
Pro*C/C++
Getting Started

Release 9.2 for Windows

Part No. A96111-03

December 2003

Pro*C/C++ Getting Started, Release 9.2 for Windows

Part No. A96111-03

Copyright © 1996, 2003, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. v

Preface .. vii

Intended Audience... vii
Documentation Accessibility .. vii
Structure.. viii
Related Documents ... viii
Conventions .. ix

What's New in Pro*C/C++? .. xiii

Oracle9i Release 2 (9.2) New Features in Pro*C/C++ ... xiii
Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++ .. xiii
Oracle8i Release 8.1.6 New Features in Pro*C/C++ .. xiii

1 Introducing Pro*C/C++

What Is Pro*C/C++? ... 1-1
Features... 1-1
Restrictions .. 1-2
Directory Structure... 1-2

Known Problems, Restrictions, and Workarounds .. 1-2

2 Using Pro*C/C++

Using the Graphical User Interface .. 2-1
Starting Pro*C/C++ Graphical Interface .. 2-1

Title Bar.. 2-2
Menu Bar ... 2-2
Toolbar ... 2-3
Information Pane.. 2-3
Status Bar... 2-5

Creating and Precompiling a Pro*C/C++ Project ... 2-5
Opening a Project ... 2-5
Setting the Default Extension of Output Files.. 2-5
Changing the Name of an Existing Input or Output File... 2-6
Adding Files to the Project.. 2-7

iv

Deleting Files from the Project ... 2-8
Setting the Precompiler Options .. 2-8
Specifying Database Connection Information .. 2-10
Precompiling a Pro*C/C++ Project.. 2-11
Checking the Results .. 2-12
Fixing Errors .. 2-12
Exiting Pro*C/C++ ... 2-13

Using Pro*C/C++ at the Command Prompt ... 2-13
Header Files .. 2-13
Library Files.. 2-14
Multithreaded Applications.. 2-14
Precompiler Options... 2-15

Configuration File ... 2-15
CODE .. 2-15
DBMS .. 2-15
INCLUDE ... 2-15
PARSE... 2-15

Using Pro*C/C++ with the Oracle XA Library... 2-15
Compiling and Linking a Pro*C/C++ Program with XA... 2-16
XA Dynamic Registration .. 2-16

Adding an Environmental Variable for the Current Session .. 2-16
Adding a Registry Variable for All Sessions.. 2-16

XA and TP Monitor Information .. 2-17

3 Sample Programs

Sample Program Descriptions ... 3-1
Building the Demonstration Tables.. 3-6
Building the Sample Programs.. 3-6

Using pcmake.bat .. 3-6
Using Microsoft Visual C++... 3-6
Setting the Path for the Sample .pre Files ... 3-7

A Integrating Pro*C/C++ into Microsoft Visual C++

Integrating Pro*C/C++ within Microsoft Visual C++ Projects... A-1
Specifying the Location of the Pro*C/C++ Executable ... A-1
Specifying the Location of the Pro*C/C++ Header Files .. A-2

Adding .pc Files to a Project.. A-3
Adding References to .c Files to a Project .. A-3
Adding the Pro*C/C++ Library to a Project ... A-4
Specifying Custom Build Options .. A-4

Adding Pro*C/C++ to the Tools Menu .. A-5

Index

v

Send Us Your Comments

Pro*C/C++ Getting Started, Release 9.2 for Windows

Part No. A96111-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

vi

vii

Preface

This manual provides introductory information for the Pro*C/C++ precompiler
running on Windows operating systems.

This Preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Intended Audience
Pro*C/C++ Getting Started is intended for anyone who wants to use Pro*C/C++ to
perform the following tasks:

■ Embed SQL statements in a C or C++ program.

■ Build Oracle database applications with Pro*C/C++.

To use this document, you need to know:

■ Commands for deleting and copying files and the concepts of the search path,
subdirectories, and path names.

■ How to use the Windows operating system.

■ Visual C++ version 5.0 or higher.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

viii

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Structure
This document contains:

Chapter 1, "Introducing Pro*C/C++"
This chapter describes Pro*C/C++, the Oracle programmatic interface for the C and
C++ languages running on Windows NT, Windows 98, or Windows 2000 operating
systems.

Chapter 2, "Using Pro*C/C++"
This chapter explains how to create and precompile a project. Also describes the
Pro*C/C++ graphical user interface, from which you execute commands with
Windows menus and icons or with keyboard equivalents, and using Pro*C/C++ at the
command prompt.

Chapter 3, "Sample Programs"
This chapter describes how to build Oracle database applications with Pro*C/C++
using the sample programs that are included with this release, and provides an
overview of how to build multithreaded applications.

Appendix A, "Integrating Pro*C/C++ into Microsoft Visual C++"
This appendix describes how to integrate Pro*C/C++ into the Visual C++ integrated
development environment.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Installation Guide for Windows

■ Oracle Database Release Notes for Windows

■ Pro*C/C++ Programmer's Guide

■ Oracle Database Platform Guide for Windows

■ Oracle Enterprise Manager Administrator's Guide

■ Oracle Net Services Administrator's Guide

■ Oracle Real Application Clusters Quick Start

■ Oracle Database New Features

■ Oracle Database Concepts

■ Oracle Database Reference

ix

■ Oracle Database Error Messages

Many of the books in the documentation library use the sample schemas of the seed
database, which is installed by default when you install Oracle. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

x

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Convention Meaning Example

xi

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Convention Meaning Example

xii

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

ORACLE_HOMEand
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOMEdirectory. There is a top level
directory called ORACLE_BASE that by
default is C:\oracle. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directoryisC:\oracle\orann,wherenn is
the latest release number. The Oracle home
directory is located directly under ORACLE_
BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xiii

What's New in Pro*C/C++?

This section describes new features of Oracle9i releases and provides pointers to
additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*C/C++:

■ Oracle9i Release 2 (9.2) New Features in Pro*C/C++

■ Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

■ Oracle8i Release 8.1.6 New Features in Pro*C/C++

Oracle9i Release 2 (9.2) New Features in Pro*C/C++
There is no new Windows specific feature in Pro*C/C++ for this release.

Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
The Oracle9i release 1 (9.0.1) feature described in this section highlights the support for
Windows 2000.

Using Oracle9i on Windows 2000
Pro*C/C++ is now supported on Windows 2000. There are some differences between
using Oracle9i on Windows 2000 and Windows NT 4.0.

Oracle8i Release 8.1.6 New Features in Pro*C/C++
The Oracle8i release 8.1.6 features and enhancements described in this section
comprise the overall effort to make Pro*C/C++ application development simpler.

Fully Integrated Debugging Capabilities
Beginning with release 8.1.6, the behavior of the LINES={YES|NO} option has
changed. Now, when LINES=YES is specified, a #line preprocessor directive is
generated after every line of generated code in the output program. This enables
developers using debuggers such as GDB or IDEs such as the Microsoft Visual Studio
for C++ to debug their application programs by viewing the Pro*C/C++ source
program instead of by stepping through the generated code.

See Also: "What's New" preface of Pro*C/C++ Programmer's Guide

See Also: Oracle Database Platform Guide for Windows

xiv

See Also: Integrating Pro*C/C++ within Microsoft Visual C++
Projects

Introducing Pro*C/C++ 1-1

1
Introducing Pro*C/C++

This chapter describes Pro*C/C++, the Oracle programmatic interface for the C and
C++ languages running on Windows operating systems. Pro*C/C++ enables you to
build Oracle database applications in a Win32 environment.

This chapter contains these topics:

■ What Is Pro*C/C++?

■ Features

■ Restrictions

■ Directory Structure

What Is Pro*C/C++?
The Pro*C/C++ precompiler enables you to create applications that access your Oracle
database whenever rapid development and compatibility with other systems are your
priorities.

The Pro*C/C++ programming tool enables you to embed Structured Query Language
(SQL) statements in a C or C++ program. The Pro*C/C++ precompiler translates these
statements into standard Oracle runtime library calls, then generates a modified source
program that you can compile, link, and run in the usual way.

Features
Pro*C/C++ supports the following features:

■ Remote access with Oracle Net Services or local access to Oracle databases

■ Embedded PL/SQL blocks

■ Bundled database calls, which can provide better performance in client/server
environments

■ Full ANSI compliance for embedded SQL programming

■ PL/SQL version 9.0 and host language arrays in PL/SQL procedures

■ Multi-threaded applications

■ Full ANSI C compliance

■ Microsoft Visual C++ support, version 6.0 for 32-bit applications

See Also: Pro*C/C++ Programmer's Guide for additional
information

Restrictions

1-2 Pro*C/C++ Getting Started

Restrictions
Pro*C/C++ does not support 16-bit code generation.

Directory Structure
Installing Oracle software creates a directory structure on your hard drive for the
Oracle products. A main Oracle directory contains the Oracle subdirectories and files
that are necessary to run Pro*C/C++.

When you install Pro*C/C++, Oracle Universal Installer creates a directory called
\precomp in the ORACLE_BASE\ORACLE_HOME directory. This subdirectory contains
the Pro*C/C++ executable files, library files, and sample programs listed in Table 1–1.

Known Problems, Restrictions, and Workarounds
Although all Windows operating systems allow spaces in file names and directory
names, the Oracle Pro*C/C++ and Oracle Pro*COBOL precompilers will not
precompile files that include spaces in the filename or directory name. For example, do
not use the following formats:

■ proc iname=test one.pc

■ proc iname=d:\dir1\second dir\sample1.pc

Note: Borland C++ is no longer supported.

Table 1–1 precomp Directory Structure

Directory Name Contents

\admin Configuration files

\demo\proc Sample programs for Pro*C/C++

\demo\sql SQL scripts for sample programs

\doc\proc Readme files for Pro*C/C++

\help\proc Help files for Pro*C/C++

\lib\msvc Library files for Pro*C/C++

\mesg Message files

\misc\proc Miscellaneous files for Pro*C/C++

\public Header files

Note: The \precomp directory can contain files for other
products, such as Pro*COBOL.

Using Pro*C/C++ 2-1

2
Using Pro*C/C++

This chapter explains how to create and precompile a project. It also describes the
Pro*C/C++ graphical user interface, from which you execute commands with
Windows menus and icons or with keyboard equivalents, and using Pro*C/C++ at the
command prompt.

This chapter contains these topics:

■ Using the Graphical User Interface

■ Creating and Precompiling a Pro*C/C++ Project

■ Using Pro*C/C++ at the Command Prompt

■ Header Files

■ Library Files

■ Multithreaded Applications

■ Precompiler Options

■ Using Pro*C/C++ with the Oracle XA Library

Using the Graphical User Interface
Before you follow the instructions for creating and precompiling a Pro*C/C++ project,
you should familiarize yourself with the basic commands, dialog boxes, menus, and
buttons of the Pro*C/C++ graphical user interface.

Starting Pro*C/C++ Graphical Interface
To start the graphical user interface, choose Start > Programs > Oracle - HOME_NAME
> Application Development > Pro C-C++. Figure 2–1 shows the four elements of the
Pro*C/C++ precompile environment.

See Also: Pro*C/C++ Programmer's Guide for additional
information

Starting Pro*C/C++ Graphical Interface

2-2 Pro*C/C++ Getting Started

Figure 2–1 Pro*C/C++ Precompile Environment Elements

Title Bar
The title bar displays the name of the Pro*C/C++ project. If you have not assigned a
name to the current project, the word "Untitled" appears instead.

Menu Bar
The menu bar contains the following menus. Table 2–1 lists and describes the menus.

Table 2–1 Menu Bar Menus

Menu Description

File Contains commands to create a new Pro*C/C++ project, open an existing
Pro*C/C++ project, save the active Pro*C/C++ project under the same
name or under a different name, specify a connect string to an Oracle
database, precompile a Pro*C/C++ project, and exit the application.

Starting Pro*C/C++ Graphical Interface

Using Pro*C/C++ 2-3

Toolbar
The Toolbar enables you to execute commands by choosing a button. Figure 2–2 shows
the Toolbar buttons.

Figure 2–2 Toolbar Buttons

Table 2–2 describes the Toolbar buttons in order, from left to right.

Information Pane
Figure 2–3 shows the four elements of the information pane.

Edit Contains commands to add files to a Pro*C/C++ project, delete files from
a Pro*C/C++ project, and display or change precompiler options.

Preferences Contains commands to set the default file extension of output files.

Help Contains the About Pro*C/C++ command, which displays the version
number of the application and copyright information.

Table 2–2 Toolbar Buttons

Button Description

New Create a new Pro*C/C++ project

Open Open an existing Pro*C/C++ project

Save Save the active Pro*C/C++ project under the same name

Add Add files to a Pro*C/C++ project

Delete Delete files from a Pro*C/C++ project

Options Display or change precompiler options

Precompile Precompile a Pro*C/C++ project

Table 2–1 (Cont.) Menu Bar Menus

Menu Description

Starting Pro*C/C++ Graphical Interface

2-4 Pro*C/C++ Getting Started

Figure 2–3 Information Pane Elements

Table 2–3 lists and describes the Information Pane elements.

Look for one of the three status icons in the precompilation status bar after the
precompile process is complete.

Table 2–3 Information Pane Elements

Element Description

Precompilation Status Bar Indicates whether the precompilation for a file was successful
or unsuccessful.

Input File Shows the files of a Pro*C/C++ project to be precompiled.

Output File Shows the output files of a Pro*C/C++ project after
precompilation.

Options Displays precompile options that are different from the default
options.

Creating and Precompiling a Pro*C/C++ Project

Using Pro*C/C++ 2-5

■ A green check indicates that the file precompiled successfully.

■ A yellow check indicates that the file precompiled successfully, but there are one
or more warnings.

■ A red X indicates that the file did not precompile successfully.

Double-clicking a status icon opens the Precompilation Status dialog box. This dialog
box provides detailed information on the reason for a warning or failure.

Status Bar
The status bar at the bottom of the window displays information about the progress of
a precompilation. The status bar also identifies the purpose of a toolbar button or
menu command when you place the mouse pointer over the toolbar button or menu
command.

Creating and Precompiling a Pro*C/C++ Project
This section describes the steps involved in creating and precompiling a Pro*C/C++
project. After starting the Pro*C/C++ application, perform the following steps:

■ Opening a Project

■ Setting the Default Extension of Output Files

■ Changing the Name of an Existing Input or Output File

■ Adding Files to the Project

■ Deleting Files from the Project

■ Setting the Precompiler Options

■ Specifying Database Connection Information

■ Precompiling a Pro*C/C++ Project

■ Checking the Results

■ Fixing Errors

■ Exiting Pro*C/C++

Opening a Project
Pro*C/C++ opens only one project at a time. A project consists of one or more
precompilable files. Project files have an extension of .pre.

■ To create a new project, choose File > New Project.

■ To open an existing project, choose File > Open Project.

Setting the Default Extension of Output Files
Use the Preferences menu to determine the default extension of the output files.
Figure 2–4 shows the Preferences menu.

Note: A project created by a prior release cannot be opened by
Oracle9i. It results in an Unexpected File Format error. You must
re-create the project.

Creating and Precompiling a Pro*C/C++ Project

2-6 Pro*C/C++ Getting Started

Figure 2–4 Preferences Menu

This setting only affects input files that you add later. An existing output filename will
not change. However, you can change an existing output filename by double-clicking
the output file and entering a new name.

■ If you select Default Output C File Name, the default extension of the output files
is .c.

■ If you select Default Output C++ File Name, the default extension of the output
files is .cpp.

■ If you deselect both Default Output C File Name and Default Output C++ File
Name, the Output File dialog box appears when you add an output file.

■ Enter an output filename for the file selected. After you select or enter a filename,
it appears in the Output File area of the information pane.

Changing the Name of an Existing Input or Output File
To change the name of an existing input or output file:

1. Double-click the filename in the Input File or Output File area of the information
pane. The Input File or Output File dialog box appears.

Creating and Precompiling a Pro*C/C++ Project

Using Pro*C/C++ 2-7

1. Replace the old filename with the new filename.

2. Choose Open.

Adding Files to the Project
To add files to the project:

1. Choose Edit > Add. The Input File dialog box appears.

Creating and Precompiling a Pro*C/C++ Project

2-8 Pro*C/C++ Getting Started

1. Select one or more .pc files. Use the Ctrl key and the mouse to select files that are
not adjacent.

2. Choose Open. The selected files appear in the information pane.

Deleting Files from the Project
If you need to, you can easily delete one or more files from the project.

To delete files from the project:

1. Highlight the file(s) in the information pane.

2. Choose Edit > Delete.

3. Choose Yes.

Setting the Precompiler Options
The Precompiler options enable you to control how resources are used, how errors are
reported, how input and output are formatted, and how cursors are managed.

To set the precompile options:

1. Select one or more files in the Input File list.

2. Choose Edit > Options. The Options dialog box appears.

Creating and Precompiling a Pro*C/C++ Project

Using Pro*C/C++ 2-9

Default options are in effect for all newly added files. When you change an option's
default setting, a description of the change appears in the Option String edit field at
the bottom of the Options dialog box and in the Options area of the information pane.
For additional information on options, see "Precompiler Options" on page 2-15.

1. To change the format of the output list file that the precompiler writes to disk,
choose the Listing/Errors button. The Listing/Errors dialog box appears.

Creating and Precompiling a Pro*C/C++ Project

2-10 Pro*C/C++ Getting Started

The settings include the type of error information generated and the name of the list
file.

1. After you set the options in the Options dialog box, choose OK.

Specifying Database Connection Information
If you selected semantics or full for the SQL Check option in the Options dialog box,
you may need to specify database connection information to the Oracle database. You
do not need to connect to the Oracle database if every table referenced in a data
manipulation statement or PL/SQL block is defined in a DECLARE TABLE statement.

To specify database connection information:

1. Choose File > Connect. The Connect dialog box appears.

Creating and Precompiling a Pro*C/C++ Project

Using Pro*C/C++ 2-11

1. Use this dialog box to specify database connection information prior to
precompiling. No database connection is performed at this time. Only one set of
database connection information can be specified for all files requiring semantic or
full checking with SQLCHECK.

2. The Connect dialog box appears automatically at precompile time if you have not
previously responded. Enter the username, the password, and the network service
name (database alias). The network service name is not required for a local
database.

3. If you want to save the connection information between Pro*C/C++ sessions,
select the Save Connect String to Disk check box. If you do not select the check
box, you must enter this information each time you precompile.

4. Choose OK.

Precompiling a Pro*C/C++ Project
You can precompile any number of files in the Input File list.

To precompile:

1. Select one or more files in the Input File list. You can use the Control key to
highlight files that are not adjacent to each other (for example, the first and third
files in a list).

2. Choose File > Precompile.

When precompiling is completed, the message in the dialog box indicates
"Precompiling Finished!", and the Cancel button changes to OK.

3. Choose OK.

Creating and Precompiling a Pro*C/C++ Project

2-12 Pro*C/C++ Getting Started

Checking the Results
Precompiling can result in success, success with warning(s), or failure. When
precompiling is finished, check the precompilation status bar.

■ A green check indicates that the file compiled successfully.

■ A yellow check indicates that the file compiled successfully, but there are one or
more warnings.

■ A red X indicates that the file did not compile successfully.

Fixing Errors
If you see a yellow check or a red X, double-click the icon in status bar. The
Precompilation Status dialog box appears. This dialog box lists warning messages or
reasons why the precompilation failed. For example:

Figure 2–5 Precompilation Status

Switch to your development environment to fix the problem(s). After you correct the
errors, precompile again.

Note: Although choosing Cancel does not interrupt the
precompile for a file already in process, it does halt the precompile
chain for remaining files.

Header Files

Using Pro*C/C++ 2-13

Exiting Pro*C/C++
To exit Pro*C/C++, choose File > Exit. If your project changed in any way, you are
prompted to save it.

Using Pro*C/C++ at the Command Prompt
To precompile a file at the command prompt, enter the following command:

C:\> proc iname=filename.pc

where filename.pc is the name of the file. If the file is not in your current working
directory, include the file's full path after the INAME argument.

Pro*C/C++ generates filename.c, which can be compiled by your C compiler.

Header Files
The ORACLE_BASE\ORACLE_HOME\precomp\public directory contains the
Pro*C/C++ header files. Table 2–4 lists and describes the header files.

Note: If you receive a PCC-S-02014 error (syntax error at line num,
column colnam, file name), do the following:

■ Copy the batch files mod_incl.bat and add_newl.bat from
the ORACLE_BASE\ORACLE_HOME\precomp\misc\proc
directory to the directory that contains the problematic
INCLUDE file.

■ Run mod_incl.bat.

Caution: If you want to keep an original file, as well as a version
of the file with your changes, choose the Save As command. The
Save command overwrites the previous version.

See Also: Pro*C/C++ Programmer's Guide for more information
about oraca.h, sqlca.h, and sqlda.h.

Table 2–4 Header Files

Header Files Description

oraca.h Contains the Oracle Communications Area (ORACA), which helps you to
diagnose runtime errors and to monitor your program's use of various Oracle9i
resources.

sql2oci.h Contains SQLLIB functions that enable the Oracle Call Interface (OCI)
environment handle and OCI service context to be obtained in a Pro*C/C++
application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in
conjunction with OCI.

sqlca.h Contains the SQL Communications Area (SQLCA), which helps you to diagnose
runtime errors. The SQLCA is updated after every executable SQL statement.

Library Files

2-14 Pro*C/C++ Getting Started

Library Files
The ORACLE_BASE\ORACLE_HOME\precomp\lib\msvc directory contains the
library file that you use when linking Pro*C/C++ applications. The library file is called
orasql9.lib.

Pro*C/C++ application program interface (API) calls are implemented in DLL files
provided with your Pro*C/C++ software. To use the DLLs, you must link your
application with the import libraries (.lib files) that correspond to the Pro*C/C++
DLLs. Also, you must ensure that the DLL files are installed on the computer that is
running your Pro*C/C++ application.

Microsoft provides you with three libraries: libc.lib, libcmt.lib, and
msvcrt.lib. The Oracle DLLs use the msvcrt.lib runtime library. You must link
with msvcrt.lib rather than the other two Microsoft libraries.

Multithreaded Applications
Build multithreaded applications if you are planning to perform concurrent database
operations.

Windows NT, Windows 2000, and Windows 98 schedule and allocate threads
belonging to processes. A thread is a path of a program's execution. It consists of a
kernel stack, the state of the CPU registers, a thread environment block, and a users
stack. Each thread shares the resources of a process. Multithreaded applications use
the resources of a process to coordinate the activities of individual threads.

When building a multithreaded application, make sure that your C/C++ code is
reentrant. This means that access to static or global data must be restricted to one
thread at a time. If you mix multithreaded and non-reentrant functions, one thread can
modify information that is required by another thread.

The Pro*C/C++ precompiler automatically creates variables on the local stack of the
thread. This ensures that each thread using the Pro*C/C++ function has access to a
unique set of variables and is reentrant.

sqlcpr.h Contains platform-specific ANSI prototypes for SQLLIB functions that are
generated by Pro*C/C++. By default, Pro*C/C++ does not support full-function
prototyping of SQL programming calls. If you need this feature, include sqlcpr.h
before any EXEC SQL statements in your application source file.

oraca.h Contains the Oracle Communications Area (ORACA), which helps you to
diagnose runtime errors and to monitor your program's use of various Oracle9i
resources.

sql2oci.h Contains SQLLIB functions that enable the Oracle Call Interface (OCI)
environment handle and OCI service context to be obtained in a Pro*C/C++
application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in
conjunction with OCI.

See Also: Pro*C/C++ Programmer's Guide for additional
information on how to write multithreaded applications with
Pro*C/C++

Table 2–4 (Cont.) Header Files

Header Files Description

Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ 2-15

Precompiler Options
This section highlights issues related to Pro*C/C++ for Windows platforms.

Configuration File
A configuration file is a text file that contains precompiler options.

For this release, the system configuration file is called pcscfg.cfg. This file is located
in the ORACLE_BASE\ORACLE_HOME\precomp\admin directory.

CODE
The CODE option has a default setting of ANSI_C. Pro*C/C++ for other operating
systems may have a default setting of KR_C.

DBMS
DBMS=V6_CHAR is not supported when using CHAR_MAP=VARCHAR2. Instead, use
DBMS=V7.

INCLUDE
For the Pro*C/C++ graphical user interface, use the Include Directories field of the
Options dialog box to enter INCLUDE path directories. If you want to enter more than
one path, separate each path with a semicolon, but do not insert a space after the
semicolon. This causes a separate "INCLUDE=" string to appear in front of each
directory.

For sample programs that precompile with PARSE=PARTIAL or PARSE=FULL, an
include path of c:\program files\devstudio\vc\include has been added. If
Microsoft Visual C++ has been installed in a different location, modify the Include
Directories field accordingly for the sample programs to precompile correctly.

PARSE
The PARSE option has a default setting of NONE. Pro*C/C++ for other operating
systems may have a default setting of FULL.

Using Pro*C/C++ with the Oracle XA Library
The XA Application Program Interface (API) is typically used to enable an Oracle
database to interact with a transaction processing (TP) monitor, such as:

■ BEA Tuxedo

■ IBM Transarc Encina

■ IBM CICS

You can also use TP monitor statements in your client programs. The use of the XA
API is also supported from both Pro*C/C++ and OCI.

The Oracle XA Library is automatically installed as part of Oracle9i Enterprise Edition.
The following components are created in your Oracle home directory:

See Also: "Precompiler Options" of Pro*C/C++ Programmer's
Guide

Using Pro*C/C++ with the Oracle XA Library

2-16 Pro*C/C++ Getting Started

Compiling and Linking a Pro*C/C++ Program with XA
To compile and link a Pro*C/C++ program with XA:

1. Precompile filename.pc using Pro*C/C++ to generate filename.c.

2. Compile filename.c, making sure to include ORACLE_BASE\ORACLE_
HOME\rdbms\xa in your path.

3. Link filename.obj with the following libraries:

1. Run filename.exe.

XA Dynamic Registration
Oracle supports the use of XA dynamic registration. XA dynamic registration
improves the performance of applications that interface with XA-compliant TP
monitors.

For TP monitors to use XA dynamic registration with an Oracle database on Windows
NT, you must add either an environmental variable or a registry variable to the
Windows NT computer on which your TP monitor is running. See either of the
following sections for instructions:

■ Adding an Environmental Variable for the Current Session

■ Adding a Registry Variable for All Sessions

Adding an Environmental Variable for the Current Session
Adding an environmental variable at the command prompt affects only the current
session.

To add an environmental variable for the current session:

1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C:\> set ORA_XA_REG_DLL = vendor.dll

where vendor.dll is the TP monitor DLL provided by your vendor.

Adding a Registry Variable for All Sessions
Adding a registry variable affects all sessions on your Windows NT computer. This is
useful for computers where only one TP monitor is running.

Table 2–5 Oracle XA Library Components and Locations

Component Location

oraxa9.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

xa.h ORACLE_BASE\ORACLE_HOME\rdbms\demo

Library Location

oraxa9.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

oci.lib ORACLE_BASE\ORACLE_HOME\oci\lib\msvc

orasql9.lib ORACLE_BASE\ORACLE_HOME\precomp\lib\msvc

Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ 2-17

To add a registry variable for all sessions:

1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C:\> regedt32

The Registry Editor window appears.

3. Go to HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEID.

4. Choose the Add Value option in the Edit menu.

The Add Value dialog box appears.

5. Enter ORA_XA_REG_DLL in the Value Name field.

6. Select REG_EXPAND_SZ from the Data Type drop-down list box.

7. Choose OK.

The String Editor dialog box appears.

8. Enter vendor.dll in the String field, where vendor.dll is the TP monitor DLL
provided by your vendor.

9. Choose OK.

The Registry Editor adds the parameter.

10. Choose Exit from the Registry menu.

The registry exits.

XA and TP Monitor Information
Refer to the following for more information about XA and TP monitors:

■ Distributed TP: The XA Specification (C193) published by the Open Group. See the
Web site at:

http://www.opengroup.org/publications/catalog/tp.htm

■ The Open Group., 1010 El Camino Real, Suite 380, Menlo Park, CA 94025, U.S.A.

■ Your specific TP monitor documentation

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information about the Oracle XA Library
and using XA dynamic registration

Using Pro*C/C++ with the Oracle XA Library

2-18 Pro*C/C++ Getting Started

Sample Programs 3-1

3
Sample Programs

This chapter describes how to build Oracle database applications with Pro*C/C++
using the sample programs that are included with this release.

This chapter contains these topics:

■ Sample Program Descriptions

■ Building the Demonstration Tables

■ Building the Sample Programs

Sample Program Descriptions
When you install Pro*C/C++, Oracle Universal Installer copies a set of Pro*C/C++
sample programs to the ORACLE_BASE\ORACLE_HOME\precomp\demo\proc
directory. These sample programs are listed in Table 3–1, " Sample Programs" and
described in the subsequent section.

When built, the sample programs that Oracle provides produce .exe executables.

For some sample programs, as indicated in the Notes column of the table, you must
run the SQL scripts in the sample directory before you precompile and run the sample
program. The SQL scripts set up the correct tables and data so that the sample
programs run correctly. These SQL scripts are located in the ORACLE_BASE\ORACLE_
HOME\precomp\demo\sql directory.

Oracle Corporation recommends that you build and run these sample programs to
verify that Pro*C/C++ has been installed successfully and operates correctly. You can
delete the programs after you use them.

You can build the sample program using a batch file called pcmake.bat or using
Visual C++ 6.0.

See Also: "Building the Sample Programs" on page 3-6

Table 3–1 Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project
File

MSVC Compiler
Project File Notes

ANSIDYN1 ansidyn1.pc ansidyn1.pre ansidyn1.dsp -

ANSIDYN2 ansidyn2.pc ansidyn2.pre ansidyn2.dsp -

COLDEMO1 coldemo1.h
coldemo1.pc
coldemo1.sql
coldemo1.typ

coldemo1.pre coldemo1.dsp Run coldemo1.sql
and the Object Type
Translator before
building coldemo1.

CPDEMO1 cpdemo1.pc cpdemo1.pre cpdemo1.dsp -

Sample Program Descriptions

3-2 Pro*C/C++ Getting Started

CPDEMO2 cpdemo2.pc cpdemo2.pre cpdemo2.dsp -

CPPDEMO1 cppdemo1.pc cppdemo1.pre cppdemo1.dsp -

CPPDEMO2 cppdemo2.pc
empclass.pc
cppdemo2.sql
empclass.h

cppdemo2.pre cppdemo2.dsp Run cppdemo2.sql
before building
cppdemo2.

CPPDEMO3 cppdemo3.pc cppdemo3.pre cppdemo3.dsp -

CVDEMO cv_demo.pc
cv_demo.sql

cv_demo.pre cv_demo.dsp Run cv_demo.sql
before building cv_
demo.

EMPCLASS cppdemo2.pc
empclass.pc
cppdemo2.sql
empclass.h

empclass.pre empclass.dsp Run cppdemo2.sql
before building
empclass.

LOBDEMO1 lobdemo1.h
lobdemo1.pc
lobdemo1.sql

lobdemo1.pre lobdemo1.dsp Run lobdemo1.sql
before building
lobdemo1.

MLTTHRD1 mltthrd1.pc
mltthrd1.sql

mltthrd1.pre mltthrd1.dsp Run mltthrd1.sql
before building
mltthrd1.

NAVDEMO1 navdemo1.h
navdemo1.pc
navdemo1.sql
navdemo1.typ

navdemo1.pre navdemo1.dsp Run navdemo1.sql
and the Object Type
Translator before
building navdemo1.

OBJDEMO1 objdemo1.h
objdemo1.pc
objdemo1.sql
objdemo1.typ

objdemo1.pre objdemo1.dsp Run objdemo1.sql
and the Object Type
Translator before
building objdemo1.

ORACA oraca.pc
oracatst.sql

oraca.pre oraca.dsp Run oracatst.sql
before building oraca.

PLSSAM plssam.pc plssam.pre plssam.dsp -

SAMPLE sample.pc sample.pre sample.dsp -

SAMPLE1 sample1.pc sample1.pre sample1.dsp -

SAMPLE2 sample2.pc sample2.pre sample2.dsp -

SAMPLE3 sample3.pc sample3.pre sample3.dsp -

SAMPLE4 sample4.pc sample4.pre sample4.dsp -

SAMPLE5 sample5.pc
exampbld.sql
examplod.sql

sample5.pre sample5.dsp Run exampbld.sql,
then run
examplod.sql, before
building sample5.

SAMPLE6 sample6.pc sample6.pre sample6.dsp -

SAMPLE7 sample7.pc sample7.pre sample7.dsp -

SAMPLE8 sample8.pc sample8.pre sample8.dsp -

SAMPLE9 sample9.pc
calldemo.sql

sample9.pre sample9.dsp Run calldemo.sql
before building
sample9.

SAMPLE10 sample10.pc sample10.pre sample10.dsp -

SAMPLE11 sample11.pc
sample11.sql

sample11.pre sample11.dsp Run sample11.sql
before building
sample11.

SAMPLE12 sample12.pc sample12.pre sample12.dsp -

SCDEMO1 scdemo1.pc scdemo1.pre scdemo1.dsp -

Table 3–1 (Cont.) Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project
File

MSVC Compiler
Project File Notes

Sample Program Descriptions

Sample Programs 3-3

The following subsections describe the functionality of the sample programs.

ANSIDYN1
Demonstrates using ANSI dynamic SQL to process SQL statements that are not known
until runtime. This program is intended to demonstrate the simplest (though not the
most efficient) approach to using ANSI dynamic SQL.

ANSIDYN2
Demonstrates using ANSI dynamic SQL to process SQL statements that are not known
until runtime. This program uses the Oracle extensions for batch processing and
reference semantics.

COLDEMO1
Fetches census information for California counties. This program demonstrates
various ways to navigate through collection-typed database columns.

CPDEMO1
Demonstrates how the connection pool feature can be used. It also shows how
different connection pool options can be used to optimize performance.

CPDEMO2
Demonstrates connection pool feature with relatively complex set of SQL statements
and shows how performance gain depends on the kind of SQL statements used by the
program.

CPPDEMO1
Prompts the user for an employee number, then queries the emp table for the
employee's name, salary, and commission. This program uses indicator variables (in
an indicator struct) to determine whether the commission is NULL.

CPPDEMO2
Retrieves the names of all employees in a given department from the emp table
(dynamic SQL Method 3).

CPPDEMO3
Finds all salespeople and prints their names and total earnings (including
commissions). This program is an example of C++ inheritance.

CVDEMO
Declares and opens a ref cursor.

EMPCLASS
The EMPCLASS and CPPDEMO2 files were written to provide an example of how to
write Pro*C/C++ programs within a C++ framework. EMPCLASS encapsulates a
specific query on the emp table and is implemented using a cursor variable. EMPCLASS
instantiates an instance of that query and provides cursor variable functionality (that

SCDEMO2 scdemo2.pc scdemo2.pre scdemo2.dsp -

SQLVCP sqlvcp.pc sqlvcp.pre sqlvcp.dsp -

WINSAM resource.h
winsam.h
winsam.ico
winsam.pc
winsam.rc

winsam.pre winsam.dsp -

Table 3–1 (Cont.) Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project
File

MSVC Compiler
Project File Notes

Sample Program Descriptions

3-4 Pro*C/C++ Getting Started

is: open, fetch, close) through C++ member functions that belong to the emp class.
The empclass.pc file is not a standalone demo program. It was written to be used by
the cppdemo2 demo program. To use the emp class, you have to write a driver
(cppdemo2.pc) which declares an instance of the emp class and issues calls to the
member functions of that class.

LOBDEMO1
Fetches and adds crime records to the database based on the person's Social Security
number. This program demonstrates the mechanisms for accessing and storing large
objects (LOBs) to tables and manipulating LOBs through the stored procedures
available through the DBMS_LOB package.

MLTTHRD1
Shows how to use threading in conjunction with precompilers. The program creates as
many sessions as there are threads.

NAVDEMO1
Demonstrates navigational access to objects in the object cache.

OBJDEMO1
Demonstrates the use of objects. This program manipulates the object types person and
address.

ORACA
Demonstrates how to use ORACA to determine various performance parameters at
runtime.

PLSSAM
Demonstrates the use of embedded PL/SQL blocks. This program prompts you for an
employee name that already resides in a database. It then executes a PL/SQL block,
which returns the results of four SELECT statements.

SAMPLE
Adds new employee records to the personnel database and checks database integrity.
The employee numbers in the database are automatically selected using the current
maximum employee number +10.

SAMPLE1
Logs on to an Oracle database, prompts the user for an employee number, queries the
database for the employee's name, salary, and commission, and displays the result.
The program continues until the user enters 0 as the employee number.

SAMPLE2
Logs on to an Oracle database, declares and opens a cursor, fetches the names, salaries,
and commissions of all salespeople, displays the results, and closes the cursor.

SAMPLE3
Logs on to an Oracle database, declares and opens a cursor, fetches in batches using
arrays, and prints the results using the print_rows() function.

SAMPLE4
Demonstrates the use of type equivalencies using the LONG VARRAW external
datatype.

See Also: "Multithreaded Applications" on page 2-14

Sample Program Descriptions

Sample Programs 3-5

SAMPLE5
Prompts the user for an account number and a debit amount. The program verifies
that the account number is valid and that there are sufficient funds to cover the
withdrawal before it debits the account. This program shows the use of embedded
SQL.

SAMPLE6
Creates a table, inserts a row, commits the insert, and drops the table (dynamic SQL
Method 1).

SAMPLE7
Inserts two rows into the emp table and deletes them (dynamic SQL Method 2).

SAMPLE8
Retrieves the names of all employees in a given department from the emp table
(dynamic SQL Method 3).

SAMPLE9
Connects to an Oracle database using the scott/tiger account. The program
declares several host arrays and calls a PL/SQL stored procedure (GET_EMPLOYEES in
the CALLDEMO package). The PL/SQL procedure returns up to ASIZE values. The
program keeps calling GET_EMPLOYEES, getting ASIZE arrays each time, and printing
the values, until all rows have been retrieved.

SAMPLE10
Connects to an Oracle database using your username and password and prompts for a
SQL statement. You can enter any legal SQL statement, but you must use regular SQL
syntax, not embedded SQL. Your statement is processed. If the statement is a query,
the rows fetched are displayed (dynamic SQL Method 4).

SAMPLE11
Fetches from the emp table, using a cursor variable. The cursor is opened in the stored
PL/SQL procedure open_cur, in the EMP_DEMO_PKG package.

SAMPLE12
Demonstrates how to do array fetches using dynamic SQL Method 4.

SCDEMO1
Demonstrates how the scrollable cursor can be used with Oracle dynamic SQL Method
4. Scrollable cursor can also be used with ANSI dynamic SQL Method 4.

SCDEMO2
Demonstrates the use of scrollable cursor with host arrays.

SQLVCP
Demonstrates how you can use the sqlvcp() function to determine the actual size of
a VARCHAR struct. The size is then used as an offset to increment a pointer that steps
through an array of VARCHARs.

This program also demonstrates how to use the SQLStmtGetText() function to
retrieve the text of the last SQL statement that was executed.

WINSAM
Adds new employee records to the personnel database and checks database integrity.
You can enter as many employee names as you want and perform the SQL commands
by selecting the appropriate buttons in the Employee Record dialog box. This is a GUI
version of the sample program.

Building the Demonstration Tables

3-6 Pro*C/C++ Getting Started

Building the Demonstration Tables
To run the sample programs, you must have a database account with the username
scott and the password tiger. Also, you must have a database with the sample
tables emp and dept. This account is included in the starter database for your
Oracle9i server. If the account does not exist on your database, create the account
before running the sample programs. If your database does not contain emp and dept
tables, you can use the demobld.sql script to create them.

To build the sample tables:

1. Start SQL*Plus

2. Connect as username scott with the password tiger.

3. Run the demobld.sql script:

SQL> @ORACLE_BASE\ORACLE_HOME\sqlplus\demo\demobld.sql;

Building the Sample Programs
You can build the sample programs in two ways:

■ Using the pcmake.bat file provided

■ Using Microsoft Visual C++ 6.0

Using pcmake.bat
The pcmake.bat file for compiling Pro*C/C++ demos is found in the following
location:

ORACLE_BASE\ORACLE_HOME\precomp\demo\proc

This batch file is designed to illustrate how Pro*C/C++ applications can be built at the
command prompt.

In order to use this batch file, Microsoft Visual Studio must be installed. The
environment variable MSVCDir must be set. Pro*C/C++ command line options and
linker options vary depending on your application.

You can use this file to build a demo, to build sample1 for example:

1. Navigate to the location of the demo file and enter the following at the command
prompt:

C:\> CD ORACLE_BASE\ORACLE_HOME\precomp\demo\proc\sample1

2. Enter the following:

% pcmake sample1

Using Microsoft Visual C++
Microsoft Visual C++ 6.0 project files have an extension of.dsp. The.dsp files in the
ORACLE_BASE\ORACLE_HOME\precomp\demo\proc directory guide and control
the steps necessary to precompile, compile, and link the sample programs.

See Also: Oracle Database Platform Guide for Windows

Setting the Path for the Sample .pre Files

Sample Programs 3-7

Pro*C/C++, SQL*Plus, and the Object Type Translator have been integrated into the
Microsoft Visual C++ sample project files. You do not have to run Pro*C/C++,
SQL*Plus, and the Object Type Translator separately before compilation.

To build a sample program:

1. Open a Visual C++ project file, such as sample1.dsp.

2. Check the paths in the project file to ensure that they correspond to the
configuration of your system. If they do not, change the paths accordingly. Your
system may produce error messages if the paths to all components are not correct.

1. Choose Build > Rebuild All. Visual C++ creates the executable.

Setting the Path for the Sample .pre Files
By default the sample .pre files search for their corresponding .pc files in the
C:\oracle\ora92 directory where C:\ is the drive that you are using, and
oracle\ora92 represents the location of the Oracle home. If the Oracle base and
Oracle home directories are different on your computer, you must change the directory
path to the correct path.

To change the directory path for a sample .pre file:

1. In Pro*C/C++, open the .pre file.

2. Double-click the filename in the Input File area to display the Input File dialog
box.

3. Change the directory path to the correct path.

4. Click Open.

See Also:

■ "Setting the Precompiler Options" on page 2-8

■ "Setting the Path for the Sample .pre Files" on page 3-7

■ Appendix A, "Integrating Pro*C/C++ into Microsoft Visual
C++"

■ Pro*C/C++ Programmer's Guide for more information on Object
Type Translator

Note: All of the sample programs were created with
C:\oracle\ora92 as the default drive.

Setting the Path for the Sample .pre Files

3-8 Pro*C/C++ Getting Started

Integrating Pro*C/C++ into Microsoft Visual C++ A-1

A
Integrating Pro*C/C++ into Microsoft Visual

C++

This appendix describes how to integrate Pro*C/C++ into the Microsoft Visual C++
integrated development environment.

This appendix contains these topics:

■ Integrating Pro*C/C++ within Microsoft Visual C++ Projects

■ Adding Pro*C/C++ to the Tools Menu

Integrating Pro*C/C++ within Microsoft Visual C++ Projects
This section describes how to fully integrate Pro*C/C++ within Microsoft Visual C++
projects.

All the precompiler errors and warnings are displayed in the output box where
Microsoft Visual C++ displays compiler and linker messages. You do not have to
precompile a file separately from the Microsoft Visual C++ build environment. More
importantly, Microsoft Visual C++ maintains the dependencies between .c and .pc
files. Microsoft Visual C++ maintains the dependency and precompile files, if needed.

All of the procedures in this section are performed within Microsoft Visual C++.

Specifying the Location of the Pro*C/C++ Executable
For Microsoft Visual C++ to run Pro*C/C++, it must know the location of the
Pro*C/C++ executable. If Microsoft Visual C++ was installed before any Oracle release
9.2 products were installed, then you must add the directory path.

To specify the location of the Pro*C/C++ executable:

1. Choose Options from the Tools menu.

The Options dialog box appears.

Integrating Pro*C/C++ within Microsoft Visual C++ Projects

A-2 Pro*C/C++ Getting Started

1. Click the Directories tab.

2. Select Executable files from the Show directories for list box.

3. Scroll to the bottom of the Directories box and click the dotted rectangle.

4. Enter the ORACLE_BASE\ORACLE_HOME\bin directory. For example:

C:\oracle\ora92\bin

5. Click OK.

Specifying the Location of the Pro*C/C++ Header Files
To specify the location of the Pro*C/C++ header files:

1. Choose Options from the Tools menu. The Options dialog box appears.

2. Click the Directories tab.

3. Select Include Files from the Show directories for list box.

4. Scroll to the bottom of the Directories box and click the dotted rectangle.

5. Enter the ORACLE_BASE\ORACLE_HOME\precomp\public directory. For
example:

C:\oracle\ora92\precomp\public

6. Click OK.

Adding .pc Files to a Project

Integrating Pro*C/C++ into Microsoft Visual C++ A-3

Adding .pc Files to a Project
After you create a project, you need to add the .pc file(s).

To add a .pc file to a project:

1. Choose Add To Project from the Project menu, and then choose Files. The Insert
Files into Project dialog box appears.

1. Select All Files from the Files of type list box.

2. Select the .pc file.

3. Click OK.

Adding References to .c Files to a Project
For each .pc file, you need to add a reference to the .c file that will result from
precompiling.

To add a reference to a .c file to a project:

1. Choose Add To Project from the Project menu, and then choose Files. The Insert
Files into Project dialog box appears.

2. Type the name of the .c file in the File Name box.

3. Click OK. Because the .c file has not been created yet, Microsoft Visual C++
displays the following message: "The specified file does not exist. Do you want to
add a reference to the project anyway?"

4. Click Yes.

Adding .pc Files to a Project

A-4 Pro*C/C++ Getting Started

Adding the Pro*C/C++ Library to a Project
Pro*C/C++ applications must link with the library file orasql9.lib.

To add the Pro*C/C++ library to a project:

1. Choose Add To Project from the Project menu, and then choose Files. The Insert
Files into Project dialog box appears.

2. Select All Files from the Files of type list box.

3. Select orasql9.lib from the ORACLE_BASE\ORACLE_
HOME\precomp\lib\msvc directory.

4. Click OK.

Specifying Custom Build Options
To specify custom build options:

1. In FileView, right-click a .pc file and choose Settings. The Project Settings dialog
box appears with the Custom Build tab displayed.

1. In the Build command(s) box, on one line, set the build to use the same hardcoded
path as that of the $ORACLE_HOME setting.

2. In the Output file(s) box, enter one of the following:

■ If you are generating .c files, then enter $(ProjDir)\$(InputName).c.

■ If you are generating .cpp files, then enter
$(ProjDir)\$(InputName).cpp.

$(ProjDir) and $MSDEVDIR are macros for custom build commands in
Microsoft Visual C++. When the project is built, Microsoft Visual C++ checks the

Adding Pro*C/C++ to the Tools Menu

Integrating Pro*C/C++ into Microsoft Visual C++ A-5

date of the output files to determine whether they need to be rebuilt for any new
modifications made to the source code.

3. Click OK.

Adding Pro*C/C++ to the Tools Menu
You can include Pro*C/C++ as a choice in the Tools menu of Microsoft Visual C++.

To add Pro*C/C++ to the Tools menu:

1. From within Microsoft Visual C++, choose Customize from the Tools menu. The
Customize dialog box appears.

1. Click the Tools tab.

2. Scroll to the bottom of the Menu contents box and click the dotted rectangle.

3. Enter the following text:

Pro*C/C++

4. In the Command box, type the path and filename of the graphical Pro*C/C++
executable, or use the Browse button to the right of the box to select the file name.
For example:

C:\oracle\ora92\bin\procui.exe

5. In the Arguments box, enter the following text:

$(TargetName)

See Also: Microsoft Visual C++ documentation

Adding Pro*C/C++ to the Tools Menu

A-6 Pro*C/C++ Getting Started

When you choose Pro*C/C++ from the Tools menu, Microsoft Visual C++ uses the
$(TargetName) argument to pass the name of the current development project
to Pro*C/C++. Pro*C/C++ then opens a precompile project with the same name as
the opened project, but with a .pre extension in the project directory.

6. In the Initial directory box, enter the following text:

$(WkspDir)

The Customize dialog box should now look like the following graphic (although
the Oracle home directory may be different on your computer).

1. Click Close. Microsoft Visual C++ adds Pro*C/C++ to the Tools menu.

Index-1

Index

Numerics
16-bit code, not supported, 1-2

A
add_newl.bat, 2-13
adding

files, 2-7
ANSI compliance, 1-1
ANSI dynamic SQL, 3-3

C
CODE option, 2-15
command line, precompiling from, 2-13
configuration files, 2-15

location, 2-15
Connect dialog box, 2-11
connect string, 2-10

D
database connect string, 2-10
DBMS option, 2-15
Default Output

C File Name command, 2-6
C++ File Name command, 2-6

deleting
files, 2-8

directory structures, 1-2
.dsp files, 3-6
Dynamic Link Libraries (DLLs), 2-14
dynamic SQL

method 1, 3-5
method 2, 3-5
method 3, 3-3, 3-5
method 4, 3-5

E
Edit menu, 2-3
embedded SQL, 3-4

F
features

new, 0-xiii
features,new, 0-xiii
File menu, 2-2

G
generic documentation references

default values for options, 2-15
demo directory, 1-2
header files, location of, 2-13
linking, 2-14
Oracle XA, 2-15

graphical user interface, 2-1, 2-5

H
header files

location of, 2-13
oraca.h, 2-13, 2-14
sql2oci.h, 2-13, 2-14
sqlapr.h, 2-13, 2-14
sqlca.h, 2-13
sqlcpr.h, 2-14

Help menu, 2-3

I
INCLUDE option, 2-15
Input File dialog box, 2-7

L
large objects, 3-4
linking, 2-14
Listing/Errors dialog box, 2-9
LOBs, 3-4

M
menu bar, 2-2
Microsoft Visual C++

integrating Pro*C/C++ into, A-1, A-6
mod_incl.bat, 2-13
msvcrt.lib runtime library, 2-14
multithreaded applications, 2-14, 3-4

Index-2

N
new features, 0-xiii
New toolbar button, 2-5

O
Object Type Translator (OTT), 3-7
objects

demonstration program, 3-4
Open toolbar button, 2-5
Options dialog box, 2-8
oraca.h header file, 2-13, 2-14
Oracle Net, 1-1
Oracle XA, 2-15
Oracle XA Library

additional documentation, 2-17
orasql9.lib, A-4
orasql9.lib library file, 2-14
OTT (Object Type Translator), 3-7
output file names, 2-5

P
PARSE option, 2-15
paths

checking, 3-7
checking the .pre files, 3-7

PCC-S-02014 error, 2-13
pcmake.bat, 3-6
pcscfg.cfg configuration file, 2-15
.pre files, 2-5

checking the paths, 3-7
precompiling

steps involved, 2-5, 2-13
Preferences menu, 2-3, 2-5
Pro*C/C++

command-line interface, 2-13
configuration files, 2-15
features, 1-1
graphical user interface, 2-1, 2-5
integrating into Microsoft Visual C++, A-1, A-6
library file, A-4
linking, 2-14
overview, 1-1
starting, 2-1

project files, 2-5, 3-6

R
reentrant functions, 2-14

S
sample programs

ANSIDYN1, 3-1, 3-3
ANSIDYN2, 3-1, 3-3
building, 3-6
COLDEMO1, 3-1, 3-3
CPPDEMO1, 3-2, 3-3
CPPDEMO2, 3-2, 3-3

CPPDEMO3, 3-2, 3-3
CV_DEMO, 3-2, 3-3
default drive, 3-7
described, 3-3 to 3-5
EMPCLASS, 3-2, 3-3
INCLUDE path, 2-15
LOBDEMO1, 3-2, 3-4
location of, 1-2, 3-1
MLTTHRD1, 3-2, 3-4
NAVDEMO1, 3-2, 3-4
OBJDEMO1, 3-2, 3-4
ORACA, 3-2, 3-4
PLSSAM, 3-2, 3-4
SAMPLE, 3-2, 3-4
SAMPLE1, 3-2, 3-4
SAMPLE10, 3-2, 3-5
SAMPLE11, 3-2, 3-5
SAMPLE12, 3-2, 3-5
SAMPLE2, 3-2, 3-4
SAMPLE3, 3-2, 3-4
SAMPLE4, 3-2, 3-4
SAMPLE5, 3-2, 3-5
SAMPLE6, 3-2, 3-5
SAMPLE7, 3-2, 3-5
SAMPLE8, 3-2, 3-5
SAMPLE9, 3-2, 3-5
setting the path, 3-7
setting the path for the .pre files, 3-7
SQLVCP, 3-3, 3-5
WINSAM, 3-3, 3-5

sample tables
building, 3-6

Save As command, 2-13
SQL (Structured Query Language), 1-1
sql2oci.h header file, 2-13, 2-14
sqlapr.h header file, 2-13, 2-14
sqlca.h header file, 2-13
sqlcpr.h header file, 2-14
SQLStmtGetText() function, 3-5
sqlvcp() function, 3-5
starting

Pro*C/C++, 2-1
status bar, 2-5
Structured Query Language (SQL), 1-1

T
threads

defined, 2-14
title bar, 2-2
toolbar buttons

New, 2-5
Open, 2-5

transaction processing monitor
additional documentation, 2-17

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What's New in Pro*C/C++?
	Oracle9i Release 2 (9.2) New Features in Pro*C/C++
	Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
	Oracle8i Release 8.1.6 New Features in Pro*C/C++

	1 Introducing Pro*C/C++
	What Is Pro*C/C++?
	Features
	Restrictions
	Directory Structure
	Known Problems, Restrictions, and Workarounds

	2 Using Pro*C/C++
	Using the Graphical User Interface
	Starting Pro*C/C++ Graphical Interface
	Title Bar
	Menu Bar
	Toolbar
	Information Pane
	Status Bar

	Creating and Precompiling a Pro*C/C++ Project
	Opening a Project
	Setting the Default Extension of Output Files
	Changing the Name of an Existing Input or Output File
	Adding Files to the Project
	Deleting Files from the Project
	Setting the Precompiler Options
	Specifying Database Connection Information
	Precompiling a Pro*C/C++ Project
	Checking the Results
	Fixing Errors
	Exiting Pro*C/C++

	Using Pro*C/C++ at the Command Prompt
	Header Files
	Library Files
	Multithreaded Applications
	Precompiler Options
	Configuration File
	CODE
	DBMS
	INCLUDE
	PARSE

	Using Pro*C/C++ with the Oracle XA Library
	Compiling and Linking a Pro*C/C++ Program with XA
	XA Dynamic Registration
	Adding an Environmental Variable for the Current Session
	Adding a Registry Variable for All Sessions

	XA and TP Monitor Information

	3 Sample Programs
	Sample Program Descriptions
	Building the Demonstration Tables
	Building the Sample Programs
	Using pcmake.bat

	Using Microsoft Visual C++
	Setting the Path for the Sample .pre Files

	A Integrating Pro*C/C++ into Microsoft Visual C++
	Integrating Pro*C/C++ within Microsoft Visual C++ Projects
	Specifying the Location of the Pro*C/C++ Executable
	Specifying the Location of the Pro*C/C++ Header Files

	Adding .pc Files to a Project
	Adding References to .c Files to a Project
	Adding the Pro*C/C++ Library to a Project
	Specifying Custom Build Options

	Adding Pro*C/C++ to the Tools Menu

	Index
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T

