ORACLE

Oracle® Streams

Advanced Queuing User's Guide and Reference
Release 10.1
Part No. B10785-01

December 2003

Oracle Streams Advanced Queuing User’s Guide and Reference, Release 10.1
Part No. B10785-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Primary Authors: Craig B. Foch, Shelley Higgins

Contributing Authors: Bhagat Nainani, Brajesh Goyal, Deanna Bradshaw, Denis Raphaely, Phil Locke,
Randy Urbano, Shailendra Mishra, Toliver Jue

Contributors: Bob Thome, Charles Hall, Janet Stern, John Lang, Kapil Surlaker, Kathryn Greunefeldt,
Kevin Zewe, Kirk Bittler, Krishnan Meiyyapan, Nancy Ikeda, Neerja Bhatt, Qiang Liu, Shengsong Ni,
Sugu Venkatasamy, Vivekananda Maganty

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Store, Oracle8, Oracle8i, Oracle9i, PL/SQL, Pro*C,
Pro*C/C++, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us YOUr COMMENTES ...t XXV

PrEIQCE............ooooeeee e XXVii
INtENAEA AUAIENCEeeeviieitieeee ettt ettt et et e b be e b e s bae b e e ssens e seessessessaeses XXVili
b 18 o (o] 1 <SPS XXViii
Related DOCUIMENES.cciciiiiciicieieieieeteteee et e st sa et st eseesessessessassessessessessassessesasseesessessessens XXXi
CONVEINEIONS ..c.vteetieeiiieieeite et eetieeteestte ettt e steeesbeeteassseesseeassaesssesssaasseessseanseesssessseenssesssaenseessssensseenssen XXXii
Documentation ACCeSSIDILItYccciiuiiiiiiiiiiiiccccc s XXXVii

What's New in Oracle Streams AQ?..........cooooeee s sseeeon XXXiX
Oracle Streams AQ Release 10.1 NeW FEAtUIESc.oovieveiriireeerieeeceeeere ettt xl
Oracle9i Release 2 (9.2.0) NEW FEALUIESc.ccveirieiriiririeeieiesteiereesteteseeeeeesesseesessessessessessessesseseas xlii
Oracle9i Release 1 (9.0.1) New Features in Oracle Streams AQ.........cccoeevirienenenieieeieeece e xliii
Oracle8i New Features in Oracle Streams AQ.......cc.oouveveiieieerieeeereeeeeere et eereeeeeeeseeseevesreereeerens xlvi

Volume 1

Part | Introducing Oracle Streams AQ

1 Introducing Oracle Streams AQ

Overview of Oracle Streams AQcooovieiiiiiiieieeeie et ree et ereeereeesbeesbesase e baeesaeesaee s 1-2
Oracle Streams AQ in Integrated Application Environments.............cccccocooniininninnn. 1-4
Oracle Streams AQ Client/Server Communicationcocooeieieieiieneiiereeee e 1-5
Multiconsumer Dequeuing of the Same Message..............cccoeiiiiiiiiiniiii 1-6

Oracle Streams AQ Implementation of WOrkflows.............cccoeoneiiniiniininncciinrerneeeene 1-9

Oracle Streams AQ Implementation of Publish/Subscribe ..., 1-11
Message Propagation ... 1-13
Message Format Transformation...............ccccooiiiiiiiiiiins 1-16
Internet Integration and Internet Data Access Presentationccccoooeiiiiiiiiinnn 1-16
Internet Message Payloads.........ccccciiiiiriiiiicr e 1-17
Propagation over the Internet Using HTTP..........ccoooiiiiiiiii 1-18
Internet Data Access Presentation (IDAP)c.ccovevrierneniienineineencenicesieseniesereesenaeseeeeeas 1-19
Interfaces to Oracle Streams AQccooouiiiiieiiiiiiieeceee ettt e e e re e eereeseesbe e bbesaaenreeens 1-20
Oracle Streams AQ FEaturesccoociriiuiiiiiiiieeee ettt sttt ettt ebe st eeeeaen 1-20
Enquete Features..... ..o 1-20
Dequeue FEatUres ... 1-24
Propagation Features ... 1-26
Other Oracle Streams AQ FEAtUTIESccceeuviirieiiciieieceeeteeeete ettt re e sre e eeeans 1-28
Oracle Streams AQ DEIMOScccoooiuiieiiiiiieeieeiieiee et eeeeeveeteeebeesreesbe e beessseesseesssesseesssessseenseeans 1-34

Getting Started with Oracle Streams AQ

Oracle Streams AQ PrerequiSitescococviiriiiniiniiniiicecreeree e 2-2
Oracle Streams AQ by Example...........coccooiiiiiiiiiii e 2-2
Creating Oracle Streams AQ Queues and Queue Tablesccccccoviviiiiiiiniinnnne, 2-3
Enqueuing and Dequeuing Oracle Streams AQ MeSSagesccccceuvueuvurueuvereerererenereeeneenes 2-9
Oracle Streams AQ Propagation............cceerieieiiiiiciniicccicee e 2-55
Dropping Oracle Streams AQ ObjJects ..o 2-59
Revoking Roles and Privilegesc.ccccociciiiiiiirinniiiisrrerreree e 2-60
Deploying Oracle Streams AQ with XA ..., 2-60
Oracle Streams AQ and Memory USagecocueueviiiricieiiiicie et 2-65
Frequently Asked QUEeSHIONSccoviviiiiiiiiiii 2-81
Oracle Streams AQ Installation QUESHIONScccveviieiiiiieierieeie ettt 2-81
General Oracle Streams AQ QUESLIONS.........cceevvieuieriieieieeieie ettt e aere e e sreeeesaeesnas 2-83
Transformation QUESHIONS.........cvevvieuiieeiecteere ettt ettt et et ete e te e v e veeeseereeseereenseeaeennan 2-87

Basic Components

Object Name (0bject_Name).............ccccccoviiiiiiiiiiiiii s 3-2
Type Name (fyPe_Name)cccccovvviiiiiiiiiiininiiiii s 3-2
AQ Agent Type (aq$_agent)ccccooviviiiiiiiiiiiniiiii s 3-3

AQ Recipient List Type (aq$_recipient_list_t) ..., 3-4

AQ Agent List Type (aq$_agent_list_t).........ccocovviiiiiii 3-4
AQ Subscriber List Type (aq$_subscriber_list_t)...........cccooiiiinni 3-4
AQ Registration Information List Type (aq$_reg_info_list)cccccocoviiiiniii, 3-5
AQ Post Information List Type (aq$_post_info_list)...........cocccciiniiiiiiiiiiiciies 3-5
AQ Registration Information Type (aq$_reg_info)............ccccoeiivniiiiiniiiniiiis 3-5
AQ Notification Descriptor TYPecccccooviiiiiiiiiiiiii s 3-7
AQ Post Information Type..........cccccoviiiiiiiiiiii s 3-7
Enumerated Constants in the Oracle Streams AQ Administrative Interface 3-8
Enumerated Constants in the Oracle Streams AQ Operational Interface...............ccccccoee. 3-8
INIT.ORA Parameter File Considerationsc.ccoccevuiiiieiiiiiieiinicieceeieere et e evees 3-9

AQ_TM_PROCESSES Parameter No Longer Needed in init.ora.........ccccoeoiviiicinccnnee 3-9

JOB_QUEUE_PROCESSES Parametercccccceeteeteuieiiriieieniesieiesieseeteieee e eeese e e sieseeseas 3-10

Oracle Streams AQ: Programmatic Environments

Programmatic Environments for Accessing Oracle Streams AQcccccoevvinviinnnnnnn 4-2
Using PL/SQL to Access Oracle Streams AQc.ccoooiiiiiiiiiiiiiicicceeeeccene s 4-2
Using OCI to Access Oracle Streams AQ...........ccoeiiiiiiiiiiiiiii s 4-3
Using OCCI to Access Oracle Streams AQccoviiiiiiiininiii s 4-4
Using Visual Basic (O040) to Access Oracle Streams AQ..............cooeviiiviiinnnniiicnen, 4-4
Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ..............c...c......... 4-5

Accessing Standard and Oracle JMS Applications...........ccueviieieiniciciniiiccecc 4-6
Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQccccccceevceienns 4-7
Comparing Oracle Streams AQ Programmatic Environmentsccccoviiinninnnnnn. 4-9

Oracle Streams AQ Administrative INterfacesccoevevveeiieveeiieieiecreeeeee e e 4-9

Oracle Streams AQ Operational Interfaces...........ccoooieiiiiiiiiicce 4-11

Partll Managing and Tuning Oracle Streams AQ

5

Managing Oracle Streams AQ

Oracle Streams AQ Compatibility Parametersccooeiiiiiiiiiiiiiiicccee, 5-2
Queue Security and Access CONIOL ... 5-2
Oracle Streams AQ SECUTItYcocoiviiiiiiiiiicc s 5-3
Administrator ROLe.........ccoiiiiiiiiiiiiiiiiii s 5-3

vi

L LTSS o S0 (=PRI 5-3

Access to Oracle Streams AQ Object TYPes........cooeueiiiiriiiiiiccciecce e 5-4

QUETE SECUTTLY ...oviiiiiiiiiic e 5-4
Queue Privileges and Access CONIOL.........c.ccciiuiiuiuiiiiiiceceeeeee s 5-4
OCI Applications and QUEUE ACCESS...........ccrueueiiurieieiiecicie et 5-5
Security Required for Propagation............cccccccciiiiiiiiinicicnecrceeeeeeeeceee e 5-5
Queue Table EXport-IMpPortcccooviiiiiiiiiiiiiii s 5-6
Exporting Queue Table Data............c.oooiiiiiiii 5-6
Importing Quete Table Data ... s 5-7
Data Pump Export and IMport ... 5-8
Creating Oracle Streams AQ Administrators and Users.................coooeiiiiicniccc 5-9
Oracle Enterprise Manager SUPPOTL ... 5-10
Using Oracle Streams AQ With XA ..o 5-10
Restrictions on Queue Management ..o 5-11
Remote SUDSCIIDETSc.ouiiiiiiiiiicn e 5-12
DML Not Supported on Queue Tables or Associated IOTs.........ccccccvvviiniiiiiiiicnnns 5-12
Propagation from Object Queues with REF Payload Attributes...........cccccoovniinnnnns 5-12
Collection Types in Message Payloadsccccccvvriirirnnnnnniinireccccceeceeeenenas 5-12
Synonyms on Queue Tables and Queues.............cccoeieiiiiiiiiicie e, 5-12
Tablespace Point-in-Time RECOVETY ..ot 5-13
Nonpersistent QUEUES............cccviuiiiiiiiiiiii e 5-13
Managing Propagation...............ccoooiiiiiiiiii s 5-13
EXECUTE Privileges Required for Propagationccocoeueioiiiiiiiiiicccee 5-14
The Number of JOb QUEUE PTOCESSES........cccccvvuieiriiieiirieieieteteeeessese e ssessessessessessesesssesesses 5-14
Optimizing Propagation ... 5-14
Message States During Client Requests for Enqueue............coooooiiiiiie, 5-16
Propagation from ODbject QUEUEScoviviriririririiir e 5-16
Debugging Oracle Streams AQ Propagation Problems..........cccooooiiiiiiiicie, 5-16
8.0-Compatible QUEUES.............ccooviiiiiiiiiii 5-17
Migrating To and From 8.0.........ccccoviiiiriiiii e 5-17
Importing and Exporting with 8.0-Style Queues............cccooooiiiiiicc 5-18
ROLES TN 8.0 ... 5-18
Security with 8.0-Style QUEUESc.c.ceuiiiiiiiiiiiiiccc e 5-19
Access to Oracle Streams AQ Object TYPes........cccueiiiriiiiiiiieeecc e 5-19
OCI Application Access to 8.0-Style QUEUEScceveieiiciiieiiiecc 5-19

Pluggable Tablespaces and 8.0-Style Multiconsumer Queues...........ccccccccuvuvueerurrerererenene. 5-19
Autocommit Features in the DBMS_AQADM Packageccoceveiiriiiiiccniiccee 5-20

Oracle Streams AQ Performance and Scalability

Performance OVEIVIEW ..o 6-2
Oracle Streams AQ and Oracle Real Application CIUStETscccccovvvueurivurvenicrrrncrcene. 6-2
Oracle Streams AQ in a Shared Server ENvironment............cccoceevereevenieecreneeneeseeee e 6-2

Basic TUNING TiPS......ccoiiiiiiiiiii s 6-2
Using Storage Parameters ... 6-3
I/0 Configurationccouiviiiiiiiiiiiiiiiiiii e 6-3
Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table 6-3
Running Enqueue and Dequeue Processes Serially in a Single Queue Table 6-3
Creating Indexes on a Queue Table.............ccooiiiiiiiii e 6-4

Propagation Tuning Tips ... 6-4

Partlll Oracle Streams AQ: Sample Application

7

Oracle Streams AQ Sample Application

A Sample AppLication..........ccoviiiiiiiiiiiii s 7-2
General Features of Oracle Streams AQccooooiiiiiiiiiiieciee ettt e re e eaveesaee s 7-2
System-Level Access CONIOLcccocouiiiiiiiiiiiiiiiiiii s 7-3
Queue-Level Access CONIOLoc.oviiiiiiiieieie ettt et e be st st be e seeneas 7-5
Message Format Transformation ... 7-7

Creating Transformationscccoceueiiiiic e 7-9
Structured Payloads............cooiiiiiiiiii s 7-12

Creating Queues with XMLType Payloadscccocoevirenrnnninnnrr e 7-15
Nonpersistent QUEUESccoiiiiiiiiiiii s 7-18
Retention and Message HiStOry ... 7-28
Publish/Subscribe SUPPOTIt ..o 7-29
Oracle Real Application Clusters SUpport ..o, 7-32
Statistics Views and Oracle Streams AQ..........ccoouiiieiiiiiieieiteieeeete ettt 7-37
Internet Access for Oracle Streams AQc..oovieiiiiiiiiieeie ettt s re et r e e raeerae e 7-37
Enqueue Features..............oooo 7-38

Subscriptions and Recipient Listscccccociiiriiiiiiiciic 7-38

Vii

Priority and Ordering of MESSAZEScccceueururiririruririiririrerririrrree e 7-40

Time Specification: Delay ..o 7-48
Time Specification: EXPIrationccccccccccccriiiiinnieenererrereeee e 7-50
MeSSage GIOUPING ...oviviiiiiiiiiiiiic b 7-53
Message Transformation During ENqUeUe...........c.ccoovoiriiiiiicicicecc e, 7-56
Enqueue Using the Oracle Streams AQ XML Servletccoovviiniinciiiiicicccenenas 7-58
Dequeue Features ... 7-60
Dequete Methods ..o 7-61
Multiple RECIPIENES......c.cucuiiiiciiiiiiiiicicccr e 7-66
Local and Remote ReCipientsc.oocueiiiiiiiiiiiicieeec 7-67
Message Navigation in Dequete ... 7-68
Modes Of DEQUEUINEcoveveieiiiie e 7-73
Optimization of Waiting for Arrival of Messagesccccoeorurieeiicieicicccccce, 7-79
Retry with Delay Interval ... 7-80
Exception Handling ... 7-84
Rule-Based SUDSCIIPHONc.cuviieii e 7-90
Listen Capabilitycc.coiiie 7-94
Message Transformation During Dequeue.ccccveveeiririrnnninininnrrceeeeee e 7-100
Dequeue Using the Oracle Streams AQ XML Servlet.........ccoooiiiiiiinee, 7-101
Asynchronous Notifications ... 7-101
Registering for Notifications Using the Oracle Streams AQ XML Servlet....................... 7-110
Propagation Features ..o 7-111
Propagation OVEIVIEWcccccuiiiiiiiiiiiiiiii s 7-111
Propagation SChedUlingcccocociiiiiiiiiiiiceeeeee s 7-112
Propagation of Messages with LOB Attributes............ccccoooiiiiiiiiiiie, 7-116
Enhanced Propagation Scheduling Capabilities ..., 7-118
Exception Handling During Propagation.cccceeeirirvnnnnnininnicccccccecceenenenes 7-121
Message Format Transformation During Propagation ..o, 7-122
Propagation Using HTTP ... 7-123

PartIV Oracle Streams AQ Administrative and Operational Interface

8 Oracle Streams AQ Administrative Interface

Managing Queue Tables...........ccccocoviiiiiiiiiiiiii 8-2
Creating a QUete Tableccccoiiiiiiic s 8-2

viii

Altering @ QUeUE Table........cccooiiiiiiiiiiicc e 8-7

Dropping a Quete Table ... s 8-8
Purging a Quetie Table ... 8-9
Migrating a Queue Table.........cccccciiiiiiiiiiccee e 8-12
Managing QUEUES............ccouiuiiiiiiiiicc et 8-13
Creating @ QUEUE...........cciiiiiiiiii s 8-13
Creating a Nonpersistent QUeUe...........cccoeveiiiiiiiiiiiii s 8-16
AIering @ QUETEcuiviiiiie e 8-17
Dropping @ QUEUE ..o s 8-18
Starting @ QUEUE ... s 8-19
StOPPING @ QUEUEL ...t 8-20
Managing Transformations................ccocccciiiiiiiii s 8-20
Creating a Transformation ..o 8-21
Modifying a Transformation.............cooceieiiiiiiiicceec s 8-22
Dropping a Transformationc.cccceeeiiciriiiiiircccrreeneee e 8-22
Granting and Revoking Privileges..............ccccoiiiiiiiiiiiis 8-23
Granting System Oracle Streams AQ Privileges............cocooeueiiiieiiiiieiccece 8-23
Revoking Oracle Streams AQ System Privileges.........cccccoeeuciiiinnniinnrcnrrerereeee 8-24
Granting Queue Privileges..........cccooiiiiiiiiiiicci s 8-25
Revoking Queue Privileges...........oocuiiiiiiiiiiccc s 8-25
Managing SUbSCIIDETS ... 8-26
Adding @ SUDSCIIDEToeviii s 8-26
Altering @ SUDSCIIDEToouiviiii s 8-29
Removing @ SUDSCIIDETc.ccooiiiiiiiiiiciicicce e 8-30
Managing Propagations...............cccoiiiiiiiiiii e 8-31
Scheduling a Queue Propagation..........ccc.coeioiiiciciiiicc s 8-32
Unscheduling a Queue Propagation............ccoviinirniiiiiiiiiccccceccccccecieeeenenes 8-33
Verifying Propagation QuUeue TyPe........ccoouoiiiiiiiiiicicecc e 8-33
Altering a Propagation Schedulecc.oooi e 8-35
Enabling a Propagation Schedule ... 8-35
Disabling a Propagation Schedulec.coooiiiiii e 8-36
Managing Oracle Streams AQ AGents.............cccoviviiiiiniiiii e 8-37
Creating an Oracle Streams AQ AGENt........ccccovuiuiiiiriiriinrcrcce e 8-37
Altering an Oracle Streams AQ AGent ..o 8-38
Dropping an Oracle Streams AQ Agent...........ccooooriiieiiiciiiiicecc s 8-38

10

Enabling Database ACCESScceuveruruririririririniiriereits ettt 8-39

Disabling Database ACCESS ..ot 8-39
Adding an Alias to the LDAP Server..........ccocoviiiiiniiiiiiiiiccnenes 8-40
Deleting an Alias from the LDAP Server...........cccocooiiiiiiiniiniiiiicccnecnns 8-40

Oracle Streams AQ Administrative Interface: Views

All Queue Tables in Database VIEWccccoouiiiiiiiiiiieiieieeeeeee ettt 9-2
User QUete Tables VIEWcccooiiiiiiiiiiiiieeeee ettt ettt sttt ea ettt ebe et seebebesaens 9-3
All Queues in Database VIEWcccccciiiiiiiiiiiiecieie ettt veeste e s veeae e s e ebaesae e beesssensseanns 9-4
All Propagation Schedules VIeWccccccoviiiiiiiiiiiiiis 9-5
Queues for Which User Has Any Privilege VieW.........ccccoiiiiiiiiiiiiccces 9-7
Queues for Which User Has Queue Privilege Viewcccccooviinniniiiniiicae, 9-8
Messages in Queue Table VIEWccccccovviiiiiiiiiiii s 9-9
Queue Tables in User SChema VIEWcc.ooiiuiiiiiiieieieeeet ettt ettt eee s 9-12
Queues In User SChema VIEWc..ccouiiiiiiiieiiiiee ettt et sae e e aeetveesaesbe e baessaesseeens 9-13
Propagation Schedules in User Schema VieW.............ccccooiiiiiiiiiiiccc 9-14
QueEUE SUDSCIIDEIS VIEW ..ottt ettt ettt sttt ettt ebe s eeeenen 9-16
Queue Subscribers and Their RUles VIeWcccccoeoiiiiieiiiiiieeeee ettt eevee s 9-17
Number of Messages in Different States for the Whole Database View...............ccccccc.... 9-17
Number of Messages in Different States for Specific Instances Viewccccooeinninns 9-18
Oracle Streams AQ Agents Registered for Internet Access Viewcccoeiiviniiinnnnn, 9-19
All Transformations VIEWccccooiiuiiiiiiiiiieiesieee ettt ettt sttt sttt et ebe e bbb e 9-19
All Transformation FUNCHONS VIEWccoiiiiiiiiiiiiiieteteee et 9-20
User Transformations VI@Wccocririiininiiiiniiiiecnteteese sttt ettt nee 9-21
User Transformation FUNCIONS VIEWcccooiiiiiiiiiiiiiie ettt 9-21

Oracle Streams AQ Operational Interface: Basic Operations

Enqueuing @ MeSSageccooeuiiiiiiiiniiieiccete et 10-2
Enqueuing a Message and Specifying Options...........ccccocoiiiiiiiiiiiiiciciiicccec e, 10-3
USing Secure QUEUES ... s 10-4
Enqueuing a Message and Specifying Message Properties.........c...ccoooverriniiiicicieinicnnn. 10-5
Enqueuing a Message and Specifying Sender IDccccoooiiiiiiii, 10-5
Enqueuing a Message and Adding Payload...........ccccooiiiiinniiiniicciciicccecennes 10-6
Enqueuing an Array of MeSSaesccccccviiiiiiiiiiiiiiiiiiiiii 10-12
Listening to One or More QUEUESccoiiriiiiiiiiiiiiici e 10-17

Dequeting a MeSSage...........ccoiiiiiiiiiiii s 10-28

Dequeuing a Message from a Single-Consumer Queue and Specifying Options 10-29

Dequeuing a Message from a Multiconsumer Queue and Specifying Options.............. 10-33
Dequeuing an Array of MeSSaZescccccciviriiiiiiiiiiiiiiiiicee s 10-34
Registering for Notification.............ccccooiiiiie 10-39
Posting for Subscriber Notification ..., 10-46
Adding an Agent to the LDAP Server ..o 10-47
Removing an Agent from the LDAP Server............ccccoooiiiiiiiiiiiccccnccees 10-48

Volume 2

Part V Using Oracle JMS and Oracle Streams AQ

11 Creating Oracle Streams AQ Applications Using JMS

General Features of JMS and Oracle JMS.......c.ccooviiriiiiniiicneenecneecnecneiesecv et 11-2
J2EE COMPUHANCE......oiviiiiiiiiiitc s 11-2
JMISPIIOTIEY ..ot 11-3
JMSEXPITatioNovoviiiiiii e 11-3
Durable SUDSCIIDETSccouiviiiiiiii e 11-4
JMS CoNNEection and SESSION......c.ceueruiruireriirieierteriestete ettt ettt stestete et et e st et seeseebesaeseesaan 11-4
ConnectionFactory ODbJects ..o 11-5
Using AQjmsFactory to Obtain ConnectionFactory Objectscccociiiiciiinccncnns 11-5
Using JNDI to Look Up ConnectionFactory Objects..........cccoooieieieiiiciiiiciiiiice, 11-6
JIMS CONMECHION ..ttt sttt sttt ettt et e sae st sbeebe bt e naesbeeate st eteene 11-9
JIVIS SESSION....ueeureeieuiieeieiieetestisetestestetestesesseessesseesseastesseensesseeseessesnsesseensessesnsensesnsensenssens 11-10
JMS Connection Examples ... 11-12
JIMIS DIESHINALION ...ttt ettt et st et st s b et bt e besbeentesaeeaesaeenee 11-14
Using a JMS Session to Obtain Destination ObJectsc.oceeiiincuciiciicrccecennes 11-14
Using JNDI to Look Up Destination Objects...........cccooooiieiiieiicieiiiiiccecc, 11-14
JMS Destination Methods.........cooiiiiiriiirieeeeeee ettt 11-14
JMS Destination EXamMPLES ... 11-15
System-Level Access Control in JMS ..o 11-17
Destination-Level Access Control in JMSc.cooieieirieieiie ettt 11-17
Retention and Message History in JIMS.........ccccoiiiiiiiiiiicccceeceeceeeeieeenenas 11-18
Supporting Oracle Real Application Clusters in JMS ... 11-19

Xi

Xii

Supporting Statistics Views in JMS.......cccoviiiiiiiniie 11-19

Structured Payload/Message Types in JMSccccccoiiiiiiiiiniiiics 11-20
JMS Message HEAdETS ..o 11-20
JMS Message PrOperties........oouiiiiiiiiiiiiniiiiiicc s s 11-22
JMS Message Bodyccoviiiiiiiiiiiiiiiiii e 11-24

The AQ3$_JMS_MESSAGE TYPE...cviririiirinriiiiiiiiiine s 11-24
JMS Message Body: Stream MesSage...........cccuoviurueiiiiiicieieiccieieeeccee s 11-25
JMS Message Body: Bytes Message..........cccoceuiiruiiiiiiiiicieiceec s 11-25
JMS Message Body: Map MESSAZEc.c.ceueueurueuiiiiemiiiiciiicicieieieieeieieiete e nenenenes 11-26
JMS Message Body: Text MeSSage..........ccvurueuiiurueiiiiiieie et 11-26
JMS Message Body: Object MeSSage.........cccueuiiuiuciiiiieieieicci s 11-27
JMS Message Body: AAtMESSAZEcccvevrvruruvereiiriririicicrree e 11-27

JMS Point-to-Point Model FEaturescccoevieiriineineiniiinctreesicie et 11-30
QUBUES ...ttt ettt et te et e st e et e e steeebe e sbeesbeesseesssaaseessseessaassseenseeassassseesssassseenseesnsesnssannes 11-30
QUEUESEIAET ...ttt ettt ettt et e et e veeteeeveeaeeeseeabesseersenbeesseessesseeseeaseseennenns 11-30
QUEUERECEIVETeeeiiiiieiieeiteecteetee e et e steestesteettessteesseeesseebaessbeeseesssassseesssassseesseesssessssannes 11-31
QUEUEBIOWSET ..c..eeitieiieeie ettt eette et e st et e e e e esae s steesbeesseesssaesseesssessseassessessssessennes 11-33

JMS Publish/Subscribe Model Features............ccocveviieieriieieniniene sttt 11-34
TOPIC ot 11-34
Durable SUDSCIIDETcccoiiiiiiiiiiii 11-36
TOPICPUDLISIET ... 11-38
Recipient LiStSciiiuiiiiiiiiiicicicicicc s 11-38
TOPICRECEIVET ..ottt s 11-39
TOPICBIOWSET ...t 11-42

JMS MessageProducer Features.............cccocooovviiiiiiininiiiiiise 11-43
Priority and Ordering of MeSSagescccocrueueiiiieieiiiicieieiecciee e 11-43
Time Specification - Delaycccccoecciiiiiiiciiiicrreere s 11-44
Time Specification - EXPirationccccooiiioiiiiicccc e 11-44
MeSSaGE GIOUPINGvvieieiiiiiecte ittt st 11-45

JMS Message Consumer Features ... 11-45
Receiving MESSAZEScccoeviiiiiiiiiiiiiciie s 11-46
Message Navigation in ReCeive ... 11-48
Browsing MESSAZESccccviiiiiiiiiiiiiiiicc 11-51
Retry with Delay Interval ..o 11-52
Asynchronously Receiving Messages Using Message Listener.............ccccooovoieieininnnnn. 11-54

Oracle Streams AQ Exception Handling...........cccccceiiiiiiiiiniieeeceeeeceeeeeneneneenes 11-56

JMS Propagation ...ttt s 11-57
Remote SUDSCIIDETSccviiiiiiiiiii s 11-57
Scheduling Propagation ... 11-62
Enhanced Propagation Scheduling Capabilitiescccccocoiiiiiiiiiicc, 11-64
Exception Handling During Propagation...........c.ccccccceuiuirrciiicnnninicrcerrreeee e 11-65

Message Transformation with JMS AQcccccocoiiiiiiiii 11-66
Defining Message Transformations...........cccocoeeiiiiieieiiiciceieccce e 11-66
Sending Messages to a Destination Using a Transformationccccecevvvnnncncnace. 11-66
Receiving Messages from a Destination Using a Transformationcccccccecevvinnnnns 11-67
Specifying Transformations for Topic Subscribers ..o 11-68
Specifying Transformations for Remote Subscribersccccccccevvviiiiinnnnnnae. 11-69

12 Oracle Streams AQ JMS Interface: Basic Operations

EXECUTE Privilege on DBMS_AQIN.......ccccoiiiiiiiiiiii s 12-2
Registering a Queue/Topic Connection Factory ..o, 12-2
Registering Through the Database Using JDBC Connection Parameters.............cccoc...... 12-2
Registering Through the Database Using a JDBC URL........ccccccccovviiinnnnnncccccnee 12-4
Registering Through LDAP Using JDBC Connection Parameterscccccocovvvniinnnnnnee. 12-5
Registering Through LDAP Using a JDBC URL.........c.ccoooeiiiiiiiiiiicc e 12-7
Unregistering a Queue/Topic Connection Factoryccooviiiiiniininiiie, 12-8
Unregistering Through the Databaseccooooii 12-8
Unregistering Through LDAPcoooiiii s 12-9
Getting a Queue/Topic Connection Factory ... 12-10
Getting a Queue Connection Factory with JDBC URLccccooooiiiiiir 12-11
Getting a Queue Connection Factory with JDBC Connection Parameters 12-11
Getting a Topic Connection Factory with JDBC URLccccccccciiiiiiiiininircecee. 12-12
Getting a Topic Connection Factory with JDBC Connection Parameters........................ 12-13
Getting a Queue/Topic Connection Factory in LDAP ..o 12-14
Getting a Queue/Topic in LDAP..........cccoiiiiiiiiii s 12-15
Creating a Queue Table ..o 12-16
Getting a Queue Table ... 12-17
Creating @ QUEUE ..o 12-17
Creating a Point-to-Point QUeUe ..., 12-18
Creating a Publish/Subscribe TOPIC........cccooiiiiiiiiicieie e 12-18

Xiii

Granting and Revoking Privileges............ccccooniiiniiiiiiiis 12-19

Granting Oracle Streams AQ System Privilegesocooeeeiiciiiiiicecc 12-20
Revoking Oracle Streams AQ System Privileges ... 12-21
Granting Publish/Subscribe Topic Privileges.........cccccccvceiiinieciiiciricerreeeecene 12-21
Revoking Publish/Subscribe Topic Privileges..........cccccoorieioiiiieiiiiicecicciceee, 12-22
Granting Point-to-Point Queue Privilegesccccccceeiiiiiiniiicircccreeeeeceees 12-23
Revoking Point-to-Point Queue Privileges ..o, 12-24
Managing Destinationsccooooooiiiiiiiiic s 12-25
Starting a Destination..........cccccviiiiiiiiii s 12-25
Stopping a Destination...........ccciii 12-26
Altering a Destinationocciiiiiiiiiee 12-27
Dropping a Destination ... 12-28
Propagation Schedules................ccocoiiiiiiiii 12-29
Scheduling a Propagation..........cccccueuiiicieiiiiciceci e 12-29
Enabling a Propagation Schedule............ccccccooiiiiiiniinirncccc e 12-30
Altering a Propagation Schedule.............coooiiii e, 12-31
Disabling a Propagation Schedulec..cooiiiiiiiii 12-32
Unscheduling a Propagation..........couiiiiiiiiiccccccccciceccce e 12-33

13 Oracle Streams AQ JMS Operational Interface: Point-to-Point

Xiv

Creating @ ConNection............cccccoviiiiiiiiiii 13-2
Creating a Connection with Username/Password...........cccovvnnniiiiiiniiniiiicnns 13-2
Creating a Connection with Default Connection Factory Parameters...............ccccceoeuee.. 13-2

Creating a Queue COoNNection ..o 13-3
Creating a Queue Connection with Username/Password...........ccccccovvvininnininnnnnn 13-3
Creating a Queue Connection with an Open JDBC Connectioncccccooevueiiieiunueueinnes 13-4
Creating a Queue Connection with Default Connection Factory Parameters 13-5
Creating a Queue Connection with an Open OracleOCIConnection Pool 13-5

Creating @ SeSSiON...........ccoooviiiiiiiiiicc s 13-6

Creating @ QUeUESESSION ... 13-7

Creating a QUeUeSender...............coooiiiiiiiiii 13-7

Sending MESSAZES.........cccoiiiimiiiiiiiiii e 13-8
Sending Messages Using a QueueSender with Default Send Optionscccccccuvurenens 13-8
Sending Messages Using a QueueSender by Specifying Send Optionsccccceoeuee... 13-9

Creating @a QUeUeBIOWSEeTcocooviiiiiii 13-11

14

Queues with Text, Stream, Objects, Bytes or Map Messages..........cccoeeceecueccrcccccnnnes 13-11

Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages 13-12
Queues of Oracle Object Type MESSAZEScvuvueururuiiririreieiicirieieeeiereeeeeeeeeseseeeeeeeeesesesenes 13-13
Queues of Oracle Object Type Messages, Locking Messages...........cccccevevvererercreecrcrecnn. 13-15
Creating a QueueReceiVeT.............cccooiiiiiiii e 13-16
Queues of Standard JMS Type MeSSages.ccceueururuerrurieurieieerieieeeieeieeeeeieeeeaeeseeseeeeeneenes 13-16
Queues of Oracle Object Type MeSSagescccouueueieiiiieieiiiccieeeecie e 13-17
Oracle Streams AQ JMS Operational Interface: Publish/Subscribe
Creating @ Connection ... 14-2
Creating a Connection with Username/Passwordccccovvvviiininninnnn, 14-2
Creating a Connection with Default Connection Factory Parameterscccccceeuvuencee. 14-2
Creating a TopicCONNECtiONccoiiiiiiiiii e 14-3
Creating a TopicConnection with Username/Passwordccccooeieiiiiiiiiiiccinicne, 14-3
Creating a TopicConnection with Open JDBC Connectioncccccccoveveverevererencnencrenecnc. 14-4
Creating a TopicConnection with Default Connection Factory Parameters 14-4
Creating a TopicConnection with an Open OracleOCIConnectionPool.............cccccucecc. 14-5
Creating @ SeSSION...........cccciviiiiiiiii e 14-5
Creating @ TOPiCcSeSSION. ..o 14-6
Creating a TopicPublisher ... 14-7
Publishing a MESSaZEccccouiiiiiiiiiiiiii e 14-7
TopicPublisher with Minimal Specificationcooooiiiiiii 14-7
TopicPublisher and Specifying Correlation and Delaycccocoeeiiiiiiiiiiiiicee, 14-9
TopicPublisher and Specifying Priority and TimeToLivVeccccccoivvciicicnccicnenne 14-10
TopicPublisher and Specifying a Recipient List Overriding Topic Subscribers 14-12
Creating a Durable Subscriber..............ccooooiiiiiiii s 14-13
Creating a Durable Subscriber for a JMS Topic Without Selectorcccccoceeueinnennn. 14-14
Creating a Durable Subscriber for a JMS Topic With Selectorccccoooiiiinine. 14-15
Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector........ 14-18
Creating a Durable Subscriber for an Oracle Object Type Topic With Selector.............. 14-19
Creating a Remote Subscriber...............ccooiiii 14-22
Creating a Remote Subscriber for Topics of JMS Messagescccccocevvieirueieininienenene. 14-22
Creating a Remote Subscriber for Topics of Oracle Object Type Messages 14-24
Unsubscribing a Durable Subscription...............cccccooviiiiiiiiis 14-26
Unsubscribing a Durable Subscription for a Local Subscriber ..o, 14-26

XV

15

XVi

Unsubscribing a Durable Subscription for a Remote Subscribercccocoovviiiinnnee. 14-27

Creating a TOPiCRECEIVETcccocooiiiiiiiiiiic e 14-28
Creating a TopicReceiver for a Topic of Standard JMS Type Messagesc.ccccouevencce. 14-28
Creating a TopicReceiver for a Topic of Oracle Object Type Messagesc.ccccccueueneee 14-30

Creating @ TOPIiCBIOWSET ... 14-32
Topics with Text, Stream, Objects, Bytes or Map Messages.........cccccevuvuvererrnerenerereecncncnes 14-32
Topics with Text, Stream, Objects, Bytes, Map Messages, Locking Messages 14-33
Topics of Oracle Object Type MeSSagescccovcueueieiiruiieiiiicieeece e 14-35
Topics of Oracle Object Type Messages, Locking Messages.............cccovvvvrrncrnencnecncncees 14-36

Browsing Messages Using a TOPicBrowser ..o 14-38

Oracle Streams AQ JMS Operational Interface: Shared Interfaces

Oracle Streams AQ JMS Operational Interface: Shared Interfacesccccoocciennnae. 15-2
AQIMSCONNECHON.STAT.....cociiiieiiii e 15-2
AQjmsSession.get/msCONNECHONccccciviiiiiiiiiiiii e 15-3
AQMSSESSION.COMIMIL ..ottt 15-3
AQJMSSessiON.TOIDACK ..o 15-3
AQjmsSession.getDBCONNECIONcccciiiiiiiiiiiiiiiiiic e 15-4
AQjmsConnection.getOCIConnectionPool ..o, 15-4
AQjmsSession.createBytesMessagecocoovoieiiiiiiiiiii 15-5
AQjmsSession.createMapMESSAZEccuriiiiiiuiiiiiiiiiiii 15-5
AQjmsSession.createStreamMEessage..........ccoovieiiiiiiiiiii 15-6
AQjmsSession.createObjectMeSSage..........ccrueieiieurieieiiiicicie e 15-6
AQjmsSession.createTeXtIMESSAGEccciviiiiiiiiiiiiiiiiiii e 15-6
AQmMSSessioN.createMeSSage oottt 15-7
AQjmsSession.create AdtMESSAZEc.cueururieieiiiuiieiiicicte e 15-7
AQjmsMessage.set]MSCorrelationID............coviiiiiiiiniiiicceccceeeeceeenenas 15-8

Specifying JMS Message Property ... 15-8
AQjmsMessage.setBooleanProperty ..., 15-9
AQjmsMessage.setStringPrOPerty ... 15-9
AQjmsMessage.setINtPTOPEItY ..o 15-10
AQjmsMessage.setDoubleProperty ... 15-10
AQjmsMessage.setFloatProperty ... 15-11
AQjmsMessage.setByteProperty ... 15-11
AQjmsMessage.setLongProperty ... 15-12

AQjmsMessage.setSNOTTPTOPEILYc.ccccuiuiiiuiiiiiiiieiicicceeecece e 15-12

AQjmsMessage.setObjectProperty ... 15-13
Setting Default TimeToLive for All Messages Sent by a MessageProducer....................... 15-14
Setting Default Priority for All Messages Sent by a MessageProducercccc.cc.... 15-14
Creating an AQjms Agent...........c.coooiiiiiiii s 15-15
Receiving a Message Synchronously ... 15-16

Using a Message Consumer by Specifying Timeout........ccccooooreieiiiiiiniiiiiicce 15-16

Using a Message Consumer Without Waiting ..o 15-17
Specifying the Navigation Mode for Receiving Messages.............cccccoviiinniiinnininnnnnn. 15-17
Receiving a Message Asynchronously ..., 15-18

Specifying a Message Listener at the Message Consumeroccoceveiircieiiiniceenne. 15-18

Specifying a Message Listener at the SeSSION.........ccccovuvivivvieiinirnnrr e 15-20
Getting Message ID ... 15-20

AQjmsMessage.get]MSCorrelationIDccooiiiiiiiiiioiiiccc 15-21

AQjmsMessage.get]MSMessagelD ... 15-21
Getting the JMS Message Properties. ... 15-21

AQjmsMessage.getBooleanProperty ... 15-22

AQjmsMessage.getStringPToperty ... 15-22

AQjmsMessage.getINtProperty ... 15-22

AQjmsMessage.getDoubleProperty ... 15-23

AQjmsMessage.getFloatPTOPETItY ..ot 15-23

AQjmsMessage.getByteProperty ..., 15-23

AQjmsMessage.getLongProperty ... 15-24

AQjmsMessage.getSNOTtPIOPEItYcccccciiuiiiiiiiiiicicicceicece e 15-24

AQjmsMessage.getObjectProperty ... 15-25
Closing and Shutting DOWN ... 15-25

AQJMSPIOAUCET.CLOSE ...ttt 15-25

AQMSCONSUMET.CLOSE ...t 15-26

AQIMSCONNECHON.SOPcvevieiieieieieictec e 15-26

AQJMSSESSION.CLOSE ...ttt 15-26

AQMSCONNECHON.CLOSE ..ottt 15-26
Troubleshooting ..o 15-27

AQmsException.getErrorCode..........ocoiuiiiiiiiiiiiiiiicceccce e 15-27

AQjmsException.getErrorNUmMber ..o 15-27

AQJmSsException.getLinkStringcoccviiiiieiiicee s 15-28

XVii

AQJmsException.printStackTrace ... 15-28
AQjmsConnection.setExceptionLiStenercccueviieiiieiiieiiiiiiii 15-28
AQjmsConnection.getEXceptioNLiStENeTccocuiiviiiiiiiiiiiiiiiinicccces 15-29

16 Oracle Streams AQ JMS Types Examples

How to Run the Oracle Streams AQ JMS Type Examples..........ccccocoevininiininiiinnnicnen 16-2

Setting Up the EXamples...........coooiiiiiiiiice s 16-2
JMS Bytes Message Examples ..o 16-7
JMS Stream Message Examples ..o 16-12
JMS Map Message Examples............ccoooooiiiiiiiiiiii s 16-19
More Oracle Streams AQ JMS EXamplesccccccovvviiiiininiiiiiiniiincssnns 16-26

Part VI Internet Access to Oracle Streams AQ

17 Internet Access to Oracle Streams AQ

Overview of Oracle Streams AQ Operations over the Internet.................cccocoviniiinn 17-2
Internet Data Access Presentation (IDAP).............ccoooiiiiiiiiiicc e 17-2
SOAP Message SIIUCHUTE ..ot 17-3
The SOAP ENVELOPE ..o 17-3

SOAP HEAETS ..ot 17-3

The SOAP BOAY ...oovuiuiiiiiieiiieieie et 17-4

SOAP Method INVOCAtION.......ccviiiiiiiiiiiiiiii e 17-4
HTTP Headers.......ccvviviiiiiiiiiiicciici s s 17-4
Method Invocation BodY ..o 17-4

Results from a Method Requestoooiiiiiiii 17-5

IDAP DOCUINENLScooviniiiiiinitiiicit s s s st s s s s s sr s ae s ensaesens 17-6
IDAP Client Requests for ENQUEUE...........c.coiviiiiiiiiic 17-6
IDAP Client Requests for DequeUe...........ccoruiiiiiiiucieiciiccice e 17-17
IDAP Client Requests for Registrationccccceueviriivrirnininnncnrrcrcsec e 17-21
IDAP Client Requests to Commit a Transaction............ccooeeueiiicieiiiiceicccecce 17-22
IDAP Client Requests to Rollback a Transaction ..., 17-23
IDAP Server Response to EnqUeUE...........cccooviiiiiiiiiiiiiiins 17-23
IDAP Server Response to a Dequetie Request...........c.cooiiiiiiiiiiiiiiccccie 17-25
IDAP Server Response to a Register Request ..o 17-28

xviii

IDAP Commit RESPONSE........cooiiiimiiiiiiiiiiiiii s 17-28

IDAP Rollback RESPONSE........c.ccuiiiiiiiiiiiiiiiciciiici e 17-28
IDAP NOHFICAtION ...ocvvviiciiii s 17-28
IDAP Response in Case Of EITOTccccovurieiiiiiiiriinirr e 17-29
SOAP and Oracle Streams AQ XML SChemascccceruiierieieiinieeieeeee et 17-30
SOAP SCREIMA.viiiiiiiiicc e 17-30
IDAP SCREIMNA ...ttt 17-32
Deploying the Oracle Streams AQ XML Servlet...........cccccccovvnininiiiniiiins 17-45
Creating the Oracle Streams AQ XML Servlet Class.......ccccccceueerierrivninnrrneerrene 17-45
Compiling the Oracle Streams AQ XML Servletcccoooiiiiiiiiiicce 17-47
Configuring the Web server to Authenticate Users Sending POST Requests................. 17-48
USING HTTP ..o 17-49
Authorizing Users to Perform Operations with Oracle Streams AQ Servlet 17-49
Registering the Oracle Streams AQ Agentccooooiiiiiiiiiii 17-49
Mapping the Oracle Streams AQ Agent to Database Userscc.cccccevuvruvucrirunnnne 17-50
Database SESSIONS..........cccvviiiiiiiiiiiiiiiiii s 17-50

Using an LDAP Server with an Oracle Streams AQ XML Servletcccccevviiiininnnns 17-52
Using HTTP to Access the Oracle Streams AQ XML Servlet.............ccoeiiiniinninn, 17-53
User Sessions and Transactions.............cccceeiiiininiiiiiinnniessssssssssenen 17-56
Using HTTP and HTTPS for Oracle Streams AQ Propagationccccceeevvniiiniiinnnns 17-57
High-Level ATChIteCtUIe.........cccoiiuiiiiiiiiccicccceccccte e 17-57
Setting Up for HTTP Propagation ..o 17-58

Setting Up for Oracle Streams AQ Propagation over HTTP...........ccccoooiiiiine, 17-58
Customizing the Oracle Streams AQ Servlet.............c.ccocoviiiiiiin 17-60
Setting the Connection POOL SizZe..........couoviiiiiiiiiii e 17-60
Setting the Session TimMeOUtc.cceuiiiuiiiiiiice e 17-60
Specifying the Style Sheet for All Responses from the Servlet..........ccccccccceiiiiinnnenns 17-61
Callbacks Before and After Oracle Streams AQ Operations............cooeveieirciniiiicicinnee. 17-62
Frequently Asked Questions: Using Oracle Streams AQ and the Internet......................... 17-66
Internet ACCeSS QUESTIONSecviiiiiieiiieeieeiieeteere e st e e e et e s aeebeesteesaeestsesbeessaesseesssesssannsens 17-66
Oracle Internet Directory QUESHIONS.........c.cuoiiueieiiericieiice e 17-67

Part VI Using Messaging Gateway

Xix

18

19

XX

Introducing Oracle Messaging Gateway
Introducing Oracle Messaging GateWaycccccoiiiiiiiiiiiiiicnnes 18-2
Oracle Messaging Gateway Features ... 18-2
Oracle Messaging Gateway Architecture...............cccocooiiiiinn 18-3
Administration Package DBMS_MGWADMcccccooiiiiiiniinniiiicceseeeenne 18-4
Oracle Messaging Gateway AENt.........cccccccuiuiiiiiiiiiiiiieiieeeeeereeeeeeeeeeee s ees 18-5
Oracle Databaseccccoviviiiiiiiiiiii 18-5
Non-Oracle Messaging SYStemMScocciiiieieiiiiicieieiiricic et 18-5
Propagation Processing OVervieW ... 18-6
Getting Started with Oracle Messaging Gateway
Oracle Messaging Gateway Prerequisites................cccocoooiiiiiiii, 19-2
Loading and Setting Up Oracle Messaging Gatewayccccccoiviiiiiiiiiiiiciiiinnns 19-2
Loading Database Objects into the Database............cccccoevviiiiniinininii 19-2
Modifying listener.ora for the External Procedure (Solaris Operating System 32-Bit Only)
19-3
Modifying tnsnames.ora for the External Procedure (Solaris Operating System 32-Bit Only)..
19-4
Setting Up a mgw.ora Initialization File ..o, 19-5
Creating an Oracle Messaging Gateway Administration User..........cccccocoeouiinicccirncncnns 19-6
Creating an Oracle Messaging Gateway Agent Usercooeeeiirieiiicccieccccciece, 19-6
Configuring Oracle Messaging Gateway Connection Informationcccocoevviiiinnnns 19-7
Configuring Oracle Messaging Gateway in a RAC Environment...........cccocooevveeiiiincnnes 19-7
Setting Up Non-Oracle Messaging Systems...............cccooiiiiiiiiiiiiniccns 19-7
Setting Up for TIB/ReNdeZVOUS..........cceuiiimrieieiicici it 19-8
Setting Up for WebSphere MQ Base Java o JIMS ... 19-9
Verifying the Oracle Messaging Gateway Setup............ccccooiiiiiniiniiiins 19-9
Unloading Oracle Messaging Gatewaycccovviviiiniiiiniiin s 19-10
Understanding the mgw.ora Initialization File................ccccooiin 19-10
mgw.ora Initialization Parameters..........c..oooiiiiiiiiiii 19-11
mgw.ora Environment Variables ... 19-12
MGW.0Ta Java PrOPerties ... 19-13
mgw.ora Comment LINeSccoooiiiiiiiiiiiii 19-15

20 Working with Oracle Messaging Gateway

Configuring the Oracle Messaging Gateway Agent............cccccccevuiviviiiiinniniiiniin 20-2
Database CONNECtiON.........ccciiiiieiiieieieeee s 20-2
ReSOUICE LIMItS...ocviveviriiiieieieieeeee e 20-2

Starting and Shutting Down the Oracle Messaging Gateway Agent..............ccccccovvvvinennnne. 20-3
Starting the Oracle Messaging Gateway Agentcccccccvuvuviviiirnnnniinnne s 20-3
Shutting Down the Oracle Messaging Gateway Agentcccccovviviiininininnnnnicnnn, 20-4
Oracle Messaging Gateway Agent Job Queue JOb ... 20-4
Running the Oracle Messaging Gateway Agent on RAC.........cccccccoviiiiiiinnnnnnenenn. 20-5

Configuring Messaging System Linksccccccoooviiiiiiiii 20-5
Creating a WebSphere MQ Base Java Link.........cccoooiiiiiiii 20-6
Creating a WebSphere MQ JMS LinKccccoviiiiniiiinneiree e 20-8
Creating a TIB/Rendezvous LinK ... 20-10
Altering a Messaging System Link ..o 20-10
Removing a Messaging System Link..........ccccccooiiiiniiiiinnccce, 20-11
Views for Messaging System Linkscccoooiiiiiiiiicc e 20-11

Configuring Non-Oracle Messaging System Queuescccocooeuiiiiiiiiiciiincennen, 20-12
Registering a Non-Oracle QUEUEccceiiiiiiiiiiiiiiccerre e 20-12

Registering a WebSphere MQ Base Java Queue...........ccccooiriiiiiiriceicccce, 20-13
Registering a WebSphere MQ JMS Queue or TOPiC........ccoeeiiiicieiiiiieieiecccieie, 20-13
Registering a TIB/Rendezvous SUDJect...........cccoeviviriiiinniniricinrrcec e 20-14
Unregistering a Non-Oracle QUeUE............c.coeuiiiiiiieiiiec e 20-14
View for Registered Non-Oracle Queues.............ccoovriiioiiiiciiiiiiciciecc 20-14

Configuring Oracle Messaging Gateway Propagation Jobsccccccocooinniinnnnn 20-15
Propagation Subscriber OVerview ... 20-15
Creating an Oracle Messaging Gateway Propagation Subscriber..............cccooooiiiinnnee. 20-16
Creating an Oracle Messaging Gateway Propagation Schedule...........c.cccocovuvvnninennee. 20-17
Enabling and Disabling a Propagation Jobccccooe 20-18
Resetting a Propagation JObcooiiiici e 20-19
Altering a Propagation Subscriber and Schedule...............cccccooiiiiiiiiiiiiicicene 20-19
Removing a Propagation Subscriber and Schedule..............ccooooiii 20-20

21 Oracle Messaging Gateway Message Conversion

Converting Oracle Messaging Gateway Non-JMS Messages...........cccoccoeeeirucucinnicciccncneenns 21-2
Overview of the Non-JMS Message Conversion Process.........ccccooerueiiiicicieicicicinicccnne 21-2

XXi

Oracle Messaging Gateway Canonical TYPeScccvrerereriririnineniiiniiiccceeceeeeeenenes 21-3

Message Header CONVETISIONc.cocuiiiiiiiiieiiiccic s 21-3
Handling Arbitrary Payload Types Using Message Transformationsc.cccccccocueueneeee 21-3
Handling Logical Change Records ..o 21-6
Message Conversion for WebSphere MQccoooiiiiiiiiiiiiiicns 21-8
WebSphere MQ Message Header Mappings.........ccccccoeivceeiiiiecienicereeeneeneeneneenenens 21-9
WebSphere MQ Outbound Propagation.............ccceuoioiiiiiiccccc e 21-12
WebSphere MQ Inbound Propagation..............ccceuiiiiiiiiiicieicccce e 21-13
Message Conversion for TIB/Rendezvous..............cccccccoviiiiiiiiiininiiincccnes 21-14
TIB/Rendezvous Outbound Propagation...........ccceiieiiiiiiieicccccc e, 21-16
TIB/Rendezvous Inbound Propagation.............ccceeioiieiiiicieiciccccce e 21-17
JIMIS MIESSAZESoooviiniiiiiciictc s 21-18
JMS Outbound Propagation.............coceiiiiiciiiece s 21-20
JMS Inbound Propagation ..o 21-20

22 Monitoring Oracle Messaging Gateway

The Oracle Messaging Gateway Log File..............ccccccocooiinnin 22-2
Sample Oracle Messaging Gateway Log Fileccccccccoeiiiininnnniiciciccccccenenes 22-2
Interpreting Exception Messages in an Oracle Messaging Gateway Log File.................. 22-3

Monitoring the Oracle Messaging Gateway Agent Status.............cccoiiiiiiiiiin 22-4
The MGW _GATEWAY VIEW ettt eeeeeeeeeeteeeeeeeeesiaeesseseeesesseessseessssesasasesssaessnns 22-4
Oracle Messaging Gateway Irrecoverable Error Messagesc.cccooviiiiiciiininicnnns 22-5
Other Oracle Messaging Gateway Error Conditions...........cccccovvininiiiiiiiiiiciinnns 22-9

Monitoring Oracle Messaging Gateway Propagationccccococoviiiinniiiniene, 22-10

Oracle Messaging Gateway Agent Error Messagesccceoieiniiucuiininiciicinnicicneeeens 22-11

Part VIl Using Oracle Streams with Oracle Streams AQ

23 Staging and Propagating with Oracle Streams AQ

Oracle Streams Event Staging and Propagation Overviewcccccooviiiiiiiiiiiccns 23-2
SYS.AnyData Queues and User MeSSages..............cccouiuiiiiiiiiiiiiiiiiiicccnneeneenene 23-2
SYS.AnyData Wrapper for User Messages Payloads...........occoeviiniiiciiiiniccnccnncncnns 23-3
Programmatic Environments for Enqueue and Dequeue of User Messages..................... 23-3
Enqueuing User Messages Using PL/SQL.........ccccooooiimiiiiiccn 23-4

XXii

24

Enqueuing User Messages Using OCI or JMSccccoviiiiinniiniiiiccenns 23-4

Dequeuing User Messages Using PL/SQLccoooiiiiiiiicc 23-5
Dequeuing User Messages Using OCIL o1 JMS ..o, 23-5
Message Propagation and SYS.AnyData Queuescccoeiiiiniiiiiiiiinns 23-7
User-Defined Type MEeSSAgEeSccoerueieiiururiiiiiicieieecie s 23-8
Managing an Oracle Streams Messaging Environment...............ccccccoceeiviniiinninnnnnnnne. 23-9
Wrapping User Message Payloads in a SYS.AnyData Wrapper...........ccccoovvnnnniininnnn. 23-9
Propagating Messages Between a SYS.AnyData Queue and a Typed Queue.................... 23-14
Oracle Streams Messaging Example

Overview of Messaging Example.............cccccooviiiiiiiiis 24-2
PrereqUISIESc.cooouiiiiiiiiiciice ettt et 24-3
Set Up Users and Create a SYS.AnyData Queue.............c.ccccevviiiiiiniiiiniinie 24-4
Create the Enqueue Procedures ... 24-9
Configure an APpLy Process ... 24-13
Configure Explicit Dequeue...............ccoooiiiiiiiiiiii s 24-20
Enqueue Bvents.............cooi 24-24
Dequeue Events Explicitly and Query for Applied Events.............cccoeiinniinninnnn. 24-30
Enqueue and Dequeue Events Using JMS ... 24-31

Part IX Troubleshooting Oracle Streams AQ

25

Troubleshooting Oracle Streams AQ
Debugging Oracle Streams AQ Propagation Problems...............ccccoviiiniiinniiiinnn. 25-2
Oracle Streams AQ Error MeSSagesccccuvuiuiiiiiiiiiiiiiiiiiiiiss s 25-4
Scripts for Implementing BooksOnLine

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues, and Subscribers A-2
tkaqdocd.sql: Examples of Administrative and Operational Interfacesccccoeveueneee. A-15
tkaqdoce.sql: Operational Examplescccccocoviiiiiiiiiniiniis A-20
tkaqdocp.sql: Examples of Operational Interfacescccccoonviiniinie, A-21
tkaqdocc.sql: Clean-Up SCript ..ot A-36

XXiii

Glossary

Index

XXiv

Send Us Your Comments

Oracle Streams Advanced Queuing User’s Guide and Reference, Release 10.1
Part No. B10785-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
Postal service:

Oracle

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

XXV

XXVi

Preface

This reference describes features of application development and integration using
Oracle Streams Advanced Queuing (AQ). This information applies to versions of
the Oracle Database server that run on all platforms, unless otherwise specified.

The Preface contains these topics:

Intended Audience
Structure

Related Documents
Conventions

Documentation Accessibility

XXVii

Intended Audience

Structure

XXViii

Oracle Streams Advanced Queuing User’s Guide and Reference is intended for
programmers who develop applications that use Oracle Streams AQ.

Part I: Introducing Oracle Streams AQ

Chapter 1, "Introducing Oracle Streams AQ"

This chapter introduces you to Oracle Streams AQ and describes the requirements
for optimal messaging systems.

Chapter 2, "Getting Started with Oracle Streams AQ"

This chapter describes the prerequisites for Oracle Streams AQ. It also provides
examples of operations using different programmatic environments and answers to
several frequently asked questions about Oracle Streams AQ in general.

Chapter 3, "Basic Components"

This chapter describes Oracle Streams AQ features including general, enqueue, and
dequeue features.

Chapter 4, "Oracle Streams AQ: Programmatic Environments"

This chapter describes the elements you must work with and issues to consider in
preparing your Oracle Streams AQ application environment for different languages.

Part Il: Planning, Managing, and Tuning Oracle Streams AQ

Chapter 5, "Managing Oracle Streams AQ"

This chapter discusses issues related to managing Oracle Streams AQ, such as
migrating queue tables (import-export), security, Oracle Enterprise Manager
support, protocols, sample DBA actions to prepare for working with Oracle Streams
AQ, and current restrictions.

Chapter 6, "Oracle Streams AQ Performance and Scalability"

This chapter discusses performance and scalability issues. It included frequently
asked questions.

Part lll. Oracle Streams AQ: Sample Application
Chapter 7, "Oracle Streams AQ Sample Application”
Part IV. Oracle Streams AQ Administrative and Operational Interface

Chapter 8, "Oracle Streams AQ Administrative Interface"
This chapter describes the administrative interface to Oracle Streams AQ.

Chapter 9, "Oracle Streams AQ Administrative Interface: Views"

This chapter describes how to use Oracle Streams AQ views administrative
interface. It includes syntax and examples.

Chapter 10, "Oracle Streams AQ Operational Interface: Basic Operations”

This chapter describes how to use the Oracle Streams AQ operational interface. It
includes syntax and examples.

Part V. Using Oracle JMS and Oracle Streams AQ

Chapter 11, "Creating Oracle Streams AQ Applications Using JMS"

This chapter describes how to create application using Oracle JMS interface with
Oracle Streams AQ.

Chapter 12, "Oracle Streams AQ JMS Interface: Basic Operations"

This chapter describes how to use the Oracle Streams AQ administrative interface
for JMS.

Chapter 13, "Oracle Streams AQ JMS Operational Interface: Point-to-Point"

This chapter describes how to use Oracle JMS interface with Oracle Streams AQ for
point-to-point operations.

Chapter 14, "Oracle Streams AQ JMS Operational Interface:
Publish/Subscribe"

This chapter describes how to use Oracle JMS interface with Oracle Streams AQ for
publish/subscribe operations.

XXiX

XXX

Chapter 15, "Oracle Streams AQ JMS Operational Interface: Shared
Interfaces"

This chapter describes how to use Oracle JMS interface with Oracle Streams AQ for
shared interface operations.

Chapter 16, "Oracle Streams AQ JMS Types Examples"

This chapter provides JMS type enqueuing and dequeuing examples for bytes,
streams, and map message types. The examples illustrate how you can use JMS and
DBMS_AQ for enqueuing and dequeuing.

Part VI. Internet Access with Oracle Streams AQ

Chapter 17, "Internet Access to Oracle Streams AQ"

This chapter describes how to perform Oracle Streams AQ operations over the
Internet using its Internet Data Access Presentation (IDAP) and Simple Object
Access Protocol (SOAP). It also shows how to transmit messages over the Internet
using HTTP.

Part VII. Using Messaging Gateway

Chapter 18, "Introducing Oracle Messaging Gateway"

This chapter introduces Messaging Gateway's features, functions, and architecture.
It describes how applications based on Oracle Streams AQ can communicate with
non-Oracle messaging systems using Messaging Gateway.

Chapter 19, "Getting Started with Oracle Messaging Gateway"

This chapter describes the prerequisites for running Messaging Gateway, how to
load and unload Messaging Gateway, and how to set it up for use.

Chapter 20, "Working with Oracle Messaging Gateway"

This chapter describes how to use Messaging Gateway: how to configure, start, and
stop it, and how to configure Messaging Gateway Agent.

Chapter 21, "Oracle Messaging Gateway Message Conversion"

This chapter shows how to transform messages between Oracle Streams AQ
formats and those used by supported third-party messaging systems.

Chapter 22, "Monitoring Oracle Messaging Gateway"

This chapter discusses abnormal situations you may experience, several sources of
information about Messaging Gateway errors and exceptions, and suggested
remedies.

Part VIIl. Using Oracle Streams and Oracle Streams AQ

Chapter 23, "Staging and Propagating with Oracle Streams AQ"

This chapter describes how to use Oracle Streams for staging and propagation of
queues and SYS AnyData.

Chapter 24, "Oracle Streams Messaging Example"

This chapter includes a detailed example that illustrates how to use Oracle Streams
for messaging.

Part IX. Troubleshooting Oracle Streams AQ

Chapter 25, "Troubleshooting Oracle Streams AQ"
This chapter describes ways you can troubleshoot Oracle Streams AQ.

Appendix A, "Scripts for Inplementing BooksOnLine"
This appendix provides scripts for implementing the BooksOnLine example.

Glossary

Related Documents
For more information, see these Oracle resources:
» Oracle Database Application Developer’s Guide - Fundamentals
s PL/SQL User's Guide and Reference
» Oracle Streams Advanced Queuing Java API Reference
» PL/SQL Packages and Types Reference
» Oracle Streams Concepts and Administration

s Oracle XML DB Developer’s Guide

XXXi

For Oracle APIs for JMS see:
http://otn.oracle.com/docs/products/aq/doc_library/ojms/index.html

Many examples in the documentation set use the sample schemas of the seed
database, which is installed by default when you install Oracle. Refer to Oracle

Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions

XXXii

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text
= Conventions in Code Examples

= Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace

(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department id, department name,
and location_id columns are in the
hr.departments table.

Set the QUERY REWRITE ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel clause.

Run Uold release.SQL where old_
release refers to the release you installed
prior to upgrading.

XXXiii

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

]

{}

Other notation

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

DECIMAL (digits [, precision])
{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT coll, col2, ... , coln FROM
employees;

SQL> SELECT NAME FROM VS$DATAFILE;
NAME

/fsl/dbs/tbs 01.dbf
/fs1/dbs/tbs 02.dbf

/fsl/dbs/tbs 09.dbf
9 rows selected.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER (4) := 3;

XXXiV

Convention

Meaning

Example

Italics Italicized text indicates placeholders or CONNECT SYSTEM/system password
variables for which you must supply DB _NAME = database name
particular values.
UPPERCASE Uppercase typeface indicates elements SELECT last name, employee id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish gg,EcT * FROM USER TABLES;
them from terms you define. Unless terms ppop TaRLE hr.employees;
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
lowercase Lowercase typeface indicates SELECT last name, employee id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names gqlplus hr/hr
of tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MU9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example

Choose Start >

File and directory
names

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME _
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

XXXV

Convention

Meaning

Example

C:\>

Special characters

HOME _NAME

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (*). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (') do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\oracle\oradata>

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"

C:\>imp SYSTEM/password FROMUSER=scott
TABLES= (emp, dept)

C:\> net start OracleHOME NAMETNSListener

XXXVi

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the ORACLE BASE\ORACLE _
and ORACLE _ when you installed Oracle components, HOME\ rdbms\admin directory.
BASE all subdirectories were located under a

top level ORACLE HOME directory that by

default used one of the following names:

s C:\orant for Windows NT
s C:\orawin9s for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE HOME directory. There is a
top level directory called ORACLE BASE
that by defaultis C: \oracle. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\orann, where nnis the
latest release number. The Oracle home
directory is located directly under
ORACLE_BAGSE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

XXXVii

XXXViii

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

What's New in Oracle Streams AQ?

This section describes new features of Oracle Streams Advanced Queuing (AQ) and
provides pointers to additional information. New features information from
previous releases is also retained to help those users migrating to the current
release.

The following sections describe new features:

s Oracle Streams AQ Release 10.1 New Features

s Oracle9i Release 2 (9.2.0) New Features

s Oracle9i Release 1 (9.0.1) New Features in Oracle Streams AQ

s Oracle8i New Features in Oracle Streams AQ

XXXiX

Oracle Streams AQ Release 10.1 New Features

Advanced Queuing has been integrated into Oracle Streams, and is now called
Oracle Streams AQ. It supports all existing functionality and more, including:

= New AQ Types
Message Properties_T_Array Type

Message Properties T Type has an additional attribute, transaction
group.

= Oracle JMS now supports JMS version 1.1 specifications.

In earlier versions of J]MS, point-to-point and publish/subscribe operations
could not be used in the same transaction. JMS version 1.1 includes methods
that overcome this restriction, and Oracle JMS supports these new methods.

See Also: "J2EE Compliance" on page 11-2

= New JMS Types and added functionality to existing types

See Also: "Oracle Streams AQ Types" and "JMS Types" in PL/SQL
Packages and Types Reference

= New DBMS_AQ packages

= New DBMS_AQADM packages

A new Purge API allows for purging data in persistent queues. A limited subset
of the Purge APl is available for buffered queues.

See Also: "Purging a Queue Table" on page 8-9

= New Vs views for investigating the status of buffered queues:
» VSBUFFERED QUEUES
m VSBUFFERED SUBSCRIBERS

s VSBUFFERED PUBLISHERS

See Also: "Dynamic Performance (V$) Views" in Oracle Database
Reference for more information on these views

= AQSQueue table name has been expanded to show buffered messages.

xl

The rules engine has been enhanced for higher performance and workload.
New Streams messaging high level API

You can now enqueue and dequeue multiple messages with a single command.

See Also:
= "Enqueue an Array of Messages" on page 1-21

= "Dequeue an Array of Messages" on page 1-24
Propagation from object queues with BFILEs is now supported.
See Also: "Propagation from Object Queues" on page 5-16

New C++ interface to Oracle Streams AQ

OCCI AQ is a set of interfaces in C++ that enable messaging clients to access
Oracle Streams AQ for enterprise messaging applications. OCCI AQ makes use
of the OClI interface to Oracle Streams AQ and encapsulates the queuing
functionality supported by OCIL.

See Also: "Oracle Streams Advanced Queuing" in Oracle C++ Call
Interface Programmer’s Guide

Parameter AQ TM_ PROCESSES is no longer needed in init . ora.

See Also: "AQ_TM_PROCESSES Parameter No Longer Needed
in init.ora" on page 3-9

New Oracle Streams features related to Advanced Queuing include auto
capture and apply message handlers.

See Also: See Oracle Streams Concepts and Administration

Oracle Messaging Gateway
In this release Oracle Messaging Gateway has the following new functionality:

Message propagation between Oracle Java Message Service (OJMS) and IBM
WebSphere MQ JMS. Propagation is supported for JMS queues and topics.

Message propagation between Oracle Streams AQ and TIBCO TIB/Rendezvous
for application integration.

xli

See Also: PL/SQL Packages and Types Reference, chapters:
= AQ Types

= JMS Types

= DBMS AQ

= DBMS AQADM

= DBMS MGWADM

= DBMS_ MGWMSG

Deprecated Features

Java AQ APl is deprecated in favor of a unified, industry-standard JMS interface.
The Java AQ APl is still being supported for legacy applications. However, Oracle
recommends that you migrate your Java AQ API application to J]MS and that new
applications use JMS.

Also deprecated in this release are 8.0-style queues. All new functionality and
performance improvements are confined to the newer style queues. Oracle
recommends that any new queues you create be 8.1-style or newer and that you
migrate existing 8.0-style queues at your earliest convenience.

Oracle9i Release 2 (9.2.0) New Features

xlii

Oracle Messaging Gateway

The interaction between different messaging systems is a common integration
requirement. Messaging Gateway allows Advanced Queuing to propagate
messages to and from non-Oracle messaging systems. It allows secure,
transactional, and guaranteed one-time-only delivery of messages between
Oracle Advanced Queuing and IBM Websphere MQ v5.1 and v5.2. See
Chapter 18, "Introducing Oracle Messaging Gateway" for more information.

Standard JMS Support

The JMS implementation in Oracle9i release 2 (9.2.0) conforms to Sun
Microsystems JMS 1.0.2b standard.

XMLType Payload Support

You are no longer required to embed an XMLType attribute in an Oracle object
type. You can directly use an XMLType message as the message payload.

Oracle9i Release 1 (9.0.1) New Features in Oracle Streams AQ

Oracle9i introduces the following new Oracle Streams AQ features to improve
e-business integration and use standard Internet transport protocols:

Internet Integration

To perform queuing operations over the Internet, Oracle Streams AQ takes
advantage of the Internet Data Access Presentation (IDAP), which defines
message structure using XML. Using IDAP, Oracle Streams AQ operations such
as enqueue, dequeue, notification, and propagation can be executed using
HTTP(S). Third-party clients, including third-party messaging vendors, can also
interoperate with Oracle Streams AQ over the Internet using Messaging
Gateway.

IDAP messages may be requests, responses, or an error response. An IDAP
document sent from an Oracle Streams AQ client contains an attribute for
designating the remote operation; that is, enqueue, dequeue, or register
accompanied by operational data. The Oracle Streams AQ implementation of
IDAP can also be used to process batched enqueue and dequeue of messages.

The HTTP support in Oracle Streams AQ is implemented by using the Oracle
Streams AQ servlet which is bundled with the Oracle Database server. A client
invokes the servlet through an HTTP post request that is sent to the Web server.
The Web server invokes the servlet mentioned in the post method if one is not
already invoked. The servlet parses the content of the IDAP document and uses
the Java AQ API to perform the designated operation. On completion of the
call, the servlet formats either a response or an error response as indicated by
IDAP and sends it back to the client.

IDAP is transport independent and therefore can work with other transport
protocols transparently. Oracle Database supports HTTP; other proprietary
protocols can also be supported using the callout mechanism through
transformations.

Oracle Streams AQ Security over the Internet

Oracle Streams AQ functionality allows only authorized Internet users to
perform operations on queues. An Internet user connects to a Web server, which
in turn connects to the database using an application server. The Internet user
doing the operation is typically not the database user connected to the database.
Also, the Oracle Streams AQ queues cannot reside in the same schema as the
connected database user. Oracle Streams AQ uses proxy authentication so that
only authorized Internet users can perform operations on queues.

xliii

xliv

LDAP Integration

Oracle Internet Directory Integration: To leverage Lightweight Directory
Access Protocol (LDAP) as the single point for managing generic information,
Oracle Streams AQ is integrated with the Oracle Internet Directory server. This
addresses the following requirements:

= Global topics (queues): Oracle Streams AQ queue information can be stored
in an Oracle Internet Directory server. Oracle Internet Directory provides a
single point of contact to locate the required topic or queue. Business
applications (users) looking for specific information need not know in
which database the queue is located. Using the industry standard Java
Message Service (JMS) AP, users can directly connect to the queue without
explicitly specifying the database or the location of the topic or queue.

= Global events: Oracle Internet Directory can be used as the repository for
event registration. Clients can register for database events even when the
database is down. This allows clients to register for events such as
"Database Open," which would not have been possible earlier. Clients can
register for events in multiple databases in a single request.

XML Integration: XML has emerged as a standard for e-business data
representations. The XMLType datatype has been added to the Oracle server to
support operations on XML data. Oracle Streams AQ not only supports
XMLType data type payloads, but also allows definitions of subscriptions based
on the contents of an XML message. This is powerful functionality for online
market places where multiple vendors may define their subscriptions based on
the contents of the orders.

Transformation Infrastructure

Applications are designed independent of each other. So, the messages they
understand are different from each other. To integrate these applications,
messages must be transformed. There are various existing solutions to handle
these transformations. Oracle Streams AQ provides a transformation
infrastructure that can be used to plug in transformation functionality from
Oracle Application Interconnect or other third-party solutions such as Mercator
without losing Oracle Streams AQ functionality. Transformations can be
specified as PL/SQL call back functions, which are applied at enqueue,
dequeue, or propagation of messages. These PL/SQL callback functions can call
third-party functions implemented in C, Java, or PL/SQL. XSLT
transformations can also be specified for XML messages.

Oracle Streams AQ Management

You can use new and enhanced Oracle Enterprise Manager to manage Oracle
Streams AQ, as follows:

= Improved Ul task flow and administration of queues, including a topology
display at the database level and at the queue level, error and propagation
schedules for all the queues in the database, and relevant initialization
parameters (init.ora)

= Ability to view the message queue

Oracle diagnostics and tuning pack supports alerts and monitoring of Oracle
Streams AQ queues. Alerts can be sent when the number of messages for a
particular subscriber exceeds a threshold. Alerts can be sent when there is an
error in propagation. In addition, queues can be monitored for the number of
messages in ready state or the number of messages for each subscriber.

Additional Enhancements

PL/SQL notifications and e-mail notifications: Oracle9i allows notifications on
the queues to be PL/SQL functions. Using this functionality, users can register
PL/SQL functions that are called when a message of interest is enqueued.
Using e-mail notification functionality, an e-mail address can be registered to
provide notifications. E-mail is sent if the message of interest arrives in the
queue. Presentation of the e-mail message can also be specified while
registering for e-mail notification. Users can also specify an HTTP URL to
which notifications can be sent.

Dequeue enhancements: Using the dequeue with a condition functionality,
subscribers can select messages that satisfy a specified condition from the
messages meant for them.

Overall performance improvements: Oracle Streams AQ exhibits overall
performance improvements as a result of code optimization and other changes.

Propagation enhancements: The maximum number of job queue processes has
been increased from 36 to 1000 in Oracle9i. With Internet propagation, you can
set up propagation between queues over HITP. Overall performance
improvements have been made in propagation due to design changes in the
propagation algorithm.

xlv

JMS Enhancements

All the new Oracle9i features are supported through JMS, as well as the
following:

Connection pooling: Using this feature, a pool of connection can be
established with the Oracle Database server. Later, at the time of
establishing a JMS session, a connection from the pool can be picked up.

Global topics: This is the result of the integration with Oracle Internet
Directory. Oracle Streams AQ queue information can be stored and looked
up from it.

Topic browsing: Allows durable subscribers to browse through the
messages in a publish/subscribe (topic) destination, and optionally allows
these subscribers to purge the browsed messages (so that they are no longer
retained by Oracle Streams AQ for that subscriber).

Exception listener support: This allows a client to be asynchronously
notified of a problem. Some connections only consume messages, so they
have no other way to learn that their connection has failed.

Oracle8i New Features in Oracle Streams AQ

The Oracle8i release included the following Advanced Queuing features:

xlvi

Queue-level access control

Nonpersistent queues

Support for Real Application Clusters

Rule-based subscribers for publish /subscribe

Asynchronous notification

Sender identification

Listen capability (wait on multiple queues)

Propagation of messages with LOBs

Enhanced propagation scheduling

Dequeuing message headers only

Support for statistics views

Java API (native AQ)

= Java Message Service (JMS) API

= Separate storage of history management information

xlvii

xIviii

Part |

Introducing Oracle Streams AQ

Part I introduces Oracle Streams Advanced Queuing (AQ) and tells you how to get
started with it. It also describes its main components and supported programing
languages.

This part contains the following chapters:

s Chapter 1, "Introducing Oracle Streams AQ"

= Chapter 2, "Getting Started with Oracle Streams AQ"
s Chapter 3, "Basic Components"

= Chapter 4, "Oracle Streams AQ: Programmatic Environments"

1

Introducing Oracle Streams AQ

This chapter discusses Oracle Streams Advanced Queuing (AQ) and the
requirements for complex information handling in an integrated environment.

This chapter contains the following topics:

s Overview of Oracle Streams AQ

= Oracle Streams AQ in Integrated Application Environments
s Oracle Streams AQ Client/Server Communication

= Multiconsumer Dequeuing of the Same Message

= Oracle Streams AQ Implementation of Workflows

= Oracle Streams AQ Implementation of Publish /Subscribe
= Message Propagation

= Message Format Transformation

= Internet Integration and Internet Data Access Presentation
» Interfaces to Oracle Streams AQ

s Oracle Streams AQ Features

s Oracle Streams AQ Demos

Note: For helpful examples on using Oracle Streams AQ, search
for the "Oracle By Example Series" at the OTN Web site:

http://otn.oracle.com/index.html

Introducing Oracle Streams AQ 1-1

Overview of Oracle Streams AQ

Overview of Oracle Streams AQ

When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages. At
the most basic level of queuing, one producer enqueues one or more messages into
one queue. Each message is dequeued and processed once by one of the consumers.
A message stays in the queue until a consumer dequeues it or the message expires.
A producer may stipulate a delay before the message is available to be consumed,
and a time after which the message expires. Likewise, a consumer may wait when
trying to dequeue a message if no message is available. An agent program or
application may act as both a producer and a consumer.

Producers can enqueue messages in any sequence. Messages are not necessarily
dequeued in the order in which they are enqueued. Messages can be enqueued
without being dequeued.

At a slightly higher level of complexity, many producers enqueue messages into a
queue, all of which are processed by one consumer. Or many producers enqueue
messages, each message being processed by a different consumer depending on
type and correlation identifier.

Oracle Streams AQ provides database-integrated message queuing functionality. It
is built on top of Oracle Streams and leverages the functions of Oracle Database so
that messages can be stored persistently, propagated between queues on different

computers and databases, and transmitted using Oracle Net Services and HTTP(S).

Because Oracle Streams AQ is implemented in database tables, all operational
benefits of high availability, scalability, and reliability are also applicable to queue
data. Standard database features such as recovery, restart, and security are
supported by Oracle Streams AQ. Also queue tables can be imported and exported.
You can use database development and management tools such as Oracle
Enterprise Manager to monitor queues.

See Also: Chapter 5, "Managing Oracle Streams AQ"

Performance

Requests for service must be decoupled from supply of services to increase
efficiency and provide the infrastructure for complex scheduling. Oracle Streams
AQ exhibits high performance characteristics as measured by the following metrics:

= Number of messages enqueued /dequeued each second
= Time to evaluate a complex query on a message warehouse

= Time to recover/restart the messaging process after a failure

1-2 Oracle Streams Advanced Queuing User’'s Guide and Reference

Overview of Oracle Streams AQ

Scalability

Queuing systems must be scalable. Oracle Streams AQ exhibits high performance
when the number of programs using the application increases, when the number of
messages increases, and when the size of the message warehouse increases.

Persistence for Security

Messages that constitute requests for service must be stored persistently and
processed exactly once for deferred execution to work correctly in the presence of
network, computer, and application failures. Oracle Streams AQ is able to meet
requirements in the following situations:

= Applications that do not have the resources to handle multiple unprocessed
messages arriving simultaneously from external clients or from programs
internal to the application.

» Communication links between databases that are not available all the time or
are reserved for other purposes. If the system falls short in its capacity to deal
with these messages immediately, then the application must be able to store the
messages until they can be processed.

= External clients or internal programs that are not ready to receive messages that
have been processed.

Persistence for Scheduling

Queuing systems need message persistence so they can deal with priorities:
messages arriving later can be of higher priority than messages arriving earlier;
messages arriving earlier may wait for messages arriving later before actions are
executed; the same message may be accessed by different processes; and so on.
Priorities also change. Messages in a specific queue can become more important,
and so must be processed with less delay or interference from messages in other
queues. Similarly, messages sent to some destinations can have a higher priority
than others.

Persistence for Accessing and Analyzing Metadata

Message persistence is needed to preserve message metadata, which can be as
important as the payload data. For example, the time that a message is received or
dispatched can be crucial for business and legal reasons. With the persistence
features of Oracle Streams AQ, you can analyze periods of greatest demand or
evaluate the lag between receiving and completing an order.

Introducing Oracle Streams AQ 1-3

Oracle Streams AQ in Integrated Application Environments

See Also: Chapter 6, "Oracle Streams AQ Performance and
Scalability"

Oracle Streams AQ in Integrated Application Environments

Oracle Streams AQ provides the message management and communication needed
for application integration. In an integrated environment, messages travel between
the Oracle Database server and the applications and users, as shown in Figure 1-1.

Using Oracle Net Services, messages are exchanged between a client and the Oracle
Database server or between two Oracle Database servers. Oracle Net Services also
propagates messages from one Oracle Database queue to another. Or, as shown in
Figure 1-1, you can perform Oracle Streams AQ operations over the Internet using
HTTP(S). In this case, the client, a user or Internet application, produces structured
XML messages. During propagation over the Internet, Oracle Database servers
communicate using structured XML also.

See Also: Chapter 17, "Internet Access to Oracle Streams AQ" for
more information on Internet integration with Oracle Streams AQ

Application integration also involves the integration of heterogeneous messaging
systems. Oracle Streams AQ seamlessly integrates with existing non-Oracle
Database messaging systems like IBM Websphere MQ through Messaging Gateway,
thus allowing existing Websphere MQ-based applications to be integrated into an
Oracle Streams AQ environment.

See Also: Chapter 18, "Introducing Oracle Messaging Gateway"

for more information on Oracle Streams AQ integration with
non-Oracle Database messaging systems

1-4 Oracle Streams Advanced Queuing User’'s Guide and Reference

Oracle Streams AQ Client/Server Communication

Figure 1-1 Integrated Application Environment Using Oracle Streams AQ

XML-Based Internet OCI, PL/SQL,

Internet Users Transport Java clients
(HTTP(s), SMTP)

e B .
S G &7

Rules and

‘ Transformationsh

bt PGP
queues

MQ Series
Internet
Propagation
(Oracle
Net)

Internet
Propagation

Rules and
Transformations

SN

Advanced
queues

Rules and
Transformations

TN

Advanced
queues

Global Agents,
Global Subscriptions,
Global Events

Oracle Streams AQ Client/Server Communication

Client/Server applications usually run in a synchronous manner. Figure 1-2
demonstrates the asynchronous alternative using Oracle Streams AQ. In this
example Application B (a server) provides service to Application A (a client) using a
request/response queue.

Introducing Oracle Streams AQ 1-5

Multiconsumer Dequeuing of the Same Message

Figure 1-2 Client/Server Communication Using Oracle Streams AQ

Application A .
producer & consumerJ Client

Dequeue
Enqueue
Request Response
Queue Queue
Enqueue
Dequeue

Application B

consumer & producer Server

Application A enqueues a request into the request queue. Application B dequeues
and processes the request. Application B enqueues the result in the response queue,

and Application A dequeues it.

The client need not wait to establish a connection with the server, and the server
dequeues the message at its own pace. When the server is finished processing the
message, there is no need for the client to be waiting to receive the result. A process

of double-deferral frees both client and server.

Note: The various enqueue and dequeue operations are part of

different transactions.

Multiconsumer Dequeuing of the Same Message

A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
then this would require management of a very large number of queues. To allow
multiple consumers to dequeue the same message, Oracle Streams AQ provides for

queue subscribers and message recipients.

1-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Multiconsumer Dequeuing of the Same Message

To allow for subscriber and recipient lists, the queue must reside in a queue table
that is created with the multiple consumer option. Each message remains in the
queue until it is consumed by all its intended consumers.

Queue Subscribers

Multiple consumers can be associated with a queue as subscribers. This causes all
messages enqueued in the queue to be made available to be consumed by each of
the queue subscribers. The subscribers to the queue can be changed dynamically
without any change to the messages or message producers. Subscribers to the queue
are added and removed by using the Oracle Streams AQ administrative package.

It cannot be known which subscriber will dequeue which message first, second, and
so on, because there is no priority among subscribers. More formally, the order of
dequeuing by subscribers is undetermined.

Every message will eventually be dequeued by every subscriber.

In Figure 1-3, Application B and Application C each need messages produced by
Application A, so a multiconsumer queue is specially configured with Application
B and Application C as queue subscribers. Each receives every message placed in
the queue.

Figure 1-3 Communication Using a Multiconsumer Queue

Application A J

Enqueue I

Multiple
Consumer
Queue

Dequeue Dequeue

Application B J ‘ Application C J

Introducing Oracle Streams AQ 1-7

Multiconsumer Dequeuing of the Same Message

Note: Queue subscribers can be applications or other queues.

Message Recipients

A message producer can submit a list of recipients at the time a message is
enqueued. This allows for a unique set of recipients for each message in the queue.
The recipient list associated with the message overrides the subscriber list
associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients can be selected from among the subscribers.

Subscribing to a queue is like subscribing to a magazine: each subscriber is able to
dequeue all the messages placed into a specific queue, just as each magazine
subscriber has access to all its articles. Being a recipient, on the other hand, is like
getting a letter: each recipient is a designated target of a particular message.

Figure 1-4 shows how Oracle Streams AQ can accommodate both kinds of
consumers. Application A enqueues messages. Application B and Application C are
subscribers. But messages can also be explicitly directed toward recipients like
Application D, which may or may not be subscribers to the queue. The list of such
recipients for a given message is specified in the enqueue call for that message. It
overrides the list of subscribers for that queue.

1-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Implementation of Workflows

Figure 1-4 Explicit and Implicit Recipients of Messages
Application A
producer

Enqueue

Dequeue

Application B
consumer (subscriber)

Implicit Recipient

Dequeue

Application C
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

Note: Multiple producers can simultaneously enqueue messages
aimed at different targeted recipients.

Oracle Streams AQ Implementation of Workflows

Figure 1-5 illustrates the use of Oracle Streams AQ for implementing a workflow,
also known as a chained application transaction. Application A begins a workflow
by enqueuing Message 1. Application B dequeues it, performs whatever activity is
required, and enqueues Message 2. Application C dequeues Message 2 and
generates Message 3. Application D, the final step in the workflow, dequeues it.

Introducing Oracle Streams AQ 1-9

Oracle Streams AQ Implementation of Workflows

Figure 1-5 Implementing a Workflow using Oracle Streams AQ

Application A
producer

Application C
consumer & producer

Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)

Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)

Application B Application D
consumer & producer consumer

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages can contain parts
of the of the contents of previous messages.

The queues are used to buffer the flow of information between different processing
stages of the business process. By specifying delay interval and expiration time for a
message, a window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message
flows is a business asset quite apart from the value of the payload data. Oracle
Streams AQ helps you gain this knowledge by supporting the optional retention of
messages for analysis of historical patterns and prediction of future trends.

1-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Implementation of Publish/Subscribe

Oracle Streams AQ Implementation of Publish/Subscribe

A point-to-point message is aimed at a specific target. Senders and receivers decide
on a common queue in which to exchange messages. Each message is consumed by
only one receiver. Figure 1-6 shows that each application has its own message
queue, known as a single-consumer queue.

Figure 1-6 Point-to-Point Messaging

Enqueue Enqueue
Application | < ————— 9999 4= | Application
PP Dequeue Dequeue PP
Advanced

queues

A publish/subscribe message can be consumed by multiple receivers, as shown in
Figure 1-7. Publish/subscribe messaging has a wide dissemination mode called
broadcast and a more narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a
given program. The dequeuers are subscribers to multiconsumer queues. In
contrast, multicast is like a magazine publisher who knows who the subscribers are.
Multicast is also referred to as point-to-multipoint, because a single publisher sends
messages to multiple receivers, called recipients, who may or may not be
subscribers to the queues that serve as exchange mechanisms.

Figure 1-7 Publish/Subscribe Mode

Publish Subscribe

Publish @@@@ Publish

Application | «— Advanced ey | Application
queues Subscribe

Application Application

Publish/subscribe describes a situation in which a publisher application enqueues
messages to a queue anonymously (no recipients specified). The messages are then
delivered to subscriber applications based on rules specified by each application.
The rules can be defined on message properties, message data content, or both.

Introducing Oracle Streams AQ 1-11

Oracle Streams AQ Implementation of Publish/Subscribe

Figure 1-8 illustrates the use of Oracle Streams AQ for implementing a
publish/subscribe relationship between publisher Application A and subscriber
Applications B, C, and D. Application B subscribes with rule "priority=1",
application C subscribes with rule "priority > 1", and application D subscribes with
rule "priority = 3".

Figure 1-8 Implementing Publish/Subscribe using Oracle Streams AQ

Application A
producer

Enqueue
1— priority 3
J— priority 1
41— priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

Application A enqueues 3 messages with differing priorities. Application B receives
a single message (priority 1), application C receives two messages (priority 2, 3) and
application D receives a single message (priority 3). Message recipients are
computed dynamically based on message properties and content.

1-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Propagation

A combination of Oracle Streams AQ features allows publish/subscribe messaging
between applications. These features, described later in this guide, include
rule-based subscribers, message propagation, the listen feature, and notification
capabilities.

Message Propagation

Enqueued messages are said to be propagated when they are reproduced on
another queue.

This section contains these topics:
= Fanning Out Messages
= Compositing Messages

s Inboxes and Outboxes

Fanning Out Messages

In Oracle Streams AQ, message recipients can be either consumers or other queues.
If the message recipient is a queue, then message recipients include all subscribers
to the queue (one or more of which can be other queues). Thus it is possible to fan
out messages to a large number of recipients without requiring them all to dequeue
messages from a single queue.

For example, imagine a queue named Source with subscriber queues
dispatchl@destl and dispatch2@dest2. Queue dispatchl@destl has
subscriber queues outerreachl@dest3 and outerreach2edest4, while queue
dispatch2@dest2 has subscriber queues outerreach3edest21 and
outerreach4edest4. Messages enqueued in Source are propagated to all the
subscribers of four different queues.

Compositing Messages

Messages from different queues can be combined into a single queue. This is also
known as funneling. For example, if queue composite@endpoint is a subscriber
to both funnell@sourcel and funnel2@source?2, then subscribers to
composite@endpoint get all messages enqueued in those queues as well as
messages enqueued directly to composite@endpoint.

Inboxes and Outboxes

Figure 1-9 illustrates applications on different databases communicating using
Oracle Streams AQ. Each application has an inbox for handling incoming messages

Introducing Oracle Streams AQ 1-13

Message Propagation

and an outbox for handling outgoing messages. Whenever an application enqueues
a message, it goes into its outbox regardless of the message destination. Messages
sent locally (on the same node) and messages sent remotely (on a different node) all
go in the outbox. Similarly, an application dequeues messages from its inbox no
matter where the message originates. Oracle Streams AQ facilitates such
interchanges, treating all messages on the same basis.

1-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Propagation

Figure 1-9 Message Propagation in Oracle Streams AQ

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Outbox Inbox

; AQ's \
S/ Message '\
’ Propagation

Infrastructure
Database 2 / \

Inbox Outbox Inbox Outbox

Enqueue Enqueue

Dequeue Dequeue

Application B
consumer & producer

Application C
consumer & producer

Introducing Oracle Streams AQ 1-15

Message Format Transformation

Message Format Transformation

Applications often use data in different formats. A transformation defines a
mapping from one Oracle data type to another. The transformation is represented
by a SQL function that takes the source data type as input and returns an object of
the target data type.

You can arrange transformations to occur when a message is enqueued, when it is
dequeued, or when it is propagated to a remote subscriber.

As Figure 1-10 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from
the Out queue of a CRM application is routed and transformed in the integration
hub and then propagated to the In queue of the Web application. The
transformation engine maps the message from the format of the Out queue to the
format of the In queue.

Figure 1-10 Transformations in Application Integration

Integration Hub

CRM > Out Queue > Routing and > . > In Queue > Web
Application D i Transformation Propagation e e Application
Spoke Spoke

Internet Integration and Internet Data Access Presentation

You can access Oracle Streams AQ over the Internet by using Simple Object Access
Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP
specification for Oracle Streams AQ operations. IDAP defines the XML message
structure for the body of the SOAP request. An IDAP-structured message is
transmitted over the Internet using HTTP(S).

This section contains these topics:
= Internet Message Payloads
= Propagation over the Internet Using HTTP

= Internet Data Access Presentation (IDAP)

See Also: Chapter 17, "Internet Access to Oracle Streams AQ"

1-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Internet Integration and Internet Data Access Presentation

Internet Message Payloads

Oracle Streams AQ supports messages of three types: RAW, Oracle object, and Java
Message Service (JMS). All these message types can be accessed using SOAP and
Web Services. If the queue holds messages in RAW, Oracle object, or JMS format,
then XML payloads are transformed to the appropriate internal format during
enqueue and stored in the queue. During dequeue, when messages are obtained
from queues containing messages in any of the preceding formats, they are
converted to XML before being sent to the client.

The message payload type depends on the queue type on which the operation is
being performed:

RAW Queues

The contents of RAW queues are raw bytes. You must supply the hex representation
of the message payload in the XML message. For example,
<raw>023f4523</raws>.

Oracle Object Type Queues

For Oracle object type queues that are not JMS queues (that is, they are not type
AQ$ JMS_*), the type of the payload depends on the type specified while creating
the queue table that holds the queue. The XML specified here must map to the SQL
type of the payload for the queue table.

See Also: Oracle XML DB Developer’s Guide for details on
mapping SQL types to XML

Example 1-1 A Queue Type and its XML Equivalent

Assume the queue is defined to be of type EMP_TYP, which has the following
structure:

CREATE OR REPLACE TYPE emp typ AS object (

empno NUMBER (4),

ename VARCHAR2(10),

job VARCHAR2 (9),

mgr NUMBER (4),

hiredate DATE,

sal NUMBER(7,2),

comm NUMBER(7,2)

deptno NUMBER(2)) ;

Introducing Oracle Streams AQ 1-17

Internet Integration and Internet Data Access Presentation

The corresponding XML representation is:

<EMP_TYP>
<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>

JMS Type Queues/Topics

For queues with JMS types (that is, those with payloads of type AQ$_JMS_ *), there
are four XML elements, depending on the JMS type. IDAP supports queues or
topics with the following JMS types:

s TextMessage

= MapMessage

= BytesMessage

= ObjectMessage

JMS queues with payload type St reamMessage are not supported through IDAP.

See Also: "IDAP Documents" on page 17-6 for examples of using
different IDAP message payload

Propagation over the Internet Using HTTP

Figure 1-11 shows the architecture for performing Oracle Streams AQ operations
over HTTP. The major components are:

s Oracle Streams AQ client program
= Web server/Servlet Runner hosting the Oracle Streams AQ servlet
s Oracle Database server

The Oracle Streams AQ client program sends XML messages (conforming to IDAP)
to the Oracle Streams AQ servlet, which understands the XML message and
performs Oracle Streams AQ operations. Any HTTP client, for example Web
browsers, can be used. The Web server/Servlet Runner hosting the Oracle Streams
AQ servlet interprets the incoming XML messages. Examples include Apache/]Jserv

1-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Internet Integration and Internet Data Access Presentation

or Tomcat. The Oracle Streams AQ servlet connects to the Oracle Database server
and performs operations on the users' queues.

Figure 1-11 Architecture for Performing Oracle Streams AQ Operations Using HTTP

Oracle
Web Database
Server Server

XML M
essage
over HTTP
el
D b

%B — —— (_ ouew
AQ Client e

Internet Data Access Presentation (IDAP)

Internet Data Access Presentation (IDAP) uses the Content-Type of text /xml to
specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

= All request and response tags are scoped in the SOAP namespace.
= Oracle Streams AQ operations are scoped in the IDAP namespace.

= The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

= The receiver processes IDAP messages that have correct namespaces. For
requests with incorrect namespaces, the receiver returns an invalid request
error.

s The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

s The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

See Also: Chapter 17, "Internet Access to Oracle Streams AQ" for
more information about IDAP

Introducing Oracle Streams AQ 1-19

Interfaces to Oracle Streams AQ

Interfaces to Oracle Streams AQ
You can access Oracle Streams AQ functionality through the following interfaces:
» PL/SQL using DBMS AQ, DBMS_AQADM, and DBMS_AQELM
= Visual Basic using Oracle Objects for OLE
= Java Message Service (JMS) using the oracle. jms Java package

= Internet access using HTTP(S)

Note: The oracle.AQ Java package has been deprecated in
Oracle Streams AQ release 10.1. Oracle recommends that you
migrate existing Java AQ applications to Oracle JMS and use Oracle
JMS to design your future Java AQ applications.

See Also:
s PL/SQL Packages and Types Reference
= Online Help for Oracle Objects for OLE

Oracle Streams AQ Features
This section contains these topics:
= Enqueue Features
s Dequeue Features
= Propagation Features

s Other Oracle Streams AQ Features

Enqueue Features

The following features apply to enqueuing messages:
= Enqueue an Array of Messages

= Correlation Identifiers

= Subscription and Recipient Lists

= Priority and Ordering of Messages in Enqueuing

1-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

= Message Grouping

= Propagation

= Sender Identification

= Time Specification and Scheduling
= Rule-Based Subscribers

= Asynchronous Notification

Enqueue an Array of Messages

When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of enqueue operations. When enqueuing an array of messages into a queue, each
message shares the same enqueue options, but each message can have different
message properties. You can perform array enqueue operations using PL/SQL or
OCIL

See Also: "Enqueuing an Array of Messages" on page 10-12

Correlation Identifiers

You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Subscription and Recipient Lists

A single message can be designed to be consumed by multiple consumers. A queue
administrator can specify the list of subscribers who can retrieve messages from a
queue. Different queues can have different subscribers, and a consumer program
can be a subscriber to more than one queue. Further, specific messages in a queue
can be directed toward specific recipients who may or may not be subscribers to the
queue, thereby overriding the subscriber list.

You can design a single message for consumption by multiple consumers in a
number of different ways. The consumers who are allowed to retrieve the message
are specified as explicit recipients of the message by the user or application that
enqueues the message. Every explicit recipient is an agent identified by name,
address, and protocol.

A queue administrator can also specify a default list of recipients who can retrieve
all the messages from a specific queue. These implicit recipients become subscribers
to the queue by being specified in the default list. If a message is enqueued without

Introducing Oracle Streams AQ 1-21

Oracle Streams AQ Features

specifying any explicit recipients, then the message is delivered to all the designated
subscribers.

A rule-based subscriber is one that has a rule associated with it in the default
recipient list. A rule-based subscriber is sent a message with no explicit recipients
specified only if the associated rule evaluated to TRUE for the message. Different
queues can have different subscribers, and the same recipient can be a subscriber to
more than one queue. Further, specific messages in a queue can be directed toward
specific recipients who may or may not be subscribers to the queue, thereby
overriding the subscriber list.

A recipient can be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It can be
specified by its name and an address with a protocol value of 0. The address should
be the name of another queue in the same database or another installation of Oracle
Database (identified by the database link), in which case the message is propagated
to the specified queue and can be dequeued by a consumer with the specified name.
If the recipient's name is NULL, then the message is propagated to the specified
queue in the address and can be dequeued by the subscribers of the queue specified
in the address. If the protocol field is nonzero, then the name and address are not
interpreted by the system and the message can be dequeued by a special consumer.

Priority and Ordering of Messages in Enqueuing

It is possible to specify the priority of the enqueued message. An enqueued message
can also have its exact position in the queue specified. This means that users have
three options to specify the order in which messages are consumed: (a) a sort order
specifies which properties are used to order all message in a queue; (b) a priority
can be assigned to each message; (c) a sequence deviation positions a message in
relation to other messages. Further, if several consumers act on the same queue,
then a consumer gets the first message that is available for immediate consumption.
A message that is in the process of being consumed by another consumer is
skipped.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must
be created in the same transaction and all messages created in one transaction
belong to the same group. This feature allows users to segment complex messages
into simple messages; for example, messages directed to a queue containing
invoices can be constructed as a group of messages starting with the header

1-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

message, followed by messages representing details, followed by the trailer
message.

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database or the same queue. Messages can be propagated
from one Oracle Streams AQ to another, irrespective of whether the queues are local
or remote. Propagation is accomplished using database links and Oracle Net
Services.

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
Streams AQ also automatically identifies the queue from which a message was
dequeued. This allows applications to track the pathway of a propagated message
or a string message within the same database.

Time Specification and Scheduling

Delay interval or expiration intervals can be specified for an enqueued message,
thereby providing windows of execution. A message can be marked as available for
processing only after a specified time elapses (a delay time) and must be consumed
before a specified time limit expires.

Rule-Based Subscribers

A message can be delivered to multiple recipients based on message properties or
message content. Users define a rule-based subscription for a given queue as the
mechanism to specify interest in receiving messages of interest. Rules can be
specified based on message properties and message data (for object and raw
payloads). Subscriber rules are then used to evaluate recipients for message
delivery.

Asynchronous Notification

The asynchronous notification feature allows clients to receive notification of a
message of interest. The client can use it to monitor multiple subscriptions. The
client need not be connected to the database to receive notifications regarding its
subscriptions.

Clients can use the Oracle Call Interface (OCI) function
OCISubscriptionRegister or the PL/SQL procedure DBMS AQ.REGISTER to
register interest in messages in a queue.

Introducing Oracle Streams AQ 1-23

Oracle Streams AQ Features

See Also: "Registering for Notification" on page 10-39

Dequeue Features

The following features apply to dequeuing messages:
= Dequeue an Array of Messages

= Recipients

= Navigation of Messages in Dequeuing

= Modes of Dequeuing

= Optimization of Waiting for the Arrival of Messages
= Retries with Delays

= Optional Transaction Protection

= Exception Handling

= Listen Capability (Wait on Multiple Queues)

= Dequeue Message Header with No Payload

Dequeue an Array of Messages

When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of dequeue operations. If you are dequeuing from a transactional queue, you can
dequeue all the messages for a transaction with a single call, which makes
application programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can
perform array enqueue and array dequeue operations using PL/SQL or OCIL.

See Also: "Dequeuing an Array of Messages" on page 10-34

Recipients

A message can be retrieved by multiple recipients without the need for multiple
copies of the same message. Designated recipients can be located locally or at
remote sites.

1-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

Navigation of Messages in Dequeuing

Users have several options to select a message from a queue. They can select the
first message or once they have selected a message and established a position, they
can retrieve the next. The selection is influenced by the ordering or can be limited
by specifying a correlation identifier. Users can also retrieve a specific message
using the message identifier.

Modes of Dequeuing

A dequeue request can either browse or remove a message. If a message is browsed,
then it remains available for further processing. If a message is removed, then it is
not available more for dequeue requests. Depending on the queue properties, a
removed message can be retained in the queue table.

Optimization of Waiting for the Arrival of Messages

A dequeue request can be applied against an empty queue. To avoid polling for the
arrival of a new message, a user can specify if and for how long the request is
allowed to wait for the arrival of a message.

Retries with Delays

A message must be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, then the message is made available for
reprocessing after some user-specified delay elapses. Reprocessing is attempted up
to the user-specified limit.

Optional Transaction Protection

Enqueue and dequeue requests are usually part of a transaction that contains the
requests, thereby providing the wanted transactional action. You can, however,
specify that a specific request is a transaction by itself, making the result of that
request immediately visible to other transactions. This means that messages can be
made visible to the external world when the enqueue or dequeue statement is
applied or after the transaction is committed.

Exception Handling

A message may not be consumed within given constraints, such as within the
window of execution or within the limits of the retries. If such a condition arises,
then the message is moved to a user-specified exception queue.

Introducing Oracle Streams AQ 1-25

Oracle Streams AQ Features

Listen Capability (Wait on Multiple Queues)

The listen call is a blocking call that can be used to wait for messages on multiple
queues. It can be used by a gateway application to monitor a set of queues. An
application can also use it to wait for messages on a list of subscriptions. If the listen
returns successfully, then a dequeue must be used to retrieve the message.

Dequeue Message Header with No Payload

The dequeue mode REMOVE_NODATA can be used to remove a message from a
queue without retrieving the payload. Use this mode to delete a message with a
large payload whose content is irrelevant.

Propagation Features
The following features apply to propagating messages:

= Automatic Coordination of Enqueuing and Dequeuing
= Propagation of Messages with LOBs

= Propagation Scheduling

= Enhanced Propagation Scheduling Capabilities

s Third-Party Support

See Also: '"Internet Integration and Internet Data Access
Presentation” on page 1-16 for information on propagation over the
Internet

Automatic Coordination of Enqueuing and Dequeuing

Recipients can be local or remote. Because Oracle Database does not support
distributed object types, remote enqueuing or dequeuing using a standard database
link does not work. However, you can use Oracle Streams AQ message propagation
to enqueue to a remote queue. For example, you can connect to database X and
enqueue the message in a queue, DROPBOX, located in database X. You can
configure Oracle Streams AQ so that all messages enqueued in DROPBOX are
automatically propagated to another queue in database Y, regardless of whether
database Y is local or remote. Oracle Streams AQ automatically checks if the type of
the remote queue in database Y is structurally equivalent to the type of the local
queue in database X and propagates the message.

1-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

Recipients of propagated messages can be applications or queues. If the recipient is
a queue, then the actual recipients are determined by the subscription list associated
with the recipient queue. If the queues are remote, then messages are propagated
using the specified database link. AQ-to-AQ message propagation is directly
supported; propagation between Oracle Streams AQ and other message systems,
such as WebSphere MQ and TIB/Rendezvous, is supported through Messaging
Gateway.

Propagation of Messages with LOBs
Propagation handles payloads with LOB attributes.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for
doing enqueues and dequeues.

Propagation Scheduling

Messages can be scheduled to propagate from a queue to local or remote
destinations. Administrators can specify the start time, the propagation window,
and a function to determine the next propagation window (for periodic schedules).

Enhanced Propagation Scheduling Capabilities

Detailed run-time information about propagation is gathered and stored in the

DBA QUEUE SCHEDULES view for each propagation schedule. This information can
be used by queue designers and administrators to fix problems or tune
performance. For example, available statistics about the total and average number
of message/bytes propagated can be used to tune schedules. Similarly, errors
reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation, and the process name of the job queue process handling the
propagation.

Third-Party Support

Oracle Streams AQ allows messages to be enqueued in queues that can then be
propagated to different messaging systems by third-party propagators. If the
protocol number for a recipient is in the range 128 - 255, then the address of the
recipient is not interpreted by Oracle Streams AQ and so the message is not
propagated by the Oracle Streams AQ system. Instead, a third-party propagator can
then dequeue the message by specifying a reserved consumer name in the dequeue

Introducing Oracle Streams AQ 1-27

Oracle Streams AQ Features

operation. The reserved consumer names are of the form AQ$ P#, where # is the
protocol number in the range 128-255. For example, the consumer name AQ$ P128
can be used to dequeue messages for recipients with protocol number 128. The list
of recipients for a message with the specific protocol number is returned in the
recipient list message property on dequeue.

Another way for Oracle Streams AQ to propagate messages to and from third-party
messaging systems is through Messaging Gateway, an Enterprise Edition feature.
Messaging Gateway dequeues messages from an Oracle Streams AQ queue and
guarantees delivery to a third-party messaging system such as Websphere MQ
(MQSeries). Messaging Gateway can also dequeue messages from third-party
messaging systems and enqueue them to an Oracle Streams AQ queue.

See Also: Chapter 18, "Introducing Oracle Messaging Gateway"

Other Oracle Streams AQ Features

This section contains these topics:

s Queue Monitor Coordinator

= Oracle Internet Directory

= Oracle Enterprise Manager Integration
s SQL Access

= Support for Statistics Views

s Structured and XMLIype Payloads
= Retention and Message History

= Tracking and Event Journals

s Queue-Level Access Control

= Nonpersistent Queues

= Support for Oracle Real Application Clusters

Queue Monitor Coordinator

Before release 10.1, the Oracle Streams AQ time manager process was called queue
monitor (QMNn), a background process controlled by setting the dynamic init.ora
parameter AQ TM_PROCESSES. Beginning with release 10.1, time management and
many other background processes are automatically controlled by a
coordinator-slave architecture called Queue Monitor Coordinator (QMNC). QMNC

1-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

dynamically spawns slaves named gXXX depending on the system load. The
slaves provide mechanisms for:

= Message delay

= Message expiration

= Retry delay

= Garbage collection for the queue table

Because the number of processes is determined automatically and tuned constantly,
you are saved the trouble of setting it with AQ TM PROCESSES.

Although it is no longer necessary to set init .ora parameter AQ TM PROCESSES,
it is still supported. If you do set it (up to a maximum of 10), then QMNC still
autotunes the number of processes. But you are guaranteed at least the set number
of processes for persistent queues. Processes for buffered queues and other Oracle
Streams tasks, however, are not affected by this parameter.

Note: Oracle strongly recommends that you do NOT set AQ TM
PROCESSES = 0. If you are using Oracle Streams, setting this
parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

Oracle Internet Directory

Oracle Internet Directory is a native LDAPv3 directory service built on Oracle
Database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for
many types of networked devices. You can look up enterprise-wide queuing
information—queues, subscriptions, and events—from one location, the Oracle
Internet Directory. Refer to the Oracle Internet Directory Administrator's Guide for
more information.

Oracle Enterprise Manager Integration
You can use Oracle Enterprise Manager to do the following:

= Create and manage queues, queue tables, propagation schedules, and
transformations

= Monitor your Oracle Streams AQ environment using its topology at the
database and queue levels, and by viewing queue errors and queue and session
statistics

Introducing Oracle Streams AQ 1-29

Oracle Streams AQ Features

See Also: "Oracle Enterprise Manager Support" on page 5-10

SQL Access

Messages are placed in normal rows in a database table, and so can be queried
using standard SQL. This means that you can use SQL to access the message
properties, the message history, and the payload. With SQL access you can also do
auditing and tracking. All available SQL technology, such as indexes, can be used to
optimize access to messages.

Note: Oracle Streams AQ does not support data manipulation
language (DML) operations on a queue table or an associated
index-organized table (IOT), if any. The only supported means of
modifying queue tables is through the supplied APIs. Queue tables
and IOTs can become inconsistent and therefore effectively ruined,
if DML operations are performed on them.

Support for Statistics Views
Basic statistics about queues are available using the GV$AQ view.

Structured and XMLType Payloads

You can use object types to structure and manage message payloads. Relational
database systems in general have a richer typing system than messaging systems.
Because Oracle Database is an object-relational database system, it supports
traditional relational and user-defined types. Many powerful features are enabled
as a result of having strongly typed content, such as content whose format is
defined by an external type system. These include:

= Content-based routing

Oracle Streams AQ can examine the content and automatically route the
message to another queue based on the content.

= Content-based subscription

A publish and subscribe system is built on top of a messaging system so that
you can create subscriptions based on content.

s Querying

The ability to run queries on the content of the message enables message
warehousing.

1-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

You can create queues that use the new opaque type, XMLType . These queues can
be used to transmit and store messages that are XML documents. Using XMLType,
you can do the following:

= Store any type of message in a queue
= Store documents internally as CLOB objects
= Store more than one type of payload in a queue

s Query XMLType columns using the operators ExistsNode () and
SchemaMatch ()

= Specify the operators in subscriber rules or dequeue conditions

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Streams AQ stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and
retention for messages destined for local or remote receivers. The information
contains the enqueue and dequeue times and the identification of the transaction
that executed each request. This allows users to keep a history of relevant messages.
The history can be used for tracking, data warehouse, and data mining operations,
as well as specific auditing functions.

Tracking and Event Journals

If messages are retained, then they can be related to each other. For example, if a
message m2 is produced as a result of the consumption of message m1, then ml is
related to m2. This allows users to track sequences of related messages. These
sequences represent event journals, which are often constructed by applications.
Oracle Streams AQ is designed to let applications create event journals
automatically.

When an online order is placed, multiple messages are generated by the various
applications involved in processing the order. Oracle Streams AQ offers features to
track interrelated messages independent of the applications that generated them.
You can determine who enqueued and dequeued messages, who the users are, and
who did what operations.

Introducing Oracle Streams AQ 1-31

Oracle Streams AQ Features

With Oracle Streams AQ tracking features, you can use SQL SELECT and JOIN
statements to get order information from AQ$queuetablename and the views
ENQ TRAN ID,DEQ TRAN ID,USER_DATA (the payload), CORR ID, and MSG ID.
These views contain the following data used for tracking:

» Transaction IDs from ENQ TRAN IDand DEQ TRAN ID, captured during
enqueuing and dequeuing.

= Correlation IDs from CORR_ID, part of the message properties

= USER_DATA message content that can be used for tracking

Queue-Level Access Control

The owner of an 8.1-compatible queue can grant or revoke queue-level privileges on
the queue. Database administrators can grant or revoke new Oracle Streams AQ
system-level privileges to any database user. Database administrators can also make
any database user an Oracle Streams AQ administrator.

Nonpersistent Queues

Oracle Streams AQ can deliver nonpersistent messages asynchronously to
subscribers. These messages can be event-driven and do not persist beyond the
failure of the system (or instance). Oracle Streams AQ supports persistent and
nonpersistent messages with a common API.

Support for Oracle Real Application Clusters

An application can specify the instance affinity for a queue table. When Oracle
Streams AQ is used with Real Application Clusters and multiple instances, this
information is used to partition the queue tables between instances for
queue-monitor scheduling. The queue table is monitored by the queue monitors of
the instance specified by the user. If an instance affinity is not specified, then the
queue tables are arbitrarily partitioned among the available instances. There can be
pinging between the application accessing the queue table and the queue monitor
monitoring it. Specifying the instance affinity does not prevent the application from
accessing the queue table and its queues from other instances.

This feature prevents pinging between queue monitors and Oracle Streams AQ
propagation jobs running in different instances. If compatibility is set to Oracle8i
release 8.1.5 or higher, then an instance affinity (primary and secondary) can be
specified for a queue table. When Oracle Streams AQ is used with Real Application
Clusters and multiple instances, this information is used to partition the queue
tables between instances for queue-monitor scheduling as well as for propagation.
At any time, the queue table is affiliated to one instance. In the absence of an

1-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Features

explicitly specified affinity, any available instance is made the owner of the queue
table. If the owner of the queue table is terminated, then the secondary instance or
some available instance takes over the ownership for the queue table.

Nonrepudiation and the AQ$ QueueTableName View

Oracle Streams AQ maintains the entire history of information about a message
along with the message itself. You can look up history information by using the
AQ$QueueTableName view. This information serves as the proof of sending and
receiving of messages and can be used for nonrepudiation of the sender and
nonrepudiation of the receiver.

See Also: Chapter 9, "Oracle Streams AQ Administrative
Interface: Views" for more information about the
AQSQueueTableName view
The following information is kept at enqueue for nonrepudiation of the enqueuer:
s Oracle Streams AQ agent doing the enqueue
= Database user doing the enqueue
= Enqueue time
» Transaction ID of the transaction doing the enqueue
The following information is kept at dequeue for nonrepudiation of the dequeuer:
s Oracle Streams AQ agent doing dequeue
= Database user doing dequeue
= Dequeue time
= Transaction ID of the transaction doing dequeue

After propagation, the Original Msgid field in the destination queue of
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for nonrepudiation of the
dequeuer of propagated messages.

Stronger nonrepudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature
of the dequeuer at the time of dequeue.

Introducing Oracle Streams AQ 1-33

Oracle Streams AQ Demos

Oracle Streams AQ Demos

The following demos can be found in the SORACLE_HOME /rdbms/demo directory.
Refer to agxmlreadme. txt and agjmsreadme. txt in the demo directory for
more information.

Table 1-1 Oracle Streams AQ Demos

Demo and Locations Topic

agjmsdemo01l.java Enqueue text messages and dequeue based on message
properties

agjmsdemo02 . java Message Listener demo

agjmsdemo03 . java Message Listener demo

agjmsdemo04 . java Oracle Type Payload - Dequeue on payload content
agjmsdemo05.java Example of the QueueBrowser

agjmsdemo06 . java Schedule propagation between queues in the database

agjmsdmo. sqgl Set up Oracle Streams AQ JMS demos

agjmsREADME . txt Describes the Oracle Streams AQ Java API and JMS demos

agorademo01l.java Enqueue and dequeue RAW messages

agorademo02 . java Enqueue and dequeue object type messages using the Custom
Datum interface

agoradmo.sqgl Setup file for Oracle Streams AQ Java API demos

agxmlol.xml AQXmlSend—Enqueue to Oracle object type single- consumer
queue with piggyback commit

agxmlo2.xml AQXmIReceive—Dequeue from Oracle object type
single-consumer queue with piggyback commit

agxmlo3.xml AQXmIPublish—Enqueue to Oracle object type (with LOB)
multiconsumer queue

agxmlo4 .xml AQXmIReceive—Dequeue from Oracle object type multi-
consumer queue

agxml05.xml AQXmICommit—Commit previous operation

agxmlo6.xml AQXmlSend—Enqueue to JMS Text single-consumer queue with
piggyback commit

agxml07.xml AQXmIReceive—Dequeue from JMS Text single-consumer queue
with piggyback commit

1-34 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ Demos

Table 1-1 (Cont.) Oracle Streams AQ Demos

Demo and Locations Topic

agxmlos.xml AQXmIPublish—Enqueue JMS MAP message with recipient into
multiconsumer queue

agxmlo9.xml AQXmIReceive—Dequeue JMS MAP message from
multiconsumer queue

agxmll0.xml AQXmIRollback—Roll back previous operation

agxmlhtp.sqgl HTTP Propagation

agxmlREADME . txt Describes the Internet access demos

AQDemoServlet.java Servlet to post Oracle Streams AQ XML files (for Jserv)

AQPropServlet.java Servlet for Oracle Streams AQ HTTP propagation

agdemo00.sqgl Create users, message types, tables, and so on

agdemo01l.sqgl Set up queue_tables, queues, and subscribers

agdemo02.sql Enqueue messages

agdemo03.sqgl Install dequeue procedures

agdemo04 .sqgl Perform blocking dequeue

agdemo05.sqgl Perform listen for multiple agents

agdemo06 .sqgl Clean up users, queue_tables, queues, subscribers (cleanup
script)

agdemo07.sqgl Enqueue /dequeue to queue of type ADT with XMLType

agdemo08.sqgl Notification

agdemo09.sqgl Set up queues and subscribers (for OCI array demos also)

agdemol0.sql Array enqueue 10 messages

agdemoll.sqgl Array dequeue 10 messages

agdemol2.sql Clean up queues and subscribers (for OCI array demos also)

ociagdemo00.c Enqueue messages

ociagdemoOl.c Perform blocking dequeue

ociagdemo02.c Perform listen for multiple agents

ociagarrayenqg.c Array enqueue 10 messages

ociagarraydeq.c Array dequeue 10 messages

Introducing Oracle Streams AQ 1-35

Oracle Streams AQ Demos

1-36 Oracle Streams Advanced Queuing User’s Guide and Reference

2

Getting Started with Oracle Streams AQ

This chapter describes the prerequisites for using Oracle Streams Advanced
Queuing (AQ). It discusses planning and design issues and includes several
frequently asked questions about Oracle Streams AQ.

This chapter contains the following topics:
= Oracle Streams AQ Prerequisites

s Oracle Streams AQ by Example

= Frequently Asked Questions

Getting Started with Oracle Streams AQ 2-1

Oracle Streams AQ Prerequisites

Oracle Streams AQ Prerequisites

Oracle Streams AQ prerequisites depend on:

Your operating environment and programing languages
How structured your data is
Messaging Requirements

What your source and target systems are, in other words where you are sending
your messages to and from.

Oracle Streams AQ is provided with Oracle Database 10g.

Oracle Streams AQ by Example

This section provides examples of Oracle Streams Advanced Queuing (AQ)
operations using different programmatic environments.

This section contains these topics:

Creating Oracle Streams AQ Queues and Queue Tables
Enqueuing and Dequeuing Oracle Streams AQ Messages
Oracle Streams AQ Propagation

Dropping Oracle Streams AQ Objects

Revoking Roles and Privileges

Deploying Oracle Streams AQ with XA

Oracle Streams AQ and Memory Usage

2-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Creating Oracle Streams AQ Queues and Queue Tables
You must set up the following data structures for certain examples to work:

CONNECT system/manager;

DROP USER agadm CASCADE;

GRANT CONNECT, RESOURCE TO agadm;
CREATE USER agadm IDENTIFIED BY agadm;
GRANT EXECUTE ON DBMS AQADM TO agadm;
GRANT Aqg_administrator role TO agadm;
DROP USER ag CASCADE;

CREATE USER ag IDENTIFIED BY aq;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_ag TO ag;

The following examples illustrate how to create Oracle Streams AQ queues and
queue tables:

s Creating a Queue Table and Queue of Object Type

s Creating a Queue Table and Queue of Raw Type

= Creating a Prioritized Message Queue Table and Queue

s Creating a Multiconsumer Queue Table and Queue

s Creating a Queue to Demonstrate Propagation

= Setting Up Java Oracle Streams AQ Examples

s Creating a Java Oracle Streams AQ Session for User 'agjava'

s Creating a Queue Table and Queue Using Java

s Creating a Queue and Starting Enqueue or Dequeue Using Java

s Creating a Multiconsumer Queue and Adding Subscribers Using Java

Example 2-1 Creating a Queue Table and Queue of Object Type

/* Creating a message type: */

CREATE type ag.Message typ as object (
subject VARCHAR? (30)

text VARCHAR2 (80)) ;

/* Creating a object type queue table and queue: */
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

queue_table => 'ag.objmsgs80 gtab',

queue payload type => 'ag.Message typ');

Getting Started with Oracle Streams AQ 2-3

Oracle Streams AQ by Example

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue_name => 'msg_queue',
queue_table => 'aqg.objmsgs80 gtab');

EXECUTE DBMS_AQADM.START QUEUE (
queue_name => 'msg_queue');

Example 2-2 Creating a Queue Table and Queue of Raw Type

/* Creating a RAW type queue table and queue: */
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.RawMsgs_gtab',

queue payload type => 'RAW');

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue_name => 'raw_msg_queue',
queue_table => 'aqg.RawMsgs_gtab');

EXECUTE DBMS_AQADM.START QUEUE (
queue_name => 'raw_msg_queue');

Example 2-3 Creating a Prioritized Message Queue Table and Queue

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'aqg.priority msg',
sort list => 'PRIORITY,ENQ TIME',
queue payload type => 'ag.Message typ');

EXECUTE DBMS AQADM.CREATE QUEUE (
gueue_name => 'priority msg queue',
queue_table => 'aqg.priority msg');

EXECUTE DBMS_AQADM.START QUEUE (
gueue_name => 'priority msg queue');

Example 2-4 Creating a Multiconsumer Queue Table and Queue

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'aqg.MultiConsumerMsgs gtab',
multiple consumers => TRUE,

queue payload type => 'ag.Message typ');

EXECUTE DBMS_AQADM.CREATE QUEUE (

queue_name => 'msg_queue multiple',
queue_table => 'aqg.MultiConsumerMsgs gtab');

2-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

EXECUTE DBMS AQADM.START QUEUE (
gueue_name => 'msg_queue multiple');

Example 2-5 Creating a Queue to Demonstrate Propagation

EXECUTE DBMS AQADM.CREATE QUEUE (
queue_name => 'another msg queue',
queue_table => 'aqg.MultiConsumerMsgs gtab');

EXECUTE DBMS_AQADM.START QUEUE (
queue name => 'another msg queue');

Example 2-6 Setting Up Java Oracle Streams AQ Examples
CONNECT system/manager

DROP USER agjava CASCADE;

GRANT CONNECT, RESOURCE, AQ ADMINISTRATOR ROLE TO agjava IDENTIFIED BY agjava;
GRANT EXECUTE ON DBMS AQADM TO agjava;

GRANT EXECUTE ON DBMS AQ TO agjava;

CONNECT agjava/agjava

/* Set up main class from which we will call subsequent examples and handle
exceptions: */

import java.sql.*;

import oracle.AQ.*;

public class test _agjava

{

public static void main(String args[])

{

AQSession ag_sess = null;
try

{

ag_sess = createSession(args) ;

/* now run the test: */
runTest (ag_sess) ;

}

catch (Exception ex)

{

System.out.println("Exception-1: " + ex);
ex.printStackTrace() ;

Getting Started with Oracle Streams AQ 2-5

Oracle Streams AQ by Example

Example 2-7 Creating a Java Oracle Streams AQ Session for User ‘aqgjava’

public static AQSession createSession(String args[])
Connection db_conn;
AQSession ag_sess = null;

try

{

Class.forName ("oracle.jdbc.driver.OracleDriver") ;

/* your actual hostname, port number, and SID will
vary from what follows. Here we use 'dlsun736,' '5521,'
and 'test,' respectively: */

db_conn =
DriverManager.getConnection (
"jdbc:oracle:thin:@dlsun736:5521:test",
"agjava", "aqjava");

System.out.println("JDBC Connection opened ");
db conn.setAutoCommit (false) ;

/* Load the Oracle8i AQ driver: */
Class.forName ("oracle.AQ.AQOracleDriver") ;

/* Creating an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db conn) ;
System.out.println("Successfully created AQSession ");

}

catch (Exception ex)

{

System.out.println("Exception: " + ex);
ex.printStackTrace() ;

}

return ag_sess;

2-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Example 2-8 Creating a Queue Table and Queue Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTableProperty gtable prop;
AQQueueProperty queue_prop;
AQQueueTable g _table;
AQQueue queue;

/* Creating a AQQueueTableProperty object (payload type - RAW): */
gtable prop = new AQQueueTableProperty ("RAW") ;

/* Creating a queue table called ag_tablel in agjava schema: */
g table = ag_sess.createQueueTable ("agjava", "aq_tablel", gtable prop);
System.out.println("Successfully created ag tablel in agjava schema");

/* Creating a new AQQueueProperty object */
queue prop = new AQQueueProperty () ;

/* Creating a queue called ag_queuel in aq tablel: */
queue = ag_sess.createQueue (q_table, "ag_queuel", queue_prop);
System.out.println("Successfully created ag _queuel in aq tablel");

}

/* Get a handle to an existing queue table and queue: */
public static void runTest (AQSession ag sess) throws AQException
{

AQQueueTable g _table;

AQQueue queue;

/* Get a handle to queue table - ag_tablel in agjava schema: */
g table = ag_sess.getQueueTable ("agjava", "aq tablel");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - ag queuel in agjava schema: */
queue = ag_sess.getQueue ("agjava", "aq queuel");
System.out.println("Successful getQueue");

Example 2-9 Creating a Queue and Starting Enqueue or Dequeue Using Java

{

AQQueueTableProperty gtable prop;

AQQueueProperty queue_prop;
AQQueueTable g _table;
AQQueue queue;

Getting Started with Oracle Streams AQ 2-7

Oracle Streams AQ by Example

/* Creating a AQQueueTable property object (payload type - RAW): */
gtable prop = new AQQueueTableProperty ("RAW") ;
gtable prop.setCompatible("8.1");

/* Creating a queue table called agq_table3 in agjava schema: */
g table = aq_sess.createQueueTable ("agjava", "aq_ table3", gtable prop);
System.out.println("Successful createQueueTable");

/* Creating a new AQQueueProperty object: */
queue _prop = new AQQueueProperty();

/* Creating a queue called ag queue3 in ag table3: */
queue = ag sess.createQueue (g table, "ag queue3", queue prop);
System.out.println("Successful createQueue");

/* Enable enqueue/dequeue on this queue: */
queue.start () ;
System.out.println("Successful start queue");

/* Grant enqueue any privilege on this queue to user scott: */
queue.grantQueuePrivilege ("ENQUEUE", "scott");
System.out.println("Successful grantQueuePrivilege");

Example 2-10 Creating a Multiconsumer Queue and Adding Subscribers Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTableProperty gtable prop;

AQQueueProperty queue_prop;
AQQueueTable g _table;
AQQueue queue;

AQAgent subsl, subs2;

/* Creating a AQQueueTable property object (payload type - RAW): */
gtable prop = new AQQueueTableProperty ("RAW") ;
System.out.println("Successful setCompatible");

/* Set multiconsumer flag to true: */
gtable prop.setMultiConsumer (true) ;

/* Creating a queue table called aq table4 in agjava schema: */

g table = ag_sess.createQueueTable ("agjava", "aqg_table4", gtable prop);
System.out.println("Successful createQueueTable");

2-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Creating a new AQQueueProperty object: */

queue _prop = new AQQueueProperty();

/* Creating a queue called ag_queue4 in ag table4 */

queue = ag sess.createQueue (g table, "ag queue4", queue prop);
System.out.println("Successful createQueue");

/* Enable enqueue/dequeue on this queue: */
queue.start () ;
System.out.println("Successful start queue");

/* Add subscribers to this queue: */
subsl = new AQAgent ("GREEN", null, 0);
subs2 = new AQAgent ("BLUE", null, 0);

queue.addSubscriber (subsl, null); /* no rule */
System.out.println("Successful addSubscriber 1");

queue.addSubscriber (subs2, "priority < 2"); /* with rule */
System.out.println("Successful addSubscriber 2");

Enqueuing and Dequeuing Oracle Streams AQ Messages

You must set up data structures similar to the following for certain examples to
work:

$ cat >> message.typ

case=lower

type ag.message_typ

$

$ ott userid=aqg/ag intyp=message.typ outtyp=message o.typ \ code=c hfile=demo.h

$

$ proc intyp=message o.typ iname=program name \
config=config file SQLCHECK=SEMANTICS userid=ag/ag

The following examples illustrate how to enqueue and dequeue Oracle Streams AQ
messages:

» Enqueuing and Dequeuing Object Type Messages Using PL/SQL

» Enqueuing and Dequeuing Object Type Messages Using Pro*C/C++

» Enqueuing and Dequeuing Object Type Messages Using OCI

Getting Started with Oracle Streams AQ 2-9

Oracle Streams AQ by Example

» Enqueuing and Dequeuing Object Type Messages (CustomDatum interface)
Using Java

» Enqueuing and Dequeuing Object Type Messages (using SQLData interface)
Using Java

» Enqueuing and Dequeuing RAW Type Messages Using PL/SQL

» Enqueuing and Dequeuing RAW Type Messages Using Pro*C/C++
» Enqueuing and Dequeuing RAW Type Messages Using OCI

= Enqueuing RAW Messages Using Java

s Dequeuing Messages Using Java

= Dequeuing Messages in Browse Mode Using Java

= Enqueuing and Dequeuing Messages by Priority Using PL/SQL

= Enqueuing Messages with Priority Using Java

= Dequeuing Messages after Preview by Criterion Using PL/SQL

» Enqueuing and Dequeuing Messages with Time Delay and Expiration Using
PL/SQL

» Enqueuing and Dequeuing Messages by Correlation and Message ID Using
Pro*C/C++

» Enqueuing and Dequeuing Messages by Correlation and Message ID Using
ocCI

» Enqueuing and Dequeuing Messages to/from a Multiconsumer Queue Using
PL/SQL

» Enqueuing and Dequeuing Messages to/from a Multiconsumer Queue using
ocCI

» Enqueuing and Dequeuing Messages Using Message Grouping Using PL/SQL

» Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using PL/SQL

» Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java

2-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Example 2-11 Enqueuing and Dequeuing Object Type Messages Using PL/SQL

To enqueue a single message without any other parameters specify the queue name

and the payload.

/* Enqueue to msg_queue: */
DECLARE
enqueue_options

dbms_ag.enqueue options t;
dbms_ag.message properties t;

message properties

message handle RAW(16) ;

message ag.message_typ;
BEGIN

message := message typ ('NORMAL MESSAGE',

'enqueued to msg queue first.'

dbms_ag.enqueue (queue_name =>
enqueue options
message properties
payload
msgid

=>
=>
=>

=>

COMMIT;
END;

/* Dequeue from msg_queue: */
DECLARE
dequeue_options

)i

'msg_queue',
enqueue_options,
message properties,
message,

message handle) ;

dbms_aqg.dequeue options t;

message properties dbms ag.message properties t;
message handle RAW(16) ;
message ag.message_typ;
BEGIN
DBMS_AQ.DEQUEUE (queue_name => 'msg_queue',
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);
COMMIT;
END;

Getting Started with Oracle Streams AQ 2-11

Oracle Streams AQ by Example

Example 2-12 Enqueuing and Dequeuing Object Type Messages Using Pro*C/C++

#include <stdio.h»>

#include <string.h>

#include <sqglca.h>

#include <sgl2oci.h>

/* The header file generated by processing
object type 'ag.Message typ': */

#include ‘"pceg.h"

void sql error(msg)

char *msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;

printf ("$s\n", msg);

printf("\n% .800s \n", sqlca.sglerrm.sqglerrmc) ;
EXEC SQL ROLLBACK WORK RELEASE;

exit (1) ;

}

main()

{

Message typ *message = (Message typ*)0; /* payload */
message type ind *imsg; /*payload indicator*/
char user [60]="ag/AQ"; /* user logon password */
char subject[30]; /* components of the */

char txt [80]; /* payload type */

/* ENQUEUE and DEQUEUE to an OBJECT QUEUE */

/* Connect to database: */
EXEC SQL CONNECT :user;

/* On an oracle error print the error number :*/
EXEC SQL WHENEVER SQLERROR DO sql error("Oracle Error :");

/* Allocate memory for the host variable from the object cache : */
EXEC SQL ALLOCATE :message;

/* ENQUEUE */

strcpy (subject, "NORMAL ENQUEUE") ;
strcpy (txt, "The Enqueue was done through PLSQL embedded in PROC") ;

/* Initialize the components of message : */
EXEC SQL OBJECT SET subject, text OF :message TO :subject, :txt;

2-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE

DECLARE

message properties dbms_ag.message properties t;
enqueue_options dbms_ag.enqueue options t;
msgid RAW(16) ;

BEGIN

/* Bind the host variable 'message' to the payload: */
doms_aq.enqueue (queue_name => 'msg_queue',

message properties => message properties,
enqueue_options => enqueue options,

payload => :message:imsg, /* indicator must be specified */
msgid => msgid) ;

END;

END-EXEC;

/* Commit work */
EXEC SQL COMMIT;

printf ("Enqueued Message \n");
printf ("Subject :%s\n",subject);
printf ("Text :$s\n", txt) ;

/* Dequeue */

/* Embedded PLSQL call to the AQ dequeue procedure : */
EXEC SQL EXECUTE

DECLARE

message properties dbms ag.message properties t;
dequeue_options dbms_ag.dequeue_options t;

msgid RAW(16) ;

BEGIN

/* Return the payload into the host variable 'message': */

dbms_ag.dequeue (qQueue_name => 'msg_queue',
message properties => message properties,
dequeue options => dequeue options,
payload => :message,
msgid => msgid) ;
END;
END-EXEC;

/* Commit work :*/
EXEC SQL COMMIT;

/* Extract the components of message: */
EXEC SQL OBJECT GET SUBJECT,TEXT FROM :message INTO :subject, :txt;

Getting Started with Oracle Streams AQ 2-13

Oracle Streams AQ by Example

printf ("Dequeued Message \n");
printf ("Subject :%s\n",subject);
printf ("Text :$s\n", txt) ;

}

Example 2-13 Enqueuing and Dequeuing Object Type Messages Using OCI

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message
OCIString *subject;
OCIString *data;

typedef struct message message;

struct null message

{
OCIInd null adt;
OCIInd null subject;
OCIInd null data;

bi

typedef struct null message null message;

int main()
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISveCtx *svchp;
dvoid *tmp;
OCIType *mesg tdo = (OCIType *) 0;
message msg;
null message nmsg;
message *mesg = &msg;
null message *nmesg = &nmsg;
message *degmesg = (message *)0;
null message *ndegmesg = (null message *)0;
OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,

(dvoid * (*)()) 0, (void (*)()) 0);

2-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit (&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

OCILogon (envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain TDO of message typ */
OCITypeByName (envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
(CONST text *)"MESSAGE TYP", strlen("MESSAGE TYP"),
(text *)0, 0, OCI DURATION SESSION, OCI TYPEGET ALL, &mesg tdo);

/* Prepare the message payload */

mesg->subject = (OCIString *)O0;

mesg->data = (OCIString *)O0;

OCIStringAssignText (envhp, errhp,
(CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),
&mesg->subject) ;

OCIStringAssignText (envhp, errhp,
(CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
&mesg->data) ;

nmesg->null_adt = nmesg->null subject = nmesg->null data = OCI_IND NOTNULL;

/* Enqueue into the msg _queue */
OCIAQEng (svchp, errhp, (CONST text *)"msg queue", 0, O,
mesg tdo, (dvoid **)&mesg, (dvoid **)s&nmesg, 0, 0);

OCITransCommit (svchp, errhp, (ub4) 0);

/* Dequeue from the msg queue */

Getting Started with Oracle Streams AQ 2-15

Oracle Streams AQ by Example

OCIAQDeq (svchp, errhp, (CONST text *)'"msg queue", 0, O,

mesg tdo, (dvoid **)°mesg, (dvoid **)&ndeqmesg, 0,
printf ("Subject: %s\n", OCIStringPtr (envhp, deqmesg->subject));
printf ("Text: %s\n", OCIStringPtr (envhp, deqmesg->data));
OCITransCommit (svchp, errhp, (ub4) 0);

0);

Example 2-14 Enqueuing and Dequeuing Object Type Messages (CustomDatum
interface) Using Java

To enqueue and dequeue object type messages follow the lettered steps:
a. Create the SQL type for the Queue Payload

connect aquser/aquser

create type ADDRESS as object (street VARCHAR (30), city VARCHAR(30));
create type PERSON as object (name VARCHAR (30), home ADDRESS) ;

b. Generate the java class that maps to the PERSON ADT and implements the
CustomDatum interface (using Jpublisher tool)

jpub -user=aquser/aquser -sql=ADDRESS,PERSON -case=mixed -usertypes=oracle
-methods=false -compatible=CustomDatum

This creates two classes, PERSON . java and ADDRESS . java, corresponding to the
PERSON and ADDRESS ADT types.

c. Create the queue table and queue with ADT payload
d. Enqueue and dequeue messages containing object payloads

public static void AQObjectPayloadTest (AQSession ag sess)
throws AQException, SQLException, ClassNotFoundException
{

Connection db_conn = null;

AQQueue queue = null;

AQMessage message = null;
AQObjectPayload payload = null;
AQEnqueueOption eq option = null;
AQDequeueOption dg_option = null;

PERSON pers = null;

PERSON pers2= null;

ADDRESS addr = null;

db conn = ((AQOracleSession)aq sess) .getDBConnection() ;
queue = ag_sess.getQueue ("aquser", "test queue2");

2-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Enable enqueue/dequeue on this queue */
queue.start () ;

/* Enqueue a message in test queue2 */
message = queue.createMessage () ;

pers = new PERSON ()
pers.setName ("John"
addr = new ADDRESS (
addr.setStreet ("500 Easy Street");
addr.setCity("San Francisco");
pers.setHome (addr) ;

)
)

I

payload = message.getObjectPayload() ;
payload.setPayloadData (pers) ;
eq_option = new AQEnqueueOption();

/* Enqueue a message into test queue2 */
queue.enqueue (eq_option, message);

db_conn.commit () ;

/* Dequeue a message from test queue2 */
dg_option = new AQDequeueOption();
message = ((AQOracleQueue)queue).dequeue (dg option, PERSON.getFactory());

payload = message.getObjectPayload() ;
pers2 = (PERSON) payload.getPayloadData() ;

System.out.println("Object data retrieved: [PERSON]");
System.out.println("Name: " + pers2.getName());
System.out.println("Address ");

System.out.println("Street: " + pers2.getHome () .getStreet());
System.out.println("City: " + pers2.getHome () .getCity());

db_conn.commit () ;

Getting Started with Oracle Streams AQ 2-17

Oracle Streams AQ by Example

Example 2-15 Enqueuing and Dequeuing Object Type Messages (using SQLData
interface) Using Java

To enqueue and dequeue object type messages follow the lettered steps:
a. Create the SQL type for the Queue Payload.

connect aquser/aquser
create type EMPLOYEE as object (empname VARCHAR (50), empno INTEGER);

b. Create a java class that maps to the EMPLOYEE ADT and implements the
SQLData interface. This class can also be generated using JPublisher using the
following syntax.

jpub -user=aquser/aquser -sql=EMPLOYEE -case=mixed -usertypes=jdbc
-methods=false

import java.sql.*;
import oracle.jdbc2.*;

public class Employee implements SQLData
{
private String sql type;
public String empName;
public int empNo;
public Employee ()
{}
public Employee (String sqgl type, String empName, int empNo)
{
this.sql type = sql type;
this.empName = empName;
this.empNo = empNo;

}

////// implements SQLData //////
public String getSQLTypeName () throws SQLException
{ return sql type;
}
public void readSQL (SQLInput stream, String typeName)
throws SQLException
{
sql_type = typeName;
empName = stream.readString();
empNo = stream.readInt () ;

}

public void writeSQL(SQLOutput stream)

2-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

throws SQLException

{

stream.writeString (empName) ;
stream.writeInt (empNo) ;

}

public String toString()

{

String ret str = "";

ret str += "[Employeel\n";
ret _str += "Name: " + empName + "\n";
ret str += "Number: " + empNo + "\n";

return ret_str;

}
}

c. Create the queue table and queue with ADT payload.

public static void createEmployeeObjQueue (AQSession ag sess)
throws AQException
{

AQQueueTableProperty gt prop = null;
AQQueueProperty g _prop = null;
AQQueueTable g table = null;
AQQueue queue = null;

/* Message payload type is aquser.EMPLOYEE */
gt _prop = new AQQueueTableProperty ("AQUSER.EMPLOYEE") ;
gt _prop.setComment ("queue-tablel");

/* Creating aQTablel */
System.out.println("\nCreate QueueTable: [agtablel]l");
g table = ag_sess.createQueueTable ("aquser", "agtablel", gt prop);

/* Create test_queuel */
g prop = new AQQueueProperty();

queue = g table.createQueue("test queuel", g prop);

/* Enable enqueue/dequeue on this queue */
queue.start () ;

Getting Started with Oracle Streams AQ 2-19

Oracle Streams AQ by Example

d. Enqueue and dequeue messages containing object payloads.

public static void AQObjectPayloadTest2 (AQSession ag_sess)
throws AQException, SQLException, ClassNotFoundException
{

Connection db_conn = null;

AQQueue queue = null;

AQMessage message = null;

AQObjectPayload payload = null;

AQEnqueueOption eq option = null;

AQDequeueOption dg_option = null;

Employee emp = null;

Employee emp2 = null;

Hashtable map;

db conn = ((AQOracleSession)aq_ sess) .getDBConnection() ;

/* Get the Queue object */
queue = ag_sess.getQueue ("aquser", "test queuel");

/* Register Employee class (corresponding to EMPLOYEE Adt)
* in the connection type map
*/
try
{
map = (java.util.Hashtable) (((OracleConnection)db conn).getTypeMap());
map.put ("AQUSER.EMPLOYEE", Class.forName ("Employee")) ;

}

catch(Exception ex)

{

System.out.println("Error registering type: " + ex);

}

/* Enqueue a message in test queuel */
message = queue.createMessage () ;
emp = new Employee ("AQUSER.EMPLOYEE", "Mark", 1007);

/* Set the object payload */
payload = message.getObjectPayload() ;
payload.setPayloadData (emp) ;

/* Enqueue a message into test queuel*/
eq_option = new AQEnqueueOption();
queue.enqueue (eq_option, message);

db conn.commit () ;

2-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Dequeue a message from test queuel */
dg_option = new AQDequeueOption();

message = queue.dequeue (dg option, Class.forName ("Employee"));
payload = message.getObjectPayload() ;

emp2 = (Employee) payload.getPayloadData() ;
System.out.println("\nObject data retrieved: [EMPLOYEE]");
System.out.println("Name : " + emp2.empName) ;
System.out.println("EmpId : " + emp2.empNo) ;

db_conn.commit () ;

Example 2-16 Enqueuing and Dequeuing RAW Type Messages Using PL/SQL

DECLARE
enqueue options dbms_ag.enqueue options t;
message properties dbms ag.message properties t;
message handle RAW(16) ;
message RAW (4096) ;
BEGIN
message := HEXTORAW(RPAD('FF',4095,'FF'));
DBMS_AQ.ENQUEUE (queue name => 'raw _msg queue',
enqueue_options => enqueue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
COMMIT;
END;

/* Dequeue from raw msg queue: */
/* Dequeue from raw msg queue: */

DECLARE
dequeue options DBMS AQ.dequeue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message RAW (4096) ;

BEGIN
DBMS_AQ.DEQUEUE (queue name => 'raw _msg queue',

dequeue_options => dequeue options,

Getting Started with Oracle Streams AQ 2-21

Oracle Streams AQ by Example

message properties => message properties,
payload => message,
msgid => message handle) ;

COMMIT;
END;

You must set up data structures similar to the following for certain examples to
work:

$ cat >> message.typ

case=lower

type ag.message typ

$

$ ott userid=ag/aqg intyp=message.typ outtyp=message o.typ \ code=c hfile=demo.h
$

$ proc intyp=message o.typ iname=program name \

config=config file SQLCHECK=SEMANTICS userid=aqg/ag

Example 2-17 Enqueuing and Dequeuing RAW Type Messages Using Pro*C/C++

#include <stdio.h»>
#include <string.h>
#include <sqglca.h>
#include <sgl2oci.h>

void sql_error (msg)
char *msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf ("$s\n", msg);
printf("\n% .800s \n", sqglca.sqglerrm.sqglerrmc);

EXEC SQL ROLLBACK WORK RELEASE;

exit (1) ;

}

main()

{

OCIEnv *oeh; /* OCI Env handle */

OCIError *err; /* OCI Err handle */

OCIRaw *message= (OCIRaw*)0; /* payload */

ubl message txt[100]; /* data for payload */
char user[60]="aqg/AQ"; /* user logon password */
int status; /* returns status of the OCI call */

2-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Enqueue and dequeue to a RAW queue */

/* Connect to database: */
EXEC SQL CONNECT :user;

/* On an oracle error print the error number: */
EXEC SQL WHENEVER SQLERROR DO sql error("Oracle Error :");

/* Get the OCI Env handle: */

if (SQLEnVGet(SQL_SINGLE_RCTX, &oeh) = OCI_SUCCESS)
{

printf (" error in SQLEnvGet \n");

exit (1) ;

}

/* Get the OCI Error handle: */

if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE ERROR, (ub4)0, (dvoid **)0))

{

printf (" error in OCIHandleAlloc %d \n", status);
exit (1) ;

}

/* Enqueue */
/* The bytes to be put into the raw payload:*/
strcpy (message txt, "Enqueue to a Raw payload queue ");

/* Assign bytes to the OCIRaw pointer :

Memory must be allocated explicitly to OCIRaw*: */

if (status=0CIRawAssignBytes (oeh, err, message txt, 100,
&message))

{

printf (" error in OCIRawAssignBytes %d \n", status);
exit (1) ;

}

/* Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE

DECLARE

message properties dbms_ag.message properties t;
enqueue options dbms_ag.enqueue options t;
msgid RAW(16) ;

BEGIN

/* Bind the host variable message to the raw payload: */
dbms_ag.enqueue (queue name => 'raw _msg queue',
message properties => message properties,

Getting Started with Oracle Streams AQ 2-23

Oracle Streams AQ by Example

enqueue_options => enqueue options,
payload => :message,

msgid => msgid) ;

END;

END-EXEC;

/* Commit work: */

EXEC SQL COMMIT;

/* Dequeue */
/* Embedded PLSQL call to the AQ dequeue procedure :*/
EXEC SQL EXECUTE

DECLARE

message properties dbms ag.message properties t;
dequeue_options dbms_ag.dequeue_options t;
msgid RAW (16) ;

BEGIN

/* Return the raw payload into the host variable 'message':*/
dbms_ag.dequeue (queue name => 'raw _msg_queue',

message properties => message properties,

dequeue options => dequeue options,

payload => :message,

msgid => msgid) ;

END;

END-EXEC;

/* Commit work: */

EXEC SQL COMMIT;

}

Example 2-18 Enqueuing and Dequeuing RAW Type Messages Using OCI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

int main()
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISveCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
char msg_text [100];
OCIRaw *mesg = (OCIRaw *)O0;

2-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

OCIRaw *degmesg = (OCIRaw *)O0;

0CIInd ind = 0;

dvoid *indptr = (dvoid *)&ind;

int i;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit (&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

OCILogon (envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain the TDO of the RAW data type */

OCITypeByName (envhp, errhp, svchp, (CONST text *)"AQADM", strlen("AQADM"),
(CONST text *)"RAW", strlen("RAW"),
(text *)0, 0, OCI DURATION SESSION, OCI TYPEGET ALL, &mesg tdo);

/* Prepare the message payload */
strcpy (msg text, "Enqueue to a RAW queue");
OCIRawAssignBytes (envhp, errhp, msg_text, strlen(msg text), &mesg);

/* Enqueue the message into raw msg_queue */

OCIAQEng (svchp, errhp, (CONST text *)"raw msg queue", 0, O,
mesg _tdo, (dvoid **)s&mesg, (dvoid **)&indptr, 0, 0);

OCITransCommit (svchp, errhp, (ub4) 0);

/* Dequeue the same message into C variable deqgmesg */

OCIAQDeq (svchp, errhp, (CONST text *)'"raw msg queue", 0, O,
mesg tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, 0, 0);

Getting Started with Oracle Streams AQ 2-25

Oracle Streams AQ by Example

}

OCITransCommit (svchp, errhp,

for (i = 0; 1 < OCIRawSize (envhp, deqgmesg); i++)

printf ("$c", *(OCIRawPtr (envhp, deqmesg) + 1i));
(ub4) 0);

Example 2-19 Enqueuing RAW Messages Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTable g table;

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQEnqueueOption eng option;

String test data = "new message";
byte[] b array;

Connection db conn;

db conn = ((AQOracleSession)aqg sess).getDBConnection() ;

/* Get a handle to queue table - aq table4 in agjava schema: */
g table = ag_sess.getQueueTable ("agjava", "aq table4");
System.out .println("Successful getQueueTable");

/* Get a handle to a queue - ag queue4 in aquser schema: */
queue = ag_sess.getQueue ("agjava", "ag_queue4");
System.out.println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage() ;

/* Get handle to the AQRawPayload object and populate it with raw data:

b array = test data.getBytes();

raw_payload = message.getRawPayload() ;

raw _payload.setStream(b _array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */

queue.enqueue (enq_option, message);

db conn.commit () ;

2-26 Oracle Streams Advanced Queuing User’s Guide and Reference

*/

Oracle Streams AQ by Example

Example 2-20 Dequeuing Messages Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTable g table;

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQEnqueueOption eng option;

String test data = "new message";
AQDequeueOption deq option;

bytel] b array;

Connection db conn;

db conn = ((AQOracleSession)aq sess).getDBConnection() ;

/* Get a handle to queue table - ag_table4 in agjava schema: */
g table = ag_sess.getQueueTable ("agjava", "aq table4");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - ag queue4 in aquser schema: */
queue = ag_sess.getQueue ("agjava", "ag_queue4");

System.out .println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage() ;

/* Get handle to the AQRawPayload object and populate it with raw data: */
b array = test data.getBytes();

raw_payload = message.getRawPayload() ;
raw_payload.setStream(b _array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue (enq_option, message);
System.out.println("Successful enqueue");

db conn.commit () ;

/* Creating a AQDequeueOption object with default options: */
deqg option = new AQDequeueOption();

Getting Started with Oracle Streams AQ 2-27

Oracle Streams AQ by Example

/* Dequeue a message: */
message = queue.dequeue (deq option);
System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload() ;

b array = raw payload.getBytes();

db conn.commit () ;

Example 2-21 Dequeuing Messages in Browse Mode Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTable g table;

AQQueueTable g _table;

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;
AQEnqueueOption eng_option;

String test data = "new message";
AQDequeueOption deq option;

byte] b array;

Connection db conn;

db conn = ((AQOracleSession)ag sess).getDBConnection();

/* Get a handle to queue table - aq table4 in agjava schema: */
g table = ag_sess.getQueueTable ("agjava", "aq table4");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - ag queue4 in aquser schema: */
queue = ag_sess.getQueue ("agjava", "ag _queue4");

System.out.println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data:
b array = test data.getBytes();

raw_payload = message.getRawPayload() ;

2-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

raw_payload.setStream(b array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue (enq option, message);
System.out.println("Successful enqueue");

db_conn.commit () ;

/* Creating a AQDequeueOption object with default options: */
deq option = new AQDequeueOption();

/* Set dequeue mode to BROWSE: */
deqg option.setDequeueMode (AQDequeueOption.DEQUEUE BROWSE) ;

/* Set wait time to 10 seconds: */
deq option.setWaitTime (10);

/* Dequeue a message: */
message = queue.dequeue (deq option) ;

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload () ;
b array = raw payload.getBytes () ;

String ret value = new String(b array);
System.out.println("Dequeued message: " + ret value);

db_conn.commit () ;

Example 2-22 Enqueuing and Dequeuing Messages by Priority Using PL/SQL

When two messages are enqueued with the same priority, the message which was
enqueued earlier is dequeued first. However, if two messages are of different
priorities, then the message with the lower value (higher priority) is dequeued first.

/* Enqueue two messages with priority 30 and 5: */
DECLARE

enqueue options dbms_ag.enqueue_options t;
message properties dbms ag.message properties t;
message handle RAW(16) ;

Getting Started with Oracle Streams AQ 2-29

Oracle Streams AQ by Example

message ag.message_typ;

BEGIN
message := message typ('PRIORITY MESSAGE',
'enqued at priority 30.');

message properties.priority := 30;

DBMS AQ.ENQUEUE (queue name => 'priority msg queue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

message := message typ('PRIORITY MESSAGE',
'Enqueued at priority 5.');

message properties.priority := 5;

DBMS_AQ.ENQUEUE (queue name => 'priority msg queue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

END;

/* Dequeue from priority queue: */

DECLARE
dequeue options DBMS AQ.dequeue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message ag.message_typ;
BEGIN
DBMS_ AQ.DEQUEUE (queue name => 'priority msg queue',
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);
COMMIT;

2-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

DBMS_AQ.DEQUEUE (queue name => 'priority msg queue',

dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);
COMMIT;
END;

/* On return, the second message with priority set to 5 is retrieved before the
message with priority set to 30 because priority takes precedence over engueue
time. */

Example 2-23 Enqueuing Messages with Priority Using Java

public static void runTest (AQSession ag sess) throws AQException

{

AQQueueTable g _table;

AQQueue queue;

AQMessage message;

AQMessageProperty m_property;

AQRawPayload raw_payload;

AQEnqueueOption eng option;

String test data;

bytel[] b array;

Connection db conn;

db conn = ((AQOracleSession)aq sess).getDBConnection() ;

/* Get a handle to queue table - aq table4 in agjava schema: */
gtable = ag sess.getQueueTable ("agjava", "aqg_table4");
System.out .println("Successful getQueueTable");

/* Get a handle to a queue - ag _queue4 in agjava schema: */
queue = ag_sess.getQueue ("agjava", "ag_queue4");
System.out.println("Successful getQueue");

/* Enqueue 5 messages with priorities with different priorities: */
for (int 1 = 0; 1 < 5; 1i++)

/* Creating a message to contain raw payload: */

message = queue.createMessage() ;

Getting Started with Oracle Streams AQ 2-31

Oracle Streams AQ by Example

test_data = "Small message " + (i+1); /* some test data */

/* Get a handle to the AQRawPayload object and
populate it with raw data: */
b array = test data.getBytes();

raw_payload = message.getRawPayload() ;
raw_payload.setStream(b _array, b_array.length);

/* Set message priority: */
m_property = message.getMessageProperty () ;

if(1<2)
m_property.setPriority(2);
else
m property.setPriority(3);

/* Creating a AQEnqueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue (enq option, message);
System.out.println("Successful enqueue");

}

db conn.commit () ;

Example 2-24 Dequeuing Messages after Preview by Criterion Using PL/SQL

An application can preview messages in browse mode or locked mode without
deleting the message. The message of interest can then be removed from the queue.

/* Enqueue 6 messages to msg_queue
— GREEN, GREEN, YELLOW, VIOLET, BLUE, RED */

DECLARE
enqueue_options DBMS_AQ.enqueue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message aqg.message_typ;

BEGIN

message := message typ('GREEN',

2-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

'"GREEN enqueued to msg queue first.');

DBMS_AQ.ENQUEUE(queue_name => 'msg_queue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

message := message typ('GREEN',
'"GREEN also enqueued to msg_queue second.');

DBMS_AQ.ENQUEUE (queue name => 'msg_dqueue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

message := message typ ('YELLOW',
'"YELLOW enqueued to msg_queue third.');

DBMS_AQ.ENQUEUE(queue_name => 'msg_queue',

enqueue_options => enqueue options,

message properties => message properties,

payload => message,

msgid => message handle) ;
DBMS_OUTPUT.PUT LINE ('Message handle: ' || message handle);

message := message typ('VIOLET',
'VIOLET enqueued to msg_queue fourth.');

DBMS_AQ.ENQUEUE (queue name => 'msg_dqueue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

message := message typ('BLUE',
'BLUE enqueued to msg _queue fifth.');

DBMS_AQ.ENQUEUE(queue_name => 'msg_queue',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

Getting Started with Oracle Streams AQ 2-33

Oracle Streams AQ by Example

message := message typ('RED',

'RED enqueued to msg queue sixth.');

DBMS_AQ.ENQUEUE(queue_name =>
enqueue_options
message properties
payload
msgid

=>

COMMIT;

'msg_queue',
enqueue_options,
message properties,
message,

message handle) ;

END;

/* Dequeue in BROWSE mode until RED is found,
and remove RED from queue: */

DECLARE
dequeue options DBMS AQ.dequeue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message ag.message_typ;

BEGIN

dequeue options.dequeue mode

LOOP
DBMS_AQ.DEQUEUE (queue name

dequeue options
message properties =>

DBMS AQ.BROWSE;

=> 'msg_queue',
dequeue_options,

message properties,

=>

payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||

EXIT WHEN message.subject
END LOOP;

dequeue options.dequeue mode
dequeue options.msgid

DBMS_AQ.DEQUEUE (queue name =>
dequeue_options
message properties =>
payload

=>

=>

" ... ' || message.text);

'RED';

DBMS AQ.REMOVE;
message handle;

'msg_queue',
dequeue_options,
message properties,
message,

2-34 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

msgid => message handle) ;

DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);

COMMIT;
END;

/* Dequeue in LOCKED mode until BLUE is found,
and remove BLUE from queue: */

DECLARE

dequeue_options dbms_ag.dequeue_options t;
message properties dbms ag.message properties t;
message_handle RAW(16) ;

message ag.message typ;

BEGIN

dequeue options.dequeue mode := dbms aqg.LOCKED;
LOOP

dbms_ag.dequeue (queue_name => 'msg_queue',

dequeue_options => dequeue options,

message properties => message properties,

payload => message,

msgid => message handle) ;
dbms_output.put line ('Message: ' || message.subject ||

" ... ' || message.text);

EXIT WHEN message.subject = 'BLUE';
END LOOP;

dequeue options.dequeue mode := dbms_aq.REMOVE;
dequeue options.msgid message handle;

dbms_ag.dequeue (queue name => 'msg_queue',

dequeue_options => dequeue options,
message properties => message properties,
payload => message,

msgid => message handle);

DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);

Getting Started with Oracle Streams AQ 2-35

Oracle Streams AQ by Example

COMMIT;
END;

Expiration is calculated from the earliest dequeue time. So, if an application wants a
message to be dequeued no earlier than a week from now, but no later than 3 weeks
from now, then this requires setting the expiration time for 2 weeks. This scenario is
described in the following code segment.

Example 2-25 Enqueuing and Dequeuing Messages with Time Delay and Expiration

Using PL/SQL

/* Enqueue message for delayed availability: */
DECLARE

enqueue_options dbms_ag.enqueue options t;
message properties dbms ag.message properties t;
message_handle RAW (16) ;

message ag.Message_typ;

BEGIN

message := Message typ('DELAYED',

'This message is delayed one week.');

message properties.delay := 7*24*60%60;
message properties.expiration := 2*¥7*24*60%60;

dbms_ag.enqueue (queue name => 'msg_queue',

enqueue_options => enqueue options,

message properties => message properties,

payload => message,

msgid => message handle) ;
COMMIT;

END;

You must set up data structures similar to the following for certain examples to
work:

$ cat >> message.typ

case=lower

type ag.message typ

$

$ ott userid=ag/aqg intyp=message.typ outtyp=message o.typ \ code=c hfile=demo.h
$

$ proc intyp=message o.typ iname=program name \

config=config file SQLCHECK=SEMANTICS userid=ag/ag

2-36 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Example 2-26 Enqueuing and Dequeuing Messages by Correlation and Message ID
Using Pro*C/C++

#include <stdio.h>

#include <string.h>

#include <sqglca.h>

#include <sgl2oci.h>

/* The header file generated by processing
object type 'ag.Message typ': */

#include ‘"pceg.h"

void sql error (msg)

char *msg;

{

EXEC SQL WHENEVER SQLERROR CONTINUE;

printf ("$s\n", msg);

printf("\n% .800s \n", sglca.sglerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;

exit (1) ;

}

main()

{

OCIEnv *oeh; /* OCI Env Handle */

OCIError *err; /* OCI Error Handle */

Message typ *message = (Message typ*)0; /* queue payload */
message_type_ind *imsg; /*payload indicator*/
OCIRaw *msgid = (OCIRaw*)0; /* message id */

ubl msgmem[16]=""; /* memory for msgid */

char user[60]="ag/AQ"; /* user login password */
char subject [30]; /* components of */

char txt [80]; /* Message typ */

char correlationl[30]; /* message correlation */
char correlation2[30];

int status; /* code returned by the OCI calls */

/* Dequeue by correlation and msgid */

/* Connect to the database: */

EXEC SQL CONNECT :user;

EXEC SQL WHENEVER SQLERROR DO sql error("Oracle Error :");

/* Allocate space in the object cache for the host variable: */
EXEC SQL ALLOCATE :message;

Getting Started with Oracle Streams AQ 2-37

Oracle Streams AQ by Example

/* Get the OCI Env handle: */

if (SQLEnvGet (SQL_SINGLE RCTX, &oeh) != OCI_SUCCESS)
{

printf (" error in SQLEnvGet \n");

exit (1) ;

}

/* Get the OCI Error handle: */

if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE ERROR, (ub4)0, (dvoid **)0))

{
printf (" error in OCIHandleAlloc %d \n", status);
exit (1) ;

}

/* Assign memory for msgid:

Memory must be allocated explicitly to OCIRaw*: */

if (status=0CIRawAssignBytes(oeh, err, msgmem, 16, &msgid))
printf (" error in OCIRawAssignBytes %d \n", status);

exit (1) ;

}

/* First enqueue */

strcpy (correlationl, "lst message");
strcpy (subject, "NORMAL ENQUEUEL") ;

strcpy (txt, "The Enqueue was done through PLSQL embedded in PROC") ;

/* Initialize the components of message: */
EXEC SQL OJECT SET subject, text OF :message TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE

DECLARE

message properties dbms_ag.message properties t;

enqueue_options dbms_ag.enqueue options t;

BEGIN

/* Bind the host variable 'correlationl': to message correlation*/
message properties.correlation := :correlationl;

/* Bind the host variable 'message' to payload and
return message ID into host variable 'msgid': */
dbms_ag.enqueue (queue name => 'msg_queue',

message properties => message properties,

2-38 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

enqueue_options => enqueue options,

payload => :message:imsg, /* indicator must be specified */
msgid => :msgid);

END;

END-EXEC;

/* Commit work: */
EXEC SQL COMMIT;

printf ("Enqueued Message \n");
printf ("Subject :%s\n",subject);
printf ("Text :$s\n", txt) ;

/* Second enqueue */
strcpy (correlation2, "2nd message");
strcpy (subject, "NORMAL ENQUEUE2") ;

strcpy (txt, "The Enqueue was done through PLSQL embedded in PROC") ;

/* Initialize the components of message: */
EXEC SQL OBJECT SET subject, text OF :messsage TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE

DECLARE

message properties dbms_ag.message properties t;

enqueue_options dbms_ag.enqueue options t;

msgid RAW (16) ;

BEGIN

/* Bind the host variable 'correlation2': to message correlaiton */
message properties.correlation := :correlation2;

/* Bind the host variable 'message': to payload */
dbms_ag.enqueue (queue name => 'msg_queue',
message properties => message properties,
enqueue_options => enqueue options,
payload => :message,

msgid => msgid) ;

END;

END-EXEC;

/* Commit work: */

EXEC SQL COMMIT;

printf ("Enqueued Message \n");

printf ("Subject :%s\n",subject);

printf ("Text :%s\n", txt) ;

Getting Started with Oracle Streams AQ 2-39

Oracle Streams AQ by Example

/* First dequeue - by correlation */

EXEC SQL EXECUTE

DECLARE

message properties dbms ag.message properties t;
dequeue_options dbms_ag.dequeue_options t;

msgid RAW (16) ;

BEGIN

/* Dequeue by correlation in host variable 'correlation2': */
dequeue options.correlation := :correlation2;

/* Return the payload into host variable 'message': */
dbms_ag.dequeue (queue name => 'msg_queue',

message properties => message properties,

dequeue options => dequeue options,

payload => :message,

msgid => msgid) ;

END;

END-EXEC;

/* Commit work : */

EXEC SQL COMMIT;

/* Extract the values of the components of message: */
EXEC SQL OBJECT GET subject, text FROM :message INTO :subject, :txt;

printf ("Dequeued Message \n");
printf ("Subject :%s\n",subject);
printf ("Text :$s\n", txt) ;

/* SECOND DEQUEUE - by MSGID */

EXEC SQL EXECUTE

DECLARE

message properties dbms ag.message properties t;
dequeue options dbms_ag.dequeue_options t;

msgid RAW(16) ;

BEGIN

/* Dequeue by msgid in host variable 'msgid': */
dequeue options.msgid := :msgid;

/* Return the payload into host variable 'message': */

dbms_ag.dequeue (queue name => 'msg_queue',
message properties => message properties,
dequeue options => dequeue options,
payload => :message,

2-40 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

msgid => msgid) ;
END;

END-EXEC;

/* Commit work: */
EXEC SQL COMMIT;

}

Example 2-27 Enqueuing and Dequeuing Messages by Correlation and Message ID
Using OCI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message
OCIString *subject;
OCIString *data;

typedef struct message message;

struct null message

{
OCIInd null adt;
0CIInd null subject;
OCIInd null data;

}i

typedef struct null message null message;

int main()
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISveCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
message msg;
null message nmsg;
message *mesg = &msg;
null message *nmesg = &nmsg;
message *degmesg = (message *)0;
null message *ndegmesg = (null message *)O0;

Getting Started with Oracle Streams AQ 2-41

Oracle Streams AQ by Example

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (¥)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERRCR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

OCILogon (envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain TDO of message typ */
OCITypeByName (envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
(CONST text *)"MESSAGE TYP", strlen("MESSAGE TYP"),
(text *)0, 0, OCI_DURATION SESSION, OCI_TYPEGET ALL, &mesg_tdo);

/* Prepare the message payload */

mesg->subject = (OCIString *)O0;

mesg->data = (OCIString *)O0;

OCIStringAssignText (envhp, errhp,
(CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),
&mesg->subject) ;

OCIStringAssignText (envhp, errhp,
(CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
&mesg->data) ;

nmesg->null_adt = nmesg->null subject = nmesg->null data = OCI_IND NOTNULL;

/* Enqueue into the msg _queue */
OCIAQEng (svchp, errhp, (CONST text *)"msg queue", 0, O,
mesg tdo, (dvoid **)&mesg, (dvoid **)s&nmesg, 0, 0);

OCITransCommit (svchp, errhp, (ub4) 0);

/* Dequeue from the msg queue */

2-42 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

OCIAQDeq (svchp, errhp, (CONST text *)'"msg queue", 0, O,

mesg tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, O,
printf ("Subject: %s\n", OCIStringPtr (envhp, deqmesg->subject));
printf ("Text: %s\n", OCIStringPtr (envhp, deqmesg->data));
OCITransCommit (svchp, errhp, (ub4) 0);

0);

Example 2-28 Enqueuing and Dequeuing Messages to/from a Multiconsumer Queue
Using PL/SQL

/* Create subscriber list: */
DECLARE
subscriber ag$ agent;

/* Add subscribers RED and GREEN to the suscriber list: */
BEGIN

subscriber := ag$ agent ('RED', NULL, NULL);

DBMS_AQADM.ADD SUBSCRIBER (queue name => 'msg_queue multiple',

subscriber => subscriber);

subscriber := ag$ agent ('GREEN', NULL, NULL);
DBMS_AQADM.ADD SUBSCRIBER (queue name => 'msg_queue multiple',
subscriber => subscriber) ;

END;

DECLARE
enqueue options DBMS AQ.enqueue options t;
message properties DBMS AQ.message properties t;
recipients DBMS _AQ.aq$_recipient list t;
message handle RAW(16) ;
message ag.message_typ;

/* Enqueue MESSAGE 1 for subscribers to the queue.
BEGIN

message := message typ('MESSAGE 1',

'This message is queued for queue subscribers.');

DBMS_AQ.ENQUEUE (queue name => 'msg queue multiple',

enqueue options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

/* Enqueue MESSAGE 2 for specified recipients.*/
message := message typ('MESSAGE 2',

Getting Started with Oracle Streams AQ 2-43

Oracle Streams AQ by Example

'This message is queued for two recipients.');

recipients (1) := ag$_agent ('RED', NULL, NULL);
recipients(2) := ag$ agent ('BLUE', NULL, NULL);
message properties.recipient list := recipients;

DBMS_AQ.ENQUEUE (queue_name => 'msg_queue multiple',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
COMMIT;
END;

RED is both a subscriber to the queue, as well as being a specified recipient of
MESSAGE 2. By contrast, GREEN is only a subscriber to those messages in the
queue (in this case, MESSAGE) for which no recipients have been specified. BLUE,
while not a subscriber to the queue, is nevertheless specified to receive MESSAGE 2.

/* Dequeue messages from msg_queue multiple: */

DECLARE
dequeue options DBMS AQ.dequeue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message aqg.message_typ;
no_messages exception;

pragma exception init (no messages, -25228);
BEGIN

dequeue_options.wait := DBMS_AQ.NO WAIT;

BEGIN
/* Consumer BLUE will get MESSAGE 2: */
dequeue options.consumer name := 'BLUE';

dequeue options.navigation := FIRST MESSAGE;

LOOP

DBMS_AQ.DEQUEUE (queue name => 'msg queue multiple',

dequeue options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||

2-44 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

" ... ' || message.text);
dequeue options.navigation := NEXT MESSAGE;

END LOOP;

EXCEPTION

WHEN no messages THEN

DBMS_ OUTPUT.PUT LINE ('No more messages for BLUE');

COMMIT;
END;
BEGIN
/* Consumer RED will get MESSAGE 1 and MESSAGE 2: */
dequeue_options.consumer name := 'RED';
dequeue_options.navigation := DBMS AQ.FIRST MESSAGE
LOOP
DBMS_ AQ.DEQUEUE (queue name => 'msg queue multiple',
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||

" ... ' || message.text);
dequeue options.navigation := NEXT MESSAGE;
END LOOP;
EXCEPTION
WHEN no messages THEN
DBMS_OUTPUT.PUT LINE ('No more messages for RED');

COMMIT;
END;
BEGIN
/* Consumer GREEN will get MESSAGE 1: */
dequeue options.consumer name := 'GREEN';
dequeue options.navigation := FIRST MESSAGE;
LOOP
DBMS_AQ.DEQUEUE (queue_name => 'msg_queue multiple',
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||

" ... ' || message.text);
dequeue options.navigation := NEXT MESSAGE;

Getting Started with Oracle Streams AQ 2-45

Oracle Streams AQ by Example

END LOOP;
EXCEPTION
WHEN no messages THEN
DBMS_OUTPUT.PUT LINE ('No more messages for GREEN');
COMMIT;
END;

You must set up the following data structures for certain examples to work:

CONNECT agadm/agadm
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.qgtable multi',
multiple consumers => true,
queue payload type => 'ag.message typ');
EXECUTE DBMS_AQADM.START QUEUE ('ag.msg _queue multiple');
CONNECT ag/ag

Example 2-29 Enqueuing and Dequeuing Messages to/from a Multiconsumer Queue
using OCI

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message
OCIString *subject;
OCIString *data;

typedef struct message message;

struct null message

{
OCIInd null adt;
OCIInd null subject;
OCIInd null data;

bi

typedef struct null message null message;

int main()
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
0OCISveCtx *svchp;

2-46 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

dvoid *tmp;

OCIType *mesg_tdo = (OCIType *) 0;

message msg;

null message nmsg;

message *mesg = &msg;

null message *nmesg = &Nmsg;

message *degmesg = (message *)O0;

null message *ndeqmesg = (null message *)0;

OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;

OCIAQAgent *agents[2];

OCIAQDegOptions *deqgopt = (OCIAQDegOptions *)O0;

ub4 wait = OCI_DEQ NO WAIT;

ub4 navigation = OCI_DEQ FIRST MSG;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*) ()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

OCILogon (envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);
/* Obtain TDO of message typ */
OCITypeByName (envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),

(CONST text *)"MESSAGE TYP", strlen("MESSAGE TYP"),

(text *)0, 0, OCI DURATION SESSION, OCI TYPEGET ALL, &mesg_tdo) ;

/* Prepare the message payload */

Getting Started with Oracle Streams AQ 2-47

Oracle Streams AQ by Example

mesg->subject = (OCIString *)O0;
mesg->data = (OCIString *)O0;
OCIStringAssignText (envhp, errhp,
(CONST text *)"MESSAGE 1", strlen("MESSAGE 1"),

&mesg->subject) ;
OCIStringAssignText (envhp, errhp,

(CONST text *)"mesg for queue subscribers",

strlen("mesg for queue subscribers"), &mesg->data);
nmesg->null adt = nmesg->null subject = nmesg->null data = OCI_IND NOTNULL;

/* Enqueue MESSAGE 1 for subscribers to the queue. */
OCIAQEng(svchp, errhp, (CONST text *)'"msg queue multiple", 0, 0,
mesg tdo, (dvoid **)&mesg, (dvoid **)s&nmesg, 0, 0);

/* Enqueue MESSAGE 2 for specified recipients. */
/* prepare message payload */
0CIStringAssignText (envhp, errhp,
(CONST text *)"MESSAGE 2", strlen("MESSAGE 2"),
&mesg->subject) ;
OCIStringAssignText (envhp, errhp,
(CONST text *)'"mesg for two recipients",
strlen("mesg for two recipients"), &mesg->data);

/* Allocate AQ message properties and agent descriptors */
OCIDescriptorAlloc (envhp, (dvoid **)é&msgprop,

OCI _DTYPE AQMSG PROPERTIES, 0, (dvoid **)0);
OCIDescriptorAlloc (envhp, (dvoid **)&agents[0],

OCI_DTYPE AQAGENT, 0, (dvoid **)0);
OCIDescriptorAlloc (envhp, (dvoid **)&agents[1],

OCI_DTYPE AQAGENT, 0, (dvoid **)0);

/* Prepare the recipient list, RED and BLUE */

OCIAttrSet (agents[0], OCI_DTYPE AQAGENT, "RED", strlen("RED"),
OCI_ATTR AGENT NAME, errhp);

OCIAttrSet (agents([1], OCI_DTYPE AQAGENT, "BLUE", strlen("BLUE"),
OCT_ATTR_AGENT NAME, errhp);

OCIAttrSet (msgprop, OCI DTYPE AQMSG PROPERTIES, (dvoid *)agents, 2,
OCI_ATTR_RECIPIENT LIST, errhp);

OCIAQEng(svchp, errhp, (CONST text *)'msg gqueue multiple", 0, msgprop,
mesg tdo, (dvoid **)&mesg, (dvoid **)é&nmesg, 0, 0);

OCITransCommit (svchp, errhp, (ub4) 0);

/* Now dequeue the messages using different consumer names */

2-48 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Allocate dequeue options descriptor to set the dequeue options */
OCIDescriptorAlloc (envhp, (dvoid **)&deqopt, OCI_DTYPE AQDEQ OPTIONS, O,
(dvoid **)0);

/* Set wait parameter to NO WAIT so that the dequeue returns immediately */
OCIAttrSet (degopt, OCI_DTYPE AQDEQ OPTIONS, (dvoid *)&wait, O,
OCI_ATTR WAIT, errhp);

/* Set navigation to FIRST MESSAGE so that the dequeue resets the position */
/* after a new consumer name is set in the dequeue options */
OCIAttrSet (deqopt, OCI_DTYPE AQDEQ OPTIONS, (dvoid *)&navigation, 0,

OCI_ATTR _NAVIGATION, errhp);

/* Dequeue from the msg queue multiple as consumer BLUE */
OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS, (dvoid *)"BLUE", strlen("BLUE"),
OCI_ATTR CONSUMER NAME, errhp);

while (OCIAQDeq(svchp, errhp, (CONST text *)'"msg queue multiple", degopt, O,
mesg tdo, (dvoid **)°mesg, (dvoid **)&ndeqmesg, 0, 0)
== OCT_SUCCESS)
{
printf ("Subject: %s\n", OCIStringPtr (envhp, deqmesg->subject));
printf ("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));

}

OCITransCommit (svchp, errhp, (ub4) 0);

/* Dequeue from the msg queue multiple as consumer RED */
OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS, (dvoid *)"RED", strlen("RED"),
OCI_ATTR CONSUMER NAME, errhp);
while (OCIAQDeq(svchp, errhp, (CONST text *)'"msg queue multiple", degopt, O,
mesg tdo, (dvoid **)°mesg, (dvoid **)&ndegmesg, 0, 0)
== OCI_SUCCESS)

printf ("Subject: %s\n", OCIStringPtr (envhp, deqmesg->subject));
printf ("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));

}

OCITransCommit (svchp, errhp, (ub4) 0);

/* Dequeue from the msg queue multiple as consumer GREEN */
OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS, (dvoid *)"GREEN",strlen ("GREEN"),
OCI_ATTR CONSUMER NAME, errhp);
while (OCIAQDeq(svchp, errhp, (CONST text *)'"msg queue multiple", degopt, O,
mesg tdo, (dvoid **)°mesg, (dvoid **)&ndegmesg, 0, 0)
== OCI_SUCCESS)

{

Getting Started with Oracle Streams AQ 2-49

Oracle Streams AQ by Example

printf ("Subject: %s\n", OCIStringPtr (envhp, degmesg->subject));
printf ("Text: %s\n", OCIStringPtr(envhp, degmesg->data));

}

OCITransCommit (svchp, errhp, (ub4) 0);

}

Example 2-30 Enqueuing and Dequeuing Messages Using Message Grouping Using
PL/SQL

CONNECT ag/ag

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (

queue_table => 'ag.msggroup',
queue payload type => 'ag.message typ',
message grouping => DBMS_AQADM.TRANSACTIONAL) ;

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue_name => 'msggroup_queue',
queue_table => 'ag.msggroup') ;

EXECUTE DBMS AQADM.START QUEUE (
queue name => 'msggroup queue');

/* Enqueue three messages in each transaction */

DECLARE
enqueue options DBMS AQ.enqueue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message ag.message_typ;

BEGIN

/* Loop through three times, committing after every iteration */
FOR txnno in 1..3 LOOP

/* Loop through three times, enqueuing each iteration */
FOR mesgno in 1..3 LOOP

message := message typ ('GROUP#' || txnno,
'Message#' || mesgno || ' in group' || txnno);
DBMS_AQ.ENQUEUE (queue name => 'msggroup_ queue',
enqueue_options => enqueue options,
message properties => message_properties,
payload => message,
msgid => message handle) ;

2-50 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

END LOOP;
/* Commit the transaction */
COMMIT;
END LOOP;
END;

/* Now dequeue the messages as groups */

DECLARE
dequeue options DBMS AQ.dequeue options t;
message properties DBMS AQ.message properties t;
message handle RAW(16) ;
message ag.message_typ;

no messages exception;
end of group exception;

PRAGMA EXCEPTION INIT (no messages, -25228);
PRAGMA EXCEPTION INIT (end of group, -25235);

BEGIN
dequeue options.wait DBMS AQ.NO WAIT;
dequeue options.navigation := DBMS AQ.FIRST MESSAGE;

LOOP

BEGIN

DBMS_AQ.DEQUEUE (queue name => 'msggroup queue',
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle) ;

DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||

" ... ' || message.text);
dequeue_options.navigation := DBMS_ AQ.NEXT MESSAGE;

EXCEPTION
WHEN end of group THEN
DBMS_OUTPUT.PUT LINE ('Finished processing a group of messages');
COMMIT;
dequeue options.navigation := DBMS AQ.NEXT TRANSACTION;
END;
END LOOP;
EXCEPTION
WHEN no messages THEN

Getting Started with Oracle Streams AQ 2-51

Oracle Streams AQ by Example

DBMS_OUTPUT.PUT LINE ('No more messages');
END;

Example 2-31 Enqueuing and Dequeuing Object Type Messages That Contain LOB
Attributes Using PL/SQL

/* Create the message payload object type with one or more LOB attributes. On
enqueue, set the LOB attribute to EMPTY BLOB. After the enqueue completes,
before you commit your transaction. Select the LOB attribute from the
user_data column of the queue table or queue table view. You can now
use the LOB interfaces (which are available through both OCI and PL/SQL) to
write the LOB data to the queue. On dequeue, the message payload
will contain the LOB locator. You can use this LOB locator after
the dequeue, but before you commit your transaction, to read the LOB data.

*/

/* Setup the accounts: */
connect system/manager

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT ag_administrator role TO agadm;

CREATE USER ag IDENTIFIED BY aq;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON DBMS AQ TO ag;

CREATE TYPE ag.message AS OBJECT(id NUMBER,
subject VARCHAR2(100),
data BLOB,
trailer NUMBER) ;

CREATE TABLESPACE ag tbs DATAFILE 'aqg.dbs' SIZE 2M REUSE;

/* create the queue table, queues and start the queue: */

CONNECT agadm/agadm
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'aqg.qtl',
queue payload type => 'ag.message');
EXECUTE DBMS_AQADM.CREATE QUEUE (
queue name => 'ag.queuel',
queue table => ‘'aq.qgtl');
EXECUTE DBMS_AQADM.START_QUEUE(queue_name => 'ag.queuel');

/* End set up: */

2-52 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

/* Enqueue Large data types: */

CONNECT ag/ag

CREATE OR REPLACE PROCEDURE blobenqueue (msgno IN NUMBER) AS
enq_userdata ag.message;

enq msgid RAW(16) ;

engopt DBMS AQ.enqueue options t;
msgprop DBMS_AQ.message properties t;
lob loc BLOB;

buffer RAW(4096) ;

BEGIN

buffer := HEXTORAW(RPAD('FF', 4096, 'FF'));
eng userdata := ag.message(msgno, 'Large Lob data', EMPTY BLOB(), msgno);
DBMS_AQ.ENQUEUE ('ag.queuel', engopt, msgprop, eng userdata, eng msgid);

--select the lob locator for the queue table
SELECT t.user_data.data INTO lob_loc

FROM gtl t

WHERE t.msgid = eng msgid;

DBMS LOB.WRITE(lob loc, 2000, 1, buffer);
COMMIT;
END;

/* Dequeue lob data: */
CREATE OR REPLACE PROCEDURE blobdequeue AS

dequeue_options DBMS AQ.dequeue options_t;
message properties DBMS AQ.message properties t;

mid RAW(16) ;
pload ag.message;
lob loc BLOB;
amount BINARY INTEGER;
buffer RAW (4096) ;
BEGIN
DBMS_AQ.DEQUEUE ('aqg.queuel', dequeue options, message properties,
pload, mid);

lob loc := pload.data;

-- read the lob data info buffer
amount := 2000;

Getting Started with Oracle Streams AQ 2-53

Oracle Streams AQ by Example

DBMS LOB.READ(lob loc, amount, 1, buffer);
DBMS_OUTPUT.PUT LINE('Amount of data read: '||amount);
COMMIT;

END;

/* Do the enqueues and dequeues: */
SET SERVEROUTPUT ON

BEGIN
FOR i IN 1..5 LOOP
blobenqueue (1) ;

END LOOP;
END;
BEGIN
FOR i IN 1..5 LOOP
blobdequeue () ;
END LOOP;
END;

Example 2-32 Enqueuing and Dequeuing Object Type Messages That Contain LOB
Attributes Using Java

1. Create the message type (ADT with CLOB and BLOB).

connect aquser/aquser

create type LobMessage as object(id
subject
data
cdata
trailer

2. Create the queue table and queue.

connect aquser/aguser

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

queue table => 'gt adt',

NUMBER,
varchar2 (100),
blob,
clob,
number) ;

queue payload type => 'LOBMESSAGE',
comment => 'single-consumer, default sort ordering, ADT Message',

compatible => '8.1.0"'
)

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue name => 'ql adt',
queue table => 'gt adt'

2-54 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

)i
EXECUTE DBMS AQADM.START QUEUE (queue name => 'ql adt');

3. Run jpublisher to generate the java class that maps to the LobMessage.

Oracle object type

jpub -user=aquser/aquser -sqgl=LobMessage -case=mixed -methods=false
-usertypes=oracle -compatible=CustomDatum

4. Enqueue and dequeue messages.

Oracle Streams AQ Propagation

The following examples illustrate Oracle Streams AQ propagation:

= Enqueuing Messages for Remote Subscribers or Recipients to a Multiconsumer
Queue and Propagation Scheduling Using PL/SQL

= Managing Propagation From One Queue To Other Queues In the Same
Database Using PL/SQL

= Managing Propagation from One Queue to Other Queues In Another Database
Using PL/SQL

= Unscheduling Propagation Using PL/SQL

Caution: You must create queues or queue tables, or start or
enable queues, for certain examples to work.

Example 2-33 Enqueuing Messages for Remote Subscribers or Recipients to a
Multiconsumer Queue and Propagation Scheduling Using PL/SQL

/* Create subscriber list: */
DECLARE
subscriber ag$ _agent;

/* Add subscribers RED and GREEN with different addresses to the suscriber
list: */
BEGIN
BEGIN
/* Add subscriber RED that will dequeue messages from another msg queue
queue in the same datatbase */
subscriber := ag$ agent ('RED', 'another msg queue', NULL);

Getting Started with Oracle Streams AQ 2-55

Oracle Streams AQ by Example

DBMS_AQADM.ADD SUBSCRIBER (queue name => 'msg_queue multiple',
subscriber => subscriber) ;

/* Schedule propagation from msg_queue multiple to other queues in the
same database: */
DBMS_AQADM.SCHEDULE_PROPAGATION (queue_name => 'msg_queue multiple');

/* Add subscriber GREEN that will dequeue messages from the msg_queue
queue in another database reached by the database link another db.world */
subscriber := ag$ agent ('GREEN', 'msg queue@another db.world', NULL);

DBMS AQADM.ADD SUBSCRIBER (queue name => 'msg queue multiple',

subscriber => subscriber) ;

/* Schedule propagation from msg_queue multiple to other queues in the
database "another database": */

END;

BEGIN
DBMS_AQADM.SCHEDULE_PROPAGATION (queue name => 'msg_queue multiple',
destination => 'another db.world');

END;

END;

DECLARE
enqueue_options DBMS_AQ.enqueue options_t;
message properties DBMS AQ.message properties t;
recipients DBMS _AQ.aq$_recipient list t;
message handle RAW(16) ;
message ag.message_typ;

/* Enqueue MESSAGE 1 for subscribers to the queue. */
BEGIN

message := message typ('MESSAGE 1',

'This message is queued for queue subscribers.');

DBMS AQ.ENQUEUE (queue name => 'msg queue multiple',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,

msgid => message handle) ;

/* Enqueue MESSAGE 2 for specified recipients.*/

message := message typ('MESSAGE 2',

'This message is queued for two recipients.');

recipients (1) := ag$_agent ('RED', 'another msg queue', NULL);
recipients(2) := ag$ agent ('BLUE', NULL, NULL);

2-56 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

message properties.recipient list := recipients;

DBMS AQ.ENQUEUE (queue name => 'msg queue multiple',

enqueue_options => enqueue options,
message properties => message properties,
payload => message,
msgid => message handle) ;
COMMIT;
END;

Note: RED ataddress another msg queue is both a subscriber
to the queue, as well as being a specified recipient of MESSAGE 2.
By contrast, GREEN at address msg_queue@another db.world
is only a subscriber to those messages in the queue (in this case,
MESSAGE 1) for which no recipients have been specified. BLUE,
while not a subscriber to the queue, is nevertheless specified to
receive MESSAGE 2.

Example 2-34 Managing Propagation From One Queue To Other Queues In the Same
Database Using PL/SQL

/* Schedule propagation from queue gldef to other queues in the same database */
EXECUTE DBMS_AQADM.SCHEDULE PROPAGATION (queue name => 'gldef');

/* Disable propagation from queue gldef to other queues in the same
database */
EXECUTE DBMS_AQADM.DISABLE PROPAGATION SCHEDULE (

queue name => 'gldef');

/* Alter schedule from queue gldef to other queues in the same database */
EXECUTE DBMS AQADM.ALTER PROPAGATION SCHEDULE (
queue name => 'gldef',

duration => '2000"',
next_time => 'SYSDATE + 3600/86400',
latency => '32');

/* Enable propagation from queue gldef to other queues in the same database */
EXECUTE DBMS AQADM.ENABLE PROPAGATION SCHEDULE (
queue name => 'gldef');

/* Unschedule propagation from queue gldef to other queues in the same database

Getting Started with Oracle Streams AQ 2-57

Oracle Streams AQ by Example

*/
EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION (
queue name => 'gldef');

Example 2-35 Managing Propagation from One Queue to Other Queues In Another
Database Using PL/SQL

/* Schedule propagation from queue gldef to other queues in another database
reached by the database link another db.world */
EXECUTE DBMS_AQADM.SCHEDULE PROPAGATION (

queue name => 'gldef',

destination => 'another db.world');

/* Disable propagation from queue gldef to other queues in another database
reached by the database link another db.world */
EXECUTE DBMS_AQADM.DISABLE PROPAGATION SCHEDULE (

queue name => 'gldef',

destination => 'another db.world');

/* Alter schedule from queue gldef to other queues in another database reached
by the database link another db.world */
EXECUTE DBMS_AQADM.ALTER PROPAGATION SCHEDULE (

queue name => 'gldef',

destination => 'another db.world',

duration => '2000",
neXt_time => 'SYSDATE + 3600/86400"',
latency => '32');

/* Enable propagation from queue gldef to other queues in another database
reached by the database link another db.world */
EXECUTE DBMS AQADM.ENABLE PROPAGATION SCHEDULE (

queue name => 'gldef',

destination => 'another db.world');

/* Unschedule propagation from queue gldef to other queues in another database
reached by the database link another db.world */
EXECUTE DBMS AQADM.UNSCHEDULE PROPAGATION (

queue name => 'gldef',

destination => 'another db.world');

2-58 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Example 2-36 Unscheduling Propagation Using PL/SQL

/* Unschedule propagation from msg queue multiple to the destination
another db.world */
EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION (

queue name => 'msg_queue multiple',

destination => 'another db.world');

Dropping Oracle Streams AQ Objects

The following example illustrates how to drop Oracle Streams AQ objects.

Caution: You must create queues or queue tables, or start, stop, or
enable queues, for certain examples to work.

Example 2-37 Dropping Oracle Streams AQ Objects

/* Cleans up all objects related to the object type: */
CONNECT ag/ag

EXECUTE DBMS_AQADM.STOP QUEUE (
gueue name => 'msg_queue');

EXECUTE DBMS AQADM.DROP QUEUE (
queue name => 'msg_queue');

EXECUTE DBMS_AQADM.DROP QUEUE TABLE (
queue table => 'ag.objmsgs80 gtab');

/* Cleans up all objects related to the RAW type: */
EXECUTE DBMS_AQADM.STOP QUEUE (
queue_name => 'raw_msg_queue') ;

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name => 'raw_msg queue');

EXECUTE DBMS_AQADM.DROP QUEUE TABLE (
queue table => 'ag.RawMsgs gtab');

/* Cleans up all objects related to the priority queue: */

EXECUTE DBMS AQADM.STOP QUEUE (
gueue_name => 'priority msg queue');

Getting Started with Oracle Streams AQ 2-59

Oracle Streams AQ by Example

EXECUTE DBMS_AQADM.DROP QUEUE (
queue_name => 'priority msg queue');

EXECUTE DBMS AQADM.DROP QUEUE TABLE (
queue table => 'aqg.priority msg');

/* Cleans up all objects related to the multiple-consumer queue: */
EXECUTE DBMS_AQADM.STOP QUEUE (
queue name => 'msg queue multiple');

EXECUTE DBMS AQADM.DROP QUEUE (
queue name => 'msg queue multiple');

EXECUTE DBMS_AQADM.DROP QUEUE TABLE (
queue_table => 'ag.MultiConsumerMsgs gtab');

DROP TYPE ag.message typ;

Revoking Roles and Privileges

The following example illustrates how to revoke roles and privileges in Oracle
Streams AQ.

Example 2-38 Revoking Roles and Privileges in Oracle Streams AQ

Assume user tkagusr has enqueue privilege on a queue tkaqusr_gl. Then an
example of revoke would be:

DBMS AQADM.REVOKE QUEUE PRIVILEGE ('ENQUEUE', 'tkaqusr g, 'tkaqusr');

Deploying Oracle Streams AQ with XA

You must set up the following data structures for certain examples to work:

CONNECT system/manager;

DROP USER agadm CASCADE;

GRANT CONNECT, RESOURCE TO agadm;
CREATE USER agadm IDENTIFIED BY agadm;
GRANT EXECUTE ON DBMS AQADM TO agadm;
GRANT Aqg_administrator role TO agadm;
DROP USER ag CASCADE;

CREATE USER aqg IDENTIFIED BY ag;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_ag TO ag;

2-60 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.gtable',
queue payload type => 'RAW');

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue_name => 'ag.agsqueue',
queue table => 'ag.qtable');

EXECUTE DBMS AQADM.START QUEUE (queue name => 'ag.agsqueue');

The following example illustrates how to deploy Oracle Streams AQ with XA.

Example 2-39 Deploying Oracle Streams AQ with XA
/*

* The program uses the XA interface to enqueue 100 messages and then
* dequeue them.

* Login: ag/aq

* Requires: AQ USER ROLE to be granted to ag

* a RAW queue called "agsqueue" to be created in ags schema
* (preceding steps can be performed by running agaqg.sqgl)

* Message Format: Msgno: [0-1000] HELLO, WORLD!
* Author: schandra@us.oracle.com
*

/

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <xa.h>

/* XA open string */
char xaoinfo[] = ‘"oracle xa+ACC=P/AQ/AQ+SESTM=30+Objects=T";

/* template for generating XA XIDs */
XID xidtempl = { O0xle0alale, 12, 8, "GTRID001BQualOO1l" };

/* Pointer to Oracle XA function table */
extern struct xa switch t xaosw; /* Oracle XA switch */
static struct xa switch t *xafunc = &xaosw;

/* dummy stubs for ax_reg and ax unreg */
int ax reg(rmid, xid, flags)

int rmid;

XID *xid;

Getting Started with Oracle Streams AQ 2-61

Oracle Streams AQ by Example

long flags;
xid->formatID = -1;
return 0;

}

int ax unreg(rmid, flags)
int rmid;

long flags;

{

return 0;

}

/* generate an XID */
void xidgen(xid, serialno)
XID *xid;

int serialno;

{

char seq [11];

sprintf (seq, "%d", serialno);
memcpy ((void *)xid, (void *)&xidtempl, sizeof (XID));
strnepy ((&xid->data([5]), seq, 3);

}

/* check if XA operation succeeded */

#define checkXAerr (action, funcname) \
if ((action) != XA OK) \
{ \
printf ("$s failed!\n", funcname); \
exit (-1); \
} else

/* check if OCI operation succeeded */
static void checkOCIerr (errhp, status)
OCIError *errhp;

sword status;

{

text errbuf [512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

if (status == OCI_ERROR)

2-62 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

{

OCIErrorGet ((dvoid *) errhp, 1, (text *)0, &errcode, errbuf,
(ub4) sizeof (errbuf), OCI_HTYPE ERROR) ;
printf ("Error - %s\n", errbuf);

}

else
printf ("Error - %d\n", status);
exit (-1);

}

void main(argc, argv)
int argc;
char **argv;

{

int msgno = 0; /* message being enqueued */

OCIEnv *envhp; /* OCI environment handle */

OCIError *errhp; /* OCI Error handle */

0CISveCtx *svchp; /* OCI Service handle */

char message[128]; /* message buffer */

ub4 mesglen; /* length of message */

OCIRaw *rawmesg = (OCIRaw *)O0; /* message in OCI RAW format */
OCIInd ind = 0; /* OCI null indicator */

dvoid *indptr = (dvoid *)&ind; /* null indicator pointer */
OCIType *mesg_tdo = (OCIType *) O0; /* TDO for RAW datatype */
XID xid; /* XA's global transaction id */

ub4 i; /* array index */

checkXRerr (xafunc->xa open entry(xaoinfo, 1, TMNOFLAGS), "xaoopen'");

svchp = xaoSveCtx((text *)0); /* get service handle from XA */
envhp = xaoEnv((text *)0); /* get enviornment handle from XA */
if (!svchp || !envhp)

printf ("Unable to obtain OCI Handles from XA!\n");
exit (-1);
}

OCIHandleAlloc((dvoid *)envhp, (dvoid **)&errhp,
OCI_HTYPE ERROR, 0, (dvoid **)0); /* allocate error handle */

/* enqueue 1000 messages, 1 message for each XA transaction */
for (msgno = 0; msgno < 1000; msgno++)

{

Getting Started with Oracle Streams AQ 2-63

Oracle Streams AQ by Example

sprintf ((const char *)message, "Msgno: %d, Hello, World!", msgno);
mesglen = (ub4)strlen((const char *)message);
xidgen (&xid, msgno) ; /* generate an XA xid */

checkXRerr (xafunc->xa start entry(&xid, 1, TMNOFLAGS), "xaostart");

checkOCIerr (errhp, OCIRawAssignBytes(envhp, errhp, (ubl *)message, mesglen,

&rawmesg)) ;

if (!mesg_tdo) /* get Type descriptor (TDO) for RAW type */
checkOCIerr (errhp, OCITypeByName (envhp, errhp, svchp,
(CONST text *)"AQADM", strlen("AQADM"),
(CONST text *)"RAW", strlen("RAW"),
(text *)0, 0, OCI_DURATION SESSION,
OCI_TYPEGET ALL, &mesg_tdo));

checkOCIerr (errhp, OCIAQEng(svchp, errhp, (CONST text *)"agsqueue",
0, 0, mesg tdo, (dvoid **)&rawmesg, &indptr,
0, 0));
checkXRerr (xafunc->xa end entry(&xid, 1, TMSUCCESS), "xaoend");
checkXRerr (xafunc->xa commit entry(&xid, 1, TMONEPHASE), "xaocommit");
printf ("$s Enqueued\n", message) ;

/* dequeue 1000 messages within one XA transaction */
xidgen (&xid, msgno) ; /* generate an XA xid */
checkXRerr (xafunc->xa start entry(&xid, 1, TMNOFLAGS), "xaostart");
for (msgno = 0; msgno < 1000; msgno++)
{
checkOCIerr (errhp, OCIAQDeq(svchp, errhp, (CONST text *)'"agsqueue'",
0, 0, mesg tdo, (dvoid **)&rawmesg, &indptr,
0, 0));
if (ind)
printf ("Null Raw Message");
else
for (i = 0; 1 < OCIRawSize (envhp, rawmesg);
printf ("$c", *(OCIRawPtr(envhp, rawmesg) + 1i));
printf ("\n");

}

checkXRerr (xafunc->xa_end entry(&xid, 1, TMSUCCESS), "xaoend");
checkXRerr (xafunc->xa commit entry(&xid, 1, TMONEPHASE), "xaocommit");

}

i++)

2-64 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Oracle Streams AQ and Memory Usage
You must set up the following data structures for certain examples to work:

/* Create types.sql */
CONNECT system/manager
GRANT AQ ADMINISTRATOR ROLE, AQ USER ROLE TO scott;
CONNECT scott/tiger
CREATE TYPE MESSAGE AS OBJECT (id NUMBER, data VARCHAR2(80));
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'qt',
queue payload type => 'message');
EXECUTE DBMS AQADM.CREATE QUEUE ('msgqueue', 'gt');
EXECUTE DBMS AQADM.START QUEUE ('msgqueue') ;

The following examples illustrate Oracle Streams AQ memory usage:
= Deploying Oracle Streams AQ with XA

= Enqueuing Messages (Free Memory After Every Call) Using OCI
» Enqueuing Messages (Reuse Memory) Using OCI

= Dequeuing Messages (Free Memory After Every Call) Using OCI
= Dequeuing Messages (Reuse Memory) Using OCI

Example 2-40 Enqueuing Messages (Free Memory After Every Call) Using OCI

This program, engnoreuse. ¢, dequeues each line of text from a queue 'msgqueue'
that has been created in the scott schema using create_types.sqgl. Messages
are enqueued using engnoreuse. c or engreuse. c (see the following). If there
are no messages, then it waits for 60 seconds before timing out. In this program, the
dequeue subroutine does not reuse client side objects' memory. It allocates the
required memory before dequeue and frees it after the dequeue is complete.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr (OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

OCIEnv *envhp;
OCIError *errhp;

Getting Started with Oracle Streams AQ 2-65

Oracle Streams AQ by Example

OCISveCtx *svchp;

struct message
OCINumber id;
OCIString *data;

typedef struct message message;

struct null message

{
OCIInd null adt;
OCIInd null id;
OCIInd null data;

}i

typedef struct null message null message;

static void degmesg(buf, buflen)
text *buf;
ub4 *buflen;

{

OCIType *mesgtdo = (OCIType *)O0; /* type descr of SCOTT.MESSAGE */
message *mesg = (dvoid *)0; /* instance of SCOTT.MESSAGE */
null message *mesgind = (dvoid *)O0; /* null indicator */
OCIAQDeqgOptions *deqopt = (OCIAQDeqOptions *)O0;

ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ FIRST MSG;/* always get head of q */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr (errhp, OCITypeByName (envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),

(CONST text *)"MESSAGE", strlen("MESSAGE"),

(text *)0, 0, OCI_DURATION SESSION,

OCI_TYPEGET ALL, &mesgtdo));

/* Allocate an instance of SCOTT.MESSAGE, and get its null indicator: */
checkerr (errhp, OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE OBJECT,
mesgtdo, (dvoid *)0, OCI_DURATION SESSION,
TRUE, (dvoid **)&mesg));
checkerr (errhp, OCIObjectGetInd(envhp, errhp, (dvoid *)mesg,
(dvoid **)&mesgind)) ;

/* Allocate a descriptor for dequeue options and set wait time, navigation:
checkerr (errhp, OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,

2-66 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

}

OCI_DTYPE AQDEQ OPTIONS, O, (dvoid **)0));
checkerr (errhp, OCIAttrSet (degopt, OCI_DTYPE AQDEQ OPTIONS,
(dvoid *)&wait, 0, OCI_ATTR WAIT, errhp));
checkerr (errhp, OCIAttrSet (degopt, OCI_DTYPE AQDEQ OPTIONS,

(dvoid *)&navigation, O,
OCI_ATTR NAVIGATION, errhp));

/* Dequeue the message and commit: */

checkerr (errhp, OCIAQDeq (svchp, errhp, (CONST text *)"msgqueue",
degopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null data)
*buflen = 0;
else
memcpy ((dvoid *)buf, (dvoid *)O0CIStringPtr (envhp, mesg->data),
(size_t) (*buflen = OCIStringSize (envhp, mesg->data)));

/* Free the dequeue options descriptor: */
checkerr (errhp, OCIDescriptorFree((dvoid *)deqopt, OCI_DTYPE AQDEQ OPTIONS)) ;

/* Free the memory for the objects: */
Checkerr (errhp, OCIObjectFree(envhp, errhp, (dvoid *)mesg,
OCI_OBJECTFREE_FORCE)) ;
/* end deqmesg */

void main()

{

OCIServer *srvhp;

0OCISession *usrhp;

dvoid *tmp;

text buf [80] ; /* payload text */
ub4 buflen;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

Getting Started with Oracle Streams AQ 2-67

Oracle Streams AQ by Example

}

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

/* Allocate a user context handle: */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR PASSWORD, errhp);

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,
OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

do {
degmesg (buf, &buflen);
printf ("$.*s\n", buflen, buf);
} while(1);
/* end main */

static void checkerr (errhp, status)
OCIError *errhp;
sword status;

{

text errbuf [512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

2-68 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

switch (status)
{
case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;
case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");

break;
default:
printf ("Error - %d\n", status);
break;
}
exit(-1);
} /* end checkerr */

Example 2-41 Enqueuing Messages (Reuse Memory) Using OCI

This program, engreuse. ¢, enqueues each line of text into a queue 'msgqueue'
that has been created in the scott schema by executing create types.sql.
Each line of text entered by the user is stored in the queue until user enters EOF. In
this program the enqueue subroutine reuses the memory for the message payload,
as well as the Oracle Streams AQ message properties descriptor.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr (OCIError *errhp, sword status);
static void engmesg(ub4 msgno, text *buf);

struct message

{

OCINumber id;
OCIString *data;

}i

typedef struct message message;
struct null message

{

OCIInd null adt;

Getting Started with Oracle Streams AQ 2-69

Oracle Streams AQ by Example

OCIInd null id;
OCIInd null data;

}i

typedef struct null message null message;

/* Global data reused on calls to enqueue: */

OCIEnv *envhp;
OCIError *errhp;
OCISveCtx *svchp;
message msg;

null message nmsg;

OCIAQMsgProperties *msgprop;

static void engmesg(msgno, buf)

ub4 msgno;

text *buf;

{
OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
message *mesg = &msg; /* instance of SCOTT.MESSAGE */
null message *mesgind = &nmsg; /* null indicator */
text corrid[128]; /* correlation identifier */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr (errhp, OCITypeByName (envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),

(CONST text *)"MESSAGE", strlen("MESSAGE"),

(text *)0, 0, OCI_DURATION SESSION,

OCI_TYPEGET ALL, &mesgtdo));

/* Fill in the attributes of SCOTT.MESSAGE: */

checkerr (errhp, OCINumberFromInt (errhp, &msgno, sizeof (ub4), 0, &mesg->id));

checkerr (errhp, OCIStringAssignText (envhp, errhp, buf, strlen(buf),
&mesg->data)) ;

mesgind->null adt = mesgind->null id = mesgind->null data = 0;

/* Set the correlation id in the message properties descriptor: */
sprintf ((char *)corrid, "Msg#: %d", msgno);
checkerr (errhp, OCIAttrSet (msgprop, OCI_DTYPE AQMSG PROPERTIES,
(dvoid *) &corrid, strlen(corrid),
OCI_ATTR CORRELATION, errhp));

/* Enqueue the message and commit: */

checkerr (errhp, OCIAQEng (svchp, errhp, (CONST text *)"msgqueue",
0, msgprop, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

2-70 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));
} /* end engmesg */

void main()

{

OCIServer *srvhp;

0OCISession *usrhp;

dvoid *tmp;

text buf [80] ; /* user supplied text */

int msgno = 0;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) O,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERRCR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);
/* Allocate a user context handle: */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR PASSWORD, errhp);

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,

Getting Started with Oracle Streams AQ 2-71

Oracle Streams AQ by Example

}

OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* Allocate a message properties descriptor to fill in correlation ID
checkerr (errhp, OCIDescriptorAlloc (envhp, (dvoid **)&msgprop,
OCI_DTYPE AQMSG PROPERTIES,
0, (dvoid **)0));
do {
printf ("Enter a line of text (max 80 chars):");
if (!gets((char *)buf))
break;
engmesg ((ub4)msgno++, buf);
} while(1);

/* Free the message properties descriptor: */
checkerr (errhp, OCIDescriptorFree ((dvoid *)msgprop,

OCI_DTYPE AQMSG PROPERTIES)) ;

/* end main */

static void checkerr (errhp, status)
OCIError *errhp;
sword status;

{

text errbuf [512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;
case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");
break;
default:
printf ("Error - %d\n", status);
break;

2-72 Oracle Streams Advanced Queuing User’s Guide and Reference

ix/

Oracle Streams AQ by Example

exit(-1);
} /* end checkerr */

Example 2-42 Dequeuing Messages (Free Memory After Every Call) Using OCI

This program, degnoreuse. ¢, dequeues each line of text from a queue 'msgqueue'
that has been created in the scott schema by executing create types.sql.
Messages are enqueued using engnoreuse or engreuse. If there are no messages,
then it waits for 60 seconds before timing out. In this program the dequeue
subroutine does not reuse client side objects' memory. It allocates the required
memory before dequeue and frees it after the dequeue is complete.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr (OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

OCIEnv *envhp;
OCIError *errhp;
OCISveCtx *svchp;

struct message
OCINumber id;
OCIString *data;

typedef struct message message;

struct null message

{
OCIInd null adt;
0CIInd null id;
OCIInd null data;

}i

typedef struct null message null message;
static void degmesg(buf, buflen)

text *pbuf;
ub4 *pbuflen;

Getting Started with Oracle Streams AQ 2-73

Oracle Streams AQ by Example

OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
message *mesg = (dvoid *)O0; /* instance of SCOTT.MESSAGE */
null message *mesgind = (dvoid *)0; /* null indicator */
OCIAQDeqgOptions *degopt = (OCIAQDeqgOptions *)O0;

ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ FIRST MSG;/* always get head of g */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr (errhp, OCITypeByName (envhp, errhp, svchp,
(CONST text *)"SCOTT", strlen("SCOTT"),
(CONST text *)"MESSAGE", strlen("MESSAGE"),
(text *)0, 0, OCI_DURATION SESSION,
OCI_TYPEGET ALL, &mesgtdo));

/* Allocate an instance of SCOTT.MESSAGE, and get its null indicator: */
checkerr (errhp, OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE OBJECT,
mesgtdo, (dvoid *)O0, OCI_DURATION_ SESSION,
TRUE, (dvoid **)&mesg));
checkerr (errhp, OCIObjectGetInd(envhp, errhp, (dvoid *)mesg,
(dvoid **)&mesgind)) ;

/* Allocate a descriptor for dequeue options and set wait time, navigation: */
checkerr (errhp, OCIDescriptorAlloc (envhp, (dvoid **)°opt,
OCI_DTYPE AQDEQ OPTIONS, 0, (dvoid **)0));
checkerr (errhp, OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS,
(dvoid *)&wait, 0, OCI_ATTR WAIT, errhp));
checkerr (errhp, OCIAttrSet (degopt, OCI_DTYPE AQDEQ OPTIONS,
(dvoid *)&navigation, O,
OCI_ATTR NAVIGATION, errhp));

/* Dequeue the message and commit: */

checkerr (errhp, OCIAQDeq (svchp, errhp, (CONST text *)"msgqueue",
degopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null data)
*buflen = 0;
else
memcpy ((dvoid *)buf, (dvoid *)O0CIStringPtr (envhp, mesg->data),
(size_t) (*buflen = OCIStringSize (envhp, mesg->data)));

2-74 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

}

/* Free the dequeue options descriptor: */
checkerr (errhp, OCIDescriptorFree ((dvoid *)deqopt, OCI_DTYPE AQDEQ OPTIONS)) ;

/* Free the memory for the objects: */
checkerr (errhp, OCIObjectFree(envhp, errhp, (dvoid *)mesg,
OCI_OBJECTFREE FORCE)) ;
/* end deqmesg */

void main()
{
OCIServer *srvhp;
OCISession *usrhp;
dvoid *tmp;
text buf [80] ; /* payload text */
ub4 buflen;
OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,

(dvoid * (*) ()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit (&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT) ;

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

/* Allocate a user context handle: */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

Getting Started with Oracle Streams AQ 2-75

Oracle Streams AQ by Example

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR PASSWORD, errhp);

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,
OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

do {
deqmesg (buf, &buflen);
printf ("%.*s\n", buflen, buf);
} while(1);
} /* end main */

static void checkerr (errhp, status)
OCIError *errhp;
sword status;
{
text errbuf [512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;
case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");

break;
default:
printf ("Error - %d\n", status);
break;
}
exit (-1);
} /* end checkerr */

2-76 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

Example 2-43 Dequeuing Messages (Reuse Memory) Using OCI

This program, deqreuse. ¢, dequeues each line of text from a queue ‘msgqueue’

that has been created in the scott schema by executing create types.sql.

Messages are enqueued using engnoreuse. c or engreuse. c. If there are no
messages, then it waits for 60 seconds before timing out. In this program, the
dequeue subroutine reuses client side objects' memory between invocation of
OCIAQDegq.

s During the first call to 0CIAQDeq, OCI automatically allocates the memory for

the message payload.

= During subsequent calls to OCIAQDeq, the same payload pointers are passed

and OCI automatically resizes the payload memory if necessary.
» #ifndef OCI_ORACLE

#include <oci.h>
#endif

#include <stdio.h>

static void checkerr (OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

struct message

{

OCINumber id;
OCIString *data;
Vi

typedef struct message message;

struct null message

{

OCIInd null adt;

0CIInd null id;

OCIInd null data;
}i

typedef struct null message null message;

/* Global data reused on calls to enqueue: */

OCIEnv *envhp;

OCIError *errhp;

OCISveCtx *svchp;
OCIAQDeqgOptions *deqopt;

message *mesg = (message *)0;

Getting Started with Oracle Streams AQ

2-77

Oracle Streams AQ by Example

null message *mesgind = (null message *)O0;

static void degmesg(buf, buflen)

text *buf;

ub4 *buflen;
OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ FIRST MSG;/* always get head of q */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr (errhp, OCITypeByName (envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),

(CONST text *)"MESSAGE", strlen("MESSAGE"),

(text *)0, 0, OCI_DURATION SESSION,

OCI_TYPEGET ALL, &mesgtdo));

/* Set wait time, navigation in dequeue options: */
checkerr (errhp, OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS,
(dvoid *)&wait, 0, OCI_ATTR WAIT, errhp));
checkerr (errhp, OCIAttrSet (degopt, OCI_DTYPE AQDEQ OPTIONS,

(dvoid *)&navigation, O,
OCI_ATTR NAVIGATION, errhp));

/*
* Dequeue the message and commit. The memory for the payload is
* automatically allocated/resized by OCI:
*/
checkerr (errhp, OCIAQDeq (svchp, errhp, (CONST text *)"msgqueue",
deqgopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null data)
*pbuflen = 0;
else
memcpy ((dvoid *)buf, (dvoid *)OCIStringPtr (envhp, mesg->data),
(size_t) (*buflen = OCIStringSize (envhp, mesg->data)));
} /* end deqmesg */

void main()

{

2-78 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Streams AQ by Example

OCIServer *srvhp;

OCISession *usrhp;

dvoid *tmp;

text buf [80] ; /* payload text */

ub4 buflen;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) o0,
(dvoid * (*) ()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit (&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERRCR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

/* set attribute server context in the service context */
OCIAttrSet ((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);
/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR PASSWORD, errhp);

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,
OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* allocate the dequeue options descriptor */

Getting Started with Oracle Streams AQ 2-79

Oracle Streams AQ by Example

}

checkerr (errhp, OCIDescriptorAlloc (envhp, (dvoid **)&deqgopt,
OCI_DTYPE AQDEQ OPTIONS, 0, (dvoid **)0));

do {

degmesg (buf, &buflen);

printf ("%.*s\n", buflen, buf);
} while(1);

/*
* This program never reaches this point as the dequeue times out & exits.
* If it does reach here, it is a good place to free the dequeue
* options descriptor using OCIDescriptorFree and free the memory allocated
* by OCI for the payload using OCIObjectFree
*/

/* end main */

static void checkerr (errhp, status)
OCIError *errhp;
sword status;

{

text errbuf [512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;
case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");
break;
default:
printf ("Error - %d\n", status);
break;
}
exit(-1);
/* end checkerr */

2-80 Oracle Streams Advanced Queuing User’s Guide and Reference

Frequently Asked Questions

Frequently Asked Questions

The following lists Oracle Streams AQ installation and general questions:

Oracle Streams AQ Installation Questions

General Oracle Streams AQ Questions

Oracle Streams AQ Installation Questions

How do | set up Internet access for Oracle Streams AQ? What
components are required?

See Chapter 17, "Internet Access to Oracle Streams AQ" for a full discussion. The
following summarizes the steps required to set up Internet access for Oracle
Streams AQ queues:

1.

Set up the Oracle Streams AQ servlet: If you are using a servlet execution
engine that supports the Java Servlet 2.2 specification (such as Tomcat), then
you must create a servlet that extends the oracle.AQ.xml.AQxmlServlet
class. If you are using a servlet execution engine that supports the Java Servlet
2.0 specification (like Apache Jserv), then you must create a servlet that extends
the oracle.AQ.xml.AQxmlServlet20 class. Implement the init () method
in the servlet to specify database connection parameters.

Set up user authentication: Configure the Web server to authenticate all the
users that send POST requests to the Oracle Streams AQ servlet. Only
authenticated users are allowed to access the Oracle Streams AQ servlet.

Set up user authorization: Register the Oracle Streams AQ agent name that is
used to perform Oracle Streams AQ operations using DBMS_AQADM. CREATE _
AQ AGENT. Map the agent to the database users using DBMS_AQADM . ENABLE
DB_ACCESS.

Now clients can write Simple Object Access Protocol (SOAP) requests and
send them to the Oracle Streams AQ servlet using HTTP POST.

How do | set up e-mail notifications?
Here are the steps for setting up your database for e-mail notifications:

1.

2.

Set the SMTP mail host: Invoke DBMS AQELM.SET MAILHOST as an Oracle
Streams AQ administrator.

Set the SMTP mail port: Invoke DBMS AQELM.SET MAILPORT as an Oracle
Streams AQ administrator. If not explicit, set defaults to 25.

Getting Started with Oracle Streams AQ 2-81

Frequently Asked Questions

3. Set the SendFrom address: Invoke DBMS AQELM.SET SENDFROM.

4. After setup, you can register for e-mail notifications using the Oracle Call
Interface (OCI) or PL/SQL APIL

How do | set up Oracle Streams AQ propagation over the Internet?

See Chapter 17, "Internet Access to Oracle Streams AQ" for a full discussion. In
summary, follow the steps for setting up Internet access for Oracle Streams AQ. The
destination databases must be set up for Internet access, as follows:

1. At the source database, create the database link with protocol as http, and host
and port of the Web server running the Oracle Streams AQ servlet with the
username password for authentication with the Web server/servlet runner. For
example, if the Web server is running on computer webdest . oracle . comand
listening for requests on port 8081, then the connect string of the database is:

(DESCRIPTION= (ADDRESS= (PROTOCOL=http) (HOST=webdest .oracle.com) (PORT=8081))
If SSL is used, then specify https as the protocol in the connect string. The
database link is created as follows:

create public database link propdb connect to john IDENTIFIED BY welcome
using ' (DESCRIPTION= (ADDRESS=(PROTOCOL=http) (HOST=webdest.oracle.com)
(PORT=8081))';

where user John with password Welcome is used to authenticate with the Web
server, and is also known by the term Oracle Streams AQ HTTP agent.

Note: You cannot use net service name in tnsnames.ora
with the database link. Doing so results in error ORA-12538.

2. IfSSL is used, then create an Oracle wallet and specify the wallet path at the
source database:

EXECUTE DBMS_AQADM.SET_AQ_PROPAGATIONWALLET(‘/home/myuid/cwallet.sso',
'welcome') ;

3. Deploy the Oracle Streams AQ servlet at the destination database: Create a class
AQPropServlet thatextends oracle.AQ.xml.AQxmlServlet20 (if you
are using a Servlet 2.0 execution engine like Apache Jserv) or extends
oracle.AQ.xml.AQxmlServlet (if you are using a Servlet 2.2 execution
engine like Tomcat). This servlet must connect to the destination database. The
servlet must be deployed on the Web server in the path agserv/servlet.

2-82 Oracle Streams Advanced Queuing User’s Guide and Reference

Frequently Asked Questions

Note: In Oracle9i, the propagation servlet name and deployment
path are fixed. That is, they must be AQPropServlet and the
agserv/servlet respectively.

4. At the destination database: Set up the authorization and authentication for the
Internet user performing propagation, in this case, John.

5. Start propagation at the source site by calling:

DBMS AQADM.SCHEDULE PROPAGATION ('src_queue', 'propdb').

General Oracle Streams AQ Questions

How are messages that have been dequeued but are still retained in the
queue table accessed?

Access messages using SQL. Messages in the queue table (either because they are
being retained or because they have not yet been processed). Each queue has a view
that you can use (see "Number of Messages in Different States for the Whole
Database View" on page 9-17).

Message retention means the messages are there, but how does the
subscriber access these messages?

Typically we expect the subscriber to access the messages using the dequeue
interface. If, however, you would like to see processed or waiting messages, then
you can either dequeue by message ID or use SQL.

Can the sort order be changed after the queue table is created?

You cannot change the sort order for messages after you have created the queue
table.

How do | dequeue from an exception queue?

The exception queue for a multiconsumer queue must also be a multiconsumer
queue.

Expired messages in multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
once (and only once) using a NULL consumer name in dequeue options. Messages
can also be dequeued from an exception queue by specifying the message ID.

Getting Started with Oracle Streams AQ 2-83

Frequently Asked Questions

Expired messages can be dequeued only by specifying message ID if the
multiconsumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0'

What does the latency parameter mean in scheduling propagation?

If a latency less than 0 was specified in the propagation schedule, then the job is
rescheduled to run after the specified latency. The time at which the job actually
runs depends on other factors, such as the number of ready jobs and the number of
job_queue_processes.

See Also: "Managing Job Queues" in Oracle Database
Administrator’s Guide for more information on job queues and Jnnn
background processes

How can I control the tablespaces in which the queue tables are
created?

You can pick a tablespace for storing the queue table and all its ancillary objects
using the storage clause parameter in DBMS AQADM.CREATE QUEUE TABLE.
However, once you pick the tablespace, any index-organized table (IOT) or index
created for that queue table goes to the specified tablespace. Currently, you do not
have a choice to split them between different tablespaces.

How do you associate Real Application Clusters instance affinities with
queue tables?

In 8.1 you can associate RAC instance affinities with queue tables. If you are using
gl and g2 in different instances, then you can use alter gqueue_ table (or even
create queue table) on the queue table and set the primary instance to the
appropriate instance id.

Can you give me some examples of a subscriber rule containing -
message properties - message data properties?

Yes, here is a simple rule that specifies message properties: rule = "priority = 1';
here are example rules that specify a combination of message properties and data
attributes: rule = 'priority = 1 AND tab.userdata.sal = 1000' rule =
' ((priority between 0 AND 3) OR correlation = "BACK ORDERS")
AND tab.userdata.customer_ name like "JOHN DOE")'

User data properties or attributes apply only to object payloads and must be
prefixed with tab.userdata in all cases. Check documentation for more examples.

2-84 Oracle Streams Advanced Queuing User’s Guide and Reference

Frequently Asked Questions

Is registration for notification (OCI) the same as starting a listener?

No. Registration is an OCI client call to be used for asynchronous notifications (that
is, push). It provides a notification from the server to the client when a message is
available for dequeue. A client side function (callback) is invoked by the server
when the message is available. Registration for notification is both nonblocking and
nonpolling.

What is the use of nonpersistent queues?

To provide a mechanism for notification to all users that are currently connected.
The nonpersistent queue mechanism supports the enqueue of a message to a
nonpersistent queue and OCI notifications are used to deliver such messages to
users that are currently registered for notification.

Is there a limit on the length of a recipient list? Or on the number of
subscribers for a particular queue?
Yes, 1024 subscribers or recipients for any queue.

How can I clean out a queue with UNDELIVERABLE messages?

You can dequeue these messages by msgid. You can find the msgid by querying
the queue table view. Eventually the messages are moved to the exception queue
(you must have the Oracle Streams AQ Queue Monitor Process running for this to
happen). You can dequeue these messages from the exception queue with a usual
dequeue.

Is it possible to update the message payload after it has been
enqueued?

Only by dequeuing and enqueuing the message again. If you are changing the
message payload, then it is a different message.

Can asynchronous notification be used to invoke an executable every
time there is a new message?

Notification is possible only to OCI clients. The client need not be connected to the
database to receive notifications. The client specifies a callback function which is
executed for each message. Asynchronous Notification cannot be used to invoke an
executable, but it is possible for the callback function to invoke a stored procedure.

Getting Started with Oracle Streams AQ 2-85

Frequently Asked Questions

Does propagation work from multiconsumer queues to single-consumer
queues and vice versa?

Propagation from a multiconsumer queue to a single consumer queue is possible.
The reverse is not possible (propagation is not possible from a single consumer
queue).

Why do | sometimes get ORA-1555 error on dequeue?

You are probably using the NEXT MESSAGE navigation option for dequeue. This
uses the snapshot created during the first dequeue call. After that, undo information
may not be retained.

The workaround is to use the FIRST MESSAGE option to dequeue the message.
This reexecutes the cursor and gets a new snapshot. This might not perform as well,
so we suggest you dequeue them in batches: FIRST MESSAGE for one, and NEXT
MESSAGE for the next, say, 1000 messages, and then FIRST MESSAGE again, and so
on.

After a message has been moved to an exception queue, is there a way,
using SQL or otherwise, of identifying which queue the message
resided in before moving to the exception queue?

No, Oracle Streams AQ does not provide this information. To get around this, the
application could save this information in the message.

What is the order in which messages are dequeued if many messages
are enqueued in the same second?

When the eng_time is the same for messages, there is another field called step_no
that is monotonically increasing (for each message that has the same eng_time).
Hence this helps in maintaining the order of the messages. There is no situation
when both eng_time and step_no are the same for more than one message
enqueued from the same session.

What happened to OMB? When should we use Oracle Streams AQ and
when should we use Oracle MessageBroker?

In Oracle9i and higher, OMB functionality is provided in Oracle Database. If you are
using Oracle9i or higher database, then use the functionality offered by the
database. You do not need OMB. Note also that from Oracle9i release 2 (9.2) Oracle
Messaging Gateway (MGW) provides the OMB functionality.

2-86 Oracle Streams Advanced Queuing User’s Guide and Reference

Frequently Asked Questions

With Oracle8i, use MGW in the following scenarios:
» To integrate with Websphere MQ
= Touse HTTP framework

Use Java Message Service (JMS) functionality directly from the database in other
scenarios.

Can | use Oracle Streams AQ with Virtual Private Database?

Yes, you can specify a security policy with Oracle Streams AQ queue tables. While
dequeuing, use the dequeue condition (deg_cond) or the correlation ID for the
policy to be applied. You can use "1=1" as the dequeue condition. If you do not use a
dequeue condition or correlation ID, then the dequeue results in an error.

How do | clean up my retained messages?

The Oracle Streams AQ retention feature can be used to automatically clean up
messages after the user-specified duration after consumption.

I have an application in which | inserted the messages for the wrong
subscriber. How do | clean up those messages?

You can do a dequeue with the subscriber name or by message ID. This consumes
the messages, which are cleaned up after their retention time expires.

I'm running propagation between multiple installations of Oracle
Database. For some reason, one of the destination databases has gone
down for an extended duration. How do | clean up messages for that
destination?

To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for
that subscriber.

Transformation Questions

How do you do transformation of XML data?
Transformation of XML data can be accomplished in one of the following ways:

s Using the extract () method supported on XMLType to return an object of
XMLType after applying the supplied XPath expression

Getting Started with Oracle Streams AQ 2-87

Frequently Asked Questions

» Creating a PL/SQL function that transforms the XMLType object by applying an
XSLT transformation to it, using the package XSLPROCESSOR

2-88 Oracle Streams Advanced Queuing User’s Guide and Reference

3

Basic Components

This chapter describes the Oracle Streams Advanced Queuing (AQ) basic
components.

This chapter contains the following topics:

= Object Name (object_name)

= Type Name (type_name)

= AQ Agent Type (aq$_agent)

= AQ Recipient List Type (aq$_recipient_list_t)

= AQ Agent List Type (aq$_agent_list_t)

= AQ Subscriber List Type (aq$_subscriber_list_t)

= AQ Registration Information List Type (aq$_reg_info_list)

s AQ Post Information List Type (aq$_post_info_list)

= AQ Registration Information Type (aq$_reg_info)

= AQ Notification Descriptor Type

= AQ Post Information Type

s Enumerated Constants in the Oracle Streams AQ Administrative Interface
= Enumerated Constants in the Oracle Streams AQ Operational Interface

s INIT.ORA Parameter File Considerations

Basic Components 3-1

Object Name (object_name)

See Also:
s Chapter 8, "Oracle Streams AQ Administrative Interface"

= Chapter 10, "Oracle Streams AQ Operational Interface: Basic
Operations”

Object Name (object_name)

Purpose
Names database objects. This naming convention applies to queues, queue tables,
and object types.

Syntax

object name := VARCHAR2

object name := [schema name.]name
Usage

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, then the current schema is assumed. The name must
follow the reserved character guidelines in Oracle Database SQL Reference. The
schema name, agent name, and the object type name can each be up to 30 bytes
long. However, queue names and queue table names can be a maximum of 24
bytes.

Type Name (type_name)

Purpose
Defines queue types.

Syntax

type name := VARCHAR2

type name := object type | "RAW"
Usage

For details on creating object types refer to Oracle Database Concepts. The maximum
number of attributes in the object type is limited to 900.

3-2 Oracle Streams Advanced Queuing User’s Guide and Reference

AQ Agent Type (ag$_agent)

To store payload of type RAW, Oracle Streams AQ creates a queue table with a LOB
column as the payload repository. The size of the payload is limited to 32K bytes of
data. Because LOB columns are used for storing RAW payload, the Oracle Streams
AQ administrator can choose the LOB tablespace and configure the LOB storage by
constructing a LOB storage string in the storage clause parameter during queue
table creation time.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for
doing enqueues and dequeues.

AQ Agent Type (ag$_agent)

Purpose
Identifies a producer or a consumer of a message.

Syntax

TYPE ag$_agent IS OBJECT (
name VARCHAR2 (30),
address VARCHAR2 (1024) ,
protocol NUMBER)

Usage

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQS AGENT parameters. You can add more subscribers by
repeatedly using the DBMS_AQADM.ADD SUBSCRIBER procedure up to a maximum
of 1024 subscribers for a multiconsumer queue. Two subscribers cannot have the
same values for the NAME, ADDRESS, and PROTOCOL attributes for the AQ$ AGENT
type. At least one of the three attributes must be different for two subscribers.

Parameters

name (VARCHAR2(30))

Name of a producer or consumer of a message. The name of the agent can be the
name of an application or a name assigned by an application. A queue can itself be
an agent, enqueuing or dequeuing from another queue. The name must follow the
reserved character guidelines in Oracle Database SQL Reference.

Basic Components 3-3

AQ Recipient List Type (ag$_recipient_list_t)

address (VARCHAR2(1024))

A character field of up to 1024 bytes that is interpreted in the context of the protocol.
If the protocol is 0 (default), then the address is of the form

[schema.] queue [@dblink] .

protocol (NUMBER)
Protocol to interpret the address and propagate the message. The default value is 0.

AQ Recipient List Type (aq$_recipient_list_t)

Purpose
Identifies the list of agents that receive the message.

Syntax

TYPE ag$ recipient list t IS TABLE OF ag$ agent
INDEX BY BINARY INTEGER;

AQ Agent List Type (aq$_agent_list_t)

Purpose
Identifies the list of agents for DBMS_AQ.LISTEN to listen for.

Syntax

TYPE ag$ agent list t IS TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

AQ Subscriber List Type (aq$_subscriber_list_t)

Purpose
Identifies the list of subscribers that subscribe to this queue.

Syntax

TYPE ag$_subscriber list t IS TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

3-4 Oracle Streams Advanced Queuing User’s Guide and Reference

AQ Registration Information Type (aq$_reg_info)

AQ Registration Information List Type (aq$_reg_info_list)

Purpose
Identifies the list of registrations to a queue.

Syntax
TYPE ag$_reg info list AS VARRAY(1024) OF sys.ag$ reg info

AQ Post Information List Type (aq$_post_info_list)

Purpose
Identifies the list of anonymous subscriptions to which messages are posted.

Syntax
TYPE ag$_post_info_list AS VARRAY (1024) OF sys.ag$_post_info

AQ Registration Information Type (aq$_reg_info)

Purpose
The ag$_reg_info data structure identifies a producer or a consumer of a
message.
Syntax
TYPE sys.aq$ _reg info IS OBJECT (
name VARCHAR2 (128) ,

namespace NUMBER,
callback VARCHAR2(4000),
context RAW(2000)) ;

Attributes

name

Specifies the name of the subscription. The subscription name is of the form
schema . queue if the registration is for a single consumer queue and

schema. queue: consumer name if the registration is for a multiconsumer queue.

Basic Components 3-5

AQ Registration Information Type (aq$_reg_info)

namespace

Specifies the namespace of the subscription. To receive notifications from Oracle
Streams AQ queues, the namespace must be DBMS_AQ.NAMESPACE_AQ. To receive
notifications from other applications using DBMS_AQ.POST or
OCISubscriptionPost (), the namespace must be DBMS AQ.NAMESPACE
ANONYMOUS.

callback

Specifies the action to be performed on message notification. For e-mail
notifications, the form ismailto://xyz@company . com. For Oracle Streams AQ
PL/SQL Callback, use plsql://schema. procedure?PR=0 for raw message
payload or plsql://schema.procedure?PR=1 for Oracle object type message
payload converted to XML.

context
Specifies the context that is to be passed to the callback function. The default is
NULL.

Table 3-1 shows the actions performed for nonpersistent queues for different
notification mechanisms when RAW presentation is specified. Table 3-2 shows the
actions performed when XML presentation is specified.

Table 3—1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

Queue Payload

Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives the RAW Not supported PL/SQL callback receives the
data in the payload. RAW data in the payload.

Oracle object type ~ Not supported Not supported Not supported

Table 3-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified

Queue

Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives XML data is formatted as a PL/SQL callback receives the
the XML data in the SOAP message and e-mailed to XML data in the payload.
payload. the registered e-mail address.

Oracle object ~ OCI callback receives XML data is formatted as a PL/SQL callback receives the

type the XML data in the SOAP message and e-mailed to XML data in the payload.
payload. the registered e-mail address.

3-6 Oracle Streams Advanced Queuing User’s Guide and Reference

AQ Post Information Type

AQ Notification Descriptor Type

Purpose

The ag$_descriptor data structure specifies the Oracle Streams AQ Descriptor
received by the Oracle Streams AQ PL/SQL callbacks upon notification.

Syntax

TYPE sys.aq$ descriptor IS OBJECT (
queue_name VARCHAR2 (30),
consumer name VARCHAR2(30),

msg_id RAW(16),
msg_prop msg _prop t);
Attributes

queue_name
Name of the queue in which the message was enqueued which resulted in the
notification.

consumer_name
Name of the consumer for the multiconsumer queue.

msg_id
ID of the message.

msg_prop
Message properties.

AQ Post Information Type

Purpose

The ag$_post_info data structure specifies anonymous subscriptions to which
you want to post messages.

Syntax
TYPE sys.aqg$ post info IS OBJECT (
name VARCHAR2 (128) ,

namespace NUMBER,
payload RAW(2000)) ;

Basic Components 3-7

Enumerated Constants in the Oracle Streams AQ Administrative Interface

Attributes

name
Name of the anonymous subscription to which you want to post.

namespace

To receive notifications from other applications using DBMS_AQ. POST or
OCISubscriptionPost (), the namespace must be DBMS AQ.NAMESPACE
ANONYMOUS.

payload
The payload to be posted to the anonymous subscription. The default is NULL.

Enumerated Constants in the Oracle Streams AQ Administrative
Interface

When enumerated constants such as INFINITE, TRANSACTIONAL, and NORMAL _
QUEUE are selected as values, the symbol must be specified with the scope of the
packages defining it. All types associated with the administrative interfaces must be
prepended with DBMS AQADM. For example:

DBMS_AQADM.NORMAL QUEUE
Table 3-3 lists the enumerated constants.

Table 3-3 Enumerated Constants in the Oracle Streams AQ Administrative Interface

Parameter Options

retention 0,1,2...INFINITE
message grouping TRANSACTIONAL, NONE

queue_type NORMAL QUEUE, EXCEPTION QUEUE,NON_ PERSISTENT QUEUE

Enumerated Constants in the Oracle Streams AQ Operational Interface

When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining them.
All types associated with the operational interfaces must be prepended with DBMS_
AQ. For example:

DBMS AQ.BROWSE

3-8 Oracle Streams Advanced Queuing User’s Guide and Reference

INIT.ORA Parameter File Considerations

Table 3—4 lists the enumerated constants.

Table 3-4 Enumerated Constants in the Oracle Streams AQ Operational Interface

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA
navigation FIRST MESSAGE, NEXT MESSAGE, NEXT TRANSACTION
state WAITING, READY, PROCESSED, EXPIRED

sequence_deviation BEFORE, TOP

wait FOREVER, NO WAIT

delay NO_ DELAY

expiration NEVER

namespace NAMESPACE_ AQ, NAMESPACE_ ANONYMOUS

INIT.ORA Parameter File Considerations

You can specify the AQ TM_PROCESSES and JOB_QUEUE_PROCESSES parameters
in the init.ora parameter file.

AQ_TM_PROCESSES Parameter No Longer Needed in init.ora

Prior to Oracle Database 10g, Oracle Streams AQ time manager processes were
controlled by the init.ora parameter AQ TM PROCESSES, which had to be set to
nonzero to perform time monitoring on queue messages and for processing
messages with delay and expiration properties specified. These processes were
named QMNO-9 and could be changed using statement:

ALTER SYSTEM SET AQ TM PROCESSES=X

Parameter X ranged from 0 to 10. When X was set to 1 or more, that number of
QMN processes were then started. If the parameter was not specified, or was set to
0, then queue monitor processes were not started.

In Oracle Streams AQ release 10.1, this has been changed to a coordinator-slave
architecture, where a coordinator is automatically spawned if Oracle Streams AQ or
Streams is being used in the system. This process, named QMNC, dynamically
spawns slaves depending on the system load. The slaves, named qXXX, do various
background tasks for Oracle Streams AQ or Streams. Because the number of

Basic Components 3-9

INIT.ORA Parameter File Considerations

processes is determined automatically and tuned constantly, you no longer need set
AQ TM PROCESSES.

Even though it is no longer necessary to set AQ TM PROCESSES when Oracle
Streams AQ or Streams is used, if you do specify a value, then that value is taken
into account. However, the number of gXXX processes can be different from what
was specified by AQ TM PROCESSES.

QMNC only runs when you use queues and create new queues. It affects Streams
Replication and Messaging users.

No separate API is needed to disable or enable the background processes. This is
controlled by setting AQ_ TM PROCESSES to zero or nonzero. Oracle recommends,
however, that you leave the AQ TM PROCESSES parameter unspecified and let the
system autotune.

Table 3-5 lists AQ TM_PROCESSES parameter information.

Table 3-5 AQ_TM_PROCESSES Parameters

Parameter Options

Parameter Name ag_tm processes

Parameter Type integer

Parameter Class Dynamic

Allowable Values 0 to 10

Syntax ag_tm processes = allowable value
Name of process ora_gmnc_ORACLE SID

ora g00n_ORACLE SID

Example ag_tm processes = 1

JOB_QUEUE_PROCESSES Parameter

Propagation is handled by job queue (Jnnn) processes. The number of job queue
processes started in an instance is controlled by the init.ora parameter JOB_
QUEUE_PROCESSES. The default value of this parameter is 0. For message
propagation to take place, this parameter must be set to at least 2. The database
administrator can set it to higher values if there are many queues from which the
messages must be propagated, or if there are many destinations to which the
messages must be propagated, or if there are other jobs in the job queue.

3-10 Oracle Streams Advanced Queuing User’s Guide and Reference

INIT.ORA Parameter File Considerations

See Also: Oracle Database SQL Reference for more information on
JOB_QUEUE PROCESSES

Basic Components 3-11

INIT.ORA Parameter File Considerations

3-12 Oracle Streams Advanced Queuing User’s Guide and Reference

4

Oracle Streams AQ: Programmatic
Environments

This chapter describes the different language options and elements you must work
with and issues to consider in preparing your Oracle Streams Advanced Queuing
(AQ) application environment.

Note: Java package oracle.AQ has been deprecated in release
10.1. Oracle recommends that you migrate existing Java AQ
applications to Oracle JMS (or other Java APIs) and use Oracle JMS
(or other Java APISs) to design your future Java AQ applications.

This chapter contains these topics:

» Programmatic Environments for Accessing Oracle Streams AQ

= Using PL/SQL to Access Oracle Streams AQ

= Using OCI to Access Oracle Streams AQ

= Using OCCI to Access Oracle Streams AQ

= Using Visual Basic (OO40) to Access Oracle Streams AQ

= Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ
= Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

= Comparing Oracle Streams AQ Programmatic Environments

Oracle Streams AQ: Programmatic Environments 4-1

Programmatic Environments for Accessing Oracle Streams AQ

Programmatic Environments for Accessing Oracle Streams AQ

Table 4-1 lists Oracle Streams AQ programmatic environments, functions supported
in each environment, and syntax references.

Table 4-1 Oracle Streams AQ Programmatic Environments

Functions
Language Precompiler or Interface Program Supported Syntax References

PL/SQL DBMS_AQADM and DBMS_AQ Packages = Administrative PL/SQL Packages and Types
and operational ~ Reference

C Oracle Call Interface (OCI) Operational only Oracle Call Interface Programmer’s
Guide
Visual Basic Oracle Objects for OLE (OO40) Operational only ~ Online help available from

Application Development
submenu of Oracle installation.

Java (JMS) oracle.JMS package using JDBC API Administrative Oracle Streams Advanced Queuing
and operational Java API Reference

AQ XML oracle.AQ.xml.AQxmlServlet Operational only ~ Oracle XML API Reference
servlet using HTTP

Using PL/SQL to Access Oracle Streams AQ

The PL/SQL packages DBMS AQADM and DBMS_AQ support access to Oracle
Streams AQ administrative and operational functions using the native Oracle
Streams AQ interface. These functions include:

» Create queue, queue table, nonpersistent queue, multiconsumer queue/topic,
RAW message, or message with structured data

= Get queue table, queue, or multiconsumer queue/topic
= Alter queue table or queue/topic

= Drop queue/topic

= Start or stop queue/topic

= Grant and revoke privileges

s Add, remove, or alter subscriber

= Add, remove, or alter an Oracle Streams AQ Internet agent

4-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Using OCI to Access Oracle Streams AQ

Grant or revoke privileges of database users to Oracle Streams AQ Internet
agents

Enable, disable, or alter propagation schedule

Enqueue messages to single consumer queue (point-to-point model)

Publish messages to multiconsumer queue/topic (publish/subscribe model)
Subscribe for messages in multiconsumer queue

Browse messages in a queue

Receive messages from queue/topic

Register to receive messages asynchronously

Listen for messages on multiple queues/topics

Post messages to anonymous subscriptions

Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP)
server

Add or remove aliases to Oracle Streams AQ objects in a LDAP server
See Also: PL/SQL Packages and Types Reference for detailed

documentation of DBMS_AQADM and DBMS_AQ, including syntax,
parameters, parameter types, return values, and examples

Available PL/SQL DBMS AQADM and DBMS_AQ functions are listed in detail in
Table 4-2 through Table 4-9.

Using OCI to Access Oracle Streams AQ

OCI provides an interface to Oracle Streams AQ functions using the native Oracle
Streams AQ interface.

An OCI client can perform the following actions:

Enqueue messages
Dequeue messages
Listen for messages on sets of queues

Register to receive message notifications

Oracle Streams AQ: Programmatic Environments 4-3

Using OCCI to Access Oracle Streams AQ

In addition, OCI clients can receive asynchronous notifications for new messages in
a queue using OCISubscriptionRegister.

See Also: "OCI and Advanced Queuing" and "Publish-Subscribe
Notification" in Oracle Call Interface Programmer’s Guide for syntax
details

Oracle Type Translator

For queues with user-defined payload types, the Oracle type translator must be
used to generate the OCI/OCCI mapping for the Oracle type. The OCI client is
responsible for freeing the memory of the Oracle Streams AQ descriptors and the
message payload.

See Also:

» "Enqueuing and Dequeuing Oracle Streams AQ Messages" on
page 2-9 for OCl interface examples

= "Oracle Streams AQ and Memory Usage" on page 2-65 for
examples illustrating management of OCI descriptors

Using OCCI to Access Oracle Streams AQ

C++ applications can use OCCI, which has a set of Oracle Streams AQ interfaces
that enable messaging clients to access Oracle Streams AQ. OCCI AQ supports all
the operational functions required to send/receive and publish/subscribe messages
in a message-enabled database. Synchronous and asynchronous message
consumption is available, based on a message selection rule.

See Also: "Oracle Streams Advanced Queuing" in Oracle C++ Call
Interface Programmer’s Guide

Using Visual Basic (0040) to Access Oracle Streams AQ

Visual Basic (OO40) supports access to Oracle Streams AQ operational functions
using the native Oracle Streams AQ interface.

These functions include the following:
» Create a connection, RAW message, or message with structured data
= Enqueue messages to a single consumer queue (point-to-point model)

= Publish messages to a multiconsumer queue/topic (publish/subscribe model)

4-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

= Browse messages in a queue
= Receive messages from a queue/topic

= Register to receive messages asynchronously

Using Oracle Java Message Service (OJMS) to Access Oracle Streams

AQ

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics
that define how a JMS client accesses the facilities of an enterprise messaging
product.

Oracle Java Message Service (OJMS) provides a Java API for Oracle Streams AQ
based on the JMS standard. OJMS supports the standard JMS interfaces and has
extensions to support administrative operations and other features that are not a
part of the standard.

Standard JMS features include:
= Point-to-point model of communication using queues
= Publish/subscribe model of communication using topics

= ObjectMessage, StreamMessage, TextMessage, BytesMessage, and
MapMessage message types

= Asynchronous and synchronous delivery of messages

= Message selection based on message header fields or properties
Oracle JMS extensions include:

= Administrative API to create queue tables, queues and topics

» Point-to-multipoint communication using recipient lists for topics

= Message propagation between destinations, which allows the application to
define remote subscribers

= Support for transactional sessions, enabling JMS and SQL operations in one
transaction

= Message retention after messages have been dequeued

= Message delay, allowing messages to be made visible after a certain delay

Oracle Streams AQ: Programmatic Environments 4-5

Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ

= Exception handling, allowing messages to be moved to exception queues if they
cannot be processed successfully

= Support for AdtMessages

These are stored in the database as Oracle objects, so the payload of the message
can be queried after it is enqueued. Subscriptions can be defined on the contents
of these messages as opposed to just the message properties.

= Topic browsing

This allows durable subscribers to browse through the messages in a
publish/subscribe (topic) destination. It optionally allows these subscribers to
purge the browsed messages, so they are no longer retained by Oracle Streams
AQ for that subscriber.

See Also:

» Java Message Service Specification, version 1.1, March 18, 2002,
Sun Microsystems, Inc.

» http://otn.oracle.com/docs/products/ag/doc
library/ojms/index.html for more information on Oracle
JMS

= PartV, "Using Oracle JMS and Oracle Streams AQ"
» Oracle Streams Advanced Queuing Java API Reference

Accessing Standard and Oracle JMS Applications

Standard JMS interfaces are in the javax. jms package. Oracle JMS interfaces are in
the oracle. jms package. You must have EXECUTE privilege on the DBMS_AQIN
and DBMS_AQJMS packages to use the Oracle JMS interfaces. You can also acquire
these rights through the AQ_ USER_ROLE or the AQ ADMINSTRATOR ROLE. You
also need the appropriate system and queue or topic privileges to send or receive
messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the
database, its applications can run outside the database using the JDBC OCI driver
or JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver

To use JMS with clients running outside the database, you must include the
appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and
Oracle Streams AQ jar files in your CLASSPATH.

4-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

For JDK 1.3.x and higher, include the following in the CLASSPATH :

$ORACLE_HOME/jdbc/lib/classesl2.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/j1lib/jndi.jar
$SORACLE_HOME/lib/xmlparserv2.jar
$SORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/rdbms/jlib/agapil3.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

For JDK 1.2 include the following in the CLASSPATH:

$ORACLE_HOME/jdbc/lib/classesl2.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
SORACLE_HOME/jdk/jre/lib/ext/jta.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/rdbms/jlib/agapil2.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

Using Oracle Server Driver in JServer

If your application is running inside the JServer, then you should be able to access
the Oracle JMS classes that have been automatically loaded when the JServer was
installed. If these classes are not available, then you must load jmscommon. jar
followed by agapi. jar using the SORACLE HOME/rdbms/admin/initjms SQL
script.

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

You can use Oracle Streams AQ XML servlet to access Oracle Streams AQ over
HTTP using Simple Object Access Protocol (SOAP) and an Oracle Streams AQ
XML message format called Internet Data Access Presentation (IDAP).

Using the Oracle Streams AQ servlet, a client can perform the following actions:
= Send messages to single-consumer queues

= Publish messages to multiconsumer queues/topics

= Receive messages from queues

= Register to receive message notifications

Oracle Streams AQ: Programmatic Environments 4-7

Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ

The servlet can be created by defining a Java class that extends the
oracle.AQ.xml.AQxmlServlet or oracle.AQ.xml.AQxmlServlet20 class.
These classes in turn extend the javax.servlet.http.HttpServlet class.

The servlet can be deployed on any Web server or ServletRunner that implements
the Javasoft Servlet 2.0 or Servlet 2.2 interfaces. With Javasoft Servlet 2.0, you must
define a class that extends oracle.AQ.xml .AQxmlServlet20. With Javasoft
Servlet 2.2, you must define a class that extends oracle.AQ.xml.AQxmlServlet.

The servlet can be compiled using JDK 1.2.x, JDK 1.3.x, or JDK 1.4.x libraries.
For JDK 1.4.x the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classesl2.jar
$ORACLE_HOME/jdbc/lib/ojdbcl4.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/j1ib/jndi.jar
$ORACLE_HOME/jlib/jta.jar
$ORACLE_HOME/lib/servlet.jar
SORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE_HOME/lib/xsul2.jar
$ORACLE_HOME/rdbms/jlib/agapi.jar
$ORACLE_HOME/rdbms/jlib/agxml.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

For JDK 1.3.x the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classesl2.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/j1ib/jndi.jar
$ORACLE_HOME/jlib/jta.jar
$SORACLE_HOME/lib/servlet.jar
$SORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE_HOME/lib/xsul2.jar
$ORACLE_HOME/rdbms/jlib/agapi.jar
$ORACLE_HOME/rdbms/jlib/agxml.jar
$SORACLE_HOME/rdbms/jlib/jmscommon.jar

For JDK 1.2.x the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classesl2.jar
$ORACLE_HOME/jdbc/lib/orail8n.jar
$ORACLE_HOME/j1ib/jndi.jar
$ORACLE_HOME/jlib/jta.jar
$ORACLE_HOME/lib/servlet.jar

4-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

$SORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar

$ORACLE _HOME/lib/xsul2.jar
$ORACLE_HOME/rdbms/jlib/agapi.jar
$ORACLE_HOME/rdbms/jlib/agxml.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar

Because the servlet uses JDBC OCI drivers to connect to the Oracle Database server,
the Oracle Database client libraries must be installed on the computer that hosts the
servlet. The LD LIBRARY PATH must contain $SORACLE HOME/lib.

See Also: Chapter 17, "Internet Access to Oracle Streams AQ" for
more information on Internet access to Oracle Streams AQ

Comparing Oracle Streams AQ Programmatic Environments

Available functions for the Oracle Streams AQ programmatic environments are
listed by use case in Table 4-2 through Table 4-9. Use cases are described in
Chapter 8 through Chapter 10 and Chapter 12 through Chapter 15.

Oracle Streams AQ Administrative Interfaces

Table 4-2 lists the equivalent Oracle Streams AQ administrative functions for the
PL/SQL and Java (JMS) programmatic environments.

Table 4-2 Comparison of Oracle Streams AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a connection factory N/A AQjmsFactory.getQueueConne
ctionFactory
AQjmsFactory.getTopicConne
ctionFactory

Register a connection factory inan N/A AQjmsFactory.registerConne

LDAP server ctionFactory

CHmhzaqueuetdﬂe DBMS_AQADM.CREATE QUEUE AQjmsSession.createQueueTa

TABLE ble
Get a queue table Use schema.queue table name AQjmsSession.getQueueTable
Aheraqueuetabb DBMS AQADM.ALTER QUEUE AQQueueTable.alter

TABLE

Oracle Streams AQ: Programmatic Environments 4-9

Comparing Oracle Streams AQ Programmatic Environments

Table 4-2 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Administrative

Use Case PL/SQL Java (JMS)
Drop a queue table DBMS_AQADM.DROP_QUEUE AQQueueTable.drop
TABLE
Create a queue DBMS AQADM.CREATE QUEUE AQjmsSession.createQueue

Get a queue
Create a nonpersistent queue

Create a multiconsumer
queue/topic in a queue table with
multiple consumers enabled

Get a multiconsumer queue/topic
Alter a queue/topic

Start a queue/topic

Stop a queue/topic

Drop a queue/topic

Grant system privileges
Revoke system privileges

Grant a queue/topic privilege

Revoke a queue/topic privilege

Verify a queue type

Add a subscriber

Alter a subscriber

Remove a subscriber

Use schema.queue _name

DBMS_AQADM.

DBMS_AQADM.

CREATE_NP_QUEUE

CREATE_QUEUE

Use schema . queue_name

DBMS_AQADM.
DBMS_AQADM.
DBMS_AQADM.
DBMS_AQADM.

DBMS_AQADM.

PRIVILEGE

DBMS_AQADM.

PRIVILEGE

DBMS_AQADM.

PRIVILEGE

DBMS_AQADM.

PRIVILEGE

DBMS_AQADM.

TYPES

DBMS_AQADM.

DBMS_AQADM.

SUBSCRIBER

DBMS_AQADM.

SUBSCRIBER

ALTER_QUEUE
START_ QUEUE
STOP_QUEUE
DROP_QUEUE

GRANT SYSTEM

REVOKE_SYSTEM

GRANT QUEUE_

REVOKE_QUEUE_

VERIFY QUEUE_

ADD_SUBSCRIBER

ALTER

REMOVE_

AQjmsSession.getQueue
Not supported

AQjmsSession.createTopic

AQjmsSession.getTopic
AQjmsDestination.alter
AQjmsDestination.start
AQjmsDestination.stop
AQjmsDestination.drop

AQjmsSession.grantSystemPr
ivilege

AQjmsSession.revokeSystemP
rivilege

AQjmsDestination.grantQueu
ePrivilege

AQjmsDestination.grantTopi
cPrivilege

AQjmsDestination.revokeQue
uePrivilege

AQjmsDestination.revokeTop
icPrivilege

Not supported

See Table 4-6
See Table 4-6

See Table 4-6

4-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-2 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Administrative

Use Case PL/SQL Java (JMS)
Schedule propagation DBMS_AQADM. SCHEDULE AQjmsDestination.scheduleP
PROPAGATION ropagation

Enable a propagation schedule
Alter a propagation schedule
Disable a propagation schedule
Unschedule a propagation

Create an Oracle Streams AQ
Internet Agent

Alter an Oracle Streams AQ
Internet Agent

Drop an Oracle Streams AQ
Internet Agent

Grant database user privileges to an
Oracle Streams AQ Internet Agent

Revoke database user privileges
from an Oracle Streams AQ Internet
Agent

Add alias for queue, agent,
ConnectionFactory in a LDAP
server

Delete alias for queue, agent,
ConnectionFactory in a LDAP
server

DBMS_AQADM.ENABLE
PROPAGATION_ SCHEDULE

DBMS_AQADM.ALTER _
PROPAGATION_ SCHEDULE

DBMS_ AQADM.DISABLE _
PROPAGATION SCHEDULE

DBMS_AQADM.UNSCHEDULE
PROPAGATION

DBMS AQADM.CREATE AQ AGENT
DBMS_AQADM.ALTER AQ AGENT
DBMS_ AQADM.DROP_AQ AGENT
DBMS_ AQADM.ENABLE AQ AGENT

DBMS_AQADM.
AGENT

DISABLE_AQ

DBMS_AQADM.
LDAP

ADD_ALIAS TO

DBMS_AQADM.
LDAP

DEL_ALIAS FROM

AQjmsDestination.enablePro
pagationSchedule

AQjmsDestination.alterProp
agationSchedule

AQjmsDestination.disablePr
opagationSchedule

AQjmsDestination.unschedul
ePropagation

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Oracle Streams AQ Operational Interfaces

Table 4-3 through Table 4-9 list equivalent Oracle Streams AQ operational functions
for the programmatic environments PL/SQL, OCI, Oracle Streams AQ XML Servlet,
and JMS, for various use cases.

Oracle Streams AQ: Programmatic Environments 4-11

Comparing Oracle Streams AQ Programmatic Environments

Table 4-3 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OcCl AQ XML Servlet JMS
Create a connection N/A OCIServerAttach Openan HTTP AQjmsQueueConne
connection after ctionFactory.cr
authenticating with eateQueueConnec
the Web server tion
AQjmsTopicConne
ctionFactory.cr
eateTopicConnec
tion
Create a session N/A OCISessionBegin An HTTP servlet QueueConnection
session is .createQueueSes
automatically sion
started with the first . .
SOAP request ToplcConnec?tlon
q
.createTopicSes
sion

4-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-3 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OClI AQ XML Serviet JMS
Create a RAW Use SQL RAW type Use OCIRaw for Supply the hex Not supported
message for message Message representation of the
message payload in
the XML message.
For example,
<raw>023£f4523</
raws
Create a message Use SQL Oracle Use SQL Oracle For Oracle object Session.createT
with structured data object type for object type for type queues that are extMessage
message message not JMS queues (that s .
. ession.createO
is, they are not type biectMessage
AQ$_JMS_*), the J g
XML specified in Session.createM
<message apMessage
payload> must Session.createB
map to the SQL type fosM
of the payload for yrestessage
the queue table. Session.createS
For JMS queues, the treamtMessage
XML specified in the AQjmsSession.cr
<message_ eateAdtMessage
payloads> must be
one of the following:
<jms_text
message>, <jms__
map message>,
<jms_bytes
message>, <jms__
object message>
Create a message N/A N/A N/A QueueSession.cr

producer

eateSender

TopicSession.cr
eatePublisher

Oracle Streams AQ: Programmatic Environments 4-13

Comparing Oracle Streams AQ Programmatic Environments

Table 4-4 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL ocCi AQ XML Servlet JMS
Enqueueamne&mge DBMS AQ.enqueue OCIAQEng <AQXmlSend> QueueSender.sen
to a single-consumer d
queue
Enqueue a message DBMS_AQ.enqueue OCIAQEng <AQXmlSend> Not supported
:I)):c?fl;le\l/liiiabrill?ty Specify visibility in ~ Specify oC I_ATTR_ ngicslfj_yb ility>in
opﬁons ENQUEUE_OPTIONS VISIBILITY ul <producer
OCIAQEngOptions) -
options>
Enqueue a message DBMS_AQ.enqueue OCIAQEng <AQXmlSend> Specify priority
to a single-consumer Specifv prior . Specify and TimeToLive
. pecify priority, Specify . .
queue and specify expiration in <priority>, during
message properties MESSAGE OCI_ATTR <expiration> in QueueSender.sen
priority and PROPERTIES PRIORITY, OCI <message_ dor
expiration ATTR_EXPIRATION header> .setTimeToLive
in and
OCIAQMsgPropert MessageProducer
ies .setPriority
followed by

QueueSender.sen
d

4-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-4 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL OClI AQ XML Servlet JMS
Enqueue a message DBMS_AQ.enqueue OCIAQEng <AQXmlSend> Message.setJMSC
t?lziznagrlgcsor;iti}mer Specify correlation, Specify OCI_ATTR_ Ezicéfze lation orrelationlD
glessa o rop or ti}fles delay, exception_ CORRELATION, ids <delavs. Delay and exception
e D elay queue in MESSAGE_ OCI_ATTR_DELAY, . =97~ queue specified as
d excention Y PROPERTIES OCI_ATTR_ RN provider specific
P EXCEPTION QUEUE 3 message properties
queue in - <message_
OCIAQMsgPropert header> JMS_OracleDelay
ies JMS_OracleExcpQ
followed by
QueueSender.sen
d
Enqueue a message Not supported Not supported <AQXmlSend> Message.setIntP
to a single-consumer Properties should be Properties should be Speafy <name>and roperty
queue and specify <int values, .
. part of payload part of payload - Message.setStri
user-defined <string value>, Propert
message properties <long value>, = p Y
and soonin <user Message.setBool
propertiess> eanProperty
and so forth,
followed by
QueueSender.sen
d
Enqueue a message DBMS_AQ.enqueue OCIAQEng <AQXmlSend> AQjmsQueueSende
o shgleconsumer ey
gwsyie pectty transformation in TRANSFORMATION — ~o = = o
e tion ENQUEUE_OPTIONS in SN SPFOSHESE- followed by
OCIAQENngOptions p

QueueSender.sen
d

Oracle Streams AQ: Programmatic Environments 4-15

Comparing Oracle Streams AQ Programmatic Environments

Table 4-5 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OClI AQ XML Serviet JMS
Publish a message to DBMS_AQ.enqueue OCIAQEng <AQXmlPublish> TopicPublisher.
alﬁﬁg}ﬁnﬁﬁg; Set recipient SetOCI ATTR_ publish
et supseriono 1ist to NULL in RECIPIENT LIST
. P MESSAGE_ to NULL in
PROPERTIES OCIAQMsgPropert
ies
Publish a message to DBMS_AQ.enqueue OCIAQEng <AQXmlPublish> AQjmsTopicPubli
alﬁﬁg}ﬁnisﬁfi; Specify recipient list Specify OCI_ATTR_ Elieecéfly ient sher.publish
d it e > 8 in MESSAGE_ RECTPIENT_LIST jo0 5 7= Specify recipients as
P P PROPERTIES in —message an array of
See footnote-1 OCIAQMsgPropert headerg — AQjmsAgent
ies
Publish a message to DBMS_AQ.enqueue OCIAQEng <AQXmlPublish> Specify priority
a multiconsumer Specify priority, Specify OCI_ATTR Specnlfy . and TimeToLive
queue/topic and AL = — <prioritys, during
specify message expiration in PRIORITY, OCI_ <expiration>in TopicPublisher
I1)ro e¥ties rigrit MESSAGE_ ATTR_EXPIRATION yo f message ugl ishor .
Properties priotity propERTIES in ge_ D
and expiration OCIAQMsgPropert header> MessageProducer
. El p .setTimeToLive
ies
and
MessageProducer
.setPriority
followed by
TopicPublisher.
publish

4-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-5 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL o] o] AQ XML Serviet JMS

Publish a message to DBMS_AQ.enqueue OCIAQEng <AQXmlPublish> Message.setJMSC
a multlcons.umer Specify correlation, Specify OCI_ATTR Specify ' orrelationID
queue/topic and = — <correlation

delay, exception CORRELATION, Delay and exception

P f:égﬁss:f]le%ZE " queue inMESSAGE OCI_ATTR DELAY, 12:«: ;dili‘?r’;’ queue specified as
o excontion auey, PROPERTIES OCI_ATTR_ - provider-specific
puonq EXCEPTION QUEUE & message properties
in - <message__
OCTAQMsgPropert header> JMS_OracleDelay
ies JMS OracleExcpQ
followed by
TopicPublisher.
publish
Publish a message to Not supported Not supported <AQXmlPublish> Message.setIntP

a topic and specify
user-defined

Specify <name>and roperty

Properties should be Properties should be %,
<int value>,

message properties part of payload part of payload <string values, Message.setStri
- ngProperty
<long values,
and so on in <user Message.setBool
propertiess> eanProperty
and so forth,
followed by
TopicPublisgher.
publish
Publish a message to DBMS_AQ.enqueue OCIAQEng <AQXmlPublish> AQjmsTopicPubli
transf ogrma tion transformation in TRANSFORMATION in <oroducer
ENQUEUE_OPTIONS in > <b — followed by
B OCIAQEngOptions options>
TopicPublisher.
publish

Oracle Streams AQ: Programmatic Environments 4-17

Comparing Oracle Streams AQ Programmatic Environments

Table 4-6 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe Model Use

Cases

Use Case

PL/SQL

OCI

AQ XML Servlet

JMS

Add a subscriber

Alter a subscriber

Remove a subscriber

See administrative
interfaces

See administrative
interfaces

See administrative
interfaces

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

TopicSession.cr
eateDurableSubs
criber

AQjmsSession.cr
eateDurableSubs
criber

TopicSession.cr
eateDurableSubs
criber

AQjmsSession.cr
eateDurableSubs
criber using the
new selector

AQjmsSession.un
subscribe

4-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-7 Comparison of Oracle Streams AQ Programmatic Environments: Operational

Interface—Browse Messages in a Queue Use Cases

Use Case PL/SQL OocCl AQ XML Serviet JMS
Browse DBMS OCIAQDeq <AQXmlReceiv QueueSession.createBrowser
nEiﬁZ%iiﬁLa AQ.dequeue Set OCI_ATTR_ i;sFﬁzﬁﬁ QueueBrowser.getEnumeratio
! P Setdequeue_ DEQ MODEto ~° d2> ERGHSE
mode to BROWSE BROWSE in in <consumer Not supported on topics
inDEQUEUE_ OCIAQDeqOpti _ =(onSUMer— pp p
OPTIONS ons p oracle.jms.AQjmsSession.cr
eateBrowser
oracle.jms.TopicBrowser.ge
tEnumeration
Browse DBMS__ OCIAQDeg <AQXmlReceiv AQjmsSession.createBrowser
messages in a AQ.dequeue e> Specify set locked to TRUE.
queue/topic and Set OCI_ATTR_ <dequeue .
lock messages Set dequeue DEQ_MOpEto modes LOCKED QueueBrowser.getEnumeratio
while browsin mode to LOCKED LOCKED in in <consumer
& in DEQUEUE_ OCIAQDeqOpti options> Notsupported on topics
OPTIONS ons P PP P

oracle.jms.AQjmsSession.cr
eateBrowser

oracle.jms.TopicBrowser.ge
tEnumeration

Oracle Streams AQ: Programmatic Environments 4-19

Comparing Oracle Streams AQ Programmatic Environments

Table 4-8 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCl AQ XML Servlet JMS
Start a connection N/A N/A N/A Connection.star
for receiving t
messages
Create a message N/A N/A N/A QueueSession.cr
consumer eateQueueReceiv
er
TopicSession.cr
eateDurableSubs
criber
AQjmsSession.cr
eateTopicReceiv
er
Dequeue a message DBMS_AQ.dequeue OCIAQDeq <AQxmlReceive> Not supported
;fénsagilfe u\?i/s Eobf)llli Specify visibility in ~ Specify OCI_ATTR ngicslfiybilit - in
pectly Y DEQUEUE OPTIONS VISIBILITY in B Y
OCIAQDeqOpti . -
CIAQDegOptions options>
Dequeue a message DBMS_AQ.dequeue OCIAQDeqg <AQXmlReceive> AQjmsQueueRecei
gﬁgzagﬁfu&“opm Specify Specify OCI_ATTR_ Eiizg;formation ziiiiitTranSfor
trans f% rmgtion transformation in TRANSFORMATION — ~ N <consumer
DEQUEUE_OPTIONS in optionss — AQjmsTopicSubsc
OCIAQDegOptions p riber.setTransf
ormation
AQjmsTopicRecei
ver.setTransfor
mation
Dequeue a message DBMS_AQ.dequeue OCIAQDeqg <AQXmlReceive> AQjmsQueueReceil
Efifér;aggilfe ue/topic Specify navigationin Specify OCI_ATTR Egz%\lffly ations in Zi;(‘);:tNaVlgatl
e Etionymo de DEQUEUE_OPTIONS NAVIGATION in <Consgmer
8 OCIAQDegOptions . - AQjmsTopicSubsc
options> ;)
riber.setNaviga
tionMode
AQjmsTopicRecei

ver.setNavigati
onMode

4-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Comparing Oracle Streams AQ Programmatic Environments

Table 4-8 (Cont.) Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OcCl AQ XML Servlet JMS
Dequeue a message DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> QueueReceiver.r
gﬁizliﬁgfeue Set dequeue_mode Set OCI_ATTR eceiveor
q to REMOVE in DEQ_ MODE to QueueReceiver.r
DEQUEUE_OPTIONS REMOVE in eceiveNoWait or
OCIAQDeqgO i . \
CIAQDeqOptions AQjmsQueueRecel
ver .receiveNoDa
ta
Dequeue a message DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> Create a durable
muliconsumer | Setdequeue mode Setoct arte TSR RRCEORER
et to REMOVE and set ~ DEQ_MODE to) — pic using
queue/topic using consumer name to REMOVE and set in <consumer subscription name,
subscription name subscription namein OCI_ATTR optionss> then
DEQUEUE_OPTIONS CONSUMER_NAME to TopicSubscriber
subscription name in .receive or
OCIAQDeqOptions TopicSubscriber
.receiveNoWait
or
AQjmsTopicSubsc
riber.receiveNo
Data
Dequeue a message DBMS_AQ.dequeue OCIAQDeq <AQXmlReceive> Createa
from if TopicR iver on
m?lltiionsumer Set dequeue _mode Set OCI_ATTR_ Elzeocns?’umer name> tliepttc icegsc;rllvetheo
et to REMOVE and set ~ DEQ_MODE to) — o 8
queue/topic using consumer nameto REMOVE and set In <consumer recipient name, then
recipient name rajpmntnéneh1 OCI_ATTR_ options> AQjmsSession.cr

DEQUEUE_OPTIONS

CONSUMER_NAME to
recipient name in
OCIAQDeqgOptions

eateTopicReceiv
er

AQjmsTopicRecei
ver.receive or

AQjmsTopicRecei
ver.receiveNoWa
it or

AQjmsTopicRecei
ver.receiveNoDa
ta

Oracle Streams AQ: Programmatic Environments 4-21

Comparing Oracle Streams AQ Programmatic Environments

Table 4-9 Comparison of Oracle Streams AQ Programmatic Environments: Operational
Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL OcCl AQ XML Servlet JMS

Receive messages Define a PL/SQL OCISubscription <AQXmlRegisters> Createa
asynchronously callback procedure Register Specify queue name QueueReceiver on
from a in <destination> the queue, then

single-consumer
queue

Receive messages
asynchronously
from a
multiconsumer
queue/topic

Listen for messages
on multiple
queues/topics

Listen for messages
on one (many)
single-consumer
queues

Listen for messages
on one (many)
multiconsumer
queues/Topics

Register it using
DBMS_
AQ.REGISTER

Define a PL/SQL
callback procedure

Register it using
DBMS_
AQ.REGISTER

DBMS AQ.LISTEN

Use agent_name as
NULL for all agents
inagent list

DBMS_AQ.LISTEN

Specify agent_
name for all agents
inagent list

Specify queue
name as subscription
name

OCISubscription
Enable

OCISubscription
Register

Specify
queue:0CI_ATTR
CONSUMER_NAME as
subscription name

OCISubscription
Enable

OCIAQListen

Use agent_name as
NULL for all agents
inagent list

OCIAQListen

Specify agent_
name for all agents
inagent list

and notification
mechanism in
<notify urls>

<AQXmlRegisters
Specify queue name
in <destinations,
consumer in
<consumer names>
and notification
mechanism in
<notify urls>

Not supported

Not supported

QueueReceiver.s
etMessageListen
er

Create a
TopicSubscriber
or TopicReceiver
on the topic, then

TopicSubscriber
.setMessagelist
ener

Create multiple
QueueReceivers
on a
QueueSession,
then

QueueSession.se
tMessageListene
r

Create multiple
TopicSubscriber
s or
TopicReceivers
ona
TopicSession,
then

TopicSession.se
tMessageListene
r

4-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Part li

Managing and Tuning Oracle Streams AQ

Part II describes how to manage and tune your Oracle Streams Advanced Queuing
(AQ) application.

This part contains the following chapters:
= Chapter 5, "Managing Oracle Streams AQ"
= Chapter 6, "Oracle Streams AQ Performance and Scalability"

O

Managing Oracle Streams AQ

This chapter discusses topics related to managing Oracle Streams Advanced

Queuing (AQ).

This chapter contains these topics:

Oracle Streams AQ Compatibility Parameters
Queue Security and Access Control

Queue Table Export-Import

Oracle Enterprise Manager Support

Using Oracle Streams AQ with XA
Restrictions on Queue Management
Managing Propagation

8.0-Compatible Queues

Managing Oracle Streams AQ 5-1

Oracle Streams AQ Compatibility Parameters

Oracle Streams AQ Compatibility Parameters

For 8.1-compatible or higher queues, the compatible parameter of init.ora and
the compatible parameter of the queue table should be set to 8.1 or higher to use
the following features:

Queue-level access control
Nonpersistent queues

Database compatibility should be 8.1 or higher for creating non-persistent
queues.

Support for Real Application Clusters environments
Rule-based subscribers for publish/subscribe
Asynchronous notification

Sender identification

Separate storage of history management information

Secure queues

See Also: Oracle Streams Concepts and Administration for more
information on secure queues

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names
must be enclosed in double quote marks. So abc . efg means the schema is ABC and
the name is EFG, but "abc" . "efg" means the schema is abc and the name is efg.

Queue Security and Access Control

This section contains these topics:

Oracle Streams AQ Security

Queue Security

Queue Privileges and Access Control
OCI Applications and Queue Access
Security Required for Propagation

5-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Queue Security and Access Control

Oracle Streams AQ Security

Configuration information can be managed through procedures in the DBMS_
AQADM package. Initially, only SYS and SYSTEM have execution privilege for the

procedures in DBMS_AQADM and DBMS_AQ. Users who have been granted EXECUTE
rights to these two packages are able to create, manage, and use queues in their own
schemas. Users also need the MANAGE ANY QUEUE privilege to create and manage

queues in other schemas.

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBMS_

AQJMS and DBMS_AQIN.

This section contains these topics:

= Administrator Role

= User Role

= Access to Oracle Streams AQ Object Types

Administrator Role

The AQ ADMINISTRATOR_ROLE has all the required privileges to administer
queues. The privileges granted to the role let the grantee:

s Perform any queue administrative operation, including create queues and
queue tables on any schema in the database

s Perform enqueue and dequeue operations on any queues in the database
= Access statistics views used for monitoring the queue workload

s Create transformations using DBMS_ TRANSFORM

= Run all procedures in DBMS_AQELM

= Run all procedures in DBMS_AQJMS

User Role

You should avoid granting AQ USER_ROLE, because this role does not provide
sufficient privileges for enqueuing or dequeuing on 8.1-compatible or higher
queues.

Your database administrator has the option of granting the system privileges
ENQUEUE ANY QUEUE and DEQUEUE ANY QUEUE, exercising DBMS
AQADM.GRANT SYSTEM PRIVILEGE and DBMS AQADM.REVOKE SYSTEM

Managing Oracle Streams AQ

5-3

Queue Security and Access Control

PRIVILEGE directly to a database user, if you want the user to have this level of
control.

You as the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS AQADM.GRANT QUEUE
PRIVILEGE and DBMS AQADM.REVOKE QUEUE PRIVILEGE.

As a database user, you do not need any explicit object-level or system-level
privileges to enqueue or dequeue to queues in your own schema other than the
EXECUTE right on DBMS AQ.

Access to Oracle Streams AQ Object Types
All internal Oracle Streams AQ objects are now accessible to PUBLIC.

Queue Security

Oracle Streams AQ administrators of Oracle Database can create 8.1-compatible or
higher queues. All 8.1 security features are enabled for 8.1-compatible or higher
queues. Oracle Streams AQ 8.1 security features work only with 8.1-compatible or
higher queues. When you create queues, the default value of the compatible
parameter in DBMS_AQADM.CREATE_QUEUE_TABLEis 8. 1. 3 if the database
compatibility is less than 10 . 0. If database compatibility is 10. 1, then the default
value of the compatible parameter is also 10. 0.

The AQ ADMINISTRATOR_ROLE role is supported for 8.1-compatible or higher
queues. To enqueue/dequeue on 8.1-compatible or higher queues, users need
EXECUTE rights on DBMS_AQ and either enqueue/dequeue privileges on target
queues or ENQUEUE ANY QUEUE/DEQUEUE ANY QUEUE system privileges.

Queue Privileges and Access Control

You can grant or revoke privileges at the object level on 8.1- compatible or higher
queues. You can also grant or revoke various system-level privileges. Table 5-1 lists
all common Oracle Streams AQ operations and the privileges needed to perform
these operations for an 8.1-compatible or higher queue.

5-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Queue Security and Access Control

Table 5-1 Operations and Required Privileges for 8.1-compatible and Higher Queues
Operation(s) Privileges Required

CREATE/DROP/MONITOR Must be granted EXECUTE rights on DBMS_AQADM. No other
own queues privileges needed.

CREATE/DROP/MONITOR Must be granted EXECUTE rights on DBMS_AQADM and be
any queues granted AQ ADMINISTRATOR ROLE by another user who

ENQUEUE/ DEQUEUE to own
queues

ENQUEUE/ DEQUEUE to
another's queues

ENQUEUE/ DEQUEUE to any
queues

has been granted this role (SYS and SYSTEM are the first
granters of AQ ADMINISTRATOR ROLE)

Must be granted EXECUTE rights on DBMS_AQ. No other
privileges needed.

Must be granted EXECUTE rights on DBMS_AQ and be
granted privileges by the owner using DBMS_
AQADM.GRANT QUEUE PRIVILEGE.

Must be granted EXECUTE rights on DBMS_AQ and be
granted ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE
system privileges by an Oracle Streams AQ administrator
using DBMS_AQADM.GRANT SYSTEM_PRIVILEGE.

OClI Applications and Queue Access

For an Oracle Call Interface (OCI) application to access an 8.1-compatible or higher
queue, the session user must be granted either the object privilege of the queue he
intends to access or the ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system
privileges. The EXECUTE right of DBMS_AQ is not checked against the session user's
rights if the queue he intends to access is an 8.1-compatible or higher queue.

Security Required for Propagation

Oracle Streams AQ propagates messages through database links. The propagation
driver dequeues from the source queue as owner of the source queue; hence, no
explicit access rights need be granted on the source queue. At the destination, the
login user in the database link should either be granted ENQUEUE ANY QUEUE
privilege or be granted the right to enqueue to the destination queue. However, if
the login user in the database link also owns the queue tables at the destination,
then no explicit Oracle Streams AQ privileges must be granted.

See Also: "Propagation from Object Queues” on page 5-16

Managing Oracle Streams AQ 5-5

Queue Table Export-Import

Queue Table Export-Import

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported,
the import utility executes these PL/SQL anonymous blocks to write the metadata
to the data dictionary.

Note: Oracle Streams AQ does not currently support the new
Data Pump expdp and impdp utilities. Use the original exp and
imp utilities for queue table export-import.

Note: If there exists a queue table with the same name in the same
schema in the database as in the export dump, then ensure that the
database queue table is empty before importing a queue table with
queues. Failing to do so has a possibility of ruining the metadata
for the imported queue.

This section contains these topics:
= Exporting Queue Table Data

= Importing Queue Table Data

= Data Pump Export and Import

Exporting Queue Table Data

The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can only be accomplished at queue-table
granularity.

Exporting Queue Tables with Multiple Recipients

A queue table that supports multiple recipients is associated with the following
tables:

= Dequeue index-organized table (IOT)

= Time-management index-organized table

= Subscriber table (for 8.1-compatible and higher queue tables)

= A history index-organized table (for 8.1-compatible and higher queue tables)

5-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Queue Table Export-Import

These tables are exported automatically during full database mode and user mode
exports, but not during table mode export. See "Export Modes" on page 5-7.

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import process generates a note about the ROWIDs being made obsolete when
importing the metadata tables. This message can be ignored, because the queuing
system automatically corrects the obsolete ROWIDs as a part of the import
operation. However, if another problem is encountered while doing the import
(such as running out of rollback segment space), then you should correct the
problem and repeat the import.

Export Modes

Exporting operates in full database mode, user mode, and table mode. Incremental
exports on queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are
exported automatically. However, doing a user-level export from one schema to
another using the FROMUSER TOUSER clause is not supported.

Oracle does not recommend table mode. If you must export a queue table in table
mode, then you must export all related objects that belong to that queue table. For
example, when exporting an 8.1-compatible or higher multiconsumer queue table
named MCQ, you must also export the following tables:

= AQS_gueue table I (the dequeuelOT)

= AQS gueue table T (the time-management IOT)
= AQS queue_ table S (the subscriber table)

= AQS gueue table H (the history IOT)

Importing Queue Table Data

Similar to exporting queues, importing queues entails importing the underlying
queue tables and related dictionary data. After the queue table data is imported, the
import utility executes the PL/SQL anonymous blocks in the dump file to write the
metadata to the data dictionary.

Managing Oracle Streams AQ 5-7

Queue Table Export-Import

Note: Transportable tablespace export/import of tablespaces with
queue tables across releases fails on import. The metadata import
from the lower release fails with an error indicating that the
tablespace is read only. The workaround is to make the tablespace
read/write before importing the metadata.

Importing Queue Tables with Multiple Recipients

A queue table that supports multiple recipients is associated with the following
tables:

= Adequeue IOT

= A time-management IOT

= A subscriber table (for 8.1-compatible or higher queue tables)

= A history IOT (for 8.1-compatible or higher queue tables)

These tables must be imported as well as the queue table itself.

Import IGNORE Parameter

You must not import queue data into a queue table that already contains data. The
IGNORE parameter of the import utility must always be set to NO when importing
queue tables. If the IGNORE parameter is set to YES, and the queue table that
already exists is compatible with the table definition in the dump file, then the rows
are loaded from the dump file into the existing table. At the same time, the old
queue table definition is lost and re-created. Queue table definition prior to the
import is lost and duplicate rows appear in the queue table.

Data Pump Export and Import

The Data Pump replace and skip modes are supported for queue tables. In the
replace mode an existing queue table is dropped and replaced by the new queue
table from the export dump file. In the skip mode, a queue table that already exists
is not imported.

The truncate and append modes are not supported for queue tables. The behavior
in this case is the same as the replace mode.

See Also: Oracle Database Utilities for more information on Data
Pump Export and Data Pump Import

5-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating Oracle Streams AQ Administrators and Users

Creating Oracle Streams AQ Administrators and Users

Example 5-1 shows how to create an Oracle Streams AQ Administrator named
agadm. The last two lines, which are optional, show how to grant this user
EXECUTE privileges on the Oracle Streams AQ packages. This allows the user to run
the package procedures from within a user procedure.

Example 5-1 Creating a User as an Oracle Streams AQ Administrator

CONNECT system/manager

CREATE USER agadm IDENTIFIED BY agadm;
GRANT AQ ADMINISTRATOR ROLE TO agadm;
GRANT CONNECT, RESOURCE TO agadm;

GRANT EXECUTE ON DBMS AQADM TO agadm; --optional
GRANT EXECUTE ON DBMS AQ TO agadm; --optional

The procedure to create Oracle Streams AQ users who create and access queues
within their own schemas is similar to "Creating a User as an Oracle Streams AQ
Administrator", except you do not grant the AQ ADMINISTRATOR_ROLE.
Example 5-2 shows how to create an own-schema user named aquser1. The last
two lines, which are optional, show how to grant this user EXECUTE privileges on
the Oracle Streams AQ packages. This allows the user to run the package
procedures from within a user procedure.

Example 5-2 Creating a User to Create and Access Queues in Own Schema

CONNECT system/manager

CREATE USER aquserl IDENTIFIED BY aquserl;
GRANT CONNECT, RESOURCE TO aquserl;

GRANT EXECUTE ON DBMS AQADM to aquserl;

The procedure to create an Oracle Streams AQ user who does not create queues but
uses a queue in another schema is identical to that for the own-schema user, as
shown in Example 5-3 for user aquser2. But you must also grant object level
privileges in the other schema. Example 54 does this for aquser2 in the aquserl
schema. However, this applies only to queues defined using 8.1-compatible or
higher queue tables.

Managing Oracle Streams AQ 5-9

Oracle Enterprise Manager Support

Example 5-3 Creating a User to Access Queues in Another Schema

CONNECT system/manager

CREATE USER aquser2 IDENTIFIED BY aquser2;
GRANT CONNECT, RESOURCE TO aquser2;

GRANT EXECUTE ON DBMS AQ TO aquser2;

For aquser2 to access the queue aquserl gl in aguserl schema, aquserl must
run the following statements:

Example 5-4 Granting Queue Privileges in Another Queue

CONNECT aquserl/aquserl
EXECUTE DBMS AQADM.GRANT QUEUE PRIVILEGE (
'ENQUEUE‘,'aquserl_ql‘,'aquser2‘,FALSE);

Oracle Enterprise Manager Support

Oracle Enterprise Manager supports most of the administrative functions of Oracle
Streams AQ. Oracle Streams AQ functions are found under the Distributed node in
the navigation tree of the Enterprise Manager console. Functions available through
Oracle Enterprise Manager include:

= Using queues as part of the schema manager to view properties
= Creating, starting, stopping, and dropping queues

= Scheduling and unscheduling propagation

= Adding and removing subscribers

= Viewing propagation schedules for all queues in the database

= Viewing errors for all queues in the database

= Viewing the message queue

= Granting and revoking privileges

= Creating, modifying, or removing transformations

Using Oracle Streams AQ with XA

You must specify "Objects=T" in the xa_open string if you want to use the Oracle
Streams AQ OCI interface. This forces XA to initialize the client-side cache in
Objects mode. You are not required to do this if you plan to use Oracle Streams AQ
through PL/SQL wrappers from OCI or Pro*C.

5-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Restrictions on Queue Management

The large object (LOB) memory management concepts from the Pro*
documentation are not relevant for Oracle Streams AQ raw messages because
Oracle Streams AQ provides a simple RAW buffer abstraction (although they are
stored as LOBs).

When using the Oracle Streams AQ navigation option, you must reset the dequeue

position by using the FIRST MESSAGE option if you want to continue dequeuing

between services (such as xa_start and xa_end boundaries). This is because XA

cancels the cursor fetch state after an xa_end. If you do not reset, then you get an

error message stating that the navigation is used out of sequence (ORA-25237).
See Also:

= "Working with Transaction Monitors with Oracle XA" in Oracle
Database Application Developer’s Guide - Fundamentals for more
information on XA

= "Large Objects (LOBs)" in Pro*C/C++ Programmer’s Guide

Restrictions on Queue Management
This section discusses restrictions on queue management.
This section contains these topics:
= Remote Subscribers
= DML Not Supported on Queue Tables or Associated IOTs
= Propagation from Object Queues with REF Payload Attributes
= Collection Types in Message Payloads
= Synonyms on Queue Tables and Queues
= Tablespace Point-in-Time Recovery

= Nonpersistent Queues

Note: Mixed case (upper and lower case together) queue names,
queue table names, and subscriber names are supported if database
compatibility is 10.0, but the names must be enclosed in double
quote marks. So abc . efg means the schema is ABC and the name
is EFG, but "abc" . "efg" means the schema is abc and the name
isefgq.

Managing Oracle Streams AQ 5-11

Restrictions on Queue Management

Remote Subscribers

For this release, only 32 remote subscribers are allowed for each remote destination
database.

DML Not Supported on Queue Tables or Associated I0Ts

Oracle Streams AQ does not support data manipulation language (DML)
operations on queue tables or associated index-organized tables (IOTs), if any. The
only supported means of modifying queue tables is through the supplied APlIs.
Queue tables and IOTs can become inconsistent and therefore effectively ruined, if
DML operations are performed on them.

Propagation from Object Queues with REF Payload Attributes

Oracle Streams AQ does not support propagation from object queues that have REF
attributes in the payload.

Collection Types in Message Payloads

You cannot construct a message payload using a VARRAY that is not itself
contained within an object. You also cannot currently use a NESTED Table even as
an embedded object within a message payload. However, you can create an object
type that contains one or more VARRAYS, and create a queue table that is founded
on this object type, as shown in Example 5-5.

Example 5-5 Creating Objects Containing VARRAYs

CREATE TYPE number varray AS VARRAY (32) OF NUMBER;
CREATE TYPE embedded varray AS OBJECT (coll number varray) ;
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

queue_table => 'QT!',

queue_payload_type => 'embedded varray');

Synonyms on Queue Tables and Queues

No Oracle Streams AQ PL/SQL calls resolve synonyms on queues and queue
tables. Although you can create synonyms, you should not apply them to the Oracle
Streams AQ interface.

5-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Propagation

Tablespace Point-in-Time Recovery

Oracle Streams AQ currently does not support tablespace point-in-time recovery.
Creating a queue table in a tablespace disables that particular tablespace for
point-in-time recovery. Oracle Streams AQ does support regular point-in-time
recovery.

Nonpersistent Queues

Currently you can create nonpersistent queues of RAW and Oracle object type.You
are limited to sending messages only to subscribers and explicitly specified
recipients who are local. Propagation is not supported from nonpersistent queues.
When retrieving messages, you cannot use the dequeue call, but must instead
employ the asynchronous notification mechanism, registering for the notification
by mean of OCISubscriptionRegister.

Managing Propagation

Propagation makes use of the system queue ag$_prop notify X, where X is the
instance number of the instance where the source queue of a schedule resides, for
handling propagation run-time events. Messages in this queue are stored in the
system table ag$ prop table X, where X is the instance number of the instance
where the source queue of a schedule resides.

Caution: The queue ag$_prop_notify X should never be
stopped or dropped and the table ag$_prop table X should
never be dropped for propagation to work correctly.

This section contains these topics:

= EXECUTE Privileges Required for Propagation

s The Number of Job Queue Processes

= Optimizing Propagation

= Message States During Client Requests for Enqueue
= Propagation from Object Queues

= Debugging Oracle Streams AQ Propagation Problems

Managing Oracle Streams AQ 5-13

Managing Propagation

EXECUTE Privileges Required for Propagation

Propagation jobs are owned by SYS, but the propagation occurs in the security
context of the queue table owner. Previously propagation jobs were owned by the
user scheduling propagation, and propagation occurred in the security context of
the user setting up the propagation schedule. The queue table owner must be
granted EXECUTE privileges on the DBMS_AQADM package. Otherwise, the Oracle
Database snapshot processes does not propagate and generate trace files with the
error identifier SYS.DBMS_AQADM not defined. Private database links owned by the
queue table owner can be used for propagation. The username specified in the
connection string must have EXECUTE access on the DBMS_AQ and DBMS_AQADM
packages on the remote database.

The Number of Job Queue Processes

The scheduling algorithm places the restriction that at least two job queue processes
be available for propagation. If there are jobs unrelated to propagation, then more
job queue processes are needed. If heavily loaded conditions (a large number of
active schedules, all of which have messages to be propagated) are expected, then
you should start a larger number of job queue processes and keep in mind the need
for nonpropagation jobs as well. In a system that only has propagation jobs, two job
queue processes can handle all schedules. However, with more job queue processes,
messages are propagated faster. Because one job queue process can propagate
messages from multiple schedules, it is not necessary to have the number of job
queue processes equal to the number of schedules.

Optimizing Propagation
In setting the number of JOB_ QUEUE_PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages must be
propagated and the number of destinations (rather than queues) to which messages
must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
queue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing
near-OLTP action. The algorithm can handle an unlimited number of schedules and
various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of jobs unrelated to propagation, such as replication jobs.
Hence, it is important to use the following guidelines to get the best results from the
scheduling algorithm.

5-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Propagation

The scheduling algorithm uses the job queue processes as follows (for this
discussion, an active schedule is one that has a valid current window):

If the number of active schedules is fewer than half the number of job queue
processes, then the number of job queue processes acquired corresponds to the
number of active schedules.

If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, then multiple
active schedules are assigned to an acquired job queue process.

If the system is overloaded (all schedules are busy propagating), depending on
availability, then additional job queue processes are acquired up to one fewer
than the total number of job queue processes.

If none of the active schedules handled by a process has messages to be
propagated, then that job queue process is released.

The algorithm performs automatic load balancing by transferring schedules
from a heavily loaded process to a lightly load process such that no process is
excessively loaded.

Handling Failures in Propagation

The scheduling algorithm has robust support for handling failures. Common
failures that prevent message propagation include the following:

Database link failed

Remote database is not available
Remote queue does not exist
Remote queue was not started

Security violation while trying to enqueue messages into remote queue

Under all these circumstances the appropriate error messages are reported in the
DBA_QUEUE_SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is
attempted again after a retry period of 30*(number of failures) seconds, with an
upper bound of ten minutes. After sixteen consecutive retries, the schedule is
disabled.

Managing Oracle Streams AQ 5-15

Managing Propagation

If the problem causing the error is fixed and the schedule is enabled, then the error
fields that indicate the last error date, time, and message continue to show the error
information. These fields are reset only when messages are successfully propagated
in that schedule.

Message States During Client Requests for Enqueue

Client requests for enqueue, send and publish requests, use the following methods:
= AQXmlSend—to enqueue to a single-consumer queue
= AQXmlPublish—to enqueue to multiconsumer queues/topics

In message header, the message_state attribute represents the state of the
message filled in automatically during dequeue, as follows:

= 0 (the message is ready to be processed)
= 1 (the message delay has not yet been reached)
= 2 (the message has been processed and is retained)

= 3 (the message has been moved to the exception queue)

Propagation from Object Queues

Propagation from object queues with BFILEs is supported in Oracle Database 10g.
To be able to propagate object queues with BEFILESs, the source queue owner must
have read privileges on the directory object corresponding to the directory in which
the BFILE is stored. The database link user must have write privileges on the
directory object corresponding to the directory of the BFILE at the destination
database.

Note: Propagation of BFILES from object queues without
specifying a database link is not supported.

See Also: "CREATE DIRECTORY" in Oracle Database SQL
Reference for more information on directory objects

Debugging Oracle Streams AQ Propagation Problems

See: Chapter 25, "Troubleshooting Oracle Streams AQ"

5-16 Oracle Streams Advanced Queuing User’s Guide and Reference

8.0-Compatible Queues

8.0-Compatible Queues

If you use 8.0-compatible queues and 8.1 or higher database compatibility, then the
following features are not available:

= Support for Real Application Clusters environments
= Asynchronous notification

= Secure queues

s Queue level access control

= Rule-based subscribers for publish/subscribe

= Separate storage of history management information

To use these features, you should migrate to 8.1-compatible or higher queues.

See Also:
= "Security Required for Propagation” on page 5-5
» Oracle Database Upgrade Guide

Migrating To and From 8.0

To upgrade a 8.0-compatible queue table to an 8.1-compatible or higher queue table
or to downgrade a 8.1-compatible or higher queue table to an 8.0-compatible queue
table, use DBMS_AQADM.MIGRATE QUEUE TABLE.

Syntax

DBMS AQADM.MIGRATE QUEUE TABLE (
queue_table IN VARCHAR2,
compatible IN VARCHAR2)

Parameters

queue_table (IN VARCHAR2)
Specifies name of the queue table that is to be migrated.

compatible
Set to 8.1 to upgrade an 8.0 queue table to 8.1 compatibility. Set to 8. 0 to
downgrade an 8.1 queue table to 8.0 compatibility.

Managing Oracle Streams AQ 5-17

8.0-Compatible Queues

Example
You must set up the following data structures for the following example to work:

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

queue_table => 'gtablel',
multiple consumers => TRUE,

queue payload type => 'ag.message typ',
compatible =>'8.0");

Example 5-6 Upgrading an 8.0 Queue Table to an 8.1-Compatible Queue Table

EXECUTE DBMS_AQADM.MIGRATE QUEUE TABLE (
queue table => 'gtablel',
compatible => '8.1");

Importing and Exporting with 8.0-Style Queues

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import and export processes generate a note about the ROWIDs being obsoleted
when importing the metadata tables. This message can be ignored, because the
queuing system automatically corrects the obsolete ROWIDs as a part of the import
operation. However, if another problem is encountered while doing the import or
export (such as running out of rollback segment space), then you should correct the
problem and repeat the import or export.

Roles in 8.0

Access to Oracle Streams AQ operations in Oracle8 was granted to users through
roles that provided execution privileges on the Oracle Streams AQ procedures. The
fact that there was no control at the database object level when using Oracle8 meant
that a user with the AQ_ USER_ROLE could enqueue and dequeue to any queue in
the system. For finer-grained access control, use 8.1-compatible or higher queue
tables in an 8.1- compatible or higher database.

Oracle Streams AQ administrators of an 8.1-compatible or higher database can
create queues with 8.0 compatibility. These queues are protected by the
8.0-compatible security features.

If you want to use 8.1 security features on a queue originally created in an 8.0
database, then the queue table must be converted to 8.1-compatible or higher by
running DBMS_AQADM.MIGRATE_QUEUE_TABLE on the queue table.

See Also: PL/SQL Packages and Types Reference for more
information on DBMS_ AQADM.MIGRATE QUEUE TABLE

5-18 Oracle Streams Advanced Queuing User’s Guide and Reference

8.0-Compatible Queues

If a database downgrade is necessary, then all 8.1-compatible or higher queue tables
must be either converted back to 8.0 compatibility or dropped before the database
downgrade can be carried out. During the conversion, all 8.1-compatible security
features on the queues, like the object privileges, are dropped. When a queue is
converted to 8.0-compatible, the 8.0-compatible security model applies to the queue,
and only 8.0-compatible security features are supported.

Security with 8.0-Style Queues

The following Oracle Streams AQ security features and privilege equivalences are
supported with 8.0-compatible queues:

» AQ USER ROLE

The grantee is given the EXECUTE right of DBMS_AQ through the role.
= AQ ADMINISTRATOR ROLE
= EXECUTE right on DBMS AQ

EXECUTE right on DBMS_AQ should be granted to developers who write Oracle
Streams AQ applications in PL/SQL.

Access to Oracle Streams AQ Object Types

The procedure grant type access was made obsolete in release 8.1.5 for
8.0-compatible queues.

OCI Application Access to 8.0-Style Queues

For an OCI application to access an 8.0-compatible queue, the session user must be
granted the EXECUTE rights of DBMS_AQ.

Pluggable Tablespaces and 8.0-Style Multiconsumer Queues

A tablespace that contains 8.0-compatible multiconsumer queue tables should not
be transported using the pluggable tablespace mechanism. The mechanism does
work, however, with tablespaces that contain only single-consumer queues as well
as 8.1 compatible or higher multiconsumer queues. Before you can export a
tablespace in pluggable mode, you must alter the tablespace to read-only mode. If
you try to import a read-only tablespace that contains 8.0-compatible
multiconsumer queues, then you get an Oracle Streams AQ error indicating that
you cannot update the queue table index at import time.

Managing Oracle Streams AQ 5-19

8.0-Compatible Queues

Autocommit Features in the DBMS_AQADM Package

The autocommit parameters in the CREATE_QUEUE_TABLE, DROP_QUEUE_TABLE,
CREATE_QUEUE, DROP_QUEUE, and ALTER QUEUE calls of the DBMS_AQADM
package are deprecated for 8.1.5 and subsequent releases. Oracle continues to
support this parameter in the interface for backward compatibility.

5-20 Oracle Streams Advanced Queuing User’s Guide and Reference

6

Oracle Streams AQ Performance and
Scalability

This chapter discusses performance and scalability issues relating to Oracle Streams
Advanced Queuing (AQ).

This chapter contains the following topics:
= Performance Overview
= Basic Tuning Tips

s Propagation Tuning Tips

Oracle Streams AQ Performance and Scalability 6-1

Performance Overview

Performance Overview

Queues are stored in database tables. The performance characteristics of queue
operations are similar to underlying database operations. The code path of an
enqueue operation is comparable to SELECT and INSERT into a multicolumn
queue table with three index-organized tables. The code path of a dequeue
operation is comparable to SELECT, DELETE, and UPDATE operations on similar
tables.

Note: Performance is not affected by the number of queues in a
table.

Oracle Streams AQ and Oracle Real Application Clusters

Oracle Real Application Clusters can be used to ensure highly available access to
queue data. The entry and exit points of a queue, commonly called its tail and head
respectively, can be extreme hot spots. Because Oracle Real Application Clusters
may not scale well in the presence of hot spots, limit usual access to a queue from
one instance only. If an instance failure occurs, then messages managed by the failed
instance can be processed immediately by one of the surviving instances.

Oracle Streams AQ in a Shared Server Environment

Queue operation scalability is similar to the underlying database operation
scalability. If a dequeue operation with wait option is applied, then it does not
return until it is successful or the wait period has expired. In a shared server
environment, the shared server process is dedicated to the dequeue operation for
the duration of the call, including the wait time. The presence of many such
processes can cause severe performance and scalability problems and can result in
deadlocking the shared server processes. For this reason, Oracle recommends that
dequeue requests with wait option be applied using dedicated server processes.
This restriction is not enforced.

See Also: "DEQUEUE_OPTIONS_T Type" in PL/SQL Packages and

Types Reference for more information on the wait option

Basic Tuning Tips

Oracle Streams AQ table layout is similar to a layout with ordinary database tables
and indexes.

6-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Basic Tuning Tips

See Also: Oracle Database Performance Tuning Guide for tuning
recommendations

Using Storage Parameters

Storage parameters can be specified when creating a queue table using the
storage clause parameter. Storage parameters are inherited by other IOTs and
tables created with the queue table. The tablespace of the queue table should have
sufficient space to accommodate data from all the objects associated with the queue
table. With retention specified, the history table as well as the queue table can grow
to be quite big.

I/0 Configuration

Because Oracle Streams AQ is very I/O intensive, you will usually need to tune I/O
to remove any bottlenecks.

See Also: "I/O Configuration and Design" in Oracle Database
Performance Tuning Guide

Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table

Some environments must process messages in a constant flow, requiring that
enqueue and dequeue processes run concurrently. If the message delivery system
has only one queue table and one queue, then all processes must work on the same
segment area at the same time. This precludes reasonable performance levels when
delivering a high number of messages.

The best number for concurrent processes depends on available system resources.
For example, on a four-CPU system, it is reasonable to start with two concurrent
enqueue and two concurrent dequeue processes. If the system cannot deliver the
wanted number of messages, then use several subscribers for load balancing rather
than increasing the number of processes.

Running Enqueue and Dequeue Processes Serially in a Single Queue Table

When enqueue and dequeue processes are running serially, contention on the same
data segment is lower than in the case of concurrent processes. The total time taken
to deliver messages by the system, however, is longer than when they run
concurrently. Increasing the number of processes helps both enqueuing and
dequeuing. The message throughput rate is higher for enqueuers than for
dequeuers when the number of processes is increased. Usually, the dequeue

Oracle Streams AQ Performance and Scalability 6-3

Propagation Tuning Tips

operations throughput is much less than the enqueue operation (INSERT)
throughput, because dequeue operations perform SELECT, DELETE, and UPDATE.

Creating Indexes on a Queue Table

Creating an index on a queue table is useful if you:
= Dequeue using correlation ID

An index created on the column corr_id of the underlying queue table 203
QueueTableName expedites dequeues.

= Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the
underlying queue table. An index on QueueTableName expedites performance
on this SELECT statement.

Propagation Tuning Tips

Propagation can be considered a special kind of dequeue operation with an
additional INSERT at the remote (or local) queue table. Propagation from a single
schedule is not parallelized across multiple job queue processes. Rather, they are
load balanced. For better scalability, configure the number of propagation schedules
according to the available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables
vary to some extent because Oracle Streams AQ determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly
determined by the user application.

Optimized propagation happens in batches. If the remote queue is in a different
database, then Oracle Streams AQ uses a sequencing algorithm to avoid the need
for a two-phase commit. When a message must be sent to multiple queues in the
same destination, it is sent multiple times. If the message must be sent to multiple
consumers in the same queue at the destination, then it is sent only once.

6-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Part lli

Oracle Streams AQ: Sample Application

Part III describes the Oracle Streams Advanced Queuing (AQ) sample application
used for most examples in this manual.

This part contains the following chapters:

= Chapter 7, "Oracle Streams AQ Sample Application"

7

Oracle Streams AQ Sample Application

This chapter discusses the features of Oracle Streams Advanced Queuing (AQ) in a
sample application based on a hypothetical company called BooksOnLine.

This chapter contains these topics:

= A Sample Application

s General Features of Oracle Streams AQ
= System-Level Access Control

s Queue-Level Access Control

= Message Format Transformation

= Structured Payloads

= Nonpersistent Queues

= Retention and Message History

s Publish/Subscribe Support

= Oracle Real Application Clusters Support
m Statistics Views and Oracle Streams AQ
» Internet Access for Oracle Streams AQ
= Enqueue Features

s Dequeue Features

= Exception Handling

= Asynchronous Notifications

= Propagation Features

Oracle Streams AQ Sample Application 7-1

A Sample Application

Note: For further helpful examples on using Oracle Streams AQ,
search for the "Oracle By Example Series" at the OTN Web site:

http://otn.oracle.com/index.html

A Sample Application

The operations of a large bookseller, BooksOnLine, are based on an online book
ordering system that automates activities across the various departments involved
in the sale. The front end of the system is an order entry application used to enter
new orders. Incoming orders are processed by an order processing application that
validates and records the order. Shipping departments located at regional
warehouses are responsible for ensuring that orders are shipped on time.

There are three regional warehouses: one serving the East Region, another serving
the West Region, and a third warehouse for shipping International orders. After an
order is shipped, the order information is routed to a central billing department that
handles payment processing. The customer service department, located at a
separate site, is responsible for maintaining order status and handling inquiries.

The features of Oracle Streams AQ are exemplified in the BooksOnLine scenario to
demonstrate the possibilities of Oracle Streams AQ technology. The sample code is
provided in Appendix A, "Scripts for Implementing BooksOnLine".

General Features of Oracle Streams AQ
This section contains these topics:
= System-Level Access Control
s Queue-Level Access Control
= Message Format Transformation
= Structured Payloads
» Creating Queues with XMLType Payloads
= Nonpersistent Queues
= Retention and Message History

s Publish/Subscribe Support

7-2 Oracle Streams Advanced Queuing User’s Guide and Reference

System-Level Access Control

= Oracle Real Application Clusters Support

= Propagation Features

System-Level Access Control

Oracle Streams AQ supports system-level access control for all queuing operations,
allowing an application designer or DBA to designate users as queue
administrators. A queue administrator can invoke Oracle Streams AQ
administrative and operational interfaces on any queue in the database. This
simplifies the administrative work because all administrative scripts for the queues
in a database can be managed under one schema.

See Also: "Oracle Enterprise Manager Support" on page 5-10

PL/SQL (DBMS_AQADM Package): Scenario and Code

In the BooksOnLine application, the DBA creates BOLADM, the BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADM to create, drop, manage, and monitor queues in the database. If PL/SQL
packages are needed in the BOLADM schema for applications to enqueue and
dequeue, then the DBA should grant ENQUEUE_ANY and DEQUEUE_ANY system
privileges to BOLADM:

Example 7-1 Creating BOLADM, the BooksOnLine Administrator Account

CREATE USER BOLADM IDENTIFIED BY BOLADM;

GRANT CONNECT, RESOURCE, aq_administrator role TO BOLADM;

GRANT EXECUTE ON DBMS AQ TO BOLADM;

GRANT EXECUTE ON DBMS AQADM TO BOLADM;

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE('ENQUEUE_ANY',‘BOLADM‘,FALSE);
EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE('DEQUEUE_ANY',‘BOLADM‘,FALSE);

If using the Java AQ API, then BOLADM must be granted EXECUTE privileges on
the DBMS_AQIN package:

GRANT EXECUTE ON DBMS AQIN to BOLADM;

In the application, Oracle Streams AQ propagators populate messages from the
Order Entry (OE) schema to:

s The Western Sales (WS) schema

» Eastern Sales (ES) schema

Oracle Streams AQ Sample Application 7-3

System-Level Access Control

s Worldwide Sales (TS) schema

The WS, ES, and TS schemas in turn populate messages to:
s Customer Billing (CB) schema

s Customer Service (CS) schema

Hence the OE, WS, ES, and TS schemas all host queues that serve as the source
queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant schemas of the source queues
enqueue privileges to the destination queues.

Example 7-2 Granting ENQUEUE_ANY System Privilege to All Schemas Hosting a
Source Queue

To simplify administration, all schemas that host a source queue in the
BooksOnLine application are granted the ENQUEUE_ANY system privilege:

EXECUTE DBMS_AQADM.GRANT SYSTEM PRIVILEGE ('ENQUEUE ANY', 'OE',FALSE);

EXECUTE DBMS_AQADM.GRANT SYSTEM PRIVILEGE ('ENQUEUE ANY', 'WS', FALSE);
()
()

I

EXECUTE DBMS_ AQADM.GRANT SYSTEM PRIVILEGE ('ENQUEUE ANY', 'ES', FALSE
EXECUTE DBMS_ AQADM.GRANT SYSTEM PRIVILEGE ('ENQUEUE ANY', 'TS', FALSE

7

To propagate to a remote destination queue, the login user specified in the database
link in the address field of the agent structure should either be granted the
ENQUEUE ANY QUEUE privilege, or be granted the rights to enqueue to the
destination queue. If the login user in the database link also owns the queue tables
at the destination, then no explicit privilege grant is needed.

Visual Basic (0040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

No example is provided with this release.

7-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Queue-Level Access Control

Queue-Level Access Control

Oracle Streams AQ supports queue-level access control for enqueue and dequeue
operations. This feature allows the application designer to protect queues created in
one schema from applications running in other schemas. The application designer
must grant only minimal access privileges to the applications that run outside the
queue schema. The supported access privileges on a queue are ENQUEUE, DEQUEUE
and ALL.

See Also: "Oracle Enterprise Manager Support" on page 5-10

Scenario

The BooksOnLine application processes customer billings in its CB (Customer
Billing) and CBADM schemas. The CB schema hosts the customer billing application
and the CBADM schema hosts all related billing data stored as queue tables.

To protect the billing data, the billing application and the billing data reside in
different schemas. The billing application is allowed only to dequeue messages
from CBADM shippedorders_que, the shipped order queue. It processes the
messages, and then enqueues new messages into CBADM billedorders_gue, the
billed order queue.

To protect the queues from other unauthorized operations from the application, the
following two grant calls are needed:

Example 7-3 PL/SQL (DBMS_AQADM Package): Granting Dequeue Privilege on
Shipped Orders Queue to CB Application

/* Grant dequeue privilege on the shipped orders queue to the Customer
Billing application. The CB application retrieves orders that are shipped but
not billed from the shipped orders queue. */

EXECUTE DBMS AQADM.GRANT QUEUE PRIVILEGE (
'DEQUEUE' , 'CBADM shippedorders que', 'CB', FALSE);

/* Grant enqueue privilege on the billed orders queue to Customer Billing
application. The CB application is allowed to put billed orders into this

queue after processing the orders. */

EXECUTE DBMS_ AQADM.GRANT QUEUE PRIVILEGE (
'"ENQUEUE', 'CBADM billedorders que', 'CB', FALSE);

Oracle Streams AQ Sample Application 7-5

Queue-Level Access Control

Visual Basic (0040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Example 7-4 Java (JDBC): Granting Dequeue Privilege on Shipped Orders Queue to
CB Application

public static void grantQueuePrivileges(Connection db_conn)

{

AQSession aq_sess;

AQQueue sh queue;
AQQueue bi queue;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Grant dequeue privilege on the shipped orders queue to the Customer
Billing application. The CB application retrieves orders that are
shipped but not billed from the shipped orders queue. */

sh queue = ag sess.getQueue ("CBADM", "CBADM shippedorders que");

sh queue.grantQueuePrivilege ("DEQUEUE", "CB", false);

/* Grant enqueue privilege on the billed orders queue to Customer
Billing application. The CB application is allowed to put billed
orders into this queue after processing the orders. */

bi queue = ag_sess.getQueue ("CBADM", "CBADM billedorders que");

bi queue.grantQueuePrivilege ("ENQUEUE", "CB", false);

}
catch (AQException ex)

{
}

System.out.println("AQ Exception: " + ex);

7-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Format Transformation

Message Format Transformation

You can define transformation mappings between different message payload types.
Transformation mappings are defined as SQL expressions that can include PL/SQL
functions (including callouts) and Java stored procedures. Only one-to-one message
transformations are supported. The transformation engine is tightly integrated with
Oracle Streams AQ to facilitate transformation of messages when they move
through the database messaging system.

Transformation mappings can be used during enqueue, dequeue, and propagation
operations. To use a transformation at:

= Enqueue, the mapping is specified in the enqueue options.

= Dequeue, the mapping is specified either in the dequeue options or when you
add a subscriber. A mapping specified in the dequeue options overrides a
mapping specified with ADD SUBSCRIBER.

= Propagation, the mapping is specified when you add a subscriber.

Example 7-5 PL/SQL (DBMS_TRANSFORM Package): Creating Types for the OE
Application

In the BooksOnLine application, assume that the order type is represented
differently in the Order Entry (OE) and the Shipping applications. The order type
and other types for the Order Entry application are created as follows:

CREATE OR REPLACE TYPE order typ AS object (

orderno number,

status varchar2 (30),
ordertype varchar2 (30),
orderregion varchar2 (30),

custno number,
paymentmethod varchar2(30),

items orderitemlist vartyp,
ccnumber varchar2 (20),

order date date) ;

CREATE OR REPLACE TYPE customer typ AS object (

custno number,

custid varchar2 (20),
name varchar2 (100),
street varchar2 (100),
city varchar2 (30),
state varchar2(2),
zip number,

Oracle Streams AQ Sample Application 7-7

Message Format Transformation

country varchar2 (100)) ;

CREATE OR REPLACE TYPE book typ AS object (

title varchar2 (100),
authors varchar2 (100),
ISBN varchar2 (20),
price number) ;

CREATE OR REPLACE TYPE orderitem typ AS object (

quantity number,
item book_typ,
subtotal number) ;

CREATE OR REPLACE TYPE orderitemlist vartyp AS varray (20)
orderitem typ;

Example 7-6 Creating Types for the Shipping Application
CREATE OR REPLACE TYPE order typ sh AS object (

orderno number,

status varchar2 (30),
ordertype varchar2 (30),
orderregion varchar2 (30),
customer customer_typ sh,
paymentmethod varchar2(30),

items orderitemlist vartyp,
ccnumber varchar2 (20),

order date date) ;

CREATE OR REPLACE TYPE customer typ sh AS object (

custno number,

name varchar2 (100
street varchar2 (10)
city varchar2 (30),
state varchar2(2),
zip number) ;

CREATE OR REPLACE TYPE book typ sh AS object (

title varchar2(100),
authors varchar2 (100),
ISBN varchar2 (20),
price number) ;

CREATE OR REPLACE TYPE orderitem typ sh AS object (

7-8 Oracle Streams Advanced Queuing User’s Guide and Reference

of

Message Format Transformation

quantity number,
item book_typ,
subtotal number) ;

CREATE OR REPLACE TYPE orderitemlist vartyp sh AS varray (20) of
orderitem typ sh;

The Overseas Shipping application uses an XMLType attribute.

Creating Transformations

You can create transformations by creating a single PL/SQL function or by creating
an expression for each target type attribute.

Creating a Single PL/SQL Function

This PL/SQL function returns an object of the target type or the constructor of the
target type. This representation is preferable for simple transformations or those not
easily broken down into independent transformations for each attribute.

Example 7-7 DBMS_TRANSFORM.create transformation: Creating a Single PL/SQL
Function to Return Target Type

EXECUTE DBMS TRANSFORM.CREATE TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
from schema => 'OE', from type => 'order typ',
to_schema => 'WS', to _type => 'order typ sh',
transformation (

'"WS.order typ sh(source.user data.orderno,
source.user_data.status,
source.user data.ordertype,
source.user data.orderregion,

WS.get_customer info(source.user data.custno),
source.user data.paymentmethod,
source.user_data.items,
source.user data.ccnumber,
source.user data.order date)');

In the BooksOnline application, assume that the Overseas Shipping site represents
the order as an XMLIype payload. The Order Entry site represents the order as an
Oracle object, ORDER_TYP. Because the Overseas Shipping site subscribes to
messages in the OE_ BOOKEDORDERS_QUE queue, a transformation is applied before
messages are propagated from the Order Entry site to the Overseas Shipping site.

Oracle Streams AQ Sample Application 7-9

Message Format Transformation

Example 7-8 Applying a Transformation Before Messages are Propagated from the
OE Site

The transformation is defined as follows:

CREATE OR REPLACE FUNCTION CONVERT TO ORDER XML (input order TYPE OE.ORDER_TYP)
RETURN XMLType AS
new order XMLType;
BEGIN
select SYS XMLGEN (input order) into new order from dual;
RETURN new_order;
END CONVERT TO_ ORDER XML;

EXECUTE DBMS_TRANSFORM.CREATE TRANSFORMATION (

schema => 'TS',

name => '"OE2XML',
from schema => 'OE',

from type =»> '"ORDER_TYP',
to_schema => 'SYS!',
to_type => 'XMLTYPE',

transformation => 'CONVERT TO_ORDER_XML (source.user data)');

/* Add a rule-based subscriber for Overseas Shipping to the Booked Orders
queues with Transformation. Overseas Shipping handles all non-US orders: */

DECLARE
subscriber ags_agent;
BEGIN
subscriber := ag$ agent ('Overseas Shipping', 'TS.TS bookedorders que',null);

DBMS AQADM.ADD SUBSCRIBER (

queue name => 'OE.OE_bookedorders_que',
subscriber => gubscriber,
rule => 'tab.user_data.orderregion = ''INTERNATIONAL'"'

transformation => 'TS.OE2XML');
END;

Creating an Expression for Each Target Type Attribute

Create a separate expression specified for each attribute of the target type. This
representation simplifies transformation mapping creation and management for
individual attributes of the destination type. It is useful when the destination type
has many attributes.

7-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Format Transformation

Example 7-9 DBMS_TRANSFORM.create_transformation: Creating an Expression for
Each Target Type Attribute

/* first create the transformation without any transformation expressionx/
EXECUTE DBMS_TRANSFORM.CREATE TRANSFORMATION (

schema => 'OE', name => 'OE2WS',

from schema => 'OE', from type => 'order typ',

to schema => 'WS', to type => 'order typ sh');

/* specify each attribute of the target type as a function of the source type*/
EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (

schema => 'OE', name => 'OE2WS',

attribute number => 1,

transformation => 'source.user data.orderno');

EXECUTE DBMS_TRANSFORM.MODIFY_TRANSFORMATION(
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.status');

EXECUTE DBMS TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.ordertype');

EXECUTE DBMS_TRANSFORM.MODIFY_TRANSFORMATION(
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.orderregion');

EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation =>

'WS.get customer info(source.user data.custno)');

EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.payment method');

EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.orderitemlist vartyp');

Oracle Streams AQ Sample Application 7-11

Structured Payloads

EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.ccnumber');

EXECUTE DBMS_TRANSFORM.MODIFY TRANSFORMATION (
schema => 'OE', name => 'OE2WS',
attribute number => 1,
transformation => 'source.user data.order date');

Visual Basic (0040): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Structured Payloads

With Oracle Streams AQ, you can use object types to structure and manage the
payload of messages. The object-relational capabilities of Oracle Database provide a
rich set of data types that range from traditional relational data types to
user-defined types.

Using strongly typed content, that is, content whose format is defined by an Oracle
object type system, makes the following features available:

= Content-based routing

Oracle Streams AQ can examine the content and automatically route messages
to another queue based on content.

= Content-based subscription

A publish and subscribe system can be built on top of a messaging system so
that you can create subscriptions based on content.

= XML

Use the flexibility and extensibility of XML with Oracle Streams AQ messages.
XMLType has additional operators to simplify the use of XML data. Operators
include XMLType .existsNode () and XMLType .extract ().

7-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payloads

You can also create payloads that contain Oracle objects with XMLType attributes.
These can be used for transmitting and storing messages that contain XML
documents. By defining Oracle objects with XMLType attributes, you can do the
following:

= Store more than one type of XML document in the same queue. The documents
are stored internally as CLOB objects.

= Query XMLType attributes using the methods XMLType . existsNode (),
XMLType .extract (), and so on.

See Also: Oracle XML DB Developer’s Guide

Example 7-10 PL/SQL (DBMS_AQADM Package): Creating Various Structured
Payloads

The BooksOnLine application uses a rich set of data types to model book orders as
message content.

Customers are modeled as an object type called customer_typ.

CREATE OR REPLACE TYPE customer typ AS OBJECT (

custno NUMBER,

name VARCHAR2 (100) ,
street VARCHAR2 (100) ,
city VARCHAR2 (30) ,
state VARCHAR2 (2) ,
zip NUMBER,

country VARCHAR2 (100)) ;

Books are modeled as an object type called book _typ.

CREATE OR REPLACE TYPE book typ AS OBJECT (

title VARCHAR2 (100) ,
authors VARCHAR2 (100) ,
ISBN NUMBER,

price NUMBER) ;

An order item that represents an order line item is modeled as an object type called
orderitem typ. An order item is a nested type that includes the book type.

CREATE OR REPLACE TYPE orderitem typ AS OBJECT (

quantity NUMBER,
item BOOK_TYP,
subtotal NUMBER) ;

Oracle Streams AQ Sample Application 7-13

Structured Payloads

An order item list is used to represent a list of order line items and is modeled as a
VARRAY of order items.

CREATE OR REPLACE TYPE orderitemlist vartyp AS VARRAY (20) OF orderitem typ;
An order is modeled as an object type called order typ. The order type is a

composite type that includes nested object types defined earlier. The order type
captures details of the order, the customer information, and the item list.

CREATE OR REPLACE TYPE order typ as object (

orderno NUMBER,

status VARCHAR2 (30) ,
ordertype VARCHAR2 (30) ,
orderregion VARCHAR2 (30) ,
customer CUSTOMER_TYP,
paymentmethod VARCHAR2 (30),

items ORDERITEMLIST VARTYP,
total NUMBER) ;

Some queues in the BooksOnline application model an order using an XMLType
payload.

Visual Basic (0040): Example Code

Use the dbexecutesql interface from the database for this functionality.

Example 7-11 Java (JDBC): Generating Java Classes to Map Structured Payloads to
SQL Types

After creating the types, use JPublisher to generate Java classes that map to the SQL
types.

1. Create an input file jagbol . typ for JPublisher with the following lines:

TYPE boladm.customer typ AS Customer

TYPE boladm.book typ AS Book

TYPE boladm.orderitem typ AS OrderItem

TYPE boladm.orderitemlist vartyp AS OrderItemList
TYPE boladm.order typ AS Order

2. Run JPublisher with the following arguments:

jpub -input=jagbol.typ -user=boladm/boladm -case=mixed -methods=false
-compatible=CustomDatum

This creates Java classes Customer, Book, Orderltem, and OrderltemList that
map to the SQL object types created earlier.

7-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payloads

3. Load the Java AQ driver and create a JDBC connection:

public static Connection loadDriver (String user, String passwd)

{

Connection db conn = null;
try

{

Class.forName ("oracle.jdbc.driver.OracleDriver") ;

/* your actual hostname, port number, and SID will
vary from what follows. Here we use 'dlsun736,' '5521,'
and 'test,' respectively: */

db_conn =
DriverManager.getConnection (
"jdbc:oracle:thin:@dlsun736:5521:test",
user, passwd);

System.out.println("JDBC Connection opened ") ;
db_conn.setAutoCommit (false) ;

/* Load the Oracle Database AQ driver: */
Class.forName ("oracle.AQ.AQOracleDriver") ;

System.out.println("Successfully loaded AQ driver ");

}

catch (Exception ex)

{

System.out.println("Exception: " + ex);
ex.printStackTrace() ;

}

return db conn;

Creating Queues with XMLType Payloads

You can create queues with XMLType payloads. These can be used for transmitting
and storing messages that contain XML documents. By defining Oracle objects with
XMLType attributes, you can do the following:

= Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

= Selectively dequeue messages with XMLType attributes using the operators
XMLType . existsNode (), XMLType .extract (), and so on.

Oracle Streams AQ Sample Application 7-15

Structured Payloads

See Also: Oracle XML DB Developer’s Guide for details on
XMLType operations

= Define transformations to convert Oracle objects to XMLType.

= Define rule-based subscribers that query message content using XMLType
methods such as XMLType .existsNode () and XMLType.extract ().

Example 7-12 DBMS_AQADM: Creating a Queue Table and Queue for an XMLType
Order

In the BooksOnline application, assume that the Overseas Shipping site represents
the order as XMLType. The Order Entry (OE) site represents the order as an Oracle
object, ORDER_TYP. The Overseas queue table and queue are created as follows:

BEGIN
DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'TS orders pr_mgtab',
comment => 'Overseas Shipping MultiConsumer Orders queue table',

multiple consumers => TRUE,
queue payload type => 'SYS.XMLTtype',

compatible => '8.1");

END;

BEGIN

DBMS_AQADM.CREATE QUEUEcreate queue (
queue_name => 'TS bookedorders que',
queue table => 'TS orders pr mgtab');

END;

Example 7-13 Transforming Messages Before Propagation to the Overseas Shipping
Site

Because the representation of orders at the Overseas Shipping site is different from
the representation of orders at the Order Entry site, a transformation is applied
before messages are propagated from the Order Entry site to the Overseas Shipping
site.

/* Add a rule-based subscriber (for Overseas Shipping) to the Booked Orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE

subscriber ag$_agent;
BEGIN
subscriber := ag$ agent ('Overseas_Shipping', 'TS.TS_bookedorders que',null);

7-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payloads

DBMS_AQADM.ADD SUBSCRIBER (

queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user data.orderregion = ''INTERNATIONAL''',
transformation => 'TS.OE2XML') ;
END;

See Also: "Creating Transformations" on page 7-9 for more details
on defining transformations that convert the type used by the
Order Entry application to the type used by Overseas Shipping

Example 7-14 DBMS_AQ: Dequeuing XMLType Messages to Process Orders for
Canadian Customers

Assume that an application processes orders for customers in Canada. This
application can dequeue messages using the following procedure:

/* Create procedures to enqueue into single-consumer queues: */
create or replace procedure get canada orders() as

deq msgid RAW(16) ;

dopt dbms_ag.dequeue options t;
mprop dbms_ag.message properties t;
deq order data XMLTtype;

no_messages exception;

pragma exception init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin

dopt .wait := 1;

/* Specify dequeue condition to select Orders for Canada */

dopt .deq_condition := 'tab.user data.extract(
"/ORDER_TYP/CUSTOMER/COUNTRY/teXt()").getStringVal()="CANADA‘";
dopt.consumer name : = 'Overseas Shipping';

WHILE (new orders) LOOP

BEGIN
dbms_aq.dequeue (
queue_name => 'TS.TS_bookedorders que',
dequeue_options => dopt,
message properties => mprop,
payload => deq order data,
msgid => deq msgid) ;

Oracle Streams AQ Sample Application 7-17

Nonpersistent Queues

commit;

doms_output.put line(' Order for Canada - Order: ' ||
deq order data.getStringVal());

EXCEPTION
WHEN no_messages THEN
dbms_output.put line (' ---- NO MORE ORDERS ---- ');
new_orders := FALSE;
END;
END LOOP;
end;

Nonpersistent Queues

A message in a nonpersistent queue is not stored in a database table. You create a
nonpersistent queue, which can be either a single-consumer or multiconsumer type.
These queues are created in a system-created queue table (AQ$ MEM SC for
single-consumer queues and AQ$_MEM_MC for multiconsumer queues) in the
schema specified by the create np gqueue command. Subscribers can be added
to the multiconsumer queues. Nonpersistent queues can be destinations for
propagation.

See Also: "Creating a Nonpersistent Queue" on page 8-16

You use the enqueue interface to enqueue messages into a nonpersistent queue in
the usual way. You can enqueue RAW and Oracle object type messages into a
nonpersistent queue. You retrieve messages from a nonpersistent queue through the
asynchronous notification mechanism, registering for the notification (using
OCISubscriptionRegister or DBMS AQADM.REGISTER) for the queues you are
interested in.

See Also: "Registering for Notification" on page 10-39

When a message is enqueued into a queue, it is delivered to clients with active
registrations for the queue. The messages are published to the interested clients
without incurring the overhead of storing them in the database.

7-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Nonpersistent Queues

See Also:

= 'DBMS_AQADM.REGISTER"in PL/SQL Packages and Types
Reference

= "OCISubscriptionRegister"in Oracle Call Interface
Programmer’s Guide

Scenario

Assume that there are three application processes servicing user requests at the
Order Entry system. The connection dispatcher shares out connection requests from
the application processes. It attempts to maintain a count of the number of users
logged on to the Order Entry system and the number of users for each application
process. The application processes are named APP1, APP2, and APP3. Application
process failures are not considered in this example.

Using nonpersistent queues meets the requirements in this scenario. When a user
logs on to the database, the application process enqueues to the multiconsumer
nonpersistent queue, LOGIN LOGOUT, with the application name as the consumer
name. The same process occurs when a user logs out. To distinguish between the
two events, the correlation of the message is LOGIN for logins and LOGOUT for
logouts.

The callback function counts the login and logout events for each application
process.

Note: The dispatcher process must connect to the database only
for registering the subscriptions. The notifications themselves can
be received while the process is disconnected from the database.

Example 7-15 PL/SQL (DBMS_AQADM). Creating Multiconsumer Nonpersistent
Queues in OE Schema

CONNECT oe/oe;
/* Create the Object Type/ADT adtmsg */
CREATE OR REPLACE TYPE adtmsg AS OBJECT (id NUMBER, data VARCHAR2(4000));

/* Create the multiconsumer nonpersistent queue in OE schema: */
EXECUTE DBMS AQADM.CREATE NP QUEUE (queue name => 'LOGIN_LOGOUT',

multiple consumers => TRUE);

/* Enable the queue for enqueue and dequeue: */

Oracle Streams AQ Sample Application 7-19

Nonpersistent Queues

EXECUTE DBMS_AQADM.START QUEUE (queue name => 'LOGIN LOGOUT') ;

/* Nonpersistent Queue Scenario - procedure to be executed upon login: */
CREATE OR REPLACE PROCEDURE User Login(app process IN VARCHAR2)

AS
msgprop dbms_aqg.message_properties t;
engopt dbms_ag.enqueue options_t;
eng_msgid RAW (16) ;
payload RAW (1) ;

BEGIN

/* Visibility must always be immediate for NonPersistent queues */
engopt.visibility:=dbms aq.IMMEDIATE;

msgprop.correlation:= 'LOGIN';

msgprop.recipient 1list(0) := ag$_agent (app process, NULL, NULL);
/* payload is NULL */

dbms_aqg.enqueue (

queue_name => 'LOGIN_LOGOUT',
enqueue options => engopt,

message properties => msgprop,
payload => payload,

msgid => enq msgid) ;

END;

/* Nonpersistent queue scenario - procedure to be executed upon logout: */
CREATE OR REPLACE PROCEDURE User logout (app_process IN VARCHAR2)

AS
msgprop dbms_ag.message properties t;
engopt dbms_ag.enqueue options t;
eng_msgid RAW(16) ;
payload adtmsg;

BEGIN

/* Visibility must always be immediate for NonPersistent queues: */
engopt.visibility:=dbms aqg.IMMEDIATE;
msgprop.correlation:= 'LOGOUT';
msgprop.recipient 1list(0) := ag$_agent (app process, NULL, NULL);
/* Payload is NOT NULL: */
payload := adtmsg(l, 'Logging Off');

dbms_ag.enqueue (

queue_name => 'LOGIN_LOGOUT',
enqueue options => engopt,

message properties => msgprop,
payload => payload,

msgid => enq msgid) ;

7-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Nonpersistent Queues

END;

/* If there is a login at APP1, then enqueue a message into 'login logout' with
correlation 'LOGIN': */
EXECUTE User login('APP1');

/* If there is a logout at APP3, then enqueue a message into 'login logout' with
correlation 'LOGOUT' and payload adtmsg(l, 'Logging Off'): */
EXECUTE User logout ('APP3');

/* The OCI program which waits for notifications: */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>
#ifdef WIN32COMMON
#define sleep(x) Sleep(1000*(x))
#endif

/* LOGIN / password: */
static text *username = (text *) "OE";
static text *password = (text *) "OE";

/* The correlation strings of messages: */
static char *login = "LOGIN";
static char *logout = "LOGOUT';

/* The possible consumer names of queues: */
static char *applist[] = {"APP1", "APP2", "APP3"};

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

static void checkerr(/* OCIError *errhp, sword status */);

struct process statistics

{
ub4 login;
ub4 logout;

}i

Oracle Streams AQ Sample Application 7-21

Nonpersistent Queues

typedef struct process statistics process statistics;
int main(/*_ int argc, char *argv[] _*/);

/* Notify Callback: */

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay;
ub4 payl;

dvoid *desc;
ub4 mode;

{

text *subname; /* subscription name */

ub4 lsub; /* length of subscription name */
text *queue; /* queue name */

ub4 *1lqueue; /* queue name */

text *consumer; /* consumer name */

ub4 lconsumer;

text *correlation;

ub4 lcorrelation;

ub4 size;

ub4 appno;

OCIRaw *msgid;

OCIAQMsgProperties *msgprop; /* message properties descriptor */
process_statistics *user count = (process statistics *)ctx;

OCIAttrGet ((dvoid *)subscrhp, OCI_HTYPE SUBSCRIPTION,
(dvoid *) &subname, &lsub, OCI_ATTR SUBSCR NAME, errhp);

/* Extract the attributes from the AQ descriptor: */

/* Queue name: */

OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR QUEUE NAME, errhp);

/* Consumer name: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&consumer, &lconsumer,
OCI_ATTR CONSUMER NAME, errhp);

/* Message properties: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR_MSG PROP, errhp);

/* Get correlation from message properties: */
checkerr (errhp, OCIAttrGet (msgprop, OCI_DTYPE AQMSG PROPERTIES,

7-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Nonpersistent Queues

(dvoid *)&correlation, &lcorrelation, OCI_ATTR CORRELATION, errhp));

if (lconsumer == strlen(applist[0]))

{

if (!memcmp ((dvoid *)consumer, (dvoid *)applist[0], strlen(applist[0])))

appno = 0;

else if (!memcmp ((dvoid *)consumer, (dvoid *)applist[1l],strlen(applist[1])))
appno = 1;

else if (!memcmp ((dvoid *)consumer, (dvoid *)applist[2],strlen(applist([2])))
appno = 2;

else

{

printf ("Wrong consumer in notification");
return;

}
}

else
{ /* consumer name must be "APP1", "APP2" or "APP3" */
printf ("Wrong consumer in notification");

}

if (lcorrelation == strlen(login) && /* login event */
Imemcmp ((dvoid *)correlation, (dvoid *)login, strlen(login)))
{

return;

user count [appno] .login++;
/* increment login count for the app process */
printf ("Login by APP%d \n", (appno+l));
printf ("Login Payload length = %d \n", payl);
}
else if (lcorrelation == strlen(logout) && /* logout event */
Imemcmp ((dvoid *)correlation, (dvoid *)logout, strlen(logout)))

user count [appno] .logout++;
/* increment logout count for the app process */
printf ("logout by APP%d \n", (appno+l));
printf ("logout Payload length = %d \n", payl);
}
else /* correlation is "LOGIN" or "LOGOUT" */
printf ("Wrong correlation in notification");

printf ("Total : \n");

printf ("Appl : %d \n", user count[0].login-user count [0].logout) ;
printf ("App2 : %d \n", user count[1l].login-user count[1].logout) ;

Oracle Streams AQ Sample Application 7-23

Nonpersistent Queues

printf ("App3 : %d \n", user count[2].login-user count [2].logout) ;

}

int main(argc, argv)

int argc;

char *argvl(];

{
OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhpl[3];
ub4 namespace = OCI_SUBSCR_NAMESPACE AQ;
process statistics ctx[3] = {{0,0}, {0,0}, {0,0}};
ub4 sleep time = 0;

printf ("Initializing OCI Process\n");

/* Initialize OCI environment with OCI_EVENTS flag set: */
(void) OCIInitialize((ub4) OCI EVENTS|OCI_OBJECT, (dvoid *)o0,

(dvoid * (*) (dvoid *, size t)) 0,
(dvoid * (*) (dvoid *, dvoid *, size t))O,
(void (*) (dvoid *, dvoid *)) 0);

printf ("Initialization successful\n");

printf ("Initializing OCI Env\n");
(void) OCIEnvInit((OCIEnv **) &envhp, OCI DEFAULT, (size t) 0, (dvoid **) 0
)

printf ("Initialization successful\n");

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) g&errhp,
OCI_HTYPE ERROR, (size t) 0, (dvoid **) 0));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
OCI_HTYPE SERVER, (Size_t) 0, (dvoid **) 0));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
OCI_HTYPE SVCCTX, (size t) 0, (dvoid **) 0));

printf ("connecting to server\n");

checkerr (errhp, OCIServerAttach(srvhp, errhp, (text *)"instl alias",
strlen("instl alias"), (ub4) OCI DEFAULT)) ;

printf ("connect successful\n");

/* Set attribute server context in the service context: */
checkerr (errhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE SVCCTX, (dvoid *)srvhp,

7-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Nonpersistent Queues

(ub4) 0, OCI_ATTR SERVER, (OCIError *) errhp));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE SESSION, (Size_t) 0, (dvoid **) 0));

/* Set username and password in the session handle: */

checkerr (errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,
(dvoid *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR USERNAME, errhp));

checkerr (errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,
(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR PASSWORD, errhp));

/* Begin session: */
checkerr (errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED RDBMS,
(ub4) OCI_DEFAULT)) ;

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX,
(dvoid *) authp, (ub4) O,
(ub4) OCI_ATTR SESSION, errhp);

/* Register for notification: */

printf("allocating subscription handle\n");

subscrhp [0] = (OCISubscription *)O0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp([0],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APPl: */

printf ("setting subscription name\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) "OE.LOGIN LOGOUT:APP1",
(ub4) strlen("OE.LOGIN LOGOUT:APP1"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

printf ("setting subscription callback\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI HTYPE SUBSCRIPTION,

(dvoid *)&ctx, (ub4)sizeof (ctx),
(ub4) OCI ATTR SUBSCR CTX, errhp);

Oracle Streams AQ Sample Application 7-25

Nonpersistent Queues

printf ("setting subscription namespace\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

printf ("allocating subscription handle\n");

subscrhp[1] = (OCISubscription *)O0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp(1],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP2: */

printf ("setting subscription name\n");

(void) OCIAttrSet((dvoid *) subscrhp(l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) "OE.LOGIN LOGOUT:APP2",
(ub4) strlen("OE.LOGIN LOGOUT:APP2"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

printf ("setting subscription callback\n");

(void) OCIAttrSet((dvoid *) subscrhp(l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR CALLBACK, errhp);

(void) OCIAttrSet ((dvoid *) subscrhp([l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof (ctx),
(ub4) OCI_ATTR SUBSCR_CTX, errhp);

printf ("setting subscription namespace\n");

(void) OCIAttrSet((dvoid *) subscrhp(l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

printf ("allocating subscription handle\n");

subscrhp [2] = (OCISubscription *)O0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp([2],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size t) 0, (dvoid **) 0);

/* For application process APP3: */

printf ("setting subscription name\n");

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid ¥*) "OE.LOGIN LOGOUT:APP3",
(ub4) strlen("OE.LOGIN LOGOUT:APP3"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

7-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Nonpersistent Queues

printf ("setting subscription callback\n");

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR CALLBACK, errhp);

(void) OCIAttrSet ((dvoid *) subscrhp([2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof (ctx),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

printf ("setting subscription namespace\n");

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

printf ("Registering fornotifications \n");
checkerr (errhp, OCISubscriptionRegister (svchp, subscrhp, 3, errhp,
OCI_DEFAULT)) ;

sleep time = (ub4)atoi(argv[l]);
printf ("waiting for %d s \n", sleep time);
sleep (sleep time);

printf ("Exiting");
exit (0);

}

void checkerr (errhp, status)
OCIError *errhp;
sword status;

text errbuf [512];

sb4 errcode = 0;

switch (status)

{

case OCI_SUCCESS:
break;

case OCI_SUCCESS WITH INFO:
(void) printf ("Error - OCI_SUCCESS WITH INFO\n");
break;

case OCI_NEED DATA:
(void) printf ("Error - OCI_NEED DATA\n");
break;

case OCI_NO DATA:
(void) printf ("Error - OCI_NODATA\n");

Oracle Streams AQ Sample Application 7-27

Retention and Message History

break;
case OCI_ERROR:
(void) OCIErrorGet ((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), OCI_HTYPE ERROR);
(void) printf ("Error - %.*s\n", 512, errbuf);
break;
case OCI_INVALID HANDLE:
(void) printf ("Error - OCI_INVALID HANDLE\n");
break;
case OCI_STILL EXECUTING:
(void) printf ("Error - OCI_STILL EXECUTE\n");
break;
case OCI_CONTINUE:
(void) printf ("Error - OCI_CONTINUE\n");
break;
default:
break;

}
}

/* End of file tkagdocn.c */

Visual Basic (0040): Example Code
This feature is not supported currently.

Java (JDBC): Example Code
This feature is not supported through the Java APL

Retention and Message History

Oracle Streams AQ allows the retention of the message history after consumption.
The messages and their histories can be queried using SQL. This allows business
analysis of the integrated system. In certain cases, messages must be tracked. For
example, if a message is produced as a result of the consumption of another
message, then the two are related. As the application designer, you may want to
keep track of such relationships. Taken together, retention, message identifiers, and
SQL queries make it possible to build powerful message warehouses.

Scenario

Assume that you must determine the average order processing time. This includes
the time the order must wait in the back order queue. You want to know the

7-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Publish/Subscribe Support

average wait time in the backed_order queue. SQL queries can determine the
wait time for orders in the shipping application. Specify the retention as TRUE for
the shipping queues and specify the order number in the correlation field of the
message.

For simplicity, only orders that have already been processed are analyzed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_gque and the enqueue time in the WS_
shipped orders que.

See Also: "tkaqdoca.sql: Script to Create Users, Objects, Queue
Tables, Queues, and Subscribers" on page A-2

PL/SQL (DBMS_AQADM Package): Example Code

SELECT SUM(SO.enqg time - BO.eng time) / count (*) AVG PRCS_TIME
FROM WS.AQSWS orders pr mgtab BO , WS.AQSWS orders mgtab SO
WHERE SO.msg_state = 'PROCESSED' and BO.msg_state = 'PROCESSED'
AND SO.corr_id = BO.corr_id and SO.queue = 'WS_shippedorders que';

/* Average waiting time in the backed order queue: */
SELECT SUM(BACK.deq time - BACK.eng_ time)/count (*) AVG BACK TIME
FROM WS.AQSWS orders mgtab BACK
WHERE BACK.msg_state = 'PROCESSED' AND BACK.queue = 'WS_backorders que';

Visual Basic (0040): Example Code

Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

No example is provided with this release.

Publish/Subscribe Support

Oracle Streams AQ supports the publish/subscribe model of application
integration. In the model, publishing applications put the message in the queue.
The subscribing applications subscribe to the message in the queue. More
publishing and subscribing applications can be dynamically added without
changing the existing publishing and subscribing applications.

Oracle Streams AQ also supports content-based subscriptions. The subscriber can
subscribe to a subset of messages in the queue based on the message properties and

Oracle Streams AQ Sample Application 7-29

Publish/Subscribe Support

the contents of the messages. A subscriber to a queue can also be another queue or a
consumer on another queue.

You can implement a publish/subscribe model of communication using Oracle
Streams AQ as follows:

= Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

= Set up a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

= Publisher applications publish messages to the queue by invoking an enqueue
call.

= Subscriber applications can receive messages in the following manner:
= A dequeue call retrieves messages that match the subscription criteria.

= Alisten call can be used to monitor multiple queues for subscriptions on
different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

= Use the Oracle Call Interface (OCI) notification mechanism. This allows a
push mode of message delivery. The subscriber application registers the
queues (and subscriptions specified as subscribing agent) from which to
receive messages. This registers a callback to be invoked when messages
matching the subscriptions arrive.

Scenario

The BooksOnLine application illustrates the use of a publish/subscribe model for
communicating between applications. The following subsections give some
examples.

Defining queues

The Order Entry application defines a queue (OE_booked orders gue) to
communicate orders that are booked to various applications. The Order Entry
application is not aware of the various subscriber applications and thus, a new
subscriber application can be added without disrupting any setup or logic in the
Order Entry (publisher) application.

7-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Publish/Subscribe Support

Setting Up Subscriptions

The various Shipping applications and the Customer Service application (that is,
Eastern Region shipping, Western Region shipping, Overseas Shipping and
Customer Service) are defined as subscribers to the booked_orders queue of the
Order Entry application. Oracle Streams AQ uses rules to route messages of interest
to the various subscribers. Thus, Eastern Region shipping, which handles shipment
of all orders for the East Coast and all rush U.S. orders, expresses the subscription
rule as follows:

rule => 'tab.user data.orderregion = ''EASTERN'' OR
(tab.user data.ordertype = ''RUSH'' AND
tab.user data.customer.country = ''USA'') !

Each subscriber can specify a local queue where messages are to be delivered. The
Eastern Region shipping application specifies a local queue (ES_booked orders
que) for message delivery by specifying the subscriber address as follows:

subscriber := ag$ agent ('East Shipping', 'ES.ES bookedorders que', null);

Setting Up Propagation

Enable propagation from each publisher application queue. To allow subscribed
messages to be delivered to remote queues, the Order Entry application enables
propagation by means of the following statement:

EXECUTE DBMS_AQADM.SCHEDULE PROPAGATION (queue name => 'OE.OE bookedorders que') ;
Publishing Messages

Booked orders are published by the Order Entry application when it enqueues
orders (into the OE_booked order gque) that have been validated and are ready
for shipping. These messages are then routed to each of the subscribing
applications. Messages are delivered to local queues (if specified) at each of the
subscriber applications.

Receiving Messages

Each of the shipping applications and the Customer Service application then
receives these messages in their local queues. For example, Eastern Region Shipping
only receives booked orders that are for East Coast addresses or any U.S. order that
are marked RUSH. This application then dequeues messages and processes its orders
for shipping.

Oracle Streams AQ Sample Application 7-31

Oracle Real Application Clusters Support

Oracle Real Application Clusters Support

Real Application Clusters can be used to improve Oracle Streams AQ performance
by allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store
the queues. This allows queue operations (enqueue and dequeue) on different
queues to occur in parallel.

The Oracle Streams AQ queue monitor process continuously monitors the instance
affinities of the queue tables. The queue monitor assigns ownership of a queue table
to the specified primary instance if it is available, failing which it assigns it to the
specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Streams AQ propagation is able to make use of Real Application Clusters,
although it is transparent to the user. The affinities for jobs submitted on behalf of
the propagation schedules are set to the same values as those of the affinities of the
respective queue tables. Thus a job_queue process associated with the owner
instance of a queue table is handling the propagation from queues stored in that
queue table, thereby minimizing pinging.

See Also:
= "Scheduling a Queue Propagation" on page 8-32

» Oracle Real Application Clusters Installation and Configuration
Guide

Scenario

In the BooksOnLine example, operations on the new_orders_queue and
booked_order gueue at the order entry (OE) site can be made faster if the two
queues are associated with different instances. This is accomplished by creating the
queues in different queue tables and specifying different affinities for the queue
tables in the create queue table () command.

In the example, the queue table OE_orders_sqgtab stores queue new_orders_
gueue and the primary and secondary are instances 1 and 2 respectively. Queue
table OE_orders_mgtab stores queue booked_order_ gqueue and the primary
and secondary are instances 2 and 1 respectively.

The objective is to let instances 1 and 2 manage the two queues in parallel. By
default, only one instance is available, in which case the owner instances of both
queue tables are set to instance 1. However, if Real Application Clusters are set up

7-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Real Application Clusters Support

correctly and both instances 1 and 2 are available, then queue table OE_orders
sgtab is owned by instance 1 and the other queue table is owned by instance 2.

The primary and secondary instance specification of a queue table can be changed
dynamically using the alter queue table () command as shown in the
following example. Information about the primary, secondary and owner instance
of a queue table can be obtained by querying the view USER_QUEUE TABLES.

Note: Mixed case (upper and lower case together) queue names,
queue table names, and subscriber names are supported if database
compatibility is 10.0, but the names must be enclosed in double
quote marks. So abc . efg means the schema is ABC and the name
is EFG, but "abc" . "efg" means the schema is abc and the name
isefg.

See Also: "Queue Tables in User Schema View" on page 9-12

PL/SQL (DBMS_AQADM Package): Example Code

/* Create queue tables, queues for OE */
CONNECT OE/OE;
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (\

queue_table => 'OE_orders_sqgtab',\

comment => 'Order Entry Single-Consumer Orders queue table',\
queue payload type => 'BOLADM.order typ',\

compatible => '8.1"',\

primary instance => 1,\

secondary instance => 2);

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (\
queue_table => 'OE_orders _mgtab',\
comment => 'Order Entry Multi Consumer Orders queue table',\
multiple consumers => TRUE, \
queue payload type => 'BOLADM.order typ',\
compatible => '8.1',\
primary instance => 2,\
secondary instance => 1);

EXECUTE DBMS_AQADM.CREATE_QUEUE (\
queue_name => 'OE neworders_que',\

queue_table => 'OE_orders_sqgtab') ;

EXECUTE DBMS_AQADM.CREATE QUEUE (\

Oracle Streams AQ Sample Application 7-33

Oracle Real Application Clusters Support

queue name => 'OE_bookedorders_que',\
queue_table => 'OE_orders_mgtab') ;

/* Check instance affinity of OE queue tables from AQ administrative view: */
SELECT queue table, primary instance, secondary instance, owner instance
FROM user_queue_tables;

/* Alter instance affinity of OE queue tables: */
EXECUTE DBMS AQADM.ALTER QUEUE_TABLE (\
queue_table => 'OE.OE _orders sqtab',\
primary instance => 2,\
secondary instance => 1);

EXECUTE DBMS_ AQADM.ALTER QUEUE TABLE(\
queue_table => 'OE.OE _orders_mgtab', \
primary instance => 1,\
secondary instance => 2);

/* Check instance affinity of OE queue tables from AQ administrative view: */
SELECT queue_table, primary instance, secondary instance, owner_ instance
FROM user queue_tables;

Visual Basic (0040): Example Code
This feature currently not supported.

Java (JDBC): Example Code
public static void createQueueTablesAndQueues (Connection db conn)

{
AQSession ag_sess;
AQQueueTableProperty sqt prop;
AQQueueTableProperty mgt prop;

AQQueueTable sqg_table;
AQQueueTable mg table;
AQQueueProperty J_prop;

AQQueue neworders q;
AQQueue bookedorders q;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Create a single-consumerorders queue table */
sgt_prop = new AQQueueTableProperty ("BOLADM.order typ");

7-34 Oracle Streams Advanced Queuing User’s Guide and Reference

Oracle Real Application Clusters Support

}

sqgt_prop.
sqt_prop.
sqt_prop.
sqt_prop.

sq_table

setComment ("Order Entry Single-Consumer Orders queue table");
setCompatible("8.1");

setPrimaryInstance (1) ;

setSecondaryInstance(2) ;

= ag_sess.createQueueTable ("OE", "OE orders sgtab", sgt prop) ;

/* Create a multiconsumer orders queue table */

mgt_prop
mgt_prop.
mgt_prop.
mgt_prop.
mgt_prop.
mgt _prop

mg table

= new AQQueueTableProperty ("BOLADM.order typ");

setComment ("Order Entry Multiconsumer Orders queue table");
setCompatible("8.1");

setMultiConsumer (true) ;

setPrimaryInstance (2) ;

.setSecondaryInstance (1) ;

= ag_sess.createQueueTable ("OE", "OE orders mgtab", mgt prop) ;

/* Create queues in these queue tables */

q_prop =

new AQQueueProperty () ;

neworders_gq = ag_sess.createQueue(sq table, "OE neworders que",

q_prop) ;

bookedorders_g = aqg_sess.createQueue (mg_table, "OE bookedorders_ que",

}

g_prop) ;

catch (AQException ex)

{

System.out.println("AQ Exception: " + ex);

}

public static void alterInstanceAffinity(Connection db_conn)

{

AQSession

aq_sess;

AQQueueTableProperty sgt prop;
AQQueueTableProperty mgt prop;

AQQueueTable sqg_table;
AQQueueTable mg table;
AQQueueProperty g_prop;
try

{

Oracle Streams AQ Sample Application 7-35

Oracle Real Application Clusters Support

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Check instance affinities */
sq_table = ag_sess.getQueueTable ("OE", "OE_orders_sqtab");

sqt_prop = sq_table.getProperty() ;
System.out.println("Current primary instance for OE orders sqgtab: " +
sgt_prop.getPrimaryInstance()) ;

mg_table = ag_sess.getQueueTable ("OE", "OE_ orders_mgtab");

mgt prop = mg table.getProperty() ;

System.out.println("Current primary instance for OE orders mgtab: " +
mgt prop.getPrimaryInstance());

/* Alter queue table affinities */
sq_table.alter(null, 2, 1);

mg table.alter(null, 1, 2);

sgt_prop = sq_table.getProperty();
System.out.println("Current primary instance for OE orders sqtab: " +
sgt_prop.getPrimaryInstance()) ;

mg_table = ag_sess.getQueueTable ("OE", "OE_ orders_mgtab");

mgt prop = mqg table.getProperty();

System.out.println("Current primary instance for OE orders mgtab: " +
mgt prop.getPrimaryInstance());

}

catch (AQException ex)

{
}

System.out.println("AQ Exception: " + ex);

7-36 Oracle Streams Advanced Queuing User’s Guide and Reference

Internet Access for Oracle Streams AQ

Statistics Views and Oracle Streams AQ

Each instance keeps its own Oracle Streams AQ statistics information in its own
System Global Area (SGA), and does not have knowledge of the statistics gathered
by other instances. When a GV$AQ view is queried by an instance, all other instances
funnel their Oracle Streams AQ statistics information to the instance issuing the

query.

Scenario

The gv$ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed. The order processing application can
use this to dynamically tune the number of order processing processes.

See Also: "Number of Messages in Different States for the Whole
Database View" on page 9-17

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT oe/oe

/* Count the number of messages and the average time for which the messages have
been waiting: */

SELECT READY, AVERAGE WAIT FROM gv$aq Stats, user_queues Qs
WHERE Stats.gid = Qs.qgid and Qs.Name = 'OE neworders que';

Visual Basic (0040): Example Code

Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

No example is provided with this release.

Internet Access for Oracle Streams AQ

See Chapter 17, "Internet Access to Oracle Streams AQ" for information on Internet
access to Oracle Streams AQ features.

Oracle Streams AQ Sample Application 7-37

Enqueue Features

Enqueue Features

This section contains these topics:

= Subscriptions and Recipient Lists

s Priority and Ordering of Messages

s Time Specification: Delay

» Time Specification: Expiration

= Message Grouping

= Retry with Delay Interval

= Message Transformation During Enqueue

» Enqueue Using the Oracle Streams AQ XML Servlet

Subscriptions and Recipient Lists

After consumption by dequeue, messages are retained for the time specified in
retention_time. When retention_time expires, messages are removed by the
time manager process.

After processing, the message is removed if the retention_time of the queue is 0,
or retained for the specified retention time. While the message is retained the
message can either be queried using SQL on the queue table view or by dequeuing
using the BROWSE mode and specifying the message ID of the processed message.

Oracle Streams AQ allows a single message to be processed and consumed by more
than one consumer. To use this feature, you must create multiconsumer queues and
enqueue the messages into these multiconsumer queues. Oracle Streams AQ allows
two methods of identifying the list of consumers for a message: subscriptions and
recipient lists.

Subscriptions

You can add a subscription to a queue by using the DBMS_AQADM.ADD
SUBSCRIBER PL/SQL procedure. This lets you specify a consumer by means of the
AQ$_AGENT parameter for enqueued messages. You can add more subscribers by
repeatedly using the DBMS_AQADM.ADD SUBSCRIBER procedure up to a maximum
of 1024 subscribers for a multiconsumer queue.

See Also: "Adding a Subscriber” on page 8-26

7-38 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$ AGENT parameter. This means that two subscribers
cannot have the same values for the NAME, ADDRESS and PROTOCOL attributes for
the AQ$ AGENT type. At least one of the three attributes must be different for two
subscribers.

See Also: "AQ Agent Type (aq$_agent)" on page 3-3 for a formal
description of this data structure

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue is only able to dequeue messages
that are enqueued after the DBMS AQADM.ADD SUBSCRIBER procedure is
completed. In other words, messages that had been enqueued before this procedure
is executed are not available for dequeue by this consumer.

You can remove a subscription by using the DBMS AQADM.REMOVE SUBSCRIBER
procedure. Oracle Streams AQ automatically removes from the queue all data
corresponding to the consumer identified by the A0S AGENT parameter. In other
words, it is not an error to run the REMOVE SUBSCRIBER procedure even when
there are pending messages that are available for dequeue by the consumer. These
messages are automatically made unavailable for dequeue after the REMOVE
SUBSCRIBER procedure is executed.

See Also: "Removing a Subscriber” on page 8-30

In a queue table that is created with the compatible parameter set to '8.1' or higher,
such messages that were not dequeued by the consumer are shown as
"UNDELIVERABLE" in the AQ$queue table view. A multiconsumer queue table
created without the compatible parameter, or with the compatible parameter set to
'8.0', does not display the state of a message on a consumer basis, but only displays
the global state of the message.

Recipient Lists

You are not required to specify subscriptions for a multiconsumer queue if the
producers of messages for enqueue supply a recipient list of consumers. In some
situations it can be desirable to enqueue a message that is targeted to a specific set
of consumers rather than the default list of subscribers. You accomplish this by
specifying a recipient list at the time of enqueuing the message.

= InPL/SQL you specify the recipient list by adding elements to the
recipient list field of the message properties record.

Oracle Streams AQ Sample Application 7-39

Enqueue Features

s In OCI the recipient list is specified by using the OCISetAttr procedure to
specify an array of OCI_DTYPE AQAGENT descriptors as the recipient list (0OCI_
ATTR RECIPIENT LIST attribute) of an OCI_DTYPE AQMSG PROPERTIES
message properties descriptor.

If a recipient list is specified during enqueue, then it overrides the subscription list.
In other words, messages that have a specified recipient list are not available for
dequeue by the subscribers of the queue. The consumers specified in the recipient
list may or may not be subscribers for the queue. It is an error if the queue does not
have any subscribers and the enqueue does not specify a recipient list.

See Also: "Enqueuing a Message" on page 10-2

Priority and Ordering of Messages

The message ordering dictates the order that messages are dequeued from a queue.
The ordering method for a queue is specified when a queue table is created.

See Also: "Creating a Queue Table" on page 8-2

Priority ordering of messages is achieved by specifying priority, enqueue time as
the sort order for the message. If priority ordering is chosen, then each message is
assigned a priority at enqueue time by the enqueuer. At dequeue time, the messages
are dequeued in the order of the priorities assigned. If two messages have the same
priority, then the order in which they are dequeued is determined by the enqueue
time. A first-in, first-out (FIFO) priority queue can also be created by specifying the
enqueue time, priority as the sort order of the messages.

Scenario
In the BooksOnLine application, a customer can request:

= FedEx shipping (priority 1)
» Priority air shipping (priority 2)
= Regular ground shipping (priority 3)

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

7-40 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

PL/SQL (DBMS_AQADM Package): Example Code

/* Create a priority queue table for OE: */
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (\

queue_table
sort_list
comment

multiple consumers
queue_payload type
compatible
primary instance
secondary_instance

EXECUTE DBMS_AQADM.CREATE_

queue_name
queue_table

=>

=>

=>

=>

=>

'OE_orders_pr mgtab', \
'priority,eng time', \

'Order Entry Priority \
MultiConsumer Orders queue table',\
TRUE, \

'BOLADM.order typ', \

8.1, \

2, \

1);

QUEUE (\
'OE_bookedorders que', \
'OE_orders_pr mgtab');

/* When an order arrives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order: */

CREATE OR REPLACE procedure order enq(book title IN VARCHAR2,
book gty IN NUMBER,
order num IN NUMBER,
shipping priority IN NUMBER,
cust_state IN VARCHAR2,
cust _country IN VARCHAR2,
cust region IN VARCHAR2,
cust_ord typ IN VARCHAR2) AS

OE_eng_order data
OE_eng_cust_data

OE_eng_book data

OE_eng_item data

OE enqg item list

engopt

msgprop

eng msgid

BEGIN

msgprop.correlation :

OE_eng_cust data

OE_eng_book data
OE eng_item data

BOLADM.order typ;

BOLADM. customer typ;
BOLADM.book typ;
BOLADM.orderitem typ;
BOLADM.orderitemlist vartyp;
dbms_ag.enqueue options t;
dbms_ag.message properties t;
RAW(16) ;

cust_ord typ;

BOLADM. customer typ (NULL, NULL, NULL, NULL,
cust state, NULL, cust country);

BOLADM.book typ (book title, NULL, NULL, NULL);

BOLADM.orderitem typ (book gty,

Oracle Streams AQ Sample Application 7-41

Enqueue Features

OE_enqg book data, NULL);
OE eng item list := BOLADM.orderitemlist vartyp(
BOLADM.orderitem typ (book gty,
OE eng_book data, NULL));
BOLADM.order typ(order num, NULL,
cust_ord _typ, cust_region,
OE_eng_cust_data, NULL,
OE eng item list, NULL);

OE_enqg_order data

/*Put the shipping priority into message property before enqueuing
the message: */
msgprop.priority := shipping priority;
dbms_ag.enqueue ('OE.OE_bookedorders que', engopt, msgprop,
OE_enqg order data, eng msgid);
COMMIT;

END;

/

/* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the regional
booked order queues. For example, at the Western Region, the booked orders
queue 1is created. Create a priority queue table for WS shipping: */

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE(\

queue_table => 'WS_orders_pr mgtab',
sort list =>' priority,enqg time', \
comment => 'West Shipping Priority \

MultiConsumer Orders queue table',\
multiple consumers => TRUE, \
queue payload type => 'BOLADM.order typ', \
compatible => '8.1");

/* Booked orders are stored in the priority queue table: */
EXECUTE DBMS_AQADM.CREATE QUEUE (\
queue name => 'WS_bookedorders _que', \
queue_table => 'WS_orders pr mgtab');

/* At each region, the shipping application dequeues orders from the regional
booked order queue according to the orders' shipping priorities, processes
the orders, and enqueues the processed orders into the shipped orders queues
or the backorders queues. */

7-42 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

Visual Basic (0040): Example Code

Dim OraSession as object

Dim OraDatabase as object

Dim OraAgq as object

Dim OraMsg as Object

Dim OraOrder,OraCust,OraBook,Oraltem,OraltemList as Object
Dim Msgid as String

Set
Set
set
Set
Set
Set
Set
Set
Set

OraSession = CreateObject ("OracleInProcServer.XOraSession")

OraDatabase = OraSession.DbOpenDatabase ("dbname", "user/pwd", 0&)

oraRAq = OraDatabase.CreateAQ("OE.OE bookedorders que")

OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")

OraOrder = OraDatabase.CreateOraObject ("BOLADM.order typ")

OraCust = OraDatabase.CreateOraObject ("BOLADM.Customer typ")

OraBook = OraDatabase.CreateOraObject ("BOLADM.book typ")

Oraltem = OraDatabase.CreateOraObject ("BOLADM.orderitem typ")
OraltemList = OraDatabase.CreateOraObject ("BOLADM.orderitemlist vartyp")

' Get the values of cust state,cust country etc from user(form based
' input) and then a cmd click event for Enqueue

" will run the subroutine order eng.

Private Sub Order eng()

OraMsg.correlation = txt correlation
'Initialize the customer details

OraCust ("state") = txt cust state
OraCust ("country") = txt cust country

OraBook ("title") = txt book title
Oraltem("quantity") = txt book gty
Oraltem("item") = OraBook
OraItemList (1) = OraIltem
OraOrder ("orderno") = txt order num
OraOrder ("ordertype") = txt cust order typ
OraOrder ("orderregion") = cust_region
OraOrder ("customer") = OraCust
OraOrder ("items") = OraltemList

'Put the shipping priority into message property before enqueuing

the message:

OraMsg.priority = priority
OraMsg = OraOrder
Msgid = OraAg.enqueue

'Release all allocations

Oracle Streams AQ Sample Application 7-43

Enqueue Features

End Sub

Java (JDBC): Example Code

public static void createPriorityQueueTable (Connection db conn)

{

AQSession ag_sess;
AQQueueTableProperty mgt prop;
AQQueueTable pr _mg table;
AQQueueProperty J_prop;

AQQueue bookedorders q;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Create a priority queue table for OE */

mgt _prop = new AQQueueTableProperty ("BOLADM.order typ");

mgt prop.setComment ("Order Entry Priority " +
"MultiConsumer Orders queue table");

mgt prop.setCompatible("8.1");

mgt prop.setMultiConsumer (true);

mgt prop.setSortOrder ("priority,eng time");

pr_mg table = ag_sess.createQueueTable ("OE", "OE orders pr_mgtab",
mgt_prop) ;

/* Create a queue in this queue table */
g prop = new AQQueueProperty () ;

bookedorders_qg = ag_sess.createQueue (pr_mg table,
"OE_bookedorders que", g_prop);

/* Enable enqueue and dequeue on the queue */
bookedorders g.start (true, true);

}

catch (AQException ex)

{
}

System.out.println("AQ Exception: " + ex);

7-44 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

/* When an order arrives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order.

*/

public static void order enqueue(Connection db_conn, String book title,

double book gty, double order num,

int ship priority, String cust state,
String cust country, String cust region,
String cust order type)

AQSession ag_sess;
AQQueue bookedorders g;
Order enq_order;
Customer cust_data;

Book book data;
OrderItem item data;
OrderItem[] items;
OrderItemList item list;

AQEnqueueOption eng option;
AQMessageProperty m property;

AQMessage message;
AQObjectPayload obj payload;
bytel[] enqg msg id;
try

{

/* Create an AQ session:

*/

aq_sess = AQDriverManager.createAQSession(db conn) ;

cust data = new Customer (

)

cust data.setCountry(cust country);
cust data.setState(cust state);

book _data = new Book () ;

book data.setTitle(book title);

item data = new OrderItem();
item data.setQuantity(new BigDecimal (book gty));
item data.setItem(book data) ;

items = new OrderItem[1];
items[0] = item data;

Oracle Streams AQ Sample Application 7-45

Enqueue Features

item list = new OrderItemList (items);

eng order = new Order();

eng_order.setCustomer (cust data) ;
eng_order.setItems(item list);

eng_order.setOrderno (new BigDecimal (order num));
eng_order.setOrdertype (cust_order type);

bookedorders g = ag_sess.getQueue ("OE", "OE bookedorders que");

message = bookedorders g.createMessage () ;

/* Put the shipping priority into message property before enqueuing */
m_property = message.getMessageProperty();

m_property.setPriority(ship priority);
obj payload = message.getObjectPayload() ;
obj payload.setPayloadData (eng order) ;
eng option = new AQEnqueueOption();

/* Enqueue the message */
eng msg_id = bookedorders g.enqueue(enq option, message) ;

db conn.commit () ;

}

catch (AQException ag ex)

{
}
catch (SQLException sql ex)

{
}

System.out.println("AQ Exception: " + ag_ex);

System.out.println("SQL Exception: " + sql ex);

}

/* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the
regional booked order queues.

For example, at the Western Region, the booked orders queue is created.

7-46 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

{

Create a priority queue table for WS shipping

*/

public static void createWesternShippingQueueTable (Connection db_conn)
AQSession ag_sess;
AQQueueTableProperty mgt prop;
AQQueueTable mg table;
AQQueueProperty g_prop;
AQQueue bookedorders q;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Create a priority queue table for WS: */

mgt _prop = new AQQueueTableProperty ("BOLADM.order typ");

mgt prop.setComment ("Western Shipping Priority " +
"MultiConsumer Orders queue table");

mgt prop.setCompatible("8.1");

mgt prop.setMultiConsumer (true);

mgt prop.setSortOrder ("priority,eng time");

mg_table = ag_sess.createQueueTable ("WS", "WS_orders pr mgtab",
mgt_prop) ;

/* Booked orders are stored in the priority queue table: */
g prop = new AQQueueProperty () ;

bookedorders_q = aqg_sess.createQueue (mg_table, "WS_bookedorders que",

q_prop) ;
/* Start the queue:*/
bookedorders g.start (true, true);
}
catch (AQException ex)
{
System.out.println("AQ Exception: " + ex);

}

/* At each region, the shipping application dequeues orders from the
regional booked order queue according to the orders' shipping priorities,

Oracle Streams AQ Sample Application 7-47

Enqueue Features

processes the orders, and enqueues the processed orders into the shipped
orders queues or the backorders queues.

*/

Time Specification: Delay

Oracle Streams AQ supports delay delivery of messages by letting the enqueuer
specify a delay interval on a message when enqueuing the message, that is, the time
before that a message cannot be retrieved by a dequeue call. The delay interval
determines when an enqueued message is marked as available to the dequeuers
after the message is enqueued.

See Also: "Enqueuing a Message and Specifying Options” on
page 10-3

When a message is enqueued with a delay time set, the message is marked in a
WAIT state. Messages in WAIT state are masked from the default dequeue calls. A
background time-manager daemon wakes up periodically, scans an internal index
for all WAIT state messages, and marks messages as READY if their delay time has
passed. The time-manager then posts to all foreground processes that are waiting on
queues for messages that have just been made available.

Scenario

In the BooksOnLine application, delay can be used to implement deferred billing. A
billing application can define a queue where shipped orders that are not billed
immediately can be placed in a deferred billing queue with a delay. For example, a
certain class of customer accounts, such as those of corporate customers, may not be
billed for 15 days. The billing application dequeues incoming shipped order
messages (from the shippedorders queue) and if the order is for a corporate
customer, this order is enqueued into a deferred billing queue with a delay.

PL/SQL (DBMS_AQADM Package): Example Code

/* Enqueue an order to implement deferred billing so that the order is not made
visible again until delay has expired: */

CREATE OR REPLACE PROCEDURE defer billing(deferred billing order order typ)

AS
defer bill queue name VARCHAR2 (62) ;
engopt dbms_aqg.enqueue options_t;
msgprop dbms_aqg.message _properties t;
eng_msgid RAW (16) ;

7-48 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

BEGIN

/* Enqueue the order into the deferred billing queue with a delay of 15 days: */
defer bill queue name := 'CBADM.deferbilling que';
msgprop.delay := 15%60%60%*24;
dbms_aqg.enqueue (defer bill queue name, engopt, msgprop,
deferred billing order, eng msgid);
END;
/

Visual Basic (0040): Example Code
set oraAqg = OraDatabase.CreateAQ ("CBADM.deferbilling que")
Set OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")
Set OraOrder = OraDatabase.CreateOraObject ("BOLADM.order typ")

Private Sub defer billing

OraMsg = OraOrder

OraMsg.delay = 15*60*60*24

OraMsg = OraOrder 'OraOrder contains the order details
Msgid = OraAg.enqueue

End Sub

Java (JDBC): Example Code

public static void defer billing(Connection db_conn, Order deferred order)
{

AQSession ag_sess;

AQQueue def bill g;

AQEnqueueOption eng option;

AQMessageProperty m property;

AQMessage message;
AQObjectPayload obj payload;
bytel[] enqg msg id;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

def bill g = ag sess.getQueue("CBADM", "deferbilling que");

message = def bill g.createMessage();

Oracle Streams AQ Sample Application 7-49

Enqueue Features

/* Enqueue the order into the deferred billing queue with a delay
of 15 days */

m_property = message.getMessageProperty();

m_property.setDelay (15*60*60*24) ;

obj payload = message.getObjectPayload() ;
obj payload.setPayloadData (deferred order) ;

eng_option = new AQEnqueueOption();

/* Enqueue the message */
eng msg _id = def bill g.enqueue(enqg option, message);

db conn.commit () ;

}

catch (Exception ex)

{
}

System.out.println("Exception " + ex);

Time Specification: Expiration

Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. Expiration processing requires that the queue
monitor be running. The producer can also specify the time when a message
expires, at which time the message is moved to an exception queue.

Scenario

In the BooksOnLine application, expiration can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available in a back order queue. If the shipping policy is that
all back_order must be shipped within a week, then messages can be enqueued into
the back order queue with an expiration of 1 week. In this case, any back_order that
are not processed within one week are moved to the exception queue with the
message state set to EXPIRED. This can be used to flag any orders that have not
been shipped according to the back order shipping policy.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT BOLADM/BOLADM
/* Re-enqueue a backorder into a backorder queue and set a delay of 7 days;

7-50 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

all backorders must be processed in 7 days or they are moved to the
exception queue: */
CREATE OR REPLACE PROCEDURE requeue back order (sale region varchar2,
backorder order typ)

AS
back_order queue_name VARCHAR2 (62) ;
engopt dbms_ag.enqueue options_t;
msgprop dbms_aq.message_properties_t;
eng msgid RAW (16) ;

BEGIN

/* Look up a backorder queue based the the region by means of a directory
service: */
IF sale region = 'WEST' THEN

back_order queue_name := 'WS.WS_backorders que';
ELSIF sale region = 'EAST' THEN

back order queue name := 'ES.ES backorders que';
ELSE

back_order queue_name := 'TS.TS backorders que';
END IF;

/* Enqueue the order with expiration set to 7 days: */
msgprop.expiration := 7*60%*60%24;
dbms_ag.enqueue (back _order queue name, enqgopt, msgprop,
backorder, eng msgid);
END;
/

Visual Basic (0040): Example Code

set oraAgl = OraDatabase.CreateAQ("WS.WS backorders que")

set oraAq2 = OraDatabase.CreateAQ("ES.ES backorders que")

set oraRAg3 = OraDatabase.CreateAQ ("CBADM.deferbilling que")

Set OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")

Set OraBackOrder = OraDatabase.CreateOraObject ("BOLADM.order typ")

Private Sub Requeue backorder

Dim g as oraobject

If sale region = WEST then
q = oraAql

else if sale region = EAST then
q = oraAg2

else
q = oraAg3

end if

Oracle Streams AQ Sample Application 7-51

Enqueue Features

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder 'OraOrder contains the order details
Msgid = g.enqueue

End Sub

Java (JDBC): Example Code

/* Re-enqueue a backorder into a backorder queue and set a delay of 7 days;
all backorders must be processed in 7 days or they are moved to the
exception queue */

public static void requeue_back_ order (Connection db_conn,

String sale region, Order back_order)

{

AQSession ag_sess;
AQQueue back order g;
AQEnqueueOption eng option;
AQMessageProperty m property;

AQMessage message;
AQObjectPayload obj payload;
bytel] eng msg id;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Look up a backorder queue based on the region */
if (sale region.equals ("WEST"))

{
}

else if (sale region.equals("EAST"))

{
}
else

{
}

back_order g = aqg_sess.getQueue ("WS", "WS_backorders_que") ;

back order g = aqg_sess.getQueue ("ES", "ES backorders que");

back order g = aq_sess.getQueue ("TS", "TS backorders que");

message = back order g.createMessage() ;

7-52 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

m_property = message.getMessageProperty () ;

/* Enqueue the order with expiration set to 7 days: */
m_property.setExpiration(7*60*60*24) ;

obj payload = message.getObjectPayload() ;
obj payload.setPayloadData (back order) ;

eng_option = new AQEnqueueOption();

/* Enqueue the message */
eng msg_id = back order g.enqueue(eng option, message);

db conn.commit () ;

}

catch (Exception ex)

{
}

System.out.println("Exception :" + ex);

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for transactional message grouping. All messages belonging to
a group must be created in the same transaction and all messages created in one
transaction belong to the same group. With this feature, you can segment complex
messages into simple messages.

See Also: "Creating a Queue Table" on page 8-2

For example, messages directed to a queue containing invoices can be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group, irrespective of which properties are specified for
subsequent messages in the group.

Oracle Streams AQ Sample Application 7-53

Enqueue Features

The message grouping property is preserved across propagation. However, the
destination queue where messages must be propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if
the message grouping property is to be preserved while dequeuing messages from a
queue enabled for transactional grouping.

See Also:
s "Dequeue Methods" on page 7-61
= "Modes of Dequeuing" on page 7-73

Scenario

In the BooksOnLine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar action.

In the following example, each enqueue corresponds to an individual book that is
part of an order and the group/transaction represents a complete order. Only the
first enqueue contains customer information. The OE_neworders_gque is stored in
the table OE_orders_sgtab, which has been enabled for transactional grouping.
Refer to the example code for descriptions of procedures new order eng() and
same_order enq().

Note: Mixed case (upper and lower case together) queue names,
queue table names, and subscriber names are supported if database
compatibility is 10.0, but the names must be enclosed in double
quote marks. So abc . efg means the schema is ABC and the name
is EFG, but "abc" . "efg" means the schema is abc and the name
isefg.

PL/SQL (DBMS_AQADM Package): Example Code

connect OE/OE;

/* Create queue table for OE: */
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE(\
queue_table => 'OE_orders_sqgtab',\
comment => 'Order Entry Single-Consumer Orders queue table',\
queue_payload_type => 'BOLADM.order typ',\
message grouping => DBMS_ AQADM.TRANSACTIONAL, \
compatible => '8.1', \
primary instance => 1,\

7-54 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

secondary instance => 2);

/* Create neworders queue for OE: */

EXECUTE DBMS_AQADM.CREATE QUEUE (\
queue_name => 'OE_neworders_que',
queue_table => 'OE_orders_sqgtab') ;

/* Login into OE account:*/

CONNECT OE/OE;

SET serveroutput on;

/* Enqueue some orders using message grouping into OE neworders gque,
First Order Group: */

EXECUTE BOLADM.new order eng('My First Book', 1, 1001, 'CA');

EXECUTE BOLADM.same order eng('My Second Book', 2);

COMMIT;

/

/* Second Order Group: */

EXECUTE BOLADM.new order eng('My Third Book', 1, 1002, 'WA');

COMMIT;

/

/* Third Order Group: */

EXECUTE BOLADM.new order eng('My Fourth Book', 1, 1003, 'NV');

EXECUTE BOLADM.same order enq('My Fifth Book', 3);

EXECUTE BOLADM.same order enqg('My Sixth Book', 2);

COMMIT;

/

/* Fourth Order Group: */

EXECUTE BOLADM.new order eng('My Seventh Book', 1, 1004, 'MA');

EXECUTE BOLADM.same order enq('My Eighth Book', 3);

EXECUTE BOLADM.same order enqg('My Ninth Book', 2);

COMMIT;

/

Visual Basic (0040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code

public static void createMsgGroupQueueTable (Connection db conn)

{

AQSession ag_sess;
AQQueueTableProperty sgt prop;
AQQueueTable sqg_table;
AQQueueProperty g_prop;

Oracle Streams AQ Sample Application 7-55

Enqueue Features

AQQueue neworders q;

try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Create a single-consumer orders queue table */

sgt_prop = new AQQueueTableProperty ("BOLADM.order typ");
sgt_prop.setComment ("Order Entry Single-Consumer Orders queue table");
sgt_prop.setCompatible ("8.1");

sgt_prop.setMessageGrouping (AQQueueTableProperty . TRANSACTIONAL) ;

sq table = ag sess.createQueueTable ("OE", "OE orders sqgtab", sqt prop) ;

/* Create new orders queue for OE */
g prop = new AQQueueProperty () ;

neworders_q = ag_sess.createQueue (sq_table, "OE_neworders_que",
q_prop) ;

}
catch (AQException ex)

{
}

System.out.println("AQ Exception: " + ex);

Message Transformation During Enqueue

Continuing the scenario introduced in "Message Format Transformation" on
page 7-7, the Order Entry and Shipping applications have different representations
for the order item:

s The Order Entry application represents the order item in the form of the Oracle
object type OE.order_typ.

= The Western Region Shipping application represents the order item in the form
of the Oracle object type WS.order_ typ_sh.

Therefore, the queues in the OE schema are of payload type OE.orders_typ and
those in the WS schema are of payload type WS.orders_typ sh.

7-56 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

Message transformation can be used during enqueue. This is especially useful for
verification and transformation of messages during enqueue. An application can
generate a message based on its own data model. The message can be transformed
to the data type of the queue before it is enqueued using transformation mapping.

Scenario

At enqueue time, assume that instead of propagating messages from the OE
booked orders_topic, an application dequeues the order, and, if it is meant for
Western Region Shipping, publishes it to the WS_booked orders_topic.

PL/SQL (DBMS_AQ Package): Example Code
The application can use transformations at enqueue time as follows:
CREATE OR REPLACE FUNCTION

fwd message to ws shipping(booked order OE.order typ)
RETURNS boolean AS

enqg opt dbms ag.enqueue options t;
msg prp dbms_aqg.message properties t;

BEGIN

IF (booked order.order region = 'WESTERN' and

booked order.order type != 'RUSH') THEN
enq opt.transformation := 'OE.OE2WS';
msg_prp.recipient 1list(0) := ag$_agent ('West shipping', null, null);

dbms_ag.enqueue ('WS.ws_bookedorders topic',
eng_opt, msg prp, booked order);

RETURN true;
ELSE
RETURN false;
END IF;
END;

Visual Basic (0040): Example Code
No example is provided with this release.

Java (JDBC): Example Code

No example is provided with this release.

Oracle Streams AQ Sample Application 7-57

Enqueue Features

Enqueue Using the Oracle Streams AQ XML Servlet
You can perform enqueue requests over the Internet using Internet Data Access
Presentation (IDAP).

See Also: Chapter 17, "Internet Access to Oracle Streams AQ" for

more information on sending Oracle Streams AQ requests using
IDAP

Scenario
In the BooksOnLine application, a customer can request:

» FedEx shipping (priority 1),
» Priority air shipping (priority 2)
= Regular ground shipping (priority 3)

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

PL/SQL (DBMS_AQADM Package): Example Code

/* Create a priority queue table for OE: */
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (\

queue_table => 'OE_orders_pr mgtab', \
sort list =>'priority,enq time', \
comment => 'Order Entry Priority \

MultiConsumer Orders queue table',\
multiple consumers => TRUE, \
queue payload type => 'BOLADM.order typ', \
compatible => '8.1', \
primary instance => 2, \
secondary instance => 1);

EXECUTE DBMS_AQADM.CREATE QUEUE (\

queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr mgtab');

7-58 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueue Features

Assume that a customer, John, wants to send an enqueue request using Simple
Object Access Protocol (SOAP). The XML message has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
<producer options>
<destination>OE.OE_bookedorders_que</destination>
</producer options>

<message_set>
<message_count>l</message_count>

<message>
<message number>1l</message numbers
<message_header>

<correlation>ORDER1</correlation>
<prioritysl</priority>
<sender id>
<agent_name>john</agent name>
</sender_id>

</message_header>

<message payload>

<ORDER_TYP>
<ORDERNO>100</ORDERNO>
<STATUS>NEW</STATUS >
<ORDERTYPE>URGENT</ORDERTYPE >
<ORDERREGION>EAST</ORDERREGION>
<CUSTOMER >
<CUSTNO>1001233</CUSTNO>
<CUSTID>JOHN</CUSTID>
<NAME>JOHN DASH</NAME>
<STREET>100 EXPRESS STREET</STREET>
<CITY>REDWOOD CITY</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
<COUNTRY>USA</COUNTRY >
</CUSTOMER >
<PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
<ITEMS>
<ITEMS ITEM>
<QUANTITY>10</QUANTITY>

Oracle Streams AQ Sample Application 7-59

Dequeue Features

<ITEM>
<TITLE>Perl handbook</TITLE>
<AUTHORS>Randal</AUTHORS >
<ISBN>345620200</ISBN>
<PRICE>19</PRICE>
</ITEM>
<SUBTOTAL>190</SUBTOTAL>
</ITEMS_ITEM>
<ITEMS ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>
<TITLE>JDBC guide</TITLE>
<AUTHORS>Taylor</AUTHORS >
<ISBN>123420212</ISBN>
<PRICE>59</PRICE>
</ITEM>
<SUBTOTAL>590</SUBTOTAL>
</ITEMS_ITEM>
</ITEMS>
<CCNUMBER >NUMBERO0 1< /CCNUMBER >
<ORDER_DATE>08/23/2000 12:45:00</ORDER_DATE>
</ORDER_TYP>
</message payload>
</message>
</message set>

<AQXmlCommit/>
</AQXmlSend>
</Body>
</Envelope>

Dequeue Features

When there are multiple processes dequeuing from a single consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes
skip the messages that are being worked on by a concurrent process. This allows
multiple processes to work concurrently on different messages for the same
consumer.

This section contains these topics:
= Dequeue Methods
= Multiple Recipients

7-60 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

= Local and Remote Recipients

s Message Navigation in Dequeue

= Modes of Dequeuing

= Optimization of Waiting for Arrival of Messages
= Retry with Delay Interval

= Exception Handling

= Rule-Based Subscription

= Listen Capability

= Message Transformation During Dequeue

= Dequeue Using the Oracle Streams AQ XML Servlet

Dequeue Methods

A message can be dequeued using one of the following dequeue methods:
= Correlation identifier

= Message identifier

= Dequeue condition

s Default dequeue

A correlation identifier is a user-defined message property (of VARCHAR2 datatype)
while a message identifier is a system-assigned value (of RAW datatype). Multiple
messages with the same correlation identifier can be present in a queue, while only
one message with a given message identifier can be present. If there are multiple
messages with the same correlation identifier, then the ordering (enqueue order)
between messages may not be preserved on dequeue calls. The correlation identifier
cannot be changed between successive dequeue calls without specifying the

FIRST MESSAGE navigation option.

A dequeue condition is an expression that is similar in syntax to the WHERE clause
of a SQL query. Dequeue conditions are expressed in terms of the attributes that
represent message properties or message content. The messages in the queue are
evaluated against the conditions and a message that satisfies the given condition is
returned.

Oracle Streams AQ Sample Application 7-61

Dequeue Features

A default dequeue means that the first available message for the consumer of a
multiconsumer queue or the first available message in a single-consumer queue is
dequeued.

Dequeuing with correlation identifier, message identifier, or dequeue condition
does not preserve the message grouping property.

See Also:
s "Message Grouping" on page 7-53

= "Message Navigation in Dequeue" on page 7-68

Scenario

In the BooksOnLine example, rush orders received by the East shipping site are
processed first. This is achieved by dequeuing the message using the correlation
identifier, which has been defined to contain the order type (rush/normal). For an
illustration of dequeuing using a message identifier, refer to the get
northamerican orders procedure discussed in the example under "Modes of
Dequeuing" on page 7-73.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

/* Create procedures to dequeue RUSH orders */
create or replace procedure get rushtitles(consumer in varchar2) as

deqg cust data BOLADM. customer typ;
deq book data BOLADM.book typ;
deq item data BOLADM.orderitem typ;
deq msgid RAW(16) ;
dopt dbms_ag.dequeue options t;
mprop dbms_ag.message properties t;
deq order data BOLADM.order typ;
gname varchar2 (30) ;
no_messages exception;
pragma exception init (no_messages, -25228);
new_orders BOOLEAN := TRUE;
begin
dopt .consumer name := consumer;
dopt.wait := 1;
dopt.correlation := 'RUSH';

7-62 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

IF (consumer = 'West Shipping') THEN

gname := 'WS.WS bookedorders que';
ELSIF (consumer = 'East Shipping') THEN

gname := 'ES.ES bookedorders_que';
ELSE

gname := 'TS.TS bookedorders_que';
END IF;

WHILE (new _orders) LOOP
BEGIN

dbms_ag.dequeue (
queue_name => gname,
dequeue options => dopt,
message properties => mprop,
payload => deq order data,
msgid => deq msgid);

commit;

deq_item data := deq order data.items(1);
deqg book data := deq item data.item;

doms_output.put line(' rushorder book title: ' ||
deqg book data.title ||

' quantity: ' || deg item data.quantity);
EXCEPTION
WHEN no messages THEN
dbms_output.put line (' ---- NO MORE RUSH TITLES ---- ');
new_orders := FALSE;
END;
END LOOP;
end;
/

CONNECT EXECUTE on get rushtitles to ES;

/* Dequeue the orders: */
CONNECT ES/ES;

/* Dequeue all rush order titles for East Shipping: */
EXECUTE BOLADM.get rushtitles('East Shipping');

Oracle Streams AQ Sample Application 7-63

Dequeue Features

Visual Basic (0040): Example Code

set oraAgl = OraDatabase.CreateAQ("WS.WS backorders que")

set oraAg2 = OraDatabase.CreateAQ("ES.ES backorders que")

set oraRAg3 = OraDatabase.CreateAQ ("CBADM.deferbilling que")

Set OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")

Set OraBackOrder = OraDatabase.CreateOraObject ("BOLADM.order typ")

Private Sub Requeue backorder

Dim g as oraobject

If sale region = WEST then
q = oraAql

else if sale_region = EAST then
q = oraAg2

else
q = oraAg3

end if

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder 'OraOrder contains the order details
Msgid = g.enqueue

End Sub
Java (JDBC): Example Code

public static void getRushTitles(Connection db _conn, String consumer)

{

AQSession ag_sess;
Order deq_order;
byte[] deq msgid;

AQDequeueOption deq option;
AQMessageProperty msg_prop;

AQQueue bookedorders gq;
AQMessage message;
AQObjectPayload obj payload;
boolean new_orders = true;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

deq option = new AQDequeueOption();

deq option.setConsumerName (consumer) ;

7-64 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

deqg option.setWaitTime (1) ;
deq option.setCorrelation ("RUSH") ;

if (consumer.equals ("West Shipping"))

{
}

else if (consumer.equals("East Shipping"))

{
}
else

{
}

bookedorders_q = ag_sess.getQueue ("WS", "WS_bookedorders_que") ;
bookedorders g = ag_sess.getQueue ("ES", "ES bookedorders que");

bookedorders_q = ag_sess.getQueue ("TS", "TS_bookedorders_que") ;

while (new orders)

{

try

{

/* Dequeue the message */
message = bookedorders q.dequeue (deq_option, Order.getFactory());

obj payload = message.getObjectPayload() ;
deq order = (Order) (obj payload.getPayloadData()) ;

System.out.println("Order number " + deq order.getOrderno() +
" is a rush order");

}

catch (AQException agex)

{

new_orders = false;
System.out.println("No more rush titles");
System.out.println("Exception-1: " + agex);

}
}
}
catch (Exception ex)

{
}

System.out.println("Exception-2: " + ex);

Oracle Streams AQ Sample Application 7-65

Dequeue Features

Multiple Recipients

A consumer can dequeue a message from a multiconsumer, usual queue by
supplying the name that was used in the AQ$_AGENT type of the DBMS_
AQADM.ADD SUBSCRIBER procedure or the recipient list of the message properties.

= InPL/SQL the consumer name is supplied using the consumer name field of
the dequeue options_t record.

= In OCI the consumer name is supplied using the OCISetAttr procedure to
specify a text string as the OCI_ATTR CONSUMER NAME of an OCI_DTYPE_
AQDEQ_OPTIONS descriptor.

= In Oracle Objects for OLE (O0O40), the consumer name is supplied by setting
the consumer property of the OraAQ object.

Multiple processes or operating system threads can use the same consumer_name
to dequeue concurrently from a queue. In that case Oracle Streams AQ provides the
first unlocked message that is at the head of the queue and is intended for the
consumer. Unless the message ID of a specific message is specified during dequeue,
the consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPIRED if one or
more consumers did not dequeue the message before the EXPIRATION time. When
a message has expired, it is moved to an exception queue.

The exception queue must also be a multiconsumer queue. Expired messages from
multiconsumer queues cannot be dequeued by the intended recipients of the
message. However, they can be dequeued in the REMOVE mode exactly once by
specifying a NULL consumer name in the dequeue options. Hence, from a dequeue
perspective, multiconsumer exception queues act like single-consumer queues
because each expired message can be dequeued only once using a NULL consumer
name. Expired messages can be dequeued only by specifying a message ID if the
multiconsumer exception queue was created in a queue table with the compatible
parameter set to '8.0'.

Beginning with release 8.1.6, only the queue monitor removes messages from
multiconsumer queues. This allows dequeuers to complete the dequeue operation
by not locking the message in the queue table. Because the queue monitor removes
messages that have been processed by all consumers from multiconsumer queues
approximately once every minute, users can see a delay when the messages have
been completely processed and when they are physically removed from the queue.

7-66 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

See Also:
= "Adding a Subscriber" on page 8-26
= "Enqueuing a Message and Specifying Options" on page 10-3

Local and Remote Recipients

Consumers of a message in multiconsumer queues (either by virtue of being a
subscriber to the queue or because the consumer was a recipient in the enqueuer's
recipient list) can be local or remote.

A local consumer dequeues the message from the same queue into which the
producer enqueued the message. Local consumers have a non-NULL NAME and
NULL ADDRESS and PROTOCOL field in the AQS$ AGENT type.

See Also: "AQ Agent Type (ag$_agent)" on page 3-3

A remote consumer dequeues from a queue that is different from the queue
where the message was enqueued. As such, users must be familiar with and use
the Oracle Streams AQ propagation feature to use remote consumers. Remote
consumers can fall into one of three categories:

The ADDRESS field refers to a queue in the same database. In this case the
consumer dequeues the message from a different queue in the same
database. These addresses are of the form [schema].queue name where
queue name (optionally qualified by the schema name) is the target queue.
If the schema is not specified, then the schema of the current user executing
the ADD_SUBSCRIBER procedure or the enqueue is used. Use the DBMS
AQADM.SCHEDULE PROPAGATION command with a NULL destination
(which is the default) to schedule propagation to such remote consumers.

See Also:

= "Adding a Subscriber" on page 8-26

= "Enqueuing a Message" on page 10-2

= "Scheduling a Queue Propagation" on page 8-32

The ADDRESS field refers to a queue in a different database. In this case the
database must be reachable using database links and the PROTOCOL must
be either NULL or 0. These addresses are of the form [schemal .queue

name@dblink. If the schema is not specified, then the schema of the
current user executing the ADD_SUBSCRIBER procedure or the enqueue is

Oracle Streams AQ Sample Application 7-67

Dequeue Features

used. If the database link is not a fully qualified name (does not have a
domain name specified), then the default domain as specified by the db
domain init.ora parameter is used. Use the DBMS AQADM.SCHEDULE
PROPAGATION procedure with the database link as the destination to
schedule the propagation. Oracle Streams AQ does not support the use of
synonyms to refer to queues or database links.

c. The ADDRESS field refers to a destination that can be reached by a third
party protocol. You must refer to the documentation of the third party
software to determine how to specify the ADDRESS and the PROTOCOL
database link, and on how to schedule propagation.

When a consumer is remote, a message is marked as PROCESSED in the source
queue immediately after the message has been propagated, even though the
consumer may not have dequeued the message at the remote queue. Similarly,
when a propagated message expires at the remote queue, the message is moved to
the DEFAULT exception queue of the remote queue's queue table, and not to the
exception queue of the local queue. As can be seen in both cases, Oracle Streams AQ
does not currently propagate the exceptions to the source queue. You can use the
MSGID and the ORIGINAL_ MSGID columns in the queue table view (AQ$ queue
table) to chain the propagated messages. When a message with message ID m1 is
propagated to a remote queue, m1 is stored in the ORIGINAL MSGID column of the
remote queue.

The DELAY, EXPIRATION and PRIORITY parameters apply identically to both local
and remote consumers. Oracle Streams AQ accounts for any delay in propagation
by adjusting the DELAY and EXPIRATION parameters accordingly. For example, if
the EXPIRATION is set to one hour, and the message is propagated after 15 minutes,
then the expiration at the remote queue is set to 45 minutes.

Because the database handles message propagation, OO40O does not differentiate
between remote and local recipients. The same sequence of calls/steps are required
to dequeue a message for local and remote recipients.

Message Navigation in Dequeue

You have several options for selecting a message from a queue. You can select the
first message. Alternatively, once you have selected a message and established its
position in the queue (for example, as the fourth message), you can then retrieve the
next message.

7-68 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

The FIRST MESSAGE navigation option performs a SELECT on the queue. The
NEXT MESSAGE navigation option fetches from the results of the SELECT run in the
FIRST MESSAGE navigation. Thus performance is optimized because subsequent
dequeues need not run the entire SELECT again.

These selections work in a slightly different way if the queue is enabled for
transactional grouping.

» If FIRST MESSAGE is requested, then the dequeue position is reset to the
beginning of the queue.

» If NEXT MESSAGE is requested, then the position is set to the next message of
the same transaction

» IfNEXT TRANSACTION is requested, then the position is set to the first message
of the next transaction.

The transaction grouping property is negated if a dequeue is performed in one of
the following ways: dequeue by specifying a correlation identifier, dequeue by
specifying a message identifier, or dequeuing some of the messages of a transaction
and committing.

In navigating through the queue, if the program reaches the end of the queue while
using the NEXT MESSAGE or NEXT TRANSACTION option, and you have specified a
nonzero wait time, then the navigating position is automatically changed to the
beginning of the queue. If a zero wait time is specified, then you can get an
exception when the end of the queue is reached.

See Also: "Dequeue Methods" on page 7-61

Scenario

The following scenario in the BooksOnLine example continues the message
grouping example already discussed with regard to enqueuing.

The get _orders () procedure dequeues orders from the OE_neworders gque.
Recall that each transaction refers to an order and each message corresponds to an
individual book in the order. The get _orders () procedure loops through the
messages to dequeue the book orders. It resets the position to the beginning of the
queue using the FIRST MESSAGE option before the first dequeues. It then uses the
NEXT MESSAGE navigation option to retrieve the next book (message) of an order
(transaction). If it gets an error message indicating all messages in the current
group/transaction have been fetched, then it changes the navigation option to
NEXT TRANSACTION and gets the first book of the next order. It then changes the

Oracle Streams AQ Sample Application 7-69

Dequeue Features

navigation option back to NEXT MESSAGE for fetching subsequent messages in the
same transaction. This is repeated until all orders (transactions) have been fetched.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT boladm/boladm;

create or replace procedure get new orders as

deq_cust_data

deq book data

deq item data

deq _msgid

dopt

mprop

deq order data

gname

no_messages
end _of group

pragma exception init
pragma exception init
new_orders

BEGIN
dopt .wait := 1;

dopt .navigation
gname

BOLADM. customer_typ;
BOLADM.book typ;
BOLADM.orderitem typ;

RAW (16) ;

dbms_ag.dequeue options t;
dbms_ag.message properties t;
BOLADM.order typ;

VARCHAR?2 (30) ;

exception;

exception;

(no_messages, -25228);
(end of group, -25235);
BOOLEAN := TRUE;

:= DBMS_AQ.FIRST MESSAGE;

:= 'OE.OE_neworders_que';

WHILE (new orders) LOOP

BEGIN
LOOP
BEGIN

dbms_ag.dequeue (

deq item data :=
deq book data :=
deq_cust_data :=

queue_name => gname,
dequeue_options => dopt,

message properties => mprop,

payload => deq order data,
msgid => deq msgid) ;

deq order data.items(1);
deq item data.item;
deq_order data.customer;

IF (deq _cust data IS NOT NULL) THEN
dbms_output.put line(' **** NEXT ORDER **** '),

7-70 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

dbms_output.put line('order num: ' ||
deq order data.orderno) ;
doms_output.put line('ship state: ' ||
deqg cust_data.state);
END IF;
dbms_output.put line(' ---- next book ---- ');
dbms_output.put_line(' book title: ' ||
deg_book data.title ||
' quantity: ' || deq_item data.quantity);
EXCEPTION
WHEN end of group THEN
dbms_output.put line ('*** END OF ORDER ***');
commit;
dopt .navigation := DBMS_AQ.NEXT TRANSACTION;
END;

END LOOP;
EXCEPTION
WHEN no_messages THEN

END;

dbms_output.put line (' ---- NO MORE NEW ORDERS ---- ');
new_orders := FALSE;

END LOOP;

END;

CONNECT EXECUTE ON get new orders to OE;

/* Dequeue the orders: */

CONNECT OE/OE;

EXECUTE BOLADM.get new_orders;

Visual Basic (0040): Example Code

Dim OraSession as object

Dim OraDatabase as object

Dim OraAg as object

Dim OraMsg as Object

Dim OraOrder,OraltemList,Oraltem,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.DbOpenDatabase ("", "boladm/boladm", 0&)

set oraAq = OraDatabase.CreateAQ("OE.OE neworders que")

Set OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")
OraAg.wait = 1

OraAq.Navigation = ORAAQ DQ FIRST MESSAGE

Oracle Streams AQ Sample Application

7-71

Dequeue Features

private sub get_new orders

Dim MsgIsDequeued as Boolean

On Error goto ErrHandler

MsgIsDequeued = TRUE
msgid = g.Dequeue

if MsgIsDequeued then

set OraOrder = OraMsg
OraIltemList = OraOrder ("items")
OraIltem = OraltemList (1)
OraBook = Oraltem("item")
OraCustomer = OraOrder ("customer")

' Populate the textboxes with the values
if (OraCustomer) then
if OraAg.Navigation <> ORAAQ DQ NEXT MESSAGE then
MSgBOX M okkkkkkkkk NEXT ORDER *kkkkkk
end if
txt book orderno = OraOrder ("orderno")
txt _book shipstate = OraCustomer ("state")
End if
OraAq.Navigation = ORAAQ DQ NEXT MESSAGE
txt book title = OraBook("title")
txt book gty = Oraltem("quantity")
Else
MSgBOX N o kkdkhkkkhkx END OF ORDER *kxkkkkxkll
End if

ErrHandler:
'Handle error case, like no message etc
If OraDatabase.lLastServerErr = 25228 then
OraAqg.Navigation = ORAAQ DQ NEXT TRANSACTION
MsgIsDequeued = FALSE
Resume Next
End If
'Process other errors
end sub

Java (JDBC): Example Code

No example is provided with this release.

7-72 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

Modes of Dequeuing

A dequeue request can either view a message or delete a message.
» Toview a message, you can use the browse mode or locked mode.

= To consume a message, you can use either the remove mode or remove with no
data mode.

If a message is browsed, then it remains available for further processing. Similarly if
a message is locked, then it remains available for further processing after the lock is
released by performing a transaction commit or rollback. After a message is
consumed, using either of the remove modes, it is no longer available for dequeue
requests.

You can use the REMOVE mode to read a message and delete it. The message can be
retained in the queue table based on the retention properties. When the REMOVE
mode is specified, DEQ_TIME, DEQ USER ID, and DEQ TXN_1ID (as seen in the
AQ$Queue Table Name view) are updated for the consumer that dequeued the
message.[

When a message is dequeued using REMOVE_NODATA mode, the payload of the
message is not retrieved. This mode can be useful when the user has already
examined the message payload, possibly by means of a previous BROWSE dequeue.
In this way, you can avoid the overhead of payload retrieval that can be substantial
for large payloads.

A message is retained in the queue table after it has been consumed only if a
retention time is specified for a queue. Messages cannot be retained in exception
queues (refer to the section on exceptions for further information). Removing a
message with no data is generally used if the payload is known (from a previous
browse/locked mode dequeue call), or if the message will not be used.

After a message has been browsed, there is no guarantee that the message can be
dequeued again, because a dequeue call from a concurrent user might have
removed the message. To prevent a viewed message from being dequeued by a
concurrent user, you should view the message in the locked mode.

In general, use care while using the browse mode. The dequeue position is
automatically changed to the beginning of the queue if a nonzero wait time is
specified and the navigating position reaches the end of the queue. Hence repeating
a dequeue call in the browse mode with the NEXT MESSAGE navigation option and
a nonzero wait time can dequeue the same message over and over again. Oracle
recommends that you use a nonzero wait time for the first dequeue call on a queue
in a session, and then use a zero wait time with the NEXT MESSAGE navigation

Oracle Streams AQ Sample Application 7-73

Dequeue Features

option for subsequent dequeue calls. If a dequeue call gets an "end of queue" error
message, then the dequeue position can be explicitly set by the dequeue call to the
beginning of the queue using the FIRST MESSAGE navigation option, following
which the messages in the queue can be browsed again.

See Also: "Dequeuing a Message" on page 10-28

Scenario

In the following scenario from the BooksOnLine example, international orders
destined to Mexico and Canada are to be processed separately due to trade policies
and carrier discounts. Hence, a message is viewed in the locked mode (so no other
concurrent user removes the message) and the customer country (message payload)
is checked. If the customer country is Mexico or Canada, then the message is
consumed (deleted from the queue) using REMOVE_NODATA (because the payload is
already known). Otherwise, the lock on the message is released by the commit call.
The remove dequeue call uses the message identifier obtained from the locked
mode dequeue call. The shipping bookedorder deq (refer to the example code
for the description of this procedure) call illustrates the use of the browse mode.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

create or replace procedure get northamerican orders as

deqg cust data BOLADM. customer typ;
deq book data BOLADM.book typ;
deq item data BOLADM.orderitem typ;
deq msgid RAW (16) ;
dopt dbms_ag.dequeue options_t;
mprop dbms_ag.message properties t;
deq order data BOLADM.order typ;
deq order nodata BOLADM.order typ;
gname VARCHAR2 (30) ;
no_messages exception;
pragma exception init (no_messages, -25228);
new_orders BOOLEAN := TRUE;
begin
dopt .consumer name := consumer;

dopt.wait := DBMS_AQ.NO WAIT;
dopt.navigation := dbms_aq.FIRST MESSAGE;

7-74 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

dopt .dequeue_mode := DBMS_ AQ.LOCKED;
gname := 'TS.TS bookedorders que';

WHILE (new orders) LOOP
BEGIN
dbms_ag.dequeue (
queue_name => gname,
dequeue options => dopt,
message properties => mprop,
payload => deq order data,
msgid => deq msgid);

deq_item data := deq order data.items(1);
deqg book data := deq item data.item;
deq_cust _data := deq_order data.customer;

IF (deq_cust_data.country = 'Canada' OR
deq_cust_data.country = 'Mexico') THEN

dopt .dequeue _mode := dbms_aqg.REMOVE NODATA;
dopt.msgid := deq msgid;
dbms_aq.dequeue (
queue_name => gname,
dequeue options => dopt,
message properties => mprop,
payload => deq order nodata,
msgid => deq msgid) ;
commit;

dbms_output.put line(' **** next booked order ****).

dbms_output.put line('order no: ' || deq order data.orderno |
' book_title: ' || deg book data.title ||
' quantity: ' || deg_item data.quantity);
dboms_output.put line('ship state: ' || deq cust data.state ||
' ship country: ' || deg_cust data.country ||
' ship order type: ' || deq order data.ordertype);
END IF;
commit;

dopt .dequeue_mode := DBMS_ AQ.LOCKED;

dopt .msgid

:= NULL;

dopt.navigation := dbms_aq.NEXT MESSAGE;

EXCEPTION

Oracle Streams AQ Sample Application 7-75

Dequeue Features

WHEN no_messages THEN
dbms_output.put_line (' ---- NO MORE BOOKED ORDERS ---- ');
new _orders := FALSE;
END;
END LOOP;

end;

/
CONNECT EXECUTE on get northamerican orders to TS;
CONNECT ES/ES;

/* Browse all booked orders for East Shipping: */
EXECUTE BOLADM.shipping bookedorder deq('East Shipping', DBMS AQ.BROWSE) ;

CONNECT TS/TS;

/* Dequeue all international North American orders for Overseas Shipping: */
EXECUTE BOLADM.get northamerican orders;

Visual Basic (0040): Example Code

0040 supports all the modes of dequeuing described earlier. Possible values
include:

= ORAAQ_DQ_BROWSE (1) - Do not lock when dequeuing
= ORAAQ_DQ_LOCKED (2) - Read and obtain a write lock on the message
= ORAAQ_DQ _REMOVE (3)(Default) -Read the message and update or delete it.

Dim OraSession as object

Dim OraDatabase as object

Dim OraAgq as object

Dim OraMsg as Object

Dim OraOrder,OraltemList,Oraltem,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

Set OraDatabase = OraSession.DbOpenDatabase("", "boladm/boladm", 0&)

set oraAq = OraDatabase.CreateAQ("OE.OE neworders que")
OraAq.DequeueMode = ORAAQ DQ BROWSE

7-76 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

Java (JDBC): Example Code

public static void get northamerican orders(Connection db conn)

{

AQSession ag_sess;
Order deq_order;
Customer deq_cust;
String cust_country;
bytel[] deq msgid;

AQDequeueOption deq option;
AQMessageProperty msg_prop;

AQQueue bookedorders g;
AQMessage message;
AQObjectPayload obj payload;
boolean new_orders = true;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

deq option = new AQDequeueOption();

deq option.setConsumerName ("Overseas_Shipping");

deqg option.setWaitTime (AQDequeueOption.WAIT NONE) ;

deq option.setNavigationMode (AQDequeueOption.NAVIGATION FIRST MESSAGE) ;
deq_option.setDequeueMode (AQDequeueOption.DEQUEUE LOCKED) ;

bookedorders g = ag_sess.getQueue ("TS", "TS_bookedorders_que") ;
while (new_orders)

{

try

{

/* Dequeue the message - browse with lock */
message = bookedorders g.dequeue (deq_option, Order.getFactory());

obj payload = message.getObjectPayload() ;

deq msgid = message.getMessageId() ;
deq order = (Order) (obj payload.getPayloadData()) ;

deq cust = deq_order.getCustomer() ;

Oracle Streams AQ Sample Application 7-77

Dequeue Features

cust_country = deq cust.getCountry();

if (cust_country.equals("Canada") ||
cust_country.equals ("Mexico"))

{

deqg option.setDequeueMode (

AQDequeueOption.DEQUEUE REMOVE NODATA) ;

deqg option.setMessageld(deq msgid) ;

/* Delete the message */
bookedorders g.dequeue (deq option, Order.getFactory());

System.
System.
System.
System.
System.

}

out.println("---- next booked order ------ ",
out.println("Order no: " + deq order.getOrderno());

out.println("Ship country: " + deq cust.getCountry())

(

(
out.println("Ship state: " + deq cust.getState());

(;
out.println("Order type: " + deq order.getOrdertype());

db_conn.commit () ;

deq option.setDequeueMode (AQDequeueOption.DEQUEUE LOCKED) ;
deq option.setMessageld(null);
deq option.setNavigationMode (

}

AQDequeueOption.NAVIGATION NEXT MESSAGE) ;

catch (AQException agex)

{

new_orders = false;
System.out.println("--- No more booked orders ----");
System.out.println("Exception-1: " + agex);

}

}

catch (Exception ex)

{

System.out.println("Exception-2: " + ex);

}

7-78 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

Optimization of Waiting for Arrival of Messages

Oracle Streams AQ allows applications to block on one or more queues waiting for
the arrival of either a newly enqueued message or for a message that becomes
ready. You can use the DEQUEUE operation to wait for the arrival of a message in a
queue or the LISTEN operation to wait for the arrival of a message in more than one
queue.

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. By contrast, when the blocking LISTEN call returns, it discloses
only the name of the queue where a message has arrived. A subsequent DEQUEUE
operation is needed to dequeue the message.

Applications can optionally specify a timeout of zero or more seconds to indicate
the time that Oracle Streams AQ must wait for the arrival of a message. The default
is to wait forever until a message arrives in the queue. This optimization is
important in two ways. It removes the burden of continually polling for messages
from the application. And it saves CPU and network resources, because the
application remains blocked until a new message is enqueued or becomes READY
after its DELAY time. Applications can also perform a blocking dequeue on
exception queues to wait for arrival of EXPIRED messages.

A process or thread that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPIRATION time has passed. Applications cannot
only wait for the arrival of a message in the queue that an enqueuer enqueues a
message, but also on a remote queue, if propagation has been scheduled to the
remote queue using DBMS_AQADM.SCHEDULE_PROPAGATION. In this case, the
Oracle Streams AQ propagator wakes up the blocked dequeuer after a message has
been propagated.

See Also:
= "Dequeuing a Message" on page 10-28

= '"Listening to One or More Queues" on page 10-17

Scenario

In the BooksOnLine example, the get rushtitles procedure discussed under
dequeue methods specifies a wait time of 1 second in the dequeue_options
argument for the dequeue call. Wait time can be specified in different ways as
illustrated in the following code.

Oracle Streams AQ Sample Application 7-79

Dequeue Features

» If the wait time is specified as 10 seconds, then the dequeue call is blocked with
a timeout of 10 seconds until a message is available in the queue. This means
that if there are no messages in the queue after 10 seconds, the dequeue call
returns without a message. Predefined constants can also be assigned for the
wait time.

» If the wait time is specified as DBMS_AQ.NO_WAIT, then a wait time of 0 seconds
is implemented. The dequeue call in this case returns immediately even if there
are no messages in the queue.

s If the wait time is specified as DBMS_AQ.FOREVER, then the dequeue call is
blocked without a timeout until a message is available in the queue.

PL/SQL (DBMS_AQADM Package): Example Code

/* dopt is a variable of type dbms_aq.dequeue options t.
Set the dequeue wait time to 10 seconds: */
dopt.wait := 10;

/* Set the dequeue wait time to 0 seconds: */
dopt.wait := DBMS_AQ.NO WAIT;

/* Set the dequeue wait time to infinite (forever): */
dopt.wait := DBMS_AQ.FOREVER;

Visual Basic (0040): Example Code

0040 supports asynchronous dequeuing of messages. First, the monitor is started
for a particular queue. When messages that fulfil the user criteria are dequeued, the
user's callback object is notified.

Java (JDBC): Example Code
AQDequeueOption deq-opt;

deg-opt = new AQDequeueOption ();

Retry with Delay Interval

If the transaction dequeuing the message from a queue fails, then it is regarded as
an unsuccessful attempt to consume the message. Oracle Streams AQ records the
number of failed attempts to consume the message in the message history.
Applications can query the RETRY COUNT column of the queue table view to find
out the number of unsuccessful attempts on a message. In addition, Oracle Streams
AQ allows the application to specify, at the queue level, the maximum number of

7-80 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

retries for messages in the queue. If the number of failed attempts to remove a
message exceeds this number, then the message is moved to the exception queue
and is no longer available to applications.

Note: If a dequeue transaction fails because the server process
dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN
ABORT on the instance, then RETRY COUNT is not incremented.

Retry Delay

A bad condition can cause the transaction receiving a message to end. Oracle
Streams AQ allows users to hide the bad message for a prespecified interval. A
retry delay can be specified along with maximum retries. This means that a
message that has had a failed attempt is visible in the queue for dequeue after the
retry delay interval. Until then it is in the WAITING state. In the Oracle Streams
AQ background process, the time manager enforces the retry delay property. The
default value for maximum retries is 5. The default value for retry delay is 0.
Maximum retries and retry delay are not available with 8.0-compatible
multiconsumer queues.

PL/SQL (DBMS_AQADM Package): Example Code

/* Create a package that enqueue with delay set to one day: /*

CONNECT BOLADM/BOLADM
>

/* queue has max retries = 4 and retry delay = 12 hours */

EXECUTE DBMS AQADM.ALTER QUEUE (queue name = 'WS.WS BOOKED ORDERS QUE',
max_retr

ies = 4,

retry delay = 3600*12);

>

/* processes the next order available in the booked order queue */
CREATE OR REPLACE PROCEDURE process next order()

AS
dggopt dbms_ag.dequeue_options t;
msgprop dbms_ag.message properties t;
deq msgid RAW(16) ;
book BOLADM.book typ;
item BOLADM.orderitem typ;
BOLADM.order typ order;

BEGIN

>

dggopt .dequeue option := DBMS AQ.FIRST MESSAGE;

Oracle Streams AQ Sample Application 7-81

Dequeue Features

dbms_ag.dequeue ('WS.WS_BOOKED ORDERS QUEUE', dggopt, msgprop, order,
deq msgid
)
>
/* For simplicity, assume order has a single item */
item = order.items (1) ;
book = the orders.item;

/* assume search inventory searches inventory for the book */
/* if we don't find the book in the warehouse, terminate transaction */
IF (search inventory(book) != TRUE)
rollback;
ELSE
process_order (order) ;
END IF;
>
END;
/

Visual Basic (0040): Example Code

Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

public static void setup queue (Connection db conn)

{
AQSession ag_sess;
AQQueue bookedorders g;
AQQueueProperty J_prop;

try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

bookedorders g = ag_sess.getQueue ("WS", "WS_bookedorders_que") ;

/* Alter queue - set max retries = 4 and retry delay = 12 hours */
g _prop = new AQQueueProperty();

g _prop.setMaxRetries(4) ;

g_prop.setRetryInterval (3600%12); // specified in seconds

bookedorders g.alterQueue (g _prop) ;

7-82 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeue Features

}

}

catc

{
}

h (Exception ex)

System.out.println("Exception: " + ex);

public static void process next order(Connection db conn)

{

AQSession ag_sess;

Order deq_order;
OrderItem order item;
Book book;
AQDequeueOption deq option;
AQMessageProperty msg_prop;
AQQueue bookedorders gq;
AQMessage message;
AQObjectPayload obj payload;

try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

deq option = new AQDequeueOption();

deqg option.setNavigationMode (AQDequeueOption.NAVIGATION FIRST MESSAGE) ;
bookedorders g = ag sess.getQueue ("WS", "WS bookedorders que");

/* Dequeue the message */

message = bookedorders g.dequeue (deq option, Order.getFactory());

obj payload = message.getObjectPayload() ;

deq order = (Order) (obj payload.getPayloadData()) ;

/* For simplicity, assume order has a single item */

order item = deq order.getItems().getElement (0);

book = order item.getItem();

/* assume search inventory searches inventory for the book
* if we don't find the book in the warehouse, terminate transaction

Oracle Streams AQ Sample Application 7-83

Exception Handling

*/

if (search inventory(book) != true)
db_conn.rollback();

else
process_order (deq order) ;

}

catch (AQException agex)

{
}
catch (Exception ex)

{
}

System.out.println("Exception-1: " + agex);

System.out.println("Exception-2: " + ex);

Exception Handling

Oracle Streams AQ provides four integrated mechanisms to support exception
handling in applications:

s EXCEPTION QUEUES
s EXPIRATION

= MAX RETRIES

= RETRY DELAY

An exception_gqueue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an
application that intends to handle these expired or unserviceable messages can
dequeue from the exception queue.

When a message has expired, it is moved to an exception queue. The exception
queue for a message in a multiconsumer queue should be created in a
multiconsumer queue table. However, the exception queue always acts like a
single-consumer queue. You cannot add subscribers to an exception queue. The
consumer name specified while dequeuing should be null.

Like any other queue, the exception queue must be enabled for dequeue using the
DBMS_AQADM.START QUEUE procedure. You get an Oracle Streams AQ error if you
try to enable an exception queue for enqueue.

7-84 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
exactly once by specifying a NULL consumer name in the dequeue options. Hence,
from a dequeue perspective multiconsumer exception queues act like
single-consumer queues, because each expired message can be dequeued only once
using a NULL consumer name. Messages can also be dequeued from the exception
queue by specifying the message ID.

The exception queue is a message property that can be specified during enqueue
time. In PL/SQL users can use the exception gueue attribute of the DBMS
AQMESSAGE PROPERTIES T record to specify the exception queue. In OCI users
can use the OCISetAttr procedure to set the OCI_ATTR EXCEPTION QUEUE
attribute of the OCIAQMsgProperties descriptor.

See Also: "Enqueuing a Message and Specifying Options" on
page 10-3

If an exception queue is not specified, then the default exception queue is used. If
the queue is created in a queue table, for example, QTAB, then the default exception
queue is called 208 QTAB E. The default exception queue is automatically created
when the queue table is created. Messages are moved to the exception queues by
Oracle Streams AQ under the following conditions:

= The message is not being dequeued within the specified expiration interval. For
messages intended for more than one recipient, the message is moved to the
exception queue if one or more of the intended recipients was not able to
dequeue the message within the specified expiration interval. The default
expiration interval is DBMS_AQ.NEVER, meaning the messages does not expire.

= The message is being dequeued successfully, but the application that dequeues
the message chooses to roll back the transaction because of an error that arises
while processing the message. In this case, the message is returned to the queue
and is available for any applications that are waiting to dequeue from the same
queue. A dequeue is considered rolled back or undone if the application rolls
back the entire transaction, or if it rolls back to a save point that was taken
before the dequeue. If the message has been dequeued but rolled back more
than the number of times specified by the retry limit, then the message is
moved to the exception queue.

For messages intended for multiple recipients, each message keeps a separate
retry count for each recipient. The message is moved to the exception queue
only when retry counts for all recipients of the message have exceeded the
specified retry limit. The default retry limit is 5 for single-consumer queues and

Oracle Streams AQ Sample Application 7-85

Exception Handling

8.1-compatible multiconsumer queues. No retry limit is supported for 8.0-
compatible multiconsumer queues.

Note: If a dequeue transaction fails because the server process
dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN
ABORT on the instance, then RETRY COUNT is not incremented.

= The statement executed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception. To understand this case,
consider a PL/SQL procedure that contains a call to DBMS_AQ.DEQUEUE. If the
dequeue procedure succeeds but the PL/SQL procedure raises an exception,
then Oracle Streams AQ attempts to increment the RETRY COUNT of the
message returned by the dequeue procedure.

= The client program successfully dequeued a message but terminated before
committing the transaction.

Messages intended for 8.1-compatible multiconsumer queues cannot be dequeued
by the intended recipients once the messages have been moved to an exception
queue. These messages should instead be dequeued in the REMOVE or BROWSE
mode exactly once by specifying a NULL consumer name in the dequeue options.
The messages can also be dequeued by their message IDs.

Messages intended for single consumer queues, or for 8.0-compatible
multiconsumer queues, can only be dequeued by their message IDs once the
messages have been moved to an exception queue.

Users can associate a RETRY DELAY with a queue. The default value for this
parameter is 0, meaning that the message is available for dequeue immediately after
the RETRY COUNT is incremented. Otherwise the message is unavailable for

RETRY DELAY seconds. After RETRY DELAY seconds, the queue monitor marks the
message as READY.

For a multiconsumer queue, RETRY DELAY is for each subscriber.

Scenario

In the BooksOnLine application, the business rule for each shipping region is that
an order is placed in a back order queue if the order cannot be filled immediately.
The back order application tries to fill the order once a day. If the order cannot be
filled within 5 days, then it is placed in an exception queue for special processing.
You can implement this process by making use of the retry and exception handling
features in Oracle Streams AQ.

7-86 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

The following example shows how you can create a queue with specific maximum
retry and retry delay interval.

PL/SQL (DBMS_AQADM Package): Example Code

/* Example for creating a backorder queue in Western Region which allows a
maximum of 5 retries and 1 day delay between each retry. */
CONNECT BOLADM/BOLADM

BEGIN
DBMS AQADM.CREATE QUEUE (

queue name => 'WS.WS_backorders_que',
queue_table => 'WS.WS_orders_mgtab',
max retries => 5,
retry delay => 60*60%24) ;

END;

/

/* Create an exception queue for the backorder queue for Western Region. */
CONNECT BOLADM/BOLADM

BEGIN
DBMS AQADM.CREATE QUEUE (
queue name => 'WS.WS_backorders_excpt_que',
queue_table => 'WS.WS_orders_mgtab',
queue_type => DBMS AQADM.EXCEPTION QUEUE) ;
end;
/

/* Enqueue a message to WS_backorders que and specify WS backorders excpt que as
the exception queue for the message: */

CONNECT BOLADM/BOLADM

CREATE OR REPLACE PROCEDURE enqueue WS unfilled order (backorder order typ)

AS

back order gueue name varchar2 (62) ;
engopt dbms_aqg.enqueue options t;
msgprop dbms_aqg.message properties t;
eng msgid raw(16) ;

BEGIN

/* Set backorder queue name for this message: */
back_order queue_name := 'WS.WS_backorders que';

/* Set exception queue name for this message: */
msgprop.exception queue := 'WS.WS backorders excpt que';

dbms_ag.enqueue (back order queue name, engopt, msgprop,

Oracle Streams AQ Sample Application 7-87

Exception Handling

backorder, eng msgid) ;
END;

Visual Basic (0040): Example Code

The exception queue is a message property that can be provided at the time of
enqueuing a message. If this property is not set, then the default exception queue of
the queue is used for any error conditions.

set oraAq = OraDatabase.CreateAQ("CBADM.deferbilling que")
Set OraMsg = OraAq.AQMsg (ORATYPE OBJECT, "BOLADM.order typ")
Set OraOrder = OraDatabase.CreateOraObject ("BOLADM.order typ")
OraMsg = OraOrder
OraMsg.delay = 15*60*60%*24
OraMsg.ExceptionQueue = "WS.WS_backorders que"
'Fill up the order values
OraMsg = OraOrder 'OraOrder contains the order details
Msgid = OraAg.enqueue

Java (JDBC): Example Code

public static void createBackOrderQueues (Connection db_conn)

{

AQSession ag_sess;
AQQueue backorders g;
AQQueue backorders excp q;

AQQueueProperty J_prop;
AQQueueProperty g_prop2;
AQQueueTable mg table;

try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

mg_table = ag_sess.getQueueTable ("WS", "WS orders mgtab");

/* Create a backorder queue in Western Region which allows a
maximum of 5 retries and 1 day delay between each retry. */

g prop = new AQQueueProperty();

g _prop.setMaxRetries(5) ;
g prop.setRetryInterval (60%¥24*24) ;

7-88 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

backorders g = aq_sess.createQueue (mg_table, "WS_backorders_que",
q_prop) ;

backorders g.start (true, true);

/* Create an exception queue for the backorder queue for
Western Region. */

g prop2 = new AQQueueProperty () ;

g_prop2.setQueueType (AQQueueProperty.EXCEPTION QUEUE) ;

backorders excp g = ag_sess.createQueue (mg_table,
"WS_backorders_excpt_que", g_prop2);

}

catch (Exception ex)

{
}

System.out.println("Exception " + ex);

}

/* Enqueue a message to WS backorders que and specify WS backorders excpt que
as the exception queue for the message: */
public static void enqueue WS _unfilled order (Connection db_conn,
Order back order)
{

AQSession ag_sess;
AQQueue back order g;
AQEnqueueOption eng option;
AQMessageProperty m property;

AQMessage message;
AQObjectPayload obj payload;
bytel] eng msg id;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

back _order g = aq_sess.getQueue ("WS", "WS backorders que");
message = back order g.createMessage() ;

/* Set exception queue name for this message: */
m_property = message.getMessageProperty();

Oracle Streams AQ Sample Application 7-89

Exception Handling

m_property.setExceptionQueue ("WS.WS backorders excpt que");

obj payload = message.getObjectPayload() ;
obj payload.setPayloadData (back order) ;

eng_option = new AQEnqueueOption();

/* Enqueue the message */
eng _msg_id = back order g.enqueue(enq option, message);

db conn.commit () ;

}

catch (Exception ex)

{
}

System.out.println("Exception: " + ex);

Rule-Based Subscription

Messages can be routed to various recipients based on message properties or
message content. Users define a rule-based subscription for a given queue to specify
interest in receiving messages that meet particular conditions.

Rules are Boolean expressions that evaluate to TRUE or FALSE. Similar in syntax to
the WHERE clause of a SQL query, rules are expressed in terms of the attributes that
represent message properties or message content. These subscriber rules are
evaluated against incoming messages and those rules that match are used to
determine message recipients. This feature thus supports the notions of
content-based subscriptions and content-based routing of messages.

Subscription rules can also be defined on an attribute of type XMLType using XML
operators such as ExistsNode.

Scenario

For the BooksOnLine application, we illustrate how rule-based subscriptions are
used to implement a publish/subscribe paradigm utilizing content-based
subscription and content-based routing of messages. The interaction between the
Order Entry application and each of the Shipping Applications is modeled as
follows:

7-90 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

= Western Region Shipping handles orders for the Western Region of the U.S.
= Eastern Region Shipping handles orders for the Eastern Region of the U.S.
= Overseas Shipping handles all non-U.S. orders.

= Overseas Shipping checks for the XMLType attribute to identify special
handling.

= Eastern Region Shipping also handles all U.S. rush orders.

Each shipping application subscribes to the OE booked orders queue. The following
rule-based subscriptions are defined by the Order Entry user to handle the routing
of booked orders from the Order Entry application to each of the Shipping
applications.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT OE/OE;

Western Region Shipping defines an agent called 'West Shipping' with the WS
booked orders queue as the agent address (destination queue where messages must
be delivered). This agent subscribes to the OE booked orders queue using a rule
specified on order region and ordertype attributes.

/* Add a rule-based subscriber for West Shipping -
West Shipping handles Western Region U.S. orders,
Rush Western Region orders are handled by Eastern Shipping: */
DECLARE
subscriber ag$_agent;
BEGIN
subscriber := ag$ agent ('West Shipping', 'WS.WS bookedorders que', null);
DBMS AQADM.ADD SUBSCRIBER (
queue _name => 'OE.OE bookedorders que',
subscriber => subscriber,
rule => 'tab.user_ data.orderregion =
' '"WESTERN'' AND tab.user data.ordertype != ''RUSH''');
END;
/
Eastern Region Shipping defines an agent called East_Shipping with the ES
booked orders queue as the agent address (the destination queue where messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on orderregion, ordertype and customer attributes.

/* Add a rule-based subscriber for Eastern Shipping -
Eastern Shipping handles all Eastern Region orders,
Eastern Shipping also handles all U.S. rush orders: */

DECLARE

Oracle Streams AQ Sample Application 7-91

Exception Handling

subscriber ag$_agent;
BEGIN
subscriber := ag$ agent ('East Shipping', 'ES.ES bookedorders que', null);
DBMS AQADM.ADD SUBSCRIBER (
queue_name => 'OE.OE bookedorders que',
subscriber => subscriber,

rule => 'tab.user data.orderregion = ''EASTERN'' OR
(tab.user data.ordertype = ''RUSH'' AND
tab.user data.customer.country = '"'USA'') ');

END;

Overseas Shipping defines an agent called Overseas_Shipping with the TS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on the orderregion attribute. Because the representation of orders
at the Overseas Shipping site is different from the representation of orders at the
Order Entry site, a transformation is applied before messages are propagated from
the Order Entry site to the Overseas Shipping site.

See Also: "Message Format Transformation" on page 7-7

/* Add a rule-based subscriber (for Overseas Shipping) to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */

DECLARE
subscriber ag$_agent;
BEGIN
subscriber := ag$ agent ('Overseas_ Shipping', 'TS.TS_bookedorders que',null);

DBMS_AQADM.ADD SUBSCRIBER (

queue name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user data.orderregion = ''INTERNATIONAL''',

transformation => 'TS.OE2XML');
END;

Assume that the Overseas Shipping site has a subscriber, Overseas_DHL, for
handling RUSH orders. Because TS_bookedorders_que has the order details
represented as an XMLType, the rule uses XPath syntax.

DECLARE
subscriber ag$_agent;
BEGIN
subscriber := ag$_agent ('Overseas DHL', null, null);

7-92 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

DBMS_AQADM.ADD SUBSCRIBER (

END;

queue_name => 'TS.TS_bookedorders que',

subscriber => subscriber,

rule => 'tab.user data.extract(''/ORDER TYP/ORDERTYPE/
text()'').getStringVal()="'"'RUSH''');

Visual Basic (0040): Example Code

This functionality is currently not available.

Java (JDBC): Example Code

public static void addRuleBasedSubscribers (Connection db_conn)

{

AQSession ag_sess;

AQQueue bookedorders g;
String rule;

AQAgent agtl, agt2, agt3;
try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

bookedorders g = ag_sess.getQueue ("OE", "OE booked orders que");
/* Add a rule-based subscriber for West Shipping -

West Shipping handles Western region U.S. orders,

Rush Western region orders are handled by East Shipping: */

agtl = new AQAgent ("West Shipping", "WS.WS bookedorders que");

rule = "tab.user data.orderregion = 'WESTERN' AND " +
"tab.user data.ordertype != 'RUSH'";

bookedorders g.addSubscriber(agtl, rule);
/* Add a rule-based subscriber for Eastern Shipping -
Eastern Shipping handles all Eastern Region orders,

Eastern Shipping also handles all U.S. rush orders: */

agt2 = new AQAgent ("East Shipping", "ES.ES bookedorders que");

Oracle Streams AQ Sample Application 7-93

Exception Handling

rule = "tab.user data.orderregion = 'EASTERN' OR " +
"(tab.user data.ordertype = 'RUSH' AND " +
"tab.user data.customer.country = 'USA')";

bookedorders g.addSubscriber(agt2, rule);

/* Add a rule-based subscriber for Overseas Shipping
Intl Shipping handles all non-U.S. orders: */

agt3 = new AQAgent ("Overseas Shipping", "TS.TS bookedorders que");
rule = "tab.user data.orderregion = 'INTERNATIONAL'";

bookedorders g.addSubscriber (agt3, rule);

}

catch (Exception ex)

{
}

System.out.println("Exception: " + ex);

Listen Capability

Oracle Streams AQ can monitor multiple queues for messages with a single call,
LISTEN. An application can use LISTEN to wait for messages for multiple
subscriptions. It can also be used by gateway applications to monitor multiple
queues. If the LISTEN call returns successfully, then a dequeue must be used to
retrieve the message.

See Also: "Listening to One or More Queues" on page 10-17

Without the LISTEN call, an application which sought to dequeue from a set of
queues would continuously poll the queues to determine if there were a message.
Alternatively, you could design your application to have a separate dequeue
process for each queue. However, if there are long periods with no traffic in any of
the queues, then these approaches create unacceptable overhead. The LISTEN call is
well suited for such applications.

When there are messages for multiple agents in the agent list, LISTEN returns with
the first agent for whom there is a message. In that sense LISTEN is not 'fair' in
monitoring the queues. The application designer must keep this in mind when
using the call. To prevent one agent from 'starving' other agents for messages, the
application can change the order of the agents in the agent list.

7-94 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

Scenario

In the customer service component of the BooksOnLine example, messages from
different databases arrive in the customer service queues, indicating the state of the
message. The customer service application monitors the queues and whenever there
is a message about a customer order, it updates the order status in the order
status_table. The application uses the LISTEN call to monitor the different
queues. Whenever there is a message in any of the queues, it dequeues the message
and updates the order status accordingly.

PL/SQL (DBMS_AQADM Package): Example Code
CODE (in tkagdocd.sql)

/* Update the status of the order in the order status table: */
CREATE OR REPLACE PROCEDURE update status(
new_status IN VARCHAR2,

order_msg IN BOLADM.ORDER TYP)
Is
old status VARCHAR2 (30) ;
dummy NUMBER;
BEGIN
BEGIN

/* Query old status from the table: */
SELECT st.status INTO old status FROM order status_table st
WHERE st.customer order.orderno = order msg.orderno;

/* Status can be 'BOOKED ORDER', 'SHIPPED ORDER', 'BACK ORDER'
and '"BILLED ORDER': */

IF new_status = 'SHIPPED ORDER' THEN
IF old status = 'BILLED ORDER' THEN
return; /* message about a previous state */
END IF;
ELSIF new_status 'BACK_ORDER' THEN
IF old status = 'SHIPPED ORDER' OR old status = 'BILLED ORDER' THEN
return; /* message about a previous state */
END IF;
END IF;

/* Update the order status: */
p
UPDATE order status table st
SET st.customer order = order msg, st.status = new_status;

Oracle Streams AQ Sample Application 7-95

Exception Handling

COMMIT;

EXCEPTION
WHEN OTHERS THEN /* change to no data found */
/* First update for the order: */
INSERT INTO order status_table(customer order, status)
VALUES (order msg, new status);
COMMIT;

END;
END;
/

/* Dequeues message from 'QUEUE' for 'CONSUMER': */
CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(
queue IN VARCHAR2,
consumer IN VARCHAR2,
message OUT BOLADM.order typ)

I8

dopt dbms_ag.dequeue options t;
mprop dbms_ag.message properties t;
deqg_msgid RAW(16) ;

BEGIN

dopt .dequeue mode := dbms_aq.REMOVE;
dopt.navigation := dbms_ag.FIRST MESSAGE;
dopt.consumer name := consumer;

dbms_aq.dequeue (
queue_name => queue,
dequeue options => dopt,
message properties => mprop,
payload => message,
msgid => deq msgid);

commit;

END;

/

/* Monitor the queues in the customer service databse for 'time' seconds: */
CREATE OR REPLACE PROCEDURE MONITOR_STATUS_QUEUE(time IN NUMBER)

IS
agent w message ag$_agent;
agent list dbms_ag.agent list t;
wait time INTEGER := 120;

7-96 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

no_message EXCEPTION;

pragma EXCEPTION INIT(no message, -25254);

order_msg boladm.order typ;

new_status VARCHAR2 (30) ;

monitor BOOLEAN := TRUE;

begin time NUMBER;

end time NUMBER ;
BEGIN

begin time := dbms utility.get time;
WHILE (monitor)

LOOP

BEGIN

/* Construct the waiters list: */

agent list(1) := ag$_agent ('BILLED ORDER', 'CS billedorders que', NULL);

agent list(2) := ag$_agent ('SHIPPED ORDER', 'CS shippedorders que',
NULL) ;

agent list(3) := ag$_agent ('BACK ORDER', 'CS backorders que', NULL);

agent list(4) := ag$_agent ('Booked ORDER', 'CS bookedorders que', NULL);

/* Wait for order status messages: */
dbms_ag.listen(agent list, wait time, agent w message);

dbms_output.put line('Agent' || agent w message.name || ' Address '|
agent_w_message.address) ;

/* Dequeue the message from the queue: */

dequeue message (agent w message.address, agent w message.name, order msg) ;

/* Update the status of the order depending on the type of the message,
* the name of the agent contains the new state: */
update status(agent w message.name, order msg) ;

/* Exit if we have been working long enough: */

end time := dbms utility.get time;

IF (end time - begin time > time) THEN
EXIT;

END IF;

EXCEPTION
WHEN no message THEN
dbms_output.put line('No messages in the past 2 minutes');
end time := dbms utility.get time;
/* Exit if we have accomplished enough work: */
IF (end time - begin time > time) THEN

Oracle Streams AQ Sample Application 7-97

Exception Handling

EXIT;
END IF;
END;

END LOOP;
END;
/

Visual Basic (0040): Example Code

Feature not currently available.

Java (JDBC): Example Code

public static void monitor status_queue(Connection db_conn)

{

AQSession ag_sess;

AQAgent [] agt_list = null;
AQAgent ret agt = null;
Order deq_order;
AQDequeueOption deq option;
AQQueue orders _g;
AQMessage message;
AQObjectPayload obj payload;
String owner = null;
String queue name = null;
int idx = 0;

try

{

/* Create an AQ session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Construct the waiters list: */
agt list = new AQAgent [4];

agt 1list[0] = new AQAgent ("BILLED ORDER", "CS billedorders que", 0);
agt list[1] = new AQAgent ("SHIPPED ORDER", "CS shippedorders que", 0);
agt list[2] = new AQAgent ("BACK ORDER", "CS backorders que", 0);

agt list[3] = new AQAgent ("BOOKED ORDER", "CS bookedorders que", 0);

/* Wait for order status messages for 120 seconds: */
ret_agt = ag_sess.listen(agt_list, 120);

System.out.println("Message available for agent: " +
ret _agt.getName() + " " + ret agt.getAddress());

7-98 Oracle Streams Advanced Queuing User’s Guide and Reference

Exception Handling

/* Get owner, queue where message is available */
idx = ret agt.getAddress().indexOf (".");

if (idx != -1)

{

owner = ret agt.getAddress().substring(0, idx);
queue name = ret agt.getAddress().substring(idx + 1);

/* Dequeue the message */
deqg option = new AQDequeueOption();

deq option.setConsumerName (ret agt.getName()) ;
deq option.setWaitTime (1) ;

orders g = ag_sess.getQueue (owner, queue name) ;

/* Dequeue the message */
message = orders_qg.dequeue (deq option, Order.getFactory());

obj payload = message.getObjectPayload() ;
deq order = (Order) (obj payload.getPayloadData()) ;

System.out.println("Order number " + deq order.getOrderno() + " retrieved");

}

catch (AQException agex)

{

System.out.println("Exception-1: " + agex);

}

catch (Exception ex)

{

System.out.println("Exception-2: " + ex);

}

Oracle Streams AQ Sample Application 7-99

Exception Handling

Message Transformation During Dequeue

Continuing the scenario introduced in "Message Format Transformation" on

page 7-7 and "Message Transformation During Enqueue” on page 7-56, the queues
in the OE schema are of payload type OE . orders_typ and the queues in the WS
schema are of payload type WS.orders_typ_sh.

Scenario

At dequeue time, an application can move messages from OE_booked orders
topic to the WS_booked orders topic by using a selection criteria on dequeue
to dequeue only orders with order region "WESTERN" and order type not
equal to "RUSH. " At the same time, the transformation is applied and the order in
the ws.order_ typ_sh type is retrieved. Then the message is enqueued into the
WS.ws_booked orders queue.

PL/SQL (DBMS_AQ Package): Example Code

CREATE OR REPLACE PROCEDURE fwd message to ws shipping AS

enqg opt dbms ag.enqueue options t;
deq_opt dbms_aqg.dequeue options_t;
msg prp dbms_aq.message properties t;
booked order WS.order typ sh;

BEGIN

/* First dequeue the message from OE booked orders topic: */

deq opt.transformation := 'OE.OE2WS';
deq_opt.condition := 'tab.user data.order region = ''WESTERN'' and tab.user
data.order type != ''RUSH''';

dbms_ag.dequeue ('OE.oce_bookedorders topic', deq opt,
msg_prp, booked order);

/* Enqueue the message in the WS booked orders topic */
msg_prp.recipient 1list(0) := ag$_agent ('West shipping', null, null);

dbms_ag.enqueue ('WS.ws_bookedorders topic',
eng_opt, msg prp, booked order);

END;

Visual Basic (0040): Example Code

No example is provided with this release.

7-100 Oracle Streams Advanced Queuing User’s Guide and Reference

Asynchronous Notifications

Java (JDBC): Example Code

No example is provided with this release.

Dequeue Using the Oracle Streams AQ XML Servlet

You can perform dequeue requests over the Internet using SOAP.

See Also: Chapter 17, "Internet Access to Oracle Streams AQ"

In the BooksOnline scenario, assume that the Eastern Shipping application receives
Oracle Streams AQ messages with a correlation identifier 'RUSH' over the Internet.
The dequeue request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
<consumer_ options>
<destination>ES_ES bookedorders que</destination»
<consumer name>East Shipping</consumer names
<wait time>0</wait time>
<selector>
<correlation>RUSH</correlation>
</selector>
</consumer options>

<AQXmlCommit/>

</AQXmlReceives>
</Body>
</Envelope>

Asynchronous Notifications

This feature allows clients to receive notifications for messages of interest. It
supports multiple mechanisms to receive notifications. Clients can receive
notifications procedurally using PL/SQL, Java Message Service (JMS), or OCI
callback functions, or clients can receive notifications through e-mail or HTTP post.

For persistent queues, notifications contain only the message properties, except for
JMS notifications. Clients explicitly dequeue to receive the message. In JMS, the
dequeue is accomplished as part of the notifications and hence explicit dequeue is

Oracle Streams AQ Sample Application 7-101

Asynchronous Notifications

not required. For nonpersistent queues, the message is delivered as part of the
notification.

Clients can also specify the presentation for notifications as either RAW or XML.

Scenario

In the BooksOnLine application, a customer can request Fed-Ex shipping (priority
1), priority air shipping (priority 2), or regular ground shipping (priority 3).

The shipping application then ships the orders according to the user's request. It is
of interest to BooksOnLine to find out how many requests of each shipping type
come in each day. The application uses asynchronous notification facility for this
purpose. It registers for notification on the WS.WS_bookedorders_que. When it
is notified of new message in the queue, it updates the count for the appropriate
shipping type depending on the priority of the message.

Visual Basic (0040): Example Code

Refer to the Visual Basic online help, "Monitoring Messages".

Java (JDBC): Example Code
This feature is not supported by the Java API.

C (OCI): Example Code

This example illustrates the use of OCIRegister. At the shipping site, an OCI client
program keeps track of how many orders were made for each of the shipping types,
FEDEX, AIR and GROUND. The priority field of the message enables us to
determine the type of shipping wanted.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <oci.h>

#ifdef WIN32COMMON

#define sleep(x) Sleep(1000* (x))
#endif

static text *username = (text *) "WS";
static text *password (text *) "WS";

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

7-102 Oracle Streams Advanced Queuing User’s Guide and Reference

Asynchronous Notifications

static void checkerr(/* OCIError *errhp, sword status

struct

{

ship data

ub4
ub4
ub4

fedex;
air;
ground;

}i
typedef struct ship data ship data;

int main(/* int argc, char *argv(]

_*/);

/* Notify callback: */

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{
text *gubname ;
ub4 size;
ship data *ship stats = (ship data *)ctx;
text *queue;
text *consumer;
OCIRaw *msgid;
ub4 priority;
OCIAQMsgProperties *msgprop;

OCIAttrGet ((dvoid *)subscrhp, OCI_HTYPE SUBSCRIPTION,
(dvoid *) &subname, &size,

_*/);

OCT_ATTR_SUBSCR NAME, errhp) ;

/* Extract the attributes from the AQ descriptor.
Queue name: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR,
OCI_ATTR QUEUE NAME, errhp);

/* Consumer name: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR,
OCI_ATTR_CONSUMER NAME, errhp);

(dvoid *)&queue, &size,

(dvoid *)&consumer, &size,

Oracle Streams AQ Sample Application 7-103

Asynchronous Notifications

/* Msgid: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&msgid, &size,
OCI_ATTR NFY MSGID, errhp);

/* Message properties: */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR MSG _PROP, errhp);

/* Get priority from message properties: */

checkerr (errhp, OCIAttrGet (msgprop, OCI_DTYPE AQMSG PROPERTIES,
(dvoid *)s&priority, O,
OCI_ATTR_PRIORITY, errhp));

switch (priority)

{

case 1: ship stats->fedex++;

break;

case 2: ship stats->air++;
break;

case 3: ship stats->ground++;
break;

default:
printf (" Error priority %d", priority);

int main(argc, argv)

int argc;

char *argvl(];

{
OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhpl[8];
ub4 namespace = OCI_SUBSCR NAMESPACE AQ;
ship data ctx = {0,0,0};
ub4 sleep time = 0;

printf ("Initializing OCI Process\n");

/* Initialize OCI environment with OCI_EVENTS flag set: */
(void) OCIInitialize((ub4) OCI EVENTS|OCI_OBJECT, (dvoid *)o0,

(dvoid * (*) (dvoid *, size t)) 0,
(dvoid * (*) (dvoid *, dvoid *, size t))O,
(void (*) (dvoid *, dvoid *)) 0);

7-104 Oracle Streams Advanced Queuing User’s Guide and Reference

Asynchronous Notifications

printf ("Initialization successful\n");

printf ("Initializing OCI Env\n");
(void) OCIEnvInit((OCIEnv **) &envhp, OCI DEFAULT, (size t) 0, (dvoid **) 0
)

printf ("Initialization successful\n");

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE
ERROR,
(size t) 0, (dvoid **) 0));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE
SERVER,
(size t) 0, (dvoid **) 0));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE
SVCCTX,
(size_t) 0, (dvoid **) 0));

printf ("connecting to server\n");

checkerr (errhp, OCIServerAttach(srvhp, errhp, (text *)"instl alias",
strlen("instl alias"), (ub4) OCI_DEFAULT)) ;

printf ("connect successful\n");

/* Set attribute server context in the service context: */
checkerr (errhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE SVCCTX, (dvoid *)srvhp,
(ub4) 0, OCI_ATTR SERVER, (OCIError *) errhp));

checkerr (errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI HTYPE SESSION, (size_t) 0, (dvoid **) 0));

/* Set username and password in the session handle: */

checkerr (errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,
(dvoid *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR USERNAME, errhp));

checkerr (errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,
(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR PASSWORD, errhp));

/* Begin session: */

checkerr (errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED RDBMS,
(ub4) OCI_DEFAULT)) ;

Oracle Streams AQ Sample Application 7-105

Asynchronous Notifications

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX,
(dvoid *) authp, (ub4) O,
(ub4) OCI_ATTR SESSION, errhp) ;

/* Register for notification: */

printf ("allocating subscription handle\n");

subscrhp [0] = (OCISubscription *)O0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp([0],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size t) 0, (dvoid **) 0);

printf ("setting subscription name\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) "WS.WS_ BOOKEDORDERS QUE:BOOKED ORDERS",
(ub4) strlen("WS.WS BOOKEDORDERS QUE:BOOKED ORDERS"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

printf ("setting subscription callback\n");

(void) OCIAttrSet((dvoid *) subscrhp([0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR CALLBACK, errhp);

(void) OCIAttrSet ((dvoid *) subscrhp[0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof (ctx),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

printf ("setting subscription namespace\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

printf ("Registering \n");
checkerr (errhp, OCISubscriptionRegister (svchp, subscrhp, 1, errhp,
OCI_DEFAULT)) ;

sleep time = (ub4)atoi(argv([l]);
printf ("waiting for %d s", sleep time);

sleep (sleep time);

printf ("Exiting");
exit (0);

7-106 Oracle Streams Advanced Queuing User’s Guide and Reference

Asynchronous Notifications

void checkerr (errhp, status)
OCIError *errhp;
sword status;

{

}

text errbuf [512];
sb4 errcode = 0;

switch (status)
{
case OCI_SUCCESS:
break;
case OCI_SUCCESS WITH INFO:

(void) printf ("Error - OCI_SUCCESS WITH INFO\n");

break;

case OCI_NEED DATA:
(void) printf ("Error - OCI_NEED DATA\n");
break;

case OCI_NO DATA:
(void) printf ("Error - OCI_NODATA\n");
break;

case OCI_ERROR:

(void) OCIErrorGet ((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), OCI_HTYPE ERROR);

(void) printf ("Error - %.*s\n", 512, errbuf);
break;

case OCI_INVALID HANDLE:
(void) printf ("Error - OCI_INVALID HANDLE\n");
break;

case OCI_STILL EXECUTING:
(void) printf ("Error - OCI_STILL EXECUTE\n");
break;

case OCI_CONTINUE:
(void) printf ("Error - OCI_CONTINUE\n");
break;

default:
break;

}

Oracle Streams AQ Sample Application 7-107

Asynchronous Notifications

PL/SQL (DBMS_AQ package): Example Code
This example illustrates the use of the DBMS_AQ.REGISTER procedure.

In the BooksOnline scenario, assume that we want a PL/SQL callback
WS.notifyCB () to be invoked when the subscriber BOOKED ORDER receives a
message in the WS.WS_BOOKED ORDERS_QUE queue. In addition, we want to send
an e-mail to johnecompany . com when an order is enqueued in the queue for
subscriber BOOKED ORDERS. Also assume that we want to invoke the servlet
http://xyz.company.com/servliets/NofifyServlet. This can be
accomplished as follows:

First define a PL/SQL procedure that is invoked on notification.

connect ws/ws;
set echo on;
set serveroutput on;

-- notifyCB callback
create or replace procedure notifyCB (
context raw, reginfo sys.ag$ reg info, descr sys.aq$ descriptor,
payload raw, payloadl number)
AS
dequeue options DBMS_AQ.dequeue options t;
message properies DBMS AQ.message properties t;
message handle RAW(16) ;
message BOLADM.order typ;
BEGIN
-- get the consumer name and msg id from the descriptor
dequeue options.msgid := descr.msg id;
dequeue options.consumer name := descr.consumer name;

-- Dequeue the message

DBMS_AQ.DEQUEUE(queue_name => descr.queue_name,
dequeue_options => dequeue options,
message properties => message properties,
payload => message,
msgid => message handle);

commit;
DBMS_OUTPUT.PUTLINE ('Received Order: ' || message.orderno) ;

END;
/

7-108 Oracle Streams Advanced Queuing User’s Guide and Reference

Asynchronous Notifications

The PL/SQL procedure, e-mail address, and HTTP URL can be registered as

follows:

connect ws/ws;
set echo on;

set serveroutput on;

DECLARE
reginfol sys
reginfo2 Sys.
reginfo3 Sys.

reginfolist sys.

BEGIN
-- register for

-- register for an e-mail to be sent to john@company.com on notification

.ag$_reg info;

aqgs_reg info;
ags_reg info;
ags_reg info list;

the pl/sql procedure notifyCB to be called on notification
reginfol := sys.aq$_reg info('WS.WS_BOOKEDORDERS QUE:BOOKED ORDERS',

DBMS_AQ.NAMESPACE AQ, 'plsqgl://WS.notifyCB',
HEXTORAW('FF')) ;

reginfo2 := sys.aq$_reg info('WS.WS_BOOKEDORDERS_ QUE:BOOKED ORDERS',
DBMS_AQ.NAMESPACE AQ, 'mailto://john@company.com',

HEXTORAW ('FF')) ;

-- register for an HTTP servlet to be invoked for notification
reginfo3 := sys.aq$ reg info('WS.WS BOOKEDORDERS QUE:BOOKED ORDERS',

DBMS AQ.NAMESPACE AQ,
'http://xyz.oracle.com/servlets/NotifyServlet',
HEXTORAW ('FF')) ;

-- Create the registration information list
reginfolist := sys.ag$ reg info list(reginfol);
reginfolist.EXTEND;

reginfolist (2)

reginfo2;

reginfolist.EXTEND;

reginfolist (3)

reginfo3;

-- do the registration
sys.dbms_aq.register(reginfolist, 3);

END;

Oracle Streams AQ Sample Application

7-109

Asynchronous Notifications

Registering for Notifications Using the Oracle Streams AQ XML Servlet

Clients can register for Oracle Streams AQ notifications over the Internet.

See Also: Chapter 17, "Internet Access to Oracle Streams AQ"

The register request has the following format:

?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlRegister xmlns = "http://ns.oracle.com/AQ/schemas/access">

<register options>
<destination>WS.WS_BOOKEDORDERS QUE</destination>
<consumer_name>BOOKED ORDERS</consumer name>
<notify urlsmailto://johnecompany.com</notify urls
</register options>

<AQXmlCommit/>
</AQXmlRegisters>
</Body>
</Envelope>

The e-mail notification sent to john@company . com has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://www.oracle.com/schemas/IDAP/envelope">
<Body>
<AQXmlNotification xmlns="http://www.oracle.com/schemas/AQ/access">
<notification options>
<destination>WS.WS_BOOKEDORDERS QUE</destination>
</notification options>
<message_set>
<message>
<message_header>
<message 1d>81128B6AC46D4B15E03408002092AA15</message_id»>
<correlation>RUSH</correlation>
<priority>l</prioritys>
<delivery count>0</delivery counts>
<sender_id»>
<agent_name>john</agent name>
</sender id»>
<message_state>0</message state>
</message headers>

7-110 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

</message>
</message_set>
</AQXmlNotifications
</Body>
</Envelope>

Propagation Features
In this section, the following topics are discussed:
= Propagation Overview
= Propagation Scheduling
= Scenario
= Enhanced Propagation Scheduling Capabilities
= Exception Handling During Propagation

= Message Format Transformation During Propagation

Propagation Overview

This feature allows applications to communicate with each other without being
connected to the same database or to the same queue. Messages can be propagated
from one queue to another. The destination queue can be located in the same
database or in a remote database. Propagation is performed by job queue
background processes. Propagation to the remote queue uses database links over
Oracle Net Services or HTTP(S).

The propagation feature is used as follows. First one or more subscribers are
defined for the queue from which messages are to be propagated. Second, a
schedule is defined for each destination where messages are to be propagated from
the queue. Enqueued messages are propagated and automatically available for
dequeuing at the destination queues.

See Also: "Subscriptions and Recipient Lists" on page 7-38

For propagation over the Internet, you must specify the remote Internet user in the
database link. The remote Internet user must have privileges to enqueue in the
destination queue.

Two or more job_queue background processes must be running to use
propagation. This is in addition to the number of job_gqueue background

Oracle Streams AQ Sample Application 7-111

Propagation Features

processes needed for handling non-propagation related jobs. Also, if you want to
deploy remote propagation, then you must ensure that the database link specified
for the schedule is valid and have proper privileges for enqueuing into the
destination queue.

See Also: "Propagation Scheduling" on page 7-112 for more
information about the administrative commands for managing
propagation schedules

Propagation also has mechanisms for handling failure. For example, if the database
link specified is invalid, then the appropriate error message is reported.

Finally, propagation provides detailed statistics about the messages propagated and
the schedule itself. This information can be used to properly tune the schedules for
best performance.

See Also: "Enhanced Propagation Scheduling Capabilities" on
page 7-118 for a discussion of the failure handling and error
reporting facilities of propagation and propagation statistics

Propagation Scheduling

A propagation schedule is defined for a pair of source and destination database
links. If a queue has messages to be propagated to several queues, then a schedule
must be defined for each of the destination queues. A schedule indicates the time
frame during which messages can be propagated from the source queue. This time
frame can depend on a number of factors such as network traffic, load at source
database, load at destination database, and so on. The schedule therefore must be
tailored for the specific source and destination. When a schedule is created, a job is
automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide flexibility for
managing the schedules. The duration or propagation window parameter of a
schedule specifies the time frame during which propagation must take place. If the
duration is unspecified, then the time frame is an infinite single window. If a
window must be repeated periodically, then a finite duration is specified along with
anext_time function that defines the periodic interval between successive
windows.

See Also: "Scheduling a Queue Propagation” on page 8-32

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue. In addition there are calls for temporarily

7-112 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

disabling a schedule (instead of dropping the schedule) and enabling a disabled
schedule. A schedule is active when messages are being propagated in that
schedule. All the administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active, then it takes a few seconds for the

calls to be executed.

Scenario

In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. The following example code illustrates the
various administrative calls available for specifying and managing schedules. It also
shows the calls for enqueuing messages into the source queue and for dequeuing
the messages at the destination site. The catalog view USER_QUEUE_SCHEDULES
provides all information relevant to a schedule.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT OE/OE;

/* Schedule Propagation from bookedorders que to shipping: */
EXECUTE DBMS AQADM.SCHEDULE PROPAGATION(\

queue_name

=> 'OE.OE_bookedorders_que') ;

/* Check if a schedule has been created: */

SELECT * FROM user queue_schedules;

/* Enqueue some orders into OE_bookedorders que: */

EXECUTE BOLADM.order eng('My First
'WESTERN', 'NORMAL');

EXECUTE BOLADM.order eng('My Second Book', 2
'"EASTERN', 'NORMAL');

EXECUTE BOLADM.order eng('My Third

' INTERNATIONAL',

EXECUTE BOLADM.order eng('My Fourth
'WESTERN', 'RUSH');

EXECUTE BOLADM.order eng('My Fifth
'"EASTERN', 'RUSH');

EXECUTE BOLADM.order eng('My Sixth

' INTERNATIONAL',

EXECUTE BOLADM.order eng('My Seventh

' INTERNATIONAL',

EXECUTE BOLADM.order eng('My Eighth

' INTERNATIONAL',

EXECUTE BOLADM.order eng('My Ninth
'WESTERN', 'RUSH');

Book', 1, 1001, 'CA', 'USA', \

1002, 'NY', 'USA', \

Book', 3, 1003, '', 'Canada', \

Book', 4, 1004, 'NV', 'USA', \

Book', 5, 1005, 'MA', 'USA', \

Book', 6, 1006, '' , 'UK', \
Book', 7, 1007, '', 'Canada', \
Book', 8, 1008, '', 'Mexico', \

Book', 9, 1009, 'CA', 'USA', \

Oracle Streams AQ Sample Application 7-113

Propagation Features

EXECUTE BOLADM.order eng('My Tenth Book', 8, 1010, '' , 'UK', \
'INTERNATIONAL', 'NORMAL');
EXECUTE BOLADM.order_enq('My Last Book', 7, 1011, '' , 'Mexico', \

'INTERNATIONAL', 'NORMAL');

/* Wait for propagation to happen: */
EXECUTE dbms_lock.sleep(100) ;

/* Connect to shipping sites and check propagated messages: */
CONNECT WS/WS;
set serveroutput on;

/* Dequeue all booked orders for West Shipping: */
EXECUTE BOLADM.shipping bookedorder deq('West Shipping', DBMS AQ.REMOVE) ;

CONNECT ES/ES;
SET SERVEROUTPUT ON;

/* Dequeue all remaining booked orders (normal order) for East Shipping: */
EXECUTE BOLADM.shipping bookedorder deq('East Shipping', DBMS AQ.REMOVE) ;

CONNECT TS/TS;
SET SERVEROUTPUT ON;

/* Dequeue all international North American orders for Overseas Shipping: */
EXECUTE BOLADM.get northamerican orders('Overseas Shipping');

/* Dequeue rest of the booked orders for Overseas_Shipping: */
EXECUTE BOLADM.shipping bookedorder deq('Overseas Shipping', DBMS_AQ.REMOVE) ;

/* Disable propagation schedule for booked orders */
EXECUTE DBMS_AQADM.DISABLE PROPAGATION _SCHEDULE (\
queue name => 'OE bookedorders que');

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule has been disabled: */
SELECT schedule disabled FROM user queue schedules;

/* Alter propagation schedule for booked orders to run every

15 mins (900 seconds) for a window duration of 300 seconds: */
EXECUTE DBMS_AQADM.ALTER PROPAGATION _SCHEDULE (\

queue_name => 'OE_bookedorders que', \

duration => 300, \

7-114 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

next_time => 'SYSDATE + 900/86400',\
latency => 25);

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule parameters have changed: */
SELECT next time, latency, propagation window FROM user queue schedules;

/* Enable propagation schedule for booked orders:
EXECUTE DBMS_AQADM.ENABLE PROPAGATION _SCHEDULE(\
queue name => 'OE_bookedorders_que') ;

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule has been enabled: */
SELECT schedule_disabled FROM user queue_schedules;

/* Unschedule propagation for booked orders: */
EXECUTE DBMS AQADM.UNSCHEDULE PROPAGATION (\

queue_name => 'OE.OE_bookedorders que') ;

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule has been dropped
SELECT * FROM user queue_schedules;

Visual Basic (0040): Example Code

This functionality is currently not available.

Java (JDBC): Example Code

No example is provided with this release.

Oracle Streams AQ Sample Application 7-115

Propagation Features

Propagation of Messages with LOB Attributes
Large Objects can be propagated using Oracle Streams AQ using two methods:

= Propagation from RAW queues. In RAW queues the message payload is stored
as a BLOB. This allows users to store up to 32KB of data when using the
PL/SQL interface and as much data as can be contiguously allocated by the
client when using OCL. This method is supported by all releases after 8.0.4
inclusive.

= Propagation from Object queues with LOB attributes. The user can populate the
LOB and read from the LOB using Oracle Database LOB handling routines. The
LOB attributes can be BLOBs or CLOBs (not NCLOBs). If the attribute is a CLOB,
then Oracle Streams AQ automatically performs any necessary characterset
conversion between the source queue and the destination queue. This method is
supported by all releases from 8.1.3 inclusive.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for
doing enqueues and dequeues.

See Also: Oracle Database Application Developer’s Guide - Large
Objects

Scenario

In the BooksOnLine application, the company may wish to send promotional
coupons along with the book orders. These coupons are generated depending on
the content of the order, and other customer preferences. The coupons are images
generated from some multimedia database, and are stored as LOBs.

When the order information is sent to the shipping warehouses, the coupon
contents are also sent to the warehouses. In the following code, order typ is
enhanced to contain a coupon attribute of LOB type. The code demonstrates how
the LOB contents are inserted into the message that is enqueued into OE
bookedorders_que when an order is placed. The message payload is first
constructed with an empty LOB. The place holder (LOB locator) information is
obtained from the queue table and is then used in conjunction with the LOB
manipulation routines, such as DBMS_LOB.WRITE (), to fill the LOB contents. The
example illustrates enqueuing and dequeuing of messages with LOBs as part the
payload.

7-116 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

A COMMIT is applied only after the LOB contents are filled in with the appropriate
image data. Propagation automatically takes care of moving the LOB contents along
with the rest of the message contents. The following code also shows a dequeue at
the destination queue for reading the LOB contents from the propagated message.
The LOB contents are read into a buffer that can be sent to a printer for printing the
coupon.

PL/SQL (DBMS_AQADM Package): Example Code

/* Enhance the type order typ to contain coupon field (lob field): */
CREATE OR REPLACE TYPE order typ AS OBJECT (

orderno NUMBER,

status VARCHAR2 (30) ,
ordertype VARCHAR2 (30) ,
orderregion VARCHAR2 (30) ,
customer customer typ,
paymentmethod VARCHAR2 (30),

items orderitemlist vartyp,
total NUMBER,

coupon BLOB) ;

/* lob_loc is a variable of type BLOB,
buffer is a variable of type RAW,
length is a variable of type NUMBER. */

/* Complete the order data and perform the enqueue using the order eng()
procedure: */
dbms_ag.enqueue ('OE.OE_bookedorders que', enqopt, msgprop,
OE_eng_order data, eng msgid);

/* Get the lob locator in the queue table after enqueue: */
SELECT t.user data.coupon INTO lob loc

FROM OE.OE orders_pr mgtab t

WHERE t.msgid = eng msgid;

/* Generate a sample LOB of 100 bytes: */
buffer := hextoraw(rpad('FF',6100,'FF'));

/* Fill in the lob using LOB routines in the dbms lob package: */
dbms_lob.write(lob loc, 90, 1, buffer);

/* BApplies a commit only after filling in lob contents: */
COMMIT;

Oracle Streams AQ Sample Application 7-117

Propagation Features

/* Sleep until propagation is complete: */

/* Perform dequeue at the Western Shipping warehouse: */
dbms_ag.dequeue (

queue_name => gname,
dequeue_options => dopt,

message properties => mprop,

payload => deq order data,
msgid => deq msgid) ;

/* Get the LOB locator after dequeue: */
lob_loc := deq order data.coupon;

/* Get the length of the LOB: */
length := dbms_ lob.getlength(lob loc);

/* Read the LOB contents into the buffer: */
dbms lob.read(lob loc, length, 1, buffer);

Visual Basic (0040): Example Code

This functionality is not available currently.

Java (JDBC): Example Code

No example is provided with this release.

Enhanced Propagation Scheduling Capabilities

Detailed information about the schedules can be obtained from the catalog views
defined for propagation.

Information about active schedules—such as the name of the background process
handling that schedule, the SID (session, serial number) for the session handling the
propagation and the Oracle Database instance handling a schedule (relevant if Real
Application Clusters are being used)—can be obtained from the catalog views. The
same catalog views also provide information about the previous successful
execution of a schedule (last successful propagation of message) and the next
execution of the schedule.

For each schedule, detailed propagation statistics are maintained:
= The total number of messages propagated in a schedule

= Total number of bytes propagated in a schedule

7-118 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

» Maximum number of messages propagated in a window
= Maximum number of bytes propagated in a window

= Average number of messages propagated in a window

= Average size of propagated messages

= Average time to propagated a message

These statistics have been designed to provide useful information to the queue
administrators for tuning the schedules such that maximum efficiency can be
achieved.

Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, if the remote database is
unavailable, or if the remote queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff
scheme for retrying propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry
is attempted at the start time of the next window. A maximum of 16 retry attempts
is made, after which the schedule is automatically disabled. When a schedule is
disabled automatically due to failures, the relevant information is written into the
alert log.

A check for scheduling failures indicates:

= How many successive failures were encountered

s The error message indicating the cause for the failure
= The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable
the schedule. During a retry, if propagation is successful, the number of failures is
reset to 0.

Propagation has support built-in for Oracle Real Application Clusters and is
transparent to the user and the queue administrator. The job that handles
propagation is submitted to the same instance as the owner of the queue table
where the queue resides.

If there is a failure at an instance and the queue table that stores the queue is
migrated to a different instance, then the propagation job is also migrated to the
new instance. This minimizes pinging between instances and thus offers better

Oracle Streams AQ Sample Application 7-119

Propagation Features

performance. Propagation has been designed to handle any number of concurrent
schedules. The number of job queue processes is limited to a maximum of 1000, and
some of these can be used to handle jobs unrelated to propagation. Hence,
propagation has built-in support for multitasking and load balancing.

The propagation algorithms are designed such that multiple schedules can be
handled by a single snapshot (job_queue) process. The propagation load on a job_
queue process can be skewed based on the arrival rate of messages in the different
source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes
the schedules so they are loaded uniformly.

Scenario

In the BooksOnLine example, the OE_bookedorders_que is a busy queue,
because messages in it are propagated to different shipping sites. The following
example code illustrates the calls supported by enhanced propagation scheduling
for error checking and schedule monitoring.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT OE/OE;

/* get averages
select avg _time, avg number, avg size from user queue schedules;

/* get totals
select total time, total number, total bytes from user queue schedules;

/* get maximums for a window
select max number, max bytes from user_gqueue_schedules;

/* get current status information of schedule
select process name, session id, instance, schedule disabled
from user queue schedules;

/* get information about last and next execution
select last_run date, last run time, next run date, next run time
from user_queue_schedules;

/* get last error information if any

select failures, last error msg, last error date, last error time
from user_queue_schedules;

7-120 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

Visual Basic (0040): Example Code

This functionality is currently not available.

Java (JDBC): Example Code

No example is provided with this release.

Exception Handling During Propagation

When system errors such as a network failure occur, Oracle Streams AQ continues
to attempt to propagate messages using an exponential backoff algorithm. In some
situations that indicate application errors, Oracle Streams AQ marks messages as
UNDELIVERABLE if a message propagation error occurs.

See Also: "Optimizing Propagation" on page 5-14

Examples of such errors are when the remote queue does not exist or when there is
a type mismatch between the source queue and the remote queue. In such situations
users must query the DBA_SCHEDULES view to determine the last error that
occurred during propagation to a particular destination. The trace files in the
$ORACLE_HOME/ log directory can provide additional information about the error.

Scenario

In the BooksOnLine example, the ES_bookedorders_que in the Eastern Shipping
Region is stopped intentionally using the stop_queue () call. After a short while the
propagation schedule for OE_bookedorders_que displays an error indicating that
the remote queue ES_bookedorders_que is disabled for enqueuing. When the ES__
bookedorders_que is started using the start_queue () call, propagation to that
queue resumes and there is no error message associated with schedule for OE_
bookedorders que.

PL/SQL (DBMS_AQADM Package): Example Code

/* Intentionally stop the Eastern Shipping queue: */
connect BOLADM/BOLADM
EXECUTE DBMS AQADM.STOP QUEUE (queue name => 'ES.ES bookedorders que');

/* Wait for some time before error shows up in dba queue schedules: */
EXECUTE dbms_lock.sleep(100) ;

/* This query returns an ORA-25207 enqueue failed error: */
SELECT gname, last error msg from dba queue schedules;

Oracle Streams AQ Sample Application 7-121

Propagation Features

/* Start the Eastern Shipping queue: */
EXECUTE DBMS AQADM.START QUEUE (queue name => 'ES.ES bookedorders que');

/* Wait for Propagation to resume for Eastern Shipping queue: */
EXECUTE dbms_lock.sleep(100) ;

/* This query indicates that there are no errors with propagation:
SELECT gname, last error msg from dba queue schedules;

Visual Basic (0040): Example Code
This functionality is handled by the database.

Java (JDBC): Example Code

No example is provided with this release.

Message Format Transformation During Propagation

At propagation time, a transformation can be specified when adding a rule-based
subscriber to OE_bookedorders_topic for Western Shipping orders. The
transformation is applied to the orders, transforming them to the WS.order_typ
sh type before propagating them to WS_bookedorders_topic.

PL/SQL (DBMS_AQADM Package): Example Code

declare

subscriber sys.aq$_agent;

begin
subscriber :=sys.ag$ agent ('West Shipping', 'WS.WS bookedorders topic',null);
DBMS AQADM.ADD SUBSCRIBER(queue name => 'OE.OE bookedorders topic',

subscriber => gubscriber,
rule => 'tab.user_ data.orderregion =''WESTERN'"'
AND tab.user data.ordertype != ''RUSH''',

transformation => 'OE.OE2WS') ;
end;

Visual Basic (0040): Example Code

No example is provided with this release.

Java (JDBC): Example Code

No example is provided with this release.

7-122 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

Propagation Using HTTP

In Oracle Database 10g and higher, you can set up Oracle Streams AQ propagation
over HTTP and HTTPS (HTTP over SSL). HTTP propagation uses the Internet
access infrastructure and requires that the Oracle Streams AQ servlet that connects
to the destination database be deployed. The database link must be created with the
connect string indicating the Web server address and port and indicating HTTP as
the protocol. The source database must be created for running Java and XML.
Otherwise, the setup for HTTP propagation is more or less the same as Oracle Net
Services propagation.

Scenario

In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. For the purpose of this scenario, the Western
Shipping application is running on another database, 'dest-db' and we
propagates to WS_bookedorders_dque.

Propagation Setup
1. Deploy the Oracle Streams AQ Servlet.

HTTP propagation depends on Internet access to the destination database.
Create a class AQPropServlet that extends the AQxmlServlet.

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import oracle.AQ.*;

import oracle.AQ.xml.*;
import java.sql.*;

import oracle.jms.*;

import javax.jms.*;

import java.io.*;

import oracle.jdbc.pool.*;

/* This is an Oracle Streams AQ Propagation Servlet. */
public class AQPropServlet extends oracle.AQ.xml.AQxmlServlet

/* getDBDrv - specify the database to which the servlet connects */
public AQxmlDataSource createAQDataSource () throws AQxmlException
AQxmlDataSource db drv = null;
db drv = new AQxmlDataSource("agadm", "agadm", "dest-db", "dest-host",
5521) ;

Oracle Streams AQ Sample Application 7-123

Propagation Features

return db drv;

}

public void init()

try {
AQxmlDataSource axds = this.createAQDataSource () ;

setAQDataSource (axds) ;
setSessionMaxInactiveTime (180) ;

} catch (Exception e) {
System.err.println("Error in init : " +e) ;

}
}

This servlet must connect to the destination database. The servlet must be
deployed on the Web server in the path agserv/servlet. In Oracle Database
10g and higher, the propagation servlet name and deployment path are fixed;
that is, they must be AQPropServlet and agserv/servlet, respectively.

Assume that the Web server host and port are webdest .oracle. comand
8081, respectively.

2. Create the database link dba.
= Specify HTTP as the protocol.

= Specify the username and password that are used for authentication with
the Web server/servlet runner as the host and port of the Web server
running the Oracle Streams AQ servlet.

For this example, the connect string of the database link should be as follows:

(DESCRIPTION= (ADDRESS= (PROTOCOL=http) (HOST=webdest.oracle.com) (PORT=8081))

If SSL is used, then specify HTTPS as the protocol in the connect string.
Create the database link as follows:

create public database link dba connect to john IDENTIFIED BY welcome
using
' (DESCRIPTION= (ADDRESS= (PROTOCOL=http) (HOST=webdest .oracle.com) (PORT=8081))"

I

7-124 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Features

Here john is the Oracle Streams AQ HTTP agent used to access the Oracle
Streams AQ (propagation) servlet. Welcome is the password used to
authenticate with the Web server.

3. Make sure that the Oracle Streams AQ HTTP agent, John, is authorized to
perform Oracle Streams AQ operations. Do the following at the destination
database.

a. Register the Oracle Streams AQ agent.

DBMS AQADM.CREATE AQ AGENT (agent name => 'John', enable http => true);

b. Map the Oracle Streams AQ agent to a database user.

DBMS AQADM.ENABLE DB ACCESS (agent name =>'John', db username =>'CBADM')'

4. Set up the remote subscription to OE.OE_bookedorders_gue.
EXECUTE DBMS AQADM.ADD SUBSCRIBER ('OE.OE bookedorders que',
ag$_agent (null, 'WS.WS bookedorders que', null));
5. Start propagation by calling dbms_agdm. schedule propagation at the
source database.
DBMS_AQADM.SCHEDULE PROPAGATION ('OE.OE_bookedorders que', 'dba');
All other propagation administration APIs work the same for HTTP propagation.

Use the propagation view, DBA_QUEUE_SCHEDULES, to check the propagation
statistics for propagation schedules using HTTP.

Oracle Streams AQ Sample Application 7-125

Propagation Features

7-126 Oracle Streams Advanced Queuing User’s Guide and Reference

Part IV

Oracle Streams AQ Administrative and
Operational Interface

Part IV describes the Oracle Streams Advanced Queuing (AQ) administrative and
operational interface.

This part contains the following chapters:
= Chapter 8, "Oracle Streams AQ Administrative Interface"
= Chapter 9, "Oracle Streams AQ Administrative Interface: Views"

= Chapter 10, "Oracle Streams AQ Operational Interface: Basic Operations"

8

Oracle Streams AQ Administrative Interface

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface.

This chapter contains these topics:

Managing Queue Tables

Managing Queues

Managing Transformations

Granting and Revoking Privileges
Managing Subscribers

Managing Propagations

Managing Oracle Streams AQ Agents
Adding an Alias to the LDAP Server
Deleting an Alias from the LDAP Server

See Also:

» Chapter 4, "Oracle Streams AQ: Programmatic Environments"
for a list of available functions in each programmatic
environment

» PL/SQL Packages and Types Reference for information on the
DBMS_AQADM Package

Oracle Streams AQ Administrative Interface 8-1

Managing Queue Tables

Managing Queue Tables
This section contains these topics:
= Creating a Queue Table
= Altering a Queue Table
= Dropping a Queue Table
= Purging a Queue Table
= Migrating a Queue Table

Creating a Queue Table

Purpose
Creates a queue table for messages of a predefined type.

Syntax

DBMS_AQADM.CREATE QUEUE TABLE (
queue_table IN VARCHAR2,
queue payload type IN VARCHAR2,
[storage clause IN VARCHAR2 DEFAULT NULL,]
sort list IN VARCHAR2 DEFAULT NULL,
multiple consumers IN BOOLEAN DEFAULT FALSE,
message grouping IN BINARY INTEGER DEFAULT NONE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
primary instance IN BINARY INTEGER DEFAULT O,
secondary instance IN BINARY INTEGER DEFAULT O,
compatible IN VARCHAR2 DEFAULT NULL,
secure IN BOOLEAN DEFAULT FALSE) ;

See Also:

http://otn.oracle.com/docs/products/aqg/doc_
library/ojms/index.html for information on Oracle Java
Message Service

8-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queue Tables

Usage Notes
To create a queue table, you must specify:

Queue table name

Mixed case (upper and lower case together) queue table names are supported if
database compatibility is 10.0, but the names must be enclosed in double quote
marks. So abc . efg means the schema is ABC and the name is EFG, but

"abc" . "efg" means the schema is abc and the name is efg.

Payload type as RAW or an object type
To specify the payload type as an object type, you must define the object type.

CLOB, BLOB, and BFILE objects are valid in an Oracle Streams AQ message.
You can propagate these object types using Oracle Streams AQ propagation
with Oracle software since Oracle8i release 8.1.x. To enqueue an object type
that has a LOB, you must first set the LOB_attribute to EMPTY BLOB() and
perform the enqueue. You can then select the LOB locator that was generated
from the queue table's view and use the standard LOB operations.

Note: Payloads containing LOBs require users to grant explicit
Select, Insert and Update privileges on the queue table for
doing enqueues and dequeues.

Single-consumer or multiconsumer queue
Message grouping as none (default), or transactional
Primary instance and secondary instance

You can specify and modify primary instance and secondary_ instance
only in 8.1-compatible or higher mode. You cannot specify a secondary instance
unless there is a primary instance.

Compatible as 8.0, 8.1, or 10.0

This parameter defaults to 8.0 if the database is in 8.0 compatible mode, 8.1 if
the database is in 8.1 compatible mode, or 10.0 if the database is in 10.0
compatible mode.

Secure as TRUE or FALSE

This parameter must be set to TRUE if you want to use the queue table for
secure queues. Secure queues are queues for which AQ agents must be
associated explicitly with one or more database users who can perform queue

Oracle Streams AQ Administrative Interface 8-3

Managing Queue Tables

operations, such as enqueue and dequeue. The owner of a secure queue can
perform all queue operations on the queue, but other users cannot perform
queue operations on a secure queue, unless they are configured as secure queue
users.

Further, you may optionally:
= Specify sort keys for dequeue ordering
= Specify the storage clause (only if you do not want to use the default tablespace)

The storage_clause argument can take any text that can be used in a
standard CREATE TABLE storage_clause argument.

= Add a table description

= Set auto-commit to true (default) or false

Note: Auto-commit has been deprecated.

The sort type, if specified, can be one of the following:
= Enqueue time (default for sort time)

» Priority

= Enqueue time by priority

» Priority by enqueue time

The following objects are created at table creation time:

= ag$_gueue table name e, the default exception queue associated with the
queue table

= agSqueue table name, a read-only view which is used by Oracle Streams
AQ applications for querying queue data

= ag$_queue table name t, anindex for the queue monitor operations

= ag$_queue table name i, anindex or an index-organized table (IOT) in
the case of multiple consumer queues for dequeue operations

8-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queue Tables

For 8.1-compatible multiconsumer queue tables, the following additional objects are
created:

= ag$_queue table name_s, a table for storing information about subscribers

= ag$_queue table name h, anindex organized table (IOT) for storing
dequeue history data

See Also: Oracle Database Application Developer’s Guide - Large
Objects

If you do not specify a schema, then you default to the user's schema.

If GLOBAL TOPIC_ ENABLED = TRUE when a queue table is created, then a
corresponding Lightweight Directory Access Protocol (LDAP) entry is also created.

Examples

PL/SQL (DBMS_AQADM Package): Creating a Queue Table
You must set up the following data structures for certain examples to work:

CONNECT system/manager;

DROP USER agadm CASCADE;

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS AQADM TO agadm;
GRANT Aq_administrator role TO agadm;
DROP USER ag CASCADE;

CREATE USER aqg IDENTIFIED BY aq;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_ag TO ag;

Example 8-1 PL/SQL: Creating a Queue Table for Queues Containing Messages of
Object Type

CREATE type ag.Message typ as object (
Subject VARCHAR2 (30) ,
Text VARCHAR2 (80)) ;

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (

Queue_table => 'aq.ObjMsgs _gtab',
Queue payload type => 'ag.Message typ');

Oracle Streams AQ Administrative Interface 8-5

Managing Queue Tables

Example 8-2 PL/SQL: Creating a Queue Table for Queues Containing Messages of

RAW Type

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
Queue table => 'ag.RawMsgs_gtab',
Queue payload type => 'RAW');

Example 8-3 PL/SQL: Creating a Queue Table for Queues Containing Messages of

XMLType
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'TS orders pr mgtab',
comment => 'Overseas Shipping MultiConsumer Orders queue table',

multiple consumers => TRUE,
queue payload type => 'SYS.XMLType',
compatible => '8.1");

Example 8-4 PL/SQL: Creating a Queue Table for Prioritized Messages
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

Queue_table => 'aqg.PriorityMsgs gtab',
Sort list => 'PRIORITY,ENQ TIME',
Queue payload type => 'ag.Message typ');

Example 8-5 PL/SQL: Creating a Queue Table for Multiple Consumers
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

Queue_table => 'ag.MultiConsumerMsgs gtab',
Multiple consumers => TRUE,
Queue payload type => 'ag.Message typ');

Example 8-6 PL/SQL: Creating a Queue Table for Multiple Consumers Compatible

with 8.1
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
Queue_table => 'ag.Multiconsumermsgs8 lgtab',
Multiple consumers => TRUE,
Compatible => '8.1"'",
Queue payload type => 'ag.Message typ');

Example 8-7 PL/SQL: Creating a Queue Table in a Specified Tablespace
EXECUTE DBMS_ AQADM.CREATE QUEUE TABLE (

queue_table => 'ag.aq tbsMsg gtab',
queue payload type => 'ag.Message typ',
storage_clause => 'tablespace ag_tbs');

8-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queue Tables

Example 8-8 PL/SQL: Creating a Queue Table with Freelists or Freelist Groups

BEGIN

DBMS AQADM.CREATE QUEUE TABLE (

queue table=> 'AQ ADMIN.TEST',

queue payload type=> 'RAW',

storage clause=> 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
compatible => '8.1"');

COMMIT;

END;

Altering a Queue Table

Purpose
Alters the existing properties of a queue table.

Syntax

DBMS_AQADM.ALTER QUEUE_TABLE (
queue_table IN VARCHAR2,
comment IN VARCHAR2 DEFAULT NULL,
primary instance IN BINARY INTEGER DEFAULT NULL,

secondary_instance IN BINARY INTEGER DEFAULT NULL) ;

Usage Notes
To alter a queue table, you must name the queue table. You may optionally:

= Addacomment
= Specify the primary instance

The primary instance is the instance number of the primary owner of the queue
table.

= Specify the secondary instance

The secondary instance is the instance number of the secondary owner of the
queue table.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is modified, then a
corresponding LDAP entry is also altered.

Oracle Streams AQ Administrative Interface 8-7

Managing Queue Tables

Examples

Example 8-9 PL/SQL (DBMS_AQADM Package): Altering a Queue Table by Changing
the Primary and Secondary Instances

EXECUTE DBMS_AQADM.ALTER QUEUE TABLE (

Queue_table => 'aqg.ObjMsgs gtab',
Primary instance => 3,
Secondary instance => 2);

Example 8-10 PL/SQL (DBMS_AQADM Package): Altering a Queue Table by
Changing the Comment

EXECUTE DBMS AQADM.ALTER QUEUE TABLE (
Queue_table => 'aqg.ObjMsgs gtab',
Comment => 'revised usage for queue table');

Example 8-11 PL/SQL (DBMS_AQADM Package): Altering a Queue Table by
Changing the Comment and Using Nonrepudiation

EXECUTE DBMS_AQADM.ALTER QUEUE TABLE (

Queue_table => 'aqg.ObjMsgs gtab',
Comment => 'revised usage for queue table');
non repudiation => 'nonrepudiable sender');
Dropping a Queue Table
Purpose

Drops an existing queue table. You must stop and drop all the queues in a queue
table before the queue table can be dropped. You must do this explicitly unless the
force option is used, in which case these operations are accomplished

automatically.

Syntax

DBMS_AQADM.DROP QUEUE TABLE (
queue_table IN VARCHAR2,
force IN BOOLEAN DEFAULT FALSE,
auto_commit IN BOOLEAN DEFAULT TRUE) ;

Note: Parameter auto_commit is deprecated.

8-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queue Tables

Usage Notes

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is dropped, then a
corresponding LDAP entry is also dropped.

Examples
You must set up or drop data structures for certain examples to work.

Example 8-12 PL/SQL (DBMS_AQADM Package): Dropping a Queue Table

EXECUTE DBMS AQADM.DROP QUEUE TABLE (
queue_table => 'aq.Objmsgs gtab');

Example 8-13 PL/SQL (DBMS_AQADM Package): Dropping a Queue Table with Force

Option

EXECUTE DBMS_AQADM.DROP QUEUE TABLE (
queue_table => 'aqg.Objmsgs gtab',
force => TRUE) ;

Purging a Queue Table

Purpose
Purges messages from a queue table.

Syntax
DBMS_AQADM.PURGE QUEUE TABLE (
queue_table IN VARCHAR2,
purge condition IN VARCHAR2,
purge options IN ag$_purge options t);

Usage Notes

You can perform various purge operations on both single-consumer and
multiconsumer queue tables for persistent queues. You can purge selected messages
from the queue table by specifying additional parameters in the API call.

The purge condition must be in the format of a SQL WHERE clause, and it is
case-sensitive. The condition is based on the columns of ag$queue table view.

To purge all queues in a queue table, set purge condition to either NULL (a bare
null word, no quotes) or ' ' (two single quotes).

Oracle Streams AQ Administrative Interface 8-9

Managing Queue Tables

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed
all the messages.

See Also: "DBMS_AQADM" in PL/SQL Packages and Types
Reference for more information on DBMS_AQADM. PURGE_QUEUE
TABLE

Examples

Example 8-14 Purging All Messages in Queue Table tkaqqtdef

connect tkagadmn/tkagadmn

declare

po dbms_agadm.aq$_purge options t;

begin

po.block := FALSE;

dbms_agadm.purge queue table(
queue_table => 'tkaqqgtdef',
purge condition => NULL,
purge options => po);

end;

/

Example 8-15 Purging All Messages in Queue Table tkaqqtdef That Correspond to
Queue g1def

connect tkagadmn/tkagadmn

declare

po dbms_agadm.aq$_purge options t;
begin

po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqgtdef',
purge condition => 'queue = ''QIDEF''',
purge options => po);

end;

/

Example 8-16 Purging All Messages in Queue Table tkaqqtdef That Correspond to
Queue qg1def and Are in the PROCESSED State

connect tkagadmn/tkagadmn
declare
po dbms_agadm.ag$ purge options t;

8-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queue Tables

begin
po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqqgtdef',
purge condition => 'queue = ''QIDEF'' and msg state = ''PROCESSED''',
purge options => po);

end;

/

Example 8-17 Purging All Messages in Queue Table tkaqqtdef That Correspond to
Queue qg1def and Are Intended for Consumer PAYROLL_APP

connect tkagadmn/tkagadmn

declare

po dbms_agadm.ag$ purge options t;
begin

po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqqgtdef',
purge condition => 'queue = ''QIDEF'' and consumer name = ''PAYROLL APP''',
purge options => po);

end;

/

Example 8-18 Purging All Messages in Queue Table tkaqqtdef That Correspond to
Sender Name PAYROLL APP

connect tkagadmn/tkagadmn

declare

po dbms_agadm.ag$ purge options t;
begin

po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqqgtdef',
purge condition => 'sender name = ''PAYROLL APP''',
purge options => po);

end;

/

Example 8-19 Purging All Messages in Queue Table tkaqqtdef Where tab.city Is
BELMONT

connect tkagadmn/tkagadmn
declare
po dbms_agadm.ag$ purge options t;

Oracle Streams AQ Administrative Interface 8-11

Managing Queue Tables

begin
po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqqgtdef',
purge condition => 'tab.city = ''BELMONT''',
purge options => po);

end;

/

Example 8-20 urging All Messages in Queue Table tkaqqtdef That Were Enqueued
Before January 1, 2002

connect tkagadmn/tkagadmn

declare

po dbms_agadm.ag$ purge options t;
begin

po.block := TRUE;
dbms_agadm.purge queue table(

queue_table => 'tkaqqgtdef',
purge condition => 'eng time < ''01-JAN-2002''",
purge options => po);

end;

/

Migrating a Queue Table

Purpose
Migrating a queue table from 8.0, 8.1, or 10.0 to 8.0, 8.1, or 10.0.

Syntax

DBMS AQADM.MIGRATE QUEUE TABLE (
queue_table IN VARCHAR2,
compatible IN VARCHAR2) ;

Usage Notes

If a schema was created by an import of an export dump from a lower release or has
Oracle Streams AQ queues upgraded from a lower release, then attempts to drop it
with DROP USER CASCADE will fail with ORA-24005. To drop such schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ$ gueue table name NR from the schema.

8-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queues

3. Turn off event 10851.
4. Drop the schema.

Managing Queues
This section contains these topics:
n Creating a Queue
» Creating a Nonpersistent Queue
= Altering a Queue
= Dropping a Queue
= Starting a Queue

= Stopping a Queue

Creating a Queue

Purpose
Creates a queue in the specified queue table.

Syntax

DBMS AQADM.CREATE QUEUE (
queue_name IN VARCHAR2,
queue_table IN VARCHAR2,
queue_type IN BINARY INTEGER DEFAULT NORMAL QUEUE,
max_retries IN NUMBER DEFAULT NULL,
retry delay IN NUMBER DEFAULT O,
retention time IN NUMBER DEFAULT O,
dependency tracking IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE) ;

Note: Parameter auto_commit is deprecated.

Oracle Streams AQ Administrative Interface 8-13

Managing Queues

Usage Notes

Mixed case (upper and lower case together) queue names and queue table names

are supported if database compatibility is 10.0, but the names must be enclosed in
double quote marks. So abc . efg means the schema is ABC and the name is EFG,

but "abc" . "efg" means the schema is abc and the name is efg.

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START QUEUE. By default, the queue
is created with both enqueue and dequeue disabled. To view retained messages,
you can either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED
= TRUE when a queue is created, then a corresponding LDAP entry is also created.

Examples
You must set up or drop data structures for certain examples to work.

Example 8-21 PL/SQL: Creating a Queue Within a Queue Table for Messages of
Object Type

/* Create a message type: */

CREATE type ag.Message typ as object (
Subject VARCHAR2 (30)
Text VARCHAR2 (80)) ;

/* Create a object type queue table and queue: */
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
Queue_table => 'aqg.ObjMsgs gtab',
Queue payload type => 'ag.Message typ');

EXECUTE DBMS AQADM.CREATE QUEUE (
Queue name => 'msg_queue',
Queue_table => 'aq.ObjMsgs gtab');

Example 8-22 PL/SQL: Creating a Queue Within a Queue Table for Messages of RAW
Type
/* Create a RAW type queue table and queue: */
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
Queue table => 'ag.RawMsgs_gtab',
Queue payload type => 'RAW') ;

/* Create queue: */

EXECUTE DBMS_AQADM.CREATE QUEUE (
Queue_name => 'raw_msg_queue',
Queue table => 'aqg.RawMsgs gtab');

8-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queues

Example 8-23 PL/SQL: Creating a Queue for Prioritized Messages

/* Create a queue table for prioritized messages: */
EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
Queue_table => 'aq.PriorityMsgs gtab',
Sort list => 'PRIORITY,ENQ TIME',
Queue payload type => 'ag.Message typ');
/* Create queue: */
EXECUTE DBMS AQADM.CREATE QUEUE (
Queue name => 'priority msg queue',
Queue_table => 'aq.PriorityMsgs gtab');

Example 8-24 PL/SQL: Creating a Queue Table and Queue for Multiple Consumers

/* Create a multiconsumer queue table: */

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.MultiConsumerMsgs gtab',
Multiple consumers => TRUE,
Queue payload type => 'ag.Message typ');

/* Create queue: */

EXECUTE DBMS_AQADM.CREATE QUEUE (
Queue_name => 'MultiConsumerMsg queue',
Queue_table => 'aqg.MultiConsumerMsgs gtab');

Example 8-25 PL/SQL: Creating a Queue Table and Queue to Demonstrate
Propagation

/* Create queue: */

EXECUTE DBMS AQADM.CREATE QUEUE (
Queue name => 'AnotherMsg_gqueue',
queue_table => 'ag.MultiConsumerMsgs gtab');

Example 8-26 PL/SQL: Creating a Queue Table and Queue for Multiple Consumers
Compatible with 8.1

/* Create a multiconsumer queue table compatible with Release 8.1: */
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

Queue_table => 'aqg.MultiConsumerMsgs8l gtab',
Multiple consumers => TRUE,
Compatible => '8.1"',

Queue payload type => 'ag.Message typ');

Oracle Streams AQ Administrative Interface 8-15

Managing Queues

/* Create queue: */

EXECUTE DBMS_AQADM.CREATE QUEUE (
Queue name => 'MultiConsumerMsgSl_queue‘,
Queue_table => 'ag.MultiConsumerMsgs8l gtab');

Creating a Nonpersistent Queue

Purpose
Creates a nonpersistent queue.

Syntax

DBMS AQADM.CREATE NP _QUEUE (
queue_name IN VARCHAR2,
multiple consumers IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULL) ;

Usage Notes

The queue can be either single-consumer or multiconsumer. All queue names must
be unique within a schema. The queues are created in a 8.1-compatible
system-created queue table (AQs$_MEM SC or AQ$S_MEM_MC) in the same schema as
that specified by the queue name. If the queue name does not specify a schema
name, then the queue is created in the login user's schema.

Once a queue is created with CREATE_NP_QUEUE, it can be enabled by calling
START QUEUE. By default, the queue is created with both enqueue and dequeue
disabled.

You can enqueue RAW and Oracle object type messages into a nonpersistent queue.
You cannot dequeue from a nonpersistent queue. The only way to retrieve a
message from a nonpersistent queue is by using the Oracle Call Interface (OCI)
notification mechanism. You cannot invoke the 1isten call on a nonpersistent
queue.

See Also:

= "Registering for Notification" on page 10-39

= '"Listening to One or More Queues" on page 10-17

8-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queues

Examples

Example 8-27 PL/SQL: Creating a Single-Consumer Nonpersistent Queue

EXECUTE DBMS_AQADM.CREATE NP QUEUE (
Queue name => 'Singleconsumersmsg_npque',
Multiple consumers => FALSE) ;

Example 8-28 PL/SQL: Creating a Multiconsumer Nonpersistent Queue
EXECUTE DBMS AQADM.CREATE NP QUEUE (

Queue name => 'Multiconsumersmsg npque',
Multiple consumers => TRUE) ;
Altering a Queue
Purpose

Alters existing properties of a queue.

Syntax

DBMS AQADM.ALTER_QUEUE (
queue_name IN VARCHAR2,
max_retries IN NUMBER DEFAULT NULL,
retry delay IN NUMBER DEFAULT NULL,
retention time IN NUMBER DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
comment IN VARCHAR2 DEFAULT NULL) ;

Note: Parameter auto_commit is deprecated.

Usage Notes

Only max_retries, comment, retry delay,and retention time canbe
altered. To view retained messages, you can either dequeue by message ID or use
SQL. If GLOBAL_TOPIC_ENABLED = TRUE when a queue is modified, then a
corresponding LDAP entry is also altered.

Oracle Streams AQ Administrative Interface 8-17

Managing Queues

Examples

Example 8-29 PL/SQL (DBMS_AQADM): Altering a Queue

/* Change retention time, saving messages for 1 day after dequeuing: */
EXECUTE DBMS_AQADM.ALTER QUEUE (

queue_name => 'ag.Anothermsg queue',
retention time => 86400) ;
Dropping a Queue
Purpose

Drops an existing queue. DROP_QUEUE is not allowed unless STOP_QUEUE has been
called to disable the queue for both enqueuing and dequeuing. All the queue data is
deleted as part of the drop operation.

Syntax
DBMS_ AQADM.DROP QUEUE (
queue_name IN VARCHAR2,
auto_commit IN BOOLEAN DEFAULT TRUE) ;

Note: Parameter auto_ commit is deprecated.

Usage Notes

If GLOBAL_TOPIC_ENABLED = TRUE when a queue is dropped, then a
corresponding LDAP entry is also dropped.

You must stop the queue before dropping it. A queue can be dropped only after it
has been successfully stopped for enqueuing and dequeuing.

Examples

Example 8-30 PL/SQL: Dropping a Standard Queue

/* Stop the queue: */
EXECUTE DBMS AQADM.STOP QUEUE (
Queue name => 'aq.Msg_queue');

/* Drop the queue: */

8-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Queues

EXECUTE DBMS_AQADM.DROP QUEUE (
Queue name => 'aq.Msg_queue');

Example 8-31 PL/SQL: Dropping a Nonpersistent Queue

/* Stop the queue: */
EXECUTE DBMS AQADM.DROP QUEUE (
Queue name => 'Nonpersistent singleconsumerql');

/* Drop the queue: */
EXECUTE DBMS_AQADM.DROP QUEUE (
Queue name => 'Nonpersistent multiconsumerql');

Starting a Queue

Purpose
Enables the specified queue for enqueuing or dequeuing.

Usage Notes

After creating a queue, the administrator must use START QUEUE to enable the
queue. The default is to enable it for both enqueue and dequeue. Only dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

Syntax
DBMS_AQADM.START QUEUE (
queue_name IN VARCHAR2,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE) ;
Examples

Example 8-32 PL/SQL (DBMS_AQADM Package): Starting a Queue with Both
Enqueue and Dequeue Enabled

EXECUTE DBMS AQADM.START QUEUE (
queue_name => 'Msg_queue');

Oracle Streams AQ Administrative Interface 8-19

Managing Transformations

Example 8-33 PL/SQL (DBMS_AQADM Package): Starting a Previously Stopped
Queue for Dequeue Only

EXECUTE DBMS AQADM.START QUEUE (

queue_name
dequeue
enqueue

Stopping a Queue

Purpose

=> 'ag.msg_queue',
=> TRUE,
=> FALSE) ;

Disables enqueuing, dequeuing, or both on the specified queue.

Syntax

DBMS_AQADM.STOP_QUEUE
queue_name IN
enqueue IN
dequeue IN
wait IN

Usage Notes

By default, this call disables both enqueue and dequeue. A queue cannot be stopped
if there are outstanding transactions against the queue. This operation takes effect
when the call completes and does not have any transactional characteristics.

Examples

VARCHARZ2,

BOOLEAN DEFAULT TRUE,
BOOLEAN DEFAULT TRUE,
BOOLEAN DEFAULT TRUE) ;

Example 8-34 PL/SQL (DBMS_AQADM): Stopping a Queue
EXECUTE DBMS AQADM.STOP_ QUEUE (

gqueue_name

Managing Transformations

=> 'aq.Msg_queue');

This section contains these topics:

» Creating a Transformation

= Modifying a Transformation

» Dropping a Transformation

8-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Transformations

Creating a Transformation

Purpose

Creates a message format transformation. The transformation must be a SQL
function with input type from_type, returning an object of type to_type. It can
also be a SQL expression of type to_type, referring to from_type. All references
to from type must be of the form source.user data.

Syntax

DBMS TRANSFORM.CREATE TRANSFORMATION (
schema VARCHAR2 (30),
name VARCHAR2 (30),
from schema VARCHAR2 (30),
from_type VARCHAR2 (30),
to_schema VARCHAR2 (30),
to_type VARCHAR2 (30),
transformation VARCHAR2 (4000)) ;

Usage Notes

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the
source and destination types of the transformation, and have EXECUTE privileges
on any PL/SQL function being used in the transformation function. The
transformation cannot write the database state (that is, perform DML operations) or
commit or rollback the current transaction.

Examples

Example 8-35 PL/SQL (DBMS_AQADM): Creating a Transformation
DBMS_TRANSFORM.CREATE TRANSFORMATION (schema => 'scott',

name => 'test_transf', from schema => 'scott',
from type => 'typel', to schema => 'scott',
to_type => 'type2',

transformation => 'scott.trans func(source.user data)');

Or you can do the following:

DBMS_ TRANSFORM.CREATE TRANSFORMATION (schema => 'scott',

name => 'test_transf',
from schema => 'scott',
from type => 'typel,

Oracle Streams AQ Administrative Interface 8-21

Managing Transformations

to_schema => 'scott',

to_type => 'type2',

transformation => 'scott.type2(source.user data.attr2,
source.user data.attrl)');

Modifying a Transformation

Purpose

Changes the transformation function and specifies transformations for each
attribute of the target type. If the attribute number 0 is specified, then the
transformation expression singularly defines the transformation from the source to
target types.

All references to from_type must be of the form source.user data. All
references to the attributes of the source type must be prefixed by source .user

data.

Syntax

DBMS TRANSFORM.MODIFY TRANSFORMATION (
schema VARCHAR2 (30),
name VARCHAR2 (30),

attribute number INTEGER,
transformation VARCHAR2 (4000)) ;

Usage Notes

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the
source and destination types of the transformation, and have EXECUTE privileges
on any PL/SQL function being used in the transformation function.

Dropping a Transformation

Purpose
Drops a transformation.

Syntax

DBMS TRANSFORM.DROP_TRANSFORMATION (
schema VARCHAR2 (30),
name VARCHAR2 (30)) ;

8-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Granting and Revoking Privileges

Usage Notes

You must be granted EXECUTE privileges on dbms_transform to use this feature.
You must also have EXECUTE privileges on the user-defined types that are the
source and destination types of the transformation, and have EXECUTE privileges
on any PL/SQL function being used in the transformation function.

Granting and Revoking Privileges
This section contains these topics:
= Granting System Oracle Streams AQ Privileges
= Revoking Oracle Streams AQ System Privileges
= Granting Queue Privileges

= Revoking Queue Privileges

Granting System Oracle Streams AQ Privileges

Purpose

Grants Oracle Streams AQ system privileges to users and roles. The privileges are
ENQUEUE_ANY, DEQUEUE_ANY, MANAGE_ANY. Initially, only SYS and SYSTEM can
use this procedure successfully.

Syntax
DBMS AQADM.GRANT SYSTEM PRIVILEGE (
privilege IN VARCHAR2,
grantee IN VARCHAR2,
admin option IN BOOLEAN := FALSE) ;

Usage Notes

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE
ANY privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Oracle Streams AQ Administrative Interface 8-23

Granting and Revoking Privileges

Example
You must set up the following data structures for this example to work:

CONNECT system/manager;

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS AQADM TO agadm;
GRANT Aqg_administrator role TO agadm;

Example 8-36 PL/SQL (DBMS_AQADM): Granting System Privilege

CONNECT agadm/agadm;
EXECUTE DBMS AQADM.GRANT SYSTEM PRIVILEGE (

privilege => '"ENQUEUE_ANY',

grantee => 'Jones',

admin option => FALSE) ;
EXECUTE DBMS_AQADM.GRANT SYSTEM PRIVILEGE (

privilege => 'DEQUEUE_ANY',

grantee => 'Jones',

admin option => FALSE) ;

Revoking Oracle Streams AQ System Privileges

Purpose

Revokes Oracle Streams AQ system privileges from users and roles. The privileges
are ENQUEUE ANY, DEQUEUE ANY and MANAGE ANY. The ADMIN option for a
system privilege cannot be selectively revoked.

Syntax

DBMS AQADM.REVOKE SYSTEM PRIVILEGE (
privilege IN VARCHAR2,
grantee IN VARCHAR2) ;

Usage Notes

Users granted the ENQUEUE ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE
ANY privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

8-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Granting and Revoking Privileges

Examples

Example 8-37 PL/SQL (DBMS_AQADM): Revoking System Privilege

CONNECT system/manager;
EXECUTE DBMS AQADM.REVOKE SYSTEM PRIVILEGE (privilege=>'DEQUEUE ANY',
grantee=>'Jones') ;

Granting Queue Privileges

Purpose

Grants privileges on a queue to users and roles. The privileges are ENQUEUE or
DEQUEUE. Initially, only the queue table owner can use this procedure to grant
privileges on the queues.

Syntax
DBMS AQADM.GRANT QUEUE PRIVILEGE (
privilege IN VARCHAR2,
queue_name IN VARCHAR2,
grantee IN VARCHAR2,
grant_option IN BOOLEAN := FALSE) ;
Examples

Example 8-38 PL/SQL (DBMS_AQADM): Granting Queue Privilege
EXECUTE DBMS AQADM.GRANT QUEUE PRIVILEGE (

privilege => 'ALL',

queue_name => 'ag.multiconsumermsg8l queue',
grantee => 'Jones',

grant option => TRUE) ;

Revoking Queue Privileges

Purpose

Revokes privileges on a queue from users and roles. The privileges are ENQUEUE or
DEQUEUE.

Oracle Streams AQ Administrative Interface 8-25

Managing Subscribers

Syntax

DBMS AQADM.REVOKE QUEUE PRIVILEGE (
privilege IN VARCHAR2,
queue_name IN VARCHAR2,
grantee IN VARCHAR2) ;

Usage Notes

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor's
privileges are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the
grantee with only the enqueue right as in Example 8-39.

Examples

Example 8-39 PL/SQL (DBMS_AQADM): Revoking Dequeue Privilege

CONNECT scott/tiger;
EXECUTE DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(

privilege => 'DEQUEUE',
queue_name => 'scott.ScottMsgs_queue',
grantee => 'Jones') ;

Managing Subscribers
This section contains these topics:
= Adding a Subscriber
= Altering a Subscriber

= Removing a Subscriber

Adding a Subscriber

Purpose
Adds a default subscriber to a queue.

8-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Subscribers

Syntax
DBMS_AQADM.ADD SUBSCRIBER (
queue_name IN VARCHAR2,
subscriber IN sys.ag$_agent,
rule IN VARCHAR2 DEFAULT NULL,

transformation IN VARCHAR2 DEFAULT NULL) ;

Usage Notes

A program can enqueue messages to a specific list of recipients or to the default list
of subscribers. This operation succeeds only on queues that allow multiple
consumers. This operation takes effect immediately and the containing transaction
is committed. Enqueue requests that are executed after the completion of this call
reflect the new action. Any string within the rule must be quoted (with single
quotation marks) as follows:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN''"'

If GLOBAL TOPIC ENABLED is set to true when a subscriber is created, then a
corresponding LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or
propagation. The transformation must be created using the DBMS_ TRANSFORM
package.

See Also: PL/SQL Packages and Types Reference for more
information on the DBMS TRANSFORM package

For queues that contain payloads with XMLType attributes, you can specify rules
that contain operators such as XMLType . existsNode () and
XMLType.extract ().

Note: ADD SUBSCRIBER is an administrative operation on a
queue. Although Oracle Streams AQ does not prevent applications
from issuing administrative and operational calls concurrently, they
are executed serially. ADD SUBSCRIBER blocks until pending
transactions that have enqueued or dequeued messages commit
and release the resources they hold.

Oracle Streams AQ Administrative Interface 8-27

Managing Subscribers

Examples

Example 8-40 PL/SQL (DBMS_AQADM): Adding a Subscriber

/* Anonymous PL/SQL block for adding a subscriber at a designated queue in a
designated schema at a database link: */

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('subscriberl', 'ag2.msg queue2@london', null);
DBMS AQADM.ADD SUBSCRIBER (
queue_name => 'ag.multi queue',
subscriber => subscriber);
END;

Example 8-41 PL/SQL (DBMS_AQADM): Adding a Subscriber with a Rule

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('subscriber2', 'ag2.msg queue2@london', null);

DBMS AQADM.ADD SUBSCRIBER (
queue_name => ‘'ag.multi queue',
subscriber => subscriber,
rule => 'priority < 2');

END;

Example 8-42 PL/SQL: Adding a Subscriber and Specify a Transformation

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('subscriber2', 'ag2.msg queue2@london', null);
DBMS AQADM.ADD SUBSCRIBER (
queue_name => 'ag.multi queue',
subscriber => subscriber,

transformation => 'AQ.msg map');
/* Where the transformation was created as */
EXECUTE DBMS_ TRANSFORM.CREATE TRANSFORMATION
(schema => 'AQ',

name => 'msg _map',

from schema => 'AQ',

from type => 'purchase orderl',

to _schema => 'AQ',

to type => 'purchase order2',

8-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Subscribers

transformation => 'AQ.transform PO(source.user data)');
END;

Altering a Subscriber

Purpose
Alters existing properties of a subscriber to a specified queue. Only the rule can be
altered.
Syntax
DBMS_AQADM.ALTER SUBSCRIBER (
queue_name IN VARCHAR2,
subscriber IN sys.aqg$_agent,
rule IN VARCHAR2

transformation IN VARCHAR?2) ;

Usage Notes

The rule, the transformation, or both can be altered. If you alter only one of these
attributes, then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a
corresponding LDAP entry is created.

Examples

You must set up the following data structures for the examples in this section to
work:

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.multi gtab',
multiple consumers => TRUE,
queue payload type => 'ag.message typ',

compatible => '8.1.5");

EXECUTE DBMS AQADM.CREATE QUEUE (
queue_name => 'multi queue',
queue_table => 'ag.multi gtab');

Example 8-43 PL/SQL: Altering a Subscriber Rule

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('SUBSCRIBER1', 'ag2.msg queue2@london', null);

Oracle Streams AQ Administrative Interface 8-29

Managing Subscribers

DBMS AQADM.ADD SUBSCRIBER (
queue name => 'ag.msg_queue',
subscriber => subscriber,
rule => 'priority < 2');
END;

/* Change rule for subscriber: */
DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('SUBSCRIBER1', 'ag2.msg queue2@london', null);
DBMS_ AQADM.ALTER SUBSCRIBER (
queue name => 'ag.msg_queue',
subscriber => subscriber,
rule => 'priority = 1');
END;

Example 8-44 PL/SQL: Altering a Subscriber Transformation

EXECUTE DBMS_ AQADM.ADD SUBSCRIBER
('ag.msg_queue',
agqs_agent ('subscriberl',
'ag2.msg_queue2@london',
null),
'AQ.MSG MAP1');

/* Alter the subscriber*/
EXECUTE DBMS AQADM.ALTER SUBSCRIBER
('ag.msg_queue',
agq$_agent ('subscriberl',
'ag2.msg_queue2@london',
null),
'AQ.MSG.MAP2') ;

Removing a Subscriber

Purpose
Removes a default subscriber from a queue.

Syntax

DBMS_AQADM.REMOVE SUBSCRIBER (
queue_name IN VARCHAR2,
subscriber IN sys.ag$_agent) ;

8-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Propagations

Usage Notes

This operation takes effect immediately and the containing transaction is
committed. All references to the subscriber in existing messages are removed as
part of the operation. If GLOBAL TOPIC ENABLED = TRUE when a subscriber is
dropped, then a corresponding LDAP entry is also dropped.

Note: REMOVE_SUBSCRIBER is an administrative operation on a
queue. Although Oracle Streams AQ does not prevent applications
from issuing administrative and operational calls concurrently, they
are executed serially. REMOVE_SUBSCRIBER blocks until pending
transactions that have enqueued or dequeued messages commit
and release the resources they hold.

Examples

Example 8-45 PL/SQL (DBMS_AQADM): Removing Subscriber

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber := sys.ag$ agent ('subscriberl', 'ag2.msg_queue2', NULL);

DBMS_AQADM.REMOVE SUBSCRIBER (
queue name => 'aq.multi queue',
subscriber => subscriber) ;

END;

Managing Propagations
This section contains these topics:
s Scheduling a Queue Propagation
= Unscheduling a Queue Propagation
= Verifying Propagation Queue Type
= Altering a Propagation Schedule
» Enabling a Propagation Schedule
= Disabling a Propagation Schedule

Oracle Streams AQ Administrative Interface 8-31

Managing Propagations

Scheduling a Queue Propagation

Purpose

Schedules propagation of messages from a queue to a destination identified by a
specific database link.

Syntax

DBMS_AQADM.SCHEDULE PROPAGATION (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60) ;

Usage Notes

Messages can also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated
to all of them at the same time.

See Also: Chapter 17, "Internet Access to Oracle Streams AQ"

Examples

You must set up the following data structures for the examples in this section to
work:

EXECUTE DBMS AQADM.CREATE QUEUE TABLE (
queue_table => 'ag.objmsgs gtab',
queue payload type => 'ag.message typ',
multiple consumers => TRUE);

EXECUTE DBMS_AQADM.CREATE QUEUE (
queue_name => 'ag.qgldef',
queue_table => 'ag.objmsgs gtab');

Example 8-46 PL/SQL: Scheduling a Propagation from a Queue to other Queues in
the Same Database

EXECUTE DBMS_ AQADM.SCHEDULE PROPAGATION (
Queue name => 'ag.qgldef');

8-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Propagations

Example 8-47 PL/SQL: Scheduling a Propagation from a Queue to other Queues in

Another Database

EXECUTE DBMS_AQADM.SCHEDULE PROPAGATION (
Queue name => 'ag.qgldef!',
Destination => 'another db.world');

Unscheduling a Queue Propagation

Purpose

Unschedules previously scheduled propagation of messages from a queue to a
destination identified by a specific database link.

Syntax
DBMS AQADM.UNSCHEDULE PROPAGATION (
queue_name IN VARCHAR2,

destination IN VARCHAR2 DEFAULT NULL) ;

Examples

Example 8-48 PL/SQL: Unscheduling a Propagation from Queue to Other Queues in
the Same Database

EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION (queue name => 'aqg.gldef');

Example 8-49 PL/SQL: Unscheduling a Propagation from a Queue to other Queues

in Another Database

EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(
Queue name => 'ag.qgldef!',
Destination => 'another db.world');

Verifying Propagation Queue Type

Purpose

Verifies that the source and destination queues have identical types. The result of
the verification is stored in sys.ag$ Message types tables, overwriting all
previous output of this command.

Oracle Streams AQ Administrative Interface 8-33

Managing Propagations

Syntax

DBMS_AQADM.VERIFY QUEUE TYPES (
Src_queue_name IN VARCHAR2,
dest_queue name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
rc OUT BINARY INTEGER);

Usage Notes

Verify that the source and destination queues have the same type. The function has
the side effect of inserting /updating the entry for the source and destination queues
in the dictionary table AQ$ MESSAGE TYPES.

If the source and destination queues do not have identical types and a
transformation was specified, then the transformation must map the source queue
type to the destination queue type.

Note: The sys.ag$ message_types table can have multiple
entries for the same source queue, destination queue, and database
link, but with different transformations.

Examples
You must set up the following data structures for this example to work:

EXECUTE DBMS AQADM.CREATE QUEUE (
queue_name => 'ag.qg2def',
queue_table => 'ag.objmsgs gtab');

Example 8-50 PL/SQL (DBMS_AQADM): Verifying a Queue Type

/* Verify that the source and destination queues have the same type. */
DECLARE
rc BINARY INTEGER;
BEGIN
/* Verify that the queues aquser.gldef and aquser.g2def in the local database
have the same payload type */
DBMS_AQADM.VERIFY QUEUE TYPES (
src_queue name => 'aqg.gldef',
dest _queue name => 'ag.qg2def',
re => rc);
DBMS_OUTPUT. PUT_LINE (rc) ;
END;

8-34 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Propagations

Altering a Propagation Schedule

Purpose
Alters parameters for a propagation schedule.

Syntax

DBMS_AQADM.ALTER PROPAGATION SCHEDULE (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60) ;

Examples

Example 8-51 PL/SQL: Altering a Propagation Schedule from a Queue to Other
Queues in the Same Database

EXECUTE DBMS AQADM.ALTER PROPAGATION SCHEDULE (

Queue name => 'ag.qgldef!',

Duration => 12000

Next_time => 'SYSDATE + 3600/86400"',
Latency => 132');

Example 8-52 PL/SQL: Altering a Propagation Schedule from a Queue to Other
Queues in Another Database

EXECUTE DBMS_AQADM.ALTER PROPAGATION SCHEDULE (

Queue name => 'ag.qgldef!',

Destination => 'another db.world',
Duration => 12000

Next_time => 'SYSDATE + 3600/86400"',
Latency => 132');

Enabling a Propagation Schedule

Purpose
Enables a previously disabled propagation schedule.

Oracle Streams AQ Administrative Interface 8-35

Managing Propagations

Syntax
DBMS_ AQADM.ENABLE PROPAGATION SCHEDULE (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL) ;
Examples

Example 8-53 PL/SQL: Enabling Propagation from a Queue to Other Queues in the
Same Database

EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
Queue name => 'ag.qgldef');

Example 8-54 PL/SQL: Enabling Propagation from a Queue to Queues in Another

Database

EXECUTE DBMS_AQADM.ENABLE PROPAGATION SCHEDULE (
Queue name => 'ag.qgldef!',
Destination => 'another db.world');

Disabling a Propagation Schedule

Purpose
Disables a previously enabled propagation schedule.

Syntax
DBMS AQADM.DISABLE PROPAGATION SCHEDULE (
queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL) ;
Examples

Example 8-55 PL/SQL: Disabling Propagation from a Queue to Other Queues in the
Same Database

EXECUTE DBMS_AQADM.DISABLE PROPAGATION SCHEDULE (
Queue name => 'ag.qgldef');

8-36 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Oracle Streams AQ Agents

Example 8-56 PL/SQL: Disabling Propagation from a Queue to Queues in Another

Database

EXECUTE DBMS_AQADM.DISABLE PROPAGATION SCHEDULE (
Queue name => 'ag.qgldef!',
Destination => 'another db.world');

Managing Oracle Streams AQ Agents
This section contains these topics:
s Creating an Oracle Streams AQ Agent
= Altering an Oracle Streams AQ Agent
= Dropping an Oracle Streams AQ Agent
= Enabling Database Access

= Disabling Database Access

Creating an Oracle Streams AQ Agent

Purpose
Registers an agent for Oracle Streams AQ Internet access using HTTP protocols.

Syntax

DBMS AQADM.CREATE AQ AGENT (
agent name IN VARCHAR2,
certificate location IN VARCHAR2 DEFAULT NULL,
enable http IN BOOLEAN DEFAULT FALSE,
enable anyp IN BOOLEAN DEFAULT FALSE)

Usage Notes

The SYS.AQ$INTERNET USERS view has a list of all Oracle Streams AQ Internet
agents. When an agent is created, altered, or dropped, an LDAP entry is created for
the agent if the following are true:

s GLOBAL TOPIC ENABLED = TRUE

» certificate location is specified

Oracle Streams AQ Administrative Interface 8-37

Managing Oracle Streams AQ Agents

Altering an Oracle Streams AQ Agent

Purpose
Alters an agent registered for Oracle Streams AQ Internet access.

Syntax

DBMS AQADM.ALTER AQ AGENT (
agent name IN VARCHAR2,
certificate location IN VARCHAR2 DEFAULT NULL,
enable http IN BOOLEAN DEFAULT FALSE,
enable anyp IN BOOLEAN DEFAULT FALSE)

Usage Notes

When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

= GLOBAL TOPIC ENABLED = TRUE

s certificate location is specified

Dropping an Oracle Streams AQ Agent

Purpose
Drops an agent that was previously registered for Oracle Streams AQ Internet
access.
Syntax
DBMS_AQADM.DROP_AQ AGENT (
agent name IN VARCHAR2)

Usage Notes
When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

s GLOBAL TOPIC ENABLED = TRUE

» certificate location is specified

8-38 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Oracle Streams AQ Agents

Enabling Database Access

Purpose

Grants an Oracle Streams AQ Internet agent the privileges of a specific database
user. The agent should have been previously created using the CREATE_AQ AGENT

procedure.

Syntax

DBMS AQADM.ENABLE DB ACCESS (
agent name IN VARCHAR2,
db_username IN VARCHAR2)

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Usage Notes

The SYS.AQ$INTERNET USERS view has a list of all Oracle Streams AQ Internet
agents and the names of the database users whose privileges are granted to them.

Disabling Database Access

Purpose

Revokes the privileges of a specific database user from an Oracle Streams AQ
Internet agent. The agent should have been previously granted those privileges
using the ENABLE DB_ACCESS procedure.

Syntax

DBMS_AQADM.DISABLE DB ACCESS (
agent name IN VARCHAR2,
db_username IN VARCHAR2)

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Oracle Streams AQ Administrative Interface 8-39

Adding an Alias to the LDAP Server

Adding an Alias to the LDAP Server

Purpose
Adds an alias to the LDAP server.

Syntax
DBMS_AQADM.ADD ALIAS TO LDAP(
alias IN VARCHAR2,

obj location IN VARCHAR2) ;

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Usage Notes

This call takes the name of an alias and the distinguished name of an Oracle
Streams AQ object in LDAP, and creates the alias that points to the Oracle Streams
AQ object. The alias is placed immediately under the distinguished name of the
database server. The object to which the alias points can be a queue, an agent, or a
connection factory.

Deleting an Alias from the LDAP Server

Purpose
Removes an alias from the LDAP server.

Syntax

DBMS_AQ.DEI, ALTAS FROM LDAP (
alias IN VARCHAR2) ;

Usage Notes

This call takes the name of an alias as the argument, and removes the alias entry in
the LDAP server. It is assumed that the alias is placed immediately under the
database server in the LDAP directory.

8-40 Oracle Streams Advanced Queuing User’s Guide and Reference

9

Oracle Streams AQ Administrative
Interface: Views

This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative
interface views.

This chapter contains these topics:

All Queue Tables in Database View

User Queue Tables View

All Queues in Database View

All Propagation Schedules View

Queues for Which User Has Any Privilege View

Queues for Which User Has Queue Privilege View

Messages in Queue Table View

Queue Tables in User Schema View

Queues In User Schema View

Propagation Schedules in User Schema View

Queue Subscribers View

Queue Subscribers and Their Rules View

Number of Messages in Different States for the Whole Database View
Number of Messages in Different States for Specific Instances View
Oracle Streams AQ Agents Registered for Internet Access View

All Transformations View

Oracle Streams AQ Administrative Interface: Views 9-1

All Queue Tables in Database View

s All Transformation Functions View
s User Transformations View

s User Transformation Functions View

All Queue Tables in Database View

Name of View
DBA QUEUE_TABLES

Purpose
Describes the names and types of all queue tables created in the database.

Table 9-1 DBA_QUEUE_TABLES View

Column Datatype NULL Description

OWNER VARCHAR2 (30) - Queue table schema

QUEUE_TABLE VARCHAR?2 (30) - Queue table name

TYPE VARCHAR2 (7) - Payload type

OBJECT_TYPE VARCHAR2 (61) - Name of object type, if any

SORT ORDER VARCHAR2 (22) - User-specified sort order

RECIPIENTS VARCHAR?2 (8) - SINGLE or MULTIPLE

MESSAGE GROUPING VARCHAR2 (13) - NONE or TRANSACTIONAL

COMPATIBLE VARCHAR2 (5) - Indicates the lowest version with which the queue table

is compatible

PRIMARY INSTANCE NUMBER - Indicates which instance is the primary owner of the
queue table, or no primary owner if 0

SECONDARY INSTANCE NUMBER - Indicates which instance is the secondary owner of the
queue table. This instance becomes the owner of the
queue table if the primary owner is not up. A value of 0
indicates that there is no secondary owner.

9-2 Oracle Streams Advanced Queuing User’s Guide and Reference

User Queue Tables View

Table 9-1 (Cont.) (Cont.) DBA_QUEUE_TABLES View

Column

Datatype

NULL Description

OWNER_INSTANCE

USER_COMMENT

SECURE

NUMBER
VARCHAR2 (50)

VARCHAR?2 (3)

Indicates which instance currently owns the queue table
User comment for the queue table

Indicates whether this queue table is secure (YES) or not
(NO). Secure queues are queues for which AQ agents
must be associated explicitly with one or more database
users who can perform queue operations, such as
enqueue and dequeue. The owner of a secure queue can
perform all queue operations on the queue, but other
users cannot perform queue operations on a secure
queue, unless they are configured as secure queue users.

See Also: Oracle Streams Concepts and Administration for more

information on secure queues.

User Queue Tables View

Name of View
ALL QUEUE TABLES

Purpose
Describes queue tables accessible to a user.

Table 9-2 ALL_QUEUE_TABLES View

Column

Datatype

NULL Description

OWNER
QUEUE_TABLE
TYPE
OBJECT_TYPE
SORT_ORDER
RECIPIENTS

MESSAGE_GROUPING

VARCHAR2 (30)
VARCHAR2 (30)
VARCHAR2 (7)
VARCHAR2 (61)
VARCHAR2 (22)
VARCHAR2 (8)

VARCHAR?2 (13)

Owner of the queue table
Queue table name

Payload type

Name of object type, if any
User-specified sort order
SINGLE or MULTIPLE

NONE or TRANSACTIONAL

Oracle Streams AQ Administrative Interface: Views 9-3

All Queues in Database View

Table 9-2 (Cont.) ALL_QUEUE_TABLES View

Column Datatype NULL Description

COMPATIBLE VARCHAR2 (5) - Indicates the lowest version with which the queue
table is compatible

PRIMARY INSTANCE NUMBER - Indicates which instance is the primary owner of the
queue table, or no primary owner if 0

SECONDARY_ INSTANCE NUMBER - Indicates which instance is the secondary owner of the
queue table. This instance becomes the owner of the
queue table if the primary owner is not up. A value of
0 indicates that there is no secondary owner.

OWNER_INSTANCE NUMBER - Indicates which instance currently owns the queue

USER_COMMENT VARCHAR2 (50) -

SECURE VARCHAR?2 (3) -

table
User comment for the queue table

Indicates whether this queue table is secure (YES) or
not (NO). Secure queues are queues for which AQ
agents must be associated explicitly with one or more
database users who can perform queue operations,
such as enqueue and dequeue. The owner of a secure
queue can perform all queue operations on the queue,
but other users cannot perform queue operations on a
secure queue, unless they are configured as secure
queue users.

All Queues in Database View

Name of View
DBA_ QUEUES

Purpose

Specifies operational characteristics for individual queues. The DBA QUEUES view
displays these characteristics for every queue in a database.

9-4 Oracle Streams Advanced Queuing User’s Guide and Reference

All Propagation Schedules View

Table 9-3 DBA_QUEUES View

Column Datatype NULL Description
OWNER VARCHAR?2 (30) NOT Queue schema name
NULL
NAME VARCHAR2 (30) NOT Queue name
NULL
QUEUE_TABLE VARCHAR2 (30) NOT Queue table where this queue resides
NULL
QID NUMBER NOT Unique queue identifier
NULL
QUEUE_TYPE VARCHAR2 (20) - Queue type

MAX RETRIES
RETRY DELAY
ENQUEUE_ENABLED
DEQUEUE_ENABLED
RETENTION

USER_COMMENT

NUMBER
NUMBER
VARCHAR2 (7)
VARCHAR2 (7)
VARCHAR2 (40)

VARCHAR2 (50)

Number of dequeue attempts allowed

Number of seconds before retry can be attempted

YES or NO

YES or NO

Number of seconds message is retained after dequeue

User comment for the queue

Note:

A message is moved to an exception queue if RETRY

COUNT is greater than MAX RETRIES. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then RETRY
COUNT is not incremented.

All Propagation Schedules View

Name of View
DBA_QUEUE SCHEDULES

Purpose
Describes the current schedules for propagating messages.

Oracle Streams AQ Administrative Interface: Views 9-5

All Propagation Schedules View

Table 9-4 DBA_QUEUE_SCHEDULES View

Column Datatype NULL Description
SCHEMA VARCHAR2 (30) NOT Schema name for the source queue
NULL
QNAME VARCHAR2 (30) NOT Source queue name
NULL
DESTINATION VARCHAR2 (128) NOT Destination name, currently limited to be a database
NULL link name
START DATE DATE - Date to start propagation in the default date format
START TIME VARCHAR2 (8) - Time of day to start propagation in HH:MI:SS format
PROPAGATION WINDOW NUMBER - Duration in seconds for the propagation window

NEXT_TIME

LATENCY

SCHEDULE DISABLED

PROCESS NAME

SESSION_ID

INSTANCE

LAST RUN_DATE

LAST RUN_TIME

CURRENT_START DATE

CURRENT_START TIME

NEXT RUN DATE

NEXT RUN_TIME

TOTAL_TIME

VARCHAR2 (200)

NUMBER

VARCHAR (1)

VARCHAR?2 (8)

VARCHAR?2 (82)

NUMBER

DATE

VARCHAR?2 (8)

DATE

VARCHAR2 (8)

DATE

VARCHAR?2 (8)

NUMBER

Function to compute the start of the next propagation
window

Maximum wait time to propagate a message during the
propagation window

N if enabled; Y if disabled (schedule will not be
executed)

Name of Jnnn background process executing this
schedule; NULL if not currently executing

Session ID (SID, SERIAL#) of the job executing this
schedule; NULL if not currently executing

Real Application Clusters instance number executing
this schedule

Date of the last successful execution

Time of the last successful execution in HH:MI:SS
format

Date the current window of this schedule was started

Time the current window of this schedule was started
in HH:MI:SS format

Date the next window of this schedule will be started

Time the next window of this schedule will be started
in HH:MI:SS format

Total time in seconds spent in propagating messages
from the schedule

9-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Queues for Which User Has Any Privilege View

Table 9-4 (Cont.) DBA_QUEUE_SCHEDULES View

Column Datatype NULL Description

TOTAL NUMBER NUMBER - Total number of messages propagated in this schedule

TOTAL BYTES NUMBER - Total number of bytes propagated in this schedule

MAX NUMBER NUMBER - Maximum number of messages propagated in a
propagation window

MAX BYTES NUMBER - Maximum number of bytes propagated in a
propagation window

AVG_NUMBER NUMBER - Average number of messages propagated in a
propagation window

AVG SIZE NUMBER - Average size of propagated messages in bytes

AVG_TIME NUMBER - Average time to propagate a message in seconds

FAILURES NUMBER - Number of times execution failed. If it reaches 16, then
the schedule is disabled.

LAST ERROR DATE DATE - Date of the last unsuccessful execution

LAST ERROR_TIME VARCHAR2 (8) - Time of the last unsuccessful execution in HH:MI:SS

LAST ERROR MSG

VARCHAR2 (4000)

format

Error number and error message text of the last
unsuccessful execution

Queues for Which User Has Any Privilege View

Name of View
ALL_ QUEUES

Purpose
Describes all queues accessible to the user.

Oracle Streams AQ Administrative Interface: Views 9-7

Queues for Which User Has Queue Privilege View

Table 9-5 ALL_QUEUES View

Column Datatype NULL Description

OWNER VARCHAR2 (30) NOT Owner of the queue
NULL

NAME VARCHAR2 (30) NOT Name of the queue
NULL

QUEUE_TABLE VARCHAR2 (30) NOT Queue table name
NULL

QID NUMBER NOT Unique queue identifier
NULL

QUEUE_TYPE VARCHAR2 (15) - Queue type

MAX RETRIES
RETRY DELAY
ENQUEUE_ENABLED
DEQUEUE_ENABLED
RETENTION

USER_COMMENT

NUMBER
NUMBER
VARCHAR2 (7)
VARCHAR2 (7)
VARCHAR?2 (40)

VARCHAR?2 (50)

Number of dequeue attempts allowed

Number of seconds before retry can be attempted
YES or NO

YES or NO

Number of seconds message is retained after dequeue

User comment for the queue

Note:

A message is moved to an exception queue if RETRY

COUNT is greater than MAX RETRIES. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then RETRY
COUNT is not incremented.

Queues for Which User Has Queue Privilege View

Name of View

QUEUE_ PRIVILEGES

Purpose

Describes queues for which the user is the grantor, or grantee, or owner, or an
enabled role or the queue is granted to PUBLIC.

9-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Messages in Queue Table View

Table 9-6 QUEUE_PRIVILEGES View

Column Datatype NULL Description

GRANTEE VARCHAR?2 (30) NOT Name of the user to whom access was granted
NULL

OWNER VARCHAR2 (30) NOT Owner of the queue
NULL

NAME VARCHAR2 (30) NOT Name of the queue
NULL

GRANTOR VARCHAR?2 (30) NOT Name of the user who performed the grant
NULL

ENQUEUE_ PRIVILEGE NUMBER

DEQUEUE_PRIVILEGE NUMBER

Permission to enqueue to queue (1 if granted, 0 if not)

Permission to dequeue from queue (1 if granted, 0 if not)

Messages in Queue Table View

Name of View

AQ$Queue Table Name

Purpose

Describes the queue table in which message data is stored. This view is
automatically created with each queue table and should be used for querying the
queue data. The dequeue history data (time, user identification and transaction
identification) is only valid for single-consumer queues.

Beginning with Oracle Database 10g, AQ$Queue Table Name includes buffered
messages. For buffered messages, the value of MSG_STATE is one of the following:

= SPILLED
= IN MEMORY

= DEFERRED

s DEFERRED SPILLED

Oracle Streams AQ Administrative Interface: Views 9-9

Messages in Queue Table View

Table 9-7 AQ$Queue_Table_Name View

Column Datatype NULL Description

QUEUE VARCHAR2 (30) - Queue name

MSG_ID RAW(16) NOT Unique identifier of the message
NULL

CORR_ID VARCHAR2 (128) - User-provided correlation identifier

MSG_PRIORITY
MSG_STATE

DELAY

DELAY TIMESTAMP

EXPIRATION

ENQ TIME
ENQ TIMESTAMP

ENQ USER_ID (8.0.4
or 8.1.3 queue tables)

ENQ USER_ID (10.1
queue tables)

ENQ TXN_ID
DEQ TIME
DEQ TIMESTAMP

DEQ USER_ID (8.0.4
or 8.1.3 queue tables)

DEQ USER_ID (10.1
queue tables)

DEQ TXN_ID

RETRY_ COUNT

EXCEPTION_ QUEUE

OWNER
EXCEPTION_QUEUE

USER_DATA

NUMBER
VARCHAR2 (16)
DATE
TIMESTAMP

NUMBER

DATE
TIMESTAMP

NUMBER

VARCHAR2 (30)

VARCHAR2 (30)
DATE
TIMESTAMP

NUMBER

VARCHAR2 (30)

VARCHAR2 (30)
NUMBER

VARCHAR2 (30)

VARCHAR2 (30)

- Message priority

- Message state

- Number of seconds the message is delayed
- Number of seconds the message is delayed

- Number of seconds in which the message expires after

being READY
- Enqueue time
- Enqueue time

- Enqueue user ID

- Enqueue user ID

- Enqueue transaction ID

- Dequeue time
- Dequeue time

- Dequeue user ID

- Dequeue user ID

- Dequeue transaction ID

- Number of retries

- Exception queue schema

- Exception queue name

- User data

9-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Messages in Queue Table View

Table 9-7 (Cont.) AQ$Queue_Table_Name View

Column

Datatype

NULL Description

SENDER_NAME

SENDER_ADDRESS

SENDER_PROTOCOL

ORIGINAL_MSGID

CONSUMER_NAME

ADDRESS

PROTOCOL

PROPAGATED MSGID

ORIGINAL QUEUE
NAME

ORIGINAL QUEUE
OWNER

EXPIRATION_ REASON

VARCHAR2 (30)

VARCHAR2 (1024)

NUMBER

RAW (16)

VARCHAR2 (30)

VARCHAR2 (1024)

NUMBER

RAW (16)

VARCHAR2 (30)

VARCHAR2 (30)

VARCHAR2 (19)

Name of the agent enqueuing the message (valid only
for 8.1-compatible queue tables)

Queue name and database name of the source (last
propagating) queue (valid only for 8.1-compatible
queue tables). The database name is not specified if the
source queue is in the local database.

Protocol for sender address (reserved for future use
and valid only for 8.1-compatible queue tables)

Message ID of the message in the source queue (valid
only for 8.1-compatible queue tables)

Name of the agent receiving the message (valid only
for 8.1-compatible multiconsumer queue tables)

Queue name and database link name of the agent
receiving the message.The database link name is not
specified if the address is in the local database. The
address is NULL if the receiving agent is local to the
queue (valid only for 8.1-compatible multiconsumer
queue tables)

Protocol for address of receiving agent (valid only for
8.1-compatible queue tables)

Message ID of the message in the queue of the
receiving agent (valid only for 8.1-compatible queue
tables)

Name of the queue the message came from
Owner of the queue the message came from

Reason the message came into exception queue.
Possible values are TIME_EXPIRATION (message
expired after the specified expired time), MAX RETRY
EXCEEDED (maximum retry count exceeded), and
PROPAGATION_FAILURE(nm£sagebecmne
undeliverable during propagation).

Oracle Streams AQ Administrative Interface: Views 9-11

Queue Tables in User Schema View

Note: A message is moved to an exception queue if RETRY _
COUNT is greater than MAX RETRIES. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then RETRY
COUNT is not incremented.

Queue Tables in User Schema View

Name of View
USER_QUEUE_TABLES

Syntax

This view is the same as DBA_ QUEUE_TABLES with the exception that it only shows
queue tables in the user's schema. It does not contain a column for OWNER.

Table 9-8 USER_QUEUE_TABLES View

Column Datatype NULL Description

QUEUE_TABLE VARCHAR2 (30) - Queue table name

TYPE VARCHAR2 (7) - Payload type

OBJECT TYPE VARCHAR2 (61) - Name of object type, if any

SORT_ORDER VARCHAR2 (22) - User-specified sort order

RECIPIENTS VARCHAR?2 (8) - SINGLE or MULTIPLE

MESSAGE_GROUPING VARCHAR2 (13) - NONE or TRANSACTIONAL

COMPATIBLE VARCHAR2 (5) - Indicates the lowest version with which the queue table

is compatible

PRIMARY INSTANCE NUMBER - Indicates which instance is the primary owner of the
queue table, or no primary owner if 0

SECONDARY_ INSTANCE NUMBER - Indicates which instance is the secondary owner of the
queue table. This instance becomes the owner of the
queue table if the primary owner is not up. A value of 0
indicates that there is no secondary owner.

9-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Queues In User Schema View

Table 9-8 (Cont.) USER_QUEUE_TABLES View

Column

Datatype

NULL

Description

OWNER_INSTANCE
USER_COMMENT

SECURE

NUMBER
VARCHAR2 (50)

VARCHAR?2 (3)

Indicates which instance currently owns the queue table
User comment for the queue table

Indicates whether this queue table is secure (YES) or not
(NO). Secure queues are queues for which AQ agents
must be associated explicitly with one or more database
users who can perform queue operations, such as
enqueue and dequeue. The owner of a secure queue can
perform all queue operations on the queue, but other
users cannot perform queue operations on a secure
queue, unless they are configured as secure queue users.

Queues In User Schema View

Name of View
USER_QUEUES

Purpose

This view is the same as DBA QUEUES with the exception that it only shows queues
in the user's schema.

Table 9-9 USER_QUEUES View

Column Datatype NULL Description

NAME VARCHAR2 (30) NOT Queue name
NULL

QUEUE_TABLE VARCHAR?2 (30) NOT Queue table where this queue resides
NULL

QID NUMBER NOT Unique queue identifier
NULL

QUEUE_TYPE VARCHAR2 (20) - Queuetype

MAX RETRIES
RETRY DELAY

ENQUEUE_ENABLED

NUMBER
NUMBER

VARCHAR2 (7)

Number of dequeue attempts allowed
Number of seconds before retry can be attempted

YES or NO

Oracle Streams AQ Administrative Interface: Views 9-13

Propagation Schedules in User Schema View

Table 9-9 (Cont.) USER_QUEUES View

Column Datatype NULL Description

DEQUEUE_ENABLED VARCHAR2 (7) - YES or NO

RETENTION VARCHAR2 (40) - Number of seconds message is retained after dequeue
USER_COMMENT VARCHAR2 (50) - User comment for the queue

Note: A message is moved to an exception queue if RETRY _
COUNT is greater than MAX RETRIES. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then RETRY
COUNT is not incremented.

Propagation Schedules in User Schema View

Name of View

USER_QUEUE SCHEDULES

Purpose

This view is the same as DBA_QUEUE_ SCHEDULES with the exception that it only
shows queue schedules in the user's schema.

Table 9-10 DBA_QUEUE_SCHEDULES View

Column Datatype NULL Description
QNAME VARCHAR2 (30) NOT Source queue name
NULL
DESTINATION VARCHAR2 (128) NOT Destination name, currently limited to be a database
NULL link name
START_ DATE DATE - Date to start propagation in the default date format
START TIME VARCHAR2 (8) - Time of day to start propagation in HH:MI:SS format

PROPAGATION WINDOW NUMBER

NEXT_TIME VARCHAR2 (200)

Duration in seconds for the propagation window

Function to compute the start of the next propagation
window

9-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Schedules in User Schema View

Table 9-10 (Cont.) DBA_QUEUE_SCHEDULES View

Column Datatype NULL Description

LATENCY NUMBER - Maximum wait time to propagate a message during the
propagation window

SCHEDULE_DISABLED VARCHAR(1) - N if enabled; Y if disabled (schedule will not be
executed)

PROCESS_NAME VARCHAR2 (8) - Name of Jnnn background process executing this

SESSION_ID

INSTANCE

LAST RUN_DATE

LAST RUN_TIME

CURRENT_START DATE

CURRENT_START TIME

NEXT RUN_DATE

NEXT RUN_TIME

TOTAL_TIME

TOTAL_NUMBER
TOTAL_BYTES

MAX NUMBER

MAX BYTES

AVG_NUMBER

AVG_SIZE

AVG_TIME

VARCHAR2 (82)

NUMBER

DATE

VARCHAR?2 (8)

DATE

VARCHAR2 (8)

DATE

VARCHAR2 (8)

NUMBER

NUMBER
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

schedule; NULL if not currently executing

Session ID (SID, SERIAL#) of the job executing this
schedule; NULL if not currently executing

Real Application Clusters instance number executing
this schedule

Date of the last successful execution

Time of the last successful execution in HH:MI:SS
format

Date the current window of this schedule was started

Time the current window of this schedule was started
in HH:MI:SS format

Date the next window of this schedule will be started

Time the next window of this schedule will be started
in HH:MI:SS format

Total time in seconds spent in propagating messages
from the schedule

Total number of messages propagated in this schedule
Total number of bytes propagated in this schedule

Maximum number of messages propagated in a
propagation window

Maximum number of bytes propagated in a
propagation window

Average number of messages propagated in a
propagation window

Average size of propagated messages in bytes

Average time to propagate a message in seconds

Oracle Streams AQ Administrative Interface: Views 9-15

Queue Subscribers View

Table 9-10 (Cont.) DBA_QUEUE_SCHEDULES View

Column Datatype NULL Description

FAILURES NUMBER - Number of times execution failed. If it reaches 16, then
the schedule is disabled.

LAST ERROR DATE DATE - Date of the last unsuccessful execution

LAST ERROR_TIME VARCHAR2 (8) - Time of the last unsuccessful execution in HH:MI:SS

LAST ERROR MSG

VARCHAR2 (4000) -

format

Error number and error message text of the last
unsuccessful execution

Queue Subscribers View

Name of View
AQsSQueue Table Name S

Purpose

This is a view of subscribers for all the queues in any given queue table. The
subscriber view shows subscribers created by users with DBMS_ AQADM.ADD
SUBSCRIBER and subscribers created for the apply process to apply user-created
events. It also displays the transformation for the subscriber, if it was created with
one. It is generated when the queue table is created.

This view is only created for 8.1-compatible queue tables.

Table 9-11 AQ$Queue_Table_Name_S View

Column Datatype NULL Description

QUEUE VARCHAR2 (30) NOT Name of queue for which subscriber is defined
NULL

NAME VARCHAR2 (30) - Name of agent

ADDRESS VARCHAR2 (1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

TRANSFORMATION VARCHAR2 (61) - Name of the transformation (can be null)

9-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Number of Messages in Different States for the Whole Database View

Usage Notes

For queues created in 8.1-compatible queue tables, this view provides functionality
that is equivalent to the DBMS_AQADM. QUEUE_SUBSCRIBERS () procedure. For
these queues, Oracle recommends that the view be used instead of this procedure to
view queue subscribers.

Queue Subscribers and Their Rules View

Name of View
AQ$SQueue Table Name R

Purpose

Displays only the subscribers based on rules for all queues in a given queue table,
including the text of the rule defined by each subscriber. It also displays the
transformation for the subscriber, if one was specified. It is generated when the
queue table is created.

This view is only created for 8.1-compatible queue tables.

Table 9-12 AQ$Queue_Table_Name_R View

Column Datatype NULL Description

QUEUE VARCHAR?2 (30) NOT Name of queue for which subscriber is defined
NULL

NAME VARCHAR2 (30) - Name of agent

ADDRESS VARCHAR2 (1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2 (65) - Set of rules

TRANSFORMATION VARCHAR2 (61) - Name of the transformation (can be null)

Number of Messages in Different States for the Whole Database View

Name of View
GVSAQ

Oracle Streams AQ Administrative Interface: Views 9-17

Number of Messages in Different States for Specific Instances View

Purpose
Provides information about the number of messages in different states for the whole
database.

Table 9-13 GVS$AQ View

Column Datatype NULL Description

QID NUMBER - Identity of the queue (same as QID in user_queues
and dba_queues)

WAITING NUMBER - Number of messages in the state WAITING

READY NUMBER - Number of messages in state READY

EXPIRED NUMBER - Number of messages in state EXPTRED

TOTAL WAIT NUMBER - Number of seconds messages in the queue have been

waiting in state READY

AVERAGE_WAIT NUMBER - Average number of seconds messages in state READY
have been waiting to be dequeued

Number of Messages in Different States for Specific Instances View

Name of View
VS$AQ

Purpose
Provides information about the number of messages in different states for specific
instances.

Table 9-14 V$AQ View

Column Datatype NULL Description

QID NUMBER - Identity of the queue (same as QID in user_queues
and dba_gueues)

WAITING NUMBER - Number of messages in the state WAITING

READY NUMBER - Number of messages in state READY

9-18 Oracle Streams Advanced Queuing User’s Guide and Reference

All Transformations View

Table 9-14 (Cont.) V$AQ View

Column Datatype NULL Description
EXPIRED NUMBER - Number of messages in state EXPIRED
TOTAL WAIT NUMBER - Number of seconds messages in the queue have been

waiting in state READY

AVERAGE_WAIT NUMBER - Average number of seconds messages in state READY
have been waiting to be dequeued

Oracle Streams AQ Agents Registered for Internet Access View

Name of View
AQ$INTERNET USERS

Purpose
Provides information about the agents registered for Internet access to Oracle
Streams AQ. It also provides the list of database users that each Internet agent maps

to.

Table 9-15 AQSINTERNET_USERS View

Column Datatype NULL Description

AGENT NAME VARCHAR?2 (30) - Name of the Oracle Streams AQ Internet agent
DB_USERNAME VARCHAR2 (30) - Name of database user that this Internet agent maps to
HTTP_ENABLED VARCHAR2 (4) - Indicates whether this agent is allowed to access Oracle

Streams AQ through HTTP (YES or NO)

FTP ENABLED VARCHAR2 (4) - Indicates whether this agent is allowed to access Oracle
Streams AQ through FTP (always NO in current release)

All Transformations View

Name of View
DBA TRANSFORMATIONS

Oracle Streams AQ Administrative Interface: Views 9-19

All Transformation Functions View

Purpose

Displays all the transformations in the database. These transformations can be
specified with Advanced Queue operations like enqueue, dequeue and subscribe to
automatically integrate transformations in messaging. This view is accessible only
to users having DBA privileges.

Table 9-16 DBA_TRANSFORMATIONS View

Column Datatype NULL Description

TRANSFORMATION ID NUMBER NOT Unique ID for the transformation
NULL

OWNER VARCHAR2 (30) NOT Owning user of the transformation
NULL

NAME VARCHAR2 (30) NOT Transformation name
NULL

FROM_TYPE VARCHAR2 (61) - Source type name

TO_TYPE VARCHAR2 (91) - Target type name

All Transformation Functions View

Name of View
DBA_ATTRIBUTE TRANSFORMATIONS

Purpose
Displays the transformation functions for all the transformations in the database.

Table 9-17 DBA_ATTRIBUTE_TRANSFORMATIONS View

Column Datatype NULL Description
TRANSFORMATION ID NUMBER NOT Unique ID for the transformation
NULL
OWNER VARCHAR2 (30) NOT Transformation owner
NULL
NAME VARCHAR2 (30) NOT Transformation name
NULL
FROM_TYPE VARCHAR2 (61) - Source type name

9-20 Oracle Streams Advanced Queuing User’s Guide and Reference

User Transformation Functions View

Table 9-17 (Cont.) DBA_ATTRIBUTE_TRANSFORMATIONS View

Column Datatype NULL Description
TO_TYPE VARCHAR2 (91) - Target type name
ATTRIBUTE NUMBER NOT Target type attribute number
NULL
ATTRIBUTE_ VARCHAR2 (4000) - Transformation function for the attribute
TRANSFORMATION

User Transformations View

Name of View
USER_TRANSFORMATIONS

Purpose

Displays all the transformations owned by the user. To view the transformation
definition, query USER_ATTRIBUTE_ TRANSFORMATIONS.

Table 9-18 USER_TRANSFORMATIONS View

Column Datatype NULL Description
TRANSFORMATION ID NUMBER NOT Unique ID for the transformation
NULL
NAME VARCHAR2 (30) NOT Transformation name
NULL
FROM_TYPE VARCHAR2 (61) - Source type name
TO_TYPE VARCHAR2 (91) - Target type name

User Transformation Functions View

Name of View
USER_ATTRIBUTE TRANSFORMATIONS

Purpose
Displays the transformation functions for all the transformations of the user.

Oracle Streams AQ Administrative Interface: Views 9-21

User Transformation Functions View

Table 9-19 USER_ATTRIBUTE_TRANSFORMATIONS View

Column Datatype NULL Description

TRANSFORMATION ID NUMBER NOT Unique ID for the transformation
NULL

NAME VARCHAR2 (30) NOT Transformation name
NULL

FROM_TYPE VARCHAR2 (61) - Source type name

TO_TYPE VARCHAR2 (91) - Target type name

ATTRIBUTE NUMBER NOT Target type attribute number
NULL

ATTRIBUTE VARCHAR2 (4000) - Transformation function for the attribute

TRANSFORMATION

9-22 Oracle Streams Advanced Queuing User’s Guide and Reference

10

Oracle Streams AQ Operational Interface:

Basic Operations

This chapter describes the Oracle Streams Advanced Queuing (AQ) basic
operational interface.

This chapter contains these topics:

Enqueuing a Message

Enqueuing an Array of Messages
Listening to One or More Queues
Dequeuing a Message

Dequeuing an Array of Messages
Registering for Notification

Posting for Subscriber Notification
Adding an Agent to the LDAP Server
Removing an Agent from the LDAP Server

Oracle Streams AQ Operational Interface: Basic Operations 10-1

Enqueuing a Message

See Also:

Chapter 4, "Oracle Streams AQ: Programmatic Environments"
for a list of available functions in each programmatic
environment

"DBMS_AQ" in PL/SQL Packages and Types Reference for more
information on the PL/SQL interface

Oracle Objects for OLE Online Help > Contents tab > 0040
Automation Server > OBJECTS > OraAQ Object for more
information on the Visual Basic (O040) interface

Oracle Streams Advanced Queuing Java API Reference for more
information on the Java interface

"More OCI Relational Functions" and "OCI Programming
Advanced Topics" in Oracle Call Interface Programmer’s Guide for
more information on the Oracle Call Interface (OCI)

Enqueuing a Message

This section contains these topics:

» Enqueuing a Message and Specifying Options

» Enqueuing a Message and Specifying Message Properties

= Enqueuing a Message and Specifying Sender ID

= Enqueuing a Message and Adding Payload

Purpose

Adds a message to the specified queue.

Syntax

DBMS_AQ.ENQUEUE (
queue_name IN VARCHAR2,
payload IN "type name",
msgid ouT RAW) ;

10-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing a Message

Usage Notes

If a message is enqueued to a multiconsumer queue with no recipient and the
queue has no subscribers (or rule-based subscribers that match this message), then
Oracle error ORA 24033 is raised. This is a warning that the message will be
discarded because there are no recipients or subscribers to whom it can be
delivered.

Examples
Examples are provided in the following programmatic environments:

= PL/SQL: Enqueue a Single Message and Specify the Queue Name and Payload
on page 10-6

= PL/SQL: Enqueue a Single Message and Specify the Priority on page 10-7

= PL/SQL: Enqueue a Single Message and Specify a Transformation on page 10-7
= Java (JDBC): Enqueue a Message and Add Payload on page 10-8

= Visual Basic (O040): Enqueue a message on page 10-11

Enqueuing a Message and Specifying Options

Purpose
Specifies options available for the enqueue operation.

Syntax

DBMS_AQ.ENQUEUE (
queue_name IN VARCHAR2,
enqueue_options IN enqueue options t,
message properties IN message properties t,
payload IN "type name",
msgid ouT RAW) ;

Usage Notes

Do not use the immediate option when you want to use LOB locators. LOB
locators are valid only for the duration of the transaction. Your locator will not be
valid, because the immediate option automatically commits the transaction.

The sequence deviation parameter in enqueue options can be used to change
the order of processing between two messages. The identity of the other message, if

Oracle Streams AQ Operational Interface: Basic Operations 10-3

Enqueuing a Message

any, is specified by the enqueue options parameter relative msgid. The relationship
is identified by the sequence deviation parameter.

Specifying sequence deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than or
equal to the priority of the message before which this message is to be enqueued.

The visibility option must be immediate for nonpersistent queues.
Only local recipients are supported for nonpersistent queues.

If a transformation is specified, then it is applied to the message before enqueuing it
to the queue. The transformation must map the message into an object whose type
is the Oracle object type of the queue.

Using Secure Queues

For secure queues, you must specify the sender id in the messages_
properties parameter. See "MESSAGE_PROPERTIES_T Type" in PL/SQL Packages
and Types Reference for more information about sender_ id.

When you use secure queues, the following are required:

= You must have created a valid Oracle Streams AQ agent using DBMS_
AQADM.CREATE AQ AGENT.

= Youmust map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM. ENABLE DB ACCESS to do this.

See Also:
= "Creating an Oracle Streams AQ Agent" on page 8-37
= "Enabling Database Access" on page 8-39

» Oracle Streams Concepts and Administration for information
about secure queues

10-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing a Message

Enqueuing a Message and Specifying Message Properties

Purpose
Specifies message properties for the enqueue operation.

Syntax
DBMS AQ.ENQUEUE (
queue_name IN VARCHAR2,
message properties IN message properties t,
payload IN "type name",
msgid ouT RAW) ;

Usage Notes

Oracle Streams AQ uses message properties to manage individual messages. They
are set when a message is enqueued, and their values are returned when the
message is dequeued. To view messages in a waiting or processed state, you can
either dequeue or browse by message ID, or use SELECT statements.

Message delay and expiration are enforced by the queue monitor (QMN) background
processes. You must start the QMN processes for the database if you intend to use
the delay and expiration features of Oracle Streams AQ.

Enqueuing a Message and Specifying Sender ID

Purpose
Identifies the producer of a message.

Syntax

DBMS_AQ.ENQUEUE (
queue_name IN VARCHAR2,
payload IN "type name",
msgid ouT RAW) ;

See Also: "AQ Agent Type (ag$_agent)" on page 3-3 for more
information on Agent

Oracle Streams AQ Operational Interface: Basic Operations 10-5

Enqueuing a Message

Enqueuing a Message and Adding Payload

To store a payload of type RAW, Oracle Streams AQ creates a queue table with LOB
column as the payload repository. The maximum size of the payload is determined
by which programmatic environment you use to access Oracle Streams AQ. For
PL/SQL, Java and precompilers the limit is 32K; for the OCI the limit is 4G.

Examples

You must set up the following data structures for certain examples to work:
CONNECT system/manager
CREATE USER aq IDENTIFIED BY ag;

GRANT Aqg_administrator role TO agq;
*%%%% CREATE TYPE **%*%%%

EXECUTE DBMS_AQADM.CREATE QUEUE TABLE (

Queue_table => ‘'ag.objsgs _gtab',

Queue payload type => 'ag.message typ');
EXECUTE DBMS AQADM.CREATE QUEUE (

Queue name => 'ag.msg_queue',

Queue table => 'ag.objmsgs gtab');
EXECUTE DBMS_AQADM.START QUEUE (

Queue name => 'ag.msg_queue',

Enqueue => TRUE) ;
EXECUTE DBMS AQADM.CREATE QUEUE TABLE (

Queue_table => 'ag.prioritymsgs gtab',

Sort list => 'PRIORITY,ENQ TIME',

Queue payload type => 'ag.message typ');
EXECUTE DBMS_AQADM.CREATE QUEUE (

Queue name => 'ag.priority msg queue',

Queue_table => 'ag.prioritymsgs gtab');
EXECUTE DBMS AQADM.START QUEUE (

Queue name => 'ag.priority msg queue',

Enqueue => TRUE) ;

Example 10-1 PL/SQL: Enqueue a Single Message and Specify the Queue Name and

Payload

/* Enqueue to msg_queue: */

DECLARE
Enqueue options DBMS AQ.enqueue options t;
Message properties DBMS AQ.message properties t;
Message handle RAW(16) ;
Message ag.message_typ;

10-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing a Message

BEGIN

Message := ag.message typ ('NORMAL MESSAGE',
'enqueued to msg queue first.');

DBMS_AQ.ENQUEUE (queue_name => 'msg_queue',

Enqueue options

=> enqueue options,

Message properties => message properties,
Payload => message,
Msgid => message handle) ;
COMMIT;

END;

Example 10-2 PL/SQL: Enqueue a Single Message and Specify the Priority

/* The queue name priority msg queue is defined as an object type queue table.
The payload object type is message. The schema of the queue is ag. */

/* Enqueue a message with priority 30: */

DECLARE
Enqueue options dbms_ag.enqueue options t;
Message properties dbms_ag.message properties t;
Message handle RAW (16) ;
Message ag.Message_typ;

BEGIN

Message := Message typ('PRIORITY MESSAGE', 'enqued at priority 30.');

message properties.priority := 30;

DBMS_AQ.ENQUEUE (queue name => 'priority msg queue',

enqueue options

=> enqueue options,

message properties => message properties,
payload => message,
msgid => message handle) ;
COMMIT;

END;

Example 10-3 PL/SQL: Enqueue a Single Message and Specify a Transformation

/* Enqueue to msg_queue: */

DECLARE
Enqueue_options DBMS_AQ.enqueue options t;
Message properties DBMS_AQ.message properties t;

Oracle Streams AQ Operational Interface: Basic Operations 10-7

Enqueuing a Message

Message handle RAW(16) ;
Message ag.message_typ;
BEGIN

Message := ag.message typ ('NORMAL MESSAGE',
'enqueued to msg queue first.');

DBMS_AQ.ENQUEUE (queue_name => 'msg_queue',

Enqueue options => enqueue options,
Message properties => message properties,
transformation => 'AQ.MSG MAP',
Payload => message,
Msgid => message handle) ;
COMMIT;

END;

Where MSG_MAP was created as follows:

BEGIN
DBMS . TRANSFORM . CREATE _TRANSFORMATION
(
schema => 'AQ',
name => 'MSG_MAP',
from schema => 'AQ',
from type => 'PO_ORDER1',
to_schema => 'AQ',
to _type => 'PO_ORDER2',
transformation => 'AQ.MAP PO ORDER (source.user data)'),
END;

Example 10-4 Java (JDBC): Enqueue a Message and Add Payload

/* Setup */

connect system/manager

CREATE USER aqg IDENTIFIED BY aq;
grant aq administrator role to agq;

public static void setup(AQSession ag sess) throws AQException

{

AQQueueTableProperty gtable prop;

AQQueueProperty queue_prop;
AQQueueTable g _table;
AQQueue queue;
AQAgent agent;

10-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing a Message

gtable prop = new AQQueueTableProperty ("RAW") ;
g table = ag_sess.createQueueTable ("ag", "rawmsgs_gtab", gtable prop);

queue prop = new AQQueueProperty () ;
queue = ag sess.createQueue (g table, "msg queue", queue prop);

queue.start () ;

gtable prop = new AQQueueTableProperty ("RAW") ;
gtable prop.setMultiConsumer (true);

gtable prop.setSortOrder ("priority,eng time");
g table = ag sess.createQueueTable ("ag", "rawmsgs_gtab2",

gtable prop) ;

queue _prop = new AQQueueProperty();
queue = aqg_sess.createQueue (g table, "priority msg _queue", queue prop) ;

queue.start () ;
agent = new AQAgent ("subscriberl", null);

queue.addSubscriber (agent, null);

/* Enqueue a message */
public static void example (AQSession ag sess) throws AQException, SQLException

{

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQEnqueueOption eng option;

String test data = "new message";
byte[] b array;

Connection db conn;

db conn = ((AQOracleSession)aqg sess).getDBConnection() ;

/* Get a handle to the queue */
queue = ag sess.getQueue ("ag", "msg queue');

/* Create a message to contain raw payload: */
message = queue.createMessage() ;

Oracle Streams AQ Operational Interface: Basic Operations 10-9

Enqueuing a Message

/* Get handle to the AQRawPayload object and populate it with raw data: */
b array = test data.getBytes();

raw_payload = message.getRawPayload() ;
raw_payload.setStream(b array, b array.length);

/* Create a AQEnqueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue (enq_option, message);

db conn.commit () ;

/* Enqueue a message with priority = 5 */
public static void example (AQSession ag sess) throws AQException, SQLException

{

AQQueue queue;

AQMessage message;

AQMessageProperty msg_prop;

AQRawPayload raw_payload;

AQEnqueueOption eng option;

String test data = "priority message";
bytel[] b array;

Connection db conn;

db conn = ((AQOracleSession)aq sess).getDBConnection();

/* Get a handle to the queue */
queue = ag_sess.getQueue ("ag", "msg queue");

/* Create a message to contain raw payload: */
message = queue.createMessage() ;

/* Get Message property */
msg_prop = message.getMessageProperty();

/* Set priority */
msg_prop.setPriority(5);

/* Get handle to the AQRawPayload object and populate it with raw data: */

10-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing a Message

b array = test data.getBytes();
raw_payload = message.getRawPayload() ;
raw_payload.setStream(b array, b array.length);

/* Create a AQEngueueOption object with default options: */
eng option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue (enq_option, message);

db conn.commit () ;

Example 10-5 Visual Basic (0O040): Enqueue a message

Enqueuing messages of type objects

'Prepare the message. MESSAGE TYPE is a user-defined type
' in the "AQ" schema

Set OraMsg = Q.AQMsg(l, "MESSAGE TYPE")

Set OraObj = DB.CreateOraObject ("MESSAGE TYPE")

OraObj ("subject") .Value = "Greetings from 0040"
OraObj ("text") .Value = "Text of a message originated from 0040"

Msgid = Q.Enqueue

Enqueuing messages of type RAW

'Create an OraAQ object for the queue "DBQ"
Dim Q as object

Dim Msg as object

Dim OraSession as object

Dim DB as object

Set OraSession = CreateObject ("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase (mydb, "scott/tiger" 0&)
Set Q = DB.CreateARQ("DBQ")

'Get a reference to the AQMsg object

Set Msg = Q.AQMsg

Msg.Value = "Enqueue the first message to a RAW queue."

'Enqueue the message

Oracle Streams AQ Operational Interface: Basic Operations 10-11

Enqueuing an Array of Messages

Q.Enqueue ()
'Enqueue another message.

Msg.Value = "Another message"
Q.Enqueue ()

'Enqueue a message with nondefault properties.
Msg.Priority = ORAQMSG HIGH PRIORITY

Msg.Delay = 5

Msg.Value = "Urgent message"

Q.Enqueue ()

Msg.Value = "The visibility option used in the enqueue call is

ORAAQ ENQ IMMEDIATE"
Q.Visible = ORAARQ ENQ IMMEDIATE
Msgid = Q.Enqueue

'Enqueue Ahead of message Msgid 1
Msg.Value = "First Message to test Relative Message id"
Msg.Correlation = "RELATIVE MESSAGE ID"

Msgid 1 = Q.Enqueue

Msg.Value = "Second message to test RELATIVE MESSAGE ID is queued
ahead of the First Message "

OraAq.relmsgid = Msgid 1

Msgid = Q.Enqueue

Enqueuing an Array of Messages

Purpose

Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a
corresponding array of message properties. The output is an array of message IDs
of the enqueued messages. The function returns the number of messages
successfully enqueued.

Syntax
DBMS_AQ.ENQUEUE ARRAY (
queue_name IN VARCHAR2,
enqueue_options IN enqueue options t,
array size IN pls_integer,
message properties array IN message properties array t,
payload array IN VARRAY,

10-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing an Array of Messages

msid_array OUT msgid array t)
RETURN pls integer;

Usage Notes

The payload structure can be a VARRAY or nested table. The message IDs are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid array t.

As with array operations in the relational world, it is not possible to provide a
single optimum array size that will be correct in all circumstances. Application
developers must experiment with different array sizes to determine the optimal
value for their particular applications.

Examples
Examples are provided in the following programmatic environments:

s PL/SQL: Array Enqueuing into a Queue of Type Message on page 10-13
s C(OCI): Array Enqueuing into a Queue of Type Message on page 10-14

Example 10-6 PL/SQL: Array Enqueuing into a Queue of Type Message

CREATE OR REPLACE TYPE message as OBJECT (
data VARCHAR2(10)) ;
/

CREATE OR REPLACE TYPE message tbl AS TABLE OF message;
/

DECLARE

engopt dbms_ag.enqueue options t;

msgproparr dbms ag.message properties array t;
msgprop dbms_ag.message properties t;
payloadarr message tbl;

msgidarr dbms ag.msgid array t;

retval pls integer;

BEGIN
payloadarr := message tbl(message('Oracle') ,message('Corp')) ;
msgproparr := dbms_ag.message properties array t(msgprop, msgprop) ;

retval := dbms_aqg.enqueue_array(queue name => 'AQUSER.MY QUEUE',
enqueue_options => engopt ,

Oracle Streams AQ Operational Interface: Basic Operations 10-13

Enqueuing an Array of Messages

array size => 2,
message properties array => msgproparr,
payload array => payloadarr,
msgid array => msgidarr) ;
commit;
END;

Example 10-7 C(OCI): Array Enqueuing into a Queue of Type Message

struct message

{

OCIString *data;

}i

typedef struct message message;

struct null message

{

OCIInd null adt;
OCIInd null data;
}i

typedef struct null message null message;

int main(argc, argv)
int argc ;
char **argv ;

{

OCIEnv *envhp;
OCIServer *srvhp;

OCIError *errhp;
OCISveCtx *svchp;
OCISession *usrhp;

dvoid *tmp;

OCIType *mesg_tdo = (OCIType *) 0;
message mesg [NMESGS] ;
message *mesgp [NMESGS] ;
null message nmesg [NMESGS] ;
null message *nmesgp [NMESGS] ;
int i, j, k;

OCIInd ind [NMESGS] ;
dvoid *indptr [NMESGS] ;
ub4 priority;

10-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Enqueuing an Array of Messages

OCIAQEngOptions *engopt = (OCIAQEngOptions *)O0;
OCIAQMsgProperties *msgprop= (OCIAQMsgProperties *)O0;
ub4 wait = 1;

ub4 navigation = OCI_DEQ NEXT MSG;
ub4 iters = 2;

text *gname ;

text mesgdata [30] ;

ub4 payload size = 5;

text *payload = (text *)0;

ub4 batch size = 2;

ub4 eng size = 2;

printf ("session start\n");

/* establish a session */

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

printf ("server attach\n");
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT) ;

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
52, (dvoid **) &tmp);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,

(dvoid *) "AQUSER", (ub4)strlen("AQUSER"),
OCI_ATTR USERNAME, errhp);

Oracle Streams AQ Operational Interface: Basic Operations 10-15

Enqueuing an Array of Messages

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"AQUSER", (ub4)strlen("AQUSER"),
OCI_ATTR_PASSWORD, errhp) ;

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,
OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* get descriptor for enqueue options */

checkerr (errhp, OCIDescriptorAlloc (envhp, (dvoid **)&engopt,
OCI_DTYPE AQENQ OPTIONS, O,
(dvoid **)0));

printf ("enq options set\n");
/* set enqueue options - for consumer name, wait and navigation */

/* construct null terminated payload string */

payload = (text *)malloc(payload size+l);

for (k=0 ; k < payload size ; k++)
payload[k] = 'a';

payload[payload size] = '\0';

for (k=0 ; k < batch size ; k++)
{
indptr[k] = &ind[k];
mesgp [k] = &mesgl(k];
nmesgp [k] = &nmesg[k];
nmesg [k] .null_adt = nmesgl[k].null data = OCI_IND NOTNULL;
mesg [k] .data = (OCIString *)0;
OCIStringAssignText (envhp, errhp, (const unsigned char *)payload,
strlen((const char *)payload), &(mesglk].data));
}

printf ("check message tdo\n");
checkerr (errhp, OCITypeByName (envhp, errhp, svchp,
(CONST text *)"AQUSER", strlen ("AQUSER"),

(CONST text *)"MESSAGE", strlen("MESSAGE"), (text *)0, O,
OCI_DURATION SESSION, OCI_TYPEGET ALL, &mesg tdo));
k=0;

while (k < iters)

{

eng size = batch size;

10-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

checkerr (errhp, OCIAQEngArray (svchp, errhp,

dvoid *)"AQUSER.MY QUEUE",
OCIAQEngOptions *)0, &eng size,
, mesg_tdo,

dvoid **)&mesgp,

(
(
0
(
(dvoid **)&nmesgp, 0, 0, 0, 0));

k+=batch_size;

}

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));
checkerr (errhp, OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT)) ;

return 0;

Listening to One or More Queues

Purpose
Specifies which queue or queues to monitor

Syntax

DBMS AQ.LISTEN (
agent list IN ag$_agent_list t,
wait IN BINARY INTEGER DEFAULT DBMS_ AQ.FOREVER,
agent OUT sys.ag$_agent);

TYPE ag$_agent list t IS TABLE of ag$ agent INDEXED BY BINARY INTEGER;

Usage Notes

The call takes a list of agents as an argument. You specify the queue to be monitored
in the address field of each agent listed. You also must specify the name of the agent
when monitoring multiconsumer queues. For single-consumer queues, an agent
name must not be specified. Only local queues are supported as addresses. Protocol
is reserved for future use.

Note: Listening to multiconsumer queues is not supported in the
Java API.

Oracle Streams AQ Operational Interface: Basic Operations 10-17

Listening to One or More Queues

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are messages for more than one agent, then only the
first agent listed is returned. If there are no messages found when the wait time
expires, then an error is raised.

A successful return from the 1isten call is only an indication that there is a
message for one of the listed agents in one of the specified queues. The interested
agent must still dequeue the relevant message.

Note: You cannot call 1isten on nonpersistent queues.

Examples
Examples are provided in the following programmatic environments:

= PL/SQL: Listen to Single-Consumer Queue (Timeout of Zero) on page 10-18
= Java (JDBC): Listen to Queues on page 10-19

= C(OCI): Listening for Single-Consumer Queues with Zero Timeout on
page 10-20

Example 10-8 PL/SQL: Listen to Single-Consumer Queue (Timeout of Zero)

/* The listen call monitors a list of queues for messages for
specific agents. You must have dequeue privileges for all the queues
you wish to monitor. */
DECLARE
Agent w_msg ag$_agent;
My agent list dbms_ag.agent list t;

BEGIN
/* NOTE: MCQl, MCQ2, MCQ3 are multiconsumer queues in SCOTT's schema
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT's schema
*/

Qlist (1) := ag$_agent (NULL, 'scott.SCQl', NULL);
Qlist(2) := ag$_agent (NULL, 'SCQ2', NULL);
Qlist (3):= ag$_agent (NULL, 'SCQ3', NULL);

/* Listen with a timeout of zero: */
DBMS_AQ.LISTEN (
Agent list => My agent list,
Wait => 0,
Agent => agent w msg) ;

10-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

DBMS_OUTPUT.PUT LINE('Message in Queue :- ' || agent w msg.address);
DBMS_OUTPUT.PUT LINE('');
END;

Example 10-9 Java (JDBC): Listen to Queues

public static void monitor status queue(Connection db_conn)

{

AQSession ag_sess;

AQAgent [] agt_list = null;
AQAgent ret agt = null;
try

{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db conn) ;

/* Construct the waiters list: */
agt list = new AQAgent[3];

agt 1list[0] = new AQAgent (null, "scott.SCQ1",O0);
agt list[1] = new AQAgent (null, "SCQ2",0);
agt list[2] = new AQAgent (null, "SCQ3",0);

/* Wait for order status messages for 120 seconds: */
ret agt = aq sess.listen(agt list, 120);

System.out.println("Message available for agent: " +
ret agt.getName() + " "+ ret agt.getAddress());

}

catch (AQException agex)

{

System.out.println("Exception-1: " + agex);

}

catch (Exception ex)

{
}

System.out.println("Exception-2: " + ex);

Oracle Streams AQ Operational Interface: Basic Operations 10-19

Listening to One or More Queues

Example 10-10 C (OCI): Listening for Single-Consumer Queues with Zero Timeout

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static void checkerr (errhp, status)
OCIError *errhp;
sword status;
{
text errbuf [512];
ub4 buflen;
sb4 errcode;

switch (status)
{

case OCI_SUCCESS:
break;

case OCI_SUCCESS WITH INFO:
printf ("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED DATA:
printf ("Error - OCI_NEED DATA\n");
break;

case OCI_NO_DATA:
printf ("Error - OCI_NO DATA\n");
break;

case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;

case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");
break;

case OCI_STILL EXECUTING:
printf ("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
printf ("Error - OCI_CONTINUE\n");
break;

default:

break;

}

10-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

/* set agent into descriptor */
void SetAgent (agent, appname, queue,errhp)

OCIAQAgent *agent;
text *appname;
text *queue;
OCIError *errhp;

{

OCIAttrSet (agent, OCI_DTYPE AQAGENT,
appname ? (dvoid *)appname : (dvoid *)"",
appname ? strlen((const char *)appname) : 0,
OCI_ATTR AGENT NAME, errhp);

OCIAttrSet (agent, OCI_DTYPE AQAGENT,
queue ? (dvoid *)queue : (dvoid *)"",
queue ? strlen((const char *)queue) : 0,
OCI_ATTR AGENT ADDRESS, errhp);

printf ("Set agent name to %s\n", appname ? (char *)appname
printf ("Set agent address to %s\n", queue ? (char *)queue

/* get agent from descriptor */
void GetAgent (agent, errhp)
OCIAQAgent *agent;

OCIError *errhp;

{

text *appname;

text *queue;

ub4 appsz;

ub4 queuesz;
if (lagent)

{

printf ("agent was NULL \n");
return;
}
checkerr (errhp, OCIAttrGet (agent, OCI_DTYPE AQAGENT,
(dvoid *)&appname, &appsz, OCI_ATTR AGENT NAME, errhp));
checkerr (errhp, OCIAttrGet (agent, OCI DTYPE AQAGENT,

"NULL") B
IINULLH) H

(dvoid *)&queue, &queuesz, OCI_ATTR AGENT ADDRESS, errhp));

if (lappsz)
printf ("agent name: NULL\n");

Oracle Streams AQ Operational Interface: Basic Operations

10-21

Listening to One or More Queues

°

else printf ("agent name: %.*s\n", appsz, (char *)appname);
if (!queuesz)
printf ("agent address: NULL\n");

[

else printf ("agent address: %.*s\n", queuesz, (char *)queue);

}

int main()

{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISveCtx *svchp;
OCISession *usrhp;
OCIAQAgent *agent list[3];
OCIAQAgent *agent = (OCIAQAgent *)O0;
/* added next 2 121598 */
int 1i;

/* Standard OCI Initialization */

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp,
(ub4) OCI HTYPE ENV, O, (dvoid **) 0);

OCIEnvInit (&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
0, (dvoid **) 0);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT) ;

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCIX,
0, (dvoid **) 0);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,

10-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

(size_t) 0, (dvoid **) 0);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

OCIAttrSet ((dvoid *) usrhp, (ub4) OCI_HTYPE SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR PASSWORD, errhp) ;

OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS, OCI DEFAULT) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* AQ LISTEN Initialization - allocate agent handles */
for (1 = 0; 1 < 3; 1++)
{
agent list[i] = (OCIAQAgent *)O0;
OCIDescriptorAlloc(envhp, (dvoid **)&agent list[i],
OCI_DTYPE AQAGENT, O, (dvoid **)0);

}
/*

* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT's schema

*/
SetAgent (agent list [0], (text *)0, "SCOTT.SCQl", errhp);
SetAgent (agent list[1], (text *)0, "SCOTT.SCQ2", errhp);
SetAgent (agent list[2], (text *)0, "SCOTT.SCQ3", errhp);
checkerr (errhp, OCIAQListen (svchp, errhp, agent list, 3, 0, &agent, 0));
printf ("MESSAGE for :- \n");

GetAgent (agent, errhp);
printf ("\n");

Oracle Streams AQ Operational Interface: Basic Operations 10-23

Listening to One or More Queues

Example 10-11 C (OCI): Listening for Single-Consumer Queues with Timeout of 120
Seconds

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static void checkerr (errhp, status)
OCIError *errhp;
sword status;
{
text errbuf [512];
ub4 buflen;
sb4 errcode;

switch (status)
{

case OCI_SUCCESS:
break;

case OCI_SUCCESS WITH INFO:
printf ("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED DATA:
printf ("Error - OCI_NEED DATA\n");
break;

case OCI_NO_DATA:
printf ("Error - OCI_NO DATA\n");
break;

case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof (errbuf), (ub4) OCI_HTYPE ERRCR);
printf ("Error - %s\n", errbuf);
break;

case OCI_INVALID HANDLE:
printf ("Error - OCI_INVALID HANDLE\n");
break;

case OCI_STILL EXECUTING:
printf ("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
printf ("Error - OCI_CONTINUE\n");
break;

default:

break;

}

10-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

}

/* set agent into descriptor */
/* void SetAgent (agent, appname, queue) */
void SetAgent (agent, appname, queue,errhp)

OCIAQAgent *agent;
text *appname;
text *queue;
OCIError *errhp;

{

OCIAttrSet (agent, OCI DTYPE AQAGENT,
appname ? (dvoid *)appname : (dvoid *)"",
appname ? strlen((const char *)appname) : 0,
OCI_ATTR AGENT NAME, errhp);

OCIAttrSet (agent, OCI DTYPE AQAGENT,
queue ? (dvoid *)queue : (dvoid *)"",
queue ? strlen((const char *)queue) : 0,
OCI_ATTR AGENT ADDRESS, errhp);

printf ("Set agent name to %s\n", appname ? (char *)appname
printf ("Set agent address to %s\n", queue ? (char *)queue

}

/* get agent from descriptor */
void GetAgent (agent, errhp)
OCIAQAgent *agent;

OCIError *errhp;

{

text *appname;

text *queue;

ub4 appsz;

ub4 queuesz;
if (lagent)

{

printf ("agent was NULL \n");
return;
}

checkerr (errhp, OCIAttrGet (agent, OCI DTYPE AQAGENT,
(dvoid *)&appname, &appsz, OCI_ATTR AGENT NAME, errhp));
checkerr (errhp, OCIAttrGet (agent, OCI DTYPE AQAGENT,

"NULL") ;
"NULL") ;

(dvoid *)&queue, &queuesz, OCI_ATTR AGENT ADDRESS, errhp));

Oracle Streams AQ Operational Interface: Basic Operations

10-25

Listening to One or More Queues

if (lappsz)

printf ("agent name: NULL\n");
else printf ("agent name: %.*s\n", appsz, (char *)appname);
if (!queuesz)

printf ("agent address: NULL\n");

°

else printf ("agent address: %.*s\n", queuesz, (char *)queue);

}

int main()

{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCISession *usrhp;
OCIAQAgent *agent list[3];
OCIAQAgent *agent = (OCIAQAgent *)O0;
/* added next 2 121598 */
int 1i;

/* Standard OCI Initialization */

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*) ()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp,
(ub4) OCI_HTYPE ENV, O, (dvoid **) 0);

OCIEnvInit (&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
0, (dvoid **) 0);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI DEFAULT) ;

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCTX,
0, (dvoid **) 0);

/* set attribute server context in the service context */

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

10-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Listening to One or More Queues

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size t) 0, (dvoid **) 0);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR USERNAME, errhp);

OCIAttrSet ((dvoid *) usrhp, (ub4) OCI_HTYPE SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR PASSWORD, errhp) ;

OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS, OCI DEFAULT) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* AQ LISTEN Initialization - allocate agent handles */
for (1 = 0; 1 < 3; i++)
{
agent list[i] = (OCIAQAgent *)O0;
OCIDescriptorAlloc(envhp, (dvoid **)&agent list[i],
OCI_DTYPE AQAGENT, O, (dvoid **)0);

}
/*

* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT's schema

*/
SetAgent (agent list[0], (text *)0, "SCOTT.SCQl", errhp);
SetAgent (agent list[1], (text *)0, "SCOTT.SCQ2", errhp);
SetAgent (agent list[2], (text *)0, "SCOTT.SCQ3", errhp);

checkerr (errhp, OCIAQListen (svchp, errhp, agent list, 3, 120, &agent, 0));
printf ("MESSAGE for :- \n");

GetAgent (agent, errhp);
printf ("\n");

Oracle Streams AQ Operational Interface: Basic Operations 10-27

Dequeuing a Message

Dequeuing a Message
This section contains these topics:
= Dequeuing a Message from a Single-Consumer Queue and Specifying Options

= Dequeuing a Message from a Multiconsumer Queue and Specifying Options

Purpose
Dequeues a message from the specified queue.

Syntax

DBMS AQ.DEQUEUE (
queue_name IN VARCHAR2,
dequeue_options IN dequeue options t,
message properties OUT message properties t,
payload ouT "type name",
msgid ouT RAW) ;

Usage Notes

The search criteria for messages to be dequeued is determined by the consumer
name, msgid and correlation parameters in the dequeue options. Parameter
msgid uniquely identifies the message to be dequeued. Only messages in the
READY state are dequeued unless msgid is specified. Correlation identifiers are
application-defined identifiers that are not interpreted by Oracle Streams AQ.

The dequeue order is determined by the values specified at the time the queue table
is created unless overridden by the message ID and correlation ID in dequeue
options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning
of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT MESSAGE. This means
that subsequent dequeues retrieve the messages from the queue based on the
snapshot obtained in the first dequeue. In particular, a message that is enqueued
after the first dequeue command is processed only after processing all the
remaining messages in the queue. This is usually sufficient when all the messages
have already been enqueued into the queue, or when the queue does not have a
priority-based ordering. However, applications must use the FIRST MESSAGE
navigation option when the first message in the queue must be processed by every
dequeue command. This usually becomes necessary when a higher priority

10-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeuing a Message

message arrives in the queue while messages already enqueued are being
processed.

Note: It can also be more efficient to use the FIRST MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST MESSAGE option is not specified, then
Oracle Streams AQ continually generates the snapshot as of the
first dequeue command, leading to poor performance. If the
FIRST MESSAGE option is specified, then Oracle Streams AQ uses
a new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping form a group. If only one message is enqueued in the
transaction, then this effectively forms a group of one message. There is no upper
limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED
or REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group locks the entire group. This is
useful when all the messages in a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The application
can then use the NEXT TRANSACTION to start dequeuing messages from the next
available group. In the event that no groups are available, the dequeue times out
after the specified WAIT period.

Examples
Examples are provided in the following programmatic environments:

= PL/SQL: Dequeue of Object Type Messages on page 10-30

= Java (JDBC): Dequeue a message from a single-consumer queue (specify
options) on page 10-30

= Visual Basic (O040): Dequeue a message on page 10-31

Dequeuing a Message from a Single-Consumer Queue and Specifying Options

Purpose
Specifies the options available for the dequeue operation.

Oracle Streams AQ Operational Interface: Basic Operations 10-29

Dequeuing a Message

Usage Notes

Typically, you expect the consumer of messages to access messages using the
dequeue interface. You can view processed messages or messages still to be
processed by browsing by message ID or by using SELECT commands.

The transformation, if specified, is applied before returning the message to the
caller. The transformation should be defined to map the queue Oracle object type to
the return type wanted by the caller.

Examples
Examples are provided in the following programmatic environments:

= PL/SQL: Dequeue of Object Type Messages on page 10-30

= Java (JDBC): Dequeue a message from a single-consumer queue (specify
options) on page 10-30

= Visual Basic (O040): Dequeue a message on page 10-31

Example 10-12 PL/SQL: Dequeue of Object Type Messages

/* Dequeue from msg queue: */

DECLARE
dequeue_options dbms_ag.dequeue_options t;
message properties dbms ag.message properties t;
message handle RAW(16) ;
message ag.message_typ;
BEGIN
DBMS_AQ.DEQUEUE (
queue_name => 'msg_queue',
dequeue_options => dequeue_options,
message properties => message properties,
payload => message,
msgid => message handle) ;
DBMS OUTPUT.PUT LINE ('Message: ' || message.subject ||
" ... ' || message.text);
COMMIT;
END;

Example 10-13 Java (JDBC): Dequeue a message from a single-consumer queue
(specify options)

/* Dequeue a message with correlation ID = 'RUSH' */

10-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeuing a Message

public static void example (AQSession ag sess) throws AQException, SQLException

{

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQDequeueOption deq option;

byte[] b array;

Connection db conn;

db conn = ((AQOracleSession)aqg sess).getDBConnection() ;
queue = ag sess.getQueue ("ag", "msg queue');

/* Create a AQDequeueOption object with default options: */
deqg option = new AQDequeueOption();

deqg option.setCorrelation ("RUSH") ;

/* Dequeue a message */
message = queue.dequeue (deq option) ;

System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload() ;

b array = raw payload.getBytes();

db conn.commit () ;

Example 10-14 Visual Basic (0040): Dequeue a message
Dequeuing messages of RAW type

'Dequeue the first message available
Q.Dequeue ()
Set Msg = Q.QMsg

'Display the message content
MsgBox Msg.Value

'Dequeue the first message available without removing it

' from the queue
Q.DequeueMode = ORAAQ DEQ BROWSE

Oracle Streams AQ Operational Interface: Basic Operations

10-31

Dequeuing a Message

'Dequeue the first message with the correlation identifier
' equal to "RELATIVE MSG ID"

Q.Navigation = ORAAQ DQ FIRST MSG

Q.correlate = "RELATIVE MESSAGE ID"

Q.Dequeue

'Dequeue the next message with the correlation identifier

' of "RELATIVE MSG ID"
Q.Navigation = ORAAQ DQ NEXT MSG
Q.Dequeue ()

'Dequeue the first high priority message
Msg.Priority = ORAQMSG HIGH PRIORITY
Q.Dequeue ()

'Dequeue the message enqueued with message ID of Msgid 1
Q.DequeueMsgid = Msgid 1
Q.Dequeue ()

'Dequeue the message meant for "ANDY"
Q.consumer = "ANDY"
Q.Dequeue ()

'Return immediately if there is no message on the queue
Q.wait = ORAAQ DQ NOWAIT
Q.Dequeue ()

Dequeuing messages of Oracle object type
Set OraObj = DB.CreateOraObject ("MESSAGE TYPE")
Set QMsg = Q.AQMsg (1, "MESSAGE TYPE")

'Dequeue the first message available without removing it
Q.Dequeue ()
OraObj = QMsg.Value

'Display the subject and data
MsgBox OraObj!subject & OraObj!Data

10-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeuing a Message

Dequeuing a Message from a Multiconsumer Queue and Specifying Options

Purpose
Specifies the options available for the dequeue operation.

Usage Notes

See "Dequeuing a Message from a Single-Consumer Queue and Specifying Options"
on page 10-29.

Examples
Examples are provided in the following programmatic environments:

= Java (JDBC): Dequeue a message from a multiconsumer queue (specify options)
on page 10-33

Example 10-15 Java (JDBC): Dequeue a message from a multiconsumer queue
(specify options)

/* Dequeue a message for subscriberl in browse mode*/
public static void example (AQSession ag sess) throws AQException, SQLException

{

AQQueue queue;

AQMessage message;

AQRawPayload raw_payload;

AQDequeueOption deq option;

bytel[] b array;

Connection db conn;

db conn = ((AQOracleSession)aq sess).getDBConnection();
queue = ag_sess.getQueue ("aq", "priority msg queue");

/* Create a AQDequeueOption object with default options: */
deqg option = new AQDequeueOption();

/* Set dequeue mode to BROWSE */
deq option.setDequeueMode (AQDequeueOption.DEQUEUE BROWSE) ;

/* Dequeue messages for subscriberl */
deqg option.setConsumerName ("subscriberl") ;

/* Dequeue a message: */

Oracle Streams AQ Operational Interface: Basic Operations 10-33

Dequeuing an Array of Messages

message = queue.dequeue (deq option) ;
System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload() ;

b array = raw payload.getBytes() ;

db_conn.commit () ;

Dequeuing an Array of Messages

Purpose

Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a
corresponding array of message properties. The output is an array of payloads,
message IDs, and message properties of the dequeued messages. The function
returns the number of messages successfully dequeued.

Syntax
DBMS_AQ.DEQUEUE ARRAY (
queue_name IN VARCHAR2,
dequeue options IN dequeue_options t,
array size IN pls_integer,
message properties array OUT message properties array t,
payload array ouT VARRAY,
msgid array ouT msgid array t)

RETURN pls integer;

Usage Notes

A nonzero wait time, as specified in dequeue_options, is recognized only when
there are no messages in the queue. If the queue contains messages that are eligible
for dequeue, then the DEQUEUE_ARRAY function will dequeue up to array_size

messages and return immediately.

The payload structure can be a VARRAY or nested table. The message IDs are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array t.The
message properties are returned into an array of type DBMS_AQ.message_
properties array t.

10-34 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeuing an Array of Messages

As with array operations in the relational world, it is not possible to provide a
single optimum array size that will be correct in all circumstances. Application
developers must experiment with different array sizes to determine the optimal
value for their particular applications.

When dequeuing messages, you might want to dequeue all the messages for a
transaction group with a single call. You might also want to dequeue messages that
span multiple transaction groups. You can specify either of these methods by using
one of the following navigation methods:

» NEXT MESSAGE ONE_GROUP

» FIRST MESSAGE ONE_ GROUP

» NEXT MESSAGE MULTI GROUP
» FIRST MESSAGE MULTI_ GROUP

Navigation method NEXT MESSAGE ONE_ GROUP dequeues messages that match
the search criteria from the next available transaction group into an array.
navigation method FIRST MESSAGE ONE_GROUP resets the position to the
beginning of the queue and dequeues all the messages in a single transaction group
that are available and match the search criteria.

The number of messages dequeued is determined by an array size limit. If the
number of messages in the transaction group exceeds array size, then multiple
calls to DEQUEUE_ARRAY must be made to dequeue all the messages for the
transaction group.

Navigation methods NEXT MESSAGE MULTI_ GROUP and FIRST MESSAGE
MULTI_GROUP work like their ONE_GROUP counterparts, but they are not limited to
a single transaction group. Each message that is dequeued into the array has an
associated set of message properties. Message property transaction group
determines which messages belong to the same transaction group.

Examples
Examples are provided in the following programmatic environments:

= PL/SQL: Array Dequeuing from a Queue of Type Message on page 10-36
s C(OCI): Array Dequeuing from a Queue of Type Message on page 10-36

Oracle Streams AQ Operational Interface: Basic Operations 10-35

Dequeuing an Array of Messages

Example 10-16 PL/SQL: Array Dequeuing from a Queue of Type Message

CREATE OR REPLACE TYPE message as OBJECT (data VARCHAR2(10));
/

CREATE OR REPLACE TYPE message arr AS VARRAY (2000) OF message;
/

DECLARE
degopt dbms_aqg.dequeue options t ;
msgproparr dbms ag.message properties array t :=
dbms_ag.message properties array t();
payloadarr message arr := message arr() ;
msgidarr dbms aqg.msgid array t ;
retval pls integer ;
BEGIN
payloadarr.extend(2) ;
msgproparr.extend (2) ;
degopt .consumer name := 'SUB1';
retval := dbms ag.dequeue array(queue name => 'AQUSER.MY QUEUE',
dequeue_options => degopt ,
array size => payloadarr.count,
message properties array => msgproparr,
payload array => payloadarr,
msgid array => msgidarr) ;
END;

Example 10-17 C(OCI): Array Dequeuing from a Queue of Type Message

struct message

{

OCIString *data;

}i

typedef struct message message;

struct null message

{

OCIInd null adt;
OCIInd null data;

}i

10-36 Oracle Streams Advanced Queuing User’s Guide and Reference

Dequeuing an Array of Messages

typedef struct null message null message;

int main(argc, argv)
int argc;
char **argv;

{

OCIEnv *envhp;

OCIServer *srvhp;

OCIError *errhp;

0OCISveCtx *svchp;

OCISession *usrhp;

dvoid *tmp;

message *mesgp [NMESGS] ;

int i, 3, k;

null message *nmesgp [NMESGS] ;

ub4 priority = 0;
OCIAQDeqgOptions *deqopt = (OCIAQDeqgOptions *)O0;
ub4 iters = 2;

OCIType *mesg_tdo = (OCIType *) 0;
ub4 batch size = 2;

ub4 deq size = batch size;

printf ("session start\n");
/* establish a session */
OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) O,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE SERVER,
52, (dvoid **) &tmp);

printf ("server attach\n");
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_ DEFAULT) ;

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE SVCCIX,
52, (dvoid **) &tmp);

Oracle Streams AQ Operational Interface: Basic Operations 10-37

Dequeuing an Array of Messages

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX, (dvoid *)srvhp, (ub4) O,
(ub4) OCI_ATTR SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE SESSION,
(size t) 0, (dvoid **) 0);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"AQUSER", (ub4)strlen("AQUSER"),
OCI_ATTR_USERNAME, errhp);

OCIAttrSet ((dvoid *)usrhp, (ub4)OCI_HTYPE SESSION,
(dvoid *)"AQUSER", (ub4)strlen("AQUSER"),
OCI_ATTR_PASSWORD, errhp) ;

checkerr (errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED RDBMS,
OCI_DEFAULT)) ;

OCIAttrSet ((dvoid *)svchp, (ub4)OCI_HTYPE SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR SESSION, errhp);

/* get descriptor for dequeue options */

checkerr (errhp, OCIDescriptorAlloc (envhp, (dvoid **)&deqgopt,
OCI_DTYPE AQDEQ OPTIONS, O,
(dvoid **)0));

printf ("deq options set\n");
/* set dequeue options - for consumer name, wait and navigation */
checkerr (errhp, OCIAttrSet (deqgopt, OCI_DTYPE AQDEQ OPTIONS,

(dvoid *)"SUB1",

(ub4) strlen("SUB1"),

OCI_ATTR CONSUMER NAME, errhp));

for (k=0 ; k < NMESGS ; k++)
{

mesgp [k] = 0;

nmesgp [k] = 0;

}

printf ("check message tdo\n");

checkerr (errhp, OCITypeByName (envhp, errhp, svchp,
(CONST text *)"AQUSER", strlen ("AQUSER"),
(CONST text *)"MESSAGE", strlen("MESSAGE"), (text *)0, 0,
OCI_DURATION SESSION, OCI_TYPEGET ALL, &mesg tdo));

10-38 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering for Notification

k=0;

while (k < iters)

{
deq_size = batch_size;
checkerr (errhp, OCIAQDegArray (svchp, errhp,
(text *)"AQUSER.MY QUEUE",
(OCIAQDeqgOptions *)deqopt,
&deq size, 0, mesg_tdo,
(dvoid **)mesgp,
(dvoid **)nmesgp, 0, 0, 0, 0));
k+=batch_size;

}

checkerr (errhp, OCITransCommit (svchp, errhp, (ub4) 0));

checkerr (errhp, OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT)) ;
return 0;

Registering for Notification

Purpose
Registers a callback for message notification.

Syntax

DBMS AQ.REGISTER (
reg list IN SYS.AQ$ REG INFO LIST,
count IN NUMBER) ;

Usage Notes

This call is invoked for registration to a subscription which identifies the
subscription name of interest and the associated callback to be invoked. Interest in
several subscriptions can be registered at one time.

This interface is only valid for the asynchronous mode of message delivery. In this
mode, a subscriber applies a registration call which specifies a callback. When
messages are received that match the subscription criteria, the callback is invoked.
The callback can then apply an explicit mnessage receive (dequeue) to retrieve
the message.

Oracle Streams AQ Operational Interface: Basic Operations 10-39

Registering for Notification

The user must specify a subscription handle at registration time with the namespace
attribute set to OCI_SUBSCR_NAMESPACE_ AQ.

The subscription name is the string schema.queue if the registration is for a
single-consumer queue and schema . queue: consumer name if the registration is
for a multiconsumer queues.

Related Functions: OCIAQListen(), OCISubscriptionDisable(),
OCISubscriptionEnable(), OCISubscriptionUnRegister()

Examples

Example 10-18 C (OCI): Register for Notifications For Single-Consumer and
Multiconsumer Queries

/* OCIRegister can be used by the client to register to receive notifications
when messages are enqueued into nonpersistent and usual queues. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <oci.h>

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

/* The callback that gets invoked on notification */
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;

OCISubscription *subscrhp; /* subscription handle */
dvoid *pay; /* payload */

ub4 payl; /* payload length */
dvoid *desc; /* the AQ notification descriptor */
ub4 mode;

{

text *gsubname;

ub4 size;

ub4 *number = (ub4 *)ctx;

text *queue;

text *consumer;

OCIRaw *msgid;

OCIAQMsgProperties *msgprop;

10-40 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering for Notification

(*number) ++;

/* Get the subscription name */

OCIAttrGet ((dvoid *)subscrhp, OCI_HTYPE SUBSCRIPTION,
(dvoid *) &subname, &size,
OCI_ATTR SUBSCR NAME, errhp);

printf ("got notification number %d for %.*s %d \n",
*number, size, subname, payl);

/* Get the queue name from the AQ notify descriptor */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR QUEUE NAME, errhp);

/* Get the consumer name for which this notification was received */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&consumer, &size,
OCI_ATTR CONSUMER NAME, errhp);

/* Get the message ID of the message for which we were notified */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&msgid, &size,
OCI_ATTR NFY MSGID, errhp);

/* Get the message properties of the message for which we were notified */
OCIAttrGet (desc, OCI_DTYPE AQNFY DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR MSG_PROP, errhp);

int main(argc, argv)
int argc;
char *argvl(];

{

OCISession *authp = (OCISession *) 0;

/* The subscription handles */
OCISubscription *subscrhpl[5];

/* Registrations are for AQ namespace */
ub4 namespace = OCI_SUBSCR_NAMESPACE AQ;

/* The context fot the callback */
ub4 ctx[5] = {0,0,0,0,0};

printf ("Initializing OCI Process\n");

Oracle Streams AQ Operational Interface: Basic Operations 10-41

Registering for Notification

/* The OCI Process Environment must be initialized with OCI_EVENTS */
/* OCI_OBJECT flag is set to enable us dequeue */

(void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)o0,

dvoid * (*) (dvoid *, size t)) O,

dvoid * (*) (dvoid *, dvoid *, size t))O,

void (*) (dvoid *, dvoid *)) 0);

printf ("Initialization successful\n");

/* The standard OCI setup */

printf ("Initializing OCI Env\n");

(void) OCIEnvInit((OCIEnv **) &envhp, OCI DEFAULT, (size t) O,
(dvoid **) 0);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE ERROR,
(size t) 0, (dvoid **) 0);

/* Server contexts */
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE SERVER,
(size t) 0, (dvoid **) 0);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE SVCCTX,
(size_t) 0, (dvoid **) 0);

printf ("connecting to server\n");
(void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);
printf ("connect successful\n");

/* Set attribute server context in the service context */
(void) OCIAttrSet((dvoid *) svchp, OCI_HTYPE SVCCTX, (dvoid *)srvhp,
(ub4) 0, OCI_ATTR SERVER, (OCIError *) errhp);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI HTYPE SESSION, (size_t) 0, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,
(dvoid *) "scott", (ub4) strlen("scott"),
(ub4) OCI_ATTR USERNAME, errhp) ;

(void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE SESSION,

(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR PASSWORD, errhp);

10-42 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering for Notification

checkerr (errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED RDBMS,
(ub4) OCI_DEFAULT)) ;

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE SVCCTX,
(dvoid *) authp, (ub4) O,
(ub4) OCI_ATTR SESSION, errhp);

/* Setting the subscription handle for notification on
a NORMAL single-consumer queue */
printf ("allocating subscription handle\n");
subscrhp [0] = (OCISubscription *)O0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp([0],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

printf ("setting subscription name\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) "SCOTT.SCQl", (ub4) strlen("SCOTT.SCQ1"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

printf ("setting subscription callback\n");

(void) OCIAttrSet((dvoid *) subscrhp([0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR_CALLBACK, errhp);

printf ("setting subscription context \n");

(void) OCIAttrSet ((dvoid *) subscrhp[0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx[0], (ub4)sizeof (ctx[0]),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

printf ("setting subscription namespace\n");

(void) OCIAttrSet((dvoid *) subscrhp(0], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

/* Setting the subscription handle for notification on a NORMAL multiconsumer
consumer queue */
subscrhp[1] = (OCISubscription *)O0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp(1],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) subscrhp(l], (ub4) OCI_HTYPE SUBSCRIPTION,

(dvoid *) "SCOTT.MCQ1:APP1"
(ub4) strlen("SCOTT.MCQ1:APP1"),

Oracle Streams AQ Operational Interface: Basic Operations 10-43

Registering for Notification

(ub4) OCI_ATTR SUBSCR NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR_CALLBACK, errhp) ;

(void) OCIAttrSet((dvoid *) subscrhp[l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx[1], (ub4)sizeof (ctx[1]),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[l], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

/* Setting the subscription handle for notification on a nonpersistent
single-consumer queue */
subscrhp [2] = (OCISubscription *)O0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp(2],
(ub4) OCI_HTYPE SUBSCRIPTION,
(size t) 0, (dvoid **) 0);

(void) OCIAttrSet ((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.NP_SCQ1",
(ub4) strlen("SCOTT.NP_SCQ1"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx[2], (ub4)sizeof (ctx[2]),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

/* Setting the subscription handle for notification on
a nonpersistent multi consumer queue */
/* Waiting on user specified recipient */
subscrhp [3] = (OCISubscription *)O0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[3],

10-44 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering for Notification

(ub4) OCI_HTYPE SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAttrSet ((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.NP_MCQ1",
(ub4) strlen("SCOTT.NP_MCQ1"),
(ub4) OCI_ATTR SUBSCR NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR SUBSCR_CALLBACK, errhp) ;

(void) OCIAttrSet ((dvoid *) subscrhp([3], (ub4) OCI_HTYPE SUBSCRIPTION,
(dvoid *)&ctx[3], (ub4)sizeof (ctx[3]),
(ub4) OCI_ATTR SUBSCR CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR SUBSCR NAMESPACE, errhp);

printf ("Registering for all the subscriptiosn \n");
checkerr (errhp, OCISubscriptionRegister (svchp, subscrhp, 4, errhp,
OCI_DEFAULT)) ;

printf ("Waiting for notifcations \n");

/* wait for minutes for notifications */
sleep(300) ;

printf ("Exiting\n") ;

Oracle Streams AQ Operational Interface: Basic Operations 10-45

Posting for Subscriber Notification

Posting for Subscriber Notification

Purpose

Posts to a list of anonymous subscriptions so clients registered for the subscription
get notifications.

Syntax

DBMS AQ.POST (
post_list 1IN SYS.AQ$ POST INFO LIST,
count IN NUMBER) ;

Usage Notes

Several subscriptions can be posted to at one time. Posting to a subscription
involves identifying the subscription name and the payload, if wanted. It is possible
for no payload to be associated with this call. This call provides a best-effort
guarantee. A notification goes to registered clients at most once.

This call is primarily used for lightweight notification and is useful in the case of
several system events. If an application needs more rigid guarantees, then it can use
Oracle Streams AQ functionality by enqueuing to a queue.

When using OCI, you must specify a subscription handle at registration time with
the namespace attribute set to OCI_SUBSCR_NAMESPACE ANONYMOUS.

When using PL/SQL, the namespace attribute in ag$_post_info must be set to
DBMS AQ.NAMESPACE ANONYMOUS.

Related functions: OCIAQListen (), OCISvcCtxToLda (),
OCISubscriptionEnable (), OCISubscriptionRegister(),
OCISubscriptionUnRegister (), dbms_ag.register, dbms_

ag.unregister.
Examples

Example 10-19 PL/SQL: Post of Object-Type Messages

-- Register for notification

DECLARE
reginfo sys.ag$_reg info;
reginfolist sys.ag$_reg info list;
BEGIN

-- Register for anonymous subscription PUBSUB1.ANONSTR, consumer name ADMIN

10-46 Oracle Streams Advanced Queuing User’s Guide and Reference

Adding an Agent to the LDAP Server

-- The PL/SQL callback pubsubl.mycallbk is invoked

-- when a notification is received

reginfo := sys.ag$ reg info('PUBSUBL.ANONSTR:ADMIN',
DBMS AQ.NAMESPACE ANONYMOUS,
'plsql://PUBSUBl.mycallbk', HEXTORAW('FF'));

reginfolist := sys.ag$ reg_info list(reginfo);

sys.dbms_aqg.register(reginfolist, 1);

commit;
END;
/
-- Post to an anonymous subscription
DECLARE
postinfo sys.aq$ _post info;
postinfolist sys.aqg$ post info list;
BEGIN

-- Post to the anonymous subscription PUBSUBL.ANONSTR, consumer name ADMIN
postinfo := sys.ag$ post info('PUBSUBL.ANONSTR:ADMIN', 0, HEXTORAW('FF'));
postinfolist := sys.ag$ post info list (postinfo);

sys.dbms_aqg.post (postinfolist, 1);

commit;

END;
/

Adding an Agent to the LDAP Server

Purpose
Adds an agent to the Lightweight Directory Access Protocol (LDAP) server.

Syntax
DBMS_AQ.BIND AGENT (
agent IN SYS.AQS AGENT,

certificate 1IN VARCHAR2 default NULL) ;

Oracle Streams AQ Operational Interface: Basic Operations 10-47

Removing an Agent from the LDAP Server

Usage Notes

This call takes an agent and an optional certificate location as the arguments,

and adds the agent entry to the LDAP server. The certificate location parameter is
the distinguished name of the LDAP entry that contains the digital certificate which
the agent uses. If the agent does not have a digital certificate, then this parameter is
defaulted to null.

Removing an Agent from the LDAP Server

Purpose
Removes an agent from the LDAP server.

Syntax

DBMS_ AQ.UNBIND AGENT (
agent IN SYS.AQS AGENT);

Usage Notes

This call takes an agent as the argument, and removes the corresponding agent
entry in the LDAP server.

10-48 Oracle Streams Advanced Queuing User’s Guide and Reference

Part V

Using Oracle JMS and Oracle Streams AQ

Part V describes how to use Oracle J]MS and Oracle Streams Advanced Queuing

(AQ).

This part contains the following chapters:

= Chapter 11, "Creating Oracle Streams AQ Applications Using JMS"

= Chapter 12, "Oracle Streams AQ JMS Interface: Basic Operations"

= Chapter 13, "Oracle Streams AQ JMS Operational Interface: Point-to-Point"

= Chapter 14, "Oracle Streams AQ JMS Operational Interface: Publish/Subscribe"
= Chapter 15, "Oracle Streams AQ JMS Operational Interface: Shared Interfaces"
= Chapter 16, "Oracle Streams AQ JMS Types Examples"

See Also:
For Oracle APIs for JMS see:

m http://otn.oracle.com/docs/products/ag/doc_
library/ojms/index.html

For J2EE Guides see:
» Oracle9iAS Containers for J2EE Enterprise JavaBeans Guide
» Oracle9iAS Containers for [2EE Services Guide

11

Creating Oracle Streams AQ Applications
Using JMS

This chapter describes the Oracle Java Message Service (JMS) interface to Oracle
Streams Advanced Queuing (AQ).

This chapter contains these topics:

General Features of JMS and Oracle J]MS
Structured Payload /Message Types in JMS
JMS Point-to-Point Model Features

JMS Publish /Subscribe Model Features
JMS MessageProducer Features

JMS Message Consumer Features

JMS Propagation

Message Transformation with J]MS AQ

Creating Oracle Streams AQ Applications Using JMS

General Features of JMS and Oracle JMS

General Features of JMS and Oracle JMS

This section contains these topics:

J2EE Compliance

J2EE Compliance

JMS Connection and Session

JMS Destination

System-Level Access Control in JMS
Destination-Level Access Control in JMS

Retention and Message History in JMS

Supporting Oracle Real Application Clusters in JMS
Supporting Statistics Views in JMS

In Oracle Database 10g, Oracle JMS conforms to the Sun Microsystems JMS 1.1
standard. You can define the J2EE compliance mode for an Oracle Java Message
Service (OJMS) client at run time. For compliance, set the Java property
"oracle.jms.j2eeCompliant" to TRUE as a command line option. For
noncompliance, do nothing. FALSE is the default value.

Features in Oracle Streams AQ that support J2EE compliance (and are also available
in the noncompliant mode) include:

Nontransactional sessions
Nondurable subscribers
Temporary queues and topics
Nonpersistent delivery mode

Multiple JMS messages types on a single JMS queue or topic (using Oracle
Streams AQ queues of the AQ$_JMS MESSAGE type)

The noLocal option for durable subscribers

11-2 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

See Also:

» Java Message Service Specification, version 1.1, March 18, 2002,
Sun Microsystems, Inc.

» http://otn.oracle.com/docs/products/ag/doc
library/ojms/index.html for more information on Oracle
JMS

Features of IMSPriority, JMSExpiration, and nondurable subscribers vary
depending on which mode you use.

JMSPriority

Table 11-1 shows how JMSPriority values depend on whether you are running
the default, noncompliant mode or the compliant mode, in which you set the
compliance flag to TRUE.

Table 11-1 JMSPriority

Priority = Noncompliant Mode Compliant Mode

Lowest java.lang.Integer.MAX VALUE 0
Highest java.lang.Integer.MIN VALUE 9
Default 1 4

JMSExpiration

JMSExpiration values depend on whether you are running the default,
noncompliant mode or the compliant mode, in which you set the compliance flag to
TRUE.

In noncompliant mode, the IMSExpiration header value is the sum of the
enqueue time and the TimeToLive, as specified in the JMS specification when a
message is enqueued. When a message is received, the duration of the expiration
(not the expiration time) is returned. If a message never expires, then -1 is
returned.

In compliant mode, the IMSExpiration header value in a dequeued message is
the sum of the JMS time stamp when the message was enqueued (Greenwich Mean
Time, in milliseconds) and the TimeToLive (in milliseconds). If a message never
expires, then 0 is returned.

Creating Oracle Streams AQ Applications Using JMS 11-3

General Features of JMS and Oracle JMS

Durable Subscribers

Durable subscriber action, when subscribers use the same name, depends on
whether you are running the default, noncompliant mode or the compliant mode,
in which you set the compliance flag to TRUE.

In noncompliant mode, two durable TopicSubscribers with the same name can be
active against two different topics.

In compliant mode, durable subscribers with the same name are not allowed. If two
subscribers use the same name and are created against the same topic, but the
selector used for each subscriber is different, then the underlying Oracle Streams
AQ subscription is altered using the internal DBMS AQJMS.ALTER

SUBSCRIBER () call.

If two subscribers use the same name and are created against two different topics,
and if the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new
subscription is created.

If two subscribers use the same name and are created against two different topics,
and if a different client (a client that did not originate the subscription name) uses
an existing subscription name, then the subscription is not dropped and an error is
thrown. Because it is not known if the subscription was created by JMS or PL/SQL,
the subscription on the other topic should not be dropped.

JMS Connection and Session

This section contains these topics:

= ConnectionFactory Objects

s Using AQjmsFactory to Obtain ConnectionFactory Objects
= Using JNDI to Look Up ConnectionFactory Objects

s JMS Connection

s JMS Session

= JMS Connection Examples

11-4 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

ConnectionFactory Objects

A ConnectionFactory encapsulates a set of connection configuration parameters
that has been defined by an administrator. A client uses it to create a connection
with a JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS
provider.

The three types of ConnectionFactory objects are:

s ConnectionFactory

n QueueConnectionFactory

m TopicConnectionFactory

You can obtain ConnectionFactory objects two different ways:
s Using AQjmsFactory to Obtain ConnectionFactory Objects

= Using JNDI to Look Up ConnectionFactory Objects

Using AQjmsFactory to Obtain ConnectionFactory Objects

You can use the AQjmsFactory class to obtain a handle to a
ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and
publish/subscribe operations, use

AQjmsFactory.getConnectionFactory ()

To obtain a QueueConnectionFactory, use

AQjmsFactory.getQueueConnectionFactory ()

To obtain a TopicConnectionFactory, use
AQjmsFactory.getTopicConnectionFactory ()
The ConnectionFactory, QueueConnectionFactory, or

TopicConnectionFactory can be created using hostname, port number, and SID
driver or by using JDBC URL and properties.

Example 11-1 JMS: Getting a Queue Connection Factory for a Database

public static void get Factory() throws JMSException

{

QueueConnectionFactory gc_fact = null;

Creating Oracle Streams AQ Applications Using JMS 11-5

General Features of JMS and Oracle JMS

/* get queue connection factory for database "agdb", host "sun-123",

port 5521, driver "thin" */

gc_fact = AQjmsFactory.getQueueConnectionFactory("sun-123", "agdb",
5521, "thin");

Using JNDI to Look Up ConnectionFactory Objects

A JMS administrator can register ConnectionFactory objects in a Lightweight
Directory Access Protocol (LDAP) server. The following setup is required to enable
Java Naming and Directory Interface (JNDI) lookup in JMS:

= Register Database
s Set Parameter GLOBAL_TOPIC_ENABLED

= Register ConnectionFactory Objects

Register Database When the Oracle Database server is installed, the database
must be registered with the LDAP server. This can be accomplished using the
Database Configuration Assistant (DBCA). Figure 11-1 shows the structure of
Oracle Streams AQ entries in the LDAP server. ConnectionFactory information
is stored under <cn=OracleDBConnections>, while topics and queues are stored
under <cn=0racleDBQueues>.

Figure 11-1 Structure of Oracle Streams AQ Entries in LDAP Server

<cn=acme, ch=com> | (administrative context)

<cn=OracleContext> | (root of oracle RDBMS schema)

<cn=db1> (database)
<cn=0racleDBConnections> <cn=0racleDBQueue> <cn=...>
(Connection Factories) (Queues / Topics) (Other db objects)

Set Parameter GLOBAL_TOPIC_ENABLED The GLOBAL TOPIC ENABLED
system parameter for the database must be set to TRUE. This ensures that all queues

11-6 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

and topics created in Oracle Streams AQ are automatically registered with the
LDAP server. This parameter can be set by using

ALTER SYSTEM SET GLOBAL_ TOPICS ENABLED = TRUE

Register ConnectionFactory Objects After the database has been set up to use an
LDAP server, the JMS administrator can register ConnectionFactory,
QueueConnectionFactory, and TopicConnectionFactory objects in LDAP
by using:

AQjmsFactory.registerConnectionFactory ()

The registration can be accomplished in one of the following ways:
= Connect directly to the LDAP server

The user must have the GLOBAL AQ USER_ROLE to register connection
factories in LDAP

To connect directly to LDAP, the parameters for the
registerConnectionFactory method include the LDAP context, the name
of the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

= Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database update
the LDAP entry. The user that logs on to the database must have the 20
ADMINISTRATOR ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
registerConnectionFactory method include a JDBC connection (to a user
having AQ ADMINISTRATOR ROLE), the name of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory, hostname,
database SID, port number, JDBC driver (thin or oci8) and factory type (queue
or topic).

After the ConnectionFactory objects have been registered in LDAP by a JMS
administrator, they can be looked up by using JNDI

Creating Oracle Streams AQ Applications Using JMS 11-7

General Features of JMS and Oracle JMS

Example 11-2 Registering a Order Entry Queue Connection Factory in LDAP

Suppose the JMS administrator wants to register an order entry queue connection
factory, oe_queue_factory. In LDAP, it can be registered as follows:

public static void register Factory in LDAP() throws Exception

{

}

Hashtable env = new Hashtable(5, 0.75f);
env.put (Context.INITIAL CONTEXT FACTORY, AQjmsConstants.INIT_CTX_FACTORY);

// agldapserv is your LDAP host and 389 is your port
env.put (Context.PROVIDER URL, "ldap://agldapserv:389);

// now authentication information

// username/password scheme, user is OE, password is OE

env.put (Context.SECURITY AUTHENTICATION, "simple") ;
env.put(Context.SECURITY_PRINCIPAL, "cn=0e, cn=users, cn=acme, cn=com") ;
env.put(Context.SECURITY_CREDENTIALS, "oe") ;

/* register queue connection factory for database "agdb", host "sun-123",

port 5521, driver "thin" */

AQjmsFactory.registerConnectionFactory(env, "oe queue factory", "sun-123",
"agdb", 5521, "thin", "queue");

After order entry, queue connection factory oe_queue_factory has been
registered in LDAP:; it can be looked up as follows:

public static void get Factory from LDAP() throws Exception

{

Hashtable env = new Hashtable(5, 0.75f);
env.put(ConteXt.INITIAL_CONTEXT_FACTORY, AQijConstants.INIT_CTX_FACTORY);

// agldapserv is your LDAP host and 389 is your port
env.put (Context.PROVIDER URL, "ldap://agldapserv:389);

// now authentication information

// username/password scheme, user is OE, password is OE

env.put (Context.SECURITY AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=0e,cn=users, cn=acme, cn=com") ;
env.put (Context.SECURITY CREDENTIALS, "oe");

DirContext inictx = new InitialDirContext (env) ;
// initialize context with the distinguished name of the database server
inictx=(DirContext) inictx.lookup ("cn=dbl, cn=OracleContext, cn=acme, cn=com") ;

11-8 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

//go to the connection factory holder cn=OraclDBConnections
DirContext connctx = (DirContext)inictx.lookup ("cn=OracleDBConnections");

// get connection factory "oe queue factory"
QueueConnectionFactory gc_fact =
(QueueConnectionFactory) connctx.lookup ("cn=oe queue factory");

JMS Connection
A JMS Connectionis a client's active connection to its JMS provider. A JMS
Connection performs several critical services:

= Encapsulates either an open connection or a pool of connections with a JMS
provider

= Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider's service daemon

= Provides a structure for authenticating clients at the time of its creation
s Creates Sessions

= Provides connection metadata

= Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking
createConnection (), createQueueConnection (), or
createTopicConnection () and passing the parameters username and
password on the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object respectively.

Connection Setup A JMS client typically creates a Connection, Sessionand a
number of MessageProducers and MessageConsumers. In the current version
only one open session for each connection is allowed, except in the following cases:

n If the JDBC oci8 driver is used to create the JMS connection

» If the user provides an OracleOCIConnectionPool instance during JMS
connection creation

When a Connection is created it is in stopped mode. In this state no messages can
be delivered to it. It is typical to leave the Connection in stopped mode until setup
is complete. At that point the Connection start () method is called and
messages begin arriving at the Connection consumers. This setup convention

Creating Oracle Streams AQ Applications Using JMS 11-9

General Features of JMS and Oracle JMS

minimizes any client confusion that can result from asynchronous message delivery
while the client is still in the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that
do this must be prepared to handle asynchronous message delivery while they are
still in the process of setting up. A MessageProducer can send messages while a
Connection is stopped.

Some of the methods that are supported on the Connection object are
= start (), which starts or restart delivery of incoming messages
= stop (), which temporarily stops delivery of incoming messages

When a Connection object is stopped, delivery to all of its message consumers
is inhibited. Also, synchronous receive's block and messages are not delivered
to message listener.

s close (), which closes the JMS session and releases all associated resources

s createSession(true, 0),which createsaJMS Session using a JMS
Connection instance

m createQueueSession (true, 0), which creates a QueueSession
» createTopicSession (true, 0), which creates a TopicSession

m setExceptionListener (ExceptionListener), which sets an exception
listener for the connection

This allows a client to be asynchronously notified of a problem. Some
connections only consume messages, so they have no other way to learn the
connection has failed.

= getExceptionListener (), which gets the ExceptionListener for this
connection

JMS Session

A Connectionis a factory for Sessions that use its underlying connection to a
JMS provider for producing and consuming messages. A JMS Session is a single
threaded context for producing and consuming messages. Although it can allocate
provider resources outside the Java Virtual Machine (JVM), it is considered a
light-weight JMS object.

11-10 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

A Session serves several purposes:

= Constitutes a factory for its MessageProducers and MessageConsumers
= Provides a way to get a handle to destination objects (queues/topics)

= Supplies provider-optimized message factories

= Supports a single series of transactions that combines work spanning this
session's MessageProducers and MessageConsumers, organizing these into
units

= Defines a serial order for the messages it consumes and the messages it
produces

= Serializes execution of MessageListeners registered with it

In Oracle Database 10g, you can create as many JMS Sessions as resources allow
using a single JMS Connection, when using either jdbc thin or jdbc thick (OCI)
drivers.

Because a provider can allocate some resources on behalf of a Session outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The
same is true for the MessageProducers and MessageConsumers created by a
Session.

Methods on the Session object include:

= commit (), which commits all messages performed in this transaction and
releases locks currently held

= rollback (), which rolls back any messages accomplished in the transaction
and release locks currently held

s close (), which closes the session
= getDBConnection (), which gets a handle to the underlying JDBC connection

This handle can be used to perform other SQL DML operations as part of the
same Session. The method is specific to Oracle JMS.

= acknowledge (), which acknowledges message receipt in a nontransactional
session

s recover (), which restarts message delivery in a nontransactional session

In effect, the series of delivered messages in the Session is reset to the point
after the last acknowledged message.

Creating Oracle Streams AQ Applications Using JMS 11-11

General Features of JMS and Oracle JMS

The following are some Oracle JMS extensions:

createQueueTable () creates a queue table
getQueueTable () gets a handle to an existing queue table
createQueue () creates a queue

getQueue () gets a handle to an existing queue
createTopic () creates a topic

getTopic () gets a handle to an existing topic

The Session object must be cast to AQjmsSession to use any of the extensions.

Note: The JMS specification expects providers to return null
messages when receives are accomplished on a JMS connection
instance that has not been started.

After you create a javax.jms.Connection instance, you must
call the start () method on it before you can receive messages. If
you add a line like t _conn.start () ; any time after the
connection has been created, but before the actual receive, then you
can receive your messages.

JMS Connection Examples
The following code illustrates how some of the preceding calls are used.

Example 11-3 JMS: Creating and Starting Queues and Queue Connections

public static void bol example (String ora sid, String host, int port,

{

Que
Que
Que
AQQ
AQQ
AQj
Que
Byt

try

String driver)

ueConnectionFactory gc_fact = null;
ueConnection g_conn = null;
ueSession g_sess = null;
ueueTableProperty gt prop = null;
ueueTable g table = null;
msDestinationProperty dest prop = null;
ue queue = null;
esMessage bytes msg = null;

11-12 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

/* get queue connection factory */
gc_fact = AQjmsFactory.getQueueConnectionFactory (host, ora sid,
port, driver);

/* create queue connection */
g_conn = gc_fact.createQueueConnection("boluser", "boluser");

/* create QueueSession */
g_sess = g_conn.createQueueSession(true, Session.CLIENT ACKNOWLEDGE) ;

/* start the queue connection */
g _conn.start () ;

gt_prop = new AQQueueTableProperty("SYS.AQ$ JMS BYTES MESSAGE") ;

/* create a queue table */

g _table = ((AQjmsSession)q_sess) .createQueueTable ("boluser",
"bol ship queue table",
gt_prop) ;

dest prop = new AQjmsDestinationProperty();

/* create a queue */
queue = ((AQjmsSession)q_sess) .createQueue (g table, "bol ship queue",
dest prop) ;

/* start the queue */
((AQjmsDestination)queue) .start (q_sess, true, true);

/* create a bytes message */
bytes msg = g sess.createBytesMessage() ;

/* close session */
g_sess.close() ;

/* close connection */
g conn.close() ;

}

catch (Exception ex)

{

System.out.println("Exception: " + ex);

}
}

Creating Oracle Streams AQ Applications Using JMS 11-13

General Features of JMS and Oracle JMS

JMS Destination

A Destinationis an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages. A Destination object
can be a Queue or a Topic. In Oracle Streams AQ, these map to a schema . queue
at a specific database. Queue maps to a single-consumer queue, and Topic maps to
a multiconsumer queue.

Destination objects can be obtained in one of the following ways:
= Using a JMS Session to Obtain Destination Objects
= Using JNDI to Look Up Destination Objects

Using a JMS Session to Obtain Destination Objects

Destination objects are created from a Session object using domain-specific
Session methods:

= AQjmsSession.getQueue (queue owner, queue_ name) gets a handle to
a JMS queue

= AQjmsSession.getTopic(topic owner, topic_name) gets a handle to
a JMS topic

Using JNDI to Look Up Destination Objects

The database can be configured to register schema objects with an LDAP server. If a
database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED
parameter has been set to TRUE, then all JMS queues and topics are automatically
registered with the LDAP server when they are created.

The administrator can also create aliases to the queues and topics registered in
LDAP using the DBMS_AQAQDM.add_alias_to_ldap PL/SQL procedure.

Queues and topics that are registered in LDAP can be looked up through JNDI
using the name or alias of the queue or topic.

JMS Destination Methods

Methods on the Destination object include:
s alter (), which alters a Queue or a Topic

= schedulePropagation (), which schedules propagation from a source to a
destination

11-14 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

= unschedulePropagation (), which unschedules a previously scheduled
propagation

= enablePropagationSchedule (), which enables a propagation schedule
= disablePropagationSchedule (), which disables a propagation schedule
s start (), which starts a Queue or a Topic

= The queue can be started for enqueue or dequeue. The topic can be started for
publish or subscribe.

= stop (), which stops a Queue ora Topic

The queue is stopped for enqueue or dequeue. The topic is stopped for publish
or subscribe.

drop (), which drops a Queue or a Topic

JMS Destination Examples
The following code illustrates how some of the preceding calls are used.

Example 11-4 JMS: Using JNDI to Lookup Destination Objects

Suppose we have a new orders queue OE.OE_neworders_que stored in LDA. It
can be looked up as follows:

public static void get Factory from LDAP() throws Exception
Hashtable env = new Hashtable(5, 0.75f);
env.put (Context.INITIAL CONTEXT FACTORY, AQjmsConstants.INIT CTX FACTORY);

// agldapserv is your LDAP host and 389 is your port
env.put (Context.PROVIDER URL, "ldap://agldapserv:389);

// now authentication information

// username/password scheme, user is OE, password is OE

env.put (Context.SECURITY AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=0e,cn=users, cn=acme, cn=com") ;
env.put (Context.SECURITY CREDENTIALS, "oe");

DirContext inictx = new InitialDirContext (env);
// initialize context with the distinguished name of the database server

inictx=(DirContext) inictx.lookup ("cn=dbl, cn=OracleContext, cn=acme, cn=com") ;

// go to the destination holder
DirContext destctx = (DirContext)inictx.lookup ("cn=OracleDBQueues");

Creating Oracle Streams AQ Applications Using JMS 11-15

General Features of JMS and Oracle JMS

// get the destination OE.OE new orders queue
Queue myqueue = (Queue)destctx.lookup ("cn=0E.OE new orders que");

Example 11-5 JMS: Using JNDI to Perform Various Operations on a Destination
Object

public static void setup example (TopicSession t_sess)

{

AQQueueTableProperty gt prop = null;
AQQueueTable g _table = null;
AQjmsDestinationProperty dest prop = null;
Topic topic = null;
TopicConnection t_conn = null;
try

{
gt_prop = new AQQueueTableProperty ("SYS.AQ$ JMS BYTES MESSAGE") ;
/* create a queue table */

g table = ((AQjmsSession)t sess).createQueueTable ("boluser",
"bol ship queue table",
gt_prop) ;

dest prop = new AQjmsDestinationProperty();

/* create a topic */

topic = ((AQjmsSession)t sess).createTopic(qg table, "bol ship queue",
dest prop) ;

/* start the topic */
((AQjmsDestination)topic) .start (t_sess, true, true);

/* schedule propagation from topic "boluser" to the destination
dblink "dba" */
((AQjmsDestination)topic) .schedulePropagation(t_ sess, "dba", null,
null, null, null);
/*
some processing accomplished here
*/
/* Unschedule propagation */
((AQjmsDestination)topic) .unschedulePropagation(t_sess, "dba");
/* stop the topic */
((AQjmsDestination)topic).stop(t_sess, true, true, true);
/* drop topic */

11-16 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

((AQjmsDestination)topic).drop(t_sess);
/* drop queue table */

g _table.drop (true);

/* close session */

t sess.close();

/* close connection */

t conn.close();

}

catch (Exception ex)

{

System.out.println("Exception: " + ex);

}
}

System-Level Access Control in JMS

Oracle8i or higher supports system-level access control for all queuing operations.
This feature allows an application designer or DBA to create users as queue
administrators. A queue administrator can invoke administrative and operational
JMS interfaces on any queue in the database. This simplifies administrative work,
because all administrative scripts for the queues in a database can be managed
under one schema.

See Also: "Oracle Enterprise Manager Support" on page 5-10

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant enqueue privileges to the
destination queues to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database
link in the address field of the agent structure) should either be granted the
ENQUEUE_ANY privilege, or be granted the rights to enqueue to the destination
queue. However, you are not required to grant any explicit privileges if the login
user in the database link also owns the queue tables at the destination.

Destination-Level Access Control in JMS

Oracle8i or higher supports access control for enqueue and dequeue operations at
the queue or topic level. This feature allows the application designer to protect
queues and topics created in one schema from applications running in other
schemas. You must grant only minimal access privileges to the applications that run

Creating Oracle Streams AQ Applications Using JMS 11-17

General Features of JMS and Oracle JMS

outside the schema of the queue or topic. The supported access privileges on a
queue or topic are ENQUEUE, DEQUEUE and ALL.

See Also: "Oracle Enterprise Manager Support" on page 5-10

Retention and Message History in JMS

Oracle Streams AQ allows users to retain messages in the queue table. This means
that SQL can then be used to query these messages for analysis. Messages are often
related to each other. For example, if a message is produced as a result of the
consumption of another message, then the two are related. As the application
designer, you may want to keep track of such relationships. Along with retention
and message identifiers, Oracle Streams AQ lets you automatically create message
journals, also called tracking journals or event journals. Taken together, retention,
message identifiers and SQL queries make it possible to build powerful message
warehouses.

Example 11-6 JMS: Analyzing Retention and Message History in Oracle Streams AQ

Suppose that the shipping application must determine the average processing times
of orders. This includes the time the order must wait in the backed_order topic.
Specifying the retention as TRUE for the shipping queues and specifying the order
number in the correlation field of the message, SQL queries can be written to
determine the wait time for orders in the shipping application.

For simplicity, we analyze only orders that have already been processed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_topic and the enqueue time in the
WS shipped orders topic.

SELECT SUM(SO.enqg time - BO.eng time) / count (*) AVG PRCS_TIME
FROM WS.AQSWS orders pr mgtab BO , WS.AQSWS orders mgtab SO
WHERE SO.msg_state = 'PROCESSED' and BO.msg_state = 'PROCESSED'
AND SO.corr_id = BO.corr_id and SO.queue = 'WS_shippedorders_topic';

/* Average waiting time in the backed order queue: */
SELECT SUM(BACK.deq_time - BACK.eng_ time)/count (*) AVG BACK TIME
FROM WS.AQSWS orders mgtab BACK
WHERE BACK.msg state = 'PROCESSED' AND BACK.queue = 'WS_backorders_topic';

11-18 Oracle Streams Advanced Queuing User’s Guide and Reference

General Features of JMS and Oracle JMS

Supporting Oracle Real Application Clusters in JMS

Oracle Real Application Clusters can be used to improve Oracle Streams AQ
performance by allowing different queues to be managed by different instances.
You do this by specifying different instance affinities (preferences) for the queue
tables that store the queues. This allows queue operations (enqueue/dequeue) or
topic operations (publish/subscribe) on different queues or topics to occur in
parallel.

The Oracle Streams AQ queue monitor process continuously monitors the instance
affinities of the queue tables. The queue monitor assigns ownership of a queue table
to the specified primary instance if it is available, failing which it assigns it to the
specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Streams AQ propagation is able to make use of Real Application Clusters,
although it is transparent to the user. The affinities for jobs submitted on behalf of
the propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus, a job_queue_process associated with the owner
instance of a queue table is handling the propagation from queues stored in that
queue table, thereby minimizing pinging.

See Also:
= "Scheduling a Queue Propagation" on page 8-32

» Oracle Real Application Clusters Installation and Configuration
Guide

Supporting Statistics Views in JMS

Each instance keeps its own Oracle Streams AQ statistics information in its own
System Global Area (SGA), and does not have knowledge of the statistics gathered
by other instances. Then, when a GVSAQ view is queried by an instance, all other
instances funnel their statistics information to the instance issuing the query.

Example 11-7 JMS: Querying Oracle Streams AQ Statistics Views

The GV$AQ view can be queried at any time to see the number of messages in
waiting, ready or expired state. The view also displays the average number of
seconds messages have been waiting to be processed. The order processing
application can use this to dynamically tune the number of order-processing
processes.

Creating Oracle Streams AQ Applications Using JMS 11-19

Structured Payload/Message Types in JMS

CONNECT oe/oe

/* Count the number as messages and the average time for which the messages

have been waiting: */

SELECT READY, AVERAGE WAIT
FROM gv$aq Stats, user queues Qs
WHERE Stats.gid = Qs.qgid and Qs.Name = 'OE neworders que';

See Also: "Number of Messages in Different States for the Whole
Database View" on page 9-17

Structured Payload/Message Types in JMS

JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and
providers to identify and route messages. All messages support the same set of
header fields.

Properties are optional header fields. In addition to standard properties defined by
JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads,
and a type that can store JMS messages of any or all JMS-specified message types.

JMS Message Headers

A JMS connection can contain only a header; a message body is not required. The
message header contains the following fields:

JMSDestination contains the destination to which the message is sent. In
Oracle Streams AQ this corresponds to the destination queue/topic.

JMSDeliveryMode determines whether the message is logged or not. JMS
supports persistent delivery (where messages are logged to stable storage) and
nonpersistent delivery (messages not logged). Oracle Streams AQ supports
persistent message delivery. JMS permits an administrator to configure JMS to
override the client-specified value for IMSDeliveryMode.

JMSMessageID uniquely identifies a message in a provider. All message IDs
must begin with the string ID:.

JMSTimeStamp contains the time the message was handed over to the provider
to be sent. This maps to Oracle Streams AQ message enqueue time.

11-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payload/Message Types in JMS

JMSCorrelationID can be used by a client to link one message with another.

JMSReplyTo contains a destination supplied by a client when a message is
sent. Clients can use the following types to specify the ReplyTo destination:
oracle.jms.AQjmsAgent; javax.jms.Queue; and javax.jms.Topic.

JMSType contains a message type identifier supplied by a client at send time.
For portability Oracle recommends that the JMSType be symbolic values.

JMSExpiration is the sum of the enqueue time and the TimeToLive in
non-J2EE compliance mode. In compliant mode, the IMSExpiration header
value in a dequeued message is the sum of the JMS time stamp when the
message was enqueued (Greenwich Mean Time, in milliseconds) and the
TimeToLive (in milliseconds). JMS permits an administrator to configure JMS to
override the client-specified value for IMSExpiration.

JMSPriority contains the priority of the message. In J2EE-compliance mode,
the permitted values for priority are 0-9, with 9 the highest priority and 4 the
default, in conformance with the Sun Microsystem JMS 1.1 standard.
Noncompliant mode is the default. JMS permits an administrator to configure
JMS to override the client-specified value for IMSPriority.

JMSRedelivered is a Boolean set by the JMS provider.

See Also: "J2EE Compliance" on page 11-2

Table 11-2 lists the type and use of each JMS message header field and shows by
whom it is set.

Table 11-2 JMS Message Header Fields

Message Header Field Type Set by Use

JMSDestination Destination JMS after Send method Destination to which message is sent
has completed

JMSDeliveryMode int JMS after Send method Delivery mode (PERSISTENT or
has completed NONPERSISTENT)

JMSExpiration long JMS after Send method Expiration time can be specified for a
has completed message producer or can be explicitly

specified during each send or publish

JMSPriority int JMS after Send method Message priority can be specified for a

has completed MessageProducer or can be explicitly

specified during each send or publish

Creating Oracle Streams AQ Applications Using JMS 11-21

Structured Payload/Message Types in JMS

Table 11-2 (Cont.) JMS Message Header Fields

Message Header Field Type Set by

Use

JMSMessageID String JMS after Send method
has completed

JMSTimeStamp long JMS after Send method
has completed

Uniquely identifies each message sent by
the provider

Time message is handed to provider to be
sent

JMSCorrelationID String JMS client Links one message with another

JMSReplyTo Destination JMS client Destination where a reply to the message
should be sent. It can be specified as
AQjmsAgent, javax.jms.Queue, Or
javax.jms.Topic types

JMSType String JMS client Message type identifier

JMSRedelivered Boolean JMS provider Message probably was delivered earlier,
but the client did not acknowledge it at
that time

JMS Message Properties

Properties add optional header fields to a message. Properties allow a client, using
message selectors, to have a JMS provider select messages on its behalf using
application-specific criteria. Property names are strings and values can be:
Boolean, byte, short, int, long, float, double, and string.

JMS-defined properties, which all begin with "gMSXx", include the following:

= JMSXUserID is the identity of the user sending the message.

= JMSXAppID is the identity of the application sending the message.

= JMSXDeliveryCount is the number of message delivery attempts.

= JMSXGroupid is set by the client and refers to the identity of the message

group that this message belongs to.

= JMSXGroupSeq is the sequence number of a message within a group.

= JMSXRcvTimeStamp is the time the message was delivered to the consumer

(dequeue time).

= JMSXState is the message state, set by the provider. The message state can be
WAITING, READY, EXPIRED, or RETAINED.

Table 11-3 lists the type and use of each JMS standard message property and shows

by whom it is set.

11-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payload/Message Types in JMS

Table 11-3 JMS Defined Message Properties

JMS Defined Message

Property Type Set by Use
JMSXUserID String JMS after Send method has Identity of user sending
completed message
JMSAppID String JMS after Send method has Identity of application
completed sending message
JMSDeliveryCount int JMS after Receive method has Number of message delivery
completed attempts
JMSXGroupID String JMS client Identity of message group to
which message belongs
JMSXGroupSeq int JMS client Sequence number of message
within group
JMSXRcvTimeStamp String JMS after Receive method has Time that JMS delivered
completed message to consumer
JMSXState int JMS provider Message state set by provider

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the

following:

= JMS_ OracleExcpQ is the queue name to send the message to if it cannot be
delivered to the original destination. Only destinations of type EXCEPTION can

be specified in the JMS_OracleExcpQ property.

= JMS_OracleDelay is the time in seconds to delay the delivery of the message.
This can affect the order of message delivery.

= JMS_OracleOriginalMessageId is set to the message ID of the message in
the source if the message is propagated from one destination to another. If the
message is not propagated, then this property has the same value as the

JMSMessageId.

A client can add additional header fields to a message by defining properties. These
properties can then be used in message selectors to select specific messages.

JMS properties or header fields are set either explicitly by the client or automatically
by the JMS provider (these are generally read-only). Some JMS properties are set
using the parameters specified in send and receive operations.

Creating Oracle Streams AQ Applications Using JMS 11-23

Structured Payload/Message Types in JMS

Table 11-4 Oracle Defined Message Properties

Header Field/Property Type Set by Use

JMS_OracleExcpQ String JMS client Specifies the name of the exception
queue

JMS OracleDelay int JMS client Specifies the time (seconds) after

which the message should become
available to the consumers

JMS OracleOriginalMessageID String JMS provider Specifies the message ID of the

message in source when the
messages are propagated from one
destination to another

JMS Message Body

JMS provides five forms of message body:

StreamMessage - a message whose body contains a stream of Java primitive
values. It is filled and read sequentially.

BytesMessage - a message whose body contains a stream of uninterpreted
bytes. This message type is for directly encoding a body to match an existing
message format.

MapMessage - a message whose body contains a set of name-value pairs.
Names are strings and values are Java primitive types. The entries can be
accessed sequentially by enumerator or randomly by name.

TextMessage - a message whose body contains a java.lang.String.
ObjectMessage - a message that contains a serializable Java object.
ADTmessage - a message whose body contains an Oracle object type
(AdtMessage type has been added in Oracle JMS).

See Also:

» Chapter 16, "Oracle Streams AQ JMS Types Examples"

» PL/SQL Packages and Types Reference JMS Types chapter.

The AQ$_JMS_MESSAGE Type

This type can store JMS messages of all the J]MS-specified message types:
JMSStream, JMSBytes, JMSMap, JMSText, and JMSObject. You can create a
queue table of AQ$ JMS MESSAGE type, but use any message type.

11-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payload/Message Types in JMS

JMS Message Body: Stream Message

A StreamMessage is used to send a stream of Java primitives. It is filled and read
sequentially. It inherits from Message and adds a stream message body. Its methods
are based largely on those found in java.io.DataInputStreamand
java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type.
They can also be read or written generically as objects. To use Stream Messages,
create the queue table with the SYS.AQ$ JMS_ STREAM MESSAGE or AQS_JMS_
MESSAGE payload types.

Stream messages support the following conversion table. A value written as the row
type can be read as the column type.

Table 11-5 Stream Message Conversion

Input Boolean byte short char int long float double String Dbyte[]
Boolean X - - - - - - - X -
byte - X X - X X - - X -
short - - X - X X - - X -
char - - - X - - - - X -
int - - - - X X - X -
long - - - - - X - - X -
float - - - - - - X X X -
double - - - - - - - X X -
string X X X X X X X X X -
bytel] - - - - - - - - - X

JMS Message Body: Bytes Message

A BytesMessage is used to send a message containing a stream of uninterpreted
bytes. It inherits Message and adds a bytes message body. The receiver of the
message supplies the interpretation of the bytes. Its methods are based largely on
those found in java.io.DataInputStreamand
java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible,
one of the other self-defining message types should be used instead.

Creating Oracle Streams AQ Applications Using JMS 11-25

Structured Payload/Message Types in JMS

The primitive types can be written explicitly using methods for each type. They can
also be written generically as objects. To use Bytes Messages, create the queue table
with SYS.AQ$ JMS BYTES MESSAGE or AQ$ JMS MESSAGE payload types.

JMS Message Body: Map Message

A MapMessage is used to send a set of name-value pairs where names are Strings
and values are Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined. It inherits from Message
and adds a map message body. The primitive types can be read or written explicitly
using methods for each type. They can also be read or written generically as objects.

To use Map Messages, create the queue table with the SYS.AQ$ JMS MAP
MESSAGE or AQ$ JMS MESSAGE payload types. Map messages support the
following conversion table. A value written as the row type can be read as the
column type.

Table 11-6 Map Message Conversion

Input Boolean byte short char int long float double String byte[]
Boolean X - - - - - - - X -
byte - X X - X X - - X -
short - - X - X X - - X -
char - - - X - - - - X -
int - - - - X X - - X -
long - - - - - X - - X -
float - - - - - - X X X -
double - - - - - - - X X -
string X X X X X X X X X -
byte[] - - - - - - - - - X

JMS Message Body: Text Message

A TextMessage is used to send a message containing a
java.lang.StringBuffer. It inherits from Message and adds a text message
body. The text information can be read or written using methods getText () and
setText (...). To use Text Messages, create the queue table with the SYS.AQ$
JMS_TEXT MESSAGE or AQ$_JMS_MESSAGE payload types.

11-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payload/Message Types in JMS

JMS Message Body: Object Message

An ObjectMessage is used to send a message that contains a serializable Java object.
It inherits from Message and adds a body containing a single Java reference. Only
serializable Java objects can be used. If a collection of Java objects must be sent, then
one of the collection classes provided in JDK 1.4 can be used. The objects can be
read or written using the methods getObject () and setObject (...) . To use
Object Messages, create the queue table with the SYS.AQ$ JMS_OBJECT MESSAGE
or AQs_JMS_MESSAGE payload types.

Example 11-8 JMS: Processing an ObjectMessage Body

public void enqueue new_orders (QueueSession jms_session, BolOrder new order)

{

QueueSender sender;
Queue queue;
ObjectMessage obj message;

try

{

/* get a handle to the new orders queue */

queue = ((AQjmsSession) jms_session).getQueue("OE", "OE neworders que");
sender = jms_session.createSender (queue) ;

obj message = jms_session.createObjectMessage() ;

obj message.setJMSCorrelationID ("RUSH") ;

obj message.setObject (new order);

jms_session.commit () ;

}

catch (JMSException ex)

{

System.out.println("Exception: " + ex);

}

JMS Message Body: AdtMessage

An AdtMessage is used to send a message that contains a Java object that maps to
an Oracle object type. These objects inherit from Message and add a body
containing a Java object that implements the CustomDatum or ORAData interface.

See Also: Oracle Database Java Developer’s Guide for information
about the CustomDatum and ORAData interfaces

Creating Oracle Streams AQ Applications Using JMS 11-27

Structured Payload/Message Types in JMS

To use AdtMessage, create the queue table with payload type as the Oracle object
type. The AdtMessage payload can be read and written using the getAdtPayload
and setAdtPayload methods.

You can also use an AdtMessage to send messages to queues of type SYS . XMLType.
You must use the oracle.xdb.XMLType class to create the message.

Using Message Properties with Different Message Types

The following message properties can be set by the client using the setProperty
call. For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and
MapMessage, the client can set:

s JMSXAppID

s JMSXGroupID

s JMSXGroupSeq

s JMS OracleExcpQ

m JMS OracleDelay

For AdtMessage, the client can set:
s JMS OracleExcpQ

m JMS OracleDelay

The following message properties can be obtained by the client using the
getProperty call. For StreamMessage, BytesMessage, ObjectMessage,
TextMessage, and MapMessage, the client can get:

s JMSXuserID

s JMSXAppID

s JMSXDeliveryCount
s JMSXGroupID

s JMSXGroupSeq

s JMSXRecvTimeStamp
s JMSXState

m JMS OracleExcpQ

m JMS OracleDelay

s JMS OracleOriginalMessageID

11-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Structured Payload/Message Types in JMS

For AdtMessage, the client can get:

JMSXDeliveryCount
JMSXRecvTimeStamp
JMSXState
JMS_OracleExcpQ

JMS_OracleDelay

The following JMS properties and header fields that can be included in a Message
Selector. For QueueReceiver, TopicSubscriber and TopicReceiver on
queues containing JMS type payloads, any SQL92 where clause of a string that
contains:

JMSPriority (int)

JMSCorrelationID (String)

JMSMessageID (String) - only for QueueReceiver and TopicReceiver
JMSTimestamp (Date)

JMSType (String)

JMSXUserID (String)

JMSXAppID (String)

JMSXGroupID (String)

JMSXGroupSeq (int)

Any user-defined property in JMS message

For QueueReceiver, TopicSubscriber and TopicReceiver on queues
containing Oracle object type payloads, use Oracle Streams AQ rule syntax for any
SQLI2 where clause of string that contains:

corrid
priority

tab.user data.adt field name

Creating Oracle Streams AQ Applications Using JMS 11-29

JMS Point-to-Point Model Features

JMS Point-to-Point Model Features

Queues

QueueSender

s Queues
s QueueSender
s QueueReceiver

s QueueBrowser

In the point-to-point model, clients exchange messages using queues - from one
point to another. These queues are used by message producers and consumers to
send and receive messages.

An administrator creates single-consumer queues by means of the createQueue
method in AQjmsSession. A client can obtain a handle to a previously created
queue using the getQueue method on AQjmsSession.

These queues are described as single-consumer queues because a message can be
consumed by only a single consumer. Put another way: a message can be consumed
exactly once. This raises the question: What happens when there are multiple
processes or operating system threads concurrently dequeuing from the same
queue? Because a locked message cannot be dequeued by a process other than the
one that has created the lock, each process dequeues the first unlocked message at
the head of the queue.

Before using a queue, the queue must be enabled for enqueue/dequeue using the
start call in AQjmsDestination.

After processing, the message is removed if the retention time of the queue is 0, or is
retained for a specified retention time. As long as the message is retained, it can be
either

= queried using SQL on the queue table view, or

= dequeued using a QueueBrowser and specifying the message ID of the
processed message.

A client uses a QueueSender to send messages to a queue. A QueueSender is
created by passing a queue to a session's createSender method. A client also has
the option of creating a QueueSender without supplying a queue. In that case a
queue must be specified on every send operation.

11-30 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Point-to-Point Model Features

A client can specify a default delivery mode, priority and TimeToLive for all
messages sent by the QueueSender. Alternatively, the client can define these
options for each message.

QueueReceiver

A client uses a QueueReceiver to receive messages from a queue. A
QueueReceiver is created using the session's createQueueReceiver method.
A QueueReceiver can be created with a message selector. This allows the client to
restrict messages delivered to the consumer to those that match the selector.

The selector for queues containing payloads of type TextMessage,
StreamMessage, BytesMessage, ObjectMessage, MapMessage can contain
any expression that has a combination of one or more of the following:

JMSMessageID ='ID:23452345"' toretrieve messages that have a specified
message ID (all message IDs being prefixed with ID:)

JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'
JMSCorrelationID LIKE 'RE%'

User-defined message properties:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

For queues containing AdtMessages the selector must be a SQL expression on the
message payload contents or message ID or priority or correlation ID.

Selector on message ID - to retrieve messages that have a specific message ID
msgid = '23434556566767676"

Note: in this case message IDs must NOT be prefixed with ID:

Selector on priority or correlation is specified as follows

priority < 3 AND corrid = 'Fiction'

Selector on message payload is specified as follows

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

Creating Oracle Streams AQ Applications Using JMS 11-31

JMS Point-to-Point Model Features

Example 11-9 Creating a JMS Connection and Session. Creating a Receiver to
Receive Messages

In the BOL application, new orders are retrieved from the new_orders_queue.
These orders are then published to the OE.OE_bookedorders_topic. After
creating a JMS connection and session, you create a receiver to receive messages:

public void get new orders (QueueSession jms_session)

{

QueueReceiver receiver;

Queue queue;
ObjectMessage obj message;
BolOrder new_order;
BolCustomer customer;
String state;
String cust_name;
try

{

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session) .getQueue("OE", "OE neworders que");

receiver = jms_session.createReceiver (queue);
for(;;)

{

/* wait for a message to show up in the queue */
obj message = (ObjectMessage)receiver.receive(10);

new order = (BolOrder)obj message.getObject () ;

customer = new order.getCustomer() ;
state = customer.getState();

obj message.clearBody () ;

/* determine customer region and assign a shipping region*/

if ((state.equals("CA")) || (state.equals("TX")) ||
(state.equals ("WA")) || (state.equals("NV")))
obj message.setStringProperty("Region", "WESTERN") ;
else

obj message.setStringProperty("Region", "EASTERN");

cust name = new order.getCustomer () .getName () ;

11-32 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Point-to-Point Model Features

obj message.setStringProperty ("Customer", cust name);

if (obj message.getJdMSCorrelationID() .equals ("RUSH"))
book rush order (obj message) ;

else

book new_order (obj_message) ;

jms_session.commit () ;

}
}

catch (JMSException ex)

{

System.out.println("Exception: " + ex);

}

QueueBrowser

A client uses a QueueBrowser to view messages on a queue without removing
them. The browser methods return a java.util.Enumeration thatis used to scan
the queue's messages. The first call to nextElement gets a snapshot of the queue.
A QueueBrowser can also optionally lock messages as it is scanning them. This is
similar to a "SELECT... for UPDATE" command on the message. This prevents other
consumers from removing the message while they are being scanned.

A QueueBrowser can also be created with a message selector. This allows the client
to restrict messages delivered to the browser to those that match the selector.

The selector for queues containing payloads of type TextMessage,
StreamMessage, BytesMessage, ObjectMessage, MapMessage can contain
any expression that has a combination of one or more of the following:

s JMSMessageID ='ID:23452345" to retrieve messages that have a specified
message ID (all message IDs being prefixed with ID:)

= JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'
JMSCorrelationID LIKE 'RE%'

= User-defined message properties:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

Creating Oracle Streams AQ Applications Using JMS 11-33

JMS Publish/Subscribe Model Features

For queues containing AdtMessages the selector must be a SQL expression on the
message payload contents or messagelD or priority or correlationID.

= Selector on message ID - to retrieve messages that have a specific messagelD
msgid = '23434556566767676"
Note: in this case message IDs must NOT be prefixed with ID:.

= Selector on priority or correlation is specified as follows

priority < 3 AND corrid = 'Fiction'

= Selector on message payload is specified as follows

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

JMS Publish/Subscribe Model Features

The following topics are discussed in this section:
= Topic

= Durable Subscriber

= TopicPublisher

= Recipient Lists

= TopicReceiver

= TopicBrowser

Topic

JMS has various features that allow you to develop an application based on a
publish/subscribe model. The aim of this application model is to enable flexible and
dynamic communication between applications functioning as publishers and
applications playing the role of subscribers. The specific design point is that the
applications playing these different roles should be decoupled in their
communication.They should interact based on messages and message content.

In distributing messages, publisher applications are not required to explicitly
handle or manage message recipients. This allows for the dynamic addition of new
subscriber applications to receive messages without changing any publisher
application logic. Subscriber applications receive messages based on message
content without regard to which publisher applications are sending messages. This
allows the dynamic addition of subscriber applications without changing any

11-34 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Publish/Subscribe Model Features

subscriber application logic. Subscriber applications specify interest by defining a
rule-based subscription on message properties or the message content of a topic.
The system automatically routes messages by computing recipients for published
messages using the rule-based subscriptions.

In the publish/subscribe model, messages are published to and received from
topics. A topic is created using the CreateTopic method in an AQjmsSession. A
client can obtain a handle to a previously-created Topic using the getTopic
method in AQjmsSession.

You use the publish/subscribe model of communication in JMS by taking the
following steps:

1.
2.

Enable enqueue/dequeue on the Topic using the start call in AQjmsDestination.

Set up one or more topics to hold messages. These topics should represent an
area or subject of interest. For example, a topic can be used to represent billed
orders.

Create a set of durable subscribers. Each subscriber can specify a selector that
represents a specification (selects) for the messages that the subscriber wishes to
receive. A null selector indicates that the subscriber wishes to receive all
messages published on the topic.

Subscribers can be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote
subscribers are other topics, or recipients on other topics that are defined as
subscribers to a particular queue. In order to use remote subscribers, you must
set up propagation between the two local and remote topic.

See Also: Chapter 8, "Oracle Streams AQ Administrative
Interface" for details on propagation

Create TopicPublishers using the session's createPublisher method
Messages are published using the publish call. Messages can be published to
all subscribers to the topic or to a specified subset of recipients on the topic.

Subscribers can receive messages on the topic by using the receive method.

Subscribers can also receive messages asynchronously by using message
listeners. The concepts of remote subscribers and propagation are Oracle
extensions to JMS.

Creating Oracle Streams AQ Applications Using JMS 11-35

JMS Publish/Subscribe Model Features

Durable Subscriber

Durable subscribers are instituted in either of the following ways:

» A client uses the session's createDurableSubscriber method to create
durable subscribers.

= A DurableSubscriber is be created with a message selector. This allows the
client to restrict messages delivered to the subscriber to those that match the
selector.

The selector for topics containing payloads of type TextMessage,
StreamMessage, BytesMessage, ObjectMessage, MapMessage can contain
any expression that has a combination of one or more of the following:

= JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

= User-defined message properties:
color IN ('RED', BLUE', 'GREEN') AND price < 30000
For topics containing AdtMessages the selector must be a SQL expression on the
message payload contents or priority or correlationID.
= Selector on priority or correlation is specified as follows

priority < 3 AND corrid = 'Fiction'

= Selector on message payload is specified as follows

tab.user data.color = 'GREEN' AND tab.user data.price < 30000
The syntax for the selector is described in detail in createDurableSubscriber
in Oracle Streams Advanced Queuing Java API Reference.

Remote subscribers are defined using the createRemoteSubscriber call. The
remote subscriber can be a specific consumer at the remote topic or all subscribers at
the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer name at the
remote topic. The address refers to the remote topic:

schema. topic_name[@dblink]

11-36 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Publish/Subscribe Model Features

To publish messages to a particular consumer at the remote topic, the
subscription name of the recipient at the remote topic must be specified in
the name field of AQjmsAgent. The remote topic must be specified in the
address field of AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the
address field of AQjmsAgent.

Example 11-10 Creating Local and Remote Subscriber and Scheduling Propagation

public void create bookedorders subscribers(TopicSession jms_session)

{

Topic topic;
TopicSubscriber tsubs;
AQjmsAgent agt_east;
AQjmsAgent agt west;
try

{

/* get a handle to the OE bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("OE",
"OR_bookedorders_topic") ;

/* Create local subscriber - to track messages for some customers */
tsubs = jms_session.createDurableSubscriber (topic, "SUBS1",
"JMSPriority < 3 AND Customer = 'MARTIN'",
false);

/* Create remote subscribers in the western and eastern region */
agt _west = new AQjmsAgent ("West Shipping", "WS.WS bookedorders topic");

((AQjmsSession) jms_session) .createRemoteSubscriber (topic, agt west,
"Region = 'WESTERN'");

agt_east = new AQjmsAgent ("East Shipping", "ES.ES bookedorders topic");

((AQjmsSession) jms_session) .createRemoteSubscriber (topic, agt east,
"Region = 'EASTERN'");

/* schedule propagation between bookedorders topic and

WS_bookedorders_topic, ES.ES bookedorders topic */
((AQjmsDestination)topic) .schedulePropagation(jms_session,

Creating Oracle Streams AQ Applications Using JMS 11-37

JMS Publish/Subscribe Model Features

"WS.WS_bookedorders_topic",
null, null, null, null);

((AQjmsDestination)topic) .schedulePropagation(jms_session,
"ES.ES bookedorders topic",
null, null, null, null);

}

catch (Exception ex)

{

System.out.println("Exception " + ex);

}

TopicPublisher

Messages are published using TopicPublisher:

A TopicPublisher is created by passing a Topic to a session's
createPublisher method. A client also has the option of creating a
TopicPublisher without supplying a Topic. In this case, a Topic must be
specified on every publish operation. A client can specify a default delivery mode,
priority and TimeToLive for all messages sent by the TopicPublisher. It can
also specify these options for each message.

Recipient Lists

In the JMS publish/subscribe model, clients can specify explicit recipient lists
instead of having messages sent to all the subscribers of the topic. These recipients
may or may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. The concept of recipient lists is an
Oracle extension to JMS.

Example 11-11 JMS: Creating Recipient Lists for Specific Customers

Suppose we want to send high priority messages only to SUBS1 and Fedex
Shipping in the Eastern region instead of publishing them to all the subscribers of
the OE_bookedorders topic:

public void book rush order (TopicSession jms_session,
ObjectMessage obj message)
{

TopicPublisher publisher;

11-38 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Publish/Subscribe Model Features

Topic topic;
AQjmsAgent [] recp list = new AQjmsAgent [2];
try

{

/* get a handle to the bookedorders topic */
topic = ((AQjmsSession) jms_session) .getTopic ("OE",
"OE_bookedorders topic");

publisher = jms_session.createPublisher (null);

recp list[0] = new AQjmsAgent ("SUBS1", null);
recp list[1] = new AQjmsAgent ("Fedex Shipping",
"ES.ES_bookedorders_topic");

publisher.setPriority (1);
((AQjmsTopicPublisher)publisher) .publish(topic, obj message, recp list);

jms_session.commit () ;

}

catch (Exception ex)

{

System.out.println("Exception: " + ex);

}

TopicReceiver

If the recipient name is explicitly specified in the recipient list, but that recipient is
not a subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver.TopicReceiver is an Oracle extension to JMS.

A TopicReceiver can also be created with a message selector. This allows the
client to restrict messages delivered to the recipient to those that match the selector.

The syntax for the selector for TopicReceiver is the same as that for a
QueueReceiver.

Creating Oracle Streams AQ Applications Using JMS 11-39

JMS Publish/Subscribe Model Features

Example 11-12 JMS: Creating a Topic and Local Subscriber and Waiting for a
Message to Show Up in the Topic

public void ship rush orders(TopicSession jms_session)

{

Topic topic;
TopicReceiver trec;
ObjectMessage obj message;
BolCustomer customer;
BolOrder new_order;
String state;

int i=0;

try

{

/* get a handle to the OE bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("ES",
"ES_bookedorders_topic") ;

/* Create local subscriber - to track messages for some customers */

trec = ((AQjmsSession)jms_session).createTopicReceiver (topic,
"Fedex Shipping",
null) ;

/* process 10 messages */

for(i = 0; 1 < 10; i++)
/* wait for a message to show up in the topic */
obj message = (ObjectMessage)trec.receive (10);

new order = (BolOrder)obj message.getObject () ;

customer = new order.getCustomer() ;
state = customer.getState();

System.out.println("Rush Order for customer " +
customer.getName()) ;
jms_session.commit () ;

catch (Exception ex)

{

System.out.println("Exception ex: " + ex);

}

11-40 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Publish/Subscribe Model Features

For remote subscribers - if the subscriber name at the remote topic has explicitly
been specified in the createRemoteSubscriber call, then to receive a message,
we can use TopicReceivers

public void get westernregion bookedorders (TopicSession jms_session)

{

Topic topic;
TopicReceiver trec;
ObjectMessage obj message;
BolCustomer customer;
BolOrder new_order;
String state;

int i=0;

try

{

/* get a handle to the WS_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders topic");
/* Create local subscriber - to track messages for some customers */
trec = ((AQjmsSession)jms_session).createTopicReceiver (topic,
"West Shipping",
null) ;
/* process 10 messages */
for(i = 0; 1 < 10; i++)
{
/* wait for a message to show up in the topic */
obj message = (ObjectMessage)trec.receive(10);

new order = (BolOrder)obj message.getObject();

customer = new order.getCustomer() ;
state = customer.getState();

System.out.println("Received Order for customer " +
customer.getName()) ;
jms_session.commit () ;

catch (Exception ex)

{
}

System.out.println("Exception ex: " + ex);

Creating Oracle Streams AQ Applications Using JMS 11-41

JMS Publish/Subscribe Model Features

If the subscriber name is not specified in the createRemoteSubscriber call, then
clients must use durable subscribers at the remote site to receive messages.

TopicBrowser

A client uses a TopicBrowser to view messages on a topic without removing
them. The browser methods return a java.util.Enumeration thatis used to
scan the topic's messages. The first call to nextElement gets a snapshot of the
topic. A TopicBrowser can also optionally lock messages as it is scanning them.
This is similar to a SELECT... for UPDATE command on the message. This prevents
other consumers from removing the message while they are being scanned.

A TopicBrowser can also be created with a message selector. This allows the client
to restrict messages delivered to the browser to those that match the selector.

The selector for the TopicBrowser can take any of the following forms:

s JMSMessageID ='ID:23452345"' to retrieve messages that have a specified
message ID (all message IDs are prefixed with ID:)

= JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'
JMSCorrelationID LIKE 'RE%'

= User-defined message properties:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

For topics containing AdtMessages, the selector must be a SQL expression on the
message payload contents or messagelD or priority or correlationID.

= Selector on message ID - to retrieve messages that have a specific messagelD
msgid = '23434556566767676"
Note: in this case message IDs must NOT be prefixed with ID:
Selector on priority or correlation is specified as follows:

priority < 3 AND corrid = 'Fiction'

= Selector on message payload is specified as follows:

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

11-42 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS MessageProducer Features

As with any consumer for topics, only durable subscribers are allowed to create a
TopicBrowser.

TopicBrowser also supports a purge feature. This allows a client using a
TopicBrowser to discard all messages that have been seen during the current
browse operation on the topic. A purge is equivalent to a destructive receive of all
of the seen messages (as if performed using a TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a
call to the nextElement () operation on the java.lang.Enumeration for the
TopicBrowser. Messages that have not yet been seen by the client are not
discarded during a purge. A purge operation can be performed multiple times on
the same TopicBrowser.

As with all other JMS messaging operations, the effect of a purge becomes stable
when the JMS session used to create the TopicBrowser is committed. If the
operations on the session are rolled back, then the effects of the purge operation are
also undone.

JMS MessageProducer Features
s Priority and Ordering of Messages
» Time Specification - Delay
= Time Specification - Expiration

= Message Grouping

Priority and Ordering of Messages

The message ordering dictates the order in which messages are received from a
queue or topic. The ordering method is specified when the queue table for the
queue or topic is created (see "Creating a Queue Table" on page 8-2). Currently,
Oracle Streams AQ supports ordering on two of the message attributes:

» Priority
= Enqueue time
When combined, they lead to four possible ways of ordering:

First-In, First-Out (FIFO) Ordering of Messages If enqueue time was chosen as the
ordering criteria, then messages are received in the order of the enqueue time. The

Creating Oracle Streams AQ Applications Using JMS 11-43

JMS MessageProducer Features

enqueue time is assigned to the message by Oracle Streams AQ at message
publish/send time. This is also the default ordering.

Priority Ordering of Messages If priority ordering is chosen, then each message is
assigned a priority. Priority can be specified as a message property at publish/send
time by the MessageProducer. The messages are received in the order of the
priorities assigned.

FIFO Priority Ordering A FIFO-priority topic/queue can also be created by
specifying both the priority and the enqueue time as the sort order of the messages.
A FIFO-priority topic/queue acts like a priority queue, except if two messages are
assigned the same priority, they are received in the order of their enqueue time.

Enqueue Time Followed by Priority Messages with the same enqueue time are
received according to their priorities. If the ordering criteria of two message is the
same, then the order they are received is indeterminate. However, Oracle Streams
AQ does ensure that messages send/published in the same session with the same
ordering criteria are received in the order they were sent.

Time Specification - Delay

Messages can be sent/published to a queue/topic with Delay. The delay represents
a time interval after which the message becomes available to the Message
Consumer. A message specified with a delay is in a waiting state until the delay
expires and the message becomes available. Delay for a message is specified as
message property (JMS_OracleDelay). This property is not specified in the JMS
standard. It is an Oracle Streams AQ extension to JMS message properties.

Delay processing requires the Oracle Streams AQ background process queue
monitor to be started. Note also that receiving by msgid overrides the delay
specification.

Time Specification - Expiration
Producers of messages can specify expiration limits, or TimeToLive for messages.

This defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send /publish time or using the set TimeToLive
method of a MessageProducer, with the former overriding the latter. The Oracle
Streams AQ background process queue monitor must be running to implement
TimeToLive.

11-44 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

Message Grouping

Messages belonging to a queue/topic can be grouped to form a set that can only be
consumed by one consumer at a time. This requires the queue/topic be created in a
queue table that is enabled for transactional message grouping (see "Creating a
Queue Table" on page 8-2). All messages belonging to a group must be created in
the same transaction and all messages created in one transaction belong to the same
group. Using this feature, you can segment a complex message into simple
messages. This is an Oracle Streams AQ extension and not part of the JMS
specification.

For example, messages directed to a queue containing invoices could be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also very
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group irrespective of which properties are specified for
subsequent messages in the group.

The message grouping property is preserved across propagation. However, the
destination topic to which messages must be propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if
the message grouping property is to be preserved while dequeuing messages from a
queue enabled for transactional grouping.

See Also: '"Dequeue Features" on page 1-24

JMS Message Consumer Features
= Receiving Messages
= Message Navigation in Receive
= Browsing Messages
= Retry with Delay Interval
= Asynchronously Receiving Messages Using Message Listener

= Oracle Streams AQ Exception Handling

Creating Oracle Streams AQ Applications Using JMS 11-45

JMS Message Consumer Features

Receiving Messages

A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the receive call or asynchronously using a
Message Listener.

There are three modes of receive:
= Block until a message arrives for a consumer
= Block for a maximum of the specified time

= Nonblocking

Example 11-13 JMS: Blocking Until a Message Arrives

public BolOrder get new_orderl (QueueSession jms_session)

{

Queue queue;
QueueReceiver grec;
ObjectMessage obj message;
BolCustomer customer;
BolOrder new order = null;
String state;

try

{

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE neworders que");

grec = jms_session.createReceiver (queue) ;

/* wait for a message to show up in the queue */
obj message = (ObjectMessage)qrec.receive();

new order = (BolOrder)obj message.getObject () ;

customer = new order.getCustomer() ;
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName ()) ;

}

catch (JMSException ex)

{

System.out.println("Exception: " + ex);

11-46 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

}

return new_order;

Example 11-14 JMS: Blocking Messages for a Maximum of 60 Seconds

public BolOrder get new order2(QueueSession jms_session)

{

Queue queue;
QueueReceiver grec;
ObjectMessage obj message;
BolCustomer customer;
BolOrder new _order = null;
String state;

try

{

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE neworders que");

grec = jms_session.createReceiver (queue) ;

/* wait for 60 seconds for a message to show up in the queue */
obj message = (ObjectMessage)qrec.receive(60000);

new order = (BolOrder)obj message.getObject();

customer = new order.getCustomer() ;
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName ()) ;

}

catch (JMSException ex)

{

System.out.println("Exception: " + ex);

}

return new order;

Creating Oracle Streams AQ Applications Using JMS 11-47

JMS Message Consumer Features

Example 11-15 JMS: Nonblocking Messages

public BolOrder poll new order3(QueueSession jms session)

{

Queue queue;
QueueReceiver grec;
ObjectMessage obj message;
BolCustomer customer;
BolOrder new _order = null;
String state;

try

{

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE neworders que");

grec = jms_session.createReceiver (queue) ;

/* check for a message to show in the queue */
obj message = (ObjectMessage)qrec.receiveNoWait () ;

new order = (BolOrder)obj message.getObject () ;

customer = new order.getCustomer() ;
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName ()) ;

}

catch (JMSException ex)

{
}

return new order;

System.out.println("Exception: " + ex);

Message Navigation in Receive

When a consumer does the first receive in its session, its gets the first message in the
queue or topic. Subsequent receives get the next message, and so on. The default
action works well for FIFO queues and topics, but not for priority ordered queues.
If a high priority message arrives for the consumer, then this client program does

11-48 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

not receive the message until it has cleared the messages that were already there
before it.

To provide the consumer better control in navigating the queue for its messages,
Oracle Streams AQ navigation modes are made available to it as JMS extensions.
These modes can be set at the TopicSubscriber, QueueReceiver or the
TopicReceiver.

= FIRST MESSAGE resets the consumer's position to the beginning of the queue.
This is a useful mode for priority ordered queues, because it allows the
consumer to remove the message on the top of the queue.

= NEXT MESSAGE gets the message after the established position of the consumer.
For example, a NEXT MESSAGE applied after the position is at the fourth
message, will get the second message in the queue. This is the default action.

For transaction grouping
s FIRST MESSAGE resets the consumer's position to the beginning of the queue.
= NEXT MESSAGE sets the position to the next message in the same transaction.

= NEXT TRANSACTION sets the position to the first message in the next
transaction.

The transaction grouping property can be negated if messages are received in the
following ways:

= Receive by specifying a correlation identifier in the selector,
= Receive by specifying a message identifier in the selector,
= Committing before all the messages of a transaction group have been received.

If in navigating through the queue, the program reaches the end of the queue while
using the NEXT_MESSAGE or NEXT_TRANSACTION option, and you have specified a
blocking receive, then the navigating position is automatically changed to the
beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses
FIRST MESSAGE for the first receive call, and NEXT MESSAGE for the subsequent
receive calls.

Example Scenario

The get _new_orders () procedure retrieves orders from the OE neworders_
que. Each transaction refers to an order, and each message corresponds to an
individual book in that order. The get _orders () procedure loops through the

Creating Oracle Streams AQ Applications Using JMS 11-49

JMS Message Consumer Features

messages to retrieve the book orders. It resets the position to the beginning of the
queue using the FIRST_MESSAGE option before the first receive. It then uses the
NEXT MESSAGE navigation option to retrieve the next book (message) of an order
(transaction). If it gets an exception indicating all messages in the current
group/transaction have been fetched, then it changes the navigation option to
NEXT TRANSACTION and gets the first book of the next order. It then changes the
navigation option back to NEXT MESSAGE for fetching subsequent messages in the
same transaction. This is repeated until all orders (transactions) have been fetched.

Example 11-16 JMS: Navigating the Retrieval of Messages

public void get new orders(QueueSession jms_session)

{

Queue
QueueReceiver
ObjectMessage
BolCustomer
BolOrder
String

int

try

{

queue;
grec;

obj message;
customer;
new_order;
state;
new_orders =

1;

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session).getQueue ("OE","OE neworders que");
grec = jms_session.createReceiver (queue) ;

/* set navigation to first message */

((AQjmsTopicSubscriber)grec) .setNavigationMode (AQjmsConstants.NAVIGATION FIRST
MESSAGE) ;

while (new orders != 0)

{

try{

/* wait for a message to show up in the topic */

obj message =

if (obj message != null)

{

(ObjectMessage) grec.receiveNoWait () ;

/* no more orders in the queue */

System.out.println(" No more orders ");
new_orders = 0;

11-50 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

}

new order = (BolOrder)obj message.getObject () ;
customer = new order.getCustomer();
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName ()) ;

/* Now get the next message */

((AQjmsTopicSubscriber)grec) .setNavigationMode (AQjmsConstants .NAVIGATION NEXT
MESSAGE) ;

}catch (AQjmsException ex)
{ if (ex.getErrorNumber () == 25235)

{

System.out.println("End of transaction group");

((AQjmsTopicSubscriber)grec) . setNavigationMode (AQjmsConstants.NAVIGATION NEXT
TRANSACTION) ;

}

else
throw ex;
}
}

}catch (JMSException ex)

{
System.out.println("Exception: " + ex);

}

Browsing Messages

Aside from the usual receive, which allows the dequeuing client to delete the
message from the queue, JMS provides an interface that allows the JMS client to
browse its messages in the queue. A QueueBrowser can be created using the
createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. After a
message has been browsed, there is no guarantee that the message will be available
to the JMS session again, because a receive call from a concurrent session might
remove the message.

To prevent a viewed message from being removed by a concurrent JMS client, you
can view the message in the locked mode. To do this, you must create a

Creating Oracle Streams AQ Applications Using JMS 11-51

JMS Message Consumer Features

QueueBrowser with the locked mode using the Oracle Streams AQ extension to
the JMS interface.The lock on the message with a browser with locked mode is
released when the session performs a commit or a rollback.

To remove the message viewed by a QueueBrowser, the session must create a
QueueReceiver and use the JMSmesssageID as the selector.

Example Code
See "QueueBrowser" on page 11-33.

Remove-No-Data

The MessageConsumer can remove the message from the queue or topic without
retrieving the message using the receiveNoData call. This is useful when the
application has already examined the message, perhaps using the QueueBrowser.
This mode allows the JMS client to avoid the overhead of retrieving the payload
from the database, which can be substantial for a large message.

Retry with Delay Interval

If the transaction receiving the message from a queue/topic fails, then it is regarded
as an unsuccessful attempt to remove the message. Oracle Streams AQ records the
number of failed attempts to remove the message in the message history.

In addition, it also allows the application to specify the maximum number of retries
supported on messages at the queue/topic level. If the number of failed attempts to
remove a message exceed this maximum, then the message is moved to the
exception queue and is no longer available to applications.

The transaction receiving a message could have terminated due to a bad condition.
For example, an order could not be fulfilled because there were insufficient books in
stock. Because inventory updates are made every twelve hours, it makes sense to
retry after that time. If an order is still not filled after four attempts, then there could
be a problem serious enough for the order to move to the exception queue.

Oracle Streams AQ allows users to specify a retry delay along with max_
retries. This means that a message that has undergone a failed attempt at
retrieving remains visible in the queue for dequeue after retry delay interval.
Until then it is in the WAITING state. The Oracle Streams AQ background process
time manager enforces the retry delay property.

The maximum retries and retry delay are properties of the queue/topic which can
be set when the queue/topic is created or using the alter method on the
queue/topic. The default value for MAX_RETRIES is 5.

11-52 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

Example 11-17 JMS: Specifying Max Retries and Max Delays in Messages

If an order cannot be filled because of insufficient inventory, then the transaction
processing the order is terminated. The bookedorders topic is set up with max_
retries =4and retry delay =12 hours.Thus, if an order is not filled up in two
days, then it is moved to an exception queue.

public BolOrder process booked order (TopicSession jms_session)

{

Topic topic;

TopicSubscriber tsubs;

ObjectMessage obj message;

BolCustomer customer;

BolOrder booked order = null;

String country;

int i=0;

try

{
/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("WS",

"WS_bookedorders_topic") ;

/* Create local subscriber - to track messages for Western Region */
tsubs = jms_session.createDurableSubscriber (topic, "SUBS1",
"Region = 'Western' ",
false);

/* wait for a message to show up in the topic */
obj message = (ObjectMessage)tsubs.receive(10);

booked order = (BolOrder)obj message.getObject () ;

customer = booked order.getCustomer () ;
country = customer.getCountry() ;

if (country == "US")

{

jms_session.commit () ;

}

else

{

jms_session.rollback () ;
booked order = null;

}

}catch (JMSException ex)

Creating Oracle Streams AQ Applications Using JMS 11-53

JMS Message Consumer Features

{ System.out.println("Exception " + ex) ;}

return booked order;

}

Asynchronously Receiving Messages Using Message Listener

The JMS client can receive messages asynchronously by setting the
MessageListener using the setMessageListener method available with the
Consumer.

When a message arrives for the message consumer, the onMessage method of the
message listener is invoked with the message. The message listener can commit or
terminate the receipt of the message. The message listener does not receive
messages if the JMS Connection has been stopped. The receive call must not be
used to receive messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all the consumers of the
session by setting the MessageListener at the session. No other mode for
receiving messages must be used in the session once the message listener has been
set.

Example 11-18 Asynchronous receipt of queue messages

The application processing the new orders queue can be set up for asynchronously
receiving messages from the queue.

public class OrderListener implements MessageListener

{

QueueSession the sess;

/* constructor */
OrderListener (QueueSession my sess)

{

the sess = my sess;

}

/* message listener interface */
public void onMessage (Message m)

{

ObjectMessage obj msg;

BolCustomer customer;
BolOrder new order = null;
try {

11-54 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Message Consumer Features

/* cast to JMS Object Message */
obj msg = (ObjectMessage)m;

/* Print some useful information */

new order = (BolOrder)obj msg.getObject () ;

customer = new order.getCustomer () ;

System.out.println("Order: for customer " + customer.getName());

/* call the process order method
* NOTE: we are assuming it is defined elsewhere
*/
process_order (new_order) ;
/* commit the asynchronous receipt of the message */
the sess.commit () ;
}catch (JMSException ex)
{ system.out.println("Exception " + ex) ;}

public void setListenerl(QueueSession jms_session)

{

Queue queue;
QueueReceiver grec;
MessagelListener ourListener;

try

{

/* get a handle to the new orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE neworders que");

/* create a QueueReceiver */
grec = jms_session.createReceiver (queue) ;

/* create the message listener */
ourListener = new OrderListener (jms_session) ;

/* set the message listener for the receiver */
grec.setMessageListener (ourListener) ;

}

catch (JMSException ex)

{

System.out.println("Exception: " + ex);

}

Creating Oracle Streams AQ Applications Using JMS 11-55

JMS Message Consumer Features

Oracle Streams AQ Exception Handling

Oracle Streams AQ provides four integrated mechanisms to support exception
handling in applications: EXCEPTION QUEUES, EXPIRATION, MAX RETRIES and
RETRY DELAY.

An exception_gqueue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an
application that intends to handle these expired or unserviceable messages can
receive/remove them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the
point-to-point interface. The exception queue for messages intended for a topic must
be created in a queue table with multiple consumers enabled. Like any other queue,
the exception queue must be enabled for receiving messages using the start method
in the AQOracleQueue class. You get an exception if you try to enable it for
enqueue.

The exception queue is a provider (Oracle) specific message property called "JMS_
OracleExcpQ" that can be set with the message before sending /publishing it. If an
exception queue is not specified, then the default exception queue is used. If the
queue/topic is created in a queue table, say QTAB, then the default exception queue
is called AQ$_QTAB_E. The default exception queue is automatically created when
the queue table is created.

Messages are moved to the exception queues by Oracle Streams AQ under the
following conditions:

= The message is not being dequeued within the specified t imeToLive. For
messages intended for more than one subscriber, the message is moved to the
exception queue if one or more of the intended recipients is not able to dequeue
the message within the specified t imeToLive. If the timeToLive was not
specified for the message, (either in the publish or send call, or as the
publisher or sender), then it never expires.

= The message was received successfully, but the application terminates the
transaction that performed the receive because of an error while processing
the message. The message is returned to the queue/topic and is available for
any applications that are waiting to receive messages. Because this was a failed
attempt to receive the message, its retry count is updated.

If the retry count of the message exceeds the maximum value specified for the
queue/topic where it resides, then it is moved to the exception queue. When a
message has multiple subscribers, then the message is moved to the exception
queue only when all the recipients of the message have exceeded the retry limit.

11-56 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Propagation

A receive is considered rolled back or undone if the application terminates the
entire transaction, or if it rolls back to a savepoint that was taken before the
receive.

Note: A message is moved to an exception queue if RETRY
COUNT is greater than MAX RETRIES. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then RETRY
COUNT is not incremented.

s The client program successfully received a message but terminated before
committing the transaction.

JMS Propagation
= Remote Subscribers
= Scheduling Propagation
= Enhanced Propagation Scheduling Capabilities

= Exception Handling During Propagation

Remote Subscribers

This feature enables applications to communicate with each other without having to
be connected to the same database.

Oracle Streams AQ allows a remote subscriber, that is a subscriber at another
database, to subscribe to a topic. When a message published to the topic meets the
criterion of the remote subscriber, Oracle Streams AQ automatically propagates the
message to the queue/topic at the remote database specified for the remote
subscriber.

The snapshot (job_gueue) background process performs propagation.
Propagation is performed using database links and Oracle Net Services.

There are two ways to implement remote subscribers:

s The createRemoteSubscriber method can be used to create a remote
subscriber to/on the topic. The remote subscriber is specified as an instance of
the class AQjmsAgent.

Creating Oracle Streams AQ Applications Using JMS 11-57

JMS Propagation

s The AQjmsAgent has a name and an address. The address consists of a
queue/topic and the database link (dblink) to the database of the subscriber.

There are two kinds of remote subscribers:

Case 1

The remote subscriber is a topic. This occurs when no name is specified for the
remote subscriber in the AQjmsAgent object and the address is a topic. The
message satisfying the subscriber's subscription is propagated to the remote topic.
The propagated message is now available to all the subscriptions of the remote
topic that it satisfies.

Case 2

Specify a specific remote recipient for the message. The remote subscription can be
for a particular consumer at the remote database. If the name of the remote recipient
is specified (in the AQjmsAgent object), then the message satisfying the
subscription is propagated to the remote database for that recipient only. The
recipient at the remote database uses the TopicReceiver interface to retrieve its
messages. The remote subscription can also be for a point-to-point queue

Example 11-19 JMS: Creating Remote Subscribers

» Scenario for Case 1. Assume the order entry application and Western region
shipping application are on different databases, db1 and db2. Further assume
that there is a database link dblink oe ws from database db1, the order entry
database, to the western shipping database db2. The WS_bookedorders
topic at db2 is a remote subscriber to the OE_bookedorders_topic in dbl.

» Scenario for Case 2. Assume the order entry application and Western region
shipping application are on different databases, dbl and db2. Further assume
that there is a database link dblink oe ws from the local order entry database
db1 to the western shipping database db2. The agent "Priority" at WS _
bookedorders topic in db2 is a remote subscriber to the OE
bookedorders_topic in dbl. Messages propagated to the WS_
bookedorders_topic are for "Priority” only.

public void remote subscriber (TopicSession jms session)

{

Topic topic;
ObjectMessage obj message;
AQjmsAgent remote sub;
try

11-58 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Propagation

/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("OE",
"OE_bookedorders topic");

/* create the remote subscriber, name unspecified and address

* the topic WS_bookedorders topic at db2

*/
remote sub = new AQjmsAgent (null, "WS.WS bookedorders topicedblink oe

ws") ;

/* subscribe for western region orders */
((AQjmsSession) jms session) .createRemoteSubscriber (topic, remote sub,
"Region = 'Western' ");

}

catch (JMSException ex)

{ system.out.println("Exception :" + ex); }
catch (java.sqgl.SQLException ex1)
{System.out.println("SQL Exception :" + exl1); }

}

Database db2 - shipping database: The WS_bookedorders_topic has two
subscribers, one for priority shipping and the other normal. The messages from the
Order Entry database are propagated to the Shipping database and delivered to the
correct subscriber. Priority orders have a message priority of 1.

public void get priority messages(TopicSession jms_session)

{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj message;
BolCustomer customer;
BolOrder booked order;
try

{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders topic");

/* Create local subscriber - for priority messages */
tsubs = jms_session.createDurableSubscriber (topic, "PRIORITY",

" JgMSPriority = 1 ", false);

obj message = (ObjectMessage) tsubs.receive();

Creating Oracle Streams AQ Applications Using JMS 11-59

JMS Propagation

booked order = (BolOrder)obj message.getObject () ;

customer = booked order.getCustomer () ;

System.out.println("Priority Order: for customer " +
customer.getName ()) ;

jms_session.commit () ;

}

catch (JMSException ex)
{ system.out.println("Exception :" + ex); }
}

public void get normal messages(TopicSession jms_session)

{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj message;
BolCustomer customer;
BolOrder booked order;
try

{

/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic ("WS",
"WS_bookedorders_topic") ;

/* Create local subscriber - for priority messages */
tsubs = jms_session.createDurableSubscriber (topic, "PRIORITY",
" JgMSPriority > 1 ", false);

obj message = (ObjectMessage) tsubs.receive();

booked order = (BolOrder)obj message.getObject () ;
customer = booked order.getCustomer () ;
System.out.println("Normal Order: for customer " + customer.getName());

jms_session.commit () ;

}

catch (JMSException ex)
{ system.out.println("Exception :" + ex); }
}

public void remote subscriberl (TopicSession jms_session)

{

Topic topic;

11-60 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Propagation

ObjectMessage obj message;
AQjmsAgent remote sub;
try

{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms session).getTopic("OE",
"OE_bookedorders topic");

/* create the remote subscriber, name "Priority" and address

* the topic WS_bookedorders topic at db2

*/
remote sub = new AQjmsAgent ("Priority", "WS.WS_bookedorders_topic@dblink

oe ws");

/* subscribe for western region orders */
((AQjmsSession) jms_session) .createRemoteSubscriber (topic, remote sub,
"Region = 'Western' ");

}

catch (JMSException ex)

{ System.out.println("Exception :" + ex); }

catch (java.sqgl.SQLException ex1)

{System.out.println("SQL Exception :" + exl); }

Remote database:
database db2 - Western Shipping database.
/* get messages for subscriber priority */
public void get priority messagesl(TopicSession jms session)

{

Topic topic;
TopicReceiver trecs;
ObjectMessage obj message;
BolCustomer customer;
BolOrder booked order;
try

{

/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders topic");

/* create a local receiver "Priority" for the remote subscription

* to WS_bookedorders_topic

*/

Creating Oracle Streams AQ Applications Using JMS 11-61

JMS Propagation

trecs = ((AQjmsSession)jms_session).createTopicReceiver (topic, "Priority",
null) ;

obj message = (ObjectMessage) trecs.receive();

booked order = (BolOrder)obj message.getObject () ;

customer = booked order.getCustomer () ;

System.out.println("Priority Order: for customer " +
customer.getName()) ;

jms_session.commit () ;

}

catch (JMSException ex)
{ System.out.println("Exception :" + ex); }

}

Scheduling Propagation

Propagation must be scheduled using the schedule_propagation method for
every topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated
from the source topic. This time frame can depend on a number of factors such as
network traffic, load at source database, load at destination database, and so on. The
schedule therefore must be tailored for the specific source and destination. When a
schedule is created, a job is automatically submitted to the job_queue facility to
handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules. The duration or propagation window parameter of a
schedule specifies the time frame during which propagation must take place. If the
duration is unspecified, then the time frame is an infinite single window. If a
window must be repeated periodically, then a finite duration is specified along with
anext_time function that defines the periodic interval between successive
windows.

See Also: "Scheduling a Queue Propagation” on page 8-32

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue. In addition there are calls for temporarily
disabling a schedule (instead of dropping the schedule) and enabling a disabled
schedule. A schedule is active when messages are being propagated in that
schedule. All the administrative calls can be made irrespective of whether the

11-62 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Propagation

schedule is active or not. If a schedule is active, then it takes a few seconds for the
calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job
queue processes must be started. The database links to the destination database
must also be valid. The source and destination topics of the propagation must be of
the same message type. The remote topic must be enabled for enqueue. The user of
the database link must also have enqueue privileges to the remote topic.

Example 11-20 JMS: Scheduling Propagation

public void schedule propagation(TopicSession jms_session)

{

Topic topic;

try

{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders_topic") ;

/* Schedule propagation immediately with duration of 5 minutes and latency
20 sec */
((AQjmsDestination) topic) .schedulePropagation (jms_session, "dba", null,
new Double (5*60), null, new Double(20));
}catch (JMSException ex)
{system.out.println("Exception: " + ex);}

}

Propagation schedule parameters can also be altered.

/* alter duration to 10 minutes and latency to zero */
public void alter propagation(TopicSession jms_session)
{
Topic topic;
try
{
/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders topic");

/* Schedule propagation immediately with duration of 5 minutes and latency

20 sec */
((AQjmsDestination)topic) .alterPropagationSchedule (jms_session, "dba",

Creating Oracle Streams AQ Applications Using JMS 11-63

JMS Propagation

new Double (10%60), null, new Double(0));
}catch (JMSException ex)
{system.out.println("Exception: " + ex);}

}

Enhanced Propagation Scheduling Capabilities

Detailed information about the schedules can be obtained from the catalog views
defined for propagation. Information about active schedules—such as the name of
the background process handling that schedule, the SID (session, serial number) for
the session handling the propagation and the Oracle Database instance handling a
schedule (relevant if Real Application Clusters are being used)—can be obtained
from the catalog views. The same catalog views also provide information about the
previous successful execution of a schedule (last successful propagation of message)
and the next execution of the schedule.

For each schedule, detailed propagation statistics are maintained:
= The total number of messages propagated in a schedule

= Total number of bytes propagated in a schedule

» Maximum number of messages propagated in a window

= Maximum number of bytes propagated in a window

= Average number of messages propagated in a window

= Average size of propagated messages

= Average time to propagated a message

These statistics have been designed to provide useful information to the queue
administrators for tuning the schedules such that maximum efficiency can be
achieved.

Propagation has built-in support for handling failures and reporting errors. For
example, if the database link specified is invalid, or if the remote database is
unavailable, or if the remote topic/queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff
scheme for retrying propagation from a schedule that encountered a failure. If a
schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry
is attempted at the start time of the next window.

11-64 Oracle Streams Advanced Queuing User’s Guide and Reference

JMS Propagation

A maximum of 16 retry attempts are made after which the schedule is automatically
disabled. When a schedule is disabled automatically due to failures, the relevant
information is written into the alert log. It is possible to check at any time if there
were failures encountered by a schedule and if so how many successive failure were
encountered, the error message indicating the cause for the failure and the time at
which the last failure was encountered. By examining this information, an
administrator can fix the failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.
Propagation has built-in support for Real Application Clusters and is transparent to
the user and the administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table where the source topic resides. If at
any time there is a failure at an instance and the queue table that stores the topic is
migrated to a different instance, then the propagation job is also automatically
migrated to the new instance. This minimizes the pinging between instances and
thus offers better performance. Propagation has been designed to handle any
number of concurrent schedules.

The number of job_queue processes is limited to a maximum of 1000 and some
of these can be used to handle jobs unrelated to propagation. Hence, propagation
has built in support for multitasking and load balancing. The propagation
algorithms are designed such that multiple schedules can be handled by a single
snapshot (job_queue) process. The propagation load on a job_gqueue processes
can be skewed based on the arrival rate of messages in the different source topics. If
one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes
the schedules among the processes such that they are loaded uniformly.

Exception Handling During Propagation

When a system errors such as a network failure occurs, Oracle Streams AQ
continues to attempt to propagate messages using an exponential back-off
algorithm. In some situations that indicate application errors Oracle Streams AQ
marks messages as UNDELIVERABLE if there is an error in propagating the message.

Examples of such errors are when the remote queue/topic does not exist or when
there is a type mismatch between the source queue/topic and the remote
queue/topic.In such situations users must query the DBA SCHEDULES view to
determine the last error that occurred during propagation to a particular
destination.The trace files in the $ORACLE_HOME /log directory can provide
additional information about the error.

Creating Oracle Streams AQ Applications Using JMS 11-65

Message Transformation with JMS AQ

Message Transformation with JMS AQ
The following topics are discussed in this section:
= Defining Message Transformations
= Sending Messages to a Destination Using a Transformation
= Receiving Messages from a Destination Using a Transformation
= Specifying Transformations for Topic Subscribers

= Specifying Transformations for Remote Subscribers

Defining Message Transformations

A transformation can be defined to map messages of one format to another.
Transformations are useful when applications that use different formats to represent
the same information must be integrated. Transformations can be SQL expressions
and PLSQL functions.

The transformations can be created using the DBMS_TRANSFORM.create
transformation procedure. Transformation can be specified for the following
operations:

= Sending a message to a queue or topic
= Receiving a message from a queue, or topic
s Creating a TopicSubscriber

= Creating a Remote Subscriber. This enables propagation of messages between
Topics of different formats.

The Message Transformation feature is an Oracle Streams AQ extension to the
standard JMS interface.

Sending Messages to a Destination Using a Transformation

A transformation can be supplied when sending/publishing a message to a
queue/topic. The transformation is applied before putting the message into the
queue/ topic.

The application can specify a transformation using the set Transformation
interface in the AQjmsQueueSender and AQjmsTopicPublisher interfaces.

See Also: PL/SQL Packages and Types Reference

11-66 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Transformation with JMS AQ

Example 11-21 Sending Messages to a Destination Using a Transformation
Suppose that the orders that are processed by the order entry application should be
published to WS_bookedorders_topic. The transformation OE2WS (defined in
the previous section) is supplied so that the messages are inserted into the topic in
the correct format.

public void ship bookedorders (TopicSession jms_session,
AQjmsADTMessage adt message)
{

TopicPublisher publisher;
Topic topic;

try

{

/* get a handle to the WS_bookedorders_topic */

topic = ((AQjmsSession)jms session).getTopic("WS",
"WS_bookedorders_topic") ;

publisher = jms session.createPublisher (topic);

/* set the transformation in the publisher */
((AQjmsTopicPublisher)publisher) .setTransformation ("OE2WS") ;

publisher.publish(topic, adt message);

}

catch (JMSException ex)

{

System.out.println("Exception :" ex);

}

Receiving Messages from a Destination Using a Transformation

A transformation can be applied when receiving a message from a queue or topic.
The transformation is applied to the message before returning it to JMS application.

The transformation can be specified using setTransformation () interface of the
AQjmsQueueReceiver, AQjmsTopicSubscriber and AQjmsTopicReceiver.

Example 11-22 JMS: Receiving Messages from a Destination Using a Transformation

Assume that the Western Shipping application retrieves messages from the OE_
bookedorders_topic. It specifies the transformation OE2WS to retrieve the message

Creating Oracle Streams AQ Applications Using JMS 11-67

Message Transformation with JMS AQ

as the Oracle object type WS_order. Assume that the WSOrder Java class has been
generated by Jpublisher to map to the Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve bookedorders (TopicSession jms_session)
AQjmsTopicReceiver receiver;

Topic topic;
Message msg = null;
try

{

/* get a handle to the OE bookedorders_topic */
topic = ((AQjmsSession)jms session).getTopic ("OE",
"OE_bookedorders topic");

/* Create a receiver for WShip */
receiver = ((AQjmsSession)jms_session) .createTopicReceiver (topic,
"WShip, null, WSOrder.getFactory());

/* set the transformation in the publisher */
receiver.setTransformation ("OE2WS") ;

msg = receiver.receive (10);

}

catch (JMSException ex)

{
}

return (AQjmsAdtMessage)msg;

System.out.println("Exception :" ex);

Specifying Transformations for Topic Subscribers

A transformation can also be specified when creating Topic Subscribers using the
CreateDurableSubscriber call. The transformation is applied to the retrieved
message before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber already exists, then its transformation is set to the
specified transformation.

Example 11-23 JMS: Specifying Transformations for Topic Subscribers

The Western Shipping application subscribes to the OE_bookedorders_topic with
the transformation OE2WS. This transformation is applied to the messages and the
returned message is of Oracle object type WS.WS_orders.

11-68 Oracle Streams Advanced Queuing User’s Guide and Reference

Message Transformation with JMS AQ

Suppose that the WSOrder java class has been generated by Jpublisher to map to
the Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve bookedorders (TopicSession jms_session)

{

TopicSubscriber subscriber;
Topic topic;
AQjmsAdtMessage msg = null;
try

{

/* get a handle to the OE bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("OE",
"OE_bookedorders topic");

/* create a subscriber with the transformation OE2WS */

subs = ((AQjmsSession)jms_session) .createDurableSubscriber (topic,
'WShip', null, false, WSOrder.getFactory(), "OE2WS");

msg = subscriber.receive(10);

}

catch (JMSException ex)

{
}

System.out.println("Exception :" ex);

return (AQjmsAdtMessage)msg;

Specifying Transformations for Remote Subscribers

Oracle Streams AQ allows a remote subscriber, that is a subscriber at another
database, to subscribe to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber. This enables propagation of messages between
Topics of different formats. When a message published at a topic meets the
criterion of a remote subscriber, Oracle Streams AQ automatically propagates the
message to the queue/topic at the remote database specified for the remote
subscriber. If a transformation is also specified, then Oracle Streams AQ applies the
transformation to the message before propagating it to the queue/topic at the

remote database.

Creating Oracle Streams AQ Applications Using JMS 11-69

Message Transformation with JMS AQ

Example 11-24 JMS: Specifying Transformations for Remote Subscribers

A remote subscriber is created at the OE.OE_bookedorders_topic so that messages
are automatically propagated to the WS.WS_bookedorders_topic. The
transformation OE2WS is specified when creating the remote subscriber so that the
messages reaching the WS_bookedorders_topic have the correct format.

Suppose that the WSOrder java class has been generated by Jpublisher to map to
the Oracle object WS.WS_order

public void create remote sub(TopicSession jms_ session)

{

AQjmsAgent subscriber;
Topic topic;
try

{

/* get a handle to the OE_bookedorders topic */
topic = ((AQjmsSession)jms session).getTopic("OE",
"OE_bookedorders_topic") ;

subscriber = new AQjmsAgent ("WShip", "WS.WS_ bookedorders topic");

((AQjmsSession)jms_session) .createRemoteSubscriber (topic,
subscriber, null, WSOrder.getFactory(), "OE2WS") ;

}

catch (JMSException ex)

{

System.out.println("Exception :" ex);

}

11-70 Oracle Streams Advanced Queuing User’s Guide and Reference

12

Oracle Streams AQ JMS Interface: Basic

Operations

This chapter describes the basic operational Java Message Service (JMS)
administrative interface to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:

EXECUTE Privilege on DBMS_AQIN

Registering a Queue/Topic Connection Factory
Unregistering a Queue/Topic Connection Factory
Getting a Queue/Topic Connection Factory
Getting a Queue/Topic in LDAP

Creating a Queue Table

Getting a Queue Table

Creating a Queue

Granting and Revoking Privileges

Managing Destinations

Propagation Schedules

Oracle Streams AQ JMS Interface: Basic Operations 12-1

EXECUTE Privilege on DBMS_AQIN

EXECUTE Privilege on DBMS_AQIN

Users should never directly call methods in the DBMS_AQIN package, but they do
need the EXECUTE privilege on DBMS_AQIN. Use the following syntax to
accomplish this:

GRANT EXECUTE ON DBMS AQIN to user;

Registering a Queue/Topic Connection Factory
You can register a queue/topic connection factory four ways:
= Registering Through the Database Using JDBC Connection Parameters
= Registering Through the Database Using a JDBC URL
= Registering Through LDAP Using JDBC Connection Parameters
= Registering Through LDAP Using a JDBC URL

Registering Through the Database Using JDBC Connection Parameters

Purpose

Registers a queue/topic connection factory through the database with JDBC
connection parameters to a Lightweight Directory Access Protocol (LDAP) server.

Syntax

public static int registerConnectionFactory(java.sql.Connection connection,
java.lang.String conn name,
java.lang.String hostname,
java.lang.String oracle sid,
int portno,
java.lang.String driver,
java.lang.String type)

throws JMSException

Parameters

connection
JDBC connection used in registration.

12-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering a Queue/Topic Connection Factory

conn_name
Name of the connection to be registered.

hostname
Name of the host running Oracle Streams AQ.

oracle_sid
Oracle system identifier.

portno
Port number.

driver
Type of JDBC driver.

type
QUEUE or TOPIC.

Usage Notes

registerConnectionFactory is a static method. To successfully register the
connection factory, the database connection passed to
registerConnectionFactory must be granted AQ ADMINISTRATOR_ROLE.
After registration, look up the connection factory using Java Naming and Directory
Interface (JNDI).

Example

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:dbl";
db conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory (db_conn,
"queue_connl",
"sun-123",
"db1l", 1521,
"thin",
"queue") ;

Oracle Streams AQ JMS Interface: Basic Operations 12-3

Registering a Queue/Topic Connection Factory

Registering Through the Database Using a JDBC URL

Purpose

Registers a queue/topic connection factory through the database with a JDBC URL
to LDAP.

Syntax

public static int registerConnectionFactory(java.sql.Connection connection,
java.lang.String conn name,
java.lang.String jdbc url,
java.util.Properties info,
java.lang.String type)
throws JMSException

Parameters

connection
JDBC connection used in registration.

conn_name
Name of the connection to be registered.

jdbc_url
URL to connect to.

info
Properties information.

type
QUEUE or TOPIC.

Usage Notes

registerConnectionFactory is a static method. To successfully register the
connection factory, the database connection passed to
registerConnectionFactory must be granted AQ ADMINISTRATOR ROLE.
After registration, look up the connection factory using JNDI.

Example
String url;
java.sql.connection db conn;

12-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering a Queue/Topic Connection Factory

url = "jdbc:oracle:thin:@sun-123:1521:dbl";
db conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory (db_conn,

"topic connl",

url,

null,

"tOpiC") ;

Registering Through LDAP Using JDBC Connection Parameters

Purpose

Registers a queue/topic connection factory through LDAP with JDBC connection
parameters to LDAP.

Syntax

public static int registerConnectionFactory(java.util.Hashtable env,
java.lang.String conn name,
java.lang.String hostname,
java.lang.String oracle sid,
int portno,
java.lang.String driver,
java.lang.String type)

throws JMSException

Parameters

env
Environment of LDAP connection.

conn_name
Name of the connection to be registered.

hostname
Name of the host running Oracle Streams AQ.

oracle_sid
Oracle system identifier.

portno
Port number.

Oracle Streams AQ JMS Interface: Basic Operations 12-5

Registering a Queue/Topic Connection Factory

driver
Type of JDBC driver.

type
QUEUE or TOPIC.

Usage Notes

registerConnectionFactory is a static method. To successfully register the
connection factory, the hash table passed to registerConnectionFactory must
contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global ag user role). After registration, look up the
connection factory using JNDL

Example

Hashtable env = new Hashtable(5, 0.75f);
/* the following statements set in hashtable env:
* gervice provider package
the URL of the ldap server
the distinguished name of the database server
the authentication method (simple)
the LDAP username
the LDAP user password

* F F X *

*/

env.put
env.put
env.put
env.put
env.put
env.put

Context.INITIAL CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
Context .PROVIDER URL, "ldap://sun—456:389”);

"searchbase", "cn=dbl,cn=0Oraclecontext,cn=acme,cn=com") ;

Context .SECURITY AUTHENTICATION, "simple") ;

Context.SECURITY PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");

Context .SECURITY CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory (env,
"queue_connl",
"sun-123",
lldbl“ ,
1521,
"thin" ,
uqueue n) H

12-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Registering a Queue/Topic Connection Factory

Registering Through LDAP Using a JDBC URL

Purpose

Registers a queue/topic connection factory through LDAP with JDBC connection
parameters to LDAP.

Syntax

public static int registerConnectionFactory(java.util.Hashtable env,
java.lang.String conn name,
java.lang.String jdbc url,
java.util.Properties info,
java.lang.String type)
throws JMSException

Parameters

env
Environment of LDAP connection.

conn_name
Name of the connection to be registered.

jdbc_url
URL to connect to.

info
Properties information.

type
QUEUE or TOPIC.

Usage Notes

registerConnectionFactory is a static method. To successfully register the
connection factory, the hash table passed to registerConnectionFactory must
contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global ag user role). After registration, look up the
connection factory using JNDL

Oracle Streams AQ JMS Interface: Basic Operations 12-7

Unregistering a Queue/Topic Connection Factory

Example
String url;
Hashtable env = new Hashtable (5, 0.75f);

/* the following statements set in hashtable env:
* gervice provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*/
env.put (Context .INITIAL CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context .PROVIDER URL, "ldap://sun-456:389");
env.put ("searchbase", "cn=dbl,cn=Oraclecontext,cn=acme,cn=com") ;
env.put (Context .SECURITY AUTHENTICATION, "simple") ;
env.put (Context .SECURITY PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");
env.put (Context .SECURITY CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:dbl";
AQjmsFactory.registerConnectionFactory(env, "topic connl", url, null, "topic");

Unregistering a Queue/Topic Connection Factory
You can unregister a queue/topic connection factory in LDAP two ways:
s Unregistering Through the Database
s Unregistering Through LDAP

Unregistering Through the Database

Purpose
Unregisters a queue/topic connection factory in LDAP.

Syntax

public static int unregisterConnectionFactory(java.sqgl.Connection connection,
java.lang.String conn name)
throws JMSException

12-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Unregistering a Queue/Topic Connection Factory

Parameters

connection
JDBC connection used in registration.

conn_name
Name of the connection to be unregistered.

Usage Notes

unregisterConnectionFactory is a static method. To successfully unregister
the connection factory, the database connection passed to
unregisterConnectionFactory must be granted AQ ADMINISTRATOR ROLE.

Example
String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:dbl";

db conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory(db conn, "topic connl");

Unregistering Through LDAP

Purpose
Unregisters a queue/topic connection factory in LDAP.

Syntax

public static int unregisterConnectionFactory(java.util.Hashtable env,
java.lang.String conn name)
throws JMSException

Parameters

env
Environment of LDAP connection.

conn_name
Name of the connection to be unregistered.

Oracle Streams AQ JMS Interface: Basic Operations 12-9

Getting a Queue/Topic Connection Factory

Usage Notes

unregisterConnectionFactory is a static method. To successfully unregister
the connection factory, the hash table passed to unregisterConnectionFactory
must contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global ag user role).

Example
Hashtable env = new Hashtable (5, 0.75f);

/* the following statements set in hashtable env:
* gservice provider package

* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*
/

env.put (Context .INITIAL CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER URL, "ldap://sun-456:389");

env.put ("searchbase", "cn=dbl,cn=Oraclecontext,cn=acme,cn=com") ;

env.put (Context .SECURITY AUTHENTICATION, "simple");

env.put (Context .SECURITY PRINCIPAL, "cn=dblagadmin,cn=acme,cn=com");

env.put (Context .SECURITY CREDENTIALS, "welcome");

url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.unregisterConnectionFactory(env, "queue connl");

Getting a Queue/Topic Connection Factory
This section contains these topics:
= Getting a Queue Connection Factory with JDBC URL
= Getting a Queue Connection Factory with JDBC Connection Parameters
= Getting a Topic Connection Factory with JDBC URL
= Getting a Topic Connection Factory with JDBC Connection Parameters

= Getting a Queue/Topic Connection Factory in LDAP

12-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Getting a Queue/Topic Connection Factory

Getting a Queue Connection Factory with JDBC URL

Purpose
Gets a queue connection factory with JDBC URL.

Syntax

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String jdbc_url,
java.util.Properties info)
throws JMSException

Parameters

jdbc_url
URL to connect to.

info
Properties information.

Usage Notes
getQueueConnectionFactory is a static method.

Example
String url = "jdbc:oracle:ocil0O:internal/oracle"
Properties info = new Properties();

QueueConnectionFactory qc_fact;

info.put ("internal logon", "sysdba");
gc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);

Getting a Queue Connection Factory with JDBC Connection Parameters

Purpose
Gets a queue connection factory with JDBC connection parameters.

Syntax

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String hostname,
java.lang.String oracle sid,

Oracle Streams AQ JMS Interface: Basic Operations 12-11

Getting a Queue/Topic Connection Factory

int portno,
java.lang.String driver)
throws JMSException

Parameters

hostname
Name of the host running Oracle Streams AQ.

oracle_sid
Oracle system identifier.

portno
Port number.

driver
Type of JDBC driver.

Usage Notes
getQueueConnectionFactory is a static method.

Example

String host = "dlsun";
String ora_sid = "rdbms10i"
String driver = "thin";
int port = 5521;

QueueConnectionFactory qc_fact;

gc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora sid, port, driver);

Getting a Topic Connection Factory with JDBC URL

Purpose
Gets a topic connection factory with a JDBC URL.

Syntax

public static javax.jms.QueueConnectionFactory getQueueConnectionFactory (
java.lang.String jdbc url,
java.util.Properties info)
throws JMSException

12-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Getting a Queue/Topic Connection Factory

Parameters

jdbc_url
URL to connect to.

info
Properties information.

Usage Notes
getTopicConnectionFactory is a static method.

Example
String url = "jdbc:oracle:ocil0O:internal/oracle"
Properties info = new Properties();

TopicConnectionFactory tc_fact;

info.put ("internal logon", "sysdba");
tc _fact = AQjmsFactory.getTopicConnectionFactory(url, info);

Getting a Topic Connection Factory with JDBC Connection Parameters

Purpose
Gets a topic connection factory with JDBC connection parameters.

Syntax

public static javax.jms.TopicConnectionFactory getTopicConnectionFactory (
java.lang.String hostname,
java.lang.String oracle sid,
int portno,
java.lang.String driver)
throws JMSException

Parameters

hostname
Name of the host running Oracle Streams AQ.

oracle_sid
Oracle system identifier.

Oracle Streams AQ JMS Interface: Basic Operations 12-13

Getting a Queue/Topic Connection Factory

portno
Port number.

driver
Type of JDBC driver.

Usage Note
getTopicConnectionFactory is a Static Method.

Example

String host = "dlsun";
String ora_sid = "rdbms10i"
String driver = "thin";
int port = 5521;

TopicConnectionFactory tc fact;

tc _fact = AQjmsFactory.getTopicConnectionFactory (host, ora sid, port, driver);

Getting a Queue/Topic Connection Factory in LDAP

Purpose
Gets a queue/topic connection factory from LDAP.

Example
Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;

queueConnectionFactory gc_fact;

/* the following statements set in hashtable env:
* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP username
* the LDAP user password
*/
env.put (Context .INITIAL CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER URL, "ldap://sun-456:389");
env.put (Context .SECURITY AUTHENTICATION, "simple");
env.put (Context .SECURITY PRINCIPAL, "cn=dblaquserl,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome") ;

12-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Getting a Queue/Topic in LDAP

ctx
ctx

= new InitialDirContext (env) ;

(DirContext) ctx.lookup ("cn=0racleDBConnections, cn=dbl, cn=Oraclecontext, cn=acme, c
n=com") ;
gc_fact = (queueConnectionFactory)ctx.lookup ("cn=queue connl");

Getting a Queue/Topic in LDAP

Purpose
Gets a queue/topic from LDAP.

Example

Hashtable
DirContext
topic

env = new Hashtable(5, 0.75f);
ctx;
topic_1;

/* the following statements set in hashtable env:
service provider package

*/

env
env
env
env
env

ctx
ctx

*

*
*
*
*
*

.put (Context.
.put (Context.
.put (Context.
.put (Context.
.put (Context.

the URL of

the ldap server

the distinguished name of the database server
the authentication method (simple)

the LDAP username

the LDAP user password

INITIAL CONTEXT FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
PROVIDER_URL, "ldap://sun—456:389");

SECURITY AUTHENTICATION, "simple") ;

SECURITY PRINCIPAL, "cn=dblaquserl,cn=acme,cn=com");

SECURITY CREDENTIALS, "welcome");

= new InitialDirContext (env) ;

(DirContext) ctx.lookup ("cn=0racleDBQueues, cn=dbl, cn=Oraclecontext, cn=acme, cn=com

")

topic_1 = (topic)ctx.lookup("cn=topic 1");

Oracle Streams AQ JMS Interface: Basic Operations 12-15

Creating a Queue Table

Creating a Queue Table

Purpose
Creates a queue table.

Syntax

public oracle.AQ.AQQueueTable createQueueTable (
java.lang.String owner,
java.lang.String name,
oracle.AQ.AQQueueTableProperty property)
throws JMSException

Parameters

owner
Queue table owner (schema)

name
Queue table name

property

Queue table properties. If the queue table is used to hold queues, then the queue
table must not be multiconsumer enabled (default). If the queue table is used to
hold topics, then the queue table must be multiconsumer enabled.

Usage Notes

CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Streams AQ
object type load. However, only CLOB and BLOB can be propagated using Oracle
Streams AQ propagation in Oracle8i and after.

Example

QueueSession g_sess = null;
AQQueueTable g _table = null;
AQQueueTableProperty gt_prop = null;

gt_prop = new AQQueueTableProperty("SYS.AQ$ JMS BYTES MESSAGE") ;
g table = ((AQjmsSession)q sess).createQueueTable ("boluser",
"bol ship queue table",

gt _prop) ;

12-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Queue

Getting a Queue Table

Purpose
Gets a queue table.

Syntax

public oracle.AQ.AQQueueTable getQueueTable (java.lang.String owner,
java.lang.String name)
throws JMSException

Parameters

owner
Queue table owner (schema)

name
Queue table name

Usage Notes

If the caller that opened the connection is not the owner of the queue table, then the
caller must have Oracle Streams AQ enqueue/dequeue privileges on
queues/topics in the queue table. Otherwise the queue-table is not returned.

Example
QueueSession g _sess;
AQQueueTable g _table;
g table = ((AQjmsSession)q_sess) .getQueueTable ("boluser",

"bol ship queue table");

Creating a Queue
This section contains these topics:
= Creating a Point-to-Point Queue

s Creating a Publish/Subscribe Topic

Oracle Streams AQ JMS Interface: Basic Operations 12-17

Creating a Queue

Creating a Point-to-Point Queue

Purpose
Creates a queue in a specified queue table.

Syntax

public javax.jms.Queue createQueue (
oracle.AQ.AQQueueTable g table,
java.lang.String queue name,
oracle.jms.AQjmsDestinationProperty dest property)
throws JMSException

Parameters

q_table
Queue table in which the queue is to be created. The queue table must not be
multiconsumer enabled.

queue_name
Name of the queue to be created.

dest_property
Queue properties.

Usage Notes
The queue table in which a queue is created must be a single-consumer queue table.

Example

QueueSession g_sess;

AQQueueTable g table;

AgjmsDestinationProperty dest prop;

Queue queue;

queue = ((AQjmsSession)q_sess).createQueue(q table, "jms _gl", dest prop);

Creating a Publish/Subscribe Topic

Purpose
Creates a topic in the publish/subscribe model.

12-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Granting and Revoking Privileges

Syntax

public javax.jms.Topic createTopic(
oracle.AQ.AQQueueTable g table,
java.lang.String topic name,

oracle.jms.AQjmsDestinationProperty dest property)

throws JMSException

Parameters

q_table

Queue table in which the queue is to be created. The queue table must be

multiconsumer enabled.

queue_name
Name of the queue to be created.

dest_property
Queue properties.

Example

TopicSession t sess;

AQQueueTable g table;

AgjmsDestinationProperty dest prop;

Topic topic;

topic = ((AQjmsSessa)t sess).createTopic(g table, "jms tl", dest prop);

Granting and Revoking Privileges

This section contains these topics:

= Granting Oracle Streams AQ System Privileges
= Revoking Oracle Streams AQ System Privileges
= Granting Publish/Subscribe Topic Privileges

= Revoking Publish/Subscribe Topic Privileges

= Granting Point-to-Point Queue Privileges

= Revoking Point-to-Point Queue Privileges

Oracle Streams AQ JMS Interface: Basic Operations 12-19

Granting and Revoking Privileges

Granting Oracle Streams AQ System Privileges

Purpose
Grants Oracle Streams AQ system privileges to a user/roles.

Syntax

public void grantSystemPrivilege (java.lang.String privilege,
java.lang.String grantee,
boolean admin option)
throws JMSException

Parameters

privilege
ENQUEUE_ANY, DEQUEUE_ANY or MANAGE ANY.

grantee
Specifies the grantee. The grantee can be a user, role or the PUBLIC role.

admin_option
If this is set to true, then the grantee is allowed to use this procedure to grant the
system privilege to other users or roles.

Usage Notes

The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. Initially only
SYS and SYSTEM can use this procedure successfully. Users granted the ENQUEUE_
ANY privilege are allowed to enqueue messages to any queues in the database.
Users granted the DEQUEUE _ANY privilege are allowed to dequeue messages from
any queues in the database. Users granted the MANAGE ANY privilege are allowed
to run DBMS_AQADM calls on any schemas in the database.

Example

TopicSession t sess;

((AQjmsSession)t sess) .grantSystemPrivilege ("ENQUEUE ANY", "scott", false);

12-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Granting and Revoking Privileges

Revoking Oracle Streams AQ System Privileges

Purpose
Revokes Oracle Streams AQ system privileges from user/roles.

Syntax

public void revokeSystemPrivilege (java.lang.String privilege,
java.lang.String grantee)
throws JMSException

Parameters

privilege
ENQUEUE_ANY, DEQUEUE_ANY or MANAGE ANY.

grantee
Specifies the grantee. The grantee can be a user, role or the PUBLIC role.

Usage Notes

The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. Users granted
the ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in the
database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue
messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example

TopicSession t sess;

((AQjmsSession)t_sess) .revokeSystemPrivilege ("ENQUEUE ANY", "scott");

Granting Publish/Subscribe Topic Privileges

Purpose
Grants a topic privilege in the publish/subscribe model.

Oracle Streams AQ JMS Interface: Basic Operations 12-21

Granting and Revoking Privileges

Syntax

public void grantTopicPrivilege (javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee,
boolean grant option)
throws JMSException

Parameters

session
JMS session.

privilege
Privilege being granted. The options are ENQUEUE, DEQUEUE, or ALL. ALL means
both.

grantee
Database user being granted the privilege.

grant_option
If set to true, then the grantee can grant the privilege to other users.

Usage Notes
Initially only the queue table owner can use this procedure to grant privileges on

the topic.
Example
TopicSession t sess;
Topic topic;

((AQjmsDestination)topic) .grantTopicPrivilege (t_sess,
"ENQUEUE",
"scott",
false);

Revoking Publish/Subscribe Topic Privileges

Purpose
Revokes a topic privilege in the publish/subscribe model.

12-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Granting and Revoking Privileges

Syntax

public void revokeTopicPrivilege (javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee)
throws JMSException

Parameters

session
JMS session.

privilege
The privilege being revoked. The options are ENQUEUE, DEQUEUE, or ALL. ALL
means both.

grantee
Database user from whom the privilege is being revoked.

Example
TopicSession t sess;
Topic topic;

((AQjmsDestination)topic) .revokeTopicPrivilege (t sess, "ENQUEUE", "scott");

Granting Point-to-Point Queue Privileges

Purpose
Grants a queue privilege in the point-to-point model.

Syntax

public void grantQueuePrivilege (javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee,
boolean grant option)
throws JMSException

Parameters

session
JMS session.

Oracle Streams AQ JMS Interface: Basic Operations 12-23

Granting and Revoking Privileges

privilege
The privilege being granted. The options are ENQUEUE, DEQUEUE, or ALL. ALL
means both.

grantee
Database user being granted the privilege.

grant_option
If set to true, then the grantee can grant the privilege to other users.

Usage Notes
Initially only the queue table owner can use this procedure to grant privileges on

the queue.
Example
QueueSession g _sess;
Queue queue;

((AQjmsDestination)queue) .grantQueuePrivilege (q_sess,
"ENQUEUE",
"scott",
false);

Revoking Point-to-Point Queue Privileges

Purpose
Revokes queue privilege in the point-to-point model.

Syntax

public void revokeQueuePrivilege (javax.jms.Session session,
java.lang.String privilege,
java.lang.String grantee)
throws JMSException

Parameters

session
JMS session.

12-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Destinations

privilege
The privilege being revoked. The options are ENQUEUE, DEQUEUE, or ALL. ALL
means both.

grantee
Database user from whom the privilege is being revoked.

Usage Notes

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantors
privilege is also revoked.

Example

QueueSession g_sess;

Queue queue;

((AQjmsDestination)queue) .revokeQueuePrivilege (g sess, "ENQUEUE", "scott");

Managing Destinations
This section contains these topics:
= Starting a Destination
= Stopping a Destination
= Altering a Destination

= Dropping a Destination

Starting a Destination

Purpose
Starts a destination.

Syntax
public void start(javax.jms.Session session,
boolean engqueue,
boolean dequeue)
throws JMSException

Oracle Streams AQ JMS Interface: Basic Operations 12-25

Managing Destinations

Parameters

session
JMS session

enqueue
Determines whether enqueue should be enabled or not.

dequeue
Determines whether dequeue should be enabled or not.

Usage Notes

After creating a destination, the administrator must use the start method to enable
the destination. If enqueue is set to TRUE, then the destination is enabled for
enqueue. If enqueue is set to FALSE, then the destination is disabled for enqueue.
Similarly, if dequeue is set to TRUE, then the destination is enabled for dequeue. If
dequeue is set to FALSE, then the destination is disabled for dequeue.

Example

TopicSession t_sess;
QueueSession q_sess;
Topic topic;
Queue queue;

(AQjmsDestination)topic.start (t_sess, true, true);
(AQjmsDestination)queue.start (q sess, true, true);

Stopping a Destination

Purpose
Stops a destination.

Syntax

public void stop(javax.jms.Session session,
boolean enqueue,
boolean dequeue,
boolean wait)
throws JMSException

12-26 Oracle Streams Advanced Queuing User’s Guide and Reference

Managing Destinations

Parameters

session
JMS session.

enqueue
If set to true, then enqueue is disabled.

dequeue
If set to true, then dequeue is disabled.

wait
If set to true, then pending transactions on the queue/topic are allowed to complete
before the destination is stopped

Usage Notes

If dequeue is set to TRUE, then the destination is disabled for dequeue. If dequeue
is set to FALSE, then the current setting is not altered. Similarly, if enqueue is set to
TRUE, then the destination is disabled for enqueue. If enqueue is set to FALSE, then
the current setting is not altered.

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic) .stop(t_sess, true, false);

Altering a Destination

Purpose
Alters a destination.

Syntax

public void alter(javax.jms.Session session,
oracle.jms.AQjmsDestinationProperty dest property)
throws JMSException

Oracle Streams AQ JMS Interface: Basic Operations 12-27

Managing Destinations

Parameters

session
JMS session.

dest_property
New properties of the queue or topic.

Example

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

AQjmsDestionationProperty dest propl, dest prop2;

((AQjmsDestination)queue) .alter (dest propl) ;
((AQjmsDestination)topic) .alter (dest prop2) ;

Dropping a Destination

Purpose
Drops a destination.

Syntax

public void drop(javax.jms.Session session)
throws JMSException

Parameters

session
JMS session.

Example

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue) .drop (q_sess) ;

12-28 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Schedules

((AQjmsDestionation) topic) .drop (t_sess) ;

Propagation Schedules
This section contains these topics:
= Scheduling a Propagation
= Enabling a Propagation Schedule
= Altering a Propagation Schedule
= Disabling a Propagation Schedule

= Unscheduling a Propagation

Scheduling a Propagation

Purpose
Schedules a propagation.

Syntax

public void schedulePropagation(javax.jms.Session session,
java.lang.String destination,
java.util.Date start_time,
java.lang.Double duration,
java.lang.String next time,
java.lang.Double latency)
throws JMSException

Parameters

session
JMS session

destination
Database link of the remote database for which propagation is being scheduled. A
null string means that propagation is scheduled for all subscribers in the database
of the topic.

start_time
Time propagation must be started.

Oracle Streams AQ JMS Interface: Basic Operations 12-29

Propagation Schedules

duration
Duration of propagation.

next_time
Next time propagation must be accomplished.

latency
Latency in seconds that can be tolerated. Latency is the difference between the time
a message was enqueued and the time it was propagated.

Usage Notes

Messages can be propagated to other topics in the same database by specifying a
NULL destination. If the message has multiple recipients at the same destination in
either the same or different queues, then the message is propagated to all of them at
the same time.

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic) .schedulePropagation (t_sess,
null,
null,
null,
null,
new Double (0)) ;

Enabling a Propagation Schedule

Purpose
Enables a propagation schedule.

Syntax

public void enablePropagationSchedule (javax.jms.Session session,
java.lang.String destination)
throws JMSException

12-30 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Schedules

Parameters

session
JMS session

destination
Database link of the destination database.

Usage Notes
NULL destination indicates that the propagation is to the local database.

Example
TopicSession t sess;
Topic topic;

((AQjmsDestination)topic) .enablePropagationSchedule (t sess, "dbsl");

Altering a Propagation Schedule

Purpose
Alters a propagation schedule.

Syntax

public void alterPropagationSchedule (javax.jms.Session session,
java.lang.String destination,
java.lang.Double duration,
java.lang.String next time,
java.lang.Double latency)
throws JMSException

Parameters

session
JMS session

destination
Database link of the destination database.

duration
The new duration.

Oracle Streams AQ JMS Interface: Basic Operations 12-31

Propagation Schedules

next_time
The new next time for propagation.

latency
The new latency.

Usage Notes
NULL destination indicates that the propagation is to the local database

Example
TopicSession t sess;
Topic topic;

((AQjmsDestination)topic) .alterPropagationSchedule (t_sess,
null,
30,
null,
new Double (30));

Disabling a Propagation Schedule

Purpose
Disables a propagation schedule.

Syntax

public void disablePropagationSchedule (javax.jms.Session session,
java.lang.String destination)
throws JMSException

Parameters

session
JMS session

destination
Database link of the destination database.

Usage Notes
NULL destination indicates that the propagation is to the local database

12-32 Oracle Streams Advanced Queuing User’s Guide and Reference

Propagation Schedules

Example
TopicSession t sess;
Topic topic;

((AQjmsDestination)topic) .disablePropagationSchedule (t_sess, "dbsl");

Unscheduling a Propagation

Purpose
Unschedules a previously scheduled propagation.

Syntax

public void unschedulePropagation(javax.jms.Session session,
java.lang.String destination)
throws JMSException

Parameters

session
JMS session

destination
Database link of the destination database.

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic) .unschedulePropagation(t sess, "dbsl");

Oracle Streams AQ JMS Interface: Basic Operations 12-33

Propagation Schedules

12-34 Oracle Streams Advanced Queuing User’s Guide and Reference

13

Oracle Streams AQ JMS Operational

Interface: Point-to-Point

This chapter describes the Oracle Streams Advanced Queuing (AQ) Java Message
Service (JMS) operational interface for basic point-to-point operations.

This chapter contains these topics:

Creating a Connection
Creating a Queue Connection
Creating a Session

Creating a QueueSession
Creating a QueueSender
Sending Messages

Creating a QueueBrowser

Creating a QueueReceiver

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-1

Creating a Connection

Creating a Connection

A JMS Connection supports both point-to-point and publish/subscribe
operations. The methods in this section are new and support JMS version 1.1
specifications.

This section contains these topics:
s Creating a Connection with Username/Password

s Creating a Connection with Default Connection Factory Parameters

Creating a Connection with Username/Password

Purpose
Creates a connection with username and password.

Syntax

public javax.jms.Connection createConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

Parameters

username
Name of the user connecting to the database for queuing.

password
Password for creating the connection to the server.

Usage Notes
This connection supports both point-to-point and publish/subscribe operations.

Creating a Connection with Default Connection Factory Parameters

Purpose
Creates a connection with default connection factory parameters.

13-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Queue Connection

Syntax

public javax.jms.Connection createConnection()
throws JMSException

Usage Notes

The ConnectionFactory properties must contain a default username and password;
otherwise, this method throws a JMSException. This connection supports both
point-to-point and publish/subscribe operations.

Creating a Queue Connection
This section contains these topics:
» Creating a Queue Connection with Username/Password
» Creating a Queue Connection with an Open JDBC Connection
» Creating a Queue Connection with Default Connection Factory Parameters

s Creating a Queue Connection with an Open OracleOCIConnection Pool

Creating a Queue Connection with Username/Password

Purpose
Creates a queue connection with username and password.

Syntax

public javax.jms.QueueConnection createQueueConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

Parameters

username
Name of the user connecting to the database for queuing.

password
Password for creating the connection to the server.

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-3

Creating a Queue Connection

Example

QueueConnectionFactory gc fact =
AQjmsFactory.getQueueConnectionFactory ("sunl23", "oratest", 5521, "thin");

/* Create a queue connection using a username/password */

QueueConnection gc_conn = gc_fact.createQueueConnection("jmsuser", "jmsuser");

Creating a Queue Connection with an Open JDBC Connection

Purpose
Creates a queue connection with an open JDBC connection.

Syntax

public static javax.jms.QueueConnection
createQueueConnection (java.sql.Connection jdbc connection)
throws JMSException

Parameters

jdbc_connection
Valid open connection to the database.

Usage Notes
This is a static method.

Example 1

This method can be used if the user wants to use an existing JDBC connection (say
from a connection pool) for JMS operations. In this case JMS does not open a new
connection, but instead use the supplied JDBC connection to create the JMS
QueueConnection object.

Connection db_conn; /* previously opened JDBC connection */
QueueConnection gc_conn = AQjmsQueueConnectionFactory.createQueueConnection (
db_conn) ;

13-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Queue Connection

Example 2

This method is the only way to create a JMS QueueConnection when using JMS
from java stored procedures inside the database (JDBC Server driver)

OracleDriver ora = new OracleDriver();
QueueConnection gc_conn =
AQjmsQueueConnectionFactory.createQueueConnection (ora.defaultConnection()) ;

Creating a Queue Connection with Default Connection Factory Parameters

Purpose
Creates a queue connection with default connection factory parameters.

Syntax

public javax.jms.QueueConnection createQueueConnection()
throws JMSException

Usage Notes

The QueueConnectionFactory properties must contain a default username and
password: otherwise, this method throws a JMSException.

Creating a Queue Connection with an Open OracleOCIConnection Pool

Purpose
Creates a queue connection with an open OracleOCIConnectionPool.

Syntax

public static javax.jms.QueueConnection createQueueConnection (
oracle.jdbc.pool.OracleOCIConnectionPool cpool)
throws JMSException

Parameters

cpool
Valid open connection OCI connection pool to the database.

Usage notes
This is a static method.

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-5

Creating a Session

Example

This method can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does
not open an new OracleOCIConnectionPool instance, but instead uses the
supplied OracleOCIConnectionPool instance to create the JMS
QueueConnection object.

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection gc_conn =
AQjmsQueueConnectionFactory.createQueueConnection (cpool) ;

Creating a Session

Purpose
Creates a Session, which supports both point-to-point and publish/subscribe
operations.

Syntax

public javax.jms.Session createSession(boolean transacted,
int ack_mode)
throws JMSException

Parameters

transacted
If set to true, then the session is transactional.

ack_mode

Indicates whether the consumer or the client will acknowledge any messages it
receives. It is ignored if the session is transactional. Legal values are
Session.AUTO ACKNOWLEDGE, Session.CLIENT ACKNOWLEDGE, and
Session.DUPS_ OK ACKNOWLEDGE

Usage Notes

This method is new and supports JMS version 1.1 specifications. Transactional and
nontransactional sessions are supported.

13-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueSender

Creating a QueueSession

Purpose
Creates a QueueSession.

Syntax

public javax.jms.QueueSession createQueueSession(boolean transacted,
int ack_mode)
throws JMSException

Parameters

transacted
If set to true, then the session is transactional.

ack_mode

Indicates whether the consumer or the client will acknowledge any messages it
receives. It is ignored if the session is transactional. Legal values are

Session.AUTO ACKNOWLEDGE, Session.CLIENT ACKNOWLEDGE, and
Session.DUPS OK ACKNOWLEDGE.

Usage Notes
Transactional and nontransactional sessions are supported.

Example
For a transactional session:

QueueConnection gc_conn;
QueueSession g sess = gc_conn.createQueueSession(true, 0);

Creating a QueueSender

Purpose
Creates a QueueSender.

Syntax

public javax.jms.QueueSender createSender (javax.jms.Queue queue)
throws JMSException

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-7

Sending Messages

Usage Notes

If a sender is created without a default queue, then the destination queue must be
specified on every send operation.

Sending Messages
This section contains these topics:
= Sending Messages Using a QueueSender with Default Send Options
= Sending Messages Using a QueueSender by Specifying Send Options

Sending Messages Using a QueueSender with Default Send Options

Purpose
Sends a message using a QueueSender with default send options.

Syntax

public void send(javax.jms.Queue queue,
javax.jms.Message message)
throws JMSException

Parameters

queue
Queue to send this message to.

message
Message to send.

Usage Notes

If the QueueSender has been created with a default queue, then the queue
parameter may not necessarily be supplied in the send call. If a queue is specified in
the send operation, then this value overrides the default queue of the
QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send call.

This send operation uses default values for message priority (1) and
timeToLive (infinite).

13-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Sending Messages

Example 1

/* Create a sender to send messages to any queue */
QueueSession jms_sess;

QueueSender senderl;

TextMessage message;

senderl = jms_sess.createSender (null);

senderl.send (queue, message);

Example 2

/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;

QueueSender sender2;

Queue billed orders que;

TextMessage message;

sender2 = jms_sess.createSender (billed orders que);
sender2.send (queue, message);

Sending Messages Using a QueueSender by Specifying Send Options

Purpose
Sends messages using a QueueSender by specifying send options.

Syntax

public void send(javax.jms.Queue queue,
javax.jms.Message message,
int deliveryMode,
int priority,
long timeToLive)
throws JMSException

Parameters

queue
Queue to send this message to.

message
Message to send.

deliveryMode
Delivery mode to use.

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-9

Sending Messages

priority
Priority for this message.

timeToLive
Message lifetime (in milliseconds).

Usage Notes

If the QueueSender has been created with a default queue, then the queue
parameter may not necessarily be supplied in the send call. If a queue is specified in
the send operation, then this value overrides the default queue of the
QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send call.

Example 1

/* Create a sender to send messages to any queue */

/* Send a message to new orders que with priority 2 and timetoLive 100000
milliseconds */

QueueSession jms_sess;

QueueSender senderl;

TextMessage mesg;

Queue new _orders_que

senderl = jms_sess.createSender (null) ;

senderl.send(new orders que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example 2

/* Create a sender to send messages to a specific queue */

/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;

QueueSender sender2;

Queue billed orders que;

TextMessage mesg;

sender2 = jms_sess.createSender (billed orders que);

sender2.send (mesg, DeliveryMode.PERSISTENT, 1, 400000) ;

13-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueBrowser

Creating a QueueBrowser
You can create a QueueBrowser for:
= Queues with Text, Stream, Objects, Bytes or Map Messages
= Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages
= Queues of Oracle Object Type Messages
= Queues of Oracle Object Type Messages, Locking Messages

Queues with Text, Stream, Objects, Bytes or Map Messages

Purpose

Creates a QueueBrowser for queues with text, stream, objects, bytes or map
messages.

Syntax

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector)
throws JMSException

Parameters

queue
Queue to access.

messageSelector
Only messages with properties matching the message selector expression are
delivered.

Usage Notes

To retrieve messages that match certain criteria, the selector for the QueueBrowser
can be any expression that has a combination of one or more of the following:

m JMSMessageID = 'ID:23452345' to retrieve messages that have a
specified message ID

= JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-11

Creating a QueueBrowser

= User-defined message properties:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

All message IDs must be prefixed with "ID:"

Use methods in java.util.Enumeration to go through list of messages.

Example 1

/* Create a browser without a selector */
QueueSession jms_session;

QueueBrowser browser;

Queue queue;

browser = jms_session.createBrowser (queue) ;

Example 2

/* Create a browser for queues with a specified selector */
QueueSession jms_session;

QueueBrowser browser;

Queue queue;

/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser (queue, "JMSCorrelationID = 'RUSH'");

Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages

Purpose

Creates a QueueBrowser for queues with text, stream, objects, bytes or map
messages, locking messages while browsing.

Syntax

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
boolean locked)
throws JMSException

Parameters

queue
Queue to access.

13-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueBrowser

messageSelector
Only messages with properties matching the message selector expression are
delivered.

locked
If set to true, then messages are locked as they are browsed (similar to a SELECT for
UPDATE).

Usage Notes

Locked messages cannot be removed by other consumers until the browsing session
ends the transaction.

Example 1

/* Create a browser without a selector */
QueueSession jms_session;

QueueBrowser browser;

Queue queue;

browser = jms_session.createBrowser (queue, null, true);

Example 2

/* Create a browser for queues with a specified selector */
QueueSession jms_session;

QueueBrowser browser;

Queue queue;

/* create a Browser to look at messages with
correlationID = RUSH in lock mode */
browser = jms_session.createBrowser (queue, "JMSCorrelationID = 'RUSH'", true);

Queues of Oracle Object Type Messages

Purpose
Creates a QueueBrowser for queues of Oracle object type messages.

Syntax
public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload factory)
throws JMSException

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-13

Creating a QueueBrowser

Parameters

queue
Queue to access.

messageSelector
Only messages with properties matching the message selector expression are
delivered.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Usage Notes

For queues containing AdtMessages the selector for the QueueBrowser can be a
SQL expression on the message payload contents or messagelD or priority or
correlationID.

= Selector on message ID - to retrieve messages that have a specific messagelD

msgid = '23434556566767676"'

Note: in this case message IDs must NOT be prefixed with ID:
= Selector on priority or correlation is specified as follows

priority < 3 AND corrid = 'Fiction'

= Selector on message payload is specified as follows

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

Example
The CustomDatum factory for a particular java class that maps to the SQL object
payload can be obtained using the get Factory static method.

Assume the queue test_queue has payload of type SCOTT . EMPLOYEE and the
java class that is generated by Jpublisher for this Oracle object type is called
Employee. The Employee class implements the CustomDatum interface. The

13-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueBrowser

CustomDatumFactory for this class can be obtained by using the
Employee.getFactory() method.

/* Create a browser for a Queue with Adt messages of type EMPLOYEE*/

QueueSession jms_session

QueueBrowser browser;

Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser (test queue,
"corrid="'EXPRESS'",
Employee.getFactory()) ;

Queues of Oracle Object Type Messages, Locking Messages

Purpose

Creates a QueueBrowser for queues of Oracle object type messages, locking
messages while browsing.

Syntax

public javax.jms.QueueBrowser createBrowser (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload factory,
boolean locked)
throws JMSException

Parameters

queue
Queue to access.

messageSelector
Only messages with properties matching the message selector expression are
delivered.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-15

Creating a QueueReceiver

locked
If set to true, then messages are locked as they are browsed (similar to a SELECT for
UPDATE).

Example

/* Create a browser for a Queue with Adt messages of type EMPLOYEE* in lock
mode/

QueueSession jms_session

QueueBrowser browser;

Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser (test queue,
null,
Employee.getFactory(),
true) ;

Creating a QueueReceiver
You can create a QueueReceiver for:
= Queues with Text, Stream, Objects, Bytes or Map Messages
= Queues of Oracle Object Type Messages

Queues of Standard JMS Type Messages

Purpose
Creates a QueueReceiver for queues of standard JMS type messages.

Syntax

public javax.jms.QueueReceiver createReceiver (javax.jms.Queue queue,
java.lang.String messageSelector)
throws JMSException

Parameters

queue
Queue to access.

messageSelector
Only messages with properties matching the message selector expression are
delivered.

13-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueReceiver

Usage Notes

The selector for the QueueReceiver can be any expression that has a combination of
one or more of the following;:

= JMSMessageID = 'ID:23452345' to retrieve messages that have a
specified message ID. All message IDs must be prefixed with "ID:"

= JMS message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

= User-defined message properties:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

Example 1

/* Create a receiver without a selector */
QueueSession jms_session

QueueRecelver receiver;

Queue queue;

receiver = jms_session.createReceiver (queue) ;

Example 2

/* Create a receiver for queues with a specified selector */
QueueSession jms_session;

QueueRecelver receiver;

Queue queue;

/* create Receiver to receive messages with correlationID starting with EXP */
browser = jms_session.createReceiver (queue, "JMSCorrelationID LIKE 'EXP%'");

Queues of Oracle Object Type Messages

Purpose
Creates a QueueReceiver for queues of Oracle object type messages.

Syntax
public javax.jms.QueueReceiver createReceiver (javax.jms.Queue queue,
java.lang.String messageSelector,
java.lang.Object payload factory)
throws JMSException

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-17

Creating a QueueReceiver

Parameters

queue
Queue to access.

messageSelector
Only messages with properties matching the message selector expression are
delivered.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Usage Notes

The CustomDatum factory for a particular java class that maps to the SQL object
type payload can be obtained using the get Factory static method.

For queues containing AdtMessages the selector for the QueueReceiver can be a
SQL expression on the message payload contents or messagelD or priority or
correlationID.

= Selector on message ID - to retrieve messages that have a specific messagelD. In
this case message IDs must NOT be prefixed with ID:

msgid = '23434556566767676"'

= Selector on priority or correlation is specified as follows

priority < 3 AND corrid = 'Fiction'

= Selector on message payload is specified as follows

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

Example

Assume the queue test_queue has payload of type SCOTT . EMPLOYEE and the
java class that is generated by Jpublisher for this Oracle object type is called
Employee. The Employee class implements the CustomDatum interface. The
CustomDatumPFactory for this class can be obtained by using the
Employee.getFactory() method.

13-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a QueueReceiver

/* Create a receiver for a Queue with Adt messages of type EMPLOYEE*/
QueueSession jms_session
QueueRecelver receiver;
Queue test_queue;
browser = ((AQjmsSession)jms_session) .createReceiver (
test_queue,
"JMSCorrelationID = 'MANAGER',
Employee.getFactory()) ;

Oracle Streams AQ JMS Operational Interface: Point-to-Point 13-19

Creating a QueueReceiver

13-20 Oracle Streams Advanced Queuing User’s Guide and Reference

14

Oracle Streams AQ JMS Operational
Interface: Publish/Subscribe

This chapter describes the Java Message Service (JMS) publish/subscribe
operational interface to Oracle Streams Advanced Queuing (AQ).

This chapter contains these topics:
s Creating a Connection

s Creating a TopicConnection

» Creating a Session

» Creating a TopicSession

» Creating a TopicPublisher

= Publishing a Message

= Creating a Durable Subscriber
» Creating a Remote Subscriber
= Unsubscribing a Durable Subscription
» Creating a TopicReceiver

n Creating a TopicBrowser

s Browsing Messages Using a TopicBrowser

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-1

Creating a Connection

Creating a Connection

A JMS Connection supports both point-to-point and publish/subscribe
operations. The methods in this section are new and support JMS version 1.1
specifications.

This section contains these topics:
s Creating a Connection with Username/Password

s Creating a Connection with Default Connection Factory Parameters

Creating a Connection with Username/Password

Purpose
Creates a connection with username and password.

Syntax

public javax.jms.Connection createConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

Parameters

username
Name of the user connecting to the database for queuing.

password
Password for creating the connection to the server.

Usage Notes
This connection supports both point-to-point and publish/subscribe operations.

Creating a Connection with Default Connection Factory Parameters

Purpose
Creates a connection with default connection factory parameters.

14-2 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a TopicConnection

Syntax

public javax.jms.Connection createConnection()
throws JMSException

Usage Notes

The ConnectionFactory properties must contain a default username and password;
otherwise, this method throws a JMSException. This connection supports both
point-to-point and publish/subscribe operations.

Creating a TopicConnection
This section contains these topics:
» Creating a TopicConnection with Username/Password
s Creating a TopicConnection with Open JDBC Connection
» Creating a TopicConnection with Default Connection Factory Parameters

= Creating a TopicConnection with an Open OracleOCIConnectionPool

Creating a TopicConnection with Username/Password

Purpose
Creates a TopicConnection with username/password.

Syntax

public javax.jms.TopicConnection createTopicConnection (
java.lang.String username,
java.lang.String password)
throws JMSException

Parameters

username
Name of the user connecting to the database for queuing.

password
Password for the user creating the connection.

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-3

Creating a TopicConnection

Example

TopicConnectionFactory tc fact =
AQjmsFactory.getTopicConnectionFactory ("sunl23", "oratest", 5521, "thin");

/* Create a TopicConnection using a username/password */

TopicConnection tc_conn = tc_fact.createTopicConnection("jmsuser", "jmsuser");

Creating a TopicConnection with Open JDBC Connection

Purpose
Creates a TopicConnection with open JDBC connection.

Syntax

public static javax.jms.TopicConnection createTopicConnection (
java.sql.Connection jdbc connection)
throws JMSException

Parameters

jdbc_connection
Valid open connection to the database.

Example 1

Connection db_conn; /*previously opened JDBC connection */

TopicConnection tc_conn = AQjmsTopicConnectionFactory createTopicConnection (db
conn) ;

Example 2

OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection (ora.defaultConnection()) ;

Creating a TopicConnection with Default Connection Factory Parameters

Purpose
Creates a TopicConnection with default connection factory parameters.

14-4 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Session

Syntax

public javax.jms.TopicConnection createTopicConnection ()
throws JMSException

Creating a TopicConnection with an Open OracleOCIConnectionPool

Purpose
Creates a TopicConnection with an open OracleOCIConnectionPool.

Syntax

public static javax.jms.TopicConnection createTopicConnection (
oracle.jdbc.pool.OracleOCIConnectionPool cpool)
throws JMSException

Parameters

cpool
Valid open connection to the database.

Usage notes
This is a static method.

Example

This method can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does
not open an new OracleOCIConnectionPool instance, but instead use the
supplied OracleOCIConnectionPool instance to create the JMS
TopicConnection object.

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection (cpool) ;

Creating a Session

Purpose
Creates a Session, which supports both point-to-point and publish/subscribe
operations.

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-5

Creating a TopicSession

Syntax

public javax.jms.Session createSession(boolean transacted,
int ack_mode)
throws JMSException

Parameters

transacted
If set to true, then the session is transactional.

ack_mode

Indicates whether the consumer or the client will acknowledge any messages it
receives. It is ignored if the session is transactional. Legal values are

Session.AUTO ACKNOWLEDGE, Session.CLIENT ACKNOWLEDGE, and
Session.DUPS OK ACKNOWLEDGE.

Usage Notes
This method is new and supports JMS version 1.1 specifications.

Creating a TopicSession

Purpose

Creates a TopicSession.

Syntax

public javax.jms.TopicSession createTopicSession(boolean transacted,
int ack_mode)
throws JMSException

Parameters

transacted
If set to true, then the session is transactional.

ack_mode

Indicates whether the consumer or the client will acknowledge any messages it
receives. It is ignored if the session is transactional. Legal values are

Session.AUTO ACKNOWLEDGE, Session.CLIENT ACKNOWLEDGE, and
Session.DUPS OK ACKNOWLEDGE.

14-6 Oracle Streams Advanced Queuing User’s Guide and Reference

Publishing a Message

Example

TopicConnection tc_conn;
TopicSession t sess = tc_conn.createTopicSession(true,0);

Creating a TopicPublisher

Purpose
Creates a TopicPublisher.

Syntax

public javax.jms.TopicPublisher createPublisher (javax.jms.Topic topic)
throws JMSException

Parameters

topic
Topic to publish to, or null if this is an unidentified producer.

Publishing a Message
You can publish a message using a:
s TopicPublisher with Minimal Specification
= TopicPublisher and Specifying Correlation and Delay
s TopicPublisher and Specifying Priority and TimeToLive
= TopicPublisher and Specifying a Recipient List Overriding Topic Subscribers

TopicPublisher with Minimal Specification

Purpose
Publishes a message with minimal specification.

Syntax

public void publish(javax.jms.Message message)
throws JMSException

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-7

Publishing a Message

Parameters

message
Message to publish.

Usage Notes

If the TopicPublisher has been created with a default topic, then the topic
parameter may not be specified in the publish call. If a topic is specified in the send
operation, then that value overrides the default in the TopicPublisher. If the
TopicPublisher has been created without a default topic, then the topic must be
specified with the publish. The TopicPublisher uses the default values for
message priority (1) and timeToLive (infinite).

Example 1

/* Publish specifying topic */
TopicConnectionFactory tc fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
'MYHOSTNAME ',
'MYSID',
myport,
'oci8') ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
/* create TopicPublisher */
publisherl = jms_sess.createPublisher (null);
/* get topic object */
shipped orders = ((AQjmsSession)Jjms_sess).getTopic (
'WS',
'Shipped Orders Topic');
/* create text message */
TextMessage jms_sess.createTextMessage () ;
/* publish specifying the topic */
publisherl.publish(shipped orders, text message);

14-8 Oracle Streams Advanced Queuing User’s Guide and Reference

Publishing a Message

Example 2

/* Publish without specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME",
"MYSID",
myport,
"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
/* get shipped orders topic */
shipped orders = ((AQjmsSession)Jjms_sess).getTopic (
"OE",
"Shipped Orders Topic");
publisherl = jms_sess.createPublisher (shipped orders);
/* create text message */
TextMessage jms_sess.createTextMessage () ;
/* publish without specifying the topic */
publisherl.publish(text message) ;

TopicPublisher and Specifying Correlation and Delay

Purpose
Publishes a message specifying correlation and delay.

Syntax

public void publish(javax.jms.Message message)
throws JMSException

Parameters

message
Message to publish.

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-9

Publishing a Message

Usage Notes
The publisher can set the message properties like delay and correlation before

publishing.

Example

TopicConnectionFactory tc fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped Orders Topic");
publisherl = jms_sess.createPublisher (shipped orders);
/* Create text message */
TextMessage jms_sess.createTextMessage () ;
/* Set correlation and delay */
/* Set correlation */
jms_sess.setJMSCorrelationID ("FOO") ;
/* Set delay of 30 seconds */
jms_sess.setLongProperty ("JMS OracleDelay", 30);
/* Publish */
publisherl.publish(text message) ;

TopicPublisher and Specifying Priority and TimeToLive

Purpose
Publishes a message specifying priority and TimeToLive.

Syntax

public void publish(javax.jms.Topic topic,
javax.jms.Message message,

14-10 Oracle Streams Advanced Queuing User’s Guide and Reference

Publishing a Message

oracle.jms.AQjmsAgent [] recipient list,
int deliveryMode,
int priority,
long timeToLive)
throws JMSException

Parameters

topic
Topic to which to publish the message. This overrides the default topic of the
MessageProducer.

message
Message to be published.

recipient_list
List of recipients to which the message is published. Recipients are of type
AQjmsAgent.

deliveryMode
Delivery mode. The options are PERSISTENT or NON_PERSISTENT, but only
PERSISTENT is supported in this release.

priority
Priority of the message.

timeToLive
Message time to live in milliseconds; zero is unlimited.

Usage Notes

Message priority and timeToLive can be specified with the publish call. The
only delivery mode supported for this release is PERSISTENT.

Example

TopicConnectionFactory tc fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped orders;
int myport = 5521;

/* create connection and session */
tc _fact = AQjmsFactory.getTopicConnectionFactory (

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-11

Publishing a Message

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped Orders Topic");
publisherl = jms_sess.createPublisher (shipped orders);
/* Create text message */
TextMessage jms_sess.createTextMessage () ;
/* Publish message with priority 1 and time to live 200 seconds */
publisherl.publish(text message, DeliveryMode.PERSISTENT, 1, 200000);

TopicPublisher and Specifying a Recipient List Overriding Topic Subscribers

Purpose
Publishes a message specifying a recipient list overriding topic subscribers.

Syntax

public void publish(javax.jms.Message message,
oracle.jms.AQjmsAgent [] recipient list)
throws JMSException

Parameters

message
The message to be published.

recipient_list
The list of recipients to which the message is published. The recipients are of type
AQjmsAgent.

Usage Notes

The subscription list of the topic can be overridden by specifying the recipient list
with the publish call.

14-12 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Durable Subscriber

Example

/* Publish specifying priority and timeToLive */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisherl;

Topic shipped orders;

int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc _fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped Orders Topic");
publisherl = jms_sess.createPublisher (shipped orders);
/* create text message */
TextMessage jms_sess.createTextMessage () ;
/* create two receivers */
recipList = new AQjmsAgent [2];
recipList [0] = new AQjmsAgent (

"ES",

"ES.shipped orders topic",

AQAgent .DEFAULT AGENT PROTOCOL) ;
recipList [1] = new AQjmsAgent (

"WST,

"WS.shipped orders topic",

AQAgent .DEFAULT AGENT PROTOCOL) ;
/* publish message specifying a recipient list */
publisherl.publish(text message, recipList);

Creating a Durable Subscriber

CreateDurableSubscriber requires exclusive access to the topics. If there are
pending JMS send, publish, or receive operations on the same topic when this call is
applied, then exception ORA - 4020 is raised. There are two solutions to the
problem:

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-13

Creating a Durable Subscriber

» Limit calls to createDurableSubscriber at the setup or cleanup phase
when there are no other JMS operations pending on the topic. That makes sure
that the required resources are not held by other JMS operational calls.

» Call TopicSession.commit before calling createDurableSubscriber.
This section contains these topics:

» Creating a Durable Subscriber for a JMS Topic Without Selector

= Creating a Durable Subscriber for a JMS Topic With Selector

s Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector
= Creating a Durable Subscriber for an Oracle Object Type Topic With Selector

Creating a Durable Subscriber for a JMS Topic Without Selector

Purpose
Creates a durable subscriber for a JMS topic without selector.

Syntax

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs name)
throws JMSException

Parameters

topic
Non-temporary topic to subscribe to.

subs_name
Name used to identify this subscription.

Usage Notes

The subscriber name and JMS topic must be specified to create a durable subscriber.
An unsubscribe call ends the subscription to the topic.

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;

14-14 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Durable Subscriber

TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped Orders Topic");
/* create a durable subscriber on the shipped orders topic*/
subscriberl = jms_sess.createDurableSubscriber (

shipped orders,

'WesternShipping') ;

Creating a Durable Subscriber for a JMS Topic With Selector

Purpose
Creates a durable subscriber for a JMS topic with selector.

Syntax
public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs name,
java.lang.String messageSelector,
boolean nolocal)
throws JMSException

Parameters

topic
Non-temporary topic to subscribe to.

subs_name
Name used to identify this subscription.

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-15

Creating a Durable Subscriber

messageSelector

Only messages with properties matching the message selector expression are
delivered. A value of null or an empty string indicates that there is no message
selector for the message consumer.

nolLocal
If set to true, then it inhibits the delivery of messages published by its own
connection.

Usage Notes

The client creates a durable subscriber by specifying a subscriber name and JMS
topic. Optionally, a message selector can be specified. Only messages with
properties matching the message selector expression are delivered to the subscriber.
The selector value can be null. The selector can contain any SQL92 expression that
has a combination of one or more of the following:

For example:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

= JMS message header fields or properties:
= JMSPriority (int)
= JMSCorrelationID (string)
= JMSType (string)
= JMSXUserID (string)
s JMSXAppID (string)
s JMSXGrouplD (string)
= JMSXGroupSeq (int)
= User-defined message properties
For example:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

Operators allowed are:
= Logical operators in precedence order NOT, AND, OR comparison operators
= =, >,>5,<,<=,<>, ! (both<>and ! can be used for not equal)

= Arithmetic operators in precedence order +, - unary, *, /, +, -

14-16 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Durable Subscriber

» Identifier [NOT] IN (string-literall, string-literal2, ..)
= Arithmetic-exprl [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
» Identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

Pattern-value is a string literal where % refers to any sequence of characters and
_ refers to any single character. The optional escape-character is used to escape
the special meaning of the '_' and '%" in pattern-value

s Identifier IS [NOT] NULL

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a different message selector. An
unsubscribe call is needed to end the subscription to the topic.

Example

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped orders;
int myport = 5521;
AQjmsAgent [] recipList;

/* create connection and session */
tc fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"ocig") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)Jjms_ sess).getTopic (

"OE",

"Shipped Orders Topic");
/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriberl = jms_sess.createDurableSubscriber (

shipped orders,

'WesternShipping',

"JMSPriority > 2 and Region like 'Western$'",

false);

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-17

Creating a Durable Subscriber

Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector

Purpose
Creates a durable subscriber for an Oracle object type topic without selector.

Syntax
public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs name,
java.lang.Object payload factory)
throws JMSException

Parameters

topic
Non-temporary topic to subscribe to.

subs_name
Name used to identify this subscription.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Usage Notes

To create a durable subscriber for a topic of Oracle object type, the client must
specify the CustomDatumFactory for the Oracle object type in addition to the topic
and subscriber name.

Example

/* Subscribe to an ADT queue */
TopicConnectionFactory tc fact = null;
TopicConnection t_conn = null;
TopicSession t sess = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;

14-18 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Durable Subscriber

Topic shipped orders;

int my [port = 5521;

AQjmsAgent [] recipList;

/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

"OE",

"Shipped Orders Topic");
/* create a subscriber, specifying the correct CustomDatumFactory */
subscriberl = jms_sess.createDurableSubscriber (

shipped orders,

'WesternShipping',

AQjmsAgent .getFactory()) ;

Creating a Durable Subscriber for an Oracle Object Type Topic With Selector

Purpose
Creates a durable subscriber for an Oracle object type topic with selector.

Syntax

public javax.jms.TopicSubscriber createDurableSubscriber (
javax.jms.Topic topic,
java.lang.String subs name,
java.lang.String messageSelector,
boolean noLocal,
java.lang.Object payload factory)

throws JMSException

Parameters

topic
Non-temporary topic to subscribe to.

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-19

Creating a Durable Subscriber

subs_name
Name used to identify this subscription.

messageSelector

Only messages with properties matching the message selector expression are
delivered. A value of null or an empty string indicates that there is no message
selector for the message consumer.

noLocal
If set to true, then it inhibits the delivery of messages published by its own
connection.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Usage Notes

To create a durable subscriber for a Topic of Oracle object type, the client must
specify the CustomDatumFactory for the Oracle object type in addition to the topic
and subscriber name.

Optionally, a message selector can be specified. Only messages matching the
selector are delivered to the subscriber.

Oracle object type messages do not contain any user-defined properties. However,
the selector can be used to select messages based on priority or correlation ID or
attribute values of the message payload

The syntax for the selector for queues containing Oracle object type messages is
different from the syntax for selectors on queues containing standard JMS payloads
(text, stream, object, bytes, map).

The selector is similar to the Oracle Streams AQ rules syntax. An example of a
selector on priority or correlation is:

priority > 3 AND corrid = 'Fiction'

An example of a selector on message payload is:

tab.user data.color = 'GREEN' AND tab.user data.price < 30000

14-20 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Durable Subscriber

The attribute name must be prefixed with tab.user data.

Example

TopicConnectionFactory tc fact = null;

TopicConnection t_conn = null;

TopicSession jms_sess;

TopicSubscriber subscriberl;

Topic shipped orders;

int myport = 5521;

AQjmsAgent [] recipList;

/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc _fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",

"MYSID",

myport,

"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (

I|OE n ,

"Shipped Orders Topic");
/* create a subscriber, specifying correct CustomDatumFactory and selector */
subscriberl = jms_sess.createDurableSubscriber (

shipped orders,

"WesternShipping",

"priority > 1 and tab.user data.region like 'WESTERN %'",

false,

ADTMessage.getFactory()) ;

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-21

Creating a Remote Subscriber

Creating a Remote Subscriber
This section contains these topics:
= Creating a Remote Subscriber for Topics of JMS Messages
= Creating a Remote Subscriber for Topics of Oracle Object Type Messages

Creating a Remote Subscriber for Topics of JMS Messages

Purpose
Creates a remote subscriber for topics of JMS messages without selector.

Syntax

public void createRemoteSubscriber (javax.jms.Topic topic,
oracle.jms.AQjmsAgent remote subscriber,
java.lang.String messageSelector)
throws JMSException

Parameters

topic
Topic to subscribe to.

remote_subscriber
AQjmsAgent that refers to the remote subscriber.

messageSelector

Only messages with properties matching the message selector expression are
delivered. This value can be null. The selector syntax is the same as that for
createDurableSubscriber.

Usage Notes

Oracle Streams AQ allows topics to have remote subscribers, for example,
subscribers at other topics in the same or different database. In order to use remote
subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers
at the remote topic. A remote subscriber is defined using the AQjmsAgent structure.
An AQjmsAgent consists of a name and address. The name refers to the consumer_
name at the remote topic. The address refers to the remote topic - the syntax is
(schema).(topic_name)[@dblink].

14-22 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Remote Subscriber

a) To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field
of AQjmsAgent

b) To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent

A message selector can also be specified. Only messages that satisfy the selector are
delivered to the remote subscriber. The message selector can be null. The syntax for
the selector is the same as that for createDurableSubscriber. The selector can be null.

Example

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t sess = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped orders;
int my [port = 5521;
AQjmsAgent remoteAgent;

/* create connection and session */
tc fact = AQjmsFactory.getTopicConnectionFactory (

"MYHOSTNAME",
"MYSID",
myport,
"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
shipped orders = ((AQjmsSession)jms_sess).getTopic (
"OE",
"Shipped Orders Topic");
remoteAgent = new AQjmsAgent ("WesternRegion", "WS.shipped orders topic", null);

/* create a remote subscriber (selector is null)*/
subscriberl = ((AQjmsSession)jms_ sess) .createRemoteSubscriber (
shipped orders,
remoteAgent,
null) ;

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-23

Creating a Remote Subscriber

Creating a Remote Subscriber for Topics of Oracle Object Type Messages

Purpose
Creates a remote subscriber for topics of Oracle object type messages.

Syntax

public void createRemoteSubscriber (javax.jms.Topic topic,
oracle.jms.AQjmsAgent remote subscriber,
java.lang.String messageSelector,
java.lang.Object payload factory)
throws JMSException

Parameters

topic
Topic to subscribe to.

remote_subscriber
AQjmsAgent that refers to the remote subscriber.

messageSelector

Only messages with properties matching the message selector expression are
delivered. This value can be null. The selector syntax is the same as that for
createDurableSubscriber.

payload_factory
CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle
ADT.

Note: CustomDatum support will be deprecated in a future
release. Use ORADataFactory payload factories instead.

Usage Notes

Oracle Streams AQ allows topics to have remote subscribers, for example,
subscribers at other topics in the same or different database. In order to use remote
subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers
at the remote topic. A remote subscriber is defined using the AQjmsAgent structure.

14-24 Oracle Streams Advanced Queuing User’s Guide and Reference

Creating a Remote Subscriber

An AQjmsAgent consists of a name and address. The name refers to the consumer_
name at the remote topic. The address refers to the remote topic - the syntax is
(schema).(topic_name)[@dblink].

a) To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field
of AQjmsAgent

b) To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent

The CustomDatumFactory of the Oracle object type of the topic must be specified.
A message selector can also be specified. Only messages that satisfy the selector are
delivered to the remote subscriber. The message selector can be null. The syntax for
message selector is the same as that for createDurableSubscriber with Topics of
Oracle object type messages. The message selector can be null.

Example

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t sess = null;
TopicSession jms_sess;
TopicSubscriber subscriberl;
Topic shipped orders;
int my [port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory (
"MYHOSTNAME",
"MYSID",
myport,
"oci8") ;
t conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT ACKNOWLEDGE) ;
/* get the Shipped order topic */
shipped orders = ((AQjmsSession)Jjms_sess).getTopic (
"OE",
"Shipped Orders Topic");
/* create a remote agent */
remoteAgent = new AQjmsAgent ("WesternRegion", "WS.shipped orders topic", null);

Oracle Streams AQ JMS Operational Interface: Publish/Subscribe 14-25

Unsubscribing a Durable Subscription

/* create a remote subscriber with null selector*/
subscriberl = ((AQjmsSession)jms_sess) .createRemoteSubscriber (
shipped orders,
remoteAgent,
null,
message.getFactory) ;

Unsubscribing a Durable Subscription

Unsubscribe requires exclusive access to the topics. If there are pending JMS
send, publish, or receive operations on the same topic when this call is applied, then
exception ORA - 4020 is raised. There are two solutions to the problem:

» Limit calls to unsubscribe at the setup or cleanup phase when there are no
other JMS operations pending on the topic. That makes sure that the required
resources are not held by other JMS operational calls.

» Call TopicSession.commit before calling uns