
Oracle® Database
Semantic Technologies Developer's Guide

11g Release 1 (11.1)

B28397-02

September 2007

Provides usage and reference information about Oracle
Database support for semantic technologies, including
storage, inference, and query capabilities for data and
ontologies based on Resource Description Framework (RDF),
RDF Schema (RDFS), and Web Ontology Language (OWL).

Oracle Database Semantic Technologies Developer’s Guide, 11g Release 1 (11.1)

B28397-02

Copyright © 2005, 2007, Oracle. All rights reserved.

Primary Author: Chuck Murray

Contributors: Melliyal Annamalai, Eugene Inseok Chong, Souri Das, Jags Srinivasan, Zhe (Alan) Wu

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

What’s New in Semantic Technologies? .. xi

Storage Model Enhancements and Migration... xi
Support for OWL Inferencing.. xi
New Bulk Loading Interface for Improved Performance ... xi
Ontology-Assisted Querying of Relational Data ... xii
Required Procedure for Using Semantic Technology Support ... xii

1 Oracle Semantic Technologies Overview

1.1 Introduction to Oracle Semantic Technologies... 1-2
1.2 Semantic Data Modeling.. 1-3
1.3 Semantic Data in the Database.. 1-3
1.3.1 Metadata for Models ... 1-3
1.3.2 Statements... 1-5
1.3.2.1 Triple Uniqueness and Data Types for Literals ... 1-6
1.3.3 Subjects and Objects .. 1-7
1.3.4 Blank Nodes.. 1-7
1.3.5 Properties .. 1-7
1.3.6 Inferencing: Rules and Rulebases.. 1-7
1.3.7 Rules Indexes... 1-10
1.3.8 Semantic Data Security Considerations .. 1-11
1.4 Semantic Metadata Tables and Views .. 1-12
1.5 Semantic Data Types, Constructors, and Methods... 1-12
1.5.1 Constructors for Inserting Triples Without Any Blank Nodes 1-13
1.5.2 Constructors for Inserting Triples With or Without Any Blank Nodes 1-14
1.6 Using the SEM_MATCH Table Function to Query Semantic Data.................................. 1-14
1.6.1 Performing Queries with Incomplete or Invalid Rules Indexes 1-16
1.7 Loading and Exporting Semantic Data... 1-17
1.7.1 Bulk Loading Semantic Data Using a Staging Table ... 1-17
1.7.2 Batch Loading Semantic Data Using the Java API... 1-19

iv

1.7.2.1 When to Choose Batch Loading .. 1-20
1.7.3 Loading Semantic Data Using INSERT Statements... 1-20
1.7.4 Exporting Semantic Data ... 1-21
1.8 Quick Start for Using Semantic Data .. 1-21
1.9 Semantic Data Examples... 1-22
1.9.1 Example: Journal Article Information ... 1-22
1.9.2 Example: Family Information ... 1-24
1.10 Required Procedure for Semantic Technologies Support .. 1-31
1.11 Downgrading to the Previous Oracle Database Release.. 1-31
1.12 Software Naming Changes for Semantic Technologies ... 1-32

2 OWL Concepts

2.1 Ontologies .. 2-1
2.1.1 Example: Cancer Ontology... 2-1
2.1.2 Supported OWL Subsets... 2-2
2.2 Using OWL Inferencing ... 2-3
2.2.1 Creating a Simple OWL Ontology .. 2-3
2.2.2 Performing Native OWL inferencing ... 2-4
2.2.3 Performing OWL and User-Defined Rules inferencing... 2-4
2.2.4 Generating OWL inferencing Proofs .. 2-5
2.2.5 Validating OWL Models and Entailments... 2-6
2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference................................. 2-7
2.2.7 Enhancing Inference Performance .. 2-7
2.2.8 Performing Selective Inferencing (Advanced Information) .. 2-8
2.3 Using Semantic Operators to Query Relational Data .. 2-9
2.3.1 Using the SEM_RELATED Operator .. 2-9
2.3.2 Using the SEM_DISTANCE Ancillary Operator.. 2-10
2.3.2.1 Computation of Distance Information ... 2-11
2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE 2-12
2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the

First Parameter 2-13
2.3.5 Using URIPREFIX When Values Are Not Stored as URIs.. 2-13

3 SEM_APIS Package Subprograms

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE ... 3-2

SEM_APIS.CLEANUP_FAILED... 3-3

SEM_APIS.CREATE_ENTAILMENT .. 3-4

SEM_APIS.CREATE_RULEBASE .. 3-7

SEM_APIS.CREATE_RULES_INDEX.. 3-8

SEM_APIS.CREATE_SEM_MODEL.. 3-9

SEM_APIS.CREATE_SEM_NETWORK... 3-10

SEM_APIS.DROP_ENTAILMENT.. 3-11

SEM_APIS.DROP_RULEBASE .. 3-12

SEM_APIS.DROP_RULES_INDEX ... 3-13

SEM_APIS.DROP_SEM_MODEL.. 3-14

v

SEM_APIS.DROP_SEM_NETWORK.. 3-15

SEM_APIS.DROP_USER_INFERENCE_OBJS .. 3-16

SEM_APIS.GET_MODEL_ID... 3-17

SEM_APIS.GET_MODEL_NAME... 3-18

SEM_APIS.GET_TRIPLE_ID.. 3-19

SEM_APIS.IS_TRIPLE... 3-21

SEM_APIS.LOOKUP_RULES_INDEX ... 3-23

SEM_APIS.VALIDATE_ENTAILMENT .. 3-24

SEM_APIS.VALIDATE_MODEL .. 3-26

SEM_APIS.VALUE_NAME_PREFIX.. 3-28

SEM_APIS.VALUE_NAME_SUFFIX.. 3-30

4 SEM_PERF Package Subprograms

SEM_PERF.GATHER_STATS ... 4-2

Index

vi

List of Examples

1–1 Inserting a Rule into a Rulebase ... 1-9
1–2 Using Rulebases for Inferencing.. 1-10
1–3 Creating a Rules Index .. 1-11
1–4 SDO_RDF_TRIPLE_S Methods.. 1-13
1–5 SDO_RDF_TRIPLE_S Constructor to Insert a Triple.. 1-14
1–6 SDO_RDF_TRIPLE_S Constructor to Reusing a Blank Node ... 1-14
1–7 SEM_MATCH Table Function ... 1-16
1–8 SEM_MATCH Table Function ... 1-16
1–9 Using a Model for Journal Article Information ... 1-22
1–10 Using a Model for Family Information... 1-24
2–1 Creating a Simple OWL Ontology ... 2-3
2–2 Performing Native OWL Inferencing .. 2-4
2–3 Performing OWL and User-Defined Rules Inferencing.. 2-4
2–4 Displaying Proof Information ... 2-5
2–5 Validating an Entailment ... 2-6
2–6 Performing Selective Inferencing ... 2-8
2–7 SEM_RELATED Operator ... 2-9
2–8 SEM_DISTANCE Ancillary Operator... 2-10
2–9 Using SEM_DISTANCE to Restrict the Number of Rows Returned................................ 2-11
2–10 Creating a Semantic Index.. 2-12
2–11 Creating a Semantic Index Specifying a Model and Rulebase .. 2-12
2–12 Query Benefitting from Generation of Statistical Information.. 2-13
2–13 Specifying a URI Prefix During Semantic Index Creation... 2-14

vii

List of Figures

1–1 Oracle Semantic Capabilities... 1-2
1–2 Inferencing ... 1-8
1–3 Family Tree for RDF Example.. 1-24
2–1 Cancer Ontology Example... 2-2

viii

List of Tables

1–1 MDSYS.SEM_MODEL$ View Columns ... 1-3
1–2 MDSYS.SEMM_model-name View Columns.. 1-4
1–3 MDSYS.RDF_VALUE$ Table Columns.. 1-5
1–4 MDSYS.SEMR_rulebase-name View Columns ... 1-9
1–5 MDSYS.SEM_RULEBASE_INFO View Columns ... 1-9
1–6 MDSYS.SEM_RULES_INDEX_INFO View Columns ... 1-10
1–7 MDSYS.SEM_RULES_INDEX_DATASETS View Columns .. 1-11
1–8 Semantic Metadata Tables and Views ... 1-12
1–9 Semantic Technology Software Objects: Old and New Names 1-32
2–1 PATIENTS Table Example Data .. 2-2
3–1 Inferencing Keywords for inf_components_in Parameter... 3-5

ix

Preface

Oracle Database Semantic Technologies Developer’s Guide provides usage and reference
information about Oracle Database support for semantic technologies, including
storage, inference, and query capabilities for data and ontologies based on Resource
Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language
(OWL).

Audience
This guide is intended for those who need to use semantic technology to store,
manage, and query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the Resource
Description Framework (RDF) and the Web Ontology Language (OWL).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

x

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For information about logical networks and the network data model, see Oracle Spatial
Topology and Network Data Models Developer's Guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What’s New in Semantic Technologies?

For Oracle Database release 11.1, the focus of this manual expands to include Oracle
Database semantic technologies, which include Resource Description Framework
(RDF), which was supported in Release 10.2, and a subset of the Web Ontology
Language (OWL), support for which is new in the current release.

In addition to expanded capabilities, some naming conventions associated with the
API may changes. For example, names that include "SDO_RDF" may be changed for
data types, function names, and PL/SQL package names. However, all applications
created in the previous release using supported names for that release will continue to
run.

Storage Model Enhancements and Migration
The storage model has been enhanced to support OWL inferencing: some internal data
structures and indexes have been changed, added, and removed. These changes also
result in enhanced performance.

Because of the extent of these changes, if you have semantic data that you used with
the previous release, you must upgrade that data to migrate it to the new format
before you can use any new features for this release. Semantic data is upgraded as part
of the required procedure described in Section 1.10.

Support for OWL Inferencing
Support has been added to support storing, validating, and querying Web Ontology
Language (OWL)-based ontologies. Support is provided for a subset of the OWL DL
language.

To query ontology data, you can use table functions and operators that examine
semantic relationships, such as SEM_MATCH, SEM_RELATED, and SEM_DISTANCE.

New Bulk Loading Interface for Improved Performance
You can improve performance for bulk loading of semantic data in bulk using a
staging table and calling the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure. For more information, see Section 1.7.1.

Note: These changes are only partially reflected in the content of this
draft; however, the organization and the content of this draft will be
periodically updated to reflect the new capabilities and names

xii

Ontology-Assisted Querying of Relational Data
You can go beyond syntactic matching to perform semantic relatedness-based
querying of relational data, by associating an ontology with the data and using the
new SEM_RELATED operator (and optionally its SEM_DISTANCE ancillary operator).
The new SEM_INDEXTYPE index type improves performance for semantic queries.

Required Procedure for Using Semantic Technology Support
Before you can use any types, synonyms, or PL/SQL packages related to Oracle
semantic technologies support, you must run the $ORACLE_
HOME/md/admin/catsem10i.sql or $ORACLE_
HOME/md/admin/catsem11i.sql script, as explained in Section 1.10. This
procedure installs Release 11.1 support for semantic technologies support, and it
migrates any existing Release 10.2 RDF data to the Release 11.1 format.

1

Oracle Semantic Technologies Overview 1-1

1 Oracle Semantic Technologies Overview

This chapter describes the support for semantic technologies, specifically Resource
Description Framework (RDF) and a subset of the Web Ontology Language (OWL). It
assumes that you are familiar with the major concepts associated with RDF and OWL,
such as {subject, predicate, object} triples, URIs, blank nodes, plain and typed literals,
and ontologies. This chapter does not explain these concepts in detail, but focuses
instead on how the concepts are implemented in Oracle.

■ For an excellent explanation of RDF concepts, see the World Wide Web
Consortium (W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

■ For information about OWL, see the OWL Web Ontology Language Reference at
http://www.w3.org/TR/owl-ref/.

The PL/SQL subprograms for working with semantic data are in the SEM_APIS
package, which is documented in Chapter 3.

This chapter contains the following major sections:

■ Section 1.1, "Introduction to Oracle Semantic Technologies"

■ Section 1.2, "Semantic Data Modeling"

■ Section 1.3, "Semantic Data in the Database"

■ Section 1.4, "Semantic Metadata Tables and Views"

■ Section 1.5, "Semantic Data Types, Constructors, and Methods"

■ Section 1.6, "Using the SEM_MATCH Table Function to Query Semantic Data"

■ Section 1.7, "Loading and Exporting Semantic Data"

■ Section 1.8, "Quick Start for Using Semantic Data"

■ Section 1.9, "Semantic Data Examples"

■ Section 1.10, "Required Procedure for Semantic Technologies Support"

■ Section 1.11, "Downgrading to the Previous Oracle Database Release"

■ Section 1.12, "Software Naming Changes for Semantic Technologies"

For information about OWL concepts and the Oracle Database support for OWL
capabilities, see Chapter 2.

Note: Before performing any operations described in this guide, you
must run the $ORACLE_HOME/md/admin/catsem10i.sql or
$ORACLE_HOME/md/admin/catsem11i.sql script, as explained in
Section 1.10.

Introduction to Oracle Semantic Technologies

1-2 Oracle Database Semantic Technologies Developer’s Guide

1.1 Introduction to Oracle Semantic Technologies
Oracle Database enables you to store semantic data and ontologies, to query semantic
data and to perform ontology-assisted query of enterprise relational data, and to use
supplied or user-defined inferencing to expand the power of querying on semantic
data. Figure 1–1 shows how these capabilities interact.

Figure 1–1 Oracle Semantic Capabilities

As shown in Figure 1–1, the database contains semantic data and ontologies
(RDF/OWL models), as well as traditional relational data. To load semantic data, bulk
loading is the most efficient approach, although you can load data incrementally using
transactional INSERT statements.

You can query semantic data and ontologies, and you can also perform
ontology-assisted queries of semantic and traditional relational data to find semantic
relationships. To perform ontology-assisted queries, use the SEM_RELATED operator,
which is described in Section 2.3.

You can expand the power of queries on semantic data by using inferencing, which
uses rules in rulebases. Inferencing enables you to make logical deductions based on
the data and the rules. For information about using rules and rulebases for inferencing,
see Section 1.3.6.

Note: Effective with Oracle Database Release 11.1, the names of
many software objects (PL/SQL packages, functions and procedures,
system tables and views, and so on) have been changed. In most cases,
the change involves replacing the string RDF with SEM. However,
existing applications using valid names from a previous release will
continue to work. For more information, see Section 1.12.

Note: If you want to use existing semantic data from a release before
Oracle Database 11.1, the data must be upgraded as described in
Section 1.10.

Query RDF/OWL
data and
ontologies

Ontology-assisted
query of
enterprise data

RDF/OWL
data and
ontologies

Enterprise
(relational)
data

U
se

r-
de

fin
ed

R
D

F
/S

O
W

L
su

bs
et

INFER
QUERY

STORE

Bulk Load

Incremental
Load & DML

Database

Semantic Data in the Database

Oracle Semantic Technologies Overview 1-3

1.2 Semantic Data Modeling
In addition to its formal semantics, semantic data has a simple data structure that is
effectively modeled using a directed graph. The metadata statements are represented
as triples: nodes are used to represent two parts of the triple, and the third part is
represented by a directed link that describes the relationship between the nodes. The
triples are stored in a semantic data network. In addition, information is maintained
about specific semantic data models created by database users. A user-created model
has a model name, and refers to triples stored in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object
or value}. In this manual, {subject, property, object} is used to describe a triple, and the
terms statement and triple may sometimes be used interchangeably. Each triple is a
complete and unique fact about a specific domain, and can be represented by a link in
a directed graph.

1.3 Semantic Data in the Database
There is one universe for all semantic data stored in the database. All triples are parsed
and stored in the system as entries in tables under the MDSYS schema. A triple
{subject, property, object} is treated as one database object. As a result, a single
document containing multiple triples results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a semantic data network,
and properties are mapped to network links that have their start node and end node as
subject and object, respectively. The possible node types are blank nodes, URIs, plain
literals, and typed literals.

The following requirements apply to the specifications of URIs and the storage of
semantic data in the database:

■ A subject must be a URI or a blank node.

■ A property must be a URI.

■ An object can be any type, such as a URI, a blank node, or a literal. (However, null
values and null strings are not supported.)

1.3.1 Metadata for Models
The MDSYS.SEM_MODEL$ view contains information about all models defined in the
database. When you create a model using the SEM_APIS.CREATE_SEM_MODEL
procedure, you specify a name for the model, as well as a table and column to hold
references to the semantic data, and the system automatically generates a model ID.

Oracle maintains the MDSYS.SEM_MODEL$ view automatically when you create and
drop models. Users should never modify this view directly. For example, do not use
SQL INSERT, UPDATE, or DELETE statements with this view.

The MDSYS.SEM_MODEL$ view contains the columns shown in Table 1–1.

Table 1–1 MDSYS.SEM_MODEL$ View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the model.

MODEL_ID NUMBER Unique model ID number, automatically generated by
Spatial.

MODEL_NAME VARCHAR2(25) Name of the model.

Semantic Data in the Database

1-4 Oracle Database Semantic Technologies Developer’s Guide

When you create a model, a view for the triples associated with the model is also
created under the MDSYS schema. This view has a name in the format RDFM_
model-name, and it is visible only to the owner of the model and to users with suitable
privileges. Each MDSYS.SEMM_model-name view contains a row for each triple (stored
as a link in a network), and it has the columns shown in Table 1–2.

TABLE_NAME VARCHAR2(30) Name of the table to hold references to semantic data
for the model.

COLUMN_NAME VARCHAR2(30) Name of the column of type SDO_RDF_TRIPLE_S in
the table to hold references to semantic data for the
model.

MODEL_
TABLESPACE_
NAME

VARCHAR2(30) Name of the tablespace to be used for storing the triples
for this model.

Table 1–2 MDSYS.SEMM_model-name View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate
of the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of
the triple. Also part of the primary key.

CANON_END_
NODE_ID

NUMBER The VALUE_ID for the text value of the canonical
form of the object of the triple. Also part of the
primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of
the triple

MODEL_ID NUMBER The ID for the RDF graph to which the triple
belongs. It logically partitions the table by RDF
graphs.

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved for future use)

CTXT2 VARCHAR2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHAR2(4000) (Reserved for future use)

PATH VARCHAR2(4000) (Reserved for future use)

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a
computed column, and its definition may change
in a future release.)

Note: In Table 1–2, for columns P_VALUE_ID, START_NODE_ID,
END_NODE_ID, and CANON_END_NODE_ID, the actual ID values
are computed from the corresponding lexical values. However, a
lexical value may not always map to the same ID value.

Table 1–1 (Cont.) MDSYS.SEM_MODEL$ View Columns

Column Name Data Type Description

Semantic Data in the Database

Oracle Semantic Technologies Overview 1-5

1.3.2 Statements
The MDSYS.RDF_VALUE$ table contains information about the subjects, properties,
and objects used to represent RDF statements. It uniquely stores the text values (URIs
or literals) for these three pieces of information, using a separate row for each part of
each triple.

Oracle maintains the MDSYS.RDF_VALUE$ table automatically. Users should never
modify this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE
statements with this view.

The RDF_VALUE$ table contains the columns shown in Table 1–3.

Table 1–3 MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated by
Spatial.

VALUE_TYPE VARCHAR2(10) The type of text information stored in the VALUE_
NAME column. Possible values: UR for URI, BN for
blank node, PL for plain literal, PL@ for plain literal
with a language tag, PLL for plain long literal, PLL@
for plain long literal with a language tag, TL for typed
literal, or TLL for typed long literal. A long literal is a
literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(4000) If the length of the lexical value is 4000 bytes or less,
this column stores a prefix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_PREFIX
function can be used for prefix computation. For
example, the prefix for the portion of the lexical value
<http://www.w3.org/1999/02/22-rdf-syntax
-ns#type> without the angle brackets is
http://www.w3.org/1999/02/22-rdf-syntax-
ns#.

VNAME_SUFFIX VARCHAR2(512) If the length of the lexical value is 4000 bytes or less,
this column stores a suffix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_SUFFIX
function can be used for suffix computation. For the
lexical value mentioned in the description of the
VNAME_PREFIX column, the suffix is type.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise,
null. For example, for a row representing a creation
date of 1999-08-16, the VALUE_TYPE column can
contain TL, and the LITERAL_TYPE column can
contain
http://www.w3.org/2001/XMLSchema#date.

LANGUAGE_
TYPE

VARCHAR2(80) Language tag (for example, fr for French) for a literal
with a language tag (that is, if VALUE_TYPE is PL@ or
PLL@). Otherwise, this column has a null value.

CANON_ID NUMBER The ID for the canonical lexical value for the current
lexical value. (The use of this column may change in a
future release.)

COLLISION_EXT VARCHAR2(64) Used for collision handling for the lexical value. (The
use of this column may change in a future release.)

CANON_
COLLISION_EXT

VARCHAR2(64) Used for collision handling for the canonical lexical
value. (The use of this column may change in a future
release.)

Semantic Data in the Database

1-6 Oracle Database Semantic Technologies Developer’s Guide

1.3.2.1 Triple Uniqueness and Data Types for Literals
Duplicate triples are not stored in the database. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked
against triple values in the specified model. If the incoming subject, property, and
object are all URIs, an exact match of their values determines a duplicate. However, if
the object of incoming triple is a literal, an exact match of the subject and property, and
a value (canonical) match of the object, determine a duplicate. For example, the
following two triples are duplicates:

<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#int
<eg:a> <eg:b> "123"^^http://www.w3.org/2001/XMLSchema#unsignedByte

The second triple is treated as a duplicate of the first, because
"123"^^http://www.w3.org/2001/XMLSchema#int has an equivalent value (is
canonically equivalent) to
"123"^^http://www.w3.org/2001/XMLSchema#unsignedByte. Two entities
are canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert
into the same canonical form.

Value-based matching of lexical forms is supported for the following data types:

■ STRING: plain literal, xsd:string and some of its XML Schema subtypes

■ NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

■ DATETIME: xsd:datetime, with support for time zone. (Without time zone there
are still multiple representations for a single value, for example,
"2004-02-18T15:12:54" and "2004-02-18T15:12:54.0000".)

■ DATE: xsd:date, with or without time zone

■ OTHER: Everything else. (No attempt is made to match different representations).

Canonicalization is performed when the time zone is present for literals of type
xsd:time and xsd:dateTime.

The following namespace definition is used:
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

The first occurrence of a literal in the RDF_VALUE$ table is taken as the canonical
form and given the VALUE_TYPE value of CPL, CPL@, CTL, CPLL, CPLL@, or CTLL as
appropriate; that is, a C for canonical is prefixed to the actual value type. If a literal
with the same canonical form (but a different lexical representation) as a previously
inserted literal is inserted into the RDF_VALUE$ table, the VALUE_TYPE value
assigned to the new insert is PL, PL@, TL, PLL, PLL@, or TLL as appropriate.

LONG_VALUE CLOB The character string if the length of the lexical value is
greater than 4000 bytes. Otherwise, this column has a
null value.

VALUE_NAME VARCHAR2(4000) This is a computed column. If length of the lexical
value is 4000 bytes or less, the value of this column is
the concatenation of the values of VNAME_PREFIX
column and the VNAME_SUFFIX column.

Table 1–3 (Cont.) MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

Semantic Data in the Database

Oracle Semantic Technologies Overview 1-7

Canonically equivalent text values having different lexical representations are thus
stored in the RDF_VALUE$ table; however, canonically equivalent triples are not
stored in the database.

1.3.3 Subjects and Objects
RDF subjects and objects are mapped to nodes in a semantic data network. Subject
nodes are the start nodes of links, and object nodes are the end nodes of links.
Non-literal nodes (that is, URIs and blank nodes) can be used as both subject and
object nodes. Literals can be used only as object nodes.

1.3.4 Blank Nodes
Blank nodes can be used as subject and object nodes in the semantic network. Blank
node identifiers are different from URIs in that they are scoped within a semantic
model. Thus, although multiple occurrences of the same blank node identifier within a
single semantic model necessarily refer to the same resource, occurrences of the same
blank node identifier in two different semantic models do not refer to the same
resource.

In an Oracle semantic network, this behavior is modeled by requiring that blank nodes
are always reused (that is, are used to represent the same resource if the same blank
node identifier is used) within a semantic model, and never reused between two
different models. Thus, when inserting triples involving blank nodes into a model, you
must use the SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.3.5 Properties
Properties are mapped to links that have their start node and end node as subjects and
objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into a model, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to
previous statements in other models), no new entries are made; if they do not exist,
three new rows are inserted into the RDF_VALUE$ table (described in Section 1.3.2).

1.3.6 Inferencing: Rules and Rulebases
Inferencing is the ability to make logical deductions based on rules. Inferencing
enables you to construct queries that perform semantic matching based on meaningful
relationships among pieces of data, as opposed to just syntactic matching based on
string or other values. Inferencing involves the use of rules, either supplied by Oracle
or user-defined, placed in rulebases.

Figure 1–2 shows triple sets being inferred from model data and the application of
rules in one or more rulebases. In this illustration, the database can have any number
of semantic models, rulebases, and inferred triple sets, and an inferred triple set can be
derived using rules in one or more rulebases.

Semantic Data in the Database

1-8 Oracle Database Semantic Technologies Developer’s Guide

Figure 1–2 Inferencing

A rule is an object that can be applied to draw inferences from semantic data. A rule is
identified by a name and consists of:

■ An IF side pattern for the antecedents

■ An optional filter condition that further restricts the subgraphs matched by the IF
side pattern

■ A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the conference
could be represented as follows:

('chairpersonRule', -- rule name
 ‘(?r :ChairPersonOf ?c)’, -- IF side pattern
 NULL, -- filter condition
 ‘(?r :ReviewerOf ?c)’, -- THEN side pattern
 SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)

In this case, the rule does not have a filter condition, so that component of the
representation is NULL. Note that a THEN side pattern with more than one triple can
be used to infer multiple triples for each IF side match.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases
are provided:

■ RDFS

■ RDF (a subset of RDFS)

■ OWLSIF (empty)

■ RDFS++ (empty)

■ OWLPRIME (empty)

The RDFS and RDF rulebases are created when you call the SEM_APIS.CREATE_
SEM_NETWORK procedure to add RDF support to the database. The RDFS rulebase
implements the RDFS entailment rules, as described in the World Wide Web
Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/rdf-mt/.
The RDF rulebase represents the RDF entailment rules, which are a subset of the RDFS
entailment rules. You can see the contents of these rulebases by examining the
MDSYS.SEMR_RDFS and MDSYS.SEMR_RDF views.

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE
procedure. User-defined rulebases enable you to provide additional specialized
inferencing capabilities.

Model 1

Model 2

Rulebase 1 Rulebase 2

Inferred
Triple Set 1

Inferred
Triple Set 2

. . .

.
 .

Semantic Data in the Database

Oracle Semantic Technologies Overview 1-9

For each rulebase, a system table is created to hold rules in the rulebase, along with a
system view with a name in the format MDSYS.SEMR_rulebase-name (for example,
MDSYS.SEMR_FAMILY_RB for a rulebase named FAMILY_RB). You must use this
view to insert, delete, and modify rules in the rulebase. Each MDSYS.SEMR_
rulebase-name view has the columns shown in Table 1–4.

Information about all rulebases is maintained in the MDSYS.SEM_RULEBASE_INFO
view, which has the columns shown in Table 1–5 and one row for each rulebase.

Example 1–1 creates a rulebase named family_rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is
the parent of a child who is the parent of a child, that person is a grandparent of (that
is, has the grandParentOf relationship with respect to) his or her child’s child. It also
specifies a namespace to be used. (This example is an excerpt from Example 1–10 in
Section 1.9.2.)

Example 1–1 Inserting a Rule into a Rulebase

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Section 1.6), to control the behavior of queries against semantic data.

Table 1–4 MDSYS.SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) Filter condition that further restricts the subgraphs
matched by the IF side pattern. Null indicates no filter
condition is to be applied

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

ALIASES SEM_ALIASES One or more namespaces to be used. (The SEM_
ALIASES data type is described in Section 1.6.)

Table 1–5 MDSYS.SEM_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_
NAME

VARCHAR2(25) Name of the rulebase

RULEBASE_
VIEW_NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS
if the rulebase is being created, or FAILED if a system
failure occurred during the creation of the rulebase.

Semantic Data in the Database

1-10 Oracle Database Semantic Technologies Developer’s Guide

Example 1–2 refers to the family_rb rulebase and to the grandParentOf
relationship created in Example 1–1, to find all grandfathers (grandparents who are
male) and their grandchildren. (This example is an excerpt from Example 1–10 in
Section 1.9.2.)

Example 1–2 Using Rulebases for Inferencing

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x, y
 FROM TABLE(SEM_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

For information about support for native OWL inferencing, see Section 2.2.

1.3.7 Rules Indexes
A rules index is an object containing precomputed triples that can be inferred from
applying a specified set of rulebases to a specified set of models. If an SEM_MATCH
query refers to any rulebases, a rules index must exist for each rulebase-model
combination in the query.

To create a rules index, use the SEM_APIS.CREATE_RULES_INDEX procedure. To
drop (delete) a rules index, use the SEM_APIS.DROP_RULES_INDEX procedure.

When you create a rules index, a view for the triples associated with the rules index is
also created under the MDSYS schema. This view has a name in the format SEMI_
rules-index-name, and it is visible only to the owner of the rules index and to users with
suitable privileges. Each MDSYS.SEMI_rules-index-name view contains a row for each
triple (stored as a link in a network), and it has the same columns as the SEMM_
model-name view, which is described in Table 1–2 in Section 1.3.1.

Information about all rules indexes is maintained in the MDSYS.SEM_RULES_
INDEX_INFO view, which has the columns shown in Table 1–6 and one row for each
rules index.

Table 1–6 MDSYS.SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rules index

INDEX_NAME VARCHAR2(25) Name of the rules index

INDEX_VIEW_
NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rules index

STATUS VARCHAR2(30) Contains VALID if the rules index is valid, INVALID if
the rules index is not valid, INCOMPLETE if the rules
index is incomplete (similar to INVALID but requiring
less time to re-create), INPROGRESS if the rules index
is being created, or FAILED if a system failure
occurred during the creation of the rules index.

MODEL_COUNT NUMBER Number of models included in the rules index

RULEBASE_
COUNT

NUMBER Number of rulebases included in the rules index

Semantic Data in the Database

Oracle Semantic Technologies Overview 1-11

Information about all database objects, such as models and rulebases, related to rules
indexes is maintained in the MDSYS.SEM_RULES_INDEX_DATASETS view. This
view has the columns shown in Table 1–7 and one row for each unique combination of
values of all the columns.

Example 1–3 creates a rules index named family_rb_rix_family, using the
family model and the RDFS and family_rb rulebases. (This example is an excerpt
from Example 1–10 in Section 1.9.2.)

Example 1–3 Creating a Rules Index

BEGIN
 SEM_APIS.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'));
END;
/

1.3.8 Semantic Data Security Considerations
The following database security considerations apply to the use of semantic data:

■ When a model or rules index is created, the owner gets the SELECT privilege with
the GRANT option on the associated view. Users that have the SELECT privilege
on these views can perform SEM_MATCH queries against the associated model or
rules index.

■ When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and
DELETE privileges on the rulebase, with the GRANT option. Users that have the
SELECT privilege on a rulebase can create a rules index that includes the rulebase.
The INSERT, UPDATE, and DELETE privileges control which users can modify
the rulebase and how they can modify it.

■ To perform data manipulation language (DML) operations on a model, a user
must have DML privileges for the corresponding base table.

■ The creator of the base table corresponding to a model can grant privileges to
other users.

■ To perform data manipulation language (DML) operations on a rulebase, a user
must have the appropriate privileges on the corresponding database view.

■ The creator of a model can grant SELECT privileges on the corresponding
database view to other users.

■ A user can query only those models for which that user has SELECT privileges to
the corresponding database views.

■ Only the creator of a model or a rulebase can drop it.

Table 1–7 MDSYS.SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the rules index

DATA_TYPE VARCHAR2(8) Type of data included in the rules index. Examples:
MODEL and RULEBASE

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

Semantic Metadata Tables and Views

1-12 Oracle Database Semantic Technologies Developer’s Guide

1.4 Semantic Metadata Tables and Views
Oracle Database maintains several tables and views in the MDSYS schema to hold
metadata related to semantic data. (Some of these tables and views are created by the
SEM_APIS.CREATE_SEM_NETWORK procedure, as explained in Section 1.8, and
some are created only as needed.) Table 1–8 lists the tables and views in alphabetical
order. (In addition, several tables and views are created for Oracle internal use, and
these are accessible only by users with DBA privileges.)

1.5 Semantic Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE object type represents semantic data in triple format, and the
SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent semantic data in
the database. The SDO_RDF_TRIPLE_S type has references to the data, because the
actual semantic data is stored only in the central RDF schema. This type has methods
to retrieve the entire triple or part of the triple.

The SDO_RDF_TRIPLE type is used to display triples, whereas the SDO_RDF_
TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE object type has the following attributes:

SDO_RDF_TRIPLE (
 subject VARCHAR2(4000),
 property VARCHAR2(4000),
 object VARCHAR2(10000))

The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (
 RDF_C_ID NUMBER, -- Canonical object value ID
 SEM_M_ID NUMBER, -- Model ID
 RDF_S_ID NUMBER, -- Subject value ID
 RDF_P_ID NUMBER, -- Property value ID
 RDF_O_ID NUMBER) -- Object value ID

Table 1–8 Semantic Metadata Tables and Views

Name Contains Information About Described In

SEM_MODEL$ All models defined in the database Section 1.3.1

SEMM_model-name Triples in the specified model Section 1.3.1

SEM_RULEBASE_
INFO

Rulebases Section 1.3.6

SEM_RULES_INDEX_
DATASETS

Database objects used in rules indexes Section 1.3.7

SEM_RULES_INDEX_
INFO

Rules indexes Section 1.3.7

RDF_VALUE$ Subjects, properties, and objects used to
represent statements

Section 1.3.2

SEMR_rulebase-name Rules in the specified rulebase Section 1.3.6

SEMI_rules-index-name Triples in the specified rules index Section 1.3.7

Note: Blank nodes are always reused within an RDF model and
cannot be reused across models

Semantic Data Types, Constructors, and Methods

Oracle Semantic Technologies Overview 1-13

The SDO_RDF_TRIPLE_S type has the following methods that retrieve a triple or a
part (subject, property, or object) of a triple:

GET_TRIPLE() RETURNS SDO_RDF_TRIPLE
GET_SUBJECT() RETURNS VARCHAR2
GET_PROPERTY() RETURNS VARCHAR2
GET_OBJECT() RETURNS CLOB

Example 1–4 shows the SDO_RDF_TRIPLE_S methods.

Example 1–4 SDO_RDF_TRIPLE_S Methods

SELECT a.triple.GET_TRIPLE() AS triple
 FROM articles_rdf_data a WHERE a.id = 1;

TRIPLE(SUBJECT, PROPERTY, OBJECT)
--
SDO_RDF_TRIPLE('http://www.nature.com/nature/Article1', 'http://purl.org/dc/elem
ents/1.1/title', 'All about XYZ')

SELECT a.triple.GET_SUBJECT() AS subject
 FROM articles_rdf_data a WHERE a.id = 1;

SUBJECT
--
http://www.nature.com/nature/Article1

SELECT a.triple.GET_PROPERTY() AS property
 FROM articles_rdf_data a WHERE a.id = 1;

PROPERTY
--
http://purl.org/dc/elements/1.1/title

SELECT a.triple.GET_OBJECT() AS object
 FROM articles_rdf_data a WHERE a.id = 1;

OBJECT
--
All about XYZ

1.5.1 Constructors for Inserting Triples Without Any Blank Nodes
The following constructor formats are available for inserting triples into a model table.
The only difference is that in the second format the data type for the object is CLOB, to
accommodate very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object VARCHAR2) -- Object
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 subject VARCHAR2, -- Subject
 property VARCHAR2, -- Property
 object CLOB) -- Object

Using the SEM_MATCH Table Function to Query Semantic Data

1-14 Oracle Database Semantic Technologies Developer’s Guide

 RETURN SELF;

GET_OBJ_VALUE() RETURN VARCHAR2;

Example 1–5 uses the first constructor format to insert a triple.

Example 1–5 SDO_RDF_TRIPLE_S Constructor to Insert a Triple

INSERT INTO articles_rdf_data VALUES (2,
 SDO_RDF_TRIPLE_S ('articles','<http://www.nature.com/nature/Article1>',
 '<http://purl.org/dc/elements/1.1/creator>',
 '"Jane Smith"'));

1.5.2 Constructors for Inserting Triples With or Without Any Blank Nodes
The following constructor formats are available for inserting triples referring to blank
nodes into a model table. The only difference is that in the second format the data type
for the fourth attribute is CLOB, to accommodate very long literals.

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 sub_or_bn VARCHAR2, -- Subject or blank node
 property VARCHAR2, -- Property
 obj_or_bn VARCHAR2, -- Object or blank node
 bn_m_id NUMBER) -- ID of the model from which to reuse the blank node
 RETURN SELF;

SDO_RDF_TRIPLE_S (
 model_name VARCHAR2, -- Model name
 sub_or_bn VARCHAR2, -- Subject or blank node
 property VARCHAR2, -- Property
 object CLOB, -- Object
 bn_m_id NUMBER) -- ID of the model from which to reuse the blank node
 RETURN SELF;

If the value of bn_m_id is positive, it must be the same as the model ID of the target
model.

Example 1–6 uses the first constructor format to insert a triple that reuses a blank node
for the subject.

Example 1–6 SDO_RDF_TRIPLE_S Constructor to Reusing a Blank Node

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S(
 ‘nsu’,
 '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>',
 4));

1.6 Using the SEM_MATCH Table Function to Query Semantic Data
To query semantic data, use the SEM_MATCH table function. This function has the
following attributes:

SEM_MATCH(
 query VARCHAR2,
 models SEM_MODELS,
 rulebases SEM_RULEBASES,
 aliases SEM_ALIASES,

Using the SEM_MATCH Table Function to Query Semantic Data

Oracle Semantic Technologies Overview 1-15

 filter VARCHAR2,
 index_status VARCHAR2
) RETURN ANYDATASET;

The query attribute is required. The other attributes are optional (that is, each can be a
null value).

The query attribute is a string literal (or concatenation of string literals) with one or
more triple patterns, usually containing variables. (The query attribute cannot be a
bind variable or an expression involving a bind variable.) A triple pattern is a triple of
atoms enclosed in parentheses. Each atom can be a variable (for example, ?x), a
qualified name (for example, rdf:type) that is expanded based on the default
namespaces and the value of the aliases attribute, or a full URI (for example,
<http://www.example.org/family/Male>). In addition, the third atom can be a
numeric literal (for example, 3.14), a plain literal (for example, "Herman"), a
language-tagged plain literal (for example, "Herman"@en), or a typed literal (for
example, "123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find
grandfathers (that is, grandparents who are also male) and the height of each of their
grandchildren:

'(?x :grandParentOf ?y) (?x rdf:type :Male) (?y :height ?h)'

The models attribute identifies the model or models to use. Its data type is SEM_
MODELS, which has the following definition: TABLE OF VARCHAR2(25)

The rulebases attribute identifies one or more rulebases whose rules are to be
applied to the query. Its data type is SDO_RDF_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25)

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data
type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS,
where each SEM_ALIAS element identifies a namespace ID and namespace value. The
SEM_ALIAS data type has the following definition: (namespace_id
VARCHAR2(30), namespace_val VARCHAR2(4000))

The following default namespaces (namespace_id and namespace_val attributes)
are used by the SEM_MATCH table function:

('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs', 'http://www.w3.org/2000/01/rdf-schema#')
('xsd', 'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a
different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not
null, it should be a string in the form of a WHERE clause without the WHERE keyword.
For example: ’(h >= 6)’ to limit the result to cases where the height of the
grandfather’s grandchild is 6 or greater (using the example of triple patterns earlier in
this section).

The index_status attribute lets you query semantic data even when the relevant
rules index does not have a valid status. If this attribute is null, the query returns an
error if the rules index does not have a valid status. If this attribute is not null, it must
be the string INCOMPLETE or INVALID. For an explanation of query behavior with
different index_status values, see Section 1.6.1.

Using the SEM_MATCH Table Function to Query Semantic Data

1-16 Oracle Database Semantic Technologies Developer’s Guide

The SEM_MATCH table function returns an object of type ANYDATASET, with
elements that depend on the input variables. In the following explanations, var
represents the name of a variable used in the query:

■ For each variable var that may be a literal (that is, for each variable that appears
only in the object position in the query pattern), the result elements have five
attributes: var, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.

■ For each variable var that cannot take a literal value, the result elements have two
attributes: var and var$RDFVTYP.

In both cases, var has the lexical value bound to the variable, var$RDFVTYP indicates
the type of value bound to the variable (URI, LIT [literal], or BLN [blank node]),
var$RDFCLOB has the lexical value bound to the variable if the value is a long literal,
var$RDFLTYP indicates the type of literal bound if a literal is bound, and
var$RDFLANG has the language tag of the bound literal if a literal with language tag
is bound. var$RDFCLOB is of type CLOB, while all other attributes are of type
VARCHAR2.

Example 1–7 selects all grandfathers (grandparents who are male) and their
grandchildren from the family model, using inferencing from both the RDFS and
family_rb rulebases. (This example is an excerpt from Example 1–10 in
Section 1.9.2.)

Example 1–7 SEM_MATCH Table Function

SELECT x, y
 FROM TABLE(SEM_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

Example 1–8 uses the Pathway/Genome BioPax ontology to get all chemical
compound types that belong to both Proteins and Complexes:

Example 1–8 SEM_MATCH Table Function

SELECT t.r
 FROM TABLE (SEM_MATCH (
 ‘(?r rdfs:subClassOf Proteins)
 (?r rdfs:subClassOf Complexes)’,
 RDFModels (‘BioPax’),
 RDFRules (‘rdfs’), NULL)) t;

As shown in Example 1–8, the search pattern for the SEM_MATCH table function is
specified using SPARQL-like syntax where the variable starts with the question-mark
character (?). In this example, the variable ?r must match to the same term, and thus
is must be a subclass of both Proteins and Complexes.

To use the SEM_RELATED operator to query an OWL ontology, see Section 2.3.

1.6.1 Performing Queries with Incomplete or Invalid Rules Indexes
You can query semantic data even when the relevant rules index does not have a valid
status if you specify the string value INCOMPLETE or INVALID for the index_
status attribute of the SEM_MATCH table function. (The rules index status is stored
in the STATUS column of the MDSYS.SEM_RULES_INDEX_INFO view, which is
described in Section 1.3.7. The SEM_MATCH table function is described in Section 1.6.)

Loading and Exporting Semantic Data

Oracle Semantic Technologies Overview 1-17

The index_status attribute value affects the query behavior as follows:

■ If the rules index has a valid status, the query behavior is not affected by the value
of the index_status attribute.

■ If you provide no value or specify a null value for index_status, the query
returns an error if the rules index does not have a valid status.

■ If you specify the string INCOMPLETE for the index_status attribute, the query
is performed if the status of the rules index is incomplete or valid.

■ If you specify the string INVALID for the index_status attribute, the query is
performed regardless of the actual status of the rules index (invalid, incomplete, or
valid).

However, the following considerations apply if the status of the rules index is
incomplete or invalid:

■ If the status is incomplete, the content of a rules index may be approximate,
because some triples that are inferable (due to the recent insertions into the
underlying models) may not actually be present in the rules index, and therefore
results returned by the query may be inaccurate.

■ If the status is invalid, the content of the rules index may be approximate, because
some triples that are no longer inferable (due to recent modifications to the
underlying models or rulebases, or both) may still be present in the rules index,
and this may affect the accuracy of the result returned by the query. In addition to
possible presence of triples that are no longer inferable, some inferable rows may
not actually be present in the rules index.

1.7 Loading and Exporting Semantic Data
To load semantic data into a model, use one or more of the following options:

■ Bulk load using a SQL*Loader direct-path load to get data from an N-Triple format
into a staging table and then use a PL/SQL procedure to load or append data into
the semantic data store, as explained in Section 1.7.1.

This is the fastest option for loading large amounts of data; however, it cannot
handle triples containing object values with more than 4000 bytes.

■ Batch load using a Java client interface to load or append data from an N-Triple
format file into the semantic data store (see Section 1.7.2).

This option is slower than bulk loading, but it handles triples containing object
values with more than 4000 bytes.

■ Load into tables using SQL INSERT statements that call the SDO_RDF_TRIPLE_S
constructor, as explained in Section 1.7.3.

To export semantic data, use the Java API, as described in Section 1.7.4.

1.7.1 Bulk Loading Semantic Data Using a Staging Table
You can load semantic data (and optionally associated non-semantic data) in bulk
using a staging table. The data must first be parsed to check for syntax correctness and
then loaded into the staging table. Then, you can call the SEM_APIS.BULK_LOAD_
FROM_STAGING_TABLE procedure (described in Chapter 3).

The following example shows the format for the staging table, including all required
columns and the required names for these columns:

Loading and Exporting Semantic Data

1-18 Oracle Database Semantic Technologies Developer’s Guide

CREATE TABLE stage_table (
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_sub_ext varchar2(64),
 RDF$STC_pred_ext varchar2(64),
 RDF$STC_obj_ext varchar2(64),
 RDF$STC_canon_ext varchar2(64)
);

If you also want to load non-semantic data, specify additional columns for the
non-semantic data in the CREATE TABLE statement. The non-semantic column names
must be different form the names of the required columns. The following example
creates the staging table with two additional columns (SOURCE and ID) for
non-semantic attributes.

CREATE TABLE stage_table_with_extra_cols (
 source VARCHAR2(4000),
 id NUMBER,
 RDF$STC_sub varchar2(4000) not null,
 RDF$STC_pred varchar2(4000) not null,
 RDF$STC_obj varchar2(4000) not null,
 RDF$STC_sub_ext varchar2(64),
 RDF$STC_pred_ext varchar2(64),
 RDF$STC_obj_ext varchar2(64),
 RDF$STC_canon_ext varchar2(64)
);

You must grant SELECT privilege and UPDATE privilege on the last four required
columns (with names ending with _collision_ext) in the staging table to user
MDSYS. You must also grant INSERT privilege on the application table to user
MDSYS.

You can use the SQL*Loader utility to parse and load semantic data into a staging
table. (If you installed the demo files from the Oracle Database Examples media, a
sample control file is available at $ORACLE_HOME/md/demo/network/rdf_
demos/bulkload.ctl. You can modify and use this file.)

Objects longer than 4000 bytes cannot be loaded. If you use the sample SQL*Loader
control file, triples (rows) containing such long values will be automatically rejected
and stored in a SQL*Loader "bad" file.

However, triples containing object values longer than 4000 bytes can be

loaded using the following approach:

1. Use the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure to load all
rows that can be stored in the staging table.

2. Load the remaining rows (that is, the rejected rows when using SQL*Loader with
the sample control file) from an N-Triple format file, as described in Section 1.7.2.

Note: For either form of the CREATE TABLE statement, you may
want to add the COMPRESS clause to use table compression, which
will reduce the disk space requirements and may improve bulk-load
performance.

Loading and Exporting Semantic Data

Oracle Semantic Technologies Overview 1-19

1.7.2 Batch Loading Semantic Data Using the Java API
You can perform a batch load operation using the Java class
oracle.spatial.rdf.client.BatchLoader, which is packaged in <ORACLE_
HOME>/md/jlib/sdordf.jar. Before performing a batch load operation, ensure
that the following are true:

■ The semantic data is in N-Triple format. (Several tools are available for converting
RDF/XML to N-Triple format; see the Oracle Technology Network or perform a
Web search for information about RDF/XML to N-Triple conversion.)

■ Oracle Database Release 11, with Oracle Spatial, is installed.

■ A semantic technologies network, an application table, and its corresponding
semantic model have been created in the database.

■ The CLASSPATH definition includes ojdbc5.jar.

■ You are using JDK version 1.5 or later. (You can use the Java version packaged
under <ORACLE_HOME>/jdk/bin.)

To run the oracle.spatial.rdf.client.BatchLoader class, use a command
(on a single command line) in the following general form (replacing the sample
example database connection information with your own connection information).

■ Linux systems:

java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522
-Ddb.sid=orcl -classpath ${ORACLE_HOME}/md/jlib/sdordf.jar:${ORACLE_
HOME}/jdbc/lib/ojdbc5.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile>
<tablename> <tablespaceName> <modelName>

■ Windows systems:

java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522
-Ddb.sid=orcl -classpath %ORACLE_HOME%\md\jlib\sdordf.jar;%ORACLE_
HOME%\jdbc\lib\ojdbc5.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile>
<tablename> <tablespaceName> <modelName>

By default, BatchLoader assumes there are at least two columns, a column named ID
of type NUMBER and a column named TRIPLE of type SDO_RDF_TRIPLE_S, in the
user's application table. However, you can override the default names by using the
JVM properties -DidColumn=<idColumnName> and
-DtripleColumn=<tripleColumnName>. Note that the ID column is not required;
and to prevent BatchLoader from generating a sequence-like identifier in the ID
column for each triple inserted, specify the JVM property -DjustTriple=true.

If the application table is not empty and if you want the batch loading to be done in
append mode, specify an additional JVM property: -Dappend=true. Moreover, in
append mode you might want to choose a different starting value for ID column in
user's application table, and to accomplish this you can add the JVM property
-DstartID=<startingIntegerValue> to the command line. By default, the ID
column starts at 1 and is increased sequentially as new triples are inserted into the
application table.

To skip the first n triples in <N-TripleFile>, add the JVM property
-Dskip=<numberOfTriplesSkipped> to the command line.

To load an N-Triple file with a character set different from the default, specify the JVM
property -Dcharset=<charsetName>. For example, -Dcharset="UTF-8" will
recognize UTF-8 encoding. However, for UTF-8 characters to be stored properly in the

Loading and Exporting Semantic Data

1-20 Oracle Database Semantic Technologies Developer’s Guide

N-Triple file, the Oracle database must be configured to use a corresponding universal
character set, such as AL32UTF8.

The BatchLoader class supports loading an N-Triple file in compressed format. If the
<N-TripleFile> has a file extension of .zip or .jar, the file will be uncompressed and
loaded at the same time.

1.7.2.1 When to Choose Batch Loading
Batch loading is faster than loading semantic data using INSERT statements (described
in Section 1.7.3). However, bulk loading (described in Section 1.7.1) is much faster than
batch loading for large amounts of data. Batch loading is typically a good option when
the following conditions are true:

■ The data to be loaded is less than a few million triples.

■ The data contains a significant amount long literals (longer than 4000 bytes).

1.7.3 Loading Semantic Data Using INSERT Statements
To load semantic data using INSERT statements, the data should be encoded using <
> (angle brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation
marks) for literals. Spaces are not allowed in URIs or blank nodes. Use the SDO_RDF_
TRIPLE_S constructor to insert the data, as described in Section 1.5.1.

The following example includes statements with URIs, a blank node (the model_id for
nsu is 4), a literal, a literal with a language tag, and a typed literal:

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://www.nature.com/nsu/rss.rdf>',
 '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
 '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>', 4));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
 '<http://www.nature.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',
 '<http://purl.org/dc/elements/1.1/language>', '"English”@en-GB'));
INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
 '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date'));

To convert semantic XML data to INSERT statements, you can edit the sample
rss2insert.xsl XSLT file to convert all the features in the semantic data XML file.
The blank node constructor is used to insert statements with blank nodes. After
editing the XSLT, download the Xalan XSLT processor
(http://xml.apache.org/xalan) and follow the installation instructions. To
convert a semantic data XML file to INSERT statements using your edited version of
the rss2insert.xsl file, use a command in the following format:

java org.apache.xalan.xslt.Process –in input.rdf -xsl rss2insert.xsl –out
output.nt

Note: If URIs are not encoded with < > and literals with " ",
statements will still be processed. However, the statements will take
longer to load, since they will have to be further processed to
determine their VALUE_TYPE values.

Quick Start for Using Semantic Data

Oracle Semantic Technologies Overview 1-21

1.7.4 Exporting Semantic Data
To output semantic data to a file in N-Triple format, use the NTripleConverter Java
class. The NDM2NTriple(String, int) method exports all the triples stored for the
specified model.

For information about using the NTriple converter class, see the README.txt file
in the sdordf_converter.zip file, which you can download from the Oracle
Technology Network.

1.8 Quick Start for Using Semantic Data
To work with semantic data in an Oracle database, follow these general steps:

1. Create a tablespace for the system tables. You must be connected as a user with
appropriate privileges to create the tablespace. The following example creates a
tablespace named RDF_TBLSPACE:

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create a semantic data network.

Creating a semantic data network adds semantic data support to an Oracle
database. You must create a semantic data network as a user with DBA privileges,
specifying a valid tablespace with adequate space. Create the network only once
for an Oracle database.

The following example creates a semantic data network using a tablespace named
RDF_TBLSPACE (which must already exist):

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

3. Connect as the database user under whose schema you will store your semantic
data; do not perform the following steps while connected as SYS, SYSTEM, or
MDSYS.

4. Create a table to store references to the semantic data. (You do not need to be
connected as a user with DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain
references to all data associated with a single model.

The following example creates a table named ARTICLES_RDF_DATA:

CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

5. Create a model.

When you create a model, you specify the model name, the table to hold
references to semantic data for the model, and the column of type SDO_RDF_
TRIPLE_S in that table.

The following command creates a model named ARTICLES, which will use the
table created in the preceding step.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');

6. Where possible, create Oracle database indexes on conditions that will be specified
in the WHERE clause of SELECT statements, to provide better performance for
direct queries against the application table’s SDO_RDF_TRIPLE_S column. (These

Semantic Data Examples

1-22 Oracle Database Semantic Technologies Developer’s Guide

indexes are not relevant if the SEM_MATCH table function is being used.) The
following example creates such indexes:

-- Create indexes on the subjects, properties, and objects
-- in the FAMILY_RDF_DATA table.
CREATE INDEX family_sub_idx ON family_rdf_data (triple.GET_SUBJECT());
CREATE INDEX family_prop_idx ON family_rdf_data (triple.GET_PROPERTY());
CREATE INDEX family_obj_idx ON family_rdf_data (TO_CHAR(triple.GET_OBJECT()));

After you create the model, you can insert triples into the table, as shown in the
examples in Section 1.9.

1.9 Semantic Data Examples
This section contains the following PL/SQL examples:

■ Section 1.9.1, "Example: Journal Article Information"

■ Section 1.9.2, "Example: Family Information"

1.9.1 Example: Journal Article Information
This section presents a simplified PL/SQL example of model for statements about
journal articles. Example 1–9 contains descriptive comments, refer to concepts that are
explained in this chapter, and uses functions and procedures documented in
Chapter 3.

Example 1–9 Using a Model for Journal Article Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SEM_APIS.CREATE_RDF_NETWORK to add RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_RDF_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and consructors.

-- Create the table to hold data for the model.
CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

-- Create the model.
EXECUTE SEM_APIS.CREATE_RDF_MODEL('articles', 'articles_rdf_data', 'triple');

-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers
-- to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs,
-- refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
-- this example are fictitious, although they are in the general
-- domain of the journal Nature (http://www.nature.com/nature/).
-- Each property is referred to by the URL for its definition, as
-- created by the Dublin Core Metadata Initiative.

-- Insert rows into the table.

-- Article1 has the title "All about XYZ".
INSERT INTO articles_rdf_data VALUES (1,

Semantic Data Examples

Oracle Semantic Technologies Overview 1-23

 SDO_RDF_TRIPLE_S ('articles','http://www.nature.com/nature/Article1',
 'http://purl.org/dc/elements/1.1/title','All about XYZ'));

-- Article1 was created (written) by Jane Smith.
INSERT INTO articles_rdf_data VALUES (2,
 SDO_RDF_TRIPLE_S ('articles','http://www.nature.com/nature/Article1',
 'http://purl.org/dc/elements/1.1/creator',
 'Jane Smith'));

-- Article1 references (refers to) Article2.
INSERT INTO articles_rdf_data VALUES (3,
 SDO_RDF_TRIPLE_S ('articles',
 'http://www.nature.com/nature/Article1',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article2'));

-- Article1 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (4,
 SDO_RDF_TRIPLE_S ('articles',
 'http://www.nature.com/nature/Article1',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3'));

-- Article2 has the title "A review of ABC".
INSERT INTO articles_rdf_data VALUES (5,
 SDO_RDF_TRIPLE_S ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/elements/1.1/title',
 'A review of ABC'));

-- Article2 was created (written) by Joe Bloggs.
INSERT INTO articles_rdf_data VALUES (6,
 SDO_RDF_TRIPLE_S ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/elements/1.1/creator',
 'Joe Bloggs'));

-- Article2 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (7,
 SDO_RDF_TRIPLE_S ('articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3'));

COMMIT;

-- Query semantic data.

SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;

SELECT SEM_APIS.GET_TRIPLE_ID(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS RDF_triple_id FROM DUAL;

SELECT SEM_APIS.IS_TRIPLE(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',

Semantic Data Examples

1-24 Oracle Database Semantic Technologies Developer’s Guide

 'http://www.nature.com/nature/Article3') AS is_triple FROM DUAL;

-- Use SDO_RDF_TRIPLE_S member functions in queries.

SELECT a.triple.GET_TRIPLE() AS triple
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_SUBJECT() AS subject
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_PROPERTY() AS property
 FROM articles_rdf_data a WHERE a.id = 1;
SELECT a.triple.GET_OBJECT() AS object
 FROM articles_rdf_data a WHERE a.id = 1;

1.9.2 Example: Family Information
This section presents a simplified PL/SQL example of a model for statements about
family tree (genealogy) information. Example 1–9 contains descriptive comments, refer
to concepts that are explained in this chapter, and uses functions and procedures
documented in Chapter 3.

The family relationships in this example reflect the family tree shown in Figure 1–3.
This figure also shows some of the information directly stated in the example: Cathy is
the sister of Jack, Jack and Tom are male, and Cindy is female.

Figure 1–3 Family Tree for RDF Example

Example 1–10 Using a Model for Family Information

-- Basic steps:
-- After you have connected as a privileged user and called
-- SEM_APIS.CREATE_RDF_NETWORK to enable RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_RDF_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and constructors.

-- Create the table to hold data for the model.
CREATE TABLE family_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

-- Create the model.
execute SEM_APIS.create_rdf_model('family', 'family_rdf_data', 'triple');

-- Insert rows into the table. These express the following information:

-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
-- Tom (male, height 5.75) and Cindy (female, height 06.00).

John Janice

Suzie MattSammy Martha

Cathy Jack Tom Cindy
(sisterOf Jack) (Male) (Male) (Female)

Semantic Data Examples

Oracle Semantic Technologies Overview 1-25

-- Suzie married Sammy, and they have two children:
-- Cathy (height 5.8) and Jack (male, height 6).

-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.
-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.

-- John is the father of Suzie.
INSERT INTO family_rdf_data VALUES (1,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/John',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Suzie'));

-- John is the father of Matt.
INSERT INTO family_rdf_data VALUES (2,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/John',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Matt'));

-- Janice is the mother of Suzie.
INSERT INTO family_rdf_data VALUES (3,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Janice',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Suzie'));

-- Janice is the mother of Matt.
INSERT INTO family_rdf_data VALUES (4,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Janice',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Matt'));

-- Sammy is the father of Cathy.
INSERT INTO family_rdf_data VALUES (5,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Sammy',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Cathy'));

-- Sammy is the father of Jack.
INSERT INTO family_rdf_data VALUES (6,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Sammy',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Jack'));

-- Suzie is the mother of Cathy.
INSERT INTO family_rdf_data VALUES (7,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Suzie',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Cathy'));

-- Suzie is the mother of Jack.

Semantic Data Examples

1-26 Oracle Database Semantic Technologies Developer’s Guide

INSERT INTO family_rdf_data VALUES (8,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Suzie',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Jack'));

-- Matt is the father of Tom.
INSERT INTO family_rdf_data VALUES (9,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Matt',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Tom'));

-- Matt is the father of Cindy
INSERT INTO family_rdf_data VALUES (10,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Matt',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Cindy'));

-- Martha is the mother of Tom.
INSERT INTO family_rdf_data VALUES (11,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Martha',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Tom'));

-- Martha is the mother of Cindy.
INSERT INTO family_rdf_data VALUES (12,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Martha',
'http://www.example.org/family/motherOf',
'http://www.example.org/family/Cindy'));

-- Cathy is the sister of Jack.
INSERT INTO family_rdf_data VALUES (13,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cathy',
'http://www.example.org/family/sisterOf',
'http://www.example.org/family/Jack'));

-- Jack is male.
INSERT INTO family_rdf_data VALUES (14,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Jack',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));

-- Tom is male.
INSERT INTO family_rdf_data VALUES (15,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Tom',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.example.org/family/Male'));

-- Cindy is female.
INSERT INTO family_rdf_data VALUES (16,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cindy',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',

Semantic Data Examples

Oracle Semantic Technologies Overview 1-27

'http://www.example.org/family/Female'));

-- Person is a class.
INSERT INTO family_rdf_data VALUES (17,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Person',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/2000/01/rdf-schema#Class'));

-- Male is a subclass of Person.
INSERT INTO family_rdf_data VALUES (18,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Male',
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));

-- Female is a subclass of Person.
INSERT INTO family_rdf_data VALUES (19,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Female',
'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.example.org/family/Person'));

-- siblingOf is a property.
INSERT INTO family_rdf_data VALUES (20,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/siblingOf',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));

-- parentOf is a property.
INSERT INTO family_rdf_data VALUES (21,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/parentOf',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'));

-- brotherOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (22,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/brotherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));

-- sisterOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES (23,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/sisterOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/siblingOf'));

-- A brother is male.
INSERT INTO family_rdf_data VALUES (24,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/brotherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));

-- A sister is female.
INSERT INTO family_rdf_data VALUES (25,

Semantic Data Examples

1-28 Oracle Database Semantic Technologies Developer’s Guide

SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/sisterOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));

-- fatherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (26,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/fatherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));

-- motherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES (27,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/motherOf',
'http://www.w3.org/2000/01/rdf-schema#subPropertyOf',
'http://www.example.org/family/parentOf'));

-- A father is male.
INSERT INTO family_rdf_data VALUES (28,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/fatherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Male'));

-- A mother is female.
INSERT INTO family_rdf_data VALUES (29,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/motherOf',
'http://www.w3.org/2000/01/rdf-schema#domain',
'http://www.example.org/family/Female'));

-- Use SET ESCAPE OFF to prevent the caret (^) from being
-- interpreted as an escape character. Two carets (^^) are
-- used to represent typed literals.
SET ESCAPE OFF;

-- Cathy's height is 5.8 (decimal).
INSERT INTO family_rdf_data VALUES (30,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cathy',
'http://www.example.org/family/height',
'"5.8"^^xsd:decimal'));

-- Jack's height is 6 (integer).
INSERT INTO family_rdf_data VALUES (31,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Jack',
'http://www.example.org/family/height',
'"6"^^xsd:integer'));

-- Tom's height is 05.75 (decimal).
INSERT INTO family_rdf_data VALUES (32,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Tom',
'http://www.example.org/family/height',
'"05.75"^^xsd:decimal'));

-- Cindy's height is 06.00 (decimal).

Semantic Data Examples

Oracle Semantic Technologies Overview 1-29

INSERT INTO family_rdf_data VALUES (33,
SDO_RDF_TRIPLE_S('family',
'http://www.example.org/family/Cindy',
'http://www.example.org/family/height',
'"06.00"^^xsd:decimal'));

COMMIT;

-- RDFS inferencing in the family model
BEGIN
 SEM_APIS.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS'));
END;
/

-- Select all males from the family model, without inferencing.
SELECT m
 FROM TABLE(SEM_MATCH(
 '(?m rdf:type :Male)',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

-- Select all males from the family model, with RDFS inferencing.
SELECT m
 FROM TABLE(SEM_MATCH(
 '(?m rdf:type :Male)',
 SEM_Models('family'),
 SDO_RDF_Rulebases('RDFS'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

-- General inferencing in the family model

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.semr_family_rb VALUES(
 'grandparent_rule',
 '(?x :parentOf ?y) (?y :parentOf ?z)',
 NULL,
 '(?x :grandParentOf ?z)',
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

COMMIT;

-- Because a new rulebase has been created, and it will be used in the
-- rules index, drop the preceding rules index and then re-create it.
EXECUTE SEM_APIS.DROP_RULES_INDEX ('rdfs_rix_family');

-- Re-create the rules index.
BEGIN
 SEM_APIS.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'));
END;
/

Semantic Data Examples

1-30 Oracle Database Semantic Technologies Developer’s Guide

-- Select all grandfathers and their grandchildren from the family model,
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x grandfather, y grandchild
 FROM TABLE(SEM_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 null,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x grandfather, y grandchild
 FROM TABLE(SEM_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

-- Set up to find grandfathers of tall (>= 6) grandchildren
-- from the family model, with RDFS inferencing and
-- inferencing using the "family_rb" rulebase.

UPDATE mdsys.semr_family_rb SET
 antecedents = '(?x :parentOf ?y) (?y :parentOf ?z) (?z :height ?h)',
 filter = '(h >= 6)',
 aliases = SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'))
WHERE rule_name = 'GRANDPARENT_RULE';

-- Because the rulebase has been updated, drop the preceding rules index,
-- and then re-create it.
EXECUTE SEM_APIS.DROP_RULES_INDEX ('rdfs_rix_family');

-- Re-create the rules index.
BEGIN
 SEM_APIS.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'));
END;
/

-- Find the rules index that was just created (that is, the
-- one based on the specified model and rulebases).
SELECT SEM_APIS.LOOKUP_RULES_INDEX(SEM_MODELS('family'),
 SEM_RULEBASES('RDFS','family_rb')) AS lookup_rules_index FROM DUAL;

-- Select grandfathers of tall (>= 6) grandchildren, and their
-- tall grandchildren.
SELECT x grandfather, y grandchild
 FROM TABLE(SEM_MATCH(
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 SEM_RuleBases('RDFS','family_rb'),
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 null));

Downgrading to the Previous Oracle Database Release

Oracle Semantic Technologies Overview 1-31

1.10 Required Procedure for Semantic Technologies Support
Before you can use any types, synonyms, or PL/SQL packages related to Oracle
semantic technologies support, you must connect to the database as a user with DBA
privileges, start SQL*Plus, and execute one of the following scripts, depending on your
needs:

■ Upgrade with data migration: $ORACLE_HOME/md/admin/catsem10i.sql

■ New installation: $ORACLE_HOME/md/admin/catsem11i.sql

The catsem10i.sql script is comprehensive and handles both installation and (if
necessary) any RDF data migration from Release 10.2 to Release 11 format. This script
is required if you have an existing Release 10.2 RDF network; however, it may take a
long time to run if the existing Release 10.2 RDF network contains large amount of
RDF data.

The catsem11i.sql script is sufficient if you have a new Release 11.1 installation or
if you are upgrading from Release 10.2 but do not have any existing RDF network and
any columns of types SDO_RDF_TRIPLE_S or SDO_RDF_TRIPLE in user tables.

If a Release 10.2 RDF network exists or if dependencies exist on the Release 10.2 RDF
types SDO_RDF_TRIPLE_S or SDO_RDF_TRIPLE, the catsem11i.sql script will
exit with an error. In that case, you can continue using Release 10.2 RDF support and
run the catsem10i.sql script later, when you are ready to upgrade.

1.11 Downgrading to the Previous Oracle Database Release
If you need to downgrade to Oracle Database Release 10.2, and if you used Oracle
Database Release 11 RDF or OWL features and want to preserve existing semantic data
and rulebases, you must execute a statement to prepare for the downgrade, perform
the downgrade, and execute another statement to restore the semantic data.

However, the following considerations apply:

■ Entailed graph data will not be preserved, because the same information can be
regenerated using the Oracle Database Release 10.2 RDF inference API.

■ No rulebases or rules indexes related to OWL are preserved, because Oracle
Database Release 10.2 did not support the OWL vocabulary.

Perform the following steps:

1. Before the database downgrade, connect to the Release 11 database as the SYS user
with SYSDBA privileges (SYS AS SYSDBA, and enter the SYS account password
when prompted).

2. Start SQL*Plus and enter the following statement:

EXECUTE SDO_SEM_DOWNGRADE.PREPARE_DOWNGRADE_FROM_11;

Note: If you are upgrading from Oracle Database Release 10.2 and
have any Release 10.2 RDF data, and if you do not want the RDF data
to be migrated, you must do the following before running the
catsem10i.sql script:

■ Drop the RDF network.

■ Drop all columns of types SDO_RDF_TRIPLE_S and SDO_RDF_
TRIPLE in user tables.

Software Naming Changes for Semantic Technologies

1-32 Oracle Database Semantic Technologies Developer’s Guide

When this statement executes successfully, all existing semantic data and rulebases
are saved. You will restore the semantic data after the database downgrade.

3. Perform the database downgrade.

4. Download the following file from the Semantic Technologies page of the Oracle
Technology Network site: sdosemdgu.plb

5. If (and only if) your Oracle Database Release 10.2 release number is 10.2.0.1, click
the Software link, and download and install the RDF-specific patch. (This patch is
needed because Release 10.2.0.1 did not have the batch loading feature, which is
used to restore the semantic data.)

6. Connect to the Release 10.2 database as the SYS user with SYSDBA privileges.

7. Start SQL*Plus and enter a statement in the following statement:

EXECUTE SDO_SEM_DOWNGRADE_UTL.PREPARE_DOWNGRADE_TO_102(’<tablespace-name>’);

Where <tablespace-name> is the name of the tablespace in which the RDF network
will be created.

When this statement executes successfully, all semantic data that had been saved
before the downgrade is restored and ready to use.

1.12 Software Naming Changes for Semantic Technologies
Because the support for semantic data has been expanded beyond the original focus
on RDF, the names of many software objects (PL/SQL packages, functions and
procedures, system tables and views, and so on) have been changed as of Oracle
Database Release 11.1. In most cases, the change is to replace the string RDF with SEM.
although in some cases it may be to replace SDO_RDF with SEM.

All valid code that used the pre-Release 11.1 names will continue to work; your
existing applications will not be broken. However, it is suggested that you change old
applications to use new object names, and you should use the new names for any new
applications. This manual will document only the new names.

Table 1–9 lists the old and new names for some objects related to support for semantic
technologies, in alphabetical order by old name.

Table 1–9 Semantic Technology Software Objects: Old and New Names

Old Name New Name

RDF_ALIAS data type SEM_ALIAS

RDF_MODEL$ view SEM_MODEL$

RDF_RULEBASE_INFO view SEM_RULEBASE_INFO

RDF_RULES_INDEX_DATASETS view SEM_RULES_INDEX_DATASETS

RDF_RULES_INDEX_INFO view SEM_RULES_INDEX_INFO

RDFI_rules-index-name view SEMI_rules-index-name

RDFM_model-name view SEMM_model-name

RDFR_rulebase-name view SEMR_rulebase-name

SDO_RDF package SEM_APIS

SDO_RDF_INFERENCE package SEM_APIS

SDO_RDF_MATCH table function SEM_MATCH

Software Naming Changes for Semantic Technologies

Oracle Semantic Technologies Overview 1-33

SDO_RDF_MODELS data type SEM_MODELS

SDO_RDF_RULEBASES data type SEM_RULEBASES

Table 1–9 (Cont.) Semantic Technology Software Objects: Old and New Names

Old Name New Name

Software Naming Changes for Semantic Technologies

1-34 Oracle Database Semantic Technologies Developer’s Guide

2

OWL Concepts 2-1

2 OWL Concepts

This chapter describes concepts related to the support for a subset of the Web
Ontology Language (OWL). It builds on the information in Chapter 1, and it assumes
that you are familiar with the major concepts associated with OWL, such as ontologies,
properties, and relationships. For detailed information about OWL, see the OWL Web
Ontology Language Reference at http://www.w3.org/TR/owl-ref/.

2.1 Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain. It
consists of a collection of classes, properties, and optionally instances. Classes are
typically related by class hierarchy (subclass/ superclass relationship). Similarly, the
properties can be related by property hierarchy (subproperty/ superproperty
relationship). Properties can be symmetric or transitive, or both. Properties can also
have domain, ranges, and cardinality constraints specified for them.

RDFS-based ontologies only allow specification of class hierarchies, property
hierarchies, instanceOf relationships, and a domain and a range for properties.

OWL ontologies build on RDFS-based ontologies by additionally allowing
specification of property characteristics. OWL ontologies can be further classified as
OWL-Lite, OWL-DL, and OWL Full. OWL-Lite restricts the cardinality minimum and
maximum values to 0 or 1. OWL-DL relaxes this restriction by allowing arbitrary
values for minimum and maximum values. OWL Full allows instances to be also
defined as a class, which is not allowed in OWL-DL and OWL-Lite ontologies.

Section 2.1.2 describes OWL capabilities that are supported and not supported with
semantic data.

2.1.1 Example: Cancer Ontology
Figure 2–1 shows part of a cancer ontology, which describes the classes and properties
related to cancer. One requirement is to have a PATIENTS data table with a column
named DIAGNOSIS, which must contain a value from the Diseases_and_
Disorders class hierarchy.

Ontologies

2-2 Oracle Database Semantic Technologies Developer’s Guide

Figure 2–1 Cancer Ontology Example

In the cancer ontology shown in Figure 2–1, the diagnosis Immune_System_
Disorder includes two subclasses, Autoimmune_Disease and
Immunodeficiency_Syndrome. The Autoimmune_Disease diagnosis includes the
subclass Rheumatoid_Arthritis; and the Immunodeficiency_Syndrome
diagnosis includes the subclass T_Cell_Immunodeficiency, which includes the
subclass AIDS.

The data in the PATIENTS table might include the PATIENT_ID and DIAGNOSIS
column values shown in Table 2–1.

To query ontologies, you can use the SEM_MATCH table function (described in
Section 1.6) or the SEM_RELATED operator and its ancillary operators (described in
Section 2.3).

2.1.2 Supported OWL Subsets
This section describes OWL vocabulary subsets that are supported.

Oracle Database supports the RDFS++, OWLSIF, and OWLPrime vocabularies, which
have increasing expressivity. Each supported vocabulary has a corresponding
rulebase; however, these rulebases do not need to be populated because the
underlying entailment rules of these three vocabularies are internally implemented.
The supported vocabularies are as follows:

■ RDFS++: A minimal extension to RDFS; which is RDFS plus owl:sameAs and
owl:InverseFunctionalProperty.

■ OWLSIF: OWL with IF Semantic, with the vocabulary and semantics proposed for
pD* semantics in Completeness, decidability and complexity of entailment for RDF

Table 2–1 PATIENTS Table Example Data

PATIENT_ID DIAGNOSIS

1234 Rheumatoid_Arthritis

2345 Immunodeficiency_Syndrome

3456 AIDS

 Immune_System_Disorder

 T_Cell_Immunodeficiency

Autoimmune_Disease

 AIDS

 Rheumatoid_Arthritis

Immunodeficiency_
 Syndrome

Using OWL Inferencing

OWL Concepts 2-3

Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst, Journal
of Web Semantics 3, 2 (2005), 79–115.

■ OWLPrime: The following OWL capabilities:

■ Basics: class, subclass, property, subproperty, domain, range, type

■ Property characteristics: transitive, symmetric, functional, inverse functional,
inverse

■ Class comparisons: equivalence, disjointness

■ Property comparisons: equivalence

■ Individual comparisons: same, different

■ Class expressions: complement

■ Property restrictions: hasValue, someValuesFrom, allValuesFrom

As with pD*, the supported semantics for these value restrictions are only
intensional (IF semantics).

The following OWL capabilities are not yet supported in any Oracle-supported OWL
subset:

■ Property restrictions: cardinality

■ Class expressions: set operations (union, intersection), enumeration

2.2 Using OWL Inferencing
You can use entailment rules to perform native OWL inferencing. This section creates a
simple ontology, performs native inferencing, and illustrates some more advanced
features.

2.2.1 Creating a Simple OWL Ontology
Example 2–1 creates a simple OWL ontology, inserts one statement that two URIs refer
to the same entity, and performs a query using the SEM_MATCH table function

Example 2–1 Creating a Simple OWL Ontology

SQL> CREATE TABLE owltst(id number, triple sdo_rdf_triple_s);
Table created.

SQL> EXECUTE sem_apis.create_sem_model('owltst','owltst','triple');
PL/SQL procedure successfully completed.

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://foo.com/name/John', 'http://www.w3.org/2002/07/owl#sameAs',
 'http://foo.com/name/JohnQ'));
1 row created.

SQL> commit;

SQL> -- Use SEM_MATCH to perform a simple query.
SQL> select s,p,o from table(SEM_MATCH('(?s ?p ?o)', SEM_Models('OWLTST'),
 null, null, null));

Using OWL Inferencing

2-4 Oracle Database Semantic Technologies Developer’s Guide

2.2.2 Performing Native OWL inferencing
Example 2–2 calls the SEM_APIS.CREATE_ENTAILMENT procedure. You do not need
to create the rulebase and add rules to it, because the OWL rules are already built into
the Oracle semantic technologies inferencing engine.

Example 2–2 Performing Native OWL Inferencing

SQL> -- Invoke the following command to run native OWL inferencing that
SQL> -- understands the vocabulary defined in the preceding section.
SQL>
SQL> EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_
rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.

SQL> -- The following view is generated to represent the entailed graph (rules
index).
SQL> desc mdsys.semi_owltst_idx;

SQL> -- Run the preceding query with an additional rulebase parameter to list
SQL> -- the original graph plus the inferred triples.
SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p ?o)', SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME'), null, null));

2.2.3 Performing OWL and User-Defined Rules inferencing
Example 2–3 creates a user-defined rulebase, inserts a deliberately oversimplified
uncleOf rule (stating that the brother of one’s father is one’s uncle), and calls the
SEM_APIS.CREATE_ENTAILMENT procedure.

Example 2–3 Performing OWL and User-Defined Rules Inferencing

SQL> -- First, insert the following assertions.

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://foo.com/name/John', 'http://foo.com/rel/fatherOf',
 'http://foo.com/name/Mary'));

SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
 'http://foo.com/name/Jack', 'http://foo.com/rel/botherOf',
 'http://foo.com/name/John'));

SQL> -- Create a user-defined rulebase.

SQL> EXECUTE sem_apis.create_rulebase('user_rulebase');

SQL> -- Insert a simple "uncle" rule.

SQL> INSERT INTO mdsys.semr_user_rulebase VALUES ('uncle_rule',
'(?x <http://foo.com/rel/botherOf> ?y)(?y <http://foo.com/rel/fatherOf> ?z)',
NULL, '(?x <http://foo.com/rel/uncleOf> ?z)', null);

SQL> -- In the following statement, 'USER_RULES=T' is required, to
SQL> -- include the original graph plus the inferred triples.
SQL> EXECUTE sem_apis.create_entailment('owltst2_idx', sem_models('owltst'),
 sem_rulebases('OWLPRIME','USER_RULEBASE'),
 SEM_APIS.REACH_CLOSURE, null, 'USER_RULES=T');

SQL> -- In the result of the following query, :Jack :uncleOf :Mary is inferred.

Using OWL Inferencing

OWL Concepts 2-5

SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p ?o)',
 SEM_MODELS('OWLTST'),
 SEM_RULEBASES('OWLPRIME','USER_RULEBASE'), null, null));

2.2.4 Generating OWL inferencing Proofs
OWL inferencing can be complex, depending on the size of the ontology, the actual
vocabulary (set of language constructs) used, and the interactions among those
language constructs. The question arises, how can we trust inferred results? The
answer involves using proof generation during inference. (Proof generation does
require additional CPU time and disk resources.)

To generate the information required for proof, specify PROOF=T in the call to the
SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_
rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 'SAM', 'PROOF=T');

Specifying PROOF=T causes a view to be created containing proof for each inferred
triple. The view name is the entailment name prefixed by MDSYS.SEMI_. Two relevant
columns in this view are LINK_ID and EXPLAIN (the proof). The following example
displays the LINK_ID value and proof of each generated triple (with LINK_ID values
shortened for simplicity):

SELECT link_id || ' generated by ' || explain as
 triple_and_its_proof FROM mdsys.semi_owltst_idx;

TRIPLE_AND_ITS_PROOF
--
8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
8_4_5_4 generated by 8_5_5_4 4_D_5_5 : SAM_SAMH
. . .

A proof consists of one or more triple (link) ID values and the name of the rule that is
applied on those triples:

link-id1 [link-id2 ... link-idn] : rule-name

To get the full subject, predicate, and object URIs for proofs, you can query the model
view and the entailment (rules index) view. Example 2–4 displays the LINK_ID value
and associated triple contents using the model view MDSYS.SEMM_OWLTST and the
entailment view MDSYS.SEMI_OWLTST_IDX.

Example 2–4 Displaying Proof Information

SELECT to_char(x.triple.rdf_m_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_s_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_p_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
 to_char(x.triple.rdf_c_id, 'FMXXXXXXXXXXXXXXXX'),
 x.triple.get_triple()
 FROM (
 SELECT sdo_rdf_triple_s(
 t.canon_end_node_id,
 t.model_id,
 t.start_node_id,
 t.p_value_id,
 t.end_node_id) triple
 FROM (select * from mdsys.semm_owltst union all
 select * from mdsys.semi_owltst_idx
) t
 WHERE t.link_id IN ('4_D_5_5','8_5_5_4')

Using OWL Inferencing

2-6 Oracle Database Semantic Technologies Developer’s Guide

) x;

 LINK_ID X.TRIPLE.GET_TRIPLE()(SUBJECT, PROPERTY, OBJECT)
---------- --
4_D_5_5 SDO_RDF_TRIPLE('<http://foo.com/name/John>',
'<http://www.w3.org/2002/07/owl#sameAs>', '<http://foo.com/name/JohnQ>')
8_5_5_4 SDO_RDF_TRIPLE('<http://foo.com/name/JohnQ>',
'<http://www.w3.org/2002/07/owl#sameAs>', '<http://foo.com/name/John>')

In Example 2–4, for the proof entry 8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_
SYMM for the triple with LINK_ID = 8_5_5_4, it is inferred from the triple with 4_D_
5_5 using the symmetricity of owl:sameAs.

2.2.5 Validating OWL Models and Entailments
An OWL ontology may contain errors, such as unsatisfiable classes, instances
belonging to unsatisfiable classes, and two individuals asserted to be same and
different at the same time. You can use the SEM_APIS.VALIDATE_MODEL and SEM_
APIS.VALIDATE_ENTAILMENT functions to detect inconsistencies in the original
data model and in the entailment, respectively.

Example 2–5 shows uses the SEM_APIS.VALIDATE_ENTAILMENT function, which
returns a null value if no errors are detected or a VARRAY of strings if any errors are
detected.

Example 2–5 Validating an Entailment

SQL> -- Insert an offending triple.
SQL> insert into owltst values (1, sdo_rdf_triple_s('owltst',
 'urn:C1', 'http://www.w3.org/2000/01/rdf-schema#subClassOf',
'http://www.w3.org/2002/07/owl#Nothing'));

SQL> -- Drop entailment first.
SQL> exec sem_apis.drop_entailment('owltst_idx');
PL/SQL procedure successfully completed.

SQL> -- Perform OWL inferencing.
SQL> exec sem_apis.create_entailment('owltst_idx', sem_models('OWLTST'), sem_
rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.

SQL > set serveroutput on;
SQL > -- Now invoke validation API: sem_apis.validate_entailment
SQL >
declare
 lva mdsys.rdf_longVarcharArray;
 idx int;
begin
 lva := sem_apis.validate_entailment(sem_models('OWLTST'), sem_
rulebases('OWLPRIME')) ;

 if (lva is null) then
 dbms_output.put_line('No errors found.');
 else
 for idx in 1..lva.count loop
 dbms_output.put_line('Offending entry := ' || lva(idx)) ;
 end loop ;
 end if;
end ;
/

Using OWL Inferencing

OWL Concepts 2-7

SQL> -- NOTE: The LINK_ID value and the numbers in the following
SQL> -- line are shortened for simplicity in this example. --

 Offending entry := 1 10001 (4_2_4_8 2 4 8) Unsatisfiable class.

Each item in the validation report array includes the following information:

■ Number of triples that cause this error (1 in Example 2–5)

■ Error code (10001 Example 2–5)

■ One or more triples (shown in parentheses in the output; (4_2_4_8 2 4 8) in
Example 2–5).

These numbers are the LINK_ID value and the ID values of the subject, predicate,
and object.

■ Descriptive error message (Unsatisfiable class. in Example 2–5)

The output in Example 2–5 indicates that the error is caused by one triple that asserts
that a class is a subclass of an empty class owl:Nothing.

2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
In addition to accepting OWL vocabularies, the SEM_APIS.CREATE_ENTAILMENT
procedure accepts RDFS rulebases. The following example shows RDFS inference (all
standard RDFS rules are defined in http://www.w3.org/TR/rdf-mt/):

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), sem_
rulebases('RDFS'));

Because rules RDFS4A, RDFS4B, RDFS6, RDFS8, RDFS10, RDFS13 may not generate
meaningful inference for your applications, you can deselect those components for
faster inference. The following example deselects these rules.

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), sem_
rulebases('RDFS'), SEM_APIS.REACH_CLOSURE, 'RDFS4A-, RDFS4B-, RDFS6-, RDFS8-,
RDFS10-, RDFS13-');

2.2.7 Enhancing Inference Performance
This section describes suggestions for improving the performance of inference
operations.

■ Collect statistics before inferencing. After you load a large RDF/OWL data model,
you should execute the SEM_PERF.GATHER_STATS procedure. See the Usage
Notes for that procedure (in Chapter 4) for important usage information.

■ Allocate sufficient temporary tablespace for inference operations. OWL inference
support in Oracle relies heavily on table joins, and therefore uses significant
temporary tablespace.

■ You can try the following statement before running the SEM_APIS.CREATE_
ENTAILMENT procedure, to avoid sort merge joins that might affect inference
performance:

ALTER SESSION SET "_optimizer_sortmerge_join_enabled" = false;

If you do this, be sure to reset the value to true after calling the SEM_
APIS.CREATE_ENTAILMENT procedure.

Using OWL Inferencing

2-8 Oracle Database Semantic Technologies Developer’s Guide

■ To improve inference performance with user defined rules, enter the following
statement:

ALTER SESSION SET "_with_subquery"=INLINE;

This setting instructs the optimizer to inline a WITH subquery instead of
materializing it.

2.2.8 Performing Selective Inferencing (Advanced Information)
Selective inferencing is component-based inferencing, in which you limit the
inferencing to specific OWL components that you are interested in. To perform
selective inferencing, use the inf_components_in parameter to the SEM_
APIS.CREATE_ENTAILMENT procedure to specify a comma-delimited list of
components. The final inferencing is determined by the union of rulebases specified
and the components specified.

Example 2–6 limits the inferencing to the class hierarchy from subclass (SCOH)
relationship and the property hierarchy from subproperty (SPOH) relationship. This
example creates an empty rulebase and then specifies the two components
('SCOH,SPOH') in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

Example 2–6 Performing Selective Inferencing

EXECUTE sem_apis.create_rulebase('my_rulebase');

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_
rulebases('my_rulebase'), SEM_APIS.REACH_CLOSURE, 'SCOH,SPOH');

The following component codes are available: SCOH, COMPH, DISJH, SYMMH,
INVH, SPIH, MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM,
RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM,
RDFP1, RDFP2, RDFP3 , RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX,
RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C, RDFP13A,
RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2,
RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9,
RDFS10, RDFS11, RDFS12, RDFS13

The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a semantic
extension involving the OWL vocabulary, by H.J. Horst.

The syntax for deselecting a component is component_name followed by a minus (-)
sign. For example, the following statement performs OWLPrime inference without
calculating the subClassOf hierarchy:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_
rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, 'SCOH-');

By default, the OWLPrime rulebase implements the transitive semantics of
owl:sameAs. OWLPrime does not include the following rules (semantics):

U owl:sameAs V .
U p X . ==> V p X .

U owl:sameAs V .
X p U . ==> X p V .

Using Semantic Operators to Query Relational Data

OWL Concepts 2-9

The reason for not including these rules is that they tend to generate many assertions.
If you need to include these assertions, you can include the SAM component code in
the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

2.3 Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column and
terms in an ontology. The SEM_RELATED semantic operator retrieves rows based on
semantic relatedness. The SEM_DISTANCE semantic operator returns distance
measures for the semantic relatedness, so that rows returned by the SEM_RELATED
operator can be ordered or restricted using the distance measure. The index type
MDSYS.SEM_INDEXTYPE allows efficient execution of such queries, enabling scalable
performance over large data sets.

2.3.1 Using the SEM_RELATED Operator
Referring to the cancer ontology example in Section 2.1.1, consider the following query
that requires semantic matching: Find all patients whose diagnosis is of the type ‘Immune_
System_Disorder’. A typical database query of the PATIENTS table (described in
Section 2.1.1) involving syntactic match will not return any rows, because no rows
have a DIAGNOSIS column containing the exact value Immune_System_Disorder.
For example the following query will not return any rows:

SELECT diagnosis FROM patients WHERE diagnosis = ‘Immune_System_Disorder’;

However, many rows in the patient data table are relevant, because their diagnoses fall
under this class. Example 2–7 uses the SEM_RELATED operator (instead of lexical
equality) to retrieve all the relevant rows from the patient data table. (In this example,
the term Immune_System_Disorder is prefixed with a namespace, and the default
assumption is that the values in the table column also have a namespace prefix.
However, that might not always be the case, as explained in Section 2.3.5.)

Example 2–7 SEM_RELATED Operator

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

The SEM_RELATED operator has the following attributes:

SEM_RELATED(
 sub VARCHAR2,
 predExpr VARCHAR2,
 obj VARCHAR2,
 ontologyName SEM_MODELS,
 ruleBases SEM_RULEBASES,
 index_status VARCHAR2,
 lower_bound INTEGER,
 upper_bound INTEGER
) RETURN INTEGER;

The sub attribute is the name of table column that is being searched. The terms in the
table column are typically the subject in a <subject, predicate, object> triple pattern.

Using Semantic Operators to Query Relational Data

2-10 Oracle Database Semantic Technologies Developer’s Guide

The predExpr attribute represents the predicate that can appear as a label of the edge
on the path from the subject node to the object node.

The obj attribute represents the term in the ontology for which related terms (related
by the predExpr attribute) have to be found in the table (in the column specified by
the sub attribute). This term is typically the object in a <subject, predicate, object>
triple pattern. (In a query with the equality operator, this would be the query term.)

The ontologyName attribute is the name of the ontology that contains the
relationships between terms.

The rulebases attribute identifies one or more rulebases whose rules have been
applied to the ontology to infer new relationships. The query will be answered based
both on relationships from the ontology and the inferred new relationships when this
attribute is specified.

The index_status optional attribute lets you query the data even when the relevant
rules index (created when the specified rulebase was applied to the ontology) does not
have a valid status. If this attribute is null, the query returns an error if the rules index
does not have a valid status. If this attribute is not null, it must be the string VALID,
INCOMPLETE, or INVALID, to specify the minimum status of the rules index for the
query to succeed. Because OWL does not guarantee monotonicity, the value
INCOMPLETE should not be used when an OWL Rulebase is specified.

The lower_bound and upper_bound optional attributes let you specify a bound on
the distance measure of the relationship between terms that are related. See
Section 2.3.2 for the description of the distance measure.

The SEM_RELATED operator returns 1 if the two input terms are related with respect
to the specified predExpr relationship within the ontology, and it returns 0 if the two
input terms are not related. If the lower and upper bounds are specified, it returns 1 if
the two input terms are related with a distance measure that is greater than or equal to
lower_bound and less than or equal to upper_bound.

2.3.2 Using the SEM_DISTANCE Ancillary Operator
The SEM_DISTANCE ancillary operator computes the distance measure for the rows
filtered using the SEM_RELATED operator. The SEM_DISTANCE operator has the
following format:

SEM_DISTANCE (number) RETURN NUMBER;

The number attribute can be any number, as long as it matches the number that is the
last attribute specified in the call to the SEM_RELATED operator (see Example 2–8).
The number is used to match the invocation of the ancillary operator SEM_DISTANCE
with a specific SEM_RELATED (primary operator) invocation, because a query can
have multiple invocations of primary and ancillary operators.

Example 2–8 expands Example 2–7 to show several statements that include the SEM_
DISTANCE ancillary operator, which gives a measure of how closely the two terms
(here, a patient’s diagnosis and the term Immune_System_Disorder) are related by
measuring the distance between the terms. Using the cancer ontology described in
Section 2.1.1, the distance between AIDS and Immune_System_Disorder is 3.

Example 2–8 SEM_DISTANCE Ancillary Operator

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',

Using Semantic Operators to Query Relational Data

OWL Concepts 2-11

 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1;

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

SELECT diagnosis, SEM_DISTANCE(123) FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 WHERE SEM_DISTANCE(123) <= 3;

Example 2–9 uses distance information to restrict the number of rows returned by the
primary operator. All rows with a term related to the object attribute specified in the
SEM_RELATED invocation, but with a distance of greater than or equal to 2 and less
than or equal to 4, are retrieved.

Example 2–9 Using SEM_DISTANCE to Restrict the Number of Rows Returned

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 2, 4) = 1;

In Example 2–9, the lower and upper bounds are specified using the lower_bound
and upper_bound parameters in the SEM_RELATED operator instead of using the
SEM_DISTANCE operator. The SEM_DISTANCE operator can be also be used for
restricting the rows returned, as shown in the last SELECT statement in Example 2–8.

2.3.2.1 Computation of Distance Information
Distances are generated for the following properties during inference (entailment):
OWL properties defined as transitive properties, and RDFS subClassOf and RDFS
subPropertyOf properties. The distance between two terms linked through these
properties is computed as the shortest distance between them in a hierarchical class
structure. Distances of two terms linked through other properties are undefined and
therefore set to null.

Each transitive property link in the original model (viewed as a hierarchical class
structure) has a distance of 1, and the distance of an inferred triple is generated
according to the number of links between the two terms. Consider the following
hypothetical sample scenarios:

■ If the original graph contains C1 rdfs:subClassOf C2 and C2
rdfs:subClassOf C3, then C1 rdfs:subClassof of C3 will be derived. In
this case:

– C1 rdfs:subClassOf C2: distance = 1, because it exists in the model.

– C2 rdfs:subClassOf C3: distance = 1, because it exists in the model.

– C1 rdfs:subClassOf C3: distance = 2, because it is generated during
inference.

Using Semantic Operators to Query Relational Data

2-12 Oracle Database Semantic Technologies Developer’s Guide

■ If the original graph contains P1 rdfs:subPropertyOf P2 and P2
rdfs:subPropertyOf P3, then P1 rdfs:subPropertyOf P3 will be derived. In
this case:

– P1 rdfs:subPropertyOf P2: distance = 1, because it exists in the model.

– P2 rdfs:subPropertyOf P3: distance = 1, because it exists in the model.

– P1 rdfs:subPropertyOf P3: distance = 2, because it is generated during
inference.

■ If the original graph contains C1 owl:equivalentClass C2 and C2
owl:equivalentClass C3, then C1 owl:equivalentClass C3 will be
derived. In this case:

– C1 owl:equivalentClass C2: distance = 1, because it exists in the model.

– C2 owl:equivalentClass C3: distance = 1, because it exists in the model.

– C1 owl:equivalentClass C3: distance = 2, because it is generated during
inference.

The SEM_RELATED operator works with user-defined rulebases. However, using the
SEM_DISTANCE operator with a user-defined rulebase is not yet supported, and will
raise an error.

2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
When using the SEM_RELATED operator, you can create a semantic index of type
MDSYS.SEM_INDEXTYPE on the column that contains the ontology terms. Creating
such an index will result in more efficient execution of the queries. The CREATE
INDEX statement must contain the INDEXTYPE IS MDSYS.SEM_INDEXTYPE clause,
to specify the type of index being created.

Example 2–10 creates a semantic index named DIAGNOSIS_SEM_IDX on the
DIAGNOSIS column of the PATIENTS table using the Cancer_Ontology ontology.

Example 2–10 Creating a Semantic Index

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE;

The column on which the index is built (DIAGNOSIS in Example 2–10) must be the
first parameter to the SEM_RELATED operator, in order for the index to be used. If it
not the first parameter, the index is not used during the execution of the query.

To improve the performance of certain semantic queries, you can cause statistical
information to be generated for the semantic index by specifying one or more models
and rulebases when you create the index. Example 2–11 creates an index that will also
generate statistics information for the specified model and rulebase. The index can be
used with other models and rulebases during query, but the statistical information will
be used only if the model and rulebase specified during the creation of the index are
the same model and rulebase specified in the query.

Example 2–11 Creating a Semantic Index Specifying a Model and Rulebase

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE('ONTOLOGY_MODEL(medical_ontology),
 RULEBASE(OWLPrime)');

Using Semantic Operators to Query Relational Data

OWL Concepts 2-13

The statistical information is useful for queries that return top-k results sorted by
semantic distance. Example 2–12 shows such a query.

Example 2–12 Query Benefitting from Generation of Statistical Information

SELECT /*+ FIRST_ROWS */ diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
 ORDER BY SEM_DISTANCE(123);

2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the
First Parameter

If an index of type MDSYS.SEM_INDEXTYPE has been created on a table column that
is the first parameter to the SEM_RELATED operator, the index will be used. For
example, the following query retrieves all rows that have a value in the DIAGNOSIS
column that is a subclass of (rdfs:subClassOf) Immune_System_Disorder.

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

Assume, however, that this query instead needs to retrieve all rows that have a value
in the DIAGNOSIS column for which Immune_System_Disorder is a subclass. You
could rewrite the query as follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED
 ('<http://www.example.org/medical_terms/Immune_System_Disorder>',
 '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
 diagnosis,
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

However, in this case a semantic index on the DIAGNOSIS column will not be used,
because it is not the first parameter to the SEM_RELATED operator. To cause the index
to be used, you can change the preceding query to use the inverseOf keyword, as
follows:

SELECT diagnosis FROM patients
 WHERE SEM_RELATED (diagnosis,
 'inverseOf(http://www.w3.org/2000/01/rdf-schema#subClassOf)',
 '<http://www.example.org/medical_terms/Immune_System_Disorder>',
 sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

This form causes the table column (on which the index is built) to be the first
parameter to the SEM_RELATED operator, and it retrieves all rows that have a value
in the DIAGNOSIS column for which Immune_System_Disorder is a subclass.

2.3.5 Using URIPREFIX When Values Are Not Stored as URIs
By default, the semantic operator support assumes that the values stored in the table
are URIs. These URIs can be from different namespaces. However, if the values in the
table do not have URIs, you can use the URIPREFIX keyword to specify a URI when
you create the semantic index. In this case, the specified URI is prefixed to the value in

Using Semantic Operators to Query Relational Data

2-14 Oracle Database Semantic Technologies Developer’s Guide

the table and stored in the index structure. (One implication is that multiple URIs
cannot be used).

Example 2–13 creates a semantic index that uses a URI prefix.

Example 2–13 Specifying a URI Prefix During Semantic Index Creation

CREATE INDEX diagnosis_sem_idx
 ON patients (diagnosis)
 INDEXTYPE IS MDSYS.SEM_INDEXTYPE
 PARAMETERS(‘URIPREFIX(<http://www.example.org/medical/>)’);

Note that the slash (/) character at the end of the URI is important, because the URI is
prefixed to the table value (in the index structure) without any parsing.

3

SEM_APIS Package Subprograms 3-1

3 SEM_APIS Package Subprograms

The SEM_APIS package contains subprograms (functions and procedures) for working
with the Resource Description Framework (RDF) and Web Ontology Language (OWL)
in an Oracle database. To use the subprograms in this chapter, you must understand
the conceptual and usage information in Chapter 1, "Oracle Semantic Technologies
Overview" and Chapter 2, "OWL Concepts".

This chapter provides reference information about the subprograms, listed in
alphabetical order.

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

3-2 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

Format
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(

model_name IN VARCHAR2,

table_owner IN VARCHAR2,

table_name IN VARCHAR2,

flags IN VARCHAR2 DEFAULT NULL,

debug IN BINARY_INTEGER DEFAULT NULL);

Description
Loads semantic data from a staging table.

Parameters

model_name
Name of the model.

table_owner
Name of the schema that owns the staging table that holds semantic data to be loaded.

table_name
Name of the staging table that holds semantic data to be loaded.

flags
An optional quoted string with the following keyword: PARALLEL_CREATE_INDEX
allows internal indexes to be created in parallel, which may improve the performance
of the bulk load processing.

debug
(Reserved for future use)

Usage Notes
You must first load semantic data into a staging table before calling this procedure. See
Section 1.7.1 for more information.

Examples
The following example loads semantic data stored in the staging table named STAGE_
TABLE in schema SCOTT into the semantic model named family.

EXECUTE SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE('family', 'scott', 'stage_table');

SEM_APIS.CLEANUP_FAILED

SEM_APIS Package Subprograms 3-3

SEM_APIS.CLEANUP_FAILED

Format
SEM_APIS.CLEANUP_FAILED(

rdf_object_type IN VARCHAR2,

rdf_object_name IN VARCHAR2);

Description
Drops (deletes) a specified rulebase or rules index if it is in a failed state.

Parameters

rdf_object_type
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for a rules index.

rdf_object_name
Name of the RDF object of type rdf_object_type.

Usage Notes
This procedure checks to see if the specified RDF object is in a failed state; and if the
object is in a failed state, the procedure deletes the object.

A rulebase or rules index is in a failed state if a system failure occurred during the
creation of that object. You can check if a rulebase or rules index is in a failed state by
checking to see if the value of the STATUS column is FAILED in the SDO_RULEBASE_
INFO view (described in Section 1.3.6) or the SDO_RULES_INDEX_INFO view
(described in Section 1.3.7), respectively.

If the rulebase or rules index is not in a failed state, this procedure performs no action
and returns a successful status.

An exception is generated if the RDF object is currently being used.

Examples
The following example deletes the rulebase named family_rb if (and only if) that
rulebase is in a failed state.

EXECUTE SEM_APIS.CLEANUP_FAILED('RULEBASE', 'family_rb');

SEM_APIS.CREATE_ENTAILMENT

3-4 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.CREATE_ENTAILMENT

Format
SEM_APIS.CREATE_ENTAILMENT(

index_name_in IN VARCHAR2,

models_in IN SEM_MODELS,

rulebases_in IN SEM_RULEBASES,

passes IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE,

inf_components_in IN VARCHAR2 DEFAULT NULL,

options IN VARCHAR2 DEFAULT NULL);

Description
Creates a rules index (entailment) that can be used to perform OWL or RDFS
inferencing, and optionally use user-defined rules.

Parameters

index_name_in
Name of the rules index (entailment) to be created.

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained
in Section 1.3.6.

passes
The number of rounds that the inference engine should run. The default value is SEM_
APIS.REACH_CLOSURE, which means the inference engine will run till a closure is
reached. If the number of rounds specified is less than the number of actual rounds
needed to reach a closure, the status of the rules index will then be set to INCOMPLETE.

inf_components_in
A comma-delimited string of keywords representing inference components, for
performing selective or component-based inferencing. Is this parameter is null, the
default set of inference components is used. See the Usage Notes for more information
about inference components.

options
A comma-delimited string of options to control the inference process by overriding the
default inference behavior. To enable an option, specify option-name=T; to disable
an option, you can specify option-name=F (the default). The available option-name
values are PROOF, DISTANCE, ENTAIL_ANYWAY, and USER_RULES. See the Usage
Notes for explanations of each value.

SEM_APIS.CREATE_ENTAILMENT

SEM_APIS Package Subprograms 3-5

Usage Notes
For the inf_components_in parameter, you can specify any combination of the
following keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH,
DOMH, RANH, EQCH, EQPH, FPH, IFPH, SAMH, DOM, RAN, SCO, DISJ,
INV, SPO, FP, IFP, SYMM, TRANS, DIF, SAM, RDFS2, RDFS3, RDFS4a,
RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11,
RDFS12, RDFS13, RDFP1, RDFP2, RDFP3, RDFP4, RDFP6, RDFP7,
RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B,
RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15,
RDFP16. For an explanation of the meaning of these keywords, see Table 3–1, where
the keywords are listed in alphabetical order.

The default set of inference components for the OWLPRIME vocabulary includes the
following: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH,
EQCH, EQPH, FPH, IFPH, SAMH, DOM, RAN, SCO, DISJ, COMP, INV,
SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A, RDFP14BX, RDFP15,
RDFP16. Note that component SAM is not in this default list, because it tends to
generate many new triples for some ontologies.

Table 3–1 Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

COMPH Performs inference based on owl:complementOf assertions and the interaction of
owl:complementOf with other language constructs.

DIF Generates owl:differentFrom assertions based on the symmetricity of
owl:differentFrom.

DISJ Infers owl:differentFrom relationships at instance level using owl:disjointWith
assertions.

DISJH Performs inference based on owl:disjointWith assertions and their interactions
with other language constructs.

DOM Performs inference based on RDFS2.

DOMH Performs inference based on rdfs:domain assertions and their interactions with
other language constructs.

EQCH Performs inference that are relevant to owl:equivalentClass.

EQPH Performs inference that are relevant to owl:equivalentProperty.

FP Performs instance-level inference using instances of owl:FunctionalProperty.

FPH Performs inference using instances of owl:FunctionalProperty.

IFP Performs instance-level inference using instances of
owl:InverseFunctionalProperty.

IFPH Performs inference using instances of owl:InverseFunctionalProperty.

INV Performs instance-level inference using owl:inverseOf assertions.

INVH Performs inference based on owl:inverseOf assertions and their interactions with
other language constructs.

RANH Performs inference based on rdfs:range assertions and their interactions with other
language constructs.

RDFP* (The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a semantic
extension involving the OWL vocabulary, by H.J. Horst.)

SEM_APIS.CREATE_ENTAILMENT

3-6 Oracle Database Semantic Technologies Developer’s Guide

To deselect a component, use the component name followed by a minus (-) sign. For
example, SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the
default inferencing behavior:

■ PROOF=T generates proof for inferred triples. Do not specify this option unless
you need to; it slows inference performance because it causes more data to be
generated.

■ DISTANCE=T generates ancillary distance information that is useful for semantic
operators.

■ ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing
inferred data (rules index) when the rules index has a valid status. By default,
SEM_APIS.CREATE_ENTAILMENT quits immediately if there is already a valid
rules index for the combination of models and rulebases.

■ USER_RULES=T causes any user-defined rules to be applied. If you specify this
option, you cannot specify PROOF=T or DISTANCE=T, and you must accept the
default value for the passes parameter.

Examples
The following example creates a rules index named OWLTST_IDX using the
OWLPRIME rulebase, and it causes proof to be generated for inferred triples.

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), sem_
rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');

RDFS2, ...
RDFS13

RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10,
RDFS11, RDFS12, and RDFS13 are described in Section 7.3 of RDF Semantics
(http://www.w3.org/TR/rdf-mt/). Note that many of the RDFS components
are not relevant for OWL inference.

SAM Performs inference about individuals based on existing assertions for those
individuals and owl:sameAs.

SAMH Infers owl:sameAs assertions using transitivity and symmetricity of owl:sameAs.

SCO Performs inference based on RDFS9.

SCOH Generates the subClassOf hierarchy based on existing rdfs:subClassOf assertions.
Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3 will infer C1
rdfs:subClassOf C3 based on transitivity. SCOH is also an alias of RDFS11.

SPIH Performs inference based on interactions between rdfs:subPropertyOf and
owl:inverseOf assertions.

SPO Performs inference based on RDFS7.

SPOH Generates rdfs:subPropertyOf hierarchy based on transitivity of
rdfs:subPropertyOf. It is an alias of RDFS5.

SYMM Performs instance-level inference using instances of owl:SymmetricProperty.

SYMH Performs inference for properties of type owl:SymmetricProperty.

TRANS Calculates transitive closure for instances of owl:TransitiveProperty.

Table 3–1 (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

SEM_APIS.CREATE_RULEBASE

SEM_APIS Package Subprograms 3-7

SEM_APIS.CREATE_RULEBASE

Format
SEM_APIS.CREATE_RULEBASE(

rulebase_name IN VARCHAR2);

Description
Creates a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes
This procedure creates a user-defined rulebase. After creating the rulebase, you can
add rules to it. To cause the rules in the rulebase to be applied in a query of RDF data,
you can specify the rulebase in the call to the SEM_MATCH table function.

Rules and rulebases are explained in Section 1.3.6. The SEM_MATCH table function is
described in Section 1.6,

Examples
The following example creates a rulebase named family_rb. (It is an excerpt from
Example 1–10 in Section 1.9.2.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

SEM_APIS.CREATE_RULES_INDEX

3-8 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.CREATE_RULES_INDEX

Format
SEM_APIS.CREATE_RULES_INDEX(

index_name_in IN VARCHAR2,

models_in IN SEM_MODELS,

rulebases_in IN SEM_RULEBASES);

Description
Creates a rules index based on data in one or more models and one or more rulebases.

Parameters

index_name_in
Name of the rules index.

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained
in Section 1.3.6.

Usage Notes
This procedure creates a rules index. For information about rules indexes, see
Section 1.3.7.

Examples
The following example creates a rules index named family_rb_rix_family, using
the family model and the RDFS and family_rb rulebases. (This example is an
excerpt from Example 1–10 in Section 1.9.2.)

BEGIN
 SEM_APIS.CREATE_RULES_INDEX(
 'rdfs_rix_family',
 SEM_Models('family'),
 SEM_Rulebases('RDFS','family_rb'));
END;
/

SEM_APIS.CREATE_SEM_MODEL

SEM_APIS Package Subprograms 3-9

SEM_APIS.CREATE_SEM_MODEL

Format
SEM_APIS.CREATE_SEM_MODEL(

model_name IN VARCHAR2,

table_name IN VARCHAR2,

column_name IN VARCHAR2);

model_tablespace IN VARCHAR2 DEFAULT NULL);

Description
Creates a semantic technology model.

Parameters

model_name
Name of the model.

table_name
Name of the table to hold references to semantic technology data for this model.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.

model_tablespace
Name of the tablespace for the tables and other database objects used by Oracle to
support this model. The default value is the tablespace that was specified in the call to
the SEM_APIS.CREATE_SEM_NETWORK procedure.

Usage Notes
You must create the table to hold references to semantic technology data before calling
this procedure to create the semantic technology model. For more information, see
Section 1.8.

This procedure adds the model to the MDSYS.SEM_MODEL$ view, which is described
in Section 1.3.1.

This procedure is the only supported way to create a model. Do not use SQL INSERT
statements with the MDSYS.SEM_MODEL$ view.

To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

Examples
The following example creates a semantic technology model named articles.
References to the triple data for the model will be stored in the TRIPLE column of the
ARTICLES_RDF_DATA table. (This example is an excerpt from Example 1–9 in
Section 1.9.2.)

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');

The definition of the ARTICLES_RDF_DATA table is as follows:

CREATE TABLE articles_rdf_data (id NUMBER, triple SDO_RDF_TRIPLE_S);

SEM_APIS.CREATE_SEM_NETWORK

3-10 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.CREATE_SEM_NETWORK

Format
SEM_APIS.CREATE_SEM_NETWORK(

tablespace_name IN VARCHAR2

Description
Adds semantic technology support to the database.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure. This tablespace
will be the default for all models that you create, although you can override the default
when you create a model by specifying the model_tablespace parameter in the call
to the SEM_APIS.CREATE_SEM_MODEL procedure.

Usage Notes
This procedure creates system tables and other database objects used for semantic
technology support.

You should create a tablespace for the semantic technology system tables and specify
the tablespace name in the call to this procedure. (You should not specify the SYSTEM
tablespace.) The size needed for the tablespace that you create will depend on the
amount of semantic technology data you plan to store.

You must connect to the database as a user with DBA privileges in order to call this
procedure, and you should call the procedure only once for the database.

To remove semantic technology support from the database, you must connect as a user
with DBA privileges and call the SEM_APIS.DROP_SEM_NETWORK procedure.

Examples
The following example creates a tablespace for semantic technology system tables and
adds semantic technology support to the database.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

SEM_APIS.DROP_ENTAILMENT

SEM_APIS Package Subprograms 3-11

SEM_APIS.DROP_ENTAILMENT

Format
SEM_APIS.DROP_ENTAILMENT(

index_name_in IN VARCHAR2);

Description
Drops (deletes) a rules index (entailment).

Parameters

index_name_in
Name of the rules index (entailment) to be deleted.

Usage Notes
You can use this procedure to delete an entailment that you created using the SEM_
APIS.CREATE_ENTAILMENT procedure.

Examples
The following example deletes a rules index named OWLTST_IDX.

EXECUTE sem_apis.drop_entailment('owltst_idx');

SEM_APIS.DROP_RULEBASE

3-12 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.DROP_RULEBASE

Format
SEM_APIS.DROP_RULEBASE(

rulebase_name IN VARCHAR2);

Description
Deletes a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes
This procedure deletes the specified rulebase, making it no longer available for use in
calls to the SEM_MATCH table function. For information about rulebases, see
Section 1.3.6.

Only the creator of a rulebase can delete the rulebase.

Examples
The following example drops the rulebase named family_rb.

EXECUTE SEM_APIS.DROP_RULEBASE('family_rb');

SEM_APIS.DROP_RULES_INDEX

SEM_APIS Package Subprograms 3-13

SEM_APIS.DROP_RULES_INDEX

Format
SEM_APIS.DROP_RULES_INDEX(

index_name IN VARCHAR2);

Description
Deletes a rules index.

Parameters

index_name
Name of the rules index.

Usage Notes
This procedure deletes the specified rules index, making it no longer available for use
with queries against RDF data. For information about rules indexes, see Section 1.3.7.

Only the owner of a rulebase can call this procedure to drop the rules index. However,
a rules index can be dropped implicitly if an authorized user drops any model or
rulebase on which the rules index is based; in such a case, the rules index is dropped
automatically.

Examples
The following example drops the rules index named rdfs_rix_family.

EXECUTE SEM_APIS.DROP_RULES_INDEX ('rdfs_rix_family');

SEM_APIS.DROP_SEM_MODEL

3-14 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.DROP_SEM_MODEL

Format
SEM_APIS.DROP_SEM_MODEL(

model_name IN VARCHAR2);

Description
Drops (deletes) a semantic technology model.

Parameters

model_name
Name of the model.

Usage Notes
This procedure deletes the model from the MDSYS.SEM_MODEL$ view, which is
described in Section 1.3.1.

This procedure is the only supported way to delete a model. Do not use SQL DELETE
statements with the MDSYS.SEM_MODEL$ view.

Only the creator of a model can delete the model.

Examples
The following example drops the semantic technology model named articles.

EXECUTE SEM_APIS.DROP_SEM_MODEL('articles');

SEM_APIS.DROP_SEM_NETWORK

SEM_APIS Package Subprograms 3-15

SEM_APIS.DROP_SEM_NETWORK

Format
SEM_APIS.DROP_SEM_NETWORK();

Description
Removes semantic technology support from the database.

Parameters
None.

Usage Notes
To remove semantic technology support from the database, you must connect as a user
with DBA privileges and call this procedure.

Before you call this procedure, be sure to delete all semantic technology models and
rulebases.

Examples
The following example removes semantic technology support from the database.

EXECUTE SEM_APIS.DROP_SEM_NETWORK;

SEM_APIS.DROP_USER_INFERENCE_OBJS

3-16 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.DROP_USER_INFERENCE_OBJS

Format
SEM_APIS.DROP_USER_INFERENCE_OBJS(

uname IN VARCHAR2);

Description
Drops (deletes) all rulebases and rules index owned by a specified database user.

Parameters

uname
Name of a database user. (This value is case-sensitive; for example, HERMAN and
herman are considered different users.)

Usage Notes
You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and
rules indexes owned by that user.

Examples
The following example deletes all rulebases and rules indexes owned by user SCOTT.

EXECUTE SEM_APIS.DROP_USER_INFERENCE_OBJS('SCOTT');

PL/SQL procedure successfully completed.

SEM_APIS.GET_MODEL_ID

SEM_APIS Package Subprograms 3-17

SEM_APIS.GET_MODEL_ID

Format
SEM_APIS.GET_MODEL_ID(

model_name IN VARCHAR2

) RETURN NUMBER;

Description
Returns the model ID number of a semantic technology model.

Parameters

model_name
Name of the semantic technology model.

Usage Notes
The model_name value must match a value in the MODEL_NAME column in the
MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

Examples
The following example returns the model ID number for the model named articles.
(This example is an excerpt from Example 1–9 in Section 1.9.2.)

SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;

 MODEL_ID

 1

SEM_APIS.GET_MODEL_NAME

3-18 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.GET_MODEL_NAME

Format
SEM_APIS.GET_MODEL_NAME(

model_id IN NUMBER

) RETURN VARCHAR2;

Description
Returns the model name of a semantic technology model.

Parameters

model_id
ID number of the semantic technology model.

Usage Notes
The model_id value must match a value in the MODEL_ID column in the
MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

Examples
The following example returns the model ID number for the model with the ID value
of 1. This example is an excerpt from Example 1–9 in Section 1.9.2.)

SQL> SELECT SEM_APIS.GET_MODEL_NAME(1) AS model_name FROM DUAL;

MODEL_NAME
--
ARTICLES

SEM_APIS.GET_TRIPLE_ID

SEM_APIS Package Subprograms 3-19

SEM_APIS.GET_TRIPLE_ID

Format
SEM_APIS.GET_TRIPLE_ID(

model_id IN NUMBER,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN VARCHAR2;

or

SEM_APIS.GET_TRIPLE_ID(

model_name IN VARCHAR2,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2

) RETURN VARCHAR2;

Description
Returns the ID of a triple in the specified semantic technology model, or a null value if
the triple does not exist.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID
column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME
column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

subject
Subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

property
Property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

object
Object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

Usage Notes
This function has two formats, enabling you to specify the semantic technology model
by its model number or its name.

SEM_APIS.GET_TRIPLE_ID

3-20 Oracle Database Semantic Technologies Developer’s Guide

Examples
The following example returns the ID number of a triple. (This example is an excerpt
from Example 1–9 in Section 1.9.2.)

SELECT SEM_APIS.GET_TRIPLE_ID(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS RDF_triple_id FROM DUAL;

RDF_TRIPLE_ID
--
2_9F2BFF05DA0672E_90D25A8B08C653A_46854582F25E8AC5

SEM_APIS.IS_TRIPLE

SEM_APIS Package Subprograms 3-21

SEM_APIS.IS_TRIPLE

Format
SEM_APIS.IS_TRIPLE(

model_id IN NUMBER,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2) RETURN VARCHAR2;

or

SEM_APIS.IS_TRIPLE(

model_name IN VARCHAR2,

subject IN VARCHAR2,

property IN VARCHAR2,

object IN VARCHAR2) RETURN VARCHAR2;

Description
Checks if a statement is an existing triple in the specified model in the database.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID
column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME
column of the MDSYS.SEM_MODEL$ view, which is described in Section 1.3.1.

subject
Subject. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

property
Property. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

object
Object. Must match a value in the VALUE_NAME column of the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

Usage Notes
This function returns the string value FALSE, TRUE, or TRUE (EXACT):

■ FALSE means that the statement is not a triple in the specified model the database.

■ TRUE means that the statement matches the value of a triple or is the canonical
representation of the value of a triple in the specified model the database.

SEM_APIS.IS_TRIPLE

3-22 Oracle Database Semantic Technologies Developer’s Guide

■ TRUE (EXACT) means that the specified subject, property, and object
values have exact matches in a triple in the specified model in the database.

Examples
The following checks if a statement is a triple in the database. In this case, there is an
exact match. (This example is an excerpt from Example 1–9 in Section 1.9.2.)

SELECT SEM_APIS.IS_TRIPLE(
 'articles',
 'http://www.nature.com/nature/Article2',
 'http://purl.org/dc/terms/references',
 'http://www.nature.com/nature/Article3') AS is_triple FROM DUAL;

IS_TRIPLE
--
TRUE (EXACT)

SEM_APIS.LOOKUP_RULES_INDEX

SEM_APIS Package Subprograms 3-23

SEM_APIS.LOOKUP_RULES_INDEX

Format
SEM_APIS.LOOKUP_RULES_INDEX (

models IN SEM_MODELS,

rulebases IN SEM_RULEBASES

) RETURN VARCHAR2;

Description
Returns the name of the rules index based on the specified models and rulebases.

Parameters

models
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in
Section 1.3.6.

Usage Notes
For a rulebase index to be returned, it must be based on all specified models and
rulebases.

Examples
The following example finds the rules index that is based on the family model and
the RDFS and family_rb rulebases. (It is an excerpt from Example 1–10 in
Section 1.9.2.)

SELECT SEM_APIS.LOOKUP_RULES_INDEX(SEM_MODELS('family'),
 SEM_RULEBASES('RDFS','family_rb')) AS lookup_rules_index FROM DUAL;

LOOKUP_RULES_INDEX
--
RDFS_RIX_FAMILY

SEM_APIS.VALIDATE_ENTAILMENT

3-24 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.VALIDATE_ENTAILMENT

Format
SEM_APIS.VALIDATE_ENTAILMENT(

models_in IN SEM_MODELS,

rulebases_in IN SEM_RULEBASES,

criteria_in IN VARCHAR2 DEFAULT NULL,

max_conflict IN NUMBER DEFAULT 100,

options IN VARCHAR2 DEFAULT NULL

) RETURN RDF_LONGVARCHARARRAY;

Description
Validates rules indexes (entailment) that can be used to perform OWL or RDFS
inferencing for one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained
in Section 1.3.6.

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this
parameter, by default all of the following checks are run:

■ UNSAT: Find unsatisfiable classes.

■ EMPTY: Find instances belong to unsatisfiable classes

■ SYNTAX_S: Find triples whose subject is neither URI nor blank node.

■ SYNTAX_P: Find triples whose predicate is not URI.

■ SELF_DIF: Find individuals that are different from themselves.

■ INST: Find individuals that simultaneously belong to two disjoint classes.

■ SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For
example, criteria_in => ’UNSAT' causes the validation process to search only
for unsatisfiable classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The
default value is 100.

SEM_APIS.VALIDATE_ENTAILMENT

SEM_APIS Package Subprograms 3-25

options
(Not currently used. Reserved for Oracle use.).

Usage Notes
This procedure can be used to detect inconsistencies in the original entailment. For
more information, see Section 2.2.5.

This procedure returns a null value if no errors are detected or (if errors are detected)
an object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure.

Examples
For an example of this procedure, see Example 2–5 in Section 2.2.5.

SEM_APIS.VALIDATE_MODEL

3-26 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.VALIDATE_MODEL

Format
SEM_APIS.VALIDATE_MODEL(

models_in IN SEM_MODELS,

criteria_in IN VARCHAR2 DEFAULT NULL,

max_conflict IN NUMBER DEFAULT 100,

options IN VARCHAR2 DEFAULT NULL

) RETURN RDF_LONGVARCHARARRAY;

Description
Validates one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this
parameter, by default all of the following checks are run:

■ UNSAT: Find unsatisfiable classes.

■ EMPTY: Find instances belong to unsatisfiable classes

■ SYNTAX_S: Find triples whose subject is neither URI nor blank node.

■ SYNTAX_P: Find triples whose predicate is not URI.

■ SELF_DIF: Find individuals that are different from themselves.

■ INST: Find individuals that simultaneously belong to two disjoint classes.

■ SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For
example, criteria_in => ’UNSAT' causes the validation process to search only
for unsatisfiable classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The
default value is 100.

options
(Not currently used. Reserved for Oracle use.).

Usage Notes
This procedure can be used to detect inconsistencies in the original data model. For
more information, see Section 2.2.5.

SEM_APIS.VALIDATE_MODEL

SEM_APIS Package Subprograms 3-27

This procedure returns a null value if no errors are detected or (if errors are detected)
an object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)

Examples
The following example validates the model named family.

SELECT SEM_APIS.VALIDATE_MODEL(SEM_MODELS('family')) FROM DUAL;

SEM_APIS.VALUE_NAME_PREFIX

3-28 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.VALUE_NAME_PREFIX

Format
SEM_APIS.VALUE_NAME_PREFIX (

value_name IN VARCHAR2,

value_type IN VARCHAR2

) RETURN VARCHAR2;

Description
Returns the value in the VNAME_PREFIX column for the specified value name and
value type pair in the MDSYS.RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

value_type
Value type. Must match a value in the VALUE_TYPE column in the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

Usage Notes
This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used
for processing a lookup for values, and thus can make a query run faster.

Examples
The following query returns value name portions of all the lexical values in
MDSYS.RDF_VALUE$ table with a prefix value same as that returned by the VALUE_
NAME_PREFIX function. This query uses an index on the MDSYS.RDF_VALUE$
table, thereby providing efficient lookup.

SELECT value_name FROM MDSYS.RDF_VALUE$
 WHERE vname_prefix = SEM_APIS.VALUE_NAME_PREFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt
http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

SEM_APIS.VALUE_NAME_PREFIX

SEM_APIS Package Subprograms 3-29

http://www.w3.org/1999/02/22-rdf-syntax-ns#value

15 rows selected.

SEM_APIS.VALUE_NAME_SUFFIX

3-30 Oracle Database Semantic Technologies Developer’s Guide

SEM_APIS.VALUE_NAME_SUFFIX

Format
SEM_APIS.VALUE_NAME_SUFFIX (

value_name IN VARCHAR2,

value_type IN VARCHAR2

) RETURN VARCHAR2;

Description
Returns the value in the VNAME_SUFFIX column for the specified value name and
value type pair in the MDSYS.RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

value_type
Value type. Must match a value in the VALUE_TYPE column in the MDSYS.RDF_
VALUE$ table, which is described in Section 1.3.2.

Usage Notes
This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used
for processing a lookup for values, and thus can make a query run faster.

Examples
The following query returns value name portions of all the lexical values in
MDSYS.RDF_VALUE$ table with a suffix value same as that returned by the VALUE_
NAME_SUFFIX function. This query uses an index on the MDSYS.RDF_VALUE$
table, thereby providing efficient lookup.

SELECT value_name FROM MDSYS.RDF_VALUE$
 WHERE vname_suffix = SEM_APIS.VALUE_NAME_SUFFIX(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');

VALUE_NAME
--
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

4

SEM_PERF Package Subprograms 4-1

4 SEM_PERF Package Subprograms

The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology
Language (OWL) support in an Oracle database. To use the subprograms in this
chapter, you must understand the conceptual and usage information in Chapter 1,
"Oracle Semantic Technologies Overview" and Chapter 2, "OWL Concepts".

This chapter provides reference information about the subprograms, listed in
alphabetical order.

SEM_PERF.GATHER_STATS

4-2 Oracle Database Semantic Technologies Developer’s Guide

SEM_PERF.GATHER_STATS

Format
SEM_PERF.GATHER_STATS();

Description
Gathers statistics about RDF and OWL tables and their indexes.

Parameters
None.

Usage Notes
To use this procedure, you must connect as a user with permission to execute it. By
default, when Spatial is installed as part of Oracle Database, only the MDSYS user can
execute this procedure; however execution permission on this procedure can be
granted to users as needed.

This procedure collects statistical information that can help you to improve inferencing
performance, as explained in Section 2.2.7. This procedure internally calls the DBMS_
STATS.GATHER_TABLE_STATS procedure to collect statistics on RDF- and
OWL-related tables and their indexes, and stores the statistics in the Oracle Database
data dictionary. For information about using the DBMS_STATS package, see Oracle
Database PL/SQL Packages and Types Reference.

Gathering statistics uses significant system resources, so execute this procedure when
it cannot adversely affect essential applications and operations.

Examples
The following example gathers statistics about RDF and OWL related tables and their
indexes.

EXECUTE SEM_PERF.GATHER_STATS;

Index-1

Index

A
aliases

SEM_ALIASES and SEM_ALIAS data types, 1-15

B
batch (bulk) loading, 3-2
batch loading semantic data, 1-19
blank nodes, 1-7

constructor for reusing, 1-14
bulk loading, 3-2
bulk loading semantic data, 1-17
BULK_LOAD_FROM_STAGING_TABLE

procedure, 3-2

C
canonical forms, 1-6
catsem10i.sql script, 1-31
catsem11i.sql script, 1-31
CLEANUP_FAILED procedure, 3-3
constructors for semantic data, 1-12
CREATE_ENTAILMENT procedure, 3-4
CREATE_RULEBASE procedure, 3-7
CREATE_RULES_INDEX procedure, 3-8
CREATE_SEM_MODEL procedure, 3-9
CREATE_SEM_NETWORK procedure, 3-10

D
data types

for literals, 1-6
data types for semantic data, 1-12
demo files

semantic data, 1-22
DROP_ENTAILMENT procedure, 3-11
DROP_RULEBASE procedure, 3-12
DROP_RULES_INDEX procedure, 3-13
DROP_SEM_MODEL procedure, 3-14
DROP_SEM_NETWORK procedure, 3-15
DROP_USER_INFERENCE_OBJS procedure, 3-16
duplicate triples

checking for, 1-6

E
entailment rules, 1-8
examples

PL/SQL, 1-22
exporting semantic data, 1-17

F
failed state

rulebase or rules index, 3-3
filter

attribute of SEM_MATCH, 1-15

G
GATHER_STATS procedure, 4-2
GET_MODEL_ID function, 3-17
GET_MODEL_NAME function, 3-18
GET_TRIPLE_ID function, 3-19

I
index_status

attribute of SEM_MATCH, 1-15, 2-10
inferencing, 1-7
inverseOf keyword

using to force use of semantic index, 2-13
IS_TRIPLE function, 3-21

L
literals

data types for, 1-6
loading semantic data, 1-17

bulk, 3-2
LOOKUP_RULES_INDEX procedure, 3-23

M
metadata

semantic, 1-3
metadata tables and views for semantic data, 1-12
methods for semantic data, 1-12
model

creating, 3-9
deleting (dropping), 3-14

Index-2

disabling support in the database, 3-15
enabling support in the database, 3-10

model ID
getting, 3-17

model name
getting, 3-18

models, 1-3
SEM_MODELS data type, 1-15
SEMI_rules-index-name view, 1-10
SEMM_model-name view, 1-4

O
objects, 1-7
OWL

queries using the SEM_DISTANCE ancillary
operator, 2-10

queries using the SEM_RELATED operator, 2-9

P
properties, 1-7

Q
queries

using the SEM_DISTANCE ancillary
operator, 2-10

using the SEM_MATCH table function, 1-14
using the SEM_RELATED operator, 2-9

R
RDF rulebase

subset of RDFS rulebase, 1-8
RDF_VALUE$ table, 1-5
RDFS entailment rules, 1-8
RDFS rulebase

implements RDFS entailment rules, 1-8
rulebases, 1-7

attribute of SEM_MATCH, 2-10
deleting if in failed state, 3-3
SEM_RULEBASE_INFO view, 1-9
SEM_RULEBASES data type, 1-15
SEMR_rulebase-name view, 1-9

rules, 1-7
rules indexes, 1-10

deleting if in failed state, 3-3
incomplete status, 1-15, 2-10
invalid status, 1-15, 2-10
SEM_RULES_INDEX_DATASETS view, 1-11
SEM_RULES_INDEX_INFO view, 1-10

S
security considerations, 1-11
SEM_ALIAS data type, 1-15
SEM_ALIASES data type, 1-15
SEM_APIS package

BULK_LOAD_FROM_STAGING_TABLE, 3-2
CLEANUP_FAILED, 3-3

CREATE_ENTAILMENT, 3-4
CREATE_RULEBASE, 3-7
CREATE_RULES_INDEX, 3-8
CREATE_SEM_MODEL, 3-9
CREATE_SEM_NETWORK, 3-10
DROP_ENTAILMENT, 3-11
DROP_RULEBASE, 3-12
DROP_RULES_INDEX, 3-13
DROP_SEM_MODEL, 3-14
DROP_SEM_NETWORK, 3-15
DROP_USER_INFERENCE_OBJS, 3-16
GET_MODEL_ID, 3-17
GET_MODEL_NAME, 3-18
GET_TRIPLE_ID, 3-19
LOOKUP_RULES_INDEX, 3-23
reference information, 3-1, 4-1
TRIPLE, 3-21
VALIDATE_ENTAILMENT, 3-24
VALIDATE_MODEL, 3-26
VALUE_NAME_PREFIX, 3-28, 3-30

SEM_DISTANCE ancillary operator, 2-10
SEM_INDEXTYPE index type, 2-12
SEM_MATCH table function, 1-14
SEM_MODEL$ view, 1-3
SEM_MODELS data type, 1-15
SEM_PERF package

GATHER_STATS, 4-2
SEM_RELATED operator, 2-9
SEM_RULEBASE_INFO view, 1-9
SEM_RULEBASES data type, 1-15
SEM_RULES_INDEX_DATASETS view, 1-11
SEM_RULES_INDEX_INFO view, 1-10
semantic data

blank nodes, 1-7
constructors, 1-12
data types, 1-12
demo files, 1-22
examples (PL/SQL), 1-22
in the database, 1-3
metadata, 1-3
metadata tables and views, 1-12
methods, 1-12
modeling, 1-3
objects, 1-7
properties, 1-7
queries using the SEM_MATCH table

function, 1-14
security considerations, 1-11
statements, 1-5
steps for using, 1-21
subjects, 1-7

semantic index
creating (MDSYS.SEM_INDEXTYPE), 2-12

Resource Description Framework
See semantic technologies

semantic technologies
overview, 1-1

SEMI_rules-index-name view, 1-10
SEMM_model-name view, 1-4
SEMR_rulebase-name view, 1-9

Index-3

staging table
loading data from, 3-2

staging table for bulk loading semantic data, 1-17
statements

RDF_VALUE$ table, 1-5
statistics

gathering for RDF and OWL, 4-2
subjects, 1-7

T
triples

constructor for inserting, 1-13
duplication checking, 1-6
IS_TRIPLE function, 3-21

U
URI prefix

using when values are not stored as URIs, 2-13
URIPREFIX keyword, 2-13

V
VALIDATE_ENTAILMENT procedure, 3-24
VALIDATE_MODEL procedure, 3-26
VALUE_NAME_PREFIX function, 3-28, 3-30

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Semantic Technologies?
	Storage Model Enhancements and Migration
	Support for OWL Inferencing
	New Bulk Loading Interface for Improved Performance
	Ontology-Assisted Querying of Relational Data
	Required Procedure for Using Semantic Technology Support

	1 Oracle Semantic Technologies Overview
	1.1 Introduction to Oracle Semantic Technologies
	1.2 Semantic Data Modeling
	1.3 Semantic Data in the Database
	1.3.1 Metadata for Models
	1.3.2 Statements
	1.3.2.1 Triple Uniqueness and Data Types for Literals

	1.3.3 Subjects and Objects
	1.3.4 Blank Nodes
	1.3.5 Properties
	1.3.6 Inferencing: Rules and Rulebases
	1.3.7 Rules Indexes
	1.3.8 Semantic Data Security Considerations

	1.4 Semantic Metadata Tables and Views
	1.5 Semantic Data Types, Constructors, and Methods
	1.5.1 Constructors for Inserting Triples Without Any Blank Nodes
	1.5.2 Constructors for Inserting Triples With or Without Any Blank Nodes

	1.6 Using the SEM_MATCH Table Function to Query Semantic Data
	1.6.1 Performing Queries with Incomplete or Invalid Rules Indexes

	1.7 Loading and Exporting Semantic Data
	1.7.1 Bulk Loading Semantic Data Using a Staging Table
	1.7.2 Batch Loading Semantic Data Using the Java API
	1.7.2.1 When to Choose Batch Loading

	1.7.3 Loading Semantic Data Using INSERT Statements
	1.7.4 Exporting Semantic Data

	1.8 Quick Start for Using Semantic Data
	1.9 Semantic Data Examples
	1.9.1 Example: Journal Article Information
	1.9.2 Example: Family Information

	1.10 Required Procedure for Semantic Technologies Support
	1.11 Downgrading to the Previous Oracle Database Release
	1.12 Software Naming Changes for Semantic Technologies

	2 OWL Concepts
	2.1 Ontologies
	2.1.1 Example: Cancer Ontology
	2.1.2 Supported OWL Subsets

	2.2 Using OWL Inferencing
	2.2.1 Creating a Simple OWL Ontology
	2.2.2 Performing Native OWL inferencing
	2.2.3 Performing OWL and User-Defined Rules inferencing
	2.2.4 Generating OWL inferencing Proofs
	2.2.5 Validating OWL Models and Entailments
	2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
	2.2.7 Enhancing Inference Performance
	2.2.8 Performing Selective Inferencing (Advanced Information)

	2.3 Using Semantic Operators to Query Relational Data
	2.3.1 Using the SEM_RELATED Operator
	2.3.2 Using the SEM_DISTANCE Ancillary Operator
	2.3.2.1 Computation of Distance Information

	2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
	2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the First Parameter
	2.3.5 Using URIPREFIX When Values Are Not Stored as URIs

	3 SEM_APIS Package Subprograms
	SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
	SEM_APIS.CLEANUP_FAILED
	SEM_APIS.CREATE_ENTAILMENT
	SEM_APIS.CREATE_RULEBASE
	SEM_APIS.CREATE_RULES_INDEX
	SEM_APIS.CREATE_SEM_MODEL
	SEM_APIS.CREATE_SEM_NETWORK
	SEM_APIS.DROP_ENTAILMENT
	SEM_APIS.DROP_RULEBASE
	SEM_APIS.DROP_RULES_INDEX
	SEM_APIS.DROP_SEM_MODEL
	SEM_APIS.DROP_SEM_NETWORK
	SEM_APIS.DROP_USER_INFERENCE_OBJS
	SEM_APIS.GET_MODEL_ID
	SEM_APIS.GET_MODEL_NAME
	SEM_APIS.GET_TRIPLE_ID
	SEM_APIS.IS_TRIPLE
	SEM_APIS.LOOKUP_RULES_INDEX
	SEM_APIS.VALIDATE_ENTAILMENT
	SEM_APIS.VALIDATE_MODEL
	SEM_APIS.VALUE_NAME_PREFIX
	SEM_APIS.VALUE_NAME_SUFFIX

	4 SEM_PERF Package Subprograms
	SEM_PERF.GATHER_STATS

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V

