes and
executed an UPDATE command, but you have not subsequently executed a
COMMIT command), then Oracle OLAP discards your changes and detaches
the workspace.

Note: You can detach and reattach a workspace without losing
updated changes, even though they are not committed. This is
because the detaching and reattaching occur within a single
database session

UPDATE

TRAP to ZSPELL 24-65

■ When you have no uncommitted updates, then Oracle OLAP takes no action in
response to the ROLLBACK command. This means that, when you have not
issued an UPDATE command since your last COMMIT command, Oracle
OLAP takes no action and all your changes remain in the workspace during
your session.

When you rollback to a savepoint and there are uncommitted updates that occurred
subsequent to the savepoint, Oracle OLAP discards those updates and detaches the
workspace. Uncommitted updates that occurred before the savepoint remain in the
workspace, and you can see them when you reattach the workspace in the same
session.

Examples

Example 24–25 Saving Analytic Workspace Changes

The following statement moves changes in the current workspace session to the
database table in which the workspace is stored.

UPDATE

In order to save the changes in the database, the UPDATE command must be
followed by a COMMIT command.

USERID

24-66 Oracle OLAP DML Reference

USERID

(Read-only) The USERID option holds the user ID for the current Oracle Database
session.

Data type
TEXT

Syntax
USERID

Notes

USERID Option and SYSINFO(USER) Function
The value of USERID is also the value that SYSINFO(USER) returns.

Examples

Example 24–26 Displaying the Session User ID

This statement displays the Oracle user ID associated with the current session.

SHOW USERID

USETRIGGERS

TRAP to ZSPELL 24-67

USETRIGGERS

The USETRIGGERS option determines if a TRIGGER_DEFINE,
TRIGGER_AFTER_UPDATE, or TRIGGER_BEFORE_UPDATE program, or any
programs identified by the TRIGGER command as triggers execute.

Data type
BOOLEAN

Syntax
USETRIGGERS = {NO|YES}

Arguments

YES
Trigger programs execute. (Default)

NO
Trigger programs do not execute.

Tip: Oracle OLAP does not support recursive triggers. Set the
USETRIGGERS option to NO before you issue the same DML
statement within a trigger program that triggered the program
itself. For example, assume that you have written a
TRIGGER_DEFINE program. Within the TRIGGER_DEFINE
program, you must set the USETRIGGERS option to NO before you
issue a DEFINE statement

USETRIGGERS

24-68 Oracle OLAP DML Reference

Examples

Example 24–27 Changing USETRIGGERS to NO

Assume you have just created a new analytic workspace. As illustrated in the
following statement, the default value of the USETRIGGERS option is YES, but you
can set the option to NO at any time.

SHOW USETRIGGERS
yes

USETRIGGERS = NO
SHOW USETRIGGERS
no

VALSPERPAGE

TRAP to ZSPELL 24-69

VALSPERPAGE

The VALSPERPAGE program calculates the maximum number of values for a
variable of a given width that will fit on one page. Pages are units of storage in the
workspace.

Syntax
VALSPERPAGE(n)

Arguments

n
An INTEGER expression specifying the width of a variable in bytes. This value
should be between 1 and 4000. When you specify a value greater than 4000 or less
than 1, the result is NA.

Notes

Large Variables
Oracle OLAP lets you create very large, multidimensional variables. Theoretically, a
variable can contain up to 2**63 cells, although this maximum is subject to
memory constraints and other factors specific to your system.

Related Statements
AW function and DEFINE VARIABLE command.

Examples

Example 24–28 Calculating the Number of Cells in a Page

The following statement calculates the maximum number of cells available in a
single page for a variable with an INTEGER data type. The default width of integers
in Oracle OLAP is 4 bytes.

SHOW VALSPERPAGE(4)

The output of this statement is

992

VALUES

24-70 Oracle OLAP DML Reference

VALUES

The VALUES function returns the default status list or the current status list of a
dimension or dimension surrogate, or it returns the values in a valueset. VALUES
returns a multiline text value that contains one dimension value on a line.

Return Value
TEXT

Syntax
VALUES(dimension [keyword] [INTEGER])

Arguments

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

keyword
One of the following keywords that specify whether you want the current status list
or the default status list for a dimension or a surrogate:

■ NOSTATUS which indicates that VALUES should return the default status list of a
dimension or dimension surrogate rather than its current status list.

■ STATUS which indicates that VALUES should return the current status list of a
dimension or dimension surrogate (Default).

These keywords do not affect valuesets. For a valueset, VALUES returns all the
values in that valueset whether you specify NOSTATUS, STATUS, or nothing.

INTEGER
When you use the INTEGER keyword, the function returns the position numbers of
the dimension or dimension surrogate values rather than the values. When you use
INTEGER with a valueset, the function returns the position numbers of the values
in the existing dimension, not in the valueset.

VALUES

TRAP to ZSPELL 24-71

Notes

Comparing VALUES to CHARLIST
The VALUES function is very similar to the CHARLIST function. VALUES(MONTH)
returns the same list as CHARLIST(MONTH).

The main differences are:

■ For dimensions, the NOSTATUS keyword of VALUES lets you use the default
status without first limiting the dimension values to ALL.

■ The VALUES function lets you use a text expression to specify the dimension or
valueset name. See Example 24–31, "VALUES with Text Variables" on
page 24-72.

Do Not Use with Composites
Because composites do not have status, you cannot use the VALUES function with a
composite. When you attempt to do so, Oracle OLAP displays an error message.

Special Considerations for an Ampersand (&)
Under certain circumstances, an ampersand (&) that is intended to be a character in
a dimension value name will be interpreted as ampersand substitution. When this
happens, Oracle OLAP generates an error message.

This happens because Oracle OLAP recognizes special characters in dimension
value names with when they are used in tuples in text expressions. For example,
you can include spaces, such as naming a dimension value New York instead of
NewYork. When you have dimension values that include ampersands in their
names, refer to Example 24–32, "Workaround for Dimension Value Names
Including an Ampersand" on page 24-73.

VALUES

24-72 Oracle OLAP DML Reference

Examples

Example 24–29 Listing the Values of a Valueset

Suppose an analytic workspace contains a valueset called monthset that has the
values Jan95, May95, and Dec95. You can use VALUES to list the values in that
valueset.

The following statement

SHOW VALUES(monthset)

produces this output.

Jan95
May95
Dec95

Example 24–30 Listing Position Numbers of a Dimension

You can use VALUES to list the position numbers instead of the actual values in a
dimension or valueset. In this example, because you are using the INTEGER
keyword with a valueset instead of a dimension, the function returns the position
numbers of the values in the month dimension.

The following statement

SHOW VALUES(monthset INTEGER)

produces this output.

61
65
72

Therefore, the value Jan95 is shown as the 61st value in the month dimension,
May95 as the 65th value, and Dec95 as the 72nd value, although they are the first,
second, and third values in monthset.

Example 24–31 VALUES with Text Variables

This example shows how to assign a dimension name to a text variable and use the
text variable in the VALUES function instead of the variable name itself. When the

VALUES

TRAP to ZSPELL 24-73

variable textvar has the value district, VALUES(textvar) returns a list of
district values.

The following statements

textvar = 'district'
SHOW VALUES(textvar)

produce this output.

Boston
Atlanta
Chicago
Dallas
Denver
Seattle

To list the values of district using the CHARLIST function rather than VALUES,
you must use an ampersand.

SHOW CHARLIST(&textvar)

Because ampersands in a program can degrade performance, you should use
VALUES rather than CHARLIST in such cases.

Example 24–32 Workaround for Dimension Value Names Including an Ampersand

When a dimension value name contains an ampersand (&) as one of its characters,
and when that dimension is a base dimension of a conjoint dimension, then a text
expression that contains the names of dimension values in a tuple can generate an
error in certain circumstances. This example shows how to avoid this error.

Suppose you use the following statements to define two dimensions.

DEFINE prod DIMENSION TEXT
DEFINE geog DIMENSION TEXT

Next, you use the following statements to define two conjoint dimensions.

DEFINE conj1 DIMENSION <prod geog>
DEFINE conj2 DIMENSION <prod geog>

The following statements add dimension values to the prod and geog dimensions.

MAINTAIN prod ADD 'prod1' 'prod&val2'
MAINTAIN geog ADD 'geog1' 'geog&val2'

VALUES

24-74 Oracle OLAP DML Reference

The following statements add tuples (combinations of dimension values) to the
CONJ1 conjoint dimension.

MAINTAIN conj1 ADD <'prod1' 'geog1'>
MAINTAIN conj1 ADD <'prod&val2' 'geog1'>

Now, suppose you want to use the VALUE function with the MAINTAIN command
to add those same tuples to the conj2 conjoint dimension. When you attempt to
use the following statement, it will generate an error message.

MAINTAIN conj2 ADD VALUES(conj1)
ERROR: (MXMSERR) val2 does not exist in any attached workspace.

This error occurs because the ampersand in the dimension value name prod&val2
is interpreted as an attempt at ampersand substitution.

Instead of using the preceding MAINTAIN command, you can use the following
statement to add the tuples to the CONJ2 conjoint dimension.

MAINTAIN conj2 MERGE < KEY(conj1 prod) KEY(conj1 geog) >

VARCACHE

TRAP to ZSPELL 24-75

VARCACHE

The VARCACHE option specifies whether Oracle OLAP stores or caches all variable
data that is the result of the execution of an AGGREGATE function or
$NATRIGGER expression.

Syntax
VARCACHE = {VARIABLE | SESSION | NONE}

Arguments

VARIABLE
Specifies that Oracle OLAP stores the data in the variable in the database. When
you specify this option, the results of the calculation are permanently stored in the
variable when the analytic workspace is updated and committed.

SESSION
Specifies that Oracle OLAP caches the calculated data in the session cache (See
"What is an Oracle OLAP Session Cache?" on page 21-54). When you specify this
option, the results of the calculation are ignored during updates and commits and
are discarded at the end of the session.

Important: The value of the VARCACHE option is only one factor
that Oracle OLAP uses to determine whether variable data
computed when the AGGREGATE function or $NATRIGGER
property executes is stored or cached. For a discussion of the other
factors and their interrelationship, see"How Oracle OLAP
Determines Whether to Store or Cache Aggregated Data" on
page 6-23 and "How Oracle OLAP Determines Whether to Store or
Cache Results of $NATRIGGER" on page 6-21.

Important: When SESSCACHE is set to NO, Oracle OLAP does not
cache the data even when you specify SESSION. In this case,
specifying SESSION is the same as specifying NONE.

VARCACHE

24-76 Oracle OLAP DML Reference

NONE
For data that is calculated on the fly using the AGGREGATE function, specifies that
Oracle OLAP calculates the data each time the AGGREGATE function executes;
Oracle OLAP does not store or cache the data calculated by the AGGREGATE
function

Notes

The VARCACHE Option Can Affect All Variables
When you set the VARCACHE option, its setting can affect all variables. When you
have not set the $VARCACHE property on a variable and there is no CACHE
command in the aggmaps that you use with the AGGREGATE function to calculate
data on the fly, then it is the VARCACHE option that determines how or if that data
will be stored.

VARIABLE

TRAP to ZSPELL 24-77

VARIABLE

Within an OLAP DML program, the VARIABLE command declares a local variable
or valueset for use within that program. A local variable cannot have any
dimensions and exists only while the program is running.

Syntax
VARIABLE name {datatype|dimension|VALUESET dim}

Arguments

name
The name for the local variable or valueset. When you use the same name as an
existing analytic workspace object, the local variable or valueset takes precedence
over the analytic workspace object. After you assign a value to the variable or
valueset, its value will be available within the program where the VARIABLE
command occurs. You name a variable or valueset according to the rules for naming
analytic workspace objects (see the DEFINE command).

datatype
The data type of the variable, which indicates the kind of data to be stored. You can
specify any of the data types that are listed and described in the DEFINE
VARIABLE entry. Also, when you want to the program to be able to receive an
argument without converting it to a specific data type, you can also specify
WORKSHEET for the data type.

dimension
Indicates that name is a relation variable, which holds a single value of the specified
dimension. The variable can hold a value of the dimension or a position (integer) of
the specified dimension. Assigning a value that does not currently exist in the
dimension causes an error.

VALUESET dim
Indicates that name is a valueset. Dim specifies the dimension for which the valueset
holds values.

VARIABLE

24-78 Oracle OLAP DML Reference

Notes

Persistence of a Local Variable
A local variable or valueset exists only while the program that specified it is
running. When the program terminates, the variable or valueset ceases to exist and
its value is lost. A program can terminate when a RETURN statement, SIGNAL
command, or the last line of the program executes. When the program calls another
program, the original program is temporarily suspended and the variable or
valueset does exist when the called program ends and control returns to the original
program. A program that calls itself recursively has separate local variable or
valuesets for each running copy of the program.

Declarations at the Start Of A Program
You must specify all your local variables or valuesets at the beginning of a program,
before any executable statements.

Initial Value
The value of a local variable or valueset is initially NA.

Duplicate Names
When you give a local variable or valueset the same name as an analytic workspace
object, Oracle OLAP assumes you are referring to the local variable or valueset
within the program. The analytic workspace object has priority only when the
statement requires an analytic workspace object as an argument.

Although the OBJ and EXISTS functions expect an analytic workspace object as an
argument, you can use a local text variable or valueset to specify the name of an
object.

Formulas and Models
You cannot use local variables or valuesets in a formula or model.

EXPORT and IMPORT Commands
In a program, you can use the EXPORT (to EIF) command to store the value of a
local variable or valueset in an EIF file. You must use the AS keyword to give the
variable or valueset an analytic workspace object name. The name can be the same
as the name of the local variable or valueset. When you use IMPORT (from EIF) to
retrieve the value, it is stored as an analytic workspace object. You cannot import
the value into a local variable or valueset.

VARIABLE

TRAP to ZSPELL 24-79

Examples

Example 24–33 Saving a File Unit Number

Suppose you want to write a program to read data from an input file with Data
Reader statements. First you need to open the file and save the value of the file unit
number assigned to it. At the beginning of the program you can specify a local
variable called unit to hold the file unit number.

DEFINE read.file PROGRAM
LD Read monthly sales data into the analytic workspace
PROGRAM
VARIABLE unit INTEGER
TRAP ON error
unit = FILEOPEN('sales.data' READ)
...

Example 24–34 Returning a Dimension Value from a Program

Suppose you want to write a program that analyzes sales for various districts and
returns the name of the district in which sales were highest. For the purpose of
analysis, the program defines a local variable to hold the district name. When the
program ends, it returns the value of the local variable.

DEFINE highsales PROGRAM
PROGRAM
VARIABLE districtname district
... "(statements that find the highest district)
RETURN districtname
END

VINTSCHED

24-80 Oracle OLAP DML Reference

VINTSCHED

The VINTSCHED function calculates the interest portion of the payments on a
series of variable-rate installment loans that are paid off over a specified number of
time periods. For each time period, you specify the initial amount of the loans
incurred in that time period and the interest rate that will be charged in that time
period for each new or outstanding loan.

Return Value
DECIMAL

Syntax
VINTSCHED(loans, rates, n, [time-dimension])

Arguments

loans
A numeric expression that contains the initial amounts of the loans. When loans
does not have a time dimension, or when loans is dimensioned by more than one
time dimension, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a
different time dimension. When rates is dimensioned by a time dimension, you
specify the interest rate in each time period that will apply to the loans incurred or
outstanding in that period. The interest rates are expressed as decimals; for
example, a 5 percent rate is expressed as .05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period
of the dimension specified in the time-dimension argument. For example, one
payment a month is made when loans is dimensioned by month.

VINTSCHED

TRAP to ZSPELL 24-81

time-dimension
The name of the dimension along which the interest payments are calculated. When
loans has a dimension of type of DAY, WEEK, MONTH, QUARTER, or YEAR, the
time-dimension argument is optional, unless loans has more than one dimension of
these types.

Notes

The Result Dimensions of the Result
The result returned by the VINTSCHED function is dimensioned by the union of all
the dimensions of loans and rates and the dimension that is used as the
time-dimension argument.

Time Period Results
VINTSCHED calculates the result for a given time period as the sum of the interest
due on each loan that is incurred or outstanding in that period.

NA Mismatch Error
When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

NASKIP Option
VINTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
VINTSCHED depends on whether the corresponding interest rate has a value of NA
or a value other than NA. Table 24–8, " How NASKIP Affects the Results When a
Loan or Rate Value is NA for a Given Time Period" illustrates how NASKIP affects
the results when a loan or rate value is NA for a given time period.

Table 24–8 How NASKIP Affects the Results When a Loan or Rate Value is NA for a
Given Time Period

Loan Value Rate Value Result when NASKIP = YES Result when NASKIP = NO

Non-NA NA Error Error

NA Non-NA Interest values (NA loan value is
treated as zero)

NA for affected time periods

NA NA NA for affected time periods NA for affected time periods

VINTSCHED

24-82 Oracle OLAP DML Reference

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997, but both have values other than NA for succeeding
years. When the number of payments is 3, VINTSCHED returns NA for 1997, 1996,
and 1995. For 1997, VINTSCHED returns the interest portion of the payment due for
loans incurred in 1995, 1996, and 1997.

Time Dimensions
The VINTSCHED calculation begins with the first value of the time dimension,
regardless of how the status of that dimension may be limited. For example,
suppose loans is dimensioned by year, and the values of year range from Yr95 to
Yr99. The calculation always begins with Yr95, even when you limit the status of
year so that it does not include Yr95.

However, when loans is not dimensioned by the time dimension, the VINTSCHED
calculation begins with the first value in the current status of the time dimension.
For example, suppose loans is not dimensioned by year, but year is specified as
time-dimension. When the status of year is limited to Yr97 to Yr99, the calculation
begins with Yr97 instead of Yr95.

Related Functions
The FINTSCHED function, which calculates the interest portion of the payments on
a series of fixed-rate loans, and the VPMTSCHED and FPMTSCHED functions,
which calculate the payment schedules (principal plus interest) for variable-rate and
fixed-rate loans.

Examples

Example 24–35 Using VINTSCHED

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

VINTSCHED

TRAP to ZSPELL 24-83

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.07
Yr99 0.00 0.07

For each year, loans contains the initial value of the variable-rate loan incurred
during that year. For each year, the value of rates is the interest rate that will be
charged for that year on any loans incurred or outstanding in that year.

The following statement specifies that each loan is to be paid off in three payments,
calculates the interest portion of the payments on the loans,

REPORT W 20 HEADING 'Payment' VINTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 5.00
Yr96 16.10
Yr97 33.06
Yr98 19.43
Yr99 7.48

The interest payment for 1995 is interest on the loan of $100 incurred in 1995, at
5 percent. The interest payment for 1996 is the sum of the interest on the remaining
principal of the 1995 loan, plus interest on the loan of $200 incurred in 1996; the
interest rate for both loans is 6 percent. The 1997 interest payment is the sum of the
interest on the remaining principal of the 1995 loan, interest on the remaining
principal of the 1996 loan, and interest on the loan of $300 incurred in 1997; the
interest rate for all three loans is 7 percent. Since the 1995 loan is paid off in 1997,
the payment for 1998 represents 7 percent interest on the remaining principal of the
1996 and 1997 loans. In 1999, the interest payment is on the remaining principal of
the 1997 loan.

VNF

24-84 Oracle OLAP DML Reference

VNF

The VNF command assigns a value name format (VNF) to the definition of a
dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR. A VNF is a
template that controls the input and display format for values of DAY, WEEK,
MONTH, QUARTER, and YEAR dimensions. The template can include format
specifications for any of the components that identify a time period (day, month,
calendar year, fiscal year, and period within a fiscal year).

In order to assign a VNF to a definition, the definition must be the one most
recently defined or considered during the current session. When it is not, you must
first use a CONSIDER command to make it the current definition.

Syntax
VNF [template]

Arguments

template
A text expression that specifies the format for entering and displaying the values of
the current dimension. When template is omitted, any existing VNF for the current
definition is deleted and the default VNF is used (see Table 24–15, " Default VNFs
for DAY, WEEK, MONTH, QUARTER and YEAR Dimensions").

A template contains a code for each component that you use to describe a time
period in the current dimension. The code for each component must be preceded by
a left angle bracket and followed by a right angle bracket. Basic information about

Important: You can only use this function with dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR.You cannot use this
function for time dimensions that are implemented as hierarchical
dimensions of type TEXT.

Note: When you enter a dimension value that does not conform to
the VNF, Oracle OLAP attempts to interpret the value as a date. See
"Entering Dimension Values as Dates" on page 24-91

VNF

TRAP to ZSPELL 24-85

coding a template is provided in Table 24–9, " Basic Codes for Components in VNF
Templates", Table 24–10, " Component Combinations Allowed in VNF Templates",
and Table 24–11, " Format Styles for Day Available in VNF Templates".

Table 24–9, " Basic Codes for Components in VNF Templates" lists the basic codes
for the components of time periods. It uses a sample dimension called MYQTR,
which is a QUARTER dimension that ends in June. The examples are from the
quarter July 1, 1995 through September 30, 1995. The period code (P) specifies the
numeric position of a time period within a fiscal year. You can use the P code with
any dimension, but only when you use it along with the FF or FFB code.
The B code specifies the beginning period.

Table 24–10, " Component Combinations Allowed in VNF Templates" lists the
component combinations you can combine in a VNF for each type of dimensions of
type DAY, WEEK, MONTH, QUARTER, or YEAR. Notice that you can use the fiscal
year codes (FF or FFB) in a template for any dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. However, the fiscal year codes have a special
meaning for WEEK dimensions and for phased MONTH, QUARTER, and YEAR

Table 24–9 Basic Codes for Components in VNF Templates

Code Meaning Sample Values

<D>

<M>

<YY>

Day of the month on which the period
ends

Month in which the period ends

Calendar year in which the period ends

30

9

95

<FF> Fiscal year that contains the period; the
fiscal year is identified by the calendar
year in which the fiscal year ends

96

<DB>

<MB>

<YYB>

Day of the month on which the period
begins

Month in which the period begins

Calendar year in which the period begins

1

7

95

<FFB> Fiscal year that contains the period; the
fiscal year is identified by the calendar
year in which the fiscal year begins

95

<P> The period's numeric position within the
fiscal year

1

<NAME> Name of the dimension MYQTR

VNF

24-86 Oracle OLAP DML Reference

dimensions. For other dimensions, the fiscal year is identical to the calendar year.
See "Fiscal Years for a Dimension of Type WEEK" on page 24-89, "Fiscal Years for
Dimensions of Type MONTH, QUARTER, or YEAR" on page 24-90, and "Fiscal
Years for Dimensions of Type DAY" on page 24-90.

Notice that in place of the basic codes listed in Table 24–10, " Component
Combinations Allowed in VNF Templates", you can substitute any of the format
styles listed in Table 24–11, " Format Styles for Day Available in VNF Templates".
You can also include the <NAME> component with any of the component
combinations listed in Table 24–10.

You cannot specify a template that includes too few or too many components. The
VNF must allow you to input dimension values without ambiguity. See "Coding
VNFs to Prevent Ambiguity" on page 24-90.

However, if you include only the component combinations that are allowed for a
particular type of dimension, and if the VNF permits unambiguous interpretation of
input, you have considerable flexibility in specifying a VNF template:

■ You can specify the components in any order.

■ You can include text before, after, and between the components.

Table 24–10 Component Combinations Allowed in VNF Templates

Type of Dimension
Component
Combinations Sample Values

DAY, WEEK, MONTH, QUARTER, YEAR <D> <M> <YY>

<DB> <MB> <YYB>

<P> <FF>

<P> <FFB>

31 3 96

1 4 95

1 96

1 95

MONTH, QUARTER, YEAR <M> <YY>

<MB> <YYB>

<M> <FF>

<M> <FFB>

<MB> <FF>

<MB <FFB>

3 96

4 95

3 96

3 95

4 96

4 95

YEAR <YY>

<FF>

<FFB>

96

96

95

VNF

TRAP to ZSPELL 24-87

In place of the basic codes for the day, month, calendar year, fiscal year, and period
that were listed in Table 24–10, " Component Combinations Allowed in VNF
Templates", you can substitute the format styles listed in Table 24–11, " Format
Styles for Day Available in VNF Templates", Table 24–12, " Format Styles for Month
Available in VNF Templates", Table 24–13, " Format Styles for Year Available in VNF
Templates", and Table 24–14, " Format Styles for Period Available in VNF
Templates".

Note that for MTXT, MTXTL, MTEXT, and MTEXTL, the actual value displayed
depends on the value specified for the MONTHNAMES option:

■ For MTXT and MTEXT, when the name in the MONTHNAMES option is all
lowercase, the entire name is converted to uppercase. Otherwise, the first letter
is converted to uppercase and the second and subsequent letters remain in their
original case.

■ For MTXTL and MTEXTL, when the name in the MONTHNAMES option is all
uppercase, the entire name is converted to lowercase. Otherwise the first letter
is converted to lowercase and the second and subsequent letters remain in their
original case.

Table 24–11 Format Styles for Day Available in VNF Templates

Format Meaning Jan 3, 1995 Nov 12, 2051

<D> One digit or two digits 3 12

<DD> Two digits 03 12

<DS> Space-padded, two digits 3 12

Table 24–12 Format Styles for Month Available in VNF Templates

Format Meaning Jan 3, 1995 Nov 12, 2051

<M> One digit or two digits 1 11

<MM> Two digits 01 11

<MS> Space-padded, two digits 1 11

<MTXT> First three letters, uppercase JAN NOV

<MTXTL> First three letters, lowercase jan nov

<MTEXT> Full name, uppercase JANUARY NOVEMBER

<MTEXTL> Full name, lowercase january november

VNF

24-88 Oracle OLAP DML Reference

When you do not provide a VNF for DAY, WEEK, MONTH, QUARTER, and YEAR
dimensions, Oracle OLAP uses a default VNF that is suited to the type of dimension
ash shown in Table 24–15, " Default VNFs for DAY, WEEK, MONTH, QUARTER
and YEAR Dimensions".

You can append the B code to any of the format styles except.

Table 24–13 Format Styles for Year Available in VNF Templates

Format Meaning Jan 3, 1995 Nov 12, 2051

<YY> Two digits or four digits 95 2051

<YYYY> Four digits 1995 2051

<FF> Two digits or four digits 95 2051

<FFFF> Four digits 1995 2051

Table 24–14 Format Styles for Period Available in VNF Templates

Format Meaning Jan 3, 1995 Nov 12, 2051

<P> One, two, or three digits 3 316

<PP> Two or three digits 03 316

<PS> Space-padded, two or three digits 3 316

<PPP> Three digits 003 316

<PPS> Space-padded, three digits 3 316

Table 24–15 Default VNFs for DAY, WEEK, MONTH, QUARTER and YEAR Dimensions

Type of Dimension Default VNF Example

DAY <DD><MTXT><YY> 01JAN95

WEEK W<P>.<FF> W1.95

Multiple WEEK <NAME><P>.<FF> MYWEEK1.95

MONTH <MTXT><YY> JAN95

Multiple MONTH <NAME><P>.<FF> MYMONTH1.95

QUARTER Q<P>.<FF> Q1.95

YEAR YR<YY> YR95

VNF

TRAP to ZSPELL 24-89

Notes

Discarding a VNF
When you want to discard a VNF for a dimension and return to using the default
VNF, use the CONSIDER command to make the dimension's definition the current
one, and then use a VNF command with no argument.

Angle Brackets
To include an angle bracket as additional text in a template, specify two additional
angle brackets for each angle bracket to be included as text (for example, to display
the entire value in angle brackets, specify <<<D> <M> <YY>>>).

Month Names
The names used in the month component for the MTXT, MTXTL, MTEXT, and MTEXTL
formats are drawn from the current setting of the MONTHNAMES option.

Fiscal Year Codes
You can use a fiscal year code (FF or FFB) in a template for any dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR.

Fiscal Years for a Dimension of Type WEEK
For a dimension of type WEEK, a fiscal year starts on the beginning date of the first
period (single-week or multiple-week) that ends in a new calendar year. The fiscal
year ends on the final date of the final period that is wholly contained in the
calendar year.

This definition holds true, regardless of any beginning or ending date you specify
for a WEEK dimension when you define it. However, the fiscal year does take into
account the beginning or ending day of the week that you specify (either as a day of
the week or as a date).

For example, suppose you define a dimension of type WEEK, named myweek, with
single-week periods ending on June 2, 1995 (a Friday). The fiscal year that contains
June 2, 1995 begins on December 31, 1994 (a Saturday) and ends on December 29,
1995 (a Friday). When the VNF for myweek has the FF code, this fiscal year is
identified as 1995. When the VNF has the FFB code, the fiscal year is identified as
1994.

VNF

24-90 Oracle OLAP DML Reference

Fiscal Years for Dimensions of Type MONTH, QUARTER, or YEAR
For a dimension of type MONTH, QUERTER, or YEAR with no beginning or
ending phase, the fiscal year is identical to the calendar year.

For a MONTH, QUARTER, or YEAR dimension with a beginning or ending phase,
each fiscal year for that dimension begins with the beginning month of the phase
and ends with the ending month of the phase.

For example, assume you define a dimension of type MONTH, mymonth, with
four-month periods ending in March, each fiscal year begins on April 1 and ends on
March 31. When you use the FF code in a VNF for MYMONTH, the fiscal year that
starts on April 1, 1995 and ends on March 31, 1996 is identified as 1996. When you
use the FFB code, this fiscal year is identified as 1995.

Fiscal Years for Dimensions of Type DAY
For a dimension of type DAY, the fiscal year is identical to the calendar year.

Out-of-Range Years
When a VNF specifies a YY, YYB, FF, or FFB format, and a year outside the range of
1950 to 2049 is to be displayed, the year is displayed in four digits. You must also
supply all four digits when you enter the year as input.

Coding VNFs to Prevent Ambiguity
A VNF template must allow you to input dimension values unambiguously. To
prevent ambiguity, you must observe the following restrictions when you code a
VNF template:

■ You cannot place a letter (either in a component code or in literal text)
immediately after a text component of unspecified length (for example,
<MTEXT>, which specifies a full month name of any length).

■ You cannot place a digit (either in a component code or in literal text)
immediately after a numeric component of unspecified length (for example,
<M>, which can be one digit or two digits, or <YY>, which can be two digits or
four digits).

Coding VNFs for Model Dimensions
When you define a model that contains equations based on a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, the VNF for the that dimension must
specify dimension values with these format characteristics: the value must start
with a letter, and it can contain only letters, digits, underscores, and periods.

VNF

TRAP to ZSPELL 24-91

Entering Dimension Values
Once you have assigned a VNF to a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you cannot use the default VNF for entering values for that
dimension. You must enter values in the format of your VNF or as dates.

Entering Dimension Values in VNF Format
When you enter dimension values in a VNF format, you have the following
flexibility:

■ Letters (either in a component or in literal text) can be either uppercase or
lowercase, rather than matching the exact capitalization indicated by the VNF.

■ When the template specifies <MTXT> or <MTXTL>, which indicate the first three
letters of the month name, you can include as much of the month name as you
want, from the first three letters to the full month name. When the template
specifies <MTEXT> or <MTEXTL>, which indicate a month name of
indeterminate length, you can include as much of the name as you want, from
the first letter to the full month name. In all cases, however, you must provide
enough letters to uniquely match a name in the MONTHNAMES option. For
example, to distinguish April from August, you must type at least the first two
letters of these names.

■ You can include as many or as few spaces as you want between components or
between text elements in a dimension value.

■ When the template contains date components that are not essential for
identifying a time period for a particular dimension, you can specify any date
that falls within the desired time period. For example, the <DD> component of
the template <DD><MTXT><YY> is not essential for identifying a period in a
MONTH dimension. Therefore, for June 1995 you can specify any date from
01JUN95 through 30JUN95.

Entering Dimension Values as Dates
When you enter a value of a dimension of type DAY, WEEK, MONTH, QUARTER,
or YEAR as a date, you can use any of the input styles listed in the DATEORDER
entry. When you specify a full date, Oracle OLAP uses the DATEORDER option to

VNF

24-92 Oracle OLAP DML Reference

resolve any ambiguities. However, you need to specify only the date components
that are relevant for the type of dimension you are using:

■ For a DAY or WEEK dimension, you must enter all the components (day,
month, and year).

■ For a MONTH or QUARTER dimension, you only need to enter the month and
year components. When you enter an ambiguous value, such as '0106', Oracle
OLAP uses the first two characters of the DATEORDER option to resolve the
ambiguity. Therefore, the DATEORDER option must be MYD or YMD in this
situation.

■ For a YEAR dimension, you only need to enter the year.

Overriding a VNF
For additional flexibility in displaying the values of a dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR, you can override the dimension's VNF (and
the default VNF when the dimension has no VNF of its own) by using the
CONVERT function with a VNF argument.

The VNF argument to CONVERT enables you to include all the template codes that
are permitted in the template for the VNF command, but it does not prevent you
from specifying too few components or more components than are necessary for
identifying a value. In addition, the VNF argument enables you to use additional
codes that are not allowed in the VNF template.

Examples

Example 24–36 Assigning a VNF for a Dimension of Type MONTH

The following statements provide a VNF for the existing dimension of type
MONTH named month.

CONSIDER month
VNF <mtextl>, <yyyy>

VNF

TRAP to ZSPELL 24-93

Example 24–37 Adding Values to a Dimension of Type MONTHi

The following statements add dimension values in the style of the new VNF, using
just enough letters to distinguish the month names rather than the full names that
the <MTEXTL> code in the VNF specifies.

MAINTAIN month ADD 'JA, 1995' 'MAR, 1995'
Limit month TO LAST 3
REPORT month

These statements produce the following output.

MONTH

January, 1995
February, 1995
March, 1995

Note that Oracle OLAP automatically adds the time periods between the ones you
specify in the MAINTAIN command.

Example 24–38 Assigning a VNF for WEEK

The following statements define a dimension of type WEEK named week, add a
VNF to the week definition, and add values to the week dimension.

DEFINE week DIMENSION WEEK
VNF Week <p>.<ff>
MAINTAIN week ADD '01JAN95' '30JAN95'
REPORT week

These statements produce the following output.

WEEK

Week 1.95
Week 2.95
Week 3.95
Week 4.95
Week 5.95

When you use the MAINTAIN command to add values to the week dimension, you
can specify the new values as dates rather than as values that conform to the VNF.
However, the VNF is used for displaying output in the desired format.

VPMTSCHED

24-94 Oracle OLAP DML Reference

VPMTSCHED

The VPMTSCHED function calculates a payment schedule (principal plus interest)
for paying off a series of variable-rate installment loans over a specified number of
time periods. For each time period, you specify the initial amount of the loans
incurred in that time period and the interest rate that will be charged in that time
period for each new or outstanding loan.

Return Value
DECIMAL

Syntax
VPMTSCHED(loans, rates, n, [time-dimension])

Arguments

loans
A numeric expression that contains the initial amounts of the loans. When loans
does not have a time dimension, or when loans is dimensioned by more than one
time dimension, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a
different time dimension. When rates is dimensioned by a time dimension, you
specify the interest rate in each time period that will apply to the loans incurred or
outstanding in that period. The interest rates are expressed as decimals; for
example, a 5 percent rate is expressed as .05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period
of the dimension specified in the time-dimension argument. For example, one
payment a month is made when loans is dimensioned by month.

VPMTSCHED

TRAP to ZSPELL 24-95

time-dimension
The name of the dimension along which the interest payments are calculated. When
loans has a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR, the
time-dimension argument is optional, unless loans has more than dimension of this
type.

Notes

The Result Dimensions of the Result
The result returned by the VPMTSCHED function is dimensioned by the union of
all the dimensions of loans and rates and the dimension used as the time-dimension
argument.

Time-Period Payment Calculation
VPMTSCHED calculates the payment for a given time period as the sum of the
principal and interest due on each loan that is incurred or outstanding in that
period.

NA Mismatch Error
When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

NASKIP Option
VPMTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
VPMTSCHED depends on whether the corresponding interest rate has a value of
NA or a value other than NA. Table 24–8, " How NASKIP Affects the Results When a
Loan or Rate Value is NA for a Given Time Period" on page 24-81illustrates how
NASKIP affects the results when a loan or rate value is NA for a given time period.

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1994, but both have values other than NA for succeeding
years. When the number of payments is 3, VPMTSCHED returns NA for 1994, 1995,
and 1996. For 1997, VPMTSCHED returns the payment due for loans incurred in
1995, 1996, and 1997.

Time Dimensions
The VPMTSCHED calculation begins with the first value of the time dimension,
regardless of how the status of that dimension may be limited. For example,
suppose loans is dimensioned by year, and the values of year range from Yr95 to

VPMTSCHED

24-96 Oracle OLAP DML Reference

Yr99. The calculation always begins with Yr95, even when you limit the status of
year so that it does not include Yr95.

However, when loans is not dimensioned by the time dimension, the VPMTSCHED
calculation begins with the first value in the current status of the time dimension.
For example, suppose loans is not dimensioned by year, but year is specified as
time-dimension. When the status of year is limited to Yr97 to Yr99, the calculation
begins with Yr97 instead of Yr95.

Related Functions
The FPMTSCHED function, which calculates a payment schedule for a series of
fixed-rate loans, and the VINTSCHED and FINTSCHED functions, which calculate
the interest portion of the payments on variable-rate and fixed-rate loans.

Examples

Example 24–39 Using VPMTSCHED

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.07
Yr99 0.00 0.07

For each year, loans contains the initial value of the variable-rate loan incurred
during that year. For each year, the value of rates is the interest rate that will be
charged for that year on any loans incurred or outstanding in that year.

The following statement specifies that each loan is to be paid off in three payments,
calculates the schedule for paying off the principal and interest on the loans,

REPORT W 20 HEADING 'Payment' VPMTSCHED(loans, rates, 3, year)

VPMTSCHED

TRAP to ZSPELL 24-97

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 36.72
Yr96 112.06
Yr97 227.78
Yr98 190.19
Yr99 114.32

The payment for 1995 is the principal due on the loan of $100 incurred in 1995, plus
interest on the loan at 5 percent. The payment due in 1996 is the sum of the second
payment of principal on the loan incurred in 1995, plus the first payment of
principal on the loan of $200 incurred in 1996, plus interest on the remaining
principals of both loans at 6 percent. The 1997 payment is the sum of the third and
final principal payment on the loan incurred in 1995, the second of the three
principal payments on the 1996 loan, the first payment of principal on the loan of
$300 incurred in 1997, plus interest on the remaining principals of all three loans at 7
percent. Since the 1995 loan is paid off in 1997, the payment for 1998 covers the
principal and interest for the 1996 and 1997 loans. The payment for 1999 is the final
payment of principal and interest for the 1997 loan.

WEEKDAYSNEWYEAR

24-98 Oracle OLAP DML Reference

WEEKDAYSNEWYEAR

For a dimension of type WEEK, the WEEKDAYSNEWYEAR option determines how
many days of the new year there must be for a week to be identified as week 1 of
the new year.

By default, week 1 in a given year is the first week that contains at least one day in
the new year. For example, January 1, 2000, is a Saturday. Using the default, the first
week in that year (W1.00) is the period from Sunday, December 26, 1999, through
Saturday, January 1, 2000.

Using WEEKDAYSNEWYEAR, you can specify how many days of the year must be
present in week 1 in that year. When you use WEEKDAYSNEWYEAR to specify
that the first week in a year must contain two or more days, then the week of
December 26, 1999, through January 1, 2000, is the last week in 1999 (W53.99), and
the week of January 2 through January 8 is the first week in the year 2000 (W1.00).

Data type
INTEGER

Syntax
WEEKDAYSNEWYEAR = days

Arguments

days
An INTEGER expression in the range 1 through 7 that indicates how many days in
the year must be present in week 1 of that year. The default value for days is 1.

WEEKDAYSNEWYEAR

TRAP to ZSPELL 24-99

Examples

The Effect of WEEKDAYSNEWYEAR
The following statements send a list of weeks with the associated ending dates for
each of those weeks to the current outfile.

DEFINE week DIMENSION WEEK
MAINTAIN week ADD '12 18 99' '1 15 00'
weekdaysnewyear = 2
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
W51.99 18DEC99
W52.99 25DEC99
W53.99 01JAN00
W1.00 08JAN00
W2.00 15JAN00

January 1, 2000, is a Saturday, so setting WEEKDAYSNEWYEAR to 2 causes the
week from January 2 through January 8 to appear as W1.00.

WEEKOF

24-100 Oracle OLAP DML Reference

WEEKOF

The WEEKOF function returns an INTEGER in the range of 1 to 53, which gives the
week of the year in which a specified date falls. The result has the same dimensions
as the specified DATE expression.

Return Value
INTEGER

Syntax
WEEKOF(date-expression)

Arguments

date-expression
An expression that has the DATE data type, or a text expression that specifies a
date. See "TEXT-to-DATE Conversion" on page 24-100.

Notes

TEXT-to-DATE Conversion
In place of a DATE expression, you can specify a text expression that has values
conforming to a valid input style for dates. Oracle OLAP automatically converts the
values of the text expression to DATE values, using the current setting of the
DATEORDER option to resolve any ambiguity.

Determining Week 1
The value of WEEKDAYSNEWYEAR specifies how many days of the new year
there must be in the week for WEEKOF to consider it to be week 1 of the new year.
For example, when January 1 is on a Wednesday, then the week of December 29 to
January 4 has four days in the new year. WEEKDAYSNEWYEAR must therefore
have a value of 4 or less for that week to be counted as week 1. This determination
of week 1 affects the numbering of all weeks in the year.

WEEKOF

TRAP to ZSPELL 24-101

Examples

Example 24–40 Finding Today's Week

The following statement sends the week of the year in which today's date falls to
the current outfile.

SHOW WEEKOF(TODAY)

When today's date is August 5, 1996, which is a Monday, this statement produces
the following output.

32

Example 24–41 Finding the Week of a Date

The following statement sends the week of the year in which July 4 falls in 1996 to
the current outfile.

SHOW WEEKOF('04JUL96')

This statement produces the following output.

27

WHILE

24-102 Oracle OLAP DML Reference

WHILE

The WHILE command repeatedly executes a statement while the value of a Boolean
expression remains TRUE. You can only use WHILE within a program.

Syntax
WHILE boolean-expression

statement block

Arguments

boolean-expression
Serves as the criterion for statement execution. While the expression remains TRUE,
statement is repeatedly executed. When the expression becomes FALSE, the
execution of statement ceases, and the program continues with the next line. Ensure
that something in the statement (or statements) eventually causes the Boolean
expression to become FALSE; otherwise, the code becomes an endless loop.

statement block
One or more statements to be executed while the Boolean expression is TRUE. You
can execute two or more statements by enclosing them within DO ... DOEND
brackets. The DO command should follow immediately after the WHILE command.

Notes

WHILE Compared to IF
The WHILE command's main use is as an alternative to the IF...THEN...ELSE
command.When you want one or more statements in your program to execute
repeatedly for as long as a Boolean expression remains TRUE, you use WHILE.
When you want them to execute only once when a Boolean expression is TRUE, you
use IF.

Boolean Constant
You can specify a constant for the Boolean expression. When your statement is
WHILE TRUE, make sure to include a BREAK, RETURN, or EXIT command
between DO ... DOEND so the program can finish the loop.

WHILE

TRAP to ZSPELL 24-103

Branching in a Loop
You can use the BREAK, CONTINUE, and GOTO commands to branch within, or
out of, a WHILE loop, thereby altering the sequence of statement execution.

Related Statements
IF...THEN...ELSE, DO ... DOEND, and FOR.

Examples

Example 24–42 Using a WHILE Loop in a Program

In the following program lines, the statements following DO are executed as long as
the Boolean expression count LT 10 is TRUE. Within the loop, the code searches
for an instance of some condition and, when it finds one, it adds 1 to count. When
count reaches 10, the loop ends. The code in the loop must ensure that count will,
at some time, reach 10. Otherwise, the loop will never end.

WHILE count LT 10
DO
..." (statements)

 IF
count = count + 1

DOEND

WIDTH_BUCKET

24-104 Oracle OLAP DML Reference

WIDTH_BUCKET

For a given expression, the WIDTH_BUCKET function returns the bucket number
into which the value of this expression would fall after being evaluated.

Return Value
An INTEGER.

Syntax
WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

Arguments

expr
The expression for which the histogram is being created. This expression must
evaluate to a number or a datetime value. When expr evaluates to NA, then the
expression returns NA.

min_value
An expression that resolves to the minimum end point of the acceptable range for
expr. This expression must evaluate to number or datetime values, and cannot
evaluate to NA.

max_value
An expression that resolves to the maximum end point of the acceptable range for
expr. This expression must evaluate to number or datetime values, and cannot
evaluate to NA.

num_buckets
An expression that resolves to a constant indicating the number of buckets. This
expression must evaluate to a positive INTEGER.

Notes

Underflow Bucket
The function also creates (when needed) an underflow bucket numbered 0 and an
overflow bucket numbered num_buckets+1. These buckets handle values less than

WIDTH_BUCKET

TRAP to ZSPELL 24-105

min_value and more than max_value and are helpful in checking the reasonableness
of endpoints.

Notes

Constructing Equiwidth Histograms
WIDTH_BUCKET lets you construct equiwidth histograms, in which the histogram
range is divided into intervals that have identical size. (Compare this function with
NTILE, which creates equiheight histograms.) Ideally each bucket is a "closed-open"
interval of the real number line. For example, a bucket can be assigned to cores
between 10.00 and 19.999... to indicate that 10 is included in the interval and
20 is excluded. This is sometimes denoted (10, 20).

WKSDATA

24-106 Oracle OLAP DML Reference

WKSDATA

The WKSDATA function returns the data type of each individual cell in a worksheet
or the data type of a program argument with the WORKSHEET data type. You can
use WKSDATA to help in the process of transferring labels and data between text
files and Oracle OLAP.

Return Value
The data type of individual worksheet cells.

Syntax
WKSDATA(worksheetname)

Arguments

worksheetname
Specifies the name of an Oracle OLAP worksheet object, such as workunits.

Notes

Checking One or More Cells
You can use WKSDATA to return the data type of a single worksheet cell by using a
qualified data reference for the cell, as in the following format.

SHOW WKSDATA(worksheetname(WKSROW n, WKSCOL n))

Or you can use the REPORT command in this format with WKSDATA to provide
the contents of all the cells in a worksheet side-by-side with their data types.

REPORT worksheetname WKSDATA(worksheetname)

Multiple Data Types
You should always use care when using worksheet objects in expressions. Because a
worksheet object can contain multiple data types, the actual data type of individual
worksheet cells is not considered when an OLAP DML statement is compiled.
Instead, code is generated to convert each worksheet cell to the data type it expects
at that position in the expression. This may lead to unexpected results in some
cases.

WKSDATA

TRAP to ZSPELL 24-107

Text Data
All textual data (as opposed to numeric, Boolean, date, and so on) in a worksheet
has the TEXT data type. The ID and NTEXT data types are not supported in
worksheets.

Examples

Example 24–43 Checking Data Imported from a Worksheet

Suppose you have imported a flat data file into a worksheet called workunits. You
can use WKSDATA to provide a quick way to determine which areas to treat as
dimension values and which as data values in bringing the worksheet into standard
OLAP workspace format.

This statement produces this output following the statement that shows the data in
workunits

REPORT workunits

-----------------WORKUNITS-----------------
------------------WKSCOL-------------------

WKSROW 1 2 3 4
-------------- ---------- ---------- ---------- ----------

1 NA Jan96 Feb96 Mar96
2 Tents 307 209 277
3 Canoes 352 411 488
4 Racquets 1,024 1,098 1,144
5 Sportswear 1,141 1,262 1,340
6 Footwear 2,525 2,660 2,728

This statement uses the WKSDATA function to produce the report following the
statement, which shows the data type of each cell in the worksheet.

REPORT WKSDATA(workunits)

------------WKSDATA(WORKUNITS)-------------
------------------WKSCOL-------------------

WKSROW 1 2 3 4
-------------- ---------- ---------- ---------- ----------

1 NA TEXT TEXT TEXT
2 TEXT INTEGER INTEGER INTEGER
3 TEXT INTEGER INTEGER INTEGER
4 TEXT INTEGER INTEGER INTEGER
5 TEXT INTEGER INTEGER INTEGER
6 TEXT INTEGER INTEGER INTEGER

YESSPELL

24-108 Oracle OLAP DML Reference

YESSPELL

(Read-only) The YESSPELL option holds the text that is used for TRUE Boolean
values in the output of OLAP DML statements.

The value of the YESSPELL option is the word for "yes" in the current language, as
specified by the NLS_LANGUAGE option. (See NLS Options on page 18-54.) For
example, when NLS_LANGUAGE is set to American, then the value of YESSPELL
is YES. When NLS_LANGUAGE is set to Spanish, then the value of YESSPELL is
SI.

Data type
TEXT

Syntax
YESSPELL

Examples

Example 24–44 Seeing the Effect of the YESSPELL Value

Suppose you have a variable called BOOLVAR that currently has a value of YES.
When "si" is the word for "yes" in the language specified by the NLS_LANGUAGE
option,

SHOW boolvar

produces the following output.

si

YRABSTART

TRAP to ZSPELL 24-109

YRABSTART

The YRABSTART option sets the specific 100-year period associated with years that
are read or displayed using a two-digit abbreviation.

Data type
INTEGER

Syntax
YRABSTART = year

Arguments

year
A four-digit INTEGER expression that indicates the year at which the 100-year
period begins. You can specify any value in the range 1000 to 9999. However, when
you specify a value greater than 9900 for year, requests to read or display two-digit
year values that correspond to a year later than 9999 will result in a return value of
NA. The default is 1950; two-digit year abbreviations are interpreted as being in the
range 1950 to 2049 unless a different range is set through YRABSTART.

Examples

Example 24–45 Using the Default Value

The following statements specify a date format and send output to the current
outfile.

DATEFORMAT = '<Mtextl> <d>, <yyyy>'
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 1996

YRABSTART

24-110 Oracle OLAP DML Reference

Example 24–46 Setting the 100-Year Period for a Date

The following statements set a 100-year period of 2000 to 2099 and send the output
to the current outfile.

YRABSTART = 2000
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 2096

YYOF

TRAP to ZSPELL 24-111

YYOF

The YYOF function returns an INTEGER in the range of 1000 to 9999, giving the
year in which a specified date falls. The result returned by YYOF has the same
dimensions as the specified date expression.

Return Value
INTEGER

Syntax
YYOF(date-expression)

Arguments

date-expression
An expression that has the DATE data type, or a text expression that specifies a
date. See"TEXT-to-DATE Conversion" on page 24-111.

Notes

TEXT-to-DATE Conversion
In place of a date expression, you can specify a text expression that has values that
conform to a valid input style for dates. YYOF automatically converts the values of
the text expression to DATE values, using the current setting of the DATEORDER
option to resolve any ambiguity.

Commas in Year Values
When the COMMAS option is set to YES when you display the value returned by
YYOF, the year is displayed with a comma separating the thousands (for example,
1,996). To avoid this, you can set the COMMAS option to NO before displaying the
year.

YYOF

24-112 Oracle OLAP DML Reference

Examples

Example 24–47 Obtaining the Current Year

The following statements send the year in which today's date falls to the current
outfile.

COMMAS = NO
SHOW YYOF(TODAY)

When today's date is January 15, 1996, these statements produce the following
output.

1996

ZEROROW

TRAP to ZSPELL 24-113

ZEROROW

The ZEROROW option suppresses report rows with numeric values that are all
NAs or all zeros or would be represented as zeros. ZEROROW affects output
produced by the REPORT and ROW commands.

Data type
BOOLEAN

Syntax
ZEROROW = {YES|NO}

Arguments

YES
Suppresses report rows that contain any numeric values when all the numeric
values would be shown either as zeros or NAs.

NO
Produces all rows of the report, regardless of the values they contain. (Default)

Notes

Non-Numeric Data
Even when a row contains non-numeric data, such as TEXT, ID, or BOOLEAN
values, along with numeric values, the row is suppressed when ZEROROW is YES
and all the numeric values would be shown either as zeros or NAs.

Values Close to Zero
When your report includes a small number, such as 0.004, the number of decimal
places being shown affects whether ZEROROW treats that number as zero. When
you are producing a report with totals, the actual number will be used to calculate
the total, even when the number is suppressed.

The Effect of NASPELL
The value of NASPELL does not affect the way ZEROROW handles NA values.

ZEROROW

24-114 Oracle OLAP DML Reference

The Effect of ZSPELL
The value of ZSPELL does not affect the functioning of ZEROROW; numeric zero
values are treated as zeros regardless of their spelling in output.

Examples

Example 24–48 Suppressing Report Rows of All-Zero Data

Suppose you have a variable called worstcase, that is dimensioned by division,
month, and line, in which you store the results of calculations to project sales.
When you produce a report of the results, you want to suppress any rows for which
the value of the worst-case projections is zero for all months in the status. Set
ZEROROW to YES, as shown in the following statements.

ZEROROW = YES
LIMIT line TO 'Revenue'
LIMIT month TO 'Nov95' TO 'Feb96'
REPORT WIDTH 8 DOWN division ACROSS month: worstcase

These statements produce the following report.

LINE: REVENUE
-----------------WORSTCASE-----------------
-------------------MONTH-------------------

DIVISION Nov95 Dec95 Jan96 Feb96
-------- ---------- ---------- ---------- ----------
Camping 0.00 0.00 45,500.00 47,400.00
Sporting 0.00 0.00 29,200.00 28,400.00
Clothing 0.00 0.00 15,200.00 14,900.00

In the preceding report, no rows are suppressed, since some months for each
division have projected sales. However, when you lay out this report with month
down and division across, the rows for Nov95 and Dec95 are suppressed,
because these months have no projected sales.

REPORT DOWN month ACROSS division: worstcase

ZEROROW

TRAP to ZSPELL 24-115

This statement produces the following report.

LINE: REVENUE
-----------WORSTCASE------------
------------DIVISION------------

MONTH Camping Sporting Clothing
-------------- ---------- ---------- ----------
Jan96 45,500.00 29,200.00 15,200.00
Feb96 47,400.00 28,400.00 14,900.00

ZEROTOTAL

24-116 Oracle OLAP DML Reference

ZEROTOTAL

The ZEROTOTAL command resets one or all subtotals of specified report columns
to zero. You use the ZEROTOTAL command when you produce reports with the
ROW command.

Syntax
ZEROTOTAL [{n|ALL} [column1 columnN]]

Arguments
ZEROTOTAL with no arguments resets all subtotals in all columns to zero.

n
An INTEGER expression that specifies one of the 32 subtotals (1 to 32) Oracle OLAP
accumulates for each numeric column in a report. For the specified columns, this
subtotal is set to zero.

ALL
Sets all 32 subtotals to zero for the specified columns. ALL is the default when there
are no arguments. To reset all the subtotals to zero for specific columns, you must
include ALL in the statement.

ZEROTOTAL ALL 1 4 7

column
The column number of a report column. Column number 1 refers to the left-most
column in a report, regardless of the type of data it contains. When you do not
supply any column number arguments, Oracle OLAP sets the specified subtotal (or
all subtotals) to zero for all the columns in the report.

Notes

Initializing Column Subtotals
When you use the ROW command to produce a report, use the ZEROTOTAL
command at the beginning of the report program to initialize all 32 subtotals for all
columns to zero. The REPORT command automatically resets all subtotals to zero
before producing output.

ZEROTOTAL

TRAP to ZSPELL 24-117

Resetting Column Subtotals
You can also use ZEROTOTAL in a report program when you only want to reset
some subtotals or when you want to start accumulating new subtotals without
inserting the subtotals accumulated so far. A subtotal is automatically reset to zero
after it is accessed with the SUBSTR function in its own column. However, a
subtotal is not reset to zero after it is accessed with the RUNTOTAL function.

Related Functions
ZEROTOTAL affects the results returned by the RUNTOTAL and SUBSTR
functions. See the entries for RUNTOTAL and SUBSTR.

Examples

Example 24–49 Resetting All Report Column Subtotals

In a report, you want to show a dollar sales total, followed by a detailed summary
of unit sales for each district. You also want to show a total for unit sales at the end
of the report, but you do not want the dollar sales figures included in that total.
After generating the total dollar sales, use ZEROTOTAL to reset all your subtotals
to zero. Then when you use SUBTOTAL(1) later in the report, it only totals the unit
sales for each district.

Suppose you have these statement lines in your program.

LIMIT product TO 'Footwear'
LIMIT month TO 'Jul96' TO 'Sep96'
ROW 'Total Dollar Sales' ACROSS month: -

DECIMAL 0 TOTAL(sales month)
BLANK
ROW 'Unit Sales'
ZEROTOTAL ALL
FOR district

ROW INDENT 5 district ACROSS month: units
ROW 'Total Unit Sales' ACROSS month: -

OVER '-' SUBTOTAL(1)

ZEROTOTAL

24-118 Oracle OLAP DML Reference

These statements produce the following output.

Total Dollar Sales 607,552 581,229 658,850

Unit Sales
Boston 3,538 3,369 3,875
Atlanta 4,058 3,866 4,251
Chicago 3,943 3,509 4,058
Dallas 814 824 867
Denver 1,581 1,532 1,667
Seattle 2,053 2,193 2,617

---------- ---------- ----------
Total Unit Sales 15,987.00 15,293.00 17,335.00

ZSPELL

TRAP to ZSPELL 24-119

ZSPELL

The ZSPELL option holds the default text that is used for representing numeric zero
values in output produced by the HEADING, REPORT, and ROW commands.

Data type
TEXT

Syntax
ZSPELL = {'text'|'OFF'}

Arguments

text
The spelling to use as the default spelling for numeric zero values. When you
specify an expression rather than a text literal, you can omit the single quotes.

OFF
Shows a zero (0) with the appropriate number of decimal places (determined by a
DECIMAL attribute) for each numeric zero value. (Default)

Notes

Assigning Zero Values
ZSPELL affects output only; it does not affect the way you assign a zero value. For
example, even when you have set ZSPELL to NONE, you still assign a zero value as
follows.

var1 = 0

Showing Decimal Places
The default of OFF means that a zero value is shown as 0 (zero), with the number of
decimal places indicated by a DECIMAL attribute (for example, 0.00). When you
set ZSPELL to the text character 0, zero values are shown as a 0 with no decimal
places, regardless of any DECIMAL specification.

ZSPELL

24-120 Oracle OLAP DML Reference

Values Close to Zero
When your output includes a small number, such as 0.004, the number of decimal
places shown affects whether ZSPELL treats the number as zero. See
Example 24–51, "Showing Very Small Numbers" on page 24-120.

Examples

Example 24–50 Showing Zero Values as NONE

This example changes the value of ZSPELL, so that a zero value in the DECIMAL
variable testvar is shown as NONE in report output. When ZSPELL is set to its
default value of OFF, the Oracle OLAP statements

testvar = 0.00
ROW testvar

produce the following output.

0.00

In contrast, these OLAP DML statements

ZSPELL = 'NONE'
ROW testvar

produce the following output.

NONE

Example 24–51 Showing Very Small Numbers

This example illustrates how the number of decimal places shown in output affects
whether ZSPELL treats very small numbers as zeros. When ZSPELL is set to its
default value of OFF, these OLAP DML statements

ZSPELL = 'OFF'
testvar = 0.004
ROW DECIMAL 3 testvar

produce the following output.

0.004

ZSPELL

TRAP to ZSPELL 24-121

The following statements set ZSPELL to NONE and specify two decimal places for
the output.

ZSPELL = 'NONE'
ROW DECIMAL 2 testvar

These statements produce the following output.

NONE

With ZSPELL still set to NONE, the following statement specifies three decimal
places for the output.

ROW DECIMAL 3 testvar

This statement produces the following output.

0.004

ZSPELL

24-122 Oracle OLAP DML Reference

Part III
Appendixes

Part III provides summary information about OLAP DML statements.

This part contains the following appendixes:

■ Appendix A, "Functions and Commands by Functional Category"

■ Appendix B, "OLAP DML Statement Changes"

Functions and Commands by Functional Category A-1

A
Functions and Commands by Functional

Category

This appendix provides categorized lists of the OLAP DML commands, functions,
and programs that you use in OLAP DML programs to analyze data. For listings of
OLAP data definition statements, see "OLAP DML as a Data Definition Language"
on page 1-5. For options and system properties by category, see "Categories of
Options" on page 1-2 and "OLAP DML Properties" on page 1-3.

This chapter includes the following topics:

■ Session Statements

■ Data Type Conversion

■ Assignment Statements

■ Text Functions

■ Date and Time Functions

■ Numeric Functions

■ Forecast and Regression Statements

■ Aggregation Statements

■ Allocation Statements

■ Workspace Object Operation Statements

■ Dimension and Composite Operation Statements

■ Formula Statements

■ Modeling Statements

■ Programming Statements

Session Statements

A-2 Oracle OLAP DML Reference

■ File Reading and Writing Statements

■ Reporting Statements

■ Statements Related to Using OLAP_TABLE in SQL

Session Statements
Table A–1, "General System Statements" lists the OLAP DML functions and
commands that you use to find out information about your session.

Table A–1 General System Statements

Statement Description

CDA Identifies or changes the current directory object for your
session.

EVERSION Returns a text value that specifies the internal Oracle OLAP
build number.

LOG command Starts or stops the recording of a session to a disk file

.

RECAP Sends statements that were previously entered during the
current session to the current outfile or to a file that you
specify.

REDO Re-executes a statement that you entered earlier in your
session.

REEDIT Enables you to edit a statement that you entered earlier in your
session.

RESERVED Returns a list of reserved words in the OLAP DML, or
indicates whether or not a word that you specify is reserved in
the OLAP DML.

SYSDATE Returns the current date and time in the format specified by
the NLS_DATE_FORMAT option.

SYSINFO Provides information about the Oracle user for the current
session.

SYSTEM Identifies the platform on which Oracle OLAP is running.

Assignment Statements

Functions and Commands by Functional Category A-3

Data Type Conversion
Table A–2, " Data Type Conversion Functions" lists the OLAP DML functions that
you to populate variables and relations and to convert data from one data type to
another.

Assignment Statements
Table A–3, "Assignment Statements" lists the OLAP DML statements that you use to
assign values to objects.

Table A–2 Data Type Conversion Functions

Statement Description

CONVERT Converts values from one type of data to another.

TCONVERT Converts data from one dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR to another dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You can specify an aggregation method
or an allocation method to use in the conversion.

TO_CHAR Converts a date, number, or NTEXT expression to a TEXT expression in
a specified format.

TO_DATE Converts a formatted TEXT or NTEXT expression to a DATETIME value.

TO_NCHAR Converts a TEXT expression, date, or number to NTEXT in a specified
format.

TO_NUMBER Converts a formatted TEXT or NTEXT expression to a number.

Table A–3 Assignment Statements

Statement Description

SET Assigns one or more values to a variable, relation, dimension
surrogate, worksheet, valueset, or option. When an object has one
or more dimensions, the SET command loops over the values
in status for each dimension of the target object and assigns a
data value to the corresponding cell of the target object

SET1 Assigns a single value to a variable, option, relation, or
dimension surrogate. When an object has one or more
dimensions, the SET1 command assigns the value to the object
cell that is in current status.

Statements for Working with NA Values

A-4 Oracle OLAP DML Reference

Statements for Working with NA Values
Table A–4, " Statements for Working with NA Values" lists the OLAP DML
statements that you use to work with NA values.

Text Functions
Within the general category of text functions, the OLAP DML statements can be
grouped into the following subcategories:

■ General character functions

■ Byte functions

■ Multiline functions

MAINTAIN ADD Adds new TEXT, ID, and INTEGER values to a non-concat dimension
or a composite; or adds a new temporary calculated member to a
dimension

.

UNRAVEL When used in conjunction with SET, copies the values of an
expression into the cells of a variable when the dimensions of the
expression are not the same as the dimensions of the variable.

Table A–4 Statements for Working with NA Values

Statement Description

CACHE Within an aggregation specification, tells Oracle OLAP whether to cache
or store NA values when a summary value calculates to NA

COALESCE Returns the first non-NA expression in a list of expressions, or NA when
all of the expressions evaluate to NA.

NAFILL Returns the values of the source expression with any NA values
appearing as the specified fill expression.

NVL Replaces a NA value with a string.

NVL2 Returns one value when the value of a specified expression is not NA, or
another value when the value of the specified expression is NA.

Table A–3 Assignment Statements

Statement Description

Text Functions

Functions and Commands by Functional Category A-5

General Character Functions
Table A–5, " General Character Functions" lists the OLAP DML statements that you
use to manipulate text based on characters.

Table A–5 General Character Functions

Statement Description

ASCII Returns the decimal representation of the first character of an
expression.

BLANKSTRIP Removes leading or trailing blank spaces from text values.

CHANGECHARS Changes one or more occurrences of a specified string in a text
expression to another string.

EXTCHARS Extracts a portion of a text expression using characters.

FINDCHARS Returns the character position of the beginning of a specified group of
characters within a text expression.

GREATEST Returns the largest expression in a list of expressions.

INITCAP Returns a specified text expression, with the first letter of each word in
uppercase and all other letters in lowercase.

INSCHARS Inserts one or more characters into a text expression.

INSTR Searches a string for a substring using characters and returns the
position in the string that is the first character of a specified occurrence
of the substring.

JOINCHARS Joins two or more text values, as characters, as a single line.

LEAST Returns the smallest expression in a list of expressions.

LIKECASE Controls whether the LIKE operator is case sensitive.

LIKEESCAPE An escape character for the LIKE operator.

LOWCASE Converts all alphabetic characters in a text expression into lowercase.

LPAD Returns an expression, left-padded to a specified length with the
specified characters; or, when the expression to be padded is longer
than the length specified after padding, only that portion of the
expression that fits into the specified length.

LTRIM Removes characters from the left of a text expression, with all the
leftmost characters that appear in another text expression removed.

MAXCHARS The number of characters in the longest line of a multiline text
expression. The result returned by MAXCHARS has the same
dimensions as the specified expression.

Text Functions

A-6 Oracle OLAP DML Reference

Byte Functions
Table A–6, " Byte Functions" lists the OLAP DML statements that you use to
manipulate text based on bytes.

NULLIF Compares one expression with another and returns NA when the
expressions are equal, or the base expression when they are not.

NUMCHARS The number of characters in a text expression.

OBSCURE Provides two mechanisms for encrypting a single-line text expression.
Depending on the mechanism you use, OBSCURE can also restore the
encrypted value to its original form.

REMCHARS Removes one or more characters from a text expression and returns the
value that remains.

REPLCHARS Replaces one or more characters in a text expression.

RPAD Returns an expression, right-padded to a specified length with the
specified characters; or, when the expression to be padded is longer
than the length specified after padding, only that portion of the
expression that fits into the specified length.

RTRIM Removes characters from the right of a text expression, with all the
rightmost characters that appear in another text expression removed.

SUBSTR Returns a portion of string, beginning at a specified character position,
and a specified number of characters long.

TEXTFILL Reformats a text value to fit compactly into lines of a specified width,
regardless of its current format.

TRIM Removes leading or trailing characters (or both) from a character
string.

UPCASE Converts all alphabetic characters in a text expression into uppercase.

Table A–6 Byte Functions

Statement Description

CHANGEBYTES Changes one or more occurrences of a specified string in a text
expression to another string.

EXTBYTES Extracts a portion of a text expression using bytes.

Table A–5 (Cont.) General Character Functions

Statement Description

Text Functions

Functions and Commands by Functional Category A-7

Multiline Text Functions
Table A–7, " MultiLine Text Functions" lists the OLAP DML statements that you use
to manipulate multiline text.

FINDBYTES Returns the byte position of the beginning of a specified group of bytes
within a text expression.

INSBYTES Inserts one or more bytes into a text expression.

INSTRB Searches a string for a substring using bytes and returns the position in
the string that is the first byte of a specified occurrence of the
substring.

JOINBYTES Joins two or more text values, as bytes, as a single line.

MAXBYTES The number of bytes in the longest line of a multiline text expression.

NULLIF The number of bytes in a text expression.

REMBYTES Removes one or more bytes from a text expression and returns the
value that remains.

REPLBYTES Replaces one or more bytes in a text expression.

SUBSTRB Returns a portion of string, beginning at a specified byte position, and
a specified number of bytes long.

Table A–7 MultiLine Text Functions

Statement Description

CHARLIST Transforms an expression into a multiline text value with a separate line
for each value of the original expression.

EXTCOLS Extracts specified columns from each line of a multiline text value.

EXTLINES Extracts lines from a multiline text expression.

FILTERLINES Applies a filter expression that you create to each line of a multiline text
expression.

FINDLINES Determines the position of one or more lines in a multiline text expression.

INLIST Determines whether every line of a text value is a line in a second text
value.

INSCOLS Inserts into the columns of a multiline TEXT value all the columns of
another TEXT value.

Table A–6 (Cont.) Byte Functions

Statement Description

Date and Time Functions

A-8 Oracle OLAP DML Reference

Date and Time Functions
Table A–8, " Date and Time Functions" describes the OLAP DML date and time
functions.

INSLINES Inserts one or more lines into a multiline text expression.

JOINCOLS Joins the corresponding lines of two or more multiline text values.

JJOINLINES Joins the values of two or more text expressions into a single multiline
value.

MAXBYTES The number of bytes in the longest line of a multiline text expression.

NUMLINES The number of lines in each value of a text expression. The result returned
by NUMLINES has the same dimensions as the specified expression.

REMCOLS Removes specified columns from every line of a multiline TEXT value.

REMLINES Removes one or more lines from a multiline TEXT expression and returns
the value that remains.

REPLCOLS Replaces some or all of the character columns in one multiline TEXT value
with the columns of another.

REPLLINES Replaces one or more lines in a multiline text expression.

SORTLINES Sorts the lines in a multiline TEXT value.

UNIQUELINE
S

Removes duplicate lines in a multiline TEXT value and sorts the lines in
ascending order.

Table A–8 Date and Time Functions

Statement Description

ADD_MONTHS Returns the date that is the specified number of months after the
specified date.

BEGINDATE Returns the beginning date of the first time period for which an
expression has a non-NA value.

DAYOF Returns an integer in the range of 1 through 7, giving the day of
the week on which a specified date falls.

DDOF Returns an integer in the range of 1 through 31, giving the day of
the month on which a specified date falls.

Table A–7 (Cont.) MultiLine Text Functions

Statement Description

Date and Time Functions

Functions and Commands by Functional Category A-9

ENDDATE Returns the ending date of the last time period for which an
expression has a non-NA value.

ENDOF Returns the last date of a time period in dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR.

LAST_DAY Returns the last day of the month in which a particular date falls.

MAKEDATE Returns the DATE value that corresponds to specified integer
values for a year, month, and day.

MMOF Returns an integer in the range of 1 to 12, giving the month in
which a specified date falls. The result returned by MMOF has the
same dimensions as the specified DATE expression.

MONTHS_BETWEEN Calculates the number of months between two dates.

NEW_TIME Converts a date and time from one time zone to another.

NEXT_DAY Returns the date of the first instance of a particular day of the
week that follows the specified date.

ROUND (for dates and
time)

Returns a date and time value rounded to a specified date format;
or, when you do not specify a format, the date and time value
rounded to the nearest day.

STARTOF Returns the starting date of a time period in a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR.

SYSDATE Returns the current date and time in the format specified by the
NLS_DATE_FORMAT option.

TCONVERT Converts data from one dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR to another dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR.

TOD Returns the current time of day in the form hh:mm:ss using a
24-hour format.

TODAY Returns the current date as a DATE value.

TRIM Returns the date and time value truncated to a specified date
format; or, when you do not specify a format, returns the date and
time value truncated to the nearest day.

VNF Assigns a value name format (VNF) to the definition of a
dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR.

Table A–8 (Cont.) Date and Time Functions

Statement Description

Numeric Functions

A-10 Oracle OLAP DML Reference

Numeric Functions
Oracle OLAP offers the following types of numeric functions:

■ General numeric functions for typical mathematical processing (for example,
ranking and finding logs and tangets). For listing. see Table A–9, " General
Numeric Functions".

■ Financial functions. For listing. see Table A–10, " Financial Functions".

■ Statistical functions. For listing. see Table A–11, " Statistical Functions".

■ Time-series functions such as LAG and MOVINGMIN. For listing. see
Table A–12, "Time-Series Functions".

■ Aggregation functions, such as COUNT and TOTAL. For listing. see Table A–13,
" Aggregation Functions"

General Numeric Functions
Table A–9, " General Numeric Functions" lists the OLAP DML functions for
calculation.

WEEKOF Returns an INTEGER in the range of 1 to 53, which gives the week
of the year in which a specified date falls.

YYOF Returns an INTEGER in the range of 1000 to 9999, giving the year
in which a specified date falls.

Table A–9 General Numeric Functions

Function Description

ABS Calculates the absolute value of an expression.

ANTILOG Calculates the value of e (the base of natural logarithms) raised to a
specific power.

ANTILOG10 Calculates the value of 10 raised to a specified power.

ARCCOS Calculates the angle value (in radians) of a specified cosine.

ARCSIN Calculates the angle value (in radians) of a specified sine.

ARCTAN Calculates the angle value (in radians) of a specified tangent.

Table A–8 (Cont.) Date and Time Functions

Statement Description

Numeric Functions

Functions and Commands by Functional Category A-11

ARCTAN2 Returns a full-range (0 - 2 pi) numeric value indicating the arc tangent of
a given ratio.

BITAND Computes an AND operation on the bits of two integers.

CEIL Returns the smallest whole number greater than or equal to a specified
number.

COS Calculates the cosine of an angle expression.

COSH Calculates the hyperbolic cosine of an angle expression.

DECODE Compares one expression to one or more other expressions and, when
the base expression is equal to a search expression, returns the
corresponding result expression; or, when no match is found, returns the
default expression when it is specified, or NA when it is not.

EXP Returns e raised to the nth power, where e equals 2.71828183....

FLOOR Returns the largest whole number equal to or less than a specified
number.

GREATEST Returns the largest expression in a list of expressions. All expressions
after the first are implicitly converted to the data type of the first
expression before the comparison.

INSTRB Calculates the integer part of a decimal number by truncating its decimal
fraction.

LEAST Returns the smallest expression in a list of expressions. All expressions
after the first are implicitly converted to the data type of the first
expression before the comparison.

LOG function Computes the natural logarithm of an expression.

LOG10 Computes the logarithm base 10 of an expression.

MAX Calculates the larger value of two expressions.

MIN Calculates the smaller value of two expressions.

NULLIF Compares one expression with another and returns NA when the
expressions are equal, or the base expression when they are not.

REM Returns the remainder after one numeric expression is divided by
another.

ROUND (for
numbers)

Returns the number rounded to the nearest multiple of a second number
you specify or to the number of decimal places indicated by the second
number.

Table A–9 (Cont.) General Numeric Functions

Function Description

Numeric Functions

A-12 Oracle OLAP DML Reference

Financial Functions
Table A–10, " Financial Functions" lists the OLAP DML functions for financial
calculation.

SIGN Returns a value that indicates if a specified number is less than, equal to,
or greater than 0 (zero).

SIN Calculates the sine of an angle expression. The result returned by SIN is a
decimal value with the same dimensions as the specified expression.

SINH Calculates the hyperbolic sine of an angle expression.

SQRT Computes the square root of an expression.

TAN Calculates the tangent of an angle expression.

TANH Calculates the hyperbolic tangent of an angle expression.

TRUNC (for
numbers)

Truncates a number to a specified number of decimal places.

WIDTH_
BUCKET

Returns the bucket number into which the value of an expression would
fall after being evaluated.

Table A–10 Financial Functions

Function Description

DEPRDECL Calculates the depreciation expenses for a series of assets. DEPRDECL
uses the declining balance method to depreciate the assets over the
specified lifetime of the assets.

DEPRDECLSW Calculates the depreciation expenses for a series of assets.
DEPRDECLSW uses a variation on the declining balance method to
depreciate assets over the specified lifetime of the assets.

DEPRSL Calculates the depreciation expenses for a series of assets. DEPRSL uses
the straight-line method to depreciate the assets over the specified
lifetime of the assets.

DEPRSOYD Calculates the depreciation expenses for a series of assets. DEPRSOYD
uses the sum-of-years'-digits method to depreciate the assets over the
specified lifetime of the assets.

FINTSCHED Calculates the interest portion of the payments on a series of fixed-rate
installment loans that are paid off over a specified number of time
periods.

Table A–9 (Cont.) General Numeric Functions

Function Description

Numeric Functions

Functions and Commands by Functional Category A-13

Statistical Functions
Table A–11, " Statistical Functions" lists the OLAP DML functions for statistical
calculation.

FPMTSCHED Calculates a payment schedule (principal plus interest) for paying off a
series of fixed-rate installment loans over a specified number of time
periods.

GROWRATE Calculates the growth rate of a time-series expression, based on the first
and last values of the series.

IRR Computes the internal rate of return associated with a series of cash flow
values. Each value of the result is calculated to be the discount rate for a
period that makes the net present value of the corresponding cash flows
equal to zero.

NPV Computes the net present value of a series of cash flow values.

VINTSCHED Calculates the interest portion of the payments on a series of
variable-rate installment loans that are paid off over a specified number
of time periods.

VPMTSCHED Calculates a payment schedule (principal plus interest) for paying off a
series of variable-rate installment loans over a specified number of time
periods.

Table A–11 Statistical Functions

Statement Description

CATEGORIZE Groups the values of a numeric expression into categories.

CORRELATION Returns the correlation coefficients for the pairs of data values in two
expressions.

NORMAL Returns a random value from a normal distribution with a specified
mean and standard deviation. The result returned by NORMAL is
dimensioned by all the dimensions of the mean and standard deviation
expressions.

RANDOM Produces a number that is randomly distributed between specified low
and high boundaries.

STDDEV Calculates the standard deviation of the values of an expression.

Table A–10 (Cont.) Financial Functions

Function Description

Numeric Functions

A-14 Oracle OLAP DML Reference

Time-Series Functions
Table A–12, "Time-Series Functions" lists the OLAP DML time-series functions.

Table A–12 Time-Series Functions

Function Description

CUMSUM Computes cumulative totals over a dimension.

LAG Returns the values of a dimensioned variable or expression at a
specified offset of a dimension prior to the current value of that
dimension.

LAGABSPCT Returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a
dimension prior to the current value of that dimension and the
current value of the dimensioned variable or expression.

LAGDIF Returns the difference between the value of a dimensioned variable
or expression at a specified offset of a dimension prior to the current
value of that dimension and the current value of the dimensioned
variable or expression.

LAGPCT Returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a
dimension prior to the current value of that dimension and the
current value of the dimensioned variable or expression.

LEAD Returns the values of a dimensioned variable or expression at a
specified offset of a dimension subsequent to the current value of
that dimension.

MOVINGAVERAGE Computes a series of averages for the values of a dimensioned
variable or expression over a specified dimension. For each
dimension value in status, MOVINGAVERAGE computes the
average of the data in the range specified, relative to the current
dimension value.

MOVINGMAX Returns a series of maximum values of a dimensioned variable or
expression over a specified dimension. For each dimension value in
status, MOVINGMAX searches the data for the maximum value in
the range specified, relative to the current dimension value.

MOVINGMIN Returns a series of minimum values for the values of a dimensioned
variable or expression over a specified dimension. For each
dimension value in status, MOVINGMIN searches the data for the
minimum value in the range specified, relative to the current
dimension value.

Numeric Functions

Functions and Commands by Functional Category A-15

Aggregation Functions
Table A–13, " Aggregation Functions" lists the OLAP DML aggregation functions.
The OLAP DML also provides an aggmap object that you can use to aggregate data,
see "Aggregation Statements" on page A-17 for a list of related OLAP DML
statements.

MOVINGTOTAL Computes a series of totals for the values of a dimensioned variable
or expression over a specified dimension. For each dimension value
in status, MOVINGTOTAL computes the total of the data in the
range specified, relative to the current dimension value.

Table A–13 Aggregation Functions

Statements Description

ANY Returns YES when any values of a Boolean expression are TRUE, or NO
when none of the values are TRUE.

AVERAGE Calculates the average of the values of an expression.

COUNT Retrieves the number of TRUE values of a Boolean expression, or 0 (zero)
if no values of the expression are TRUE.

EVERY Returns YES when every value of a Boolean expression is TRUE, or NO if
any value of the expression is FALSE.

LARGEST Returns the largest value of an expression. You can use this function to
compare numeric values or date values.

MEDIAN Calculates the median of the values of an expression.

MODE Returns the mode (the most frequently occurring value) of a numeric
expression; or NA when there are no duplicate values in the data.

NONE Returns YES when no values of a Boolean expression are TRUE; or NO
when any value of the expression is true.

PERCENTAGE Computes the percent of total for each value in a numeric expression.

SMALLEST Returns the smallest value of an expression. You can use this function to
compare numeric values or date values.

TCONVERT Converts data from one dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR to another dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR. You can specify an aggregation method or an
allocation method to use in the conversion.

Table A–12 Time-Series Functions

Function Description

Forecast and Regression Statements

A-16 Oracle OLAP DML Reference

Forecast and Regression Statements
Within the general category of forecast and regression statements, the OLAP DML
statements can be grouped in the following subcategories:

■ Simple forecasts and regressions

■ Forecasts and regressions using a forecasting context

Simple Forecasts and Regressions
Table A–14, " Statements for Simple Forecasts and Regressions" lists the OLAP DML
that you use to calculate simple forecasts and regressions.

Statements for Forecasting Using a Forecasting Context
Table A–15, "Statements for Forecasting Using a Forecasting Context" lists the OLAP
DML that you use to calculate a sophisticated forecast using a forecasting context.
Typically, you use these statements in an OLAP DML program in the order in which
they are listed.

TOTAL Calculates the total of the values of an expression.

Table A–14 Statements for Simple Forecasts and Regressions

Statement Description

FORECAST Forecasts data by one of three methods: straight-line trend,
exponential growth, or Holt-Winters extrapolation.

FORECAST.REPORT A program that produces a standard report of a forecast generated
using the FORECAST command.

INFO Obtains information that has been produced by the FORECAST
command or the REGRESS command.

REGRESS Calculates a simple multiple linear regression or a weighted
regression.

REGRESS.REPORT A program that produces a standard report of a regression created
using the REGRESS command.

SMOOTH Computes a single or a double exponential smoothing of a
numeric expression.

Table A–13 (Cont.) Aggregation Functions

Statements Description

Aggregation Statements

Functions and Commands by Functional Category A-17

Aggregation Statements
Table A–16, " General Aggregation Statements" lists the OLAP DML statements that
support data aggregation. The OLAP DML also provides the aggregation functions
listed in Table A–13, " Aggregation Functions".

Table A–15 Statements for Forecasting Using a Forecasting Context

Statement Description

FCOPEN Creates a forecasting context and returns a handle to this context.

FCSET Sets the values of various parameters that determine the characteristics of
the forecast.

FCEXEC Executes a forecast based on the parameters options specified by the
FCSET command for the forecast.

FCQUERY Returns the results of a forecast created when the FCEXEC command
executed.

FCCLOSE Closes a forecasting context.

Table A–16 General Aggregation Statements

Statement Description

AGGMAP Marks the aggmap as anaggregation specification and enters or
changes the aggregation specification.

AGGMAP ADD or
REMOVE model

Adds or removes a model from a previously defined aggmap object
of type AGGMAP.

AGGMAP SET Specifies the default aggmap for a variable.

AGGMAPINFO Returns information about the specification for an aggmap object in
your analytic workspace.

AGGREGATE
command

Calculates data for one or more variables as specified by the
specified aggmap object.

AGGREGATE
function

Calculates the data of a variable at runtime, in response to a user's
request. Often used as the expression of a $NATRIGGER property.

AGGREGATION Within a model, creates a custom aggregation.

ALLCOMPILE A program that compiles every compilable object in your current
analytic workspace, one at a time.

COMPILE Generates compiled code for a compilable object, such as an OLAP
DML program, formula, model, or aggmap without running it and
saves the compiled code in the analytic workspace.

Allocation Statements

A-18 Oracle OLAP DML Reference

Allocation Statements
Table A–17, " General Allocation Statements" lists the OLAP DML statements that
you use to allocate data.

DEFINE AGGMAP Creates a new aggmap object.

MAINTAIN ADD Adds a new temporary calculated member as a custom aggregation
to a dimension or adds new values to a non-concat dimension or a
composite.

PARTITIONCHECK Identifies whether an aggmap object is compatible with the
partitioning specified by a partition template object.

ROLLUP Without the use of an aggmap object, calculates totals for a
hierarchy of values where each level of the hierarchy is an
aggregation of the values in the level below it and the members of
the hierarchy are contained in a single "embedded-total" dimension,
so called because it contains both a detail (lowest) level and levels
that are aggregations of lower levels.

TCONVERT Converts data from one dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR to another dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You can specify an aggregation
method or an allocation method to use in the conversion.

Table A–17 General Allocation Statements

Statement Description

DEFINE AGGMAP Creates a new aggmap object.

ALLOCMAP Marks an aggmap as an allocation specification and enters or changes
an allocation specification.

AGGMAPINFO Returns information about the specification for an aggmap object in
your analytic workspace.

ALLOCATE Allocates values into a variable based on the specification provided
by an aggmap object.

TCONVERT Converts data from one dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR to another dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You can specify an aggregation
method or an allocation method to use in the conversion.

Table A–16 (Cont.) General Aggregation Statements

Statement Description

Dimension and Composite Operation Statements

Functions and Commands by Functional Category A-19

Workspace Object Operation Statements
Table A–18, " Workspace Object Operation Statements" lists the OLAP DML
statements that you use for common workspace operations such as defining or
deleting the object and defining the contents of the object

Dimension and Composite Operation Statements
Table A–19, " Dimension and Composite Operation Statements" lists the OLAP
DML statements that you use to define the contents of dimensions and composites
and to manipulate dimension status.

Table A–18 Workspace Object Operation Statements

Statement Description

LOAD Loads the definition of an OLAP DML program, formula, or model into
memory.

CLEAR Deletes the data that you specify for one or more variables.

GROUPINGID Populates a previously-defined variable with the grouping ids for the
values of a hierarchical dimension.

HIERHEIGHT
command

Populates a previously-defined relation with the values of a specified
hierarchical dimension by level.

HIERHEIGHT
function

Returns the value of a node at a specified level for the first value in the
current status list of a hierarchical dimension.

LOAD Loads the definition of an OLAP DML program, formula, or model into
memory.

PERMIT Controls access to analytic workspace objects by granting or denying
read-only and read/write access permission for workspace objects and
for specific values of dimensions and dimensioned objects; and by
granting or denying permission to maintain dimensions and to change
permission for workspace objects.

PERMITRESET Causes the values of permission conditions to be reevaluated. Permission
conditions consist of one or more Boolean expressions that designate the
criteria used by PERMIT commands associated with an object.

VALSPERPAGE Calculates the maximum number of values for a variable of a given width
that will fit on one page. Pages are units of storage in the workspace.

Dimension and Composite Operation Statements

A-20 Oracle OLAP DML Reference

Table A–19 Dimension and Composite Operation Statements

Statement Description

ALLSTAT Sets the status of all dimensions in the current analytic workspace to all
their values.

BASEDIM Returns the name of the dimension from which the current value of a
concat dimension comes.

BASEVAL Returns the values of the base dimensions of a concat dimension. If a base
dimension is a concat dimension, then the values of its base dimensions
are returned, also.

HIERCHECK Checks the parent relation of a hierarchical dimension to make sure it has
no loops (that is, that no value is specified as its own ancestor or
descendant in the parent relation).

INSTAT Checks whether a dimension or dimension surrogate value is in the
current status list or whether a dimension value is in a valueset.

ISVALUE Tests whether a dimension or a composite has a specified value.

KEY Returns the value of the specified base dimension for a value of a conjoint
dimension or a composite.

LIMIT
command

Sets the current status list of a dimension and its dimension surrogates, or
assigns values to a valueset.

LIMIT function Returns the dimension or dimension surrogate values that are currently in
status.

MAINTAIN Adds non-concat dimension values (including temporary calculated
members) and composite values; deletes non-concat dimension values and
composite values; moves non-concat and concat dimension values; and
rename and merges non-concat dimension values.

QUAL Specifies a qualified data reference (QDR).

SORT Arranges the order of values in the current status list of a dimension or a
dimension surrogate, or in a valueset.

STATALL Returns YES when default status is currently in effect for a given
dimension (that is, when STATLIST would return ALL); or NO when
default status is not currently in effect for a given dimension

STATFIRST Returns the first value in the current status list of a dimension or a
dimension surrogate, or in a valueset.

STATLAST Returns the last value in the current status list of a dimension or a
dimension surrogate, or in a valueset.

STATLEN Returns the number of values in the current status list of a dimension or a
dimension surrogate, or in a valueset.

Modeling Statements

Functions and Commands by Functional Category A-21

Formula Statements
Table A–20, " Statements for Formulas" lists the OLAP DML statements that you use
when working with formula objects.

Modeling Statements
Table A–21, " General Modeling Statements" lists the OLAP DML statements that
you use to create and manipulate model objects.

STATLIST Returns a list of all values in the current status list of a dimension or
dimension surrogate, or in a valueset.

STATMAX Returns the latest value in the current status list of a dimension or a
dimension surrogate, or in a valueset.

STATMIN Returns the earliest value in the current status list of a dimension or a
dimension surrogate, or in a valueset.

STATRANK Returns the position of a dimension or dimension surrogate value in the
current status list or in a valueset.

STATUS Sends to the current outfile the status of one or more dimensions,
dimension surrogates, or valuesets, or the status of all dimensions in an
analytic workspace.

STATVAL Returns the dimension value that corresponds to a specified position in
the current status list of a dimension or a dimension surrogate, or in a
valueset.

TALLY The number of values of a dimension that correspond to each value of one
or more related dimensions.

VALUES Returns the default status list or the current status list of a dimension or
dimension surrogate, or it returns the values in a valueset.

Table A–20 Statements for Formulas

Statement Description

DEFINE
FORMULA

Creates a new formula object.

EQ Specifies the expression to be calculated for a formula that has already
been defined. Be sure to distinguish between the EQ statement and the
EQ operator used to compare values of the same type.

Table A–19 (Cont.) Dimension and Composite Operation Statements

Statement Description

Programming Statements

A-22 Oracle OLAP DML Reference

Programming Statements
Within the general category of programming, the OLAP DML statements can be
grouped into the following subcategories:

■ Handling programs

■ Statements that are only used in programs

■ Statements that are primarily used in programs

■ Debugging programs

■ Creating and managing trigger programs

Additionally, you often use statements for forecasts, regression, reporting,
importing and exporting data, embedding SQL within an OLAP DML program,
and triggering the execution of programs when a particular OLAP DML program
executes. For tables outlining these statements see "Forecast and Regression
Statements" on page A-16 and "File Reading and Writing Statements" on page A-28,
"Statements for Importing and Exporting Data" on page A-29, "Reporting
Statements" on page A-29, and "Statements for Working with Startup and Trigger
Programs" on page A-26.

Statements for Handling Programs
Table A–22, " Statements for Handling Programs" lists the OLAP DML statements
that you use to hide, compile, and call programs.

Table A–21 General Modeling Statements

Statement Description

DEFINE MODEL Creates a new model object.

INFO Obtains information that has been produced for a model in your
analytic workspace.

MODEL At the command level, adds contents to a model object. Within an
aggmap, executes a predefined model.

MODEL.COMPRPT Produces a report that shows how model equations are grouped into
blocks.

MODEL.DEPRT Produces a report that lists the variables and dimension values on
which each model equation depends.

MODEL.XEQRPT Produces a report about the execution of the model.

Programming Statements

Functions and Commands by Functional Category A-23

Statement Used Only in Programs
Table A–23, " Statements Used Only in OLAP DML Programs" lists the OLAP DML
statements that you can use only within the contents of an OLAP DML program.

Table A–22 Statements for Handling Programs

Statement Description

ALLCOMPILE Compiles every compilable object in your current analytic workspace, one
at a time.

CALL Invokes an OLAP DML program, and, when the program has arguments,
passes these arguments to the called program.

COMPILE Generates compiled code for a compilable object, such as an OLAP DML
program, formula, model, or aggmap without running it and saves the
compiled code in the analytic workspace.

DEFINE
PROGRAM

Creates a new program object.

PROGRAM Assigns contents to the most recently defined or considered OLAP DML
program.

HIDE Hides the text of a program, so that you cannot display it using the
DESCRIBE command, the EDIT command, or the OBJ function. You can
perform all other actions on the program, including executing, compiling,
renaming, or exporting.

UNHIDE Unhides the text of a program that has been made invisible by using the
HIDE command.

Table A–23 Statements Used Only in OLAP DML Programs

Statement Description

ARG Lets you reference arguments passed to a program by
returning one argument as a text value.

ARGCOUNT Returns the number of arguments that were specified when the
current program was invoked.

ARGFR Lets you reference the arguments that are passed to a program
by returning a group of one or more arguments, beginning
with the specified argument number, as a single text value.

ARGS Lets you reference the arguments that are passed to a program
by returning all the arguments as a single text value.

ARGUMENT Declares an argument that is expected by a program.

Programming Statements

A-24 Oracle OLAP DML Reference

BREAK Transfers program control from within a SWITCH, FOR, or
WHILE statement to the statement immediately following the
DOEND associated with SWITCH, FOR, or WHILE.

CALLTYPE Returns a value that Indicates whether a program was invoked
as a function, as a command, or by using the CALL command.

CONTINUE Transfers program control to the end of a FOR or WHILE loop
(just before the DO/DOEND statement), allowing the loop to
repeat. You can use CONTINUE only within programs and
only with FOR or WHILE.

DO ... DOENDs Brackets a group of one or more statements. DO and DOEND
are normally used to bracket a group of statements that are to
be executed under a condition specified by an IF statement, a
group of statements in a repeating loop introduced by FOR or
WHILE, or the CASE labels for a SWITCH statement.

FOR Specifies one or more dimensions whose status will control the
repetition of one or more statements.

GOTO Alters the sequence of statement execution within the program
by indicating the next program statement to execute.

IF...THEN...ELSE Executes one or more statements in a program if a specified
condition is met. Optionally, it also executes an alternative
statement or group of statements when the condition is not
met.

RETURN Terminates execution of a program prior to its last line. You can
optionally specify a value that the program will return.

SIGNAL Produces an error message and halts normal execution of the
program. When the program contains an active trap label,
execution branches to the label. Without a trap label, execution
of the program terminates and, if the program was called by
another program, execution control returns to the calling
program.

SWITCH Provides a multipath branch in a program. The specific path
taken during program execution depends on the value of the
control expression that is specified with SWITCH.

TEMPSTAT Limits the dimension you are looping over, inside a FOR loop
or inside a loop that is generated by the REPORT command.
Status is restored after the statement following TEMPSTAT. If a
DO ... DOEND phrase follows TEMPSTAT, status is restored
when the matched DOEND or a BREAK or GOTO statement is
encountered.

Table A–23 (Cont.) Statements Used Only in OLAP DML Programs

Statement Description

Programming Statements

Functions and Commands by Functional Category A-25

Statements Used Primarily in Programs
Table A–24, "Statements Used Primarily in OLAP DML Programs" lists the OLAP
DML statements that are used primarily in OLAP DML programs.

TRAP Causes program execution to branch to a label when an error
occurs in a program or when the user interrupts the program.
When execution branches to the trap label, that label is
deactivated.

VARIABLE Declares a local variable or valueset for use within a program.
A local variable cannot have any dimensions and exists only
while the program is running.

WHILE Repeatedly executes a statement while the value of a Boolean
expression remains TRUE.

END Marks the end of the program contents.

Table A–24 Statements Used Primarily in OLAP DML Programs

Statement Description

ACROSS Specifies a text expression that contains one or more statements to be
executed in a loop.

CONTEXT
command

Lets you create and use a context during your Oracle OLAP session. A
context is a means of preserving object values. After you create a context,
you can save the current status of dimensions and the values of options,
single-cell variables, valuesets, and single-cell relations in the context. You
can then restore some or all of the object values from the context.

CONTEXT
function

Obtains information about object values that are saved in a context. You
must first create the context with the CONTEXT command.

INFO (PARSE) Obtains information that has been produced by the PARSE command.

PARSE Parses a specified group of expressions.

POP Restores the status of a dimension, the status of a valueset, or the value of
an option or single-cell variable that was saved with a previous PUSH
command.

POPLEVEL Restores all values saved with PUSH commands that were executed since
the last POPLEVEL command specifying the same marker.

PUSH Saves the current status of a dimension, the status of a valueset, or the
value of an option or single-cell variable.

Table A–23 (Cont.) Statements Used Only in OLAP DML Programs

Statement Description

Programming Statements

A-26 Oracle OLAP DML Reference

Statements for Program Debugging
Table A–25, " OLAP DML Program Debugging Statements" lists the OLAP DML
statements that you use to debug OLAP DML programs.

Statements for Working with Startup and Trigger Programs
Trigger programs and startup programs are programs that Oracle OLAP
automatically executes when a particular OLAP DML statement executes.
Table A–26, "Statements for Working with Startup and Trigger Programs" on
page A-26 lists the OLAP DML statements that you can use to create and manage
trigger programs.

PUSHLEVEL Marks the start of a series of PUSH commands.

SLEEP Suspends the operation of Oracle OLAP for at least the specified number of
seconds.

Table A–25 OLAP DML Program Debugging Statements

Statement Description

BACK Returns the names of all currently executing programs, listed one a line in
a multiline text value.

DBGOUTFILE Sends debugging information to a file.

MONITOR Records data on the performance cost of each line in a specified OLAP
DML program.

TRACKPRG Tracks the performance cost of every OLAP DML program that runs
while you have tracking turned on.

Table A–26 Statements for Working with Startup and Trigger Programs

Statement Description

CALLTYPE Within an OLAP DML program, the CALLTYPE
function indicates whether a program was invoked
as a function, as a command, by using the CALL
command, or triggered by the execution of an OLAP
DML statement.

Table A–24 Statements Used Primarily in OLAP DML Programs

Statement Description

Programming Statements

Functions and Commands by Functional Category A-27

ONATTACH A program that you create and that Oracle OLAP checks
for by name when an AW ATTACH statement executes.
Depending on the value returned by the program, Oracle
OLAP executes the code within the program immediately
after attaching the analytic workspace.

PERMIT_READ A program that you create and that Oracle OLAP checks
for by name when an AW ATTACH read-only statement
executes. Depending on the value returned by the
program, Oracle OLAP executes the code within the
program after attaching the analytic workspace.

PERMIT_WRITE A program that you create and that Oracle OLAP checks
for by name when an AW ATTACH read/write statement
executes. Depending on the value returned by the
program, Oracle OLAP executes the code within the
program after attaching the analytic workspace.

TRIGGER command Associates a previously-created program to a
previously-defined object and identifies the object event
that automatically executes the program; or a disassociates
a trigger program from the object.

TRIGGER function Retrieves the event, subevent, or name of the object or
analytic workspace that caused the execution of a
TRIGGER_DEFINE program, a TRIGGER_DEFINE
program, or any programs identified as triggers using the
TRIGGER command.

TRIGGER_AFTER_UPDATE A program that you create and that Oracle OLAP checks
for by name when an UPDATE statement executes. When
the program exists, Oracle OLAP executes the program
after the UDPATE occurs.

TRIGGER_BEFORE_UPDATE A program that you create and that Oracle OLAP checks
for by name when an UPDATE statement executes. When
the program exists, Oracle OLAP executes the program
and then, depending on the value returned by the program
(if any), either does nor does not update the workspace.

TRIGGER_DEFINE A program that you create and that Oracle OLAP checks
for by name when a DEFINE statement executes. When
the program exists, Oracle OLAP executes the program
and then, depending on the value returned by the program
(if any), either does nor does not define the object.

TRIGGERASSIGN Typically used in trigger program for an Assign event, the
TRIGGERASSIGN statement replaces one assigned value.

Table A–26 Statements for Working with Startup and Trigger Programs

Statement Description

File Reading and Writing Statements

A-28 Oracle OLAP DML Reference

File Reading and Writing Statements
Table A–27, " File Reading and Writing Statements" lists the OLAP DML statements
that you use when reading data from files or to files.

Table A–27 File Reading and Writing Statements

Statement Description

CDA Identifies or changes the current directory object for your session.

FETCH Closes an open file. If the file has not been opened, an error occurs.

FILECOPY Copies the contents of one file (the source file) to another file (the target
file).

FILEDELETE Deletes a file from the operating system disk space.

FILEERROR Returns information about the first error that occurred when you are
processing a record from an input file with the data reading statements
FILEREAD and FILEVIEW.

FILEGET Returns text from a file that has been opened for reading; or NA when
FILEGET reaches the end of the file.

FILEMOVE Changes the name or location of a file that you specify. The new file
name may be the same or different from the original name.

FILENEXT Makes a record available for processing by the FILEVIEW command.

FILEOPEN Opens a file, assigns it a fileunit number (an arbitrary integer), and
returns that number.

FILEPAGE Forces a page break in your output when PAGING is on.

FILEPUT Writes data that is specified in a text expression to a file that is opened in
WRITE or APPEND mode.

FILEQUERY Returns information about a file.

FILEREAD Reads records from an input file and processes data according to action
statements that you specify.

FILESET Sets the paging attributes of a specified fileunit.

FILEVIEW In conjunction with the FILENEXT function, reads one record at a time
of an input file, processes the data, and stores the data in Oracle OLAP
dimensions and variables according to the descriptions of the fields.

GET Requests input from the current input stream.

INFILE Reads statement input from a specified file.

Reporting Statements

Functions and Commands by Functional Category A-29

Statements for Importing and Exporting Data
Table A–28, " Statements for Importing and Exporting Data" lists the OLAP DML
statements that you use to import and export data.

Reporting Statements
Table A–29, " Reporting Statements" lists the OLAP DML statements that you use to
create simple reports.

LISTFILES Lists all the open files that can be referenced by the FILEQUERY
function.

LOG command Starts or stops the recording of a session to a disk file. All lines of input
and output are recorded.

OUTFILE Redirects the text output of statements to a file.

RECNO Reports the current record number of a file opened for reading; or NA
when Oracle OLAP has reached the end of the file.

Table A–28 Statements for Importing and Exporting Data

Statements Description

EXPORT Copies both data and object definitions from your workspace to an EIF
file, or copies an OLAP DML worksheet object to a spreadsheet file.

IMPORT Copies data from an EIF file, a text file, or a spreadsheet into an
analytic workspace.

WKSDATA Returns the data type of each individual cell in a worksheet.

SQL Typically, used in a program to copy data to and from relational tables,
passes instructions written in Structured Query Language (SQL) to the
relational manager from Oracle OLAP.

Table A–29 Reporting Statements

Statement Description

BLANK Sends one or more blank lines to the current outfile.

Table A–27 (Cont.) File Reading and Writing Statements

Statement Description

Statements Related to Using OLAP_TABLE in SQL

A-30 Oracle OLAP DML Reference

Statements Related to Using OLAP_TABLE in SQL
Table A–30, " Statements Related to OLAP_TABLE" lists the OLAP DML statements
that support the use of the OLAP_TABLE function.

COLVAL Within a ROW command, ROW function, or REPORT command, returns
a numeric value from a column to the left of the current column in the same
row of a report.

HEADING Produces titles and column headings for a report.

PAGE Forces a page break in output when PAGING is set to YES.

REPORT Produces output for one or more data expressions.

ROW
command

Produces a line of data in cells, one after another in a single row.

ROW function Returns a line of data in cells, one after another in a single row.

RUNTOTAL Within a ROW command, ROW function, or REPORT command, returns
the running total of an expression.

SHOW Displays a single value of an expression.

STDHDR Generates the standard Oracle OLAP heading at the top of every page of
report output.

SUBTOTAL Within a ROW command, ROW function, or REPORT command, returns
the value of one of the subtotals accumulated in a report.

ZEROTOTAL Within a ROW command, ROW function, or REPORT command, resets
one or all subtotals of specified report columns to zero.

Table A–30 Statements Related to OLAP_TABLE

Statement Description

FETCH Specifies how analytic workspace data is retrieved for use in the
relational table created by the OLAP_TABLE function which you use to
access analytic workspace data using SQL.

GROUPINGID Populates a previously-defined variable with the grouping ids for the
values of a hierarchical dimension.

HIERHEIGHT
command

Populates a previously-defined relation with the values of a specified
hierarchical dimension by level.

Table A–29 (Cont.) Reporting Statements

Statement Description

Statements Related to Using OLAP_TABLE in SQL

Functions and Commands by Functional Category A-31

LIMITMAPINFO Returns the analytic workspace expression that a specified limit map
uses to map data into a specified column of a relational table

.

Table A–30 (Cont.) Statements Related to OLAP_TABLE

Statement Description

Statements Related to Using OLAP_TABLE in SQL

A-32 Oracle OLAP DML Reference

OLAP DML Statement Changes B-1

B
OLAP DML Statement Changes

This appendix contains listings of the changes made to the OLAP DML.

■ Statements Added

■ Statements Deleted

■ Statements Significantly Changed

■ Statements Renamed

Statements Added
The following statements have been added to the OLAP DML. The number in
parentheses indicates the specific release in which the statement was added.

$AGGMAP (10.1.0.0)
$AGGREGATE_FROM (10.1.0.0)
$AGGREGATE_FROMVAR (10.1.0.0)
$ALLOCMAP (10.1.0.0)
$COUNTVAR (10.1.0.0)
ACQUIRE (10.1.0.0)
ADD_MONTHS (9.0.0.0)
ALLOCATE (9.2.0.0)
ALLOCERRLOGFORMAT (9.2.0.0)
ALLOCERRLOGHEADER (9.2.0.0)
ALLOCMAP (9.2.0.0)
ARCTAN2 (10.1.0.0)
ASCII (10.1.0.0)
BASEDIM (9.2.0.0)
BASEVAL (9.2.0.0)
BITAND (10.1.0.0)

Statements Added

B-2 Oracle OLAP DML Reference

CDA (9.2.0.0)
CEIL (9.0.0.0)
CHANGEBYTES (9.0.0.0)
CHGDIMS (9.2.0.0)
CHILDLOCK (9.2.0.0)
COALESCE (10.1.0.0)
COMMIT (9.2.0.0)
DEADLOCK (9.2.0.0)
DECODE (10.1.0.0)
DEFINE PARTITION TEMPLATE (10.1.0.0)
DROP DIMENSION (10.1.0.0)
ERRORLOG (9.2.0.0)
ERRORMASK (9.2.0.0)
EXP (10.1.0.0)
EXTBYTES (9.0.0.0)
FETCH (9.2.0.0)
FINDBYTES (9.0.0.0)
FLOOR (9.0.0.0)
GREATEST (10.1.0.0)
GROUPINGID (9.2.0.0)
HIERHEIGHT command (9.2.0.0)
HIERHEIGHT function (9.2.0.0)
INF_STOP_ON_ERROR (10.1.0.0)
INITCAP (10.1.0.0)
INSBYTES (9.0.0.0)
INSTR (10.1.0.0)
INSTRB (10.1.0.0)
JOINBYTES (9.0.0.0)
LAST_DAY (9.0.0.0)
LEAST (10.1.0.0)
LIMITMAPINFO (9.2.0.2)
LPAD (10.1.0.0)
LTRIM (10.1.0.0)
MAXBYTES (9.0.0.0)
MAXFETCH (10.1.0.0)
MAXFETCH (9.0.0.0)
MONTHS_BETWEEN (9.0.0.0)
MULTIPATHHIER (9.0.0.0)
NEW_TIME (9.0.0.0)
NEXT_DAY (9.0.0.0)
NLS Options, specifically:

Statements Added

OLAP DML Statement Changes B-3

NLS_CALENDAR (9.0.0.0)
NLS_CURRENCY (9.0.0.0)
NLS_DATE_FORMAT (9.0.0.0)
NLS_DATE_LANGUAGE (9.0.0.0)
NLS_DUAL_CURRENCY (9.0.0.0)
NLS_ISO_CURRENCY (9.0.0.0)
NLS_LANG (9.0.0.0)
NLS_LANGUAGE (9.0.0.0)
NLS_NUMERIC_CHARACTERS (9.0.0.0)
NLS_SORT (9.0.0.0)
NLS_TERRITORY (9.0.0.0)

NULLIF (10.1.0.0)
NULLIF (9.0.0.0)
NVL (10.1.0.0)
NVL2 (10.1.0.0)
ONATTACH (10.1.0.0)
PARTITIONCHECK (10.1.0.0)
POUTFILEUNIT (9.2.0.0)
RELEASE (10.1.0.0)
REMBYTES (9.0.0.0)
REPLBYTES (9.0.0.0)
RESYNC (10.1.0.0)
REVERT (10.1.0.0)
ROLE (9.0.0.0)
RPAD (10.1.0.0)
RTRIM (10.1.0.0)
SET1 (10.1.0.0)
SIGN (10.1.0.0)
SOURCEVAL (9.2.0.0)
SUBSTR (10.1.0.0)
SUBSTRB (10.1.0.0)
SYSDATE (9.0.0.0)
TO_CHAR (9.0.0.0)
TO_DATE (9.0.0.0)
TO_NCHAR (9.2.0.0)
TO_NUMBER (9.0.0.0)
TRACEFILEUNIT (9.2.0.0)
TRIGGER command (10.1.0.0)
TRIGGER function (10.1.0.0)
TRIGGER_DEFINE (10.1.0.0)
TRIGGER_AFTER_UPDATE (10.1.0.0)

Statements Deleted

B-4 Oracle OLAP DML Reference

TRIGGER_BEFORE_UPDATE (10.1.0.0)
TRIGGERASSIGN (10.1.0.0)
TRIM (10.1.0.0)
TRIM (9.0.0.0)
USERID (9.0.0.0)
USETRIGGERS (10.1.0.0)
VALUESET (10.1.0.0)
WIDTH_BUCKET (10.1.0.0)

Statements Deleted
The followingstatements have been deleted from the OLAP DML. The number in
parentheses indicates the specific release in which the statement was deleted.

_UPDATEOLDVERS (9.2.0.0)
_XCALONGTIME (9.0.0.0)
_XCARETRIES (9.0.0.0)
_XCASHORTIME (9.0.0.0)
ALLOWQONS (9.2.0.0)
CACHEHITS (9.2.0.0)
CACHEMISSES (9.2.0.0)
CACHETRIES (9.2.0.0)
CHARSET (9.0.0.0)
CHDIR (9.2.0.0)
CHDRIVE (9.2.0.0)
COMQUERY (9.0.0.0)
COMSET (9.0.0.0)
COMUNIT (9.0.0.0)
CONNECT (9.0.0.0)
DBEXTENDPATH (9.2.0.0)
DBGSESSION (9.2.0.0)
DBREPORT (9.2.0.0)
DBSEARCHPATH (9.2.0.0)
DBTEMPPATH (9.2.0.0)
DEFINE EXTCALL (9.0.0.0)
DGCART (9.2.0.0)
DIR (9.2.0.0)
DISCONNECT (9.0.0.0)
EPRODUCT (9.2.0.0)
ERELEASE (9.2.0.0)
EXECBREAK (9.0.0.0)

Statements Deleted

OLAP DML Statement Changes B-5

EXECSTART (9.0.0.0)
EXECSTATUS (9.0.0.0)
EXECUTE (9.0.0.0)
EXECWAIT (9.0.0.0)
EXTARGS (9.0.0.0)
FETCH (9.0.0.0) -- SNAPI
FILEMODEMASK (9.2.0.0)
IFCOPY (9.2.0.0)
LONGOBJNAMES (9.0.0.0)
MAXFETCH (9.0.0.0)
MKDIR (9.0.0.0)
NAPAGEFREE (9.2.0.0)
ODBC.CONNECTION (9.0.0.0)
ODBC.CONNLIST (9.0.0.0)
ODBC.DISCONN (9.0.0.0)
ODBC.SOURCE (9.0.0.0)
ODBC.SOURCELIST (9.0.0.0)
PGCACHEHITS (9.2.0.0)
PGCACHEMISSES (9.2.0.0)
PAGEPAUSE (9.2.0.0)
PAGEPROMPT (9.2.0.0)
PAUSE (9.2.0.0)
RETRIEVE (9.0.0.0)
RMDIR (9.0.0.0)
SESSIONQUERY (9.0.0.0)
SHARESESSION (9.0.0.0)
SHELL (9.0.0.0)
SQL CONNECT (9.0.0.0)
SQL DISCONNECT (9.0.0.0)
SQL.DMBS (9.0.0.0)
SQL.DMBSLIST (9.0.0.0)
STRIP (9.2.0.0)
THREADEXTCALL (9.0.0.0)
TRACE (9.2.0.0)
TRANSLATE (9.0.0.0)
TRANSPORT (9.0.0.0)
WATCH (9.2.0.0)
XABORT (9.0.0.0)
XCAPORTNUMBER (9.0.0.0)
XCLOSE (9.0.0.0)
XOPEN (9.0.0.0)

Statements Significantly Changed

B-6 Oracle OLAP DML Reference

Statements Significantly Changed
The following OLAP DML statements were significantly changed. Examples of
significant changes are the addition of a new keyword or a change in a default
value. The number in parentheses indicates the last release in which the statement
was significantly changed. See also "Statements Renamed" on page B-7 for a list of
renamed statements.

AGGMAPINFO (10.1.0.0)
ARGUMENT (10.1.0.0)
AW ATTACH (10.1.0.0)
CACHE (10.1.0.0)
CHGDFN (10.1.0.0)
CONVERT (9.2.0.0)
DECIMALCHAR (9.2.0.0)
DEFINE VARIABLE (10.1.0.0)
EXPORT (9.2.0.0)
FCQUERY (9.2.0.0)
FCSET (9.2.0.0)
FILEOPEN (9.0.0.0)
FILEQUERY (9.0.0.0)
FILEREAD (9.2.0.0)
HIERHEIGHT command (9.2.0.0)
IMPORT (9.0.0.0)
INFILE (9.0.0.0)
LAG (9.2.0.2)
LAGABSPCT (9.2.0.2)
LAGDIF (9.2.0.2)
LAGPCT (9.2.0.2)
LEAD (9.2.0.2)
LIMIT command (9.2.0.2)
LIMIT function (9.2.0.0)
MAINTAIN ADD SESSION (10.1.0.0)
MAINTAIN ADD TO PARTITION (10.1.0.0)
MODEL (9.2.0.2)
MOVINGAVERAGE (9.2.0.2)
MOVINGMAX (9.2.0.2)
MOVINGMIN (9.2.0.2)
MOVINGTOTAL (9.2.0.2)
NOSPELL (9.2.0.0)
OBJ (10.1.0.0)
OUTFILE (9.0.0.0)

Statements Renamed

OLAP DML Statement Changes B-7

PROGRAM (9.2.0.0)
PROPERTY (9.0.0.0)
RECURSIVE (9.0.0.0)
RELATION (for aggregation) (9.2.0.2)
RELATION (for allocation) (9.2.0.2)
ROUND (9.0.0.0)
SQL (10.1.0.0)
SYSDATE (9.2.0.0)
SYSINFO (9.2.0.2)
SYSTEM (9.2.0.0)
THOUSANDSCHAR (9.2.0.0)
UPDATE (10.1.0.0)
VARIABLE (10.1.0.0)
VALSPERPAGE (10.1.0.0)
YESSPELL (9.2.0.0)

Statements Renamed
The following OLAP DML statements have been renamed. The number in
parentheses indicates the specific release in which the statement was renamed.

DATABASE command to AW command (9.2.0.0)
DATABASE function to AW function (9.2.0.0)
DBDESCRIBE to AWDESCRIBE (9.2.0.0)
DBWAITTIME to AWWAITTIME (9.2.0.0)
DEFAULTDBFSIZE to DECODE (9.2.0.0)
OESEIFVERSION to EIFVERSION (9.2.0.0)

Statements Renamed

B-8 Oracle OLAP DML Reference

Index-1

Index
Symbols
$AGGMAP property, 6-3
$AGGREGATE_FROM property, 6-5 to 6-6
$AGGREGATE_FROMVAR property, 6-7 to 6-8
$ALLOCMAP property, 6-9
$COUNTVAR property, 6-11 to 6-12
$NATRIGGER property

calling recursively, 20-18
executing simultaneously, 24-44

$STORETRIGGERVAL property, 6-18 to 6-19
$VARCACHE property, 6-20 to 6-24
% wildcard, 3-23
& operator, 3-26
= command, 21-56

event, 24-9, 24-38
introduced, 2-7
trigger, 24-9, 24-38
with QDR, 3-34

_ wildcard, 3-23

A
ABS function, 3-19, 6-25 to 6-26
accessing

algorithm for composite values, 21-101
ACQUIRE command, 6-27 to 6-32
ACROSS command, 6-33 to 6-34
ACROSS keyword, 21-57

$AGGREGATE_FROM property, 6-5
$AGGREGATE_FROMVAR property, 6-8
= command, 21-57
FETCH command, 12-46
FILEREAD command, 13-28, 22-33

FILEVIEW command, 13-44
HEADING command, 14-20
models, 4-18
REPORT command, 20-60
ROW command, 21-34
SQL FETCH command, 22-22
SQL SELECT command, 22-47

ADD_MONTHS command, 6-35
adding

definition components, 9-44
description to a definition, 15-87, A-27
values to partitions, 16-88

AGGINDEX statement, 6-63 to 6-66
AGGMAP ADD model command, 6-98 to 6-100
AGGMAP command, 6-37 to 6-47
aggmap objects

defining, 10-16
deleting, 10-87

AGGMAP property
See $AGGMAP property

AGGMAP REMOVE model
command, 6-98 to 6-100

AGGMAP SET command, 6-101
AGGMAPINFO command, 7-3 to 7-8
aggmaps

compiling, 9-38
defining, 10-16
models in, 6-98

AGGREGATE command, 7-9 to 7-14
introduced, 4-4, 4-8

AGGREGATE function, 7-23 to 7-32
introduced, 4-3

AGGREGATE_FROM property
See $AGGREGATE_FROM property

Index-2

AGGREGATE_FROMVAR property
See $AGGREGATE_FROMVAR property

aggregating data
best practice, 4-5
between time dimensions, 23-27
caching, 24-75
embedded total dimension, 21-13
formulas to, 7-27
on-the-fly, 4-4, 4-5
partitioned variables, 7-20, 19-58
precomputing, 4-4, 4-5
specifying a relation for, 6-82

AGGREGATION function, 7-33 to 7-34
aggregation functions, A-15

NA values in, 3-29
aggregation specifications

deleting, 10-87
alias

analytic workspace, 3-3
alias dimensions

defining, 10-42
deleting, 10-87
limiting, 10-44
maintaining, 10-43
populating, 10-43

aliases
for analytic workspace, 3-3
for dimensions, 10-42
workspace See workspace alias

ALLCOMPILE program, 7-35
ALLOCATE command, 7-36 to 7-45
allocating data, 23-27

between time dimensions, 23-27
list of related commands, 4-9
specifying allocation path, 7-62

allocation specifications
deleting, 10-87

ALLOCERRLOGFORMAT option, 7-46 to 7-47
ALLOCERRLOGHEADER option, 7-48 to 7-49
ALLOCMAP command, 7-50 to 7-53
ALLOCMAP property

See $ALLOCMAP property
ALLSTAT command, 7-76
alphabetic characters

converting, 24-62

ampersand (&) operator, 3-26
ampersand substitution

avoiding, 3-25
example of, 3-26
prevents compiling, 5-14
program arguments and, 5-4
QDR with, 3-36
using to pass arguments, 5-4, 16-17

analytic workspace
partitioning, 8-47

analytic workspace objects
defining, 10-12

analytic workspaces
alias, 3-3
aliases, 3-3, 8-31
content summary, displaying, 8-60
current, 3-4
current workspace, 3-4
deleting objects, 10-87
exclusive, 8-63
exporting, 1-16
importing, 1-16
name, 3-3
objects, defining in a program, 5-14
obtaining information about, 8-56
permission programs, 1-11, 8-49, 19-77
read-only, 8-63
read/write, 8-63
sharing, 8-63
starting, 8-63
startup programs, 19-35
statements for managing, 1-5
updating, 24-63
waiting to attach, 8-63

analytic workspaces alias
creating, 8-31

AND operator, 2-9
ANTILOG function, 7-77
ANTILOG10 function, 7-78
ANY function, 7-79 to 7-82
arc tangent calculation, 8-5
ARCCOS function, 7-83
ARCSIN function, 8-3
ARCTAN function, 8-4
ARCTAN2 function, 8-5

Index-3

ARG command
See ARGUMENT command

ARG function, 8-6 to 8-9
ARGCOUNT function, 8-10 to 8-11
ARGFR function, 8-12 to 8-15
ARGS function, 8-16 to 8-18
ARGUMENT command, 8-19 to 8-23

abbreviation for, 8-19
placement of, 5-3
use of, 5-3
using multiple, 5-3

arguments, 8-6
in user-defined functions, 5-3
passing as text, 5-4, 16-17
passing to a program, 8-6, 8-10, 8-12, 8-16, 8-19,

8-85
using ampersand substitution with, 5-4

arithmetic expressions
See arithmetic operators, numeric expressions

ASCII function, 8-26
Assign event, 24-9
assigning values

OLAP DML statements, A-3
SET1, 21-71

assignment operator
See = command

assignment statement, 21-56, 21-57
event, 24-9, 24-38
trigger, 24-9, 24-38
with QDR, 3-34

assignment statements
SET1, 21-71

authentication, 19-26
encrypting text expressions, 19-26
within Oracle OLAP, 19-63

average
calculating, 8-27
moving, 18-18

AVERAGE function, 8-27
AW ALIASLIST command, 8-31
AW ALLOCATE command, 8-33
AW ATTACH command, 8-34 to 8-45
AW command, 8-30 to 8-55

events, 24-33
triggers, 24-33

AW CREATE command, 8-46 to 8-50
AW DELETE command, 8-51
AW DETACH command, 8-52
AW function, 8-56 to 8-59
AW LIST command, 8-53
AW SEGMENTSIZE command, 8-55
AWDESCRIBE program, 8-60 to 8-62
AWWAITTIME option, 8-63

B
BACK function, 8-64
BADLINE option, 5-16, 8-66
base dimensions

finding values of, 15-66
BASEDIM function, 8-68
BASEVAL function, 8-71
batch windows

for aggregation, 4-4, 4-5
BEGINDATE, 8-74
BITAND function, 8-76
bits, adding, 8-76
BLANK command, 8-77
blank lines in reports, 8-77
blanks, 8-78

stripping from text values, 8-78
BLANKSTRIP function, 8-78
BMARGIN option, 8-79
Boolean constants, 2-4, 3-16
Boolean data type, 2-4
Boolean expressions

creating, 3-17
defined, 3-16
example of, 3-18
involving NA values, 3-18
operators, 2-9
values, 3-16

Boolean operators
evaluation order, 2-9
table of, 2-9

Boolean values, 18-68
spelling of false values, 18-68
spelling of true values, 24-108

branching in programs, 8-81, 9-51, 14-7, 14-42,
16-18, 23-14

Index-4

BREAK command, 8-81
used with SWITCH, 23-14

bucket numbers
retrieving, 24-104

build number, 11-67
byte manipulation functions, 8-98, 12-15, 13-58,

15-35, 15-56, 17-2, 18-73, 20-36, 20-47
bytes, 13-58

finding location in text expression, 13-58
functions for, A-5, A-6, A-7

C
CACHE command, 4-6, 24-76
CACHE statement, 6-70, 6-71
caches

See OLAP session cache
calculated members

adding to dimension, 16-81
calculating a linear regression, 12-36, 20-25
calculation on-the-fly

typical strategy, 6-61
calculations

controlling errors during, 3-15
CALENDARWEEK option, 8-82
CALL command, 8-85
CALLTYPE function, 8-90, A-26
capitalizing strings, 15-32
carriage return (escape sequence), 2-4
case conversion

alphabetic characters, 24-62
case statement in programs, 23-14
CATEGORIZE function, 8-92
CDA command, 8-95
CEIL function, 8-97
CHANGEBYTES function, 8-98
CHANGECHARS function, 8-100
changes

dropping, 21-10
changing, 9-44

definition components, 9-44
name of an object, 20-44

character values, 8-78
stripping blank spaces from, 8-78

characters
capitalizing, 15-32
converting to uppercase, 24-62
finding location in text expression, 13-60
functions for, A-5, A-6, A-7
representing as decimals, 2-4
representing as hexadecimals, 2-4
representing as Unicode, 2-4
retrieving decimal representation, 8-26

CHARLIST function, 8-102
CHGDFN command, 9-3
CHGDIMS function, 9-14
CHILDLOCK statement, 7-56
CLEANUP command

See SQL CLEANUP command
CLEAR command, 9-16
CLOSE command

See SQL CLOSE command
COALESCE function, 9-20
columns

default width in reports, 9-23, 15-85
getting value from a report column, 9-21
headings in a report, 14-20
in reports, 9-23
multiline text, 12-19, 15-39, 15-61, 20-40, 20-53

COLVAL function, 9-21
COLWIDTH function, 9-23
command sequence

accessing previously executed
commands, 20-13

executing previously executed
commands, 20-19

COMMAS option, 9-25
in numeric output, 9-25

comments in programs, 5-2
COMMIT command, 9-27
comparing text data, 15-93, 16-3
comparison operators, 2-9
compilable objects, 9-42

creating a cross-reference list for, 19-24
COMPILE command, 9-29

example of, 9-39
in models, 4-14
introduction to, 5-13

COMPILEMESSAGE option, 9-41

Index-5

COMPILEWARN option, 9-42
compiling, 9-29, 9-42

aggmaps, 9-38
SQL statements, 22-38
suppressing error messages, 9-41

composite values
deleting values of, 16-96

composites
as output host variables, 22-19
base dimension values, 15-66
changing to conjoint dimensions, 9-3
defining, 10-20
deleting, 10-87
index algorithm, 21-101
limiting dimensions used by, 3-8
looping over, 6-15
maintaining, 16-72
reporting, 20-58, 21-33
rolling up data, 21-13
showing a value, 21-72
statements for managing, A-19
testing for a value, 15-54
unnamed, 10-82
using commands with, 3-8

composities
deleting, 10-87

computing, 15-50
internal rate of return, 15-50
net present value, 18-69

concat dimensions
defining, 10-38
deleting, 10-87

concat partitions, 10-51
conditional expressions, 3-24
conditional operators

defined, 3-24
example of, 3-24

conjoint dimensions
as output host variable, 22-19
base dimension values, 15-66
changing to composites, 9-3
defining, 10-33
deleting, 10-87

conjoints
defining, 10-33

CONSIDER command, 9-44
CONTEXT command, 5-10, 9-46
CONTEXT function, 5-10, 9-49
CONTINUE command, 9-51
controlled sparsity

defined, 10-74
CONVERT function, 3-2, 9-52
converting

alphabetic characters, 24-62
data between time dimensions, 23-27
decimal numbers to integers, 15-49
values from one data type to another, 9-52

COPYDFN command, 9-62
copying definitions, 9-62
CORRELATION function, 9-64
COS function, 9-68
COSH function, 9-69
cosine calculation, 9-68

hyperbolic, 9-69
cost

of program lines, 18-3
of programs, 23-70
performance, 18-3

COUNT function, 9-70
counting, 18-77

lines in a text expression, 18-77
number of true values, 9-70

COUNTVAR property
See $COUNTVAR property

cross reference for workspace, 19-24
CUMSUM function, 9-73
cumulative totals, 9-73, 21-49
current

analytic workspace, defined, 3-4
status See current status

current analytic workspace
defined, 3-4

current directory
defined, 18-4, 19-36

current outfile, 11-38, 19-36
current status, 3-30, 15-43, 16-6

checking for a dimension value, 15-43
current status list

Index-6

defined, 3-30
cursors, 22-9

closing (SQL), 22-9
defining (SQL), 22-10, 22-45
importing (SQL), 22-29

D
data fetches (SQL), 22-19
data types, 23-46, 23-51, 23-59

converting, 3-2, 9-52, 23-46, 23-51, 23-59, A-3
creating a report, 20-58, 21-33
date, 2-5
determining data type of an object, 19-3
for variables, 10-68
numeric, 2-2
of expressions, 3-2
of numeric expressions, 3-11, 3-12
of user-defined function, 5-3
qualifying data for expressions, 19-108
restricting access, 19-63
showing a single value, 21-72
statements for converting, A-3
text, 2-3
transferring from one format to another, 24-58

data values
accessing variable, 3-8
numeric, 3-11

DATABASE command
name change, B-7
See AW command

DATABASE function
name change, B-7
See AW function

date and time
functions, A-8

date conversion, 23-46, 23-51
DATE data type, 2-5
DATEFORMAT option, 9-78
DATEORDER option, 9-84
dates, 23-18, 23-63

comparing with times, 3-22
current, 23-18, 23-63
functions, A-8
in arithmetic expressions, 3-13

in text expressions, 3-16
DATETIME data type, 2-5, 3-16
DAYABBRLEN option, 9-88
DAYNAMES option, 9-91
DAYOF function, 9-93
DBDESCRIBE program

name change, B-7
See AWDESCRIBE program

DBGOUTFILE command, 5-17, 9-95
and ECHOPROMPT, 11-38

DBWAITTIME
See AWWAITTIME option

DBWAITTIME option
name change, B-7

DDOF function, 9-99
DEADLOCK statement, 7-57
debugging, 8-66, 9-95, 11-38, 12-14, 17-46, 17-70,

19-91
statements for, A-26

debugging programs, 5-14
decimal

marker, 10-2
places, 10-6
places (displayed), 10-6

DECIMAL data type, 2-2, 3-20
decimal data types, comparing, 3-20
decimal values, 10-2

decimal marker for output, 10-2
truncating to an integer, 15-49

DECIMALCHAR option, 10-2
DECIMALOVERFLOW option, 3-15, 10-4
DECIMALS option, 3-19, 10-6
DECLARE CURSOR command

See SQL DECLARE CURSOR command
DECODE function, 10-9
default outfile, 11-38, 19-36
default status list

defined, 3-31
DEFAULTAWSEGSIZE option, 10-11
DEFAULTDBFSIZE

See DEFAULTAWSEGSIZE option
DEFAULTDBFSIZE option

name change, B-7
DEFINE AGGMAP command, 10-16,

10-16 to 10-19

Index-7

DEFINE command, 10-12
events, 24-36
triggers, 24-36

DEFINE COMPOSITE command, 10-20
DEFINE DIMENSION ALIASOF

command, 10-42 to 10-43
DEFINE DIMENSION command, 10-26
DEFINE FORMULA command, 10-46
DEFINE MODEL command, 10-49
DEFINE PARTITION TEMPLATE

command, 10-51
DEFINE PROGRAM command, 10-55
DEFINE RELATION command, 10-58
DEFINE SURROGATE command, 10-61
DEFINE VALUESET command, 10-64
DEFINE VARIABLE command, 10-68
DEFINE WORKSHEET command, 10-84
defining

aggmap objects, 10-16
alias dimensions, 10-42
analytic workspace objects, 10-12
dimension alias, 10-42
dimensions, 10-26
formulas, 10-46
partitions, 10-51
programs, 10-55
relations, 10-58
surrogates, 10-61
valuesets, 10-64
variables, 10-68
worksheet objects, 10-84

definitions, 9-44
changing components, 9-44
copying, 9-62
creating, 10-12
creating object properties, 19-98
deleting, 10-87
listing of, 19-24
moving within NAME dimension, 18-15
report of, 11-28, 13-87
testing for, 11-72

DELETE command, 10-87
event, 24-9
trigger, 24-9

Delete event, 24-9

deleting, 15-87, A-27
aggmap objects, 10-87
alias dimensions, 10-87
composite values, 16-96
composites, 10-87
definitions, 10-87
description from a definition, 15-87, A-27
dimension alias, 10-87
dimension values, 16-90
dimensions, 10-87
formulas, 10-87
models, 10-87
partition templates, 10-87
partitions, 10-87
programs, 10-87
surrogates, 10-87
triggers, 24-10
valuesets, 10-87
variables

deleting, 10-87
DEPRDECL function, 11-3
DEPRDECLSW function, 11-9
depreciation of assets, 11-3, 11-9, 11-17, 11-22
DEPRSL function, 11-17
DEPRSOYD function, 11-22
DESCRIBE command, 11-28
descriptions, 15-87, A-27

adding to a definition, 15-87, A-27
DIF files, 14-45

importing data from, 14-45
dimension alias

defining, 10-42
deleting, 10-87

DIMENSION command, 17-32
in a model, 17-29

DIMENSION statement
for aggregation, 6-74
for allocation, 7-58

dimension status, 3-30, 16-6
effect on expressions, 3-10
of dimensions used by composites, 3-8
restoring, 3-32, 5-9
restoring current, 3-32
saving current, 3-32
saving current status, 3-32, 5-9

Index-8

status for managing, A-19
dimension surrogates

assigning values to, 21-60
dimension value

checking current status list, 22-70, 22-73, 22-77,
22-79

checking if in status, 15-43
checking status for a value, 15-43
counting related values, 23-22
listing associated objects, 16-56
listing values, 24-70
null values, 19-32
saving the status in a context, 9-46
sorting the status list, 16-50, 21-90
testing for a value, 15-54
using qualified data reference, 19-108
using result of LIMIT command, 16-43

dimension values
checking if in status, 15-43
comparing, 3-21
counting related values, 23-22
deleting values of, 16-90
latest value, 22-68
number of values in status, 22-64
retrieving current status list, 22-65
returning first value in status, 22-60
returning last value in status, 22-62
setting the status of, 16-6

dimensionality
changing in an expression, 9-14

dimension-based equations, 4-10
dimensions

checking status of, 22-59
comparing values, 3-21
defining, 10-26
defining surrogates for, 10-61
deleting, 10-87
in expressions, 3-3
limiting to single value, 3-32
looping over values of, 13-71, 13-72
maintaining, 16-72
numeric value of text dimension, 3-13
of expression, 3-9, 3-10
order in models, 17-33
QDR with, 3-32, 3-36

restoring previous values, 5-9
saving current values, 5-9
See also alias dimensions, concat dimensions,

conjoint dimensions, simple dimensions
statements for managing, A-19

directories
current, 18-4, 19-36

DIVIDEBYZERO option, 3-15, 11-32
division, 20-35

by zero, 11-32
calculating the remainder, 20-35

DO command, 11-34, 13-69
used with FOR, 13-69
used with SWITCH, 23-14
used with WHILE, 24-102

DOEND command, 11-34
double quotes (escape sequence), 2-4
DSECONDS option, 11-36

E
ECHOPROMPT option, 5-17, 11-38
EDIT command, 11-40
editing, 20-22

previously executed commands, 20-22
EIF file, 1-16, 12-3

exporting data from, 12-3
importing data from, 14-45

EIFBYTES option, 11-42
EIFEXTENSIONPATH option, 11-43
EIFNAMES option, 11-45
EIFSHORTNAMES option, 11-46
EIFTYPES option, 11-48
EIFUPDBYTES option, 11-50
EIFVERSION option, 11-51
embedded totals, 21-13
encryption, 19-26
END command, 11-53
ENDDATE function, 11-54
ENDOF function, 11-56
EQ command, 11-58
EQ operator, 2-9
equations

dimension-based, 4-10
ERRNAMES option, 11-61

Index-9

error messages, 21-72
creating your own, 5-12
deferring, 5-11
finding line causing, 8-66
option holding text of, 11-65
output destination of, 11-38
producing without error condition, 21-72
signaling error condition, 21-76
suppressing, 5-11, 9-41
suppressing during compilation, 9-41

ERRORLOG statement, 7-59
ERRORMASK statement, 7-60
ERRORNAME option, 5-10, 11-63, 21-76

with SIGNAL, 21-76
errors

controlling during calculations, 3-15
handling, 5-10
handling in nested programs, 24-6, 24-7
handling in programs, 24-3
name of first-occurring error, 11-63
recording line causing, 8-66
signaling, 5-12, 24-6, 24-7
when comparing numeric data, 3-19, 3-20

ERRORTEXT option, 5-10, 11-65, 21-76
used with SIGNAL, 21-76

escape character for LIKE, 15-95
ESCAPEBASE option, 11-66
events

Assign, 24-9, 24-38
assignment statements, 24-9
Define, 24-36
Delete, 24-9
deleting, 24-10
identifying, 24-28
Maintain, 24-9
Property, 24-9
Update, 24-10, 24-31, 24-34

EVERSION function, 11-67
EVERY function, 11-68
EXISTS function, 11-72
EXP function, 11-73
exponential forecasting, 12-36, 13-74
exponents

retrieving, 11-73
EXPORT command, 1-16, 12-3

EXPORT to EIF command, 12-4
EXPORT to spreadsheet command, 12-12
exporting data, 11-42

tracking number of bytes, 11-42
expressions, 15-26

ampersand substitution, 3-26
Boolean, 2-9, 3-16, 3-24
changing dimensionality of, 9-14
comparing, 18-72
conditional, 3-24
data type of, 3-2
dates in, 3-13
defined, 3-1
dimensions in, 3-3
dimensions of, 3-9, 3-10
formulas in, 3-3
functions in, 3-3
numeric, 3-11
objects in, 3-3
operators, 2-9
padding, 16-68, 21-47
parsing, 15-26, 19-56
relations in, 3-3
retrieving largest, 14-11
retrieving smallest, 15-92
saving, 10-46
substitution, 3-26
text, 3-15
trimming, 16-71, 21-48
using qualified data references in, 19-108
using text dimension in numeric

expression, 3-13
valuesets in, 3-3
variables in, 3-3

EXPTRACE option, 12-14
EXTBYTES function, 12-15
EXTCHARS function, 12-17
EXTCOLS function, 12-19
external partitions, 9-11
EXTLINES function, 12-22

F
fastest-varying dimension, 10-74
FCCLOSE command, 12-24

Index-10

FCEXEC command, 12-25
FCOPEN command, 12-28
FCQUERY command, 12-29
FCSET command, 12-36
FETCH command

See also SQL FETCH command
fetching data (SQL), 22-19
file I/O, 12-49, 12-56, 13-5, 13-8, 13-10, 13-18, 13-40

closing, 12-49, 12-56
diagnosing errors when processing, 12-52
forcing a page break, 13-8
gathering information about, 13-13
list of open files, 16-58
opening, 13-5
processing data from, 13-44
reading a record, 13-2
reading data from, 13-18
reading Oracle OLAP commands from a

file, 14-2, 15-5
records read, 20-16
setting attributes, 13-40
writing, 13-10

FILECLOSE command, 12-49
FILECOPY command, 12-50
FILEDELETE command, 12-51
FILEERROR function, 12-52
FILEGET function, 12-56
FILEMOVE command, 12-58
FILENEXT function, 13-2
FILEOPEN function, 13-5
FILEPAGE command, 13-8
FILEPUT command, 13-10
FILEQUERY function, 13-13
FILEREAD command, 13-18
files

appending output, 19-38
saving output in, 19-38

FILESET command, 13-40
fileunits, 13-5, 13-13

attributes, 13-13
number of outfile destination, 19-40
opening, 13-5, 19-36
reading data from, 13-18
setting attributes, 13-40

FILEVIEW command, 13-44

FILTERLINES function, 13-56
financial analysis, scenario modeling, 4-14
financial functions, A-12
FINDBYTES function, 13-58
FINDCHARS function, 13-60
FINDLINES function, 13-62
FINTSCHED function, 13-64
floating point numbers, comparing, 3-20
floating-point format

limitations when calculating, 3-14
use of, 3-14

FLOOR function, 13-68
FOR command, 13-69

breaking out of, 8-81
example of, 13-72
looping over dimension values, 13-71, 13-72
used with BREAK, 8-81
used with CONTINUE, 9-51
used with DO and DOEND, 11-34
used with OKFORLIMIT, 19-30
used with TEMPSTAT, 23-37

FORECAST command, 13-74
forecast statements, A-16
forecasting, 15-10
forecasting context, 12-24

closing, 12-24
executing, 12-25
obtaining information from, 15-10
opening, 12-28
querying, 12-29
setting characteristics of, 12-28, 12-36

FORECAST.REPORT program, 13-81
forecasts

using forecasting context, A-16
form feed (escape sequence), 2-4
format

importing data from other formats, 14-45
formats, 14-45
formulas

aggregating data with, 7-27
compiling, 9-29, 9-42
defining, 10-46
deleting, 10-87
recursive, 20-18
specifying new expression, 11-58

Index-11

statements used for, A-21
formulas in expressions, 3-3
FPMTSCHED function, 13-83
FULLDSC program, 13-87
functions

calling, 8-85
in expressions, 3-3
user-defined, 5-3, 5-17, 8-85, 21-7

G
GE operator, 2-9
GET function, 14-2
GOTO command, 14-7
GREATEST function, 14-11
group marker, 23-43
GROUPINGID command, 14-12
GROWRATE function, 14-18
growth rate, 14-18
GT operator, 2-9

H
handling errors in programs, 24-3
hash partitions

defining for analytic workspace, 8-47
heading, 14-20

for a report, 14-20
for output pages, 19-45
including a page number, 19-43
producing standard report heading, 23-6

HEADING command, 14-20 to 14-21
HIDE command, 14-22
HIERCHECK program, 14-24
HIERCHK.LOOPFND variable, 14-24
HIERCHK.LOOPVALS variable, 14-24
HIERCHK.XTRADIMS variable, 14-24
HIERHEIGHT command, 14-29
HIERHEIGHT function, 14-34
Holt-Winters forecasting, 12-36, 13-74
horizontal tab (escape sequence), 2-4
hyperbolic cosine calculation, 9-69
hyperbolic sine calculation, 21-80
hyperbolic tangent calculation, 23-26

I
ID data type, 2-3
IF command, 14-42

used with DO and DOEND, 11-34
IFNONE keyword, 16-18
IMPORT command, 1-16, 14-45

See also SQL IMPORT command
IMPORT from EIF command, 14-46
IMPORT from spreadsheet, 14-63
IMPORT from text command, 14-57
importing data, 11-50

controlling update frequency, 11-50
tracking names of objects, 11-45
tracking number of bytes, 11-42
tracking types of objects, 11-48

IN operator, 2-9
INCLUDE command, 17-32, 17-35
index algorithm, 21-101
INF_STOP_ON_ERROR option, 15-3 to 15-4
INFILE command, 15-5
INFO (FORECAST) function, 15-10
INFO (MODEL) function, 15-14
INFO (PARSE) function, 15-26
INFO (REGRESS) function, 15-29
INFO function, 15-9

determining dimensionality with, 3-10
DIMENSION keyword, 3-10

INITCAP function, 15-32
INLIST function, 15-33
in-place variable, 9-3
input, 14-2
input file, 9-95

debugging, 9-95
finding line causing error, 8-66
reading from a file, 14-2, 15-5
with SNAPI connection, 14-2
with XCA dialog, 14-2

INSBYTES function, 15-35
INSCHARS function, 15-37
INSCOLS function, 15-39
INSLINES function, 15-41
INSTAT function, 15-43
INSTR function, 15-46
INSTRB function, 15-48

Index-12

INTEGER data type, 2-2
integer part of decimal number, 15-49
interest on loans, 13-64, 24-80
internal partitions, 10-68
internal rate of return, 15-50
international support, 10-2

number format, 10-2, 23-43
INTPART function, 15-49
IRR function, 15-50
ISDATE program, 15-53
ISVALUE function, 15-54

J
JOINBYTES function, 15-56
JOINCHARS function, 15-58
JOINCOLS function, 15-61
joining

columns of text, 15-61
text columns, 15-61

JOINLINES function, 15-64

K
KEY function, 15-66

L
label column width, 15-85

branching in a program, 14-7
for error handling in programs, 24-3

labels, 14-7
in programs, 5-13
with IFNONE, 16-18

LAG function, 3-14, 4-12, 15-68
LAGABSPCT function, 15-72
LAGDIF function, 15-76
LAGPCT function, 15-78
larger value of two expressions, 16-114
LARGEST function, 15-81
largest value of an expression, 15-81
LAST_DAY function, 15-84
LCOLWIDTH option, 15-85
LD command, 15-87, A-27
LE operator, 2-9

LEAD function, 3-14, 4-12, 15-89
LEAST function, 15-92
LIKE operator, 2-9, 3-23, 15-93, 15-95, 16-3
LIKECASE option, 15-93
LIKEESCAPE option, 15-95
LIKENL option, 16-3
LIMIT command, 16-6

using LEVELREL, 16-29 to 16-30
using NOCONVERT, 16-40 to 16-41
using parent relation, 16-34 to 16-39
using POSLIST, 16-42
using related dimension, 16-31 to 16-33
using values, 16-19 to 16-28
with variables with composite, 3-8

LIMIT function, 16-43
limiting

alias dimensions, 10-44
multidimensional valuesets, 10-66

LIMITMAPINFO function, 16-48
LIMIT.SORTREL option, 16-50
line size for report heading, 16-69
linefeed (escape sequence), 2-4
LINENUM option, 16-52
lines on a page of report output, 19-49
LINESLEFT option, 16-54
LISTBY program, 16-56
LISTFILES command, 16-58
LISTNAMES program, 16-59
literals

numeric, 2-2
text, 3-15

LOAD command, 16-61
loading, 21-101

algorithm for composite values, 21-101
loans, 13-64

interest payment on, 13-64
interest payments on, 24-80
payment on, 13-83
payments on, 24-94

local variables, 24-77
localization options, 1-3, 18-54
LOG command, 16-63
LOG function, 16-65
LOG10 function, 16-66
logical operators, 2-9

Index-13

logs
calculating base 10 logarithm, 16-66
calculating natural logarithm, 16-65

LONGINTEGER data type, 2-2
LOOP clause

in SQL FETCH command, 22-19
looping, 13-69

over dimension status, 13-69
statements, 5-5

LOWCASE function, 16-67
lowercase

converting to, 16-67
LPAD function, 16-68
LSIZE option, 16-69
LT operator, 2-9
LTRIM function, 16-71

M
MAINTAIN command

event, 24-9
MAINTAIN ADD, 16-76
MAINTAIN ADD for DAY, WEEK, MONTH,

QUARTER and YEAR values, 16-79
MAINTAIN ADD for TEXT, ID, and INTEGER

values, 16-76
MAINTAIN ADD SESSION, 16-81
MAINTAIN DELETE, 16-90, 16-96
MAINTAIN MERGE, 16-101
MAINTAIN MOVE, 16-103
MAINTAIN RENAME, 16-110
trigger, 24-9

Maintain event, 24-9
maintaining

alias dimensions, 10-43
composites, 16-72
dimensions, 16-72
partition templates, 16-72
partitions, 16-72

MAKEDATE function, 16-112
margins, 8-79

setting bottom margin, 8-79
setting top margin, 23-44

MAX function, 16-114
MAXBYTES function, 17-2

MAXCHARS function, 17-4
MAXFETCH option, 17-6 to 17-7
maximum values, 18-22

for each time period in the status, 18-22
larger of two expressions, 16-114

MEASUREDIM statement
for aggregation, 6-78
for allocation, 7-61

MEDIAN function, 17-8
median value, 17-8
messages, error

suppressing, 9-41
MIN function, 17-10
minimum value, 18-25

for each time period in the status, 18-25
smaller of two expressions, 17-10

MMOF function, 17-12
MODDAMP option, 17-13
MODE function, 17-18
models

adding to aggmap, 6-98
compiling, 4-14, 17-25
creating, 17-25
defined, 4-10
defining, 10-49
deleting, 10-87
editing, 17-25
in aggmap objects, 6-98
removing from aggmap, 6-98
running, 4-16, 17-26
scenario, 4-14
solution variables, 4-10
types of solution blocks, 4-15

MODEL.XEQRPT program
compiling, 9-29, 9-42
debugging, 9-95, 17-46, 17-70
defining, 10-49, 10-51
finding line causing error, 8-66
including, 17-35
nesting, 17-35
obtaining information about, 15-14
options, 17-13, 17-46, 17-49, 17-53, 17-56, 17-58,

17-62, 17-66, 17-70
MODERROR option, 17-46
MODGAMMA option, 17-49

Index-14

MODINPUTORDER option, 17-53
MODMAXITERS option, 17-56
MODOVERFLOW option, 17-58
MODSIMULTYPE option, 17-62
MODTOLERANCE option, 17-66
MODTRACE option, 17-70
module version numbers, 11-67
MONITOR command, 18-3
monitoring, 18-3

cost of program lines, 18-3
cost of programs, 23-70

MONTHABBRLEN option, 18-8
MONTHNAMES option, 18-10
MONTHS_BETWEEN function, 18-13
MOVE command, 18-15
MOVINGAVERAGE function, 18-18
MOVINGMAX function, 18-22
MOVINGMIN function, 18-25
MOVINGTOTAL function, 18-28
multidimensional valuesets, 10-66
multiline text

columns, 12-19, 15-39, 15-61, 20-40, 20-53
multiline text values, 18-77

counting lines in, 18-77
deleting duplicate lines, 24-56
extracting lines from, 12-22
filtering lines in, 13-56
finding lines, 13-62
inserting lines into, 15-41
joining, 15-64
removing lines from, 20-42
replacing lines in, 20-56
sorting lines in, 21-99, 24-56
testing whether found, 15-33

MULTIPATHHIER option, 18-31

N
NA values, 3-26 to 3-30, 18-38

accepted as numeric input, 18-38, 18-43
caching, 24-75
comparing, 3-18
controlling how treated, 3-27
in aggregation functions, 3-29
in arithmetic operations, 3-29

in Boolean expression, 3-18
permanently replacing, 24-46
replacing, 18-79
replacing with strings, 18-78
retrieving, 9-20
spelling of, 18-48
statements for working with, A-4
substituting another value, 18-34
substituting another value for, 3-29
triggers, 24-44, 24-46

NAFILL function, 3-27, 3-29, 18-34
name, 18-36

changing object name, 20-44
dimension, 18-36
listing names of dictionary entries, 18-36

NAME dimension, 18-36 to 18-37
names

listing for objects, 16-59
listing objects by, 16-56
qualified object, 3-3

NASKIP option, 3-27, 3-29, 18-38
NASKIP2 option, 3-27, 3-29, 18-43
NASPELL option, 8-24, 18-48
NATRIGGER

See $NATRIGGER
NATRIGGER property

See $NATRIGGER property
natural logarithm, 16-65
NE operator, 2-9
negative value, 19-54

in output, 19-54
obtaining the root, 21-22

net present value, 18-69
NEW_TIME function, 18-50
NEXT_DAY function, 18-53
NLS options, 1-3
NLS_CALENDAR option, 18-54
NLS_CURRENCY option, 18-54
NLS_DATE_FORMAT option, 18-54
NLS_DATE_LANGUAGE option, 18-54
NLS_DUAL_CURRENCY option, 18-54
NLS_ISO_CURRENCY option, 18-54
NLS_LANG option, 18-54
NLS_LANGUAGE option, 18-54
NLS_NUMERIC_CHARACTERS option, 18-54

Index-15

NLS_SORT option, 3-22, 18-54
NLS_TERRITORY option, 18-54
NONE function, 18-62
NORMAL function, 18-66
NOSPELL option, 2-4, 18-68
NOT operator, 2-9
NPV function, 18-69
NTEXT data type, 2-3
null, 19-32

status lists and valuesets, 19-32
null values

See NA values
NULLIF function, 18-72
number conversion, 23-46, 23-59
numbers

assigning random numbers, 20-3
commas in output, 9-25
decimal marker for output, 10-2
decimal places in output, 10-6
determining sign of, 21-75
negative values in output, 19-54
rounding, 21-24
thousands marker for output, 23-43

NUMBYTES function, 18-73
NUMCHARS function, 18-75
numeric data types

comparing, 3-19, 3-20
list of, 2-2
mixing, 3-12

numeric expressions
data type of the result, 3-11, 3-12
dates in, 3-13
defined, 3-11
mixing data types in, 3-12
NA values in, 3-29

numeric functions, A-10
numeric options, A-10
numeric values

rounding, 21-24
NUMLINES function, 18-77
NVL function, 18-78
NVL2 function, 18-79

O
OBJ function, 19-3
object definitions

statements for manipulating, A-19
objects, 3-3, 9-62

assigning values to, 2-7
compiling, 9-42
creating by copying, 9-62
creating properties, 19-98
defining, 10-12
deleting, 10-87
describing its definition, 11-28
describing its properties, 13-87
dropping changes, 21-10
exporting from analytic workspace, 12-3
identifying triggers, 24-28
importing into analytic workspace, 14-45
listing, 19-24
listing names of, 16-56, 16-59, 18-36
loading, 16-61
making current, 9-44
obtaining information, 19-3
qualified name, 3-3
recalculating permissions, 19-81
renaming, 20-44
restrictions on name, 10-12
statements for defining, A-19
statements for deleting, A-19
testing for existence, 11-72

OBJLIST function, 19-24
OBSCURE function, 19-26
obtaining, 15-10

FORECAST results, 15-10
model information, 15-14
PARSE results, 15-26
REGRESS results, 15-29

OESEIFVERSION
See EIFVERSION option

OESEIFVERSION option
name change, B-7

OKFORLIMIT option, 19-30
OKNULLSTATUS option, 16-12, 19-32

Index-16

OLAP
Data Definition Language See OLAP DML
Data Manipulation Language See OLAP DML

OLAP DML
definition, 1-1
functional categories, A-1 to A-30

OLAP session cache
blocking creation of, 21-54
defined, 21-54
populating with aggregated values, 6-70, 24-75
populating with NA values, 24-75

ONATTACH program, 19-34, 19-35
OPEN command See SQL OPEN command, 22-37
operating system, 23-21

determining, 23-21
operators, 15-93

Boolean, 2-9
comparison, 2-9
conditional, 3-24
LIKE, 15-93, 15-95
logical, 2-9
substitution, 3-26
text formatting

newline characters, 16-3
options

displaying value of, 1-3
localization, 18-54
restoring previous values, 5-9
retrieving, 1-3
saving current values, 5-9
specifying, 1-3

OR operator, 2-9
OUTFILE command, 19-36, 19-38

and ECHOPROMPT, 11-38
OUTFILEUNIT option, 19-40
out-of-range decimal values, 10-4
output, 19-36

redirecting, 19-36
saving in a file, 19-38

overflow condition, 10-4

P
padding expressions, 16-68, 21-47
PAGE command, 19-41

PAGENUM option, 19-43
PAGEPRG option, 19-45
PAGESIZE, 19-49
paging in reports, 19-41

forcing a page break, 19-41
line number on current page, 16-52
lines for bottom margin, 8-79
lines for top margin, 23-44
lines left on page, 16-54
lines on a page, 19-49
page number, 19-43
producing a custom heading, 19-45
producing a standard heading, 23-6
turning on, 19-51

PAGING option, 19-51
PARENS option, 19-54
PARSE command, 3-10, 19-56
parsing, 15-26

expressions, 15-26, 19-56
partition templates, 10-51

defining, 10-51
deleting, 10-87
maintaining, 16-72
retreiving partition names, 19-11
retrieving partitioning method, 19-11

PARTITIONCHECK function, 19-58
partitioned variables, 10-51, 10-68

aggregating, 7-20, 19-58
defining, 10-68
deleting data from, 16-98
introduced, 10-75
maintaining, 16-107
retrieving dimensions of, 19-11
retrieving partitioning method, 19-11

partitioning methods
retrieving, 19-11

partitions, 10-51, 10-68
adding, 9-11
adding values to, 16-88, 16-107
concat, 10-51
defining, 10-51

list partitions, 10-51
deleting, 10-87
deleting data, 16-98
external, 7-20, 9-11, 10-68

Index-17

internal, 10-68
list, 10-51
locking segments of, 22-38
moving values, 16-107
range, 10-51, 19-12
retrieving names of, 19-11
specifying values of, 16-107

partitons
retrieving dimensions of, 19-11

pattern matching, 3-23
payment schedules, 13-64

for loan interest, 13-64, 24-80
for loans, 13-83, 24-94

PERCENTAGE function, 19-60
permission

programs, 8-49, 19-34, 19-74, 19-76, A-27
permissions, 19-63

assigning to an object definition, 19-63
recalculating permission, 19-81
specifying conditions for accessing, 19-81
violations of, 19-78

PERMIT command, 19-63
PERMIT_READ program, 8-49, 19-74 to 19-75
PERMIT_WRITE program, 8-49, 19-76 to 19-77
PERMITERROR option, 19-78
PERMITRESET command, 19-81
platform, 23-21

determining, 23-21
POP command, 5-9, 5-10, 19-85, 19-87

popping a whole series at once, 19-87
POPLEVEL command, 19-87

nesting, 19-103
using, 5-10

populating
alias dimensions, 10-43

POUTFILEUNIT option, 4-4, 4-8, 19-89
PREPARE command

See SQL PREPARE command
PRGERR keyword (SIGNAL), 24-6
PRGTRACE option, 19-91
PROCEDURE statement

See SQL PROCEDURE command, 22-43
profiles, 23-19
PROGRAM command, 19-94

programs
adding program contents to a definition, 19-94
analytic workspace permission, 19-77
branching, 8-81, 9-51, 23-14
branching in, 16-18
branching labels, 14-7
calling, 8-85
case statement, 23-14
comment lines in, 5-2
compiling, 5-14, 9-29, 9-39, 9-42
conditional execution of commands, 11-34,

14-42, 24-102
debugging, 5-14, 8-66, 9-95, 12-14, 19-91
declaring arguments in, 5-3
defining, 10-55
deleting, 10-87
determining how invoked, 8-90, A-26
error handling, 11-63, 11-65, 24-3
errors in, 5-10
executing, 5-17
finding line causing error, 8-66
halting execution with an error, 21-76
hiding, 14-22
local variable, 24-77
ONATTACH, 19-35
passing arguments to, 8-6, 8-10, 8-12, 8-16, 8-19
performance cost, 23-70
permission, 1-11, 8-49, 19-34, 19-74, 19-76, A-27
PERMIT_READ, 8-49
PERMIT_WRITE, 8-49, 19-77
preserving environment, 5-8
preserving status, 9-46, 9-49, 19-85, 19-87,

19-100, 19-102
repeating commands, 13-69
restoring previous values, 5-9
returning a value, 21-7
running, 5-14
saving compiled code, 5-14
saving current values, 5-9
startup, 1-11
statements for, A-22
suspending execution, 21-81
terminating execution of, 21-7
testing by running, 5-14
timing execution, 18-3, 23-70

Index-18

trigger, 24-11, 24-31, 24-33, 24-34, 24-36, 24-38
unhiding, 24-55

properties, 19-98
copying with an object definition, 9-62
creating for objects, 19-98
listing for objects, 13-87

PROPERTY command, 19-98
event, 24-9
trigger, 24-9

Property event, 24-9
PUSH command, 5-10, 19-100, 19-102

marking start of series, 19-102
placement, 5-13
using, 5-9

PUSHLEVEL command, 19-102
nesting, 19-103
placement, 5-13

Q
QDR

with = command, 3-34
with assignment statement, 3-34

QUAL function, 3-37, 19-108
qualified data references, 19-108

ampersand substitution, 3-36
creating, 3-32
defined, 3-32
qualifying a relation, 3-35
replacing dimension of variable, 3-34
using with relation, 3-35
with = command, 3-34
with assignment statement, 3-34
with dimensions, 3-32
with relations, 3-35
with variables, 3-33, 3-34

qualified object name
defined, 3-3

quotation marks (escape sequence), 2-4

R
RANDOM function, 20-3
random numbers, 18-66, 20-3

random sparsity
defined, 10-74

RANDOM.SEED.1 option, 20-5
RANDOM.SEED.2 option, 20-5
range partitions, 10-51

retriving calculation for, 19-12
RANK function, 20-9
reading files, 20-16

current record number, 20-16
error diagnosis, 12-52
FILEREAD command, 13-18
processing a record, 13-44
reading a record, 13-2

RECAP command, 20-13
RECNO function, 20-16
RECURSIVE option, 20-18
REDO command, 20-19
REEDIT command, 20-22
REGRESS command, 20-25
regression, 12-36

calculating a linear regression, 12-36, 20-25
obtaining information about, 15-29

regression statements, A-16
REGRESS.REPORT program, 20-28
relation, 23-22
RELATION statement

for aggregation, 6-82
for allocation, 7-62

relations
assigning values to, 21-56, 21-59, 21-65
comparing to text literals, 3-23
defining, 10-58
limiting to single value, 3-35
QDR with, 3-35
replacing dimension of, 3-35

RELEASE command, 20-30
REM function, 20-35
remainder after division, 20-35
REMBYTES function, 20-36
REMCHARS function, 20-38
REMCOLS function, 20-40
REMLINES function, 20-42
RENAME command, 20-44
REPLBYTES function, 20-47
REPLCHARS function, 20-50

Index-19

REPLCOLS function, 20-53
REPLLINES, 20-56
REPORT command

with sparse data, 3-8
reports, 20-58, 21-45

processing ROW command output, 21-45
producing, 20-58
producing with ROW commands, 21-33

RESERVED function, 21-3
reserved words, 21-3

listing, 21-3
restoring

current dimension status, 3-32
RESYNC command, 8-38, 21-5
RETURN command, 21-7
return value of a program, 21-7
REVERT command, 21-10
ROLE option, 21-12
roles, 23-19
ROLLUP command, 21-13
root of negative number, 21-22
ROOTOFNEGATIVE option, 3-15, 21-22
ROUND function, 3-19

for dates and time, 21-25
for numbers, 21-28

ROW command, 21-33
processing output, 21-45

ROW function, 21-45
RPAD function, 21-47
RTRIM function, 21-48
running totals, 21-49

resetting to zero, 24-116
run-time aggregation, 4-4, 4-5
RUNTOTAL function, 21-49

S
saving

current dimension status, 3-32
scenario models

defined, 4-14
for financial modeling, 4-14

seasonal data, 12-36
forecasting with, 12-36, 13-74

SECONDS option, 21-52

segment width, 9-3
segments

introduced, 10-75
locking, 22-38

SELECT statement
See SQL SELECT command

SELECT statements (in SQL), 22-10, 22-45
selecting

alias dimension values, 10-44
data, 16-6

SESSCACHE option, 21-54
session cache

See OLAP session cache
sessions, 16-63

preserving environment, 5-8
recording in disk file, 16-63
restoring environment, 5-9
user ID, 23-19

SET1 command, 21-71
SHORTDECIMAL data type, 3-20
SHORTINTEGER data type, 2-2
SHOW command, 21-72
showing, 11-28

definitions of workspace objects, 11-28
names of dictionary entries, 19-24
names of objects, 16-56
object names, 16-59
object properties, 13-87

SIGN function, 21-75
SIGNAL command, 5-12, 21-76
simultaneous equations in models, 4-13
SIN function, 21-79
sine calculation, 21-79

hyperbolic, 21-80
single quotes (escape sequence), 2-4
SINH function, 21-80
SLEEP command, 21-81
slowest-varying dimension, 10-74
smaller value of two expressions, 17-10
SMALLEST function, 21-82
smallest value of an expression, 21-82
SMOOTH function, 21-85
solution variables

defined, 4-10
example of, 17-26

Index-20

SORT command, 21-90
SORTCOMPOSITE option, 21-96
sorting

status list of a dimension, 16-50, 21-90
valuesets, 21-90

SORTLINES function, 21-99
SOURCEVAL statement, 7-70
spaces, 8-78

stripping from text values, 8-78
sparse data, 15-66

base dimension value, 15-66
changing definitions, 9-3
eliminating, 10-82
exporting, 12-4
importing, 14-46
index algorithm, 21-101
obtaining information, 19-3
reading from files, 13-18
renaming composites, 20-44
reporting, 20-58, 21-33
specifying composites, 10-68
testing for a value, 15-54

SPARSE keyword, 10-20
SPARSEINDEX option, 21-101
sparsity

controlled, 10-74
random, 10-74

spreadsheets
defining, 10-84
exporting to, 12-12
importing data from, 14-45, 14-63
See worksheets

SQL, 22-3
embedding in OLAP DML, 22-3

SQL CLEANUP command, 22-8
SQL CLOSE command, 22-9
SQL command, 22-3 to 22-48
SQL DECLARE CURSOR command, 22-10
SQL EXECUTE command, 22-17
SQL FETCH command, 22-19
SQL IMPORT command, 22-29
SQL PREPARE command, 22-38
SQL PROCEDURE command, 22-43 to 22-44
SQL SELECT command, 22-45

SQL statements, 22-38
compiling, 22-38
issuing through OLAP DML, 1-13
optimizing, 22-38

SQL stored procedures
creating, 22-44
executing, 22-44

SQL support, 22-49
blocking factor, 22-49
error codes, 22-51
error messages, 22-53, 22-55
SQL statement execution, 22-3

SQLBLOCKMAX option, 22-49
SQLCODE option, 22-51
SQLCOLUMNS procedure, 22-10, 22-45
SQLERRM option, 22-53
SQLMESSAGES option, 22-55
SQLTABLES procedure, 22-10, 22-45
SQRT command, 22-56
square root, 22-56

calculating, 22-56
result for negative number, 21-22

standard deviation calculation, 23-3
STARTOF function, 22-57
startup programs, 1-11, 19-35
STATALL function, 22-59
statements

altering order of execution, 14-7
editing previously executed, 20-22
looping, 5-5
reading from a file, 15-5
sending to file, 20-13

statements, SQL
compiling, 22-38

STATFIRST function, 22-60
statistical functions, A-13
STATLAST function, 22-62
STATLEN function, 22-64
STATLIST function, 22-65
STATMAX function, 22-68
STATMIN function, 22-70
STATRANK function, 22-73
status, 22-59, 22-77

checking current status list, 22-59, 22-60, 22-62,

Index-21

22-64, 22-65, 22-68, 22-70, 22-73, 22-77, 22-79
checking for a dimension value, 15-43
looping over in a program, 13-69, 19-30, 23-37
null, 19-32
saving, 9-46, 9-49, 19-85, 19-87, 19-100, 19-102
See dimension status
setting, 16-6
sorting values in the status list, 21-90
using result of LIMIT command, 16-43

status list
current, 3-30
default, 3-31

STATUS program, 22-77
STATVAL function, 22-79
STDDEV function, 23-3
STDHDR program, 23-6

line size for centering, 16-69
storage, 9-3

in-place vs. permanent, 9-3
of variables, 10-74

stored procedures
creating, 22-44
executing, 22-44

STORETRIGGERVAL property, 19-98
See $STORETRIGGERVAL property

subevents
identifying, 24-28

substitution expressions, 3-26
substitution operator, 3-26
SUBSTR function, 23-8
SUBSTRB function, 23-10
substrings

retrieving, 15-46, 15-48, 23-8, 23-10
SUBTOTAL function, 23-11
subtotals, 23-11

in a report, 23-11
resetting to zero, 24-116

surrogate dimension, 10-61
defining, 10-61

surrogates
defining, 10-61
deleting, 10-87

SWITCH command, 8-81, 23-14
used with BREAK, 8-81
used with DO and DOEND, 11-34

SYSDATE function, 23-18
SYSINFO function, 23-19
SYSTEM function, 23-21
system statements

list of, A-2

T
tab (escape sequence), 2-4
TALLY function, 23-22
TAN function, 23-25
tangent calculation, 23-25

arc, 8-4, 8-5
hyperbolic, 23-26

tangents
calculating angle value, 8-4

TANH function, 23-26
TCONVERT function, 23-27
temporary members

adding to dimension, 16-81
TEMPSTAT command, 23-37
testing

if every value is true, 11-68
if no values are true, 18-62
number of true values, 9-70
whether an object exists, 11-72

text, 15-93
comparing values, 3-22
comparing values to a pattern, 3-23
data types, 2-3
functions, A-5, A-6, A-7
NLS_SORT option in comparisons, 3-22
options, A-5, A-6, A-7
passing arguments as, 5-4, 16-17
See also multiline text

TEXT data type, 2-3
text expressions

dates in, 3-16
defined, 3-15

text formatting, 23-46
case sensitivity, 15-93
changing part of a text value, 8-98, 8-100
comparing lines to master list, 15-33
converting to uppercase, 24-62
counting lines in a value, 18-77

Index-22

deleting duplicate lines, 24-56
extracting lines, 12-22
extracting part of a text value, 12-15, 12-17,

12-19
filtering lines, 13-56
finding bytes, 13-58
finding characters, 13-60
finding position of lines in a value, 13-62
importing worksheet data f, 14-45
inserting a text value, 15-39
inserting bytes into a text value, 15-35
inserting characters into a text value, 15-37
inserting lines, 15-41
joining, 8-102
joining columns of values, 15-61
joining in one line, 15-56, 15-58
joining lines, 15-64
number of bytes in, 17-2, 18-73
number of characters in, 17-4, 18-75
reformatting, 23-39
removing lines, 20-42
removing part of a text value, 20-36, 20-38,

20-40
replacing lines, 20-56
replacing part of a text value, 20-47, 20-50, 20-53
sorting lines in a multiline value, 21-99, 24-56
stripping blank spaces from, 8-78

text literals
comparing to relations, 3-23
defined, 3-15

TEXTFILL function, 23-39
thousands marker, 23-43
THOUSANDSCHAR option, 23-43
time, 18-18

functions, A-8
time of day, 23-18, 23-62
time series, 15-68

averaging over, 18-18
cumulative totals over, 9-73
data from previous time period, 15-68
data from subsequent time period, 15-89
difference between time periods, 15-76
maximum value in period, 18-22
minimum value in period, 18-25
moving totals over, 18-28

percent difference between time periods, 15-72,
15-78

time-series functions, A-14
timing, 18-3

execution of program lines, 18-3
execution of programs, 23-70

title for a report, 14-20
TMARGIN option, 23-44
TO_CHAR function, 23-46
TO_DATE function, 23-51
TO_NCHAR function, 23-54
TO_NUMBER function, 23-59
TOD function, 23-62
TODAY function, 23-63
TOTAL function, 23-65
totals

calculating, 23-65
cumulative, 9-73
in a report, 20-58, 21-33, 21-49, 23-11
moving, 18-28
over time, 18-28
running, 21-49

TRACEFILEUNIT option, 23-69
tracking, 18-3

cost of program lines, 18-3
cost of programs, 23-70

TRACKPRG command, 23-70
TRACKREPORT program, 23-72
transferring, 24-58

data, 24-58
TRAP command, 5-11, 24-3, 24-6, 24-7
trend forecast, 12-36
trend forecasting, 13-74
TRIGGER command, 24-8
TRIGGER function, 24-28
trigger programs

Assign, 24-9
Delete, 24-9
designing, 24-11
Maintain, 24-9
Property, 24-9
Update, 24-10
update, 24-31

TRIGGER_AFTER_UPDATE program, 24-31
TRIGGER_AW program, 24-31, 24-33

Index-23

TRIGGER_BEFORE_UPDATE program, 24-34
TRIGGER_DEFINE program, 24-36
TRIGGERASSIGN command, 24-38
TRIGGERMAXDEPTH option, 24-44
triggers

Assign, 24-9, 24-38
creating, 24-8, 24-31, 24-33, 24-34, 24-36, 24-38
Define, 24-36
Delete, 24-9
deleting, 24-10
event, identifying, 24-28
Maintain, 24-9
NA, 6-13, 24-44, 24-46
NA values, 3-28
object, identifying, 24-28
Property, 24-9
subevent, identifying, 24-28
Update, 24-10, 24-31, 24-34

TRIGGERSTOREOK option, 24-46
TRIM function, 24-49
trimming expressions, 16-71, 21-48
trimming strings, 24-49
TRUNC function, 24-50

for dates and time, 24-51
for numbers, 24-53

U
UNHIDE command, 24-55
UNIQUELINES function, 24-56
unnamed composites, 10-82

defining, 10-82
example of, 10-82

UNRAVEL function, 24-58
UPCASE function, 24-62
UPDATE command, 24-63

event, 24-10
events, 24-31, 24-34
trigger, 24-10
triggers, 24-31, 24-34

uppercase, 24-62
converting to, 24-62

user ID, 23-19

user-defined functions
arguments in, 5-3
data type of, 5-3
executing, 5-17

USERID option, 24-66
USETRIGGERS option, 24-67

V
VALSPERPAGE program, 24-69
value name format

defined, 24-84
See also VNF command

values
assigning to objects, 2-7
restoring previous, 5-9
saving current, 5-9

VALUES function, 24-70
VALUESET statement, 7-71 to 7-75
valuesets

assigning values to, 10-66
checking, 15-43
checking current status list, 22-60, 22-62, 22-64,

22-65, 22-68, 22-70, 22-73, 22-77, 22-79
defining, 10-64
deleting, 10-87
limiting, 10-66
listing values, 24-70
multidimensional, 10-66
null, 19-32
setting the status of, 16-6
sorting values, 21-90

VARCACHE option, 24-75
VARCACHE property

See $VARCACHE property
VARIABLE command, 24-77
variables

accessing, 3-8
adding partition, 9-11
assigning values to, 21-56
defining, 10-68
defining in a program, 5-14
defining with composite, 10-82
defining with unnamed composite, 10-82
deleting, 10-87

Index-24

how data is stored, 10-74
limiting to single value, 3-33, 3-34
local to a program, 24-77
partitioned, 7-20, 10-51, 10-68
QDR with, 3-33, 3-34
replacing dimension of, 3-34
reshaping dimensionality of, 19-108
sparse data in, 3-8
storage of, 10-74

version, 11-67
VINTSCHED function, 24-80
VNF

See value name format
VNF command, 24-84
VPMTSCHED function, 24-94

W
WEEKDAYSNEWYEAR option, 24-98
WEEKOF function, 24-100
WHILE command, 8-81, 24-102

used with BREAK, 8-81
used with CONTINUE, 9-51
used with DO and DOEND, 11-34

WIDTH_BUCKET function, 24-104
wildcards, 3-23
WKSDATA function, 24-106
words

reserved, 21-3
WORKSHEET data type, 2-1
worksheet objects, 10-87

cells, 24-106
data type of cells, 24-106
defining, 10-84
deleting, 10-87

workspaces
alias See workspace alias

Y
YESSPELL option, 2-4, 24-108
YRABSTART option, 24-109
YYOF function, 24-111

Z
zero, 11-32

dividing by, 3-15, 11-32
spelling of, 24-119
suppressing all-zero report rows, 24-113

ZEROROW option, 24-113
ZEROTOTAL command, 24-116
ZSPELL option, 24-119

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	Part I� Using the OLAP DML
	1 Introduction to the OLAP DML
	What is the OLAP DML?
	Basic Syntactical Units
	OLAP DML Options
	Categories of Options
	Syntax for Specifying and Retrieving Option Values

	OLAP DML Properties
	OLAP DML Commands and Functions
	OLAP DML Commands
	OLAP DML Functions

	OLAP DML Programs

	OLAP DML as a Data Definition Language
	Statements for Creating Analytic Workspaces
	Defining Analytic Workspace Objects
	Defining Data Objects Using the OLAP DML
	Defining Calculation Specification Objects Using the OLAP DML
	Types of Calculation Specifications
	Creating Calculation Specification Objects

	Viewing Data Definitions

	OLAP DML as a Data Manipulation Language
	Startup Programs
	ONATTACH Programs
	Permission Programs
	AUTOGO Programs
	TRIGGER_AW Program

	Data Loading Programs
	Programs that Copy Data From Relational Tables to Workspace Objects
	File-Reading Programs
	Spreadsheet Import Programs

	Trigger Programs
	Aggregation, Allocation, and Modeling Programs
	Forecasting Programs
	Programs to Export and Import Workspace Objects

	2 Data Types and Operators
	OLAP DML Data Types
	Numeric Data Types
	Using LONGINTEGER Values
	Using NUMBER Values

	Text Data Types
	Literals
	Escape Sequences

	Boolean Data Type
	Date Data Types
	Date and Time Options
	DATE Values
	DATETIME Values
	Calculating Dates

	Converting from One Data Type to Another

	OLAP DML Operators
	Arithmetic Operators
	Comparison and Logical Operators
	Assignment Operator

	3 Expressions
	Introducing OLAP DML Expressions
	How the Data Type of an Expression is Determined
	Changing the Data Type of an Expression

	Using Workspace Objects in Expressions
	Syntax for Specifying an Object in an Expression
	Considerations When Creating and Using Qualified Object Names
	When Not to Use Qualified Object Names
	Using Ampersand Substitution for Workspace and Object Names
	Passing Qualified Object Names to Programs

	How Objects Behave in Expressions
	Using Variables in Expressions
	Using Variables Defined with Composites in Expressions

	Dimensionality of OLAP DML Expressions
	Determining the Dimensions of an Expression
	How Dimension Status Affects the Results of Expressions
	Changing the Dimensionality of an Expression

	Numeric Expressions
	Numeric Options
	Mixing Numeric Data Types
	Automatic Conversion of Numeric Data Types
	Using Dimensions in Arithmetic Expressions
	Using Dates in Arithmetic Expressions
	Limitations of Floating Point Calculations
	Controlling Errors During Calculations

	Text Expressions
	Working with Dates in Text Expressions
	Working with NTEXT Data

	Boolean Expressions
	Creating Boolean Expressions
	Comparing NA Values in Boolean Expressions
	Controlling Errors When Comparing Numeric Data
	Controlling Errors Due to Numerical Precision
	Controlling Errors When Comparing Floating Point Numbers
	Controlling Errors When Comparing Different Numeric Data Types

	Comparing Dimension Values
	Comparing Dates
	Comparing Text Data
	Comparing a Text Value to a Text Pattern
	Comparing Text Literals to Relations

	Conditional Expressions
	Substitution Expressions
	Working with Empty Cells in Expressions
	Specifying a Value of NA
	Controlling how NA values are treated
	Working with the $NATRIGGER Property
	Using NASKIP
	Using NASKIP2
	Using NAFILL

	Working with Subsets of Data
	Working with Dimension Status
	Changing the Status List of a Dimension
	Saving and Restoring Current Dimension Status

	Specifying a List of Dimension Values for an Expression or Subexpression
	Specifying a Single Data Value in an Expression
	Form of a Qualified Data Reference
	Qualifying a Variable
	Replacing a Dimension in a Variable
	Qualifying a Relation
	Qualifying a Dimension
	Using Ampersand Substitution with QDRs
	Using the QUAL Function to Specify a QDR

	4 Formulas, Aggregations, Allocations, and Models
	Formulas
	Aggregations
	Aggregating Data
	Executing the Aggregation
	Creating Custom Aggregates

	Allocations
	Allocating Data
	Handling NA Values

	Models
	Creating Models
	Nesting Models
	Dimension Status and Model Equations
	Using Data from Past and Future Time Periods
	Handling NA Values
	Solving Simultaneous Equations
	Modeling for Multiple Scenarios

	Compiling a Model
	Understanding Dependencies
	Checking for Additional Problems

	Running a Model
	Dimensions of Solution Variables
	Solution Variables Dimensioned by a Composite
	Debugging a Model

	5 OLAP DML Programs
	Creating OLAP DML Programs
	Specifying Program Contents
	Creating User-Defined Functions
	Passing Arguments
	Using Multiple Arguments
	Handling Arguments Without Converting Values to a Specific Data Type
	Passing Arguments as Text with Ampersand Substitution

	Program Flow-of-Control
	Looping Nature of OLAP DML Commands and Functions
	Flow-of Control Commands

	Preserving the Environment Settings
	Changing the Program Environment
	Ways to Save and Restore Environments
	Saving the Status of a Dimension or the Value of an Option
	Saving Several Values at Once
	Using Level Markers
	Using CONTEXT to Save Several Values at Once

	Handling Errors
	Trapping an Error
	Suppressing Error Messages
	Creating Your Own Error Messages
	Handling Errors in Nested Programs
	Handling Errors While Saving the Session Environment

	Compiling Programs
	Finding Out If a Program Has Been Compiled
	Programming Methods That Prevent Compilation

	Testing and Debugging Programs
	Error and Debugging Options
	Generating Diagnostic Messages
	Identifying Bad Lines of Code
	Sending Output to a Debugging File

	Executing Programs

	Part II� Alphabetic Reference
	6 $AGGMAP to AGGMAP
	$AGGMAP
	$AGGREGATE_FROM
	$AGGREGATE_FROMVAR
	$ALLOCMAP
	$COUNTVAR
	$NATRIGGER
	$STORETRIGGERVAL
	$VARCACHE
	ABS
	ACQUIRE
	ACROSS
	ADD_MONTHS
	AGGMAP
	AGGINDEX
	BREAKOUT DIMENSION
	CACHE
	DIMENSION (for aggregation)
	DROP DIMENSION
	MEASUREDIM (for aggregation)
	MODEL (in an aggregation)
	RELATION (for aggregation)

	AGGMAP ADD or REMOVE model
	AGGMAP SET

	7 AFFMAPINFO to ARCCOS
	AGGMAPINFO
	AGGREGATE command
	AGGREGATE function
	AGGREGATION
	ALLCOMPILE
	ALLOCATE
	ALLOCERRLOGFORMAT
	ALLOCERRLOGHEADER
	ALLOCMAP
	CHILDLOCK
	DEADLOCK
	DIMENSION (for allocation)
	ERRORLOG
	ERRORMASK
	MEASUREDIM (for allocation)
	RELATION (for allocation)
	SOURCEVAL
	VALUESET

	ALLSTAT
	ANTILOG
	ANTILOG10
	ANY
	ARCCOS

	8 ARCSIN to CHARLIST
	ARCSIN
	ARCTAN
	ARCTAN2
	ARG
	ARGCOUNT
	ARGFR
	ARGS
	ARGUMENT
	ASCII
	AVERAGE
	AW command
	AW ALIASLIST
	AW ALLOCATE
	AW ATTACH
	AW CREATE
	AW DELETE
	AW DETACH
	AW LIST
	AW SEGMENTSIZE

	AW function
	AWDESCRIBE
	AWWAITTIME
	BACK
	BADLINE
	BASEDIM
	BASEVAL
	BEGINDATE
	BITAND
	BLANK
	BLANKSTRIP
	BMARGIN
	BREAK
	CALENDARWEEK
	CALL
	CALLTYPE
	CATEGORIZE
	CDA
	CEIL
	CHANGEBYTES
	CHANGECHARS
	CHARLIST

	9 CHGDFN to DDOF
	CHGDFN
	CHGDIMS
	CLEAR
	COALESCE
	COLVAL
	COLWIDTH
	COMMAS
	COMMIT
	COMPILE
	COMPILEMESSAGE
	COMPILEWARN
	CONSIDER
	CONTEXT command
	CONTEXT function
	CONTINUE
	CONVERT
	COPYDFN
	CORRELATION
	COS
	COSH
	COUNT
	CUMSUM
	DATEFORMAT
	DATEORDER
	DAYABBRLEN
	DAYNAMES
	DAYOF
	DBGOUTFILE
	DDOF

	10 DECIMALCHAR to DELETE
	DECIMALCHAR
	DECIMALOVERFLOW
	DECIMALS
	DECODE
	DEFAULTAWSEGSIZE
	DEFINE
	DEFINE AGGMAP
	DEFINE COMPOSITE
	DEFINE DIMENSION
	DEFINE DIMENSION (simple)
	DEFINE DIMENSION (DWMQY)
	DEFINE DIMENSION (conjoint)
	DEFINE DIMENSION CONCAT
	DEFINE DIMENSION ALIASOF

	DEFINE FORMULA
	DEFINE MODEL
	DEFINE PARTITION TEMPLATE
	DEFINE PROGRAM
	DEFINE RELATION
	DEFINE SURROGATE
	DEFINE VALUESET
	DEFINE VARIABLE
	DEFINE WORKSHEET

	DELETE

	11 DEPRDECL to EXISTS
	DEPRDECL
	DEPRDECLSW
	DEPRSL
	DEPRSOYD
	DESCRIBE
	DIVIDEBYZERO
	DO ... DOEND
	DSECONDS
	ECHOPROMPT
	EDIT
	EIFBYTES
	EIFEXTENSIONPATH
	EIFNAMES
	EIFSHORTNAMES
	EIFTYPES
	EIFUPDBYTES
	EIFVERSION
	END
	ENDDATE
	ENDOF
	EQ
	ERRNAMES
	ERRORNAME
	ERRORTEXT
	ESCAPEBASE
	EVERSION
	EVERY
	EXISTS
	EXP

	12 EXPORT to FILEMOVE
	EXPORT
	EXPORT (to EIF)
	EXPORT (to spreadsheet)

	EXPTRACE
	EXTBYTES
	EXTCHARS
	EXTCOLS
	EXTLINES
	FCCLOSE
	FCEXEC
	FCOPEN
	FCQUERY
	FCSET
	FETCH
	FILECLOSE
	FILECOPY
	FILEDELETE
	FILEERROR
	FILEGET
	FILEMOVE

	13 FILENEXT to FULLDSC
	FILENEXT
	FILEOPEN
	FILEPAGE
	FILEPUT
	FILEQUERY
	FILEREAD
	FILESET
	FILEVIEW
	FILTERLINES
	FINDBYTES
	FINDCHARS
	FINDLINES
	FINTSCHED
	FLOOR
	FOR
	FORECAST
	FORECAST.REPORT
	FPMTSCHED
	FULLDSC

	14 GET to IMPORT
	GET
	GOTO
	GREATEST
	GROUPINGID
	GROWRATE
	HEADING
	HIDE
	HIERCHECK
	HIERHEIGHT command
	HIERHEIGHT function
	IF...THEN...ELSE
	IMPORT
	IMPORT (from EIF)
	IMPORT (from text)
	IMPORT (from spreadsheet)

	15 INF_STOP_ON_ERROR to LIKEESCAPE
	INF_STOP_ON_ERROR
	INFILE
	INFO
	INFO (FORECAST)
	INFO (MODEL)
	INFO (PARSE)
	INFO (REGRESS)

	INITCAP
	INLIST
	INSBYTES
	INSCHARS
	INSCOLS
	INSLINES
	INSTAT
	INSTR
	INSTRB
	INTPART
	IRR
	ISDATE
	ISVALUE
	JOINBYTES
	JOINCHARS
	JOINCOLS
	JOINLINES
	KEY
	LAG
	LAGABSPCT
	LAGDIF
	LAGPCT
	LARGEST
	LAST_DAY
	LCOLWIDTH
	LD
	LEAD
	LEAST
	LIKECASE
	LIKEESCAPE

	16 LIKENL to MAX
	LIKENL
	LIMIT command
	LIMIT command (using values)
	LIMIT command (using LEVELREL)
	LIMIT command (using related dimension)
	LIMIT command (using parent relation)
	LIMIT command (NOCONVERT)
	LIMIT command (using POSLIST)

	LIMIT function
	LIMITMAPINFO
	LIMIT.SORTREL
	LINENUM
	LINESLEFT
	LISTBY
	LISTFILES
	LISTNAMES
	LOAD
	LOG command
	LOG function
	LOG10
	LOWCASE
	LPAD
	LSIZE
	LTRIM
	MAINTAIN
	MAINTAIN ADD
	MAINTAIN ADD for TEXT, ID, and INTEGER Values
	MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values
	MAINTAIN ADD SESSION
	MAINTAIN ADD TO PARTITION

	MAINTAIN DELETE
	MAINTAIN DELETE dimension
	MAINTAIN DELETE composite
	MAINTAIN DELETE FROM PARTITION

	MAINTAIN MERGE
	MAINTAIN MOVE
	MAINTAIN MOVE dimension value
	MAINTAIN MOVE TO PARTITION

	MAINTAIN RENAME

	MAKEDATE
	MAX

	17 MAXBYTES to MODTRACE
	MAXBYTES
	MAXCHARS
	MAXFETCH
	MEDIAN
	MIN
	MMOF
	MODDAMP
	MODE
	MODEL
	DIMENSION (in models)
	INCLUDE

	MODEL.COMPRPT
	MODEL.DEPRT
	MODEL.XEQRPT
	MODERROR
	MODGAMMA
	MODINPUTORDER
	MODMAXITERS
	MODOVERFLOW
	MODSIMULTYPE
	MODTOLERANCE
	MODTRACE

	18 MONITOR to NVL2
	MONITOR
	MONTHABBRLEN
	MONTHNAMES
	MONTHS_BETWEEN
	MOVE
	MOVINGAVERAGE
	MOVINGMAX
	MOVINGMIN
	MOVINGTOTAL
	MULTIPATHHIER
	NAFILL
	NAME
	NASKIP
	NASKIP2
	NASPELL
	NEW_TIME
	NEXT_DAY
	NLS Options
	NONE
	NORMAL
	NOSPELL
	NPV
	NULLIF
	NUMBYTES
	NUMCHARS
	NUMLINES
	NVL
	NVL2

	19 OBJ to QUAL
	OBJ
	OBJLIST
	OBSCURE
	OKFORLIMIT
	OKNULLSTATUS
	ONATTACH
	OUTFILE
	OUTFILEUNIT
	PAGE
	PAGENUM
	PAGEPRG
	PAGESIZE
	PAGING
	PARENS
	PARSE
	PARTITIONCHECK
	PERCENTAGE
	PERMIT
	PERMIT_READ
	PERMIT_WRITE
	PERMITERROR
	PERMITRESET
	POP
	POPLEVEL
	POUTFILEUNIT
	PRGTRACE
	PROGRAM
	PROPERTY
	PUSH
	PUSHLEVEL
	QUAL

	20 RANDOM to REPORT
	RANDOM
	RANDOM.SEED.1 and RANDOM.SEED.2
	RANK
	RECAP
	RECNO
	RECURSIVE
	REDO
	REEDIT
	REGRESS
	REGRESS.REPORT
	RELEASE
	REM
	REMBYTES
	REMCHARS
	REMCOLS
	REMLINES
	RENAME
	REPLBYTES
	REPLCHARS
	REPLCOLS
	REPLLINES
	REPORT

	21 RESERVED to SPARSEINDEX
	RESERVED
	RESYNC
	RETURN
	REVERT
	ROLE
	ROLLUP
	ROOTOFNEGATIVE
	ROUND
	ROUND (for dates and time)
	ROUND (for numbers)

	ROW command
	ROW function
	RPAD
	RTRIM
	RUNTOTAL
	SECONDS
	SESSCACHE
	SET
	SET1
	SHOW
	SIGN
	SIGNAL
	SIN
	SINH
	SLEEP
	SMALLEST
	SMOOTH
	SORT
	SORTCOMPOSITE
	SORTLINES
	SPARSEINDEX

	22 SQL to STATVAL
	SQL
	SQL CLEANUP
	SQL CLOSE
	SQL DECLARE CURSOR
	SQL EXECUTE
	SQL FETCH
	SQL IMPORT
	SQL OPEN
	SQL PREPARE
	SQL PROCEDURE
	SQL SELECT

	SQLBLOCKMAX
	SQLCODE
	SQLERRM
	SQLMESSAGES
	SQRT
	STARTOF
	STATALL
	STATFIRST
	STATLAST
	STATLEN
	STATLIST
	STATMAX
	STATMIN
	STATRANK
	STATUS
	STATVAL

	23 STDDEV to TRACKPRG
	STDDEV
	STDHDR
	SUBSTR
	SUBSTRB
	SUBTOTAL
	SWITCH
	SYSDATE
	SYSINFO
	SYSTEM
	TALLY
	TAN
	TANH
	TCONVERT
	TEMPSTAT
	TEXTFILL
	THIS_AW
	THOUSANDSCHAR
	TMARGIN
	TO_CHAR
	TO_DATE
	TO_NCHAR
	TO_NUMBER
	TOD
	TODAY
	TOTAL
	TRACEFILEUNIT
	TRACKPRG

	24 TRAP to ZSPELL
	TRAP
	TRIGGER command
	TRIGGER function
	TRIGGER_AFTER_UPDATE
	TRIGGER_AW
	TRIGGER_BEFORE_UPDATE
	TRIGGER_DEFINE
	TRIGGERASSIGN
	TRIGGERMAXDEPTH
	TRIGGERSTOREOK
	TRIM
	TRUNC
	TRUNC (for dates and time)
	TRUNC (for numbers)

	UNHIDE
	UNIQUELINES
	UNRAVEL
	UPCASE
	UPDATE
	USERID
	USETRIGGERS
	VALSPERPAGE
	VALUES
	VARCACHE
	VARIABLE
	VINTSCHED
	VNF
	VPMTSCHED
	WEEKDAYSNEWYEAR
	WEEKOF
	WHILE
	WIDTH_BUCKET
	WKSDATA
	YESSPELL
	YRABSTART
	YYOF
	ZEROROW
	ZEROTOTAL
	ZSPELL

	Part III� Appendixes
	A Functions and Commands by Functional Category
	Session Statements
	Data Type Conversion
	Assignment Statements
	Statements for Working with NA Values
	Text Functions
	General Character Functions
	Byte Functions
	Multiline Text Functions

	Date and Time Functions
	Numeric Functions
	General Numeric Functions
	Financial Functions
	Statistical Functions
	Time-Series Functions
	Aggregation Functions

	Forecast and Regression Statements
	Simple Forecasts and Regressions
	Statements for Forecasting Using a Forecasting Context

	Aggregation Statements
	Allocation Statements
	Workspace Object Operation Statements
	Dimension and Composite Operation Statements
	Formula Statements
	Modeling Statements
	Programming Statements
	Statements for Handling Programs
	Statement Used Only in Programs
	Statements Used Primarily in Programs
	Statements for Program Debugging
	Statements for Working with Startup and Trigger Programs

	File Reading and Writing Statements
	Statements for Importing and Exporting Data
	Reporting Statements
	Statements Related to Using OLAP_TABLE in SQL

	B OLAP DML Statement Changes
	Statements Added
	Statements Deleted
	Statements Significantly Changed
	Statements Renamed

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

