Index
A B C D E F G H I J K L M N O P Q R S T U V W X Y
A
- accuracy, 3.5.2.1, 5.3.1, 5.4.1.1, 5.4.2
- active learning, 18.1.4
- algorithms
-
- Apriori, 2.3.2, 8.3, 10
- Decision Tree, 2.3.1, 5.5, 11
- Generalized Linear Model, 2.3.1, 4.4, 5.5, 12
- k-Means, 2.3.2, 7.3, 13
- Minimum Description Length, 2.3.1, 9.4, 14
- Naive Bayes, 2.3.1, 5.5, 15
- Non-Negative Matrix Factorization, 2.3.2, 9.4, 16, 16
- O-Cluster, 2.3.2, 7.3, 17, 17.1
- One-Class Support Vector Machine, 6.3
- one-class Support Vector Machine, 2.3.2, 6.1.3, 18.5
- supervised, 2.3.1, 2.3.1
- Support Vector Machine, 2.3.1, 4.4, 5.5, 18
- unsupervised, 2.3.2
- ALTER_REVERSE_EXPRESSION, 19.4.2.1
- anomaly detection, 2.2.2.1, 2.2.3, 2.3.2, 5.4.2, 6, 7.1
-
- sample data, 6.2
- sample problem, 6.2
- antecedent, 8.1.3.1
- API
-
- See application programming interface
- application programming interface, 2.1
- apply, 2.2.1.2
- Apriori, 2.3.2, 20.2.3
- area under the curve, 5.3.4.2
- artificial intelligence, 2.2
- ASSO_MAX_RULE_LENGTH, 8.1.2
- ASSO_MIN_CONFIDENCE, 8.1.3.2
- ASSO_MIN_SUPPORT, 8.1.2.2
- association
-
- sample problem, 8.2
- association rules, 2.2.2.1, 2.2.3, 2.3.2, 8.1
-
- antecedent and consequent, 8.1.3.1
- confidence, 8.1.4.2
- data, 8.1.1
- lift, 8.1.4.3
- minimum confidence, 8.1.3.2, 8.1.3.2
- minimum support, 8.1.2.2
- support, 8.1.4.1
- text mining, 20.2.7
- attribute histogram, 7.1.1, 7.1.4
- attribute importance, 2.2.1.2, 2.2.3, 2.3.1, 3.5.1, 9.2, 14.1
-
- model details, 3.5.1
- sample data, 9.2.1
- sample problem, 9.2.2
- attributes, 1.3.1, 2.2.3
-
- finding the best, 9.1
- Automatic Data Preparation, 1.2.2, 1.3.3, 1.3.3, 2.4.1, 19.1
B
- Bayes' Theorem, 5.5, 15.1
- benefits, 5.4.1.3
- binary target, 5.1
- binning, Preface
- BLAS library, 2.7
- blog, 2.6.1
C
- case table, 1.1.7, 1.3.2, 19.1.1
- categorical, 5.1
- centroid, 7.1.1, 7.1.5
- CLAS_COST_TABLE_NAME, 5.4.1.3
- CLAS_PRIORS_TABLE_NAME, 5.4.2
- CLAS_WEIGHTS_TABLE_NAME, 5.4.2
- class weights, 5.4.2
- classification, 2.2.3, 2.3.1, 5
-
- biasing, 5.4
- one class, 6.1.3
- sample data, 5.2
- sample problem, 5.2
- testing, 5.3
- text mining, 20.2.4
- CLUS_NUM_CLUSTERS, 7.1.3.2
- cluster details, 7.2.1
- clustering, 2.2.2.1, 2.2.3, 2.3.2, 7, 13.1
-
- hierarchical, 7.1.2
- sample data, 7.2
- sample problem, 7.2
- scoring, 7.1.6, 7.2.2
- text mining, 20.2.5
- clusters
-
- rules, 7.1.3
- computational learning, 1.1.6
- confidence, 7.1.3.1, 8.1.3.2, 8.1.4.2
-
- defined, 1.1.2
- confidence bounds, 12.1.1.3
- confusion matrix, 1.3.3, 5.3.2, 5.4.1.1
- consequent, 8.1.3.1
- cost matrix, 5.4.1, 5.4.1.3
- cost/benefit matrix, 11.1.3.2
- costs, 1.3.3, 5.4.1, 5.4.1.3
-
- Decision Tree, 5.4.1.3
- counter-examples, 6.1
- CREATE_MODEL, 2.5.1
- cube, 1.1.6
- cumulative gain, 5.3.3.1
- cumulative lift, 5.3.3.1
- cumulative number of nontargets, 5.3.3.1
- cumulative number of targets, 5.3.3.1
- cumulative percentage of records, 5.3.3.1
- cumulative target density, 5.3.3.1
D
- data
-
- automatic preparation, 1.2.2, 1.3.3, 19
- cleansing, 1.3.2
- collection and exploration, 1.3.2
- dimensioned, 1.1.6, 2.4
- embedded preparation, 19
- highly dimensioned, 9.1
- market basket, Preface, 1.3.3
- multi-record case, 8.1.1
- nested, 8.1.1.2
- one class, 6.1.1
- single-record case, 1.1.7, 8.1.1
- sparse, 8.1.1.2, 10.2
- transactional, 8.1.1
- unstructured, 20.1
- wide, 9.1
- data mining
-
- automated, 3
- defined, 1.1
- Oracle, 2
- process, 1.3
- data preparation, 1.2.2, 1.3.2, 2.4, 19
-
- automatic, 19
- clustering, 7.1
- embedded, 1.2.2, 19
- missing values, 19.1
- data types, 19.1.2
- data warehouse, 1.1.7
- date data, 19.1.2.1
- DBMS_DATA_MINING, 2.5.1
- DBMS_DATA_MINING_TRANSFORM, 2.5.1, 2.7
- DBMS_FREQUENT_ITEMSET, 2.7
- DBMS_FREQUENT_ITEMSETS, 8.1.2
- DBMS_PREDICTIVE_ANALYTICS, 2.5.1, 3.3.1
- DBMS_STAT_FUNCS, 2.7
- Decision Tree, 2.3.1, 3.5.3, 5.5
-
- model details, 3.5.3
- rules, 3.5.3, 5.2
- demo programs, 2.6.1
- deployment, 1.3.4, 1.3.4
- deprecated features, Preface
- descriptive models, 2.2.2
- directed learning, 2.2.1
- distance-based clustering models, 13.1
- DMSYS schema
-
- See desupported features
- documentation, 2.6
E
- embedded data preparation, 2.4.1, 19.1
- entropy, 11.1.3.1
- Excel, 3.2
- EXPLAIN, 2.5.1, 3.1.3, 9.2.3
-
- attribute importance, 9.2.3
F
- false negatives, 1.3.3, 5.3.4.4
- false positive, 5.3.4.1, 5.4.1.2
- false positive fraction, 5.3.4.4
- false positives, 1.3.3, 5.3.4.4
- FEAT_NUM_FEATURES, 9.3
- feature extraction, 2.2.2.1, 2.2.3, 2.3.2, 9.3, 20.3
-
- coefficients, 9.3.2
- model details, 9.3.2
- sample data, 9.3.1
- sample problem, 9.3.2
- scoring, 9.3.3
- text mining, 20.2.6
- features, 2.2.3, 9.3, 20.3
- frequent itemsets, 8.1.2
G
- Generalized Linear Models, 2.3.1, 4.4, 5.5, 9.1, 20.2.3
- GET_MODEL_DETAILS, 19.4
- GET_MODEL_TRANSFORMATIONS, 19.4.1
- gini, 11.1.3.1
- grid-based clustering models, 17.1
H
- hierarchical clustering, 7.1.2
- hierarchies, 1.1.6
-
- clusters, 7.1.1
- histogram, 7.1.1, 7.1.4
I
- inductive inference, 1.1.6
- itemsets, 8.1.2
J
- Java API, 2.5.3, 3.3.2
K
- KDD, 1.1
- kernel, 2.1
- k-Means, 2.3.2, 7.3, 13.1, 13.1, 13.1, 20.2.3
L
- LAPACK library, 2.7
- lift, 1.3.3, 5.3.3
-
- association rules, 8.1.4.3
- sample chart, 5.3.3
- statistics, 5.3.3.1
- linear regression, 2.3.1, 4.1.1.1, 4.4, 5.5
- Logistic Regression, 20.2.4.3
- logistic regression, 2.3.1
-
- class weights, 5.4.2
M
- machine learning, 2.2
- market-basket
-
- sample problem, 8.2
- market-basket analysis, 8.1
- market-basket data, 1.3.3
- MDL
-
- See Minimum Description Length
- Mean Absolute Error, 4.3.2.2
- medoid, 7.1.5
- Minimum Description Length, 2.3.1, 3.5.1, 9.4, 14.1
- Minimum Descriptor Length, 20.2.3
- mining functions, 2.2, 2.2.3
-
- anomaly detection, 2.2.3, 2.3.2, 6
- association rules, 2.2.3, 2.3.2, 8
- attribute importance, 2.2.3, 2.3.1, 9, 9.2, 14.1
- classification, 2.2.3, 2.3.1, 5
- clustering, 2.2.3, 2.3.2, 7
- feature extraction, 2.2.3, 2.3.2, 9, 9.3
- regression, 2.2.3, 2.3.1, 4
- missing value treatment, Preface, 19.1
- model details, 1.3.4, 3.5.1, 3.5.3, 11.1.1
- models
-
- anomaly detection, 2.2.3
- association rules, 2.2.3
- attribute importance, 2.2.3
- classification, 5.1
- clustering, 2.2.3, 7.1
- deploying, 1.3.4
- feature extraction, 2.2.3
- over fitting, 11.1.3.3
- regression, 2.2.3
- supervised, 2.2.1, 2.3.1, 4, 5
- unsupervised, 2.2.2
- multiclass target, 5.1
- multicollinearity, 12.1.2
- multidimensional analysis, 2.7
- multidimensional data, 1.1.6, 2.7
- multiple regression, 4.1.1.2
- multivariate linear regression, 4.1.1.2
N
- Naive Bayes, 2.3.1, 5.4.2, 5.5, 20.2.3
-
- prior probabilities, 5.4.2
- negative class, 5.4.1.2
- nested data, 2.4, 8.1.1.2
- neural networks, 18.1.1
- NMF
-
- See Non-Negative Matrix Factorization
- nonlinear regression, 4.1.1.4
- Non-Negative Matrix Factorization, 2.3.2, 9.4, 20.2.3
-
- data preparation, 16.2
- normalization, Preface
- numerical, 5.1
O
- O-Cluster, 2.3.2, 7.3, 17.1
- OLAP, 1.1.6, 1.1.6, 2.7
- one-class classification, 6.1.3
- One-Class SVM, 2.3.2, 6.3, 18.5
- Oracle Data Miner, 4.2, 4.3.2.3, 5.2, 5.4.2, 6.2.1, 7.1.4, 9.2.2, 20.3
- Oracle Data Mining discussion forum, 2.6.1
- Oracle Database analytics, 2.7
- Oracle Database kernel, 2.1
- Oracle Database statistical functions, 2.7
- Oracle Discoverer, 2.7
- Oracle Intermedia, 2.7
- Oracle OLAP, 2.7
- Oracle Portal, 2.7
- Oracle Spatial, 2.7
- Oracle Spreadsheet Add-In for Predictive Analytics, 2.6.1, 3.2
- Oracle Text, 2.7, 2.7, 20.5
- Orthogonal Partitioning Clustering
-
- See O-Cluster
- outliers, 1.2.2, 6.1, 6.1.2
- overfitting, 2.2.1.1
P
- PL/SQL API, 2.5.1
- positive class, 5.4.1.2
- PREDICT, 2.5.1, 3.1.3
- PREDICTION_PROBABILITY, 2.5.2, 6.2.2
- predictive analytics, 2.5.4, 3, 9.2.3
-
- accuracy, 3.4
- Java API, 3.3.2
- PL/SQL API, 3.3.1
- See also EXPLAIN
- See also PREDICT
- See also PROFILE
- Spreadsheet Add-In, 2.5.4, 3.2
- predictive confidence, 3.4, 3.5.2.1, 4.3.2.3
- predictive models, 2.2.1
- prior probabilities, 5.4.2, 5.4.2
- probability threshold, 5.3.3.1, 5.3.4, 5.3.4.4
- PROFILE, 2.5.1, 3.1.3
- pruning, 11.1.3.3
Q
- quantile lift, 5.3.3.1
R
- radial basis functions, 18.1.1
- Receiver Operating Characteristic, 3.5.2, 5.3.4
- receiver operating characteristic
-
- statistics, 5.3.4.2
- regression, 2.2.3, 2.3.1, 4
-
- defined, 4.1.1
- sample build data, 4.2
- sample problem, 4.2
- testing, 4.1, 4.3
- training, 4.1, 4.1
- regression coefficients, 4.1.1, 4.1.1.3
- regression parameters, 4.1.1
- regularization, 18.1
- residual, 4.1.1
- residual plot, 4.3.1
- reverse transformations, 19.4.2
- ridge regression, 12.1.2
- ROC
-
- See receiver operating characteristic
- Root Mean Squared Error, 4.3.2
- rules, 1.3.4
-
- association, 8.1.3
- clusters, 7.1.1, 7.1.3
- confidence, 1.1.2
- Decision Tree, 3.5.3, 11.1.1
- PROFILE, 3.5.3
- support, 1.1.2
S
- scoring, 1.3.4, 1.3.4, 2.2.1.2, 2.5.2
-
- defined, 1.1.1
- real time, 1.3.4
- segment, 7.1
- single-class data, 6.1.1
- single-record case, 1.1.7
- single-record case data, 8.1.1
- singularity, 12.1.2
- slope, 4.1.1.1
- sparse data, 8.1.1.2, 10.2, 19.1
- Spreadsheet Add-In
-
- See Oracle Spreadsheet Add-In for Predictive Analytics
- Spreadsheet Add-In for Predictive Analytics, 9.2.3
- SQL data mining functions, 2.5.2, 2.5.2
- star schema, 2.4
- statistical functions, 2.7
- statistics, 1.1.5
- stratified sampling, 5.4.2
- supermodel, 2.4.1, 2.4.1
- supervised algorithms, 2.3.1
- supervised learning, 2.2.1
- support, 7.1.3.1, 8.1.2.2, 8.1.4.1
-
- defined, 1.1.2
- Support Vector Machine, 2.3.1, 3.5.2, 5.5, 9.1, 20.2.3
-
- active learning, 18.1.4
- classification, 2.3.1, 5.4.2
- Gaussian kernel, 2.3.1
- linear kernel, 2.3.1
- one class, 2.3.2
- regression, 2.3.1, 4.4
- text mining, 20.2.4.3
- SVM
-
- class weights, 5.4.2
- See Support Vector Machine
T
- target, 2.2.1, 2.2.2.1
- target density, 5.3.3.1
- term extraction, 20.3
- terms, 20.3
- testing
-
- classification model, 5.3
- regression model, 4.1, 4.3
- text
-
- pre-processing, 20.3
- text features, 20.3
- text mining
-
- algorithms, 20.2.3
- association rules, 20.2.7
- classification, 20.2.4
- clustering, 20.2.5
- data types, 20.2.2
- feature extraction, 20.2.6
- logistic regression, 20.2.4.3
- pre-processing, 20.2
- sample data, 20.4
- sample problem, 20.4
- Support Vector Machine, 20.2.4.3
- text terms, 20.3
- timestamp data, 19.1.2.1
- training, 2.2.1
-
- regression model, 4.1
- transactional data, 1.3.3, 8.1.1
- transformations, 2.4.1, 2.5.1, 19.1
- transparency, 11.1.1, 12.1.1.1, 19.1, 19.3.2, 19.4
- true negatives, 5.3.4.4
- true positive, 5.3.4.1, 5.4.1.2
- true positive fraction, 5.3.4.4
- true positives, 5.3.4.4
U
- unstructured data, 2.4, 20.1
- unsupervised algorithms, 2.3.2
- unsupervised learning, 2.2.2
- UTL_NLA, 2.7
V
- Vapnik's theory, 4.4
W
- white papers, 2.6.1
- wide data, 9.1
X
- XML
-
- Decision Tree, 3.5.3, 11.1.4
- PROFILE, 3.5.3
Y
- y intercept, 4.1.1.1