ORACLE

Oracle® Database
2 Day + Java Developer’s Guide

11g Release 1
B28765-02

October 2007

Oracle Database 2 Day + Java Developer’s Guide, 11g Release 1

B28765-02

Copyright © 2007, Oracle. All rights reserved.

Primary Authors: Deepa Aswani, Rosslynne Hefferan, Maitreyee Chaliha
Contributing Authors: Kathleen Heap, Simon Law

Contributors: Kuassi Mensah, Chris Schalk, Christian Bauwens, Mark Townsend, Paul Lo,
Venkatasubramaniam Iyer

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e xiii
AN S Lo = VLT RSOPRRRRRRR Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e xiii
ReElated DOCUITIEIESeovieieeiecieeeeeeeetee ettt ettt e et e e eteeeaaeeaeeesaseseesssseseeeneseseessesenseensessnseenseeans Xiv
CONMVEIIEIONS ..ooiitveeiieeieeiteeee ettt e e eeet e e e e et ae e e e e saaeeeesessaaaeeeeesaaeaeeeesessasseeseessaaesessesnsssaessessssesseessnssaeeeesons Xiv

1 Using Java with Oracle Database

Using Java to Connect to Oracle Database...............cccccooviiiniiiiiinniinis 1-1
Oracle JDBC Thin DITVET.....ccuecieieieieteitetesiesteieiet et et et eteetessessesseseseneeseeseesessessessessensensesessensens 1-2
Oracle JDBC OCI DIIVET ..c.cccveiieiirieiisierieieieieieeiesseestestestessessessessessessessesessessassessessessessessessnsassessens 1-2
Oracle JDBC Packagescccuoiiurieiiiicieieiicie it 1-2

Using JDeveloper to Create JDBC Applications ..., 1-3
JDeveloper User INtErfaceccoouvuviiiiiiriiiricicrccee e 1-3
JDEVEIOPET TOOIS ...t 1-4

Overview of Sample Java Application............c.cccccooiiiiiiiiiis 1-5

Advanced Application Development Using Developer Frameworks................cccccccoovvniinnninnn. 1-7

2 Getting Started with the Application

What You Need to Install...........cccccoiiiiiiiii e 2-1
Oracle Database SEIVeT ..o 2-1
Modifying the HR Schema for the JDBC Application...........ccccccceuiuiiciiiiciiiiiiiiiiiiiiinieinns 2-1

Oracle Database CHENt ... 2-2
J2SE OF JDK ...ttt 2-3
Integrated Development ENVironment...........cccccceciiiiiiiiiiiiiiiiiiiiicciccccceeeeeeeas 2-3
TWED SEIVET ... 2-3
Verifying the Oracle Database Client Installation ..., 2-4
Checking Installed Directories and Filescccccccociiiiiiiiiiiiniiiiicnccn, 2-4
Checking the Environment Variables ..., 2-4
Determining the JDBC Driver Version.........ccccooiiiiiicieiicciccci i 2-5
Installing Oracle JDevVeIOPEr ..o 2-5
JDeveloper Studio Edition: Base Installation and Full Installation...........cccocoooviiiiinnns 2-6
Steps to Install JDEVEIOPETc.curuiiiiici e 2-6
Starting JDEVELOPETc.ciuiiiiiiiicicicicice s 2-7

3 Connecting to Oracle Database

Connecting to Oracle Database from JDeveloper..............ccccooiiiiiiiiiiiicce, 3-1
JDeveloper Connection Navigator........c.ccccciiiiiiiiiiiireeereree e 3-1
Creating a Database ConNection............ccooiiiiiiiiic 3-2
Browsing the Data Using the Connection Navigatorccccooiiiiiiiiincccce 3-3

Setting Up Applications and Projects in JDeveloper............ccccccocoiivniiiiiniinniiic, 3-5
Using the JDeveloper Application Navigator..........cccooviiiiiiiiiiiiiiiicceenennen 3-6
Creating an Application and a Projectoocroiiiiiiii 3-6
Viewing the Javadoc and Source Code Available in the Project Scopecccccovovviieiiiinacnes 3-7

Connecting to Oracle Database from a Java Application.............ccccooiiiiiiiiniiii, 3-8
Overview of Connecting to Oracle Database...........cccoocueuioiriiiiiiicieicce e, 3-8
Specifying Database URLS..........ccccccciuiiiiiiiiiniiiicieececeeeeiieeeieeeeeeeeeeeesiseeee s 3-9

Using the Default Service Feature of the Oracle Database Client.............cccoocueviinnininnes 3-10
Creating a Java Class in JDeVelOPeTcoceuiiiiiiiiiicicie e 3-11
JAVA LIDTATIES ..ovvevveeieiieiieiiitieiesieiesieieie ettt e e e e et et e ssesbe s e b e sestesaesaeseesansasessessassessessessasansensensensenes 3-12

Overview of the Oracle JDBC Libraryccoooiiiioiiiiic 3-12

Overview of the JSP Runtime Librarycccccoooiiiiiiii 3-12
Adding JDBC and JSP LiDIaries.......ccccccecuiiiimieieiiiiicieeieeeieeieieee et enesenenenenens 3-12
Importing JDBC Packages.........ccoocueuiiiiiiiiiiiciiie s 3-13
Declaring Connection-Related Variables...........c.ccoooiiiiiiiiiiiie, 3-13
Creating the Connection Method ... 3-14

4 Querying for and Displaying Data

Overview of Querying for Data in Oracle Database..............cccccccccoivinniinniiin, 4-1
SOL SEALEIMENES.....vecueeiietieiieteeteeeeste et ete et e e st esbe et e e se s st essesseessessaessessaessesssessesssessesssensesssensesssessessees 4-2
Query Methods for the Statement Objectcooeuoiiiii e, 4-2
RESULE SELS ...eviviiiiiit s 4-3

Features of ResultSet ObJECtS ..o, 4-3
Summary of Result Set Object TYPesc.ccvrueieiiiciiiici s 4-3

Querying Data from a Java Applicationccccoviiiiiiiiii 4-4
Creating a Method in JDeveloper to Query Data...........c.cooiiiiiiiiii 4-4
Testing the Connection and the Query Methodsccoovoiiiiiiii 4-5

Creating JSP Pages ... 4-7
Overview of Page Presentation.........c.cc.ooiuiiiiiiiciicicc e 4-7

JEP TAES vt 4-8
SCIIPLIEES .. 4-8
HTML TagS ...ocveveiieiiieieiit s 4-8
HTIML FOTINS ...ttt 4-9
Creating a Simple JSP Page.........cccccoviiiiiiiiiiii s 4-9
Adding Static Content t0 @ JSP Pageccccoueiiririiiiiici 4-9
Adding a Style Sheet to @ JSP Page.........cccouviiiiiiiiiiiiciiccccc s 4-10

Adding Dynamic Content to the JSP Page: Database Query Resultscccccovriiinnnnn. 4-11
Adding a JSP useBean Tag to Initialize the DataHandler Class...........c.cccoooreuiiniiciiiniinnnnnn. 4-11
Creating a ReSULt Set..........cccoiiiiiiiiiiiii s 4-12
Adding a Table to the JSP Page to Display the Result Set...........ccccccoeveiiiiiiiiiiiciceene 4-14

Filtering a Query Result Set............ccccoooiiiiiiiiiiiiic s 4-15
Creating a Java Method for Filtering Results...........ccccoooiiiiiiiiiiic e 4-15

Testing the Query Filter Method ..o 4-16

Adding Filter Controls to the JSP Page..........cccoouoioiiiiiiiiiiccc e, 4-17
Displaying Filtered Data in the JSP Page.........cccocoviriririirrrcciireeereeeeeee s 4-18
Adding Login Functionality to the Application...............ccccocoiiiiiiiniii 4-19
Creating a Method to Authenticate USers............cooooiiiiiiiiiiiiciccc 4-19
Creating a Login Page ... 4-21
Preparing Error Reports for Failed LOZINs..........ccooreiiiiiiiiiiii e, 4-21
Creating the Login INterfaceccoooiiiii 4-22
Creating a JSP Page to Handle Login AcCHONccccieiiiiiiiiiiccccceeccceeeeeeenenees 4-23
Testing the JSP Page..........ccccoooiiiiiiiiiii s 4-24

Updating Data

Creating a JavaBean ... s 5-1
Creating a JavaBean in JDeveloperccooiiiiriiiiiciee e 5-1
Defining the JavaBean Properties and Methods..........c.cccceeiiiiiiinnniiirrccrcceeeee. 5-2

Updating Data from a Java Classccccovviviiiiiiininiiiii 5-4
Creating a Method to Identify an Employee Record ..., 5-4
Creating a Method to Update Employee Data.........c.cccccociiiiiiiiiiiiicceecceeeeieeenenenes 5-5
Adding a Link to Navigate to an Update Page..........cccoeueuiiiiiiiiiiii, 5-8
Creating a JSP Page to Edit Employee Data........ccoooooiioiiiiii e, 5-9
Creating a JSP Page to Handle an Update ACHON.......ccccccceueuiiiiiiiiiniiiircceeereeeee 5-11

Inserting an Employee Record.............ccooiiiiiiiiiiiiiiic e 5-12
Creating a Method to Insert Datacoceuoiiiiiiiii e 5-12
Adding a Link to Navigate to an Insert Page...........cccccoeueueuiiriniiiinneiicccecceeeeeeeeeees 5-14
Creating a JSP Page to Enter New Data........ccccoooiiiiiiiii 5-14
Creating a JSP Page to Handle an Insert ACtion..........c.ccoooceioiiiiiciiiice, 5-16

Deleting an Employee Record ..o 5-17
Creating a Method for Deleting Data...........cccooorioiiiniiioiic e, 5-17
Adding a Link to Delete an EMpPlOyee..........cccocuouiiiiiiiiieeccc e 5-18
Creating a JSP Page to Handle a Delete ACtiONcccccoiiiiiciiiccrcciiceccceceeeeeneees 5-19

Exception Handling ...t 5-19
Adding Exception Handling to Java Methods...........cccoviiiiiiiiiiiccc, 5-20
Creating a Method for Handling Any SQLEXCEPHIONc.c.ccuiuimeuiiiiiiiiiiiicicicicicciceeeeeeeeees 5-21

Navigation in the Sample Application ... 5-21
Creating a Starting Page for an Application ... 5-22

Enhancing the Application: Advanced JDBC Features

Using Dynamic SOL ... 6-1
Using OraclePreparedStatement............c.covoiiiiiiiiiiniiiciiccccee e 6-1
Using OracleCallableStatementcccoooiiiiiiiciiii e 6-2
Using Bind Variables ... 6-2

Calling Stored Proceduresccccoooiiiiiiiiiiiiiii e 6-3
Creating a PL/SQL Stored Procedure in JDeveloper ..., 6-4
Creating a Method to Use the Stored Procedure...............ccccoiiiiiiiiiiiiiiiiiciceeeas 6-5
Allowing Users to Choose the Stored Procedure............ccccoceeiuiiiiiieiiiiceeccceeceeenenenes 6-6
Calling the Stored Procedure from the Applicationccccooiiiiiiiiiiiiiiicas 6-8

vi

Using Cursor Variables ... 6-9

Oracle REF CURSOR Type Categorycceeveurueiiiicieieiicieie sttt 6-10
Accessing REF CURSOR Data.........ccccoooiiiniiiiiiiiiiiiceses s 6-10
Using REF CURSOR in the Sample Application........ccccovveieiiiiiiiiiiiiiiiiicc, 6-11
Creating a Package in the Databaseccoooueiiiiiiiiiiiiii 6-11
Creating a Database FUNCLIONccoouiuiiiiiiiiiiiiiie 6-11
Calling the REF CURSOR from a Method...........coooiiiiiiiiii 6-12
Displaying a Dynamically Generated Listc.cccoooioiiiiiiiiiiic 6-13

Creating a Master-Detail Application Using Oracle ADF

Overview of the Master-Detail Application ... 7-1
Using Oracle ADF ... 7-2
Oracle ADF Business COMPONENLS..........c.ccoviiiiiiiiiiiiiiiiiiiiiciieccceeses e 7-2
Oracle ADF FACESc.coiiiiiiiiiii s 7-3
Facets Usage with Oracle ADF Faces........ccccccoeuiuiiiiiiiiiiiiccceiccieciceieeeeereneeneneneneneeennes 7-3

ADEF Data CONIOIS. ..ot 7-3
Creating an Application and Projects.............ccccocoooiiiiiiiiiis 7-3
Creating Business Components in the model Project...............c.ccccooiiini, 7-4
Displaying Master-Detail Data...............cccccocovviiiiiiiiiiiiii 7-5
Creating a Project for the Application Ulc.cccoooiiiiiiiiiic e, 7-5
Creating a JSP to Display Employee Detailsccccccceviiiiiiiniiirrccrreeceeeeeeeeeene 7-5
Defining the Page Layout and Headingcccccooiiiiiiiiiiiiiic 7-6
Displaying Master Data on a JSP Page..........ccccoooriiiiiiciiiccccc e 7-8
Displaying Detail Data for Master ReCOTds..........ccovurriviriiiiirrniirrrncnreeeees e 7-9
Testing the APPliCationccccuiviiiiiiiiiiii s 7-12
Navigation Between Application Pages: JSF Navigation Diagrams...............cccccccevvninnnnnn 7-12
Creating a Page Using a JSF Navigation Diagram ... 7-12
Navigating Between Pages ... 7-13
Defining Navigation Between Pages..........cccoouoiiiiiiiiic 7-13
Editing Data...........ccccoooiiiiiiiiiii s 7-14
Creating an Edit FOIM ..o 7-14
Navigating to an Edit Page ... 7-16
Enabling COMMIT and ROLLBACKcccooiiiiiiiiiicc e 7-16
Running the Application ..o 7-18

Getting Unconnected from Oracle Database

Creating a Method to Close All Open Objects............ccoveieiiiiiiiiiiniiiiiiies 8-1
Closing Open Objects in the Application ... 8-2

Building Global Applications

Developing Locale AWAIENESS.............ccoouviviviiiiiiiiiniiininiiiniisi s 9-1
Mapping Between Oracle and Java Localescccccoiiiuiiiiiiiiciieccceceeceeeneneeenennes 9-2
Determining User Locales ..o 9-3
Locale Awareness in Java AppliCations...........ccccuiiiiiiiiiiiiiiicicececeece e 9-3
Encoding HTIML Pages...........ccccccoiiiiiiiiiiiiii s 9-4
Specifying the Page Encoding for HTML Pages...........ccccoeiiiiiiiiiiiiiciicccce 9-4

Specifying the Page Encoding in Java Servlets and JSP Pages.........ccccoouoruriiiniiciciiiicicie, 9-4

Organizing the Content of HTML Pages for Translation...............ccccccovviiiininiinnniinnn, 9-5
Strings in Java Servlets and JSP Pages ..o 9-5
STAtIC FALES ..t 9-6
Data from the Database..........cccccovuviviiiiiiiiniiiniiiiii s 9-6

Presenting Data by User Locale Conventionccccoviiiiiniiiniiiicceces 9-6
Oracle Date FOIMAtSccooiuiiiiiiiiiiiii e 9-7
Oracle Number FOrmats.........ccccooviiiiiiiiiiiiiiiiiicc s 9-8
Oracle LINGUISTIC SOTES.....c.cuiuiiiiiiiiiiiciiccieteeeee ettt 9-8
Oracle Error MESSAZES........ccueiiurieiiiiiiieieitcict ettt 9-9

Localizing Text on JSP Pages in JDeveloper ..o 9-9
Creating a Resource Bundle ... 9-10
Using Resource Bundle Text on JSP Pages........cccccooeeiiiiirieieiiciciecc e 9-11

Index

vii

List of Examples

viii

21
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4

Determining the JDBC Driver Version ... 2-5
Specifying the url Property for the DataSource Objectccoceviiiiiiiiiiiiiicc 3-10
Default Service Configuration in listener.ora ... 3-10
Importing Packages in a Java Applicationcccceuoiiiiiiiiiiicc 3-13
Declaring Connection Variables and the Connection Objectc.ccoooeiiiiiiiii 3-14
Adding a Method to Connect to the Databaseoooeueiiieieiiiiii, 3-15
Creating a Statement ODbJectccoceuiiiiiuiiiiiic e 4-2
Declaring a Scroll-Sensitive, Read-Only ResultSet Objectcccouoiiriiiiiiiiiii 4-4
Using the Connection, Statement, Query, and ResultSet Objects...........cccccevrvinininininnnen. 4-5
Implementing User Validation ..o 4-20
Skeleton Code for a Basic Java Bean with Accessor Methods..........ccoceeevieiieiennincncnennen, 5-3
Method for Updating a Database Record.............coooruiiiiiiiii 5-7
Method for Adding a New Employee Record..........cccoooiiiiiiiiiiiiini 5-13
Method for Deleting an Employee Record............cooouiiiiiiiiiiicc 5-18
Adding a Method to Handle Any SQLException in the Applicationccccccooeeuneve. 5-21
Creating a PreparedStatementccoooiiiiii e 6-2
Creating a CallableStatement.............ooooiiiiiiii e 6-2
Calling Stored Procedures ..ot 6-3
Creating a Stored FUNCHON ..o 6-3
Calling a Stored FuNction in Javacccceuricioiicecee s 6-3
Creating a PL/SQL Stored Procedure to Insert Employee Data........cccccoooveiiiiiiiincnnnne. 6-4
Using PL/SQL Stored Procedures in Java ... 6-6
Declaring a REF CURSOR TYPE ...ocviiiiiiiiicieieeciee it 6-10
Accessing REF Cursor Data in Java.......ccceeeiiiiiiii 6-10
Creating a Package in the Databasecccooeiiiiiiiiiiii 6-11
Creating a Stored FUNCHON ..o 6-12
Mapping from a Java Locale to an Oracle Language and Territory..........ccccocooeerieieinnnen 9-2
Determining User Locale in Java Using the Accept-Language Header...............c............. 9-3
Explicitly Specifying User Locale in Javac.ccooeeieieiiiiieiiiiceec s 9-3
Specifying Page Encoding in the HTTP Specificationccoceeviiiiiiiiiciiice 9-4
Specifying Page Encoding on an HTML Page..........ccccooriiiiirininiiccccc e 9-4
Specifying Page Encoding in Servlets Using setContentTypeccccooeviriiiiiinninienne. 9-5
Difference Between Date Formats by Locale (United States and Germany)...................... 9-7
Difference Between Number Formats by Locale (United States and Germany)............... 9-8
Variations in Linguistic Sorting (Binary and Spanish).........cccccoeiiiiiiiiiiiiiiiins 9-8
Creating a Resource Bundle Class..........ccccovieeiiioiiiininiiccccc s 9-11

List of Figures

1-1
1-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7

WON =P WOUN=0NO O &

NN

TITINY
©o~N» oA

7-10
7-11
7-12
7-13
7-14
7-15
7-16

JDeveloper User INterface.........ccooeuiiiiiiiiiiciiccec e 1-4
Web Pages in the Sample Application.........cccceueiiciiiiiiiiiieic e 1-6
Specifying Connection Detailscccoeuiiiiiiiiiii e 3-3
Accessing Database Objects in the Connection Navigatorcooeeieiiiiiiinceicne 3-4
Viewing the Table Structure and Data............cooooiii 3-5
Creating an APPLCation ... s 3-6
Selecting the Class to View the Javadoc in JDeveloper ... 3-7
Javadoc Display in JDeVelOPercooiuiiiiiiiiiiicieeecctncte e 3-8
Creating a Java Classcoccueueiiiieiiece s 3-11
Java SOUTCE EdItOT ...ttt ettt et e be e 3-12
IMporting LIDIaries..........ooccoiiiiiiccee s 3-13
Java Code INSightcooiii e 3-15
Test Output for Query Method in Log Window ..o 4-7
Adding Content to JSP Pages in the JDeveloper Visual Source Editor...........ccccceueuneen. 4-10
Adding Static Content to the JSP Pageccccoooiiiiiiiiiiice 4-11
useBean Representation in the employees.jsp File.........cccooooiiiii 4-12
Scriptlet Representation in a JSP Pagec.ccoueiiiiiiiiiicc 4-12
Viewing Errors in the Structure Window............coooii 4-13
Importing Packages in JDeVelOPercoovruiiiiiiiiiccicc 4-13
Table in @ JSP Page........cccciiiiice s 4-15
HTML Form Components in the JSP Page..........ccccoceuiiiiiiiiiiiccccc 4-18
Using the Scriptlet Properties Dialog BOXccoeioiiiiiiiiiiicii 4-19
LOGIN Page....c.cuoioiieiiii s 4-23
Login Page for Sample Application in the Browser..........c.cccoooieiiiiiiiii 4-24
Unfiltered Employee Data in employee.jspcccocoeueueiiiieiiiiiicieicccic i 4-25
Filtered Employee Data in employee.jsp.......ccccevuirueieiiiiiiciiicicece s 4-25
Generate Accessors Dialog BOX........ooccueiiiiiiiiic e 5-3
Link to Edit Employees in employees.jsp.........cccooerueieiiurieieiiiicie e 5-9
Creating a JSP Page to Edit Employee Details..........c.ccoooiiiiiiiiii 5-11
Editing Employee Dataccoooiiiiiiiiic 5-12
Form to Insert Employee Datac.cooiiiiiiii 5-15
Inserting New Employee Data.........ccoocuiueiiiiiiiiiiccc s 5-16
Inserting Employee Dataccoouoiiiiiiic 5-17
Link for Deleting an Employee from employees.jspcccoovueueiniiirieiiicccieeicccieeeaes 5-19
Adding a Link to Provide the Stored Procedure Optioncccccoovreieiniiieiiiicceiene 6-8
Using Stored Procedures to Enter Records ..o 6-9
Structure View of Dropdown ListBox Optionsccccoeeieiirniniiiciiiceecceeee 6-14
Dynamically Generated List in BrOWSeT..........ccccccoviviiiiininiiniiiiniccccnccces 6-15
Master Detail Application Pagesccccccoiiiiiiiiiiiiiiiiicccccceeeeees 7-2
Selecting Schema Objects to Create Entity Objects.........cccoovvveriiiinicniiiicceccce 7-4
Navigating Through an ADF Model............ccccocoiiiiiiiiiiiiiiiinnccscssne 7-5
Selecting Libraries for the JSF JSP.........ccccccciiiiiiiiiiiicccccccrcc e 7-6
ADF Faces Core Component Palette............ccccccciiiiiiiiiiiiiiiicccccceeeeeeees 7-7
ADF Faces PanelPage COMPONENLtccccuiuiuiiiiiiiiiiiiiiiiiiieicceceicteeeesee e 7-7
PanelPage Component with Added Text.......ccccocouoriieiiiiiiiiice e 7-8
Data Control Palettecccccciiiiiiiiiniiiiiiiiiiice s 7-8
Adding Form Fields........ccccccciiiiiiiiiiiicc e 7-9
Form Fields in Visual EGtOrcccocoviiiiiiiiiiiiiiinncane 7-9
Structure Window Showing Dropped Position.............cocoeueviiininiiicicce 7-10
Editing Table COIUMNS.........cccoiiiiiiiiiiiiciiic s 7-11
Master-Detail View in Visual EditOr.........cooooeiiioiiii 7-11
Employee Data Viewed in @ BIOWSETcccoouiiiiiiiiiiiiiccc 7-12
Navigation Diagrami..........cccoeviiiiiiiii s 7-14
Editing the Employees detail form in the Visual EQitorccccccceviiiiiiiiiiiniinininnn 7-16

7-17
7-18
7-19
7-20
7-21

Empty Footer Facet ... 7-17

Inserting the Footer Facet ... 7-17
Finished Master-Detail Application in Visual EAitorccccoovviiiiiiiiiiiiiin, 7-18
Master-Detail Application Viewed in a BIOWSeTccooooueieiiiiiiiiiic 7-19
Editing the Master Detail Application Content...........cccoceevviviiiiiiiiiiiin 7-19

xi

List of Tables

Xii

Directories and Files in the ORACLE_HOME Directoryc.cccoovvuiiiieiiiieieiieriieienennen, 2-4
Standard Data Source Properties..........ccccoviiiiiiiiiiiniiiiiiis 3-9
Key Query Execution Methods for java.sql.Statement............cc.coooeriiiiiiiiie, 4-2
Locale Representation in Java, SQL, and PL/SQL Programming Environments............ 9-2

Audience

Preface

This Preface introduces you to Oracle Database 2 Day + Java Developer’s Guide, by
discussing the intended audience and conventions of this document. It also includes a
list of related Oracle documents that you can refer to for more information.

This guide is intended for application developers using Java to access and modify data
in Oracle Database. This guide illustrates how to perform these tasks using a simple
Java Database Connectivity (JDBC) application. This guide uses the Oracle JDeveloper
integrated development environment (IDE) to create the application. This guide can be
read by anyone with an interest in Java programming, but it assumes at least some
prior knowledge of the following:

= Java
s Oracle PL/SQL

s Oracle databases

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xiii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information, see the following documents in the Oracle Database
documentation set:

» Oracle JDeveloper Installation Guide, 10g Release 10.1.3 and JDeveloper Online
Documentation on Oracle Technology Network at

http://www.oracle.com/technology/documentation/jdev.html
» Oracle Database [DBC Developer’s Guide and Reference, 11g Release 1 (11.1)
» Oracle Database Java Developer’s Guide, 11g Release 1 (11.1)

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiv

1

Using Java with Oracle Database

Oracle Database is a relational database that you can use to store, use, and modify
data. The Java Database Connectivity (JDBC) standard is used by Java applications to
access and manipulate data in relational databases.

JDBC is an industry-standard application programming interface (API) developed by
Sun Microsystems that lets you embed SQL statements in Java code. JDBC is based on
the X/Open SQL Call Level Interface (CLI) and complies with the SQL92 Entry Level
standard. Each vendor, such as Oracle, creates its JDBC implementation by
implementing the interfaces of the standard java.sql package.

See Also:
m http://java.sun.com/javase/technologies/database/in
dex.jsp

This guide shows you how to use a simple Java application to connect to Oracle
Database and access and modify data within the database. Further, it uses the Oracle
Application Development Framework (ADF) to develop a master-detail application to
display employee data.

This chapter introduces you to the Java application created in this guide, and to the
tools you can use to develop the Java application in the following topics:

= Using Java to Connect to Oracle Database
= Using JDeveloper to Create JDBC Applications

= Overview of Sample Java Application

Using Java to Connect to Oracle Database

JDBC is a database access protocol that enables you connect to a database and run
SQL statements and queries on the database. The core Java class libraries provide the
JDBC APIs, java.sql and javax.sqgl. However, JDBC is designed to allow vendors
to supply drivers that offer the necessary specialization for a particular database.

Note: Oracle Database 11g Release 1 support JDK 5 and onward. The
JDBC support in this release includes the ojdbc5. jar and

ojdbcé6 . jar files. The ojdbcé6 . jar file offers JDBC 4.0 compliance.
To use this file, you need JDK 6.

Oracle Database provides support for the client-side application development through
the JDBC Thin Driver and the Oracle Call Interface (OCI) Driver, and the
oracle.sql and oracle. jdbc packages. The classes and interfaces in these

Using Java with Oracle Database 1-1

Using Java to Connect to Oracle Database

packages extend the JDBC standard. They allow you to access and modify Oracle data
types and use Oracle performance extensions for JDBC with greater flexibility in a Java
application.

The following sections describe Oracle support for the JDBC standard:
s Oracle JDBC Thin Driver

s Oracle JDBC OCI Driver

= Oracle JDBC Packages

See Also:
» Oracle Database [DBC Developer’s Guide and Reference

» Oracle Database Java Developer’s Guide

Oracle JDBC Thin Driver

Oracle recommends using the JDBC Thin Driver for most requirements. JDBC-OCI is
only needed for OCl-specific features.

The JDBC Thin Driver is a pure Java, Type IV driver. It supports the Java™ 2 Platform
Standard Edition 5.0, also known as Java Development Kit (JDK) 5. It also includes
support for JDK 6. It is platform-independent and does not require any additional
Oracle software for client-side application development. The JDBC Thin Driver
communicates with the server using SQL*Net to access Oracle Database.

The JDBC Thin Driver allows a direct connection to the database by providing a pure
Java implementation of Oracle network protocols (Two-Task Common, also known as
the TTC protocol, and SQL*Net). The driver supports the TCP/IP protocol and
requires a Transparent Network Substrate (TNS) listener on the TCP/IP sockets on the
database server. The Thin driver will work on any machine that has a suitable Java
virtual machine (JVM).

You can access the Oracle-specific JDBC features and the standard features by using
the oracle. jdbc package.

Oracle JDBC OCI Driver

The JDBC OCI driver is a Type Il driver used with Java applications. It requires an
Oracle client installation. It supports all installed Oracle Net adapters, including
interprocess communication (IPC), named pipes, TCP/IP, and InternetworkPacket
Exchange/Sequenced Packet Exchange (IPX/SPX).

OCl is an API that enables you to create applications that use native procedures or
function calls. The JDBC OCI driver, written in a combination of Java and C, converts
JDBC calls to calls to OCI. It does this by using native methods to call C-entry points.
These calls communicate with the database using SQL*Net.

Oracle JDBC Packages

Oracle support for the JDBC APl is provided through the oracle. jdbc and
oracle.sql packages. These packages support all Java Development Kit (JDK)
releases from 1.5 through 1.6.

oracle.sql

The oracle. sgl package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their

1-2 Oracle Database 2 Day + Java Developer’'s Guide

Using JDeveloper to Create JDBC Applications

support classes. Essentially, the classes act as Java wrappers for SQL data. The
characters are converted to Java chars and, then, to bytes in the UCS-2 character set.

Each of the oracle.sql. * data type classes extends oracle.sqgl.Datum, a
superclass that includes functions and features common to all the data types. Some of
the classes are for JDBC 2.0-compliant data types. In addition to data type classes, the
oracle.sql package supports classes and interfaces for use with objects and
collections.

oracle.jdbc

The interfaces of the oracle. jdbc package define the Oracle extensions to the
interfaces in the java . sql package. These extensions provide access to Oracle
SQL-format data. They also provide access to other Oracle-specific features, including
Oracle performance enhancements.

The key classes and interfaces of this package provide methods that support standard
JDBC features and perform tasks such as:

= Returning Oracle statement objects

= Setting Oracle performance extensions for any statement

» Binding oracle.sql. * types into prepared and callable statements
= Retrieving data in oracle.sqgl format

= Getting meta information about the database and result sets

= Defining integer constants used to identify SQL types

See Also: sOracle Database [DBC Developer’s Guide and Reference

Using JDeveloper to Create JDBC Applications

The Java application tutorial in this guide uses Oracle JDeveloper 10g release 10.1.3 as
the integrated development environment (IDE) for developing the Java application
and creating Web pages for users to view and change the data.

Oracle JDeveloper is an IDE with support for modeling, developing, debugging,
optimizing, and deploying Java applications and Web services.

JDeveloper provides features for you to write and test Java programs that access the
database with SQL statements embedded in Java programs. For the database,
JDeveloper provides functions and features to do the following:

s Create a connection to a database
= Browse database objects
» Create, edit, or delete database objects

» Create and edit PL/SQL functions, procedures, and packages

JDeveloper User Interface

Oracle JDeveloper is an IDE that uses windows for various application development
tools. You can display or hide any of the windows, and you can dock them or undock
them to create a desktop suited to your method of working.

In addition to these tools, JDeveloper provides a range of navigators to help you
organize and view the contents of your projects. Application and System navigators

Using Java with Oracle Database 1-3

Using JDeveloper to Create JDBC Applications

show you the files in your projects, and a Structure window shows you the structure
of individual items.

You can arrange the windows as you choose, and can close and open them from the
View menu. Figure 1-1 shows the default layout of some of the available navigators,
palettes, and work areas in the JDeveloper user interface (GUI).

Figure 1-1 JDeveloper User Interface

Oraclo Woveloper - HBApp. s © view. jpr : C:\U0vvaloper pdevimywo rk\HEAppwviewlgublic _fmlemployess. sp

Application
Navigator I

|| [=UseBean

Filtar by Ermployee Mame

Java Source Editor/

Visual Editor

Component
Palette

£ Exprassion
(i ralback
B Formard
W GetFroparty

O Tt - Progerty Irupexior

+HS ASEL R
| Genesatl |]

P

EgyCindor

=

ey

L]
@ Border 1 L J
Property
Inspector

Ble 08 Yew Jeach Neagats Bun Debug Oeilgn Befphor Venigrig Jook Wndow B
FaoEag 0-9 . 1L f Adbida- - s-PE@SABIBY BP
B atscins Nawgstor o) B e Dleeetin gistsde e | Cllenpioveergn | et sctionen (0 [b]=) | @ Comporent Pulene =
R RN D> Hel® + oot e B AL B I YITEHE == -
] WEB-INF - . " 2 b Poneer E
P AnyCo Corporation: HR Application o state
x Emsployee Data 14

Source | Desgn

Structure I
Window

| =temis <oty stabao=

T
E FU"‘ Exningrs | Scnnca | Hubory | 4
= B

T Bui [T e——

RIS TS AL L L s e

compiling €:}Dewelopertjdeymye

VB pp i el jupai_wdiz__emp. java

compiling o) JDawslaper) sy reerk HRAFR wiew,cl

= | YU _Mpdacs_ scticm, jave Runtime

=B

= Eiw I 18020 29 B Fuoeessiul gompilacisn: 0 srwons, 0 warmings Messages
=R -1

=[] =[a |

Mo [P Enbdded £04 1 Servir

CADtveper ekt prpror IR RO vemdpubic_Podpelvess e D ng incde Table

Sabocied: Tabie

A ek Bt

See Also: Working with Windows in the IDE, in the JDeveloper online
Help
JDeveloper Tools
For creating a Java application, JDeveloper provides the following tools to simplify the
process:

= Structure window, which provides a tree view of all of the elements in the
application currently being edited be it Java, XML, or JSP/HTML.

= Java Visual Editor, which you can use to assemble the elements of a user interface
quickly and easily.

= JSP/HTML Visual Editor, which you can use to visually edit HTML and JSP
pages.

= Java Source Editor, which provides extensive features for helping in writing the
Java code, such as distinctive highlighting for syntax and semantic errors,

assistance for adding and sorting import statements, the Java Code Insight feature,
and code templates.

1-4 Oracle Database 2 Day + Java Developer's Guide

Overview of Sample Java Application

Note: The Java Code Insight feature is a facility that provides
context-specific, intelligent input when creating code in the Java
Source Editor. In this guide, you will see many instances of how you
can use Java Code Insight to insert code.

Component Palette, from which you select the user interface components, such as
buttons and text areas, that you want to display on your pages.

Property Inspector, which gives a simple way of setting properties of items such
as user interface components.

Figure 1-1 might help you get a better idea of where you can access these tools in the
JDeveloper UL

Overview of Sample Java Application

This guide shows you how to create an application using Java, JDBC and Oracle ADF.
In this application, you build in the following functions and features:

1.

N o a Db

Allow users to log in and validate the user name and password.
Establish a connection to the database.

Query the database for data and retrieve the data using a JavaBean.
Display the data using JavaServer Pages (JSP) technology.

Allow users to insert, update, or delete records.

Access and modify information from a master-detail application.

Handle exceptions.

Note: The application connects to the HR schema that ships with
Oracle Database. Although the Oracle Database client installation
comes with both the Thin and OCI drivers, the sample application will
use only the JDBC Thin Driver.

Overview of Application Web Pages (JSP Pages)
Figure 1-2 shows the relationships among the pages developed for this application.

Using Java with Oracle Database 1-5

Overview of Sample Java Application

Figure 1-2 Web Pages in the Sample Application

index.jsp

/
‘ login.jsp ‘—»{ login_action.jsp ‘

\

_»‘ insert.jsp ‘—»‘ insert_action.jsp }—»

employees.jsp

Displays a table of employees.

edit_emp.jsp ‘—»‘ update_action.jsp}—»

Contains :
« a field for filtering the list of
employees

 a link to add an employee — delete_action.jsp
* links to edit employee rows —

* links to delete employee rows

A brief description of the Web pages in the sample application follows:

index.jsp

This is the starting page of the application. It automatically forwards the user to
the login page of the application, login. jsp.

login.jsp

This page allows users to log in to the application. The user name, password, and
host information are validated and used to create the connection descriptor to log
in to the database.

login_action. jsp

This is a nonviewable page that handles the authentication of the user-supplied
login details from login. jsp. If authentication is successful, the page forwards
the user to employees. jsp. Otherwise, it redisplays the login. jsp page
including a message.

employees.jsp

This is the main page of the application. It displays a list of all the employees in
the HR schema for AnyCo Corporation and allows the user to filter the list of
employees using any string. It also includes links to add, edit, and delete any user
data. These actions, however, are handled by other JSP pages that are created
specifically for each of these tasks.

insert.jsp

The link to insert employee data on the employees. jsp page redirects the user
to this page. This includes a form that accepts all the details for a new employee
record. The details entered on this form are processed by the insert_

action. jsp page.

insert_action. jsp

This is a nonviewable page that handles the insertion of data for a new employee
that is entered on the insert. jsp page.

edit.jsp

1-6 Oracle Database 2 Day + Java Developer’'s Guide

Advanced Application Development Using Developer Frameworks

The link to edit employee data on the employees. jsp page redirects the user to
this page. This form displays current data of a single employee in text fields, and
the user can edit this information.

s update_action.jsp

The submit action on the edit . jsp page directs the data to this nonviewable
page, which inserts the edited data into the database.

s delete_action.jsp

The link to delete an employee record on the employees. jsp page is handled by
this nonviewable page, which deletes the employee data and forwards the user
back to the employees. jsp page.

Classes
The sample application includes the following classes:

s DataHandler.java

This class contains all the methods that are used to implement the important
functions of the sample application. It includes methods that validate user
credentials, connect to the database, retrieve employee data with and without
filters, insert data, update data, handle exceptions, and so on.

s Employees.java

This class is a JavaBean that holds a single employee record. It contains accessor
methods to get and set the values of each of the record fields. It also contains
accessor methods to retrieve and modify employee records.

s JavaClient.java

This class is used only for testing the DataHandler class.

Note: This application is developed throughout this guide in the
form of a tutorial. It is recommended, therefore, that you read these
chapters in sequence.

Advanced Application Development Using Developer Frameworks

To develop enterprise solutions that search, display, create, modify, and validate data
using web, wireless, desktop, or web services interfaces, you need to use developer
frameworks to simplify your job.

Using frameworks, developers can write code based on well-defined interfaces. This is
largely a time-saving benefit, but it also makes sense in a Java EE environment because
Java EE frameworks provide the necessary infrastructure for the enterprise
application. In other words, Java EE frameworks make the concepts expressed in the
Java EE design patterns more concrete.

The Oracle Application Development Framework (Oracle ADF) is such an end-to-end
application framework that builds on Java EE standards and open-source technologies
to simplify and accelerate implementing service-oriented applications.

To illustrate how application development can be made easy using a feature-rich
environment that facilitates the creation of complex applications, this guide includes a
master-detail application in Chapter 7.

Using Java with Oracle Database 1-7

Advanced Application Development Using Developer Frameworks

1-8 Oracle Database 2 Day + Java Developer's Guide

2

Getting Started with the Application

To develop a Java application that connects to Oracle Database, you need to ensure
that certain components are installed as required. This chapter covers the following
topics:

s What You Need to Install
= Verifying the Oracle Database Client Installation
= Installing Oracle JDeveloper

What You Need to Install

To be able to develop the sample application, you need to install the following
products and components:

= Oracle Database Server

= Oracle Database Client

= J2SE or JDK

s Integrated Development Environment
» Web Server

The following subsections describe these requirements in detail.

Oracle Database Server

To develop the Java application, you need a working installation of Oracle Database
Server with the HR schema, which comes with the database. If you choose to install the
client, then you must install the Oracle Database Server before the Oracle Database
Client installation. The installation creates an instance of Oracle Database and
provides additional tools for managing this database. The server installation is
platform-specific. For more information, refer to the following Oracle Database
installation guides and release notes:

s Oracle Database Installation Guide 11g Release 1 (11.1) for Linux
s Oracle Database Installation Guide 11g Release 1 (11.1) for Microsoft Windows

Modifying the HR Schema for the JDBC Application

The HR user account, which owns the sample HR schema used for the Java application
in this guide, is initially locked. You must log in as a user with administrative
privileges (SYS) and unlock the account before you can log in as HR.

Getting Started with the Application 2-1

What You Need to Install

If the database is locally installed, use the command prompt or console window to
unlock the account as follows:

1. Log in to SQL*Plus as a user with DBA privileges, for example:
> SQLPLUS SYS/ AS SYSDBA
Enter password: password

2. Run the following command:

> PASSWORD HR

Changing password for HR

New password: password

Retype new password: password

3. Test the connection as follows:

> CONNECT HR
Enter password: password

You should see a message indicating that you have connected to the database.

Note: For information on creating and using secure passwords with
Oracle Database, refer to Oracle Database Security Guide.

In addition, some of the constraints and triggers present in the HR schema are not in
line with the scope of the Java application created in this guide. You must remove
these constraints and triggers as follows using the following SQL statements:

DROP TRIGGER HR.UPDATE_JOB_HISTORY;

DROP TRIGGER HR.ADD_JOB_HISTORY;

DROP TRIGGER HR.SECURE_EMPLOYEES;

ALTER TABLE EMPLOYEES DROP CONSTRAINT JHIST_EMP_FK;
DELETE FROM JOB_HISTORY;

Oracle Database Client

Oracle Database Client installation is optional, but recommended. Installing Oracle
Database Client on any computer allows easy access from that system to the Oracle
Database. The installation also includes the following development tools:

s Oracle JDBC drivers

s Oracle Open Database Connectivity (ODBC) driver
= Oracle Provider for OLE DB

» Oracle Data Provider for .NET (ODP.NET)

= Oracle Services for Microsoft Transaction Server

The client installation is platform-specific. Refer to the following Oracle Database
Client installation guides for more information on installing the client:

s Oracle Database Client Installation Guide 11g Release 1 (11.1) for Linux

» Oracle Database Client Installation Guide 11g Release 1 (11.1) for Microsoft
Windows

2-2 Oracle Database 2 Day + Java Developer's Guide

What You Need to Install

J2SE or JDK

To create and compile Java applications, you need the full Java 2 Platform, Standard
Edition, Software Development Kit (J2SE SDK), formerly known as the Java
Development Kit (JDK). To create and compile applications that access databases, you
must have the full JDBC API that comes with J2SE. This download also includes the
Java Runtime Environment (JRE).

Note:

s Oracle Database does not support JDK 1.2, JDK 1.3, JDK 1.4, and
all classes12*. * files. You need to use the ojdbc5. jar and
the ojbc6 . jar files with JDK 5.n and JDK 6.7, respectively.

m Theoracle.jdbc.driver. * classes, the ojdbc4 . jar file, and
the OracleConnectionCacheImpl class are no longer
supported or available.

= JDK versioning conventions have changed from JDK version 1.n
to JDK n. Refer to the Sun Java site at the following location for
more information:

http://java.sun.com/j2se/1.5.0/docs/relnotes/version-5
.0.html

See Also: shttp://java.sun.com/javase/index. jsp for
information on installing Java

m http://java.sun.com/javase/technologies/database.js
p for information on the JDBC API

Integrated Development Environment

Web Server

For ease in developing the application, you can choose to develop your application in
an integrated development environment (IDE). This guide uses Oracle JDeveloper to
create the files for this application. For more information on installing JDeveloper,
refer to Installing Oracle JDeveloper.

The sample application developed in this guide uses JavaServer Pages (JSP)
technology to display information and accept input from users. To deploy these pages,
you need a Web server with a servlet and JSP container, such as the Apache Tomcat
application server.

This guide uses the embedded server in JDeveloper for deploying the JSP pages. It is
called the Oracle Application Server Containers for J2EE server, or the OC4]J server for
short. If you choose not to install Oracle JDeveloper, then any Web server that allows
you to deploy JSP pages should suffice.

JDeveloper supports direct deployment to the following production application
servers:

s Oracle Application Server
= BEA WebLogic

= Apache Tomcat

= IBM WebSphere

Getting Started with the Application 2-3

Verifying the Oracle Database Client Installation

» JBoss

For more information about these servers, please refer to vendor-specific
documentation.

Verifying the Oracle Database Client Installation

Oracle Database client installation is platform-specific. You need to verify that the
client installation was successful before you proceed to create the sample application.
This section describes the steps for verifying an Oracle Database client installation.

Verifying a client installation involves the following tasks:
s Checking Installed Directories and Files
» Checking the Environment Variables

s Determining the JDBC Driver Version

Checking Installed Directories and Files
Installing Oracle Java products creates the following directories:
m ORACLE_HOME/jdbc
s ORACLE_HOME /jlib
Check if the directories described in Table 2-1 have been created and populated in the
ORACLE_HOME directory.

Table 2-1 Directories and Files in the ORACLE_HOME Directory

Directory Description

/jdbc/1lib The 1ib directory contains the ojdbc5. jar and ojdbc6. jar
required Java classes. These contain the JDBC driver classes for
use with JDK 5 and JDK 6.

/jdbc/Readme. txt This file contains late-breaking and release-specific information

about the drivers, which may not have been included in other
documentation on the product.

/jlib This directory contains the orail8n. jar file. This file contains
classes for globalization and multibyte character sets support.

Note: These files can also be obtained from the Sun Microsystems
Web site. However, it is recommended to use the files supplied by
Oracle, which have been tested with the Oracle drivers.

Checking the Environment Variables

This section describes the environment variables that must be set for the JDBC Thin
Driver. You must set the classpath for your installed JDBC Thin Driver. For JDK 5, you
must set the following values for the CLASSPATH variable:

ORACLE_HOME/jdbc/1lib/ojdbc5. jar
ORACLE_HOME/jlib/orail8n.jar

Ensure that there is only one JDBC class file, such as ojdbc6 . jar, and one
globalization classes file, orail8n. jar, in the CLASSPATH variable.

2-4 Oracle Database 2 Day + Java Developer's Guide

Installing Oracle JDeveloper

Determining the JDBC Driver Version

Starting from Oracle Database 11¢ Release 1, you can get details about the JDBC
support in the database as follows:

> java -jar ojdbcé6.jar

Oracle 11.1.0.0. JDBC 4.0 compiled with JDK6

In addition, you can determine the version of the JDBC driver that you installed by
calling the getDrivervVersion method of the OracleDatabaseMetaData class.

Note: The JDBC Thin Driver requires a TCP/IP listener to be
running on the computer where the database is installed.

Example 2-1 illustrates how to determine the driver version:

Example 2-1 Determining the JDBC Driver Version
import java.sqgl.*;

import oracle.jdbc.*;

import oracle.jdbc.pool.OracleDataSource;

class JDBCVersion
{
public static void main (String args[]) throws SQLException
{
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:hr/hr@localhost:1521/XE") ;
Connection conn = ods.getConnection();

// Create Oracle DatabaseMetaData object
DatabaseMetaData meta = conn.getMetaDatal();

// gets driver info:
System.out.println("JDBC driver version is " + meta.getDriverVersion());

Installing Oracle JDeveloper

In this guide, the integrated development environment (IDE) that is used to create the
sample Java application using JDBC is Oracle JDeveloper release 10.1.3. This release of
JDeveloper is supported on the Microsoft Windows XP, Windows 2000, Windows NT,
Linux, Solaris, Mac OS X, and HP-UX operating systems. Installation of JDeveloper is
described in detail in Oracle [Developer 10g Release 3 (10.1.3) Installation Guide for the
Studio Edition, which is available online on the Oracle Technology Network at

http://www.oracle.com/technology/documentation/jdev/1013install/
install.html

This guide gives a detailed description of the JDeveloper system requirements, and all
the details about installing JDeveloper on the supported platforms. You should also
read JDeveloper 10g Release Notes, which is available online on the Oracle Technology
Network at

http://www.oracle.com/technology/products/jdev/htdocs/10.1.3.0.3
/readme.html

Getting Started with the Application 2-5

Installing Oracle JDeveloper

JDeveloper Studio Edition: Base Installation and Full Installation

JDeveloper 10.1.3 is available in three editions. Further, each of these editions is
available as the base installation and the full installation. The Studio Edition includes
Oracle ADEF, which is required for developing the master-detail application created in
this guide.

You can install either the base installation or the full installation of the JDeveloper
Studio Edition. In addition to JDeveloper, the full installation includes the required
version of Java, the specialized Oracle Java Virtual Machine for JDeveloper (OJVM),
and the online documentation, so the download file size is larger. For quicker
downloading, you can install the JDeveloper base installation.

Steps to Install JDeveloper

JDeveloper does not require an installer, because it is provided as a ZIP file. In outline,
the installation process is as follows:

1.

If you are installing the Base version, you need to have J2SE version 1.5.0_05 on
your machine. If you are installing the Full version, this J2SE is included.

Download JDeveloper version 10.1.3 Studio Edition from the Oracle Technology
Network at

http://www.oracle.com/technology/software/products/jdev/htdoc
s/softl013.html

Download the base installation (jdevstudiobasel013. zip), or the full
installation (jdevstudiol013.zip)

Unzip the downloaded file into a target installation directory.

Note: Do not install JDeveloper in any existing ORACLE_HOME. You
will not be able to uninstall it using Oracle Universal Uninstaller.

If you install jdevstudiol013.zip on a UNIX or Linux system, you have to
modify jdev.conf to specify the SDK. Set the variable SetJavaHome in the file
<jdev_install>/jdev/bin/jdev.conf to the location of your Java
installation.

For example, in a UNIX environment, if the location of your Sun J2SE SDK is in a
directory called /usr/local/java, your entry in jdev.conf would be as
follows:

SetJavaHome /usr/local/java

Other tasks that you must perform include setting the permissions for all
JDeveloper files to read, and giving all users write and execute permissions to files
in a range of JDeveloper directories.

If you are using the base installation, there are some additional setup tasks, such
as setting the location of your Java installation in the JDeveloper configuration file,
optionally installing OJVM, and downloading the online documentation so that it
is locally available.

See Also:

m http://www.oracle.com/technology/documentation/jdev
/1013install/install.html for the JDeveloper Installation
Guide

2-6 Oracle Database 2 Day + Java Developer's Guide

Installing Oracle JDeveloper

Starting JDeveloper

To start JDeveloper on Windows, run the jdev_install\jdev\bin\jdevw.exe
file, where jdev_install is the path to the location where you extract the
JDeveloper files. To use a console window for displaying internal diagnostic
information, run the jdev . exe file in the same directory instead of jdevw. exe.

To start JDeveloper on other platforms, run the jdev_install/jdev/bin/jdev
file.

Getting Started with the Application 2-7

Installing Oracle JDeveloper

2-8 Oracle Database 2 Day + Java Developer's Guide

3

Connecting to Oracle Database

This chapter is the first in a series of five chapters, each of which describes how to
create parts of a Java application that accesses Oracle Database and displays, modifies,
deletes, and updates data on it. To be able to access the database from a Java
application, you must connect to the database using a java.sqgl.Connection object.

This chapter includes the following sections:
= Connecting to Oracle Database from JDeveloper
= Setting Up Applications and Projects in JDeveloper

= Connecting to Oracle Database from a Java Application

Connecting to Oracle Database from JDeveloper

You can set up and manage database connections in JDeveloper to enable your
application to communicate with external data sources, including Oracle Database and
offline database objects. This is done using the Connection Navigator. The same
navigator is also used to manage other connections your application needs, such as
connections to application servers. The following subsections describe how you can
use the Connection Navigator to view the database and its objects and to create a
connection to the database:

» JDeveloper Connection Navigator
s Creating a Database Connection

= Browsing the Data Using the Connection Navigator

JDeveloper Connection Navigator

The Connection Navigator displays all currently defined connections. To view the
Connection Navigator, select the Connections tab in the navigator panel on the top
left-hand side of the JDeveloper display, if it is displayed, or use the View menu. For
an illustration of the default layout of the JDeveloper IDE, see Figure 1-1.

You can use the Connection Navigator to browse through the connections it displays.
In particular, for a database schema, you can also view database objects, tables, views,
and their contents.

Database connections are shown under the Database node. To view the objects in the
database, expand the connection. Expanding a schema displays nodes for the object
types in that schema. Expanding the node for an object type displays its individual
objects. When you expand a table node, you can view the structure of the table and the
data within the table.

Connecting to Oracle Database 3-1

Connecting to Oracle Database from JDeveloper

Creating a Database Connection

You can connect to any database for which you have connection details. When you
create a database connection, you must specify a user name and a password. By
default, the connection allows you to browse only the schema of the user that you
specify in the connection.

To create a connection, follow these steps:

1.
2.

Start JDeveloper.

From the View menu, select Connection Navigator. The Connection Navigator is
displayed, showing you a list of the available connections.

Right-click Database, and from the shortcut menu, select New Database
Connection. The Create Database Connection wizard is displayed. Click Next on
the Welcome screen. The Type screen of the wizard is displayed.

On the Type screen, do not change the default values for the connection name and
type, DBConnectionl and Oracle (JDBC).Click Next. The Authentication
screen of the wizard is displayed.

On the Authentication screen, enter HR in both the Username and Password fields.
Do not enter a value for Role, and select Deploy Password. Click Next. The
Connection screen of the wizard is displayed.

In the Connection screen, you must provide information about the computer
where your database is located. Your database administrator should provide you
with this information.

Enter the following information:
— Driver: thin

— Host Name: Host name of the computer where Oracle Database
is installed

If database is on the same computer, then for the Host Name parameter, enter
localhost.

— JDBC Port: 1521
— SID: ORCL

Figure 3-1 shows the Connection screen where you enter these details.

3-2 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from JDeveloper

Figure 3—1 Specifying Connection Details

é- Create Database Connection - $tep 3 of 4: Connection

Specify connection details For the database machine. The database administrator
should be able to provide wou with this information,

Driver: | thin -

Host Mame: |I0calhost

|
|
IDEC Port: [1521 |
|

() 1o [oRrcL

() Service Marne:

[Enter Custom JDEC URL:

[»

[

| Help | | < Back " Mext = J| Finish || Cancel |

7. On the Test screen, you can test whether or not you can successfully connect to the
database. Click Test Connection. If the connection is successful, the word Success!
is displayed in the Status field.

8. Click Finish to create the connection and close the wizard.

Disconnecting and Reconnecting from Oracle Database in JDeveloper

To disconnect from the database in JDeveloper, in the Connection Navigator,
right-click the connection name and select Disconnect. The display in the Connection
Navigator now shows only the name of the connection, without the plus (+) symbol
for expanding the node. To reconnect to the database, right-click the connection name
and select Connect.

Browsing the Data Using the Connection Navigator

After you have successfully established a connection to the database, you can browse
its contents through the Connection Navigator. The Connection Navigator displays a
navigable, hierarchical tree structure for the database, its objects, their instances, and
the contents of each. To view the contents at each level of the hierarchy of the database
connection that you created, do the following;:

1. The Database node in the Connection Navigator now shows a node with the name
of your connection. Click the plus symbol (+) to the left of the connection name to
expand the navigation tree. The name of the schema to which you connected, in
this case HR, is displayed.

2. To view the list of all the objects in the HR schema, expand the HR navigation tree.
To display a list of the instances of an object type, for example Tables, expand the
Table navigation tree.

Connecting to Oracle Database 3-3

Connecting to Oracle Database from JDeveloper

Figure 3-2 Accessing Database Objects in the Connection Navigator

QCUnnections Mavigator]

® W@V

4 Connections

-] Application Server

[]---D BAM Server

=] Database

Ea JBConnectionl
B & HR

[-_7] Functions

B[] Java Classes

[-[27] Materiglized View Logs

-] Materiglized Views

-7 Packages

£

£

£

7] Procedures

0[] sequences

]5] SYNOnYMms

EID Tables

- COUNTRIES
- DEPARTMENTS
- {E EMPLOYEES
-{E 10B_HISTORY
- 1085

{E LOCATIONS
[rREGIONS
Fe-[7) Triggers

-7 Types

-] Views

-] Inteqration Server

-] Rule Engines
[#
[

¢ 7] UDDT Registry
b 7] WehDaY Server

3. The Structure window below the navigator shows the detailed structure of any
object selected in the navigator. Select a table in the navigator (for example
Employees) to see the columns of that table in the Structure window.

3-4 Oracle Database 2 Day + Java Developer's Guide

Setting Up Applications and Projects in JDeveloper

Figure 3-3 Viewing the Table Structure and Data

é- Oracle JDeveloper, : HR. EMPLOY EES@DBConnection

File Edit “iew Search Mavigaste FRun Debug Refactor Versioning Tools Window Help
CEHFO- 0 VOeNERSALAaN A ->-S-DEFSEEIE
DConnections Mavigator |)| [ERemPLovEEs | (=]
IR ™Y e | Mame | Type | MetmuuL [o
T . — 4 EMPLOYEE _ID MUMEER(E, 0) o
5 £ (0 Materiaied Views = FIRST_NAME VARCHARZ(20)
a r——‘ Packages LAST_MAME VARCHARZ(Z5) of
B3 Pracedures o EMAIL VARCHARZ(25) o
---D Sequences PHOME_MUMBER. WARCHARZ(20)
"'Eil Jynanyms I HIRE_DWATE DATE
{3 Tables I0E_ID VARCHARZ(10) <
- - counTrIES : SALARY MUMBER(S, 2}
i[5 DEPARTMENTS COMMISSION_PCT MUMEBER(Z, 2)
3 EMPLOVEES MAMAGER _ID MUMBER(E, 0)
i 10B_HISTORY | CEPARTMEMT _ID MWUMBER(4, 0)
- J085
[LOCATIONS | |
[REGIONS b
ZEMPLOYEES - Struckre | =]
| g
=7 Columns |~ |
------ B empLOYEE_ID
------ B FIRsT_MaME
------ B LasT_ame
------ B eman
------ B PHOME_MUMBER. —
------ B HIRE_DATE
------ B oe_0
------ B saLary
------ B commIssIoN_PCT
------ B MaNAGER_ID =
ME DERSRTHENTID B Struckure | Data
4 Editing

4. If you double-click a table in the navigator, the structure of that table is displayed
in the main editing area of the window. It includes details about all the columns,
such as Name, Type, and Size, so you can browse the table definition.

To view the data from a table, select the Data tab below the table structure. You
can now view and browse through the table data.

5. You can also edit the objects in the Connection Navigator. To edit a table,
right-click the table and select Edit from the shortcut menu. A dialog box allows
you to make changes to the selected table.

Setting Up Applications and Projects in JDeveloper

In JDeveloper, you create your work in an application, within which you can organize
your work into a number of projects. JDeveloper provides a number of application
templates, to help you to create the project structure for standard types of application
relatively quickly and easily. At the time you create your application in JDeveloper,
you can choose the application template that matches the type of application you will
be building.

The application template you select determines the initial project structure (the named
project folders within the application) and the application technologies that will be
included. You can then add any extra libraries or technologies you need for your
particular application, and create additional projects if you need them.

Connecting to Oracle Database 3-5

Setting Up Applications and Projects in JDeveloper

Using the JDeveloper Application Navigator

The Application Navigator displays all your applications and projects. When you first
start JDeveloper, the Application Navigator is displayed by default on the left side of
the JDeveloper IDE.

To view the Application Navigator when it is not displayed, you can click the
Applications tab in the navigator panel on the top left-hand side of the JDeveloper
display, or select Application Navigator from the View menu.

The Application Navigator shows a logical grouping of the items in your projects. To
see the structure of an individual item, you can select it and the structure is displayed
in the Structure window.

From the Application Navigator, you can display items in an appropriate default
editor. For example, if you double-click a Java file, the file opens in the Java Source
Editor, and if you double-click a JavaServer Pages (JSP) file, it opens in the JSP/HTML
Visual Editor.

Creating an Application and a Project

To get started with JDeveloper, you must create an application and at least one project
in which to store your work, as follows:

1. Inthe Application Navigator, right-click Applications, and select New
Application from the shortcut menu. The Create Application Workspace dialog
box is displayed, which is shown in Figure 3—4.

2. Enter HRApp in the Application Name field, and in the Application Template list,
select No Template [All Technologies]. Click OK. The Create Project dialog box is
displayed.

Figure 3—-4 Creating an Application

& Create Application (3]
Enter the name and location for the new application and

specify the application template to use, (:-j

Application Narme:
[HRADp |

Directory Mame:

|C:'I,JDeveIoper'l,jdev'l,mywork‘l,HRP.pp || Browse, ., |

Application Package Prefix:

Application Template:

|N0 Template [all Technologies] - | | Manage Templates. .. |

Template Description:

This application template consists of a single project configured to allow easy access ko
all IDeveloper bechnologies,

[

| Help | | [0]4 J | Cancel |

3. On the Create Project dialog box, enter view as the name of the project.
4. The new HRApp application is displayed in the Application Navigator.

5. Save your application. To do this, from the File menu, select Save All.

3-6 Oracle Database 2 Day + Java Developer's Guide

Setting Up Applications and Projects in JDeveloper

Viewing the Javadoc and Source Code Available in the Project Scope

You can view the Javadoc or the code for any of the classes available in the project
technology scope within JDeveloper. In addition, you can view the details of all the
methods available for those classes.

For example, to see the code or Javadoc for the Connection class, do the following;:

1. With your project selected in the Application Navigator, from the Navigate menu
select Go to Java Class. You can also do this for a specific file in your project.

2. In the Go to Java Class dialog box, select Source or Javadoc.

3. Enter the name of the class you want to view in the Name field, or click Browse to
find the class. For the Connection class, start to enter Connection, and from the
displayed list select Connection (java.sql).

Figure 3-5 Selecting the Class to View the Javadoc in JDeveloper

Go to Java Class

Enter the class or interface name,

Mame: |C0nnection || Brawse... |

g Connection {java.sgl)

Connection { com.sun.corba.se. pepttransport)

[

Connection { com.sun.corba.se.spi.legacy.connection)

Connection { com.sun jndi.ldap)
Connection { sun.rmitransport)
ConnectionAcceptor (sun.rmitransparticp)

ConnectionAttributes { sun jdbe.odbcee)

OO O

ConnectionCache (com.sun.corba.se.peptiranspornt)

4. Click OK.

Connecting to Oracle Database 3-7

Connecting to Oracle Database from a Java Application

Figure 3—-6 Javadoc Display in JDeveloper

& Oracle JDeveloper - HRApp. jws : view. jpr : Connection (Java 2 Platform SE 5.0)
Ele Edt ew Jearch [Haigste Pun [shug Refjctor Nersipning ookt Window Heln
EeEad 0-9- 9® XBN /4 Ada- - 2 -DE@FA@NERDD

ﬁwmmm [=) | EHemprovees | (EbCormection (lava 2 Flatform SE 500 | I-J

RRE®Ea0:EHd ameeon _

"_am* Interface Connection f]|
1 [5] view

public interface Connection

LiConnections Havagator =
X ay A ith a specific database. SOL d and
T 5103 teined connection [session) with a specific database staternents are executed an
i —! Packages results are refumed within the context of 3 connecton.
#1- [0 Procedunes
#-|0 Sequences
-] Svnonyms A Connection bbject's database 5 able to prowide infarmaten descnbing its tables,
-1 Tables
B8 counmmies ite supported SOL grammar, its stored procedures, the capabities of this connection,
I perarTHENTS
EH EMPLOVEES and so0 on. Thes information is obtaned with the getMetabata method
8 28 HisToRy

V5 Help - Structur '
|k - Struchurs Mete: By default @ Connection objectis in auto-commit mode, which means that it
automatically commits changes after exacuting each staterment. i auto-cammit mode

has been disabled, the method «ommit must be called explicithy in order to commit

changes, atherease, database changes will nat be saved

A new Connection object created using the JOBC 2.1 core AP has an initizlly empty |5
|4l [s}
el Cortent |4 | 3! |

¢ oo |

Connecting to Oracle Database from a Java Application

So far, you have seen how to connect to the database from JDeveloper. To initiate a
connection from the Java application, you use the Connection object from the JDBC
application programming interface (API).

This section describes connecting to the database from the Java application in the
following subsections:

= Overview of Connecting to Oracle Database
= Specifying Database URLs

» Creating a Java Class in JDeveloper

» Java Libraries

» Adding JDBC and JSP Libraries

= Importing JDBC Packages

s Declaring Connection-Related Variables

» Creating the Connection Method

Overview of Connecting to Oracle Database

In Java, you use an instance of the DataSource object to get a connection to the
database. The DataSource interface provides a complete replacement for the
previous JDBC DriverManager class. Oracle implements the
javax.sqgl.DataSource interface with the OracleDataSource class in the

3-8 Oracle Database 2 Day + Java Developer’s Guide

Connecting to Oracle Database from a Java Application

oracle. jdbc.pool package. The overloaded getConnection method returns a
physical connection to the database.

Note: The use of the DriverManager class to establish a connection
to a database is deprecated.

You can either set properties using appropriate setxxx methods for the DataSource
object or use the getConnection method that accepts these properties as input
parameters.

Important DataSource Properties are listed in Table 3-1.

Table 3—1 Standard Data Source Properties

Name Type Description
databaseName String Name of the particular database on the server. Also known as the service name
(or SID) in Oracle terminology. For Oracle Database, this is ORCL by default.
dataSourceName String Name of the underlying data source class.
description String Description of the data source.
networkProtocol String Network protocol for communicating with the server. For Oracle, this applies
only to the JDBC Oracle Call Interface (OCI) drivers and defaults to tcp.
password String Password for the connecting user.
portNumber int Number of the port where the server listens for requests
serverName String Name of the database server
user String User name to be used for login
driverType String Specifies the Oracle JDBC driver type. It can be either oci or thin.
This is an Oracle-specific property.
url String Specifies the URL of the database connect string.You can use this property in
place of the standard portNumber, networkProtocol, serverName, and
databaseName properties.
This is an Oracle-specific property.
If you choose to set the url property of the DataSource object with all necessary
parameters, then you can connect to the database without setting any other properties
or specifying any additional parameters with the getDBConnection method. For
more information on setting the database URL, refer to the Specifying Database URLs
section.
Note: The parameters specified through the getConnection
method override all property and url parameter settings previously
specified in the application.
See Also: Oracle Database JDBC Developer's Guide and Reference
Specifying Database URLs

Database URLs are strings that you specify for the value of the url property of the
DataSource object. The complete URL syntax is the following:

jdbc:oracle:driver_type: [username/password] @database_specifier

Connecting to Oracle Database 3-9

Connecting to Oracle Database from a Java Application

The first part of the URL specifies which JDBC driver is to be used. The supported
driver_type values for client-side applications are thin and oci. The brackets
indicate that the user name and password pair is optional. The database_
specifier value identifies the database to which the application is connected.

The following is the syntax for thin-style service names that are supported by the Thin
driver:

jdbc:oracle:driver_ type: [username/password]@//host_name:port_
number: SID

For the sample application created in this guide, if you include the user name and
password, and if the database is hosted locally, then the database connection URL is as
shown in Example 3-1.

Example 3—1 Specifying the url Property for the DataSource Object
jdbc:oracle:thin:hr/hr@localhost:1521:UORCL

Using the Default Service Feature of the Oracle Database Client

Oracle Database comes with a new connection feature. If you install the Oracle
Database client, then you need not specify all the details in the database specifier part
of the connection URL. Under certain conditions, the Oracle Database connection
adapter requires only the host name of the computer where the database is installed.

Because of this feature introduced in Oracle Database, some parts of the JDBC
connection URL syntax become optional:

jdbc:oracle:driver_ type: [username/password]@[//]1host_
name| :port] [:ORCL]

In this URL:
= //isoptional.
= :portis optional
Specify a port only if the default Oracle Net listener port (1521) is not used.
= :ORCL (or the service name) is optional.

The connection adapter for the Oracle Database Client connects to the default
service on the host. On the host, this is set to ORCL in the 1istener.ora file.

Example 3-2 shows a basic configuration of the 1istener.ora file, where the default
service is defined.

Example 3-2 Default Service Configuration in listener.ora

MYLISTENER = (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=tcp) (HOST=test555) (PORT=1521))

)
DEFAULT_SERVICE_MYLISTENER=dbjf.regress.rdbms.dev.testserver.com

SID_LIST _MYLISTENER = (SID_LIST=

(SID_DESC=(SID_NAME=dbjf) (GLOBAL_
DBNAME=dbjf.regress.rdbms.dev.testserver.com) (ORACLE_HOME=/test/oracle))
)

After making changes to the 1istener.ora file, you must restart the listener with
the following command:

3-10 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

> lsnrctl start mylistener

The following URLSs should work with this configuration:

jdbc:oracle:thin:@//test555.testserver.com
jdbc:oracle:thin:@//test555.testserver.com:1521
jdbc:oracle:thin:@test555.testserver.com
jdbc:oracle:thin:@test555.testserver.com:1521

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=test555.testserver.com
) (PORT=1521)))

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=test555.testserver.com
)))
jdbc:oracle:thin:@(DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=test555.testserver.com
) (PORT=1521)) (CONNECT_DATA= (SERVICE_NAME=)))

Note: Default service is a new feature in Oracle Database 11g Release
1. If you use any other version of the Oracle Database Client to
connect to the database, then you must specify the SID and port
number.

Creating a Java Class in JDeveloper

The first step in building a Java application is to create a Java class. The following
instructions describe how you create a class called DataHandler, which will contain
the methods for querying the database and modifying the data in it.

1. In the Application Navigator, right-click the View project, and from the shortcut
menu, select New.

2. Inthe New Gallery, select the General category. In the Items list, select Java
Class, and click OK. The Create Java Class dialog box is displayed.

3. In the Create Java Class dialog box, enter DataHandler as the class Name, and
hr as the Package. Do not change the default values of the Optional Attributes,
and click OK. The Create Java Class dialog box with the appropriate values
specified is shown in Figure 3-7.

Figure 3—7 Creating a Java Class

Create Java Class &
Java Class &
Enter the details of wour new —
class,
Mame: | DakaHandler |
Package: |hr | | Browse. .. |
Extends: |java.lang.0bject |v| | Browse. .. |

Optional Attributes
Public
Generate Default Construckor
[] Generate Main Method

| Help | | (o4 | | Cancel |

4. The skeleton DataHandler class is created and is displayed in the Java Source
Editor. The package declaration, the class declaration, and the default constructor
are created by default. Figure 3-8 shows the class displayed in the Java Source
Editor, ready for you to add your Java code:

Connecting to Oracle Database 3-11

Connecting to Oracle Database from a Java Application

Java Libraries

Figure 3-8 Java Source Editor

@DataHandler.java
package hr:

Elpuhlic: class DataHandler

= public DataHandler() {

}

Oracle JDeveloper comes with standard libraries to help Java application
programming. These libraries include API support for Application Development
Framework (ADF), Oracle libraries for JDBC, JSP, and so on.

To use JDBC in your project, you import the Oracle JDBC library into the project.
Similarly, to use JSP technology, you import the JSP Runtime library.

Overview of the Oracle JDBC Library
Important packages of the Oracle JDBC library include the following;:

s oracle.jdbc: The interfaces of the oracle. jdbc package define the Oracle
extensions to the interfaces in the java. sql package. These extensions provide
access to Oracle SQL-format data and other Oracle-specific features, including
Oracle performance enhancements.

s oracle.sqgl: The oracle.sqgl package supports direct access to data in SQL
format. This package consists primarily of classes that provide Java mappings to
SQL data types and their support classes.

s oracle.jdbc.pool: This package includes the OracleDataSource class that
is used to get a connection to the database. The overloaded getConnection
method returns a physical connection to the database.

Overview of the JSP Runtime Library

This library includes the classes and tag libraries required to interpret and run JSP files
on the OC4J server that comes with JDeveloper.

Adding JDBC and JSP Libraries

To include libraries in your project, perform the following steps:

1. Double-click the View project in the Application Navigator to display the Project
Properties dialog box.

2. (Click Libraries, and then click Add Library. The Add Library dialog box is
displayed with a list of the available libraries for the Java2 Platform, Standard
Edition (J2SE) version is displayed.

3. Inthe Add Library dialog box, scroll through the list of libraries in the Extension
folder. Select the JSP Runtime library and click OK to add it to the list of selected
libraries for your project. Similarly, add the Oracle JDBC library. Figure 3-9 shows
the Oracle JDBC library added to the view project.

3-12 Oracle Database 2 Day + Java Developer's Guide

Connecting to Oracle Database from a Java Application

Figure 3-9 Importing Libraries

4,

= Add Library

----- TR

----- il I5TL 1.1 Tags

----- il Java Cache

----- “ Java Media Framework

----- il 047 Deployment: Plugin

----- il 035P Cache Tag Libraties

-----] ©I5F E3B Tag Libraries

----- il 5P EMail Tag Libraries

----- “ (1J5P File Access Tag Libraries

----- il ©J5P JESI Tag Libraries

----- il 05P 5QL Tag Libraries

----- “ 0J5P Utility Tag Libraries

----- il 03P #ML Tag Libraries

----- “ Oracle ADF DataTaq library Tag Libraries
----- il Oracle BC41 DataTag library Tag Libraties
----- “ Oracle BI Graph

----- il Oracle Help for Java

----- il Oracle Intermedia

----- “ Oracle Inkermedia ADF Swing

Oracle JDBC

[»

q

| Mew, .. || Load Dir...]

Change... |

Description ‘

|
Add Jar[Directary... |
|
|

Add Library. ..

Remove

Vigw

Help | | (0] 4 _‘ | Cancel

Click OK.

Importing JDBC Packages
To use JDBC in the Java application, import the following JDBC packages:

1.

[o]4

_J | Cancel

If the DataHandler. java class is not already open in the Java Source Editor, in
the Application Navigator, expand the View project, Application Sources, and
your package (hr) and double-click DataHandler.java.

At the end of the generated package declaration, on a new line, enter the import
statements shown in Example 3-3.

Example 3-3 Importing Packages in a Java Application

package hr;
import java.sqgl.Connection;
import oracle.jdbc.pool.OracleDataSource;

Declaring Connection-Related Variables

Connection information is passed to the connection method by using the following
connection variables: the connection URL, a user name, and the corresponding
password.

Use the Java Source Editor of JDeveloper to edit the DataHandler. java class as
follows:

1.

String jdbcUrl = null;
String userid = null;
String password = null;

After the DataHandler constructor, on a new line, declare the three connection
variables as follows:

Connecting to Oracle Database 3-13

Connecting to Oracle Database from a Java Application

These variables will be used in the application to contain values supplied by the
user at login to authenticate the user and to create a connection to the database.
The jdbcUr1 variable is used to hold the URL of the database that you will
connect to. The userid and password variables are used to authenticate the user
and identify the schema to be used for the session.

Note: The login variables have been set to null to secure the
application. At this point in the guide, application login functionality
is yet to be built into the application. Therefore, to test the application
until login functionality is built in, you can set values in the login
variables as follows:

Set the jdbcUr1 variable to the connect string for your database.

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";

Set the variables userid and password to hr as follows:
String userid = "hr";

String password = "hr";

Make sure you reset these to null as soon as you finish testing.

For more information on security features and practices, refer to
Oracle Database Security Guide and the vendor-specific documentation
for your development environment.

2. On anew line, declare a connection instance as follows:

Connection conn;

Your Java class should now contain the code in Example 3—4.

Example 3-4 Declaring Connection Variables and the Connection Object

package hr;
import java.sqgl.Connection;
import oracle.jdbc.pool.OracleDataSource;

public class DataHandler {
public DataHandler () {
}
String jdbcUrl = null;
String userid = null;
String password = null;
Connection conn;

Creating the Connection Method

To connect to the database, you must create a method as follows:
1. Add the following method declaration after the connection declaration:

public void getDBConnection() throws SQLException

The Java Code Insight feature displays a message reminding you to import the
SQLException error handling package. Press the Alt+Enter keys to import it. The

Oracle Database 2 Day + Java Developer’'s Guide

Connecting to Oracle Database from a Java Application

import java.sqgl.SQLException statement is added to the list of import
packages.

2. At the end of the same line, add an open brace ({) and then press the Enter key.
JDeveloper automatically creates the closing brace, and positions the cursor in a
new empty line between the braces.

3. Onanew line, declare an OracleDataSource instance as follows:

OracleDataSource ds;

4. Enter the following to create a new OracleDataSource object:

ds = new OracleDataSource() ;

5. Start to enter the following to set the URL for the DataSource object:
ds.setURL (jdbcUrl) ;
Java Code Insight prompts you by providing you with a list of available
OracleDataSource methods. Scroll through the list to select the

setURL (String) method, and press the Enter key to select it into your code. In
the parentheses for this function, enter jdbcUrl.

Figure 3-10 shows how the Java Code Insight feature in JDeveloper helps you
with inserting code.

Figure 3—-10 Java Code Insight

public void getDEConnection throws S0LException{

=]

OracleDataSource ds;

ds = new OracleDataSourcer):

9&-@5&&1

g selURL(Sting)

5 setllser{String) void

6. On the next line, enter the following:

conn = ds.getConnection(userid,password) ;

As usual, Java Code Insight will prompt you with a list of methods for ds. This
time, select getConnection(String, String). In the parentheses, enter
userid,password. End the line with a semicolon (;).

Your code should look similar to the code in Example 3-5.

Example 3-5 Adding a Method to Connect to the Database
package hr;

import java.sql.Connection;

import java.sql.SQLException;

import oracle.jdbc.pool.OracleDataSource;

public class DataHandler {
public DataHandler () {

Connecting to Oracle Database 3-15

Connecting to Oracle Database from a Java Application

}

String jdbcUrl = null;

String userid = null;

String password = null;

Connection conn;

public void getDBConnection() throws SQLExceptionf{
OracleDataSource ds;
ds = new OracleDataSource() ;
ds.setURL (jdbcUrl) ;
conn=ds.getConnection (userid, password) ;

}

—

7. Compile your class to ensure that there are no syntax errors. To do this, right-click
in the Java Source Editor, and select Make from the shortcut menu. A
Successful compilation message is displayed in the Log window below the

Java Source Editor window.

3-16 Oracle Database 2 Day + Java Developer's Guide

4

Querying for and Displaying Data

This chapter adds functions and code to the DataHandler . java file for querying the
database. This chapter has the following sections:

Overview of Querying for Data in Oracle Database

Querying Data from a Java Application

Creating JSP Pages

Adding Dynamic Content to the JSP Page: Database Query Results
Filtering a Query Result Set

Adding Login Functionality to the Application

Testing the JSP Page

Overview of Querying for Data in Oracle Database

In outline, to query Oracle Database from a Java class to retrieve data, you must do the
following:

1.

4.

Create a connection by using the OracleDataSource.getConnection method.
This is covered in Chapter 3, "Connecting to Oracle Database".

Define your SQL statements with the methods available for the connection object.
The createstatement method is used to define a SQL query statement.

Using the methods available for the statement, run your queries. You use the
executeQuery method to run queries on the database and produce a set of rows
that match the query conditions. These results are contained in a ResultSet
object.

You use a ResultSet object to display the data in the application pages.

The following sections describe important Java Database Connectivity (JDBC)
concepts related to querying the database from a Java application:

SQL Statements
Query Methods for the Statement Object
Result Sets

See Also: Oracle Database JDBC Developer's Guide and Reference

Querying for and Displaying Data 4-1

Overview of Querying for Data in Oracle Database

SQL Statements

Once you connect to the database and, in the process, create a Connection object, the
next step is to create a Statement object. The createStatement method of the
JDBC Connection object returns an object of the JDBC Statement type.

Example 4-1 shows how to create a Statement object.

Example 4-1 Creating a Statement Object

Statement stmt = conn.createStatement();
The Statement object is used to run static SQL queries that can be coded into the
application.

In addition, for scenarios where many similar queries with differing update values
must be run on the database, you use the OraclePreparedStatement object, which
extends the Statement object. To access stored procedures on Oracle Database, you
use the OracleCallableStatement object.

See Also:

= Using OraclePreparedStatement

= Using OracleCallableStatement

» Oracle Database [DBC Developer’s Guide and Reference

Query Methods for the Statement Object

To run a query embedded in a Statement object, you use variants of the execute
method. Important variants of this method are listed in Table 4-1.

Table 4-1 Key Query Execution Methods for java.sql.Statement

Method Name Return Type Description

execute (String sqgl) Boolean Runs the given SQL statement, which
returns a Boolean response: true if the
query runs successfully and false if it

does not.

addBatch () void Adds a set of parameters to a
PreparedStatement object batch of
commands.

executeBatch () int[] Submits a batch of commands to the

database for running, and returns an
array of update counts if all commands
run successfully.

executeQuery (String sql) ResultSet Runs the given SQL statement, which
returns a single ResultSet object.

executeUpdate (String sgl) int Runs the given SQL statement, which
may be an INSERT, UPDATE, or DELETE
statement or a SQL statement that returns
nothing, such as a SQL DDL statement.

See Also:
m http://java.sun.com/j2se/1.5.0/docs/api/index.html

4-2 Oracle Database 2 Day + Java Developer's Guide

Overview of Querying for Data in Oracle Database

Result Sets

A ResultsSet object contains a table of data representing a database result set, which
is generated by executing a statement that queries the database.

A cursor points to the current row of data in a ResultSet object. Initially, it is
positioned before the first row. You use the next method of the ResultSet object to
move the cursor to the next row in the result set. It returns false when there are no
more rows in the ResultSet object. Typically, the contents of a ResultSet object
are read by using the next method within a loop until it returns false.

The ResultsSet interface provides accessor methods (getBoolean, getLong,
getInt, and so on) for retrieving column values from the current row. Values can be
retrieved by using either the index number of the column or the name of the column.

By default, only one ResultSet object per Statement object can be open at the same
time. Therefore, to read data from multiple ResultSet objects, you must use multiple
Statement objects. A ResultSet object is automatically closed when the
Statement object that generated it is closed, rerun, or used to retrieve the next result
from a sequence of multiple results.

See Also:

s http://java.sun.com/j2se/1l.3/docs/guide/jdbc/getsta
rt/mapping.html for more information on mapping SQL types
and Java types

» Oracle Database JDBC Developer’s Guide and Referencefor more
information on result sets and their features

Features of ResultSet Objects

Scrollability refers to the ability to move backward as well as forward through a
result set. You can also move to any particular position in the result set, through either
relative positioning or absolute positioning. Relative positioning lets you move a
specified number of rows forward or backward from the current row. Absolute
positioning lets you move to a specified row number, counting from either the
beginning or the end of the result set.

When creating a scrollable or positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set. A sensitive result set can see changes
made to the database while the result set is open, providing a dynamic view of the
underlying data. Changes made to the underlying column values of rows in the result
set are visible. Updatability refers to the ability to update data in a result set and then
copy the changes to the database. This includes inserting new rows into the result set
or deleting existing rows. A result set may be updatable or read-only.

Summary of Result Set Object Types

Scrollability and sensitivity are independent of updatability, and the three result set
types and two concurrency types combine for the following six result set categories:

s Forward-only/read-only
= Forward-only/updatable
= Scroll-sensitive/read-only

= Scroll-sensitive/updatable

Querying for and Displaying Data 4-3

Querying Data from a Java Application

= Scroll-insensitive/read-only
= Scroll-insensitive/updatable

Example 4-2 demonstrates how to declare a scroll-sensitive and read-only ResultSet
object.

Example 4-2 Declaring a Scroll-Sensitive, Read-Only ResultSet Object

stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_
READ_ONLY) ;

Note: A forward-only updatable result set has no provision for
positioning at a particular row within the ResultSet object. You
can update rows only as you iterate through them using the next
method.

Querying Data from a Java Application

This section discusses how you can use JDeveloper to create a Java class that queries
data in Oracle Database in the following sections:

s Creating a Method in JDeveloper to Query Data
s Testing the Connection and the Query Methods

Creating a Method in JDeveloper to Query Data

The following steps show you how to add a simple query method to your
DataHandler. java class. If DataHandler. java is not open in the JDeveloper
integrated development environment (IDE), double-click it in the Application
Navigator to display it in the Java Source Editor.

1. Inthe DataHandler class, add the following import statements after the existing
import statements to use the Statement and ResultSet JDBC classes:

import java.sql.Statement;
import java.sqgl.ResultSet;
2. After the connection declaration, declare variables for Statement,

ResultSet, and String objects as follows:

Statement stmt;
ResultSet rset;
String query;
String sglString;

3. Create a method called getAl1Employees, which will be used to retrieve
employee information from the database. Enter the signature for the method:

public ResultSet getAllEmployees() throws SQLException({

4. Press Enter to include a closing brace for this method, and a new line in which to
start entering the method code.

5. (Call the getDBConnection method created earlier:

getDBConnection() ;

4-4 Oracle Database 2 Day + Java Developer's Guide

Querying Data from a Java Application

Use the createStatement method of the Connection instance to provide
context for executing the SQL statement and define the ResultSet type. Specify a
read-only, scroll-sensitive ResultSet type:

stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_
READ_ONLY) ;

The Java Code Insight feature can help you ensure that the statement syntax is
correct.

Define the query and print a trace message. The following code uses a simple
query: it returns all the rows and columns in the Employees table and the data is
ordered by the Employee ID:

query = "SELECT * FROM Employees ORDER BY employee_id";
System.out.println("\nExecuting query: " + query);

Run the query and retrieve the results in the ResultSet instance as follows:

rset = stmt.executeQuery(query) ;

Return the ResultSet object:

return rset;

10. Save your work. From the File menu, select Save All.

The code for the getA11Employees method should be as shown in Example 4-3.

Example 4-3 Using the Connection, Statement, Query, and ResultSet Objects

public ResultSet getAllEmployees() throws SQLExceptionf{
getDBConnection() ;
stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY) ;

query = "SELECT * FROM Employees ORDER BY employee_id";
System.out.println("\nExecuting query: " + query);
rset = stmt.executeQuery (query) ;
return rset;

Testing the Connection and the Query Methods

In the following steps, you create a simple Java class to test the methods in the
DataHandler.java class. To test your application at this stage, you can temporarily
set the value of the jdbcUr1 variable to the connection string for your database and
set the values of the userid and password variables to the values required to access
the HR schema ("hr" in each case).

1.

Open the DataHandler. java class in the Java Visual Editor from the
Application Navigator.

Change the jdbcUrl, userid and password variables to contain the values
required for the HR schema as follows:

String jdbcUrl = "connect-string"
String userid = "hr";
String password = "hr";

where connect-stringis, for example:

jdbc:oracle:thin:@dbhost.companyname.com: 1521 :0RCL

Querying for and Displaying Data 4-5

Querying Data from a Java Application

10.

See Also: Declaring Connection-Related Variables in Chapter 3

Create a new Java class in the hr package. Name it JavaClient, make it a public
class, and generate a default constructor and a main method. The skeleton
JavaClient.java class is created and displayed in the Java Source Editor.

See Also: Chapter 3 for information on creating a Java class file

Import the ResultSet package:

import java.sqgl.ResultSet;

In the main method declaration, add exception handling as follows:

public static void main(String[] args) throws Exception({

Replace the JavaClient object created by default with a DataHandler object.
Locate the following line:

JavaClient javaClient = new JavaClient();

Replace this with:

DataHandler datahandler = new DataHandler();

Define a ResultSet object to hold the results of the getA11Employees query,
and iterate through the rows of the result set, displaying the first four columns,
Employee Id,First Name, Last Name, and Email. To do this, add the
following code to the main method:

ResultSet rset = datahandler.getAllEmployees();

while (rset.next
System.out.print

() |
In(
rset.getString(2)
(3)
(4)

rset.getInt (1) + " " +
gy
+

)i

rset.getString "4

rset.getString
}

Compile the JavaClient. java file to check for compilation errors. To do this,
right-click in the Java Source Editor, and select Make from the shortcut menu.

If there are no errors in compilation, you should see the following message in the
Log window:

Successful compilation: 0 errors, 0 warnings

Run the JavaClient . java file. To do this, right-click in the Java Source Editor
window and select Run from the shortcut menu.

Examine the output in the Log window. Notice the trace message, followed by the
four columns from the Employees table as shown in Figure 4-1.

4-6 Oracle Database 2 Day + Java Developer's Guide

Creating JSP Pages

Figure 4-1 Test Output for Query Method in Log Window

Running: view,jpr - Log

Executing ouery: SELECT * FROM Ewployees ORDER BY ewployes_id
100 Stewven Hing SEING

101 Neena Eochhar NEOCHHAER

10Z Lex De Haan LDEHRAN

102 Alexander Hunold AHUNOLD

104 BEruce Ernst BEERNET

108 Dawid Austin DAUSTIN

10& Valli Pataballa VPATABAL

107 Diana Lorentz DLORENTZ

1. MOTMEEMLT

i
L4]

[Running: view.jpr

11. When you finish testing the application, set the jdbcUr1l, userid and password
variables in DataHandler . java back tonull.

See Also: Declaring Connection-Related Variables

Creating JSP Pages

The HRApp application uses JavaServer Pages (JSP) technology to display data. JSP
technology provides a simple, fast way to create server-independent and
platform-independent dynamic Web content. A JSP page has the . jsp extension. This
extension notifies the Web server that the page should be processed by a JSP container.
The JSP container interprets the JSP tags and scriptlets, generates the content required,
and sends the results back to the client as an HTML or XML page.

To develop JSP pages, you use some or all of the following:
= HTML tags to design and format the dynamically generated Web page

= Standard JSP tags or Java-based scriptlets to call other components that generate
the dynamic content on the page

= JSP tags from custom tag libraries that generate the dynamic content on the page

See Also: Sun Microsystems documentation for JSP at
http://java.sun.com/products/jsp/

In this section, you will see how you can create JSP pages for the application in this

guide in the following sections:

s Overview of Page Presentation

= Creating a Simple JSP Page

= Adding Static Content to a JSP Page

= Adding a Style Sheet to a JSP Page

Overview of Page Presentation
In the application created in this guide, JSP pages are used to do the following tasks:
= Display data.
» Hold input data entered by users adding employees and editing employee data.

Querying for and Displaying Data 4-7

Creating JSP Pages

= Hold the code needed to process the actions of validating user credentials and
adding, updating, and deleting employee records in the database.

Because JSP pages are presented to users as HTML or XML, you can control the
presentation of data in the same way as you would for static HTML and XML pages.
You can use standard HTML tags to format your page, including the title tag in the
header to specify the title to be displayed for the page.

You use HTML tags for headings, tables, lists and other items on your pages. Style
sheets can also be used to define the presentation of items. If you use JDeveloper to
develop your application, you can select styles from a list.

The following sections describe the main elements used in the JSP pages of the sample
application:

= JSP Tags

s Scriptlets

s HTML Tags

= HTML Forms

JSP Tags

JSP tags are used in the sample application in this guide for the following tasks: to
initialize Java classes that hold the application methods and the JavaBean used to hold
a single employee record, and to forward the user to either the same or another page
in the application.

The jsp:useBean tag is used in pages to initialize the class that contains all the
methods needed by the application, and the jsp: forward tag is used to forward the
user to a specified page. You can drag the tags you need from the Component Palette
of JSP tags, and enter the properties for the tag in the corresponding dialog box that is
displayed.

See Also: shttp://java.sun.com/products/javabeans/ for
more information on JavaBeans

Scriptlets

Scriptlets are used to run the Java methods that operate on the database and to
perform other processing in JSP pages. You can drag a scriptlet tag component from
the Component Palette and drop it onto your page, ready to enter the scriptlet code. In
JDeveloper, the code for scriptlets is entered in the Scriptlet Source Editor dialog box.

In this application, you use scriplets for a variety of tasks. As an example, one scriptlet
calls the DataHandler method that returns a ResultSet object containing all the
employees in the Employees table, which you can use to display that data in your JSP
page. As another example, a scriplet is used to iterate through the same ResultSet
object to display each item in a row of a table.

HTML Tags

HTML tags are typically used for layout and presentation of the nondynamic portions
of the user interface, for example headings and tables. In JDeveloper, you can drag and
drop a Table component from the Component Palette onto your page. You must
specify the number of rows and columns for the table, and all the table tags are
automatically created.

4-8 Oracle Database 2 Day + Java Developer's Guide

Creating JSP Pages

HTML Forms

HTML forms are used to interact with or gather information from the users on Web
pages. The FORM element acts as a container for the controls on a page, and specifies
the method to be used to process the form input.

For the filter control to select which employees to display, the employees. jsp page
itself processes the form. For login, insert, edit, and delete operations, additional JSP
pages are created to process these forms. To understand how the JSP pages in this
application are interrelated, refer to Figure 1-2.

You can add a form in a JSP page by selecting it from the Component Palette of HTML
tags. If you attempt to add a control on a page outside of the form component or in a
page that does not contain a form, then JDeveloper prompts you to add a form
component to contain it.

Creating a Simple JSP Page

The following steps describe how to create a simple JSP page:

1. In the Application Navigator, right-click the View project and choose New from
the shortcut menu.

In the New Gallery, from the Filter By: list, select All Technologies.

Expand the Web Tier node and select JSP.

In the Items list, select JSP and click OK. The Create JSP Wizard is displayed.
On the JSP File screen, enter a name for the JSP page and select JSP Page.

o o ~ w N

On the Error Page Options screen, select Do Not Use an Error Page to Handle
Uncaught Exceptions in this File.

Note: You create an error page to make Java exceptions thrown by
an application more readable for the user. When you create an error
page, you specify a user-friendly interpretation of possible application
errors. However, functionally, this is not a required feature in the
application and has not been covered in this guide.

7. Do not add any JSP tag libraries at this stage. Click Next on the Tag Libraries
screen.

8. Retain the default settings on the HTML Options screen and click Finish. The new
page opens in the JSP/HTML Visual Editor and is ready for you to start adding
text and components to your web page.

Adding Static Content to a JSP Page

JDeveloper provides the Component Palette and the Property Inspector on the right
hand side of the JSP/HTML Visual Editor. You can also use the JSP Source Editor by
clicking the Source Editor tab next to the Design tab at the bottom of the page. The
Component Palette allows you to add components to the page and the Property
Inspector allows you to set the properties of the components. A blank page in the
Visual Editor is shown in Figure 4-2.

Querying for and Displaying Data 4-9

Creating JSP Pages

Figure 4-2 Adding Content to JSP Pages in the JDeveloper Visual Source Editor

& Oracle JDeveloper - HRApp. jws : wiew. jpr : C:ADeveloperijdevimyworkHRAppwiewlpublic_himlemploye... EI['EIEI
Eile E&t View 3earch Mavigate Run Debup Design Refactor Versioning Teols Window Help

B8 0-90- 90 YEH /4 ABdw- b- S-DE@FAEN
BlosteHandier.jovs | Tl enploysesisp | [BlJsvacient javs | (=) | @ component Palette

| | [B &AL B I Y S E I [N Ccamn

B |h Ponker

& Anchor

@, Applet

(=) Email Link.

£ Hewizont sl Rule
&P Hyper Link
] mags

&l Line Ereak
] Woseript L4
QScr'u:t -
EfPage Directive - Property Insp... [=]

A7 BOES R

[« |E

-

AutaFhush brug

Buffer akb
@ ContertType bext/hbml;charseb=w,,, | -]

ErrorPage 4

Exbends

Trepark

Irifor

IsELIgnared

IsErrorPage False

Thae el eee

<spiiirective. page>

- || Eoto Pags Definition

Design | Seurce | Hetory | 4 »
[Elreg
C:\Devaloper|devimywork|HRApp | visw|visw jor Seb ¢ web Edting

The following steps show how you can add text to the employees. jsp page. They
use the Visual Editor to modify the JSP. The Visual Editor is like a WYSIWYG editor
and you can use it to modify content.

1. With employees. jsp open in the Visual Editor, in the top line of your page,
enter AnyCo Corporation: HR Application. From the list of styles at the top of the
page, on the left-hand side, select Heading 2.

2. With the cursor still on the heading you added, from the Design menu select
Align, and then Center.

3. Inasimilar way, on a new line, enter Employee Data, and format it with the
Heading 3 style. Position it on the left-hand side of the page.

Adding a Style Sheet to a JSP Page

You can add a style sheet reference to your page, so that your headings, text, and other
elements are formatted in a consistent way with the presentation features, such as the
fonts and colors used in the Web pages. You can add a style sheet to the page as
follows:

1. With employees. jsp open in the Visual Editor, click the list arrow at the top
right of the Component Palette, and select CSS.

2. From the CSS list, drag JDeveloper onto your page. As soon as you select the style
sheet it is added to your page and formats the page with the JDeveloper styles.
Figure 4-3 shows the JSP Page with the content added to it in the previous section
and the JDeveloper stylesheet applied to it.

4-10 Oracle Database 2 Day + Java Developer's Guide

Adding Dynamic Content to the JSP Page: Database Query Results

Figure 4-3 Adding Static Content to the JSP Page

& Oracle JDaveloper - HRApp. jws : view. jpr : C:ADeveloperijdevimywork\HRAppwiewipublic_himbemploye... [=]@]F]
File Edit Wiew Search Mavigste Run Debug Design Refachor | Yersigning | Tools Window Help

AeE0 O-0- 9O XBD /4 A da- b- S-DEWAE N

BlDataHandler jovs | [l employeerisn | [BJsvaChent jova | =) | @i companent palette =]
@ Nore ~Joctak _ ~fmone - B B P B J U T = oS -]
Gk Cvade
AnyCo Corporation: HR Application By Bl
Employee Data ks Joeveloper
!
EPHS - Property Inspector]
rPEF BMPEDRE
| General | |
<himil= <body= <h3> 1'-'E°"=d [=
Design | Sewrce | Hetory | 4 [—
[Elrog
i\ DevaloperjdevimyworkiHR Appliewiview. jor Ingerting after H3 Seifw\ehEdu'nq

Note: In JDeveloper version 10.1.3, you can associate a stylesheet
with the JSP page while creating it in the JSP Creation Wizard. The
only difference is that you need to browse and locate the stylesheet to

be applied to the JSP page, instead of just dragging and dropping it
onto the page.

Adding Dynamic Content to the JSP Page: Database Query Results

This section includes the following subsections:

Adding a JSP useBean Tag to Initialize the DataHandler Class
Creating a Result Set

Adding a Table to the JSP Page to Display the Result Set

Adding a JSP useBean Tag to Initialize the DataHandler Class

A jsp:useBean tag identifies and initializes the class that holds the methods that run
in the page. To add a jsp:useBean tag, follow these steps:

1.
2.

Open employees. jsp in the Visual Editor.

In the Component Palette, select the JSP set of components. Scroll through the list

to select UseBean. Then, drag and drop it onto your JSP page, below the headings.

In the Insert UseBean dialog box, enter empsbean as the ID, and for the Class,

browse and select the hr . DataHandler class. Set the Scope to session, and
leave the Type and BeanName fields blank.

4,

Click OK to create the tag in the page.

Figure 4-4 shows the representation of the useBean tag in the employees. jsp page.

Querying for and Displaying Data 4-11

Adding Dynamic Content to the JSP Page: Database Query Results

Figure 4-4 useBean Representation in the employees.jsp File

® Oracle JDeveloper - HRApp. jws : view. jpr : C:WDeveloper\jdevimywork\HRA ppiviewhpublic_htmlie... [E]E]E]
Fil= Edt Wew Search Mavigate Pun Debug Design Refactor Vessioning Took ‘Window Help

Be0dg 0-0- 90 YEG /4 adda- - F-PEFHE

[BlDataHandier java | e'w}weet.ﬁp]@Jaue‘:nent.]ava | [=] i component: Palette | [=]|
0 [Nore otk <Jieee B S P B 1 YT o] 3
| 4= Expression]
AnyCo Corporation: HR Application R Falback
rd B
Employee Data ™ F
& GetProperty
.'(f.Uschm -Property Inspector | Q

PR/ BOEDL R

(General 1
Beanhame 7
@ Class e .DataHandler =
=himl= =body= <jsp:usebeanfempsheans - - = |
= || SatoPage Defirition
Design | Source | History | 4| ¥
(Elog

C:\IDevelopertidevimyworkiHRApplview\view. jor & web Editing

Creating a Result Set

The following steps describe how you can add a scripting element to your page to call
the getAl1Employees method and hold the result set data that is returned. This
query is defined in the DataHandler class, and initialized in the page by using the
jsp:useBean tag.

1. Open the employees. jsp page in the Visual Editor. In the JSP part of the
Component Palette, select Scriptlet and drag and drop it onto the JSP page next to
the representation of the UseBean.

2. In the Insert Scriptlet dialog box, enter the following lines of code, which will call
the getAl1Employees method and produce a ResultSet object:

ResultSet rset;
rset = empsbean.getAllEmployees();

Click OK. A representation of the scriptlet is displayed on the page as shown in
Figure 4-5.

Figure 4-5 Scriptlet Representation in a JSP Page

Oracle JDeveloper - HRApp.jws : view. jpr : C:\Developer\jdevimywork\HRA ppiviewpublic_htmie... [E][E]E]
Fil= Edkt Yew Search Mavigate PRun Debug Design Refactor Versioning Tooks Window Help

GE2adg 0-0- 90 YEDL /4 a8 dn- b- F-DEVIHE

IEl:watsaﬂam:|1er-]a\ra | [l employeesiop | (Bl Javatlent.java | =) | @ component Palette | 8]
) [None = oot e ~B B P B I U= =] 3
I 2P Plugin
AnyCo Corporation: HR Application [scriptet
Employee Data W seiFiopery
[Taglib Directive
® UseBean gResultS... £ @ Ussiean
scriptiet - Froperty Inspector | [
ARZ mOEN S
General
@ jsp:Scriptlet ResultSet rset;rset = ...
=himil= =body= <jsp:scriptiet> - o
|| Gato Page Defirition
Design | Source | History |_1] I
(ElLog
C:\IDeveloper|idevimyworkiHRApplviewview. jor @ web Edting

4-12 Oracle Database 2 Day + Java Developer's Guide

Adding Dynamic Content to the JSP Page: Database Query Results

3.

Select the Source tab at the bottom of the Visual Editor to see the code that has

been created for the page so far. A wavy line under ResultSet indicates that
there are errors in the code.

The Structure window on the left-hand side also indicates any errors in the page.
Scroll to the top of the window and expand the JSP Errors node. Figure 4-6 shows

how the error in the code is shown in the Structure window.

Figure 4-6 Viewing Errors in the Structure Window

:‘Eemployees.jsp - Skruckture X]

& E

I:l Errars (1)
A <IDOCTYPE HTML PUBLIC |

EQﬂbr

Source lDesign I

5. You must import the ResultSet package. To do this, click the page node in the
Structure window to display the page properties in the Property Inspector.

6. Click in the empty box to the right of the import property. Click the ellipsis
symbol (...). The import dialog box is displayed, which is shown in Figure 4-7.

Figure 4-7 Importing Packages in JDeveloper

| Dat srtandler java

(| emplovees.ise |5 Javachent fava | | =] i componerk Palette (=]
| | B ALBIYISEEES- S| -
- o |Tz Pointer =
AnyCo Corporation: HR Application =@ Mtrbute |2
Employes Data & Impart [E3) | |03 eecy |
- £ Detleration
[®useBean || [EResutts.. | Search | Hiersrchy | €5 Element
[g DriverPropertylnfo [=] [£2] EL Expression
[} ParameterMetaData -
ﬁ Preparedstatement LB
- [Fatback L=
I [eoutset TPPage Directive - Property Insp... | [
[ResukSetMet aDat. | [=
! e | |[*zs asEs =
[5QLException q :“"-'E"E"EIL,h
=l 5001 RugtoF true
! gsioﬁ;x ‘ Buffer Bkb 154
- L] @ CortentType bextfhbmljcharset=w. .. |
g Extends
=
I [Bl - F —
<jspedirective.pages | Help O] | |
-] G2t Page Definition

Design | Source | Hisbory [1

7. In the import list, select the Hierarchy tab, expand the java node, then the sql

node, and then select ResultSet. Click OK.

8. On the Source tab, examine the code to see if the import statement has been
added to the code for your page. The error should disappear from the list in the

Querying for and Displaying Data 4-13

Adding Dynamic Content to the JSP Page: Database Query Results

Structure window. Before continuing with the following sections, return to the
design view of the page by selecting the Design tab.

Adding a Table to the JSP Page to Display the Result Set

The following steps describe how you can add a table to the JSP page to display the
results of the getAl1Employees query:

1.

6.

If the employees. jsp page is not open in the Visual Editor, double-click it in the
Application Navigator to open it, and work in the Design tab. With the
employees. jsp file open in the Visual Editor, position the cursor after the
scriptlet and from the HTML Common page of the Component Palette, select the
Table component.

In the Insert Table dialog box, specify 1 row and 6 columns. Leave all Layout
properties as defaults. Click OK.

In the table row displayed on the page, enter text as follows for the headings for
each of the columns: First Name, Last Name, Email, Job, Phone, Salary. Use
Heading 4 to format the column names.

Add a scripting element for output, this time to display the values returned for
each of the columns in the table. To do this, select the table as follows. Position the
cursor on the top border of the table, and click when the cursor image changes to a
table image. From the JSP Component Palette, select Scriptlet. (You need not drag
the scriptlet into your table; it is inserted automatically.)

In the Insert Scriptlet dialog box, enter the following lines of code:

while (rset.next ())

{

out.println("<tr>");

out.println("<td>" +
rset.getString("first_name") + "</td><td> " +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString("phone_number") + "</td><td>" +
rset.getDouble("salary") + "</td>");

out.println("</tr>");

}

Click OK.

The JSP page created is shown in Figure 4-8.

4-14 Oracle Database 2 Day + Java Developer's Guide

Filtering a Query Result Set

Figure 4-8 Table in a JSP Page

) [mene v | Default vione ~ |8 8 2 B [U = = 3= &

Employee Data

AnyCo Corporation: HR Application

|First Name |Last Name Email |J0h |Ph0ne Salary

Filtering a Query Result Set

You can filter the results of a query by certain parameters or conditions. You can also
allow users of the application to customize the data filter. In the sample application
created in this guide, the procedure of filtering the query result consists of the
following tasks:

1.

Determining what filtered set is required

Users can specify the set of employee records that they want to view by entering a
filter criterion in a query field, in this case, a part of the name that they want to
search for. The employees. jsp page accepts this input through form controls,
and processes it.

Creating a method to return a query ResultSet

The user input string is used to create the SQL query statement. This statement
selects all employees whose names include the sequence of characters that the user
enters. The query searches for this string in both the first and the last names.

Displaying the results of the query

This is done by adding code to the employees. jsp page to use the method that
runs the filtered query.

This section describes filtering query data in the following sections:

Creating a Java Method for Filtering Results
Testing the Query Filter Method

Adding Filter Controls to the JSP Page
Displaying Filtered Data in the JSP Page

Creating a Java Method for Filtering Results

The following steps describe how you can create the get EmployeesByName method.
This method allows users to filter employees by their first or last name.

1.

From the Application Navigator, open the DataHandler . java class in the Java
Visual Editor.

Querying for and Displaying Data 4-15

Filtering a Query Result Set

After the getAl1Employees method, declare the getEmployeesByName
method as follows:

public ResultSet getEmployeesByName (String name) throws SQLException {
}

Within the body of the method, add the following code to convert the name to
uppercase to enable more search hits:

name = name.toUpperCase() ;

Call the method to connect to the database:

getDBConnection () ;

Specify the ResultsSet type and create the query:

stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;

query =

"SELECT * FROM Employees WHERE UPPER(first_name) LIKE \'$" + name + "$\'" +

" OR UPPER(last_name) LIKE \'%" + name + "%\' ORDER BY employee_id";

Print a trace message:

System.out.println("\nExecuting query: " + query);

Run the query and return a result set as before:

rset = stmt.executeQuery(query) ;
return rset;

Save the file and compile it to ensure there are no compilation errors.

Testing the Query Filter Method

You can use the JavaClient. java class created in Testing the Connection and the
Query Methods to test the getEmployeesByName method. You must add the
getEmployeesByName method to display the query results as described in the
following steps:

1.
2

Open the JavaClient. java class in the Java Source Editor.

After the result set displaying the results from the getAl1Employees query,
define a result set for the conditional query as follows:

rset = datahandler.getEmployeesByName ("King") ;

System.out.println("\nResults from query: ");

while (rset.next()) {
System.out.println(rset.getInt (1) + " " +
rset.getString(2) + " " +
rset.getString(3) + " " +

rset.getString(4));
}

To test your application at this stage, you can temporarily adjust the values of the
jdbcUrl, userid and password variables in the DataHandler class to provide
the values required for the HR schema. Save the file, and compile it to check for
syntax errors.

4-16 Oracle Database 2 Day + Java Developer's Guide

Filtering a Query Result Set

Note: Make sure you change the values of userid, password, and
jdbcUrl back to null after testing. For more information, refer to
Declaring Connection-Related Variables.

To test-run the code, right-click in the Java Source Editor and select Run from the
shortcut menu. In the Log window, you will first see the results of the
getAllEmployees method, then the results from the

getEmployeesByName ("xxx") query. Here, xxx is set to "King" to test the
filtering functionality. In actual operation, this parameter will be set to the value
provided by the user of the application to filter the search.

Adding Filter Controls to the JSP Page

To accept the filter criterion and to display the filter results, you must modify the
employees. jsp page. In the following steps, you add a form element and controls to
the employees. jsp page that accepts input from users to filter employees by name:

1.

With the employees. jsp page displayed in the Visual Editor, position the cursor
between the useBean tag and the scriptlet.

In the HTML Forms page of the Component Palette, select Form.

In the Insert Form dialog box, use the down arrow for the Action field and select
employees.jsp. Leave the other fields empty and click OK.

The form is displayed on the page in the Visual Editor, represented by a
dotted-line rectangle.

In the HTML Forms page of the Component Palette, scroll to Text Field. Select it
and drag and drop it inside the Form component. In the Insert Text Field dialog,
enter query as the value of the Name field and click OK. The text field box is
displayed within the form. This field allows users to enter filter criteria.

Position the cursor to the left of the Text Field and add the following text:
Filter by Employee name:

In the HTML Forms page of the Component Palette, scroll to Submit Button.
Select it and drop it inside the Form component to the right of the Text Field.

In the Insert Submit Button dialog box, leave the Name field empty and enter
Filter as the value of the Value field, and click OK.

Figure 4-9 shows these HTML Form components in the employees. jsp file.

Querying for and Displaying Data 4-17

Filtering a Query Result Set

Figure 4-9 HTML Form Components in the JSP Page

@ﬂ|None vIDeFauIt vINone '|% H 2B I YU ==

b
11
[

AnyCo Corporation: HR Application

Employee Data

--

|Firs1 Name |Last Name Email |J0h |Ph0ne Salary

Displaying Filtered Data in the JSP Page

In the previous section, you created a text field component on the JSP page that
accepts user inputs. In this text field, users can specify a string with which to filter
employee names. You also added a submit button.

In the following steps, you add code to the scriptlet in the employees. java file to
enable it to use the getEmployeesByName method. This method is used only if a user
submits a value for filtering the results. If this filter criterion is not specified, the
getAllEmployees method is used.

1. Open the employees. jsp file in the Visual Editor.

2. Double-click the Scriptlet tag on the page (not the one inside the table) to open the
Properties dialog box. Modify the code as follows:

ResultSet rset;
String query = request.getParameter ("query");
if (query != null && query != null)

rset = empsbean.getEmployeesByName (query) ;
else

rset = empsbean.getAllEmployees();

Figure 4-10 shows how you can use the Scriptlet Properties dialog box to modify
the code.

4-18 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

Figure 4-10 Using the Scriptlet Properties Dialog Box

@ DataHandler . java] @ JavaClient.java empJoyees.jsp] |Z|
Elﬂ|None vIDeFauIt VINone V|% HhAB I U =SE=Eax&E E-Z
AnyCo Corporation: HR Application
Employee Data
‘ ‘ ‘Filter
Filter by Employee Mame
EfResults... | % Scriptlet Properties &
First Mame e
m Resultiet rset;
| |5tring query = request.getParameter("cuery”);
if {mquery !'= null && query != null)
rset = empshean.getEmployeesEyName (query) 2
else
rset = empshean.getdllEnployees();
| Help O, | | Cancel |
e L
=html= <hody= <jsp:s | |
-
Diesign lSourcelHistory I 4 | | b I

3. C(lick OK.
4. Save the file.

Adding Login Functionality to the Application

The login functionality used in the sample application is a simple example of
application-managed security. It is not a full Java EE security implementation, but
simply used as an example in the sample application.

To implement this simple login functionality, you must perform the following tasks:
s Creating a Method to Authenticate Users

s Creating a Login Page

s Preparing Error Reports for Failed Logins

s Creating the Login Interface

s Creating a JSP Page to Handle Login Action

Creating a Method to Authenticate Users

In the following steps, you create a method in the DataHandler. java class that
authenticates users by checking that the values they supply for the userid and
password match those required by the database schema.

1. Open the DataHandler. java class in the Source Editor.

Querying for and Displaying Data 4-19

Adding Login Functionality to the Application

2. Create a method called authenticateUser that checks if the userid,
password, and host values supplied by a user are valid:

public boolean authenticateUser (String jdbcUrl, String userid, String password,
HttpSession session) throws SQLException {

}

3. JDeveloper prompts you with a wavy underline and a message that you need to
import a class for Ht tpSession. Press the Alt+Enter keys to import the
javax.servlet.http.HttpSession class.

4. Within the body of the method, assign the jdbcUrl, userid, and password
values from the call to the attributes of the current object as follows:

this.jdbcUrl= jdbcUrl;
this.userid = userid;
this.password = password;

5. Attempt to connect to the database using the values supplied, and if successful,
return a value of true. Enclose this in a try block as follows:

try {
OracleDataSource ds;
ds = new OracleDataSource();
ds.setURL (jdbcUrl) ;
conn = ds.getConnection(userid, password);
return true;

See Also: For information about using try and catch blocks, refer
to Exception Handling in Chapter 5.

6. To handle the case where the login credentials do not match, after the try block,
add a catch block. The code in this block prints out a log message and sets up an
error message. This error message can be displayed to the user if a login attempt
fails. The jdbcUrl, userid and password variables are set back to null, and
the method returns the value false. To do this, enter the following code:

catch (SQLException ex) {
System.out.println("Invalid user credentials");
session.setAttribute("loginerrormsg", "Invalid Login. Try Again...");
this.jdbcUrl = null;
this.userid = null;
this.password = null;
return false;

}

The complete code is shown in Example 4—4.

Example 4-4 Implementing User Validation

public boolean authenticateUser (String userid, String password,
HttpSession session) throws SQLException {

this.jdbcUrl = jdbcUrl;
this.userid = userid;
this.password = password;
try {

OracleDataSource ds;

ds = new OracleDataSource() ;

4-20 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

}

ds.setURL (jdbcUrl) ;

conn = ds.getConnection(userid, password);
return true;

catch (SQLException ex) {

System.out.println("Invalid user credentials");
session.setAttribute("loginerrormsg", "Invalid Login. Try Again...");
this.jdbcUrl = null;

this.userid = null;

this.password = null;

return false;

}

Creating a Login Page
The following steps create a Login. jsp page, on which users enter the login details
for the schema they are going to work on:

1.

In the View project, create a new JSP page. Change the Name to 1ogin. jsp and
accept all other defaults. The new page opens in the JSP/HTML Visual Editor and
is ready for you to start adding text and components to your Web page.

Apply the JDeveloper style sheet to the page.

Give the page the same heading as earlier, AnyCo Corporation: HR Application,
apply the Heading 2 style to it, and align it to the center of the page.

On the next line, enter Application Login, with the Heading 3 style applied. Align
this heading to the left-hand side of the page.

Preparing Error Reports for Failed Logins

The following steps add functions to the login. jsp page for displaying error
messages when a user login fails. The scriptlets and expression used in the

login. jsp page set up a variable to hold any error message. If the user login fails,
the connection method sets a message for the session. This page checks to see if there
is such a message, and if present, it displays the message.

1.

With the login. jsp page open in the Visual Editor, position the cursor after the
text on this page. Then, from the JSP page of the Component Palette, drag and
drop the Scriptlet element from the palette onto the page.

In the Insert Scriptlet dialog box, enter the following code:

String loginerrormsg = null;
loginerrormsg = (String) session.getAttribute("loginerrormsg");
if (loginerrormsg != null) {

Add another scriptlet in exactly the same way, and this time enter only a single
closing brace (}) in the Insert Scriptlet dialog box.

Place the cursor between the two scriptlets and press Enter to create a new line.
Apply the Heading 4 style to the new line.

With the cursor still on the new line, in the JSP page of the Component Palette,
click Expression.

In the Insert Expression dialog box, enter loginerrormsg.

To see the code that has been added to your login. jsp page, below the Visual
Editor, select the Source tab. The code should appear as follows:

oe

<

Querying for and Displaying Data 4-21

Adding Login Functionality to the Application

String loginerrormsg = null;

loginerrormsg = (String) session.getAttribute("loginerrormsg");
if (loginerrormsg != null) {
%>
<h4>
<%= loginerrormsg %>
</hd>

<%

o0

>

Before continuing with the following sections, return to the design view of the page by
selecting the Design tab.

Creating the Login Interface

In these steps, you add fields to the 1ogin. jsp page on which users enter their login
details.

1.

If the login. jsp page is not open in the Visual Editor, double-click it in the
Application Navigator to open it, and check that the Design tab is selected.

Position the cursor after the second scriptlet and, in the HTML Forms page of the
Component Palette, select Form. The Form is displayed on the page in the Visual
Editor, represented by a dotted-line rectangle.

In the HTML Forms page of the Component Palette, select Form. In the Insert
Form dialog box, enter login_action. jsp as the value for the Action field. This
file will be used to process the user input in the login.jsp file. (You cannot select
this page from a list as it is not created yet.) Leave the other fields empty and click
OK.

The Form is displayed on the page in the Visual Editor, represented by a dotted
rectangle.

Add a Table to the page. Position it inside the Form. Specify a 3-row and
2-column layout, and accept other layout defaults.

In the first column of the three rows, enter the following as the text to display for
users:

User ID:
Password:
Host:

From the HTML page of the Component Palette, drag a Text Field into the table
cell to the right of the User ID: cell. In the Insert Text Field dialog box, enter
userid as the value of the Name property. Leave the other fields empty and click
OK.

In the same way, add a Text Field to the table cell to the right of the Password: cell
and enter password as the value of the Name property. Similarly, add a Text
Field to the table cell to the right of the Host: cell and enter host as the value of
the Name property.

Drag a Submit button to the Form below the table. Enter Submit for the Value
property of the button.

Your login. jsp page should now appear as shown in Figure 4-11.

4-22 Oracle Database 2 Day + Java Developer's Guide

Adding Login Functionality to the Application

Figure 4-11 Login Page

@ DataHandler java login. jsg @ Javalient.java emplovees.jsp |I|Z|

@[ﬂlHeadingcl vIDeFauIt vINone V|% & (ﬁ B I U =& i

@Ioziner...

Pasgword: ‘ ‘

Hast: ‘ ‘

‘Submit|

=html= <hody= <h4 = <jsp:scriptlet>

l

Design | Source | Histary | b | | L4 I

Creating a JSP Page to Handle Login Action

In the following steps, you create the login_action. jsp page, whichis a
nonviewable page that processes the login operation.

1.

Create a JSP page and call it login_action. jsp. Accept all default settings for
the JSP page.

With login_action. jsp open in the Visual Editor, from the JSP page of the
Component Palette, drag a Page Directive component to the page. In the Insert
Page Directive dialog box, for the Import field, browse to import
java.sql.ResultSet. Click OK.

Drag a jsp:usebean tag onto the page. Enter empsbean as the ID and browse to
select hr.DataHandler as the Class. Set the Scope to session, and click OK.

Position the cursor after the useBean tag and add a Scriptlet to the page. Enter the
following code into the Insert Scriptlet dialog box and click OK.

boolean userIsValid = false;

String host = request.getParameter("host");

String userid = request.getParameter ("userid");

String password = request.getParameter ("password");

String jdbcUrl = "jdbc:oracle:thin:@" + host;

userIsValid = empsbean.authenticateUser (jdbcUrl, userid, password, session);
Add another Scriptlet, and add the following code to it:

if (userIsvValid) {

In the JSP page of the Component Palette, find Forward and drag it onto the page

to add a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
employees.jsp.

Add another scriptlet, and enter the following code:

} else {

Add another jsp:forward tag, and this time move forward to login. jsp.

Querying for and Displaying Data 4-23

Testing the JSP Page

9. Add a final Scriptlet, and enter a closing brace (}).
10. Save your work.

To see the code that has been added to 1ogin_action. jsp, select the Source tab.
The code displayed is similar to the following:

<body>

<%@ page import="java.sqgl.ResultSet"%><jsp:useBean id="empsbean"
class="hr.DataHandler"
scope="session"/>

<%$boolean userIsvValid = false;

String host = request.getParameter("host");

String userid = request.getParameter ("userid");

String password = request.getParameter ("password") ;

String jdbcUrl = "jdbc:oracle:thin:@" + host + ":1521:0RCL";

userIsValid = empsbean.authenticateUser (jdbcUrl, userid, password, session);%><%$if

(userIsvValid) {%$><jsp:forward page="employees.jsp"/><%if
(userIsvValid) {%$><jsp:forward page="login.jsp"/><%}%>
</body>

Testing the JSP Page

To test the login page and the filtering of employees, do the following:
1. In the Application Navigator, right-click the view project, and select Run.

You might be prompted to specify a Default Run Target for the project. For now,
set this to Login. jsp. You can later change the project properties for the default
run target page to be any page of your choice.

The login page is displayed in your browser, as shown in Figure 4-12.

Figure 4-12 Login Page for Sample Application in the Browser

%3 login - Mozilla Firefox EEE
File Edit View History Bookmarks Tools Help

%@ O @ Cromen[p)

AnyCo Corporation: HR Application

Application Login

User ID:

Password:

Host:

Subrnit

Crone

2. Enter the following login details for your database, and then click Submit.
User ID: hr
Password: hr

Host: Host name of the machine with Oracle Database

4-24 Oracle Database 2 Day + Java Developer's Guide

Testing the JSP Page

The Employee. java file is displayed in your browser as shown in Figure 4-13.

Figure 4-13 Unfiltered Employee Data in employee.jsp

%3 employees - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
<f'j - - @ /IJ} ||_| http:,l',l'lD.1??.23?.254:898EE,I'HRF\pp—\-'iew—context—root,l’login_ac|‘| D']
AnyCo Corporation: HR Application

Employee Data Ly
Filter by Employvee MName | | Firer]

First Name Last Name ||Email Job Phone Salary
[Steven [King [skinG [2D_PRES |515.123.4567 |[24000.0
[Meena |[Kochhar |[NKOCHHAR |[aD_wP |515.123.4568 [17000.0
[Lex |[De Haan |[LDEHAAN |[aD_wP |515.123.4568 [17000.0
|#lexander |[Hunoid [sHUNCLD || T_PRCG |590.423 4567 |[9000.0
[Bruce [Ernst [BERNST [T_PROG |590.423 4568 |[BOD0.D
[David [Austin [DAUSTIM [T_PROG |590.423 4569 |[4800.0

[walli |[Pataballa |[[vPATABAL |[IT_PROG |590.423 4560 |[4800.0
[Diana [Lorentz |[DLORENTZ |[IT_PROG |590.423 5567 |[4200.0
[Mancy [Greenberg |[NGREENEBE |[FI_MGR |515.124 4568 |[12000.0
[Daniel [Faviet [DFAvIET [FlLACCOUNT |[515.124.4168 [9000.0

[John [chen [JCcHEN [FlLAaCCOUNT |[515.1244268 [3200.0 -
Done

3. Enter a string of letters by which you want to filter employee data. For example,
enter ing in the Filter by Employee Name field, and click Filter. A filtered list is
displayed, which is shown in:

Figure 4-14 Filtered Employee Data in employee.jsp

AnyCo Corporation: HR Application

Employee Data

Filter by Employee name: | | CFilter]

First Name Last Name |Email Joh Phone Salary
Stewen King SKING AD_PRES |[515.123 4567 24000.0
|Payam |Kaufling ||PKAUFLIN|[ST_MAN [650.123.3234 |7900.0
|Janette |King [JKING |sa_REP [011.44.1345.429288 | 10000.0
|Jack |Livingstan |JLMINGS ||SA_REP [011.44.1644.429264 |8400.0
| Julia |Dellinger | JDELLING |SH_CLERK |650.509.3876 |3400.0

Querying for and Displaying Data 4-25

Testing the JSP Page

4-26 Oracle Database 2 Day + Java Developer's Guide

O

Updating Data

In this chapter, you will see how you can modify the sample application and add
functionality that allows users to edit, update, and delete data in Oracle Database. This
chapter includes the following sections:

s Creating a JavaBean

» Updating Data from a Java Class

= Inserting an Employee Record

s Deleting an Employee Record

= Exception Handling

= Navigation in the Sample Application

Creating a JavaBean

In outline, a bean is a Java class that has properties, events and methods. For each of
its properties, the bean also includes accessors, that is get and set methods. Any
object that conforms to certain basic rules can be a bean. There is no special class that
has to be extended to create a bean.

In the steps for creating a sample application in this chapter, a JavaBean is used to
hold a single employee record. When a user wants to edit an existing record or add a
new one, it is used as a container to hold the changed or new values for a single row of
a table to prepare the row for using to update the database.

The bean contains properties for each field in an employee record, and then
JDeveloper creates the accessors (get and set methods) for each of those properties.
You will see how to create a JavaBean for the sample application in the following
subsections:

» Creating a JavaBean in JDeveloper

s Defining the JavaBean Properties and Methods

Creating a JavaBean in JDeveloper

Employee. java is the JavaBean that is used in the sample application to hold a
single employee record and modify its contents. To create a JavaBean, do the
following:

1. Right-click the View project, and from the shortcut menu, click New.

2. In the New Gallery dialog box, in the Filter By field select All Technologies.

Updating Data 5-1

Creating a JavaBean

Expand the General category and select JavaBeans in the General category. From
the Items list, select Bean. Click OK.

In the Create Bean dialog box, enter Employee as the name, hr as the package,
and ensure that the Extends: field is set to java.lang.Object. Click OK to
create the bean.

Save the file. The Employee. java file should now contain the following code:
package hr;
public class Employee {

public Employee () {
}

Defining the JavaBean Properties and Methods

In the JavaBean, you must create one field for each column in the Employees table,
and accessor methods (get and set methods) for each field.

1.

Add an import statement for java.sqgl.Date, which is the field type for one of
the fields:

import java.sql.Date;

Add a field to the Employee class for each of the columns in the Employees
table. Each field is private, and the field types are as follows:

private Integer employeeld;
private String firstName;
private String lastName;
private String email;

private String phoneNumber;
private Date hireDate;
private String jobId;

private Double salary;
private Double commissionPct;
private Integer departmentId;

Right-click on the Source Editor page and select Generate Accessors from the
shortcut menu. In the Generate Accessors dialog box, select the top-level
Employee node. A check mark is displayed for that node and for all the fields.
Click OK. Figure 5-1 shows the Generate Accessors dialog box with all the fields
selected.

5-2 Oracle Database 2 Day + Java Developer's Guide

Creating a JavaBean

Figure 5-1 Generate Accessors Dialog Box

é- Generate Accessors E]

Member Variable Prefix:
Methods

[¥[=] Employes
-] g employeeld

i-[¥] g FirstName
g lastMame

[E

[

E & email

-] g phoneMumber
[#- g hireDate
[

E

[3

[E

g iobld
i-[v] g salary

2 & commissionPck
i-[¥] a departmentId

| Help | | (04 _J | Cancel |

4. Save the file. The Employee. java file should now contain the following code:

Example 5-1 Skeleton Code for a Basic Java Bean with Accessor Methods

package hr;
import java.sqgl.Date;

public class Employee {
public Employee() {
}
private Integer employeeld;
private String firstName;
private String lastName;
private String email;
private String phoneNumber;
private Date hireDate;
private String jobId;
private Double salary;
private Double commissionPct;
private Integer departmentId;

public void setEmployeeId(Integer employeeId)

this.employeeld = employeeId;

public Integer getEmployeeId() {
return employeeld;

public void setFirstName(String firstName) {
this.firstName = firstName;

public String getFirstName() {
return firstName;

Updating Data 5-3

Updating Data from a Java Class

// This list has been shortened and is not comprehensive. The actual code contains
// accessor methods for all the fields declared in the bean.

public void setDepartmentId(Integer departmentId) {
this.departmentId = departmentId;
}

public Integer getDepartmentId() {
return departmentId;

}

Updating Data from a Java Class

Updating a row in a database table from a Java application requires you to do the
following tasks:

1.

Create a method that finds a particular employee row. This is used to display the
values for a particular employee on an edit page.

Create a method that takes the updated employee data from the bean and updates
the database.

On the main application page, in every row of employee data, include a link that
allows a user to edit the data for that employee. The links take the user to the
edit. jsp file with the data for that employee displayed, ready for editing.

Create a JSP page called edit. jsp, that includes a form and a table to display all
the data of a single employee and allows a user to change the values.

Create a JSP page that processes the form on the edit . jsp page, writes the
updated values to the Employee. java bean and calls the updateEmployee
method.

You will see how to do this in the following sections:

Creating a Method to Identify an Employee Record
Creating a Method to Update Employee Data
Adding a Link to Navigate to an Update Page
Creating a JSP Page to Edit Employee Data
Creating a JSP Page to Handle an Update Action

Creating a Method to Identify an Employee Record

The method you create in these steps is used to find the record for a particular
employee. It is used when a user wants to edit or delete a particular employee record,
and selects a link for that employee on the Employee. java page.

1.

If the DataHandler class is not already open in the Java Source Editor,
double-click it in the Application Navigator to open it.

In the DataHandler class, declare a new method that identifies the employee
record to be updated:

public Employee findEmployeeById(int id) throws SQLException {

}

5-4 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

8.

Within the body of this method, create a new instance of the Employee bean
called selectedEmp.

Employee selectedEmp = new Employee();

Connect to the database.

getDBConnection () ;

Create a Statement object, define a ResultSet type, and formulate the query.
Add a trace message to assist with debugging.

stmt =
conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
query = "SELECT * FROM Employees WHERE employee_id = " + id;
System.out.println("\nExecuting: " + query);

Run the query and use a ResultSet object to contain the result.

rset = stmt.executeQuery(query) ;

Use the result set returned in rset to populate the fields of the employee bean
using the set methods of the bean.

while (rset.next()) ({
selectedEmp.setEmployeelId (new Integer (rset.getInt ("employee_id")));
selectedEmp.setFirstName (rset.getString ("first_name"));
selectedEmp.setLastName (rset.getString("last_name"));
selectedEmp.setEmail (rset.getString("email"));
selectedEmp.setPhoneNumber (rset.getString ("phone_number")) ;
selectedEmp.setHireDate (rset.getDate("hire_date"));
selectedEmp.setSalary (new Double(rset.getDouble("salary")));
selectedEmp.setJobId(rset.getString("job_id"));

Return the populated object.

return selectedEmp;

Creating a Method to Update Employee Data

In the following steps, you will see how to create a method to update employee data in
the database:

1.
2

Open the DataHandler class.
Declare an updateEmployee method as follows:

public String updateEmployee(int employee_id, String first_name,
String last_name, String email,
String phone_number, String salary,
String job_id) throws SQLException {

}

Within the body of this method, create an instance of the Employee bean,
containing details for the selected employee:

Employee oldEmployee = findEmployeeById(employee_id);

Connect to the database.

Updating Data 5-5

Updating Data from a Java Class

getDBConnection () ;

5. Create a Statement object and specify the ResultSet type as before.

stmt =
conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;

6. Create a StringBuffer to accumulate details of the SQL UPDATE statement that
needs to be built:

StringBuffer columns = new StringBuffer(255);

7. For each field in an employee record, check whether the user has changed the
value and if so, add relevant code to the StringBuf fer. For each item added
after the first one, add a comma to separate the items. The following code checks if
the first_name variable changed, and if so, adds details to the SQL in the
StringBuf fer that will be used to update the database:

if (first_name != null &&
Ifirst_name.equals (oldEmployee.getFirstName()))
{
columns.append("first_name = '" + first_name + "'");

}

For the 1ast_name, before appending the new last name, check to see whether
there are already some changes in the StringBuffer and if so, append a comma
to separate the new change from the previous one. Use the following code:

if (last_name != null &&
!last_name.equals (oldEmployee.getLastName())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("last_name = '" + last_name + "'");

}

Use the samecode logic to check for changes made to email, and phone_
number.

Note: Only significant parts of the code are included within this
procedure. Example 5-2 contains the complete code for this method.

For the salary field, obtain a String value to add to the StringBuffer as
follows:

if (salary != null &&
!salary.equals(oldEmployee.getSalary().toString())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("salary = '" + salary + "'");

8. When the whole set of changes has been assembled, check to see whether there are
in fact any changes, that is, whether the StringBuffer contains anything. If so,
construct a SQL UPDATE statement using the information in the StringBuffer
and execute it. If the StringBuffer does not contain any changes, output a message
saying so:

5-6 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

if (columns.length() > 0

sqglString = "update Employees SET " + columns.toString() +
" WHERE employee_id = " + employee_id;
System.out.println("\nExecuting: " + sglString);
stmt.execute (sqlString) ;
}
else
{
System.out.println("Nothing to do to update Employee Id: " +
employee_id) ;

9. Return the word "success".

return "success";

10. Save your work and make the file to check there are no syntax errors.

Example 5-2 contains the complete code for this method.

Example 5-2 Method for Updating a Database Record

public String updateEmployee(int employee_id, String first_name,
String last_name, String email,
String phone_number, String salary,
String job_id) throws SQLException {

Employee oldEmployee = findEmployeeById(employee_id);

getDBConnection() ;

stmt = conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;

StringBuffer columns = new StringBuffer(255);
if (first_name != null &&
Ifirst_name.equals(oldEmployee.getFirstName()))

{
columns.append("first_name = '" + first_name + "'");
}
if (last_name != null &&
!last_name.equals(oldEmployee.getLastName())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("last_name = '" + last_name + "'");
}
if (email != null &&
lemail.equals(oldEmployee.getEmail())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("email = '" + email + "'");
}
if (phone_number != null &&
!phone_number.equals(oldEmployee.getPhoneNumber ())) {

if (columns.length() > 0) {
columns.append(", ");
}
columns.append("phone_number = '" + phone_number + "'");
}
if (salary != null &&

Updating Data 5-7

Updating Data from a Java Class

!salary.equals(oldEmployee.getSalary().toString())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("salary = '" + salary + "'");
}
if (job_id != null &&
!job_id.equals(oldEmployee.getdJobId())) {
if (columns.length() > 0) {
columns.append(", ");
}
columns.append("job_id = '" + job_id + "'");

}

if (columns.length() > 0
{

sqglString =
"UPDATE Employees SET " + columns.toString() +
" WHERE employee_id = " + employee_id;
System.out.println("\nExecuting: " + sglString);

stmt.execute (sqlString) ;

}

else
{
System.out.println("Nothing to do to update Employee Id: " +
employee_id) ;
}

return "success";

Adding a Link to Navigate to an Update Page

In the following steps, you add a link to each row of the employees table on the
employees. jsp page, that users will click to edit that row.

1. Open employees. jsp in the Visual Editor.

2. Add an extra column to the table that displays employee details. To do this,
position the cursor in the last column of the table, right-click and select Table from
the shortcut menu, then select Insert Rows Or Columns. In the Insert Rows or
Columns dialog box, select Columns and After Selection and click OK.

3. This extra column will contain the link that reads Edit for each row. Each of these
links leads to a separate page where the selected employee record can be edited.
To do this, double-click the scriptlet that is inside the Employees table, to display
the Scriptlet Properties dialog box.

4. Modify the scriptlet to include a link to the edit. jsp page. The modified
scriptlet should contain the following code:

while (rset.next ())

{

out.println("<tr>");
out.println("<td>" +
rset.getString("first_name") + "</td><td> " +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString ("phone_number") + "</td><td>" +
rset.getDouble("salary") +
"</td><td> <a href=\"edit.jsp?empid=" + rset.getInt(l) +

5-8 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

"\">Edit</td>");
out.println("<tr>");

}

When the edit link is clicked for any employee, this code passes the employee ID
to the edit. jsp page, which will handle the employee record updates. The
edit.jsp page will use this to search for the record of that particular employee
in the database.

5. Save employees. jsp. Figure 5-2 shows employees. jsp when it is run and
displayed in a browser, illustrating the link users can click to edit employee data.

Figure 5-2 Link to Edit Employees in employees.jsp

3 employees - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

@ - i |@ ﬁ [} hktpef10.177.237.254:8985/HRApp-view-context-ro | ¥ | [

AnyCo Corporation: HR Application

Employee Data

Filter by Employee Name

First Name |Last Name |Email Job Phone Salary ’7
steven ||King |SKING [AD_PRES |[515.123.4567 | [24000.0][Edit
[Neena |[Kochhar |[NKOCHHAR [AD_P [515.123.4568 [17000.0[Edit
|Lex [De Haan [LDEHAAN [AD_vP |[515.123.4569 [17000.0/[Edit

[Alexander [Hunold [AHUNOLD [IT_PROG [580.4234567 [3000.0 | [Edit
[Bruce [Emst [BERNST [IT_PROG ([590.4234569 [6000.0 |[Edit
[David [austn [DAUSTIN |[IT_PROG [500.423 4568 [4800.0 | [Edit

[ufalli [Eatahala vPaTapa T penc [san 497 4560 [aann o [edidll >
Done

Creating a JSP Page to Edit Employee Data

In this section, you will create the edit . jsp file that allows users to update an
employee record.

1. Create a new JSP page and name it edit. jsp. Accept all other defaults.

2. Give the page the same heading as earlier, AnyCo Corporation: HR Application,
apply the Heading 2 style to it, and align it to the center of the page.

3. On the next line, type Edit Employee Record, with the Heading 3 style applied.
Align this heading to the left of the page.

4. Add the JDeveloper style sheet to the page.

5. Add a jsp:usebean tag. Enter empsbean as the ID, and hr . DataHandler as
the Class. Set the Scope to session, and click OK.

6. Position the cursor after the useBean tag and add another jsp:usebean tag. This
time enter employee as the ID, browse to select hr. Employee as the class, and
leave the Scope as page. Click OK.

Updating Data 5-9

Updating Data from a Java Class

10.

11.

12.

13.

14.

15.
16.

Add a Scriptlet to the page. The scriptlet code passes the employee ID to the
findEmployeeById method and retrieves the data inside the Employee bean.
Enter the following code in the Insert Scriptlet dialog box:

Integer employee_id = new Integer (request.getParameter ("empid"));
employee = empsbean.findEmployeeById (employee_id.intValue());

Add a Form to the page. In the Insert Form dialog, enter update_action. jsp
for the Action field. You cannot select this page from the drop down list as you
have not yet created it.

Add a Table to the page. Position it inside the Form. Specify a 6-row and
2-column layout, and accept other layout defaults.

In the first column, enter the following headings, each on a separate row: First
Name, Last Name, Email, Phone, Job, Monthly Salary.

Drag a Hidden Field component from the HTML Forms page of the Component
Palette. Drop it in the second column, adjacent to the First Name heading. In the
Insert Hidden Field dialog, enter employee_id as the Name property and enter
<%= employee.getEmployeeId() %> asthe Value property.

Drag a Text Field component to this column, adjacent to the First Name heading.
In the Insert Text Field dialog, enter first_name in the Name field, and <%=
employee.getFirstName () %> in the Value field. Click OK.

Drag a second Text Field component to this column, adjacent to the Last Name
heading. In the Insert Text Field dialog, enter 1ast_name in the Name field, and
<%= employee.getLastName () %> inthe Value field. Click OK.

In a similar way, add text fields adjacent to each of the remaining column
headings, using email, phone_number, job_id, and salary as the field names
and the corresponding getter method for each field. These are specified in the
following table.

Add a Submit button in the form, below the table. Enter Update as its Value.
Save the application.

The resultant edit . jsp page should look similar to the page shown in
Figure 5-3.

5-10 Oracle Database 2 Day + Java Developer's Guide

Updating Data from a Java Class

Figure 5-3 Creating a JSP Page to Edit Employee Details

@ Employes.java DataHandler java [login. jsp edit_emp Jjsp] emph |I|Z|

@lﬁ |Paragraph - IDeFauIt vINone V|% & (ﬁ B I/ Q f:E EE D= ‘§Z
[®useBean| |[®useBean| |
£ g

First Mame =%= employee.getFirstMame) %=

Last Mame =%= employvee. getLasthame() %=

Ermail =%= employee.getEmail() %=

Phone =%= emplovee.getPhoneMumberd %=

Job =%= employvee.getloblD) %=

Monthly Salary =%= employee.getSalam %=

E ‘ ‘Update

=html= =hody= =form:= =p= <input=>

<

Design | Source | Histary { 4 | | 4 I

Creating a JSP Page to Handle an Update Action

In this section, you will see how to create the update_action. jsp file. This page
processes the form on the edit . jsp page that allows users to update an employee
record. There are no visual elements on this page, this page is used only to process the
edit.jsp form and returns control to the employees. jsp file.

1.

Create a new JSP page and call it update_action. jsp. Accept all other defaults
for the page in the JSP Creation Wizard.

Drag a Page Directive component from the JSP page of the Component Palette
onto the page. In the Insert Page Directive dialog box, browse to import
java.sql.ResultSet. Click OK.

Add a jsp:usebean tag. Enter empsbean as the ID, and hr . DataHandler as the
Class. Set the Scope to session, and click OK.

Add a Scriptlet to the page. Enter the following code into the Insert Scriptlet
dialog box:

Integer employee_id = new Integer (request.getParameter ("employee_id"));
String first_name = request.getParameter ("first_name");

String last_name = request.getParameter ("last_name");

String email = request.getParameter ("email");

String phone_number = request.getParameter ("phone_number");

String salary = request.getParameter ("salary");

String job_id = request.getParameter ("job_id");

empsbean.updateEmployee (employee_id.intValue(), first_name, last_name, email,
phone_number, salary, job_id);

Drag a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
employees. jsp for the Page property.

Save your work.

Updating Data 5-11

Inserting an Employee Record

7. Run the project and test whether you can edit an employee record. Click Edit for
any employee on the employees. jsp page, and you should be directed to the
page shown in Figure 5-4. Modify any of the employee details and check whether
the change reflects in the employees. jsp page.

Figure 5-4 Editing Employee Data

%3 edit_emp - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

€ - @ O @ 0o]p) G Q)

AnyCo Corporation: HR Application

Edit Employee Record

‘First Mame ‘ Stewen

‘Last MName ‘ King

‘Email ‘ SKING
515.123.4567

Phone

‘an ‘AD_PRES

‘Munthly Salary ‘ 240000

Crone

Inserting an Employee Record

The steps for inserting a new employee record to the Employees table are similar to
the process for updating an employee record:

1. Create a method to insert a new employee row into the Employees table.

2. Add a link to the main application page, allowing a user to click to insert a new
employee. The link takes the user to an insert. jsp with an empty form ready
for the user to enter details for the new row.

3. Create a JSP page to process the form on the insert. jsp page.

4. Create a JSP page with form controls for users to enter the values for the new
employee.

This section covers the creation of Java application code for inserting new employee
data in the following subsections:

» Creating a Method to Insert Data

= Adding a Link to Navigate to an Insert Page

» Creating a JSP Page to Handle an Insert Action
»n Creating a JSP Page to Enter New Data

Creating a Method to Insert Data

In the following steps, you will create a method for inserting a new employee record.

5-12 Oracle Database 2 Day + Java Developer's Guide

Inserting an Employee Record

1. Open DataHandler.java in the Java Source Editor.
2. Declare a method to add a new employee record.

public String addEmployee(String first_name,
String last_name, String email,
String phone_number, String job_id, int salary) throws SQLException {

3. Add aline to connect to the database.

getDBConnection () ;

4. Create a Statement object, define a ResultSet type as before, and formulate
the SQL statement.

stmt =

conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY) ;

sqlString =

"INSERT INTO Employees VALUES (EMPLOYEES_SEQ.nextval, '" +

first_name + "','" +

last_name + "','" +

email + "','" +

phone_number + "'," +

"SYSDATE, '" +

job_id + "', " +

salary + ",.30,100,80)";

Note: The last three columns (Commission, ManagerId, and
DepartmentId) contain hard-coded values for the sample
application.

5. Add a trace message, and then run the SQL statement.
6. Return a message that says "success" if the insertion was successful.
7. Make the file to check for syntax errors.

Example 5-3 shows the code for the addEmployee () method.

Example 5-3 Method for Adding a New Employee Record

public String addEmployee (String first_name,
String last_name, String email,
String phone_number, String job_id, int salary) throws SQLException {
getDBConnection() ;
stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
sqglString =
"INSERT INTO Employees VALUES (EMPLOYEES_SEQ.nextval, '" +
first_name + "','" +
last_name + "','" +
email + "','" +
phone_number + "'," +
"SYSDATE, '" +
job_id + "', " +
salary + ",.30,100,80)";

System.out.println("\nInserting: " + sqlString);

Updating Data 5-13

Inserting an Employee Record

stmt.execute (sqlString) ;
return "success";

}

Adding a Link to Navigate to an Insert Page

In these steps, you add a link to the header row of the employees table that users can
click to add a new employee.

1. Open employees. jsp in the Visual Editor.

2. Draga Hyper Link component from the HTML Common page of the Component
Palette into the empty column header cell at the end of the header row. In the
Insert HyperLink dialog box, enter insert . jsp in the HyperLink field, and
Insert Employee in the Text field. You cannot browse to find insert. jsp as
you have not yet created it. Click OK.

3. Save employees. jsp.

Creating a JSP Page to Enter New Data

In these steps, you create the insert. jsp page, which allows users to enter details of
a new employee record.

1. Create a new JSP page and call it insert. jsp.

2. Give the page the same heading as before, AnyCo Corporation: HR Application,
and format it as Heading 2, and center it.

3. On the next line enter Insert Employee Record, and apply the Heading 3 format.
Align this heading to the left of the page.

4. Add the JDeveloper stylesheet to the page.

5. Add a Form. In the Insert Form dialog box, enter insert_action. jsp for the
Action property, and click OK.

6. Add a Table inside the Form. Specify that you want 6 rows and 2 columns and
accept all other layout defaults.

7. In the first column, enter the following headings, each on a separate row: First
Name, Last Name, Email, Phone, Job, Monthly Salary.

8. Drag and drop a Text Field into the column to the right of the First Name header.
In the Insert Field dialog box, type first_name in the Name property.

9. Drag a Text Field next to each of the Last Name, Email, Phone, and Monthly
Salary headers. Specify the values for each of these text fields for the Name
property in the Insert Field dialog box. The values are indicated in the following

table:
Text Field For Set the Name Property To
Last Name last_name
Email email
Phone phone_number
Monthly Salary salary

This procedure is different for the Job row.

5-14 Oracle Database 2 Day + Java Developer's Guide

Inserting an Employee Record

10. Drag a Combo Box component from the HTML Forms page of the Component
Palette to the column next to the Job heading.

11. In the Insert Select dialog box, enter job_id as the name, and 1 as the size. Click
Add. Click in the Value field and enter SA_REP, and in the Caption field, enter
Sales Representative. Click Add to add each of the following job titles, then
click OK.

Value Caption

HR_REP HR Representative
PR_REP PR Representative
MK_MAN Marketing Manager
SA_MAN Sales Manager
FI_MAN Finance Manager
IT_PROG Software Developer
AD_VIP Vice President

12. Drag a Submit button to the Form below the table. In the Insert Submit Button
dialog box, enter Add Employee for the Value property.

13. Save your work.

Figure 5-5 shows the insert. jsp page in the Visual Editor.

Figure 5-5 Form to Insert Employee Data

ra Iogin.jsp edit_emp.jsp update_action.jsp employees.jsp insert.jsp]I
G [Paragraph v | Default vinone v | &3 F B J U IS = = & = -

[l

Insert Employee Record

First Mame

Last Mame

Phone Mumber

Joh

Ernail ‘
|
honthly Salary ‘

‘ ‘Add Employee‘

=html= =hody= =form:= =p= <input>

l

Diesign lSource l Histary I 4 | | b I

Updating Data 5-15

Inserting an Employee Record

Creating a JSP Page to Handle an Insert Action

In these steps, you create the insert_action. jsp page. This is a page that
processes the form input from insert. jsp, which is the page on which users enter a
new employee record. There are no visual elements on this page, and it is only used to
process the insert . jsp form and return control to the employees. jsp file.

1.
2.

5.
6.

Create a JSP page as before. Call it insert_action. jsp.

Add a jsp:usebean tag. As before, enter empsbean as the ID, and
hr.DataHandler as the Class. Set the Scope to session, and click OK.

Position the cursor after the useBean tag and add a Scriptlet to the page. Enter the
following code into the Insert Scriptlet dialog box:

String first_name = request.getParameter ("first_name");
String last_name = request.getParameter ("last_name");

String email = request.getParameter ("email");

String phone_number = request.getParameter ("phone_number") ;
String job_id = request.getParameter ("job_id");

Integer salary = new Integer (request.getParameter ("salary"));

empsbean.addEmployee (first_name, last_name, email, phone_number, job_id,
salary.intValue());

Drag a jsp:forward tag onto the page. In the Insert Forward dialog box, enter
employees. jsp.

Save your work.

Run the View project to test whether you can insert a new employee record.

To insert an employee, click Insert Employee on the employees. jsp page shown
in Figure 5-6.

Figure 5-6 Inserting New Employee Data

3 employees - Mozilla Firefox
File:

<&

| ~ [- @ fgdr (1 hktpe 10,177,237, 254 2088 HRADD-view-conkext-rootlagin | | [

Employee Data

Edit Wiew History Bookmarks Tools Help
%

AnyCo Corporation: HR Application

Filter by Employee Name

Inzert
First Hame |Last Name ||Email Job Phone Salary ||Emplovee
|steven ||King |SKING |AD_PRES [515.123.4567 |24000.0/[Eit
[Neena |[Kochhar |[NKOCHHAR [AD_VP [515.1234568 |[17000.0/|Edit
|Lex |De Haan [LDEHA&N ||aD_vP |[515.123.4588 ||[17000.0/[Edit
|Alexander [Hunold ||[AHUNOLD [IT_PROG [580.423 4567 |[9000.0 |[Edit a

Crone

Figure 5-7 shows the page where you can insert new employee data with some data
filled in, and the list of jobs being used to select a job.

5-16 Oracle Database 2 Day + Java Developer's Guide

Deleting an Employee Record

Figure 5-7 Inserting Employee Data

%3 insert - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

@ - - |\€rj @] hkbpef10,177,237, 254 2088 HRADD-view-ronkext-rootfinser | | [

-~

AnyCo Corporation: HR Application

Insert Employee Record

First Name RICHARD
Last Name JOMNES
Email RJOMNES
Phone Number 5803335556
Job i
[Sales Representative
Monthly Salary HR Representative
PR Representative
Marketing Manager
Add Employes Software Developer o
Done Wice President

Deleting an Employee Record

The steps for deleting a record are similar to those for editing and inserting a record:

1.

Use the method created in Creating a Method to Identify an Employee Record to
identify a particular employee row. This is used to identify the row to be deleted.

Create a method that deletes an employee record from the database.

Add a link to the main application page for each row, allowing a user to click to
delete the employee in that row. The link takes the user to a delete_
action. jsp, with the ID of the employee whose record is to be deleted.

To delete the employee from the database, create a JSP page to call the delete
method created in Step 2.

This section discusses the following tasks related to deleting employee data:

Creating a Method for Deleting Data
Adding a Link to Delete an Employee
Creating a JSP Page to Handle a Delete Action

Creating a Method for Deleting Data
The method created in the following steps is used to delete employee records by ID:

1.
2.

Open DataHandler . java in the Java Source Editor.
Declare a new method that identifies the employee record to be deleted:

public String deleteEmployeeById(int id) throws SQLException {
}

Connect to the database as before.

Updating Data 5-17

Deleting an Employee Record

getDBConnection () ;

4. Create a Statement object, define a ResultSet type as before, and formulate
the SQL statement. Add a trace message to assist with debugging.

stmt =
conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
sqlString = "DELETE FROM Employees WHERE employee_id = " + id;
System.out.println("\nExecuting: " + sqglString);

5. Run the SQL statement.

stmt.execute (sqglString) ;

6. If the SQL statement runs without any errors, return the word, Success.

return "success";

Example 5-4 shows the code for the deleteEmployeeById () method.

Example 5-4 Method for Deleting an Employee Record

public String deleteEmployeeById(int id) throws SQLException {
getDBConnection() ;
stmt = conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
sglString = "DELETE FROM Employees WHERE employee_id = " + id;
System.out.println("\nExecuting: " + sglString);
stmt.execute (sqlString) ;
return "success";

Adding a Link to Delete an Employee

In the following instructions, you add a link to each row of the employees table on the
employees. jsp page. Clicking on that link will delete all employee data for that
rOwW.

1. Open employees. jsp in the Visual Editor.

2. In the column you created to contain the Edit link, add another link for deleting
the row. To do this, double-click the scriptlet that is inside the Employees table,
to display the Scriptlet Properties dialog box.

3. Modify the scriptlet to include a link to a delete_action. jsp page. The
modified scriptlet should contain the following code:

while (rset.next ())

{

out.println("<tr>");
out.println("<td>" +
rset.getString("first_name") + "</td><td> " +
rset.getString("last_name") + "</td><td> " +
rset.getString("email") + "</td><td> " +
rset.getString("job_id") + "</td><td>" +
rset.getString("phone_number") + "</td><td>" +
rset.getDouble("salary") +
"</td><td> <a href=\"edit.jsp?empid=" + rset.getInt(l) +
"\">Edit <a href=\"delete action.jsp?empid=" +
rset.getInt (1) + "\">Delete</td>");

out.println("<tr>");

5-18 Oracle Database 2 Day + Java Developer's Guide

Exception Handling

}

4. Save employees.jsp.

Creating a JSP Page to Handle a Delete Action

In the following steps, you create the delete_action. jsp page, which is a page
that only processes the delete operation. There are no visual elements on this page.

1. Create a JSP page and call it delete_action. jsp.

2. Add ajsp:usebean tag. As before, enter empsbean as the ID, and
hr.DataHandler as the Class. Set the Scope to session, and click OK.

3. Add a Scriptlet to the page. Enter the following code into the Insert Scriptlet
dialog box:

Integer employee_id =
new Integer (request.getParameter ("empid"));
empsbean.deleteEmployeeById (employee_id.intValue());

4. Drag Forward from the Component Palette to add a jsp:forward tag to the page.
In the Insert Forward dialog box, enter employees.jsp.

5. Save your work.

6. Run the project and try deleting an employee. Figure 5-8 shows the links for
deleting employee records from the employees. jsp.

Figure 5-8 Link for Deleting an Employee from employees.jsp

5 employees - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

p

= Fa |
< - - I\(ﬁ I | hbpe (10,177 237, 254:8988/HRApp-view-context-rootflogin | = | [

AnyCo Corporation: HR Application

Employee Data

Filter by Ernployee Name
Insert
First Hame |[Last Name ||Email Joh Phone Salary ||[Employee
|steven ||King [SKING |AD_PRES |[515.123.4567 |[24000.0/[Edit Delete
[Neena |[Kochhar [NKOCHHAR |[AD_vP ||515.123.4568 |17000.0 |Edit Delete
|Lex [DeHaan |[LDEHAAN |[AD_vP [515.123.4569 [17000.0 |Edit Delete |

Done

If you click Delete for any of the employee records, then that employee record will be
deleted.

Exception Handling

A SQLException object instance provides information on a database access error or
other errors. Each SQLException instance provides many types of information,

Updating Data 5-19

Exception Handling

including a string describing the error, which is used as the Java Exception message,
available via the getMessage method.

The sample application uses try and catch blocks, which are the Java mechanism for
handling exceptions. With Java, if a method throws an exception, there needs to be a
mechanism to handle it. Generally, a catch block catches the exception and specifies
the course of action in the event of an exception, which could simply be to display the
message.

Each JDBC method throws a SQLException if a database access error occurs. For this
reason, any method in an application that executes such a method must handle the
exception.

All the methods in the sample application include code for handling exceptions. For
example, the getDBConnection, which is used to get a connection to the database,
throws SQLException, as does the getAl1Employees method as follows:

public ResultSet getAllEmployees() throws SQLException {
}

For an example of code used to catch and handle SQLExceptions, refer to the code in
the authenticateUser method in the DataHandler. java class. In this example, a
try block contains the code for the work to be done to authenticate a user, and a
catch block handles the case where the authentication fails.

The following sections describe how to add code to the sample application to catch
and handle SQLExceptions.

Adding Exception Handling to Java Methods
To handle SQL exceptions in the methods in the sample application, do the following;:

1. Ensure that the method throws SQLException. For example, the method:

public ResultSet getAllEmployees() throws SQLException

2, Use try and catch blocks to catch any SQLExceptions. For example, in the
getAllEmployees method, enclose your existing code in a try block, and add a
catch block as follows:

public ResultSet getAllEmployees() throws SQLException {
try {
getDBConnection () ;
stmt =
conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
sqglString = "SELECT * FROM Employees order by employee_id";
System.out.println("\nExecuting: " + sglString);
rset = stmt.executeQuery(sqlString);
}
catch (SQLException e) {
e.printStackTrace();
}
return rset;

}

3. Asanother example, the deleteEmployee method rewritten to use try and
catch blocks would return "success" only if the method was successful, that is,
the return statement is enclosed in the try block. The code could be as follows:

public String deleteEmployeeById(int id) throws SQLException {

5-20 Oracle Database 2 Day + Java Developer's Guide

Navigation in the Sample Application

try {
getDBConnection() ;
stmt =
conn.createStatement (ResultSet.TYPE SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
sqglString = "delete FROM Employees where employee_id = " + id;
System.out.println("\nExecuting: " + sqglString);

stmt.execute (sqglString) ;
return "success";
}
catch (SQLException e) {
e.printStackTrace() ;
}
}

Creating a Method for Handling Any SQLException

As a refinement to the code for the sample application, you can create a method that
can be used in any method that might throw a SQLException, to handle the
exception. As an example, the following method could be called in the catch block of
any of the methods in the sample application. This method cycles through all the
exceptions that have accumulated, printing a stack trace for each.

Example 5-5 Adding a Method to Handle Any SQLException in the Application

public void logException(SQLException ex)
{
while (ex != null) {
ex.printStackTrace() ;
ex = ex.getNextException();
}
}

In addition, in the catch block, you can return text that explains why the method has
failed. The catch block of a method could therefore be written as follows:

catch (SQLException ex) {
logException(ex);
return "failure";

}

To add this feature to your application:

1. Inthe DataHandler.java, add a logException method.

2. Edit each of the methods to include try and catch blocks.

3. Inthe catch block of each method, run the 1ogException method.
4

For methods that have a return value of String, include a return statement to
return a message indicating that the method has failed such as:

return "failure";

Navigation in the Sample Application

The web . xm1 file is the deployment descriptor file for a web application. One section
of the web . xml file can be used for defining a start page for the application, for
example:

Updating Data 5-21

Navigation in the Sample Application

<web-app>

<welcome-file>
myWelcomeFile. jsp
</welcome-file>

</web-app>

If you do not define a welcome page in your web . xm1 file, generally a file with the
name index, with extension .html, .htm, or . jsp if there is one, is used as the
starting page. With JDeveloper, you can define which page is to be the default run
target for the application, that is, the page of the application that is displayed first, by
defining it in the properties of the project.

Once the application has started, and the start page has been displayed, navigation
through the application is achieved using the following scheme:

= Links, in the form of HTML anchor tags, define a target for the link, usually
identifying another JSP page to which to navigate, and some text for the link.

s HTML submit buttons, are used to submit forms on the pages, such as forms for
entering new or changed data.

» Jsp:forward tags, which are executed on JSP pages that handle queries and
forms, to forward to either the same JSP page again, or another JSP page.

Creating a Starting Page for an Application

In the following steps, you create the index . jsp page, which will be the default
starting page for the application. The page does not include any display elements, and
simply forwards the user to the application login page, Login. jsp. To do this you
use the jsp: forward tag. A jsp: forward tag runs on JSP pages that handle queries
and forms, to forward to either the same JSP page again, or another JSP page.

1. Create a new JSP page and call it index. jsp.

2. For the sample application, we will not add any text to this page. From the JSP
page of the Component Palette, drag Forward to include a jsp: forward tag in
the page.

3. In the Insert Forward dialog box for the forward tag, enter login. jsp as the
Page.

You can now specify this new page as the default target for the application as follows:

1. In the Application Navigator, right-click the View project and choose Project
Properties.

2. In the displayed tree, select Run/Debug. In the Run/Debug area, ensure that Use
Project Settings is selected, and in the Run Configurations area, ensure that
Default Configurations is selected. Click Edit.

3. In the Edit Launch Settings dialog box, select Launch Settings. In the Launch
Settings area on the right, click Browse next to the Default Run Target field and
navigate to find the new index. jsp page you just created and click OK. Then
click OK again to close the dialog box.

You can now run your application by right-clicking in the View project and select Run
from the shortcut menu. The application runs and runs index. jsp, which has been
set as the default launch target for the application. The index . jsp forwards you
directly to the login page, login. jsp, which is displayed in your browser.

5-22 Oracle Database 2 Day + Java Developer's Guide

6

Enhancing the Application: Advanced JDBC
Features

This chapter describes additional functionality that you can use in your Java
application. Some of these features have not been implemented in the sample
application, while some features are enhancements you can use in your code to
improve performance.

This chapter includes the following sections:
s Using Dynamic SQL
= Calling Stored Procedures

s Using Cursor Variables

Using Dynamic SQL

Dynamic SQL, or generating SQL statements on the fly, is a constant need in a
production environment. Very often, and especially in the matter of updates to be
performed on a database, the final query is not known until run time.

For scenarios where many similar queries with differing update values must be run on
the database, you can use the OraclePreparedStatement object, which extends the
Statement object. This is done by substituting the literal update values with bind
variables. You can also use stored PL/SQL functions on the database by calling stored
procedures through the OracleCallableStatement object.

This section discusses the following topics:
= Using OraclePreparedStatement

= Using OracleCallableStatement

= Using Bind Variables

Using OraclePreparedStatement

To run static SQL queries on the database, you use the Statement object. However,
to run multiple similar queries or perform multiple updates that affect many columns
in the database, it is not feasible to hard-code each query in your application.

You can use OraclePreparedStatement when you run the same SQL statement
multiple times. Consider a query like the following;:

SELECT * FROM Employees WHERE ID=xyz;

Enhancing the Application: Advanced JDBC Features 6-1

Using Dynamic SQL

Every time the value of xyz in this query changes, the SQL statement needs to be
compiled again.

If you use OraclePreparedStatement functionality, the SQL statement you want
to run is precompiled and stored in a PreparedStatement object, and you can run it
as many times as required without compiling it every time it is run. If the data in the
statement changes, you can use bind variables as placeholders for the data and then
provide literal values at run time.

Consider the following example of using OraclePreparedStatement:

Example 6-1 Creating a PreparedStatement

OraclePreparedStatement pstmt = conn.prepareStatement ("UPDATE Employees
SET salary = ? WHERE ID = ?");
pstmt.setBigDecimal (1, 153833.00)
pstmt.setInt (2, 110592)

The advantages of using the OraclePreparedStatement interface include:
= You can batch updates by using the same PreparedStatement object

= You can improve performance because the SQL statement that is run many times
is compiled only the first time it is run.

= You can use bind variables to make the code simpler and reusable.

Using OracleCallableStatement

You can access stored procedures on databases using the
OracleCallableStatement interface. This interface extends the
OraclePreparedStatement interface. The OracleCallableStatement interface
consists of standard JDBC escape syntax to call stored procedures. You may use this
with or without a result parameter. However, if you do use a result parameter, it must
be registered as an OUT parameter. Other parameters that you use with this interface
can be either IN, OUT, or both.

These parameters are set by using accessor methods inherited from the
OraclePreparedStatement interface. IN parameters are set by using the set Xxx
methods and OUT parameters are retrieved by using the get XXX methods, XXX being
the Java data type of the parameter.

A CallableStatement can also return multiple ResultSet objects.

As an example, you can create an OracleCallableStatement to call the stored
procedure called foo, as follows:

Example 6-2 Creating a CallableStatement
OracleCallableStatement cs = (OracleCallableStatement)

conn.prepareCall ("{call foo(?)}");
You can pass the string bar to this procedure in one of the following two ways:

cs.setString (1, "bar"); // JDBC standard
// or...
cs.setString ("myparameter", "bar"); // Oracle extension

Using Bind Variables

Bind variables are variable substitutes for literals in a SQL statement. They are used in
conjunction with OraclePreparedStatement and OracleCallableStatement

6-2 Oracle Database 2 Day + Java Developer's Guide

Calling Stored Procedures

to specify parameter values that are used to build the SQL statement. Using bind
variables has remarkable performance advantages in a production environment.

For PL/SQL blocks or stored procedure calls, you can use the following qualifiers to
differentiate between input and output variables: IN, OUT, and IN OUT. Input variable
values are set by using set XXX methods and OUT variable values can be retrieved by
using get XXX methods, where XxX is the Java data type of the values. This depends
on the SQL data types of the columns that you are accessing in the database.

Calling Stored Procedures

Oracle Java Database Connectivity (JDBC) drivers support the processing of PL/SQL
stored procedures and anonymous blocks. They support Oracle PL/SQL block syntax
and most of SQL92 escape syntax. The following PL/SQL calls would work with any
Oracle JDBC driver:

Example 6-3 Calling Stored Procedures

// SQL92 syntax
CallableStatement csl = conn.prepareCall

("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
("{? = call func (?,?)}") ; // stored func

// Oracle PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall

("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
("begin ? := func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

Example 6-4 Creating a Stored Function

create or replace function foo (vall char)
return char as

begin

return vall || 'suffix';

end;

You can call this stored function in a Java program as follows:

Example 6-5 Calling a Stored Function in Java

OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:oracle:thin:@<hoststring>");

ods.setUser ("hr");

ods.setPassword("hr") ;

Connection conn = ods.getConnection();

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter (1, Types.CHAR) ;

cs.setString (2, "aa");

cs.executeUpdate() ;

String result = cs.getString(1l);

The following sections describe how you can use stored procedures in the sample
application in this guide:

Enhancing the Application: Advanced JDBC Features 6-3

Calling Stored Procedures

Creating a PL/SQL Stored Procedure in JDeveloper
Creating a Method to Use the Stored Procedure
Allowing Users to Choose the Stored Procedure

Calling the Stored Procedure from the Application

Creating a PL/SQL Stored Procedure in JDeveloper

JDeveloper allows you to create stored procedures in the database through the
Connection Navigator. In these steps, you create a stored procedure that can be used
as an alternative way of inserting an employee record in the sample application.

1.

Select the Connections tab to view the Connection Navigator.

2. Expand the database connection node (by default called DBConnectionl), and the
HR node to see the objects in the HR database.
3. Right-click Procedures, and select New PL/SQL Procedure.
4. In the Create PL/SQL Procedure dialog, enter insert_employee as the object
name. Click OK.
The skeleton code for the procedure is displayed in the Source Editor.
5. After the procedure name, enter the following lines of code:
PROCEDURE "INSERT_EMPLOYEE" (p_first_name employees.first_name$type,
p_last_name employees.last_name%type,
p_email employees.email%type,
p_phone_number employees.phone_number$type,
p_job_id employees.job_id%type,
p_salary employees.salary$type
)
6. After the BEGIN statement, replace the line that reads NULL with the following:
INSERT INTO Employees VALUES (EMPLOYEES_SEQ.nextval, p_first_name ,
p_last_name , p_email , p_phone_number, SYSDATE, p_job_id,
p_salary, .30,100,80);
You can see that the statement uses the same hard-coded values that are used for
the last three columns in the addEmployee method in the DataHandler. java
class.
7. Add the procedure name in the END statement:
END insert_employee;
8. Save the file, and check whether there are any compilation errors.

The complete code for the stored procedure is shown in Example 6-6.

Example 6—6 Creating a PL/SQL Stored Procedure to Insert Employee Data

PROCEDURE "INSERT_EMPLOYEE" (p_first_name employees.first_name$type,
p_last_name employees.last_name%type,
p_email employees.email%type,
p_phone_number employees.phone_number$type,
p_job_id employees.job_id%type,
p_salary employees.salary$type
)
AS
BEGIN

6-4 Oracle Database 2 Day + Java Developer's Guide

Calling Stored Procedures

INSERT INTO Employees VALUES (EMPLOYEES_SEQ.nextval, p_first_name |,

p_last_name , p_email , p_phone_number, SYSDATE, p_job_id,
p_salary, .30,100,80);

END insert_employee;

Creating a Method to Use the Stored Procedure

In these steps, you add a method to the DataHandler. java class that can be used as
an alternative to the addEmployee method. The new method you add here makes use
of the insert_employee stored procedure.

1.
2.

Select the Applications tab to display the Application Navigator.

If the DataHandler. java file is not already open in the Java Source Editor,
double-click it to open it.

Import the CallableStatement interface as follows:

import java.sqgl.CallableStatement;

After the addEmployee method, add the declaration for the addEmployeeSP
method.

public String addEmployeeSP(String first_name, String last_name,
String email, String phone_number, String job_id,
int salary) throws SQLException {

}

The method signature is the same as that for addEmployee.

Inside the method, add a try block, and inside that, connect to the database.

try {
getDBConnection() ;

}

In addition, inside the try block, create the SQL string:

sqglString = "begin hr.insert_employee(?,?,?,?,?,?); end;";

The question marks (?) in the statement are bind variables, acting as placeholders
for the values of first_name, last_name, and so on expected by the stored
procedure.

Create the CallableStatement:

CallableStatement callstmt = conn.prepareCall (sglString);

Set the IN parameters:

callstmt.setString(l, first_name);
callstmt.setString (2, last_name);
callstmt.setString(3, email);
callstmt.setString (4, phone_number) ;
callstmt.setString (5, job_id);

callstmt.setInt (6, salary);

Add a trace message, and run the callable statement.

System.out.println("\nInserting with stored procedure: " +
sglString) ;
callstmt.execute();

10. Add a return message:

Enhancing the Application: Advanced JDBC Features 6-5

Calling Stored Procedures

return "success";

11. After the try block, add a catch block to trap any errors. Call the
logException created in Example 5-5.

catch (SQLException ex) {

System.out.println("Possible source of error: Make sure you have created the
stored procedure");

logException(ex);

return "failure";

12. Save DataHandler.java.

The complete method is shown in Example 6-7.

Note: If you have not added the 1logException () method (see
Example 5-5), JDeveloper will indicate an error by showing a red
curly line under logException (ex). This method must be present
in the DataHandler. java class before you proceed with compiling
the file.

Example 6-7 Using PL/SQL Stored Procedures in Java

public String addEmployeeSP(String first_name, String last_name,
String email, String phone_number, String job_id,
int salary) throws SQLException {

try {
getDBConnection() ;
sqglString = "begin hr.insert_employee(?,?,?,?,?,?); end;";

CallableStatement callstmt = conn.prepareCall (sqlString);
callstmt.setString (1, first_name);
callstmt.setString (2, last_name);

(
callstmt.setString (3, email);
callstmt.setString (4, phone_number) ;
callstmt.setString (5, job_id);

callstmt.setInt (6, salary);
System.out.println("\nInserting with stored procedure: " +
sqlString) ;

callstmt.execute();
return "success";
}
catch (SQLException ex) {
System.out.println("Possible source of error: Make sure you have created the
stored procedure") ;
logException(ex);
return "failure";

Allowing Users to Choose the Stored Procedure

The steps in this section add a radio button group to the insert. jsp page, which
allows a user to choose between inserting an employee record using the stored
procedure, or by using a SQL query in Java code.

1. Open insert. jsp in the Visual Editor, if it is not already open.

6-6 Oracle Database 2 Day + Java Developer's Guide

Calling Stored Procedures

8.

Create a new line after the Insert Employee Record heading. With the cursor on
this new line, drag UseBean from the JSP page of the Component Palette to add a
jsp:useBean tag to the page. Enter empsbean as the ID, browse to select
hr.DataHandler as the Class, and set the Scope to session. With the UseBean
still selected on the page, set the style of this line to None instead of Heading 3.

Drag a Radio Button component from the HTML Forms page of the Component
Palette onto the page inside the form above the table. In the Insert Radio Button
dialog, enter useSP as the Name, false as the Value, and select Checked. Click
OK.

In the Visual Editor, position the cursor to the right of the button, and enter text to
describe the purpose of the button, for example, 'Use only JDBC to insert a new
record'.

Press Enter at the end of the current line to create a new line.

Drag a second Radio Button below the first one. In the Insert Radio Button dialog,
use useSP as the Name, true as the Value, and ensure that the Checked
checkbox is not selected.

In the Visual Editor, position the cursor directly to the right of the button, and
enter text to describe the purpose of the button, for example, 'Use stored
procedure called via JDBC to insert a record'.

Save the page.

Figure 6-1 shows insert . jsp with the radio button that provides the option to use a
stored procedure.

Enhancing the Application: Advanced JDBC Features 6-7

Calling Stored Procedures

Figure 6—-1 Adding a Link to Provide the Stored Procedure Option

i) [Paragraph v |Defauk w|nore |8 8 @ B F U = = 3=

11
[
4

-

AnyCo Corporation: HR Application

Insert Employee Record

) Use only JDBC to insert a new record

O Use stored procedure called via JDBC to insert a record

First Mame

Last Mame

Phone Mumber

Job

Monthly Salary

Ernail ‘ ‘
|

‘Add Employee‘

=html= =hody= =form= <p=use...

4]

Design lSource l Histary I b | | » I

Calling the Stored Procedure from the Application

The steps in this section modify the insert_action. jsp file, which processes the
form on the insert. jsp page, to use the radio button selection and select the
appropriate method for inserting a new employee record.

1. Openinsert_action. jsp in the Visual Editor, if it is not already open.

2. Double-click the scriptlet to invoke the Scriptlet Properties dialog box and add a
new variable after the salary variable, as follows:

String useSPFlag = request.getParameter ("useSP");

3. Below that, still in the Scriptlet Properties dialog box, replace the existing
empsbean . addEmployee line with the following lines of code to select the
addEmployeeSP method or the pure JDBC addEmployee method to insert the
record.

if (useSPFlag.equalsIgnoreCase("true"))
empsbean.addEmployeeSP (first_name, last_name, email,
phone_number, job_id, salary.intValue());

// otherwise use pure JDBC insert

else
empsbean.addEmployee (first_name, last_name, email,
phone_number, job_id, salary.intValue());

4. Save insert_action.jsp.

6-8 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

You can now run the application and use the radio buttons on the insert page to
choose how you want to insert the new employee record. In a browser, the page will
appear as shown in Figure 6-2.

Figure 6—2 Using Stored Procedures to Enter Records

%9 insert - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

<: - - '\é:] ﬁ [} hetpejfin.177.237.25489 | v | B | ([G]~

AnyCo Corporation: HR Application
Insert Employee Record

®Use only JDBC to insert a new recard

O Use stored procedure called via JOBC to insert a record

First Name

Last Mame

Ermnail

Phone Mumber

Job Sales Representative v

Manthly Salary

Add Employee

Done

Using Cursor Variables

Oracle JDBC drivers support cursor variables with the REF CURSOR types, which are
not a part of the JDBC standard. REF CURSOR types are supported as JDBC result sets.

A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has
the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSOR, then, identifies a reference to a cursor variable.
Because many cursor variables might exist to point to many work areas, REF CURSOR
can be thought of as a category or data type specifier that identifies many different
types of cursor variables. A REF CURSOR essentially encapsulates the results of a
query.

Oracle does not return ResultSets. To access data returned by a query, you use
CURSORS and REF CURSORS. CURSORS contain query results and metadata. A REF
CURSOR (or CURSOR variable) data type contains a reference to a cursor. It can be
passed between the RDBMS and the client, or between PL/SQL and Java in the
database. It can also be returned from a query or a stored procedure.

Note: REF CURSOR instances are not scrollable.

This section contains the following subsections:

Enhancing the Application: Advanced JDBC Features 6-9

Using Cursor Variables

s Oracle REF CURSOR Type Category
= Accessing REF CURSOR Data
s Using REF CURSOR in the Sample Application

Oracle REF CURSOR Type Category

To create a cursor variable, begin by identifying a type that belongs to the REF CURSOR
category. For example:

dept_cv DeptCursorTyp

Then, create the cursor variable by declaring it to be of the type DeptCursorTyp:

Example 6-8 Declaring a REF CURSOR Type
DECLARE TYPE DeptCursorTyp IS REF CURSOR

REF CURSOR, then, is a category of data types, rather than a particular data type.
Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set.

Accessing REF CURSOR Data

In Java, a REF CURSOR is materialized as a ResultSet object and can be accessed as
follows:

Example 6-9 Accessing REF Cursor Data in Java

import oracle.jdbc.*;

CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter (1, OracleTypes.CURSOR) ;
cstmt.execute () ;
cursor = ((OracleCallableStatement)cstmt).getCursor(1l);

// Use the cursor like a normal ResultSet
while (cursor.next ())
{System.out.println (cursor.getString(1l));}

In the preceding example:

1. AcallableStatement object is created by using the prepareCall method of
the connection class.

2. The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

3. Asalways, the output parameter of the callable statement must be registered to
define its type. Use the type code OracleTypes.CURSOR for a REF CURSOR.

4. The callable statement is run, returning the REF CURSOR.

6-10 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

5. The CallableStatement objectis cast to OracleCallableStatement to use
the getCursor method, which is an Oracle extension to the standard JDBC
application programming interface (API), and returns the REF CURSOR into a
ResultSet object.

Using REF CURSOR in the Sample Application

In the following sections, you enhance the sample application to display a
dynamically-generated list of job IDs and job titles in the Job field when they are
inserting a new employee record.

s Creating a Package in the Database

s Creating a Database Function

s Calling the REF CURSOR from a Method
= Displaying a Dynamically Generated List

To do this, you create a database function, GET_JOBS, that uses a REF CURSOR to
retrieve a result set of jobs from the Jobs table. A new Java method, getJobs, calls
this database function to retrieve the result set.

Creating a Package in the Database

The following steps create a new package in the database to hold a REF CURSOR
declaration.

1. Select the Connections tab to view it in the Navigator.

2. Expand the Database node, the DBConnection1 node, and the HR node, to view
the list of database objects. Scroll down to Packages. Right-click Packages and
select New PL/SQL Package.

3. In the Create PL/SQL Package dialog, enter JOBSPKG as the name. Click OK. The
package definition is displayed in the Source Editor.

4. Position the cursor at the end of the first line and press Enter to create a new line.
In the new line, declare a REF CURSOR as follows:

TYPE ref_cursor IS REF CURSOR;

5. Save the package.
The code for the package is shown in Example 6-10:

Example 6—10 Creating a Package in the Database

PACKAGE "JOBSPKG" AS
TYPE ref_cursor IS REF CURSOR;
END;

Creating a Database Function
These steps create a database function GET_JOBS that uses a REF CURSOR to retrieve
a result set of jobs from the Jobs table.

1. In the Connections Navigator, again expand the necessary nodes to view the
objects in the HR database. Right-click Functions and select New PL/SQL Function
from the shortcut menu.

2. In the Create PL/SQL Function dialog, enter GET_JOBS as the name. Click OK.
The definition for the GET_JOBS function displays in the Source Editor

Enhancing the Application: Advanced JDBC Features 6-11

Using Cursor Variables

3. In the first line of the function definition, substitute JobsPkg.ref_cursor as the
return value, in place of VARCHAR?2.

4. After the AS keyword, enter the following;:

jobs_cursor JobsPkg.ref_cursor;

5. In the BEGIN block enter the following code to replace the current content:

OPEN jobs_cursor FOR
SELECT job_id, job_title FROM jobs;
RETURN jobs_cursor;

6. Save the function

The code for the function is shown in Example 6-11.

Example 6-11 Creating a Stored Function

FUNCTION "GET_JOBS"
RETURN JobsPkg.ref_cursor
AS jobs_cursor JobsPkg.ref_cursor;
BEGIN
OPEN jobs_cursor FOR
SELECT job_id, job_title FROM jobs;
RETURN jobs_cursor;
END;

Calling the REF CURSOR from a Method

These steps create a Java method, getJobs, in the DataHandler class that calls the
GET_JOBS function to retrieve the result set.

1. Double-click DataHandler. java to open it in the Source Editor if it is not
already open.

2. Enter the method declaration.

public ResultSet getJobs() throws SQLException {
}

3. Within the method body, connect to the database.

getDBConnection() ;

4. Following the connection, declare a new variable, jobquery:

String jobquery = "begin ? := get_jobs; end;";

5. Create a CallableStatement using the prepareCall method:

CallableStatement callStmt = conn.prepareCall (jobquery) ;

6. Register the type of the OUT parameter, using an Oracle-specific type.

callStmt.registerOutParameter (1, OracleTypes.CURSOR);

7. When you specify that you want to use an Oracle-specific type, J]Developer
displays a message asking you to use Alt+Enter to import
oracle.jdbc.OracleTypes. Press Alt+Enter, and then select OracleTypes
(oracle.jdbc) from the list that appears.

8. Run the statement and return the result set.

6-12 Oracle Database 2 Day + Java Developer’s Guide

Using Cursor Variables

callStmt.execute();
rset = (ResultSet)callStmt.getObject(1);

9. Enclose the code entered so far in a try block.

10. Add a catch block to catch any exceptions, and call your logException method as
well.

catch (SQLException ex) {
logException(ex);

}

11. After the close of the catch block, return the result set.

return rset;

12. Make the file to check for syntax errors.
The code for the getJobs method is as follows:

public ResultSet getJobs() throws SQLException {

try {
getDBConnection() ;
String jobquery = "begin ? := get_jobs; end;";
CallableStatement callStmt = conn.prepareCall (jobquery) ;
callStmt.registerOutParameter (1, OracleTypes.CURSOR);
callStmt.execute() ;
rset = (ResultSet)callStmt.getObject(1);

} catch (SQLException ex) {

logException(ex);

}

return rset;

}

Displaying a Dynamically Generated List

To create the drop down list displaying the list of job IDs and job titles in the Insert
page, you hard-coded the job IDs and job titles. In the following steps, you replace this
with a dynamically-generated list provided by the REF CURSOR created in the
previous section.

1. Double-click insert. jsp in the Application Navigator to open it in the Visual
Editor, if it is not already open.

2. Drag a Page Directive onto the page to the right of the useBean tag. In the Insert
Page Directive dialog box, enter Java as the Language, and in the Import field,
browse to select java.sql.ResultSet. Click OK.

3. Drag a scriptlet onto the page next to the Page Directive. In the Insert Scriptlet
dialog box, add the following code to execute the getJobs method and return a
result set containing a list of jobs.

ResultSet rset = empsbean.getJobs();
4. Select the ListBox component in the page, and click Scriptlet in the JSP

Component Palette. (You need not drag and drop the scriptlet onto the page in
this case.) The Insert Scriptlet dialog box appears.

5. Enter the following code into the Insert Scriptlet dialog box. Click OK.

while (rset.next ())

{

out.println("<option value=" + rset.getString("job_id") + ">" +

Enhancing the Application: Advanced JDBC Features 6-13

Using Cursor Variables

rset.getString("job_title") + "</option> ");
}
6. Remove the hard-coded values as follows.

With the ListBox component still selected, in the Structure window scroll to Job
field. Examine the list of hard-coded options below the select keyword. Delete
each of the options, ensuring that you retain the scriptlet.

Figure 6-3 Structure View of Dropdown ListBox Options

Einsert.jsp - Struckure]

L =

ey Email a
=-AR td
L3 input

Eﬁﬁ td
oy Phone Number
E-AR td

" = input

Insert before option »
Insert inside option 3
Insett after option »
i iy Eorm]
..... @& sori Table »
o b Insert HTML/JSR...
Bgﬁ td x cut Crl-x
oy Manthl Copy Cirl-C
Eﬁﬁ td |

et -
G0 to Source

Source lDesign I

7. Save the page.

Now run the application, click to insert a new employee and use the list to display a
list of available jobs. Figure 64 shows the dynamic jobs list in the browser.

6-14 Oracle Database 2 Day + Java Developer's Guide

Using Cursor Variables

Figure 6-4 Dynamically Generated List in Browser

2 insert - Mozilla Finefox EEIE
File Edit Wiy Histary Bookmarks Tools Help

<: - - @ /IJ’} ||_| http:,l',l'lD.1??.23?.254:SQSSIHRApp—view—contE| ‘l B‘]

AnyCo Corporation: HR Application
Insert Employee Record

@ Use only JDBC to insert a new recard

O Use stared procedure called via JDBC to insert a recard

First Mame

Last Mame

Ermail

Phone NMumber

Job | Fresident V|
[President

Adrministration Vice President
Administration Assistant

Finance Manai}er
~dd Employos Accounting Manager

FPublic Accountant

Sales Manager

Sales Representative
FPurchasing Manager
Furchasing Clerk

Stock Manager

Stock Clerk

Shipping Clerk

Programmer

tdarketing Manager

tarketing Representative
Human Resources Representative
FPuhlic Relations Representative

Wonthly Salary

Done

Enhancing the Application: Advanced JDBC Features 6-15

Using Cursor Variables

6-16 Oracle Database 2 Day + Java Developer’s Guide

7

Creating a Master-Detail Application Using

Oracle ADF

This chapter describes how to create a master-detail application using Oracle
Application Developer Framework (Oracle ADF) in the following sections:

Overview of the Master-Detail Application

Using Oracle ADF

Creating an Application and Projects

Creating Business Components in the model Project

Displaying Master-Detail Data

Navigation Between Application Pages: JSF Navigation Diagrams
Editing Data

Enabling COMMIT and ROLLBACK

Running the Application

Overview of the Master-Detail Application

A master-detail application allows you to view data from related tables at the same
time. The records from a master table can be viewed along with related records from
the detail table. If provisioning to edit the master-detail data is built into the
application, you can also edit data from both the tables from a common interface.

The master-detail application created in this chapter consists of:

An ADF middle-tier set of Java/XML objects to allow data in the table from the HR
schema to be accessed and updated. This is in one project called model.

A user interface (UI), or view, that consists of a set of JSPs that serve as the UI for
the application. This will be in a project called view.

The model and view projects are based on the Java EE Model-View-Controller (MVC)
design pattern, that is easily implemented using Oracle ADFE.

Figure 7-1 shows the relationships among the items developed for this application.

Creating a Master-Detail Application Using Oracle ADF 7-1

Using Oracle ADF

Figure 7-1 Master Detail Application Pages

employees.jsp edit.jsp

Displays master-detail
departments and employees.

Displays a single employee’s
detaile

Users can :

« edit the employee details

* submit the changes

* navigate back to the
employees page

Users can :

« step through the departments
viewing the employees

* select an employee to edit

* commit or rollback changes

This application accesses the HR schema on Oracle Database. It uses the departments
table as the master table to display detail data from the employees table. This chapter
describes how you can use Oracle ADF with JDeveloper to create this application.

Using Oracle ADF

Oracle ADF is an end-to-end application framework that builds on Java EE standards
and open-source technologies to simplify and accelerate creating service-oriented
applications. You can use Oracle ADF to develop enterprise solutions that search,
display, create, modify, and validate data using web, wireless, desktop, or web
services interfaces. Used in tandem, Oracle JDeveloper 10g and Oracle ADF give you
an environment that covers the full development lifecycle from design to deployment,
with drag-and-drop data binding, visual UI design, and team development features
built-in.

The following subsections introduce some of the Oracle ADF features that you will use
to create the master detail application:

s Oracle ADF Business Components
s Oracle ADF Faces
s ADF Data Controls
See Also:
m http://www.oracle.com/technology/products/jdev/coll

ateral/papers/1013/adf_10.1.3_overview.pdf for more
information on Oracle ADF architecture

s http://www.oracle.com/technology/products/jdev/tips
/muench/requiredreading/index.html for a compilation of
resources on Oracle ADF

Oracle ADF Business Components

Oracle ADF Business Components is Java EE-compliant technology for developing
business services for database-centric, enterprise Java EE applications. Oracle ADF
Business Components simplifies building business services for developers familiar
with 4GL tools like Oracle Forms.

Oracle ADF Business Components technology:

= Automatically handles object-relational mappings and persistence for instances of
its own library classes

= Allows you to make complex requests for data retrieval using SQL
= Automatically handles transaction management

s Provides a framework for implementing complex business logic

7-2 Oracle Database 2 Day + Java Developer's Guide

Creating an Application and Projects

= Automatically implements many Java EE design patterns

= Has a powerful caching and data passivation system for increasing the
performance and scalability of applications

All of this functionality is fully customizable. To create the ADF middle-tier for the
application created in the book, you create ADF Business Components from database
tables.

Oracle ADF Faces

Oracle ADF Faces is based on the JavaServer Faces (JSF) JSR 127 specification. Oracle
ADF Faces components are used in the user interfaces of the application. These
components can be used in any IDE that supports JSE.

You can use Oracle ADF Faces to determine a consistent look and feel for your
application. This allows you to focus on user interface interaction rather than look and
feel compliance. ADF Faces components also support multi-language and translation
implementation as well as accessibility features.

JDeveloper provides several design tools, wizards, special dialogs, and property
editors that help you insert and use ADF Faces components in your pages. For
example, the Visual Editor lets you design user interfaces by dragging and dropping
components from the Component Palette. If you are familiar with XML or JSP/HTML
coding, you can also edit the source of the page files to insert ADF Faces component
tags.

Facets Usage with Oracle ADF Faces

Facets are similar to named children components. You use facets inside parent
components to control how some child components should be displayed on a page.
Facets are placeholders for certain types of UI components.

The ADF Faces af : panelPage component, which is used in the sample application,
lets you lay out an entire page. It supports facets for laying out page-level and
application-level text, images, actions, and buttons in specific areas of the page.

When you drop an ADF Faces component onto a page, the JSP/HTML Visual Editor
displays any facets as dotted line rectangular boxes.

ADF Data Controls

Oracle ADF data controls permit the application client to access business services
defined by the model object layer. Business services can be any collection, value, or
action that your model project defines. At runtime, the databound UI components can
access the business services defined by the business services.

If you use Oracle ADF Business Components as your business service technology,
your data model components will be exposed in the model layer as Oracle ADF data
controls. In the sample application, it is not necessary to create data controls for the
Oracle ADF Business Components you create, because they already implement the
data control interfaces for you.

Creating an Application and Projects

Before you proceed to developing the master detail application, you must create a
Connection object that establishes a connection between the application and the
database. For instructions to create a Connection object, refer to Chapter 3.

Creating a Master-Detail Application Using Oracle ADF 7-3

Creating Business Components in the model Project

1. From the File menu, select New to display the New Gallery. From the General
category, select Application.

2. In the Create Application dialog box, enter AnyCo_ADF_MD as the Name of the
application, leave the Application Package Prefix blank, and for the Application
Template, select No template - All technologies. Then click OK.

3. In the Create Project dialog, enter model as the Project Name and click OK.

You now have an application called AnyCo_ADF_MD, which contains a project called
model.

Creating Business Components in the model Project

In the model project, you will create the ADF Business Components to allow the
hr.Departments and hr . Employees tables to be displayed and edited by the
application.

1. In the JDeveloper Application Navigator, select the model project.

2. From the File menu, select New to display the New Gallery. Expand the Business
Tier category, and select ADF Business Components. In the Items list, select
Business Components from Tables.

3. In the Initialize Business Components Project screen, make sure the hr connection
is selected, and click OK.

4. On the Create Business Components from Tables — Welcome screen, click Next.

5. On the Entity Objects screen, to see a list of the tables available, select the
Auto-Query checkbox. From the Available list of tables, move the
DEPARTMENTS and EMPLOYEES tables over to the Selected list as shown in
Figure 7-2. Click Next.

Figure 7-2 Selecting Schema Objects to Create Entity Objects

Create Business Components from Tables - Step 1 of 5: Entity Objects

Specify the package to contain vour new entity objects and associations.
Package: |m0del |v | |Broﬂse... |

Filter the tvpes of schema objects to display as available, then select the schema
object{s) and click '>' to create entity objects.

Mame Filter: | | Aubo-Cuery
Schema: |HR V|
Ohject Types: [v] Tables [] views [synonyms
Available: Selected:
—— |Departments1 (HR.DEPARTMENTS)
X Erpioy=cs1 (R EvPLOYEES)
2
<)
&

Ertity Mame: | Employees1 |

| Help | | < Back " Mext = || Finish || Cancel |

6. On the Updatable View Objects screen, move Departments
(HR.DEPARTMENTS) and Employees (HR.EMPLOYEES) to the Selected list.
Click Next.

7. On the Read-Only View Objects screen, click Next.

7-4 Oracle Database 2 Day + Java Developer's Guide

Displaying Master-Detail Data

10.

11.

On the Application Module screen, you can name your ADF Application Module.
Enter AnyCoAppModule as the Name. Click Next.

On the Diagram, you can request a business components diagram. However, this
is not essential for this application, so click Next.

On the Finish dialog box, check the details and if they are correct, click Finish. The
business components you defined are created in the model project.

Save all your work.

You have now generated an ADF middle-tier, for which you can build a user interface.
At this point, you additional business component objects that handle the foreign key
relationships from the database are also generated. These include: DeptMgrFkAssoc,
DeptMgrFkLink, and so on.

Figure 7-3 shows the Application Navigator, where you can expand the contents of
the model project, and see the items that are created for your application.

Figure 7-3 Navigating Through an ADF Model

Applications Mavigakar

BRRAA®Em0E el
Applications
=)-[F] anyCo_ADF_MD

EREmode |

=[] Application Sources

(il model

..... 18 ArvCoappMadule
..... Departments
------ E] Departmentsiiew
..... L_E. DeptMorFkassac
...... % DiepkMgrFkLink
..... L_E. EmpLeptFkassoc
...... % ErnpDeptFkLink.
----- Employees
...... £ Employeesyien
----- L_E.l.‘ ErnpManagetFkassoc
------ ‘ﬁ% ErpianagerFkLink

E-[&] HRapp

Wiew

Displaying Master-Detail Data

The application user interface consists of a set of JSP pages. For this application, the
user interface (Ul), referred to as the view, is defined in a separate project.

Creating a Project for the Application Ul

To create the application Ul, you define a project called view as follows:

1.

In the Application Navigator, select the AnyCo_ADF_MD application and from
the File menu, select New to display the New Gallery. From the General category,
select Empty Project.

In the Create Project dialog box, enter view as the Name of the new project, and
click OK.

Creating a JSP to Display Employee Details

Using the following instructions, you create a page called employees. jsp, which
will be used to allow users to browse through a coordinated set of master-detail pages
of departments and employees.

Creating a Master-Detail Application Using Oracle ADF 7-5

Displaying Master-Detail Data

In the Application Navigator, select the view project. Right-click the project and
select New to display the New Gallery.

In the New Gallery, expand the Web Tier category and select JSF. In the Item list,
select JSF JSP and click OK.

On the Create JSF JSP — Welcome screen, click Next.
On the Web Application screen, accept the default and click Next.

On the JSP File screen, enter employees. jsp as the File Name, and ensure that
JSP Page (*.jsp) is selected for the page type. Click Next.

On the Component Binding screen, ensure that Do Not Automatically Expose UI
Components in a Managed Bean is selected. Click Next.

On the Tag Libraries screen, if they are not already included, add ADF Faces
Components and ADF Faces HTML to Selected Libraries on the right-hand side.
The JSF Core and JSF HTML tag libraries should also be listed as Selected
Libraries on the right-hand side. This is shown in Figure 7—4.

Figure 7-4 Selecting Libraries for the JSF JSP

® Create JSF JSP. - Step 3 of 4: Tag Libraries

Choose tag libraries to add to the ISP page,
Filter By: all Libraries -
Available Libraries: Selected Libraries:
ADF Faces = 1.0 ADF Faces Components 10_1_3_10_4
ADF Faces Industrial 1.0 ADF Faces HTML 10_1_3_0_4
Graph 1.0 b 15F Core 1.0
I5TL Core 1.0 = I5F HTML 1.0 =
J5TL Core 1.1 3 *
JSTL Core RT 1.0 Bt {}
JSTL Format 1.0 <
J5TL Farmat 1.1 3
J5TL Farmat RT 1.0 « &
JSTL Functions 1.1 =
J5TL Permitted Taglbs 1.0
J5TL Permitted Taglbs 1.1
JSTL Scripk Free 1.0 s q] i I

Help | | < Back " [ext = _J | Finish | | Cancel

8. Click Finish.

The new empty employees. jsp is now displayed in the JSP/HTML Visual Editor,
ready for you to start designing the page.

Defining the Page Layout and Heading

In these steps, you add items to the page to define the page layout. As in earlier
chapters, you use the Component Palette to drop tags onto your page. For this page,
you use the ADF Faces PanelPage component.

1.

If the Component Palette is not displayed, use the View menu to display it. Select
the ADF Faces Core tab of components. Drag and drop the PanelPage component
on the blank page. The ADF Faces Core page of the Component Palette is shown
in Figure 7-5.

Oracle Database 2 Day + Java Developer’s Guide

Displaying Master-Detail Data

Figure 7-5 ADF Faces Core Component Palette

ﬁ(_omponent Palette

|P.DF Faces Core

A OutputTexk

Page

{4 PanelBorder

[PanelBox

@ PanelButtonBar
PanelFarm

=, PanelGroup

'] PaneHeadsr

4§ PanelHorizontal
I3 PanelLabelandMessage
3= PanelList
PanelPage

"Il PanelPageHeader
PanelPartialRoot
[7] PanelsideBar

¥ PanelTip

-

After dropping it, you should see a dark blue line with the text Title 1, as shown in

Figure 7-6.

Figure 7-6 ADF Faces PanelPage Component

branding: brandingapp menuGlobal
menu1

| iTitle 1

i appCopmyright e

i iappAbout PP Ly

On the page, click on the PanelPage component and in the Property Inspector,
change the value of Title field from Title 1 toBrowse Employees, then press
Enter. The title change is now reflected in the page in the Visual Editor.

In this step, you add another ADF Faces component onto the page to serve as the
page title, by dragging a component into the branding section of the PanelPage.
From ADF Faces Core page of the Component Palette, drag an OutputText
component and drop it into the branding facet, that is, the dotted line square box
with title branding in the upper left corner of the page.

The new OutputText is now displayed with a default value of outputText1.
Change this to read AnyCo Corporation by changing the value of OutputText in
the Property Inspector.

Now change the look and feel of the text by changing the StyleClass property of
the OutputText to have the value AFHeaderLevelOne. This is a style which is
defined by ADF Faces.

Once changed, the text should appear larger and blue in the Visual Editor.
Figure 7-7 shows the page in the Visual Editor after these steps.

Creating a Master-Detail Application Using Oracle ADF 7-7

Displaying Master-Detail Data

Figure 7-7 PanelPage Component with Added Text

..

menuGlobal
menu1
Browse Employees
| appCopyright .
appibout Apniuacy

Displaying Master Data on a JSP Page

In these steps you will add items to the page to allow users to browse departments
and their employees. In these steps you use the Data Control Palette, which by default
is on the right of the JDeveloper display, alongside the Component Palette. The Data
Control Palette allows you to drop data objects called ADF Data Controls onto your
pages.

The first stage is to add a read-only form which will display the departments along
with navigation buttons to step through the different departments and their related
employees. To do this, you drag onto the page one of the data controls you created in
the model project.

1. Select the Data Control Palette, and expand the AnyCoAppModule node.
Figure 7-8 shows the Data Control Palette with the AnyCoAppModule expanded.

Figure 7-8 Data Control Palette

gData Control Palette

E}% AnyCofsppModuleDataControl
IE Employessiiewl
E Departmentsiiewl
D Cperations

2. In the Data Control Palette, select the DepartmentsView1 node and drag it onto
the middle of the page just beneath the Browse Employees text.

3. As the drop occurs, a popup menu is displayed. Select Create, Forms, then ADF
read-only form.

4. In the Edit Form Fields dialog, select Include Navigation Controls and click OK.
This is shown in Figure 7-9.

7-8 Oracle Database 2 Day + Java Developer's Guide

Displaying Master-Detail Data

Figure 7-9 Adding Form Fields

Edit Form Fields X

Select the columns or fields that you want to add/modify below, For each component, you
can elect to choose the default label binding, or supply vour own, For components that do
not have labels, this choice is ignored.

Items:

Display Label ‘Walue Binding Component To Use

<bound to attr label> = DepartmentId o3 ADF Qutput Texk wyf...
2 <bound to attr label> =2 DepartmentMame DF Cutput Texk w)...

=2 <hound to attr label> =3 ManagerId E ADF Output Text w).., | Drown |

=2 <bound to attr label> =2 LacationId ADF Cukput Texkwl.. (o)

£ ound to attr labe ocation & utput Texk wi |Bottom|
| T ||De|_ete|

Include Mavigation Contrals

[Include Submit Buttan

| Help | | [o]4 _J | Cancel |

The Visual Editor now displays the read-only form with navigation buttons on the
page. If the form does not appear, click the refresh button. The values of the form
fields are provided by using expression language such as #{...}. This is how JSF
identifies application data that is to be rendered on the page.

Figure 7-10 shows what the page looks like in the Visual Editor after these steps.

Figure 7-10 Form Fields in Visual Editor

[GMessages[|

: AnyCo . brandingépp menuGlohal
 Corporation '
: menu1 :
| Browse Employees |
: # {hindings. #{hindings Departmentld inputvalue} :
; Departrmentid label} ;
: # {bindings. #{kindings DepartmentName. :
5 Departmentiame. inputvalue) 5
; label} ;
: # {hindings. #{bindings Managerld.inputvalue} :
: Wanagerid label} :
: # {hindings. #{hindings Locationld inputvalue} :
! Locationld label} !
0 [First) (Previous] | Mext) [Last) 0
i appCopyright Dri :
' a Thvas '
' appabout e 2 |

Displaying Detail Data for Master Records

In these steps, you will first add a horizontal separator to the page, to separate the
department data from the detail employee data. Then, to display the detail employee
data for each master department, you use another of the data controls created from the
Business Components you created in the model project. You choose the data control
that links employee data to a particular master department. You display the employee
data below the ObjectSeparator.

Creating a Master-Detail Application Using Oracle ADF 7-9

Displaying Master-Detail Data

1. To add a separator to the page, from the ADF Faces Core page of the Component
Palette drag an ObjectSeparator component and place it underneath the form in
the Visual Editor. A dotted horizontal line is displayed beneath the form.

2, In the Data Control Palette, expand the DepartmentsView1 node.

In addition to the fields of the departments table, there is also a child
EmployeesView3 node. This node represents the detailed or set of employees
restricted by its foreign key to the departments table.

3. Drag and drop the EmployeesView3 node onto the page beneath the dotted
horizontal line (ObjectSeparator).

As you hover the mouse before dropping, the Visual Editor and the Structure
window on the lower left indicate where the drop will occur. Adjust the drop
position in the Structure window so that it is after the af : objectSeparator as
shown in Figure 7-11.

Figure 7-11 Structure Window Showing Dropped Position

EE emplovees.jsp - Structure E]

=
----- <|DOCTYPE HTML PUBLIC ...
L [© pags
@ tagib - h
@ tagib - f
@ taglib - af
@ taglb - afh
- [asH] Frview
E1-[@] afhthtml
'E| afh:head - emplovees
=113 afh:body

afobjeckSeparator
PanelPage facets

4. As the drop is finished, a shortcut menu is displayed. Select Create, then Table,
and ADF Read-only Table.

5. In the Edit Table Columns dialog, select Enable selection and Enable sorting.

Before clicking OK, delete the three columns: Departmentld, ManagerlId, and
CommissionPct. For each of these rows in turn, select the row, then click Delete.

The Edit Table Columns dialog box is shown in Figure 7-12.

7-10 Oracle Database 2 Day + Java Developer's Guide

Displaying Master-Detail Data

Figure 7-12 Editing Table Columns

Edit Table Columns @

Select the columns or fields that you want to add/modify below, For each component, wou can
elect to choose the default label binding, of supply vour awn. For cormponents that do not hawve
labels, this choice is ignored.

Irems:
Display Label ‘alue Binding Component To Use
@A <bound ko attr label> @ Emplovesld A, BDF Cutput Text
=2 <bound to attr label> == FirstMame A% ADF Cutput Text
=Z <hound to attr label> B LastMame A ADF Qutput Text 5 | Down |
=2 <hound ko attr label> == Email A ADF Output Text |El
=2 <bound ko attr label> = PhoneMumber A ADF Cutput Text ——
=Z «hound to attr label> == HireDate A ADF Output Text
7% chaund ba atte lahel> B2 10hTd A ADE cutrut Taxt |7
| Tew | |De|_ete |
Enable selection -
Enable sarting
| Help | | o4 | | Cancel

Then click OK to generate the table.
6. Save your work.
You should now see both the master form and detail table in the Visual Editor as in

Figure 7-13.

Figure 7-13 Master-Detail View in Visual Editor

EMessages]]

AnyCo
Corporation

brandingApp menuGlobal

menui

Browse Employees

{bindings. #{hindings Departmentld.inputvalue}
Departmentld.label}
{bindings. #{bindings DepartmentMame.
DepartmentMame. inputvalue}
lahel}
[hindings. #{bindings Managerld inputvalue}
Managerld. label}
{bindings. #{hindings Locationld.inputvalue}
Locationld.label}
.Tstj | Previous) 'WM 'm

Select ——
| Submit
and L
{bindings. # {bindings.
DepartmentsViewlEmployeesView3.| DepartmentsViewlEmployeesy
Select labels.Employeeld} labels.FirstName}
O #{row Employeeld) #{row FirstName}

appComyright

appPriva
appabout it Ly

Creating a Master-Detail Application Using Oracle ADF 7-11

Navigation Between Application Pages: JSF Navigation Diagrams

Testing the Application

After adding the departments and employees to the page is a good stage to test the
application so far. To test the application:

1. Inthe Application Navigator, right-click the page employees.jsp and select Run.
This will start up the application locally by using the embedded OC4] server in
JDeveloper. When the application has started, the master-detail employees page is
displayed in a browser.

2. To test the master-detail coordination, click on the navigation buttons in the
departments form (Next, Previous, First, Last). Notice as you click on the
navigation buttons, that the related employees are displayed in the table below.

The page when viewed in a browser is similar to that shown in Figure 7-14.

Figure 7-14 Employee Data Viewed in a Browser

AnyCo Corporation

Browse Employees
Departmentld G0
DepartmentMame [T
Managerd 103
Lacationld 1400

Select and _Submit)

Select Employeeld FirstName|LastName|Email __[PhoneNumber HireDate _|Jobld _|Salary Active]
® 103 Alexander Hunold AHUNOLD 590,423 4567 03-Jan-1990 IT_PROGS000 1
Q104 Bruce Ermst BERNST 590.423.45668 21-May-1991 T_PROGE000 1
Q 108 Diavid Austin DAUSTIN 590.423 4569 25-Jun-1997 T_PROG 4800 1
Q 106 Yalli Pataballa WVPATABAL 590.423.4560 05-Feb-1998 IT_PROG 4800 1
C 107 Diana Lorentz DLORENTZ 590.423.5567 (07-Feb-1929 IT_PROG 4200 1

3. To conclude the test, shutdown the server. To do this, in JDeveloper, right-click in
the log window titled Running: Embedded OC4] Server — Log, and select
Terminate.

Navigation Between Application Pages: JSF Navigation Diagrams

You can use a JSF navigation diagram to plan out your application. The diagram
shows the application pages and the navigation cases between them.

You can create new pages directly from the diagram and then define the navigation
between them, using elements dropped from the Component Palette.

You can then edit your JSF pages with tools such as the Visual Editor, and can edit the
navigation cases directly from the diagram.

Creating a Page Using a JSF Navigation Diagram

To allow users to edit employee data, you will create a new page, edit. jsp. Onto
this page you will drop an ADF input form from Data Control Palette.

In these steps, instead of creating a new page directly using the JSF JSP wizard, you
will create it from the JSF navigation diagram. In later steps, you will also define the
navigation between the pages visually on the diagram.

1. To open the JSF navigation diagram for the application, in the Application
Navigator, right-click the view project and select Open JSF Navigation.

7-12 Oracle Database 2 Day + Java Developer's Guide

Navigation Between Application Pages: JSF Navigation Diagrams

A blank navigation diagram is displayed.

2. To start defining the navigation rules, drag the existing employees.jsp page from
the Application Navigator onto the blank diagram.

A page icon is displayed on the navigation diagram representing the
employees.Jsp page.

3. To create a new page, with the JSF navigation diagram still displayed in the
editing window, from the JSF Navigation Diagram page of the Component Palette,
drag JSF Page onto the diagram.

As the new page icon appears on the diagram, enter the text edit. jsp to replace
the name /untitledl. jsp and press Enter. (You do not need to add the
forward slash in front of the name, because it will be added automatically.)

At this point, a new page has been added to the diagram, but the page file itself
does not exist. To indicate that, the page icon renders with a yellow caution sign.

4. To create the edit . jsp page, double-click the page icon for the page edit.jsp
in the diagram.

5. In the Create JSF JSP wizard, if the Welcome page is displayed, click Next. The
name of the page is already entered for you, and the remaining steps should be
exactly as for the employees. jsp page created earlier, so you can click Finish.

The new page is displayed in the Visual Editor, ready for you to design the page.

Navigating Between Pages

Navigation by a user through a JSF application is defined using navigation rules that
determine which page is displayed next when the user clicks a link. The different
cases, such as the different links on the page, are defined as navigation cases.

You can use a diagram to draw the navigation between the pages of the application
representing the flow between the pages.

When you draw navigation on a JSF navigation diagram, two things happen: the
navigation cases are added to the necessary configuration files automatically for you,
and the navigation cases are shown on the diagram as arrows connecting pages, the
direction of the arrow indicating the pages from which and to which the user will
navigate.

A label is associated with each navigation case, to distinguish different navigation
cases from a single page.

Defining Navigation Between Pages

In these steps, to allow for navigation between the two pages of the application, you
will add navigation details to the application.

1. Return to the JSF navigation diagram to define the navigation between the two
pages. To do this, among the items open in the editing window, select the tab for
faces-config.xml. If the diagram is not still open, open it as before.

2. In the diagram, click on the employees.jsp page icon to establish focus on this
page.

3. On the JSF Navigation Diagram page of the Component Palette, click (not drag)
JSF Navigation Case.

4. On the diagram, click the employee.jsp icon again. After you have clicked on the
page, as you start to move the mouse away from the page, a line appears,

Creating a Master-Detail Application Using Oracle ADF 7-13

Editing Data

connected to the employees.jsp page. Connect this line to the new page by
clicking on the edit.jsp page.

A line now connects the two pages, representing a navigation case navigating
from the employees. jsp page to the edit . jsp page. It has a label with a
default value of success.

5. To change the value, click success, type edit, and press the Enter key. The text edit
is now displayed on the diagram as the label for the line.

6. Add another navigation case navigating from the edit.jsp page to the
employees.jsp page, and give the navigation case the name return. This
navigation case represents navigating from the edit . jsp page back to the
employees.Jsp page.

7. Save your work.

The navigation diagram now shows both navigation cases: one for a user to navigate
from the employees. jsp page to the edit . jsp page so they can edit employee
details, and another for the user to return to the employees. jsp. Figure 7-15 shows
the navigation diagram for the employees.jsp and edit. jsp pages.

Figure 7-15 Navigation Diagram

- edit
! I » I
|
| - return

lemployees.jsp ledit.jsp

Editing Data

To create an edit page in which users can edit employee data, you will use an ADF
Faces component to lay out the page, in exactly the same way as for the employees

page.
For the employee data, a data control is used. To display the correct employee data for
a particular employee in a particular department, there is a data control available

giving employee data as a child data control of the department data control you used
on the employees page. This data control gives the correct set of employee data.

So that users can edit the data, you display it in an ADF Form, rather than a table.

Creating an Edit Form
In these steps, you create the edit . jsp page:
1. Open the edit.jsp page in the Visual Editor.

2. Onthe edit. jsp page, from the ADF Faces Core page of the Component Palette,
add a PanelPage component to the page. Change the title of the PanelPage to Edit
Employee.

3. Also, add an OutputText component to the branding facet at the top of the page.
Set the Value property to AnyCo Corporation and the StyleClass property to
AFHeaderLevelOne.

4. In the Data Control Palette, expand the DepartmentsView1 node (if it is closed)
and locate the same EmployeesView3 node beneath it. This must be the child of
DepartmentsView1, as illustrated below.

7-14 Oracle Database 2 Day + Java Developer's Guide

Editing Data

5. Drag the EmployeesView3 node onto the center of the panel beneath the Edit
Employee title. In the dialog box that is displayed, select Create, Forms, and ADF
Form.

Note: Itisimportant to select the child EmployeesView3 node
under parent DepartmentsViewl from the Data Control Palette. The
child EmployeesView3 will show the detail Employee records for a
particular parent Deparment as designated by the foreign key
relationship.

6. In the Edit Form Fields dialog, select Include Submit Button and click OK.

The edit form is almost complete. The final task is to add a button that will allow the
user to navigate back to the employees. jsp page. To do this:

1. From the ADF Faces Core page of the Component Palette, drag a
CommandButton to the page and place it next to the Submit button at the bottom
of the page.

2. Use the Property Inspector to change the Text property of the button from
commandButton 1 to Return.

3. Again using the Property Inspector, change the Action property of the
CommandButton to Return. You can use the arrow in the Action field to select the
value return. This is the value you entered for the navigation case for a user
navigating from the edit. jsp page back to the employees. jsp page.

4. Save the page.

The edit page is now complete, and should resemble the page shown in Figure 7-16.

Creating a Master-Detail Application Using Oracle ADF 7-15

Enabling COMMIT and ROLLBACK

Figure 7-16 Editing the Employees detail form in the Visual Editor

[Gmessages] |
AnyCo

i i brandingdpp menuGlobal
+ Corporation

menui

| Edit Employee

{bindings Employeeld. |#{bindings.Employeeld.input\falue} |
labely

{pindings Firsthame. |#{bindings.FirstName.inputVaIue} |
lahel}

{bindings LastName. |#{bindings.LastName.inpuNalue} |
lahel}

{hindings .Email Iabel} |# {bindings. Email.inputvalue}
#{bindings. |# {hindings PhoneNumber.inputyvalug}
Fhonelumber label}
{hindings HireDate.
lahel} | |
{hindings Johld lahel} |# {bindings.Jobld.inputvalue}

[hindings Salary label} |# {bindings.Salary inputvalue}
{hindings. |#{bindings.CummissiDnPct.inpuNalue} |
CommissionPct label}

{bindings Managerid. |#{bindings.Managerld.input\falue} |
labely

{bindings. |#{bindings.Depar‘tmentld.input\falue} |
Departmentld Jabel}

{bindings Active label} |# {hindings Active inputvalue} |
Submit) | Return |

appCopyright

H appPriva
+appibout it Ly

Navigating to an Edit Page

One remaining task is to allow users viewing the employees page to navigate to the
edit page to edit employee details. To do this, you make use of the navigation case you
defined on the navigation diagram, which had the name edit. The Employees table on
the employees page already has a button, which can be used for the user to navigate to
the edit page.

1. Open the employees. jsp page in the Visual Editor.
2. Select the Submit button to establish focus.

3. In the Property Inspector, change the Text property to Edit. Set the Action
property to edit: use the arrow in the Action field to select the value edit. This is
the value you specified on the navigation diagram as the navigation case for a user
to navigate from the employees. jsp page to the edit. jsp page.

Now when a user clicks on this button, the application will navigate to the edit page
with the selected record displayed.

Enabling COMMIT and ROLLBACK

To enable commit and rollback functionality, so a user can commit the edits they have
made to employee details, or abandon them by rolling back, you will add a Commit
button and a Rollback button to the base of the employees. jsp page.

7-16 Oracle Database 2 Day + Java Developer's Guide

Enabling COMMIT and ROLLBACK

This step again uses facets. In this case, a footer facet is added to the table, and the
Commit and Rollback buttons are added inside of this footer facet.

In these steps, to add the footer facet, you use the Structure window.

1.

With employees. jsp displayed in the Visual Editor, in the Structure window,
expand the table component (af:table). Within the structure, there is a Table Facets
folder.

Expand the Table Facets folder. It contains several subfolders for different facets
supported by the ADF Faces table component.

The footer facet is grey, because it is currently empty, as illustrated in Figure 7-17.

Figure 7-17 Empty Footer Facet

fgemployees.jsp - Structure [
=

--[as] F:\;iew
=-{@] afhi:hitml

'E| afh:head - emplovees
E||:|] afhi:body

-l afimessages

E} af:panelPage - Browse Employve
+--{88| af:panelForm

----- == af:objectSeparator
o B

-8 af icolumn - #{bindings
B aficolumn - #{bindings
B aficolumn - #{bindings
B afcolumn - #{bindings
@B aficolumn - #{bindings
&
£
£
£

t--B af column - #{bindings,
7B aFcolumn - #{bindings|
o--B aficolumn - #{bindings
i--B afcolumn - #{hindings)
- Table Facets

=1 actions

= detailstamp

=1 Footer

.../sl] header

You will insert a footer facet into this placeholder, ready to hold the Commit and
Rollback buttons.

In the Structure window, right-click the footer facet node and select Facets -Table,
and then Footer.

The footer facet is added to the page at the base of the table as shown in
Figure 7-18.

Figure 7-18 Inserting the Footer Facet

' annnenrinht

.
Select labels.Employeeld} labels.
2 #{row Employeeld) #irow.F

footer

You are now able to place JSF components into the footer facet.

Creating a Master-Detail Application Using Oracle ADF 7-17

Running the Application

The Commit and Rollback buttons you need are available in the Data Control Palette
in the Operations node which is an immediate child of the parent
AnyCoAppModuleDataControl.

To add the buttons to your page:

1. In the Data Control Palette, expand the AnyCoAppModuleDataControl folder,
then the Operations folder. The Operations folder contains the Commit and
Rollback nodes.

2. Drag each of the Commit and Rollback nodes onto the footer facet at the base of
the table.

As you drop each of the operations from the Data Control Palette onto the footer
facet, a dialog box is displayed. Select Create ADF Command Button.

3. Save all your work.

The application is now complete. The final employees. jsp page is as shown in
Figure 7-19.

Figure 7-19 Finished Master-Detail Application in Visual Editor

[EMessages| |
AnyCo _ brandingapp menuGlobal
+ Corporation
: menu1
! Browse Employees
[hindings. #(bindings Departmentid inputvalue)
Departmentid label}
[bindings. #{bindings Departmenthame.
Departmentiame label} inputvalue)
{bindings Managerid. #{hindings Managerld inputvalue}
lahel}
{hindings Locationld. #{bindings Locationld. inputvalue)
ahel}
[First] | Previous] | Mext) [Last) |
Select —
(Edit
and =
[bindings. # [bindings.
DepartmentsView1 EmployeesView3.| DepartmentsView1 EmployeesVi
Select labels.Employeeld} labels.FirstName}
2 #{row Employeeld) #{row Firsthame}
| Commit | | Rollback)
! appCopyright saresnias
appabout i Ly

Running the Application
You may now run the application as follows:

1. In the Application Navigator, right-click employees. jsp and select Run from
the shortcut menu.

7-18 Oracle Database 2 Day + Java Developer's Guide

Running the Application

2. Asyou run the application, you will be able to navigate through the different
Departments and then select individual Employees for editing. Experiment with
updating either the salary or hiredate of an employee.

The Employees page displayed in a browser is shown in Figure 7-20.

Figure 7-20 Master-Detail Application Viewed in a Browser

AnyCo Corporation
A
Browse Employees
Departmentld G0
DepatmentMame [T
Managard 103

Locationld 1400
[First) [Previous | | Mext) (Last)

Select and [Edit)
Select|EmpIuyeeld|FirstName LastName|EmaiI

|PhuneNumber|HireDate |Juh|d

| Commit)| Rollback |

O 103 Alexander Hunold AHUNOLD 5904234567 03-Jan-1990 [T_PROG
O 104 Bruce Ernst BERNST 590.423.4565 21-May-1991 T_PROG
O 105 Dawid Austin DAUSTIN 590.423.4569 25-Jun-1897 [T_PROG 4
O 108 alli Pataballa WPATABALS90.423.4560 05-Feb-1988 IT_PROG 4
® 107 Diana Larentz DLORENTZ £90.423.55658 07-Feb-193% IT_PROG 4

The edit page displayed in a browser is similar to that shown in Figure 7-21.

Figure 7-21 Editing the Master Detail Application Content

AnyCo Corporation

Edit Employee
* Employeeld
Firsthame
* LastMarne
* Ernail
FhoneMumber
+ HireDate
* Jobld
Salary
CommizsionPct
Managerd
Departrnentld
Auctive

107

Diana |

Lorentz

DLORENTZ

590,423 5567 |
07-Feb-1999
IT_PROG

]

103

m

1

[Submit) Return)

Creating a Master-Detail Application Using Oracle ADF 7-19

Running the Application

7-20 Oracle Database 2 Day + Java Developer's Guide

8

Getting Unconnected from Oracle Database

While unconnecting from the database in JDeveloper is a simple task, it is not a
process by itself in a Java application. In the application, you must explicitly close all
ResultsSet, Statement, and Connection objects after you are through using them.
When you close the Connection object, you are unconnected from the database. The
close methods clean up memory and release database cursors. Therefore, if you do
not explicitly close ResultSet and Statement objects, serious memory leaks may
occur, and you may run out of cursors in the database. You must then close the
connection.

This chapter includes the following sections:
» Creating a Method to Close All Open Objects
» Closing Open Objects in the Application

Creating a Method to Close All Open Objects

The following steps add a closeAll method to the DataHandler class:

1. Open DataHandler.java in the Java Source Editor by double-clicking it in the
Application Navigator.

2. Declare the closeAll method at the end of the DataHandler class as follows:

public void closeAll() {
}

3. Within the method body, check whether the ResultSet object is open as follows:

if (rset != null) {

4. Ifitis open, close it and handle any exceptions as follows:

try { rset.close(); } catch (Exception ex) {}
rset = null;
}
5. Repeat the same actions with the Statement object.

if (stmt != null) {
try { stmt.close(); } catch (Exception ex) {}
stmt = null;

}

6. Finally, close the Connection object.

if (conn !'= null) {

Getting Unconnected from Oracle Database 8-1

Closing Open Objects in the Application

try { conn.close(); } catch (Exception ex) {}
conn = null;

Closing Open Obijects in the Application

You must close the ResultSet, Statement, and Connection objects only after you
have finished using them. In the DataHandler class, the insert, update, and delete
methods must close these objects before returning. Note that the query methods
cannot close these objects until the employees. jsp page has finished processing the
rows returned by the query.

In the following steps, you add the appropriate calls to the closeAll method in the
DataHandler.java file:

1. OpenDataHandler.java in the Java Source Editor.

2. At the end of the addEmployee method, after the closing brace of the catch
block, add the following call to the closeAll method in a f£inally block:

finally {
closeAll();
}

3. Add the same call to the addEmployeeSP, deleteEmployeeById,
findEmployeeById, updateEmployee, and authenticateUser methods.

4. Open the employees. jsp file in the Visual Editor. Find the scriptlet inside the
Employees table, and double-click to open the Insert Scriptlet dialog box.

5. Add the following statement after the while loop:

empsbean.closeAll () ;

6. Save your work, and compile and run the application to ensure that everything
still works correctly.

8-2 Oracle Database 2 Day + Java Developer's Guide

9

Building Global Applications

Building a global Internet application that supports different locales requires good
development practices. A locale refers to a national language and the region in which
the language is spoken. The application itself must be aware of user locale preferences
and present content following the cultural convention expected by the user. It is
important to present data with appropriate locale characteristics, such as using the
correct date and number formats. Oracle Database is fully internationalized to provide
a global platform for developing and deploying global applications.

This chapter discusses global application development in a Java and Oracle Database
environment. It addresses the basic tasks associated with developing and deploying
global Internet applications, including developing locale awareness, constructing
HTML content in the user-preferred language, and presenting data following the
cultural conventions of the user locale.

This chapter has the following topics:

= Developing Locale Awareness

s Determining User Locales

» Encoding HTML Pages

s Organizing the Content of HTML Pages for Translation
= Presenting Data by User Locale Convention

s Localizing Text on JSP Pages in JDeveloper

Developing Locale Awareness

Global Internet applications must be aware of the user locale. Locale-sensitive
functions, such as date, time, and monetary formatting, are built into programming
environments such as Java and SQL. Applications can use locale-sensitive functions to
format the HTML pages according to the cultural conventions of the user locale.

Different programming environments represent locales in different ways. For
example, the French (Canadian) locale is represented as follows:

Environment Representation Locale Explanation

Java Java locale object fr_CA Java uses the ISO language and
country code.

fr is the language code defined in the
ISO 639 standard. CA is the country
code defined in the ISO 3166
standard.

Building Global Applications 9-1

Developing Locale Awareness

Environment Representation Locale Explanation

SQL and PL/SQL NLS_LANGUAGE and NLS_LANGUAGE See also: Chapter 8 "Working in a
NLS_TERRITORY ="CANADIAN Global Environment" in the Oracle
parameters FRENCH" Database Express Edition 2 Day

NLS_ TERRTTORY Developer Guide.

="CANADA"

Table 9-1 shows how some of the commonly used locales are defined in Java and
Oracle environments.

Table 9-1 Locale Representation in Java, SQL, and PL/SQL Programming Environments
NLS_LANGUAGE,

Locale Java NLS_TERRITORY

Chinese (PR.C) zh_ CN SIMPLIFIED CHINESE, CHINA

Chinese (Taiwan) zh_TW TRADITIONAL CHINESE,
TAIWAN

English (U.S.A) en_US AMERICAN, AMERICA

English (United Kingdom) en_GB ENGLISH, UNITED KINGDOM

French (Canada) fr_ca CANADIAN FRENCH, CANADA

French (France) fr_FR FRENCH, FRANCE

German (Germany) de_DE GERMAN, GERMANY

Italian (Italy) it IT ITALIAN, ITALY

Japanese (Japan) ja_JP JAPANESE, JAPAN

Korean (Korea) ko_KR KOREAN, KOREA

Portuguese (Brazil) pt_BR BRAZILIAN PORTUGUESE,
BRAZIL

Portuguese (Portugal) pt_PT PORTUGUESE, PORTUGAL

Spanish (Spain) es_ES SPANISH, SPAIN

When writing global applications across different programming environments, the
user locale settings must be synchronized between environments. For example, Java
applications that call PL/SQL procedures should map the Java locales to the
corresponding NLS_LANGUAGE and NLS_TERRITORY values and change the
parameter values to match the user locale before calling the PL/SQL procedures.

Mapping Between Oracle and Java Locales

The Oracle Globalization Development Kit (GDK) provides the LocaleMapper class.
It maps equivalent locales and character sets between Java, IANA, ISO, and Oracle. A
Java application may receive locale information from the client that is specified in the
Oracle locale name. The Java application must be able to map to an equivalent Java
locale before it can process the information correctly.

Example 9-1 shows how to use the LocaleMapper class.

Example 9-1 Mapping from a Java Locale to an Oracle Language and Territory

Locale locale = new Locale("fr", "CA");
String oralang = LocaleMapper.getOraLanguage (locale);
String oraTerr = LocaleMapper.getOraTerritory(locale);

The GDK is a set of Java application programming interfaces (APIs) that provide
Oracle application developers with the framework to develop globalized Internet

9-2 Oracle Database 2 Day + Java Developer's Guide

Determining User Locales

applications. The GDK complements the existing globalization features in Java. It
provides the synchronization of locale behaviors between a middle-tier Java
application and the Oracle database server.

See Also: For more information about the GDK, refer to

http://www.oracle.com/technology/tech/globalization/
gdk/index.html

Determining User Locales

In a global environment, your application may have to accept users with different
locale preferences. Determine the preferred locale of the user. Once that is known, the
application should construct HTML content in the language of the locale, and follow
the cultural conventions implied by the locale.

One of the most common methods in determining the user locale, is based on the
default ISO locale setting of the browser of the user. Usually a browser sends locale
preference settings to the HTTP server with the Accept-Language HTTP header. If
this header is set to NULL, then there is no locale preference information available and
the application should ideally fall back to a predefined application default locale.

Both JSP pages and Java Servlets can use calls to the Servlet API to retrieve the
Accept-Language HTTP header as shown in Example 9-2.

Example 9-2 Determining User Locale in Java Using the Accept-Language Header
String lang = request.getHeader ("Accept-Language")

StringTokenizer st = new StringTokenizer (lang, ",")
if (st.hasMoreTokens()) userLocale = st.nextToken();

This code gets the Accept-Language header from the HTTP request, extracts the
first ISO locale, and uses it as the user-desired locale.

Locale Awareness in Java Applications

A Java locale object represents the locale of the corresponding user in Java. The Java
encoding used for the locale is required to properly convert Java strings to and from
byte data. You must consider the Java encoding for the locale if you make the Java
code aware of a user locale. There are two ways to make a Java method sensitive to the
Java locale and encoding;:

= Using the default Java locale and default Java encoding for the method
= Explicitly specifying the Java locale and Java encoding for the method

When developing a global application, it is recommended to take the second approach
and explicitly specify the Java locale and Java encoding that correspond to the current
user locale. You can specify the Java locale object that corresponds to the user locale,
identified by user_locale, in the getDateTimeInstance method asin

Example 9-3.

Example 9-3 Explicitly Specifying User Locale in Java

DateFormat df = DateFormat.getDateTimeInstance (DateFormat.FULL, DateFormat.FULL,
user_locale);
dateString = df.format (date); /* Format a date */

Building Global Applications 9-3

Encoding HTML Pages

Encoding HTML Pages

The encoding of an HTML page is important information for a browser and an
Internet application. You can think of the page encoding as the character set used for
the locale that an Internet application is serving. The browser needs to know about the
page encoding so that it can use the correct fonts and character set mapping tables to
display the HTML pages. Internet applications need to know about the HTML page
encoding so they can process input data from an HTML form.

Instead of using different native encodings for the different locales, it is recommended
that UTF-8 (Unicode encoding) is used for all page encodings. Using the UTF-8
encoding not only simplifies the coding for global applications, but it allows for
multilingual content on a single page.

This section includes the following topics:
= Specifying the Page Encoding for HTML Pages
= Specifying the Page Encoding in Java Servlets and JSP Pages

Specifying the Page Encoding for HTML Pages

There are two ways to specify the encoding of an HTML page, one is in the HTTP
header, and the other is in the HTML page header.

Specifying the Encoding in the HTTP Header

Include the Content-Type HTTP header in the HTTP specification. It specifies the
content type and character set as shown in Example 9-4.

Example 9-4 Specifying Page Encoding in the HTTP Specification
Content-Type: text/html; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible
values for the charset parameter are the JANA names for the character encodings
that the browser supports.

Specifying the Encoding in the HTML Page Header

Use this method primarily for static HTML pages. Specify the character encoding in
the HTML header as shown in Example 9-5.

Example 9-5 Specifying Page Encoding on an HTML Page

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. As with the
Content-Type HTTP Header, the possible values for the charset parameter are the
TANA names for the character encodings that the browser supports.

Specifying the Page Encoding in Java Servlets and JSP Pages

You can specify the encoding of an HTML page in the Content-Type HTTP header
in a JavaServer Pages (JSP) file using the contentType page directive. For example:

<%@ page contentType="text/html; charset=utf-8" %>

This is the MIME type and character encoding that the JSP file uses for the response it
sends to the client. You can use any MIME type or IANA character set name that is
valid for the JSP container. The default MIME type is text /html, and the default

9-4 Oracle Database 2 Day + Java Developer's Guide

Organizing the Content of HTML Pages for Translation

character set is ISO-8859-1. In the above example, the character set is set to UTF-8. The
character set of the contentType page directive directs the JSP engine to encode the
dynamic HTML page and set the HTTP Content -Type header with the specified
character set.

For Java Servlets, you can call the setContentType method of the Servlet API to
specify a page encoding in the HTTP header. The doGet function in Example 9-6
shows how you can call this method.

Example 9-6 Specifying Page Encoding in Serviets Using setContentType

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

// generate the MIME type and character set header
response.setContentType ("text/html; charset=utf-8");

// generate the HTML page
Printwriter out = response.getWriter();
out.println("<HTML>") ;

out.println("</HTML>") ;
}

You should call the setContentType method before the getWriter method
because the getWriter method initializes an output stream writer that uses the
character set specified by the setContentType method call. Any HTML content
written to the writer and eventually to a browser is encoded in the encoding specified
by the setContentType call.

Organizing the Content of HTML Pages for Translation

Making the user interface available in the local language of the user is one of the
fundamental tasks related to globalizing an application. Translatable sources for the
content of an HTML page belong to the following categories:

s Text strings hard-coded in the application code

s Static HTML files, images files, and template files such as CSS

= Dynamic data stored in the database

This section discusses externalizing translatable content in the following:
s Strings in Java Servlets and JSP Pages

» Static Files

= Data from the Database

Strings in Java Servlets and JSP Pages

You should externalize translatable strings within Java Servlets and JSP pages into
Java resource bundles so that these resource bundles can be translated independent of
the Java code. After translation, the resource bundles carry the same base class names
as the English bundles, but with the Java locale name as the suffix. You should place

Building Global Applications 9-5

Presenting Data by User Locale Convention

Static Files

the bundles in the same directory as the English resource bundles for the Java resource
bundle look-up mechanism to function properly.

See Also: Sun Microsystems documentation about Java resource
bundles at

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Re
sourceBundle.html

Because the user locale is not fixed in multilingual applications, they should call the
getBundle method by explicitly specifying a Java locale object that corresponds to
the user locale. The Java locale object is called user_locale in the following
example:

ResourceBundle rb = ResourceBundle.getBundle("resource", user_locale);
String helloStr = rb.getString("hello");

The above code will retrieve the localized version of the text string, hello, from the
resource bundle corresponding to the desired locale of the user.

See Also: For more information on creating resource bundles in
Java, refer to Localizing Text on JSP Pages in JDeveloper on page 9-9.

Static files such as HTMLs and GIFs are readily translatable. When these files are
translated, they should be translated into the corresponding language with UTF-8 as
the file encoding. To differentiate between the languages of the translated files, the
static files of different languages can be staged in different directories or with different
file names.

Data from the Database

Dynamic information such as product names and product descriptions are most likely
stored in the database regardless of whether you use JSP pages or Java Servlets. In
order to differentiate between various translations, the database schema holding this
information should include a column to indicate the language of the information. To
select the translated information, you must include the WHERE clause in your query to
select the information in the desired language of the query.

Presenting Data by User Locale Convention

Data in the application needs to be presented in a way that conforms to user
expectation, if not, the meaning of the data can sometimes be misinterpreted. For
example, '12/11/05' implies '11th December 2005' in the United States, whereas in the
United Kingdom it means '12th November 2005'. Similar confusion exists for number
and monetary formats, for example, the period (.) is a decimal separator in the United
States, whereas in Germany, it is used as a thousand separator.

Different languages have their own sorting rules, some languages are collated
according to the letter sequence in the alphabet, some according to stroke count in the
letter, and there are some languages which are ordered by the pronunciation of the
words. Presenting data that is not sorted according to the linguistic sequence that your
users are accustomed to can make searching for information difficult and
time-consuming.

Depending on the application logic and the volume of data retrieved from the
database, it may be more appropriate to format the data at the database level rather

9-6 Oracle Database 2 Day + Java Developer's Guide

Presenting Data by User Locale Convention

than at the application level. Oracle Database offers many features that help you to
refine the presentation of data when the user locale preference is known. The
following sections include examples of locale-sensitive operations in SQL.:

s Oracle Date Formats
s Oracle Number Formats
s Oracle Linguistic Sorts

s Oracle Error Messages

Oracle Date Formats

There are three different date presentation formats in Oracle Database. These are
standard, short, and long dates. Example 9-7 illustrates the difference between the
short data and long date formats for both United States and Germany.

Example 9-7 Difference Between Date Formats by Locale (United States and Germany)
SQL> ALTER SESSION SET NLS_TERRITORY=america NLS_LANGUAGE=american;

Session altered.

SQL> SELECT employee_id EmpID,
2 SUBSTR(first_name,1,1)]|]|'.'||last_name "EmpName",
3 TO_CHAR(hire_date, 'DS') "Hiredate",
4 TO_CHAR(hire_date, 'DL') "Long HireDate"
5 FROM employees
6* WHERE employee_id <105;

EMPID EmpName Hiredate Long HireDate
100 S.King 06/17/1987 Wednesday, June 17, 1987
101 N.Kochhar 09/21/1989 Thursday, September 21, 1989
102 L.De Haan 01/13/1993 Wednesday, January 13, 1993
103 A.Hunold 01/03/1990 Wednesday, January 3, 1990
104 B.Ernst 05/21/1991 Tuesday, May 21, 1991

SQL> ALTER SESSION SET SET NLS_TERRITORY=germany NLS_LANGUAGE=german;
Session altered.

SQL> SELECT employee_id EmpID,
2 SUBSTR(first_name,1,1)]||'.'||last_name "EmpName",
3 TO_CHAR (hire_date, 'DS') "Hiredate",
4 TO_CHAR (hire_date, 'DL') "Long HireDate"
5 FROM employees
6* WHERE employee_id <105;

EMPID EmpName Hiredate Long HireDate
100 S.King 17.06.87 Mittwoch, 17. Juni 1987
101 N.Kochhar 21.09.89 Donnerstag, 21. September 1989
102 L.De Haan 13.01.93 Mittwoch, 13. Januar 1993
103 A.Hunold 03.01.90 Mittwoch, 3. Januar 1990
104 B.Ernst 21.05.91 Dienstag, 21. Mai 1991

Building Global Applications 9-7

Presenting Data by User Locale Convention

Oracle Number Formats

Example 9-8 illustrates the differences in the decimal character and group separator
between the United States and Germany:.

Example 9-8 Difference Between Number Formats by Locale (United States and
Germany)

SQL> ALTER SESSION SET SET NLS_TERRITORY=america;
Session altered.

SQL> SELECT employee_id EmpID,
2 SUBSTR(first_name,1,1)]|]|'.'||last_name "EmpName",
3 TO_CHAR(salary, '99G999D99') "Salary"
4 FROM employees
5* WHERE employee_id <105

EMPID EmpName Salary
100 S.King 24,000.00
101 N.Kochhar 17,000.00
102 L.De Haan 17,000.00
103 A.Hunold 9,000.00
104 B.Ernst 6,000.00

SQL> ALTER SESSION SET SET NLS_TERRITORY=germany;
Session altered.

SQL> SELECT employee_id EmpID,
2 SUBSTR(first_name,1,1)]|]|'.'||last_name "EmpName",
3 TO_CHAR(salary, '99G999D99') "Salary"
4 FROM employees
5* WHERE employee_id <105

EMPID EmpName Salary
100 S.King 24.000,00
101 N.Kochhar 17.000,00
102 L.De Haan 17.000,00
103 A.Hunold 9.000,00
104 B.Ernst 6.000,00

Oracle Linguistic Sorts

Spain traditionally treats 'ch’, 'lII' as well as 'ii' as letters of their own, ordered after c, 1
and n respectively. Example 9-9 illustrates the effect of using a Spanish sort against
the employee names Chen and Chung.

Example 9-9 Variations in Linguistic Sorting (Binary and Spanish)
SQL> ALTER SESSION SET NLS_SORT=binary;
Session altered.
SQL> SELECT employee_id EmpID,
2 last_name "Last Name"

3 FROM employees
4 WHERE last_name LIKE 'C%'

9-8 Oracle Database 2 Day + Java Developer's Guide

Localizing Text on JSP Pages in JDeveloper

5* ORDER BY last_name

EMPID Last Name

187 Cabrio

148 Cambrault
154 Cambrault
110 Chen

188 Chung

119 Colmenares

6 rows selected.
SQL> ALTER SESSION SET NLS_SORT=spanish_m;
Session altered.

SQL> SELECT employee_id EmpID,
2 last_name "Last Name"
3 FROM employees
4 WHERE last_name LIKE 'C%'
5* ORDER BY last_name

EMPID Last Name

187 Cabrio

148 Cambrault
154 Cambrault
119 Colmenares
110 Chen

188 Chung

6 rows selected.

Oracle Error Messages

The NLS_LANGUAGE parameter also controls the language of the database error
messages that are returned from the database. Setting this parameter prior to
submitting your SQL statement will ensure that local language-specific database error
messages will be returned to the application.

Consider the following server message:
ORA-00942: table or view does not exist
When the NL.S_LANGUAGE parameter is set to French, the server message appears as
follows:
ORA-00942: table ou vue inexistante
See Also: "Working in a Global Environment" chapter in the Oracle

Database Express Edition 2 Day DBA for a discussion of globalization
support features within Oracle Database.

Localizing Text on JSP Pages in JDeveloper

Your Java application can make use of resource bundles, to provide different localized
versions of the text used on your JSP pages.

Building Global Applications 9-9

Localizing Text on JSP Pages in JDeveloper

Resource bundles contain locale-specific objects. When your program needs a
locale-specific resource, such as some text to display on a page, your program can load
it from the resource bundle that is appropriate for the current user locale. In this way,
you can write program code that is largely independent of the user locale isolating the
actual text in resource bundles.

In outline, the resource bundle technology has the following features:

= Resource bundles belong to families whose members share a common base name,
but whose names also have additional components that identify their locales. For
example, the base name of a family of resource bundles might be MyResources.
A locale-specific version for German, for example, would be called
MyResources_de.

= Each resource bundle in a family contains the same items, but the items have been
translated for the locale represented by that resource bundle. For example, a
String used on a button might in MyResources be defined as Cancel, but in
MyResources_de as Abbrechen.

= You can make specializations for different resources for different countries, for
example, for the German language (de) in Switzerland (CH).

To use resource bundles in your application, you must do the following:
1. Create the resource bundles.

2. In pages that have visual components, identify the resource bundles you will be
using on the page.

3. For each item of text you want to display on your pages, retrieve the text from the
resource bundle instead of using hard-coded text.

See Also: Sun Microsystems documentation on resource bundles at
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Re
sourceBundle.html

In the sample application, resource bundles can be used in the following places:

» Headings and labels on JSP pages. In this case, rather than entering text directly on
the pages, you can use a scriptlet to find the text.

= Values for buttons and other controls. In this case, set the value property of the
button to an expression that retrieves the text from the resource bundle

This section covers the following tasks:
s Creating a Resource Bundle

= Using Resource Bundle Text on JSP Pages

Creating a Resource Bundle

To create a default resource bundle:

1. Create a new Java class called MyResources . java, that extends class
java.util.ListResourceBundle.

2. Define the resource bundle class and methods to return contents as follows:

public class MyResources extends ListResourceBundle

{
public Object[][] getContents() {
return contents;

9-10 Oracle Database 2 Day + Java Developer's Guide

Localizing Text on JSP Pages in JDeveloper

}
static final Object[][] contents = {

}i
}

3. Add an entry for each item of text you need on your pages, giving a key and the
text for that key. For example, in the following example, the comments indicate
the strings that must be translated into other languages:

static final Object[][] contents = {
// LOCALIZE THIS
{"CompanyName", "AnyCo Corporation"},

{"SiteName", "HR Application"},

{"FilterButton", "Filter"},

{"UpdateButton", "Update"},

// END OF MATERIAL TO LOCALIZE
bi

The complete resource bundle class should look similar to that shown in
Example 9-10.

Example 9-10 Creating a Resource Bundle Class

public class MyResources extends ListResourceBundle
{
public Object[][] getContents() {
return contents;

}

static final Object[][] contents = {
// LOCALIZE THIS
{"CompanyName", "AnyCo Corporation"},

{"SiteName", "HR Application"},

{"FilterButton", "Filter"},

{"UpdateButton", "Update"},

// END OF MATERIAL TO LOCALIZE
}i

To globalize your application, you must create the locale-specific versions of the
resource bundle for the different locales you are supporting, containing text for the
items in each language.

Using Resource Bundle Text on JSP Pages

To use the text defined in a resource bundle on your JSP pages:
1. Open the JSP page you want to work on in the Visual Editor, such as edit . jsp.

2. Create a new line at the top of the page before the first heading and set the Style of
the line to None. Add a jsp:usebean tag to the new line. Enter myResources as
the ID, and hr . MyResources as the Class. Set the Scope to session, and click
OK.

3. Drag a jsp:scriptlet to the page, where you want the resource bundle text to be
displayed, for example in the heading for the page.

In the Insert Scriptlet dialog, enter the script for retrieving text from the resource
bundle:

out.println(myResources.getString ("CompanyName") + ": " +

myResources.getString ("SiteName")) ;

Building Global Applications 9-11

Localizing Text on JSP Pages in JDeveloper

4, If there was text already displayed in the heading, you can remove it now.

5. If you select the Source tab below the Visual Editor, you should see code for the
page similar to the following:

<h2 align="center">
<% = myResources.getString("CompanyName") + ": " +
myResources.getString ("SiteName")) ;
%>

</h2>

6. To use resource bundle text as the label for a button, double-click the button in the
Visual Editor. In the button properties dialog, for the Value parameter of the
button, enter a script similar to the following;:

<% out.println(myResources.getString ("UpdateButton")) ;%>

7. If you view the Source code for the page, you will see code similar to the
following:
<input type="submit"

value=<% out.println(myResources.getString("UpdateButton")) ;%> />

If you now run your application, you will see the text you defined in your resource
bundle displayed on the page.

9-12 Oracle Database 2 Day + Java Developer's Guide

A

absolute positioning in result sets, 4-3
accessor methods, 5-2
ADF Data Controls, 7-3,7-8
ADF Faces
PanelPage component, 7-7
PanelPage with text, 7-7
ADF Faces Core, 7-14
ADF Faces Core Component Palette, 7-7
Apache Tomcat, 2-3
application navigation, 5-21
HTML submit buttons, 5-22
jsp
forward tags, 5-22
Application Navigator, 3-6
using, 3-6
application UI, 7-5
application, creating, 7-3

BEA WebLogic, 2-3

bind variables, 6-2
IN, OUT, and IN OUTparameters, 6-3
OracleCallableStatement, 6-2
OraclePreparedStatement, 6-2
using, 6-2

business components, creating, 7-4

C
CLASSPATH, 2-4
CLI, 1-1

closing objects
application, 8-2
closeAll method, 8-1,8-2
Connection, 8-1
DataHandler, 8-1
DataHandler.java, 8-2
employees.jsp, 8-2
ResultSet, 8-1
Statement, 8-1

Component Palette, 1-5

connecting from JDeveloper
driver, specifying, 3-2

Index

host name, specifying, 3-2
JDBC port, specifying, 3-2
service name, specifying, 3-2
connecting to Oracle Database
DataSource object, 3-9
default service, 3-10
getDBConnection, 3-9
overview of, 3-8
using Java, 3-8
using JDeveloper, 1-3
Connection Navigator, 3-2, 6-4
browsing data, 3-3
database objects, editing, 3-5
table data, viewing, 3-5
table definition, viewing, 3-5
Connection object, 7-3
DataSource, 3-9
DriverManager, 3-9
CSS
list of components, 4-10
cursor variables
REF CURSOR, 6-9
using, 6-9

D

Data Control Palette, 7-8
database URLs, 3-9
database_specifier, 3-10
driver_type, 3-10
syntax, 3-9
thin-style service names, 3-10
DataHandlerjava, 1-7,4-4
DataSource object, 3-9
databaseName, 3-9
dataSourceName, 3-9
description, 3-9
driverType, 3-9
networkProtocol, 3-9
password, 3-9
portNumber, 3-9
properties, 3-9
serverName, 3-9
url, 3-9
user, 3-9
Datasource object

Index-1

properties, 3-9
url property, 3-9
DBConnectionl, 3-2
deafault service
URLs, examples, 3-11
default service
syntax, 3-10
using, 3-10
delete_action.jsp, 1-7
deleting data, 5-17
creating a method, 5-17
DataHandler.java, 5-17
delete_action.jsp, 5-18,5-19
handling a delete action, 5-19
link to delete, 5-18
deployment descriptor file, 5-21
dynamic SQL
OracleCallableStatement, 6-1
OraclePreparedStatement, 4-2, 6-1
using, 6-1

E

editjsp, 1-6

Employeesjava, 1-7

employees.jsp, 1-6,4-10

environment variables
specifying, 2-4

environment variables, checking, 2-4

exception handling, 5-19
catch block, 5-20
DataHandler.java, 5-21
deleteEmployee, 5-20
getAllEmployees, 5-20
handling any SQLException, 5-21
SQLException, 5-19
try block, 5-20

execute, 4-2

executeBatch, 4-2

executeQuery, 4-2

executeUpdate, 4-2

F

filtering data, 4-15
DataHandler.java, 4-15
footer facet, 7-17

G

getAllEmployees, 4-12
getCursor method, 6-11
getDBConnection method, 4-4
globalization classes file, 2-4

H

HR account
testing, 2-2
HR user account
sample application, 2-1

Index-2

unlocking, 2-1
HTML forms, 4-9
HTML tags, 4-8

IBM WebSphere, 2-3
IDE, 1-3,2-3
Oracle JDeveloper, 2-3
importing packages
import dialog box, 4-13
IN parameters, 6-2
index.jsp, 1-6
index.jsp, creating, 5-22
insert_action.jsp, 1-6
inserting data, 5-12
employees.jsp, 5-16
handle an insert action, 5-16
insert_action.jsp, 5-14,5-16
insertjsp, 5-15
JSpP, 5-14
link to insert page, 5-14
method, creating, 5-12
new data, entering, 5-14
insertjsp, 1-6
installation
directories and files, 2-4
verifying on the client, 2-4
integrated development environment,
InternetworkPacket Exchange
Oracle JDBC OCI Driver, 1-2
IPX, 1-2

J

2-3

J2SE, 2-3
installing, 2-3
Java Runtime Environment, 2-3
JDBC API, 2-3
Java class, 3-11
creating, 3-11
DataHandler, 3-11
Java Database Connectivity, 1-1
Java libraries
adding in JDeveloper, 3-12
JSP runtime library, 3-12
Oracle JDBC library, 3-12
Java Visual Editor, 1-4
JavaBean, b5-1
Create Bean dialog box, 5-2
creating, 5-1
creating in JDeveloper, 5-1
defining, 5-2
Employeejava, 5-2
Employees table, 5-2
properties and methods, creating,
sample application, 5-1
JavaClient.java, 1-7
JavaServer Faces, 7-3
JavaServer Pages, 2-3

5-2

java.sgl, 1-1,1-3

JBoss, 2-4
JDBC, 1-1
JDBC drivers

driver version, determining, 2-5

JDBC Thin, 1-1

JDeveloper, 1-3
Apache Tomcat, support for, 2-3
API support, 3-12
application templates, 3-5
application, creating, 3-6
applications, 3-5
base installation, 2-6
BEA WebLogic, support for, 2-3
browsing data, 3-3
Component Palette, 1-5
Create Bean dialog box, 5-2
creating a Java Class, 3-11
database, connecting, 3-1,3-2
database, disconnecting, 3-3
database, reconnecting, 3-3
default layout, 1-4
downloading, 2-6
full installation, 2-6
IBM WebSphere, support for, 2-3
installation guide, 2-5
installation requirements, 2-6
Java Code Insight, 1-4
Java Source Editor, 1-4
Java Visual Editor, 1-4
JavaBean, 5-2
JBoss, support for, 2-4
JDeveloper Connection Navigator, 3-1
look and feel, 4-10
navigators, 1-3
online documentation, 2-5
Oracle Application Server, support for, 2-3
Oracle Java Virtual Machine, 2-6
platform support, 2-5
project, creating, 3-6
projects, 3-5
Property Inspector, 1-5
ResultSet object, creating, 4-12
scriptlet representation, 4-12
server support, 2-3
starting, 2-7
tools, 1-4
user interface, 1-3,1-4
windows, 1-3,1-4

JDeveloper Connection Navigator, 3-1
browsing connections, 3-1
viewing database objects, 3-1

JDK 1.4, support, 2-3

JSF JSP libraries, 7-6

JSF navigation diagrams, 7-12,7-13
creating a page from, 7-12
navigation cases, 7-13
navigation rules, 7-13
navigation, defining, 7-13

Jsp, 2-3

jsp
useBean tag, 4-11

JSP page layout, 7-6

JSP Pages
form fields, 7-9

JSP pages
creating, 4-7,4-9
custom tag libraries, 4-7
deploying, 2-3
elements used, 4-8
handling login action, 4-23
HTML forms, 4-9
HTML tags, 4-7,4-8
Java-based scriptlets, 4-7
JSP tags, 4-7
presentation, 4-7
scriptlets, 4-8
Standard JSP tags, 4-7
static content, adding, 4-9
style sheet, adding, 4-10
updating data, 5-9

JSP tags, 4-7,4-8

JSR 127 specification, 7-3

L

libraries

adding, 3-12

Project Properties dialog box, 3-12
login_action.jsp, 1-6
login.jsp, 1-6

master-detail application
business components, creating, 7-4
COMMIT functionality, 7-16
detail data, displaying, 7-9
displaying data, 7-5
edit form, creating, 7-14
editing data, 7-14
editjsp page, creating, 7-14
employees.jsp page, creating, 7-5
files, 7-1
JSP page, 7-9
JSP page for detail data, creating, 7-5
JSP page for master data, creating, 7-8
master data, displaying, 7-8
navigating to the edit page, 7-16
navigation, 7-12
navigation between pages, defining, 7-12
navigation diagrams, 7-12
navigation rules, 7-13
overview, 7-1
projects, 7-1
ROLLBACK functionality, 7-16
running, 7-18
testing, 7-12
viewing data in a browser, 7-12
model project, 7-4

Index-3

Model-View-Controller design pattern, 7-1
MVC design pattern, 7-1

N

next method, 4-3
(o)

ocC4], 3-12
oc1, 1-1,1-2
ODP.NET, 2-2
ojdbc5.jar, 2-4
OJVM, 2-6
Oracle, 7-2

Oracle ADF, 7-1,7-2
service-oriented applications, creating, 7-2
Oracle ADF Business Components, 7-2
features, 7-2
Oracle ADF Faces, 7-3
facets, 7-3
Oracle Application Developer Framework, 7-1
Oracle Application Development Framework, 7-2
Oracle Application Server, 2-3
Oracle Application Server Containers for J2EE server
ocC4], 2-3
Oracle Call Interface, 1-1
Oracle Data Provider for .NET, 2-2
Oracle Database
classes12*.* support, 2-3
client-side application development, 1-1
closing objects, 8-1
connecting to, 1-1
installation guides, 2-1
JDK 1.2 support, 2-3
JDK 1.3, 2-3
ojdbc5 jar file, using, 2-3
ojdbcé jar file, using, 2-3
OracleConnectionCachelmpl, 2-3
oracle jdbc.driver.* support, 2-3
release notes, 2-1
unconnecting, 8-1
Oracle Database Client, 2-2,3-10
development tools, 2-2
installation, 2-1,2-2,2-4
Oracle JDBC drivers, 2-2
Oracle ODBC Driver, 2-2
Oracle Provider for OLE DB, 2-2
Oracle Services for Microsoft Transaction
Server, 2-2
verifying installation, 2-4
Oracle Database client
verifying, 2-4
Oracle Database Client installation
environment variables, 2-4
installed directories and files, 2-4
ORACLE_HOME /jlib, 2-4
ORACLE_HOME/jdbc, 2-4
platform-specific, 2-4
Oracle Database Server, 2-1

Index-4

installation, 2-1
platform-specific, 2-1
Oracle Java Virtual Machine, 2-6
Oracle JDBC drivers, 2-2
Oracle JDBC library
oraclejdbc, 3-12
oracle.jdbc.pool, 3-12
oracle.sql, 3-12
Oracle JDBC OCI Driver, 1-2
client installation, 1-2
Oracle JDBC Packages, 1-2
Oracle JDBC packages
oraclejdbc, 1-3
oracle.sql, 1-2
Oracle JDBC support, 1-2
Oracle JDBC Thin Driver, 1-2
network protocols, 1-2
SQL*Net, 1-2

TCP/IP, 1-2
TTC protocol, 1-2
TypelV, 1-2

Oracle JDeveloper, 1-3

installing, 2-5
Oracle JDeveloper Studio Edition, 2-5
Oracle ODBC Driver, 2-2
Oracle Provider for OLE DB, 2-2
Oracle REF CURSOR Type, 6-10
Oracle Services for Microsoft Transaction Server,
ORACLE_HOME directory, 2-4
OracleCallableStatement, 6-1, 6-2

creating, 6-2

IN, OUT, IN OUT parameters, 6-2

using, 6-2
OracleDatabaseMetaData, 2-5
oraclejdbe, 1-1,1-3,3-12

java.sql, 1-3

Oracle JDBC library, 3-12
oraclejdbc.pool, 3-12
OraclePreparedStatement, 4-2, 6-1

bind variables, 6-2

creating, 6-2

precompiled, 6-2

using, 6-1
oracle.sql, 1-1,1-2

data types, 1-3

Oracle JDBC library, 3-12

UCS-2 character set, 1-3
oracle.sql.Datum, 1-3
OracleTypes.CURSOR variable, 6-10
orail8njar, 2-4

P

2-2

PanelPage component, 7-14
positioning in result sets, 4-3
Project Properties dialog box, 3-12
projects, creating, 7-3

Property Inspector, 1-5

Q

querying data, 4-1
DataHandlerjava, 4-4
Java application, 4-4
JDBC concepts, 4-1
Log window output, 4-6
output, 4-6
query methods, 4-2
results, testing, 4-5
trace message, 4-6

R

REF CURSOR, 6-9, 6-10
accessing data, 6-10
CallableStatement, 6-10
declaring, 6-10
Oracle REF CURSOR Type, 6-10
REF CURSORs, 6-10

materialized as result set objects, 6-10

relative positioning in result sets, 4-3
result set enhancements
positioning, 4-3
scrollability, 4-3
sensitivity to database changes, 4-3
updatability, 4-3
result sets
declaring, 4-4
features, 4-3
ResultSet object, 4-3
closing, 8-1
getBoolean, 4-3
getlnt, 4-3
getLong, 4-3
JDeveloper, creating in, 4-12
next method, 4-3

S

sample application
classes, 1-7
connecting, 3-8
DataHandler.java, 1-7
delete_action.jsp, 1-7
editjsp, 1-6
Employees.java, 1-7
employees.jsp, 1-6
error messages, 4-21
failed logins, 4-21
HR user account, 2-1
index.jsp, 1-6
insert_actionjsp, 1-6
insertjsp, 1-6
JavaClient.java, 1-7
JSPs, 1-5
login functionality, 4-19
login interface, 4-22
login page, 4-21
login_action.jsp, 1-6
login.jsp, 1-6

overview, 1-5
security features, 4-19
testing, 1-7
update_actionjsp, 1-7
user authentication, 4-19
scriplets, 4-8
scriptlet
representation in JDeveloper, 4-12
scriptlets, 4-8
scrollability in result sets, 4-3
selecting schema objects, 7-4

sensitivity in result sets to database changes, 4-3

Sequenced Packet Exchange
Oracle JDBC OCI Driver, 1-2
SPX, 1-2
SQL92, 6-3
SQL92 Entry Level, 1-1
SQLException, 5-19
Statement object, 4-2
execute method, 4-2
executeBatch method, 4-2
executeQuery method, 4-2
executeUpdate method, 4-2
OraclePreparedStatement, 6-2
query methods, 4-2
stored function
calling, 6-3
stored function, creating, 6-3
stored procedures
calling, 6-3
Connection Navigator, 6-4
creating, 6-4
JDeveloper, 6-4
OracleCallableStatement, 6-2
style sheets, using, 4-8,4-10

T

testing
connection method, 4-5
filtered data, 4-16
JavaClient.java, 4-16
login feature, 4-24
query results, 4-5
TNS listener, 1-2
Transparent Network Substrate listener,
TTC protocol, 1-2
Two-Task Common protocol, 1-2

U

1-2

updatability in result sets, 4-3
update_action.jsp, 1-7
updating data, 5-12
editjsp, 5-11
Java class, 5-4
JSP pages, 5-9
update action, handling, 5-11
update_action.jsp, 5-11
user authentication, 4-19

Index-5

\'

view project, 7-5

w

Web server, 2-3
Apache Tomcat, 2-3
JDeveloper OC4J server, 2-3
OC4] server, 2-3
servlet container, 2-3
web.xml, 5-21

X

X/Open SQL Call Level Interface, 1-1

Index-6

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using Java with Oracle Database
	Using Java to Connect to Oracle Database
	Oracle JDBC Thin Driver
	Oracle JDBC OCI Driver
	Oracle JDBC Packages

	Using JDeveloper to Create JDBC Applications
	JDeveloper User Interface
	JDeveloper Tools

	Overview of Sample Java Application
	Advanced Application Development Using Developer Frameworks

	2 Getting Started with the Application
	What You Need to Install
	Oracle Database Server
	Modifying the HR Schema for the JDBC Application

	Oracle Database Client
	J2SE or JDK
	Integrated Development Environment
	Web Server

	Verifying the Oracle Database Client Installation
	Checking Installed Directories and Files
	Checking the Environment Variables
	Determining the JDBC Driver Version

	Installing Oracle JDeveloper
	JDeveloper Studio Edition: Base Installation and Full Installation
	Steps to Install JDeveloper
	Starting JDeveloper

	3 Connecting to Oracle Database
	Connecting to Oracle Database from JDeveloper
	JDeveloper Connection Navigator
	Creating a Database Connection
	Browsing the Data Using the Connection Navigator

	Setting Up Applications and Projects in JDeveloper
	Using the JDeveloper Application Navigator
	Creating an Application and a Project
	Viewing the Javadoc and Source Code Available in the Project Scope

	Connecting to Oracle Database from a Java Application
	Overview of Connecting to Oracle Database
	Specifying Database URLs
	Using the Default Service Feature of the Oracle Database Client

	Creating a Java Class in JDeveloper
	Java Libraries
	Overview of the Oracle JDBC Library
	Overview of the JSP Runtime Library

	Adding JDBC and JSP Libraries
	Importing JDBC Packages
	Declaring Connection-Related Variables
	Creating the Connection Method

	4 Querying for and Displaying Data
	Overview of Querying for Data in Oracle Database
	SQL Statements
	Query Methods for the Statement Object
	Result Sets
	Features of ResultSet Objects
	Summary of Result Set Object Types

	Querying Data from a Java Application
	Creating a Method in JDeveloper to Query Data
	Testing the Connection and the Query Methods

	Creating JSP Pages
	Overview of Page Presentation
	JSP Tags
	Scriptlets
	HTML Tags
	HTML Forms

	Creating a Simple JSP Page
	Adding Static Content to a JSP Page
	Adding a Style Sheet to a JSP Page

	Adding Dynamic Content to the JSP Page: Database Query Results
	Adding a JSP useBean Tag to Initialize the DataHandler Class
	Creating a Result Set
	Adding a Table to the JSP Page to Display the Result Set

	Filtering a Query Result Set
	Creating a Java Method for Filtering Results
	Testing the Query Filter Method
	Adding Filter Controls to the JSP Page
	Displaying Filtered Data in the JSP Page

	Adding Login Functionality to the Application
	Creating a Method to Authenticate Users
	Creating a Login Page
	Preparing Error Reports for Failed Logins
	Creating the Login Interface
	Creating a JSP Page to Handle Login Action

	Testing the JSP Page

	5 Updating Data
	Creating a JavaBean
	Creating a JavaBean in JDeveloper
	Defining the JavaBean Properties and Methods

	Updating Data from a Java Class
	Creating a Method to Identify an Employee Record
	Creating a Method to Update Employee Data
	Adding a Link to Navigate to an Update Page
	Creating a JSP Page to Edit Employee Data
	Creating a JSP Page to Handle an Update Action

	Inserting an Employee Record
	Creating a Method to Insert Data
	Adding a Link to Navigate to an Insert Page
	Creating a JSP Page to Enter New Data
	Creating a JSP Page to Handle an Insert Action

	Deleting an Employee Record
	Creating a Method for Deleting Data
	Adding a Link to Delete an Employee
	Creating a JSP Page to Handle a Delete Action

	Exception Handling
	Adding Exception Handling to Java Methods
	Creating a Method for Handling Any SQLException

	Navigation in the Sample Application
	Creating a Starting Page for an Application

	6 Enhancing the Application: Advanced JDBC Features
	Using Dynamic SQL
	Using OraclePreparedStatement
	Using OracleCallableStatement
	Using Bind Variables

	Calling Stored Procedures
	Creating a PL/SQL Stored Procedure in JDeveloper
	Creating a Method to Use the Stored Procedure
	Allowing Users to Choose the Stored Procedure
	Calling the Stored Procedure from the Application

	Using Cursor Variables
	Oracle REF CURSOR Type Category
	Accessing REF CURSOR Data
	Using REF CURSOR in the Sample Application
	Creating a Package in the Database
	Creating a Database Function
	Calling the REF CURSOR from a Method
	Displaying a Dynamically Generated List

	7 Creating a Master-Detail Application Using Oracle ADF
	Overview of the Master-Detail Application
	Using Oracle ADF
	Oracle ADF Business Components
	Oracle ADF Faces
	Facets Usage with Oracle ADF Faces

	ADF Data Controls

	Creating an Application and Projects
	Creating Business Components in the model Project
	Displaying Master-Detail Data
	Creating a Project for the Application UI
	Creating a JSP to Display Employee Details
	Defining the Page Layout and Heading
	Displaying Master Data on a JSP Page
	Displaying Detail Data for Master Records
	Testing the Application

	Navigation Between Application Pages: JSF Navigation Diagrams
	Creating a Page Using a JSF Navigation Diagram
	Navigating Between Pages
	Defining Navigation Between Pages

	Editing Data
	Creating an Edit Form
	Navigating to an Edit Page

	Enabling COMMIT and ROLLBACK
	Running the Application

	8 Getting Unconnected from Oracle Database
	Creating a Method to Close All Open Objects
	Closing Open Objects in the Application

	9 Building Global Applications
	Developing Locale Awareness
	Mapping Between Oracle and Java Locales

	Determining User Locales
	Locale Awareness in Java Applications

	Encoding HTML Pages
	Specifying the Page Encoding for HTML Pages
	Specifying the Page Encoding in Java Servlets and JSP Pages

	Organizing the Content of HTML Pages for Translation
	Strings in Java Servlets and JSP Pages
	Static Files
	Data from the Database

	Presenting Data by User Locale Convention
	Oracle Date Formats
	Oracle Number Formats
	Oracle Linguistic Sorts
	Oracle Error Messages

	Localizing Text on JSP Pages in JDeveloper
	Creating a Resource Bundle
	Using Resource Bundle Text on JSP Pages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

