ORACLE

Oracle® Database
Performance Tuning Guide

10g Release 1 (10.1)
Part No. B10752-01

December 2003

Oracle Database Performance Tuning Guide, 10g Release 1 (10.1)
Part No. B10752-01

Copyright © 2000, 2003 Oracle Corporation. All rights reserved.
Graphic Designer: Valarie Moore

Contributors: James Barlow, Vladimir Barriere, Eric Belden, Qiang Cao, Sunil Chakkappen, Sumanta
Chatterjee, Alvaro Corena, Benoit Dageville, Dinesh Das, Karl Dias, Vinayagam Djegaradjane, Harvey
Eneman, Bjorn Engsig, Mike Feng, Cecilia Gervasio, Bhaskar Ghosh, Ray Glasstone, Leslie Gloyd, Connie
Dialeris Green, Joan Gregoire, Lester Gutierrez, Lex de Haan, Karl Haas, Brian Hirano, Lilian Hobbs,
Andrew Holdsworth, Mamdouh Ibrahim, Hakan Jacobsson, Christopher Jones, Srinivas Kareenhalli,
Feroz Khan, Stella Kister, Herve Lejeune, Yunrui Li, Juan Loaiza, Diana Lorentz, George Lumpkin, Joe
McDonald, Bill McKenna, Mughees Minhas, Sujatha Muthulingam, Gary Ngai, Michael Orlowski, Kant
C. Patel, Richard Powell, Mark Ramacher, Shankar Raman, Uri Shaft, Vinay Srihari, Sankar
Subramanian, Margaret Susairaj, Hal Takahara, Venkateshwaran Venkataramani, Nitin Vengurlekar,
Stephen Vivian, Simon Watt, Andrew Witkowski, Graham Wood, Khaled Yagoub, and Mohamed Zait

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle9i, PL/SQL, SQL*Net, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

SENA US YOUT COMIMEINTS ..ottt ettt ettt ettt et s et et et e et et st e s et e e et et seeeeeeees XV
PRI ACttt ettt ettt ettt ettt ettt ettt XVii
YN [11T o1 IR Xviii
OFGANTZATION ...ttt bbbttt b bbb b et b s bR e bbbt bt b bbbttt XViii
Related DOCUMEBNTATIONcoviiiiiceicceee ettt et e st b it s st e s s be s st e e sbaessbessbbessaeesran s XXi
(O00] 0 1V/=T 01 1] o 1T TR XXil
Documentation ACCESSIDITYccoviiiiii e XXiV
What's New in Oracle PerfOrManCe? ... XXVii

Oracle Database 10g Release 1 (10.1) New and Updated Features for Performance Tuning xxviii
Part 1 Performance Tuning

1 Performance Tuning Overview

Introduction to Performance TUNING ..o e 1-2
Performance PlaNNiNg.........ccooiiiiiiiieiice et sttt e e ne e teenesnesrenrens 1-2
INSTANCE TUNING oottt ettt bbb bbb b e e e e et et e b e e b e e be e bt et e s besbesbe b e 1-2
SOQL TUNING. ettt bbbt bbbtk et bbb et bRt s bbbt bttt 1-5

Introduction to Performance Tuning Features and TOOIScccceeveieiencciceceec e 1-6
Automatic Performance TUNING FEATUIES ..ot 1-7
PN [1 u o 0 F= L @ - Tod (=T I To] S 1-8

Part Il Performance Planning

2

Designing and Developing for Performance

Oracle MethOAOIOQYcviiiiiiii bbbttt sb e ere e 2-2
Understanding INVeStMENt OPLIONSc.cocviiiiiiceesese s sre s 2-2
Understanding SCalabilityccooiiiiiiiie e 2-3
What iS SCAIADIIITY? ..o e 2-3
SYStEM SCAIADIIILY ..o s 2-4
Factors Preventing SCalabilitycccooveiiiiiii i 2-5
SYSTEM ATCNITECTUIE. ...tttk et e bbbt bbb e ene e 2-7
Hardware and Software COMPONENTS.........ccciiiiieirese e sre s 2-7
Configuring the Right System Architecture for Your Requirements............ccccccoevvvennne. 2-10
Application Design PrinCIPIES ... e 2-13
Simplicity In ApPlication DESIGNccvviiirererieree e nns 2-13
(DT U7 W1V, (oo =] 1] o Vo SRS 2-14
Table and INAEX DESIGN ..ot 2-14
LS [Lo IR A TcY SRR 2-17
SQL EXeCULION EFfICIENCYcoiiiii ettt 2-17
Implementing the APPLCATION. ... s 2-19
Trends in Application DeVEIOPMENTcccoviiiieieece e 2-21
Workload Testing, Modeling, and Implementation.............ccccooiiiininine e 2-22
SHZING DIALAttt b bt bt ekt bkt ne et b bbbt b et bt r et n e ne e 2-22
EStimating WOTKIOAUS.........ccviiiiiee e s ere e 2-23
APPLICAtION MOAEIING ..o e et aae s 2-24
Testing, Debugging, and Validating @ DeSign..........cccoeoriiiiiiininiseeeeeeeeeseeesens 2-24
(D11 o] [0)Y4TaTo I ANEIVIVAVAN o] o] FTor: Ui o] o IS TR 2-26
ROIOUL STFatBOIEScvveiieiiciiete ettt e et e e st e s be e s e saeenaesreeseesnaeseenreens 2-26
Performance ChECKIISTooi i et 2-27

Performance Improvement Methods

The Oracle Performance Improvement Method ... 3-2
Steps in The Oracle Performance Improvement Method ..o 3-3
A Sample Decision Process for Performance Conceptual Modelingccocecevinnne. 3-5
Top Ten Mistakes FOuNd in Oracle SYStEMS.ccoiiiiiiiniee e 3-6

Emergency Performance METNOUS. ...t 3-8
Steps in the Emergency Performance Method ... 3-9

Part Il Optimizing Instance Performance

4 Configuring a Database for Performance

Performance Considerations for Initial Instance Configuration............c.ccocoevvininicicinne, 4-2
INTtIAlIZAtION PAFAMETEIS.oiiiiiieice ettt sre e 4-2
ConfigUING UNAO SPACEc.uiiuiiiieieiiee et ettt ettt st sb e sae e 4-4
SIZING REAO LOG FIIES ... ittt 4-5
Creating SUbSeqUENt TabIESPACEScccoeieieiece et 4-5

Creating and Maintaining Tables for Good Performancec.cccocvvevievieviniienc e 4-7
TaDIe COMPIESSION ..ottt ettt sb et sb e 4-8
Reclaiming UNUSEA SPACEccccviiiiiiiriiierieseeteee sttt st ese e enesre s e snesnesrennens 4-9
INAEXING DALA......cui et et e s e st e e st e st e et e saeebesaeenresneenaenres 4-9

Performance Considerations for Shared SErvVers..........ccoiiiiine e 4-10
Identifying Contention Using the Dispatcher-Specific VIeWSccoccocveviievcicivsinsnanns 4-11
Identifying Contention for Shared SEIVErS ... 4-13

5 Automatic Performance Statistics

Overview of Data GatneriNgccco it sb e esreenes 5-2
DAtaDase STALISTICSoveiiiiieirere ettt bttt s ettt e b s 5-3
Operating SYStEM StAtiSTICS.....uivieiirerereereee e et st srenes 5-5
INErPreting STATISTICSooviiiiiee et sb e 5-8

Automatic WOrkload REPOSITONYcceiiiiiiiieiee ettt 5-10
Accessing the Automatic Workload Repository with Oracle Enterprise Manager 5-12
Managing Snapshot and Baseline Data With APISccccooiininneneeeeee 5-13
WOrKIoad REPOSITONY VIBWScueiiiiiiieiiiiciiiieesiee sttt ettt ene e 5-16
VAVZoT 3 N [oF: Vo I R {=T oo FS 1 (o] YA = =] o o] i £ SR 5-17

6 Automatic Performance Diagnostics

Introduction to Database Diagnostic MONItOFING........ccccviviiiiinieiie i 6-2
Automatic Database DiagnoStiC MONITOLcccociviiiiiiie e 6-3
ADDM ANAIYSIS RESUILS ..ottt 6-4

7

vi

AN ADDM EXAMPIE ..ot 6-5

SELtING UP ADDM ...ttt bbbttt 6-6
Accessing ADDM with Oracle Enterprise Manager..........ccocvvevveneienenenesesieseeresieeesesesnens 6-7
Diagnosing Database Performance Issues With ADDMccocoivviiicieiiesc e 6-8
Views With ADDM INFOrMation ... 6-12

Memory Configuration and Use

Understanding Memory AHOCAtION ISSUESccciiiiiiiieise e 7-2
(O = Tod o1 (=T g g0 A O Vo] 1= 7-2
Automatic Shared Memory ManagemeNt............cccocveiiiieeieiie s 7-3
Dynamically Changing Cache SIZES ... e 7-4
YAV o] o] [Tor-1dTo] g W @Fe] 0 1Y Lo (-1 =1 (o] o[- SRS 7-6
Operating SYSteM MEeMOIY USE.........coiiiiiiiieieieeeeee ettt b e 7-6
Iteration DUring CONFIQUIATIONcc.ciiiiiiiiiiieiciee e 7-7

Configuring and Using the BUuffer Cache ..o 7-8
Using the Buffer Cache EffeCtiVely ... 7-8
Sizing the BUTTEr CACRE ..o s 7-8
Interpreting and Using the Buffer Cache Advisory StatisticS.........ccccvvvvivvevcvereiecneinnnnn, 7-12
Considering Multiple BUFFEr POOIScooiiiiiieec s 7-14
Buffer Pool Data in VEDB_CACHE_ADVICE.......c.ccccoiiiiiiitieiceseesee e 7-16
BUFfEr POOI Hit RALIOS. ..ot 7-17
Determining Which Segments Have Many Buffers in the Pool............c.ccccoovieiiviiccncnn, 7-17
KEEEP POOI ...ttt ettt ettt ettt bbb 7-19
RECYCLE POOL ...ttt bbbttt ettt 7-20

Configuring and Using the Shared Pool and Large POlcccccooviviiiciieic e 7-20
Shared POOI CONCEPTS. ..ottt ettt eb et n e ene e 7-21
Using the Shared Pool EffECtIVEIYcvcvciecccc s 7-24
SiZING the SNAred POOIc.oooiiie e 7-29
Interpreting Shared POOI STAtISTICScooiiiiiiiiiicc s 7-35
USING the Large POONcoviiie et sttt ene e 7-36
Using CURSOR_SPACE_FOR_TIMEcccceitiiitiiiiieisee et 7-40
CaCNING SESSION CUISOIS.... vttt ettt ettt b ettt ettt se et sb bbbt bt ab et eb e b e ene e 7-41
Configuring the RESErVEd POOL.........c.ccoiiiiiiiecceee e 7-42
Keeping Large ODjJects t0 PreVENT AQINGcccoeieiriiiiiiine st 7-44
CURSOR_SHARING for ExXisting APPHCAtIONS.............ccereiriireireiieesieiesieese e 7-45

Maintaining CONNECLIONSccveiiiiieii et e et esre et e saeesae e e sreannes 7-47

Configuring and Using the Redo LOg BUTFET ..o 7-48
SIZING the LOG BUTTEEiiicicc et snenne s 7-49
LOQ BUTTEE STALISTICS....cveiiiiieecie ettt et e saeesae e e nreanees 7-49

PGA MemOory ManNagQEMENT. ..ottt 7-50
Configuring AUtOMAtiCc PGA MEIMOIYcc.cociieeieesie et a e sre e snens 7-52
Configuring OLAP_PAGE_POOL_SIZEccccooiiiiiieseiees et 7-68

I/O Configuration and Design

(8 aTe (=751 =1 a Lo [1 0o T 10 LSS 8-2
BaSiC 1/O CONFIQUIATIONc.oiuiiitiieiiec ettt bbbttt 8-2
Lay Out the Files Using Operating System or Hardware Stripingcccccocevvevveivnivinnnnennns 8-2
Manually DIStriDULING 170 ..ot 8-6
WHEN 10 SEPATALE FIlES. ..ot 8-7
Three Sample CoNfIQUIAtIONScociviiceece et 8-9
Oracle-Managed FIlESoiiiiie et 8-10
Cho0oSiNg Data BIOCK SIZE.........ccoiiiiiiiieie e 8-11

Understanding Operating System Resources

Understanding Operating System Performance ISSUESccoeoreiiriininnenseseecseees 9-2
Using Operating SYStemM CaChEScociiieriiicieiece s nnens 9-2
YT o To] YA T Vo [PR P T RUPRRPRPN 9-3
Using Operating System ReSOUICe IMANAGETScourueirieiniieieieiesie et 9-4

Solving Operating SysStem ProblemS.........ccoviiiiciccc e 9-5
Performance Hints on UNIX-Based SYStEMSccccviiieieiieieseee e ste e sae e 9-6
Performance Hints 0n WindOWS SYSTEIMS...........ccoiiiiriiiiiisese e 9-6
Performance Hints on Midrange and Mainframe COMPULErSccccceveveeeiinivniesnsienennens 9-6

(8] g T (=7 551 =1 0 Lo [1 0o @ =1 6 SRS 9-7
CONTEXE SWITCRING ..ot bbbttt ettt 9-9

Finding System CPU ULHIIZAtIiON ..o 9-10
Checking Memory ManagemENT..........ccccviieiieieiiee e re e sre e sne s 9-10
Checking 170 ManNageMENTc.oiiiiiiiiiei et 9-11
Checking Network Managementcocvcieieieisiesie s e e snesnens 9-11
Checking Process ManagemMent...........ccoiviieiieieiieie st eie st e st e e saesreensesne s 9-11

Vii

10 Instance Tuning Using Performance Views

INSTANCE TUNING STEPS ...ttt bttt et e bt bbbt sb et b et b et ebe e b e 10-2
Define the Problem e 10-3
EXamine the HOSE SYSTEMc.viiiieie ettt sre e 10-4
Examine the Oracle StAtiSTICSoceii i et 10-7
Implement and Measure ChanQgEcccvveierierierereceee e ens 10-12

Interpreting Oracle STAtISTICSo 10-13
EXAMING LOAA.cei ittt sttt ettt r e ne e 10-13
Using Wait Event Statistics to Drill Down to Bottlenecksccccocvvivvivvevcncncsciceeen, 10-14
Table of Wait Events and Potential CauUSeS...........ccoeiriiiiiiineiee s 10-16
AAAItIONAl STATISTICS ..eviieiiieiicerere ettt et ne b re e 10-18

WAt EVENTS STALISTICS ...voviiciiiieiiiieiiie ettt bbbt sttt 10-21
1@] I NN L] YT o | £ TSR OPPPR 10-23
DUTTEE DUSY WAITS ..o 10-25
A file SCALErEd MBAMcveicie bbb 10-27
db file SEQUENTIAl FEAc.ooiiii e 10-29
direct path read and direct path read teMP ... 10-31
direct path write and direct path Write temMpcccoovicieiccc e 10-33
ENQUEUE (BINQ:) WAITS. ...ttt stttk b bt bbbt e e e et e bt e b e abeene e 10-34
Fre@ DUFFEE WAIES ...ttt e ere s 10-37
TALCR BVENTS ...ttt 10-40
10g file PAralle] WIITE ..o e 10-45
lIDrary CaChE PIN ..o 10-45
o = 1V o= g TN [0 o] RSP 10-45
10Q DUTTEE SPACE ...ttt 10-46
100G FIlE SWITCR.....eie e 10-46
Lo I 1L S3 Y 0 TSP 10-47
FADMS TPC FEPIY bbb bbbttt 10-48

FATE WAIT EVENTS......cuiiiiiieiiee ettt ettt ettt bbb e b et st e e st e e eneeneens 10-48

11 Tuning Networks

Understanding ConNection MOEIS ... e 11-2
Shared Server ConfiQUIatioN..........ccccvviiiiiiriiercsee s nns 11-2
Detecting NetWOrk ProbIEMSooviiic ettt 11-6
Using Dynamic Performance Views for Network Performance...........c.ccccoeoneineiiennnn, 11-6

viii

Understanding Latency and BandwWidth............ccccoooiiiiiici e 11-7

Solving Network Problems.........co s 11-8
Finding Network BottIeNECKSccovviiiee et 11-9
Dissecting Network BOTHIENECKS...........cooveiiiicicce e 11-10
USING ATTAY INTEITACES ...ttt 11-13
Adjusting Session Data Unit BUffer Size..........ccccovveeeicicceccsn e 11-14
USING TCP.NODELALY ...ttt sttt sttt sttt sbe e sbe e et e sbe e ebeneeseneas 11-14
USING CONNECTION IMANAGETcuiieiiiieiiiieiiteeeie ettt sb et sb et r e eb et eb e ebennene e 11-14

Part IV Optimizing SQL Statements

12 SQL Tuning Overview

INtroduction t0 SQL TUNING c.cviiiiiiiii bbbt 12-2
L ToT: 1 L3N o] i LU T a1 1 g SRR 12-2
Reduce the WOIKIOAd. ..ot 12-2
Balance the WOIKIOAd ..ot et 12-3
Parallelize the WOrKIOad ..o s 12-3
Identifying High-Load SQLccoiiiiiiccce ettt sre s 12-3
Identifying Resource-INtensive SQL ... e 12-3
Gathering Data on the SQL Identified............cccooveviiiiiiiiii e 12-5
Automatic SQL TUNING FEATUIES.........cucieiieiieiec ettt ra e sra e nre s 12-6
Developing Efficient SQL StAtemMEeNnTS..........cooiiiiiiiineeiee e 12-7
Verifying Optimizer STAtiSTICS. ..o e 12-8
Reviewing the EXECULION Plancccvoiiiiiie ettt 12-8
Restructuring the SQL StAteMENTSc.ciiiiiiiieee s 12-9
Controlling the Access Path and Join Order with HintS..........ccocoevvvvivnicvcnceccce 12-17
RESIUCTUNING the TNAEXES ...vcvieie ettt ae e re e 12-21
Modifying or Disabling Triggers and CONSTraiNtSccccoverieriennenee e 12-22
ReSTrUCtUrING the Data.......c..ccccviiiiiiice e re e 12-22
Maintaining Execution Plans OVEr TIMEccccveiiiiiiicicse e 12-22
Visiting Data as Few Times as POSSIDIe ... 12-22

13

14

Automatic SQL Tuning
Automatic SQL TUNING OVEIVIBWciiiiiiiiitiiieit ettt 13-2
QUETY OPLIMIZEN MOAES.......ccuiceieiiie sttt et sttt sa et sa e e en e e e eneerenns 13-2
Types Of TUNING ANAIYSIScoiiiiiiiiiee bbb 13-2
SQL TUNTNG AGVISOE ...ttt bbbt b et b et b et b bbbt bbb 13-6
T oL R0 T 1 ot PSS 13-6
TUNING OPTIONS ...t ettt b ettt s b e b e b sb et et e et e s e e et ebeebe et e 13-7
AAVISOT OUTPUL ...ttt bbbttt et b bbb r b 13-7
Accessing the SQL Tuning Advisor with Oracle Enterprise Managercccccoeveevennenn. 13-7
Using SQL TuNING AdVISOE APISccui ittt saesre e 13-8
Managing SQL Profiles With APIS.......ccooiii e 13-10
ACCEPLING @ SQL PrOfil ...t ns 13-11
ARErNG @ SQL PrOfile ..ot 13-11
Dropping @ SQL Profile ..o 13-11
1@]I U [o TR =1 SRS 13-12
Accessing SQL Tuning Sets with Oracle Enterprise Managercccoceveveiciencicennenn 13-12
Managing SQL TUNING SEES.......c.ciiiiiiiiiieiieinieint et 13-13
SQL Tuning INfOrmation VIBWS.........cccviiiiieieicciees ettt e ere e 13-16
The Query Optimizer
(@] o (T aaT 4= g @] o 1=1 = { Lo 5 LSS 14-2
Choosing an OPtIMIZEr GOAL........ccoiiiiiie e 14-3
OPTIMIZER_MODE Initialization Parameter...........c.ccooiiiiiinienieiene e 14-4
Optimizer SQL Hints for Changing the Query Optimizer Goal..........cc.ccccevvvveveieiecnenne, 14-5
Query Optimizer Statistics in the Data DICIONAIY ..o 14-6
Enabling and Controlling Query Optimizer FEAtUIES..........ovveiieiieseses e 14-6
Enabling Query OptimizZer FEAtUIES..........cocveieiie e ene e 14-6
Controlling the Behavior of the Query OPtiMIZer..........cccooiiiiiiiineieeee e 14-8
Understanding the QUErY OPLIMUZEN ..o e 14-9
Components of the QUENY OPLIMUZENccccvieiirieeee e eneas 14-10
Reading and Understanding EXecution PIans............cccccoviiiiiiiii e 14-15
Understanding Access Paths for the Query OPtimizer ... 14-18
FUTT TADIE SCANS....c.eiviiiitiieie bbbt bbb 14-18
ROWIT SCANS.......ceiiiitiiee ettt bbbt b e bbb bbbt ene b e b 14-20
INAEX SCANS ...t et se ettt ettt et e be et e sbesb e st et e e e e eneeseeneaneebears 14-21

(08 [0Sy (] g Ao 1= L1 YRR 14-27

HESN ACCESS ...ttt ettt sttt ettt ettt et e bt be s besbenbe st st et e st et enteneerenneene s 14-28
SAMPIE TADIE SCANSecvvieeciececcse ettt sa e e e e eneerenreens 14-28
How the Query Optimizer Chooses an Access Path ... 14-28
UNAErstanding JOINSccoiiiiieiieiee ettt ettt r bbbt e nne 14-29
How the Query Optimizer Executes JOin StatemMentsc.ccocvvivvievivievenenereseeeeeseenens 14-30
How the Query Optimizer Chooses Execution Plans for JOINS ..o 14-30
NESTEA LOOP JOINS.....cviiiitiiiteiete ettt ettt ettt 14-32
HASH JOINS ...ttt bbb 14-34
Yo]\ (=T {0 T=T 0 | USRS 14-35
CAILESIAN JOINS. ...ttt ettt sttt et et e e e st eeneeneerenre e 14-36
L@ 10 (T g o | SOOI 14-36

15 Managing Optimizer Statistics

UNderstanding STAtiSTICScoiviiiiie s renre s 15-2
Automatic Statistics GatNeringcccoe e 15-3
GATHER _STATS JOB....ciiiiitiisieiete ettt sttt sttt bt benesrns 15-3
Enabling Automatic StatisticsS Gatheringcccccvevveviiiie i 15-4
Considerations When Gathering StatiStiCScccoviiiiiiiiece e 15-4
Manual StatiStiCS GatNEITNGciviiiiiiie e 15-6
Gathering Statistics with DBMS_STATS ProCedUreS.........ccccvvvrieiererierenienieeeresieeesesesnens 15-7
When t0 Gather STAtISTICSccoiiiiiiiire e eneas 15-11
SYSTEM STATISTICS. ...ttt ettt b et b et b et b et b et be e b nr b 15-11
Y Eo Vg Vo L o RS 7 L) {0t 15-13
Restoring Previous Versions of StatiStiCS..........ccoccviiiiiiiiicii e 15-13
Exporting and IMpPOorting StatiSTiCSccciiiiiiiiieec e 15-14
Restoring Statistics Versus Importing or Exporting Statisticscc.ccocvvvvevvvcreieccnennn, 15-15
Locking Statistics for a Table or SChema ... 15-15
SELEING STALISTICS ...ttt 15-16
Estimating Statistics with Dynamic Samplingcccccooviviiiiviiinnse e 15-16
Handling Missing StatiStICS.........cccoiiiiiiiieie et 15-18
VIBWING STALISTICSvevivieeiiieetiec ettt bbbt nn ettt 15-19
Statistics on Tables, Indexes and COIUMNSccoviiiiiiii s 15-19
AV A LA T To T o 11 (oo | = PSS 15-20

Xi

16

17

Xii

Using Indexes and Clusters
Understanding INdex PerforMaNnCeccooviiiiiiiiiiee e 16-2
Tuning the LOgical STTUCTUIE.cov it 16-2
Index Tuning using the SQLACCESS AAVISOIccccciiveriiiieeieiie i sie e sre e sre e e se s 16-3
Choosing Columns and EXPressions t0 INAEX.........c.cciiiiieiriincieneiseeseesre e 16-4
Choosing COMPOSITE INUEXESccviviiiriiiiieseresee et e e enenns 16-5
Writing Statements That USE INAEXES........ccviveiviieiiieccesee e 16-6
Writing Statements That AvVoid USIiNg INAEXES.........ccoiiiiiiiiiieesesee e 16-6
RE-Creating INUEXESocvieiiirieie it sttt st et se e e s e e e e eneereeneanenrenen 16-7
COMPACTING TNUEXES ...ttt bbb bbb ettt et be b e 16-8
Using Nonunique Indexes to ENforce UNIQUENESS..........ocoovieiieniniennensenee e 16-8
Using Enabled Novalidated CONSTraints..........c.cccoiviiiiiiiiieinne e 16-9
Using Function-based Indexes for Performance..........c.ccoveieiieiiiiccc e 16-10
Using Partitioned Indexes for PErfOrmManCe. ... 16-11
Using Index-Organized Tables for PErformanceccocoovvivieiininvienene e 16-12
Using Bitmap Indexes for PerformancCe..........ooiiiiiiiii e 16-12
Using Bitmap Join Indexes for PErformancCecccocoiiiiiiniinsee s 16-12
Using Domain Indexes for PerformancCeccooeveicieice e 16-13
UsiNg Clusters For PErfOrmManCe ...ttt 16-14
Using Hash Clusters for PErfOrMAaNCe...........ccooiiiiiiiineee s 16-15
Optimizer Hints
Understanding OPtimizZer HINEScooiiiiiiee e 17-2
1577 =01 10 €SS 17-2
SPECITYING HINTS ...t bbbttt be b e 17-3
USING HINES WITN VIBWS ...t 17-10
USING OPLIMIZENr HINES....coiciccec sttt na e e e enens 17-12
Hints for Optimization Approaches and GOalSsc.ccocveiiiiiiiinnee e 17-12
HINTS O ACCESS PALNS......ocuiiiiiiiie e et 17-15
Hints for Query TransformMationsS..........ccccooeveieiicicsese e 17-23
HINTS FOr JOIN OFAEIS ...ttt 17-31
HinNts fOr JOIN OPEIatiONS.coiiiiiiiiciie e 17-32
Hints for Parallel EXECULIONccooiiiiiiieeee s 17-36
AAAITIONAL HINTS ... bbb et 17-41

18

19

Using Plan Stability
Using Plan Stability to Preserve EXecution PIans ... 18-2
Using Hints with Plan Stability ... 18-2
(o [o T @ 10) o [=TSSR 18-4
Enabling Plan Stability ..o 18-4
Using Supplied Packages to Manage Stored OULIINES.........c.cccccvvivve v 18-4
Creating OULIINES.........ocoi et re e te e te e e e s teesbesteensesreenes 18-5
Using and Editing STOred OULIINEScoiiiiiiiiiiicce s 18-6
VIEWING OULIINEG DALAcvcvieciiiiie et s ene e 18-9
MOVING OULHNE TADIEScviiii ettt ene s 18-10
Using Plan Stability with Query Optimizer Upgrades..........c.coverrenneneeneienee e 18-12
Moving from RBO to the QUery OPtimIiZer.......cccocoeieiiiieiie s 18-12
Moving to a New Oracle Release under the Query Optimizer..........c.coceveveiiicinieninnnnns 18-14
Using EXPLAIN PLAN
Understanding EXPLAIN PLAN ..ottt ste e st a et nneens 19-2
How Execution P1ans Can CRANGE ..ottt 19-2
MiINIMIZING TRFOW-AWAYcoooiiiiiiiiiiieiesese e seeiesee et e et te st st te e seessesse e aneesensessesnenees 19-3
Looking Beyond EXECULION PlanS...........ccccvoiiiieiicece et 19-4
EXPLAIN PLAN RESEFICTIONSoiiiiiiiiieiiieie ettt sttt 19-5
The PLAN_TABLE OULPUL TabIe......ccoiie et 19-5
RUNNING EXPLATN PLAN ...ttt sttt sttt se st sbe et e sbe e 19-6
Identifying Statements for EXPLAIN PLAN ... 19-6
Specifying Different Tables for EXPLAIN PLAN ..o 19-7
Displaying PLAN_TABLE OULPULcoviiiiiiieeee et 19-7
Customizing PLAN_TABLE OULPUL ..ot 19-8
Reading EXPLAIN PLAN OQULPUL ...t 19-9
Viewing Parallel Execution with EXPLAIN PLAN ... 19-10
Viewing Parallel Queries with EXPLAIN PLAN ...t 19-12
Viewing Bitmap Indexes With EXPLAIN PLAN ... e 19-13
Viewing Partitioned Objects With EXPLAIN PLAN.........ccooiiiieie e 19-14
Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN 19-14
Examples of Pruning Information with Composite Partitioned Objectsccccvenunee. 19-16
Examples of Partial Partition-WiSe JOINSccoiiiiiiiiiiiiine s 19-18
Examples of FUll Partition-WiSe JOINS..........ccoiiriiiiiiee e 19-20

Xiii

Examples of INLIST ITERATOR and EXPLAIN PLANccooiiieeeee e 19-21

Example of Domain Indexes and EXPLAIN PLAN ... 19-22
PLAN_TABLE COIUMNS.....cctiiiiiiii sttt 19-23
20 Using Application Tracing Tools
(SlaTo (ol =i glo IVAY o1 FTor- d To] o 1 I - Uo1 1 o o [0S 20-2
Accessing the End to End Tracing with Oracle Enterprise Manager...........cccoceoenienennns 20-3
Managing End to End Tracing with APIS and VIEWSccccccieiiiininninseee e 20-3
USING the TreSESS ULHTITYocviiie st e e nrenns 20-7
SYNEAX FOI TCSESS. .. vt iuiiiteeie ettt ettt e et e e et e e e ste et e saeenbeensesreennesreennes 20-8
SAMPIE OULPUL OF TFCSESS ...viiciirietiieete ittt ettt sr et eb et n e ene e 20-8
Understanding SQL Trace and TKPROF ... 20-9
Understanding the SQL Trace FaCHlitycccccoviiiiiiiii e 20-9
Understanding TKPROFc.coiiii e 20-11
Using the SQL Trace Facility and TKPROF ..o 20-11
Step 1: Setting Initialization Parameters for Trace File Managementcccccoeoeinns 20-12
Step 2: Enabling the SQL Trace Facility.........ccoveiiiiiiiiece e 20-14
Step 3: Formatting Trace Files With TKPROF ... 20-15
Step 4: Interpreting TKPROF OULPULocoiiiiiiiieeieciee et 20-20
Step 5: Storing SQL Trace Facility StatiStiCS.........ccooevieiienieneeeee e 20-26
Avoiding Pitfalls in TKPROF INterpretationc.ccccovveeieeiecisese e 20-29
AVO0IdiNg the ArgumENT TIAP ..o e 20-29
Avoiding the Read CONSISIENCY TraPccvrveirieiriiinieisieesieesie e 20-29
AVOIding the SChEMA TraPcvccv i neereens 20-30
AVOIAING The TIME TIAP .o bbb 20-31
AVOIdING the TrIGQEN TIAP .o.eiiiiiiiiietiee ettt 20-32
SaMPle TKPROF OULPUL......cciiiiiiicise et sttt na e enaerenns 20-32
Sample TKPROF HEAAEYcciiiiiiiiie et s 20-32
SAMPIE TKPROF BOY ..ottt 20-33
Sample TKPROF SUMMAIYcviiiiiiiese e seesie e as ettt saesse e snesensenasnasneas 20-36
Glossary
Index

Xiv

Send Us Your Comments

Oracle Database Performance Tuning Guide, 10g Release 1 (10.1)
Part No. B10752-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

This preface contains these topics:

Audience

Organization

Related Documentation
Conventions

Documentation Accessibility

Preface

Xvii

Audience

Oracle Database Performance Tuning Guide is an aid for people responsible for the
operation, maintenance, and performance of Oracle. This book describes detailed
ways to enhance Oracle performance by writing and tuning SQL properly, using
performance tools, and optimizing instance performance. It also explains how to
create an initial database for good performance and includes performance-related
reference information. This book could be useful for database administrators,
application designers, and programmers.

For information on quick and easy monitoring and tuning of the Oracle database,
read the Oracle 2 Day DBA manual.

Organization

xviii

This document contains:

"What's New in Oracle Performance?"

A summary of recent enhancements to Oracle Performance and updates to this
book.

Part I, "Performance Tuning"

This part of the book provides an introduction and overview of performance
tuning.

Chapter 1, "Performance Tuning Overview"
An introduction to performance tuning.

Part Il, "Performance Planning"

This part of the book describes ways to improve Oracle performance by starting
with good application design and using statistics to monitor application
performance. It explains the Oracle Performance Improvement Method, as well as
emergency performance techniques for dealing with performance problems.

Chapter 2, "Designing and Developing for Performance”

This chapter describes performance issues to consider when designing Oracle
applications.

Chapter 3, "Performance Improvement Methods"
This chapter describes Oracle Performance Improvement Methods.

Part 1, "Optimizing Instance Performance”

This part of the book describes how to create and configure a database for good
performance. This section provides information about Oracle system-related
performance tools and describes how to tune various elements of a database system
to optimize performance of an Oracle instance.

Chapter 4, "Configuring a Database for Performance"

This chapter describes some of the performance considerations when designing a
database, including considerations for shared servers, undo segments, and
temporary tablespaces.

Chapter 5, "Automatic Performance Statistics"

Oracle provides a number of tools that allow a performance engineer to gather
information regarding instance and database performance. This chapter discusses
the importance of performance data gathering and describes the available Oracle
features.

Chapter 6, "Automatic Performance Diagnostics”

Oracle provides a number of tools that allow a performance engineer to monitor
and diagnose database performance. This chapter describes the available Oracle
features and tools.

Chapter 7, "Memory Configuration and Use"
This chapter explains how to allocate memory to database structures.

Chapter 8, "1/O Configuration and Design"

This chapter introduces fundamental 1/0 concepts, discusses the 1/0 requirements
of different parts of the database, and provides sample configurations for /0
subsystem design.

Chapter 9, "Understanding Operating System Resources"”

This chapter explains how to tune the operating system for optimal performance of
Oracle.

Xix

XX

Chapter 10, "Instance Tuning Using Performance Views"

This chapter discusses the method used for performing tuning. It also describes
Oracle statistics and wait events.

Chapter 11, "Tuning Networks"

This chapter describes different connection models and networking issues that
affect tuning.

Part IV, "Optimizing SQL Statements"

This part of the book provides information to help understand and manage SQL
statements and information about Oracle SQL-related performance tools.

Chapter 12, "SQL Tuning Overview"
This chapter provides an overview of SQL tuning.

Chapter 13, "Automatic SQL Tuning"
This chapter describes Oracle automatic SQL tuning features.

Chapter 14, "The Query Optimizer"
This chapter discusses SQL processing, Oracle optimization, and how the Oracle
optimizer chooses how to execute SQL statements.

Chapter 15, "Managing Optimizer Statistics"
This chapter explains why statistics are important for the query optimizer and
describes how to gather and use statistics.

Chapter 16, "Using Indexes and Clusters"
This chapter describes how to create indexes and clusters, and when to use them.

Chapter 17, "Optimizer Hints"

This chapter offers recommendations on how to use query optimizer hints to
enhance Oracle performance.

Chapter 18, "Using Plan Stability"

This chapter describes how to use plan stability (stored outlines) to preserve
performance characteristics.

Chapter 19, "Using EXPLAIN PLAN"

This chapter shows how to use the SQL statement EXPLAI NPLAN and format its
output.

Chapter 20, "Using Application Tracing Tools"

This chapter describes the use of the SQL trace facility and TKPROF, two basic
performance diagnostic tools that can help you monitor and tune applications that
run against the Oracle Server.

Related Documentation

Before reading this manual, you should have already read Oracle Database Concepts,
Oracle 2 Day DBA, Oracle Database Application Developer's Guide - Fundamentals, and
the Oracle Database Administrator's Guide.

For more information about Oracle Enterprise Manager and its optional
applications, see Oracle Enterprise Manager Concepts.

For more information about tuning data warehouse environments, see the Oracle
Data Warehousing Guide.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

For information about Oracle error messages, see Oracle Database Error Messages.
Oracle error message documentation is only available in HTML. If you are
accessing the error message documentation on the Oracle Documentation CD, you
can browse the error messages by range. After you find the specific range, use your
browser’s find feature to locate the specific message. When connected to the
Internet, you can search for a specific error message using the error message search
feature of the Oracle online documentation.

Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com menber shi p/

XXi

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com docunent ation/

Conventions

This section describes the conventions used in the text and code examples of the

this documentation set. It describes:
= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles, Oracle Database Concepts
emphasis, syntax clauses, or placeholders. You can specify the parallel_clause.
Run Uol d_r el ease. SQL where old_release
refers to the release you installed prior to
upgrading.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVBER
monospace elements supplied by the system. Such column.

(fixed-width font)

XXii

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Specify the ROLLBACK _SEGVENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Convention Meaning Example
lowercase Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
monospace executables and sample user-supplied

(fixed-width font)

elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

The depar t nent _i d, depar t nent _nane,
and | ocati on_i d columns are in the
hr . depart nent s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter to t r ue.

Connect as oe user.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT usernane FROM dba_users WHERE usernane = 'M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of { ENABLE | DI SABLE}

which is required. Do not enter the
braces.

A vertical bar represents a choice of two

or more options within brackets or braces.

Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;
SELECT col 1, col2, ... , coln FROM
enpl oyees;

XXili

Convention Meaning Example

Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFI LE;
have omitted several lines of code not NAVE
directly related to the example. ...

[fsl/dbs/ths_01. dbf
/fs1/dbs/ths_02. dbf

/sl /dbs/tbs_09. dbf
9 rows sel ected.

Other notation You must enter symbols other than acct bal NUMBER(11, 2);

brackets, braces, vertical bars, and ellipsis . _ o
points as shown. acct CONSTANT NUMBER(4) : = 3;

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em passwor d
variables for which you must supply
particular values.
DB_NAME = dat abase_nane

UPPERCASE Uppercase typeface indicates elements SELECT | ast _name, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish . .
them from terms you define. Unless terms SELECT FROM USER_TABLES,
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

| ower case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names

of tables, columns, or files. sql plus hr/ny_hr_password

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. CREATE USER nj ones | DENTI FI ED BY
Enter these elements as shown. t y3MJ9;

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading

XXiV

technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http:// ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXV

XXVi

What's New In Oracle Performance?

This section describes new performance features of Oracle Database 10g Release 1
(10.1) and provides pointers to additional information. The features and
enhancements described in this section comprise the overall effort to optimize
server performance.

For a summary of all new features for Oracle Database 10g Release 1 (10.1), see
Oracle Database New Features.

XXVii

Oracle Database 10g Release 1 (10.1) New and Updated Features for
Performance Tuning

The new and updated performance features in 10g Release 1 (10.1) include the
following:

XXViii

Automatic Performance Diagnostic and Tuning Features

These features include Automatic Statistics Collection, Automatic Database
Diagnostic Monitoring, and Automatic SQL Tuning. The Automatic Workload
Repository collects, processes, and maintains performance statistics for problem
detection and self-tuning purposes.The Automatic Database Diagnostic
Monitor (ADDM) reduces the amount of effort that is required to diagnose and
tune Oracle systems. The SQL Tuning Advisor feature allows a quick and
efficient technique for optimizing SQL statements. See "Introduction to
Performance Tuning Features and Tools" on page 1-6 for a brief summary of the
new performance features and tools.

Application End to End Tracing

Application End to End Tracing identifies the source of an excessive workload,
such as a high load SQL statement, by client identifier, service, module, or
action. This feature simplifies the debugging of performance problems in
multitier environments. See "End to End Application Tracing" on page 20-2.

tr csess Utility

The t r csess command-line utility consolidates trace information from
selected trace files based on specified criteria. See "Using the trcsess Utility" on
page 20-7.

Automatic Optimizer Statistics Collection

This feature automates the collection of optimizer statistics for objects. Objects
with stale or no statistics are automatically analyzed, so administrators no
longer need to keep track of what does and what does not need to be analyzed,
nor to perform analysis by hand. See "Automatic Statistics Gathering" on

page 15-3.

Automatic Shared Memory Management

Automatic Shared Memory Management simplifies the configuration of System
Global Area (SGA) memory-related parameters through self-tuning algorithms.
It simplifies database configuration, ensures most efficient utilization of
available memory and improves performance. See "Automatic Shared Memory
Management" on page 7-3.

Rule-based Optimization (RBO) Obsolescence

RBO as a functionality is no longer supported. RBO still exists in Oracle 10g
Release 1, but is an unsupported feature. No code changes have been made to
RBO and no bug fixes are provided. Oracle supports only the query optimizer,
and all applications running on Oracle Database 10g Release 1 (10.1) should use
that optimizer. Please review the following Oracle Metalink desupport notice
(189702.1) for RBO:

http://metalink.oracle.confnmetalink/plsqgl/m2_docunents.showDocunment ?p_

dat abase_i d=NOT&p_i d=189702. 1

You can also access desupport notice 189702.1 and related notices by searching
for "desupport of RBO" at:

http://metalink.oracle.com

Notice 189702.1 provides details about the desupport of RBO and the migration
of applications based on RBO to query optimization.

Some consequences of the desupport of RBO are:

— CHOGSE and RULE are no longer supported as OPTI M ZER_MODE
initialization parameter values and a warning is displayed in the alert log if
the value is set to RULE or CHOOSE. The functionalities of those parameter
values still exist but will be removed in a future release. See "OPTIMIZER _
MODE Initialization Parameter" on page 14-4 for information optimizer
mode parameters.

— ALL_ROWS is the default value for the OPTI M ZER MODE initialization
parameter.

— The CHOOSE and RULE optimizer hints are no longer supported. The
functionalities of those hints still exist but will be removed in a future
release.

— Existing applications that previously relied on rule-based optimization
(RBO) need to be moved to query optimization.
See Also:
« Oracle Database Upgrade Guide
« Oracle Metalink desupport notice for RBO
« "Moving from RBO to the Query Optimizer" on page 18-12

XXiX

XXX

Dynamic Sampling

The default setting for the OPTI M ZER_DYNAM C_SAMPLI NGinitialization
parameter is now 2. See "Estimating Statistics with Dynamic Sampling" on
page 15-16 for information about when and how to use dynamic sampling.

CPU Costing

— The default cost model for the optimizer is now CPU+1/0 and the cost unit
is time. See "Understanding the Query Optimizer" on page 14-9.

New Optimizer Hints

"SPREAD_MIN_ANALYSIS" on page 17-48 specifies analysis options for
spreadsheets.

— "USE_NL_WITH_INDEX" on page 17-34 specifies a nested loops join.
— "QB_NAME" on page 17-46 specifies a name for a query block.

— "NO_QUERY_TRANSFORMATION" on page 17-24 causes the optimizer to
skip all query transformations.

— The"NO_USE_NL" on page 17-33, "NO_USE_MERGE" on page 17-35,
"NO_USE_HASH" on page 17-36, "NO_INDEX_FFS" on page 17-21, "NO_
INDEX_SS" on page 17-23, and "NO_STAR_TRANSFORMATION" on
page 17-29 hints cause the optimizer to exclude various operations from the
execution plan.

— The"INDEX_SS" on page 17-22, "INDEX_SS_ASC" on page 17-22, and
"INDEX_SS_DESC" on page 17-23 hints cause the optimizer to use index
skip scan operations in the execution plan.

Updated Optimizer Hints

— Hints that use a table or index argument in their syntax have been updated
to use an expanded table or index specification. See "Specifying Global
Table Hints" on page 17-7 and "Specifying Complex Index Hints" on
page 17-9.

— Some hints can use an optional query block argument. See "Specifying a
Query Block in a Hint" on page 17-6
Renamed Optimizer Hints

The "NO_PARALLEL" on page 17-37, "NO_PARALLEL_INDEX" on page 17-40,
and "NO_REWRITE" on page 17-26 hints have been renamed. The
NOPARALLEL, NOPARALLEL I NDEX, and NOREWRI TE hints have been
deprecated and should not be used.

Additional Deprecated Optimizer Hints

The AND_EQUAL, HASH_AJ, MERGE_AJ, NL_AJ, HASH SJ, MERGE_SJ, NL_SJ,
EXPAND_GSET_TO_UNI ON, ORDERED_PREDI CATES, ROW D, and STAR hints
have been deprecated and should not be used.

Wait Model Improvements

New and updated dynamic performance views are available. Existing
VSEVENT_NAME, VSSESSI ON, and VSSESSI ON_WAI T views were modified.
New VSACTI VE_SESSI ON_HI STORY, V$SESS_TI ME_MCDEL, V$SYS_TI ME_
MODEL, V$SYSTEM WAI T_CLASS, V$SESSI ON_WAI T_CLASS, VSEVENT_

HI STOGRAM V$FI LE_HI STOGRAM and VS TEMP_HI STOGRAMwere added.

See Also:

» Oracle Database Reference for information about dynamic
performance views

« "Active Session History (ASH)" on page 5-4
« "Dynamic Performance Views Containing Wait Event Statistics"
on page 10-9
SAMPLE Clause Enhancements

The sample clause can now be present in complex select statements. See
"Sample Table Scans" on page 14-28.

Hash Partitioned Global Indexes

New hash method can improve performance of indexes where a small number
leaf blocks in the index have high contention in multiuser OLTP environment.
See "Using Partitioned Indexes for Performance™ on page 16-11.

Oracle Trace Obsolescence

Oracle Trace as a functionality is no longer available. For the tracing of database
activity, use SQL Trace or TKPROF instead. The chapter on Oracle Trace has
been removed from this book. See Chapter 20, "Using Application Tracing
Tools".

XXXi

XXX

Part |

Performance Tuning

Part | provides an introduction and overview of performance tuning.
The chapter in this part is:

« Chapter 1, "Performance Tuning Overview"

1

Performance Tuning Overview

This chapter provides an introduction to performance tuning.
This chapter contains the following:
« Introduction to Performance Tuning

« Introduction to Performance Tuning Features and Tools

Performance Tuning Overview 1-1

Introduction to Performance Tuning

Introduction to Performance Tuning

This guide provides information on tuning an Oracle Database system for
performance. Topics discussed in this guide include:

« Performance Planning
« Instance Tuning

« SQL Tuning

Performance Planning

Before you start on the instance or SQL tuning sections of this guide, make sure you
have read Part Il, "Performance Planning". Based on years of designing and
performance experience, Oracle has designed a performance methodology. This
brief section explains clear and simple activities that can dramatically improve
system performance. It discusses the following topics:

« Investment Options

« Scalability

« System Architecture

« Application Design Principles

« Workload Testing, Modeling, and Implementation

« Deploying New Applications

Instance Tuning

Part 111, "Optimizing Instance Performance” of this guide discusses the factors
involved with the tuning and optimizing of an Oracle database instance.

When considering instance tuning, care must be taken in the initial design of the
database system to avoid bottlenecks that could lead to performance problems. In
addition, you need to consider:

« Allocating memory to database structures
« Determining 170 requirements of different parts of the database
« Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you need to monitor
the database as it is running to check for performance-related problems.

1-2 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning

Performance Principles

Performance tuning requires a different, although related, method to the initial
configuration of a system. Configuring a system involves allocating resources in an
ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the
appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,
tuning is performed reactively, either while the system is preproduction or after it is
live.

Baselines

The most effective way to tune is to have an established performance baseline that
can be used for comparison if a performance issue arises. Most database
administrators (DBAs) know their system well and can easily identify peak usage
periods. For example, the peak periods could be between 10.00am and 12.00pm and
also between 1.30pm and 3.00pm. This could include a batch window of 12.00am
midnight to 6am.

It is important to identify these high-load times at the site and install a monitoring
tool that gathers performance data for those times. Optimally, data gathering
should be configured from when the application is in its initial trial phase during
the QA cycle. Otherwise, this should be configured when the system is first in
production.

Ideally, baseline data gathered should include the following:

« Application statistics (transaction volumes, response time)
« Database statistics

« Operating system statistics

« Disk I/0 statistics

« Network statistics

In the Automatic Workload Repository, baselines are identified by a range of
snapshots that are preserved for future comparisons. See "Automatic Workload
Repository" on page 5-10.

The Symptoms and the Problems

A common pitfall in performance tuning is to mistake the symptoms of a problem
for the actual problem itself. It is important to recognize that many performance

Performance Tuning Overview 1-3

Introduction to Performance Tuning

statistics indicate the symptoms, and that identifying the symptom is not sufficient
data to implement a remedy. For example:

« Slow physical 170

Generally, this is caused by poorly-configured disks. However, it could also be
caused by a significant amount of unnecessary physical 170 on those disks
issued by poorly-tuned SQL.

« Latch contention

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch
contention usually is resolved through application changes.

« Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system.
This could be caused by an inadequately-sized system, by untuned SQL
statements, or by inefficient application programs.

When to Tune
There are two distinct types of tuning:

« Proactive Monitoring

« Bottleneck Elimination

Proactive Monitoring Proactive monitoring usually occurs on a regularly scheduled
interval, where a number of performance statistics are examined to identify whether
the system behavior and resource usage has changed. Proactive monitoring also can
be called proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless
the monitoring exposes a serious problem that is developing. In some situations,
experienced performance engineers can identify potential problems through
statistics alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance
degradation as a proactive action can be a dangerous activity, resulting in
unnecessary performance drops. Tweaking a system should be considered reactive
tuning, and the steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource
consumption is examined to see the changes in the way the application is being
used and the way the application is using the database and host resources.

1-4 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning

SQL Tuning

Bottleneck Elimination Tuning usually implies fixing a performance problem.
However, tuning should be part of the life cycle of an application, through the
analysis, design, coding, production, and maintenance stages. Many times, the
tuning phase is left until the system is in production. At this time, tuning becomes a
reactive fire-fighting exercise, where the most important bottleneck is identified and
fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the
elapsed time for an operation to complete. Either way, the goal is to improve the
effective use of a particular resource. In general, performance problems are caused
by the over-use of a particular resource. That resource is the bottleneck in the
system. There are a number of distinct phases in identifying the bottleneck and the
potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by
making changes in the following places:

« Changes in the application, or the way the application is used
« Changes in Oracle
« Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

Part IV, "Optimizing SQL Statements" of this guide discusses the process of tuning
and optimizing SQL statements.

Many client/server application programmers consider SQL a messaging language,
because queries are issued and data is returned. However, client tools often
generate inefficient SQL statements. Therefore, a good understanding of the
database SQL processing engine is necessary for writing optimal SQL. This is
especially true for high transaction processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few
rows at a time. If an index can point to the exact rows that you want, then Oracle
can construct an accurate plan to access those rows efficiently through the shortest
possible path. In decision support system (DSS) environments, selectivity is less
important, because they often access most of a table's rows. In such situations, full
table scans are common, and indexes are not even used. This book is primarily
focussed on OLTP-type applications. For detailed information on DSS and mixed
environments, see the Oracle Data Warehousing Guide.

Performance Tuning Overview 1-5

Introduction to Performance Tuning Features and Tools

Query Optimizer and Execution Plans

When a SQL statement is executed on an Oracle database, the Oracle query
optimizer determines the most efficient execution plan after considering many
factors related to the objects referenced and the conditions specified in the query.
This determination is an important step in the processing of any SQL statement and
can greatly affect execution time.

During the evaluation process, the query optimizer reviews statistics gathered on
the system to determine the best data access path and other considerations. You can
override the execution plan of the query optimizer with hints inserted in SQL
statement.

Introduction to Performance Tuning Features and Tools

Effective data collection and analysis is essential for identifying and correcting
performance problems. Oracle provides a number of tools that allow a performance
engineer to gather information regarding database performance. In addition to
gathering data, Oracle provides tools to monitor performance, diagnose problems,
and tune applications.

The Oracle gathering and monitoring features are mainly automatic, managed by
an Oracle background processes. To enable automatic statistics collection and
automatic performance features, the STATI STI CS_LEVEL initialization parameter
must be set to TYPI CAL or ALL. You can administer and display the output of the
gathering and tuning tools with Oracle Enterprise Manager or with APIs and views.
Oracle Enterprise Manager Database Control is recommended for ease of use.

See Also:

« Oracle 2 Day DBA for information on monitoring, diagnosing,
and tuning the database

« Oracle Enterprise Manager Concepts for information about
monitoring and diagnostic tools available with Oracle
Enterprise Manager

« PL/SQL Packages and Types Reference for detailed information on
the DBMS_ADVI SOR, DBM5_SQLTUNE, and DBMS_WORKLQAD _
REPQSI TORY packages

« Oracle Database Reference for information on the STATI STI CS_
LEVEL initialization parameter

1-6 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning Features and Tools

Automatic Performance Tuning Features
The Oracle automatic performance tuning features include:

Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. See
"Automatic Workload Repository"” on page 5-10.

Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by the AWR for possible performance problems with the Oracle
database. See "Automatic Database Diagnostic Monitor" on page 6-3.

SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See "SQL Tuning Advisor" on
page 13-6.

SQLAccess Advisor provides advice on materialized views, indexes, and
materialized view logs. See "SQLAccess Advisor" on page 12-7 and Oracle Data
Warehousing Guide for information on SQLAccess Advisor.

End to End Application tracing identifies excessive workloads on the system by
specific user, service, or application component. See "End to End Application
Tracing" on page 20-2.

Server-generated alerts automatically provide notifications when impending
problems are detected. See Oracle Database Administrator’s Guide for information
about monitoring the operation of the database with server-generated alerts.

Additional advisors that can be launched from Oracle Enterprise Manager, such
as memory advisors to optimize memory for an instance. The memory advisors
are commonly used when automatic memory management is not set up for the
database. Other advisors are used to optimize mean time to recovery (MTTR),
shrinking of segments, and undo tablespace settings. See Oracle Enterprise
Manager Concepts for information on advisors that are available with Oracle
Enterprise Manager.

To access the advisors through Oracle Enterprise Manager Database Control:

« Click the Advisor Central link under Related Links at the bottom of the
Database pages.

« On the Advisor Central page, you can click one of the advisor links.

Oracle Enterprise Manager Performance page displays host, instance service
time, and throughput information for real time monitoring and diagnosis. The
page can be set to refresh automatically in selected intervals or manually. See

Performance Tuning Overview 1-7

Introduction to Performance Tuning Features and Tools

Oracle Enterprise Manager Concepts for information on the Performance page
available with Oracle Enterprise Manager.

Additional Oracle Tools

This section describes additional Oracle tools that can be used for determining
performance problems.

V$ Performance Views

The V$ views are the performance information sources used by all Oracle
performance tuning tools. The V$ views are based on memory structures initialized
at instance startup. The memory structures, and the views that represent them, are
automatically maintained by Oracle throughout the life of the instance. See

Chapter 10, "Instance Tuning Using Performance Views" for information diagnosing
tuning problems using the V$ performance views.

See Also: Oracle Database Reference for information about
dynamic performance views

Note: Oracle recommends using the Automatic Workload
Repository to gather performance data. These tools have been
designed to capture all of the data needed for performance analysis.

1-8 Oracle Database Performance Tuning Guide

Part Il

Performance Planning

Part 11 describes ways to improve Oracle performance by starting with good
application design and using statistics to monitor application performance. It
explains the Oracle Performance Improvement Method, as well as emergency
performance techniques for dealing with performance problems.

The chapters in this part are:
« Chapter 2, "Designing and Developing for Performance”

« Chapter 3, "Performance Improvement Methods"

2

Designing and Developing for Performance

Good system performance begins with design and continues throughout the life of
your system. Carefully consider performance issues during the initial design phase,
and it will be easier to tune your system during production.

This chapter contains the following sections:

Oracle Methodology

Understanding Investment Options
Understanding Scalability

System Architecture

Application Design Principles

Workload Testing, Modeling, and Implementation

Deploying New Applications

Designing and Developing for Performance 2-1

Oracle Methodology

Oracle Methodology

System performance has become increasingly important as computer systems get
larger and more complex and as the Internet plays a bigger role in business
applications. In order to accommodate this, Oracle has produced a performance
methodology based on years of designing and performance experience. This
methodology explains clear and simple activities that can dramatically improve
system performance.

Performance strategies vary in their effectiveness, and systems with different
purposes, such as operational systems and decision support systems, require
different performance skills. This book examines the considerations that any
database designer, administrator, or performance expert should focus their efforts
on.

System performance is designed and built into a system. It does not just happen.
Performance problems are usually the result of contention for, or exhaustion of,
some system resource. When a system resource is exhausted, the system is unable to
scale to higher levels of performance. This new performance methodology is based
on careful planning and design of the database, to prevent system resources from
becoming exhausted and causing down-time. By eliminating resource conflicts,
systems can be made scalable to the levels required by the business.

Understanding Investment Options

With the availability of relatively inexpensive, high-powered processors, memory,
and disk drives, there is a temptation to buy more system resources to improve
performance. In many situations, new CPUs, memory, or more disk drives can
indeed provide an immediate performance improvement. However, any
performance increases achieved by adding hardware should be considered a
short-term relief to an immediate problem. If the demand and load rates on the
application continue to grow, then the chance that you will face the same problem
in the near future is very likely.

In other situations, additional hardware does not improve the system's performance
at all. Poorly designed systems perform poorly no matter how much extra hardware
is allocated. Before purchasing additional hardware, make sure that there is no
serialization or single threading going on within the application. Long-term, it is
generally more valuable to increase the efficiency of your application in terms of the
number of physical resources used for each business transaction.

2-2 Oracle Database Performance Tuning Guide

Understanding Scalability

Understanding Scalability

The word scalability is used in many contexts in development environments. The
following section provides an explanation of scalability that is aimed at application
designers and performance specialists.

What is Scalability?

Scalability is a system’s ability to process more workload, with a proportional
increase in system resource usage. In other words, in a scalable system, if you
double the workload, then the system would use twice as many system resources.
This sounds obvious, but due to conflicts within the system, the resource usage
might exceed twice the original workload.

Examples of bad scalability due to resource conflicts include the following:

Applications requiring significant concurrency management as user
populations increase

Increased locking activities

Increased data consistency workload

Increased operating system workload

Transactions requiring increases in data access as data volumes increase

Poor SQL and index design resulting in a higher number of logical 1/0s for the
same number of rows returned

Reduced availability, because database objects take longer to maintain

An application is said to be unscalable if it exhausts a system resource to the point
where no more throughput is possible when it’s workload is increased. Such
applications result in fixed throughputs and poor response times.

Examples of resource exhaustion include the following:

Hardware exhaustion

Table scans in high-volume transactions causing inevitable disk 1/0 shortages
Excessive network requests, resulting in network and scheduling bottlenecks
Memory allocation causing paging and swapping

Excessive process and thread allocation causing operating system thrashing

Designing and Developing for Performance 2-3

Understanding Scalability

This means that application designers must create a design that uses the same
resources, regardless of user populations and data volumes, and does not put loads
on the system resources beyond their limits.

System Scalability

Applications that are accessible through the Internet have more complex

performance and availability requirements. Some applications are designed and
written only for Internet use, but even typical back-office applications, such as a
general ledger application, might require some or all data to be available online.

Characteristics of Internet age applications include the following:
« Availability 24 hours a day, 365 days a year

« Unpredictable and imprecise number of concurrent users

« Difficulty in capacity planning

« Availability for any type of query

« Multitier architectures

« Stateless middleware

« Rapid development timescale

« Minimal time for testing

Figure 2-1 illustrates the classic workload growth curve, with demand growing at
an increasing rate. Applications must scale with the increase of workload and also
when additional hardware is added to support increasing demand. Design errors
can cause the implementation to reach its maximum, regardless of additional
hardware resources or re-design efforts.

2-4 Oracle Database Performance Tuning Guide

Understanding Scalability

Figure 2-1 Workload Growth Curve

e
©
9
-
S
=
e
a]
=
5
o
)
o

Applications are challenged by very short development timeframes with limited
time for testing and evaluation. However, bad design generally means that at some
point in the future, the system will need to be re-architected or re-implemented. If
an application with known architectural and implementation limitations is
deployed on the Internet, and if the workload exceeds the anticipated demand, then
there is real chance of failure in the future. From a business perspective, poor
performance can mean a loss of customers. If Web users do not get a response in
seven seconds, then the user’s attention could be lost forever.

In many cases, the cost of re-designing a system with the associated downtime costs
in migrating to new implementations exceeds the costs of properly building the
original system. The moral of the story is simple: design and implement with
scalability in mind from the start.

Factors Preventing Scalability

When building applications, designers and architects should aim for as close to
perfect scalability as possible. This is sometimes called linear scalability, where
system throughput is directly proportional to the number of CPUs.

In real life, linear scalability is impossible for reasons beyond a designer’s control.
However, making the application design and implementation as scalable as possible

Designing and Developing for Performance 2-5

Understanding Scalability

should ensure that current and future performance objectives can be achieved
through expansion of hardware components and the evolution of CPU technology.

Factors Preventing Linear Scalability
1. Poor Application Design, Implementation, and Configuration

The application has the biggest impact on scalability. For example:
« Poor schema design can cause expensive SQL that does not scale.
« Poor transaction design can cause locking and serialization problems.

« Poor connection management can cause poor response times and unreliable
systems.

However, the design is not the only problem. The physical implementation of
the application can be the weak link. For example:

« Systems can move to production environments with bad 1/0 strategies.

« The production environment could use different execution plans than those
generated in testing.

« Memory-intensive applications that allocate a large amount of memory
without much thought for freeing the memory at runtime can cause
excessive memory usage.

« Inefficient memory usage and memory leaks put a high stress on the
operating virtual memory subsystem. This impacts performance and
availability.

2. Incorrect Sizing of Hardware Components

Bad capacity planning of all hardware components is becoming less of a
problem as relative hardware prices decrease. However, too much capacity can
mask scalability problems as the workload is increased on a system.

3. Limitations of Software Components

All software components have scalability and resource usage limitations. This
applies to application servers, database servers, and operating systems.
Application design should not place demands on the software beyond what it
can handle.

4. Limitations of Hardware Components

Hardware is not perfectly scalable. Most multiprocessor machines can get close
to linear scaling with a finite number of CPUs, but after a certain point each

2-6 Oracle Database Performance Tuning Guide

System Architecture

additional CPU can increase performance overall, but not proportionately.
There might come a time when an additional CPU offers no increase in
performance, or even degrades performance. This behavior is very closely
linked to the workload and the operating system setup.

Note: These factors are based on Oracle Server Performance
group’s experience of tuning unscalable systems.

System Architecture
There are two main parts to a system’s architecture:
« Hardware and Software Components

« Configuring the Right System Architecture for Your Requirements

Hardware and Software Components
This section discusses hardware and software components.

Hardware Components

Today’s designers and architects are responsible for sizing and capacity planning of
hardware at each tier in a multitier environment. It is the architect's responsibility to
achieve a balanced design. This is analogous to a bridge designer who must
consider all the various payload and structural requirements for the bridge. A
bridge is only as strong as its weakest component. As a result, a bridge is designed
in balance, such that all components reach their design limits simultaneously.

The main hardware components are the following:

« CPU

« Memory

« |/0 Subsystem

« Network

CPU There can be one or more CPUs, and they can vary in processing power from
simple CPUs found in hand-held devices to high-powered server CPUs. Sizing of

other hardware components is usually a multiple of the CPUs on the system. See
Chapter 9, "Understanding Operating System Resources".

Designing and Developing for Performance 2-7

System Architecture

Memory Database and application servers require considerable amounts of memory
to cache data and avoid time-consuming disk access. See Chapter 7, "Memory
Configuration and Use".

I/0 Subsystem The 1/0 subsystem can vary between the hard disk on a client PC and
high performance disk arrays. Disk arrays can perform thousands of 1/0s each
second and provide availability through redundancy in terms of multiple 1/0 paths
and hot pluggable mirrored disks. See Chapter 8, "I/O Configuration and Design".

Network All computers in a system are connected to a network, from a modem line
to a high speed internal LAN. The primary concerns with network specifications are
bandwidth (volume) and latency (speed). See Chapter 11, "Tuning Networks".

Software Components

The same way computers have common hardware components, applications have
common functional components. By dividing software development into functional
components, it is possible to comprehend the application design and architecture
better. Some components of the system are performed by existing software bought
to accelerate application implementation or to avoid re-development of common
components.

The difference between software components and hardware components is that
while hardware components only perform one task, a piece of software can perform
the roles of various software components. For example, a disk drive only stores and
retrieves data, but a client program can manage the user interface and perform
business logic.

Most applications involve the following components:

« Managing the User Interface

« Implementing Business Logic

« Managing User Requests and Resource Allocation

« Managing Data and Transactions

Managing the User Interface This component is the most visible to application users.
This includes the following functions:

« Painting the screen in front of the user

« Collecting user data and transferring it to business logic

« Validating data entry

2-8 Oracle Database Performance Tuning Guide

System Architecture

« Navigating through levels or states of the application

Implementing Business Logic This component implements core business rules that are
central to the application function. Errors made in this component could be very
costly to repair. This component is implemented by a mixture of declarative and
procedural approaches. An example of a declarative activity is defining unique and
foreign keys. An example of procedure-based logic is implementing a discounting
strategy.

Common functions of this component include the following:

« Moving a data model to a relational table structure

« Defining constraints in the relational table structure

« Coding procedural logic to implement business rules

Managing User Requests and Resource Allocation This component is implemented in all

pieces of software. However, there are some requests and resources that can be
influenced by the application design and some that cannot.

In a multiuser application, most resource allocation by user requests are handled by
the database server or the operating system. However, in a large application where
the number of users and their usage pattern is unknown or growing rapidly, the
system architect must be proactive to ensure that no single software component
becomes overloaded and unstable.

Common functions of this component include the following:

« Connection management with the database

« Executing SQL efficiently (cursors and SQL sharing)

« Managing client state information

« Balancing the load of user requests across hardware resources

« Setting operational targets for hardware/software components

« Persistent queuing for asynchronous execution of tasks

Managing Data and Transactions This component is largely the responsibility of the
database server and the operating system.

Common functions of this component include the following:

« Providing concurrent access to data using locks and transactional semantics

« Providing optimized access to the data using indexes and memory cache

Designing and Developing for Performance 2-9

System Architecture

« Ensuring that data changes are logged in the event of a hardware failure

« Enforcing any rules defined for the data

Configuring the Right System Architecture for Your Requirements

Configuring the initial system architecture is a largely iterative process. Architects
must satisfy the system requirements within budget and schedule constraints. If the
system requires interactive users transacting business or making decisions based on
the contents of a database, then user requirements drive the architecture. If there are
few interactive users on the system, then the architecture is process-driven.

Examples of interactive user applications:

« Accounting and bookkeeping applications
« Order entry systems

« Email servers

« Web-based retail applications

« Trading systems

Examples of process-driven applications:

« Utility billing systems

« Fraud detection systems

« Direct mail

In many ways, process-driven applications are easier to design than multiuser
applications because the user interface element is eliminated. However, because the
objectives are process-oriented, architects not accustomed to dealing with large data
volumes and different success factors can become confused. Process-driven
applications draw from the skills sets used in both user-based applications and data
warehousing. Therefore, this book focuses on evolving system architectures for
interactive users.

Note: Generating a system architecture is not a deterministic
process. It requires careful consideration of business requirements,
technology choices, existing infrastructure and systems, and actual
physical resources, such as budget and manpower.

2-10 Oracle Database Performance Tuning Guide

System Architecture

The following questions should stimulate thought on architecture, though they are
not a definitive guide to system architecture. These questions demonstrate how
business requirements can influence the architecture, ease of implementation, and
overall performance and availability of a system. For example:

« How many users will the system support?

Most applications fall into one of the following categories:

Very few users on a lightly-used or exclusive machine

For this type of application, there is usually one user. The focus of the
application design is to make the single user as productive as possible by
providing good response time, yet make the application require minimal
administration. Users of these applications rarely interfere with each other
and have minimal resource conflicts.

A medium to large number of users in a corporation using shared
applications

For this type of application, the users are limited by the number of
employees in the corporation actually transacting business through the
system. Therefore, the number of users is predictable. However, delivering
a reliable service is crucial to the business. The users will be using a shared
resource, so design efforts must address response time under heavy system
load, escalation of resource for each session usage, and room for future
growth.

An infinite user population distributed on the Internet

For this type of application, extra engineering effort is required to ensure
that no system component exceeds its design limits. This would create a
bottleneck that brings the system to a halt and becomes unstable. These
applications require complex load balancing, stateless application servers,
and efficient database connection management. In addition, statistics and
governors should be used to ensure that the user gets some feedback if their
requests cannot be satisfied due to system overload.

« What will be the user interaction method?

The choices of user interface range from a simple Web browser to a custom
client program.

=« Where are the users located?

Designing and Developing for Performance 2-11

System Architecture

The distance between users influences how the application is engineered to
cope with network latencies. The location also affects which times of the day are
busy, when it is impossible to perform batch or system maintenance functions.

« What is the network speed?

Network speed affects the amount of data and the conversational nature of the
user interface with the application and database servers. A highly
conversational user interface can communicate with back-end servers on every
key stroke or field level validation. A less conversational interface works on a
screen-sent and a screen-received model. On a slow network, it is impossible to
get good data entry speeds with a highly conversational user interface.

« How much data will the user access, and how much of that data is largely read
only?

The amount of data queried online influences all aspects of the design, from
table and index design to the presentation layers. Design efforts must ensure
that user response time is not a function of the size of the database. If the
application is largely read only, then replication and data distribution to local
caches in the application servers become a viable option. This also reduces
workload on the core transactional server.

« What is the user response time requirement?

Consideration of the user type is important. If the user is an executive who
requires accurate information to make split second decisions, then user
response time cannot be compromised. Other types of users, such as users
performing data entry activities, might not need such a high level of
performance.

« Do users expect 24 hour service?

This is mandatory for today's Internet applications where trade is conducted 24
hours a day. However, corporate systems that run in a single time zone might
be able to tolerate after-hours downtime. This after-hours downtime can be
used to run batch processes or to perform system administration. In this case, it
might be more economic not to run a fully-available system.

« Must all changes be made in real time?

It is important to determine if transactions need to be executed within the user
response time, or if they can they be queued for asynchronous execution.

The following are secondary questions, which can also influence the design, but
really have more impact on budget and ease of implementation. For example:

2-12 Oracle Database Performance Tuning Guide

Application Design Principles

How big will the database be?

This influences the sizing of the database server machine. On systems with a
very large database, it might be necessary to have a bigger machine than
dictated by the workload. This is because the administration overhead with
large databases is largely a function of the database size. As tables and indexes
grow, it takes proportionately more CPUs to allow table reorganizations and
index builds to complete in an acceptable time limit.

What is the required throughput of business transactions?
What are the availability requirements?
Do skills exist to build and administer this application?

What compromises will be forced by budget constraints?

Application Design Principles

This section describes design decisions that are involved in building applications.

Simplicity In Application Design
Applications are no different than any other designed and engineered product.
Well-designed structures, machines, and tools are usually reliable, easy to use and
maintain, and simple in concept. In the most general terms, if the design looks right,
then it probably is right. This principle should always be kept in mind when
building applications.

Consider some of the following design issues:

If the table design is so complicated that nobody can fully understand it, then
the table is probably designed badly.

If SQL statements are so long and involved that it would be impossible for any
optimizer to effectively optimize it in real time, then there is probably a bad
statement, underlying transaction, or table design.

If there are indexes on a table and the same columns are repeatedly indexed,
then there is probably a bad index design.

If queries are submitted without suitable qualification for rapid response for
online users, then there is probably a bad user interface or transaction design.

Designing and Developing for Performance 2-13

Application Design Principles

« If the calls to the database are abstracted away from the application logic by
many layers of software, then there is probably a bad software development
method.

Data Modeling

Data modeling is important to successful relational application design. This should
be done in a way that quickly represents the business practices. Chances are, there
will be heated debates about the correct data model. The important thing is to apply
greatest modeling efforts to those entities affected by the most frequent business
transactions. In the modeling phase, there is a great temptation to spend too much
time modeling the non-core data elements, which results in increased development
lead times. Use of modeling tools can then rapidly generate schema definitions and
can be useful when a fast prototype is required.

Table and Index Design

Table design is largely a compromise between flexibility and performance of core
transactions. To keep the database flexible and able to accommodate unforeseen
workloads, the table design should be very similar to the data model, and it should
be normalized to at least 3rd normal form. However, certain core transactions
required by users can require selective denormalization for performance purposes.

Examples of this technique include storing tables pre-joined, the addition of derived
columns, and aggregate values. Oracle provides numerous options for storage of
aggregates and pre-joined data by clustering and materialized view functions.
These features allow a simpler table design to be adopted initially.

Again, focus and resources should be spent on the business critical tables, so that
good performance can be achieved. For non-critical tables, shortcuts in design can
be adopted to enable a more rapid application development. If, however, in
prototyping and testing a non-core table becomes a performance problem, then
remedial design effort should be applied immediately.

Index design is also a largely iterative process, based on the SQL generated by
application designers. However, it is possible to make a sensible start by building
indexes that enforce primary key constraints and indexes on known access patterns,
such as a person's name. As the application evolves and testing is performed on
realistic sizes of data, certain queries will need performance improvements for
which building a better index is a good solution. The following list of indexing
design ideas should be considered when building a new index:

« Appending Columns to an Index or Using Index-Organized Tables

2-14 Oracle Database Performance Tuning Guide

Application Design Principles

« Using a Different Index Type
« Finding the Cost of an Index
« Serializing within Indexes

« Ordering Columns in an Index

Appending Columns to an Index or Using Index-Organized Tables

One of the easiest ways to speed up a query is to reduce the number of logical 1/0s
by eliminating a table access from the execution plan. This can be done by
appending to the index all columns referenced by the query. These columns are the
select list columns and any required join or sort columns. This technique is
particularly useful in speeding up online applications response times when
time-consuming 1/0s are reduced. This is best applied when testing the application
with properly sized data for the first time.

The most aggressive form of this technique is to build an index-organized table
(10T). However, you must be careful that the increased leaf size of an IOT does not
undermine the efforts to reduce 1/0.

Using a Different Index Type

There are several index types available, and each index has benefits for certain
situations. The following list gives performance ideas associated with each index

type.

B-Tree Indexes These are the standard index type, and they are excellent for primary
key and highly-selective indexes. Used as concatenated indexes, B-tree indexes can
be used to retrieve data sorted by the index columns.

Bitmap Indexes These are suitable for low cardinality data. Through compression
techniques, they can generate a large number of rowids with minimal 1/0.
Combining bitmap indexes on non-selective columns allows efficient AND and OR
operations with a great number of rowids with minimal I/0. Bitmap indexes are
particularly efficient in queries with COUNT(), because the query can be satisfied
within the index.

Function-based Indexes These indexes allow access through a B-tree on a value
derived from a function on the base data. Function-based indexes have some
limitations with regards to the use of nulls, and they require that you have the
guery optimizer enabled.

Designing and Developing for Performance 2-15

Application Design Principles

Function-based indexes are particularly useful when querying on composite
columns to produce a derived result or to overcome limitations in the way data is
stored in the database. An example of this is querying for line items in an order
exceeding a certain value derived from (sales price - discount) x quantity, where
these were columns in the table. Another example is to apply the UPPER function to
the data to allow case-insensitive searches.

Partitioned Indexes Partitioning a global index allows partition pruning to take place
within an index access, which results in reduced 1/0s. By definition of good range
or list partitioning, fast index scans of the correct index partitions can result in very
fast query times.

Reverse Key Indexes These are designed to eliminate index hot spots on insert
applications. These indexes are excellent for insert performance, but they are
limited in that they cannot be used for index range scans.

Finding the Cost of an Index

Building and maintaining an index structure can be expensive, and it can consume
resources such as disk space, CPU, and 1/0 capacity. Designers must ensure that
the benefits of any index outweigh the negatives of index maintenance.

Use this simple estimation guide for the cost of index maintenance: Each index
maintained by an | NSERT, DELETE, or UPDATE of the indexed keys requires about
three times as much resource as the actual DML operation on the table. What this
means is that if you | NSERT into a table with three indexes, then it will be
approximately 10 times slower than an | NSERT into a table with no indexes. For
DML, and particularly for | NSERT-heavy applications, the index design should be
seriously reviewed, which might require a compromise between the query and

| NSERT performance.

See Also: Oracle Database Administrator's Guide for information on
monitoring index usage

Serializing within Indexes

Use of sequences, or timestamps, to generate key values that are indexed
themselves can lead to database hotspot problems, which affect response time and
throughput. This is usually the result of a monotonically growing key that results in
a right-growing index. To avoid this problem, try to generate keys that insert over
the full range of the index. This results in a well-balanced index that is more
scalable and space efficient. You can achieve this by using a reverse key index or
using a cycling sequence to prefix and sequence values.

2-16 Oracle Database Performance Tuning Guide

Application Design Principles

Using Views

Ordering Columns in an Index

Designers should be flexible in defining any rules for index building. Depending on
your circumstances, use one of the following two ways to order the keys in an
index:

1. Order columns with most selectivity first. This method is the most commonly
used, because it provides the fastest access with minimal 1/0 to the actual
rowids required. This technique is used mainly for primary keys and for very
selective range scans.

2. Order columns to reduce 1/0 by clustering or sorting data. In large range scans,
1/0s can usually be reduced by ordering the columns in the least selective
order, or in a manner that sorts the data in the way it should be retrieved. See
Chapter 16, "Using Indexes and Clusters".

Views can speed up and simplify application design. A simple view definition can
mask data model complexity from the programmers whose priorities are to retrieve,
display, collect, and store data.

However, while views provide clean programming interfaces, they can cause
sub-optimal, resource-intensive queries. The worst type of view use is when a view
references other views, and when they are joined in queries. In many cases,
developers can satisfy the query directly from the table without using a view.
Usually, because of their inherent properties, views make it difficult for the
optimizer to generate the optimal execution plan.

SQL Execution Efficiency

In the design and architecture phase of any system development, care should be
taken to ensure that the application developers understand SQL execution
efficiency. To do this, the development environment must support the following
characteristics:

« Good Database Connection Management

Connecting to the database is an expensive operation that is highly unscalable.
Therefore, the number of concurrent connections to the database should be
minimized as much as possible. A simple system, where a user connects at
application initialization, is ideal. However, in a Web-based or multitiered
application, where application servers are used to multiplex database
connections to users, this can be difficult. With these types of applications,

Designing and Developing for Performance 2-17

Application Design Principles

design efforts should ensure that database connections are pooled and are not
reestablished for each user request.

« Good Cursor Usage and Management

Maintaining user connections is equally important to minimizing the parsing
activity on the system. Parsing is the process of interpreting a SQL statement
and creating an execution plan for it. This process has many phases, including
syntax checking, security checking, execution plan generation, and loading
shared structures into the shared pool. There are two types of parse operations:

« Hard Parsing: A SQL statement is submitted for the first time, and no
match is found in the shared pool. Hard parses are the most
resource-intensive and unscalable, because they perform all the operations
involved in a parse.

« Soft Parsing: A SQL statement is submitted for the first time, and a match is
found in the shared pool. The match can be the result of previous execution
by another user. The SQL statement is shared, which is good for
performance. However, soft parses are not ideal, because they still require
syntax and security checking, which consume system resources.

Because parsing should be minimized as much as possible, application
developers should design their applications to parse SQL statements once and
execute them many times. This is done through cursors. Experienced SQL
programmers should be familiar with the concept of opening and re-executing
cursors.

Application developers must also ensure that SQL statements are shared within
the shared pool. To do this, bind variables to represent the parts of the query
that change from execution to execution. If this is not done, then the SQL
statement is likely to be parsed once and never re-used by other users. To
ensure that SQL is shared, use bind variables and do not use string literals with
SQL statements. For example:

Statement with string literals:

SELECT * FROM enpl oyees
WHERE | ast_nane LIKE 'KING ;

Statement with bind variables:

SELECT * FROM enpl oyees
WHERE | ast _name LIKE :1;

2-18 Oracle Database Performance Tuning Guide

Application Design Principles

The following example shows the results of some tests on a simple OLTP

application:

Test #Users Supported
No Parsing all statements 270

Soft Parsing all statements 150

Hard Parsing all statenments 60

Re- Connecting for each Transaction 30

These tests were performed on a four-CPU machine. The differences increase as
the number of CPUs on the system increase. See Chapter 12, "SQL Tuning
Overview" for information on optimizing SQL statements.

Implementing the Application

The choice of development environment and programming language is largely a
function of the skills available in the development team and architectural decisions
made when specifying the application. There are, however, some simple
performance management rules that can lead to scalable, high-performance
applications.

1. Choose a development environment suitable for software components, and do
not let it limit your design for performance decisions. If it does, then you
probably chose the wrong language or environment.

« User Interface

The programming model can vary between HTML generation and calling
the windowing system directly. The development method should focus on
response time of the user interface code. If HTML or Java is being sent over
a network, then try to minimize network volume and interactions.

« Business Logic

Interpreted languages, such as Java and PL/SQL, are ideal to encode
business logic. They are fully portable, which makes upgrading logic
relatively easy. Both languages are syntactically rich to allow code that is
easy to read and interpret. If business logic requires complex mathematical
functions, then a compiled binary language might be needed. The business
logic code can be on the client machine, the application server, and the
database server. However, the application server is the most common
location for business logic.

« User Requests and Resource Allocation

Designing and Developing for Performance 2-19

Application Design Principles

Most of this is not affected by the programming language, but tools and 4th
generation languages that mask database connection and cursor
management might use inefficient mechanisms. When evaluating these
tools and environments, check their database connection model and their
use of cursors and bind variables.

« Data Management and Transactions
Most of this is not affected by the programming language.

2. When implementing a software component, implement its function and not the
functionality associated with other components. Implementing another
component’s functionality results in sub-optimal designs and implementations.
This applies to all components.

3. Do not leave gaps in functionality or have software components
under-researched in design, implementation, or testing. In many cases, gaps are
not discovered until the application is rolled out or tested at realistic volumes.
This is usually a sign of poor architecture or initial system specification. Data
archival/purge modules are most frequently neglected during initial system
design, build, and implementation.

4. When implementing procedural logic, implement in a procedural language,
such as C, Java, PL/SQL. When implementing data access (queries) or data
changes (DML), use SQL. This rule is specific to the business logic modules of
code where procedural code is mixed with data access (non-procedural SQL)
code. There is great temptation to put procedural logic into the SQL access. This
tends to result in poor SQL that is resource-intensive. SQL statements with
DECQODE case statements are very often candidates for optimization, as are
statements with a large amount of OR predicates or set operators, such as UNI ON
and M NUS.

5. Cache frequently accessed, rarely changing data that is expensive to retrieve on
a repeated basis. However, make this cache mechanism easy to use, and ensure
that it is really cheaper than accessing the data in the original method. This is
applicable to all modules where frequently used data values should be cached
or stored locally, rather than be repeatedly retrieved from a remote or expensive
data store.

The most common examples of candidates for local caching include the
following:

« Today's date. SELECT SYSDATE FROMDUAL can account for over 60% of the
workload on a database.

. The current user name.

2-20 Oracle Database Performance Tuning Guide

Application Design Principles

« Repeated application variables and constants, such as tax rates, discounting
rates, or location information.

« Caching data locally can be further extended into building a local data
cache into the application server middle tiers. This helps take load off the
central database servers. However, care should be taken when constructing
local caches so that they do not become so complex that they cease to give a
performance gain.

« Local sequence generation.

The design implications of using a cache should be considered. For example, if
a user is connected at midnight and the date is cached, then the date value he
has becomes invalid.

6. Optimize the interfaces between components, and ensure that all components
are used in the most scalable configuration. This rule requires minimal
explanation and applies to all modules and their interfaces.

7. Use foreign key references. Enforcing referential integrity through an
application is expensive. You can maintain a foreign key reference by selecting
the column value of the child from the parent and ensuring that it exists. The
foreign key constraint enforcement supplied by Oracle, which does not use
SQL, is fast, easy to declare, and does not create network traffic.

8. Consider setting up action and module names in the application to use with
End to End Application Tracing. This allows greater flexibility in tracing
workload problems. See "End to End Application Tracing" on page 20-2.

Trends in Application Development

The two biggest challenges in application development today are the increased use
of Java to replace compiled C or C++ applications, and increased use of
object-oriented techniques, influencing the schema design.

Java provides better portability of code and availability to programmers. However,
there are a number of performance implications associated with Java. Because Java
is an interpreted language, it is slower at executing similar logic than compiled
languages such as C. As a result, resource usage of client machines increases. This
requires more powerful CPUs to be applied in the client or middle-tier machines
and greater care from programmers to produce efficient code.

Because Java is an object-oriented language, it encourages insulation of data access
into classes not performing the business logic. As a result, programmers might
invoke methods without knowledge of the efficiency of the data access method

Designing and Developing for Performance 2-21

Workload Testing, Modeling, and Implementation

being used. This tends to result in database access that is very minimal and uses the
simplest and crudest interfaces to the database.

With this type of software design, queries do not always include all the WHERE
predicates to be efficient, and row filtering is performed in the Java program. This is
very inefficient. In addition, for DML operations, and especially for | NSERTSs, single
| NSERTSs are performed, making use of the array interface impossible. In some
cases, this is made more inefficient by procedure calls. More resources are used
moving the data to and from the database than in the actual database calls.

In general, it is best to place data access calls next to the business logic to achieve
the best overall transaction design.

The acceptance of object-orientation at a programming level has led to the creation
of object-oriented databases within the Oracle Server. This has manifested itself in
many ways, from storing object structures within BLOBs and only using the
database effectively as an indexed card file to the use of the Oracle object relational
features.

If you adopt an object-oriented approach to schema design, then make sure that you
do not lose the flexibility of the relational storage model. In many cases, the
object-oriented approach to schema design ends up in a heavily denormalized data
structure that requires considerable maintenance and REF pointers associated with
objects. Often, these designs represent a step backward to the hierarchical and
network database designs that were replaced with the relational storage method.

In summary, if you are storing your data in your database for the long-term and
you anticipate a degree of ad hoc queries or application development on the same
schema, then you will probably find that the relational storage method gives the
best performance and flexibility.

Workload Testing, Modeling, and Implementation

Sizing Data

This section describes workload estimation, modeling, implementation, and testing.

You could experience errors in your sizing estimates when dealing with variable
length data if you work with a poor sample set. Also, as data volumes grow, your
key lengths could grow considerably, altering your assumptions for column sizes.

When the system becomes operational it becomes harder to predict database
growth, especially that of indexes. Tables grow over time, and indexes are subject to
the individual behavior of the application in terms of key generation, insertion

2-22 Oracle Database Performance Tuning Guide

Workload Testing, Modeling, and Implementation

pattern, and deletion of rows. The worst case is where you insert using an
ascending key and then delete most rows from the left-hand side but not all the
rows. This leaves gaps and wasted space. If you have index use like this make sure
that you know how to use the online index rebuild facility.

Most good DBAs monitor space allocation for each object and look for objects that
could grow out of control. A good understanding of the application can highlight
objects that could grow rapidly or unpredictably. This is a crucial part of both
performance and availability planning for any system. When implementing the
production database, the design should attempt to ensure that minimal space
management takes place when interactive users are using the application. This
applies for all data, temp, and rollback segments.

Estimating Workloads

Estimation of workloads for capacity planning and testing purposes is often
described as a black art. When considering the number of variables involved it is
easy to see why this process is largely impossible to get precisely correct. However,
designers need to specify machines with CPUs, memory, and disk drives, and
eventually roll out an application. There are a number of techniques used for sizing,
and each technique has merit. When sizing, it is best to use at least two methods to
validate your decision-making process and provide supporting documentation.

Extrapolating From a Similar System

This is an entirely empirical approach where an existing system of similar
characteristics and known performance is used as a basis system. The specification
of this system is then modified by the sizing specialist according to the known
differences. This approach has merit in that it correlates with an existing system, but
it provides little assistance when dealing with the differences.

This approach is used in nearly all large engineering disciplines when preparing the
cost of an engineering project be it a large building, a ship, a bridge, or an oil rig. If
the reference system is an order of magnitude different in size from the anticipated
system, then some of the components could have exceeded their design limits.

Benchmarking

The benchmarking process is both resource and time consuming, and it might not
get the correct results. By simulating in a benchmark an application in early
development or prototype form, there is a danger of measuring something that has
no resemblance to the actual production system. This sounds strange, but over the
many years of benchmarking customer applications with the database development

Designing and Developing for Performance 2-23

Workload Testing, Modeling, and Implementation

organization, we have yet to see good correlation between the benchmark
application and the actual production system. This is mainly due to the number of
application inefficiencies introduced in the development process.

However, benchmarks have been used successfully to size systems to an acceptable
level of accuracy. In particular, benchmarks are very good at determining the actual
170 requirements and testing recovery processes when a system is fully loaded.

Benchmarks by their nature stress all system components to their limits. As all
components are being stressed be prepared to see all errors in application design
and implementation manifest themselves while benchmarking. Benchmarks also
test database, operating system, and hardware components. Because most
benchmarks are performed in a rush, expect setbacks and problems when a system
component fails. Benchmarking is a stressful activity, and it takes considerable
experience to get the most out of a benchmarking exercise.

Application Modeling

Modeling the application can range from complex mathematical modeling exercises
to the classic simple calculations performed on the back of an envelope. Both
methods have merit, with one attempting to be very precise and the other making
gross estimates. The down side of both methods is that they do not allow for
implementation errors and inefficiencies.

The estimation and sizing process is an imprecise science. However, by
investigating the process, some intelligent estimates can be made. The whole
estimation process makes no allowances for application inefficiencies introduced by
writing bad SQL, poor index design, or poor cursor management. A good sizing
engineer builds in margin for application inefficiencies. A good performance
engineer discovers the inefficiencies and makes the estimates look realistic. The
process of discovering the application inefficiencies is described in the Oracle
performance method.

Testing, Debugging, and Validating a Design
The testing process mainly consists of functional and stability testing. At some point
in the process, performance testing is performed.

The following list describes some simple rules for performance testing an
application. If correctly documented, this provides important information for the
production application and the capacity planning process after the application has
gone live.

2-24 Oracle Database Performance Tuning Guide

Workload Testing, Modeling, and Implementation

Use the Automatic Database Diagnostic Monitor (ADDM) and the SQL Tuning
Advisor for design validation.

Test with realistic data volumes and distributions.

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume
and cardinality between tables. All the production indexes should be built and
the schema statistics should be populated correctly.

Use the correct optimizer mode.

All testing should be performed with the optimizer mode that will be used in
production. All Oracle research and development effort is focused upon the
guery optimizer, and therefore Oracle Corporation recommends the use of the
guery optimizer.

Test a single user performance.

A single user on an idle or lightly used system should be tested for acceptable
performance. If a single user cannot get acceptable performance under ideal
conditions, it is impossible there will be good performance under multiple users
where resources are shared.

Obtain and document plans for all SQL statements.

Obtain an execution plan for each SQL statement, and some metrics should be
obtained for at least one execution of the statement. This process should be used
to validate that a good execution plan is being obtained by the optimizer and
the relative cost of the SQL statement is understood in terms of CPU time and
physical 1/0s. This process assists in identifying the heavy use transactions that
will require the most tuning and performance work in the future. See

Chapter 18, "Using Plan Stability" for information on plan stability.

Attempt multiuser testing.

This process is difficult to perform accurately, because user workload and
profiles might not be fully quantified. However, transactions performing DML
statements should be tested to ensure that there are no locking conflicts or
serialization problems.

Test with the correct hardware configuration.

It is important to test with a configuration as close to the production system as
possible. This is particularly important with respect to network latencies, 1/0
sub-system bandwidth and processor type and speed. A failure to do this could
result in an incorrect analysis of potential performance problems.

Designing and Developing for Performance 2-25

Deploying New Applications

« Measure steady state performance.

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where
users are connected to the application and gradually start performing work on
the application. This process allows for frequently cached data to be initialized
into the cache and single execution operations, such as parsing, to be completed
prior to the steady state condition. Likewise, at the end of a benchmark run,
there should be a ramp-down period, where resources are freed from the
system and users cease work and disconnect.

Deploying New Applications

This section describes the design decisions involved in deploying applications.

Rollout Strategies
When new applications are rolled out, two strategies are commonly adopted:

« Big Bang Approach - All users migrate to the new system at once.
« Trickle Approach - Users slowly migrate from existing systems to the new one.

Both approaches have merits and disadvantages. The Big Bang approach relies on
good testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is
simply switched off. The Trickle approach allows debugging of scalability issues as
the workload increases, but might mean that data needs to be migrated to and from
legacy systems as the transition takes place.

It is hard to recommend one approach over the other, because each method has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced
to the new application and allows the system to be reconfigured only affecting the
migrated users. This approach affects the work of the early adopters, but limits the
load on support services. This means that unscheduled outages only affect a small
percentage of the user population.

The decision on how to roll out a new application is specific to each business. The
approach adopted will have its own unique pressures and stresses. The more
testing and knowledge derived from the testing process, the more you will realize
what is best for the rollout.

2-26 Oracle Database Performance Tuning Guide

Deploying New Applications

Performance Checklist

To assist in the rollout process, build a list of tasks that, if performed correctly,
increase the chance of good performance in production and, if there is a problem,
enable rapid debugging of the application. For example:

1.

When you create the control file for the production database, allow for growth
by setting MAXI NSTANCES, MAXDATAFI LES, MAXLOGFI LES, MAXL OGVEMBERS,
and MAXLOGHI STORY to values higher than what you anticipate for the rollout.
This results in more disk space usage and bigger control files, but saves time
later should these need extension in an emergency.

Set block size to that used to develop the application. Export the schema
statistics from the development/test environment to the production database if
the testing was done on representative data volumes and the current SQL
execution plans are correct.

Set the minimal number of initialization parameters. Ideally, most other
parameters should be left at default. If there is more tuning to perform, this
shows up when the system is under load. See Chapter 4, "Configuring a
Database for Performance” for information on parameter settings in an initial
instance configuration.

Be prepared to manage block contention by setting storage options of database
objects. Tables and indexes that experience high | NSERT/UPDATE/DELETE
rates should be created with automatic segment space management. To avoid
contention of rollback segments, automatic undo management should be used.
See Chapter 4, "Configuring a Database for Performance” for information on
undo and temporary segments.

All SQL statements should be verified to be optimal and their resource usage
understood.

Validate that middleware and programs that connect to the database are
efficient in their connection management and do not logon/logoff repeatedly.

Validate that the SQL statements use cursors efficiently. Each SQL statement
should be parsed once and then executed multiple times. The most common
reason this does not happen is because bind variables are not used properly and
VWHERE clause predicates are sent as string literals. If the precompilers are used
to develop the application, then make sure that the parameters
MAXOPENCURSORS, HOLD CURSOR, and RELEASE_CURSOR have been reset
from the default values prior to precompiling the application.

Designing and Developing for Performance 2-27

Deploying New Applications

8. Validate that all schema objects have been correctly migrated from the
development environment to the production database. This includes tables,
indexes, sequences, triggers, packages, procedures, functions, java objects,
synonyms, grants, and views. Ensure that any modifications made in testing are
made to the production system.

9. As soon as the system is rolled out, establish a baseline set of statistics from the
database and operating system. This first set of statistics validates or corrects
any assumptions made in the design and rollout process.

Start anticipating the first bottleneck (there will always be one) and follow the
Oracle performance method to make performance improvement.

2-28 Oracle Database Performance Tuning Guide

3

Performance Improvement Methods

This chapter discusses Oracle improvement methods.
This chapter contains the following sections:
« The Oracle Performance Improvement Method

« Emergency Performance Methods

Performance Improvement Methods 3-1

The Oracle Performance Improvement Method

The Oracle Performance Improvement Method

Oracle performance methodology helps you to pinpoint performance problems in
your Oracle system. This involves identifying bottlenecks and fixing them. It is
recommended that changes be made to a system only after you have confirmed that
there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the
first bottleneck might not lead to performance improvement immediately, because
another bottleneck might be revealed. Also, in some cases, if serialization points
move to a more inefficient sharing mechanism, then performance could degrade.
With experience, and by following a rigorous method of bottleneck elimination,
applications can be debugged and made scalable.

Performance problems generally result from either a lack of throughput,
unacceptable user/job response time, or both. The problem might be localized
between application modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get
feedback from the most important components of the system: the users of the
system and the people ultimately paying for the application. Typical user feedback
includes statements like the following:

« "The online performance is so bad that it prevents my staff from doing their
jobs."

« "The billing run takes too long."

= "When | experience high amounts of Web traffic, the response time becomes
unacceptable, and | am losing customers."

« "l'am currently performing 5000 trades a day, and the system is maxed out.
Next month, we roll out to all our users, and the number of trades is expected to
qguadruple."

From candid feedback, it is easy to set critical success factors for any performance
work. Determining the performance targets and the performance engineer's exit
criteria make managing the performance process much simpler and more successful
at all levels. These critical success factors are better defined in terms of real business
goals rather than system statistics.

Some real business goals for these typical user statements might be:
« "The billing run must process 1,000,000 accounts in a three-hour window."

« "Atapeak period on a Web site, the response time will not exceed five seconds
for a page refresh."

3-2 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

« "The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The
performance engineer’s role is to eliminate any bottlenecks that degrade
performance. These bottlenecks could be caused by inefficient use of limited shared
resources or by abuse of shared resources, causing serialization. Because all shared
resources are limited, the goal of a performance engineer is to maximize the number
of business operations with efficient use of shared resources. At a very high level,
the entire database server can be seen as a shared resource. Conversely, at a low
level, a single CPU or disk can be seen as shared resources.

The Oracle performance improvement method can be applied until performance
goals are met or deemed impossible. This process is highly iterative, and it is
inevitable that some investigations will be made that have little impact on the
performance of the system. It takes time and experience to develop the necessary
skills to accurately pinpoint critical bottlenecks in a timely manner. However, prior
experience can sometimes work against the experienced engineer who neglects to
use the data and statistics available to him. It is this type of behavior that
encourages database tuning by myth and folklore. This is a very risky, expensive,
and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the
performance improvement method and analyzes statistics to provide automatic
diagnosis of major performance issues. Using ADDM can significantly shorten the
time required to improve the performance of a system. See Chapter 6, "Automatic
Performance Diagnostics” for a description of ADDM.

Today's systems are so different and complex that hard and fast rules for
performance analysis cannot be made. In essence, the Oracle performance
improvement method defines a way of working, but not a definitive set of rules.
With bottleneck detection, the only rule is that there are no rules! The best
performance engineers use the data provided and think laterally to determine
performance problems.

Steps in The Oracle Performance Improvement Method
1. Perform the following initial standard checks:

a. Get candid feedback from users. Determine the performance project’s scope
and subsequent performance goals, as well as performance goals for the
future. This process is key in future capacity planning.

b. Geta full set of operating system, database, and application statistics from
the system when the performance is both good and bad. If these are not

Performance Improvement Methods 3-3

The Oracle Performance Improvement Method

available, then get whatever is available. Missing statistics are analogous to
missing evidence at a crime scene: They make detectives work harder and it
is more time-consuming.

c. Sanity-check the operating systems of all machines involved with user
performance. By sanity-checking the operating system, you look for
hardware or operating system resources that are fully utilized. List any
over-used resources as symptoms for analysis later. In addition, check that
all hardware shows no errors or diagnostics.

2. Check for the top ten most common mistakes with Oracle, and determine if any
of these are likely to be the problem. List these as symptoms for later analysis.
These are included because they represent the most likely problems. ADDM
automatically detects and reports nine of these top ten issues. See Chapter 6,
"Automatic Performance Diagnostics” and "Top Ten Mistakes Found in Oracle
Systems" on page 3-6.

3. Build a conceptual model of what is happening on the system using the
symptoms as clues to understand what caused the performance problems. See
"A Sample Decision Process for Performance Conceptual Modeling” on
page 3-5.

4. Propose a series of remedy actions and the anticipated behavior to the system,
then apply them in the order that can benefit the application the most. ADDM
produces recommendations each with an expected benefit. A golden rule in
performance work is that you only change one thing at a time and then measure
the differences. Unfortunately, system downtime requirements might prohibit
such a rigorous investigation method. If multiple changes are applied at the
same time, then try to ensure that they are isolated so that the effects of each
change can be independently validated.

5. Validate that the changes made have had the desired effect, and see if the user's
perception of performance has improved. Otherwise, look for more bottlenecks,
and continue refining the conceptual model until your understanding of the
application becomes more accurate.

6. Repeat the last three steps until performance goals are met or become
impossible due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to
performance improvement. The focus is on making large performance
improvements by increasing application efficiency and eliminating resource
shortages and bottlenecks. In this process, it is anticipated that minimal (less than
10%) performance gains are made from instance tuning, and large gains (100% +)
are made from isolating application inefficiencies.

3-4 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

A Sample Decision Process for Performance Conceptual Modeling

Conceptual modeling is almost deterministic. However, as your performance
tuning experience increases, you will appreciate that there are no real rules to
follow. A flexible heads-up approach is required to interpret the various statistics
and make good decisions.

For a quick and easy approach to performance tuning, use the Automatic Database
Diagnostic Monitor (ADDM). ADDM automatically monitors your Oracle system
and provides recommendations for solving performance problems should problems
occur. For example, suppose a DBA receives a call from a user complaining that the
system is slow. The DBA simply examines the latest ADDM report to see which of
the recommendations should be implemented to solve the problem. See Chapter 6,
"Automatic Performance Diagnostics” for information on the features that help
monitor and diagnose Oracle systems.

The following steps illustrate how a performance engineer might look for
bottlenecks without using automatic diagnostic features. These steps are only
intended as a guideline for the manual process. With experience, performance
engineers add to the steps involved. This analysis assumes that statistics for both
the operating system and the database have been gathered.

1. Isthe response time/batch run time acceptable for a single user on an empty or
lightly loaded machine?

If it is not acceptable, then the application is probably not coded or designed
optimally, and it will never be acceptable in a multiple user situation when
system resources are shared. In this case, get application internal statistics, and
get SQL Trace and SQL plan information. Work with developers to investigate
problems in data, index, transaction SQL design, and potential deferral of work
to batch/background processing.

2. lIsall the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for
network transfers, paging, swapping, or process thrashing. Otherwise, move
onto CPU utilization in user space. Check to see if there are any non-database
jobs consuming CPU on the machine limiting the amount of shared CPU
resources, such as backups, file transforms, print queues, and so on. After
determining that the database is using most of the CPU, investigate the top SQL
by CPU utilization. These statements form the basis of all future analysis. Check
the SQL and the transactions submitting the SQL for optimal execution. Oracle
provides CPU statistics in VSSQL.

Performance Improvement Methods 3-5

The Oracle Performance Improvement Method

See Also: Oracle Database Reference for more information on
V$SQL

If the application is optimal and there are no inefficiencies in the SQL execution,
consider rescheduling some work to off-peak hours or using a bigger machine.

At this point, the system performance is unsatisfactory, yet the CPU resources
are not fully utilized.

In this case, you have serialization and unscalable behavior within the server.
Get the WAI T_EVENTS statistics from the server, and determine the biggest
serialization point. If there are no serialization points, then the problem is most
likely outside the database, and this should be the focus of investigation.
Elimination of WAI T_EVENTS involves modifying application SQL and tuning
database parameters. This process is very iterative and requires the ability to
drill down on the WAI T_EVENTS systematically to eliminate serialization
points.

Top Ten Mistakes Found in Oracle Systems

This section lists the most common mistakes found in Oracle systems. By following
the Oracle performance improvement methodology, you should be able to avoid
these mistakes altogether. If you find these mistakes in your system, then
re-engineer the application where the performance effort is worthwhile. See
"Automatic Performance Tuning Features" on page 1-7 for information on the
features that help diagnose and tune Oracle systems. See Chapter 10, "Instance
Tuning Using Performance Views" for a discussion on how wait event data reveals
symptoms of problems that can be impacting performance.

1.

Bad Connection Management

The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has
over two orders of magnitude impact on performance, and is totally unscalable.

Bad Use of Cursors and the Shared Pool

Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude
impact in performance, and it is totally unscalable. Use cursors with bind
variables that open the cursor and execute it many times. Be suspicious of
applications generating dynamic SQL.

Bad SQL

3-6 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

Bad SQL is SQL that uses more resources than appropriate for the application
requirement. This can be a decision support systems (DSS) query that runs for
more than 24 hours or a query from an online application that takes more than a
minute. SQL that consumes significant system resources should be investigated
for potential improvement. ADDM identifies high load SQL and the SQL
tuning advisor can be used to provide recommendations for improvement. See
Chapter 6, "Automatic Performance Diagnostics" and Chapter 13, "Automatic
SQL Tuning".

Use of Nonstandard Initialization Parameters

These might have been implemented based on poor advice or incorrect
assumptions. Most systems will give acceptable performance using only the set
of basic parameters. In particular, parameters associated with SPI N_COUNT on
latches and undocumented optimizer features can cause a great deal of
problems that can require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can
override proven optimal execution plans. For these reasons, schemas, schema
statistics, and optimizer settings should be managed together as a group to
ensure consistency of performance.

See Also:

» Oracle Database Administrator’s Guide for information on
initialization parameters and database creation

« Oracle Database Reference for details on initialization parameters

« "Performance Considerations for Initial Instance Configuration"
on page 4-2 for information on parameters and settings in an
initial instance configuration

Getting Database 1/0 Wrong

Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk
space and not 170 bandwidth. See Chapter 8, "I/O Configuration and Design".

Redo Log Setup Problems

Many sites run with too few redo logs that are too small. Small redo logs cause
system checkpoints to continuously put a high load on the buffer cache and 1/0
system. If there are too few redo logs, then the archive cannot keep up, and the
database will wait for the archive process to catch up. See Chapter 4,

Performance Improvement Methods 3-7

Emergency Performance Methods

"Configuring a Database for Performance” for information on sizing redo logs
for performance.

7. Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (I NI TRANS), or shortage of rollback segments.

This is particularly common on | NSERT-heavy applications, in applications that
have raised the block size above 8K, or in applications with large numbers of
active users and few rollback segments. Use automatic segment-space
management (ASSM) to and automatic undo management solve this problem.

8. Long Full Table Scans

Long full table scans for high-volume or interactive online operations could
indicate poor transaction design, missing indexes, or poor SQL optimization.
Long table scans, by nature, are 1/0 intensive and unscalable.

9. High Amounts of Recursive (SYS) SQL

Large amounts of recursive SQL executed by SYS could indicate space
management activities, such as extent allocations, taking place. This is
unscalable and impacts user response time. Use locally managed tablespaces to
reduce recursive SQL due to extent allocation. Recursive SQL executed under
another user Id is probably SQL and PL/SQL, and this is not a problem.

10. Deployment and Migration Errors

In many cases, an application uses too many resources because the schema
owning the tables has not been successfully migrated from the development
environment or from an older implementation. Examples of this are missing
indexes or incorrect statistics. These errors can lead to sub-optimal execution
plans and poor interactive user performance. When migrating applications of
known performance, export the schema statistics to maintain plan stability
using the DBMS_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights
the resulting high load SQL.

Emergency Performance Methods

This section provides techniques for dealing with performance emergencies. You
have already had the opportunity to read about a detailed methodology for
establishing and improving application performance. However, in an emergency
situation, a component of the system has changed to transform it from a reliable,
predictable system to one that is unpredictable and not satisfying user requests.

3-8 Oracle Database Performance Tuning Guide

Emergency Performance Methods

In this case, the role of the performance engineer is to rapidly determine what has
changed and take appropriate actions to resume normal service as quickly as
possible. In many cases, it is necessary to take immediate action, and a rigorous
performance improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer
must collect sufficient debugging information either to get better clarity on the
performance problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the
method described in the performance improvement method earlier in this book.
However, shortcuts are taken in various stages because of the timely nature of the
problem. Keeping detailed notes and records of facts found as the debugging
process progresses is essential for later analysis and justification of any remedial
actions. This is analogous to a doctor keeping good patient notes for future
reference.

Steps in the Emergency Performance Method
The Emergency Performance Method is as follows:

1. Survey the performance problem and collect the symptoms of the performance
problem. This process should include the following:

« User feedback on how the system is underperforming. Is the problem
throughput or response time?

« Ask the question, "What has changed since we last had good performance?"
This answer can give clues to the problem. However, getting unbiased
answers in an escalated situation can be difficult. Try to locate some
reference points, such as collected statistics or log files, that were taken
before and after the problem.

« Use automatic tuning features to diagnose and monitor the problem. See
"Automatic Performance Tuning Features" on page 1-7 for information on
the features that help diagnose and tune Oracle systems. In addition, you
can use Oracle Enterprise Manager performance features to identify top
SQL and sessions.

2. Sanity-check the hardware utilization of all components of the application
system. Check where the highest CPU utilization is, and check the disk,
memory usage, and network performance on all the system components. This
quick process identifies which tier is causing the problem. If the problem is in
the application, then shift analysis to application debugging. Otherwise, move
on to database server analysis.

Performance Improvement Methods 3-9

Emergency Performance Methods

3. Determine if the database server is constrained on CPU or if it is spending time
waiting on wait events. If the database server is CPU-constrained, then
investigate the following:

« Sessions that are consuming large amounts of CPU at the operating system
level and database; check V$SESS TI ME_MODEL for database CPU usage

« Sessions or statements that perform many buffer gets at the database level,
check VSSESSTAT and V$SQL

« Execution plan changes causing sub-optimal SQL execution; these can be
difficult to locate

« Incorrect setting of initialization parameters

« Algorithmic issues as a result of code changes or upgrades of all
components

If the database sessions are waiting on events, then follow the wait events listed
in VESESSI ON_WAI T to determine what is causing serialization. The

V$ACTI VE_SESSI ON_HI STORY view contains a sampled history of session
activity which can be used to perform diagnosis even after an incident has
ended and the system has returned to normal operation. In cases of massive
contention for the library cache, it might not be possible to logon or submit SQL
to the database. In this case, use historical data to determine why there is
suddenly contention on this latch. If most waits are for /0, then examine
V$ACTI VE_SESSI ON_HI STORY to determine the SQL being run by the
sessions that are performing all of the inputs and outputs. See Chapter 10,
"Instance Tuning Using Performance Views" for a discussion on wait events.

4. Apply emergency action to stabilize the system. This could involve actions that
take parts of the application off-line or restrict the workload that can be applied
to the system. It could also involve a system restart or the termination of job in
process. These naturally have service level implications.

5. Validate that the system is stable. Having made changes and restrictions to the
system, validate that the system is now stable, and collect a reference set of
statistics for the database. Now follow the rigorous performance method
described earlier in this book to bring back all functionality and users to the
system. This process may require significant application re-engineering before it
is complete.

3-10 Oracle Database Performance Tuning Guide

Part Il

Optimizing Instance Performance

Part 111 describes how to tune various elements of your database system to optimize
performance of an Oracle instance.

The chapters in this part are:

« Chapter 4, "Configuring a Database for Performance”

« Chapter 5, "Automatic Performance Statistics"

« Chapter 6, "Automatic Performance Diagnostics"

« Chapter 7, "Memory Configuration and Use"

« Chapter 8, "I/0 Configuration and Design"

« Chapter 9, "Understanding Operating System Resources"
« Chapter 10, "Instance Tuning Using Performance Views"

« Chapter 11, "Tuning Networks"

A

Configuring a Database for Performance

This chapter is an overview of the Oracle methodology for configuring a database
for performance. Although performance modifications can be made to the Oracle
database instance at a later time, much can be gained by proper initial configuration
of the database for the intended needs.

This chapter contains the following sections:
« Performance Considerations for Initial Instance Configuration
« Creating and Maintaining Tables for Good Performance

« Performance Considerations for Shared Servers

Configuring a Database for Performance 4-1

Performance Considerations for Initial Instance Configuration

Performance Considerations for Initial Instance Configuration

This section discusses some initial database instance configuration options that
have important performance impacts.

If you use the Database Configuration Assistant (DBCA) to create a database, the
the supplied seed database includes the necessary basic initialization parameters
and meets the performance recommendations that are discussed in this chapter.

See Also:

« Oracle 2 Day DBA for information creating a database with the
Database Configuration Assistant

« Oracle Database Administrator’s Guide for information about the
process of creating a database

Initialization Parameters

A running Oracle instance is configured using initialization parameters, which are
set in the initialization parameter file. These parameters influence the behavior of
the running instance, including influencing performance. In general, a very simple
initialization file with few relevant settings covers most situations, and the
initialization file should not be the first place you expect to do performance tuning,
except for the few parameters shown in Table 4-2.

Table 4-1 describes the parameters necessary in a minimal initialization file.
Although these parameters are necessary they have no performance impact.

Table 4-1 Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SI D
environment variable.

DB DOVAI N Location of the database in Internet dot notation.

OPEN_CURSORS Limit on the maximum number of cursors (active SQL

statements) for each session. The setting is
application-dependent; 500 is recommended.

CONTRCL_FI LES Set to contain at least two files on different disk drives to
prevent failures from control file loss.

DB_FI LES Set to the maximum number of files that can assigned to the
database.

4-2 Oracle Database Performance Tuning Guide

Performance Considerations for Initial Instance Configuration

See Also: Oracle Database Administrator's Guide for information
about managing the initialization parameters

Table 4-2 includes the most important parameters to set with performance

implications:

Table 4-2 Important Initialization Parameters With Performance Impact

Parameter

Description

COWPATI BLE

DB_BLOCK_SI ZE

SGA TARGET

PGA AGGREGATE_TARGET

PROCESSES

SESSI ONS

UNDO_MANAGEMENT

Specifies the release with which the Oracle server must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in
your production systems without testing the new functionality
in your environment. If your application was designed for a
specific release of Oracle, and you are actually installing a later
release, then you might want to set this parameter to the
version of the previous release.

Sets the size of the Oracle database blocks stored in the
database files and cached in the SGA. The range of values
depends on the operating system, but it is typically powers of
two in the range 2048 to 16384. Common values are 4096 or
8192 for transaction processing systems and higher values for
database warehouse systems.

Specifies the total size of all SGA components. If SGA_TARGET
is specified, then the buffer cache (DB_CACHE_SI ZE), Java pool
(JAVA_PQOCL_SI ZE), large pool (LARGE_POOL_SI ZE), and
shared pool (SHARED_POOL_SI ZE) memory pools are
automatically sized. See "Automatic Shared Memory
Management" on page 7-3.

Specifies the target aggregate PGA memory available to all
server processes attached to the instance. See "PGA Memory
Management" on page 7-50 for information on PGA memory
management.

Sets the maximum number of processes that can be started by
that instance. This is the most important primary parameter to
set, because many other parameter values are deduced from
this.

This is set by default from the value of processes. However, if
you are using the shared server, then the deduced value is
likely to be insufficient.

Specifies which undo space management mode the system
should use. AUTOmode is recommended.

Configuring a Database for Performance 4-3

Performance Considerations for Initial Instance Configuration

Table 4-2 (Cont.) Important Initialization Parameters With Performance Impact

Parameter Description
UNDO_TABLESPACE Specifies the undo tablespace to be used when an instance
starts up.
See Also:

« Chapter 7, "Memory Configuration and Use"

. Oracle Database Reference for information on initialization
parameters

« Oracle Streams Concepts and Administration for information
about the STREAMS_POOL_SI ZE initialization parameter

Configuring Undo Space

Oracle needs undo space to keep information for read consistency, for recovery, and
for actual rollback statements. This information is kept in one or more undo
tablespaces.

Oracle provides automatic undo management, which completely automates the
management of undo data. A database running in automatic undo management
mode transparently creates and manages undo segments. Oracle Corporation
strongly recommends using automatic undo management, because it significantly
simplifies database management and removes the need for any manual tuning of
undo (rollback) segments. Manual undo management using rollback segments is
supported for backward compatibility reasons.

Adding the UNDO TABLESPACE clause in the CREATE DATABASE statement sets up
the undo tablespace. Set the UNDO_MANAGEMENT initialization parameter to AUTOto
operate your database in automatic undo management mode.

The V3UNDOSTAT view contains statistics for monitoring and tuning undo space.
Using this view, you can better estimate the amount of undo space required for the
current workload. Oracle also uses this information to help tune undo usage in the
system. The V$ROLLSTAT view contains information about the behavior of the
undo segments in the undo tablespace.

4-4 Oracle Database Performance Tuning Guide

Performance Considerations for Initial Instance Configuration

See Also:

« Oracle 2 Day DBA and Oracle Enterprise Manager online help
for information about the Undo Management Advisor

« Oracle Database Administrator's Guide for information on
managing undo space using automatic undo management

« Oracle Database Reference for information about the dynamic
performance VSROLLSTAT and VSUNDCSTAT views

Sizing Redo Log Files

The size of the redo log files can influence performance, because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally,
larger redo log files provide better performance. Undersized log files increase
checkpoint activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can
affect DBWR and checkpoint behavior. Checkpoint frequency is affected by several
factors, including log file size and the setting of the FAST _START MITR _TARGET
initialization parameter. If the FAST_START_MITR_TARGET parameter is set to
limit the instance recovery time, Oracle automatically tries to checkpoint as
frequently as necessary. Under this condition, the size of the log files should be large
enough to avoid additional checkpointing due to under sized log files. The optimal
size can be obtained by querying the OPTI MAL_LOGFI LE_SI ZE column from the
V$1 NSTANCE_RECOVERY view. You can also obtain sizing advice on the Redo Log
Groups page of Oracle Enterprise Manager Database Control.

It may not always be possible to provide a specific size recommendation for redo
log files, but redo log files in the range of a hundred megabytes to a few gigabytes
are considered reasonable. Size your online redo log files according to the amount
of redo your system generates. A rough guide is to switch logs at most once every
twenty minutes.

See Also: Oracle Database Administrator's Guide for information on
managing the redo log

Creating Subsequent Tablespaces

If you use the Database Configuration Assistant (DBCA) to create a database, the
the supplied seed database automatically includes all the necessary tablespaces. If
you choose not to use DBCA, you need to create extra tablespaces after creating the
initial database.

Configuring a Database for Performance 4-5

Performance Considerations for Initial Instance Configuration

All databases should have several tablespaces in addition to the SYSTEM and
SYSAUX tablespaces. These additional tablespaces include:

« Atemporary tablespace, which is used for things like sorting

« Anundo tablespace to contain information for read consistency, recovery, and
rollback statements

« At least one tablespace for actual application use

In most cases, applications require several tablespaces. For extremely large
tablespaces with many datafiles, multiple ALTER TABLESPACE x ADD DATAFI LEY
statements can also be run in parallel.

During tablespace creation, the datafiles that make up the tablespace are initialized
with special empty block images. Temporary files are not initialized.

Oracle does this to ensure that all datafiles can be written in their entirety, but this
can obviously be a lengthy process if done serially. Therefore, run multiple CREATE
TABLESPACE statements concurrently to speed up the tablespace creation process.
For permanent tables, the choice between local and global extent management on
tablespace creation can have a large effect on performance. For any permanent
tablespace that has moderate to large insert, modify, or delete operations compared
to reads, local extent management should be chosen.

Creating Permanent Tablespaces - Automatic Segment-Space Management

For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

See Also:

« Oracle Database Concepts for a discussion of free space
management

« Oracle Database Administrator's Guide for more information on
creating and using automatic segment-space management for
tablespaces

Creating Temporary Tablespaces

Properly configuring the temporary tablespace helps optimize disk sort
performance. Temporary tablespaces can be dictionary-managed or locally
managed. Oracle Corporation recommends the use of locally managed temporary
tablespaces with a UNI FORMextent size of 1 VB.

4-6 Oracle Database Performance Tuning Guide

Creating and Maintaining Tables for Good Performance

You should monitor temporary tablespace activity to check how many extents are
being allocated for the temporary segment. If an application extensively uses
temporary tables, as in a situation when many users are concurrently using
temporary tables, the extent size could be set smaller, such as 256K, because every
usage requires at least one extent. The EXTENT MANAGEMENT LOCAL clause is
optional for temporary tablespaces because all temporary tablespaces are created
with locally managed extents of a uniform size. The default for SI ZE is 1M

See Also:

« Oracle Database Administrator's Guide for more information on
managing temporary tablespaces

« Oracle Database Concepts for more information on temporary
tablespaces

» Oracle Database SQL Reference for more information on using the
CREATE and ALTER TABLESPACE statements with the
TEMPORARY clause

Creating and Maintaining Tables for Good Performance

When installing applications, an initial step is to create all necessary tables and
indexes. When you create a segment, such as a table, Oracle allocates space in the
database for the data. If subsequent database operations cause the data volume to
increase and exceed the space allocated, then Oracle extends the segment.

When creating tables and indexes, note the following:
« Specify automatic segment-space management for tablespaces

This allows Oracle to automatically manage segment space for best
performance.

« Set storage options carefully

Applications should carefully set storage options for the intended use of the
table or index. This includes setting the value for PCTFREE. Note that using
automatic segment-space management eliminates the need to specify PCTUSED.

Note: Use of free lists is no longer encouraged. To use automatic
segment-space management, create locally managed tablespaces,
with the segment space management clause set to AUTO.

Configuring a Database for Performance 4-7

Creating and Maintaining Tables for Good Performance

Table Compression

Heap-organized tables can be stored in a compressed format that is transparent for
any kind of application. Table compression was designed primarily for read-only
environments and can cause processing overhead for DML operations in some
cases. However, it increases performance for many read operations, especially when
your system is 1/0 bound.

Compressed data in a database block is self-contained which means that all the
information needed to re-create the uncompressed data in a block is available
within that block. A block will also be kept compressed in the buffer cache. Table
compression not only reduces the disk storage but also the memory usage,
specifically the buffer cache requirements. Performance improvements are
accomplished by reducing the amount of necessary 1/0 operations for accessing a
table and by increasing the probability of buffer cache hits.

Estimating the Compression factor

Table compression works by eliminating column value repetitions within individual
blocks. Duplicate values in all the rows and columns in a block are stored once at
the beginning of the block, in what is called a symbol table for that block. All
occurrences of such values are replaced with a short reference to the symbol table.
The compression is higher in blocks that have more repeated values.

Before compressing large tables you should estimate the expected compression
factor. The compression factor is defined as the number of blocks necessary to store
the information in an uncompressed form divided by the number of blocks
necessary for a compressed storage. The compression factor can be estimated by
sampling a small number of representative data blocks of the table to be
compressed and comparing the average number of records for each block for the
uncompressed and compressed case. Experience shows that approximately 1000
data blocks provides a very accurate estimation of the compression factor. Note that
the more blocks you are sampling, the more accurate the result become.

See Also: Oracle Database SQL Reference for block group sampling
syntax SAMPLE BLOCK(x, y)

Tuning to Achieve a Better Compression Ratio

Oracle achieves a good compression factor in many cases with no special tuning. As
a database administrator or application developer, you can try to tune the
compression factor by reorganizing the records when the compression actually
takes place. Tuning can improve the compression factor slightly in some cases and
very substantially in other cases.

4-8 Oracle Database Performance Tuning Guide

Creating and Maintaining Tables for Good Performance

To improve the compression factor you have to increase the likelihood of value
repetitions within a database block. The compression factor that can be achieved
depends on the cardinality of a specific column or column pairs (representing the
likelihood of column value repetitions) and on the average row length of those
columns. Oracle table compression not only compresses duplicate values of a single
column but tries to use multi-column value pairs whenever possible. Without a
very detailed understanding of the data distribution it is very difficult to predict the
most optimal order.

See Also: Oracle Data Warehousing Guide for information on table
compression and partitions

Reclaiming Unused Space

Indexing Data

Over time, it is common for segment space to become fragmented or for a segment
to acquire a lot of free space as the result of update and delete operations. The
resulting sparsely populated objects can suffer performance degradation during
gueries and DML operations.

Oracle Database provides a Segment Advisor that provides advice on whether an
object has space available for reclamation based on the level of space fragmentation
within an object.

See Also: Oracle Database Administrator's Guide and Oracle 2 Day
DBA for information about the Segment Advisor

If an object does have space available for reclamation, you can compact and shrink
database segments or you can deallocate unused space at the end of a database
segment.

See Also:

« Oracle Database Administrator's Guide for a discussion of
reclaiming unused space

« Oracle Database SQL Reference for details about the SQL
statements used to shrink database segments or deallocate
unused space

The most efficient way to create indexes is to create them after data has been loaded.
By doing this, space management becomes much simpler, and no index

Configuring a Database for Performance 4-9

Performance Considerations for Shared Servers

maintenance takes place for each row inserted. SQL*Loader automatically does this,
but if you are using other methods to do initial data load, you might need to do this
manually. Additionally, index creation can be done in parallel using the PARALLEL
clause of the CREATE | NDEX statement. However, SQL*Loader is not able to do this,
so you must manually create indexes in parallel after loading data.

See Also: Oracle Database Utilities for information on SQL*Loader

Specifying Memory for Sorting Data

During index creation on tables that contain data, the data must be sorted. This
sorting is done in the fastest possible way, if all available memory is used for
sorting. Oracle recommends that you enable automatic sizing of SQL working areas
by setting the PGA AGGREGATE_TARGET initialization parameter.

See Also:

« "PGA Memory Management" on page 7-50 for information on
PGA memory management

« Oracle Database Reference for information on the PGA _
AGCGREGATE_TARGET initialization parameter

Performance Considerations for Shared Servers

Using shared servers reduces the number of processes and the amount of memory
consumed on the server machine. Shared servers are beneficial for systems where
there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for
systems that have a high connection rate to the database. With shared servers, when
a connect request is received, a dispatcher is already available to handle concurrent
connection requests. With dedicated servers, on the other hand, a
connection-specific dedicated server is sequentially initialized for each connection
request.

Performance of certain database features can improve when a shared server
architecture is used, and performance of certain database features can degrade
slightly when a shared server architecture is used. For example, a session can be
prevented from migrating to another shared server while parallel execution is
active.

A session can remain nonmigratable even after a request from the client has been
processed, because not all the user information has been stored in the UGA. Ifa

4-10 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

server were to process the request from the client, then the part of the user state that
was not stored in the UGA would be inaccessible. To avoid this, individual shared
servers often need to remain bound to a user session.

See Also:

« Oracle Database Administrator's Guide for information on
managing shared servers

« Oracle Net Services Administrator's Guide for information on
configuring dispatchers for shared servers

When using some features, you may need to configure more shared servers,
because some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle
architecture:

« ldentifying Contention Using the Dispatcher-Specific Views

« ldentifying Contention for Shared Servers

Identifying Contention Using the Dispatcher-Specific Views
The following views provide dispatcher performance statistics:

« V$DI SPATCHER - general information about dispatcher processes
« V$DI SPATCHER RATE - dispatcher processing statistics

The V$DI SPATCHER_RATE view contains current, average, and maximum
dispatcher statistics for several categories. Statistics with the prefix CUR_are
statistics for the current sample. Statistics with the prefix AVG _ are the average
values for the statistics since the collection period began. Statistics with the prefix
MAX_ are the maximum values for these categories since statistics collection began.

To assess dispatcher performance, query the V$DI SPATCHER _RATE view and
compare the current values with the maximums. If your present system throughput
provides adequate response time and current values from this view are near the
average and less than the maximum, then you likely have an optimally tuned
shared server environment.

If the current and average rates are significantly less than the maximums, then
consider reducing the number of dispatchers. Conversely, if current and average
rates are close to the maximums, then you might need to add more dispatchers. A
general rule is to examine V$DI SPATCHER RATE statistics during both light and

Configuring a Database for Performance 4-11

Performance Considerations for Shared Servers

heavy system use periods. After identifying your shared server load patterns, adjust
your parameters accordingly.

If needed, you can also mimic processing loads by running system stress tests and
periodically polling the V$DI SPATCHER_RATE statistics. Proper interpretation of
these statistics varies from platform to platform. Different types of applications also
can cause significant variations on the statistical values recorded in

V$DI SPATCHER _RATE.

See Also:

« Oracle Database Reference for detailed information about the
V$Dl SPATCHER and V$DI SPATCHER RATE views

« Oracle Enterprise Manager Concepts for information about Oracle
Tuning Pack applications that monitor statistics

Reducing Contention for Dispatcher Processes
To reduce contention, consider the following:

« Adding dispatcher processes

The total number of dispatcher processes is limited by the value of the
initialization parameter MAX_DI SPATCHERS. You might need to increase this
value before adding dispatcher processes.

« Enabling connection pooling

When system load increases and dispatcher throughput is maximized, it is not
necessarily a good idea to immediately add more dispatchers. Instead, consider
configuring the dispatcher to support more users with connection pooling.

« Enabling Session Multiplexing

Multiplexing is used by a connection manager process to establish and maintain
network sessions from multiple users to individual dispatchers. For example,
several user processes can connect to one dispatcher by way of a single
connection from a connection manager process. Session multiplexing is
beneficial because it maximizes use of the dispatcher process connections.
Multiplexing is also useful for multiplexing database link sessions between
dispatchers.

4-12 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

See Also:

« Oracle Database Administrator's Guide for information on
configuring dispatcher processes

« Oracle Net Services Administrator's Guide for information on
configuring connection pooling

« Oracle Database Reference for information about the
DI SPATCHERS and MAX_DI SPATCHERS parameters

Identifying Contention for Shared Servers
This section discusses how to identify contention for shared servers.

Steadily increasing wait times in the requests queue indicate contention for shared
servers. To examine wait time data, use the dynamic performance view VSQUEUE.

This view contains statistics showing request queue activity for shared servers. By
default, this view is available only to the user SYS and to other users with SELECT
ANY TABLE system privilege, such as SYSTEM Table 4-3 lists the columns showing
the wait times for requests and the number of requests in the queue.

Table 4-3 Wait Time and Request Columns in V$QUEUE

Column Description

WAI T Displays the total waiting time, in hundredths of a second, for
all requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in
the queue

Monitor these statistics occasionally while your application is running by issuing
the following SQL statement:

SELECT DECODE(TOTALQ 0, 'No Requests',
WAI T/ TOTALQ || ' HUNDREDTHS OF SECONDS') "AVERAGE WAI T TIME PER REQUESTS'
FROM V$QUEUE

WHERE TYPE = ' COWON ;

This query returns the results of a calculation that show the following:
AVERAGE WAI T TI ME PER REQUEST

. 090909 HUNDREDTHS OF SECONDS

Configuring a Database for Performance 4-13

Performance Considerations for Shared Servers

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before processing.

You can also determine how many shared servers are currently running by issuing
the following query:

SELECT COUNT(*) "Shared Server Processes”
FROM V$SHARED SERVER
VWHERE STATUS != "QUI T ;

The result of this query could look like the following:

Shared Server Processes

If you detect resource contention with shared servers, then first make sure that this
is not a memory contention issue by examining the shared pool and the large pool.
If performance remains poor, then you might want to create more resources to
reduce shared server process contention. You can do this by modifying the optional
server process initialization parameters:

. MAX_DI SPATCHERS
. MAX_SHARED SERVERS
. DI SPATCHERS

. SHARED SERVERS

See Also: Oracle Database Administrator's Guide for information on
setting the shared server process initialization parameters

4-14 Oracle Database Performance Tuning Guide

D

Automatic Performance Statistics

This chapter discusses the gathering of performance statistics. This chapter contains
the following topics:

« Overview of Data Gathering

« Automatic Workload Repository

See Also: Oracle 2 Day DBA for information on monitoring and
tuning the database

Automatic Performance Statistics 5-1

Overview of Data Gathering

Overview of Data Gathering

To effectively diagnose performance problems, statistics must be available. Oracle
generates many types of cumulative statistics for the system, sessions, and
individual SQL statements. Oracle also tracks cumulative statistics on segments and
services. When analyzing a performance problem in any of these scopes, you
typically look at the change in statistics (delta value) over the period of time you are
interested in. Specifically, you look at the difference between the cumulative value
of a statistic at the start of the period and the cumulative value at the end.

Cumulative values for statistics are generally available through dynamic
performance views, such as the V$SESSTAT and V$SYSSTAT views. Note that the
cumulative values in dynamic views are reset when the database instance is
shutdown. The Automatic Workload Repository (AWR) automatically persists the
cumulative and delta values for most of the statistics at all levels except the session
level. This process is repeated on a regular time period and the result is called an
AWR snapshot. The delta values captured by the snapshot represent the changes for
each statistic over the time period. See "Automatic Workload Repository" on

page 5-10.

Another type of statistic collected by Oracle is called a metric. A metric is defined as
the rate of change in some cumulative statistic. That rate can be measured against a
variety of units, including time, transactions, or database calls. For example, the
number database calls per second is a metric. Metric values are exposed in some V$
views, where the values are the average over a fairly small time interval, typically
60 seconds. A history of recent metric values is available through V$ views, and
some of the data is also persisted by AWR snapshots.

A third type of statistical data collected by Oracle is sampled data. This sampling is
performed by the active session history (ASH) sampler. ASH samples the current
state of all active sessions. This data is collected into memory and can be accessed
by a V$ view. It is also written out to persistent store by the AWR snapshot
processing. See "Active Session History (ASH)" on page 5-4.

A powerful tool for diagnosing performance problems is the use of statistical
baselines. A statistical baseline is collection of statistic rates usually taken over time
period where the system is performing well at peak load. Comparing statistics
captured during a period of bad performance to a baseline helps discover specific
statistics that have increased significantly and could be the cause of the problem.

AWR supports the capture of baseline data by enabling you to specify and preserve
a pair or range of AWR snapshots as a baseline. Carefully consider the time period
you choose as a baseline; the baseline should be a good representation of the peak

5-2 Oracle Database Performance Tuning Guide

Overview of Data Gathering

load on the system. In the future, you can compare these baselines with snapshots
captured during periods of poor performance.

Oracle Enterprise Manager is the recommended tool for viewing both real time data
in the dynamic performance views and historical data from the AWR history tables.
Enterprise manager also is able to capture operating system and network statistical

data that can be correlated with AWR data.

Database Statistics

Database statistics provide information on the type of load on the database, as well
as the internal and external resources used by the database. This section describes
some of the more important statistics.

Wait Events

Wait events are statistics that are incremented by a server process/thread to indicate
that it had to wait for an event to complete before being able to continue processing.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and 1/0 contention.

To enable easier high-level analysis of the wait events, the events are grouped into
classes. The wait event classes include: Administrative, Application, Cluster,
Commit, Concurrency, Configuration, Idle, Network, Other, Scheduler, System 1/0,
and User I/0.

The wait classes are based on a common solution that usually applies to fixing a
problem with the wait event. For example, exclusive TX locks are generally an
application level issue and HW locks are generally a configuration issue.

The following list includes common examples of the waits in some of the classes:
« Application: locks waits caused by row level locking or explicit lock commands
« Commit: waits for redo log write confirmation after a commit

« Idle: wait events that signify the session is inactive, such as SQL* Net nessage
fromclient

« Network: waits for data to be sent over the network

« User I/0: wait for blocks to be read off a disk

See Also: Oracle Database Reference for more information about
Oracle wait events

Automatic Performance Statistics 5-3

Overview of Data Gathering

Time Model Statistics

When tuning an Oracle system, each component has its own set of statistics. To look
at the system as a whole, it is necessary to have a common scale for comparisons.
Because of this, most Oracle advisories and reports describe statistics in terms of
time. In addition, the V$SESS_TI ME_MODEL and V$SYS_TI ME_MODEL views
provide time model statistics. Using the common time instrumentation helps to
identify quantitative effects on the database operations.

The most important of the time model statistics is DBt i me. This statistics represents
the total time spent in database calls and is a indicator of the total instance
workload. It is calculated by aggregating the CPU and wait times of all sessions not
waiting on idle wait events (non-idle user sessions).

DBt i e is measured cumulatively from the time that the instance was started.
Because DBt i ne it is calculated by combining the times from all non-idle user
sessions, it is possible that the DBt i me can exceed the actual time elapsed since the
instance started up. For example, a instance that has been running for 30 minutes
could have four active user sessions whose cumulative DBt i e is approximately
120 minutes.

The objective for tuning an Oracle system could be stated as reducing the time that
users spend in performing some action on the database, or simply reducing DB

t i me. Other time model statistics provide quantitative effects (in time) on specific
actions, such as logon operations and hard and soft parses.

See Also: Oracle Database Reference for information about the
V$SESS TI ME_MODEL and V$SYS Tl ME_MODEL views

Active Session History (ASH)

The V$ACTI VE_SESSI ON_HI STORY view provides sampled session activity in the
instance. Active sessions are sampled every second and are stored in a circular
buffer in SGA. Any session that is connected to the database and is waiting for an
event that does not belong to the Idle wait class is considered as an active session.
This includes any session that was on the CPU at the time of sampling.

Each session sample is a set of rows and the V$ACTI VE_SESSI ON_HI STORY view
returns one row for each active session per sample, returning the latest session
sample rows first. Because the active session samples are stored in a circular buffer
in SGA, the greater the system activity, the smaller the number of seconds of session
activity that can be stored in the circular buffer. This means that the duration for
which a session sample appears in the VV$ view, or the number of seconds of session
activity that is displayed in the V$ view, is completely dependent on the database
activity.

5-4 Oracle Database Performance Tuning Guide

Overview of Data Gathering

As part of the Automatic Workload Repository (AWR) snapshots, the content of
V$ACTI VE_SESSI ON_HI STORY is also flushed to disk. Because the content of this
V$ view can get quite large during heavy system activity, only a portion of the
session samples is written to disk.

By capturing only active sessions, a manageable set of data is represented with the
size being directly related to the work being performed rather than the number of
sessions allowed on the system. Using the Active Session History enables you to
examine and perform detailed analysis on both current data in the VSACTI VE
SESSI ON_HI STORY view and historical data in the DBA HI ST_ACTI VE_SESS

HI STORY view, often avoiding the need to replay the workload to gather additional
performance tracing information. The data present in ASH can be rolled up on
various dimensions that it captures, including the following:

« SQL identifier of SQL statement

« Object number, file number, and block number
« Wait event identifier and parameters

« Session identifier and session serial number

« Module and action name

« Client identifier of the session

« Service hash identifier

See Also: Oracle Database Reference for more information about the
V$ACTI VE_SESSI ON_HI STORY view

System and Session Statistics

A large number of cumulative database statistics are available on a system and
session level through the V3SYSSTAT and V$SESSTAT views.

See Also: Oracle Database Reference for information about the
V$SYSSTAT and V$SESSTAT views

Operating System Statistics

Operating system statistics provide information on the usage and performance of
the main hardware components of the system, as well as the performance of the
operating system itself. This information is crucial for detecting potential resource
exhaustion, such as CPU cycles and physical memory, and for detecting bad
performance of peripherals, such as disk drives.

Automatic Performance Statistics 5-5

Overview of Data Gathering

Operating system statistics are only an indication of how the hardware and
operating system are working. Many system performance analysts react to a
hardware resource shortage by installing more hardware. This is a reactionary
response to a series of symptoms shown in the operating system statistics. It is
always best to consider operating system statistics as a diagnostic tool, similar to
the way many doctors use body temperature, pulse rate, and patient pain when
making a diagnosis. To help identify bottlenecks, gather operating system statistics
for all servers in the system under performance analysis.

Operating system statistics include the following:
« CPU Statistics

« Virtual Memory Statistics

« Disk Statistics

« Network Statistics

For information on tools for gathering operating statistics, see "Operating System
Data Gathering Tools" on page 5-7.

CPU Statistics

CPU utilization is the most important operating system statistic in the tuning
process. Get CPU utilization for the entire system and for each individual CPU on
multi-processor environments. Utilization for each CPU can detect single-threading
and scalability issues.

Most operating systems report CPU usage as time spent in user space or mode and
time spent in kernel space or mode. These additional statistics allow better analysis
of what is actually being executed on the CPU.

On an Oracle data server system, where there is generally only one application
running, the server runs database activity in user space. Activities required to
service database requests (such as scheduling, synchronization, 1/0, memory
management, and process/thread creation and tear down) run in kernel mode. In a
system where all CPU is fully utilized, a healthy Oracle system runs between 65%
and 95% in user space.

The V$OSSTAT view captures machine level information in the database making it
easier for you to determine if there are hardware level resource issues. The VBSYS
TI ME_MODEL supplies statistics on the CPU usage by the Oracle database. Using
both sets of statistics enable you to determine whether the Oracle database or other
system activity is the cause of the CPU problems.

5-6 Oracle Database Performance Tuning Guide

Overview of Data Gathering

Virtual Memory Statistics

Virtual memory statistics should mainly be used as a check to validate that there is
very little paging or swapping activity on the system. System performance
degrades rapidly and unpredictably when paging or swapping occurs.

Individual process memory statistics can detect memory leaks due to a
programming failure to deallocate memory taken from the process heap. These
statistics should be used to validate that memory usage does not increase after the
system has reached a steady state after startup. This problem is particularly acute
on shared server applications on middle tier machines where session state may
persist across user interactions, and on completion state information that is not fully
deallocated.

Disk Statistics

Because the database resides on a set of disks, the performance of the 1/0
subsystem is very important to the performance of the database. Most operating
systems provide extensive statistics on disk performance. The most important disk
statistics are the current response time and the length of the disk queues. These
statistics show if the disk is performing optimally or if the disk is being
overworked.

Measure the normal performance of the 1/0 system; typical values for a single
block read range from 5 to 20 milliseconds, depending on the hardware used. If the
hardware shows response times much higher than the normal performance value,
then it is performing badly or is overworked. This is your bottleneck. If disk queues
start to exceed two, then the disk is a potential bottleneck of the system.

Network Statistics

Network statistics can be used in much the same way as disk statistics to determine
if a network or network interface is overloaded or not performing optimally. In
today's networked applications, network latency can be a large portion of the actual
user response time. For this reason, these statistics are a crucial debugging tool. See
"Using Dynamic Performance Views for Network Performance" on page 11-6.

Operating System Data Gathering Tools

Table 5-1 shows the various tools for gathering operating statistics on UNIX. For
Windows NT/2000, use the Performance Monitor tool.

Automatic Performance Statistics 5-7

Overview of Data Gathering

Table 5-1 UNIX Tools for Operating Statistics

Component UNIX Tool

CPU sar, vmstat, mpstat, iostat
Memory sar, vmstat

Disk sar, iostat

Network netstat

Interpreting Statistics

When initially examining performance data, you can formulate potential theories
by examining your statistics. One way to ensure that your interpretation of the
statistics is correct is to perform cross-checks with other data. This establishes
whether a statistic or event is really of interest.

Some pitfalls are discussed in the following sections:

Hit ratios

When tuning, it is common to compute a ratio that helps determine whether
there is a problem. Such ratios include the buffer cache hit ratio, the soft-parse
ratio, and the latch hit ratio. These ratios should not be used as 'hard and fast'
identifiers of whether there is or is not a performance bottleneck. Rather, they
should be used as indicators. In order to identify whether there is a bottleneck,
other related evidence should be examined. See "Calculating the Buffer Cache
Hit Ratio” on page 7-11.

Wait events with timed statistics

Setting TI MED_STATI STI CSto true at the instance level directs the Oracle
server to gather wait time for events, in addition to wait counts already
available. This data is useful for comparing the total wait time for an event to
the total elapsed time between the performance data collections. For example, if
the wait event accounts for only 30 seconds out of a two hour period, then there
is probably little to be gained by investigating this event, even though it may be
the highest ranked wait event when ordered by time waited. However, if the
event accounts for 30 minutes of a 45 minute period, then the event is worth
investigating. See "Wait Events Statistics" on page 10-21.

5-8 Oracle Database Performance Tuning Guide

Overview of Data Gathering

Note: Timed statistics are automatically collected for the database
if the initialization parameter STATI STI CS_LEVEL is set to

TYPI CAL or ALL. If STATI STI CS_LEVEL is set to BASI C, then you
must set TI MED_STATI STI CS to TRUE to enable collection of
timed statistics. Note that setting STATI STI CS_LEVEL to BASI C
disables many automatic features and is not recommended.

If you explicitly set DB_ CACHE_ADVI CE, TI MED_STATI STI CS, or
TI MED_OS_STATI STI CS, either in the initialization parameter file
or by using ALTER_SYSTEMor ALTER SESSI ON, the explicitly set

value overrides the value derived from STATI STI CS_LEVEL.

Comparing Oracle statistics with other factors

When looking at statistics, it is important to consider other factors that influence
whether the statistic is of value. Such factors include the user load and the
hardware capability. Even an event that had a wait of 30 minutes in a 45 minute
snapshot might not be indicative of a problem if you discover that there were
2000 users on the system, and the host hardware was a 64 node machine.

Wait events without timed statistics

If TI MED_STATI STI CSiis false, then the amount of time waited for an event is
not available. Therefore, it is only possible to order wait events by the number
of times each event was waited for. Although the events with the largest
number of waits might indicate the potential bottleneck, they might not be the
main bottleneck. This can happen when an event is waited for a large number
of times, but the total time waited for that event is small. The converse is also
true: an event with fewer waits might be a problem if the wait time is a
significant proportion of the total wait time. Without having the wait times to
use for comparison, it is difficult to determine whether a wait event is really of
interest.

Idle wait events

Oracle uses some wait events to indicate if the Oracle server process is idle.
Typically, these events are of no value when investigating performance
problems, and they should be ignored when examining the wait events. See
"Idle Wait Events" on page 10-48.

Computed statistics

Automatic Performance Statistics 5-9

Automatic Workload Repository

When interpreting computed statistics (such as rates, statistics normalized over
transactions, or ratios), it is important to cross-verify the computed statistic
with the actual statistic counts. This confirms whether the derived rates are
really of interest: small statistic counts usually can discount an unusual ratio.
For example, on initial examination, a soft-parse ratio of 50% generally
indicates a potential tuning area. If, however, there was only one hard parse
and one soft parse during the data collection interval, then the soft-parse ratio
would be 50%, even though the statistic counts show this is not an area of
concern. In this case, the ratio is not of interest due to the low raw statistic
counts.

See Also:

« "Setting the Level of Statistics Collection" on page 10-7 for
information about STATI STI CS_LEVEL settings

» Oracle Database Reference for information on the STATI STI CS_
LEVEL initialization parameter

Automatic Workload Repository

The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. This data is
both in memory and stored in the database. The gathered data can be displayed in
both reports and views. See "Workload Repository Views" on page 5-16 and
"Workload Repository Reports" on page 5-17.

The statistics collected and processed by AWR include:

Obiject statistics that determine both access and usage statistics of database
segments

Time model statistics based on time usage for activities, displayed in the
V$SYS_TI ME_MODEL and V$SESS_TI ME_MODEL views

Some of the system and session statistics collected in the V$SYSSTAT and
V$SESSTAT views

SQL statements that are producing the highest load on the system, based on
criteria such as elapsed time and CPU time

Active Session History (ASH) statistics, representing the history of recent
sessions activity

AWR automatically generates snapshots of the performance data once every hour
and collects the statistics in the workload repository. You can also manually create

5-10 Oracle Database Performance Tuning Guide

Automatic Workload Repository

snapshots, but this is usually not necessary. The data in the snapshot interval is then
analyzed by the Automatic Database Diagnostic Monitor (ADDM). See "Automatic
Database Diagnostic Monitor" on page 6-3.

AWR compares the difference between snapshots to determine which SQL
statements to capture based on the effect on the system load. This reduces the
number of SQL statements that need to be captured over time.

The space consumed by the Automatic Workload Repository is determined by
several factors:

« Number of active sessions in the system at any given time
« Snapshot interval

The snapshot interval determines the frequency at which snapshots are
captured. A smaller snapshot interval increases the frequency, which increases
the volume of data collected by the Automatic Workload Repository.

« Historical data retention period

The retention period determines how long this data is retained before being
purged. A longer retention period increases the space consumed by the
Automatic Workload Repository.

By default, the snapshots are captured once every hour and are retained in the
database for 7 days. With these default settings, a typical system with an average of
10 concurrent active sessions can require approximately 200 to 300 MB of space for
its AWR data. It is possible to change the default values for both snapshot interval
and retention period. See "Accessing the Automatic Workload Repository with
Oracle Enterprise Manager" on page 5-12 and "Modifying Snapshot Settings" on
page 5-14 for information on modifying AWR settings.

The Automatic Workload Repository space consumption can be reduced by the
increasing the snapshot interval and reducing the retention period. When reducing
the retention period, note that several Oracle self-managing features depend on
AWR data for proper functioning. Not having enough data can affect the validity
and accuracy of these components and features, including the following:

« Automatic Database Diagnostic Monitor
« SQL Tuning Advisor
« Undo Advisor

« Segment Advisor

Automatic Performance Statistics 5-11

Automatic Workload Repository

If possible, Oracle Corporation recommends that you set the AWR retention period
large enough to capture at least one complete workload cycle. If your system
experiences weekly workload cycles, such as OLTP workload during weekdays and
batch jobs during the weekend, you do not need to change the default AWR
retention period of 7 days. However if your system is subjected to a monthly peak
load during month end book closing, you may have to set the retention period to
one month.

Under exceptional circumstances, the automatic snapshot collection can be
completely turned off by setting the snapshot interval to 0. Under this condition, the
automatic collection of the workload and statistical data is stopped and much of the
Oracle self-management functionality is not operational. In addition, you will not
be able to manually create snapshots. For this reason, Oracle Corporation strongly
recommends that you do not turn off the automatic snapshot collection.

It is important that you create baselines from the Automatic Workload Repository to
capture typical performance periods. The baselines, which are specified by a range
of snapshots, are preserved for comparisons with other similar workload periods
when performance problems occur.

The STATI STI CS_LEVEL initialization parameter must be set to the TYPI CAL or
ALL to enable the Automatic Workload Repository. If the value is set to BASI C, you
can manually capture AWR statistics using procedures in the DBMS_WORKLCQAD _
REPQOSI TORY package. However, because setting the STATI STI CS_LEVEL
parameter to BASI Cturns off in-memory collection of many system statistics, such
as segments statistics and memory advisor information, manually captured
snapshots will not contain these statistics and will be incomplete.

See Also: Oracle Database Reference for information on the
STATI STI CS_LEVEL initialization parameter

In addition to the data collection by the AWR, Automatic Optimizer Statistics
Collection is performed by the DBMS_STATS. GATHER _DATABASE_STATS _JOB_
PRQOC procedure as a scheduled job of the Maintenance Window. See "Automatic
Statistics Gathering"” on page 15-3.

Accessing the Automatic Workload Repository with Oracle Enterprise Manager

To access Automatic Workload Repository through Oracle Enterprise Manager
Database Control:

5-12 Oracle Database Performance Tuning Guide

Automatic Workload Repository

« On the Administration page, select the Workload Repository link under
Workload. From the Automatic Workload Repository page, you can manage
snapshots or modify AWR settings.

« To manage snapshots, click the link next to Snapshots or Preserved
Snapshot Sets. On the Snapshots or Preserved Snapshot Sets pages, you
can:

* View information about snapshots or preserved snapshot sets
(baselines).

* Perform a variety of tasks through the pull-down Actions menu,
including creating additional snapshots, preserved snapshot sets from
an existing range of snapshots, or an ADDM task to perform analysis
on a range of snapshots or a set of preserved snapshots.

« To modify AWR settings, click the Edit button. On the Edit Settings page,
you can set the Snapshot Retention period and Snapshot Collection
interval.

See Also: Oracle Enterprise Manager Concepts and Oracle
Enterprise Manager online help for information about monitoring
and diagnostic tools available with Oracle Enterprise Manager

Managing Snapshot and Baseline Data with APIs

While the primary interface for managing the Automatic Workload Repository is
the Oracle Enterprise Manager Database Control, monitoring functions can be
managed with procedures in the DBMS_WORKLOAD REPGCSI TORY package.

Snapshots are automatically generated for an Oracle database; however, you can
use DBM5_WORKL QAD_REPQSI TORY procedures to manually create, drop, and
modify the snapshots and baselines that are used by automatic database diagnostic
monitoring. Snapshots and baselines are sets of historical data for specific time
periods that are used for performance comparisons.

To invoke these procedures, a user must be granted the DBA role.

See Also: PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLQAD REPQSI TORY package

Automatic Performance Statistics 5-13

Automatic Workload Repository

Creating Snapshots

You can manually create snapshots with the CREATE_SNAPSHOT procedure if you
want to capture statistics at times different than those of the automatically
generated snapshots. For example:

BEGI N

DBNVS_WWORKLOAD_REPCS| TORY. CREATE_SNAPSHOT () ;
END;
/

In this example, a snapshot for the instance is created immediately with the flush
level specified to the default flush level of TYPI CAL. You can view this snapshot in
the DBA_HI ST_SNAPSHOT view.

Dropping Snapshots

You can drop a range of snapshots using the DROP_SNAPSHOT _RANGE procedure.
To view a list of the snapshot Ids along with database Ids, check the DBA HI ST _
SNAPSHOT view. For example, you can drop the following range of snapshots:

BEG N
DBVS_WORKLOAD REPOSI TORY. DROP_SNAPSHOT _RANGE (| ow snap_id => 22,
high_snap_id => 32, dbid => 3310949047);
END;
/

In the example, the range of snapshot Ids to drop is specified from 22 to 32. The
optional database identifier is 3310949047. If you do not specify a value for dbi d,
the local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the
snapshot range is also purged when the DROP_SNAPSHOT _RANGE procedure is
called.

Modifying Snapshot Settings
You can adjust the interval and retention of snapshot generation for a specified
database Id, but note that this can affect the precision of the Oracle diagnostic tools.

The | NTERVAL setting affects how often in minutes that snapshots are
automatically generated. The RETENTI ON setting affects how long in minutes that
snapshots are stored in the workload repository. To adjust the settings, use the
MODI FY_SNAPSHOT _SETTI NGS procedure. For example:

BEG N

5-14 Oracle Database Performance Tuning Guide

Automatic Workload Repository

DBVS_WORKLOAD_REPOSI TORY. MODI FY_SNAPSHOT_SETTI NGS(retention => 43200,
interval => 30, dbid => 3310949047);
END;
/

In this example, the retention period is specified as 43200 minutes (30 days) and the
interval between each snapshot is specified as 30 minutes. If NULL is specified, the
existing value is preserved. The optional database identifier is 3310949047. If you
do not specify a value for dbi d, the local database identifier is used as the default
value. You can check the current settings for your database instance with the DBA _
HI ST_WR_CONTRCL view.

Creating and Dropping Baselines

A baseline is created with the CREATE_BASELI NE procedure. A baseline is simply
performance data for a set of snapshots that is preserved and used for comparisons
with other similar workload periods when performance problems occur. You can
review the existing snapshots in the DBA_HI ST_SNAPSHOT view to determine the
range of snapshots that you want to use. For example:

BEG N
DBVS_WORKLOAD_REPOSI TORY. CREATE_BASELI NE (start_snap_id => 270,
end_snap_id => 280, baseline_name => 'peak baseline',
dbid => 3310949047) ;
END;
/

In this example, 270 is the start snapshot sequence number and 280 is the end
snapshot sequence. peak basel i ne is the name of baseline and 3310949047 is an
optional database identifier. If you do not specify a value for dbi d, the local
database identifier is used as the default value.

The system automatically assign a unique baseline Id to the new baseline when the
baseline is created. The baseline Id and database identifier are displayed in the
DBA_HI ST_BASELI NE view.

The pair of snapshots associated with the baseline are retained until you explicitly
drop the baseline. You can drop a baseline with the DROP_BASELI| NE procedure.
For example:

BEG N
DBVS_WORKLOAD REPCSI TORY. DROP_BASELI NE (basel i ne_nane => ' peak baseline',
cascade => FALSE, dbid => 3310949047);
END;
/

Automatic Performance Statistics 5-15

Automatic Workload Repository

In the example, peak basel i ne is the name of baseline and FALSE specifies that

only the
pair of s
an optio

baseline is dropped. TRUE specifies that drop operation should remove the
napshots associated with baseline along with the baseline. 3310949047 is
nal database identifier.

Workload Repository Views

Typically, you would view the AWR data through Oracle Enterprise Manager
screens or AWR reports. However, you can view the statistics with the following

views:

. V$ACTI VE_SESSI ON_HI STORY

This view displays active database session activity, sampled once every second.
See "Active Session History (ASH)" on page 5-4.

« V$ metric views provide metric data to track the performance of the system

The

metric views are organized into various groups, such as event, event class,

system, session, service, file, and tablespace metrics. These groups are identified
in the VEVETRI CGROUP view.

« DBA HI ST views

The

DBA HI ST views contain historical data stored in the database. This group

of views includes:

DBA HI ST_ACTI VE_SESS H STORY displays the history of the contents
of the in-memory active session history for recent system activity.

DBA HI ST_BASELI NE displays information about the baselines captured
on the system

DBA HI ST_DATABASE | NSTANCE displays information about the
database environment

DBA HI ST_SNAPSHOT displays information on snapshots in the system
DBA HI ST_SQ._PLANdisplays the SQL execution plans
DBA HI ST_WR CONTROL displays the settings for controlling AWR

See Also: Oracle Database Reference for information on dynamic
and static data dictionary views

5-16 Oracle Database Performance Tuning Guide

Automatic Workload Repository

Workload Repository Reports

You can view the AWR reports with Oracle Enterprise Manager or by running the
following SQL scripts:

« Theawrpt.sgl SQL script generates an HTML or text report that displays
statistics for a range of snapshot Ids.

« Theawrpti.sql SQL script generates an HTML or text report that displays
statistics for a range of snapshot Ids for a specified database and instance.

To run an AWR report, a user must be granted the DBA role.

The reports are divided into multiple sections. The HTML report includes links that
can be used to navigate quickly between sections. The content of the report contains
the workload profile of the system for the selected range of snapshots.

Note: If you run a report on a database that does not have any
workload activity during the specified range of snapshots,
calculated percentages for some report statistics can be less than 0
or greater than 100. This result simply means that there is no
meaningful value for the statistic.

Running the awrrpt.sql Report

To generate a text report for a range of snapshot Ids, run the awr r pt . sql script at
the SQL prompt:

@ORACLE_HOVE/ r dbns/ admi n/ awr r pt . sql

First, you need to specify whether you want an HTML or a text report.

Enter value for report_type: text

Specify the number days for which you want to list snapshot Ids.

Enter value for numdays: 2

After the list displays, you are prompted for the beginning and ending snapshot Id
for the workload repository report.

Enter value for begin_snap: 150
Enter value for end_snap: 160

Next, accept the default report name or enter a report name. The default name is
accepted in the following example:

Automatic Performance Statistics 5-17

Automatic Workload Repository

Enter value for report_nane:
Using the report name awrpt_1 150 160

The workload repository report is generated.

Running the awrrpti.sgl Report

If you want to specify a database and instance before entering a range of snapshot
Ids, run the awr r pti . sql script at the SQL prompt to generate a text report:

@ ORACLE_HOVE/ r dbns/ admi n/ awr rpti . sql
First, specify whether you want an HTML or a text report. After that, a list of the
database Ids and instance numbers displays, similar to the following:

Instances in this Wrkload Repository schema

DB Id I nst Num DB Nane | nst ance Host
3309173529 1 MAIN mai n dl sun1690
3309173529 1 TINT251 tint251 stint251

Enter the values for the database identifier (dbi d) and instance number (i nst _
nun) at the prompts.

Enter value for dbid: 3309173529
Usi ng 3309173529 for database Id
Enter value for inst_num 1

Next you are prompted for the number of days and snapshot Ids, similar to the

awr r pt . sqgl script, before the text report is generated. See "Running the awrrpt.sql
Report" on page 5-17.

5-18 Oracle Database Performance Tuning Guide

6

Automatic Performance Diaghostics

This chapter describes Oracle automatic features for performance diagnosing and
tuning.

This chapter contains the following topics:

« Introduction to Database Diagnostic Monitoring

« Automatic Database Diagnostic Monitor
See Also: Oracle 2 Day DBA for information on monitoring,
diagnosing, and tuning the database, including Oracle Enterprise

Manager Interfaces for using the Automatic Database Diagnostic
Monitor

Automatic Performance Diagnostics 6-1

Introduction to Database Diagnostic Monitoring

Introduction to Database Diagnostic Monitoring

When problems occur with a system, it is important to perform accurate and timely
diagnosis of the problem before making any changes to a system. Often a database
administrator (DBA) simply looks at the symptoms and immediately starts
changing the system to fix those symptoms. However, long-time experience has
shown that an initial accurate diagnosis of the actual problem significantly increases
the probability of success in resolving the problem.

For Oracle systems, the statistical data needed for accurate diagnosis of a problem is
saved in the Automatic Workload Repository (AWR). The Automatic Database
Diagnostic Monitor (ADDM) analyzes the AWR data on a regular basis, then locates
the root causes of performance problems, provides recommendations for correcting
any problems, and identifies non-problem areas of the system. Because AWR is a
repository of historical performance data, ADDM can be used to analyze
performance issues after the event, often saving time and resources reproducing a
problem. See "Automatic Workload Repository" on page 5-10.

An ADDM analysis is performed every time an AWR snapshot is taken and the
results are saved in the database. You can view the results of the analysis using
Oracle Enterprise Manager or by viewing a report in a SQL*Plus session.

In most cases, ADDM output should be the first place that a DBA looks when
notified of a performance problem. ADDM provides the following benefits:

« Automatic performance diagnostic report every hour by default

« Problem diagnosis based on decades of tuning expertise

« Time-based quantification of problem impacts and recommendation benefits
« ldentification of root cause, not symptoms

« Recommendations for treating the root causes of problems

« ldentification of non-problem areas of the system

« Minimal overhead to the system during the diagnostic process

It is important to realize that tuning is an iterative process and fixing one problem
can cause the bottleneck to shift to another part of the system. Even with the benefit
of ADDM analysis, it can take multiple tuning cycles to reach acceptable system
performance. ADDM benefits apply beyond production systems; on development
and test systems ADDM can provide an early warning of performance issues.

6-2 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor

Automatic Database Diagnostic Monitor

The Automatic Database Diagnostic Monitor (ADDM) provides a holistic tuning
solution. ADDM analysis can be performed over any time period defined by a pair
of AWR snapshots taken on a particular instance. Analysis is performed top down,
first identifying symptoms and then refining them to reach the root causes of
performance problems.

The goal of the analysis is to reduce a single throughput metric called DBt i ne. DB
t i me is the cumulative time spent by the database server in processing user
requests. It includes wait time and CPU time of all non-idle user sessions. DBt i ne
is displayed in the V$SESS TI ME_MODEL and V$SYS_TI ME_MODEL views.

See Also:

» Oracle Database Reference for information about the V$SESS
TI ME_MODEL and V$SYS_TI ME_MODEL views

« "Time Model Statistics" on page 5-4 for a discussion of time
model statistics and DBt i ne

« Oracle Database Concepts for information on server processes
Note that ADDM does not target the tuning of individual user response times. Use

tracing techniques to tune for individual user response times. See "End to End
Application Tracing" on page 20-2.

By reducing DBt i ne, the database server is able to support more user requests
using the same resources, which increases throughput. The problems reported by
the ADDM are sorted by the amount of DBt i e they are responsible for. System
areas that are not responsible for a significant portion of DBt i me are reported as
non-problem areas.

The types of problems that ADDM considers include the following:

« CPU bottlenecks - Is the system CPU bound by Oracle or some other
application?

« Undersized Memory Structures - Are the Oracle memory structures, such as the
SGA, PGA, and buffer cache, adequately sized?

« 1/0 capacity issues - Is the 1/0 subsystem performing as expected?

« Highload SQL statements - Are there any SQL statements which are consuming
excessive system resources?

« Highload PL/SQL execution and compilation, as well as high load Java usage

Automatic Performance Diagnostics 6-3

Automatic Database Diagnostic Monitor

« RAC specific issues - What are the global cache hot blocks and objects; are there
any interconnect latency issues?

« Sub-optimal use of Oracle by the application - Are there problems with poor
connection management, excessive parsing, or application level lock
contention?

« Database configuration issues - Is there evidence of incorrect sizing of log files,
archiving issues, excessive checkpoints, or sub-optimal parameter settings?

« Concurrency issues - Are there buffer busy problems?
« Hot objects and top SQL for various problem areas

ADDM also documents the non-problem areas of the system. For example, wait
event classes that are not significantly impacting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items that do not impact overall system
performance.

In addition to problem diagnostics, ADDM recommends possible solutions. When
appropriate, ADDM recommends multiple solutions for the DBA to choose from.
ADDM considers a variety of changes to a system while generating its
recommendations. Recommendations include:

« Hardware changes - Adding CPUs or changing the 1/0 subsystem
configuration

« Database configuration - Changing initialization parameter settings

« Schema changes - Hash partitioning a table or index, or using automatic
segment-space management (ASSM)

« Application changes - Using the cache option for sequences or using bind
variables

« Using other advisors - Running the SQL Tuning Advisor on high load SQL or
running the Segment Advisor on hot objects

ADDM Analysis Results

ADDM analysis results are represented as a set of FINDINGs. See Example 6-1 on
page 6-5 for an example of ADDM analysis results. Each ADDM finding can belong
to one of three types:

« Problem: Findings that describe the root cause of a database performance issue.

6-4 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor

« Symptom: Findings that contain information that often lead to one or more
problem findings.

« Information: Findings that are used for reporting non-problem areas of the
system.

Each problem finding is quantified by an impact that is an estimate of the portion of
DBt i nme caused by the finding’s performance issue. A problem finding can be
associated with a list of RECOMMENDATIONS for reducing the impact of the
performance problem. Each recommendation has a benefit which is an estimate of
the portion of DBt i ne that can be saved if the recommendation is implemented. A
list of recommendations can contain various alternatives for solving the same
problem; you not have to apply all the recommendations to solve a specific
problem.

Recommendations are composed of ACTIONs and RATIONALEs. You need to
apply all the actions of a recommendation in order to gain the estimated benefit.
The rationales are used for explaining why the set of actions were recommended
and to provide additional information to implement the suggested
recommendation.

An ADDM Example

Consider the following section of an ADDM report in Example 6-1.

Example 6-1 Example ADDM Report
FINDI NG 1: 31% i npact (7798 seconds)

SQL statenents were not shared due to the usage of literals. This resulted in
addi tional hard parses which were consum ng significant database tine.

RECOVMMVENDATI ON 1: Application Analysis, 31%benefit (7798 seconds)

ACTION: I nvestigate application logic for possible use of bind variables
instead of literals. Alternatively, you may set the paraneter
"cursor_sharing" to "force".

RATI ONALE: SQ. statements with PLAN HASH VALUE 3106087033 were found to be
using literals. Look in V$SQ for exanples of such SQL statenents.

In this example, the finding points to a particular root cause, the usage of literals in
SQL statements, which is estimated to have an impact of about 31% of total DB
t i me in the analysis period.

Automatic Performance Diagnostics 6-5

Automatic Database Diagnostic Monitor

The finding has a recommendation associated with it, composed of one action and
one rationale. The action specifies a solution to the problem found and is estimated
to have a maximum benefit of up to 31% DBt i nme in the analysis period. Note that
the benefit is given as a portion of the total DBt i me and not as a portion of the
finding’s impact. The rationale provides additional information on tracking
potential SQL statements that were using literals and causing this performance
issue. Using the specified plan hash value of SQL statements that could be a
problem, a DBA could quickly examine a few sample statements.

When a specific problem has multiple causes, the ADDM may report multiple
problem and symptom findings. In this case, the impacts of these multiple findings
can contain the same portion of DBt i ne. Because the performance issues of
findings can overlap, summing all the impacts of the reported findings can yield a
number higher than 100% of DBt i ne. For example, if a system performs many read
I/0s the ADDM might report a SQL statement responsible for 50% of DBt i me due
to I/0 activity as one finding, and an undersized buffer cache responsible for 75%
of DBt i e as another finding.

When multiple recommendations are associated with a problem finding, the
recommendations may contain alternatives for solving the problem. In this case, the
sum of the recommendations’ benefits may be higher than the finding’s impact.

When appropriate, an ADDM action many haves multiple solutions for the DBA to
choose from. In the example, the most effective solution is to use bind variables.
However, it is often difficult to modify the application. Changing the value of the
CURSOR_SHARI NGinitialization parameter is much easier to implement and can
provide significant improvement.

Setting Up ADDM

Automatic database diagnostic monitoring is enabled by default and is controlled
by the STATI STI CS_LEVEL initialization parameter. The STATI STI CS_LEVEL
parameter should be set to the TYPI CAL or ALL to enable the automatic database
diagnostic monitoring. The default setting is TYPI CAL. Setting STATI STI CS_
LEVEL to BASI Cdisables many Oracle features, including ADDM, and is strongly
discouraged.

See Also: Oracle Database Reference for information on the
STATI STI CS_LEVEL initialization parameter

ADDM analysis of 1/0 performance partially depends on a single argument, DBI O _
EXPECTED, that describes the expected performance of the 1/0 subsystem. The
value of DBl O_EXPECTED is the average time it takes to read a single database

6-6 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor

block in microseconds. Oracle uses the default value of 10 milliseconds, which is an
appropriate value for most modern hard drives. If your hardware is significantly
different, such as very old hardware or very fast RAM disks, consider using a
different value.

To determine the correct setting for DBI O_EXPECTED parameter, perform the
following steps:

1.

Measure the average read time of a single database block read for your
hardware. Note that this measurement is for random 170, which includes seek
time if you use standard hard drives. Typical values for hard drives are between
5000 and 20000 microseconds.

Set the value one time for all subsequent ADDM executions. For example, if the
measured value if 8000 microseconds, you should execute the following
command as SYS user:

EXECUTE DBMS_ADVI SOR. SET_DEFAULT_TASK_PARAMETER(
" ADDM , ' DBl O_EXPECTED , 8000);

Accessing ADDM with Oracle Enterprise Manager

The primary interface for diagnostic monitoring is the Oracle Enterprise Manager
Database Control. To access Automatic Database Diagnostic Monitor through
Oracle Enterprise Manager Database Control:

On the Database Home page, ADDM findings for the last analysis period are

displayed under Performance Analysis. You can click the link associated with
each finding to display a more detailed page containing recommendations for
the findings.

You can click the Advisor Central link under Related Links at the bottom of the
Oracle Enterprise Manager Database pages. On the Advisor Central page, you
can search for previous ADDM tasks or click the ADDM link to create a new
task.

On the Database Performance page, click a clipboard icon just below the
Sessions: Waiting and Working graph to display ADDM analysis.

You can run ADDM tasks on selected snapshots or a set of preserved snapshots
(baseline) from the Workload Repository Snapshots page.

« Onthe Administration page, click the Automatic Workload Repository
link under Workload.

Automatic Performance Diagnostics 6-7

Automatic Database Diagnostic Monitor

« On Automatic Workload Repository page, click the link next to Snapshots
or Preserved Snapshot Sets.

— On the Snapshots page, you can select Create ADDM Task from the
pull-down Actions menu. Next select the beginning and ending
snapshots corresponding to the time period that you want to analyze.

— On the Preserved Snapshot Sets page, you can select Create ADDM
Task from the pull-down Actions menu. Next select the preserved
snapshot set corresponding to the time period that you want to analyze.

See Also: Oracle Enterprise Manager Concepts and Oracle
Enterprise Manager online help for information about monitoring
and diagnostic tools available with Oracle Enterprise Manager

Diagnosing Database Performance Issues with ADDM

To diagnose database performance issues, ADDM analysis can be performed across
any two AWR snapshots as long as the following requirements are met:

« Both the snapshots did not encounter any errors during creation and both have
not yet been purged.

« There were no shutdown and startup actions between the two snapshots.

Consider a scenario in which users complain that the database was performing
poorly between 7 P.M. and 9 P.M. of the previous night. The first step in diagnosing
the database performance during that time period is invoking an ADDM analysis
over that specific time frame.

While the simplest way to run an ADDM analysis over a specific time period is with
the Oracle Enterprise Manager GUI, ADDM can also be run manually using the
$ORACLE_HOWVE/ r dbns/ admi n/addnr pt . sql script and DBMS_ADVI SOR
package APIs. The SQL script and APIs can be run by any user who has been
granted the ADVI SOR privilege.

See Also: PL/SQL Packages and Types Reference for detailed
information on the DBMS_ADVI SOR package

Running ADDM Using addmrpt.sql

To invoke ADDM analysis for the scenario previously described, you can simply
run the addnr pt . sqgl script at the SQL prompt:

@ ORACLE_HOVE/ r dbns/ admi n/ addn pt . sql

6-8 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor

When running the addnr pt . sql report to analyze the specific time period in the
example scenario, you need to;

1.

Identify the last snapshot that was taken before or at 7 P.M. and the first
snapshot that was taken after or at 9 P.M. of the previous night from the list of
recent snapshots that the report initially displays. The output is similar to the
following:

Listing the last 3 days of Conpleted Snapshots

Shap
I nstance DB Narre Snap Id Snap Started Level

Provide the snapshot Id closest to 7 P.M. when prompted for the beginning
snapshot and the 9 P.M. snapshot Id when prompted for the ending snapshot.

Enter value for begin_snap: 137
Begi n Snapshot Id specified: 137

Enter value for end_snap: 141
End Snapshot Id specified: 141

Enter a report name or accept the default name when prompted to specify the
report name.

Enter value for report_name:

Using the report name addnrpt 1 137 145.txt

Runni ng the ADDM anal ysis on the specified pair of snapshots ...
Cenerating the ADDMreport for this analysis ...

After the report name is specified, ADDM analysis over the specific time frame is
performed. At the end of the analysis, the SQL script displays the textual ADDM
report of the analysis. You can review the report to find the top performance issues
affecting the database and possible ways to solve those issues.

Instructions for running the report addnr pt . sql in a non-interactive mode can be
found at the beginning of the $ORACLE_HOVE/ r dbns/ adm n/addnr pt . sql file.

Automatic Performance Diagnostics 6-9

Automatic Database Diagnostic Monitor

Running ADDM using DBMS_ADVISOR APIs

To perform specific ADDM analysis, you can use the DBVS_ADVI SOR APls to write
your own PL/SQL program. Using the DBMS_ADVI SOR procedures, you can create
and execute any of the advisor tasks, such as an ADDM task. An advisor task is an
executable data area in the workload repository that manages all users tuning
efforts.

A typical usage of the DBM5_ADVI SOR package involves:

« Creating an advisor task of a particular type, such as ADDM, using DBVS
ADVI SOR. CREATE_TASK

= Setting the required parameters to run a specific type of task, such as START _
SNAPSHOT and END_SNAPSHOT parameters, using DBMS_ADVI SOR. SET_
TASK PARAMETER

« Executing the task using DBMS_ADVI SOR. EXECUTE_TASK
« Viewing the results using DBMS_ADVI SOR. GET_TASK_REPORT

In terms of the scenario previously discussed, you can write a PL/SQL function that
can automatically identify the snapshots that were taken closest to a given time
period and then run ADDM. The PL/SQL function is similar to the following:

Example 6-2 Function for ADDM Analysis on a Pair of Snapshots

CREATE OR REPLACE FUNCTI ON run_addm(start _time |IN DATE, end_time | N DATE)
RETURN VARCHAR2

IS

begi n_snap NUVBER;

end_snap NUMVBER,

tid NUMBER; -- Task ID

t name VARCHAR2(30) ; -- Task Nane

tdesc VARCHAR2(256) ; -- Task Description
BEG N

- Find the snapshot |IDs corresponding to the given input paraneters.
SELECT max(snap_i d) | NTO begi n_snap
FROM DBA_HI ST_SNAPSHOT
WHERE trunc(end_interval _tine, "M"') <= start_tinme;
SELECT mi n(snap_id) I NTO end_snap
FROM DBA_HI ST_SNAPSHOT
WHERE end_interval _tine >= end_tine;

- set Task Nanme (tnanme) to NULL and |let create_task return a

- unique nane for the task.
tname := "'

6-10 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor

tdesc := 'run_addm(" || begin_snap || ', ' || end_snap || ')';

- Create a task, set task paraneters and execute it
DBVS_ADVI SOR. CREATE_TASK(' ADDM, tid, tname, tdesc);
DBVS_ADVI SOR. SET_TASK_PARAMETER(tname, ' START_SNAPSHOT', begin_snap);
DBVS_ADVI SOR. SET_TASK_PARAMETER(tname, 'END _SNAPSHOT' , end_snap);
DBVS_ADVI SOR. EXECUTE_TASK(tnane);
RETURN t namne;
END;
/

The PL/SQL function r un_addmin Example 6-2 finds the snapshots that were
taken closest to a specified time frame and executes an ADDM analysis over that

time period. The function also returns the name of the ADDM task that performed
the analysis.

To run ADDM between 7 P.M. and 9 P.M. using the PL/SQL function r un_addm
and produce the text report of the analysis, you can execute SQL statements similar
to the following:

Example 6-3 Reporting ADDM Analysis on a Pair of Specific Snapshots

- set SQ*Plus variables and colum formats for the report
SET PAGESI ZE 0 LONG 1000000 LONGCHUNKSI ZE 1000;
COLUWN get _cl ob FORMAT a80;

- execute run_addm() with 7pmand 9pm as i nput
VARI ABLE t ask_name VARCHAR2(30);
BEG N

:task_name := run_addm(TO_DATE(' 19:00:00 (10/20)', 'HH4:M:SS (M DD)'

)
TO_DATE(' 21:00: 00 (10/20)', 'HH24: M :SS (MM DD)")

)
END;
/
- execute CGET_TASK REPORT to get the textual ADDMreport.
SELECT DBMS_ADVI SOR. GET_TASK_REPORT(: t ask_nane)
FROM DBA_ADVI SOR_TASKS t
VWHERE t.task_nanme = :task_nane
AND t.owner = SYS CONTEXT('userenv', 'session_user');

Note that the SQL*Plus system variable LONG has to be set to a value that is large

enough to show the entire ADDM report because the DBMS_ADVI SOR. GET_TASK _
REPORT function returns a CLOB.

Automatic Performance Diagnostics 6-11

Automatic Database Diagnostic Monitor

Views with ADDM Information

Typically, you would view output and information from the automatic database
diagnostic monitor through Oracle Enterprise Manager or ADDM reports.
However, you can display ADDM information through the DBA_ADVI SOR views.
This group of views includes:

DBA_ADVI SOR_TASKS

This view provides basic information about existing tasks, such as the task Id,
task name, and when created.

DBA_ADVI SOR_LOG

This view contains the current task information, such as status, progress, error
messages, and execution times.

DBA_ADVI SOR_RECOMVENDATI ONS

This view displays the results of completed diagnostic tasks with
recommendations for the problems identified in each run. The
recommendations should be looked at in the order of the RANK column, as this
relays the magnitude of the problem for the recommendation. The BENEFI T
column gives the benefit to the system you can expect after the
recommendation is carried out.

DBA_ADVI SOR_FI NDI NGS

This view displays all the findings and symptoms that the diagnostic monitor
encountered along with the specific recommendation.

See Also: Oracle Database Reference for information on static data
dictionary views

6-12 Oracle Database Performance Tuning Guide

v

Memory Configuration and Use

This chapter explains how to allocate memory to Oracle memory caches, and how
to use those caches. Proper sizing and effective use of the Oracle memory caches
greatly improves database performance.

Oracle recommends automatic memory configuration for your system using the
SGA TARGET and PGA_AGGREGATE_TARGET initialization parameters. However,
you can manually adjust the memory pools on your system and that process is
provided in this chapter.

This chapter contains the following sections:

Understanding Memory Allocation Issues

Configuring and Using the Buffer Cache

Configuring and Using the Shared Pool and Large Pool
Configuring and Using the Redo Log Buffer

PGA Memory Management

See Also: Oracle Database Concepts for information on the memory
architecture of an Oracle database

Memory Configuration and Use 7-1

Understanding Memory Allocation Issues

Understanding Memory Allocation Issues

Oracle stores information in memory caches and on disk. Memory access is much
faster than disk access. Disk access (physical 1/0) take a significant amount of time,
compared with memory access, typically in the order of 10 milliseconds. Physical
170 also increases the CPU resources required, because of the path length in device
drivers and operating system event schedulers. For this reason, it is more efficient
for data requests for frequently accessed objects to be satisfied solely by memory,
rather than also requiring disk access.

A performance goal is to reduce the physical 1/0 overhead as much as possible,
either by making it more likely that the required data is in memory or by making
the process of retrieving the required data more efficient.

Oracle strongly recommends the use of automatic memory management. Before
setting any memory pool sizes, review the following:

« "Automatic Shared Memory Management" on page 7-3
« "PGA Memory Management" on page 7-50

If you need to configure memory allocations, Oracle Enterprise Manager provides
the Memory Advisor for updates. To access the Memory Advisor through Oracle
Enterprise Manager Database Control:

« Click the Advisor Central link under Related Links at the bottom of the
Database pages.

« Onthe Advisor Central page, you can click the Memory Advisor link to access
the Memory Parameters SGA and PGA pages.

Oracle Memory Caches
The main Oracle memory caches that affect performance are:

« Shared pool

« Large pool

« Java pool

« Buffer cache

« Streams pool size
« Log buffer

« Process-private memory, such as memory used for sorting and hash joins

7-2 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

Automatic Shared Memory Management

Automatic Shared Memory Management simplifies the configuration of the SGA
and is the recommended memory configuration. To use Automatic Shared Memory
Management, set the SGA_TARGET initialization parameter to a nonzero value and
set the STATI STI CS_LEVEL initialization parameter to TYPI CAL or ALL. The value
of the SGA_TARCET parameter should be set to the amount of memory that you
want to dedicate for the SGA. In response to the workload on the system, the
automatic SGA management distributes the memory appropriately for the
following memory pools:

« Database buffer cache (default pool)
« Shared pool

« Large pool

« Java pool

If these automatically tuned memory pools had been set to nonzero values, those
values are used as a minimum levels by Automatic Shared Memory Management.
You would set minimum values if an application components needs a minimum
amount of memory to function properly.

SGA_TARGET is a dynamic parameter and can be changed through Oracle
Enterprise Manager or with the ALTER SYSTEMcommand. SGA_TARCET can be set
less than or equal to the value of SGA_MAX_SI ZE initialization parameter. Changes
in the value of SGA_TARGET automatically resize the automatically tuned memory
pools.

See Also:

« Oracle Database Concepts for information automatic SGA
management

« Oracle Database Administrator's Guide for information on
managing the System Global Area (SGA)

If you set SGA_TARCET to 0, Automatic Shared Memory Management is disabled
and you can manually size the memory pools with the DB_CACHE_SI ZE, SHARED _
POOL_SI ZE, LARGE_POOL_SI ZE, and JAVA _POCL_SI ZE initialization parameters.
See "Dynamically Changing Cache Sizes" on page 7-4.

The following pools are manually sized components and are not affected by
Automatic Shared Memory Management:

« Log buffer

Memory Configuration and Use 7-3

Understanding Memory Allocation Issues

« Other buffer caches, such as KEEP, RECYCLE, and other block sizes
« Streams pool
« Fixed SGA and other internal allocations

To manually size these memory pools, you need to set the DB_KEEP_CACHE_SI ZE,
DB_RECYCLE_CACHE_SI ZE, DB_nK_CACHE_SI ZE, STREAMS_POOL_SI ZE, and
LOG_BUFFERinitialization parameters. The memory allocated to these pools is
deducted from the total available for SGA_TARGET when Automatic Shared
Memory Management computes the values of the automatically tuned memory
pools.

See Also:

« Oracle Database Administrator's Guide for information on
managing initialization parameters

« Oracle Streams Concepts and Administration for information
about configuring the STREAMS_POOL_SI ZE initialization
parameter

« Oracle Database Java Developer's Guide for information on Java
memory usage

Dynamically Changing Cache Sizes

If the system is not using Automatic Shared Memory Management, you can choose
to dynamically reconfigure the sizes of the shared pool, the large pool, the buffer
cache, and the process-private memory. The following sections contain details on
sizing of caches:

« Configuring and Using the Buffer Cache
« Configuring and Using the Shared Pool and Large Pool
« Configuring and Using the Redo Log Buffer

The size of these memory caches is configurable using initialization configuration
parameters, such as DB_CACHE_ADVI CE, JAVA POOL_SI ZE, LARGE_POOL_SI ZE,
LOG _BUFFER, and SHARED POCL_SI ZE. The values for these parameters are also
dynamically configurable using the ALTER SYSTEMSstatement except for the log
buffer pool and process-private memory, which are static after startup.

Memory for the shared pool, large pool, java pool, and buffer cache is allocated in
units of granules. The granule size is 4MB if the SGA size is less than 1GB. If the
SGA size is greater than 1GB, the granule size changes to 16MB. The granule size is

7-4 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

calculated and fixed when the instance starts up. The size does not change during
the lifetime of the instance.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA DYNAM C_COVPONENTS. The same granule size is used for all dynamic
components in the SGA.

You can expand the total SGA size to a value equal to the SGA MAX_SI ZE
parameter. If the SGA_MAX_SI ZE is not set, you can decrease the size of one cache
and reallocate that memory to another cache if necessary. SGA_MAX_SI ZE defaults
to the aggregate setting of all the components.

Note: SGA MAX Sl ZE cannot be dynamically resized.

The maximum amount of memory usable by the instance is determined at instance
startup by the initialization parameter SGA_MAX_SI ZE. You can specify SGA MAX_
S| ZE to be larger than the sum of all of the memory components, such as buffer
cache and shared pool. Otherwise, SGA_MAX_SI ZE defaults to the actual size used
by those components. Setting SGA_MAX_SI ZE larger than the sum of memory used
by all of the components lets you dynamically increase a cache size without needing
to decrease the size of another cache.

See Also: Your operating system's documentation for information
on managing dynamic SGA.

Viewing Information About Dynamic Resize Operations
The following views provide information about dynamic SGA resize operations:
« V$SGA CURRENT_RESI ZE_OPS: Information about SGA resize operations that

are currently in progress. An operation can be a grow or a shrink of a dynamic
SGA component.

« V$SGA RESI ZE_OPS: Information about the last 400 completed SGA resize
operations. This does not include any operations currently in progress.

=« V$SGA DYNAM C_COVPONENTS: Information about the dynamic components
in SGA. This view summarizes information based on all completed SGA resize
operations since startup.

« V$SGA DYNAM C_FREE_MEMORY: Information about the amount of SGA
memory available for future dynamic SGA resize operations.

Memory Configuration and Use 7-5

Understanding Memory Allocation Issues

See Also:

« Oracle Database Concepts for more information about dynamic
SGA

« Oracle Database Reference for detailed column information for
these views

Application Considerations

With memory configuration, it is important to size the cache appropriately for the
application's needs. Conversely, tuning the application's use of the caches can
greatly reduce resource requirements. Efficient use of the Oracle memory caches
also reduces the load on related resources, such as the latches that protect the
caches, the CPU, and the 170 system.

For best performance, you should consider the following:

« The cache should be optimally designed to use the operating system and
database resources most efficiently.

« Memory allocations to Oracle memory structures should best reflect the needs
of the application.

Making changes or additions to an existing application might require resizing
Oracle memory structures to meet the needs of your modified application.

If your application uses Java, you should investigate whether you need to modify
the default configuration for the Java pool. See the Oracle Database Java Developer's
Guide for information on Java memory usage.

Operating System Memory Use

For most operating systems, it is important to consider the following:

Reduce paging

Paging occurs when an operating system transfers memory-resident pages to disk
solely to allow new pages to be loaded into memory. Many operating systems page
to accommodate large amounts of information that do not fit into real memory. On
most operating systems, paging reduces performance.

Use the operating system utilities to examine the operating system, to identify
whether there is a lot of paging on your system. If there is, then the total memory on
the system might not be large enough to hold everything for which you have

7-6 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

allocated memory. Either increase the total memory on your system, or decrease the
amount of memory allocated.

Fit the SGA into main memory

Because the purpose of the SGA is to store data in memory for fast access, the SGA
should be within main memory:. If pages of the SGA are swapped to disk, then the
data is no longer quickly accessible. On most operating systems, the disadvantage
of paging significantly outweighs the advantage of a large SGA.

Note: The LOCK SGA parameter can be used to lock the SGA into
physical memory and prevent it from being paged out.

To see how much memory is allocated to the SGA and each of its internal structures,
enter the following SQL*Plus statement:

SHOW SGA

The output of this statement will look similar to the following:

Total System d obal Area 840205000 bytes

Fi xed Size 279240 bytes
Variable Size 520093696 byt es
Dat abase Buffers 318767104 bytes
Redo Buffers 1064960 bytes

Allow adequate memory to individual users

When sizing the SGA, ensure that you allow enough memory for the individual
server processes and any other programs running on the system.

See Also: Your operating system hardware and software
documentation, as well as the Oracle documentation specific to
your operating system, for more information on tuning operating
system memory usage

Iteration During Configuration

Configuring memory allocation involves distributing available memory to Oracle
memory structures, depending on the needs of the application. The distribution of
memory to Oracle structures can affect the amount of physical 1/0 necessary for
Oracle to operate. Having a good first initial memory configuration also provides
an indication of whether the 1/0 system is effectively configured.

Memory Configuration and Use 7-7

Configuring and Using the Buffer Cache

It might be necessary to repeat the steps of memory allocation after the initial pass
through the process. Subsequent passes let you make adjustments in earlier steps,
based on changes in later steps. For example, decreasing the size of the buffer cache
lets you increase the size of another memory structure, such as the shared pool.

Configuring and Using the Buffer Cache

For many types of operations, Oracle uses the buffer cache to store blocks read from
disk. Oracle bypasses the buffer cache for particular operations, such as sorting and
parallel reads. For operations that use the buffer cache, this section explains the
following:

» Using the Buffer Cache Effectively

« Sizing the Buffer Cache

« Interpreting and Using the Buffer Cache Advisory Statistics
« Considering Multiple Buffer Pools

Using the Buffer Cache Effectively

To use the buffer cache effectively, SQL statements for the application should be
tuned to avoid unnecessary resource consumption. To ensure this, verify that
frequently executed SQL statements and SQL statements that perform many buffer
gets have been tuned.

See Also: Chapter 12, "SQL Tuning Overview" for information on
how to do this

Sizing the Buffer Cache

When configuring a new instance, it is impossible to know the correct size for the
buffer cache. Typically, a database administrator makes a first estimate for the cache
size, then runs a representative workload on the instance and examines the relevant
statistics to see whether the cache is under or over configured.

Buffer Cache Advisory Statistics

A number of statistics can be used to examine buffer cache activity. These include
the following:

. V$DB_CACHE_ADVI CE

« Buffer cache hit ratio

7-8 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

Using V$DB_CACHE_ADVICE

This view is populated when the DB_CACHE_ADVI CE initialization parameter is set
to ON. This view shows the simulated miss rates for a range of potential buffer cache
sizes.

Each cache size simulated has its own row in this view, with the predicted physical
170 activity that would take place for that size. The DB_ CACHE_ADVI CE parameter
is dynamic, so the advisory can be enabled and disabled dynamically to allow you

to collect advisory data for a specific workload.

There is some overhead associated with this advisory. When the advisory is
enabled, there is a small increase in CPU usage, because additional bookkeeping is
required.

Oracle uses DBA-based sampling to gather cache advisory statistics. Sampling
substantially reduces both CPU and memory overhead associated with
bookkeeping. Sampling is not used for a buffer pool if the number of buffers in that
buffer pool is small to begin with.

To use V$DB_CACHE_ADVI CE, the parameter DB_ CACHE_ADVI CE should be set to
ON, and a representative workload should be running on the instance. Allow the
workload to stabilize before querying the V$DB_CACHE_ADVI CE view.

The following SQL statement returns the predicted 170 requirement for the default
buffer pool for various cache sizes:

COLUWN size for_estimate FORMAT 999, 999, 999, 999 headi ng ' Cache Size (MB)'
COLUWN buffers_for_estinate FORMAT 999, 999, 999 heading 'Buffers'

COLUWN estd_physical _read_factor FORMAT 999.90 heading 'Estd Phys| Read Factor'
COLUWN est d_physi cal _reads FORMAT 999, 999, 999 heading ' Estd Phys| Reads'

SELECT size for_estimte, buffers_for_estimte, estd_physical read_factor, estd_physical _reads
FROM V$DB_CACHE_ADVI CE

WHERE nane

AND bl ock_si ze
AND advi ce_stat us

" DEFAULT'
(SELECT val ue FROM V$PARAMVETER WHERE nane = 'db_bl ock_si ze')
‘N

The following output shows that if the cache was 212 MB, rather than the current
size of 304 MB, the estimated number of physical reads would increase by a factor
of 1.74 or 74%. This means it would not be advisable to decrease the cache size to
212MB.

However, increasing the cache size to 334MB would potentially decrease reads by a
factor of .93 or 7%. If an additional 30MB memory is available on the host machine

Memory Configuration and Use 7-9

Configuring and Using the Buffer Cache

and the SGA_MAX_SI ZE setting allows the increment, it would be advisable to
increase the default buffer cache pool size to 334MB.

Estd Phys Estd Phys

Cache Size (MB) Buf fers Read Fact or Reads
30 3,802 18.70 192,317,943 10% of Current Size
60 7,604 12.83 131, 949, 536
91 11, 406 7.38 75,865, 861
121 15, 208 4,97 51,111, 658
152 19, 010 3.64 37,460, 786
182 22,812 2.50 25,668,196
212 26, 614 1.74 17,850, 847
243 30, 416 1.33 13,720,149
273 34,218 1.13 11,583,180
304 38,020 1.00 10,282,475 Current Size
334 41, 822 .93 9,515, 878
364 45, 624 .87 8,909, 026
395 49, 426 .83 8, 495, 039
424 53,228 .79 8, 116, 496
456 57,030 .76 7,824,764
486 60, 832 .74 7,563, 180
517 64, 634 .71 7,311,729
547 68, 436 .69 7,104, 280
577 72,238 .67 6, 895, 122
608 76, 040 .66 6, 739, 731 200% of Current Size

This view assists in cache sizing by providing information that predicts the number
of physical reads for each potential cache size. The data also includes a physical
read factor, which is a factor by which the current number of physical reads is
estimated to change if the buffer cache is resized to a given value.

Note: With Oracle, physical reads do not necessarily indicate disk
reads; physical reads may well be satisfied from the file system
cache.

The relationship between successfully finding a block in the cache and the size of
the cache is not always a smooth distribution. When sizing the buffer pool, avoid
the use of additional buffers that contribute little or nothing to the cache hit ratio. In
the example illustrated in Figure 7-1 on page 7-11, only narrow bands of increments
to the cache size may be worthy of consideration.

7-10 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

Figure 7-1 Physical I/0O and Buffer Cache Size

Phys I/0 Ratio

Buffers

Actual ..__..__._.___

INUILIVE —

Examining Figure 7-1 leads to the following observations:
« The benefit from increasing buffers from point A to point B is considerably
higher than from point B to point C.

« The decrease in the physical 1/0 between points A and B and points B and C is
not smooth, as indicated by the dotted line in the graph.

Calculating the Buffer Cache Hit Ratio

The buffer cache hit ratio calculates how often a requested block has been found in
the buffer cache without requiring disk access. This ratio is computed using data
selected from the dynamic performance view V$SYSSTAT. The buffer cache hit ratio
can be used to verify the physical 170 as predicted by V$DB_CACHE_ADVI CE.

The statistics in Table 7-1 are used to calculate the hit ratio.

Table 7-1 Statistics for Calculating the Hit Ratio

Statistic Description

consistent gets from Number of times a consistent read was requested for a block from
cache the buffer cache.

Memory Configuration and Use 7-11

Configuring and Using the Buffer Cache

Table 7-1 (Cont.) Statistics for Calculating the Hit Ratio

Statistic Description

db block gets from Number of times a CURRENT block was requested from the buffer
cache cache.

physical reads cache The total number of requests to access a data block that resulted in
access to the buffer cache.

Example 7-1 has been simplified by using values selected directly from the
V$SYSSTAT table, rather than over an interval. It is best to calculate the delta of
these statistics over an interval while your application is running, then use them to
determine the hit ratio.

See Also: Chapter 6, "Automatic Performance Diagnostics" for
more information on collecting statistics over an interval

Example 7-1 Calculating the Buffer Cache Hit Ratio

SELECT NAME, VALUE

FROM V$SYSSTAT
WHERE NAME IN ('db block gets fromcache', 'consistent gets from cache',
' physi cal reads cache');

Using the values in the output of the query, calculate the hit ratio for the buffer
cache with the following formula:

1 - (('physical reads cache') / ('consistent gets fromcache' + 'db block gets fromcache')

See Also: Oracle Database Reference for information on the
V$SYSSTAT view

Interpreting and Using the Buffer Cache Advisory Statistics

There are many factors to examine before considering whether to increase or
decrease the buffer cache size. For example, you should examine V$DB_CACHE _
ADVI CE data and the buffer cache hit ratio.

A low cache hit ratio does not imply that increasing the size of the cache would be
beneficial for performance. A good cache hit ratio could wrongly indicate that the
cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, you should consider the following:

7-12 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

« Repeated scanning of the same large table or index can artificially inflate a poor
cache hit ratio. Examine frequently executed SQL statements with a large
number of buffer gets, to ensure that the execution plan for such SQL
statements is optimal. If possible, avoid repeated scanning of frequently
accessed data by performing all of the processing in a single pass or by
optimizing the SQL statement.

« If possible, avoid requerying the same data, by caching frequently accessed data
in the client program or middle tier.

« Oracle Blocks accessed during a long full table scan are put on the tail end of
the least recently used (LRU) list and not on the head of the list. Therefore, the
blocks are aged out faster than blocks read when performing indexed lookups
or small table scans. When interpreting the buffer cache data, poor hit ratios
when valid large full table scans are occurring should also be considered.

Note: Short table scans are scans performed on tables under a
certain size threshold. The definition of a small table is the
maximum of 2% of the buffer cache and 20, whichever is bigger.

« Inany large database running OLTP applications in any given unit of time,
most rows are accessed either one or zero times. On this basis, there might be
little purpose in keeping the block in memory for very long following its use.

« A common mistake is to continue increasing the buffer cache size. Such
increases have no effect if you are doing full table scans or operations that do
not use the buffer cache.

Increasing Memory Allocated to the Buffer Cache

As a general rule, investigate increasing the size of the cache if the cache hit ratio is
low and your application has been tuned to avoid performing full table scans.

To increase cache size, first set the DB_ CACHE_ADVI CE initialization parameter to
ON, and let the cache statistics stabilize. Examine the advisory data in the V$DB_
CACHE_ADVI CE view to determine the next increment required to significantly
decrease the amount of physical 1/0 performed. If it is possible to allocate the
required extra memory to the buffer cache without causing the host operating
system to page, then allocate this memory. To increase the amount of memory
allocated to the buffer cache, increase the value of the DB_CACHE_SI ZE
initialization parameter.

Memory Configuration and Use 7-13

Configuring and Using the Buffer Cache

If required, resize the buffer pools dynamically, rather than shutting down the
instance to perform this change.

Note: When the cache is resized significantly (greater than 20
percent), the old cache advisory value is discarded and the cache
advisory is set to the new size. Otherwise, the old cache advisory
value is adjusted to the new size by the interpolation of existing
values.

The DB_CACHE_SI ZE parameter specifies the size of the default cache for the
database's standard block size. To create and use tablespaces with block sizes
different than the database's standard block sizes (such as to support transportable
tablespaces), you must configure a separate cache for each block size used. The DB_
nK_CACHE_SI ZE parameter can be used to configure the nonstandard block size
needed (where n is 2, 4, 8, 16 or 32 and n is not the standard block size).

Note: The process of choosing a cache size is the same, regardless
of whether the cache is the default standard block size cache, the
KEEP or RECYCLE cache, or a nonstandard block size cache.

See Also: Oracle Database Reference and Oracle Database
Administrator*s Guide for more information on using the DB_nK _
CACHE_SI ZE parameters

Reducing Memory Allocated to the Buffer Cache

If the cache hit ratio is high, then the cache is probably large enough to hold the
most frequently accessed data. Check V$DB_CACHE ADVI CE data to see whether
decreasing the cache size significantly causes the number of physical 1/0s to
increase. If not, and if you require memory for another memory structure, then you
might be able to reduce the cache size and still maintain good performance. To
make the buffer cache smaller, reduce the size of the cache by changing the value
for the parameter DB_CACHE_SI ZE.

Considering Multiple Buffer Pools

A single default buffer pool is generally adequate for most systems. However, users
with detailed knowledge of an application's buffer pool might benefit from
configuring multiple buffer pools.

7-14 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

With segments that have atypical access patterns, store blocks from those segments
in two different buffer pools: the KEEP pool and the RECYCLE pool. A segment's
access pattern may be atypical if it is constantly accessed (that is, hot) or
infrequently accessed (for example, a large segment accessed by a batch job only
once a day).

Multiple buffer pools let you address these differences. You can use a KEEP buffer
pool to maintain frequently accessed segments in the buffer cache, and a RECYCLE
buffer pool to prevent objects from consuming unnecessary space in the cache.
When an object is associated with a cache, all blocks from that object are placed in
that cache. Oracle maintains a DEFAULT buffer pool for objects that have not been
assigned to a specific buffer pool. The default buffer pool is of size DB_ CACHE _

SI ZE. Each buffer pool uses the same LRU replacement policy (for example, if the
KEEP pool is not large enough to store all of the segments allocated to it, then the
oldest blocks age out of the cache).

By allocating objects to appropriate buffer pools, you can:
« Reduce or eliminate 1/0s

« Isolate or limit an object to a separate cache

Random Access to Large Segments

A problem can occur with an LRU aging method when a very large segment is
accessed with a large or unbounded index range scan. Here, very large means large
compared to the size of the cache. Any single segment that accounts for a
substantial portion (more than 10%) of nonsequential physical reads can be
considered very large. Random reads to a large segment can cause buffers that
contain data for other segments to be aged out of the cache. The large segment ends
up consuming a large percentage of the cache, but it does not benefit from the
cache.

Very frequently accessed segments are not affected by large segment reads because
their buffers are warmed frequently enough that they do not age out of the cache.
However, the problem affects warm segments that are not accessed frequently
enough to survive the buffer aging caused by the large segment reads. There are
three options for solving this problem:

1. If the object accessed is an index, find out whether the index is selective. If not,
tune the SQL statement to use a more selective index.

2. If the SQL statement is tuned, you can move the large segment into a separate
RECYCLE cache so that it does not affect the other segments. The RECYCLE

Memory Configuration and Use 7-15

Configuring and Using the Buffer Cache

cache should be smaller than the DEFAULT buffer pool, and it should reuse
buffers more quickly than the DEFAULT buffer pool.

3. Alternatively, you can move the small warm segments into a separate KEEP
cache that is not used at all for large segments. The KEEP cache can be sized to
minimize misses in the cache. You can make the response times for specific
gueries more predictable by putting the segments accessed by the queries in the
KEEP cache to ensure that they do not age out.

Oracle Real Application Cluster Instances

You can create multiple buffer pools for each database instance. The same set of
buffer pools need not be defined for each instance of the database. Among
instances, the buffer pools can be different sizes or not defined at all. Tune each
instance according to the application requirements for that instance.

Using Multiple Buffer Pools

To define a default buffer pool for an object, use the BUFFER_POOL keyword of the

STORAGE clause. This clause is valid for CREATE and ALTER TABLE, CLUSTER, and
| NDEX SQL statements. After a buffer pool has been specified, all subsequent blocks
read for the object are placed in that pool.

If a buffer pool is defined for a partitioned table or index, then each partition of the
object inherits the buffer pool from the table or index definition, unless you override
it with a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers
currently containing blocks of the altered segment remain in the buffer pool they
were in before the ALTER statement. Newly loaded blocks and any blocks that have
aged out and are reloaded go into the new buffer pool.

See Also: Oracle Database SQL Reference for information on
specifying BUFFER _POOL in the STORAGE clause

Buffer Pool Data in V$DB_CACHE_ADVICE

V$DB_CACHE_ADVI CE can be used to size all pools configured on an instance.
Make the initial cache size estimate, run the representative workload, then simply
query the V$DB_CACHE_ADVI CE view for the pool you want to use.

For example, to query data from the KEEP pool:

SELECT S| ZE_FOR ESTI MATE, BUFFERS FOR ESTI MATE, ESTD_PHYS| CAL_READ_FACTOR ESTD_PHYSI CAL_READS
FROM V$DB_CACHE_ADVI CE

7-16 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

VHERE NAME = ' KEEP
AND BLOCK_SI ZE (SELECT VALUE FROM VSPARAMETER WHERE NAME = ' db_bl ock_si ze')
AND ADVI CE_STATUS = ' ON';

Buffer Pool Hit Ratios

The data in V3SYSSTAT reflects the logical and physical reads for all buffer pools
within one set of statistics. To determine the hit ratio for the buffer pools
individually, query the VEBUFFER_POCL_ STATI STI CS view. This view maintains
statistics for each pool on the number of logical reads and writes.

The buffer pool hit ratio can be determined using the following formula:

1 - (physical _reads/(db_bl ock_gets + consistent_gets))

The ratio can be calculated with the following query:

SELECT NAME, PHYSI CAL_READS, DB_BLOCK_CETS, CONSI STENT_GETS,
1 - (PHYSI CAL_READS / (DB_BLOCK GETS + CONSI STENT_CETS)) "Hit Ratio"
FROM V$BUFFER_POOL_STATI STI CS;

See Also: Oracle Database Reference for information on the
V$BUFFER _POOL_STATI STI CS view

Determining Which Segments Have Many Buffers in the Pool

The V$BH view shows the data object ID of all blocks that currently reside in the
SGA. To determine which segments have many buffers in the pool, you can use one
of the two methods described in this section. You can either look at the buffer cache
usage pattern for all segments (Method 1) or examine the usage pattern of a specific
segment, (Method 2).

Method 1

The following query counts the number of blocks for all segments that reside in the
buffer cache at that point in time. Depending on buffer cache size, this might
require a lot of sort space.

COLUWMN OBJECT_NAME FORVAT A40
COLUMN NUMBER_OF_BLOCKS FORMAT 999, 999, 999, 999

SELECT 0. OBJECT_NAME, COUNT(*) NUVBER OF BLOCKS
FROM DBA_OBJECTS 0, V$BH bh
WHERE 0. DATA OBJECT I D = bh. OBJD

Memory Configuration and Use 7-17

Configuring and Using the Buffer Cache

AND 0. OMRER I='SYS
GROUP BY 0. OBJECT_NAME
ORDER BY COUNT(*);

OBJECT_NAME NUMBER_OF_BLOCKS
OA_PREF_UNI Q KEY 1
SYS C002651 1
DS_PERSON 78
OM EXT_HEADER 701
OM_SHELL 1,765
OM_HEADER 5, 826
OM_| NSTANCE 12, 644
Method 2

Use the following steps to determine the percentage of the cache used by an
individual object at a given point in time:
1. Find the Oracle internal object number of the segment by entering the following
query:
SELECT DATA _OBJECT_I D, OBJECT_TYPE

FROM DBA_CBJECTS
VHERE OBJECT_NAME = UPPER(' segnent _nane');

Because two objects can have the same name (if they are different types of
objects), use the OBJECT_TYPE column to identify the object of interest.
2. Find the number of buffers in the buffer cache for SEGVENT _NANME:

SELECT COUNT(*) BUFFERS
FROM V$BH
VHERE OBJD = dat a_obj ect _i d_val ue;

where dat a_obj ect _i d_val ue is from step 1.

3. Find the number of buffers in the instance:

SELECT NAME, BLOCK_ S| ZE, SUM BUFFERS)
FROM V$BUFFER_POOL

GROUP BY NAME, BLOCK SIZE

HAVI NG SUM BUFFERS) > 0;

4. Calculate the ratio of buffers to total buffers to obtain the percentage of the
cache currently used by SEGMENT_NAME:

7-18 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

KEEP Pool

% cache used by segment _name = [buffers(Step2)/total buffers(Step3)]

Note: This technique works only for a single segment. You must
run the query for each partition for a partitioned object.

If there are certain segments in your application that are referenced frequently, then
store the blocks from those segments in a separate cache called the KEEP buffer
pool. Memory is allocated to the KEEP buffer pool by setting the parameter DB_
KEEP_CACHE_SI ZE to the required size. The memory for the KEEP pool is not a
subset of the default pool. Typical segments that can be kept are small reference
tables that are used frequently. Application developers and DBAs can determine
which tables are candidates.

You can check the number of blocks from candidate tables by querying V$BH, as
described in "Determining Which Segments Have Many Buffers in the Pool" on
page 7-17.

Note: The NOCACHE clause has no effect on a table in the KEEP
cache.

The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding 1/0
operations. The size of the KEEP buffer pool, therefore, depends on the objects that
you want to keep in the buffer cache. You can compute an approximate size for the
KEEP buffer pool by adding together the blocks used by all objects assigned to this
pool. If you gather statistics on the segments, you can query DBA TABLES. BLOCKS
and DBA TABLES.EMPTY_BLOCKS to determine the number of blocks used.

Calculate the hit ratio by taking two snapshots of system performance at different
times, using the previous query. Subtract the more recent values for physi cal

r eads, bl ock get's,and consi st ent get s from the older values, and use the
results to compute the hit ratio.

A buffer pool hit ratio of 100% might not be optimal. Often, you can decrease the
size of your KEEP buffer pool and still maintain a sufficiently high hit ratio. Allocate
blocks removed from the KEEP buffer pool to other buffer pools.

Note: If an object grows in size, then it might no longer fit in the
KEEP buffer pool. You will begin to lose blocks out of the cache.

Memory Configuration and Use 7-19

Configuring and Using the Shared Pool and Large Pool

Each object kept in memory results in a trade-off. It is beneficial to keep
frequently-accessed blocks in the cache, but retaining infrequently-used blocks
results in less space for other, more active blocks.

RECYCLE Pool

It is possible to configure a RECYCLE buffer pool for blocks belonging to those
segments that you do not want to remain in memory. The RECYCLE pool is good for
segments that are scanned rarely or are not referenced frequently. If an application
accesses the blocks of a very large object in a random fashion, then there is little
chance of reusing a block stored in the buffer pool before it is aged out. This is true
regardless of the size of the buffer pool (given the constraint of the amount of
available physical memory). Consequently, the object's blocks need not be cached;
those cache buffers can be allocated to other objects.

Memory is allocated to the RECYCLE buffer pool by setting the parameter DB _
RECYCLE_CACHE_SI ZE to the required size. This memory for the RECYCLE buffer
pool is not a subset of the default pool.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then
blocks can age out of the cache before the transaction or SQL statement has
completed execution. For example, an application might select a value from a table,
use the value to process some data, and then update the record. If the block is
removed from the cache after the SELECT statement, then it must be read from disk
again to perform the update. The block should be retained for the duration of the
user transaction.

Configuring and Using the Shared Pool and Large Pool

Oracle uses the shared pool to cache many different types of data. Cached data
includes the textual and executable forms of PL/SQL blocks and SQL statements,
dictionary cache data, and other data.

Proper use and sizing of the shared pool can reduce resource consumption in at
least four ways:

1. Parse overhead is avoided if the SQL statement is already in the shared pool.
This saves CPU resources on the host and elapsed time for the end user.

2. Latching resource usage is significantly reduced, which results in greater
scalability.

3. Shared pool memory requirements are reduced, because all applications use the
same pool of SQL statements and dictionary resources.

7-20 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

4. 1/0 resources are saved, because dictionary elements that are in the shared pool
do not require disk access.

This section covers the following:

« Shared Pool Concepts

« Using the Shared Pool Effectively

« Sizing the Shared Pool

« Interpreting Shared Pool Statistics

« Using the Large Pool

« Using CURSOR_SPACE_FOR_TIME

« Caching Session Cursors

« Configuring the Reserved Pool

« Keeping Large Objects to Prevent Aging
« CURSOR_SHARING for Existing Applications

« Maintaining Connections

Shared Pool Concepts

The main components of the shared pool are the library cache and the dictionary
cache. The library cache stores the executable (parsed or compiled) form of recently
referenced SQL and PL/SQL code. The dictionary cache stores data referenced from
the data dictionary. Many of the caches in the shared pool automatically increase or
decrease in size, as needed, including the library cache and the dictionary cache.
Old entries are aged out of these caches to accommodate new entries when the
shared pool does not have free space.

A cache miss on the data dictionary cache or library cache is more expensive than a
miss on the buffer cache. For this reason, the shared pool should be sized to ensure
that frequently used data is cached.

A number of features make large memory allocations in the shared pool: for
example, the shared server, parallel query, or Recovery Manager. Oracle
recommends segregating the SGA memory used by these features by configuring a
distinct memory area, called the large pool.

See Also: "Using the Large Pool" on page 7-36 for more
information on configuring the large pool

Memory Configuration and Use 7-21

Configuring and Using the Shared Pool and Large Pool

Allocation of memory from the shared pool is performed in chunks. This allows
large objects (over 5k) to be loaded into the cache without requiring a single
contiguous area, hence reducing the possibility of running out of enough
contiguous memory due to fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared
pool that are larger than 5k. To allow these allocations to occur most efficiently,
Oracle segregates a small amount of the shared pool. This memory is used if the
shared pool does not have enough space. The segregated area of the shared pool is
called the reserved pool.

See Also: "Configuring the Reserved Pool" on page 7-42 for more
information on the reserved area of the shared pool

Dictionary Cache Concepts

Information stored in the data dictionary cache includes usernames, segment
information, profile data, tablespace information, and sequence numbers. The
dictionary cache also stores descriptive information, or metadata, about schema
objects. Oracle uses this metadata when parsing SQL cursors or during the
compilation of PL/SQL programs.

Library Cache Concepts

The library cache holds executable forms of SQL cursors, PL/SQL programs, and
Java classes. This section focuses on tuning as it relates to cursors, PL/SQL
programs, and Java classes. These are collectively referred to as application code.

When application code is run, Oracle attempts to reuse existing code if it has been
executed previously and can be shared. If the parsed representation of the statement
does exist in the library cache and it can be shared, then Oracle reuses the existing
code. This is known as a soft parse, or a library cache hit. If Oracle is unable to use
existing code, then a new executable version of the application code must be built.
This is known as a hard parse, or a library cache miss. See "SQL Sharing Criteria" on
page 7-23 for details on when a SQL and PL/SQL statements can be shared.

Library cache misses can occur on either the parse step or the execute step when
processing a SQL statement. When an application makes a parse call for a SQL
statement, if the parsed representation of the statement does not already exist in the
library cache, then Oracle parses the statement and stores the parsed form in the
shared pool. This is a hard parse. You might be able to reduce library cache misses
on parse calls by ensuring that all shareable SQL statements are in the shared pool
whenever possible.

7-22 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

If an application makes an execute call for a SQL statement, and if the executable
portion of the previously built SQL statement has been aged out (that is,
deallocated) from the library cache to make room for another statement, then Oracle
implicitly reparses the statement, creating a new shared SQL area for it, and
executes it. This also results in a hard parse. Usually, you can reduce library cache
misses on execution calls by allocating more memory to the library cache.

In order to perform a hard parse, Oracle uses more resources than during a soft
parse. Resources used for a soft parse include CPU and library cache latch gets.
Resources required for a hard parse include additional CPU, library cache latch
gets, and shared pool latch gets. See "SQL Execution Efficiency"” on page 2-17 for a
discussion of hard and soft parsing.

SQL Sharing Criteria

Oracle automatically determines whether a SQL statement or PL/SQL block being
issued is identical to another statement currently in the shared pool.

Oracle performs the following steps for the comparison:

1. The text of the statement issued is compared to existing statements in the
shared pool.

2. The text of the statement is hashed. If there is no matching hash value, then the
SQL statement does not currently exist in the shared pool, and a hard parse is
performed.

3. If there is a matching hash value for an existing SQL statement in the shared
pool, then Oracle compares the text of the matched statement to the text of the
statement hashed to see if they are identical. The text of the SQL statements or
PL/SQL blocks must be identical, character for character, including spaces,
case, and comments. For example, the following statements cannot use the
same shared SQL area:

SELECT * FROM enpl oyees;
SELECT * FROM Enpl oyees;
SELECT * FROM enpl oyees;

Usually, SQL statements that differ only in literals cannot use the same shared
SQL area. For example, the following SQL statements do not resolve to the
same SQL area:

SELECT count (1) FROM enpl oyees WHERE manager _i d
SELECT count (1) FROM enpl oyees WHERE manager _i d

121;
247;

Memory Configuration and Use 7-23

Configuring and Using the Shared Pool and Large Pool

The only exception to this rule is when the parameter CURSOR_SHARI NG has
been set to SI M LAR or FORCE. Similar statements can share SQL areas when
the CURSCOR_SHARI NG parameter is set to SI M LAR or FORCE. The costs and
benefits involved in using CURSOR_SHARI NGare explained later in this section.

See Also: Oracle Database Reference for more information on the
CURSOR_SHARI NG parameter

4. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements in the shared pool to ensure that they are
identical.

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema. For example, if two users each
issue the following SQL statement:

SELECT * FROM enpl oyees;
and they each have their own enpl oyees table, then this statement is not

considered identical, because the statement references different tables for each
user.

5. Bind variables in the SQL statements must match in name, datatype, and
length.

For example, the following statements cannot use the same shared SQL area,
because the bind variable names differ:

SELECT * FROM enpl oyees WHERE department _id
SELECT * FROM enpl oyees WHERE departnent _id

: departnment _i d;
dept _i d;

Many Oracle products, such as Oracle Forms and the precompilers, convert the
SQL before passing statements to the database. Characters are uniformly
changed to uppercase, white space is compressed, and bind variables are
renamed so that a consistent set of SQL statements is produced.

6. The session's environment must be identical. For example, SQL statements
must be optimized using the same optimization goal.

Using the Shared Pool Effectively

An important purpose of the shared pool is to cache the executable versions of SQL
and PL/SQL statements. This allows multiple executions of the same SQL or
PL/SQL code to be performed without the resources required for a hard parse,
which results in significant reductions in CPU, memory, and latch usage.

7-24 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

The shared pool is also able to support unshared SQL in data warehousing
applications, which execute low-concurrency, high-resource SQL statements. In this
situation, using unshared SQL with literal values is recommended. Using literal
values rather than bind variables allows the optimizer to make good column
selectivity estimates, thus providing an optimal data access plan.

See Also: Oracle Data Warehousing Guide

In an OLTP system, there are a number of ways to ensure efficient use of the shared
pool and related resources. Discuss the following items with application developers
and agree on strategies to ensure that the shared pool is used effectively:

= Shared Cursors

« Single-User Logon and Qualified Table Reference
« Useof PL/SQL

« Avoid Performing DDL

« Cache Sequence Numbers

« Cursor Access and Management

Efficient use of the shared pool in high-concurrency OLTP systems significantly
reduces the probability of parse-related application scalability issues.

Shared Cursors

Reuse of shared SQL for multiple users running the same application, avoids hard
parsing. Soft parses provide a significant reduction in the use of resources such as
the shared pool and library cache latches. To share cursors, do the following:

« Use bind variables rather than literals in SQL statements whenever possible.
For example, the following two statements cannot use the same shared area
because they do not match character for character:

SELECT enpl oyee_i d FROM enpl oyees WHERE depart nment _i d
SELECT enpl oyee_i d FROM enpl oyees WHERE depart nent _i d

10;
20;

By replacing the literals with a bind variable, only one SQL statement would
result, which could be executed twice:

SELECT enpl oyee_i d FROM enpl oyees WHERE departnent _id = :dept_id;

Memory Configuration and Use 7-25

Configuring and Using the Shared Pool and Large Pool

Note: For existing applications where rewriting the code to use
bind variables is impractical, it is possible to use the CURSOR _
SHARI NGinitialization parameter to avoid some of the hard parse
overhead. For more information see section "CURSOR_SHARING
for Existing Applications” on page 7-45.

« Avoid application designs that result in large numbers of users issuing
dynamic, unshared SQL statements. Typically, the majority of data required by
most users can be satisfied using preset queries. Use dynamic SQL where such
functionality is required.

« Be sure that users of the application do not change the optimization approach
and goal for their individual sessions.

« Establish the following policies for application developers:

— Standardize naming conventions for bind variables and spacing
conventions for SQL statements and PL/SQL blocks.

— Consider using stored procedures whenever possible. Multiple users
issuing the same stored procedure use the same shared PL/SQL area
automatically. Because stored procedures are stored in a parsed form, their
use reduces runtime parsing.

« For SQL statements which are identical but are not being shared, you can query
V$SQL_SHARED CURSOR to determine why the cursors are not shared. This
would include optimizer settings and bind variable mismatches.

Single-User Logon and Qualified Table Reference

Large OLTP systems where users log in to the database as their own user ID can
benefit from explicitly qualifying the segment owner, rather than using public
synonyms. This significantly reduces the number of entries in the dictionary cache.
For example:

SELECT enpl oyee_i d FROM hr. enpl oyees WHERE department _id = :dept_id;
An alternative to qualifying table names is to connect to the database through a
single user ID, rather than individual user IDs. User-level validation can take place

locally on the middle tier. Reducing the number of distinct userIDs also reduces the
load on the dictionary cache.

7-26 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Use of PL/SQL

Using stored PL/SQL packages can overcome many of the scalability issues for
systems with thousands of users, each with individual user sign-on and public
synonyms. This is because a package is executed as the owner, rather than the caller,
which reduces the dictionary cache load considerably.

Note: Oracle Corporation encourages the use of definer-rights
packages to overcome scalability issues. The benefits of reduced
dictionary cache load are not as obvious with invoker-rights
packages.

Avoid Performing DDL

Avoid performing DDL operations on high-usage segments during peak hours.
Performing DDL on such segments often results in the dependent SQL being
invalidated and hence reparsed on a later execution.

Cache Sequence Numbers

Allocating sufficient cache space for frequently updated sequence numbers
significantly reduces the frequency of dictionary cache locks, which improves
scalability. The CACHE keyword on the CREATE SEQUENCE or ALTER SEQUENCE
statement lets you configure the number of cached entries for each sequence.

See Also: Oracle Database SQL Reference for details on the CREATE
SEQUENCE and AL TER SEQUENCE statements

Cursor Access and Management

Depending on the Oracle application tool you are using, it is possible to control
how frequently your application performs parse calls.

The frequency with which your application either closes cursors or reuses existing
cursors for new SQL statements affects the amount of memory used by a session
and often the amount of parsing performed by that session.

An application that closes cursors or reuses cursors (for a different SQL statement),
does not need as much session memory as an application that keeps cursors open.
Conversely, that same application may need to perform more parse calls, using
extra CPU and Oracle resources.

Memory Configuration and Use 7-27

Configuring and Using the Shared Pool and Large Pool

Cursors associated with SQL statements that are not executed frequently can be
closed or reused for other statements, because the likelihood of reexecuting (and
reparsing) that statement is low.

Extra parse calls are required when a cursor containing a SQL statement that will be
reexecuted is closed or reused for another statement. Had the cursor remained
open, it could have been reused without the overhead of issuing a parse call.

The ways in which you control cursor management depends on your application
development tool. The following sections introduce the methods used for some
Oracle tools.

See Also:

« The tool-specific documentation for more information about
each tool

« Oracle Database Concepts for more information on cursors
shared SQL

Reducing Parse Calls with OCI When using Oracle Call Interface (OCI), do not close
and reopen cursors that you will be reexecuting. Instead, leave the cursors open,
and change the literal values in the bind variables before execution.

Avoid reusing statement handles for new SQL statements when the existing SQL
statement will be reexecuted in the future.

Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,
you can control when cursors are closed by setting precompiler clauses. In Oracle
mode, the clauses are as follows:

« HOLD _CURSOR = YES
« RELEASE_CURSOR = NO
« MAXOPENCURSORS = desired_val ue

Oracle Corporation recommends that you not use ANSI mode, in which the values
of HOLD_CURSCR and RELEASE_CURSCR are switched.

The precompiler clauses can be specified on the precompiler command line or
within the precompiler program. With these clauses, you can employ different
strategies for managing cursors during execution of the program.

See Also: Your language's precompiler manual for more
information on these clauses

7-28 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Reducing Parse Calls with SQLJ Prepare the statement, then reexecute the statement
with the new values for the bind variables. The cursor stays open for the duration of
the session.

Reducing Parse Calls with JDBC Avoid closing cursors if they will be reexecuted,
because the new literal values can be bound to the cursor for reexecution.
Alternatively, JDBC provides a SQL statement cache within the JDBC client using
the set St nt CacheSi ze() method. Using this method, JDBC creates a SQL
statement cache that is local to the JDBC program.

See Also: Oracle Database JDBC Developer's Guide and Reference for
more information on using the JDBC SQL statement cache

Reducing Parse Calls with Oracle Forms With Oracle Forms, it is possible to control
some aspects of cursor management. You can exercise this control either at the
trigger level, at the form level, or at run time.

Sizing the Shared Pool

When configuring a brand new instance, it is impossible to know the correct size to
make the shared pool cache. Typically, a DBA makes a first estimate for the cache
size, then runs a representative workload on the instance, and examines the relevant
statistics to see whether the cache is under-configured or over-configured.

For most OLTP applications, shared pool size is an important factor in application
performance. Shared pool size is less important for applications that issue a very
limited number of discrete SQL statements, such as decision support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited
amount of available space. This consumes CPU and latching resources, and causes
contention. Optimally, the shared pool should be just large enough to cache
frequently accessed objects. Having a significant amount of free memory in the
shared pool is a waste of memory. When examining the statistics after the database
has been running, a DBA should check that none of these mistakes are in the
workload.

Shared Pool: Library Cache Statistics

When sizing the shared pool, the goal is to ensure that SQL statements that will be
executed multiple times are cached in the library cache, without allocating too
much memory.

Memory Configuration and Use 7-29

Configuring and Using the Shared Pool and Large Pool

The statistic that shows the amount of reloading (that is, reparsing) of a previously
cached SQL statement that was aged out of the cache is the RELOADS column in the
V$LI BRARYCACHE view. In an application that reuses SQL effectively, on a system

with an optimal shared pool size, the RELQADS statistic will have a value near zero.

The | NVALI DATI ONS column in V$LI BRARYCACHE view shows the number of
times library cache data was invalidated and had to be reparsed. | NVALI DATI ONS
should be near zero. This means SQL statements that could have been shared were
invalidated by some operation (for example, a DDL). This statistic should be near
zero on OLTP systems during peak loads.

Another key statistic is the amount of free memory in the shared pool at peak times.
The amount of free memory can be queried from VESGASTAT, looking at the free
memory for the shared pool. Optimally, free memory should be as low as possible,
without causing any reloads on the system.

Lastly, a broad indicator of library cache health is the library cache hit ratio. This
value should be considered along with the other statistics discussed in this section
and other data, such as the rate of hard parsing and whether there is any shared
pool or library cache latch contention.

These statistics are discussed in more detail in the following section.

V$LIBRARYCACHE

You can monitor statistics reflecting library cache activity by examining the
dynamic performance view V$LI BRARYCACHE. These statistics reflect all library
cache activity since the most recent instance startup.

Each row in this view contains statistics for one type of item kept in the library
cache. The item described by each row is identified by the value of the NAVESPACE
column. Rows with the following NAMESPACE values reflect library cache activity
for SQL statements and PL/SQL blocks:

. SQL AREA
. TABLE/ PROCEDURE
. BODY

. TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object
definitions that Oracle uses for dependency maintenance.

See Also: Oracle Database Reference for information about the
dynamic performance V$LI BRARYCACHE view

7-30 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

To examine each namespace individually, use the following query:

SELECT NAMESPACE, PINS, PINH TS, RELOADS, | NVALI DATI ONS
FROM V$LI BRARYCACHE
ORDER BY NAMESPACE;

The output of this query could look like the following:

NAMESPACE PI NS PINHI TS RELOADS | NVALI DATI ONS
BODY 8870 8819 0 0
CLUSTER 393 380 0 0
| NDEX 29 0 0 0
CBJECT 0 0 0 0
Pl PE 55265 55263 0 0
SQL AREA 21536413 21520516 11204 2
TABLE/ PROCEDURE 10775684 10774401 0 0
TRI GGER 1852 1844 0 0

To calculate the library cache hit ratio, use the following formula:
Library Cache Hit Ratio = sun(pinhits) / sun(pins)

Using the library cache hit ratio formula, the cache hit ratio is the following:
SUM PI NHI TS) / SUM PI NS)

. 999466248

Note: These queries return data from instance startup, rather than
statistics gathered during an interval; interval statistics can better
pinpoint the problem.

See Also: Chapter 6, "Automatic Performance Diagnostics" for
information on how gather information over an interval
Examining the returned data leads to the following observations:
« Forthe SQL AREA namespace, there were 21,536,413 executions.

« 11,204 of the executions resulted in a library cache miss, requiring Oracle to
implicitly reparse a statement or block or reload an object definition because it
aged out of the library cache (that is, a RELOAD).

Memory Configuration and Use 7-31

Configuring and Using the Shared Pool and Large Pool

« SQL statements were invalidated two times, again causing library cache misses.

« The hit percentage is about 99.94%. This means that only .06% of executions
resulted in reparsing.

The amount of free memory in the shared pool is reported in VESGASTAT. Report
the current value from this view using the following query:

SELECT * FROM V$SGASTAT
VHERE NAME = 'free menory’
AND POCL = 'shared pool';

The output will be simlar to the follow ng:

shared pool free menory 4928280

If free memory is always available in the shared pool, then increasing the size of the
pool offers little or no benefit. However, just because the shared pool is full does not
necessarily mean there is a problem. It may be indicative of a well-configured
system.

Shared Pool Advisory Statistics

The amount of memory available for the library cache can drastically affect the
parse rate of an Oracle instance. The shared pool advisory statistics provide a
database administrator with information about library cache memory, allowing a
DBA to predict how changes in the size of the shared pool can affect aging out of
objects in the shared pool.

The shared pool advisory statistics track the library cache's use of shared pool
memory and predict how the library cache will behave in shared pools of different
sizes. Two fixed views provide the information to determine how much memory
the library cache is using, how much is currently pinned, how much is on the
shared pool's LRU list, as well as how much time might be lost or gained by
changing the size of the shared pool.

The following views of the shared pool advisory statistics are available. These views
display any data when shared pool advisory is on. These statistics reset when the
advisory is turned off.

V$SHARED POOL_ADVICE This view displays information about estimated parse

time in the shared pool for different pool sizes. The sizes range from 10% of the
current shared pool size or the amount of pinned library cache memory, whichever

7-32 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

is higher, to 200% of the current shared pool size, in equal intervals. The value of the
interval depends on the current size of the shared pool.

V$LIBRARY_CACHE_MEMORY This view displays information about memory
allocated to library cache memory objects in different namespaces. A memory object
is an internal grouping of memory for efficient management. A library cache object
may consist of one or more memory objects.

V$JAVA POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY These views contain
Java pool advisory statistics that track information about library cache memory
used for Java and predict how changes in the size of the Java pool can affect the
parse rate.

V$JAVA POOL_ADVI CE displays information about estimated parse time in the
Java pool for different pool sizes. The sizes range from 10% of the current Java pool
size or the amount of pinned Java library cache memory, whichever is higher, to
200% of the current Java pool size, in equal intervals. The value of the interval
depends on the current size of the Java pool.

See Also: Oracle Database Reference for information about the
dynamic performance V$SHARED PCOCOL_ADVI CE, V$LI BRARY_
CACHE_MEMORY, VSJAVA POCL_ADVI CE, and VSJAVA LI BRARY
CACHE_MEMORY view

Shared Pool: Dictionary Cache Statistics

Typically, if the shared pool is adequately sized for the library cache, it will also be
adequate for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. On instance
startup, the data dictionary cache contains no data. Therefore, any SQL statement
issued is likely to result in cache misses. As more data is read into the cache, the
likelihood of cache misses decreases. Eventually, the database reaches a steady state,
in which the most frequently used dictionary data is in the cache. At this point, very
few cache misses occur.

Each row in the VERONCACHE view contains statistics for a single type of data
dictionary item. These statistics reflect all data dictionary activity since the most
recent instance startup. The columns in the V$ROANCACHE view that reflect the use
and effectiveness of the data dictionary cache are listed in Table 7-2.

Memory Configuration and Use 7-33

Configuring and Using the Shared Pool and Large Pool

Table 7-2 V$ROWCACHE Columns

Column Description

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For example, in
the row that contains statistics for file descriptions, this column
has the value dc_fi | es.

GETS Shows the total number of requests for information on the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total number
of requests for file description data.

GETM SSES Shows the number of data requests which were not satisfied by
the cache, requiring an 170.

MODI FI CATI ONS Shows the number of times data in the dictionary cache was
updated.

Use the following query to monitor the statistics in the VEROACACHE view over a
period of time while your application is running. The derived column PCT_SUCC _
CGETS can be considered the item-specific hit ratio:

colum paraneter format a2l
col um pct _succ_gets format 999.9
col utm updates formt 999, 999, 999

SELECT par anet er
, sun{gets)
, sun{getnisses)
, 100*sun(gets - getnisses) / sun(gets) pct_succ_gets
, sum(nodi fications) updat es

FROM VEROACACHE
WHERE gets > 0
GROUP BY paraneter;

The output of this query will be similar to the following:

PARAVETER SUM GETS) SUM GETM SSES) PCT_SUCC_CGETS UPDATES
dc_dat abase_| i nks 81 1 98.8 0
dc_free_extents 44876 20301 54.8 40, 453
dc_gl obal _oi ds 42 9 78.6 0
dc_hi st ogram defs 9419 651 93.1 0
dc_obj ect _ids 29854 239 99.2 52
dc_objects 33600 590 98.2 53
dc_profiles 19001 1 100.0 0

7-34 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

dc_rol | back_segnents 47244 16 100.0 19
dc_segment s 100467 19042 81.0 40, 272
dc_sequence_grants 119 16 86.6 0
dc_sequences 26973 16 99.9 26,811
dc_synonyns 6617 168 97.5 0
dc_t abl espace_quot as 120 7 94.2 51
dc_t abl espaces 581248 10 100.0 0
dc_used_extents 51418 20249 60. 6 42,811
dc_user _grants 76082 18 100.0 0
dc_user names 216860 12 100.0 0
dc_users 376895 22 100.0 0

Examining the data returned by the sample query leads to these observations:

« There are large numbers of misses and updates for used extents, free extents,
and segments. This implies that the instance had a significant amount of
dynamic space extension.

« Based on the percentage of successful gets, and comparing that statistic with the
actual number of gets, the shared pool is large enough to store dictionary cache
data adequately.

It is also possible to calculate an overall dictionary cache hit ratio using the
following formula; however, summing up the data over all the caches will lose the
finer granularity of data:

SELECT (SUM GETS - GETM SSES - FIXED)) / SUM GETS) "ROWN CACHE' FROM V$ROACACHE;

Interpreting Shared Pool Statistics

Shared pool statistics indicate adjustments that can be made. The following sections
describe some of your choices.

Increasing Memory Allocation

Increasing the amount of memory for the shared pool increases the amount of
memory available to both the library cache and the dictionary cache.

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas
remain in the cache after their SQL statements are parsed, increase the amount of
memory available to the library cache until the V$LI BRARYCACHE.REL QADS value
is near zero. To increase the amount of memory available to the library cache,
increase the value of the initialization parameter SHARED POOL_SI ZE. The
maximum value for this parameter depends on your operating system. This

Memory Configuration and Use 7-35

Configuring and Using the Shared Pool and Large Pool

measure reduces implicit reparsing of SQL statements and PL/SQL blocks on
execution.

To take advantage of additional memory available for shared SQL areas, you might
also need to increase the number of cursors permitted for a session. You can do this
by increasing the value of the initialization parameter OPEN_CURSORS.

Allocating Additional Memory to the Data Dictionary Cache Examine cache activity by
monitoring the GETS and GETM SSES columns. For frequently accessed dictionary
caches, the ratio of total GETM SSES to total GETS should be less than 10% or 15%,
depending on the application.

Consider increasing the amount of memory available to the cache if all of the
following are true:

« Your application is using the shared pool effectively. See "Using the Shared Pool
Effectively" on page 7-24.

= Your system has reached a steady state, any of the item-specific hit ratios are
low, and there are a large numbers of gets for the caches with low hit ratios.

Increase the amount of memory available to the data dictionary cache by increasing
the value of the initialization parameter SHARED POOL_SI ZE.

Reducing Memory Allocation

If your RELQADS are near zero, and if you have a small amount of free memory in
the shared pool, then the shared pool is probably large enough to hold the most
frequently accessed data.

If you always have significant amounts of memory free in the shared pool, and if
you would like to allocate this memory elsewhere, then you might be able to reduce
the shared pool size and still maintain good performance.

To make the shared pool smaller, reduce the size of the cache by changing the value
for the parameter SHARED POOL_SI ZE.

Using the Large Pool

Unlike the shared pool, the large pool does not have an LRU list. Oracle does not
attempt to age objects out of the large pool.

You should consider configuring a large pool if your instance uses any of the
following:

« Parallel query

7-36 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Parallel query uses shared pool memory to cache parallel execution message
buffers.

See Also: Oracle Data Warehousing Guide for more information on
sizing the large pool with parallel query

« Recovery Manager

Recovery Manager uses the shared pool to cache 1/0 buffers during backup
and restore operations. For 170 server processes and backup and restore
operations, Oracle allocates buffers that are a few hundred kilobytes in size.

See Also: Oracle Database Recovery Manager Reference for more
information on sizing the large pool when using Recovery Manager

« Shared server

In a shared server architecture, the session memory for each client process is
included in the shared pool.

Tuning the Large Pool and Shared Pool for the Shared Server Architecture

As Oracle allocates shared pool memory for shared server session memory, the
amount of shared pool memory available for the library cache and dictionary cache
decreases. If you allocate this session memory from a different pool, then Oracle can
use the shared pool primarily for caching shared SQL and not incur the
performance overhead from shrinking the shared SQL cache.

Oracle recommends using the large pool to allocate the shared server-related User
Global Area (UGA), rather that using the shared pool. This is because Oracle uses
the shared pool to allocate System Global Area (SGA) memory for other purposes,
such as shared SQL and PL/SQL procedures. Using the large pool instead of the
shared pool decreases fragmentation of the shared pool.

To store shared server-related UGA in the large pool, specify a value for the
initialization parameter LARGE_PQOOL_SI ZE. To see which pool (shared pool or
large pool) the memory for an object resides in, check the column POCL in
V$SGASTAT. The large pool is not configured by default; its minimum value is
300K. If you do not configure the large pool, then Oracle uses the shared pool for
shared server user session memory.

Configure the size of the large pool based on the number of simultaneously active
sessions. Each application requires a different amount of memory for session
information, and your configuration of the large pool or SGA should reflect the

Memory Configuration and Use 7-37

Configuring and Using the Shared Pool and Large Pool

memory requirement. For example, assuming that the shared server requires 200K
to 300K to store session information for each active session. If you anticipate 100
active sessions simultaneously, then configure the large pool to be 30M, or increase
the shared pool accordingly if the large pool is not configured.

Note: If a shared server architecture is used, then Oracle allocates
some fixed amount of memory (about 10K) for each configured
session from the shared pool, even if you have configured the large
pool. The Cl RCUI TS initialization parameter specifies the
maximum number of concurrent shared server connections that the
database allows.

See Also:

« Oracle Database Concepts for more information about the large
pool

« Oracle Database Reference for complete information about
initialization parameters

Determining an Effective Setting for Shared Server UGA Storage The exact amount of UGA
Oracle uses depends on each application. To determine an effective setting for the
large or shared pools, observe UGA use for a typical user and multiply this amount
by the estimated number of user sessions.

Even though use of shared memory increases with shared servers, the total amount
of memory use decreases. This is because there are fewer processes; therefore,
Oracle uses less PGA memory with shared servers when compared to dedicated
server environments.

Note: For best performance with sorts using shared servers, set
SORT_AREA_SI ZE and SORT_AREA_RETAI NED_SI ZE to the same
value. This keeps the sort result in the large pool instead of having
it written to disk.

Checking System Statistics in the VSSESSTAT View Oracle collects statistics on total
memory used by a session and stores them in the dynamic performance view
V$SESSTAT. Table 7-3 lists these statistics.

7-38 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Table 7-3 V$SESSTAT Statistics Reflecting Memory

Statistic Description

sessi on UGA nenory The value of this statistic is the amount of memory in
bytes allocated to the session.

Sessi on UGA nmenory max The value of this statistic is the maximum amount of
memory in bytes ever allocated to the session.

To find the value, query V$STATNAME. If you are using a shared server, you can use
the following query to decide how much larger to make the shared pool. Issue the
following queries while your application is running:

SELECT SUMVALUE) || ' BYTES' "TOTAL MEMORY FOR ALL SESSI ONS'
FROMV V$SESSTAT, V$STATNAME
VWHERE NAME = 'session uga nenory'
AND V$SESSTAT. STATI STI C# = V$STATNAME. STATI STI CH#;

SELECT SUMVALUE) || ' BYTES' "TOTAL MAX MEM FOR ALL SESSI ONS"
FROMV V$SESSTAT, V$STATNAME
WHERE NAME = 'session uga nmenory nax'
AND V$SESSTAT. STATI STI C# = V$STATNAME. STATI STI C#;

These queries also select from the dynamic performance view VESTATNANME to
obtain internal identifiers for sessi on nenory and max sessi on nenory.
The results of these queries could look like the following:

TOTAL MEMORY FOR ALL SESSI ONS

157125 BYTES

TOTAL MAX MEM FOR ALL SESSI ONS

417381 BYTES

The result of the first query indicates that the memory currently allocated to all
sessions is 157,125 bytes. This value is the total memory with a location that
depends on how the sessions are connected to Oracle. If the sessions are connected
to dedicated server processes, then this memory is part of the memories of the user
processes. If the sessions are connected to shared server processes, then this
memory is part of the shared pool.

The result of the second query indicates that the sum of the maximum size of the
memory for all sessions is 417,381 bytes. The second result is greater than the first

Memory Configuration and Use 7-39

Configuring and Using the Shared Pool and Large Pool

because some sessions have deallocated memory since allocating their maximum
amounts.

If you use a shared server architecture, you can use the result of either of these
gueries to determine how much larger to make the shared pool. The first value is
likely to be a better estimate than the second unless nearly all sessions are likely to
reach their maximum allocations at the same time.

Limiting Memory Use for Each User Session by Setting PRIVATE_SGA You can set the
PRI VATE_SGA resource limit to restrict the memory used by each client session
from the SGA. PRI VATE_SGA defines the number of bytes of memory used from
the SGA by a session. However, this parameter is used rarely, because most DBAS
do not limit SGA consumption on a user-by-user basis.

See Also: Oracle Database SQL Reference, ALTER RESOURCE COST
statement, for more information about setting the PRI VATE_SGA
resource limit

Reducing Memory Use with Three-Tier Connections If you have a high number of
connected users, then you can reduce memory usage by implementing three-tier
connections. This by-product of using a transaction process (TP) monitor is feasible
only with pure transactional models, because locks and uncommitted DMLs cannot
be held between calls. A shared server environment offers the following
advantages:

« Itis much less restrictive of the application design than a TP monitor.

« Itdramatically reduces operating system process count and context switches by
enabling users to share a pool of servers.

« It substantially reduces overall memory usage, even though more SGA is used
in shared server mode.

Using CURSOR_SPACE_FOR_TIME

If you have no library cache misses, then you might be able to accelerate execution
calls by setting the value of the initialization parameter CURSOR_SPACE_FOR Tl ME
to t r ue. This parameter specifies whether a cursor can be deallocated from the
library cache to make room for a new SQL statement. CURSOR_SPACE_FOR TI ME
has the following values meanings:

« If CURSOR_SPACE FOR TI MEissettof al se (the default), then a cursor can be
deallocated from the library cache regardless of whether application cursors

7-40 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

associated with its SQL statement are open. In this case, Oracle must verify that
the cursor containing the SQL statement is in the library cache.

« If CURSOR _SPACE FOR Tl MEissettotrue, then acursor can be deallocated
only when all application cursors associated with its statement are closed. In
this case, Oracle need not verify that a cursor is in the cache, because it cannot
be deallocated while an application cursor associated with it is open.

Setting the value of the parameter to t r ue saves Oracle a small amount of time and
can slightly improve the performance of execution calls. This value also prevents
the deallocation of cursors until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR Tl MEtot r ue if you have found
library cache misses on execution calls. Such library cache misses indicate that the
shared pool is not large enough to hold the shared SQL areas of all concurrently
open cursors. If the value ist r ue, and if the shared pool has no space for a new
SQL statement, then the statement cannot be parsed, and Oracle returns an error
saying that there is no more shared memory. If the value is f al se, and if there is no
space for a new statement, then Oracle deallocates an existing cursor. Although
deallocating a cursor could result in a library cache miss later (only if the cursor is
reexecuted), it is preferable to an error halting your application because a SQL
statement cannot be parsed.

Do not set the value of CURSOR_SPACE_FOR Tl MEto true if the amount of
memory available to each user for private SQL areas is scarce. This value also
prevents the deallocation of private SQL areas associated with open cursors. If the
private SQL areas for all concurrently open cursors fills your available memory so
that there is no space for a new SQL statement, then the statement cannot be parsed.
Oracle returns an error indicating that there is not enough memory.

Caching Session Cursors

If an application repeatedly issues parse calls on the same set of SQL statements,
then the reopening of the session cursors can affect system performance. To
minimize the impact on performance, session cursors can be stored in a session
cursor cache. These cursors are those that have been closed by the application and
can be reused. This feature can be particularly useful for applications that use
Oracle Forms, because switching from one form to another closes all session cursors
associated with the first form.

Oracle checks the library cache to determine whether more than three parse
requests have been issued on a given statement. If so, then Oracle assumes that the
session cursor associated with the statement should be cached and moves the cursor

Memory Configuration and Use 7-41

Configuring and Using the Shared Pool and Large Pool

into the session cursor cache. Subsequent requests to parse that SQL statement by
the same session then find the cursor in the session cursor cache.

To enable caching of session cursors, you must set the initialization parameter
SESSI ON_CACHED_CURSOCRS. The value of this parameter is a positive integer
specifying the maximum number of session cursors kept in the cache. An LRU
algorithm removes entries in the session cursor cache to make room for new entries
when needed.

You can also enable the session cursor cache dynamically with the statement:
ALTER SESSI ON SET SESSI ON_CACHED CURSCRS = val ue;

To determine whether the session cursor cache is sufficiently large for your instance,
you can examine the session statistic sessi on cur sor cache hi ts inthe
V$SYSSTAT view. This statistic counts the number of times a parse call found a
cursor in the session cursor cache. If this statistic is a relatively low percentage of
the total parse call count for the session, then consider setting SESSI ON_CACHED _
CURSORS to a larger value.

Configuring the Reserved Pool

Although Oracle breaks down very large requests for memory into smaller chunks,
on some systems there might still be a requirement to find a contiguous chunk (for
example, over 5 KB) of memory. (The default minimum reserved pool allocation is
4,400 bytes.)

If there is not enough free space in the shared pool, then Oracle must search for and
free enough memory to satisfy this request. This operation could conceivably hold
the latch resource for detectable periods of time, causing minor disruption to other
concurrent attempts at memory allocation.

Hence, Oracle internally reserves a small memory area in the shared pool that can
be used if the shared pool does not have enough space. This reserved pool makes
allocation of large chunks more efficient.

By default, Oracle configures a small reserved pool. This memory can be used for
operations such as PL/SQL and trigger compilation or for temporary space while
loading Java objects. After the memory allocated from the reserved pool is freed, it
returns to the reserved pool.

You probably will not need to change the default amount of space Oracle reserves.
However, if necessary, the reserved pool size can be changed by setting the
SHARED POCL_RESERVED SI ZE initialization parameter. This parameter sets
aside space in the shared pool for unusually large allocations.

7-42 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

For large allocations, Oracle attempts to allocate space in the shared pool in the
following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool. If there is not enough space in the unreserved part of
the shared pool, then Oracle checks whether the reserved pool has enough
space.

3. From memory. If there is not enough space in the unreserved and reserved parts
of the shared pool, then Oracle attempts to free enough memory for the
allocation. It then retries the unreserved and reserved parts of the shared pool.

Using SHARED_POOL_RESERVED_SIZE

The default value for SHARED POOL_RESERVED_SI ZE is 5% of the SHARED _
POOL_SI ZE. This means that, by default, the reserved list is configured.

If you set SHARED POOL_RESERVED S| ZE to more than half of SHARED POOL
S| ZE, then Oracle signals an error. Oracle does not let you reserve too much
memory for the reserved pool. The amount of operating system memory, however,
might constrain the size of the shared pool. In general, set SHARED POOL_
RESERVED _SI ZE to 10% of SHARED POCL_SI ZE. For most systems, this value is
sufficient if you have already tuned the shared pool. If you increase this value, then
the database takes memory from the shared pool. (This reduces the amount of
unreserved shared pool memory available for smaller allocations.)

Statistics from the V$SHARED POOL_RESERVED view help you tune these
parameters. On a system with ample free memory to increase the size of the SGA,
the goal is to have the value of REQUEST_M SSES equal zero. If the system is
constrained for operating system memory, then the goal is to not have REQUEST _
FAI LURES or at least prevent this value from increasing.

If you cannot achieve these target values, then increase the value for SHARED _
POOL_RESERVED_SI ZE. Also, increase the value for SHARED POCL_SI ZE by the
same amount, because the reserved list is taken from the shared pool.

See Also: Oracle Database Reference for details on setting the
LARGE _PQOCL_SI ZE parameter

When SHARED_POOL_RESERVED_SIZE Is Too Small

The reserved pool is too small when the value for REQUEST _FAI LURES is more
than zero and increasing. To resolve this, increase the value for the SHARED POOL

Memory Configuration and Use 7-43

Configuring and Using the Shared Pool and Large Pool

RESERVED S| ZE and SHARED POOL_SI ZE accordingly. The settings you select for
these parameters depend on your system's SGA size constraints.

Increasing the value of SHARED POOL_RESERVED SI ZE increases the amount of
memory available on the reserved list without having an effect on users who do not
allocate memory from the reserved list.

When SHARED_POOL_RESERVED_SIZE Is Too Large
Too much memory might have been allocated to the reserved list if:

« REQUEST_M SSESis zero or not increasing

« FREE_MEMORY is greater than or equal to 50% of SHARED POOL_RESERVED
SI ZE minimum

If either of these conditions is true, then decrease the value for SHARED POOL
RESERVED _SI ZE.

When SHARED POOL_SIZE is Too Small

The V$SHARED POOL_RESERVED fixed view can also indicate when the value for
SHARED POQOL_SI ZE is too small. This can be the case if REQUEST_ FAI LURES is
greater than zero and increasing.

If you have enabled the reserved list, then decrease the value for SHARED POOL_
RESERVED _SI ZE. If you have not enabled the reserved list, then you could increase
SHARED POOL_SI ZE.

Keeping Large Objects to Prevent Aging

After an entry has been loaded into the shared pool, it cannot be moved.
Sometimes, as entries are loaded and aged, the free memory can become
fragmented.

Use the PL/SQL package DBMS_SHARED PQOOL to manage the shared pool. Shared

SQL and PL/SQL areas age out of the shared pool according to a least recently used
(LRU) algorithm, similar to database buffers. To improve performance and prevent

reparsing, you might want to prevent large SQL or PL/SQL areas from aging out of
the shared pool.

The DBM5_SHARED PQOCL package lets you keep objects in shared memory, so that
they do not age out with the normal LRU mechanism. By using the DBMS_SHARED _
POOL package and by loading the SQL and PL/SQL areas before memory
fragmentation occurs, the objects can be kept in memory. This ensures that memory

7-44 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

is available, and it prevents the sudden, inexplicable slowdowns in user response
time that occur when SQL and PL/SQL areas are accessed after aging out.

The DBM5_SHARED POCL package is useful for the following:

=« When loading large PL/SQL obijects, such as the STANDARD and DI UTI L
packages. When large PL/SQL objects are loaded, user response time may be
affected if smaller objects that need to age out of the shared pool to make room.
In some cases, there might be insufficient memory to load the large objects.

« Frequently executed triggers. You might want to keep compiled triggers on
frequently used tables in the shared pool.

« DBMsS_SHARED PQOQL supports sequences. Sequence numbers are lost when a
sequence ages out of the shared pool. DBMS_SHARED POOL keeps sequences in
the shared pool, thus preventing the loss of sequence numbers.

To use the DBMS_SHARED PQOOL package to pin a SQL or PL/SQL area, complete
the following steps:

1. Decide which packages or cursors to pin in memory.
2. Start up the database.
3. Make the call to DBMS_SHARED POOL.KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory
before the kept objects are loaded. By pinning the objects early in the life of the
instance, you prevent memory fragmentation that could result from pinning a
large portion of memory in the middle of the shared pool.

See Also: PL/SQL Packages and Types Reference for specific
information on using DBM5_SHARED POCL procedures

CURSOR_SHARING for Existing Applications

One of the first stages of parsing is to compare the text of the statement with
existing statements in the shared pool to see if the statement can be shared. If the
statement differs textually in any way, then Oracle does not share the statement.

Exceptions to this are possible when the parameter CURSOR_SHARI NG has been set
to SI M LAR or FORCE. When this parameter is used, Oracle first checks the shared
pool to see if there is an identical statement in the shared pool. If an identical
statement is not found, then Oracle searches for a similar statement in the shared
pool. If the similar statement is there, then the parse checks continue to verify the

Memory Configuration and Use 7-45

Configuring and Using the Shared Pool and Large Pool

executable form of the cursor can be used. If the statement is not there, then a hard
parse is necessary to generate the executable form of the statement.

Similar SQL Statements

Statements that are identical, except for the values of some literals, are called similar
statements. Similar statements pass the textual check in the parse phase when the
CURSOR_SHARI NG parameter is set to SI M LAR or FORCE. Textual similarity does
not guarantee sharing. The new form of the SQL statement still needs to go through
the remaining steps of the parse phase to ensure that the execution plan of the
preexisting statement is equally applicable to the new statement.

See Also: "SQL Sharing Criteria" on page 7-23 for more details on
the various checks performed

CURSOR_SHARING

Setting CURSOR_SHARI NGto EXACT allows SQL statements to share the SQL area
only when their texts match exactly. This is the default behavior. Using this setting,
similar statements cannot shared; only textually exact statements can be shared.

Setting CURSOR_SHARI NGto either SI M LAR or FORCE allows similar statements to
share SQL. The difference between SI M LAR and FORCE is that SI M LAR forces
similar statements to share the SQL area without deteriorating execution plans.
Setting CURSOR_SHARI NGto FORCE forces similar statements to share the
executable SQL area, potentially deteriorating execution plans. Hence, FORCE
should be used as a last resort, when the risk of suboptimal plans is outweighed by
the improvements in cursor sharing.

When to use CURSOR_SHARING

The CURSOR_SHARI NGinitialization parameter can solve some performance
problems. It has the following values: FORCE, SI M LAR, and EXACT (default).
Using this parameter provides benefit to existing applications that have many
similar SQL statements.

Note: Oracle does not recommend setting CURSOR_SHARI NGto
FORCE in a DSS environment or if you are using complex queries.
Also, star transformation is not supported with CURSOR_SHARI NG
set to either SI M LAR or FORCE. For more information, see the
"OPTIMIZER_FEATURES_ENABLE Parameter" on page 14-6.

7-46 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

The optimal solution is to write sharable SQL, rather than rely on the CURSOR _
SHARI NG parameter. This is because although CURSOR_SHARI NG does significantly
reduce the amount of resources used by eliminating hard parses, it requires some
extra work as a part of the soft parse to find a similar statement in the shared pool.

Note: Setting CURSOR_SHARI NGto SI M LAR or FORCE causes an
increase in the maximum lengths (as returned by DESCRI BE) of
any selected expressions that contain literals (in a SELECT
statement). However, the actual length of the data returned does
not change.

Consider setting CURSOR_SHARI NGto SI M LAR or FORCE if both of the following
questions are true:

1. Are there statements in the shared pool that differ only in the values of literals?

2. Isthe response time low due to a very high number of library cache misses?

Caution: Setting CURSOR_SHARI NGto FORCE or SI M LAR
prevents any outlines generated with literals from being used if
they were generated with CURSOR_SHARI NGset to EXACT.

To use stored outlines with CURSOR _SHARI NG=FORCE or

SI M LAR, the outlines must be generated with CURSOR_SHARI NG
set to FORCE or SI M LAR and with the CREATE_STORED _

QUTLI NES parameter.

Using CURSOR_SHARI NG= SI M LAR (or FORCE) can significantly improve cursor
sharing on some applications that have many similar statements, resulting in
reduced memory usage, faster parses, and reduced latch contention.

Maintaining Connections

Large OLTP applications with middle tiers should maintain connections, rather
than connecting and disconnecting for each database request. Maintaining
persistent connections saves CPU resources and database resources, such as latches.

See Also: "Operating System Statistics" on page 5-5 for a
description of important operating system statistics

Memory Configuration and Use 7-47

Configuring and Using the Redo Log Buffer

Configuring and Using the Redo Log Buffer

Server processes making changes to data blocks in the buffer cache generate redo
data into the log buffer. LGWR begins writing to copy entries from the redo log
buffer to the online redo log if any of the following are true:

« The log buffer becomes one third full.
« LGWRis posted by a server process performing a COVM T or ROLLBACK.
« DBWR posts LGWR to do so.

When LGWR writes redo entries from the redo log buffer to a redo log file or disk,
user processes can then copy new entries over the entries in memory that have been
written to disk. LGWR usually writes fast enough to ensure that space is available
in the buffer for new entries, even when access to the redo log is heavy.

A larger buffer makes it more likely that there is space for new entries, and also
gives LGWR the opportunity to efficiently write out redo records (too small a log
buffer on a system with large updates means that LGWR is continuously flushing
redo to disk so that the log buffer remains 2/3 empty).

On machines with fast processors and relatively slow disks, the processors might be
filling the rest of the buffer in the time it takes the redo log writer to move a portion
of the buffer to disk. A larger log buffer can temporarily mask the effect of slower
disks in this situation. Alternatively, you can do one of the following:

« Improve the checkpointing or archiving process

« Improve the performance of log writer (perhaps by moving all online logs to
fast raw devices)

Good usage of the redo log buffer is a simple matter of:

« Batching commit operations for batch jobs, so that log writer is able to write
redo log entries efficiently

« Using NOLOGG NGoperations when you are loading large quantities of data

The size of the redo log buffer is determined by the initialization parameter LOG _
BUFFER. The log buffer size cannot be modified after instance startup.

7-48 Oracle Database Performance Tuning Guide

Configuring and Using the Redo Log Buffer

Figure 7-2 Redo Log Buffer

Being filled by
DML users Being written to
disk by LGWR
Sizing the Log Buffer

Applications that insert, modify, or delete large volumes of data usually need to
change the default log buffer size. The log buffer is small compared with the total
SGA size, and a modestly sized log buffer can significantly enhance throughput on
systems that perform many updates.

A reasonable first estimate for such systems is to the default value, which is:
MAX(0.5M (128K * nunber of cpus))

On most systems, sizing the log buffer larger than 1M does not provide any
performance benefit. Increasing the log buffer size does not have any negative
implications on performance or recoverability. It merely uses extra memory.

Log Buffer Statistics

The statistic REDOBUFFER ALLOCATI ONRETRI ES reflects the number of times a
user process waits for space in the redo log buffer. This statistic can be queried
through the dynamic performance view V$SYSSTAT.

Use the following query to monitor these statistics over a period of time while your
application is running:

SELECT NAME, VALUE
FROM V$SYSSTAT
VWHERE NAME = 'redo buffer allocation retries';

Memory Configuration and Use 7-49

PGA Memory Management

The value of redo buffer allocation retries should be near zero over an
interval. If this value increments consistently, then processes have had to wait for
space in the redo log buffer. The wait can be caused by the log buffer being too
small or by checkpointing. Increase the size of the redo log buffer, if necessary, by
changing the value of the initialization parameter LOG_BUFFER. The value of this
parameter is expressed in bytes. Alternatively, improve the checkpointing or
archiving process.

Another data source is to check whether the | og buf f er space wait event is not a
significant factor in the wait time for the instance; if not, the log buffer size is most
likely adequate.

PGA Memory Management

The Program Global Area (PGA) is a private memory region containing data and
control information for a server process. Access to it is exclusive to that server
process and is read and written only by the Oracle code acting on behalf of it. An
example of such information is the runtime area of a cursor. Each time a cursor is
executed, a new runtime area is created for that cursor in the PGA memory region
of the server process executing that cursor.

Note: Part of the runtime area can be located in the SGA when
using shared servers.

For complex queries (for example, decision support queries), a big portion of the
runtime area is dedicated to work areas allocated by memory intensive operators,
such as the following:

« Sort-based operators, such as ORDER BY, GROUP BY, ROLLUP, and window
functions

« Hash-join

« Bitmap merge

« Bitmap create

« Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sort of a
set of rows. Similarly, a hash-join operator uses a work area (the hash area) to build
a hash table from its left input.

7-50 Oracle Database Performance Tuning Guide

PGA Memory Management

The size of a work area can be controlled and tuned. Generally, bigger work areas
can significantly improve the performance of a particular operator at the cost of
higher memory consumption. Ideally, the size of a work area is big enough that it
can accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. This is known as the optimal size of a work area. When the
size of the work area is smaller than optimal, the response time increases, because
an extra pass is performed over part of the input data. This is known as the
one-pass size of the work area. Under the one-pass threshold, when the size of a
work area is far too small compared to the input data size, multiple passes over the
input data are needed. This could dramatically increase the response time of the
operator. This is known as the multi-pass size of the work area. For example, a serial
sort operation that needs to sort 10GB of data needs a little more than 10GB to run
optimal and at least 40MB to run one-pass. If this sort gets less that 40MB, then it
must perform several passes over the input data.

The goal is to have most work areas running with an optimal size (for example,
more than 90% or even 100% for pure OLTP systems), while a smaller fraction of
them are running with a one-pass size (for example, less than 10%). Multi-pass
execution should be avoided. Even for DSS systems running large sorts and
hash-joins, the memory requirement for the one-pass executions is relatively small.
A system configured with a reasonable amount of PGA memory should not need to
perform multiple passes over the input data.

Automatic PGA memory management simplifies and improves the way PGA
memory is allocated. By default, PGA memory management is enabled. In this
mode, Oracle dynamically adjusts the size of the portion of the PGA memory
dedicated to work areas, based on 20% of the SGA memory size. The minimum
value is 10MB.

Note: For backward compatibility, automatic PGA memory
management can be disabled by setting the value of the PGA _
AGCGREGATE_TARGET initialization parameter to 0. When automatic
PGA memory management is disabled, the maximum size of a
work area can be sized with the associated _ AREA S| ZE parameter,
such as the SORT_AREA _SI ZE initialization parameter.

See Oracle Database Reference for information on the PGA _
AGGREGATE_TARGET, SORT_AREA_SI ZE, HASH_AREA_SI ZE,

Bl TMAP_MERGE_AREA S| ZE and CREATE_BI TMAP_AREA_SI ZE
initialization parameters.

Memory Configuration and Use 7-51

PGA Memory Management

Configuring Automatic PGA Memory

When running under the automatic PGA memory management mode, sizing of
work areas for all sessions becomes automatic and the * _AREA_SI ZE parameters
are ignored by all sessions running in that mode. At any given time, the total
amount of PGA memory available to active work areas in the instance is
automatically derived from the PGA_ AGGREGATE_TARGET initialization parameter.
This amount is set to the value of PGA_AGGREGATE_TARGET minus the amount of
PGA memory allocated by other components of the system (for example, PGA
memory allocated by sessions). The resulting PGA memory is then assigned to
individual active work areas, based on their specific memory requirements.

Under automatic PGA memory management mode, the main goal of Oracle is to
honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling
dynamically the amount of PGA memory allotted to SQL work areas. At the same
time, Oracle tries to maximize the performance of all the memory-intensive SQL
operations, by maximizing the number of work areas that are using an optimal
amount of PGA memory (cache memory). The rest of the work areas are executed in
one-pass mode, unless the PGA memory limit set by the DBA with the parameter
PGA_ AGGREGATE_TARCET is so low that multi-pass execution is required to reduce
even more the consumption of PGA memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the
appropriate setting for PGA_ AGGREGATE_TARGET. You can determine this setting in
three stages:

1. Make a first estimate for PGA_ AGGREGATE_TARGET, based on a rule of thumb.
By default, Oracle uses 20% of the SGA size. However, this initial setting may
be too low for a large DSS system.

2. Run a representative workload on the instance and monitor performance, using
PGA statistics collected by Oracle, to see whether the maximum PGA size is
under-configured or over-configured.

3. Tune PGA_ AGGREGATE_TARGET, using Oracle PGA advice statistics.

See Also: Oracle Database Reference for information on the PGA _
AGGREGATE_TARGET initialization parameter

The following sections explain this in detail:

« Setting PGA_AGGREGATE_TARGET Initially

« Monitoring the Performance of the Automatic PGA Memory Management

« Tuning PGA_AGGREGATE_TARGET

7-52 Oracle Database Performance Tuning Guide

PGA Memory Management

Setting PGA_AGGREGATE_TARGET Initially

The value of the PGA_AGGREGATE_TARCET initialization parameter (for example
100000 KB, 2500 MB, or 50 GB) should be set based on the total amount of memory
available for the Oracle instance. This value can then be tuned and dynamically
modified at the instance level. Example 7-2 illustrates a typical situation.

Example 7-2 Initial Setting of PGA_AGGREGATE_TARGET

Assume that an Oracle instance is configured to run on a system with 4 GB of
physical memory. Part of that memory should be left for the operating system and
other non-Oracle applications running on the same hardware system. You might
decide to dedicate only 80% (3.2 GB) of the available memory to the Oracle instance.

You must then divide the resulting memory between the SGA and the PGA.

« For OLTP systems, the PGA memory typically accounts for a small fraction of
the total memory available (for example, 20%), leaving 80% for the SGA.

« For DSS systems running large, memory-intensive queries, PGA memory can
typically use up to 70% of that total (up to 2.2 GB in this example).

Good initial values for the parameter PGA AGGREGATE_TARCET might be:
« For OLTP: PGA AGGREGATE TARGET = (t ot al _nmem* 80%) * 20%
« For DSS: PGA AGGREGATE TARGET = (t ot al _nem* 80%) * 50%

where t ot al _nemis the total amount of physical memory available on the
system.

In this example, with a value of t ot al _nmemequal to 4 GB, you can initially set
PGA AGGREGATE_TARGET to 1600 MB for a DSS system and to 655 MB for an OLTP
system.

Monitoring the Performance of the Automatic PGA Memory Management

Before starting the tuning process, you need to know how to monitor and interpret
the key statistics collected by Oracle to help in assessing the performance of the
automatic PGA memory management component. Several dynamic performance
views are available for this purpose:

= VSPGASTAT

=« V$PROCESS

» V$SQL_WORKAREA_HISTOGRAM
« V$SQL_WORKAREA_ACTIVE

Memory Configuration and Use 7-53

PGA Memory Management

« V$SQL_WORKAREA

V$PGASTAT This view gives instance-level statistics on the PGA memory usage and
the automatic PGA memory manager. For example:

SELECT * FROM V$PGASTAT;

The output of this query might look like the following:

NAVE VALUE UNIT
aggregate PGA target paraneter 41156608 bytes
aggregate PGA auto target 21823488 bytes
gl obal nmemory bound 2057216 bytes
total PGA inuse 16899072 byt es
total PGA allocated 35014656 bytes
maxi mum PGA al | ocat ed 136795136 bytes
total freeable PGA nenory 524288 bytes
PGA nenory freed back to OS 1713242112 bytes
total PGA used for auto workareas 0 bytes
maxi mum PGA used for auto workareas 2383872 bytes
total PGA used for manual workareas 0 bytes
maxi mum PGA used for nanual workareas 8470528 byt es
over allocation count 291

bytes processed 2124600320 bytes
extra bytes read/witten 39949312 bytes
cache hit percentage 98. 15 percent

The main statistics displayed in VEPGASTAT are as follows:

« aggregate PGA target paraneter: Thisisthe current value of the
initialization parameter PGA_AGGREGATE_TARGET. The default value is 20% of
the SGA size. If you set this parameter to 0, automatic management of the PGA
memory is disabled.

« aggregate PGA auto target: This gives the amount of PGA memory
Oracle can use for work areas running in automatic mode. This amount is
dynamically derived from the value of the parameter PGA_AGGREGATE _
TARGET and the current work area workload. Hence, it is continuously adjusted
by Oracle. If this value is small compared to the value of PGA_AGGREGATE_
TARGET, then a lot of PGA memory is used by other components of the system
(for example, PL/SQL or Java memory) and little is left for sort work areas. You
must ensure that enough PGA memory is left for work areas running in
automatic mode.

7-54 Oracle Database Performance Tuning Guide

PGA Memory Management

gl obal nenory bound: This gives the maximum size of a work area
executed in AUTOmode. This value is continuously adjusted by Oracle to reflect
the current state of the work area workload. The global memory bound
generally decreases when the number of active work areas is increasing in the
system. As a rule of thumb, the value of the global bound should not decrease
to less than one megabyte. If it does, then the value of PGA AGGREGATE _
TARGET should probably be increased.

total PGA all ocat ed: This gives the current amount of PGA memory
allocated by the instance. Oracle tries to keep this number less than the value of
PGA AGGREGATE_TARCGET. However, it is possible for the PGA allocated to
exceed that value by a small percentage and for a short period of time, when the
work area workload is increasing very rapidly or when the initialization
parameter PGA AGGREGATE TARGET is set to a too small value.

total freeable PGA nenory: Thisindicates how much allocated PGA
memory which can be freed.

total PGA used for auto workareas: Thisindicates how much PGA
memory is currently consumed by work areas running under automatic
memory management mode. This number can be used to determine how much
memory is consumed by other consumers of the PGA memory (for example,
PL/SQL or Java):

PGA other = total PGA allocated - total PGA used for auto workareas

over allocation count: This statistic is cumulative from instance start-up.
Over-allocating PGA memory can happen if the value of PGA AGGREGATE _
TARGET is too small to accommodate the PGA ot her component in the
previous equation plus the minimum memory required to execute the work
area workload. When this happens, Oracle cannot honor the initialization
parameter PGA AGGREGATE TARGET, and extra PGA memory needs to be
allocated. If over-allocation occurs, you should increase the value of PGA
AGGREGATE_TARGET using the information provided by the advice view
V$PGA TARGET_ADVI CE.

total bytes processed: Thisisthe number of bytes processed by
memory-intensive SQL operators since instance start-up. For example, the
number of byte processed is the input size for a sort operation. This number is
used to compute the cache hi t per cent age metric.

extra bytes read/ witten: When awork area cannot run optimally, one
or more extra passes is performed over the input data. ext r a byt es
read/ wri tten represents the number of bytes processed during these extra

Memory Configuration and Use 7-55

PGA Memory Management

passes since instance start-up. This number is also used to compute the cache
hi t per cent age. Ideally, it should be small compared tot ot al byt es
pr ocessed.

« cache hit percentage: This metric is computed by Oracle to reflect the
performance of the PGA memory component. It is cumulative from instance
start-up. A value of 100% means that all work areas executed by the system
since instance start-up have used an optimal amount of PGA memory. This is,
of course, ideal but rarely happens except maybe for pure OLTP systems. In
reality, some work areas run one-pass or even multi-pass, depending on the
overall size of the PGA memory. When a work area cannot run optimally, one
or more extra passes is performed over the input data. This reduces the cache
hi t per cent age in proportion to the size of the input data and the number of
extra passes performed. Example 7-3 shows how cache hi t per cent age is
affected by extra passes.

Example 7-3 Calculating Cache Hit Percentage

Consider a simple example: Four sort operations have been executed, three were
small (1 MB of input data) and one was bigger (100 MB of input data). The total
number of bytes processed (BP) by the four operations is 103 MB. If one of the small
sorts runs one-pass, an extra pass over 1 MB of input data is performed. This 1 MB
value is the number of ext ra byt es read/ wri tten, or EBP. The cache hi t

per cent age is calculated by the following formula:

BP x 100 / (BP + EBP)

The cache hi t per cent age in this case is 99.03%, almost 100%. This value reflects
the fact that only one of the small sorts had to perform an extra pass while all other
sorts were able to run optimally. Hence, the cache hi t per cent age is almost
100%, because this extra pass over 1 MB represents a tiny overhead. On the other
hand, if the big sort is the one to run one-pass, then EBP is 100 MB instead of 1 MB,
and the cache hi t per cent age falls to 50.73%, because the extra pass has a much
bigger impact.

V$PROCESS This view has one row for each Oracle process connected to the
instance. The columns PGA_USED MEM PGA ALLOC MEM PGA FREEABLE MEM
and PGA_MAX_MEMcan be used to monitor the PGA memory usage of these
processes. For example:

SELECT PROGRAM PGA USED MEM PGA ALLOC MEM PGA FREEABLE MEM PGA MAX_MEM
FROM V$PROCESS;

The output of this query might look like the following:

7-56 Oracle Database Performance Tuning Guide

PGA Memory Management

PSEUDO

oracl e@l sun1690
oracl e@l sun1690
oracl e@l sun1690
oracl e@ll sun1690
oracl e@ll sun1690
oracl e@ll sun1690
oracl e@l sun1690
oracl e@l sun1690
oracl e@l sun1690
oracl e@ll sun1690
oracl e@l sun1690
oracl e@ll sun1690
oracl e@l sun1690
oracl e@l sun1690
oracl e@l sun1690

PGA_USED_MEM PGA_ALLOC_MEM PGA FREEABLE_MEM PGA MAX_MEM

0 0 0 0
(PMON) 314540 685860 0 685860
(MVAN) 313992 685860 0 685860
(DBWD) 696720 1063112 0 1063112
(LGAR) 10835108 22967940 0 22967940
(CKPT) 352716 710376 0 710376
(SMON) 541508 948004 0 1603364
(RECO) 323688 685860 0 816932
(q001) 233508 585128 0 585128
(QWQ) 314332 685860 0 685860
(MVON) 885756 1996548 393216 1996548
(MWL) 315068 685860 0 685860
(q000) 330872 716200 65536 716200
(TNS V1-V3) 635768 928024 0 1255704
(QJQ) 533476 1013540 0 1144612
(TNS V1-V3) 430648 812108 0 812108

V$SQL_WORKAREA_HISTOGRAM This view shows the number of work areas
executed with optimal memory size, one-pass memory size, and multi-pass
memory size since instance start-up. Statistics in this view are subdivided into
buckets that are defined by the optimal memory requirement of the work area. Each
bucket is identified by a range of optimal memory requirements specified by the
values of the columns LOW OPTI MAL_SI ZE and HI GH_OPTI MAL_SI ZE.

Example 7-4 and Example 7-5 show two ways of using V$SQL_WORKAREA
HI STOGRAM

Example 7-4 Querying V$SQL_WORKAREA_HISTOGRAM: Non-empty Buckets

Consider a sort operation that requires 3 MB of memory to run optimally (cached).
Statistics about the work area used by this sort are placed in the bucket defined by
LOW OPTI MAL_SI ZE = 2097152 (2 MB) and H GH_OPTI MAL_SI ZE =
4194303 (4 MB minus 1 byte), because 3 MB falls within that range of optimal
sizes. Statistics are segmented by work area size, because the performance impact of
running a work area in optimal, one-pass or multi-pass mode depends mainly on
the size of that work area.

The following query shows statistics for all non-empty buckets. Empty buckets are
removed with the predicate where total execution != 0.

SELECT LOW OPTI MAL_SI ZE/ 1024 | ow kb,
(H GH_OPTI MAL_SI ZE+1)/ 1024 hi gh_kb,

Memory Configuration and Use 7-57

PGA Memory Management

FROM V$SQL_WORKAREA H STOGRAM
VWHERE TOTAL_EXECUTIONS ! = 0;

OPTI MAL_EXECUTI ONS, ONEPASS_EXECUTI ONS, MJLTI PASSES_EXECUTI ONS

The result of the query might look like the following:

LOWKB H GH_KB OPTI MAL_EXECUTI ONS ONEPASS_EXECUTI ONS MULTI PASSES_EXECUTI ONS

8 16 156255 0 0

16 32 150 0 0

32 64 89 0 0

64 128 13 0 0

128 256 60 0 0
256 512 8 0 0
512 1024 657 0 0
1024 2048 551 16 0
2048 4096 538 26 0
4096 8192 243 28 0
8192 16384 137 35 0
16384 32768 45 107 0
32768 65536 0 153 0
65536 131072 0 73 0
131072 262144 0 44 0
262144 524288 0 22 0

The query result shows that, in the 1024 KB to 2048 KB bucket, 551 work areas used
an optimal amount of memory, while 16 ran in one-pass mode and none ran in
multi-pass mode. It also shows that all work areas under 1 MB were able to run in
optimal mode.

Example 7-5 Querying V$SQL_WORKAREA_HISTOGRAM: Percent Optimal

You can also use V$SQ._WORKAREA HI STOGRAMto find the percentage of times
work areas were executed in optimal, one-pass, or multi-pass mode since start-up.
This query only considers work areas of a certain size, with an optimal memory
requirement of at least 64 KB.

SELECT optimal _count, round(optimal _count*100/total, 2) optimal _perc,
onepass_count, round(onepass_count*100/total, 2) onepass_perc,
mul tipass_count, round(multipass_count*100/total, 2) nultipass_perc
FROM
(SELECT decode(sum(total executions), 0, 1, sun{total executions)) total,
sun(OPTI MAL_EXECUTI ONS) opti mal _count,
sum ONEPASS_EXECUTI ONS) onepass_count,
sun(MULTI PASSES_EXECUTI ONS) mul ti pass_count

7-58 Oracle Database Performance Tuning Guide

PGA Memory Management

FROM v$sql _wor kar ea_hi st ogram
VWHERE | ow_optinmal _size > 64*1024);

The output of this query might look like the following:
CPTI MAL_COUNT OPTI MAL_PERC ONEPASS_COUNT ONEPASS_PERC MULTI PASS_COUNT MULTI PASS_PERC

This result shows that 81.63% of these work areas have been able to run using an
optimal amount of memory. The rest (18.37%) ran one-pass. None of them ran
multi-pass. Such behavior is preferable, for the following reasons:

« Multi-pass mode can severely degrade performance. A high number of
multi-pass work areas has an exponentially adverse effect on the response time
of its associated SQL operator.

« Running one-pass does not require a large amount of memory; only 22 MB is
required to sort 1 GB of data in one-pass mode.

V$SQL_WORKAREA_ACTIVE This view can be used to display the work areas that are
active (or executing) in the instance. Small active sorts (under 64 KB) are excluded
from the view. Use this view to precisely monitor the size of all active work areas
and to determine if these active work areas spill to a temporary segment.

Example 7-6 shows a typical query of this view:

Example 7-6 Querying V$SQL_WORKAREA_ACTIVE

SELECT to_nunber (decode(SI D, 65535, NULL, SID)) sid,
operation_type OPERATI ON,
t runc(EXPECTED S| ZE/ 1024) ESI ZE,
t runc(ACTUAL_MEM USEDY 1024) MEM
t runc(MAX_MEM USED/ 1024) "MAX MEM',
NUMBER _PASSES PASS,
t runc(TEVPSEG S| ZE/ 1024) TSI ZE

FROM V$SQ._WORKAREA ACTI VE

ORDER BY 1, 2;

The output of this query nmight |ook |ike the follow ng:

SID OPERATI ON ESI ZE MEM MAX MEM PASS TSI ZE
8 GROUP BY (SCRT) 315 280 904 0
8 HASH JO N 2995 2377 2430 1 20000
9 GROUP BY ('SORT) 34300 22688 22688 0

11 HASH JO' N 18044 54482 54482 0

Memory Configuration and Use 7-59

PGA Memory Management

12 HASH- JO N 18044 11406 21406 1 120000

This output shows that session 12 (column Sl D) is running a hash-join having its
work area running in one-pass mode (PASS column). This work area is currently
using 11406 KB of memory (MEMcolumn) and has used, in the past, up to 21406 KB
of PGA memory (MAX MEMcolumn). It has also spilled to a temporary segment of
size 120000 KB. Finally, the column ESI ZE indicates the maximum amount of
memory that the PGA memory manager expects this hash-join to use. This
maximum is dynamically computed by the PGA memory manager according to
workload.

When a work area is deallocated—that is, when the execution of its associated SQL
operator is complete—the work area is automatically removed from the V$SQL
WORKAREA_ACTI VE view.

V$SQL_WORKAREA Oracle maintains cumulative work area statistics for each loaded
cursor whose execution plan uses one or more work areas. Every time a work area
is deallocated, the V$SQL_WORKAREA table is updated with execution statistics for
that work area.

V$SQL_WORKAREA can be joined with V$SQL to relate a work area to a cursor. It can
even be joined to V$SQ._PLAN to precisely determine which operator in the plan
uses a work area.

Example 7-7 shows three typical queries on the V$SQL_WORKAREA dynamic view:

Example 7-7 Querying V$SQL_WORKAREA
The following query finds the top 10 work areas requiring most cache memory:

SELECT *
FROM
(SELECT workarea_address, operation_type, policy, estimated optimal _size
FROM V$SQL_WORKAREA
ORDER BY estimated_optimal _size)
WHERE ROANUM <= 10;

The following query finds the cursors with one or more work areas that have been
executed in one or even multiple passes:

col sqgl_text format A80 wrap

SELECT sql _text, sum{ ONEPASS_EXECUTI ONS) onepass_cnt,
sum(MULTI PASSES_EXECUTI ONS) npass_cnt

FROM V$SQL s, V$SQL_WORKAREA wa

WHERE s. address = wa. addr ess

7-60 Oracle Database Performance Tuning Guide

PGA Memory Management

GROUP BY sql _text
HAVI NG sum(ONEPASS_EXECUTI ONS+MULTI PASSES EXECUTI ONS) >0;

Using the hash value and address of a particular cursor, the following query
displays the cursor execution plan, including information about the associated work
areas.

col "Q1/M format all
col name format a20
SELECT operation, options, object_nanme nane,
trunc(bytes/ 1024/ 1024) "input (MB)",
trunc(last_menory_used/ 1024) | ast_mem
trunc(estimted_optinal _size/ 1024) optimal _nmem
trunc(estimted_onepass_si ze/ 1024) onepass_nem
decode(opti mal _executions, null, null,
optimal _executions||'/"'||onepass_executions||'/"|]|
mul ti passes_executions) "Q 1/ M
FROM V$SQL_PLAN p, V$SQL_WORKAREA w
VHERE p. addr ess=w. addr ess(+)
AND p. hash_val ue=w. hash_val ue(+)
AND p. i d=w. operation_id(+)
AND p. addr ess=' 88BB460C
AND p. hash_val ue=3738161960;

OPERATION OPTIONS NAME i nput (MB) LAST_MEM OPTI MAL_ME ONEPASS ME Qf 1/ M
SELECT STATE

SORT GROUP BY 4582 8 16 16 16/0/0
HASH JON SEM 4582 5976 5194 2187 16/0/0
TABLE ACCESS FULL ORDERS 51

TABLE ACCESS FUL LI NEI TEM 1000

You can get the address and hash value from the V$SQL view by specifying a
pattern in the query. For example:

SELECT address, hash_val ue
FROM V$SQL
WHERE sql _text LIKE '%y_pattern%;

Tuning PGA_AGGREGATE_TARGET

To help you tune the initialization parameter PGA AGGREGATE TARGET, Oracle
provides two PGA advice performance views;

= VS$PGA_TARGET_ADVICE

Memory Configuration and Use 7-61

PGA Memory Management

« V$PGA_TARGET_ADVICE_HISTOGRAM

By examining these two views, you no longer need to use an empirical approach to
tune the value of PGA_AGGREGATE_TARGCET. Instead, you can use the content of
these views to determine how key PGA statistics will be impacted if you change the
value of PGA_AGGREGATE_TARGCET.

In both views, values of PGA_AGGREGATE_TARCET used for the prediction are
derived from fractions and multiples of the current value of that parameter, to
assess possible higher and lower values. Values used for the prediction range from
10 MB to a maximum of 256 GB.

Oracle generates PGA advice performance views by recording the workload history
and then simulating this history for different values of PGA AGGREGATE _TARCET.
The simulation process happens in the background and continuously updates the
workload history to produce the simulation result. You can view the result at any
time by querying VSPGA_TARGET_ADVI CE or VSPGA _TARGET_ADVI CE_

H STOGRAM

To enable automatic generation of PGA advice performance views, make sure the
following parameters are set:

« PGA AGGREGATE_TARGCET, to enable automatic PGA memory management. Set
the initial value as described in "Setting PGA_AGGREGATE_TARGET Initially”
on page 7-53.

« STATI STI CS_LEVEL. Set this to TYPI CAL (the default) or ALL; setting this
parameter to BASI Cturns off generation of PGA performance advice views.

The content of these PGA advice performance views is reset at instance start-up or
when PGA AGGREGATE_TARCET is altered.

Note: Simulation cannot include all factors of real execution, so
derived statistics might not exactly match up with real performance
statistics. You should always monitor the system after changing
PGA AGGREGATE_TARCET, to verify that the new performance is
what you expect.

V$PGA_TARGET_ADVICE This view predicts how the statistics cache hi t

per cent age and over al | ocati on count in VEPGASTAT will be impacted if
you change the value of the initialization parameter PGA_AGGREGATE _TARCET.
Example 7-8 shows a typical query of this view:

7-62 Oracle Database Performance Tuning Guide

PGA Memory Management

Example 7-8 Querying V$PGA_TARGET_ADVICE

SELECT round(PGA_TARGET_FOR_ESTI MATE/ 1024/ 1024) target _nh,
ESTD _PGA_CACHE_H T_PERCENTACE cache_hit _perc,
ESTD_OVERALLOC_COUNT

FROM V$PGA TARGET ADVI CE;

The output of this query might look like the following:
TARGET MB CACHE H T_PERC ESTD OVERALLOC COUNT

63 23 367
125 24 30
250 30 3
375 39 0
500 58 0
600 59 0
700 59 0
800 60 0
900 60 0

1000 61 0
1500 67 0
2000 76 0
3000 83 0
4000 85 0

The result of the this query can be plotted as shown in Example 7-3:

Memory Configuration and Use 7-63

PGA Memory Management

Cache
Hit

Percentage

7-64

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

Figure 7-3 Graphical Representation of V$PGA_TARGET_ADVICE

Optimal Value
P
/)/
/ Current setting
0 500MB 1GB 1.5GB 2GB 2.5GB 3GB 3.5GB 4GB

PGA_AGGREGATE_TARGET

Oracle Database Performance Tuning Guide

PGA Memory Management

The curve shows how the PGA cache hi t per cent age improves as the value of
PGA AGGREGATE_TARGCET increases. The shaded zone in the graph is the over

al | ocat i on zone, where the value of the column ESTD_OVERALLOCATI ON_
COUNT is nonzero. It indicates that PGA_ AGGREGATE _TARGET is too small to even
meet the minimum PGA memory needs. If PGA AGGREGATE_TARGET is set within
the over al | ocati on zone, the memory manager will over-allocate memory and
actual PGA memory consumed will be more than the limit you set. It is therefore
meaningless to set a value of PGA_ AGGREGATE_TARGET in that zone. In this
particular example PGA AGGREGATE TARGET should be set to at least 375 MB.

Note: Even though the theoretical maximum for the PGA cache
hi t per cent age is 100%, there is a practical limit on the
maximum size of a work area, which may prevent this theoretical
maximum from being reached, even if you further increase PGA _
AGGREGATE_TARGET. This should happen only in large DSS
systems where the optimal memory requirement is large and might
cause the value of the cache hi t per cent age to taper off ata
lower percentage, like 90%.

Beyond the over al | ocat i on zone, the value of the PGA cache hi t

per cent age increases rapidly. This is due to an increase in the number of work
areas which run optimally or one-pass and a decrease in the number of multi-pass
executions. At some point, somewhere around 500 MB in this example, there is an
inflection in the curve that corresponds to the point where most (probably all) work
areas can run optimally or at least one-pass. After this inflection, the cache hi t

per cent age keeps increasing, though at a lower pace, up to the point where it
starts to taper off and shows only slight improvement with increase in PGA _
AGGREGATE_TARGET. In Figure 7-3, this happens when PGA_AGGREGATE_TARGET
reaches 3 GB. At that point, the cache hi t per cent age is 83% and only improves
marginally (by 2%) with one extra gigabyte of PGA memory:. In this particular
example, 3 GB is probably the optimal value for PGA_AGGREGATE TARGET.

Ideally, PGA_AGGREGATE_TARGCET should be set at the optimal value, or at least to
the maximum value possible in the region beyond the over al | ocati on zone. As
a rule of thumb, the PGA cache hi t per cent age should be higher than 60%,
because at 60% the system is almost processing double the number of bytes it
actually needs to process in an ideal situation. Using this particular example, it
makes sense to set PGA AGGREGATE_TARGET to at least 500 MB and as close as
possible to 3 GB. But the right setting for the parameter PGA_ AGCREGATE_TARGET
really depends on how much memory can be dedicated to the PGA component.

Memory Configuration and Use 7-65

PGA Memory Management

Generally, adding PGA memory requires reducing memory for some of the SGA
components, like the shared pool or the buffer cache. This is because the overall
memory dedicated to the Oracle instance is often bound by the amount of physical
memory available on the system. As a result, any decisions to increase PGA
memory must be taken in the larger context of the available memory in the system
and the performance of the various SGA components (which you monitor with
shared pool advisory and buffer cache advisory statistics). If memory cannot be
taken away from the SGA, you might consider adding more physical memory to the
system.

See Also:
« "Shared Pool Advisory Statistics" on page 7-32
« "Sizing the Buffer Cache" on page 7-8

How to Tune PGA_AGGREGATE_TARGET You can use the following steps as a tuning
guideline in tuning PGA_AGGREGATE_TARCET:

1. Set PGA AGGREGATE TARGET so there is no memory over-allocation; avoid
setting it in the over-allocation zone. In Example 7-8, PGA_AGGREGATE _
TARGET should be set to at least 375 MB.

2. After eliminating over-allocations, aim at maximizing the PGA cache hi t
per cent age, based on your response-time requirement and memory
constraints. In Example 7-8, assume you have a limit X on memory you can
allocate to PGA.

« If this limit X is beyond the optimal value, then you would set PGA _
AGGREGATE_TARGET to the optimal value. After this point, the incremental
benefit with higher memory allocation to PGA AGGREGATE_TARGET is very
small. In Example 7-8, if you have 10 GB to dedicate to PGA, set PGA _
AGGREGATE_TARGET to 3 GB, the optimal value. The remaining 7 GB is
dedicated to the SGA.

« If the limit X is less than the optimal value, then you would set PGA _
AGGREGATE_TARGET to X. In Example 7-8, if you have only 2 GB to
dedicate to PGA, set PGA_AGGREGATE_TARGET to 2 GB and accept a
cache hi t per cent age of 75%.

Finally, like most statistics collected by Oracle that are cumulative since instance
start-up, you can take a snapshot of the view at the beginning and at the end of a
time interval. You can then derive the predicted statistics for that time interval as
follows:

7-66 Oracle Database Performance Tuning Guide

PGA Memory Management

estd_overal loc_count = (difference in estd_overalloc_count between the two snapshots)

(difference in bytes_processed between the two snapshots)
estd_pga_cache_hit_percentage = ----------mmmmmmmmm o
(difference in bytes_processed + extra_bytes_rw between the two snapshots)

V$PGA_TARGET_ADVICE_HISTOGRAM This view predicts how the statistics displayed
by the performance view V$SQL_WORKAREA HI STOGRAMwill be impacted if you
change the value of the initialization parameter PGA AGGREGATE_TARGET. You can
use the dynamic view V$PGA_TARCGET_ADVI CE_HI STOCGRAMto view detailed
information on the predicted number of optimal, one-pass and multi-pass work
area executions for the set of PGA_AGGREGATE_TARGET values you use for the
prediction.

The V$PGA TARGET ADVI CE_H STOGRAMview is identical to the V$SQL
WORKAREA HI STOGRAMview, with two additional columns to represent the PGA _
AGGREGATE_TARGET values used for the prediction. Therefore, any query executed
against the V8SQL_WORKAREA HI STOGRAMview can be used on this view, with an
additional predicate to select the desired value of PGA AGGREGATE_TARCET.

Example 7-9 Querying V$PGA_TARGET_ADVICE_HISTOGRAM

The following query displays the predicted content of V$SQL_WORKAREA _
HI STOGRAMfor a value of the initialization parameter PGA_AGGREGATE_TARGET
set to twice its current value.

SELECT LOW OPTI MAL_SI ZE/ 1024 | ow kb, (H GH_OPTI MAL_SI ZE+1)/ 1024 hi gh_kb,
estd_optimal _executions estd_opt_cnt,
est d_onepass_executions estd_onepass_cnt,
estd _nul ti passes_executions estd _npass_cnt
FROM v$pga_t ar get _advi ce_hi st ogram
VWHERE pga_target _factor = 2
AND estd_total _executions !=0
ORDER BY 1;

The output of this query might look like the following.
LONKB HGH KB ESTD OPTIMAL_CNT ESTD ONEPASS CNT ESTD MPASS CNT

8 16 156107 0 0
16 32 148 0 0
32 64 89 0 0
64 128 13 0 0

128 256 58 0 0

Memory Configuration and Use 7-67

PGA Memory Management

256 512 10 0 0
512 1024 653 0 0
1024 2048 530 0 0
2048 4096 509 0 0
4096 8192 227 0 0
8192 16384 176 0 0
16384 32768 133 16 0
32768 65536 66 103 0
65536 131072 15 47 0
131072 262144 0 48 0
262144 524288 0 23 0

The output shows that increasing PGA_AGGREGATE_TARGET by a factor of 2 will
allow all work areas under 16 MB to execute in optimal mode.

See Also: Oracle Database Reference

V$SYSSTAT and V$SESSTAT

Statistics in the VESYSSTAT and V$SESSTAT views show the total number of work
areas executed with optimal memory size, one-pass memory size, and multi-pass
memory size. These statistics are cumulative since the instance or the session was
started.

The following query gives the total number and the percentage of times work areas
were executed in these three modes since the instance was started:

SELECT nanme profile, cnt, decode(total, 0, 0, round(cnt*100/total)) percentage
FROM (SELECT name, value cnt, (sum(value) over ()) total
FROM V$SYSSTAT
VHERE name |ike 'workarea exec%);

The output of this query might look like the following:

PRCFI LE CNT PERCENTACE
wor karea executions - optimal 5395 95
wor karea executions - onepass 284 5
wor karea executions - nultipass 0 0

Configuring OLAP_PAGE_POOL_SIZE

The OLAP_PAGE POOL_SI ZE initialization parameter specifies (in bytes) the
maximum size of the paging cache to be allocated to an OLAP session.

7-68 Oracle Database Performance Tuning Guide

PGA Memory Management

For performance reasons, it is usually preferable to configure a small OLAP paging
cache and set a larger default buffer pool with DB_ CACHE_SI ZE. An OLAP paging
cache of 4 MB is fairly typical, with 2 MB used for systems with limited memory
resources.

See Also: Oracle OLAP Application Developer's Guide

Memory Configuration and Use 7-69

PGA Memory Management

7-70 Oracle Database Performance Tuning Guide

8

/O Configuration and Design

The 170 subsystem is a vital component of an Oracle database. This chapter
introduces fundamental 1/0 concepts, discusses the 170 requirements of different
parts of the database, and provides sample configurations for 1/0 subsystem
design.

This chapter includes the following topics:
« Understanding 1/0

« Basic I/0 Configuration

I/O Configuration and Design 8-1

Understanding /0

Understanding 1/O

The performance of many software applications is inherently limited by disk 1/0.
Applications that spend the majority of CPU time waiting for 1/0 activity to
complete are said to be 1/0-bound.

Oracle is designed so that if an application is well written, its performance should
not be limited by 1/0. Tuning I/0 can enhance the performance of the application if
the 1/0 system is operating at or near capacity and is not able to service the 1/0
requests within an acceptable time. However, tuning 1/0 cannot help performance
if the application is not 1/0-bound (for example, when CPU is the limiting factor).

Consider the following database requirements when designing an 1/0 system:
« Storage, such as minimum disk capacity

« Awvailability, such as continuous (24 x 7) or business hours only

« Performance, such as 1/0 throughput and application response times

Many 1/0 designs plan for storage and availability requirements with the
assumption that performance will not be an issue. This is not always the case.
Optimally, the number of disks and controllers to be configured should be
determined by 1/0 throughput and redundancy requirements. Then, the size of
disks can be determined by the storage requirements.

Basic I/0 Configuration

This section describes the basic information to be gathered and decisions to be
made when defining a system's I/0 configuration. You want to keep the
configuration as simple as possible, while maintaining the required availability,
recoverability, and performance. The more complex a configuration becomes, the
more difficult it is to administer, maintain, and tune.

Lay Out the Files Using Operating System or Hardware Striping

If your operating system has LVM software or hardware-based striping, then it is
possible to distribute 1/0 using these tools. Decisions to be made when using an
LVM or hardware striping include stripe depth and stripe width.

« Stripe depth is the size of the stripe, sometimes called stripe unit.

« Stripe width is the product of the stripe depth and the number of drives in the
striped set.

8-2 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

Choose these values wisely so that the system is capable of sustaining the required
throughput. For an Oracle database, reasonable stripe depths range from 256 KB to
1 MB. Different types of applications benefit from different stripe depths. The
optimal stripe depth and stripe width depend on the following:

« Requested I/0 Size
« Concurrency of I/0 Requests
« Alignment of Physical Stripe Boundaries with Block Size Boundaries

« Manageability of the Proposed System

Requested I/0 Size

Table 8-1 lists the Oracle and operating system parameters that you can use to set
170 size:

Table 8-1 Oracle and Operating System Operational Parameters

Parameter Description

DB_BLOCK_SI ZE The size of single-block 1/0 requests. This parameter is also
used in combination with multiblock parameters to determine
multiblock 1/0 request size.

OS block size Determines 1/0 size for redo log and archive log operations.

Maximum OS 1/0 size Places an upper bound on the size of a single 170 request.

DB_FI LE_MJULTI BLOCK_ _ The maximum 1/0 size for full table scans is computed by

READ_COUNT multiplying this parameter with DB_BLOCK_SI ZE. (the upper
value is subject to operating system limits).

SORT_AREA_SI ZE Determines 1/0 sizes and concurrency for sort operations.

HASH AREA SI ZE Determines the 1/0 size for hash operations.

In addition to 1/0 size, the degree of concurrency also helps in determining the
ideal stripe depth. Consider the following when choosing stripe width and stripe
depth:

= On low-concurrency (sequential) systems, ensure that no single 1/0 visits the
same disk twice. For example, assume that the stripe width is four disks, and
the stripe depth is 32k. If a single 1MB 1/0 request (for example, for a full table
scan) is issued by an Oracle server process, then each disk in the stripe must
perform eight 1/0s to return the requested data. To avoid this situation, the size
of the average 1/0 should be smaller than the stripe width multiplied by the

I/O Configuration and Design 8-3

Basic I/0 Configuration

stripe depth. If this is not the case, then a single 170 request made by Oracle to
the operating system results in multiple physical 1/0 requests to the same disk.

« On high-concurrency (random) systems, ensure that no single 1/0 request is
broken up into more than one physical 170 call. Failing to do this multiplies the
number of physical 1/0 requests performed in your system, which in turn can
severely degrade the 1/0 response times.

Concurrency of I/0 Requests

In a system with a high degree of concurrent small 1/0 requests, such as in a
traditional OLTP environment, it is beneficial to keep the stripe depth large. Using
stripe depths larger than the 170 size is called coarse grain striping. In
high-concurrency systems, the stripe depth can be

n * DB _BLOCK Sl ZE

where n is greater than 1.

Coarse grain striping allows a disk in the array to service several 1/0 requests. In
this way, a large number of concurrent 1/0 requests can be serviced by a set of
striped disks with minimal 1/0 setup costs. Coarse grain striping strives to
maximize overall 1/0 throughput. Multiblock reads, as in full table scans, will
benefit when stripe depths are large and can be serviced from one drive. Parallel
guery in a DSS environment is also a candidate for coarse grain striping. This is
because there are many individual processes, each issuing separate 1/0s. If coarse
grain striping is used in systems that do not have high concurrent requests, then hot
spots could result.

In a system with a few large 1/0 requests, such as in a traditional DSS environment
or a low-concurrency OLTP system, then it is beneficial to keep the stripe depth
small. This is called fine grain striping. In such systems, the stripe depth is

n * DB BLOCK Sl ZE
where n is smaller than the multiblock read parameters, such as DB_FI LE
MULTI BLOCK_READ_COUNT.

Fine grain striping allows a single 170 request to be serviced by multiple disks. Fine
grain striping strives to maximize performance for individual 1/0 requests or
response time.

8-4 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

Alignment of Physical Stripe Boundaries with Block Size Boundaries

On some Oracle ports, an Oracle block boundary may not align with the stripe. If
your stripe depth is the same size as the Oracle block, then a single 1/0 issued by
Oracle might result in two physical 1/0 operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one
logical 170 resulting in no more than one physical 1/0, the minimum stripe depth
should be at least twice the Oracle block size. Table 8-2 shows recommended
minimum stripe depth for random access and for sequential reads.

Table 8-2 Minimum Stripe Depth

Disk Access Minimum Stripe Depth

Random reads and writes The minimum stripe depth is twice the Oracle block size.

Sequential reads The minimum stripe depth is twice the value of DB_FI LE_
MULTI BLOCK_READ_COUNT, multiplied by the Oracle
block size.

See Also: The specific documentation for your platform

Manageability of the Proposed System

With an LVM, the simplest configuration to manage is one with a single striped
volume over all available disks. In this case, the stripe width encompasses all
available disks. All database files reside within that volume, effectively distributing
the load evenly. This single-volume layout provides adequate performance in most
situations.

A single-volume configuration is viable only when used in conjunction with RAID
technology that allows easy recoverability, such as RAID 1. Otherwise, losing a
single disk means losing all files concurrently and, hence, performing a full
database restore and recovery.

In addition to performance, there is a manageability concern: the design of the
system must allow disks to be added simply, to allow for database growth. The
challenge is to do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped
volume over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte
(TB) for the primary data. Sometime after the system is operational, an additional 80
GB (that is, five disks) must be added to account for future database growth.

I/O Configuration and Design 8-5

Basic I/0 Configuration

The options for making this space available to the database include creating a
second volume that includes the five new disks. However, an 1/0 bottleneck might
develop, if these new disks are unable to sustain the 1/0 throughput required for
the files placed on them.

Another option is to increase the size of the original volume. LVMs are becoming
sophisticated enough to allow dynamic reconfiguration of the stripe width, which
allows disks to be added while the system is online. This begins to make the
placement of all files on a single striped volume feasible in a production
environment.

If your LVM is unable to support dynamically adding disks to the stripe, then it is
likely that you need to choose a smaller, more manageable stripe width. Then, when
new disks are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width.
This is only feasible if eight disks are capable of sustaining the required number of
1/0s each second. Thus, when extra disk space is required, another eight-disk stripe
can be added, keeping the 1/0 balanced across the volumes.

Note: The smaller the stripe width becomes, the more likely it is
that you will need to spend time distributing the files on the
volumes, and the closer the procedure becomes to manually
distributing 170.

Manually Distributing 1/0

If your system does not have an LVM or hardware striping, then 1/0 must be
manually balanced across the available disks by distributing the files according to
each file's I/0 requirements. In order to make decisions on file placement, you
should be familiar with the 1/0 requirements of the database files and the
capabilities of the I/0 system. If you are not familiar with this data and do not have
a representative workload to analyze, you can make a first guess and then tune the
layout as the usage becomes known.

To stripe disks manually, you need to relate a file's storage requirements to its 1/0
requirements.

1. Evaluate database disk-storage requirements by checking the size of the files
and the disks.

8-6 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

2. ldentify the expected 170 throughput for each file. Determine which files have
the highest 1/0 rate and which do not have many 1/0s. Lay out the files on all
the available disks so as to even out the 1/0 rate.

One popular approach to manual 1/0 distribution suggests separating a frequently
used table from its index. This is not correct. During the course of a transaction, the
index is read first, and then the table is read. Because these 1/0s occur sequentially,
the table and index can be stored on the same disk without contention. It is not
sufficient to separate a datafile simply because the datafile contains indexes or table
data. The decision to segregate a file should be made only when the 170 rate for
that file affects database performance.

When to Separate Files

Regardless of whether you use operating system striping or manual 170
distribution, if the 1/0 system or I/0 layout is not able to support the 170 rate
required, then you need to separate files with high 1/0 rates from the remaining
files. You can identify such files either at the planning stage or after the system is
live.

The decision to segregate files should only be driven by 1/0 rates, recoverability
concerns, or manageability issues. (For example, if your LVM does not support
dynamic reconfiguration of stripe width, then you might need to create smaller
stripe widths to be able to add n disks at a time to create a new stripe of identical
configuration.)

Before segregating files, verify that the bottleneck is truly an 1/0 issue. The data
produced from investigating the bottleneck identifies which files have the highest
170 rates.

See Also: "ldentifying High-Load SQL" on page 12-3

Tables, Indexes, and TEMP Tablespaces

If the files with high 1/0 are datafiles belonging to tablespaces that contain tables
and indexes, then identify whether the 170 for those files can be reduced by tuning
SQL or application code.

If the files with high-1/0 are datafiles that belong to the TEMP tablespace, then
investigate whether to tune the SQL statements performing disk sorts to avoid this
activity, or to tune the sorting.

I/O Configuration and Design 8-7

Basic I/0 Configuration

After the application has been tuned to avoid unnecessary 1/0, if the 1/0 layout is
still not able to sustain the required throughput, then consider segregating the
high-170 files.

See Also: "ldentifying High-Load SQL" on page 12-3

Redo Log Files

If the high-170 files are redo log files, then consider splitting the redo log files from
the other files. Possible configurations can include the following:

» Placing all redo logs on one disk without any other files. Also consider
availability; members of the same group should be on different physical disks
and controllers for recoverability purposes.

« Placing each redo log group on a separate disk that does not store any other
files.

« Striping the redo log files across several disks, using an operating system
striping tool. (Manual striping is not possible in this situation.)

« Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This
operation can be made faster if there is no concurrent activity on the same disk.
Dedicating a separate disk to redo log files usually ensures that LGWR runs
smoothly with no further tuning necessary. If your system supports asynchronous
I/0 but this feature is not currently configured, then test to see if using this feature
is beneficial. Performance bottlenecks related to LGWR are rare.

Archived Redo Logs

If the archiver is slow, then it might be prudent to prevent 1/0 contention between
the archiver process and LGWR by ensuring that archiver reads and LGWR writes
are separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two
members. To create separate-disk access, the eight log files should be labeled 1a, 1b,
2a, 2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived
files.

Figure 8-1 illustrates how redo members should be distributed across disks to
minimize contention.

8-8 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

Figure 8-1 Distributing Redo Members Across Disks

arch arch
> dest
la 2a 1b 2b
3a 4a 3b 4b
Igwr

In this example, LGWR switches out of log group 1 (member 1a and 1b) and
writes to log group 2 (2a and 2b). Concurrently, the archiver process reads from
group 1 and writes to its archive destination. Note how the redo log files are

isolated from contention.

Note: Mirroring redo log files, or maintaining multiple copies of
each redo log file on separate disks, does not slow LGWR
considerably. LGWR writes to each disk in parallel and waits until
each part of the parallel write is complete. Hence, a parallel write
does not take longer than the longest possible single-disk write.

Because redo logs are written serially, drives dedicated to redo log activity
generally require limited head movement. This significantly accelerates
log writing.

Three Sample Configurations

This section contains three high-level examples of configuring 1/0 systems. These
examples include sample calculations that define the disk topology, stripe depths,
and so on.

Stripe Everything Across Every Disk

The simplest approach to 1/0 configuration is to build one giant volume, striped
across all available disks. To account for recoverability, the volume is mirrored

I/O Configuration and Design 8-9

Basic I/0 Configuration

(RAID 1). The striping unit for each disk should be larger than the maximum 1/0
size for the frequent I/0 operations. This provides adequate performance for most
cases.

Move Archive Logs to Different Disks

If archive logs are striped on the same set of disks as other files, then any 1/0
requests on those disks could suffer when redo logs are being archived. Moving
archive logs to separate disks provides the following benefits:

« The archive can be performed at very high rate (using sequential 1/0).

« Nothing else is affected by the degraded response time on the archive
destination disks.

The number of disks for archive logs is determined by the rate of archive log
generation and the amount of archive storage required.

Move Redo Logs to Separate Disks

In high-update OLTP systems, the redo logs are write-intensive. Moving the redo
log files to disks that are separate from other disks and from archived redo log files
has the following benefits:

« Writing redo logs is performed at the highest possible rate. Hence, transaction
processing performance is at its best.

« Writing of the redo logs is not impaired with any other 1/0.

The number of disks for redo logs is mostly determined by the redo log size, which
is generally small compared to current technology disk sizes. Typically, a
configuration with two disks (possibly mirrored to four disks for fault tolerance) is
adequate. In particular, by having the redo log files alternating on two disks,
writing redo log information to one file does not interfere with reading a completed
redo log for archiving.

Oracle-Managed Files

For systems where a file system can be used to contain all Oracle data, database
administration is simplified by using Oracle-managed files. Oracle internally uses
standard file system interfaces to create and delete files as needed for tablespaces,
temp files, online logs, and control files. Administrators only specify the file system
directory to be used for a particular type of file. You can specify one default location
for datafiles and up to five multiplexed locations for the control and online redo log
files.

8-10 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

Oracle ensures that a unique file is created and then deleted when it is no longer
needed. This reduces corruption caused by administrators specifying the wrong file,
reduces wasted disk space consumed by obsolete files, and simplifies creation of
test and development databases. It also makes development of portable third-party
tools easier, because it eliminates the need to put operating-system specific file
names in SQL scripts.

New files can be created as managed files, while old ones are administered in the
old way. Thus, a database can have a mixture of Oracle-managed and manually
managed files.

Note: Oracle-managed files cannot be used with raw devices.

Tuning Oracle-Managed Files
Several points should be considered when tuning Oracle-managed files.

« Because Oracle-managed files require the use of a file system, DBAs give up
control over how the data is laid out. Therefore, it is important to correctly
configure the file system.

« The Oracle-managed file system should be built on top of an LVM that supports
striping. For load balancing and improved throughput, the disks in the
Oracle-managed file system should be striped.

» Oracle-managed files work best if used on an LVM that supports dynamically
extensible logical volumes. Otherwise, the logical volumes should be
configured as large as possible.

« Oracle-managed files work best if the file system provides large extensible files.

See Also: Oracle Database Administrator's Guide for detailed
information on using Oracle-managed files

Choosing Data Block Size

A block size of 8K is optimal for most systems. However, OLTP systems
occasionally use smaller block sizes and DSS systems occasionally use larger block
sizes. This section discusses considerations when choosing database block size for
optimal performance.

I/O Configuration and Design 8-11

Basic I/0 Configuration

Note: The use of multiple block sizes in a single database instance
is not encouraged because of manageability issues.

Reads

Regardless of the size of the data, the goal is to minimize the number of reads
required to retrieve the desired data.

« If the rows are small and access is predominantly random, then choose a
smaller block size.

« If the rows are small and access is predominantly sequential, then choose a
larger block size.

« If the rows are small and access is both random and sequential, then it might be
effective to choose a larger block size.

= If the rows are large, such as rows containing large object (LOB) data, then
choose a larger block size.

Writes

For high-concurrency OLTP systems, consider appropriate values for | NI TRANS,
MAXTRANS, and FREELI STS when using a larger block size. These parameters
affect the degree of update concurrency allowed within a block. However, you do
not need to specify the value for FREELI STS when using automatic segment-space
management.

If you are uncertain about which block size to choose, then try a database block size
of 8 KB for most systems that process a large number of transactions. This
represents a good compromise and is usually effective. Only systems processing
LOB data need more than 8 KB.

See Also: The Oracle documentation specific to your operating

system for information on the minimum and maximum block size
on your platform

Block Size Advantages and Disadvantages
Table 8-3 lists the advantages and disadvantages of different block sizes.

8-12 Oracle Database Performance Tuning Guide

Basic I/0 Configuration

Table 8-3 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Smaller Good for small rows with lots of random Has relatively large space overhead due to metadata
access. (that is, block header).
Reduces block contention. Not recommended for large rows. There might only

be a few rows stored for each block, or worse, row
chaining if a single row does not fit into a block,

Larger Has lower overhead, so there is more Wastes space in the buffer cache, if you are doing

room to store data. random access to small rows and have a large block
size. For example, with an 8 KB block size and 50
byte row size, you waste 7,950 bytes in the buffer
cache when doing random access.

Permits reading a number of rows into
the buffer cache with a single 170
(depending on row size and block size).
Not good for index blocks used in an OLTP
environment, because they increase block contention
on the index leaf blocks.

Good for sequential access or very large
rows (such as LOB data).

I/O Configuration and Design 8-13

Basic I/0 Configuration

8-14 Oracle Database Performance Tuning Guide

9

Understanding Operating System
Resources

This chapter explains how to tune the operating system for optimal performance of
the Oracle database server.

This chapter contains the following sections:

« Understanding Operating System Performance Issues
« Solving Operating System Problems

« Understanding CPU

« Finding System CPU Utilization

See Also:

« Your Oracle platform-specific documentation and your
operating system vendor' s documentation

« "Operating System Statistics" on page 5-5 for a discussion of the
importance of operating system statistics

Understanding Operating System Resources 9-1

Understanding Operating System Performance Issues

Understanding Operating System Performance Issues

Operating system performance issues commonly involve process management,
memory management, and scheduling. If you have tuned the Oracle instance and
you still need better performance, then verify your work or try to reduce system
time. Make sure that there is enough 1/0 bandwidth, CPU power, and swap space.
Do not expect, however, that further tuning of the operating system will have a
significant effect on application performance. Changes in the Oracle configuration
or in the application are likely to make a more significant difference in operating
system efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the
number of system calls increases. If you reduce the buffer busy waits by tuning the
application, then the number of system calls decreases.

See Also: Your Oracle platform-specific documentation and your
operating system vendor's documentation

Using Operating System Caches

Operating systems and device controllers provide data caches that do not directly
conflict with Oracle cache management. Nonetheless, these structures can consume
resources while offering little or no benefit to performance. This is most noticeable
on a UNIX system that has the database files in the UNIX file store; by default all
database 170 goes through the file system cache. On some UNIX systems, direct
170 is available to the filestore. This arrangement allows the database files to be
accessed within the UNIX file system, bypassing the file system cache. It saves CPU
resources and allows the file system cache to be dedicated to non-database activity,
such as program texts and spool files.

This problem does not occur on Windows. All file requests by the database bypass
the caches in the file system.

Although the operating system cache is often redundant because the Oracle buffer
cache buffers blocks, there are a number of cases where Oracle does not use the
Oracle buffer cache. In these cases, using direct I/0 which bypasses the Unix or
operating system cache or using raw devices which do not use the operating system
cache may yield worse performance than using operating system buffering. Some
examples of this include the following:

« Reads or writes to the TEMPORARY tablespace
» Data stored in NOCACHE LOBs

« Parallel Query slaves reading data

9-2 Oracle Database Performance Tuning Guide

Understanding Operating System Performance Issues

You may want a mix with some files cached at the operating system level and others
not.

Asynchronous 1/0

With synchronous 1/0, when an 1/0 request is submitted to the operating system,
the writing process blocks until the write is confirmed as complete. It can then
continue processing. With asynchronous 1/0, processing continues while the 1/0
request is submitted and processed. Use asynchronous 170 when possible to avoid
bottlenecks.

Some platforms support asynchronous 1/0 by default, others need special
configuration, and some only support asynchronous 1/0 for certain underlying file
system types.

FILESYSTEMIO_OPTIONS Initialization Parameter

You can use the FI LESYSTEM O_OPTI ONS initialization parameter to enable or
disable asynchronous 1/0 or direct 1/0 on file system files. This parameter is
platform-specific and has a default value that is best for a particular platform. It can
be dynamically changed to update the default setting.

FI LESYTEM O_OPTI ONS can be set to one of the following values:

« ASYNCH: enable asynchronous I/0 on file system files, which has no timing
requirement for transmission

« DI RECTI O enable direct I/0 on file system files, which bypasses the buffer
cache

« SETALL: enable both asynchronous and direct 1/0 on file system files
« NONE: disable both asynchronous and direct 1/0 on file system files

See Also: Your platform-specific documentation for more details

Memory Usage
Memory usage is affected by both buffer cache limits and initialization parameters.

Buffer Cache Limits

The UNIX buffer cache consumes operating system memory resources. Although in
some versions of UNIX the UNIX buffer cache may be allocated a set amount of
memory, it is common today for more sophisticated memory management
mechanisms to be used. Typically these will allow free memory pages to be used to

Understanding Operating System Resources 9-3

Understanding Operating System Performance Issues

cache 1/0. In such systems it is common for operating system reporting tools to
show that there is no free memory which is not generally a problem. If processes
require more memory, the memory caching 1/0 data is usually released to allow the
process memory to be allocated.

Parameters Affecting Memory Usage

The memory required by any one Oracle session depends on many factors.
Typically the major contributing factors are:

« Number of open cursors
« Memory used by PL/SQL, such as PL/SQL tables
« SORT_AREA Sl ZE initialization parameter

In Oracle, the PGA_AGGREGATE_TARGET initialization parameter gives greater
control over a session’'s memory usage.

Using Operating System Resource Managers

Some platforms provide operating system resource managers. These are designed
to reduce the impact of peak load use patterns by prioritizing access to system
resources. They usually implement administrative policies that govern which
resources users can access and how much of those resources each user is permitted
to consume.

Operating system resource managers are different from domains or other similar
facilities. Domains provide one or more completely separated environments within
one system. Disk, CPU, memory, and all other resources are dedicated to each
domain and cannot be accessed from any other domain. Other similar facilities
completely separate just a portion of system resources into different areas, usually
separate CPU or memory areas. Like domains, the separate resource areas are
dedicated only to the processing assigned to that area; processes cannot migrate
across boundaries. Unlike domains, all other resources (usually disk) are accessed
by all partitions on a system.

Oracle runs within domains, as well as within these other less complete partitioning
constructs, as long as the allocation of partitioned memory (RAM) resources is
fixed, not dynamic.

Note: Oracle is not supported in any resource partitioned
environment in which memory resources are assigned dynamically.

9-4 Oracle Database Performance Tuning Guide

Solving Operating System Problems

Operating system resource managers prioritize resource allocation within a global
pool of resources, usually a domain or an entire system. Processes are assigned to
groups, which are in turn assigned resources anywhere within the resource pool.

Note: Oracle is not supported for use with any operating system
resource manager's memory management and allocation facility.
Oracle Database Resource Manager, which provides resource
allocation capabilities within an Oracle instance, cannot be used
with any operating system resource manager.

Caution: When running under operating system resource
managers, Oracle is supported only when each instance is assigned
to a dedicated operating system resource manager group or
managed entity. Also, the dedicated entity running all the instance's
processes must run at one priority (or resource consumption) level.
Management of individual Oracle processes at different priority
levels is not supported. Severe consequences, including instance
crashes, can result.

See Also:

« For acomplete list of operating system resource management
and resource allocation and deallocation features that work
with Oracle and Oracle Database Resource Manager, see your
systems vendor and your Oracle representative. Oracle does
not certify these system features for compatibility with specific
release levels.

. Oracle Database Administrator’s Guide for more information
about Oracle Database Resource Manager

Solving Operating System Problems

This section provides hints for tuning various systems by explaining the following
topics:

« Performance Hints on UNIX-Based Systems

« Performance Hints on Windows Systems

Understanding Operating System Resources 9-5

Solving Operating System Problems

« Performance Hints on Midrange and Mainframe Computers

Familiarize yourself with platform-specific issues so that you know what
performance options the operating system provides.

See Also: Your Oracle platform-specific documentation and your
operating system vendor's documentation

Performance Hints on UNIX-Based Systems

On UNIX systems, try to establish a good ratio between the amount of time the
operating system spends fulfilling system calls and doing process scheduling and
the amount of time the application runs. The goal should be to run most of the time
in application mode, also called user mode, rather than system mode.

The ratio of time spent in each mode is only a symptom of the underlying problem,
which might involve the following:

« Paging or swapping
« Executing too many operating system calls
= Running too many processes

If such conditions exist, then there is less time available for the application to run.
The more time you can release from the operating system side, the more
transactions an application can perform.

Performance Hints on Windows Systems

On Windows systems, as with UNIX-based systems, establish an appropriate ratio
between time in application mode and time in system mode. You can easily monitor
many factors with the Windows administrative performance tool: CPU, network,
170, and memory are all displayed on the same graph to assist you in avoiding
bottlenecks in any of these areas.

Performance Hints on Midrange and Mainframe Computers

Consider the paging parameters on a mainframe, and remember that Oracle can
exploit a very large working set.

Free memory in VAX or VMS environments is actually memory that is not mapped
to any operating system process. On a busy system, free memory likely contains a
page belonging to one or more currently active process. When that access occurs, a
soft page fault takes place, and the page is included in the working set for the

9-6 Oracle Database Performance Tuning Guide

Understanding CPU

process. If the process cannot expand its working set, then one of the pages
currently mapped by the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working
sets. The sum of the sizes of the working sets can thus markedly exceed the
available memory. When the Oracle server is running, the SGA, the Oracle kernel
code, and the Oracle Forms runtime executable are normally all sharable and
account for perhaps 80% or 90% of the pages accessed.

Understanding CPU

To address CPU problems, first establish appropriate expectations for the amount of
CPU resources your system should be using. Then, determine whether sufficient
CPU resources are available and recognize when your system is consuming too
many resources. Begin by determining the amount of CPU resources the Oracle
instance utilizes with your system in the following three cases:

« System s idle, when little Oracle and non-Oracle activity exists
« System at average workloads
« System at peak workloads

You can capture various workload snapshots using the Automatic Workload
Repository, Statspack, or the UTLBSTAT/UTLESTAT utility. Operating system
utilities, such as virst at , sar, and i ost at on UNIX and the administrative
performance monitoring tool on Windows, should be run during the same time
interval as Automatic Workload Repository, Statspack, or UTLBSTAT/UTLESTAT to
provide a complimentary view of the overall statistics.

See Also:
« "Automatic Workload Repository” on page 5-10

« Chapter 6, "Automatic Performance Diagnostics” for more
information on Oracle tools

Workload is an important factor when evaluating your system's level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time can be acceptable. Even 30% utilization at a time of low workload can
be understandable. However, if your system shows high utilization at normal
workload, then there is no room for a peak workload. For example, Figure 9-1
illustrates workload over time for an application having peak periods at 10:00 AM
and 2:00 PM.

Understanding Operating System Resources 9-7

Understanding CPU

Figure 9-1 Average Workload and Peak Workload

Functional Demand

8:00 10:00 12:00 14:00 16:00

Average Workload
Peak Workload

This example application has 100 users working 8 hours a day. Each user entering
one transaction every 5 minutes translates into 9,600 transactions daily. Over an
8-hour period, the system must support 1,200 transactions an hour, which is an
average of 20 transactions a minute. If the demand rate were constant, then you
could build a system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a
minute can be understood as merely a minimum requirement. If the peak rate you
need to achieve is 120 transactions a minute, then you must configure a system that
can support this peak workload.

For this example, assume that at peak workload, Oracle uses 90% of the CPU
resource. For a period of average workload, then, Oracle uses no more than about
15% of the available CPU resource, as illustrated in the following equation:

20 tpm/ 120 tpm* 90% = 15% of available CPU resource
where t pmis transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem
exists: the system cannot achieve 120 transactions a minute using 90% of the CPU.
However, if you tuned this system so that it achieves 20 tpm using only 15% of the
CPU, then, assuming linear scalability, the system might achieve 120 transactions a
minute using 90% of the CPU resources.

9-8 Oracle Database Performance Tuning Guide

Understanding CPU

As users are added to an application, the workload can rise to what had previously
been peak levels. No further CPU capacity is then available for the new peak rate,
which is actually higher than the previous.

CPU capacity issues can be addressed with the following:

« Tuning, or the process of detecting and solving CPU problems from excessive
consumption. See "Finding System CPU Utilization" on page 9-10.

« Increasing hardware capacity, including changing the system architecture

See Also: "System Architecture” on page 2-7 for information
about improving your system architecture

« Reducing the impact of peak load use patterns by prioritizing CPU resource
allocation. Oracle Database Resource Manager does this by allocating and
managing CPU resources among database users and applications.

See Also: Oracle Database Administrator’'s Guide for more
information about Oracle Database Resource Manager

Context Switching

Oracle has the several features for context switching, described in this section.

Post-wait Driver

An Oracle process needs to be able to post another Oracle process (give it a
message) and also needs to be able to wait to be posted.

For example, a foreground process may need to post LGWR to tell it to write out all
blocks up to a given point so that it can acknowledge a commit.

Often this post-wait mechanism is implemented through UNIX Semaphores, but
these can be resource intensive. Therefore, some platforms supply a post-wait
driver, typically a kernel device driver that is a lightweight method of
implementing a post-wait interface.

Memory-mapped System Timer

Oracle often needs to query the system time for timing information. This can
involve an operating system call that incurs a relatively costly context switch. Some
platforms implement a memory-mapped timer that uses an address within the
processes virtual address space to contain the current time information. Reading the

Understanding Operating System Resources 9-9

Finding System CPU Utilization

time from this memory-mapped timer is less expensive than the overhead of a
context switch for a system call.

List I/O Interfaces to Submit Multiple Asynchronous I/Os in One Call

List 1/0 is an application programming interface that allows several asynchronous
170 requests to be submitted in a single system call, rather than submitting several
170 requests through separate system calls. The main benefit of this feature is to
reduce the number of context switches required.

Finding System CPU Utilization

Oracle statistics report CPU use by Oracle sessions only, whereas every process
running on your system affects the available CPU resources. Therefore, tuning
non-Oracle factors can also improve Oracle performance.

Use operating system monitoring tools to determine what processes are running on
the system as a whole. If the system is too heavily loaded, check the memory, 170,
and process management areas described later in this section.

Tools such as sar - u on many UNIX-based systems let you examine the level of
CPU utilization on your entire system. CPU utilization in UNIX is described in
statistics that show user time, system time, idle time, and time waiting for 1/0. A
CPU problem exists if idle time and time waiting for 1/0 are both close to zero (less
than 5%) at a normal or low workload.

On Windows, use the administrative performance tool to monitor CPU utilization.
This utility provides statistics on processor time, user time, privileged time,
interrupt time, and DPC time.

Note: This section describes how to check system CPU utilization
on most UNIX-based and Windows systems. For other platforms,
see your operating system documentation.

Checking Memory Management
Check the following memory management areas:

Paging and Swapping

Use utilities such as sar or virst at on UNIX or the administrative performance
tool on Windows to investigate the cause of paging and swapping.

9-10 Oracle Database Performance Tuning Guide

Finding System CPU Utilization

Oversize Page Tables

On UNIX; if the processing space becomes too large, then it can result in the page
tables becoming too large. This is not an issue on Windows systems.

Checking 1/0 Management

Thrashing is an 1/0 management issue. Ensure that your workload fits into
memory, so the machine is not thrashing (swapping and paging processes in and
out of memory). The operating system allocates fixed portions of time during which
CPU resources are available to your process. If the process wastes a large portion of
each time period checking to be sure that it can run and ensuring that all necessary
components are in the machine, then the process might be using only 50% of the
time allotted to actually perform work.

See Also: Chapter 8, "I/0O Configuration and Design”

Checking Network Management

Check client/server round trips. There is an overhead in processing messages.
When an application generates many messages that need to be sent through the
network, the latency of sending a message can result in CPU overload. To alleviate
this problem, bundle multiple messages together rather than perform lots of round
trips. For example, you can use array inserts, array fetches, and so on.

Checking Process Management
Several process management issues discussed in this section should be checked.

Scheduling and Switching

The operating system can spend excessive time scheduling and switching processes.
Examine the way in which you are using the operating system, because you could
be using too many processes. On Windows systems, do not overload your server
with too many non-Oracle processes.

Context Switching

Due to operating system specific characteristics, your system could be spending a
lot of time in context switches. Context switching can be expensive, especially with
a large SGA. Context switching is not an issue on Windows, which has only one
process for each instance. All threads share the same page table.

Understanding Operating System Resources 9-11

Finding System CPU Utilization

Starting New Operating System Processes

There is a high cost in starting new operating system processes. Programmers often
create single-purpose processes, exit the process, and create a new one. Doing this
re-creates and destroys the process each time. Such logic uses excessive amounts of
CPU, especially with applications that have large SGAs. This is because you need to
build the page tables each time. The problem is aggravated when you pin or lock
shared memory, because you have to access every page.

For example, if you have a 1 gigabyte SGA, then you might have page table entries
for every 4 KB, and a page table entry might be 8 bytes. You could end up with
(1G 7 4 KB) * 8 byte entries. This becomes expensive, because you need to
continually make sure that the page table is loaded.

9-12 Oracle Database Performance Tuning Guide

10

Instance Tuning Using Performance Views

After the initial configuration of a database, tuning an instance is important to
eliminate any performance bottlenecks. This chapter discusses the tuning process
based on the Oracle performance views.

This chapter contains the following sections:
« Instance Tuning Steps

« Interpreting Oracle Statistics

« Wait Events Statistics

« ldle Wait Events

Instance Tuning Using Performance Views 10-1

Instance Tuning Steps

Instance Tuning Steps
These are the main steps in the Oracle performance method for instance tuning:
1. Define the Problem
Get candid feedback from users about the scope of the performance problem.
2. Examine the Host System and Examine the Oracle Statistics

« After obtaining a full set of operating system, database, and application
statistics, examine the data for any evidence of performance problems.

« Consider the list of common performance errors to see whether the data
gathered suggests that they are contributing to the problem.

« Build a conceptual model of what is happening on the system using the
performance data gathered.

3. Implement and Measure Change

Propose changes to be made and the expected result of implementing the
changes. Then, implement the changes and measure application performance.

4. Determine whether the performance objective defined in step 1 has been met. If
not, then repeat steps 2 and 3 until the performance goals are met.

See Also: "The Oracle Performance Improvement Method" on
page 3-2 for a theoretical description of this performance method
and a list of common errors

The remainder of this chapter discusses instance tuning using the Oracle dynamic
performance views. However, Oracle recommends using the Automatic Workload
Repository and Automatic Database Diagnostic Monitor for statistics gathering,
monitoring, and tuning due to the extended feature list. See "Automatic Workload
Repository" on page 5-10 and "Automatic Database Diagnostic Monitor" on

page 6-3.

Note: If your site does not have the Automatic Workload
Repository and Automatic Database Diagnostic Monitor features,
then Statspack can be used to gather Oracle instance statistics.

10-2 Oracle Database Performance Tuning Guide

Instance Tuning Steps

Define the Problem

It is vital to develop a good understanding of the purpose of the tuning exercise and
the nature of the problem before attempting to implement a solution. Without this
understanding, it is virtually impossible to implement effective changes. The data
gathered during this stage helps determine the next step to take and what evidence
to examine.

Gather the following data:

1.

Identify the performance objective.

What is the measure of acceptable performance? How many transactions an
hour, or seconds, response time will meet the required performance level?

Identify the scope of the problem.

What is affected by the slowdown? For example, is the whole instance slow? Is
it a particular application, program, specific operation, or a single user?

Identify the time frame when the problem occurs.

Is the problem only evident during peak hours? Does performance deteriorate
over the course of the day? Was the slowdown gradual (over the space of
months or weeks) or sudden?

Quantify the slowdown.

This helps identify the extent of the problem and also acts as a measure for
comparison when deciding whether changes implemented to fix the problem
have actually made an improvement. Find a consistently reproducible measure
of the response time or job run time. How much worse are the timings than
when the program was running well?

Identify any changes.

Identify what has changed since performance was acceptable. This may narrow
the potential cause quickly. For example, has the operating system software,
hardware, application software, or Oracle release been upgraded? Has more
data been loaded into the system, or has the data volume or user population
grown?

At the end of this phase, you should have a good understanding of the symptoms.
If the symptoms can be identified as local to a program or set of programs, then the
problem is handled in a different manner than instance-wide performance issues.

See Also: Chapter 12, "SQL Tuning Overview" for information on
solving performance problems specific to an application or user

Instance Tuning Using Performance Views 10-3

Instance Tuning Steps

Examine the Host System

Look at the load on the database server, as well as the database instance. Consider
the operating system, the 1/0 subsystem, and network statistics, because examining
these areas helps determine what might be worth further investigation. In multitier
systems, also examine the application server middle-tier hosts.

Examining the host hardware often gives a strong indication of the bottleneck in the
system. This determines which Oracle performance data could be useful for
cross-reference and further diagnosis.

Data to examine includes the following:

CPU Usage

If there is a significant amount of idle CPU, then there could be an 1/0, application,
or database bottleneck. Note that wait I/0 should be considered as idle CPU.

If there is high CPU usage, then determine whether the CPU is being used
effectively. Is the majority of CPU usage attributable to a small number of high-CPU
using programs, or is the CPU consumed by an evenly distributed workload?

If the CPU is used by a small number of high-usage programs, then look at the
programs to determine the cause. Check whether some processes alone consume
the full power of one CPU. Depending on the process, this could be an indication of
a CPU or process bound workload which can be tackled by dividing or parallelizing
the process activity.

Non-Oracle Processes If the programs are not Oracle programs, then identify whether
they are legitimately requiring that amount of CPU. If so, determine whether their
execution be delayed to off-peak hours. Identifying these CPU intensive processes
can also help narrowing what specific activity, such as 1/0, network, and paging, is
consuming resources and how can it be related to the Oracle workload.

Oracle Processes If a small number of Oracle processes consumes most of the CPU
resources, then use SQL_TRACE and TKPROF to identify the SQL or PL/SQL
statements to see if a particular query or PL/SQL program unit can be tuned. For
example, a SELECT statement could be CPU-intensive if its execution involves
many reads of data in cache (logical reads) that could be avoided with better SQL
optimization.

Oracle CPU Statistics Oracle CPU statistics are available in several V$ views:

10-4 Oracle Database Performance Tuning Guide

Instance Tuning Steps

« VSSYSSTAT shows Oracle CPU usage for all sessions. The CPUused by t hi s
sessi on statistic shows the aggregate CPU used by all sessions. The par se
t i me cpu statistic shows the total CPU time used for parsing.

« VSSESSTAT shows Oracle CPU usage for each session. Use this view to
determine which particular session is using the most CPU.

« VSRSRC_CONSUMER _GROUP shows CPU utilization statistics for each consumer
group when the Oracle Database Resource Manager is running.

Interpreting CPU Statistics It is important to recognize that CPU time and real time are
distinct. With eight CPUs, for any given minute in real time, there are eight minutes
of CPU time available. On Windows and UNIX, this can be either user time or
system time (privileged mode on Windows). Thus, average CPU time utilized by all
processes (threads) on the system could be greater than one minute for every one
minute real time interval.

At any given moment, you know how much time Oracle has used on the system.
So, if eight minutes are available and Oracle uses four minutes of that time, then
you know that 50% of all CPU time is used by Oracle. If your process is not
consuming that time, then some other process is. Identify the processes that are
using CPU time, figure out why, and then attempt to tune them. See Chapter 20,
"Using Application Tracing Tools".

If the CPU usage is evenly distributed over many Oracle server processes, examine
the V$SYS_TI ME_MODEL view to help get a precise understanding of where most
time is spent. See Table 10-1, " Wait Events and Potential Causes" on page 10-17.

Detecting I/0 Problems

An overly active 1/0 system can be evidenced by disk queue lengths greater than
two, or disk service times that are over 20-30ms. If the 1/0 system is overly active,
then check for potential hot spots that could benefit from distributing the 1/0 across
more disks. Also identify whether the load can be reduced by lowering the resource
requirements of the programs using those resources.

Use operating system monitoring tools to determine what processes are running on
the system as a whole and to monitor disk access to all files. Remember that disks
holding datafiles and redo log files can also hold files that are not related to Oracle.
Reduce any heavy access to disks that contain database files. Access to non-Oracle
files can be monitored only through operating system facilities, rather than through
the V$ views.

Instance Tuning Using Performance Views 10-5

Instance Tuning Steps

Utilities, such as sar - d (ori ost at) on many UNIX systems and the
administrative performance monitoring tool on Windows systems, examine 1/0
statistics for the entire system.

See Also: Your operating system documentation for the tools
available on your platform

Check the Oracle wait event data in VESYSTEM _EVENT to see whether the top wait
events are 1/0 related. 170 related events include db fi | e sequenti al read, db
filescatteredread,dbfilesinglewite,anddbfileparallel wite,
andlogfileparallel wite.Theseare all events corresponding to I/0s
performed against datafiles and log files. If any of these wait events correspond to
high average time, then investigate the 1/0 contention.

Cross reference the host I/0 system data with the 1/0 sections in the Automatic
Repository report to identify hot datafiles and tablespaces. Also compare the 1/0
times reported by the operating system with the times reported by Oracle to see if
they are consistent.

An 1/0 problem can also manifest itself with non-1/0 related wait events. For
example, the difficulty in finding a free buffer in the buffer cache or high wait times
for log to be flushed to disk can also be symptoms of an 1/0 problem. Before
investigating whether the 1/0 system should be reconfigured, determine if the load
on the 170 system can be reduced. To reduce Oracle 170 load, look at SQL
statements that perform many physical reads by querying the V$SQLAREA view or
by reviewing the 'SQL ordered by Reads' section of the Automatic Workload
Repository report. Examine these statements to see how they can be tuned to reduce
the number of 1/0s.

If there are Oracle-related 1/0 problems caused by SQL statements, then tune them.
If the Oracle server is not consuming the available 1/0 resources, then identify the
process that is using up the 1/0. Determine why the process is using up the 170,
and then tune this process.

10-6 Oracle Database Performance Tuning Guide

Instance Tuning Steps

See Also:
« Chapter 12, "SQL Tuning Overview"

« Oracle Database Reference for information about the dynamic
performance V$SQLAREA view

« Chapter 8, "1/0 Configuration and Design™

« "db file scattered read" on page 10-27 and "db file sequential
read"” on page 10-29 for the difference between a scattered read
and a sequential read, and how this affects 1/0

Network

Using operating system utilities, look at the network round-trip ping time and the
number of collisions. If the network is causing large delays in response time, then
investigate possible causes.

Network load can be reduced by scheduling large data transfers to off-peak times,
or by coding applications to batch requests to remote hosts, rather than accessing
remote hosts once (or more) for one request.

Examine the Oracle Statistics

Oracle statistics should be examined and cross-referenced with operating system
statistics to ensure a consistent diagnosis of the problem. operating-system statistics
can indicate a good place to begin tuning. However, if the goal is to tune the Oracle
instance, then look at the Oracle statistics to identify the resource bottleneck from an
Oracle perspective before implementing corrective action. See "Interpreting Oracle
Statistics” on page 10-13.

The following sections discuss the common Oracle data sources used while tuning.

Setting the Level of Statistics Collection

Oracle provides the initialization parameter STATI STI CS_LEVEL, which controls
all major statistics collections or advisories in the database. This parameter sets the
statistics collection level for the database.

Depending on the setting of STATI STI CS_LEVEL, certain advisories or statistics
are collected, as follows:

« BASI C: No advisories or statistics are collected. Monitoring and many
automatic features are disabled. Oracle does not recommend this setting
because it disables important Oracle features.

Instance Tuning Using Performance Views 10-7

Instance Tuning Steps

« TYPI CAL: This is the default value and ensures collection for all major statistics
while providing best overall database performance. This setting should be
adequate for most environments.

« ALL: All of the advisories or statistics that are collected with the TYPI CAL
setting are included, plus timed operating system statistics and row source
execution statistics.

See Also:

« Oracle Database Reference for more information on the
STATI STI CS_LEVEL initialization parameter

« "Interpreting Statistics" on page 5-8 for considerations when
setting the STATI STI CS_LEVEL, DB_CACHE_ADVI CE, TI MED_
STATI STI CS, or TI MED_OS_STATI STI CSinitialization
parameters

V$STATISTICS_LEVEL This view lists the status of the statistics or advisories
controlled by STATI STI CS_LEVEL.

See Also: Oracle Database Reference for information about the
dynamic performance V$STATI STI CS_LEVEL view

Wait Events

Wait events are statistics that are incremented by a server process or thread to
indicate that it had to wait for an event to complete before being able to continue
processing. Wait event data reveals various symptoms of problems that might be
impacting performance, such as latch contention, buffer contention, and 1/0
contention. Remember that these are only symptoms of problems, not the actual
causes.

Wait events are grouped into classes. The wait event classes include:
Administrative, Application, Cluster, Commit, Concurrency, Configuration, Idle,
Network, Other, Scheduler, System 1/0, and User I/0.

A server process can wait for the following:
« Avresource to become available, such as a buffer or a latch
« An action to complete, such asan I/0

« More work to do, such as waiting for the client to provide the next SQL
statement to execute. Events that identify that a server process is waiting for
more work are known as idle events.

10-8 Oracle Database Performance Tuning Guide

Instance Tuning Steps

See Also: Oracle Database Reference for more information about
Oracle wait events

Wait event statistics include the number of times an event was waited for and the
time waited for the event to complete. If the initialization parameter TI MED _
STATI STI CSis settot r ue, then you can also see how long each resource was
waited for.

To minimize user response time, reduce the time spent by server processes waiting
for event completion. Not all wait events have the same wait time. Therefore, it is
more important to examine events with the most total time waited rather than wait
events with a high number of occurrences. Usually, it is best to set the dynamic
parameter TI MED_STATI STl CStot r ue at least while monitoring performance.
See "Setting the Level of Statistics Collection" on page 10-7 for information about
STATI STI CS_LEVEL settings.

Dynamic Performance Views Containing Wait Event Statistics
These dynamic performance views can be queried for wait event statistics:

. V$ACTI VE_SESSI ON_H STORY

The V$ACTI VE_SESSI ON_HI STORY view displays active database session
activity, sampled once every second. See "Active Session History (ASH)" on
page 5-4.

. V$SESS TI ME_MODEL and V$SYS_TI ME_MODEL

The V$SESS_TI ME_MODEL and V$SYS_TI ME_MODEL views contain time
model statistics, including DBt i me which is the total time spent in database
calls

. V$SESSI ON WAI T

The V$SESSI ON_WAI T view displays the resources or events for which active
sessions are waiting.

= V$SESSI ON

The V$SESSI ON view contains the same wait statistics that are contained in the
V$SESSI ON_WAI T view. If applicable, this view also contains detailed
information on the object that the session is currently waiting for (object
number, block number, file number, and row number), plus the blocking session
responsible for the current wait.

. V$SESSI ON_EVENT

Instance Tuning Using Performance Views 10-9

Instance Tuning Steps

The V$SESSI ON_EVENT view provides summary of all the events the session
has waited for since it started.

V$SESSI ON_WAI T_CLASS

The V$SESSI ON_WAI T_CLASS view provides the number of waits and the
time spent in each class of wait events for each session.

V$SESSI ON_WAI T_HI STORY

The V$SESSI ON_WAI T_HI STORY view provides the last ten wait events for
each active session.

V$SYSTEM EVENT

The V$SYSTEM _EVENT view provides a summary of all the event waits on the
instance since it started.

VSEVENT_HI STOGRAM

The V$EVENT _H STOGRAMview displays a histogram of the number of waits,
the maximum wait, and total wait time on a per-child cursor basis.

V$FI LE_H STOGRAM

The V$FI LE_H STOGRAMview displays a histogram of times waited during
single block reads for each file.

V$SYSTEM WAl T_CLASS

The V$SYSTEM WAI T_CLASS view provides the instance wide time totals for
the number of waits and the time spent in each class of wait events. This view
also shows the object number for which the session is waiting.

VSTEMP_HI STOGRAM

The V$TEMP_H STOGRAMview displays a histogram of times waited during
single block reads for each temporary file.

See Also: Oracle Database Reference for information about the
dynamic performance views

Investigate wait events and related timing data when performing reactive
performance tuning. The events with the most time listed against them are often
strong indications of the performance bottleneck. For example, by looking at
V$SYSTEM _EVENT, you might notice lots of buf f er busy wai t s. It might be that
many processes are inserting into the same block and must wait for each other
before they can insert. The solution could be to use automatic segment space

10-10 Oracle Database Performance Tuning Guide

Instance Tuning Steps

management or partitioning for the object in question. See "Wait Events Statistics"
on page 10-21 for a description of the differences between the views VSSESSI ON
WAI T, VSSESSI ON_EVENT, and V$SYSTEM _EVENT.

System Statistics

System statistics are typically used in conjunction with wait event data to find
further evidence of the cause of a performance problem.

For example, if VESYSTEM _EVENT indicates that the largest wait event (in terms of
wait time) is the event buf f er busy wai t s, then look at the specific buffer wait
statistics available in the view VWAl TSTAT to see which block type has the highest
wait count and the highest wait time.

After the block type has been identified, also look at V$SESSI ON real-time while the
problem is occurring or V3ACTI VE_SESSI ON_HI STORY and DBA_HI ST_ACTI VE_
SESS_HI STORY views after the problem has been experienced to identify the
contended-for objects using the object number indicated. The combination of this
data indicates the appropriate corrective action.

Statistics are available in many V$ views. Some common views include the
following:

V$ACTIVE_SESSION_HISTORY This view displays active database session activity,
sampled once every second. See "Active Session History (ASH)" on page 5-4.

V$SYSSTAT This contains overall statistics for many different parts of Oracle,
including rollback, logical and physical 1/0, and parse data. Data from V$SYSSTAT
is used to compute ratios, such as the buffer cache hit ratio.

VSFILESTAT This contains detailed file 170 statistics for each file, including the
number of 1/0s for each file and the average read time.

V$ROLLSTAT This contains detailed rollback and undo segment statistics for each
segment.

V$ENQUEUE_STAT This contains detailed enqueue statistics for each enqueue,
including the number of times an enqueue was requested and the number of times
an enqueue was waited for, and the wait time.

V$LATCH This contains detailed latch usage statistics for each latch, including the

number of times each latch was requested and the number of times the latch was
waited for.

Instance Tuning Using Performance Views 10-11

Instance Tuning Steps

See Also: Oracle Database Reference for information about dynamic
performance views

Segment-Level Statistics

You can gather segment-level statistics to help you spot performance problems
associated with individual segments. Collecting and viewing segment-level
statistics is a good way to effectively identify hot tables or indexes in an instance.

After viewing wait events and system statistics to identify the performance
problem, you can use segment-level statistics to find specific tables or indexes that
are causing the problem. Consider, for example, that VESYSTEM_EVENT indicates
that buffer busy waits cause a fair amount of wait time. You can select from
V$SEGVENT_STATI STI CS the top segments that cause the buffer busy waits. Then
you can focus your effort on eliminating the problem in those segments.

You can query segment-level statistics through the following dynamic performance
views:

« V$SEGSTAT_NAME This view lists the segment statistics being collected, as
well as the properties of each statistic (for instance, if it is a sampled statistic).

« VS$SEGSTAT This is a highly efficient, real-time monitoring view that shows the
statistic value, statistic name, and other basic information.

« V$SEGVENT_STATI STI CS This is a user-friendly view of statistic values. In
addition to all the columns of VESEGSTAT, it has information about such things
as the segment owner and table space name. It makes the statistics easy to
understand, but it is more costly.

See Also: Oracle Database Reference for information about
dynamic performance views

Implement and Measure Change

Often at the end of a tuning exercise, it is possible to identify two or three changes
that could potentially alleviate the problem. To identify which change provides the
most benefit, it is recommended that only one change be implemented at a time.
The effect of the change should be measured against the baseline data
measurements found in the problem definition phase.

Typically, most sites with dire performance problems implement a number of
overlapping changes at once, and thus cannot identify which changes provided any
benefit. Although this is not immediately an issue, this becomes a significant
hindrance if similar problems subsequently appear, because it is not possible to

10-12 Oracle Database Performance Tuning Guide

Interpreting Oracle Statistics

know which of the changes provided the most benefit and which efforts to
prioritize.

If it is not possible to implement changes separately, then try to measure the effects
of dissimilar changes. For example, measure the effect of making an initialization
change to optimize redo generation separately from the effect of creating a new
index to improve the performance of a modified query. It is impossible to measure
the benefit of performing an operating system upgrade if SQL is tuned, the
operating system disk layout is changed, and the initialization parameters are also
changed at the same time.

Performance tuning is an iterative process. It is unlikely to find a 'silver bullet' that
solves an instance-wide performance problem. In most cases, excellent performance
requires iteration through the performance tuning phases, because solving one
bottleneck often uncovers another (sometimes worse) problem.

Knowing when to stop tuning is also important. The best measure of performance is
user perception, rather than how close the statistic is to an ideal value.

Interpreting Oracle Statistics

Gather statistics that cover the time when the instance had the performance
problem. If you previously captured baseline data for comparison, then you can
compare the current data to the data from the baseline that most represents the
problem workload.

When comparing two reports, ensure that the two reports are from times where the
system was running comparable workloads.

See Also: "Overview of Data Gathering" on page 5-2

Examine Load

Usually, wait events are the first data examined. However, if you have a baseline
report, then check to see if the load has changed. Regardless of whether you have a
baseline, it is useful to see whether the resource usage rates are high.

Load-related statistics to examine include r edo si ze, sessi on | ogi cal reads,
db bl ock changes, physi cal reads, physi cal writes, parse count
(total), parse count (hard),and user cal | s. This data is queried from
V$SYSSTAT. It is best to normalize this data over seconds and over transactions.

In the Automatic Workload Repository report, look at the Load Profile section. The
data has been normalized over transactions and over seconds.

Instance Tuning Using Performance Views 10-13

Interpreting Oracle Statistics

Changing Load

The load profile statistics over seconds show the changes in throughput (that is,
whether the instance is performing more work each second). The statistics over
transactions identify changes in the application characteristics by comparing these
to the corresponding statistics from the baseline report.

High Rates of Activity

Examine the statistics normalized over seconds to identify whether the rates of
activity are very high. It is difficult to make blanket recommendations on high
values, because the thresholds are different on each site and are contingent on the
application characteristics, the number and speed of CPUs, the operating system,
the 1/0 system, and the Oracle release.

The following are some generalized examples (acceptable values vary at each site):

=« A hard parse rate of more than 100 a second indicates that there is a very high
amount of hard parsing on the system. High hard parse rates cause serious
performance issues and must be investigated. Usually, a high hard parse rate is
accompanied by latch contention on the shared pool and library cache latches.

« Check whether the sum of the wait times for library cache and shared pool latch
events (latch: library cache, latch: library cache pin, latch: library cache lock and
latch: shared pool) is significant compared to statistic DBt i ne found in
V$SYSSTAT. If so, examine the SQL or der ed by Par se Cal | s section of the
Automatic Workload Repository report.

= A high soft parse rate could be in the rate of 300 a second or more. Unnecessary
soft parses also limit application scalability. Optimally, a SQL statement should
be soft parsed once in each session and executed many times.

Using Wait Event Statistics to Drill Down to Bottlenecks

10-14

Whenever an Oracle process waits for something, it records the wait using one of a
set of predefined wait events. These wait events are grouped in wait classes. The
Idle wait class groups all events that a process waits for when it does not have work
to do and is waiting for more work to perform. Non-idle events indicate
nonproductive time spent waiting for a resource or action to complete.

Note: Not all symptoms can be evidenced by wait events. See
"Additional Statistics" on page 10-18 for the statistics that can be
checked.

Oracle Database Performance Tuning Guide

Interpreting Oracle Statistics

The most effective way to use wait event data is to order the events by the wait
time. This is only possible if TI MED_STATI STI CSis settot r ue. Otherwise, the
wait events can only be ranked by the number of times waited, which is often not
the ordering that best represents the problem.

See Also:

« "Setting the Level of Statistics Collection" on page 10-7 for
information about STATI STI CS_LEVEL settings

» Oracle Database Reference for information on the STATI STI CS_
LEVEL initialization parameter

To get an indication of where time is spent, follow these steps:

1.

Examine the data collection for VESYSTEM_EVENT. The events of interest
should be ranked by wait time.

Identify the wait events that have the most significant percentage of wait time.
To determine the percentage of wait time, add the total wait time for all wait
events, excluding idle events, such as Nul | event, SQL* Net nessage from
client,SQ*Net nessagetoclient,and SQL*Net noredatato

cl i ent . Calculate the relative percentage of the five most prominent events by
dividing each event's wait time by the total time waited for all events.

See Also:
« "ldle Wait Events" on page 10-48 for the list of idle wait events

« Description of the VEEVENT_NAME view in Oracle Database
Reference

« Detailed wait event information in Oracle Database Reference
Alternatively, look at the Top 5 Timed Events section at the beginning of the

Automatic Workload Repository report. This section automatically orders the
wait events (omitting idle events), and calculates the relative percentage:

Top 5 Timed Events

% Tot al
Event Wi ts Time (s) Call Time
CPU tine 559 88. 80
log file parallel wite 2,181 28 4.42
SQ.*Net nore data fromclient 516, 611 27 4. 24
db file parallel wite 13, 383 13 2.04

Instance Tuning Using Performance Views 10-15

Interpreting Oracle Statistics

db file sequential read 563 2 .27

In some situations, there might be a few events with similar percentages. This
can provide extra evidence if all the events are related to the same type of
resource request (for example, all 170 related events).

2. Look at the number of waits for these events, and the average wait time. For
example, for 1/0 related events, the average time might help identify whether
the 170 system is slow. The following example of this data is taken from the
Wait Event section of the Automatic Workload Repository report:

Avg
Total Wait wait Waits
Event Waits Timeouts Tine (s) (ns) /txn
log file parallel wite 2,181 0 28 13 41.2
SQ.*Net nore data fromclie 516,611 0 27 0 9,747.4
db file parallel wite 13, 383 0 13 1 252.5

3. The top wait events identify the next places to investigate. A table of common
wait events is listed in Table 10-1. It is usually a good idea to also have quick
look at high-load SQL.

4. Examine the related data indicated by the wait events to see what other
information this data provides. Determine whether this information is
consistent with the wait event data. In most situations, there is enough data to
begin developing a theory about the potential causes of the performance
bottleneck.

5. To determine whether this theory is valid, cross-check data you have already
examined with other statistics available for consistency. The appropriate
statistics vary depending on the problem, but usually include load
profile-related data in V$SYSSTAT, operating system statistics, and so on.
Perform cross-checks with other data to confirm or refute the developing
theory.

Table of Wait Events and Potential Causes

Table 10-1 links wait events to possible causes and gives an overview of the Oracle
data that could be most useful to review next.

10-16 Oracle Database Performance Tuning Guide

Interpreting Oracle Statistics

Table 10-1 Wait Events and Potential Causes

Wait Event General Area Possible Causes Look for / Examine
buf fer busy Buffer cache, Depends on buffer type. Examine V$SESSI ONwhile the problem is
waits DBWR For example, waits for an occurring to determine the type of block in

index block may be caused
by a primary key that is
based on an ascending

sequence.
free buffer Buffer cache, Slow DBWR (possibly due
wai ts DBWR, /0 to1/0?)

Cache too small
db file 170, SQL Poorly tuned SQL
scattered read statement

tuning Slow 1/0 system

db file 170, SQL Poorly tuned SQL
sequenti al statement
read tuning Slow 1/0 system
enqueue waits Locks Depends on type of
(waits starting with enqueue
end:)
library cache latch Latch SQL parsing or sharing
waits: | i brary contention

cache,library
cache pi n, and
l'i brary cache

| ock

| og buffer Log buffer, Log buffer small

space 170 Slow 170 system

log file sync 1/0, over- Slow disks that store the

committing online logs
Un-batched commits

contention.

Examine write time using operating system
statistics. Check buffer cache statistics for
evidence of too small cache.

Investigate V$SQLAREA to see whether there
are SQL statements performing many disk
reads. Cross-check 170 system and

V$FI LESTAT for poor read time.

Investigate V$SQLAREA to see whether there
are SQL statements performing many disk
reads. Cross-check 170 system and

V$FI LESTAT for poor read time.

Look at VSENQUEUE_STAT.

Check V$SQLAREA to see whether there are
SQL statements with a relatively high number
of parse calls or a high number of child
cursors (column VERSI ON_COUNT). Check
parse statistics in V$SYSSTAT and their
corresponding rate for each second.

Check the statistic r edo buf f er

all ocationretries inV$SYSSTAT. Check
configuring log buffer section in configuring
memory chapter. Check the disks that house
the online redo logs for resource contention.

Check the disks that house the online redo
logs for resource contention. Check the
number of transactions (commi t s +

rol | backs) each second, from V$SYSSTAT.

You may also want to review the following Oracle Metalink notices on buf f er
busy wai t s (34405.1) and f r ee buf f er wai t s (62172.1):

Instance Tuning Using Performance Views 10-17

Interpreting Oracle Statistics

« http://metalink.oracle.com/metalink/plsgl/ml2_
documents.showDocument?p_database id=NOT&p_id=34405.1

« http://metalink.oracle.com/metalink/plsgl/ml2_
documents.showDocument?p_database id=NOT&p_id=62172.1

You can also access these notices and related notices by searching for "busy buffer
waits" and "free buffer waits" at:

http://metalink.oracle.com

See Also:

« "Wait Events Statistics" on page 10-21 for detailed information
on each event listed in Table 10-1 and for other information to
cross-check

« Oracle Database Reference for information about dynamic
performance views

Additional Statistics

There are a number of statistics that can indicate performance problems that do not
have corresponding wait events.

Redo Log Space Requests Statistic

The V$SYSSTAT statistic r edo | og space r equest s indicates how many times a
server process had to wait for space in the online redo log, not for space in the redo
log buffer. A significant value for this statistic and the wait events should be used as
an indication that checkpoints, DBWR, or archiver activity should be tuned, not
LGWR. Increasing the size of log buffer does not help.

Read Consistency

Your system might spend excessive time rolling back changes to blocks in order to
maintain a consistent view. Consider the following scenarios:

« If there are many small transactions and an active long-running query is
running in the background on the same table where the changes are happening,
then the query might need to roll back those changes often, in order to obtain a
read-consistent image of the table. Compare the following VESYSSTAT statistics
to determine whether this is happening:

10-18 Oracle Database Performance Tuning Guide

Interpreting Oracle Statistics

« consi st ent changes statistic indicates the number of times a database
block has rollback entries applied to perform a consistent read on the block.
Workloads that produce a great deal of consi st ent changes can
consume a great deal of resources.

« Cconsi st ent get s statistic counts the number of logical reads in consistent
mode.

« If there are few very, large rollback segments, then your system could be
spending a lot of time rolling back the transaction table during delayed block
cleanout in order to find out exactly which SCN a transaction was committed.
When Oracle commits a transaction, all modified blocks are not necessarily
updated with the commit SCN immediately. In this case, it is done later on
demand when the block is read or updated. This is called delayed block
cleanout.

The ratio of the following V$SYSSTAT statistics should be close to 1:

ratio = transaction tables consistent reads - undo records applied /
transaction tables consistent read rollbacks

The recommended solution is to use automatic undo management.

« If there are insufficient rollback segments, then there is rollback segment
(header or block) contention. Evidence of this problem is available by the
following:

« Comparing the number of WAI TS to the number of GETS in VSROLLSTAT;
the proportion of WAI TS to GETS should be small.

« Examining V$WAI TSTAT to see whether there are many WAI TS for buffers
of CLASS 'undo header".

The recommended solution is to use automatic undo management.

Table Fetch by Continued Row

You can detect migrated or chained rows by checking the number of t abl e f et ch
cont i nued r owstatistic in VESYSSTAT. A small number of chained rows (less than
1%) is unlikely to impact system performance. However, a large percentage of
chained rows can affect performance.

Chaining on rows larger than the block size is inevitable. You might want to
consider using tablespace with larger block size for such data.

However, for smaller rows, you can avoid chaining by using sensible space
parameters and good application design. For example, do not insert a row with key

Instance Tuning Using Performance Views 10-19

Interpreting Oracle Statistics

values filled in and nulls in most other columns, then update that row with the real
data, causing the row to grow in size. Rather, insert rows filled with data from the
start.

If an UPDATE statement increases the amount of data in a row so that the row no
longer fits in its data block, then Oracle tries to find another block with enough free
space to hold the entire row. If such a block is available, then Oracle moves the
entire row to the new block. This is called migrating a row. If the row is too large to
fit into any available block, then Oracle splits the row into multiple pieces and
stores each piece in a separate block. This is called chaining a row. Rows can also be
chained when they are inserted.

Migration and chaining are especially detrimental to performance with the
following:

« UPDATE statements that cause migration and chaining to perform poorly

« Queries that select migrated or chained rows because these must perform
additional input and output

The definition of a sample output table named CHAI NED_ROWS appears in a SQL
script available on your distribution medium. The common name of this script is
UTLCHNL1.SQL, although its exact name and location varies depending on your
platform. Your output table must have the same column names, datatypes, and
sizes as the CHAI NED_ROWS table.

Increasing PCTFREE can help to avoid migrated rows. If you leave more free space
available in the block, then the row has room to grow. You can also reorganize or
re-create tables and indexes that have high deletion rates. If tables frequently have
rows deleted, then data blocks can have partially free space in them. If rows are
inserted and later expanded, then the inserted rows might land in blocks with
deleted rows but still not have enough room to expand. Reorganizing the table
ensures that the main free space is totally empty blocks.

Note: PCTUSED is not the opposite of PCTFREE.

See Also:
« Oracle Database Concepts for more information on PCTUSED

« Oracle Database Administrator's Guide for information on
reorganizing tables

10-20 Oracle Database Performance Tuning Guide

Wait Events Statistics

Parse-Related Statistics

The more your application parses, the more potential for contention exists, and the
more time your system spends waiting. If par se t i me CPU represents a large
percentage of the CPU time, then time is being spent parsing instead of executing
statements. If this is the case, then it is likely that the application is using literal SQL
and so SQL cannot be shared, or the shared pool is poorly configured.

See Also: Chapter 7, "Memory Configuration and Use"

There are a number of statistics available to identify the extent of time spent parsing
by Oracle. Query the parse related statistics from V$SYSSTAT. For example:

SELECT NAME, VALUE
FROM V$SYSSTAT
VWHERE NAME IN ('parse time cpu', 'parse tine el apsed',
"parse count (hard)', 'CPU used by this session');

There are various ratios that can be computed to assist in determining whether
parsing may be a problem:

= parse time CPU / parse time elapsed

This ratio indicates how much of the time spent parsing was due to the parse
operation itself, rather than waiting for resources, such as latches. A ratio of one
is good, indicating that the elapsed time was not spent waiting for highly
contended resources.

« parse time CPU / CPU used by this session

This ratio indicates how much of the total CPU used by Oracle server processes
was spent on parse-related operations. A ratio closer to zero is good, indicating
that the majority of CPU is not spent on parsing.

Wait Events Statistics

The V$SESSI ON, VSSESSI ON_WAI T, VESESSI ON_EVENT, and V$SYSTEM _EVENT
views provide information on what resources were waited for, and, if the
configuration parameter TI MED_STATI STI CSis settot r ue, how long each
resource was waited for.

Instance Tuning Using Performance Views 10-21

Wait Events Statistics

See Also:

« "Setting the Level of Statistics Collection" on page 10-7 for
information about STATI STI CS_LEVEL settings

« Oracle Database Reference for a description of the V$ views and
the Oracle wait events

Investigate wait events and related timing data when performing reactive
performance tuning. The events with the most time listed against them are often
strong indications of the performance bottleneck.

The following views contain related, but different, views of the same data:

« V$SESSI ON lists session information for each current session. It lists either the
event currently being waited for or the event last waited for on each session.
This view also contains information on blocking sessions.

« VSSESSI ON_WAI T is a current state view. It lists either the event currently
being waited for or the event last waited for on each session

« V$SESSI ON_EVENT lists the cumulative history of events waited for on each
session. After a session exits, the wait event statistics for that session are
removed from this view.

« VSSYSTEM EVENT lists the events and times waited for by the whole instance
(that is, all session wait events data rolled up) since instance startup.

Because V$SESSI ON_WAI T is a current state view, it also contains a
finer-granularity of information than V$SESSI ON_EVENT or V$SYSTEM_EVENT. It
includes additional identifying data for the current event in three parameter
columns: P1, P2, and P3.

For example, V$SESSI ON_EVENT can show that session 124 (SID=124) had many
waitsonthedb fil e scatteredread, butitdoes not show which file and block
number. However, VESESSI ON_WAI T shows the file number in P1, the block
number read in P2, and the number of blocks read in P3 (P1 and P2 let you
determine for which segments the wait event is occurring).

This chapter concentrates on examples using VESESSI ON_WAI T. However, Oracle
recommends capturing performance data over an interval and keeping this data for
performance and capacity analysis. This form of rollup data is queried from the
V$SYSTEM EVENT view by Automatic Workload Repository. See "Automatic
Workload Repository" on page 5-10.

10-22 Oracle Database Performance Tuning Guide

Wait Events Statistics

Most commonly encountered events are described in this chapter, listed in
case-sensitive alphabetical order. Other event-related data to examine is also
included. The case used for each event name is that which appears in the
V$SYSTEM EVENT view.

See Also: Oracle Database Reference for a description of the
V$SYSTEM EVENT view

SQL*Net Events

The following events signify that the database process is waiting for
acknowledgment from a database link or a client process:

« SQL*Net break/reset to client

« SQL*Net break/reset to dblink
« SQL*Net message from client

« SQL*Net message from dblink

« SQL*Net message to client

« SQL*Net message to dblink

« SQL*Net more data from client
« SQL*Net more data from dblink
« SQL*Net more data to client

« SQL*Net more data to dblink

If these waits constitute a significant portion of the wait time on the system or for a
user experiencing response time issues, then the network or the middle-tier could
be a bottleneck.

Events that are client-related should be diagnosed as described for the event
SQL*Net nmessage f romcl i ent . Events that are dblink-related should be
diagnosed as described for the event SQL* Net nessage fr omdbl i nk.

SQL*Net message from client

Although this is an idle event, it is important to explain when this event can be used
to diagnose what is not the problem. This event indicates that a server process is
waiting for work from the client process. However, there are several situations
where this event could accrue most of the wait time for a user experiencing poor

Instance Tuning Using Performance Views 10-23

Wait Events Statistics

response time. The cause could be either a network bottleneck or a resource
bottleneck on the client process.

Network Bottleneck A network bottleneck can occur if the application causes a lot of
traffic between server and client and the network latency (time for a round-trip) is
high. Symptoms include the following:

« Large number of waits for this event

« Both the database and client process are idle (waiting for network traffic) most
of the time

To alleviate network bottlenecks, try the following:
« Tune the application to reduce round trips.

« Explore options to reduce latency (for example, terrestrial lines opposed to
VSAT links).

« Change system configuration to move higher traffic components to lower
latency links.

Resource Bottleneck on the Client Process If the client process is using most of the
resources, then there is nothing that can be done in the database. Symptoms include
the following:

« Number of waits might not be large, but the time waited might be significant
« Client process has a high resource usage

In some cases, you can see the wait time for a waiting user tracking closely with the
amount of CPU used by the client process. The term client here refers to any process
other than the database process (middle-tier, desktop client) in the n-tier
architecture.

SQL*Net message from dblink

This event signifies that the session has sent a message to the remote node and is
waiting for a response from the database link. This time could go up because of the
following:

« Network bottleneck
For information, see "SQL*Net message from client” on page 10-23.

« Time taken to execute the SQL on the remote node

10-24 Oracle Database Performance Tuning Guide

Wait Events Statistics

It is useful to see the SQL being run on the remote node. Login to the remote
database, find the session created by the database link, and examine the SQL
statement being run by it.

« Number of round trip messages

Each message between the session and the remote node adds latency time and
processing overhead. To reduce the number of messages exchanged, use array
fetches and array inserts.

SQL*Net more data to client

The server process is sending more data or messages to the client. The previous
operation to the client was also a send.

See Also: Oracle Net Services Administrator's Guide for a detailed
discussion on network optimization

buffer busy waits

This wait indicates that there are some buffers in the buffer cache that multiple
processes are attempting to access concurrently. Query V$WAI TSTAT for the wait
statistics for each class of buffer. Common buffer classes that have buffer busy waits
include dat a bl ock, segnent header, undo header, and undo bl ock.

Check the following V$SESSI ON_WAI T parameter columns:
« Pl-FileID

« P2-Block ID

« P3-ClassID

Causes
To determine the possible causes, first query V$SESSI ON to identify the value of
ROW WAI T_OBJ# when the session waits for buf f er busy wai t s. For example:

SELECT row_wai t _obj #
FROM V$SESSI ON
VHERE EVENT = 'buffer busy waits';

To identify the object and object type contended for, query DBA OBJECTS using the
value for ROW WAl T_OBJ# that is returned from V$SESSI ON. For example:

SELECT owner, object_nane, subobject_nanme, object_type
FROM DBA_OBJECTS

Instance Tuning Using Performance Views 10-25

Wait Events Statistics

VHERE data_object_id = & ow wait_obj;

Actions

The action required depends on the class of block contended for and the actual
segment.

segment header If the contention is on the segment header, then this is most likely
free list contention.

Automatic segment-space management in locally managed tablespaces eliminates
the need to specify the PCTUSED, FREELI STS, and FREEL| ST GROUPS parameters.
If possible, switch from manual space management to automatic segment-space
management (ASSM).

The following information is relevant if you are unable to use automatic
segment-space management (for example, because the tablespace uses dictionary
space management).

A free list is a list of free data blocks that usually includes blocks existing in a
number of different extents within the segment. Free lists are composed of blocks in
which free space has not yet reached PCTFREE or used space has shrunk below
PCTUSED. Specify the number of process free lists with the FREELI STS parameter.
The default value of FREELI STS is one. The maximum value depends on the data
block size.

To find the current setting for free lists for that segment, run the following:

SELECT SEGVENT_NAME, FREELI STS
FROM DBA_SEGVENTS
VWHERE SEGVENT_NAME
AND SEGVENT_TYPE

segment name
segnent type;

Set free lists, or increase the number of free lists. If adding more free lists does not
alleviate the problem, then use free list groups (even in single instance this can
make a difference). If using Oracle Real Application Clusters, then ensure that each
instance has its own free list group(s).

See Also: Oracle Database Concepts for information on automatic
segment-space management, free lists, PCTFREE, and PCTUSED

data block If the contention is on tables or indexes (not the segment header):

10-26 Oracle Database Performance Tuning Guide

Wait Events Statistics

« Check for right-hand indexes. These are indexes that are inserted into at the
same point by many processes. For example, those that use sequence number
generators for the key values.

« Consider using automatic segment-space management (ASSM), global hash
partitioned indexes, or increasing free lists to avoid multiple processes
attempting to insert into the same block.

undo header For contention on rollback segment header:

« If you are not using automatic undo management, then add more rollback
segments.

undo block For contention on rollback segment block:

« If you are not using automatic undo management, then consider making
rollback segment sizes larger.

db file scattered read

This event signifies that the user process is reading buffers into the SGA buffer
cache and is waiting for a physical 170 call to return. Adbfil e scatteredread
issues a scattered read to read the data into multiple discontinuous memory
locations. A scattered read is usually a multiblock read. It can occur for a fast full
scan (of an index) in addition to a full table scan.

Thedbfil escatteredread wait event identifies that a full scan is occurring.
When performing a full scan into the buffer cache, the blocks read are read into
memory locations that are not physically adjacent to each other. Such reads are
called scattered read calls, because the blocks are scattered throughout memory.
This is why the corresponding wait event is called 'db file scattered read'.
Multiblock (up to DB_FI LE_MULTI BLOCK _READ_COUNT blocks) reads due to full
scans into the buffer cache show up as waits for 'db file scattered read'.

Check the following V$SESSI ON_WAI T parameter columns:
= Pl -The absolute file number

« P2 -The block being read

« P3-The number of blocks (should be greater than 1)

Actions

On a healthy system, physical read waits should be the biggest waits after the idle
waits. However, also consider whether there are direct read waits (signifying full

Instance Tuning Using Performance Views 10-27

Wait Events Statistics

table scans with parallel query) ordb fi |l e scatt er ed r ead waits on an
operational (OLTP) system that should be doing small indexed accesses.

Other things that could indicate excessive 1/0 load on the system include the
following:

« Poor buffer cache hit ratio

« These wait events accruing most of the wait time for a user experiencing poor
response time

Managing Excessive 1/0

There are several ways to handle excessive 1/0 waits. In the order of effectiveness,
these are as follows:

1. Reduce the I/0 activity by SQL tuning
2. Reduce the need to do 1/0 by managing the workload

3. Gather system statistics with DBV5_STATS package, allowing the query
optimizer to accurately cost possible access paths that use full scans

4. Use Automatic Storage Management
5. Add more disks to reduce the number of 1/0s for each disk

6. Alleviate 170 hot spots by redistributing 1/0 across existing disks

See Also: Chapter 8, "I/0 Configuration and Design"

The first course of action should be to find opportunities to reduce 1/0. Examine
the SQL statements being run by sessions waiting for these events, as well as
statements causing high physical 1/0s from V$SQLAREA. Factors that can adversely
affect the execution plans causing excessive 1/0 include the following:

« Improperly optimized SQL

« Missing indexes

« High degree of parallelism for the table (skewing the optimizer toward scans)
« Lack of accurate statistics for the optimizer

« Setting the value for DB_FI LE_MJULTI BLOCK_READ_COUNT initialization
parameter too high which favors full scans

10-28 Oracle Database Performance Tuning Guide

Wait Events Statistics

Inadequate 1/0 Distribution

Besides reducing 170, also examine the 1/0 distribution of files across the disks. Is
170 distributed uniformly across the disks, or are there hot spots on some disks?
Are the number of disks sufficient to meet the 1/0 needs of the database?

See the total 1/0 operations (reads and writes) by the database, and compare those
with the number of disks used. Remember to include the 1/0 activity of LGWR and
ARCH processes.

Finding the SQL Statement executed by Sessions Waiting for 1/0

Use the following query to determine, at a point in time, which sessions are waiting
for 1/70:

SELECT SQL_ADDRESS, SQL_HASH VALUE
FROM V$SESSI ON
VWHERE EVENT LIKE 'db file% ead';

Finding the Object Requiring I/0

To determine the possible causes, first query V3SESSI ONto identify the value of
ROW WAI T_OBJ# when the session waits fordb fi |l e scatt ered r ead. For
example:

SELECT row_wai t _obj #
FROM V$SESSI ON
WHERE EVENT = 'db file scattered read';

To identify the object and object type contended for, query DBA OBJECTS using the
value for ROW WAl T_OBJ# that is returned from V$SESSI ON. For example:

SELECT owner, object_nane, subobject_nane, object_type
FROM DBA_OBJECTS
VHERE data_object_id = & ow wait_obj;

db file sequential read

This event signifies that the user process is reading a buffer into the SGA buffer
cache and is waiting for a physical 170 call to return. A sequential read is a
single-block read.

Single block 1/0s are usually the result of using indexes. Rarely, full table scan calls
could get truncated to a single block call due to extent boundaries, or buffers
already present in the buffer cache. These waits would also show up as 'db file
sequential read'.

Instance Tuning Using Performance Views 10-29

Wait Events Statistics

Check the following V$SESSI ON_WAI T parameter columns:

« P1 - The absolute file number

« P2 -The block being read

« P3-The number of blocks (should be 1)
See Also: "db file scattered read" on page 10-27 for information
on managing excessive 1/0, inadequate 1/0 distribution, and

finding the SQL causing the I/0 and the segment the 1/0 is
performed on

Actions

On a healthy system, physical read waits should be the biggest waits after the idle
waits. However, also consider whether there are db fi | e sequenti al reads ona
large data warehouse that should be seeing mostly full table scans with parallel

query.
Figure 10-1 depicts the differences between the following wait events:
« dbfilesequential read (single block read into one SGA buffer)

« dbfilescatteredread (multiblock read into many discontinuous SGA
buffers)

« direct read (single or multiblock read into the PGA, bypassing the SGA)

10-30 Oracle Database Performance Tuning Guide

Wait Events Statistics

Figure 10-1 Scattered Read, Sequential Read, and Direct Path Read

SGA Buffer Cache SGA Buffer Cache Process PGA

(]

H

th

—

N N A

DB file DB file Direct Path
Sequential Read Scattered Read Read

direct path read and direct path read temp

When a session is reading buffers from disk directly into the PGA (opposed to the
buffer cache in SGA), it waits on this event. If the 1/0 subsystem does not support
asynchronous I/0s, then each wait corresponds to a physical read request.

If the 170 subsystem supports asynchronous 1/0, then the process is able to
overlap issuing read requests with processing the blocks already existing in the
PGA. When the process attempts to access a block in the PGA that has not yet been
read from disk, it then issues a wait call and updates the statistics for this event.
Hence, the number of waits is not necessarily the same as the number of read
requests (unlikedb fil escatteredreadanddbfil e sequenti al read).

Check the following V$SESSI ON_WAI T parameter columns:
« P1-File_id for the read call

Instance Tuning Using Performance Views 10-31

Wait Events Statistics

« P2 -Start block_id for the read call

« P3 - Number of blocks in the read call

Causes
This happens in the following situations:

« The sorts are too large to fit in memory and some of the sort data is written out
directly to disk. This data is later read back in, using direct reads.

« Parallel slaves are used for scanning data.

« The server process is processing buffers faster than the 1/0 system can return
the buffers. This can indicate an overloaded 1/0 system.

Actions

The fil e_i d shows if the reads are for an object in TEMP tablespace (sorts to disk)
or full table scans by parallel slaves. This is the biggest wait for large data
warehouse sites. However, if the workload is not a DSS workload, then examine
why this is happening.

Sorts to Disk Examine the SQL statement currently being run by the session
experiencing waits to see what is causing the sorts. Query V$TEMPSEG_USAGE to
find the SQL statement that is generating the sort. Also query the statistics from
V$SESSTAT for the session to determine the size of the sort. See if it is possible to
reduce the sorting by tuning the SQL statement. If WORKAREA S| ZE_POLI CY is
MANUAL, then consider increasing the SORT_AREA_SI ZE for the system (if the sorts
are not too big) or for individual processes. If WORKAREA SI ZE_POLI CY is AUTQ,
then investigate whether to increase PGA_AGGREGATE TARGET. See "PGA Memory
Management" on page 7-50.

Full Table Scans If tables are defined with a high degree of parallelism, then this
could skew the optimizer to use full table scans with parallel slaves. Check the
object being read into using the direct path reads. If the full table scans are a valid
part of the workload, then ensure that the 1/0 subsystem is configured adequately
for the degree of parallelism. Consider using disk striping if you are not already
using it or Automatic Storage Management (ASM).

Hash Area Size For query plans that call for a hash join, excessive 1/0 could result

from having HASH_AREA_SI ZE too small. If WORKAREA_SI ZE _PCLI CY is MANUAL,
then consider increasing the HASH_AREA_SI ZE for the system or for individual

10-32 Oracle Database Performance Tuning Guide

Wait Events Statistics

processes. If WORKAREA S| ZE POLI CY is AUTQ, then investigate whether to
increase PGA AGGREGATE TARGET.

See Also:
« "Managing Excessive /0" on page 10-28
« "PGA Memory Management" on page 7-50

direct path write and direct path write temp

When a process is writing buffers directly from PGA (as opposed to the DBWR
writing them from the buffer cache), the process waits on this event for the write
call to complete. Operations that could perform direct path writes include when a
sort goes to disk, during parallel DML operations, direct-path | NSERTs, parallel
create table as select, and some LOB operations.

Like direct path reads, the number of waits is not the same as number of write calls
issued if the 1/0 subsystem supports asynchronous writes. The session waits if it
has processed all buffers in the PGA and is unable to continue work until an 1/0
request completes.

See Also: Oracle Database Administrator's Guide for information on
direct-path inserts

Check the following V$SESSI ON_WAI T parameter columns:

« P1-File_id for the write call

« P2 -Start block_id for the write call

« P33 - Number of blocks in the write call

Causes
This happens in the following situations:

« Sorts are too large to fit in memory and are written to disk
« Parallel DML are issued to create/populate objects

« Direct path loads

Actions
For large sorts see "Sorts to Disk" on page 10-32.

Instance Tuning Using Performance Views 10-33

Wait Events Statistics

For parallel DML, check the 1/0 distribution across disks and make sure that the
170 subsystem is adequately configured for the degree of parallelism.

enqueue (eng:) waits

Enqueues are locks that coordinate access to database resources. This event
indicates that the session is waiting for a lock that is held by another session.

The name of the enqueue is included as part of the wait event name, in the form
enq: enqueue_type - rel at ed_det ai | s. In some cases, the same enqueue type
can be held for different purposes, such as the following related TX types:

« enqg: TX- allocatel TLentry

« eng: TX- contention

« eng: TX- i ndex contention

« eng: TX- rowl ock contention

The V$EVENT _NAME view provides a complete list of all the enq: wait events.

You can check the following V$SESSI ON_WAI T parameter columns for additional
information:

« P1-Lock TYPE (or name) and MODE
« P2 - Resource identifier ID1 for the lock
« P3 - Resource identifier ID2 for the lock

See Also: Oracle Database Reference for information about Oracle
enqueues

Finding Locks and Lock Holders

Query V$LOCK to find the sessions holding the lock. For every session waiting for
the event enqueue, there is a row in V$LOCK with REQUEST <> 0. Use one of the
following two queries to find the sessions holding the locks and waiting for the
locks.

If there are enqueue waits, you can see these using the following statement:
SELECT * FROM V$LOCK WHERE request > 0;

To show only holders and waiters for locks being waited on, use the following:

SELECT DECODE(request,O,'Holder: ',"Waiter: ') ||
sid sess, idl, id2, Inmode, request, type

10-34 Oracle Database Performance Tuning Guide

Wait Events Statistics

FROM V$LOCK
WHERE (idl, id2, type) IN (SELECT idl, id2, type FROM V$LOCK WHERE request > 0)
ORDER BY idl, request;

Actions
The appropriate action depends on the type of enqueue.

ST enqueue If the contended-for enqueue is the ST enqueue, then the problem is
most likely to be dynamic space allocation. Oracle dynamically allocates an extent
to a segment when there is no more free space available in the segment. This
enqueue is only used for dictionary managed tablespaces.

To solve contention on this resource:

« Check to see whether the temporary (that is, sort) tablespace uses TEMPFI LES.
If not, then switch to using TEMPFI LES.

« Switch to using locally managed tablespaces if the tablespace that contains
segments that are growing dynamically is dictionary managed.

See Also: Oracle Database Concepts for detailed information on
TEMPFI LEs and locally managed tablespaces

« Ifitis not possible to switch to locally managed tablespaces, then ST enqueue
resource usage can be decreased by changing the next extent sizes of the
growing objects to be large enough to avoid constant space allocation. To
determine which segments are growing constantly, monitor the EXTENTS
column of the DBA_SEGVENTS view for all SEGVENT_NAMES. See Oracle
Database Administrator’s Guide for information about displaying information
about space usage.

« Preallocate space in the segment, for example, by allocating extents using the
ALTER TABLE ALLOCATE EXTENT SQL statement.

HW enqueue The HW enqueue is used to serialize the allocation of space beyond the

high water mark of a segment.

= V$SESSI ON_WAI T. P2 / VSLOCK. | D1 is the tablespace number.

= V$SESSI ON_WAI T. P3 / VSLOCK. | D2 is the relative dba of segment header of
the object for which space is being allocated.

If this is a point of contention for an object, then manual allocation of extents solves
the problem.

Instance Tuning Using Performance Views 10-35

Wait Events Statistics

TM enqueue The most common reason for waits on TM locks tend to involve foreign
key constraints where the constrained columns are not indexed. Index the foreign
key columns to avoid this problem.

TX enqueue These are acquired exclusive when a transaction initiates its first change
and held until the transaction does a COMM T or ROLLBACK.

Waits for TX in mode 6: occurs when a session is waiting for a row level lock
that is already held by another session. This occurs when one user is updating
or deleting a row, which another session wishes to update or delete. This type
of TX enqueue wait corresponds to the wait event enq: TX- r owl ock
contenti on.

The solution is to have the first session already holding the lock perform a
COW T or ROLLBACK.

Waits for TX in mode 4 can occur if the session is waiting for an ITL (interested
transaction list) slot in a block. This happens when the session wants to lock a
row in the block but one or more other sessions have rows locked in the same
block, and there is no free ITL slot in the block. Usually, Oracle dynamically
adds another ITL slot. This may not be possible if there is insufficient free space
in the block to add an ITL. If so, the session waits for a slot with a TX enqueue
in mode 4. This type of TX enqueue wait corresponds to the wait eventenq: TX
-allocatel TLentry.

The solution is to increase the number of ITLs available, either by changing the
I NI TRANS or MAXTRANS for the table (either by using an ALTER statement, or
by re-creating the table with the higher values).

Waits for TX in mode 4 can also occur if a session is waiting due to potential
duplicates in UNI QUE index. If two sessions try to insert the same key value the
second session has to wait to see if an ORA- 0001 should be raised or not. This
type of TX enqueue wait corresponds to the wait event eng: TX- r owl ock
contenti on.

The solution is to have the first session already holding the lock perform a
COW T or ROLLBACK.

Waits for TX in mode 4 is also possible if the session is waiting due to shared
bitmap index fragment. Bitmap indexes index key values and a range of
ROWIDs. Each ‘entry' in a bitmap index can cover many rows in the actual
table. If two sessions want to update rows covered by the same bitmap index
fragment, then the second session waits for the first transaction to either
COW T or ROLLBACK by waiting for the TX lock in mode 4. This type of TX

10-36 Oracle Database Performance Tuning Guide

Wait Events Statistics

enqueue wait corresponds to the wait event eng: TX- r owl ock
contenti on.

« Waits for TX in Mode 4 can also occur waiting for a PREPARED transaction.

« Waits for TX in mode 4 also occur when a transaction inserting a row in an
index has to wait for the end of an index block split being done by another
transaction. This type of TX enqueue wait corresponds to the wait event enq:
TX- i ndex cont enti on.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information about referential integrity and
locking data explicitly

free buffer waits

This wait event indicates that a server process was unable to find a free buffer and
has posted the database writer to make free buffers by writing out dirty buffers. A
dirty buffer is a buffer whose contents have been modified. Dirty buffers are freed
for reuse when DBWR has written the blocks to disk.

Causes
DBWR may not be keeping up with writing dirty buffers in the following situations:

« The I/0 system is slow.
« There are resources it is waiting for, such as latches.

« The buffer cache is so small that DBWR spends most of its time cleaning out
buffers for server processes.

« The buffer cache is so big that one DBWR process is not enough to free enough
buffers in the cache to satisfy requests.

Actions

If this event occurs frequently, then examine the session waits for DBWR to see
whether there is anything delaying DBWR.

Writes If it is waiting for writes, then determine what is delaying the writes and fix
it. Check the following:

« Examine V$FI LESTAT to see where most of the writes are happening.

Instance Tuning Using Performance Views 10-37

Wait Events Statistics

« Examine the host operating system statistics for the 1/0 system. Are the write
times acceptable?

If 170 is slow:
« Consider using faster 1/0 alternatives to speed up write times.

« Spread the I/0 activity across large number of spindles (disks) and controllers.
See Chapter 8, "1/0 Configuration and Design" for information on balancing
170.

Cache is Too Small It is possible DBWR is very active because the cache is too small.
Investigate whether this is a probable cause by looking to see if the buffer cache hit
ratio is low. Also use the V$DB_CACHE_ADVI CE view to determine whether a larger
cache size would be advantageous. See "Sizing the Buffer Cache" on page 7-8.

Cache Is Too Big for One DBWR If the cache size is adequate and the 1/0 is already
evenly spread, then you can potentially modify the behavior of DBWR by using
asynchronous 170 or by using multiple database writers.

Consider Multiple Database Writer (DBWR) Processes or 1/O Slaves

Configuring multiple database writer processes, or using 1/0 slaves, is useful when
the transaction rates are high or when the buffer cache size is so large that a single
DBWn process cannot keep up with the load.

DB_WRITER_PROCESSES The DB_WRI TER_PROCESSES initialization parameter lets
you configure multiple database writer processes (from DBWO0 to DBW9 and from
DBWa to DBWj). Configuring multiple DBWR processes distributes the work
required to identify buffers to be written, and it also distributes the 1/0 load over
these processes. Multiple db writer processes are highly recommended for systems
with multiple CPUs (at least one db writer for every 8 CPUs) or multiple processor
groups (at least as many db writers as processor groups).

Based upon the number of CPUs and the number of processor groups, Oracle either
selects an appropriate default setting for DB_WRI TER _PROCESSES or adjusts a
user-specified setting.

DBWR_IO_SLAVES If it is not practical to use multiple DBWR processes, then Oracle
provides a facility whereby the 1/0 load can be distributed over multiple slave
processes. The DBWR process is the only process that scans the buffer cache LRU
list for blocks to be written out. However, the 1/0 for those blocks is performed by
the 170 slaves. The number of 1/0 slaves is determined by the parameter DBWR_

| O_SLAVES.

10-38 Oracle Database Performance Tuning Guide

Wait Events Statistics

DBWR | O SLAVES is intended for scenarios where you cannot use multiple DB _
WRI TER_PROCESSES (for example, where you have a single CPU). I/0 slaves are
also useful when asynchronous 170 is not available, because the multiple 170
slaves simulate nonblocking, asynchronous requests by freeing DBWR to continue
identifying blocks in the cache to be written. Asynchronous 1/0 at the operating
system level, if you have it, is generally preferred.

DBWR 1/0 slaves are allocated immediately following database open when the first
170 request is made. The DBWR continues to perform all of the DBWR-related
work, apart from performing 1/0. 1/0 slaves simply perform the 1/0 on behalf of
DBWR. The writing of the batch is parallelized between the 1/0 slaves.

Note: Implementing DBWR | O_SLAVES requires that extra shared
memory be allocated for 1/0 buffers and request queues. Multiple

DBWR processes cannot be used with 1/0 slaves. Configuring 1/0
slaves forces only one DBWR process to start.

Choosing Between Multiple DBWR Processes and I/O Slaves Configuring multiple DBWR
processes benefits performance when a single DBWR process is unable to keep up
with the required workload. However, before configuring multiple DBWR
processes, check whether asynchronous 170 is available and configured on the
system. If the system supports asynchronous 1/0 but it is not currently used, then
enable asynchronous 1/0 to see if this alleviates the problem. If the system does not
support asynchronous 1/0, or if asynchronous 170 is already configured and there
is still a DBWR bottleneck, then configure multiple DBWR processes.

Note: If asynchronous I/0 is not available on your platform, then
asynchronous 1/0 can be disabled by setting the DI SK_ASYNCH_
| Oinitialization parameter to FALSE.

Using multiple DBWRs parallelizes the gathering and writing of buffers. Therefore,
multiple DBWn processes should deliver more throughput than one DBWR process
with the same number of I/0 slaves. For this reason, the use of 1/0 slaves has been
deprecated in favor of multiple DBWR processes. 170 slaves should only be used if
multiple DBWR processes cannot be configured.

Instance Tuning Using Performance Views 10-39

Wait Events Statistics

latch events

A latch is a low-level internal lock used by Oracle to protect memory structures. The
latch free event is updated when a server process attempts to get a latch, and the
latch is unavailable on the first attempt.

There is a dedicated latch-related wait event for the more popular latches that often
generate significant contention. For those events, the name of the latch appears in
the name of the wait event, such as| at ch: |i brary cache orl at ch: cache
buf f er s chai ns. This enables you to quickly figure out if a particular type of latch
is responsible for most of the latch-related contention. Waits for all other latches are
grouped in the generic | at ch f r ee wait event.

See Also: Oracle Database Concepts for more information on
latches and internal locks

Actions

This event should only be a concern if latch waits are a significant portion of the
wait time on the system as a whole, or for individual users experiencing problems.

« Examine the resource usage for related resources. For example, if the library
cache latch is heavily contended for, then examine the hard and soft parse rates.

« Examine the SQL statements for the sessions experiencing latch contention to
see if there is any commonality.

Check the following V$SESSI ON_WAI T parameter columns:
« P1 - Address of the latch
« P2 -Latch number

« P3 - Number of times process has already slept, waiting for the latch

Example: Find Latches Currently Waited For

SELECT EVENT, SUM P3) SLEEPS, SUM SECONDS_|N WAIT) SECONDS | N WAIT
FROM V$SESSI ON WAI T

WHERE EVENT LI KE ' | at ch%
GROUP BY EVENT:

A problem with the previous query is that it tells more about session tuning or
instant instance tuning than instance or long-duration instance tuning.

The following query provides more information about long duration instance
tuning, showing whether the latch waits are significant in the overall database time.

10-40 Oracle Database Performance Tuning Guide

Wait Events Statistics

SELECT EVENT, TI ME_WAI TED_M CRO,
ROUND(TI ME_WAI TED_M CRO* 100/ S. DBTI ME, 1) PCT_DB_TI ME
FROM V$SYSTEM EVENT,
(SELECT VALUE DBTI ME FROM V$SYS_TI ME_MODEL WHERE STAT NAME = 'DB time') S
WHERE EVENT LIKE ' | at ch%
ORDER BY PCT_DB_TI ME ASC,

A more general query that is not specific to latch waits is the following:

SELECT EVENT, WAIT_CLASS,
TI ME_WAI TED_M CRO, ROUND(TI ME_WWAI TED_M CRO* 100/ S. DBTI ME, 1) PCT_DB_TI ME
FROM V$SYSTEM EVENT E, VSEVENT NAME N,
(SELECT VALUE DBTI ME FROM V$SYS_TI ME_MODEL WHERE STAT NAME = 'DB time') S
WHERE E. EVENT ID = N. EVENT_I D
AND N.WAI T_CLASS NOT IN ('Idle', 'Systeml/0O)
ORDER BY PCT_DB_TI ME ASC,

Table 10-2 Latch Wait Event
Latch SGA Area Possible Causes Look For:

Shared pool, Shared pool Lack of statement reuse Sessions (in V$SESSTAT) with high:
library cache

Statements not using bind variables . parse time CPU

Insufficient size of application cursor cache « parsetinme el apsed

Cursors closed explicitly after each . Ratio of parse count (hard) /
execution execut e count

Frequent logon/logoffs . Ratio of parse count (total) /

Underlying object structure being modified execut e count

(for example truncate) Cursors (in V$SQLAREA/V$SQL) with:
Shared pool too small . High ratio of PARSE_CALLS /
EXECUTI ONS

. EXECUTI ONS =1 differing only in
literals in the WHERE clause (that is, no
bind variables used)

. High RELOADS
. High | NVALI DATI ONS
. Large (> 1mb) SHARABLE_MEM

Instance Tuning Using Performance Views 10-41

Wait Events Statistics

Table 10-2 (Cont.) Latch Wait Event

Latch SGA Area Possible Causes Look For:
cache buffers Iru Buffer cache Excessive buffer cache throughput. For Statements with very high logical 1/0 or
chain LRU lists example, inefficient SQL that accesses physical 170, using unselective indexes

incorrect indexes iteratively (large index
range scans) or many full table scans

DBWR not keeping up with the dirty
workload; hence, foreground process
spends longer holding the latch looking for
a free buffer

Cache may be too small

cache buffers Buffer cache Repeated access to a block (or small Sequence number generation code that

chains buffers number of blocks), known as a hot block updates a row in a table to generate the
number, rather than using a sequence
number generator

Index leaf chasing from very many
processes scanning the same unselective
index with very similar predicate

Identify the segment the hot block belongs
to

row cache
objects

Shared Pool and Library Cache Latch Contention

A main cause of shared pool or library cache latch contention is parsing. There are a
number of techniques that can be used to identify unnecessary parsing and a
number of types of unnecessary parsing:

Unshared SQL This method identifies similar SQL statements that could be shared if
literals were replaced with bind variables. The idea is to either:

« Manually inspect SQL statements that have only one execution to see whether
they are similar:

SELECT SQL_TEXT

FROM V$SQLAREA
WHERE EXECUTI ONS < 4
ORDER BY SQL_TEXT;

« Or, automate this process by grouping together what may be similar statements.
Do this by estimating the number of bytes of a SQL statement which will likely
be the same, and group the SQL statements by that many bytes. For example,
the following example groups together statements that differ only after the first
60 bytes.

10-42 Oracle Database Performance Tuning Guide

Wait Events Statistics

SELECT SUBSTR(SQL_TEXT, 1, 60), COUNT(*)
FROM V$SQLAREA

WHERE EXECUTI ONS < 4

GROUP BY SUBSTR(SQL_TEXT, 1, 60)

HAVI NG COUNT(*) > 1;

« Or report distinct SQL statements that have the same execution plan. The
following query selects distinct SQL statements that share the same execution
plan at least four times. These SQL statements are likely to be using literals
instead of bind variables.

SELECT SQL_TEXT FROM V$SQL WHERE PLAN HASH VALUE I N
(SELECT PLAN_HASH VALUE
FROM V$SQL
GROUP BY PLAN_HASH VALUE HAVI NG COUNT(*) > 4)
ORDER BY PLAN_HASH VALUE;

Reparsed Sharable SQL check the V$SQLAREA view. Enter the following query:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTI ONS
FROM V$SQLAREA
ORDER BY PARSE_CALLS;

When the PARSE_CALLS value is close to the EXECUTI ONS value for a given
statement, you might be continually reparsing that statement. Tune the statements
with the higher numbers of parse calls.

By Session ldentify unnecessary parse calls by identifying the session in which they
occur. It might be that particular batch programs or certain types of applications do
most of the reparsing. To do this, run the following query:

SELECT pa. SID, pa.VALUE "Hard Parses", ex.VALUE "Execute Count"
FROM V$SESSTAT pa, V$SESSTAT ex
VHERE pa. SID = ex. SID
AND pa. STATI STI C#=(SELECT STATI STI C#
FROM VESTATNAME VWHERE NAME = 'parse count (hard)")
AND ex. STATI STI C#=(SELECT STATI STI C#
FROM V$STATNAME WHERE NAME = 'execute count')
AND pa. VALUE > 0;

The result is a list of all sessions and the amount of reparsing they do. For each

session identifier (SID), go to V$SESSI ONto find the name of the program that
causes the reparsing.

Instance Tuning Using Performance Views 10-43

Wait Events Statistics

Note: Because this query counts all parse calls since instance
startup, it is best to look for sessions with high rates of parse. For
example, a connection which has been up for 50 days might show a
high parse figure, but a second connection might have been up for
10 minutes and be parsing at a much faster rate.

The output is similar to the following:
SID Hard Parses Execute Count

7 1 20
8 3 12690
6 26 325
11 84 1619

cache buffers Iru chain The cache buf f er s | r u chai n latches protect the lists of
buffers in the cache. When adding, moving, or removing a buffer from a list, a latch
must be obtained.

For symmetric multiprocessor (SMP) systems, Oracle automatically sets the number
of LRU latches to a value equal to one half the number of CPUs on the system. For
non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP machines with a
large number of CPUs. LRU latch contention is detected by querying VSLATCH,
V$SESSI ON_EVENT, and V$SYSTEM EVENT. To avoid contention, consider tuning
the application, bypassing the buffer cache for DSS jobs, or redesigning the
application.

cache buffers chains The cache buf f er s chai ns latches are used to protect a
buffer list in the buffer cache. These latches are used when searching for, adding, or
removing a buffer from the buffer cache. Contention on this latch usually means
that there is a block that is greatly contended for (known as a hot block).

To identify the heavily accessed buffer chain, and hence the contended for block,
look at latch statistics for the cache buf f er s chai ns latches using the view
V$LATCH_CHI LDREN. If there is a specific cache buf f er s chai ns child latch that
has many more GETS, M SSES, and SLEEPS when compared with the other child
latches, then this is the contended for child latch.

This latch has a memory address, identified by the ADDR column. Use the value in
the ADDR column joined with the X$BH table to identify the blocks protected by this

10-44 Oracle Database Performance Tuning Guide

Wait Events Statistics

latch. For example, given the address (VSLATCH_CHI LDREN. ADDR) of a heavily
contended latch, this queries the file and block numbers:

SELECT OBJ data_object _id, FILE#, DBABLK, CLASS, STATE, TCH
FROM X$BH

WHERE HLADDR = 'address of |atch’
ORDER BY TCH;

X$BH. TCH s a touch count for the buffer. A high value for X$BH.TCH indicates a
hot block.

Many blocks are protected by each latch. One of these buffers will probably be the
hot block. Any block with a high TCHvalue is a potential hot block. Perform this
guery a number of times, and identify the block that consistently appears in the
output. After you have identified the hot block, query DBA EXTENTS using the file
number and block number, to identify the segment.

After you have identified the hot block, you can identify the segment it belongs to
with the following query:

SELECT OBJECT_NAME, SUBOBJECT_NAME
FROM DBA_OBJECTS
VWHERE DATA OBJECT I D = &obj;

In the query, &obj is the value of the OBJ column in the previous query on X$BH.

row cache objects The r owcache obj ect s latches protect the data dictionary.

log file parallel write
This event involves writing redo records to the redo log files from the log buffer.

library cache pin

This event manages library cache concurrency. Pinning an object causes the heaps to
be loaded into memory. If a client wants to modify or examine the object, the client
must acquire a pin after the lock.

library cache lock

This event controls the concurrency between clients of the library cache. It acquires
a lock on the object handle so that either:

« One client can prevent other clients from accessing the same object

Instance Tuning Using Performance Views 10-45

Wait Events Statistics

« The client can maintain a dependency for a long time which does not allow
another client to change the object

This lock is also obtained to locate an object in the library cache.

log buffer space

This event occurs when server processes are waiting for free space in the log buffer,
because all the redo is generated faster than LGWR can write it out.

Actions

Modify the redo log buffer size. If the size of the log buffer is already reasonable,
then ensure that the disks on which the online redo logs reside do not suffer from
170 contention. The | og buf f er space wait event could be indicative of either
disk 1/0 contention on the disks where the redo logs reside, or of a too-small log
buffer. Check the 1/0 profile of the disks containing the redo logs to investigate
whether the 1/0 system is the bottleneck. If the I/0 system is not a problem, then
the redo log buffer could be too small. Increase the size of the redo log buffer until
this event is no longer significant.

log file switch
There are two wait events commonly encountered:

« log file switch (archiving needed)
« log file switch (checkpoint incomplete)

In both of the events, the LGWR is unable to switch into the next online redo log,
and all the commit requests wait for this event.

Actions

Forthel ogfil esw tch (ar chi vi ng needed) event, examine why the archiver
is unable to archive the logs in a timely fashion. It could be due to the following:

« Archive destination is running out of free space.
« Archiver is not able to read redo logs fast enough (contention with the LGWR).

« Archiver is not able to write fast enough (contention on the archive destination,
or not enough ARCH processes). If you have ruled out other possibilities (such
as slow disks or a full archive destination) consider increasing the number of
ARCn processes. The default is 2.

10-46 Oracle Database Performance Tuning Guide

Wait Events Statistics

log file sync

« If you have mandatory remote shipped archive logs, check whether this process
is slowing down because of network delays or the write is not completing
because of errors.

Depending on the nature of bottleneck, you might need to redistribute 1/0 or add
more space to the archive destination to alleviate the problem. Forthel ogfil e
swi t ch (checkpoi nt i nconpl et e) event:

« Check if DBWR is slow, possibly due to an overloaded or slow 1/0 system.
Check the DBWR write times, check the 1/0 system, and distribute 170 if
necessary. See Chapter 8, "I/0O Configuration and Design".

« Check if there are too few, or too small redo logs. If you have a few redo logs or
small redo logs (for example two x 100k logs), and your system produces
enough redo to cycle through all of the logs before DBWR has been able to
complete the checkpoint, then increase the size or number of redo logs. See
"Sizing Redo Log Files” on page 4-5.

When a user session commits (or rolls back), the session's redo information must be
flushed to the redo logfile by LGWR. The server process performing the COWM T or
ROLLBACK waits under this event for the write to the redo log to complete.

Actions

If this event's waits constitute a significant wait on the system or a significant
amount of time waited by a user experiencing response time issues or on a system,
then examine the average time waited.

If the average time waited is low, but the number of waits are high, then the
application might be committing after every | NSERT, rather than batching

COW Ts. Applications can reduce the wait by committing after 50 rows, rather than
every row.

If the average time waited is high, then examine the session waits for the log writer
and see what it is spending most of its time doing and waiting for. If the waits are
because of slow 170, then try the following:

« Reduce other 1/0 activity on the disks containing the redo logs, or use
dedicated disks.

« Alternate redo logs on different disks to minimize the effect of the archiver on
the log writer.

Instance Tuning Using Performance Views 10-47

Idle Wait Events

« Move the redo logs to faster disks or a faster 1/0 subsystem (for example,
switch from RAID 5 to RAID 1).

« Consider using raw devices (or simulated raw devices provided by disk
vendors) to speed up the writes.

« Depending on the type of application, it might be possible to batch COVM Ts by
committing every N rows, rather than every row, so that fewer log file syncs are
needed.

rdbms ipc reply

This event is used to wait for a reply from one of the background processes.

|dle Wait Events

These events belong to Idle wait class and indicate that the server process is waiting
because it has no work. This usually implies that if there is a bottleneck, then the
bottleneck is not for database resources. The majority of the idle events should be
ignored when tuning, because they do not indicate the nature of the performance
bottleneck. Some idle events can be useful in indicating what the bottleneck is not.
An example of this type of event is the most commonly encountered idle wait-event
SQL Net message from client. Thisand other idle events (and their
categories) are listed in Table 10-3.

Table 10-3 Idle Wait Events

Background Oracle Real
Process Idle User Process Parallel Query Shared Server Application

Wait Name Event Idle Event Idle Event Idle Event Clusters Idle Event

di spat cher tiner . . . X

pi pe get . X

pron ti mer X

PX Idle Wait

PX Deq Credit: need

buffer

rdbns i pc nessage X

10-48 Oracle Database Performance Tuning Guide

Idle Wait Events

Table 10-3 (Cont.) Idle Wait Events

Background Oracle Real
Process Idle User Process Parallel Query Shared Server Application

Wait Name Event Idle Event Idle Event Idle Event Clusters Idle Event

snmon timer X

SQL.*Net message from . X

client

virtual circuit . . . X

st at us

See Also: Oracle Database Reference for explanations of each idle
wait event

Instance Tuning Using Performance Views 10-49

Idle Wait Events

10-50 Oracle Database Performance Tuning Guide

11

Tuning Networks

This chapter describes different connection models and introduces networking
issues that affect tuning.

This chapter contains the following sections:
« Understanding Connection Models
« Detecting Network Problems

« Solving Network Problems

Tuning Networks 11-1

Understanding Connection Models

Understanding Connection Models

The techniques used to determine the source of problems vary depending on the
configuration. You can have a shared server configuration or a dedicated server
configuration.

« Ifyou have a shared server configuration, then LSNRCTL services lists
di spat chers.

« Ifyou have a dedicated server configuration, then LSNRCTL services lists
dedi cat ed servers.

It is possible to connect to dedicated server with a database configured for shared
servers by placing the parameter (SERVER = DEDI CATED) in the connect descriptor.

Shared Server Configuration

This section discusses the setups for the shared server configuration.

Registering the Dispatchers

The LSNRCTL control utility's ser vi ces statement lists every dispatcher registered
with it. This list includes the dispatchers process ID. You can check the alert log to
confirm that the dispatchers have been started successfully.

Note: Remember that PMON can take a minute to register the
dispatcher with the listener.

LSNRCTL> servi ces
Connecting to
(DESCRI PTI ON=(ADDRESS=(PROTOCCOL=t cp) (HOST=hel i 0s) (PORT=1521)))
Services Summary. ..
Service "sal es. us. acne.conl' has 1 instance(s).
Instance "sal es", status READY, has 3 handler(s) for this service...
Handl er (s):
"DEDI CATED" established: 0 refused: 0 state:ready
LOCAL SERVER
"D000" established: 0 refused: 0 current: 0 nmax: 10000 state: ready
Dl SPATCHER <machi ne: helios, pid: 1689>
(ADDRESS=(PROTOCOL=t cp) (HOST=hel i 0s) (PORT=52414))
"D001" established:0 refused:0 current:0 max: 10000 state: ready
DI SPATCHER <machi ne: helios, pid: 1691>
(ADDRESS=(PROTOCCOL=t cp) (HOST=hel i 0s) (PORT=52415))
The command conpl eted successful ly.

11-2 Oracle Database Performance Tuning Guide

Understanding Connection Models

See Also: Oracle Net Services Administrator's Guide for information
on setting the output mode

Configuring Initialization Parameters for Shared Servers

The following list provides information on configuring initialization parameters for
shared servers.

« Make sure that the DI SPATCHERS line is correctly set. For example:

DI SPATCHERS = " (DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=host name) (PORT=1492) (queuesi ze=32)))
(DI SPATCHERS = 1)
(LI STENER = al i as)
(SERVI CE = servi cenane)
('SESSI ONS = 1000)
(CONNECTI ONS = 1000)
(MULTI PLEX = ON)
(POQL = N
(TICK = 5)"

One, and only one, of the following attributes is required:
« PROTOCOL

« ADDRESS

« DESCRI PTI ON

ADDRESS and DESCRI PTI ON provide support for the specification of additional
network attributes beyond PROTOCOL. In the previous example, the entire

DI SPATCHERS line can be (PROTOCOL=TCP). The attributes DI SPATCHERS,

LI STENER, SERVI CE, SESSI ONS, CONNECTI ONS, MULTI PLEX, POOL, and

TI CKS are all optional.

« Make sure that the optional MAX_DI SPATCHERS line is correctly set. For
example:

MAX_DI SPATCHERS = 4

This line should reflect the total number of dispatchers you want to start.

« Make sure that the optional MAX_SHARED SERVERS line is correctly set. For
example:

MAX_SHARED SERVERS = 5

Tuning Networks 11-3

Understanding Connection Models

This line sets the upper bound on the total number of shared servers PMON can
create, based on the peak load of the system. This should be set high enough so
that all requests can be serviced, but not so high that the system swaps if they
are reached. The purpose of this parameter is to prevent the server from
swapping. Run the following script to see what the highwater mark is for the
number of servers running, and then set MAX_SHARED SERVERS to more then
this.

SELECT maxi num connections "MAX CONN', servers_started "STARTED', servers_
term nated "TERM NATED', servers_hi ghwater "H GHWATER' FROM V$SHARED SERVER
MONI TOR;

« Make sure that the optional SHARED SERVERS line is correctly set. For
example:

SHARED_SERVERS = 5

This is the total number of shared servers started when the database is started.
It also represents the total number of shared servers PMON tries to keep. It
should be the total number of servers expected to be used when the database is
active. MAX_SHARED SERVERS is intended to handle peak load.

Checking the Connections

Use the LSNRCTL control utility's ser vi ces command to see if there are excessive
connection refusals. Check the listener's log file to see if this is a connection
problem. For example:

LSNRCTL> servi ces
Connecting to
(DESCRI PTI ON=(ADDRESS=(PROTOCCOL=t cp) (HOST=hel i 0s) (PORT=1521)))
Services Sunmary. ..
Service "sal es. us. acrme. com' has 1 instance(s).
Instance "sal es", status READY, has 2 handler(s) for this service...
Handl er (s):
"DEDI CATED' established: 11 refused: 0 state:ready
LOCAL SERVER
"D000" established: 565 refused: 4 current: 155 max: 10000 state:ready
Dl SPATCHER <machi ne: helios, pid: 5673>
(ADDRESS=(PROTOCOL=t cp) (HOST=hel i 0s) (PORT=38411))
The command conpl eted successful ly.

Under normal conditions, the number refused should be zero. Shut down the
listener and restart it to erase these statistics. If the refused count is increasing after

11-4 Oracle Database Performance Tuning Guide

Understanding Connection Models

the listener restarts, then the connections are being refused. If the refused count
stays at zero, and if the problem you are troubleshooting is occurring, then your
problem is not with the connections being refused.

Checking the Connect/Second Rate

Connection refusals can occur for many reasons. Examine the listener log to see
what the connect rate is. Run the listener log analyzer script to check.

The listener is a queue-based process. It receives connect requests from the lower
level protocol stack. It has a limited queue stack which is configurable to the
operating system maximum. It can only process one connection at a time, and there
is a limit to the number of connections a second the process can handle.

If the rate at which the connect requests arrive exceeds that limit, then the requests
are queued. The queue stack is also limited, but you can configure it. If there are
more listener processes, then the requests made against each individual process are
fewer and are handled more quickly.

Increasing the listener queue is done inthe | i st ener.or a file. Thel i st ener.ora
file can contain many listeners, each by a different name. It is assumed that only one
of those listed is having a problem. If not, then apply this method to all applicable
listeners. To increase the listener queue, add (queuesi ze = nunber) to the

I i st ener.or a file. For example:

listener =
(address =
(protocol = tcp)
(host = sal es-pc)
(port = 1521)
(queuesi ze = 20)

See Also: Oracle Net Services Administrator's Guide

Stop and restart the listener to initialize this new parameter. If you are not currently
running a shared server configuration, then consider doing so. It is faster for the
listener to handle a client request in a shared server configuration than itis in a
dedicated server configuration.

Tuning Networks 11-5

Detecting Network Problems

Note: Shared server dispatchers also receive connect requests and
can also benefit from tuning the queue size.

The maximum queue size is subject to the maximum size possible
for a particular operating system.

Detecting Network Problems

This section encompasses local area network (LAN) and wide area network (WAN)
troubleshooting methods.

Using Dynamic Performance Views for Network Performance

Networks entail overhead that adds a certain amount of delay to processing. To
optimize performance, you must ensure that your network throughput is fast, and
you should try to reduce the number of messages that must be sent over the
network. It can be difficult to measure the delay the network adds.

Three dynamic performance views are useful for measuring the network delay:
« V$SESSI ON_EVENT

« V$SESSI ON WAI T

« V$SESSTAT

In V$SESSI ON_EVENT, the AVERAGE_WAI T column indicates the amount of time
that Oracle waits between messages. You can use this statistic as a yardstick to
evaluate the effectiveness of the network.

In V$SESSI ON_WAI T, the EVENT column lists the events for which active sessions
are waiting. The "sql net message fromcl i ent " wait event indicates that the
shared or foreground process is waiting for a message from a client. If this wait
event has occurred, then you can check to see whether the message has been sent by
the user or received by Oracle.

You can investigate hang-ups by looking at VESESSI ON_WAI T to see what the
sessions are waiting for. If a client has sent a message, then you can determine
whether Oracle is responding to it or is still waiting for it.

In V$SESSTAT you can see the number of bytes that have been received from the
client, the number of bytes sent to the client, and the number of calls the client has
made.

11-6 Oracle Database Performance Tuning Guide

Detecting Network Problems

Understanding Latency and Bandwidth

The most critical aspects of a network that contribute to performance are latency
and bandwidth.

Latency refers to a time delay; for example, the gap between the time a device
requests access to a network and the time it receives permission to transmit.

Bandwidth is the throughput capacity of a network medium or protocol.
Variations in the network signals can cause degradation on the network.
Sources of degradation can be cables that are too long or wrong cable type.
External noise sources, such as elevators, air handlers, or florescent lights, can

also cause problems.

Common Network Topologies

Local Area Network Topologies:

Wide Area Network Topologies:

Ethernet

Fast Ethernet

1 Gigabit Ethernet
Token Ring

FDDI

ATM

DSL

ISDN

Frame Relay
T-1, T-3,E-1,E-3
ATM

SONAT

Table 11-1 lists the most common ratings for various topologies.

Table 11-1 Bandwidth Ratings

Topology or Carrier

Bandwidth

Ethernet

10 Megabits/second

Tuning Networks 11-7

Solving Network Problems

Table 11-1 (Cont.) Bandwidth Ratings

Topology or Carrier

Bandwidth

Fast Ethernet

1 Gigabit Ethernet
Token Ring

FDDI

ATM

T-1 (US only)

T-3 (US only)

E-1 (non-US)

E-3 (non-US)

Frame Relay

DSL
ISDN

Dial Up Modems

100 Megabits/second

1 Gigabits/second

16 Megabits/second

100 Megabits/second

155 Megabits/second (OC3), 622 Megabits/second (OC12)
1.544 Megabits/second

44.736 Megabits/second

2.048 Megabits/second

34.368 Megabits/second

Committed Information Rate, which can be up to the carrier speed,
but usually is not.

This can be up to the carrier speed.

This can be up to the carrier speed. Usually, it is used with slower
modems.

56 Kilobits/second. Usually, it is accompanied with data
compression for faster throughput.

Solving Network Problems

This section describes several techniques for enhancing performance and solving

network problems.

« Finding Network Bottlenecks

« Dissecting Network Bottlenecks

« Using Array Interfaces

« Adjusting Session Data Unit Buffer Size
« Using TCP.NODELAY

» Using Connection Manager

See Also:

Oracle Net Services Administrator’s Guide

11-8 Oracle Database Performance Tuning Guide

Solving Network Problems

Finding Network Bottlenecks

The first step in solving network problem is to understand the overall topology.
Gather as much information about the network that you can. This kind of
information usually manifests itself as a network diagram. Your diagram should
contain the types of network technology used in the Local Area Network and the
Wide Area Network. It should also contain addresses of the various network
segments.

Examine this information. Obvious network bottlenecks include the following:
« Using a dial-up modem (normal modem or ISDN) to access time critical data.

« Aframe relay link is running on a T-1, but has a 9.6 Kilobits CIR so that it only
reliably transmits up to 9.6 Kilobits a second and if the rest of the bandwidth is
used, then there is a possibly that the data will be lost.

« Data from high speed networks channels through low speed networks.
« There are too many network hops. A router constitutes one hop.
« A 10 Megabit network for a Web site.

There are many problems that can cause a performance breakdown. Follow this
checklist:

« Get a network sniffer trace.
« Check the following:
« Isthe bandwidth being exceeded on the network, the client, or the server?
« Ethernet collisions.
« Token ring or FDDI ring beacons.
« Are there many runt frames?
« The stability of the WAN links.

« Getabandwidth utilization chart for frame relay, and see if CIR is being
exceeded.

« Isany quality of service or packet prioritizing going on?
« Isafirewall in the way somewhere?

If nothing is revealed, then find the network route from the client to the data server.
Understanding the travel times on a network gives you an idea as to the time a
transaction will take. Client-server communication requires many small packets.

Tuning Networks 11-9

Solving Network Problems

High latency on a network slows the transaction down due to the time interval
between sending a request and getting the response.

Use trace route (t r acer out e or equivalent) from the client to the server to get
address information for each device in the path.

For example:

traceroute usmail 05
Tracing route to usmail 05. us.oracl e.com [144. 25. 88. 200] over a maxi mum of 30 hops:

1 <10 ns
2 <10 ms
3 220 ns

Trace conpl ete.

<10 ns 10 nms whqgldavis-rtr-749-f1-0-a.us.oracle. com [144. 25. 216. 1]
<10 ns <10 ns whgdop3-rtr-723-f0-0.us.oracle.com[144.25. 252. 23]
210 ms 231 ns wusmmil 05.us.oracl e.com [144. 25. 88. 200]

Ping each device in turn to get the timings. Use large packets to get the slowest
times. Make sure you set the "don't fragment bit" so that routers do not spend time
disassembling and reassembling the packet. Also note that the packet size is 1472.
This is for Ethernet. Ethernet packets are 1536 octets (actual 8 bit bytes) in size.
ICPM packets (this is what ping is designed to use) have 64 octets of header.
Evaluate the area where the slowness seems to occur.

For example:

ping -1 1472 -n 1 -f 144.25.216.1
Pinging 144.25.216.1 with 1472 bytes of data:
Reply from 144.25.216. 1: bytes=1472 time<10nms TTL=255

ping -1 1472 -n 1 -f 144.25.252.23
Pinging 144.25.252.23 with 1472 bytes of data:
Reply from 144.25.252.23: bytes=1472 tine=10ns TTL=254

ping -1 1472 -n 1 -f 144.25.88.200
Pinging 144.25.88.200 with 1472 bytes of data:
Reply from 144.25.88.200: bytes=1472 tinme=271nms TTL=253

The previous example validates trace route. Ideally, you ping from the workstation
to 144.25.216.1, from 144.25.216.1 to 144.25.252.23, then from 144.25.252.23 to
144.25.88.200. This would show the exact latency on each segment traveled.

Dissecting Network Bottlenecks

This section helps you determine the problem with your network bottleneck.

11-10 Oracle Database Performance Tuning Guide

Solving Network Problems

Determining if the Problem is with Oracle Net or the Network

Oracle Net tracing reveals whether an error is Oracle-specific or due to conditions
that the operating system is passing to the Transparent Network Substrate (Oracle
TNS layer).

Enable Oracle Net tracing at the Oracle server, the listener, and at a client suspected
of having the problem you are trying to resolve.

To enable tracing at the server, find the sql net .or a file for the server and create
the following lines in it:

TRACE_TI MESTAMP_SERVER = ON
TRACE_LEVEL_SERVER = 16
TRACE_UNI QUE_SERVER = ON

To enable tracing at the client, find the sql net .or a file for the client and create the
following lines in it:

TRACE_TI MESTAVP_CLI ENT = ON
TRACE_LEVEL_CLI ENT = 16
TRACE_UNI QUE_CLI ENT = ON

To enable tracing at the listener, find the | i st ener.or a file and create the
following line in it:

TRACE_TI MESTAMP_| i st ener _nanme = ON
TRACE _LEVEL_|istener_name = 16

Note: The TRACE TI MESTAMP_x parameters are optional, but
they should be included for better debugging

Reproduce the problem, so that you generate traces on the client and server. Now
analyze the traces generated.
See Also:

« Oracle Net Services Administrator's Guide for detailed directions
on enabling Oracle Net tracing

« Oracle Database Error Messages for definitions to Oracle Net
errors noted in the trace file

If the problem is with the network and not Oracle Net, then you must determine the
following:

Tuning Networks 11-11

Solving Network Problems

« Does the problem only occur in one location on the local network?
« Does the problem only occur in one area on the WAN?

For example, perhaps the system is fine in the building where the Data Center is
located, but it is slow in other buildings that are several miles away.

Not all Oracle error codes represent pure Oracle troubles. ORA- 3113 is the most
common error that points to an underlying network problem.

Note: Enabling tracing on the server can generate a large amount
of trace files. To prevent this, set up a separate environment that
traces itself. This configuration works for dedicated connections.

First, log in to the server's operating system as the Oracle software
owner. Create a temporary directory to keep configuration files and
trace files that will be created. Copy the sql net .or a,

| i st ener.or a, andt nsnanes.or a to that directory.

Edit the sql net .or a file to enable tracing. Add to the sql net .ora
file the following line:

TRACE_DI RECTORY_SERVER = tenporary_directory_just_created

Now, modify the | i st ener.or a file and change the listening port
(for TCP, other protocols, use a similar technique) to an unused
port. You need to make a similar modification to the client's

t nsnanes.or a file for the connect string you will be using for this
test.

Set the TNS_ADM N environment to point to the temporary
directory. Start the listener.

Now all new connections to the new listener send Server traces to
this directory. Reproduce the problem.

If you are getting an Oracle error message, then look into the trace file to find the
error. For troubleshooting bugs, Oracle Net trace analysis takes some time to fully
find the problem. However, high-level simple trace analysis is rather simple.

11-12 Oracle Database Performance Tuning Guide

Solving Network Problems

Determining if the Problem is on the Client or the Server (on Oracle Net)

If the problem is with Oracle Net, then use Oracle Net tracing to show you where
the problem lies. If there are errors in the trace files, then do they appear in only the
client traces, only in the server traces, or in both?

Errors Only in the Client Trace The problem is on the client. However, if you are
getting ORA- 3113 or ORA- 3114 errors, then the problem is on the server.

Errors Only in the Server Trace or Listener Trace The problem is on the server. However,
if you are getting ORA- 3113 or ORA- 3114 errors, then the problem is on the client.

Errors in All: Client, Server, and Listener Trace If you are getting ORA- 3113 or
ORA- 3114 errors, then the problem is on the Network. Troubleshoot the server first.
If it is fine, then the client is at fault.

Checking if the Server is Configured for Shared Servers

The shared server architecture can be more complex to troubleshoot. Check the
initialization parameter file for any shared server parameters. Look at the operating
system to see if any of the shared server processes are present.

Check for dispatchers by looking for names such as or a_d000, or a_d001, and so
on. For example:

ps -ef | grep ora_d
Check for shared servers by looking for names such as or a_s000, or a_s001, and
so on. For example:

ps -ef | grep ora_s

See Also:

« "Shared Server Configuration" on page 11-2 for more
information on tuning the shared server

« Oracle Database Concepts and Oracle Net Services Administrator's
Guide for more information on shared server concepts and
parameters

Using Array Interfaces

Reduce network calls by using array interfaces. Instead of fetching one row at a
time, it is more efficient to fetch 10 rows with a single network round trip.

Tuning Networks 11-13

Solving Network Problems

See Also: Oracle Call Interface Programmer*s Guide for more
information on array interfaces

Adjusting Session Data Unit Buffer Size

Before sending data across the network, Oracle Net buffers data into the Session
Data Unit (SDU). It sends the data stored in this buffer when the buffer is full or
when an application tries to read the data. When large amounts of data are being
retrieved and when packet size is consistently the same, it might speed retrieval to
adjust the default SDU size.

Optimal SDU size depends on the normal transport size. Use a sniffer to find out
the frame size, or set tracing on to its highest level to check the number of packets
sent and received and to determine whether they are fragmented. Tune your system
to limit the amount of fragmentation.

Use Oracle Net Configuration Assistant to configure a change to the default SDU
size on both the client and the server; SDU size is generally the same on both.

See Also: Oracle Net Services Administrator's Guide

Using TCP.NODELAY

When a session is established, Oracle Net packages and sends data between server
and client using packets. The TCP.NODELAY parameter, which causes packets to be
flushed on to the network more frequently, is enabled by default. Although Oracle
Net supports many networking protocols, TCP tends to have the best scalability.

Using Connection Manager

In Oracle Net, you can use the Connection Manager to conserve system resources
by multiplexing. Multiplexing means funneling many client sessions through a
single transport connection to a server destination. This way, you can increase the
number of sessions that a process can handle. This applies only to shared server
configurations. Alternately, you can use Connection Manager to control client access
to dedicated servers. Connection Manager provides multiple protocol support
allowing a client and server with different networking protocols to communicate.

See Also: Oracle Net Services Administrator’s Guide for more
information on Connection Manager

11-14 Oracle Database Performance Tuning Guide

Part |V

Optimizing SQL Statements

Part IV provides information on understanding and managing your SQL statements
for optimal performance and discusses Oracle SQL-related performance tools.

The chapters in this part are:

« Chapter 12, "SQL Tuning Overview"

« Chapter 13, "Automatic SQL Tuning"

« Chapter 14, "The Query Optimizer"

« Chapter 15, "Managing Optimizer Statistics"

« Chapter 16, "Using Indexes and Clusters"

« Chapter 17, "Optimizer Hints"

« Chapter 18, "Using Plan Stability"

« Chapter 19, "Using EXPLAIN PLAN"

« Chapter 20, "Using Application Tracing Tools"

12

SQL Tuning Overview

This chapter discusses goals for tuning, how to identify high-resource SQL
statements, explains what should be collected, and provides tuning suggestions.

This chapter contains the following sections:

Introduction to SQL Tuning

Goals for Tuning

Identifying High-Load SQL
Automatic SQL Tuning Features
Developing Efficient SQL Statements

See Also:
« Oracle Database Concepts for an overview of SQL

« Oracle 2 Day DBA for information on monitoring and tuning
the database

SQL Tuning Overview 12-1

Introduction to SQL Tuning

Introduction to SQL Tuning

An important facet of database system performance tuning is the tuning of SQL
statements. SQL tuning involves three basic steps:

« ldentifying high load or top SQL statements that are responsible for a large
share of the application workload and system resources, by reviewing past SQL
execution history available in the system.

« \erifying that the execution plans produced by the query optimizer for these
statements perform reasonably.

« Implementing corrective actions to generate better execution plans for poorly
performing SQL statements.

These three steps are repeated until the system performance reaches a satisfactory
level or no more statements can be tuned.

Goals for Tuning

The objective of tuning a system is either to reduce the response time for end users
of the system, or to reduce the resources used to process the same work. You can
accomplish both of these objectives in several ways:

« Reduce the Workload
« Balance the Workload
« Parallelize the Workload

Reduce the Workload

SQL tuning commonly involves finding more efficient ways to process the same
workload. It is possible to change the execution plan of the statement without
altering the functionality to reduce the resource consumption.

Two examples of how resource usage can be reduced are:

1. Ifacommonly executed query needs to access a small percentage of data in the
table, then it can be executed more efficiently by using an index. By creating
such an index, you reduce the amount of resources used.

2. Ifauser is looking at the first twenty rows of the 10,000 rows returned in a
specific sort order, and if the query (and sort order) can be satisfied by an index,
then the user does not need to access and sort the 10,000 rows to see the first 20
rows.

12-2 Oracle Database Performance Tuning Guide

Identifying High-Load SQL

Balance the Workload

Systems often tend to have peak usage in the daytime when real users are
connected to the system, and low usage in the nighttime. If noncritical reports and
batch jobs can be scheduled to run in the nighttime and their concurrency during
day time reduced, then it frees up resources for the more critical programs in the
day.

Parallelize the Workload

Queries that access large amounts of data (typical data warehouse queries) often
can be parallelized. This is extremely useful for reducing the response time in low
concurrency data warehouse. However, for OLTP environments, which tend to be
high concurrency, this can adversely impact other users by increasing the overall
resource usage of the program.

Identifying High-Load SQL

This section describes the steps involved in identifying and gathering data on
high-load SQL statements. High-load SQL are poorly-performing,
resource-intensive SQL statements that impact the performance of the Oracle
database. High-load SQL statements can be identified by:

« Automatic Database Diagnostic Monitor
« Automatic Workload Repository

« VSSQL view

« Custom Workload

« SQL Trace

Identifying Resource-Intensive SQL

The first step in identifying resource-intensive SQL is to categorize the problem you
are attempting to fix:

« Is the problem specific to a single program (or small number of programs)

« Is the problem generic over the application?

SQL Tuning Overview 12-3

Identifying High-Load SQL

Tuning a Specific Program

If you are tuning a specific program (GUI or 3GL), then identifying the SQL to
examine is a simple matter of looking at the SQL executed within the program.
Oracle Enterprise Manager provides tools for identifying resource intensive SQL
statements, generating explain plans, and evaluating SQL performance.

See Also:

« Oracle Enterprise Manager Concepts for information about the
tools available for monitoring and tuning SQL applications

« Chapter 13, "Automatic SQL Tuning" for information on
automatic SQL tuning features

If it is not possible to identify the SQL (for example, the SQL is generated
dynamically), then use SQL_ TRACE to generate a trace file that contains the SQL
executed, then use TKPROF to generate an output file.

The SQL statements in the TKPROF output file can be ordered by various
parameters, such as the execution elapsed time (exeel a), which usually assists in
the identification by ordering the SQL statements by elapsed time (with highest
elapsed time SQL statements at the top of the file). This makes the job of identifying
the poorly performing SQL easier if there are many SQL statements in the file.

See Also: Chapter 20, "Using Application Tracing Tools"

Tuning an Application / Reducing Load

If your whole application is performing suboptimally, or if you are attempting to
reduce the overall CPU or 1/0 load on the database server, then identifying
resource-intensive SQL involves the following steps:

1. Determine which period in the day you would like to examine; typically this is
the application's peak processing time.

2. Gather operating system and Oracle statistics at the beginning and end of that
period. The minimum of Oracle statistics gathered should be file /0
(V$FI LESTAT), system statistics (VBSYSSTAT), and SQL statistics (VESQLAREA
or V$SQL, VESQLTEXT, V$SQL_PLAN, and V$SQL_PLAN_STATI STI CS).

See Also: Chapter 6, "Automatic Performance Diagnostics" for

information on how to use Oracle tools to gather Oracle instance
performance data

12-4 Oracle Database Performance Tuning Guide

Identifying High-Load SQL

3. Using the data collected in step two, identify the SQL statements using the most
resources. A good way to identify candidate SQL statements is to query
V$SQLAREA. V$SQLAREA contains resource usage information for all SQL
statements in the shared pool. The data in V$SQLAREA should be ordered by
resource usage. The most common resources are;

« Buffer gets (VSQLAREA.BUFFER_GETS, for high CPU using statements)
« Disk reads (V3SQLAREA.DI SK_READS, for high 1/0 statements)
« Sorts (VESQLAREA.SORTS, for many sorts)

One method to identify which SQL statements are creating the highest load is to
compare the resources used by a SQL statement to the total amount of that resource
used in the period. For BUFFER_GETS, divide each SQL statement's BUFFER_GETS
by the total number of buffer gets during the period. The total number of buffer gets
in the system is available in the VESYSSTAT table, for the statistic session logical
reads.

Similarly, it is possible to apportion the percentage of disk reads a statement
performs out of the total disk reads performed by the system by dividing V$SQL_
AREA. DI SK_READS by the value for the VESYSSTAT statistic physical reads. The
SQL sections of the Automatic Workload Repository report include this data, so you
do not need to perform the percentage calculations manually.

See Also: Oracle Database Reference for information about
dynamic performance views

After you have identified the candidate SQL statements, the next stage is to gather
information that is necessary to examine the statements and tune them.

Gathering Data on the SQL Identified

If you are most concerned with CPU, then examine the top SQL statements that
performed the most BUFFER _GETS during that interval. Otherwise, start with the
SQL statement that performed the most DI SK_READS.

Information to Gather During Tuning

The tuning process begins by determining the structure of the underlying tables
and indexes. The information gathered includes the following:

1. Complete SQL text from V$SQLTEXT

SQL Tuning Overview 12-5

Automatic SQL Tuning Features

2. Structure of the tables referenced in the SQL statement, usually by describing
the table in SQL*Plus

3. Definitions of any indexes (columns, column orderings), and whether the
indexes are unigue or nonunique

4. Optimizer statistics for the segments (including the number of rows each table,
selectivity of the index columns), including the date when the segments were
last analyzed

5. Definitions of any views referred to in the SQL statement

6. Repeat steps two, three, and four for any tables referenced in the view
definitions found in step five

7. Optimizer plan for the SQL statement (either from EXPLAI NPLAN, V$SQ__
PLAN, or the TKPROF output)

8. Any previous optimizer plans for that SQL statement

Note: Itis important to generate and review execution plans for
all of the key SQL statements in your application. Doing so lets you
compare the optimizer execution plans of a SQL statement when
the statement performed well to the plan when that the statement is
not performing well. Having the comparison, along with
information such as changes in data volumes, can assist in
identifying the cause of performance degradation.

Automatic SQL Tuning Features

Because the manual SQL tuning process poses many challenges to the application
developer, the SQL tuning process has been automated by the automatic SQL
Tuning manageability features. Theses features have been designed to work equally
well for OLTP and Data Warehouse type applications. See Chapter 13, "Automatic
SQL Tuning".

ADDM

Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by the AWR for possible performance problems with the Oracle database,
including high-load SQL statements. See "Automatic Database Diagnostic Monitor”
on page 6-3.

12-6 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

SQL Tuning Advisor

SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See "SQL Tuning Advisor" on
page 13-6.

SQL Tuning Sets

When multiple SQL statements are used as input to ADDM or SQL Tuning Advisor,
a SQL Tuning Set (STS) is constructed and stored. The STS includes the set of SQL
statements along with their associated execution context and basic execution
statistics. See "SQL Tuning Sets" on page 13-12.

SQLAccess Advisor

In addition to the SQL Tuning Advisor, Oracle provides the SQLAccess Advisor,
which is a tuning tool that provides advice on materialized views, indexes, and
materialized view logs. The SQLAccess Advisor helps you achieve your
performance goals by recommending the proper set of materialized views,
materialized view logs, and indexes for a given workload. In general, as the number
of materialized views and indexes and the space allocated to them is increased,
query performance improves. The SQLAccess Advisor considers the trade-offs
between space usage and query performance and recommends the most
cost-effective configuration of new and existing materialized views and indexes.

To access the SQLAccess Advisor through Oracle Enterprise Manager Database
Control:

« Click the Advisor Central link under Related Links at the bottom of the
Database pages.

« On the Advisor Central page, you can click the SQLAccess Advisor link to
analyze a workload source.

See Also: Oracle Data Warehousing Guide for more information on
SQLAccess Advisor

Developing Efficient SQL Statements
This section describes ways you can improve SQL statement efficiency:
« Verifying Optimizer Statistics
« Reviewing the Execution Plan

« Restructuring the SQL Statements

SQL Tuning Overview 12-7

Developing Efficient SQL Statements

« Restructuring the Indexes

« Modifying or Disabling Triggers and Constraints
« Restructuring the Data

« Maintaining Execution Plans Over Time

« Visiting Data as Few Times as Possible

Note: The guidelines described in this section are oriented to
production SQL that will be executed frequently. Most of the
techniques that are discouraged here can legitimately be employed
in ad hoc statements or in applications run infrequently where
performance is not critical.

Verifying Optimizer Statistics
The query optimizer uses statistics gathered on tables and indexes when
determining the optimal execution plan. If these statistics have not been gathered,
or if the statistics are no longer representative of the data stored within the
database, then the optimizer does not have sufficient information to generate the
best plan.

Things to check:

« If you gather statistics for some tables in your database, then it is probably best
to gather statistics for all tables. This is especially true if your application
includes SQL statements that perform joins.

« If the optimizer statistics in the data dictionary are no longer representative of
the data in the tables and indexes, then gather new statistics. One way to check
whether the dictionary statistics are stale is to compare the real cardinality (row
count) of a table to the value of DBA TABLES. NUM_ROWS. Additionally, if there
is significant data skew on predicate columns, then consider using histograms.

Reviewing the Execution Plan

When tuning (or writing) a SQL statement in an OLTP environment, the goal is to
drive from the table that has the most selective filter. This means that there are
fewer rows passed to the next step. If the next step is a join, then this means that
fewer rows are joined. Check to see whether the access paths are optimal.

When examining the optimizer execution plan, look for the following:

12-8 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

« The plan is such that the driving table has the best filter.

« Thejoin order in each step means that the fewest number of rows are being
returned to the next step (that is, the join order should reflect, where possible,
going to the best not-yet-used filters).

« The join method is appropriate for the number of rows being returned. For
example, nested loop joins through indexes may not be optimal when many
rows are being returned.

« Views are used efficiently. Look at the SELECT list to see whether access to the
view is necessary.

« There are any unintentional Cartesian products (even with small tables).
« Each table is being accessed efficiently:

Consider the predicates in the SQL statement and the number of rows in the
table. Look for suspicious activity, such as a full table scans on tables with large
number of rows, which have predicates in the where clause. Determine why an
index is not used for such a selective predicate.

A full table scan does not mean inefficiency. It might be more efficient to
perform a full table scan on a small table, or to perform a full table scan to
leverage a better join method (for example, hash_join) for the number of rows
returned.

If any of these conditions are not optimal, then consider restructuring the SQL
statement or the indexes available on the tables.

Restructuring the SQL Statements

Often, rewriting an inefficient SQL statement is easier than modifying it. If you
understand the purpose of a given statement, then you might be able to quickly and
easily write a new statement that meets the requirement.

Compose Predicates Using AND and =

To improve SQL efficiency, use equijoins whenever possible. Statements that
perform equijoins on untransformed column values are the easiest to tune.

Avoid Transformed Columns in the WHERE Clause
Use untransformed column values. For example, use:

WHERE a. order_no = b.order_no

SQL Tuning Overview 12-9

Developing Efficient SQL Statements

rather than:
WHERE TO_NUMBER (SUBSTR(a.order _no, |INSTR(b.order_no, '.") - 1))
= TO _NUMBER (SUBSTR(a. order _no, |INSTR(b.order_no, '.") - 1))

Do not use SQL functions in predicate clauses or WHERE clauses. Any expression
using a column, such as a function having the column as its argument, causes the
optimizer to ignore the possibility of using an index on that column, even a unique
index, unless there is a function-based index defined that can be used.

Avoid mixed-mode expressions, and beware of implicit type conversions. When
you want to use an index on the VARCHAR2 column char col , but the WHERE clause
looks like this:

AND charcol = numexpr
where numexpr is an expression of number type (for example, 1,

USERENV('SESSI ONI D), nuntol , nuntol +0,...), Oracle translates that expression
into:

AND TO_NUMBER(charcol) = numexpr

Avoid the following kinds of complex expressions;
« coll=NVL(:blcol1l)

« NVL(col 1,-999)=....

« TO DATE(), TO NUMBER(), and so on

These expressions prevent the optimizer from assigning valid cardinality or
selectivity estimates and can in turn affect the overall plan and the join method.

Add the predicate versus using NVL() technique.
For example:

SELECT enpl oyee_num full_nanme Nanme, enployee_id
FROM nt | _enpl oyees_current _vi ew
VHERE (enpl oyee_num = NVL (:bl, enpl oyee_nun)) AND (organization_id=:1)
ORDER BY enpl oyee_num

Also:

SELECT enpl oyee_num full_name Nane, enployee_id
FROM nt | _enpl oyees_current _vi ew
VWHERE (enpl oyee_num = : bl) AND (organization_id=:1)
ORDER BY enpl oyee_num

12-10 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

When you need to use SQL functions on filters or join predicates, do not use them
on the columns on which you want to have an index; rather, use them on the
opposite side of the predicate, as in the following statement:

TO_CHAR(nuntol) = varcol

rather than
varcol = TO CHAR(nuntol)

See Also: Chapter 16, "Using Indexes and Clusters" for more
information on function-based indexes

Write Separate SQL Statements for Specific Tasks

SQL is not a procedural language. Using one piece of SQL to do many different
things usually results in a less-than-optimal result for each task. If you want SQL to
accomplish different things, then write various statements, rather than writing one
statement to do different things depending on the parameters you give it.

Note: Oracle Forms and Reports are powerful development tools
that allow application logic to be coded using PL/SQL (triggers or
program units). This helps reduce the complexity of SQL by
allowing complex logic to be handled in the Forms or Reports. You
can also invoke a server side PL/SQL package that performs the
few SQL statements in place of a single large complex SQL
statement. Because the package is a server-side unit, there are no
issues surrounding client to database round-trips and network
traffic.

It is always better to write separate SQL statements for different tasks, but if you
must use one SQL statement, then you can make a very complex statement slightly
less complex by using the UNI ON ALL operator.

Optimization (determining the execution plan) takes place before the database
knows what values will be substituted into the query. An execution plan cannot,
therefore, depend on what those values are. For example:

SELECT info
FROM t abl es
WHERE . ..

AND somecol unm BETWEEN DECODE(: | oval , ' ALL', sonecol um, :loval)

SQL Tuning Overview 12-11

Developing Efficient SQL Statements

AND DECODE(: hival, "ALL', somecolum, :hival);

Written as shown, the database cannot use an index on the sonecol umm column,
because the expression involving that column uses the same column on both sides
of the BETVEEN.

This is not a problem if there is some other highly selective, indexable condition you
can use to access the driving table. Often, however, this is not the case. Frequently,
you might want to use an index on a condition like that shown but need to know
the values of :| oval , and so on, in advance. With this information, you can rule out
the ALL case, which should not use the index.

If you want to use the index whenever real values are given for :l oval and :hi val
(if you expect narrow ranges, even ranges where :| oval often equals :hi val), then
you can rewrite the example in the following logically equivalent form:

SELECT /* change this half of UNNON ALL if other half changes */ info
FROM t abl es
WHERE . ..
AND somecol urm BETWEEN : | oval AND : hi val
AND (:hival !'="ALL' AND :loval !="ALL")
UNI ON ALL
SELECT /* Change this half of UNNON ALL if other half changes. */ info
FROM t abl es
WHERE . ..
AND (:hival ="ALL' OR :loval = "ALL");

If you run EXPLAI N PLAN on the new query, then you seem to get both a desirable
and an undesirable execution plan. However, the first condition the database
evaluates for either half of the UNI ONALL is the combined condition on whether
:hival and: | oval are ALL. The database evaluates this condition before actually
getting any rows from the execution plan for that part of the query.

When the condition comes back false for one part of the UNI ONALL query, that part
is not evaluated further. Only the part of the execution plan that is optimum for the
values provided is actually carried out. Because the final conditions on : hi val and
: 1 oval are guaranteed to be mutually exclusive, only one half of the UNI ONALL
actually returns rows. (The ALL in UNI ONALL is logically valid because of this
exclusivity. It allows the plan to be carried out without an expensive sort to rule out
duplicate rows for the two halves of the query.)

12-12 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

Use of EXISTS versus IN for Subqueries

In certain circumstances, it is better to use | Nrather than EXI STS. In general, if the
selective predicate is in the subquery, then use | N. If the selective predicate is in the
parent query, then use EXI STS.

Note: This discussion is most applicable in an OLTP environment,
where the access paths either to the parent SQL or subquery are
through indexed columns with high selectivity. In a DSS
environment, there can be low selectivity in the parent SQL or
subquery, and there might not be any indexes on the join columns.
In a DSS environment, consider using semijoins for the EXI STS
case.

See Also: Oracle Data Warehousing Guide

Sometimes, Oracle can rewrite a subquery when used with an | N clause to take
advantage of selectivity specified in the subquery. This is most beneficial when the
most selective filter appears in the subquery and there are indexes on the join
columns. Conversely, using EXI STS is beneficial when the most selective filter is in
the parent query. This allows the selective predicates in the parent query to be
applied before filtering the rows against the EXI STS criteria.

Note: You should verify the optimizer cost of the statement with
the actual number of resources used (BUFFER_GETS, DI SK_READS,
CPU_TI ME from V$SQL or VESQLAREA). Situations such as data
skew (without the use of histograms) can adversely affect the
optimizer's estimated cost for an operation.

"Example 1: Using IN - Selective Filters in the Subquery" and "Example 2: Using
EXISTS - Selective Predicate in the Parent" are two examples that demonstrate the
benefits of | Nand EXI STS. Both examples use the same schema with the following
characteristics:

« Thereis a unique index on the enpl oyees.enpl oyee_i d field.
« Thereisanindex onthe or der s.cust oner _i d field.
« Thereis an index on the enpl oyees.depart ment _i d field.

« The enpl oyees table has 27,000 rows.

SQL Tuning Overview 12-13

Developing Efficient SQL Statements

« Theorders table has 10,000 rows.

« The CE and HR schemas, which own these segments, were both analyzed with

COWPUTE.

Example 1: Using IN - Selective Filters in the Subquery This example demonstrates how

rewriting a query to use | Ncan improve performance. This query identifies all
employees who have placed orders on behalf of customer 144.

The following SQL statement uses EXI STS:

SELECT /* EXI STS exanple */
e.enployee_id, e.first_nane, e.last_nane, e.salary
FROM enpl oyees e

VWHERE EXI STS (SELECT 1 FROM orders o /* Note 1 */
VWHERE e. enpl oyee_id = o.sales_rep_id /* Note 2 */
AND o. custoner_id = 144); /* Note 3 */

Notes:
= Note 1: This shows the line containing EXI STS.

= Note 2: This shows the line that makes the subquery a
correlated subquery.

= Note 3: This shows the line where the correlated subqueries
include the highly selective predicate cust oner _i d = nunber.

The following plan output is the execution plan (from V$SQL_PLAN) for the

preceding statement. The plan requires a full table scan of the enpl oyees table,
returning many rows. Each of these rows is then filtered against the or der s table

(through an index).

| D OPERATI ON OPTI ONS OBJECT_NAME oPT
0 SELECT STATEMENT CHO
1 FILTER
2 TABLE ACCESS FULL EMPLOYEES ANA
3 TABLE ACCESS BY I NDEX ROND ORDERS ANA
4 INDEX RANGE SCAN ORD_CUSTOMER | X ANA

Rewriting the statement using | Nresults in significantly fewer resources used.
The SQL statement using | N:

12-14 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

SELECT /* IN exanple */
e.enployee_id, e.first_nane, e.last_nane, e.salary
FROM enpl oyees e
WHERE e. enpl oyee_id IN (SELECT o.sales rep_id /* Note 4 */
FROM orders o
VWHERE o. customer_id = 144); [* Note 3 */

Note:

= Note 3: This shows the line where the correlated subqueries
include the highly selective predicate cust onmer _i d = nunber

« Note 4: This indicates that an | Nis being used. The subquery is
no longer correlated, because the | N clause replaces the join in
the subquery.

The following plan output is the execution plan (from V$SQL_PLAN) for the
preceding statement. The optimizer rewrites the subquery into a view, which is then
joined through a unique index to the enpl oyees table. This results in a
significantly better plan, because the view (that is, subquery) has a selective
predicate, thus returning only a few enpl oyee_i ds. These enpl oyee_i ds are
then used to access the enpl oyees table through the unique index.

| D OPERATI ON OPTI ONS OBJECT_NAME OPT oosT
0 SELECT STATEMENT CHO
1 NESTED LOOPS 5
2 VIEW 3
3 SORT UNI QUE 3
4 TABLE ACCESS FULL ORDERS ANA 1
5 TABLE ACCESS BY | NDEX ROND EMPLOYEES ANA 1
6 I NDEX UNI QUE SCAN EMP_EMP_I D_PK ANA

Example 2: Using EXISTS - Selective Predicate in the Parent This example demonstrates
how rewriting a query to use EXI STS can improve performance. This query
identifies all employees from department 80 who are sales reps who have placed
orders.

The following SQL statement uses | N;

SELECT /* IN exanple */
e.enployee_id, e.first_nane, e.last_nane, e.departnent_id, e.salary
FROM enpl oyees e

SQL Tuning Overview 12-15

Developing Efficient SQL Statements

WHERE e. departnent _id = 80 /* Note 5 */
AND e.job_id = ' SA REF /* Note 6 */
AND e. enpl oyee_id IN (SELECT o.sales_rep_id FROMorders o); /* Note 4 */

Note:

« Note 4: This indicates that an | Nis being used. The subquery is
no longer correlated, because the | N clause replaces the join in
the subquery.

« Note 5 and 6: These are the selective predicates in the parent
SQL.

The following plan output is the execution plan (from V$SQ._PLAN) for the
preceding statement. The SQL statement was rewritten by the optimizer to use a
view on the or der s table, which requires sorting the data to return all unique
enpl oyee_i ds existing in the or der s table. Because there is no predicate, many
enpl oyee_i ds are returned. The large list of resulting enpl oyee_i ds are then
used to access the enpl oyees table through the unique index.

| D OPERATI ON OPTI ONS OBJECT_NAME OPT ooST
0 SELECT STATEMENT CHO
1 NESTED LOOPS 125
2 VIEW 116
3 SORT UNI QUE 116
4 TABLE ACCESS FULL ORDERS ANA 40
5 TABLE ACCESS BY | NDEX ROND EMPLOYEES ANA 1
6 I NDEX UNI QUE SCAN EMP_EMP_I D_PK ANA

The following SQL statement uses EXI STS:

SELECT /* EXI STS exanple */
e.enployee_id, e.first_nane, e.last_nanme, e.salary
FROM enpl oyees e

WHERE e. departnent _id = 80 /* Note 5 */
AND e.job_id = 'SA REFP /* Note 6 */
AND EXI STS (SELECT 1 I* Note 1 */

FROM orders o

VWHERE e. enpl oyee_id = o.sales_rep_id); /* Note 2 */

12-16 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

Note:
« Note 1: This shows the line containing EXI STS.

« Note 2: This shows the line that makes the subquery a
correlated subquery.

« Note 5 & 6:These are the selective predicates in the parent SQL.

The following plan output is the execution plan (from V$SQ._PLAN) for the
preceding statement. The cost of the plan is reduced by rewriting the SQL statement
to use an EXI STS. This plan is more effective, because two indexes are used to
satisfy the predicates in the parent query, thus returning only a few enpl oyee__

i ds. The enpl oyee_i ds are then used to access the or der s table through an

index.
| D OPERATI ON OPTI ONS OBJECT_NAME OPT cosT
0 SELECT STATEMENT CHO
1 FILTER
2 TABLE ACCESS BY | NDEX ROND EMPLOYEES ANA 98
3 AND- EQUAL
4 | NDEX RANGE SCAN EMP_JOB | X ANA
5 | NDEX RANGE SCAN EMP_DEPARTMENT | X ANA
6 | NDEX RANGE SCAN ORD_SALES REP_I X ANA 8

Note: An even more efficient approach is to have a concatenated
index on depar t nent _i d andj ob_i d. This eliminates the need
to access two indexes and reduces the resources used.

Controlling the Access Path and Join Order with Hints

You can influence the optimizer's choices by setting the optimizer approach and
goal, and by gathering representative statistics for the query optimizer. Sometimes,
the application designer, who has more information about a particular application's
data than is available to the optimizer, can choose a more effective way to execute a
SQL statement. You can use hints in SQL statements to specify how the statement
should be executed.

Hints, such as /7*+FULL */ control access paths. For example:

SELECT /*+ FULL(e) */ e.last_nane
FROM enpl oyees e

SQL Tuning Overview 12-17

Developing Efficient SQL Statements

WHERE e.job_id = ' CLERK ;

See Also: Chapter 14, "The Query Optimizer" and Chapter 17,
"Optimizer Hints"

Join order can have a significant effect on performance. The main objective of SQL
tuning is to avoid performing unnecessary work to access rows that do not affect
the result. This leads to three general rules:

« Avoid a full-table scan if it is more efficient to get the required rows through an
index.

« Avoid using an index that fetches 10,000 rows from the driving table if you
could instead use another index that fetches 100 rows.

« Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT info

FROM taba a, tabb b, tabc c

WHERE a. acol BETWEEN 100 AND 200
AND b. bcol BETWEEN 10000 AND 20000
AND c. ccol BETWEEN 10000 AND 20000
AND a. keyl = b. keyl
AND a. key2 = c. key2;

1. Choose the driving table and the driving index (if any).

The first three conditions in the previous example are filter conditions applying
to only a single table each. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the
driving table is the one containing the filter condition that eliminates the
highest percentage of the table. Thus, because the range of 100 to 200 is harrow
compared with the range of acol , but the ranges of 10000 and 20000 are
relatively large, t aba is the driving table, all else being equal.

With nested loop joins, the joins all happen through the join indexes, the
indexes on the primary or foreign keys used to connect that table to an earlier
table in the join tree. Rarely do you use the indexes on the nonjoin conditions,
except for the driving table. Thus, after t aba is chosen as the driving table, use
the indexes on b.key1 and c.key2 to drive into t abb and t abc, respectively.

2. Choose the best join order, driving to the best unused filters earliest.

12-18 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

The work of the following join can be reduced by first joining to the table with
the best still-unused filter. Thus, if "bcol BETWEEN..." is more restrictive (rejects
a higher percentage of the rows seen) than "ccol BETWEEN...", the last join can
be made easier (with fewer rows) if t abb is joined before t abc.

3. You can use the ORDERED or STAR hint to force the join order.

See Also: "Hints for Join Orders" on page 17-31

Use Caution When Managing Views

Be careful when joining views, when performing outer joins to views, and when
reusing an existing view for a new purpose.

Use Caution When Joining Complex Views Joins to complex views are not
recommended, particularly joins from one complex view to another. Often this
results in the entire view being instantiated, and then the query is run against the
view data.

For example, the following statement creates a view that lists employees and
departments:

CREATE OR REPLACE VI EW enp_dept
AS
SELECT d. department _id, d.department_name, d.location_id,
e.enployee_id, e.last_name, e.first_name, e.salary, e.job_id
FROM departnents d
, enpl oyees e
WHERE e. departnent _id (+) = d.department _id;

The following query finds employees in a specified state:

SELECT v. |l ast_nane, v.first_name, |.state_province
FROM | ocations |, enp_dept v

VHERE | . state_province = 'California'
AND v.location_id =1.location_id (+);

In the following plan table output, note that the enp_dept view is instantiated:

Operation	Name	Rows	Bytes	Cost	Pstart	Pstop
SELECT STATENENT						
FILTER						
NESTED LOOPS QUTER						
VI EW	EMP_DEPT					

SQL Tuning Overview 12-19

Developing Efficient SQL Statements

NESTED LOOPS OUTER			
TABLE ACCESS FULL	DEPARTMEN		
TABLE ACCESS BY	NDEX	EMPLOYEES	
	NDEX RANGE SCAN	EMP_DEPAR	
TABLE ACCESS BY	NDEX R	LOCATI ONS	
I NDEX UNI QUE SCAN	LOC I D_PK		

Do Not Recycle Views Beware of writing a view for one purpose and then using it for
other purposes to which it might be ill-suited. Querying from a view requires all
tables from the view to be accessed for the data to be returned. Before reusing a
view, determine whether all tables in the view need to be accessed to return the
data. If not, then do not use the view. Instead, use the base table(s), or if necessary,
define a new view. The goal is to refer to the minimum number of tables and views
necessary to return the required data.

Consider the following example:

SELECT depart nment _name
FROM enp_dept
WHERE departnent _id = 10;

The entire view is first instantiated by performing a join of the enpl oyees and
depart ment s tables and then aggregating the data. However, you can obtain
depart ment _name and depart nment _i d directly from the depar t nent s table. It
is inefficient to obtain this information by querying the enp_dept view.

Use Caution When Unnesting Subqueries Subquery unnesting merges the body of the
subquery into the body of the statement that contains it, allowing the optimizer to
consider them together when evaluating access paths and joins.

See Also: Oracle Data Warehousing Guide for an explanation of the
dangers with subquery unnesting

Use Caution When Performing Outer Joins to Views In the case of an outer join to a
multitable view, the query optimizer (in Release 8.1.6 and later) can drive from an
outer join column, if an equality predicate is defined on it.

An outer join within a view is problematic because the performance implications of
the outer join are not visible.

12-20 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

Store Intermediate Results

Intermediate, or staging, tables are quite common in relational database systems,
because they temporarily store some intermediate results. In many applications
they are useful, but Oracle requires additional resources to create them. Always
consider whether the benefit they could bring is more than the cost to create them.
Avoid staging tables when the information is not reused multiple times.

Some additional considerations:

« Storing intermediate results in staging tables could improve application
performance. In general, whenever an intermediate result is usable by multiple
following queries, it is worthwhile to store it in a staging table. The benefit of
not retrieving data multiple times with a complex statement already at the
second usage of the intermediate result is better than the cost to materialize it.

« Long and complex queries are hard to understand and optimize. Staging tables
can break a complicated SQL statement into several smaller statements, and
then store the result of each step.

« Consider using materialized views. These are precomputed tables comprising
aggregated or joined data from fact and possibly dimension tables.

See Also: Oracle Data Warehousing Guide for detailed information
on using materialized views

Restructuring the Indexes

Often, there is a beneficial impact on performance by restructuring indexes. This
can involve the following:

« Remove nonselective indexes to speed the DML.

« Index performance-critical access paths.

« Consider reordering columns in existing concatenated indexes.
« Add columns to the index to improve selectivity.

Do not use indexes as a panacea. Application developers sometimes think that
performance will improve if they create more indexes. If a single programmer
creates an appropriate index, then this might indeed improve the application's
performance. However, if 50 programmers each create an index, then application
performance will probably be hampered.

SQL Tuning Overview 12-21

Developing Efficient SQL Statements

Modifying or Disabling Triggers and Constraints

Using triggers consumes system resources. If you use too many triggers, then you
can find that performance is adversely affected and you might need to modify or
disable them.

Restructuring the Data

After restructuring the indexes and the statement, you can consider restructuring
the data.

« Introduce derived values. Avoid GROUP BY in response-critical code.

« Review your data design. Change the design of your system if it can improve
performance.

« Consider partitioning, if appropriate.

Maintaining Execution Plans Over Time

You can maintain the existing execution plan of SQL statements over time either
using stored statistics or stored SQL execution plans. Storing optimizer statistics for
tables will apply to all SQL statements that refer to those tables. Storing an
execution plan (that is, plan stability) maintains the plan for a single SQL statement.
If both statistics and a stored plan are available for a SQL statement, then the
optimizer uses the stored plan.

See Also:
« Chapter 15, "Managing Optimizer Statistics"
« Chapter 18, "Using Plan Stability"

Visiting Data as Few Times as Possible

Applications should try to access each row only once. This reduces network traffic
and reduces database load. Consider doing the following:

« Combine Multiples Scans with CASE Statements
« Use DML with RETURNING Clause
« Modify All the Data Needed in One Statement

12-22 Oracle Database Performance Tuning Guide

Developing Efficient SQL Statements

Combine Multiples Scans with CASE Statements

Often, it is necessary to calculate different aggregates on various sets of tables.
Usually, this is done with multiple scans on the table, but it is easy to calculate all
the aggregates with one single scan. Eliminating n-1 scans can greatly improve
performance.

Combining multiple scans into one scan can be done by moving the WHERE
condition of each scan into a CASE statement, which filters the data for the
aggregation. For each aggregation, there could be another column that retrieves the
data.

The following example asks for the count of all employees who earn less then 2000,
between 2000 and 4000, and more than 4000 each month. This can be done with
three separate queries:

SELECT COUNT (*)
FROM enpl oyees
WHERE sal ary < 2000;

SELECT COUNT (*)
FROM enpl oyees
WHERE sal ary BETWEEN 2000 AND 4000;

SELECT COUNT (*)
FROM enpl oyees
VHERE sal ar y>4000;

However, it is more efficient to run the entire query in a single statement. Each
number is calculated as one column. The count uses a filter with the CASE statement
to count only the rows where the condition is valid. For example:

SELECT COUNT (CASE WHEN sal ary < 2000
THEN 1 ELSE null END) countl,
COUNT (CASE WHEN sal ary BETWEEN 2001 AND 4000
THEN 1 ELSE null END) count 2,
COUNT (CASE WHEN sal ary > 4000
THEN 1 ELSE nul|l END) count3
FROM enpl oyees;

This is a very simple example. The ranges could be overlapping, the functions for
the aggregates could be different, and so on.

SQL Tuning Overview 12-23

Developing Efficient SQL Statements

Use DML with RETURNING Clause

When appropriate, use | NSERT, UPDATE, or DELETE... RETURNI NGto select and
modify data with a single call. This technique improves performance by reducing
the number of calls to the database.

See Also: Oracle Database SQL Reference for syntax on the | NSERT,
UPDATE, and DELETE statements

Modify All the Data Needed in One Statement

When possible, use array processing. This means that an array of bind variable
values is passed to Oracle for repeated execution. This is appropriate for iterative
processes in which multiple rows of a set are subject to the same operation.

For example:

BEG N
FOR pos_rec IN (SELECT *
FROM or der _posi tions
WHERE order _id = :id) LOOP
DELETE FROM or der _posi tions
WHERE order _id = pos_rec.order_id AND
order_position = pos_rec.order_position;
END LOOP;
DELETE FROM orders
VHERE order _id = :id;
END;

Alternatively, you could define a cascading constraint on or der s. In the previous
example, one SELECT and n DELETEs are executed. When a user issues the DELETE
on or der s DELETE FROMor der s WHERE or der _i d =: i d, the database
automatically deletes the positions with a single DELETE statement.

See Also: Oracle Database Administrator's Guide or Oracle Database

Heterogeneous Connectivity Administrator's Guide for information on
tuning distributed queries

12-24 Oracle Database Performance Tuning Guide

13

Automatic SQL Tuning

This chapter discusses Oracle automatic SQL tuning features.

This chapter contains the following sections:

Automatic SQL Tuning Overview
SQL Tuning Advisor

Managing SQL Profiles with APIs
SQL Tuning Sets

SQL Tuning Information Views

See Also: Oracle 2 Day DBA for information on monitoring and
tuning SQL statements

Automatic SQL Tuning 13-1

Automatic SQL Tuning Overview

Automatic SQL Tuning Overview

Automatic SQL Tuning is a new capability of the query optimizer that automates
the entire SQL tuning process. Using the newly enhanced query optimizer to tune
SQL statements, the automatic process replaces manual SQL tuning, which is a
complex, repetitive, and time-consuming function. The Automatic SQL Tuning
features are exposed to the user with the SQL Tuning Advisor.

Query Optimizer Modes

The enhanced query optimizer has two modes, normal and tuning mode.

Normal mode

In normal mode, the optimizer compiles the SQL and generates an execution plan.
The normal mode of the optimizer generates a reasonable execution plan for the
vast majority of SQL statements. Under normal mode the optimizer operates with
very strict time constraints, usually a fraction of a second, during which it must find
a good execution plan.

Tuning mode

In tuning mode, the optimizer performs additional analysis to check whether the
execution plan produced under normal mode can be further improved. The output
of the query optimizer is not an execution plan, but a series of actions, along with
their rationale and expected benefit for producing a significantly superior plan.
When called under the tuning mode, the optimizer is referred to as the Automatic
Tuning Optimizer. The tuning performed by the Automatic Tuning Optimizer is
called Automatic SQL Tuning.

Under tuning mode, the optimizer can take several minutes to tune a single
statement. It is both time and resource intensive to invoke the Automatic Tuning
Optimizer every time a query has to be hard-parsed. The Automatic Tuning
Optimizer is meant to be used for complex and high-load SQL statements that have
non-trivial impact on the entire system. The Automatic Database Diagnostic
Monitor (ADDM) proactively identifies high-load SQL statements which are good
candidates for Automatic SQL Tuning. See Chapter 6, "Automatic Performance
Diagnostics".

Types of Tuning Analysis

Automatic SQL Tuning includes four types of tuning analysis:

13-2 Oracle Database Performance Tuning Guide

Automatic SQL Tuning Overview

« Statistics Analysis

« SQL Profiling

« Access Path Analysis

« SQL Structure Analysis

Statistics Analysis

The query optimizer relies on object statistics to generate execution plans. If these
statistics are stale or missing, the optimizer does not have the necessary information
it needs and can generate poor execution plans. The Automatic Tuning Optimizer
checks each query object for missing or stale statistics, and produces two types of
output:

« Recommendations to gather relevant statistics for objects with stale or no
statistics.

Because optimizer statistics are automatically collected and refreshed, this
problem may be encountered only when automatic optimizer statistics
collection has been turned off. See "Automatic Statistics Gathering" on
page 15-3.

« Auxiliary information in the form of statistics for objects with no statistics, and
statistic adjustment factor for objects with stale statistics.

This auxiliary information is stored in an object called a SQL Profile.

SQL Profiling

The query optimizer can sometimes produce inaccurate estimates about an attribute
of a statement due to lack of information, leading to poor execution plans.
Traditionally, users have corrected this problem by manually adding hints to the
application code to guide the optimizer into making correct decisions. For packaged
applications, changing application code is not an option and the only alternative
available is to log a bug with the application vendor and wait for a fix.

Automatic SQL Tuning deals with this problem with its SQL Profiling capability.
The Automatic Tuning Optimizer creates a profile of the SQL statement called a
SQL Profile, consisting of auxiliary statistics specific to that statement. The query
optimizer under normal mode makes estimates about cardinality, selectivity, and
cost that can sometimes be off by a significant amount resulting in poor execution
plans. SQL Profile addresses this problem by collecting additional information
using sampling and partial execution techniques to verify and, if necessary, adjust
these estimates.

Automatic SQL Tuning 13-3

Automatic SQL Tuning Overview

During SQL Profiling, the Automatic Tuning Optimizer also uses execution history
information of the SQL statement to appropriately set optimizer parameter settings,
such as changing the OPTI M ZER_MCDE initialization parameter setting from ALL_
ROWS to FI RST_ROWS for that SQL statement.

The output of this type of analysis is a recommendation to accept the SQL Profile. A
SQL Profile, once accepted, is stored persistently in the data dictionary. Note that
the SQL Profile is specific to a particular query. If accepted, the optimizer under
normal mode uses the information in the SQL Profile in conjunction with regular
database statistics when generating an execution plan. The availability of the
additional information makes it possible to produce well-tuned plans for
corresponding SQL statement without requiring any change to the application code.

The scope of a SQL Profile can be controlled by the CATEGORY profile attribute. This
attribute determines which user sessions can apply the profile. You can view the
CATEQGORY attribute for a SQL Profile in CATEGORY column of the DBA _SQL_

PROFI LES view. By default, all profiles are created in the DEFAULT category. This
means that all user sessions where the SQLTUNE _CATEGORY initialization
parameter is set to DEFAULT can use the profile.

By altering the category of a SQL profile, you can determine which sessions are
affected by the creation of a profile. For example, by setting the category of a SQL
Profile to DEV, only those users sessions where the SQLTUNE CATEGORY
initialization parameter is set to DEV can use the profile. All other sessions do not
have access to the SQL Profile and execution plans for SQL statements are not
impacted by the SQL profile. This technique enables you to test a SQL Profile in a
restricted environment before making it available to other user sessions.

See Also: Oracle Database Reference for information on the
SQLTUNE_CATEGORY initialization parameter

It is important to note that the SQL Profile does not freeze the execution plan of a
SQL statement, as done by stored outlines. As tables grow or indexes are created or
dropped, the execution plan can change with the same SQL Profile. The information
stored in it continues to be relevant even as the data distribution or access path of
the corresponding statement change. However, over a long period of time, its
content can become outdated and would have to be regenerated. This can be done
by running Automatic SQL Tuning again on the same statement to regenerate the
SQL Profile.

SQL Profiles apply to the following statement types:
« SELECT statements

13-4 Oracle Database Performance Tuning Guide

Automatic SQL Tuning Overview

« UPDATE statements

« | NSERT statements (only with a SELECT clause)

« DELETE statements

« CREATE TABLE statements (only with the AS SELECT clause)
« MERGE statements (the update or insert operations)

A complete set of functions are provided for management of SQL Profiles. See
"Managing SQL Profiles with APIs" on page 13-10.

Access Path Analysis

Indexes can tremendously enhance performance of a SQL statement by reducing
the need for full table scans on large tables. Effective indexing is a common tuning
technique. The Automatic Tuning Optimizer also explores whether a new index can
significantly enhance the performance of a query. If such an index is identified, it
recommends its creation.

Because the Automatic Tuning Optimizer does not analyze how its index
recommendation can affect the entire SQL workload, it also recommends running a
the SQLAccess Advisor utility on the SQL statement along with a representative
SQL workload. The SQLAccess Advisor looks at the impact of creating an index on
the entire SQL workload before making any recommendations. See "SQLAccess
Advisor" on page 12-7.

SQL Structure Analysis

The Automatic Tuning Optimizer identifies common problems with structure of
SQL statements than can lead to poor performance. These could be syntactic,
semantic, or design problems with the statement. In each of these cases the
Automatic Tuning Optimizer makes relevant suggestions to restructure the SQL
statements. The alternative suggested is similar, but not equivalent, to the original
statement.

For example, the optimizer may suggest to replace UNI ON operator with UNI ONALL
or to replace NOT | Nwith NOT EXI STS. An application developer can then
determine if the advice is applicable to their situation or not. For instance, if the
schema design is such that there is no possibility of producing duplicates, then the
UNI ON ALL operator is much more efficient than the UNI ON operator. These changes
require a good understanding of the data properties and should be implemented
only after careful consideration.

Automatic SQL Tuning 13-5

SQL Tuning Advisor

SQL Tuning Advisor

The Automatic SQL Tuning capabilities are exposed through a server utility called
the SQL Tuning Advisor. The SQL Tuning Advisor takes one or more SQL
statements as an input and invokes the Automatic Tuning Optimizer to perform
SQL tuning on the statements. The output of the SQL Tuning Advisor is in the form
of an advice or recommendations, along with a rationale for each recommendation
and its expected benefit. The recommendation relates to collection of statistics on
objects, creation of new indexes, restructuring of the SQL statement, or creation of
SQL Profile. A user can choose to accept the recommendation to complete the
tuning of the SQL statements.

The SQL Tuning Advisor input can be a single SQL statement or a set of statements.
For tuning multiple statements, a SQL Tuning Set (STS) has to be first created. An
STS is a database object that stores SQL statements along with their execution
context. An STS can be created manually using command line APls or automatically
using Oracle Enterprise Manager. See "SQL Tuning Sets" on page 13-12.

Input Sources

The input for the SQL Tuning Advisor can come from several sources. These input
sources include:

« Automatic Database Diagnostic Monitor

The primary input source is the Automatic Database Diagnostic Monitor
(ADDM). By default, ADDM runs proactively once every hour and analyzes
key statistics gathered by the Automatic Workload Repository (AWR) over the
last hour to identify any performance problems including high-load SQL
statements. If a high-load SQL is identified, ADDM recommends running SQL
Tuning Advisor on the SQL. See "Automatic Database Diagnostic Monitor" on
page 6-3.

« High-load SQL statements

The second most important input source is the high-load SQL statements
captured in Automatic Workload Repository (AWR). The AWR takes regular
snapshots of the system activity including high-load SQL statements ranked by
relevant statistics, such as CPU consumption and wait time. A user can view
the AWR and identify the high-load SQL of interest and run SQL Tuning
Advisor on them. By default, the AWR retains data for the last seven days. This
means that any high-load SQL that ran within the retention period of the AWR
can be located and tuned using this feature. See "Automatic Workload
Repository" on page 5-10.

13-6 Oracle Database Performance Tuning Guide

SQL Tuning Advisor

Tuning Options

Cursor cache

The third likely source of input is the cursor cache. This source is used for
tuning recent SQL statements that are yet to be captured in the AWR. The
cursor cache and AWR together provide the capability to identify and tune
high-load SQL statements from the current time going as far back as the AWR
retention allows, which by default is at least 7 days.

SQL Tuning Set

Another possible input source for the SQL Tuning Advisor is a user-defined set
of SQL statements. This can include SQL statements that are yet to be deployed,
with the goal of measuring their individual performance, or identifying the
ones whose performance falls short of expectation. When a set of SQL
statements are used as input, a SQL Tuning Set (STS) has to be first constructed
and stored. See "SQL Tuning Sets" on page 13-12.

SQL Tuning Advisor provides options to manage the scope and duration of a
tuning task. The scope of a tuning task can be set to limited or comprehensive.

Advisor Output

If the limited option is chosen, the SQL Tuning Advisor produces
recommendations based on statistics checks, access path analysis, and SQL
structure analysis. SQL Profile recommendations are not generated.

If the comprehensive option is selected, the SQL Tuning Advisor carries out all
the analysis it performs under limited scope plus SQL Profiling. With the
comprehensive option you can also specify a time limit for the tuning task,
which by default is 30 minutes.

After analyzing the SQL statements, the SQL Tuning Advisor provides advice on
optimizing the execution plan, the rationale for the proposed optimization, the
estimated performance benefit, and the command to implement the advice. You
simply have to choose whether or not to accept the recommendations to optimize
the SQL statements.

Accessing the SQL Tuning Advisor with Oracle Enterprise Manager

The primary interface for the SQL Tuning Advisor is the Oracle Enterprise Manager
Database Control. To access the SQL Tuning Advisor through Oracle Enterprise
Manager Database Control:

Automatic SQL Tuning 13-7

SQL Tuning Advisor

« Click the Advisor Central link under Related Links at the bottom of the
Database pages.

« On the Advisor Central page, you can click the SQL Tuning Advisor link to
analyze and tune SQL statements.

See Also: Oracle Enterprise Manager Concepts and online help for
information about monitoring and diagnostic tools available with
Oracle Enterprise Manager

Using SQL Tuning Advisor APIs

While the primary interface for the SQL Tuning Advisor is the Oracle Enterprise
Manager Database Control, the advisor can be administered with procedures in the
DBM5_SQLTUNE package. To use the APIs the user must have been granted the DBA
role and the ADVI SOR privilege.

Running SQL Tuning Advisor using DBMS_SQLTUNE package is a two-step process:
1. Create a SQL tuning task
2. Execute a SQL tuning task

See Also: PL/SQL Packages and Types Reference for detailed
information on the DBMS_ SQL TUNE package

Creating a SQL Tuning Task

You can create tuning tasks from the text of a single SQL statement, a SQL Tuning
Set containing multiple statements, a SQL statement selected by SQL identifier from
the cursor cache, or a SQL statement selected by SQL identifier from the Automatic
Workload Repository.

For example, to use the SQL Tuning Advisor to optimize a specified SQL statement
text, you need to create a tuning task with the SQL statement passed as a CLOB
argument. For the following PL/SQL code, the user HR has been granted the

ADVI SOR privilege and the function is run as user HR on the enpl oyees table in
the HR schema.

DECLARE

my_task_name VARCHAR2(30);

my_sql text CLOB;

BEG N

my_sql text :='SELECT /*+ ORDERED */ * ' [
' FROM enpl oyees e, locations |, departnents d ' ||
"VHERE e. departnment _id = d.departnent_id AND ' ||

13-8 Oracle Database Performance Tuning Guide

SQL Tuning Advisor

"I.location_id = d.location_id AND ' |
"e.enployee_id < :bnd";

my_task_name := DBMS_SQLTUNE. CREATE_TUNI NG_TASK(
sql _text => ny_sql text,
bind_list => sql _binds(anydata. Convert Nunber (100)),
user _name = 'HR,
scope => ' COVPREHENSI VE' ,
time_limt => 60,
task_name => 'ny_sql _tuning_task',
description => 'Task to tune a query on a specified enployee');
END;
/

In this example, 100 is the value for bind variable : bnd passed as function
argument of type SQL_BI NDS, HRis the user under which the CREATE_TUNI NG_
TASK function analyzes the SQL statement, the scope is set to COVPREHENSI VE
which means that the advisor also performs SQL Profiling analysis, and 60 is the
maximum time in seconds that the function can run. In addition, values for task
name and description are provided.

The CREATE_TUNI NG_TASK function returns the task name that you have provided
or generates a unique task name. You can use the task name to specify this task
when using other APIs. To view the task names associated with a specific owner,
you can run the following:

SELECT task_name FROM DBA ADVI SOR_LOG WHERE owner = 'HR ;

Executing a Tuning Task

After you have created a tuning task, you need to execute the task and start the
tuning process. For example:

BEG N

DBVS_SQLTUNE. EXECUTE_TUNI NG_TASK(task_name => 'ny_sql _tuning_task');
END;
/

You can check the status of the task by reviewing the information in the DBA _
ADVI SOR_LOGvView or check execution progress of the task in the VESESSI ON
L ONGOPS view. For example:

SELECT status FROM DBA_ADVI SOR_LOG WHERE task_nanme = 'nmy_sql _tuning_task';

Automatic SQL Tuning 13-9

Managing SQL Profiles with APIs

Displaying the Results of a Tuning Task

After a task has been executed, you display a report of the results with the REPORT _
TUNI NG_TASK function. For example:

SET LONG 1000

SET LONGCHUNKSI ZE 1000

SET LI NESI ZE 100

SELECT DBMS_SQLTUNE. REPORT_TUNI NG TASK(' ny_sgl _tuning_task')
FROM DUAL;

The report contains all the findings and recommendations of Automatic SQL
Tuning. For each proposed recommendation, the rationale and benefit is provided
along with the SQL commands needed to implement the recommendation.

Additional information about tuning tasks and results can be found in DBA views.
See "SQL Tuning Information Views" on page 13-16.

Additional Operations on a Tuning Task
You can use the following APIs for managing SQL tuning tasks:

« | NTERRUPT_TUNI NG _TASK to interrupt a task while executing, causing a
normal exit with intermediate results

« CANCEL_TUNI NG _TASK to cancel a task while executing, removing all results
from the task

« RESET_TUNI NG _TASK o reset a task while executing, removing all results from
the task and returning the task to its initial state

« DROP_TUNI NG _TASK to drop a task, removing all results associated with the
task

Managing SQL Profiles with APIs

While SQL Profiles are usually handled by Oracle Enterprise Manager as part of the
Automatic SQL Tuning process, SQL Profiles can be managed through the DBVS
SQLTUNE package. To use the SQL Profiles APIs, you need the CREATE ANY SQL__
PROFI LE, DROP ANY SQ._PRCFI LE, and ALTER ANY SQL_PROFI LE system
privileges.

See Also: PL/SQL Packages and Types Reference for detailed
information on the DBMS_ SQL TUNE package

13-10 Oracle Database Performance Tuning Guide

Managing SQL Profiles with APIs

Accepting a SQL Profile

You can use the DBMS_SQLTUNE. ACCEPT_SQL_PRCFI LE procedure to accept a
SQL Profile recommended by the SQL Tuning Advisor. This creates and stores a
SQL Profile in the database. For example:

DECLARE
nmy_sql profile_name VARCHAR2(30);
BEG N
nmy_sql profile_name := DBVMS_SQLTUNE. ACCEPT_SQL_PRCFI LE (
task_name => 'ny_sql _tuning_task',
name => "ny_sql _profile');
END;

where my_sql _t uni ng_t ask is the name of the SQL tuning task.

You can view information about a SQL Profile in the DBA SQL_PROFI LES view.

Altering a SQL Profile

You can alter the STATUS, NAVE, DESCRI PTI ON, and CATEGORY attributes of an
existing SQL Profile with the ALTER_SQ__PROFI LE procedure. For example:

BEG N
DBMVS_SQLTUNE. ALTER _SQL_PROFI LE(
name => '"ny_sql _profile",
attribute_name =>"'STATUS,
val ue => ' DI SABLED);
END;

/

In this example, my_sql _pr ofi | e is the name of the SQL Profile that you want to
alter. The status attribute is changed to disabled which means the SQL Profile is not
used during SQL compilation.

Dropping a SQL Profile
You can drop a SQL Profile with the DROP_SQL_PRCFI LE procedure. For example:

BEGI N

DBMS_SQLTUNE. DROP_SQL_PROFI LE(nanme => 'ny_sql _profile');
END;
/

Automatic SQL Tuning 13-11

SQL Tuning Sets

In this example, my_sql _profi | e is the name of the SQL Profile you want to
drop. You can also specify whether to ignore errors raised if the name does not
exist. For this example, the default value of FALSE is accepted.

SQL Tuning Sets

A SQL Tuning Set (STS) is a database object that includes one or more SQL
statements along with their execution statistics and execution context, and could
include a user priority ranking. The SQL statements can be loaded into a SQL
Tuning Set from different SQL sources, such as the Automatic Workload Repository,
the cursor cache, or custom SQL provided by the user. An STS includes:

« Aset of SQL statements

« Associated execution context, such as user schema, application module name
and action, list of bind values, and the cursor compilation environment

« Associated basic execution statistics, such as elapsed time, CPU time, buffer
gets, disk reads, rows processed, cursor fetches, the number of executions, the
number of complete executions, optimizer cost, and the command type

SQL statements can be filtered using the application module name and action, or
any of the execution statistics. In addition, the SQL statements can be ranked based
on any combination of execution statistics.

A SQL Tuning Set can be used as input to the SQL Tuning Advisor, which performs
automatic tuning of the SQL statements based on other input parameters specified
by the user. While SQL Tuning Sets are usually handled by Oracle Enterprise
Manager as part of the Automatic SQL Tuning process, SQL Tuning Sets can be
managed with DBM5S_SQ.TUNE package procedures.

Accessing SQL Tuning Sets with Oracle Enterprise Manager

To manage the SQL Tuning Sets through Oracle Enterprise Manager Database
Control:

« Click the Advisor Central link u