ORACLE

Oracle® Database

JDBC Developer's Guide and Reference,
11gRelease 1 (11.1)

B31224-03

September 2007

This book describes how to use Oracle JDBC drivers to
develop powerful Java database applications.

Oracle Database JDBC Developer's Guide and Reference, 11g Release 1 (11.1)
B31224-03
Copyright © 1999, 2007, Oracle. All rights reserved.

Primary Author: Tulika Das, Venkatasubramaniam lyer, Elizabeth Hanes Perry, Brian Wright, Thomas
Pfaeffle

Contributing Author: Brian Martin

Contributor: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar
Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul
Bastawala, Luxi Chidambaran, Srinath Krishnaswamy, Longxing Deng, Magdi Morsi, Ron Peterson,
Ekkehard Rohwedder, Catherine Wong, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony
Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl Maring

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo T VLT ORRTRRRRRRT XiX
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XX
(@03 4 NT£=3 115 (o) o - I RTRT PSSRSO XXii

WIRAE'S NOW ...ttt eee e s s s s ees s aes e eenaene Xxiii
New Features for Release 1 (11.1) c.cceverrerrirnerinicrinieeeieerictetent ettt ettt sttt ebeeeseseseeesnens XXiii
Desupported FEatUresccccciiiiiiiiiiiiiiiiiiic e XXiv
Interface CRanGEScccuiuiiiiiiiiiccece ettt XXiv

Partl Overview

1 Introducing JDBC

Overview 0f Oracle JDBC DILVEIS........ccccooviieriiriereeieieeiesieestesttenteseesaesssessessessesssessesssessesssessesssenes 1-1
Common Features of Oracle JDBC DIIVEIS......ccccvirirerierieieieteieeieeiesee st ettt eeeeae e eas 1-2
Choosing the Appropriate DIiVer ... 1-4
Feature Differences Between JDBC OCI and Thin Drivers......c..coccooevenenienienieieneneneneneeeenee 1-4

Environments and SUpPOrt ... 1-4
Supported JDK and JDBC VEISIONS.........cccccviriiiiiriiiiiiiiiniriiciirniciciisessessessesesssssssesesssss s 1-5
JNI and Java ENVITONIMENTSc..couiviiiiriiieieieieiet ettt sttt sttt 1-5
JDBC QN IDES... ettt ettt ettt sttt ettt a e st a et e sbe s besbesbebe st et et eneeneeaeebeebeees 1-5

FEAtUTE LStoooiiiiieeie ettt ettt et e et e e e aae e b e e abeesbe e beessbaessaeesseensaeesseensaeessaenraeans 1-5

2 Getting Started

Version Compatibility for Oracle JDBC DIivers...........ccococoviiininiiniininiiinncnccccceeae 2-1
Verification of a JDBC Client Installation.............cccoooiiiiiiiiiiiiiniiinneeeeeeeeceeee e 2-2
Check the Installed Directories and FIlesc.cocoveoneinieinicrncineincinctceseeeseeeeeeeenenes 2-2
Check the Environment Variablesccoveeiriririnireniniiieiiieieseeseiesieiesee sttt 2-3
Ensure that the Java Code Can Be Compiled and RUncccccoeviiiiiiiiiiiiiiiiiiicns 2-4
Determine the Version of the JDBC DIiVercccociiiiiiiiiiieiesiesee et 2-5
Test JDBC and the Database CONNECHON.......c..ecerierierieieieietisie st eteieeeseeteseeseeseesee e sessessesseseneas 2-5
Basic Steps in JDBC ..ottt sttt e e 2-7
IMPOrting PACKAZES «......c.orueiiieiicic s 2-8

Opening a Connection to a Database ..., 2-8

Creating a Statement ObJECtcouiiiiiiiiii e 2-9
Running a Query and Retrieving a ResultSet Object...........ccccoeuviviiiiinvnininriicrcecerenee 2-9
Processing the ResultSet Object ..o 2-10
Closing the ResultSet and Statement Objects...........ccouoiiieieiiicii 2-10
Making Changes to the Databasecccccoiiiiiiiiiiiiiccce s 2-11
Committing Changes...........cccuoviiuriiiiii e 2-11
Closing the CONNECHIONccuiiiiirieicte et 2-12
Sample: Connecting, Querying, and Processing the Results............ccccccccoovniininn 2-12
Stored Procedure Calls in JDBC Programs.............cccooiiiiiiiiiiiiiiiiniicicceceeseseeeeesesenesennen 2-13
PL/SQL StOred PrOCEAUIESc.veoeuveeeeieeeeeteeetee ettt eete et et eeae et e eeveeeaeeeaeseeteeeaeseteeesseenneennes 2-13
Java StOTed PrOCEAUTES.c.ecveieierieiieteteeetee ettt ettt saeseese st abe b e s esbessessessessessasessensenes 2-14
Processing SQL EXCEPHONSccouiuiiiiiiiiiiiiicc s 2-14

Partll Oracle JDBC

3

JDBC Standards Support
Support for JDBC 2.0 Standard............cc.ccooiiiiiiiii s 3-1
Data TYPe SUPPOTT ...t 3-2
Standard Feature SUPPOTt.......ccccccuiciiiiiiiiiiiiicceecece e 3-2
Extended Feature SUPPOTt.......cccooiiiiiiiiiiiiiiccc 3-2
Standard versus Oracle Performance Enhancement APIS.........ccccccoiiiiiiiinniiiiiiiiiins 3-2
Support for JDBC 3.0 Standard...........c.cccooeiriiniiiniiiieeceee e 3-2
Transaction SAVEPOINTS.........ccccuiiiiiiiiiiiiiiiicc s 3-3
Creating @ SAVEPOINTccvcieiiiiiiiiice s 3-3
Rolling Back t0 @ SAVEPOINLccccuiuiiiiiiiiicicicceeceeee e 3-3
Releasing a SaVePOINt........cccuiuiiiicieiiicte e 3-4
Checking Savepoint SUPPOIt........cccoiiiuiiiiiccie s 3-4
SaVePOINt INOLESoviviiiiiiiiic s 3-4
Retrieval of Auto-Generated Keys.........c.coiiiiiiiiiiiiii e 3-4
jAVa.SQLStAtEMENtc.cocviiiiiiii 3-4
SAMPLE COUE ... 3-5
LAmItations «..covevevieiiietcec s 3-5
JDBC 3.0 LOB Interface MethoOdS.......cceoveieieieieieiieieeieeeieieeteeeet ettt sttt s e e e 3-5
Result Set HOLAabilityc.ccceueiiiiiiiiiiiiiiicccececce e 3-6
Support for JDBC 4.0 Standard.............cccoooiiiiiiiiiiii s 3-6

Oracle Extensions

Overview 0f Oracle EXTENSIONSccceeieriiiiiiiieieieeteseetee ettt sae e esaesaessesssessaessesseessanseessenns 4-1
Features of the Oracle EXtENSIONSccciiiviiriiriiiieieieieietetee ettt sttt s e ese s sesseesenas 4-2
Database Management Using JDBCccccooiiiiiiiniiiiiniicccsnne 4-2
Support for Oracle Data TYPes........ccccviiiiiiiiiiiiiiniie s 4-2
Support for Oracle ObJECES..........ccciiiiiiiiiiiiiiiiii e 4-3
Support for Schema NamMINgc.cccociiiiiiiiiieec e 4-4
DML RETUITING ..ottt 4-4
Accessing PL/SQL Index-by Tables..........ccccccoiiiiiiiiiiiiiniiiiiiiicncnsnscsseesseeae 4-4

Oracle JDBC PacKages...........coouiuimimimiiiiiiiiiiiiiicicii sttt 4-5

Package 01acle.sql ... 4-5
Package oracle jdbe ..o s 4-10
Oracle Character Data Types SUppPoOrt.........cccoiiiiiiiiiiiiiiii s 4-10
SQL CHAR Data TYPeSccocuiiiiiiiiiiiiiiiiiiiceiintisi st 4-10
SQL NCHAR Data TYPeS.....ccoviiuimiiiiiiiiiiiiiiiiiicccsi s 4-10
Class oracle.SQLCHAR ..o s 4-11
Additional Oracle Type EXtensions ..o 4-13
Oracle ROWID TYPe......cciuiiiiiiieieicieiccteiceeieeete ettt seees 4-13
Oracle REF CURSOR Type Categoryccceveurieiiiiicieieiiicieieisic et 4-14
Oracle BINARY_FLOAT and BINARY_DOUBLE Typescccccecvviiinininiiiininininincines 4-16
Oracle SYS.ANYTYPE and SYS.ANYDATA TYPES....ceueueuemimeieirieieieieieieieieieeieieiereieeeeeeenenenenes 4-16
The oracle jdbc PACKAgecouiurieieiiiici 4-19
Interface oracle.jdbc.OracleConnectionc.oooeueioiiiiciiiccc e 4-21
Interface oracle.jdbc.OracleStatement............cccccceuiiiiciininiiiinnricrreer e 4-22
Interface oracle.jdbc.OraclePreparedStatement ... 4-22
Interface oracle.jdbc.OracleCallableStatementccooovoiiiiiiiiiii 4-22
Interface oracle.jdbc.OracleResultSet...........cccoceuiuiiiiiiiiniiiiicccrree e 4-23
Interface oracle.jdbc.OracleResultSetMetaData............cccooieviiiiiiiiiniins 4-23

Class oracle.jdbc.OracleTypes.........coicueiiiiiiciiiiicc s 4-23
Method getJavaSqlCONNECtiON.c.ccucuiueiiiiiiiiiieiiccierreere s 4-25

DML RePUIIENG ..ot s 4-26
Oracle-Specific APIS.........o.oi 4-26
Running DML Returning Statements.............cccccouviiiiiiniiiiiniiiiiccccncccenes 4-27
Example of DML REtUININEcoouruiiiiiiiiiiiiicie s 4-27
Limitations of DML RetUINiNg...........ccoeiiiiiimiiieiiicieieece s 4-28
Accessing PL/SQL Index-by Tablescccccconiiiiniiiiiiiiicnes 4-28
OVEIVIEW .ttt 4-29
Binding IN Parameters............oocrurieiiiiciiieiicecie e 4-29
Receiving OUT Parameters............ccovuiiiiiiiiiiiiiiiiciccisc s 4-31
TYPE MaAPPINES....riniiiririniieietctee et 4-32

Features Specific to JDBC Thin

Overview of JDBC Thin CLentcccccviiniiiiniiiniciicncnenetnteenreseete et 5-1
Additional Features Supported ..o 5-1
SUPPOTE FOT APPLELS ... 5-2
Default Support for Native XA ... 5-2
JDBC I APPILEES ..o 5-2
Connecting to the Database Through the Applet.........cccoviiiiiinnn e, 5-2
Connecting to a Database on a Different Host Than the Web Server ..o, 5-3
Using the Oracle Connection Manager..........cccooeueeeuniiienieiniiceeeecee s 5-4

USINg SigNed APPLELS.....ccoviiiiiiiie e 5-5

Using Applets with Firewalls........cccccocoviiiiiiiiiiii 5-6
Configuring a Firewall for Applets that use the JDBC Thin Driver..........cccccovvuvnininnnnee. 5-6
Writing a URL to Connect Through a Firewall ..o 5-7
Packaging APPIEtSc.coiiiiiiic 5-8
Specifying an Applet in an HTML Page.........ccccccoviiviiiininiiiiiiiiiccnnnnssssene 5-8

CODE, HEIGHT, and WIDTHcccccveiiriiiinenencnctnetneeniesenieeeresee e sesee e e ee 5-8
CODEBASE ...ttt sttt ettt st st s be e sttt st saeenesaesaees 5-9
ARCHIVE ..ottt 5-9

Features Specific to JDBC OCI Driver

OCI Connection POOLING............ccooiiiiiiiiiii e 6-1
Transparent Application Failover ... 6-1
OCT NAHVE XA ..ottt e b bbbt bbb bbb bbbttt b besetesesebenesesesesesenesenene 6-1
OCT Instant CHEnt ... 6-1
Overview of Instant CHENt.........cccciiiiiiiiii e 6-2
Benefits of Instant CHENtccoiiiiiicc e 6-2
JDBC OCI Instant Client Installation PTOCESSc.ccveeveieieieieiniinieiesieieeeeesessssesessessessessessens 6-3
Usage of Instant CHENtcooeuoiiii e 6-4
Patching Instant Client Shared Libraries.........c..coooooi e, 6-4
Regeneration of Data Shared Library and ZIP filescccccocociiiiiiiiiiiiiicceeccceennes 6-5
Database Connection Names for OCI Instant Clientccoooeiiviiiinniiiniicne, 6-5
Environment Variables for OCI Instant CLentcccocoioiiiiiinniiiinccicccceecns 6-7
Instant Client Light (English)ccccooiiiiiiies 6-8
Globalization SEttINGS........coviiuiiiiiiiiiiiti s 6-9
OPETAtION.....ciiiiti s 6-9
INSTALLAtIONottt 6-10

Server-Side Internal Driver

Overview of the Server-Side Internal DIiver ..o, 7-1
Connecting to the Database................cccoiiiiiiiiiii s 7-1
Exception-Handling EXtensions ... 7-3
Session and Transaction Context.............cccccovvviiiiiiiiii 7-4
Testing JDBC 0N the Server ... 7-4
Loading an Application into the Server...............ccccocoiiiiiiiiiii 7-5

Partlll Connection and Security

8 Data Sources and URLs

vi

Data SOUTCESccviiiiiiiicic et e sttt 8-1
Overview of Oracle Data Source Support for JNDI..........ccccccoiiiiiiiiiiccceeeeeeees 8-1
Features and Properties of Data SOUICEScviiiiiimiiiiiiiiiic e 8-2
Creating a Data Source Instance and Connectingcccccoeoeueurrriiiininiiiininiiirrncn. 8-6
Creating a Data Source Instance, Registering with JNDI, and Connecting............ccccceceevurennce. 8-6
Supported Connection Properties ..ottt 8-8
Using Roles for SYS LOGINc.ccciuiiiiiiiiiiiiiicics e 8-8
Configuring Database Remote LOGin........c.cccccoiiiiiiiiiiiiiiicccccceececce e 8-8
Bequeath Connection and SYS LOGON ...t 8-9
Properties for Oracle Performance EXtENSIONScccccccuiuiiriiiiiiiiiiininiiiiniccnnccnes 8-10

Database URLs and Database Specifiers............cccoecvioiriiniiniciineineeneeceneeneeeseereenenees 8-11

10

JDBC Client-Side Security Features

Support for Oracle Advanced Security ... 9-1
Support for Login Authenticationcccooiiiiiii s 9-3
Support for Strong Authentication ... 9-3
Support for OS Authentication ... 9-4
Configuration Steps fOr LINUX.......cccoviririiiiircrreeerr e 9-4
Configuration Steps for WINAOWS ..o 9-5
JDBC Code Using OS Authentication ..o 9-6
Support for Data Encryption and Integrity ... 9-6
JDBC OCI Driver Support for Encryption and Integrity..........ccocoooiriiiiiiicic 9-7
JDBC Thin Driver Support for Encryption and Integrity...........ccooouooiiiiiiiiiiiiice, 9-8
Setting Encryption and Integrity Parameters in Java ... 9-9
SUPPOIE £OF SSL ..o s 9-11
Managing Certificates and Wallets.............ccooooiiiii 9-12
Keys and certificates CONTAINETS..........ccccceueuiiiiiririiiiiiiecree s 9-12
Support for Kerberos ... 9-13
Configuring Oracle Database to Use Kerberos............ocoooiiiiii, 9-13
Code EXAMPLE.....oviiiiiiiiciciciciceeee ettt s 9-14
Support for RADIUS ... 9-18
Configuring Oracle Database to Use RADIUSccoooiiiiiiiiiicce e 9-18
Code EXAMPLE.....ooviiiiiiiiieiicictceee ettt 9-19
Secure External Password Store ... 9-21

Proxy Authentication

About Proxy Authentication ..o 10-1
Types of Proxy CONNectionsccccoviiiiiiiiiiiiiiniiiiii s 10-2
Creating Proxy Connections.............ccccccooviiiiiiiiiini s 10-3
Closing a ProXy SeSSI0Nccciiiiiiiiiiiiiii e 10-4
Caching Proxy CONNEctionsScccoiiiiiiiiiiiiiiiicc e 10-5

Part IV Data Access and Manipulation

1

Accessing and Manipulating Oracle Data
Data Type MapPings.........ccoociiiiiiiiiiiiiiiicc s es e 11-1
Table Of MAPPINES ...cccveveveirieieieicicirieeee et 11-1
Notes Regarding Mappings........cccceuiiueiiiiiiiicieiiccic it 11-3
Data Conversion Considerationsccoocoiiiiiiiiiniiiniciccccc s 11-3
Standard Types Versus Oracle TYPEScccccccuirieiiiiiiieiiiiceeee e 11-4
Converting SQL NULL Datacocciiiiiiiiiiieci s 11-4
Testing fOr NULLSc.cciiiiiiiiiiiicccc e 11-4
Result Set and Statement EXtensions ... 11-5
Comparison of Oracle get and set Methods to Standard JDBCcccccooeiiiiiiiiiiinnnn, 11-5
Standard getObject Method..........ccccoviiiiiiiiic e 11-6
Oracle getOracleObject Method.........ccciiiiiiiiiiiiiiccccccece s 11-6
Summary of getObject and getOracleObject Return Types.........cccoooiiviiiiiiiiiiiiiiice, 11-7
Other getXXX Methodsccoiuiiiiiiiiiiiiiiiiiir s 11-9

vii

12

13

viii

Return Types of getXXX Methods ..o 11-9

Special Notes about getXXX Methodscccueuiiiiiiiiii 11-10

Data Types For Returned Objects from getObject and getXXXccccvvvivvnnnvnrnncnenes 11-10
The setObject and setOracleObject Methods............cccoeveiiiiiiiiiiiii 11-11
Other setXXX Methods.......ccoiiiiriiiiiiiicce e 11-11
Input Data BIndingccccoeeiiiiiiiiccccrccrrr e 11-12
Method setFixedCHAR for Binding CHAR Data into WHERE Clauses....................... 11-13

Using Result Set Metadata EXtensions............c.cccccovviiiiiiiiiiicces 11-14
Using SQL CALL and CALL INTO Statements..............cccccccovviiiniiniiinniicee 11-15

Java Streams in JDBC

OVEIVIEW ...ttt ettt a s a et b s a et b a bR et b s a s e ettt s st ettt sttt 12-1
Streaming LONG or LONG RAW COIUMNS ..o 12-2
LONG RAW Data CONVETISIONScccouiiiiiiiiiiiiiiiiiiciiee e 12-2
LONG Data CONVEISIONSccvuiriuirrreteieteteteteteiese ettt s 12-2
Streaming Example for LONG RAW Data........ccoooiiiiiiiiiiii 12-3
Avoiding Streaming for LONG or LONG RAW ..., 12-5
Streaming CHAR, VARCHAR, or RAW Columns...........ccccccociiiiniiiiininiiiiicc 12-5
Streaming LOBs and External Files............cccoooiiiiiiiiic e 12-6
Data Streaming and Multiple Columns..............ccccoviiiiiiniiiiini s 12-7
CloSINgG @ STr@AM........ccooviiiiiiiiiii s 12-8
Notes and Precautions on Streams..............cccooveiiiiiiiiiiiii s 12-8
Streaming Data Precattions ... 12-8
Using Streams to Avoid Limits on setBytes and setString...........c.cocccveieieciiicnccccicccnne 12-9
Streaming and Row Prefetching ..., 12-9

Working with Oracle Object Types

Mapping Oracle ObJects...........cccooiiiiiiiiiiiiiiiiiii s 13-1
Using the Default STRUCT Class for Oracle Objectsccccccovviiiiinnininiiiiiins 13-2
STRUCT Class FUNCHONALILYcoiiiiiiiiiiiiiccccccccccece e 13-2
Retrieving STRUCT Objects and Attributes...........cocooviiieiiiiii 13-3
Creating STRUCT Objects and Descriptors..........ccccceuviviiiiiiirinininiiiiniiiinnncenseeessees 13-5
Binding STRUCT Objects into Statements............cccceuvuveeiiireririnininirrreeeeeseeeeeeeeeeeeeeeeeeas 13-6
STRUCT Automatic Attribute Buffering ..o 13-6
Creating and Using Custom Object Classes for Oracle Objects.............ccccccccuiuiiiiiiiiiiiicnnas 13-6
Relative Advantages of ORAData versus SQLData...........cccccoeueurirurrinieinnnnciereeeeeeeeees 13-7
Understanding Type Maps for SQLData Implementations..........c.ccccceeueeeiiiiiinnniiiiennnn, 13-8
Creating Type Map and Defining Mappings for a SQLData Implementation 13-8
Adding Entries to an Existing Type Mapccccccevvvrrrrvnrirrcceeeeeeeeeeeeeeeeeeeas 13-9
Creating a New Type Mapcccocriiiiiiicc s 13-10
Materializing Object Types not Specified in the Type Mapccccoooevvevrieiiicciireicnnen 13-10
Understanding the SQLData INterface............coovvvreirinnnninnnicccccccccccc e 13-10
Reading and Writing Data with a SQLData Implementationccccooooieeiiiiiieininnnen, 13-12
Understanding the ORAData Interfacecococooeieiiiiiiiii 13-14
Reading and Writing Data with a ORAData Implementationcccoceveeiiiincicnccnnes 13-16
Additional Uses for ORADAta...........cccovviiiiiiiiiiii e 13-18
The Deprecated CustomDatum Interface............coooeeiiieiniiiiiccc e, 13-19

14

15

Object-Type Inheritance ... 13-19

Creating SUDLYPESc.ovoiicei e 13-20
Implementing Customized Classes for SUDLYPES..........ccccovuvuririrrrirrrrrrcrreeeee e 13-20
Use of ORAData for Type Inheritance Hierarchyccccooooiiiiii 13-21

Use of SQLData for Type Inheritance Hierarchy ... 13-23
JPUDLSher UHILIEYccoueuimiiiiiiciciciccccccceccee et 13-25
Retrieving Subtype ObJects.........cooouiiiiiiiiiiiiiic 13-26
Creating Subtype ObjJECtS.........c.ooiriiiiii 13-28
Sending SUbtYPe ODJECtS.......ccceueuiiiiiiiiiiriiiiirrceerrrre e 13-28
Accessing Subtype Data Fields ..o 13-29
Inheritance Metadata Methods ..o 13-30
Using JPublisher to Create Custom Object Classesccccoeiiiiiniiininiiiciine 13-30
JPublisher FUNCHONALItYc.cviviiieiiici s 13-30
JPublisher Type Mappingscccceeuoirueieiiccteiecci ettt 13-31
Describing an Object TYPe. ... 13-33
Functionality for Getting Object Metadata...........ccooveiininieiiiiiicc 13-33
Steps for Retrieving Object Metadata...........c.cceueioiiuiiiiiiii 13-34

Working with LOBs and BFILEs
Oracle Extensions for LOBs and BFILEs.............ccccccooiiiiiiiicceeennas 14-1
Working with BLOBs, CLOBs and NCLOBSccccccocoiininiiiiiices 14-2
Getting and Passing BLOB, CLOB, and NCLOB Locators...........cccoovieieieiincieiicceee, 14-2
Retrieving BLOB, CLOB, and NCLOB LOCatorscccccoviiiiiiiininiiiiiiiiciciceens 14-2
Passing BLOB, CLOB and NCLOB LoCAtOrSccccoeiiiniiiiiiiiiicccnccene 14-4
Reading and Writing BLOB, CLOB and NCLOB Data..........cccoooeeieiiiiiiiiiiiceicccce, 14-5
Creating and Populating a BLOB, CLOB or NCLOB Columnc.cccoovoiieiiiiccieicnen, 14-8
Accessing and Manipulating BLOB, CLOB, or NCLOB Dataccccoeueiniiiiiicciiccnnes 14-10
Data Interface for LOBScccocooiiiiiiiiiii s 14-10
Working With Temporary LOBS ..o 14-13
Using Open and Close With LOBScccooiiiiiiiiiii s 14-14
Working with BFILEScccccooiiiiiiiiiici s 14-14
Getting and Passing BFILE LOCAOTSccccoiuiiiiiiiiiiiiiiiiiiicccicceeaes 14-15
Reading BFILE Data.........c.ccciiiiiiiiiiiiierr et 14-16
Creating and Populating a BFILE Column..........ccccoiiiiiiiiic 14-17
Accessing and Manipulating BFILE Data...........ccocoouviiiiiiiiiiiiiiiccccccccccccennes 14-18
Oracle SecureFiles............oooiiiiiiiccc s 14-19
Using Oracle Object References

Oracle Extensions for Object References................cccocooeiiiiiiinininiiinie 15-1
Overview of Object Reference Functionality ..o 15-2
Object Reference Getter and Setter Methodscccoociiiiiiiiiiiiiiiiicccceces 15-2
Key REF Class MethOdscccucuiiririiiiiiiriiiicicececeeeee e 15-2
Retrieving and Passing an Object Reference..............ccocoeiiiiiiiiiiininiiiccce 15-3
Retrieving an Object Reference from a Result Set...........cccooeviiiiiiiiiiicniiic, 15-3
Retrieving an Object Reference from a Callable Statementcccccoevruvevvrvnnrnnnennenes 15-4
Passing an Object Reference to a Prepared Statement............c.cccocoveiiiiiiiiinniinniicien, 15-4

16

17

Accessing and Updating Object Values Through an Object Reference.................cccccevvvennnnnnn. 15-5
Custom Reference Classes With JPUDLIShercccoccoviiiininiiiinninncecercecereeneaene 15-5

Working with Oracle Collections

Oracle Extensions for COllectionsccciiiiiiiiiiiiiiicc e 16-1
Choices in Materializing COlleCtioNnS.........ccccceuiueiriiiiiririririicreccer s 16-1
Creating ColleCtionS. ...t 16-2
Creating Multilevel Collection TYPesccovrueiiiiciciiiiicc e 16-3

Overview of Collection Functionalitycccooooiiniiiiiiii 16-3

ARRAY Performance Extension Methods ... 16-3
Accessing oracle.sql. ARRAY Elements as Arrays of Java Primitive Types.........ccccccoeeeuce.. 16-4
ARRAY Automatic Element Bufferingccccccociiiiiiiiniiiiccceececeeeeeeeeeeeees 16-4
ARRAY Automatic INdeXingc.cueviuiiiiiiiiiici 16-4

Creating and USINg ATTaYscccooiiiiiiiiiiiii e 16-5
Creating ARRAY ODJECEScccuuuimiiiiiiieiiicieieicceieieiee ettt seeeees 16-5
Retrieving an Array and Its Elements...........ccooooiiiiiii 16-6

Retrieving the ATTaY ... 16-6

Data Retrieval Methods ... 16-6
Comparing the Data Retrieval Methods...........cccooiiiiiiii 16-7
Retrieving Elements of a Structured Object Array According to a Type Map 16-8
Retrieving a Subset of Array Elements..........c.cccccoeiiiiiiiiiiiiiiccececceeceeeeees 16-8
Retrieving Array Elements into an oracle.sql.Datum Arrayc.cococoeeieiiieieinincneinne, 16-9
Accessing Multilevel Collection Elementsccccooiiiiieiiiiiiccccci 16-10
Passing Arrays to Statement ODJectS.........cccococucuiuiiiiiiiiiiiiiececeeee e 16-11
Using a Type Map to Map Array Elements ..o 16-12
Custom Collection Classes With JPUDIiSherc.c.cccoiiiiiniininninnceeeeceeee 16-13

Result Set

OVIVIBW ...ttt b ettt et ne s 17-1
Result Set Functionality and Result Set Categories Supported in JDBC 2.0.........ccccoveeuneeee 17-1
Oracle JDBC Implementation Overview for Result Set Enhancements............cccccccovevivnnnnnn. 17-3

Creating Scrollable or Updatable Result Setscccccccoiiiiiiiiiiiiiiiccccccceenes 17-5
Specifying Result Set Scrollability and Updatabilityccccceceeirniiinnniiicrccceee 17-5
Result Set Limitations and Downgrade Rulesccoooiiiiiiiiiioiiiiie, 17-6

Positioning and Processing in Scrollable Result Sets..............ccccccoooiiiiiiiiiiiiiiiiciene, 17-8
Positioning in a Scrollable Result Setccccooviiiiiiiniiicircrreccrree s 17-8
Processing a Scrollable Result Set..........c.coovoiiiiiiiiii 17-10

Updating Result Setsccoviiiiiiiiiiii e 17-11
Performing a DELETE Operation in a Result Set.........cccccoovviiiininnniccccccccenes 17-11
Performing an UPDATE Operation in a Result Setccooooioiiiii, 17-12
Performing an INSERT Operation in a Result Set..........ccoooiiiiiiiiiiiiiiiiccccccnes 17-13
Avoiding Update CONFLCESc.cueuiiririririiiircrrr e 17-14

FetCh SQzZeoovoiiiiiii s 17-15
Setting the Fetch SIZe ... 17-15

Refetching ROWS.........ccooiiiiiiii e 17-16

Seeing Database Changes Made Internally and Externally...........cccccccoooiiiiiiiniiinnnnn, 17-16
Seeing Internal Changes..........cccccoiiiiiiiiiiiiiiiiii e 17-17

18

19

Seeing External Changes...........ccccuoiiiiiiii 17-17

Visibility versus Detection of External Changesc.cccocoovviiiiiiiiiiiiiiiccccnes 17-18
Summary of Visibility of Internal and External Changescccococevurvrvrrrnnnnnnnecnes 17-18
Oracle Implementation of Scroll-Sensitive Result Sets..........cccccceviiiiiiiiiiiiiin, 17-19
JDBC RowSets
OVEIVICW ...ttt ettt ettt ettt sttt ettt et h ettt e bt eb et et e e b e bt e e b et enesaeaenaenenaenens 18-1
ROWSet PTOPEIties......c.cuiviiiiiiiiictccc s 18-2
Events and EVent LISTENETrS.c.coeeirriiecininieiciniereciteeettntereeetsesserestessese st seene st sesnesenenes 18-3
Command Parameters and Command EXecution...........ccccccoviiiiniiciinniiinniccnes 18-4
Traversing ROWSELScoviiiiiiicctc s 18-4
CAChEAROWSE L ...ttt st saenen 18-6
JADCROWSEL ...ttt bbbttt s 18-9
WEDROWSE L.t 18-10
FAItET@AROWSEL ...ttt st sttt sae e ene e 18-12
JOINROWSEL ...ttt ettt b et ens 18-13
Globalization Support
Providing Globalization SUpport ... 19-1
NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5......................... 19-3
New Methods for National Character Set Type Data in JDK 1.6.........ccccccccovviviiiinniniinncninen. 19-4

PartV Performance and Scalability

20

21

Statement and Resultset Caching
About Statement Caching............cccccoooviiiiiiiiii s 20-1
Basics of Statement Cachingc.couiiiiiiiii 20-2
Implicit Statement Caching ..o 20-2
Explicit Statement Caching..........cccoceiiiiiiiiiiiiccceccceeee e 20-3
Using Statement Cachingcccccovviiiiiiiiiiiiiiicc s 20-3
Enabling and Disabling Statement Caching...........cccccceeuruiiviiniiininiiiiinincnncnenes 20-4
Closing a Cached Statementccccccuiiiiiiiiiiiiiceeeeeecee e 20-5
Using Implicit Statement Caching...........ccoouiiieiiiiiiii e 20-5
Using Explicit Statement Caching ..o 20-7
Reusing Statements Objects..............cccccooviiiiiniiiiiiiiii 20-8
Using a Pooled Statement ..o 20-8
Closing a Pooled Statementccccciiiiiiiiiiiiiiccee s 20-9
Resultset Caching ... 20-9
Server-side CaChe ..o 20-10
Client QUEry Cache........cccciiiiiiiiiiiii e 20-10
Implicit Connection Caching
The Implicit Connection Cache..............ccccoviiiiiiiiiiiniiiiiiii s 21-2
Using the Connection Cache.............c.ccocoiiiiiiiiiiii s 21-3

Turning Caching On ..o 21-3

xi

22

23

Xii

Opening a CoNNECHON.........ocuiiiiecieic e 21-4

Setting Connection Cache Name ..o 21-4
Setting Connection Cache Properties............cccocciiiiiiiiiiiicccceceeeeeeeeeee s 21-5
Closing A CONNECHON.........cciuiiiiiiiitcte ettt 21-5
Implicit Connection Cache Examplecooiiiiiiiiiic e 21-5
Connection AtIributes ... 21-6
Getting CONNECHIONSvvuiiieiiiiicicie bbb 21-7
Setting Connection Attributesooiiiiiiii 21-7
Checking Attributes of a Returned Connectioncccceeeeviviernrnnnnnnnnrrreeeeeceenes 21-8
Connection Attribute EXample ... 21-8
Connection Cache Properties ... 21-8
Limit PrOPerties.....cooiiiiiiiiiiiiiiiiiicici s 21-9
TIMEOUT PrOperties.......cccoviiiiiiiiiiiiiiiiiiiiiiiiiiiini s 21-10
Other PTOPertiescoouiiriiicee et 21-10
Connection Property EXample ... 21-11
Connection Cache Manager AP ... 21-12
AdVanced TOPICS.........covviiiiiiiiiiiiiii e 21-12
Attribute Weights And Connection Matching.........c.ccccoeeeiciiiiiiiiciieereeeeeeeaes 21-12
Connection Cache Callbackscceeviiiiiiiiiiiiiiiiiic e 21-13
Use Cases for TimeToLiveTimeout and AbandonedConnectionTimeoutc.cc.co.c....... 21-14

Run-Time Connection Load Balancing

OVEIVIBW ...ttt bbbttt et ne s 22-1
Run-Time Connection Load Balancing.............cccooiiiiniiiini 22-1
Enabling Run-Time Connection Load Balancing ..., 22-2

Performance Extensions

Update BatChingccccoooiiiiiiiiiiiiicc s 23-1
Overview of Update Batching Models...........c.coooiiiiiiii e, 23-2
Oracle Update BatChingcccciciiiiiiiiiiiciccccceeeceeeee e 23-3

Oracle Update Batching Characteristics and Limitations.........c.cccooeoceinieiicieiiinicenns 23-3
Setting the Connection Batch Value............ccoooi 23-4
Setting the Statement Batch Value..........ccccoooiiiiiiiiiiiiiiccceeeeeceees 23-4
Checking the Batch Value..........cooooiiiiii 23-5
Overriding the Batch Value ... 23-5
Committing the Changes in Oracle Batchingc.cccccccceiiiniiiiiniccrcceeeees 23-6
Update Counts in Oracle Batching...........coooeiiiiiiiiii 23-6
Error Reporting in Oracle Update Batching...........cccccceuviviiiniiiiniiiniiiicnninccces 23-8
Standard Update BatChing............cccocociuiiiiiiiiiiccecccce e 23-8
Limitations in the Oracle Implementation of Standard Batching.............ccccccconiiini 23-8
Adding Operations to the Batchcccccoeiiiiiiiiiiiiie 23-9
Processing the BatChccccciiiiiiiicr e 23-10
Committing the Changes in the Oracle Implementation of Standard Batching........... 23-10
Clearing the BatCh.........cccoociiiiiiiiiir e 23-10
Update Counts in the Oracle Implementation of Standard Batching............cccccccc.c.... 23-11
Error Handling in the Oracle Implementation of Standard Batching............ccccccccc....... 23-12
Intermixing Batched Statements and Non-Batched Statementscc.ccoooeeiiinnnnn 23-13

Premature BatCh FIUSIoooouviiieeeeeeeeeeeee et et 23-14

Additional Oracle Performance EXteNSIONScccoceeviiiieiiiiiieiecieieceeteeeete e e 23-15
Oracle Row-Prefetching Limitationsccocevueieiiiriiiiiiiicicccccccccccceceeeec e 23-15
Defining Colummn TYPESccccovvviiiiiiiiiiiiiiiiii s 23-16
DatabaseMetaData TABLE_ REMARKS Reporting.........ccccccevviviviiinnniiiinnncnns 23-19

24 OCI Connection Pooling

OCI Driver Connection Pooling: Background................cccccocoiiiiiiiinas 24-1
OCI Driver Connection Pooling and Shared Servers Comparedccccoevinniinnnnnnnne, 24-2
Defining an OCI Connection Pool................ccccoiiiiiiiiiii s 24-2
Connecting to an OCI Connection Pool..............cccooiiiiiiiia 24-6
Sample Code for OCI Connection POOLINGccccoeiiiiiiiininiiiiiiie 24-7
Statement Handling and Caching ..o 24-9
JNDI and the OCI Connection Poolcccocoviiiiininiiiniiicreereee e 24-10

25 Oracle Advanced Queuing

Functionality and Framework..............ccccocoviiiiiniiis 25-1
AQ Asynchronous Event Notification ..., 25-2
Creating IMESSAZES.ccviimiuiiiiiiiiicc sttt 25-10
Enqueting IMeSSAZEScooiiiiiiiiiiiiicc e 25-12
Dequeting MeSSAZES...........ccoiuiiiiiiiiiiiiiii e 25-13
Examples: Enqueuing and Dequeuing..............ccccccoiiniiiiiiiiiiiiniiiicccces 25-15

Part VI High Availability

26 Fast Connection Failover

Overview of Fast Connection Failover ... 26-1
Using Fast Connection Failover..............ccocoiiiiiiiis 26-2
Fast Connection Failover Prerequisites. ... 26-2
Configuring ONS For Fast Connection Failover ..o, 26-2
ONS Configuration File ... 26-2
Client-Side ONS Configurationcccccueucucueueueueieiiienieieeeeeeseee s 26-4
Server-Side ONS Configuration Using raCgOnscccoueueueiriiurieiniiinieeecie e 26-4
Remote ONS SUDSCIIPLIONc.cucuiuiiiiiiiiiiiiiiiicicc s 26-5
Enabling Fast Connection FailoVer ... 26-6
Querying Fast Connection Failover Status...........ooccueiiirieiiiiiicic 26-7
Understanding Fast Connection Failover.............cccocoviiiiinccs 26-7
What The AppPLiCAtion SEES...........coiiiiiiiiiiiiiceceeeee et seees 26-7
HOW It WOTKS .o s 26-7
Comparison of Fast Connection Failover and TAF..............ccccccoiiiiiiiiiiiiccceeas 26-8

27 Transparent Application Failover

OVETVIEW ...ttt b e bbb s n e e s st s saenea 27-1
Failover Type EVents...........ccccocooiiiiiiiiiiiii s 27-1
TAF CallDACKSc.oooiiiiiiiiiiiii s 27-2

xiii

Java TAF Callback INEEIFACEccoouiriiriiiiiiiieeeteeeeeet ettt s 27-2
Part VI Transaction Management

28 Distributed Transactions

OVEIVIEW ..ottt bbb a st b sttt a s s sttt b bttt s bt tetae 28-1
Distributed Transaction Components and SCenariosccccvvvviviiiiiniiiniinnniii 28-2
Distributed Transaction CONCEPLS ...t 28-2
Switching Between Global and Local Transactions...............ccooeeveiiiciiiiiinceiecccce, 28-4
Oracle XA PaCKagesc.c.oocueieiiiicicieccte ettt 28-5

XA COMPONEIIES ...ttt ettt s et ae e s s s n s nenennenn 28-5
XADatasource Interface and Oracle Implementation............cccoeeeiiiiiiiiiiiiiiic, 28-6
XAConnection Interface and Oracle Implementationcccoooiiiiiiiiciicccc, 28-6
XAResource Interface and Oracle Implementationccccccecceieiiinvnnnnnnccreene 28-7
OracleXAResource Method Functionality and Input Parameters.............cooooeveiiiiiieiennnen. 28-8
Xid Interface and Oracle Implementationccccooiiieioiiiiiiicc e 28-12

Error Handling and Optimizations...............cooiiiiiiiiiiiices 28-13
XAException Classes and Methods..........cccccovviiiniiiiiiiiii e 28-13
Mapping between Oracle Errors and XA EITOISccooeuoiirieiiiiicicieccc e 28-14
XA Error Handling........cceviiiiiinree et 28-14
Oracle XA OptimizZationscccceeuiviieiiiiiiiiiiiii e 28-15

Implementing a Distributed Transactionccccccooiiiiiiiii, 28-15
Summary of Imports for Oracle XA ..o 28-15
Oracle XA Code Sample........cccoviiiiiiiiiiiniiiiiii 28-15

Native-XA in Oracle JDBC DIIVerS.......ccccccvivriririeninieniierieienieenteienee ettt seesesiesessenens 28-20
OCTNAtIVE XA .o 28-20
Thin Native XA ... 28-21

Part VI Manageability

29 Database Management

Database Startup and Shutdown ... 29-1
Database Change Notification............c.ccccioiriiiiniiiiiicce e 29-4

30 Diagnosability in JDBC

LOGZING ..ottt s 30-1
Enabling and Using JDBC LOGZINGccccciiimiiiiiiiiieicccceeieieeere et nenenes 30-2
Configuring the CLASSPATH Environment Variable............cccooooiiiiiiis 30-2
Enabling LOGEINg........ccccciiiiiiiiiiiiiiiiciicec s 30-2
Configuring LOZGINEc.couiuimiiimiiiiiiiiicceeiceceieete ettt nees 30-3

USING LOZZOTS......oiiiiiiiiiieit bbb 30-5

AN EXAMPIE....oiiiiiiiiiiiiii s 30-6
Performance, Scalability, and Security ISSUES........c.cccccoeuruiiiiiiiriiiiiiccccccrecceeeeceees 30-7
Diagnosability Management.............cccocoeieiiiiiiiiiiiiiniiii s 30-8

Xiv

31

JDBC DMS Metrics
OVIVIBW ...ttt ettt et a et n s 31-1
Determining the Type of Metric to be Generated..................cccooiiiniini, 31-2
Generating the SQLText Metric ... 31-2
Accessing DMS Metrics Using JMX........ccoooiiiiiiiiiiccccc s 31-3

Part IX Appendixes

A

Reference Information

Valid SQL-JDBC Data Type Mappings..........cccccovuviiiiininiiiniiiiiiiiiinsssssssssssssssssssns A-1
Supported SQL and PL/SQL Data Types........ccccoeiiiiniiiiiiiiiiiiicccsnnns A-3
Embedded SQLI2 SYNtaXcccooiiiiiiiiiiiiiiiiiiict e A-6
Time and Date Literals ... A-7
Date Literals ... A-7
TimMe LItTalS ...ocuviiiiiiiiic A-7
Timestamp Literalsoooouiiiiiiii e A-8
Scalar FUNCHONS.cciuiiiiiiiicicccceccee ettt ees A-9
LIKE Escape Charactersc.cccoeiiiiiiiiiiiiiiiiiiiicciinicecsse s A-9
OULET JOIMIS ettt ettt ettt et e a ettt e sbe et e s bt et e s bt e st e bt et e sat et esbeeneesaeenbesaten A-10
FUNCHON Call SYNEaAX....c.c.iiiiiiiiiiiiiiieicccece e A-10
SQLI2 to SQL Syntax EXamplecccoeiiiiiiiiiiiiiiiiccicc s A-10
Oracle JDBC Notes and Limitations..........c.cocccveoirieoiniiiinenineninicinceienteeseeeseeeseeseseere e saenene A-11
CUTISOTINAIMNE.oeiiiiiit e s A-11
SQLI92 Outer Join ESCAPES.......ccouiviuiiiiiiiiiiiicicicicicieictee s A-11
PL/SQL TABLE, BOOLEAN, and RECORD TYPESccoceuviriiimniriiiiiiiiieesiccieeseenns A-11
IEEE 754 Floating Point COMPANCE.cccccuiuiuimiuiuiiiiiciiiciciceieieieiee e eseteeeeeeeeeeeeeeeeeeeeeseees A-12
Catalog Arguments to DatabaseMetaData Calls.........cccoooueviiiciiiiiiiiciic e, A-12
SQLWaAINING ClASSovviiieciieiieiitcie ettt st A-12
Binding Named Parametersccccccoiiiiiiiiiiiiiccccceecee e A-12
Coding Tips
JDBC and Multithreading ..o B-1
Performance OPtimiZationc..cccocoveiriiinieiinieiiniiircee ettt esr et ese e ne s B-1
Disabling Auto-Commit MOccccoiimiiiiiiiiiiiiie s B-1
Standard Fetch Size and Oracle Row Prefetching..........ccccoceiviiiiinnniiicccrceeeceenes B-2
Standard and Oracle Update Batchingcccooviiiiiiiiiii B-2
Statement Cachingcccccciuiiiiiiiiiiiii s B-3
Mapping Between Built-in SQL and Java TYPescccccoccecciiiiciiccicceecceeieceeeeeeeeeeees B-3
Transaction Isolation Levels and Access Modes ... B-4

JDBC Error Messages

General Structure of JDBC Error MeSSagesc.cccviiuiiiiiiiiiieiiiiiiiiieeiciene e C-1
General JDBC MESSAZEScovoveueuiiieieiiiieieieieirieietett ettt ettt s et ees C-1
JDBC Messages Sorted by ORA NUMDET ..o C-1
JDBC Messages Sorted in Alphabetic Order ..o, C-5

XV

Native XA MESSAZEScceuvviiiiiiiiiiiiiiieecs s C-9

Native XA Messages Sorted by ORA NUMDbETcccooriiiiiiiiiiicc C-9
Native XA Messages Sorted in Alphabetic Order...........ccccoceveiiiininiinnincrrreeeecee C-9
TTC MESSAZES ..ottt C-10
TTC Messages Sorted by ORA NUMDETcocoviiiiiiiii e C-10
TTC Messages Sorted in Alphabetic Order..........cccccoovvviiiirnniirrrccereeeeeeeeeeees C-11

D Troubleshooting

Common Problems............cooiicc e D-1
Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables............ D-1
Memory Leaks and Running Out of CUISOTS.........ccouoiiiiiieiiiccc e D-2
Boolean Parameters in PL/SQL Stored Procedures.........ccccooeeeeevieeeeeeeeeeceeeeeeeeereeeveereeeeeeveenens D-2
Opening More Than 16 OCI Connections for a Process...........ccccooirueieiiiicieininciciceee D-2
Using statement.Cancel............ooocuiiiic s D-3
Using JDBC With FIT@WaLlSccoiiiiiiiiiicccccccccceeee e D-3

Basic Debugging Procedures ... D-4
Oracle Net Tracing to Trap Network Events ..o D-4

Client-Side TIACINEG ..c.ccoeueuiuiieieieieicieicieeieie ettt eas D-4
TRACE_LEVEL_CLIENT ...cccooiiiiiiiiiiiis s D-4
TRACE_DIRECTORY_CLIENTcoooiiiiiiiiieiciiiisiice i D-5
TRACE_FILE_CLIENT ...ooviiiiiiiiiieinin s D-5
TRACE_UNIQUE_CLIENTcocoviiiiiiiiiniiiiicssssssessssnsssscnnens D-5

Server-5ide TIaCiNgooccueiiiicieiec e D-6
TRACE_LEVEL_SERVERccooiiiiiiiiiiiiiic s D-6
TRACE_DIRECTORY_SERVERccccooiiiiiiiiniiiiiiincnsnscnnens D-6
TRACE_FILE_SERVERcccceiiiiiiniiiiiiiiice e D-6

Third Party Debugging TOOLS ..o D-6
Index

XVi

xvii

List of Tables

xviii

Lé

11
w N

- = © © © 00 0
—_ - |
_L'I\)_L

—
P
N

171
181
201
20-2
20-3
231
261
281
28-2
291
29-2
29-3

Feature Differences Between JDBC OCI and JDBC Thin Drivers.....c..ccccocevevevieerncncneenne. 1-4
Feature LiSt......coiiieicc 1-5
Import Statements for JDBC DIIVET ... 2-8
Key Areas of JDBC 3.0 Functionality ..o 3-2
BLOB Method EQUIValentscccoovviiiiiiniiiiiiiiii s 3-5
CLOB Method Equivalents..........cccccviiiiiiniiiiiiiicccc s 3-6
Oracle Data Type CIassescccvuiuiiiiiiiiiiiiiiiiiiiciei s 4-5
Key Interfaces and Classes of the oracle.jdbc Package............ccccocovvviiiiniiinnnnninne. 4-19
PL/SQL Types and Corresponding JDBC Types.........cccocoeueueiirieieiiiinieiecce e, 4-29
Arguments of the setPlsqlindexTable Method............cccccovviiiiiiiiiiiie, 4-30
Arguments of the registerIndexTableOutParameter Method.............cccccccevvvnininnnnni. 4-31
Argument of the getPlsqlindexTable Method.ccouoiiiiiiiiiiiie, 4-32
Argument of the getOraclePlsqlindexTable Methodcccoooiiiiiiiiiniiiiiiins 4-33
Arguments of the getPlsqlindexTable Methodcccccoeiiiiiiiiiii, 4-33
OClI Instant Client Shared Libraries.........ccccoouiiiiiiiiiiiiiciciciiccecceeeee s 6-2
Data Shared Library for Instant Client and Instant Client Light (English)....................... 6-8
Standard Data Source Properties..........ccooovveieiiiiiiiiiiiiiiccs 8-3
Oracle Extended Data Source Properties............cccoooveiiiiiiiiiiiiiiiis 8-4
Supported Database SPecifiers ... 8-11
Client/Server Negotiations for Encryption or Integritycccoeeiiiiiiiiiiii 9-7
OCI Driver Client Parameters for Encryption and Integrityccoooonoiiiiiiniinn, 9-8
Thin Driver Client Parameters for Encryption and Integrity ..o, 9-8
Default Mappings Between SQL Types and Java Types........cccccccevvvviininnnninninne, 11-2
getObject and getOracleObject Return Types..........covieieiiicicieic 11-7
LONG and LONG RAW Data CONVETISIONSccccevvveviriiiiiiiiiriiiiiiiiiiniienseecenne 12-3
JPublisher SQL Type Categories, Supported Settings, and Defaultsc.ccccceueueene 13-33
Visibility of Internal and External Changes for Oracle JDBC...........cccocoviiiiiinnnnnnn. 17-19
The JDBC and Cached Row Sets Compared..........c.cccoeeiiiiniiieriiiiiiiniiiiiicne, 18-9
Comparing Methods Used in Statement Caching............ccooevoiirieiiiiiiiiii 20-3
Methods Used in Statement Allocation and Implicit Statement Caching....................... 20-7
Methods Used to Retrieve Explicitly Cached Statements............ccccceeviiviiiiiiiiinininnen. 20-8
Valid Column Type Specifications.........cceeviiiiiiiiiiiiiiiiiiiicicci e 23-19
ONSCtL COMMANGS.....cooviiiiiiiii e 26-4
Connection Mode Transitions...........cccveieiiiiiiiiii e 28-4
Oracle-XA Error Mapping ... 28-14
Supported Database Startup Optionscccceevvieiiiiiiiiiiiici, 29-2
Supported Database Shutdown Options...........cccccevviviiiiiini, 29-2
Database Change Notification Registration Options............cccccovvviiinnnnnnnnnnne, 29-6
Valid SQL Data Type-Java Class Mappingscccceeeeeieieieieieieieieieieeieeeeieeeeenennes A-1
Support for SQL Data TYPESccoveiiiiiiiiiiiiiiiiiiieceicee e A-3
Support for ANSI-92 SQL Data TYPeS.......cooviimiiiiiiiiiiiiciiciccictecteeeese e A-4
Support for SQL User-Defined Types........ccccveuiiiiiiiiiiiiiiciiicciciicce e A-4
Support for PL/SQL Data TYPes.......ccccciiiiiiiiiiiiciiiiciecieteeietee s A-5
Mapping of SQL Data Types to Java Classes that Represent SQL Data Types................ B-3

Audience

Preface

This preface introduces you to the Oracle Database JDBC Developer's Guide and Reference
discussing the intended audience, structure, and conventions of this document. A list
of related Oracle documents is also provided.

The Oracle Database [DBC Developer’s Guide and Reference is intended for developers of
Java Database Connectivity (JDBC)-based applications and applets. This book can be
read by anyone with an interest in JDBC programming, but assumes at least some
prior knowledge of the following;:

= Java
= PL/SQL

s Oracle databases

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Xix

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services

within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

The following books are also available from the Oracle Java Platform group:

XX

Oracle Database Java Developer’s Guide

This book introduces the basic concepts of Java and provides general information
about server-side configuration and functionality. Information that pertains to the
Oracle Java platform as a whole, rather than to a particular product (such as JDBC)
is in this book. This book also discusses Java stored procedures, which were
formerly discussed in a standalone book.

Oracle Database JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing JDBC
applications that use object types, VARRAY types, nested table types, or object
reference types, then JPublisher can generate custom Java classes to map to them.

The following OC4] documents, for Oracle Application Server releases, are also
available from the Oracle Java Platform group:

Oracle Application Server Containers for J2EE User’s Guide

This book provides some overview and general information for OC4]J; primer
chapters for servlets, JSP pages, and E]Bs; and general configuration and
deployment instructions.

Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

This book provides information for JSP developers who want to run their pages in
OC4]. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps for
getting started in the OC4] environment.

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
ocC4].

Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4]J configuration
files.

Oracle Application Server Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4]J,
such as JTA, JND], and the Oracle Application Server Java Object Cache.

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book provides information about the EJB implementation and EJB container
in OC4].

The following documents are from the Oracle Server Technologies group:

» Oracle Database Advanced Application Developer’s Guide
» Oracle Database PL/SQL Packages and Types Reference

» Oracle Database PL/SQL Language Reference

» Oracle Database SQL Language Reference

» Oracle Database Net Services Administrator's Guide

» Oracle Database Advanced Security Administrator’s Guide
» Oracle Database Reference

» Oracle Database Error Messages

The following documents from the Oracle Application Server group may also be of
some interest:

» Oracle Application Server 10g Administrator’s Guide

» Oracle Fusion Middleware Administrator’s Guide for Oracle HTTP Server

» Oracle Application Server 10g Performance Guide

» Oracle Application Server 10g Globalization Guide

» Oracle Application Server Web Cache Administrator’s Guide

» Oracle Application Server 10g Upgrading to 10g (9.0.4)

The following are available from the JDeveloper group:

s Oracle JDeveloper online help

= Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Printed documentation is available for sale in the Oracle Store at:
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

The following resources are available from Sun Microsystems:

s Web site for Java Platform, Standard Edition (Java SE):
http://java.sun.com/javase/technologies/core. jsp

= Web site for JDBC, including the latest specifications:
http://java.sun.com/javase/technologies/database.jsp

s Jjdbc-interest discussion group for JDBC

To subscribe, send an e-mail to 1istserv@java. sun.com with the following
line in the body of the message:

subscribe jdbc-interest yourlastname yourfirstname

XXi

We recommend that you request only the daily digest of the posted e-mails. To do

this add the following line to the message body as well:

set jdbc-interest digest

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. The following table describes those conventions and provides

examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, user names
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name, and

location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization

parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

XXii

What’s New

The changes in Oracle Database 11g Release 1 (11.1) can be divided into the following
categories:

s New Features for Release 1 (11.1)
s Desupported Features

s Interface Changes

New Features for Release 1 (11.1)

In this release, Oracle JDBC drivers support the following new features:

JDK 1.5 and 1.6 Support

The Oracle JDBC Thin and OCI drivers have been enhanced to provide support for
JDK 1.5 and 1.6. The server-side JDBC drivers provide support for only JDK 1.5.

JDBC 4.0 Support

Oracle JDBC drivers provide support for most of the JDBC 4.0 standard features. Refer
to "Support for JDBC 4.0 Standard" on page 3-6 for more information about the JDBC
4.0 standard features

ANYTYPE and ANYDATA

This release of Oracle JDBC drivers provides a Java interface to access SYS.ANYTYPE
and SYS.ANYDATA Oracle types. For more information refer "Oracle SYS.ANYTYPE
and SYS.ANYDATA Types" Types on page 4-16.

Oracle Advanced Security

Oracle Advanced Security provides confidentiality, integrity, and availability features.
This release of Oracle JDBC drivers have been enhanced to support all the features of
Oracle Advanced Security. This feature is covered in Chapter 9, "JDBC Client-Side
Security Features".

Oracle SecureFiles

Java/JDBC applications get richer SecureFiles LOB data manipulation API and
performance enhancements such as versioning, sliding inserts, sliding delete, fragment
move, in-place data replacement, compression, encryption, sharing, and client-side
read. This feature is covered in "Oracle SecureFiles" on page 14-19.

xXiii

Native Streams AQ Protocol

This release of Oracle JDBC drivers provides a Java interface to Oracle Streams
Advanced Queuing (AQ). This feature is covered in Chapter 25, "Oracle Advanced
Queuing".

Database Startup and Shutdown

Starting from this release, you can start up and shut down an Oracle Database instance
from your JDBC application in the same way as you would from SQL*Plus. This
feature is covered in "Database Startup and Shutdown" on page 29-1.

Database Diagnosability

In this release the JDBC drivers have been enhanced by including new diagnosabilty
features and improving existing diagnosabilty features. These features enable users to
diagnose problems in the applications that use Oracle JDBC drivers and the problems
in the drivers themselves. This feature is covered in detail in Chapter 30,
"Diagnosability in JDBC".

Database Change Notification

This release Oracle JDBC drivers provide support for the Database Change
Notification feature of Oracle Database. Using this functionality of the JDBC drivers,
multi-tier systems can take advantage of the Database Change Notification feature to
maintain a data cache as updated as possible by receiving invalidation events from the
JDBC drivers. This feature is covered in detail in "Database Change Notification" on
page 29-4.

New JDBC DMS Metrics with JMX Support

The Dynamic Monitoring Service (DMS) metrics generated in Oracle JDBC 11.1 release are
different from 10.2, 10.1, 9.2, and earlier versions of Oracle JDBC as it makes no
attempt to retain compatibility with earlier versions. For more information refer
"Accessing DMS Metrics Using JMX" on page 31-3.

RowSets in the server

Starting from this release, RowSets are also supported in the server-side drivers, in
addition to the Thin and OCI drivers. For more information refer "Overview" on
page 18-1.

Desupported Features

From this release onwards, Oracle JDBC drivers will not support JDK versions earlier
than 1.5.

Interface Changes

XXiv

In this release, the oracle. jdbc.OracleConnection interface has been enhanced.
For better visibility and clarity, all connection properties are defined as constants in
this interface.

The oracle. jdbc.driver package, which was deprecated in Oracle Database
release 9.0.1, is desupported in this release. Code having references to this package will
not compile and run. You can use oracle. jdbc package instead of this package.

Part |

Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC)
and provide an overview of the Oracle implementation of JDBC. This part provides
basic information about installation and configuration of the Oracle client with
reference to JDBC drivers. This part also covers the basic steps in creating and running
any JDBC application.

Part I contains the following chapters:
s Chapter 1, "Introducing JDBC"
» Chapter 2, "Getting Started"

1

Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for
connecting from Java to relational databases. The JDBC standard is defined by Sun
Microsystems and implemented through the standard java.sqgl interfaces. This
allows individual providers to implement and extend the standard with their own
JDBC drivers. JDBC is based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0
complies with the SQL 2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the
following topics:

s Overview of Oracle JDBC Drivers
» Environments and Support

s Feature List

Overview of Oracle JDBC Drivers

In addition to supporting the standard JDBC application programming interfaces
(APIs), Oracle drivers have extensions to support Oracle-specific data types and to
enhance performance.

Oracle provides the following JDBC drivers:
s Thin driver

It is a pure Java driver used on the client-side, without an Oracle client installation.
It can be used with both applets and applications.

» Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only
with applications.

s Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code
that runs on the database server and needs to access another session either on the
same server or on a remote server on any tier.

s Server-side internal driver

It is used for code that runs on the database server and accesses the same session.
That is, the code runs and accesses data from a single Oracle session.

Figure 1-1 illustrates the architecture of Oracle JDBC drivers and Oracle Database.

Introducing JDBC 1-1

Overview of Oracle JDBC Drivers

Figure 1-1 Architecture of Oracle JDBC Drivers and Oracle Database

Oracle Database

JDBC Thin Driver Java Engine

Java Sockets Server-Side Thin Driver

JDBC Server-Side
JDBC OCI Driver SOL Engine Internal Driver

OCI C Library PL/SQL Engine i
—L{ KPRBCLibrary |

~____

Oracle Database

This section covers the following topics:

s Common Features of Oracle JDBC Drivers

s Choosing the Appropriate Driver

» Feature Differences Between JDBC OCI and Thin Drivers

Common Features of Oracle JDBC Drivers

The server-side and client-side Oracle JDBC drivers provide the same basic
functionality.

The JDBC Thin and OCI drivers support Java Development Kit (JDK) 1.5 and 1.6. The
server-side internal drivers support only JDK 1.5. All the JDBC drivers support the
following standards and features:

= Same syntax and APIs
= Same Oracle extensions
= Full support for multithreaded applications

Oracle JDBC drivers implement the standard java.sgl interfaces. You can access the
Oracle-specific features, in addition to the standard features, by using the
oracle. jdbc package.

JDBC Thin Driver

The JDBC Thin driver is a pure Java, Type IV driver that can be used in applications
and applets. It is platform-independent and does not require any additional Oracle
software on the client-side. The JDBC Thin driver communicates with the server using
SQL*Net to access Oracle Database.

1-2 Oracle Database JDBC Developer's Guide and Reference

Overview of Oracle JDBC Drivers

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of SQL*Net on top of Java sockets. The driver supports the TCP/IP
protocol and requires a TNS listener on the TCP/IP sockets on the database server.

See Also: Chapter 5, "Features Specific to JDBC Thin"

JDBC OCI Driver

The JDBC OCI driver is a Type II driver used with Java applications. It requires an
Oracle client installation and, therefore, is Oracle platform-specific. It supports all
installed Oracle Net adapters, including interprocess communication (IPC), named

pipes, TCP/IP, and Internetwork Packet Exchange /Sequenced Packet Exchange
(IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC
invocations to calls to OCI, using native methods to call C-entry points. These calls
communicate with the database using SQL*Net.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core libraries,
and other necessary files on the client computer where it is installed.

OCl is an API that enables you to create applications that use the native procedures or
function calls of a third-generation language to access Oracle Database and control all
phases of the SQL statement processing.

See Also: Chapter 6, "Features Specific to JDBC OCI Driver"

JDBC Server-Side Thin Driver

The JDBC server-side Thin driver offers the same functionality as the JDBC Thin driver
that runs on the client-side. However, the JDBC server-side Thin driver runs inside
Oracle Database and accesses a remote database or a different session on the same
database.

This driver is useful in the following scenarios:

= Accessing a remote database server from an Oracle Database instance acting as a
middle tier

= Accessing an Oracle Database session from inside another, such as from a Java
stored procedure

The use of JDBC Thin driver from a client application or from inside a server does not
affect the code.

See Also: Chapter 5, "Features Specific to JDBC Thin"

JDBC Server-Side Internal Driver

The JDBC server-side internal driver supports any Java code that runs inside Oracle
Database, such as in a Java stored procedure, and must access the same database. It
lets the Java Virtual Machine (JVM) to communicate directly with the SQL engine. This
driver supports only JDK 1.5.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL
engine all run within the same address space, and therefore, the issue of network
round-trips is irrelevant. The programs access the SQL engine by using function calls.

Note: The server-side internal driver does not support the
cancel and setQueryTimeout methods of the Statement class.

Introducing JDBC 1-3

Environments and Support

The JDBC server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions.

See Also: Chapter 7, "Server-Side Internal Driver"

Choosing the Appropriate Driver

Consider the following when choosing a JDBC driver for your application or applet:

In general, unless you need OCl-specific features, such as support for non-TCP/IP
networks, use the JDBC Thin driver.

If you want maximum portability and performance, then use the JDBC Thin
driver. You can connect to Oracle Database from either an application or an applet
using the JDBC Thin driver.

If you want to use Lightweight Directory Access Protocol (LDAP) over Secure
Sockets Layer (SSL), then use the JDBC Thin driver.

If you are writing a client application for an Oracle client environment and need
OCl-driver-specific features, such as support for non-TCP/IP networks, then use
the JDBC OCI driver.

If you are writing an applet, then you must use the JDBC Thin driver.

For code that runs in the database server and needs to access a remote database or
another session within the same database instance, use the JDBC server-side Thin
driver.

If your code runs inside the database server and needs to access data locally
within the session, then use the JDBC server-side internal driver to access that
server.

Feature Differences Between JDBC OCI and Thin Drivers

Table 1-1 lists the features that are specific either to the JDBC OCI or JDBC Thin driver
in Oracle Database 11g Release 1 (11.1).

Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

JDBC OCI Driver JDBC Thin Driver

OCI connection pooling Default support for Native XA

Transparent Application Failover (TAF)

Note:

s The OCI optimized fetch and client-side object cache features are
internal to the JDBC OCI driver and are not applicable to the
JDBC Thin driver.

s Most JDBC OCI driver features are not available in the JDBC Thin
driver because they are inherited from OCL

Environments and Support

This section provides a brief discussion of the following topics:

Supported JDK and JDBC Versions

1-4 Oracle Database JDBC Developer's Guide and Reference

Feature List

s JNI and Java Environments

= JDBC and IDEs

Supported JDK and JDBC Versions

In Oracle Database 11g Release 1 (11.1), all the JDBC drivers are compatible with JDK
1.5. The JDBC Thin and OCI drivers also support JDK 1.6. All versions of JDK earlier
than 1.5 are no longer supported. Support for JDK 1.5 and 1.6 is provided through the
ojdbc5. jar and ojdbcé . jar files, respectively.

See Also: "Version Compatibility for Oracle JDBC Drivers" on
page 2-1

JNI and Java Environments

The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C
libraries. You can use the JDBC OCI driver with JVMs other than that of Sun
Microsystems, in particular, with Microsoft and IBM JVMs.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for the
Internet. The Oracle JDeveloper environment contains integrated support for JDBC,
including the JDBC Thin driver and the native OCI driver. The database component of
Oracle JDeveloper uses the JDBC drivers to manage the connection between the
application running on the client and the server.

Feature List

Table 1-2 lists the features and the versions in which they were first supported for
each of the three Oracle JDBC drivers: server-side internal driver, JDBC OCI driver,
and JDBC Thin driver.

Table 1-2 Feature List

Server-Side
Feature Internal JDBC OCI JDBC Thin
JDK 1.0 722 722
JDBC 1.0.2 722 722
JDK 1.1.1 8.0.6 8.0.6
JDBC 1.22 (No new features; just minor revisions) 8.0.6 8.0.6
defineColumnType 8.0.6 8.0.6
Row Prefetch 8.0.6 8.0.6
Oracle Batching 8.0.6 8.0.6
Java Native Interface 8.1.6
JDK 1.2 9.0.1 8.1.6 8.1.6
JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct, 8.1.5 8.15 8.1.5
Array, REF)
Native LOB 8.1.6 9.2.0
Index-by Tables 10.2.0 8.1.6 10.1.0

Introducing JDBC 1-5

Feature List

Table 1-2 (Cont.) Feature List

Server-Side
Feature Internal JDBC OCI JDBC Thin
JDBC 2.0 Scrollable ResultSets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Updatable ResultSets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Standard Batching 8.1.6 8.1.6 8.1.6
JDBC 2.0 Connection Pooling NA 8.1.6 8.1.6
JDBC 2.0 XA 8.1.6 8.1.6 8.1.6
Server-side Thin driver 8.1.6 NA NA
JDBC 2.0 RowSets 9.0.1 9.0.1
Implicit Statement Caching 8.1.7 8.1.7 8.1.7
Explicit Statement Caching 8.1.7 8.1.7 8.1.7
Temporary LOBs 9.0.1 9.0.1 9.0.1
Object Type Inheritance 9.0.1 9.0.1 9.0.1
Multilevel Collections 9.0.1 9.0.1 9.0.1
oracle.jdbc Interfaces 9.0.1 9.0.1 9.0.1
Native XA 9.0.1 10.1.0
OCI Connection Pooling NA 9.0.1 NA
TAF NA 9.0.1 NA
NLS Support 9.0.1 9.0.1 9.0.1
JDK 1.3 9.2.0 9.2.0 9.2.0
JDK 1.4 10.1.0 9.2.0 9.2.0
JDBC 3.0 Savepoints 9.2.0 9.2.0 9.2.0
New Statement Caching API 9.2.0 9.2.0 9.2.0
ConnectionCacheImpl connection cache NA 8.1.7 8.1.7
Implicit Connection Cache NA 10.1.0 10.1.0
Fast Connection Failover 10.1.0.3 10.1.0.3
Connection Wrapping 9.2.0 9.2.0
DMS 9.2.0 9.2.0
Service Names in URLs 9.2.0 10.2.0
JDBC 3.0 Connection Pooling Properties NA 10.1.0 10.1.0
JDBC 3.0 Updatable BLOB, CLOB, REF 10.1.0 10.1.0 10.1.0
JDBC 3.0 Multiple Open ResultSets 10.2.0 10.2.0 10.2.0
JDBC 3.0 Parameter Metadata 10.1.0 10.1.0 10.1.0
JDBC 3.0 Set/Get Stored Procedures Parameters 10.1.0 10.1.0 10.1.0
by Name
JDBC 3.0 Statement Pooling 10.1.0 10.1.0 10.1.0
Set Statement Parameters by Name 10.1.0 10.1.0 10.1.0
End-to-End Tracing 10.1.0 10.1.0
Web RowSet 10.1.0 10.1.0

1-6 Oracle Database JDBC Developer's Guide and Reference

Feature List

Table 1-2 (Cont.) Feature List

Server-Side
Feature Internal JDBC OCI JDBC Thin
Proxy Authentication 10.2.0 10.1.0
JDBC 3.0 Auto Generated Keys 10.2.0 10.2.0
JDBC 3.0 Holdable Cursors 10.2.0 10.2.0 10.2.0
JDBC 3.0 Local/Global Transaction Switching 9.2.0 9.2.0 9.2.0
Run-time Connection Load Balancing NA 10.2.0 10.2.0
Extended setxxX and getXxxx for LOBs 10.2.0 10.2.0
XA Connection Cache NA 10.2.0 10.2.0
DML Returning 10.2.0 10.2.0
JSR 114 RowSets 10.2.0 10.2.0
SSL Encryption 9.2.0 10.2.0
SSL Authentication 9.2.0
Radius Authentication 10.2.0
JDK 1.5 10.2 10.2 10.2
JDK 1.6 11.1 11.1
JDBC 4.0 11.1 11.1 11.1
Database startup and shutdown NA 111 1.1
Java interface to Streams AQ 11.1

Note:

s In the table, NA means that the feature is not applicable for the
corresponding Oracle JDBC driver.

s The ConnectionCacheImpl connection cache feature is
deprecated in Oracle Database 10g. Implicit Connection Cache
replaces this in Oracle Database 10g.

Introducing JDBC 1-7

Feature List

1-8 Oracle Database JDBC Developer's Guide and Reference

2

Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC)
driver versions, database versions, and Java Development Kit (JDK) versions. It also
describes the basics of testing a client installation and configuration and running a
simple application. This chapter contains the following sections:

= Version Compatibility for Oracle JDBC Drivers

» Verification of a JDBC Client Installation

= Basic Steps in JDBC

= Sample: Connecting, Querying, and Processing the Results
= Stored Procedure Calls in JDBC Programs

s Processing SQL Exceptions

Version Compatibility for Oracle JDBC Drivers

This section discusses the general JDBC version compatibility issues.

Backward Compatibility

The JDBC drivers are certified to work with the currently supported versions of Oracle
Database. For example, the JDBC Thin drivers in Oracle Database 11g Release 1 (11.1)
are certified to work with the 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x Oracle Database releases.
However, they are not certified to work with older, unsupported database releases,
such as 8.0.x and 7.x.

Forward Compatibility

Existing and supported JDBC drivers are certified to work with Oracle Database 11g
Release 1 (11.1).

Note:

s In Oracle Database 11g Release 1 (11.1), Oracle JDBC drivers no
longer support JDK 1.4.x or earlier versions.

= You can find a complete, up-to-date list of supported databases
at
http://www.oracle.com/technology/tech/java/sqglj
_jdbc/htdocs/jdbe_faqg.htm.

Getting Started 2-1

Verification of a JDBC Client Installation

Verification of a JDBC Client Installation
To verify a JDBC client installation, you must do all of the following:
» Check the Installed Directories and Files
» Check the Environment Variables
= Ensure that the Java Code Can Be Compiled and Run
s Determine the Version of the JDBC Driver
s Test JDBC and the Database Connection

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific documentation.

This section describes the steps for verifying an Oracle client installation of the JDBC
drivers, assuming that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, then no further installation on the client
computer is necessary.

Note: The JDBC Thin driver requires a TCP/IP listener to be running
on the computer where the database is installed.

If you have installed the JDBC Oracle Call Interface (OCI) driver, then you must also
install the Oracle client software. This includes Oracle Net and the OCI libraries.

Check the Installed Directories and Files

Installing the Oracle Java products creates, among other things, the following
directories:

= ORACLE_HOME/jdbc
= ORACLE_HOME /jlib

Check whether or not the following directories and files have been created and
populated in the ORACLE_HOME/ jdbc directory:

s demo

This directory contains a compressed file, demo . zip or demo. tar. When you
uncompress this compressed file, the samples directory and the
Samples-Readme. txt file are created. The samples directory contains sample
programs, including examples of how to use SQL92 and Oracle SQL syntax,
PL/SQL blocks, streams, user-defined types, additional Oracle type extensions,
and Oracle performance extensions.

s doc

This directory contains the javadoc. zip file, which is the Oracle JDBC
application programming interface (API) documentation.

n 1lib
The 1ib directory contains the following required Java classes:
— orail8n.jar and orail8n-mapping.jar
Contain classes for globalization and multibyte character sets support

— ojdbch.jar,o0jdbc5_g.jar, ojdbc6.jar,and ojdbc6_g.jar

2-2 Oracle Database JDBC Developer's Guide and Reference

Verification of a JDBC Client Installation

Contain the JDBC driver classes for use with JDK 1.5 and JDK 1.6

Note:

s In Oracle Database 11g Release 1 (11.1), support for a version of
JDK earlier than version 1.5 has been removed. Also, the
ojdbcld. jar and classesl2. jar files are no longer shipped.
Instead, you can use the ojdbc5. jar and ojdbc6 . jar files,
which are shipped with Oracle Database 11g.

s If you are using JSE 6 and later, then there is 10 need to explicitly
load the JDBC driver. This means that the Java run-time loads the
driver when needed and you need not include
Class.forName ("oracle.jdbc.OracleDriver") or new
oracle.jdbc.OracleDriver () in your code. Butif you are
using J2SE 5, then you need to load the JDBC driver explicitly.

m Readme. txt

This file contains late-breaking and release-specific information about the drivers,
which may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the
ORACLE_HOME /j1ib directory:

m Jjta.jarand jndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java Naming
and Directory Interface (JNDI). These are required only if you are using JTA
features for distributed transaction management or JNDI features for naming
services.

Note: These files can also be obtained from the Sun Microsystems
Web site. However, it is recommended that you use the versions
supplied by Oracle, which have been tested with the Oracle drivers.

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Solaris, Linux, and Microsoft
Windows platforms.

You must set the CLASSPATH environment variable for your installed JDBC OCI or
Thin driver. Include the following in the CLASSPATH environment variable:

ORACLE_HOME/jdbc/1lib/ojdbc5. jar
ORACLE_HOME/jlib/orail8n.jar

Note: If you use the JTA features and the JNDI features, then you
must specify jta.jar and jndi. jar in your CLASSPATH
environment variable.

Getting Started 2-3

Verification of a JDBC Client Installation

JDBC OCI Driver

If you are installing the JDBC OCI driver, then you must also set the following value
for the library path environment variable:

s On Sun Solaris or Linux, set the LD_LIBRARY_PATH environment variable as
follows:

ORACLE_HOME/1ib

This directory contains the 1ibocijdbcll . so shared object library.

Note: If you are running a 32-bit Java Virtual Machine (JVM)
against a 64-bit client or database, then you must also add
ORACLE_HOME/1ib32 to the LD_LIBRARY PATH environment
variable.

s On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\bin

This directory contains the ocijdbc11.d11 dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by
including the JDBC OCI Instant Client data shared library on the library path
environment variable.

See Also: Chapter 6, "Features Specific to JDBC OCI Driver"

JDBC Thin Driver

If you are installing the JDBC Thin driver, then you do not have to set any other
environment variables. However, to use the JDBC server-side Thin driver, you need to
set permission.

Setting Permission for the Server-Side Thin Driver

The JDBC server-side Thin driver opens a socket for its connection to the database.
Because Oracle Database enforces the Java security model, a check is performed for a
SocketPermission object.

To use the JDBC server-side Thin driver, the connecting user must be granted the
appropriate permission. The following is an example of how the permission can be
granted for the user SCOTT:

CREATE ROLE jdbcthin;

CALL dbms_java.grant_permission('JDBCTHIN', 'java.net.SocketPermission', '*',
'connect');

GRANT jdbcthin TO SCOTT;

Note that JDBCTHIN in the grant_permission call must be in uppercase. The
asterisk (*) is a pattern. You can restrict the user by granting permission to connect to
only specific computers or ports.

See Also: Oracle Database Java Developer’s Guide
Ensure that the Java Code Can Be Compiled and Run

To further ensure that Java is set up properly on your client system, go to the samples
directory under the ORACLE_HOME/jdbc/demo directory. Now, type the following

2-4 Oracle Database JDBC Developer's Guide and Reference

Verification of a JDBC Client Installation

commands on the command line, one after the other, to see if the Java compiler and
the Java interpreter run without error. :

javac
java

Each of the preceding commands should display a list of options and parameters and
then exit. Ideally, verify that you can compile and run a simple test program, such as
jdbc/demo/samples/generic/SelectExample.

Determine the Version of the JDBC Driver

You can determine the version of the JDBC driver that you installed, by calling the
getDriverVersion method of the OracleDatabaseMetaData class.

The following sample code shows how to determine the driver version:

import java.sqgl.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

class JDBCVersion
{
public static void main (String args[]) throws SQLException
{
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:scott/tiger@host:port:service");
Connection conn = ods.getConnection();

// Create Oracle DatabaseMetaData object
DatabaseMetaData meta = conn.getMetaDatal();

// gets driver info:
System.out.println("JDBC driver version is " + meta.getDriverVersion());
}
}

You can also determine the version of the JDBC driver by executing the following
commands:

m Jjava -jar ojdbc5.jar

m Jjava -jar ojdbcé6.jar

Test JDBC and the Database Connection

The samples directory contains sample programs for a particular Oracle JDBC driver.
One of the programs, JdbcCheckup . java, is designed to test JDBC and the database
connection. The program queries for the user name, password, and the name of the
database to which you want to connect. The program connects to the database, queries
for the string "Hello World", and prints it to the screen.

Go to the samples directory, and compile and run the JdbcCheckup . java program.
If the results of the query print without error, then your Java and JDBC installations
are correct.

Although JdbcCheckup. java is a simple program, it demonstrates several
important functions by performing the following;:

= Imports the necessary Java classes, including JDBC classes

Getting Started 2-5

Verification of a JDBC Client Installation

s Creates a DataSource instance

s Connects to the database

= Runs a simple query

= Prints the query results to your screen

The JdbcCheckup . java program, which uses the JDBC OCI driver, is as follows:

/*

* This sample can be used to check the JDBC installation.

* Just run it and provide the connect information. It will select
* "Hello World" from the database.

*/

// You need to import the java.sgl and JDBC packages to use JDBC
import java.sql.*;

import oracle.jdbc.*;

import oracle.jdbc.pool.OracleDataSource;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
public static void main(String args[]) throws SQLException, IOException

{

// Prompt the user for connect information

System.out.println("Please enter information to test connection to
the database");

String user;

String password;

String database;

user = readEntry("user: ");
int slash_index = user.indexOf('/');
if (slash_index !'= -1)
{
password = user.substring(slash_index + 1);
user = user.substring(0, slash_index);
}
else
password = readEntry("password: ");
database = readEntry("database(a TNSNAME entry): ");

System.out.print ("Connecting to the database...");
System.out.flush();
System.out.println("Connecting...");

// Open an OracleDataSource and get a connection
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@" + database);
ods.setUser (user) ;

ods.setPassword (password) ;

Connection conn = ods.getConnection();
System.out.println("connected.");

// Create a statement
Statement stmt = conn.createStatement();

// Do the SQL "Hello World" thing

2-6 Oracle Database JDBC Developer's Guide and Reference

Basic Steps in JDBC

ResultSet rset = stmt.executeQuery("select 'Hello World' from dual");

while (rset.next())
System.out.println(rset.getString(1));

// close the result set, the statement and connect

rset.close();

stmt.close() ;

conn.close();

System.out.println("Your JDBC installation is correct.");

}

// Utility function to read a line from standard input
static String readEntry(String prompt)
{
try
{
StringBuffer buffer = new StringBuffer();
System.out.print (prompt) ;
System.out.flush();
int ¢ = System.in.read();
while (¢ != '\n' && c != -1)
{
buffer.append((char)c);
c = System.in.read();
}
return buffer.toString().trim();
}
catch (IOException e)

{

return "";

Basic Steps in JDBC

After verifying the JDBC client installation, you can start creating your JDBC
applications. When using Oracle JDBC drivers, you must include certain
driver-specific information in your programs. This section describes, in the form of a
tutorial, where and how to add the information. The tutorial guides you through the
steps to create code that connects to and queries a database from the client.

You must write code to perform the following tasks:

1. Importing Packages

Opening a Connection to a Database

Creating a Statement Object

Running a Query and Retrieving a ResultSet Object
Processing the ResultSet Object

Closing the ResultSet and Statement Objects
Making Changes to the Database

Committing Changes

© ® N o o » w N

Closing the Connection

Getting Started 2-7

Basic Steps in JDBC

Note: You must supply Oracle driver-specific information for the
first three tasks, which allow your program to use the JDBC
application programming interface (API) to access a database. For the
other tasks, you can use standard JDBC Java code, as you would for
any Java application.

Importing Packages

Regardless of which Oracle JDBC driver you use, include the import statements
shown in Table 2-1 at the beginning of your program.

Table 2-1 Import Statements for JDBC Driver

Import statement Provides
import java.sqgl.*; Standard JDBC packages.
import java.math.*; The BighDecimal and BigInteger classes. You can

omit this package if you are not going to use these
classes in your application.

import oracle.jdbc.*; Oracle extensions to JDBC. This is optional.
import oracle.jdbc.pool.*; OracleDataSource.
import oracle.sqgl.*; Oracle type extensions. This is optional.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Note: It is better to import only the classes your application needs,
rather than using the wildcard asterisk (*). This guide uses the
asterisk (*) for simplicity, but this is not the recommended way of
importing classes and interfaces.

Opening a Connection to a Database

First, you must create an OracleDataSource instance. Then, open a connection to
the database using the OracleDataSource.getConnection method. The
properties of the retrieved connection are derived from the OracleDataSource
instance. If you set the URL connection property, then all other properties, including
TNSEntryName, DatabaseName, ServiceName, ServerName, PortNumber,
Network Protocol,and driver type are ignored.

Specifying a Database URL, User Name, and Password

The following code sets the URL, user name, and password for a data source:
OracleDataSource ods = new OracleDataSource();

ods.setURL (url) ;

ods.setUser (user) ;
ods.setPassword (password) ;

The following example connects user scott with password tiger to a database with
service orcl through port 1521 of the host myhost, using the JDBC Thin driver:

OracleDataSource ods = new OracleDataSource() ;
String url = "jdbc:oracle:thin:@//myhost:1521/orcl",

2-8 Oracle Database JDBC Developer's Guide and Reference

Basic Steps in JDBC

ods.setURL (url) ;

ods.setUser ("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();

Note: The user name and password specified in the arguments
override any user name and password specified in the URL.

Specifying a Database URL that Includes User Name and Password

The following example connects user scott with password tiger to a database host
whose Transparent Network Substrate (TNS) entry is myTNSEntry, using the JDBC
Oracle Call Interface (OCI) driver. In this case, the URL includes the user name and
password and is the only input parameter.

String url = "jdbc:oracle:oci:scott/tiger@myTNSEntry") ;
ods.setURL(url) ;
Connection conn = ods.getConnection();

If you want to connect using the Thin driver, then you must specify the port number.
For example, if you want to connect to the database on the host myhost that has a
TCP/IP listener on port 1521 and the service identifier is orc1, then provide the
following code:

String URL = "jdbc:oracle:thin:scott/tiger@//myhost:1521/orcl");
ods.setURL (URL) ;
Connection conn = ods.getConnection();

See Also: Chapter 8, "Data Sources and URLs"

Creating a Statement Object

Once you connect to the database and, in the process, create a Connection object, the
next step is to create a Statement object. The createStatement method of the
JDBC Connection object returns an object of the JDBC Statement type. To continue
the example from the previous section, where the Connection object conn was
created, here is an example of how to create the Statement object:

Statement stmt = conn.createStatement();

Running a Query and Retrieving a ResultSet Object

To query the database, use the executeQuery method of the Statement object. This
method takes a SQL statement as input and returns a JDBC ResultSet object.

Getting Started 2-9

Basic Steps in JDBC

Note:

= The method used to execute a Statement object depends on the
type of SQL statement being executed. If the Statement object
represents a SQL query returning a ResultSet object, the
executeQuery method should be used. If the SQL is known to
be a DDL statement or a DML statement returning an update
count, the executeUpdate method should be used. If the type of
the SQL statement is not known, the execute method should be
used.

= Incase of a standard JDBC driver, if the SQL string being executed
does not return a ResultSet object, then the executeQuery
method throws a SQLException exception. In case of an Oracle
JDBC driver, the executeQuery method does not throw a
SQLException exception even if the SQL string being executed
does not return a ResultSet object.

To continue the example, once you create the Statement object stmt, the next step is
to run a query that returns a ResultSet object with the contents of the ename
column of a table of employees named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp") ;

Processing the ResultSet Object

Once you run your query, use the next () method of the ResultSet object to iterate
through the results. This method steps through the result set row by row, detecting the
end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate get xxx
methods of the ResultSet object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the ResultSet object, rset,
from the previous section and will retrieve and print each employee name:

while (rset.next())
System.out.println (rset.getString(1l));

The next () method returns false when it reaches the end of the result set. The
employee names are materialized as Java String values.

Closing the ResultSet and Statement Objects

You must explicitly close the ResultSet and Statement objects after you finish
using them. This applies to all ResultSet and Statement objects you create when
using Oracle JDBC drivers. The drivers do not have finalizer methods. The cleanup
routines are performed by the close method of the ResultSet and Statement
classes. If you do not explicitly close the ResultSet and Statement objects, serious
memory leaks could occur. You could also run out of cursors in the database. Closing
both the result set and the statement releases the corresponding cursor in the database.
If you close only the result set, then the cursor is not released.

For example, if your ResultSet object is rset and your Statement object is stmt,
then close the result set and statement with the following lines of code:

rset.close();

2-10 Oracle Database JDBC Developer's Guide and Reference

Basic Steps in JDBC

stmt.close();

When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Note: Typically, you should put close statementsina finally
clause.

Making Changes to the Database

To write changes to the database, such as for INSERT or UPDATE operations, you
create a PreparedStatement object. This enables you to run a statement with
varying sets of input parameters. The prepareStatement method of the JDBC
Connection object lets you define a statement that takes variable bind parameters
and returns a JDBC PreparedStatement object with your statement definition.

Use the set XXX methods on the PreparedStatement object to bind data to the
prepared statement to be sent to the database.

See Also: "The setObject and setOracleObject Methods" on
page 11-11 and "Other setXXX Methods" on page 11-11

The following example shows how to use a prepared statement to run INSERT
operations that add two rows to the EMP table.

// Prepare to insert new names in the EMP table
PreparedStatement pstmt = null;
try{

pstmt = conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?,
?2)");

// Add LESLIE as employee number 1500

pstmt.setInt (1, 1500); // The first ? is for EMPNO
pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
// Do the insertion

pstmt.execute ();

// Add MARSHA as employee number 507

pstmt.setInt (1, 507); // The first ? is for EMPNO
pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
// Do the insertion

pstmt.execute ();

}

finally{
if (pstmt!=null)

// Close the statement
pstmt.close();

Committing Changes

By default, data manipulation language (DML) operations are committed
automatically as soon as they are run. This is known as the auto-commit mode.
However, you can disable auto-commit mode with the following method call on the
Connection object:

Getting Started 2-11

Sample: Connecting, Querying, and Processing the Results

conn.setAutoCommit (false);

See Also: "Disabling Auto-Commit Mode" on page B-1.

If you disable the auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connection object:

conn.commit () ;

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements run since the last
COMMIT or ROLLBACK

Note:

» If the auto-commit mode is disabled and you close the
connection without explicitly committing or rolling back your
last changes, then an implicit COMMIT operation is run.

= Any data definition language (DDL) operation always causes
an implicit COMMIT. If the auto-commit mode is disabled, then
this implicit COMMIT will commit any pending DML operations
that had not yet been explicitly committed or rolled back.

Closing the Connection

You must close the connection to the database after you have performed all the
required operations and no longer require the connection. You can close the connection
by using the close method of the Connection object, as follows:

conn.close();

Note: Typically, you should put close statementsina finally
clause.

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which
uses the Oracle JDBC Thin driver to create a data source, connects to the database,
creates a Statement object, runs a query, and processes the result set.

Note that the code for creating the Statement object, running the query, returning
and processing the ResultSet object, and closing the statement and connection uses
the standard JDBC API.

import java.sqgl.Connection;
import java.sqgl.Resultset;
import java.sqgl.Statement;
import oracle.jdbc.pool.OracleDataSource;

class JdbcTest

{

public static void main (String args []) throws SQLException

2-12 Oracle Database JDBC Developer's Guide and Reference

Stored Procedure Calls in JDBC Programs

{

OracleDataSource ods = null;
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;

// Create DataSource and connect to the local database
ods = new OracleDataSource() ;

ods.setURL ("jdbc:oracle:thin:@//myhost:1521/orcl") ;
ods.setUser ("scott");

ods.setPassword ("tiger");

conn = ods.getConnection();

try
{

// Query the employee names

stmt = conn.createStatement ();

rset = stmt.executeQuery ("SELECT ename FROM emp");

// Print the name out

while (rset.next ())

System.out.println (rset.getString (1));
}

//Close the result set, statement, and the connection

finally{

if (rset!=null) rset.close();
if (stmt!=null) stmt.close();
if(conn!=null) conn.close();

}
}

If you want to adapt the code for the OCI driver, then replace the call to the
OracleDataSource.setURL method with the following:

ods.setURL("jdbc:oracle:oci:@MyHostString") ;

where, MyHostString is an entry in the TNSNAMES . ORA file.

Stored Procedure Calls in JDBC Programs

This section describes how Oracle JDBC drivers support the following kinds of stored
procedures:

s PL/SQL Stored Procedures

= Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support the processing of PL/SQL stored procedures and
anonymous blocks. They support PL/SQL block syntax and most of SQL92 escape
syntax. The following PL/SQL calls would work with any Oracle JDBC driver:

// SQL92 syntax
CallableStatement csl = conn.prepareCall
("{call proc (?,?)}") ; // stored proc

Getting Started 2-13

Processing SQL Exceptions

CallableStatement cs2 = conn.prepareCall

("{? = call func (?,?)}") ; // stored func
// PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall

("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
("begin ? := func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (vall char)
return char as
begin
return vall || 'suffix’';
end;

The function invocation in your JDBC program should look like the following;:

OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:oracle:oci:@<hoststring>");
ods.setUser ("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter (1, Types.CHAR) ;

cs.setString (2, "aa");

cs.executeUpdate() ;

String result = cs.getString(1l);

Java Stored Procedures

You can use JDBC to call Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly published.
That is, you have written call specifications to publish them to the Oracle data
dictionary. Applications can call Java stored procedures using the Native Java Interface
for direct invocation of static Java methods.

Processing SQL Exceptions

To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing
instances of the java.sqgl.SQLException class or its subclass. Errors can originate
either in the JDBC driver or in the database itself. Resulting messages describe the
error and identify the method that threw the error. Additional run-time information
can also be appended.

JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set of
subclasses of the SQLException exception is introduced to identify the different
categories of errors. To know more about this feature, see Support for JDBC 4.0
Standard on page 3-6.

Basic exception handling can include retrieving the error message, retrieving the error
code, retrieving the SQL state, and printing the stack trace. The SQLException class
includes functionality to retrieve all of this information, when available.

2-14 Oracle Database JDBC Developer's Guide and Reference

Processing SQL Exceptions

See Also:
s Appendix C, "JDBC Error Messages"

» Oracle Database Error Messages

Retrieving Error Information

You can retrieve basic error information with the following methods of the
SQLException class:

n getMessage

m getErrorCode

n getSQLState

The following example prints output from a getMessage method call:

catch (SQLException e)
{

System.out.println("exception: " + e.getMessage());

}

This would print the output, such as the following, for an error originating in the JDBC
driver:

exception: Invalid column type

Note: Error message text is available in alternative languages and
character sets supported by Oracle.

Printing the Stack Trace

The SQLException class provides the printStackTrace () method for printing a
stack trace. This method prints the stack trace of the throwable object to the standard
error stream. You can also specify a java.io.PrintStream object or
java.io.PrintWriter object for output.

The following code fragment illustrates how you can catch SQL exceptions and print
the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
while (rset.next ())
System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, running the program would produce the
following error text:

java.sqgl.SQLException: Invalid column index
at oracle.jdbc.driver.DatabaseError.throwSglException (DatabaseError.java:112)

Getting Started 2-15

Processing SQL Exceptions

at oracle.jdbc.driver.DatabaseError.throwSglException (DatabaseError.java:146)

at oracle.jdbc.driver.DatabaseError.throwSglException (DatabaseError.java:208)

at oracle.jdbc.driver.OracleResultSetImpl.getDate (OracleResultSetImpl.java:1556)
at Employee.main(Employee.java:41)

2-16 Oracle Database JDBC Developer's Guide and Reference

Part Il

Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity
(JDBC) versions that Oracle Database 10g supports. It also includes chapters that cover
features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver, and the
server-side internal driver.

Part II contains the following chapters:

Chapter 3, "JDBC Standards Support"

Chapter 4, "Oracle Extensions"

Chapter 5, "Features Specific to JDBC Thin"
Chapter 6, "Features Specific to JDBC OCI Driver"

Chapter 7, "Server-Side Internal Driver"

3

JDBC Standards Support

The Oracle Java Database Connectivity (JDBC) drivers support different versions of
the JDBC standard features. In Oracle Database 11¢ Release 1 (11.1), Oracle JDBC
drivers have been enhanced to provide support for the JDBC 4.0 standards. These
features are provided through the oracle. jdbc and oracle. sql packages. These
packages support Java Development Kit (JDK) releases 1.5 and 1.6. This chapter
discusses the JDBC standards support in Oracle JDBC drivers. It contains the following
sections:

Support for JDBC 2.0 Standard
Support for JDBC 3.0 Standard
Support for JDBC 4.0 Standard

Support for JDBC 2.0 Standard

Standard JDBC 2.0 features are supported by JDK 1.2 and later versions. There are
three areas to consider:

Support for data types, such as objects, arrays, and large objects (LOBs). This is
handled through the standard java.sqgl package.

Support for standard features, such as result set enhancements and update
batching. This is handled through standard objects, such as Connection,
ResultsSet, and PreparedStatement, under JDK 1.2.x and later.

Support for extended features, such as features of the JDBC 2.0 optional package,
also known as the standard extension application programming interface (API),
including data sources, connection pooling, and distributed transactions.

This section covers the following topics:

Data Type Support
Standard Feature Support
Extended Feature Support

Standard versus Oracle Performance Enhancement APIs

Note: Versions of JDK earlier than 1.5 are no longer supported. The
package oracle. jdbc2 has been removed.

JDBC Standards Support 3-1

Support for JDBC 3.0 Standard

Data Type Support

Oracle JDBC fully supports JDK 1.5 and JDK 1.6, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard java.sql
package. These interfaces are implemented as appropriate by classes in the
oracle.sql and oracle. jdbc packages.

Standard Feature Support

In a JDK 1.5 environment, using the JDBC classes in ojdbc5. jar, JDBC 2.0 features,
such as scrollable result sets, updatable result sets, and update batching, are supported
through methods specified by standard JDBC 2.0 interfaces.

Extended Feature Support

Features of the JDBC 2.0 optional package, including data sources, connection pooling,
and distributed transactions, are supported in a JDK 1.2.x or later environment.

The standard javax.sqgl package and classes that implement its interfaces are
included in the Java Archive (JAR) files packaged with Oracle Database.

Standard versus Oracle Performance Enhancement APIs

The following performance enhancements are available under JDBC 2.0, which had
previously been available only as Oracle extensions:

= Update batching
» Fetch size or row prefetching

In each case, you have the option of using the standard model or the Oracle model.
Oracle recommends that you use the JDBC standard model whenever possible. Do not,
however, try to mix usage of the standard model and Oracle model within a single
application for either of these features.

See Also:

s "Update Batching" on page 23-1

» 'Fetch Size" on page 17-15

Support for JDBC 3.0 Standard

Standard JDBC 3.0 features are supported by JDK 1.4 and earlier versions. Table 3-1
lists the JDBC 3.0 features supported by Oracle Database 11¢ Release 1 (11.1) and gives
references to a detailed discussion of each feature.

Table 3-1 Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Transaction savepoints See "Transaction Savepoints" on page 3-3 for information.

Statement caching Reuse of prepared statements by connection pools. See Chapter 20, "Statement and
Resultset Caching".

Switching between localand See "Switching Between Global and Local Transactions" on page 28-4.
global transactions

LOB modification See "JDBC 3.0 LOB Interface Methods" on page 3-5.

Named SQL parameters See "Interface oracle.jdbc.OracleCallableStatement” on page 4-22 and "Interface
oracle.jdbc.OraclePreparedStatement” on page 4-22.

3-2 Oracle Database JDBC Developer's Guide and Reference

Support for JDBC 3.0 Standard

Table 3-1 (Cont.) Key Areas of JDBC 3.0 Functionality

Feature

Comments and References

RowSets

See Chapter 18, "JDBC RowSets"

Retrieving auto-generated See "Retrieval of Auto-Generated Keys" on page 3-4

keys

Result set holdability See "Result Set Holdability" on page 3-6

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this
section:

= Transaction Savepoints

= Retrieval of Auto-Generated Keys
= JDBC 3.0 LOB Interface Methods
= Result Set Holdability

Transaction Savepoints

The JDBC 3.0 specification supports savepoints, which offer finer demarcation within
transactions. Applications can set a savepoint within a transaction and then roll back
all work done after the savepoint. Savepoints relax the atomicity property of
transactions. A transaction with a savepoint is atomic in the sense that it appears to be
a single unit outside the context of the transaction, but code operating within the
transaction can preserve partial states.

Note: Savepoints are supported for local transactions only.
Specifying a savepoint within a global transaction causes a
SQLException exception to be thrown.

Creating a Savepoint

You create a savepoint using the Connection.setSavepoint method, which
returns a java.sgl.Savepoint instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by
supplying a string to the set Savepoint method. If you do not specify a name, then
the savepoint is assigned an integer ID. You retrieve a name using the
getSavepointName method. You retrieve an ID using the get SavepointId
method.

Note: Attempting to retrieve a name from an unnamed savepoint
or attempting to retrieve an ID from a named savepoint throws a
SQLException exception.

Rolling Back to a Savepoint

You roll back to a savepoint using the Connection.rollback (Savepoint svpt)
method. If you try to roll back to a savepoint that has been released, then a
SQLException exception is thrown.

JDBC Standards Support 3-3

Support for JDBC 3.0 Standard

Releasing a Savepoint

You remove a savepoint using the Connection.releaseSavepoint (Savepoint
svpt) method.

Checking Savepoint Support

You query if savepoints are supported by your database by calling the
oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints method,
which returns true if savepoints are available, false otherwise.

Savepoint Notes
When using savepoints, you must consider the following:

= After a savepoint has been released, attempting to reference it in a rollback
operation will cause a SQLException exception to be thrown.

= When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

= Rolling a transaction back to a savepoint automatically releases and makes invalid
any savepoints created after the savepoint in question.

Retrieval of Auto-Generated Keys

Many database systems automatically generate a unique key field when a row is
inserted. Oracle Database provides the same functionality with the help of sequences
and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that
enables you to retrieve such generated values. In JDBC 3.0, the following interfaces are
enhanced to support the retrieval of auto-generated keys feature:

s Jjava.sgl.DatabaseMetaData
s Jjava.sgl.Connection
m Jjava.sgl.Statement

These interfaces provide methods that support retrieval of auto-generated keys.
However, this feature is supported only when INSERT statements are processed.
Other data manipulation language (DML) statements are processed, but without
retrieving auto-generated keys.

Note: The Oracle server-side internal driver does not support the
retrieval of auto-generated keys feature.

java.sql.Statement

If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify
which columns need to be retrieved. When a column name or column index array is
used, Oracle JDBC drivers can identify which columns contain auto-generated keys
that you want to retrieve. However, when the

Statement . RETURN_GENERATED_KEYS integer flag is used, Oracle JDBC drivers
cannot identify these columns. When the integer flag is used to indicate that
auto-generated keys are to be returned, the ROWID pseudo column is returned as key.
The ROWID can be then fetched from the ResultSet object and can be used to retrieve
other columns.

3-4 Oracle Database JDBC Developer's Guide and Reference

Support for JDBC 3.0 Standard

Sample Code

The following code illustrates retrieval of auto-generated keys:

/** SQL statements for creating an ORDERS table and a sequence for generating the
* ORDER_ID.

*

* CREATE TABLE ORDERS (ORDER_ID NUMBER, CUSTOMER_ID NUMBER, ISBN NUMBER,
* DESCRIPTION NCHAR(5))

*

* CREATE SEQUENCE SEQO1 INCREMENT BY 1 START WITH 1000
*/

String cols[] = {"ORDER_ID", "DESCRIPTION"};

// Create a PreparedStatement for inserting a row into the ORDERS table.
OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement ("INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, ISBN,
DESCRIPTION) VALUES (SEQO1.NEXTVAL, 101,

966431502, ?)", cols);
char c[] = {'a', '"\ubl85', 'b'};
String s = new String(c);
pstmt.setNString(1l, s);
pstmt.executeUpdate () ;
ResultSet rset = pstmt.getGeneratedKeys();

In the preceding example, a sequence, SEQO01, is created to generate values for the
ORDER_ID column starting from 1000 and incrementing by 1 each time the sequence
is processed to generate the next value. An OraclePreparedStatement object is
created to insert a row in to the ORDERS table.

Limitations
Auto-generated keys are implemented using the DML returning clause. So, they are
subjected to the following limitations:

= You cannot combine auto-generated keys with batch update.

= You need to access the ResultSet object returned from getGeneratedKeys
method by position only and no bind variable names should be used as columns
in the ResultSet object.

JDBC 3.0 LOB Interface Methods

Table 3-2 and Table 3-3 show the conversions between Oracle proprietary methods
and JDBC 3.0 standard methods.

Table 3-2 BLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putBytes (long pos, byte [] setBytes (long pos, bytel[] bytes)
bytes)

putBytes (long pos, byte [] setBytes (long pos, bytel[] bytes, int
bytes, int length) offset, int len)
getBinaryOutputStream (long setBinaryStream(long pos)

pos)

trim (long len) truncate(long len)

JDBC Standards Support 3-5

Support for JDBC 4.0 Standard

Table 3-3 CLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putString (long pos, String setString(long pos, String str)

str)

not applicable setString(long pos, String str,
int offset, int len)

getAsciiOutputStream(long pos) setAsciiStream(long pos)

getCharacterOutputStream (long setCharacterStream(long pos)

pos)

trim (long len) truncate(long len)

Result Set Holdability

Result set holdability was introduced since JDBC 3.0. This feature enables applications
to decide whether the ResultSet objects should be open or closed, when a commit
operation is performed. The commit operation could be either implicit or explicit.

Oracle Database supports only HOLD_CURSORS_OVER_COMMIT. Therefore, it is the
default value for Oracle JDBC drivers. Any attempt to change holdability will throw a
SQLException exception.

Support for JDBC 4.0 Standard

The JDBC 4.0 standard support is provided by JDK 1.6 and later versions. Oracle
Database 11g Release 1 (11.1) JDBC drivers provide support for the JDBC 4.0 standard.

Note: You need to have the ojdbc6* . jar in your classpath
environment variable in order to have JDBC 4.0 standard support.

Some of the new features available in Oracle Database 11¢ Release 1 (11.1) JDBC
drivers are the following;:

= Wrapper Pattern Support

= Enhanced Exception Hierarchy and SQLException
s The Rowld Data Type

= LOB Creation

= National Language Character Set Support

This document provides only an overview of these new features. For detailed
information about these features, see “Java 2 Platform, Standard Edition (JSE) 6.0
specification" at

http://java.sun.com/javase/6/docs/

Wrapper Pattern Support

Wrapper pattern is a common coding pattern used in Java applications to provide
extensions beyond the traditional JDBC API that are specific to a data source. You may
need to use these extensions to access the resources that are wrapped as proxy class
instances representing the actual resources. JDBC 4.0 introduces the Wrapper interface

3-6 Oracle Database JDBC Developer's Guide and Reference

Support for JDBC 4.0 Standard

that describes a standard mechanism to access these wrapped resources represented
by their proxy, to permit direct access to the resource delegates.

The Wrapper interface provides the following two methods:

m public boolean isWrapperFor (Class<?> iface) throws
SQLException;

s public <T> T unwrap (Class<T> iface) throws SQLException;

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement this
interface. These include Connection, Statement and its subtypes, ResultSet, and
the metadata interfaces.

See Also:

http://java.sun.com/javase/6/docs/api/java/sqgl/Wrapp
er.html

Enhanced Exception Hierarchy and SQLException

JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. This feature provides
subclasses of the SQLException class to identify the different categories of errors.
The primary distinction is between permanent errors and transient errors. Permanent
errors are a result of the correct operation of the system and will always occur.
Transient errors are the result of failures, including timeouts, of some part of the
system and may not reoccur.

New exceptions have been added to represent transient and permanent errors and the
different categories of these errors.

Also, the SQLException class and its subclasses have been enhanced to provide
support for the J2SE chained exception functionality.

The Rowld Data Type

JDBC 4.0 provides the java.sgl .RowId data type to represent SQL ROWID values.
You can retrieve a RowId value using the getter methods defined in the ResultSet
and CallableStatement interfaces. You can also use a RowId valuein a
parameterized PreparedStatement to set a parameter with a RowId object or in an
updatable result set to update a column with a specific RowId value.

A RowId object is valid until the identified row is not deleted. A RowId object may
also be valid for the following:

s The duration of the transaction in which it is created
s The duration of the session in which it is created
= Anundefined duration where by it is valid forever

The lifetime of the Rowld object can be determined by calling the
DatabaseMetaData.getRowIdLifetime method.

LOB Creation

In JDBC 4.0, the Connection interface has been enhanced to provide support for the
creation of BLOB, CLOB, and NCLOB objects. The interface provides the createBlob,
createClob, and createNC1lob methods that enable you to create B1ob, Clob, and
NClob objects.

The created large objects (LOBs) do not contain any data. You can add data in these
objects by calling the appropriate set XXX methods. To retrieve the data from these

JDBC Standards Support 3-7

Support for JDBC 4.0 Standard

objects, you can call the getBlob, getClob, and getNC1lob methods defined in the
ResultSet and CallableStatement interfaces. You can either retrieve the entire
content or a part of the content from these objects. The following code snippet
illustrates how to retrieve 100 bytes of data from a BLOB object starting at offset 200:

Connection con = DriverManager.getConnection(url, props);
Blob aBlob = con.createBlob();
// Add data to the BLOB object.

// Retrieve part of the data from the BLOB object.
InputStream is = aBlob.getBinaryStream(200, 100);

You can also pass LOBs as input parameters to a PreparedStatement object using
the setBlob, setClob, and setNC1lob methods. You can use the updateBlob,
updateClob, and updateNClob methods to update a column value in an updatable
result set.

LOBs remain valid for at least the duration of the transaction in which they are
created. This may result in unwarranted use of memory during a long running
transaction. You can release LOBs by calling their free method, as follows:

Clob aClob = con.createClob() ;
int numWritten = aClob.setString(l, val);
aClob. free();

National Language Character Set Support

JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types
to access the national character set types. These types are similar to the CHAR,
VARCHAR, LONGVARCHAR, and CLOB types, except that the values are encoded using
the national character set.

3-8 Oracle Database JDBC Developer's Guide and Reference

4

Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database Connectivity
(JDBC) standard implementation, enabling you to access and manipulate Oracle data
types and use Oracle performance extensions. Compared to standard JDBC, the Oracle
extensions offer greater flexibility in manipulating the data. This chapter provides an
overview of the classes and interfaces provided by Oracle that extend the JDBC
standard implementation. It also describes some of the key support features of the
extensions.

This chapter contains the following sections:
s Overview of Oracle Extensions

» Features of the Oracle Extensions

= Oracle JDBC Packages

s Oracle Character Data Types Support

= Additional Oracle Type Extensions

s DML Returning

» Accessing PL/SQL Index-by Tables

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 23, "Performance Extensions".

Overview of Oracle Extensions

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions. These extensions are provided through the
following Java packages:

m oracle.sqgl
Provides classes that represent SQL data in Oracle format
m oracle.jdbc

Provides interfaces to support database access and updates in Oracle type formats

See Also: "Oracle JDBC Packages" on page 4-5

Oracle Extensions 4-1

Features of the Oracle Extensions

Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your ability
to work with Oracle Databases. These include the following:

= Database Management Using JDBC
= Support for Oracle Data Types

= Support for Oracle Objects

= Support for Schema Naming

s DML Returning

= Accessing PL/SQL Index-by Tables

Database Management Using JDBC

Oracle Database 11g Release 1 (11.1) introduces new JDBC methods, startup and
shutdown, in the oracle. jdbc.OracleConnection interface that enable you to
start up and shut down an Oracle Database instance. You also have support for the
Database Change Notification feature of Oracle Database. These new features have
been discussed in details in "Database Management".

Support for Oracle Data Types

A key feature of the Oracle JDBC extensions is the type support in the oracle.sqgl
package. This package includes classes that map to all the Oracle SQL data types,
acting as containers for raw SQL data. This functionality provides two significant
advantages in manipulating SQL data:

» Accessing data directly in SQL format is sometimes more efficient than first
converting it to Java format.

= Performing mathematical manipulations of the data directly in SQL format avoids
the loss of precision that can occur in converting between SQL and Java formats.
But this type of conversion reduces the performance of the application.

Once manipulations are complete and it is time to display the information, each of the
oracle.sql. * data type support classes has all the necessary methods to convert
data to appropriate Java formats.

See Also:

= Package oracle.sql on page 4-5

s "Oracle Character Data Types Support” on page 4-10
= "Additional Oracle Type Extensions" on page 4-13

Note: Oracle recommends you to use the standard JDBC types
unless there is a specific and critical need to use the oracle.sqgl
types. Oracle JDBC drivers are designed to optimize the use of the
JDBC standard types. This is very important if you are using character
data. Always use java.lang. String for character data instead of
oracle.sql.CHAR. CHAR is provided only for backward
compatibility.

4-2 Oracle Database JDBC Developer's Guide and Reference

Features of the Oracle Extensions

Support for Oracle Objects

Oracle JDBC supports the use of structured objects in the database, where an object
data type is a user-defined type with nested attributes. For example, a user application
could define an Employee object type, where each Employee object has a
firstname attribute (character string), a 1astname attribute (character string), and
an employeenumber attribute (integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object
data types in a Java application, you must consider the following:

= How to map between Oracle object data types and Java classes

= How to store Oracle object attributes in corresponding Java objects
» How to convert attribute data between SQL and Java formats

= How to access data

Oracle objects can be mapped either to the weak java.sqgl.Struct type or to
strongly typed customized classes. These strong types are referred to as custom Java
classes, which must implement either the standard java.sqgl.SQLData interface or
the Oracle extension oracle. sql.ORAData interface. Each interface specifies
methods to convert data between SQL and Java.

Note: The ORAData interface has replaced the CustombDatum
interface. The latter interface is desupported in Oracle Database
release 11.1.

Oracle recommends the use of the Oracle JPublisher utility to create custom Java
classes to correspond to your Oracle objects. Oracle JPublisher performs this task
seamlessly with command-line options and can generate either SQLData or ORAData
interface implementations.

For SQLData interface implementations, a type map defines the correspondence
between Oracle object data types and Java classes. Type maps are objects that specify
which Java class corresponds to each Oracle object data type. Oracle JDBC uses these
type maps to determine which Java class to instantiate and populate when it retrieves
Oracle object data from a result set.

Note: Oracle recommends using the ORAData interface, instead of
the SQLData interface, in situations where portability is not a
concern. The ORAData interface works more easily and flexibly in
conjunction with other features of the Oracle platform offerings
using Java.

JPublisher automatically defines get xxx methods of the custom Java classes, which
retrieve data into your Java application.

See Also:
» Chapter 13, "Working with Oracle Object Types"
» Oracle Database JPublisher User’s Guide.

Oracle Extensions 4-3

Features of the Oracle Extensions

Support for Schema Naming

Oracle object data type classes have the ability to accept and return fully qualified
schema names. A fully qualified schema name has this syntax:

{ [schema_name] .} [sqgl_type name]

Where, schema_name is the name of the schema and sql_ type_name is the SQL
type name of the object. schema_name and sgl_type_name are separated by a
period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to
enter a schema name if the type name is in the current naming space, that is, the
current schema. Schema naming follows these rules:

= Both the schema name and the type name may or may not be within quotation
marks. However, if the SQL type name has a period in it, such as
CORPORATE . EMPLOYEE, the type name must be quoted.

» The JDBC driver looks for the first period in the object name that is not within
quotation marks and uses the string before the period as the schema name and the
string following the period as the type name. If no period is found, then the JDBC
driver takes the current schema as default. That is, you can specify only the type
name, without indicating a schema, instead of specifying the fully qualified name
if the object type name belongs to the current schema. This also explains why you
must put the type name within quotation marks if the type name has a dot in it.

For example, assume that user Scott creates a type called person.address and
then wants to use it in his session. Scott may want to skip the schema name and
pass in person.address to the JDBC driver. In this case, if person.address is
not within quotation marks, then the period will be detected and the JDBC driver
will mistakenly interpret person as the schema name and address as the type
name.

= JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if the object type name is
within quotation marks.

For example, if Scott.PersonType is passed to the JDBC driver as an object
type name, then the JDBC driver will pass the string to the database unchanged.
As another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

DML Returning

Oracle Database supports the use of the RETURNING clause with data manipulation
language (DML) statements. This enables you to combine two SQL statements into
one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC Thin
driver support DML returning.

See Also: "DML Returning" on page 4-26

Accessing PL/SQL Index-by Tables

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by
table parameters. Oracle JDBC drivers support PL/SQL index-by tables of scalar data

types

Note: Index-by tables of PL/SQL records are not supported.

4-4 Oracle Database JDBC Developer's Guide and Reference

Oracle JDBC Packages

See Also: "Accessing PL/SQL Index-by Tables" on page 4-28

Oracle JDBC Packages

This section describes the following Java packages, which support the Oracle JDBC
extensions:

= Package oracle.sql

= Package oracle.jdbc

Package oracle.sql

The oracle. sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their
support classes. Essentially, the classes act as Java containers for SQL data.

Each of the oracle.sql. * data type classes extends oracle.sqgl.Datum, a
superclass that encapsulates functionality common to all the data types. Some of the
classes are for JDBC 2.0-compliant data types. These classes, as Table 4-1 indicates,
implement standard JDBC 2.0 interfaces in the java. sql package, as well as
extending the oracle.sgl.Datum class.

Note: Oracle recommends the use of standard JDBC types or Java
types whenever possible. The types in the package oracle.sqgl.*
are provided primarily for backward compatibility or for support of a
few Oracle specific features such as OPAQUE, OraData,
TIMESTAMPTZ, and so on.

Classes of the oracle.sql Package
Table 4-1 lists the oracle.sqgl data type classes and their corresponding Oracle SQL
types.

Table 4-1 Oracle Data Type Classes

Java Class Oracle SQL Types and Interfaces Implemented
oracle.sqgl.STRUCT STRUCT (objects) implements java.sgl.Struct
oracle.sql.REF REF (object references) implements java.sgl.Ref
oracle.sqgl.ARRAY VARRAY or nested table (collections) implements

java.sql.Array

oracle.sql.BLOB BLOB (binary large objects) implements
java.sqgl.Blob

oracle.sql.CLOB SQL CLOB (character large objects) and globalization
support NCLOB data types both implement
java.sqgl.Clob

oracle.sqgl.NCLOB NCLOB implements java.sqgl.NClob
oracle.sgl.BFILE BFILE (external files)

oracle.sgl.CHAR CHAR, NCHAR, VARCHAR2, NVARCHAR2
oracle.sql.DATE DATE

oracle.sql.TIMESTAMP TIMESTAMP

oracle.sql.TIMESTAMPTZ TIMESTAMP WITH TIME ZONE

Oracle Extensions 4-5

Oracle JDBC Packages

Table 4-1 (Cont.) Oracle Data Type Classes

Java Class Oracle SQL Types and Interfaces Implemented

oracle.sqgl.TIMESTAMPLTZ TIMESTAMP WITH LOCAL TIME ZONE

oracle.sgl.NUMBER NUMBER

oracle.sgl.RAW RAW

oracle.sqgl.ROWID ROWID (row identifiers) implements java.sqgl.RowId
oracle.sgl.OPAQUE OPAQUE

oracle.sqgl.ANYDATA ANYDATA

Note: The LONG and LONG RAW SQL types and REF CURSOR type
category have no oracle.sqgl. * classes. Use standard JDBC
functionality for these types. For example, retrieve LONG or LONG RAW
data as input streams using the standard JDBC result set and callable
statement methods getBinaryStream and getCharacterStream.
Use the getCursor method for REF CURSOR types.

In addition to the data type classes, the oracle. sql package includes the following
support classes and interfaces, primarily for use with objects and collections:

oracle.sqgl.ArrayDescriptor

This class is used in constructing oracle.sqgl . ARRAY objects. It describes the
SQL type of the array.

oracle.sqgl.StructDescriptor

This class is used in constructing oracle.sqgl . STRUCT objects, which you can
use as a default mapping to Oracle objects in the database.

oracle.sgl.ORAData and oracle.sqgl.ORADataFactory

These interfaces are used in Java classes implementing the Oracle ORAData
scenario of Oracle object support.

oracle.sqgl.OpagueDescriptor

This class is used to obtain the metadata for an instance of the
oracle.sqgl.OPAQUE class.

oracle.sql.TypeDescriptor

This class is used to represent transient and persistent SQL types in Java.

General oracle.sql.* Data Type Support
Each of the Oracle data type classes provides, among other things, the following:

Data storage as Java byte arrays for SQL data
A getBytes () method, which returns the SQL data as a byte array

A toJdbc () method that converts the data into an object of a corresponding Java
class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of
the JDBC specification, such as BFILE. The driver returns the object in the
corresponding oracle.sqgl . * format.

4-6 Oracle Database JDBC Developer's Guide and Reference

Oracle JDBC Packages

= Appropriate xxxValue methods to convert SQL data to Java type. For example,
stringValue, intValue, booleanValue, dateValue, and
bigDecimalValue

= Additional conversion methods, get XXX and set XXX, as appropriate, for the
functionality of the data type, such as methods in the large object (LOB) classes
that get the data as a stream and methods in the REF class that get and set object
data through the object reference.

Overview of Class oracle.sql.STRUCT

For any given Oracle object type, it is usually desirable to define a custom mapping
between SQL and Java. For example, if you use a SQLData custom Java class, then the
mapping must be defined in a type map.

If you choose not to define a mapping, however, then data from the object type will be
materialized in Java in an instance of the oracle.sqgl.STRUCT class.

The STRUCT class implements the standard JDBC 2.0 java.sqgl . Struct interface
and extends the oracle.sqgl.Datum class.

A STRUCT object is a Java representation of the raw bytes of an Oracle object. It
contains the SQL type name of the Oracle object and an array of oracle.sgl.Datum
objects that hold the attribute values in SQL format.

If you want to create a STRUCT object, then use the createStruct method of the
oracle. jdbc.OracleConnection interface. The signature of this factory method
for creating STRUCT objects is as follows:

Struct createStruct (String typeName, Object[] attributes) throws SQLException

The parameters in this signature are as follows:

» The typeName parameter is the SQL type name of the SQL structured type to
which the STRUCT object maps. The typeName is the name of a user-defined type
that has been defined for this database. It is the value returned by the
Struct.getSQLTypeName method.

s The attributes parameter specifies the attributes that populate the returned
object.

You can materialize attributes of a STRUCT object as oracle.sqgl.Datum|[] objects, if
you use the getOracleAttributes method, or as java.lang.Object [] objects,
if you use the getAttributes method. Materializing the attributes as

oracle.sql. * objects gives you the following advantages of the oracle.sqgl.*
format:

= Materializing oracle.sqgl.STRUCT data in oracle.sql. * format completely
preserves data by maintaining it in SQL format. No translation is performed. This
is useful if you want to access data but not necessarily display it.

= It allows complete flexibility in how your Java application unpacks data.

Oracle Extensions 4-7

Oracle JDBC Packages

Note:

= Elements of the array, although of the generic Datum type,
actually contain data associated with the relevant
oracle.sql. * type appropriate for the given attribute. You
can cast the element to the appropriate oracle.sql. * type as
desired. For example, a CHAR data attribute within the STRUCT
is materialized as oracle.sqgl.Datum. To use it as CHAR data,
you must cast it to oracle.sqgl.CHAR.

= Nested objects in the values array of a STRUCT object are
materialized by the JDBC driver as instances of STRUCT.

Overview of Class oracle.sql.REF

The oracle. sgl.REF class is the generic class that supports Oracle object references.
This class, as with all oracle.sgl. * data type classes, is a subclass of the
oracle.sqgl.Datum class. It implements the standard JDBC 2.0 java.sqgl.Ref
interface.

The REF class has methods to retrieve and pass object references. However, selecting
an object reference retrieves only a pointer to an object. This does not materialize the
object itself. But the REF class also includes methods to retrieve and pass the object
data.

You cannot create REF objects in your JDBC application. You can only retrieve existing
REF objects from the database.

See Also: Chapter 15, "Using Oracle Object References".

Overview of Class oracle.sql.ARRAY

The oracle.sgl.ARRAY class supports Oracle collections, either VARRAYs or
nested tables. If you select either a VARRAY or a nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class. The structure of the
data is equivalent in either case. The oracle.sqgl.ARRAY class extends the
oracle.sqgl.Datum class and implements the standard JDBC 2.0 java.sqgl.Array
interface.

You can use the set ARRAY method of the OraclePreparedStatement or
OracleCallableStatement interface to pass an ARRAY as an input parameter to a
prepared statement. Similarly, you can use the createARRAY method of the
OracleConnection interface to create an ARRAY object to pass it to a prepared
statement or callable statement, perhaps to insert into the database.

See Also: "Overview of Collection Functionality" on page 16-3

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

Binary large objects (BLOBs), character large objects (CLOBs), and binary files
(BFILEs) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual data.

The oracle. sql package supports these data types in several ways:

= BLOBs point to large unstructured binary data items and are supported by the
oracle.sqgl.BLOB class.

= CLOBs point to large character data items and are supported by the
oracle.sqgl.CLOB class.

4-8 Oracle Database JDBC Developer's Guide and Reference

Oracle JDBC Packages

= BFILEs point to the content of external files (operating system files) and are
supported by the oracle. sgl.BFILE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement. However, you receive only the locator, and not the data.
Additional steps are necessary to retrieve the data.

See Also: Chapter 14, "Working with LOBs and BFILEs".

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes map to primitive SQL data types, which are a part of standard JDBC, and
supply conversions to and from the corresponding JDBC Java types.

Because Java Double and Float NaN values do not have an equivalent Oracle
NUMBER representation, a Nul1lPointerException is thrown whenever a
Double.NaN value or a Float .NaN value is converted into an Oracle NUMBER using
the oracle. sql.NUMBER class. For instance, the following code throws a
NullPointerException:

oracle.sql.NUMBER n = new oracle.sqgl.NUMBER (Double.NaN) ;
System.out.println(n.doublevValue()); // throws NullPointerException

Classes oracle.sql.TIMESTAMP, oracle.sql. TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ

The JDBC drivers support the following date/time data types:
s TIMESTAMP (TIMESTAMP)

s TIMESTAMP WITH TIME ZONE (TIMESTAMPTZ)

s TIMESTAMP WITH LOCAL TIME ZONE (TIMESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For
example, you can access a TIMESTAMP WITH TIME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as
well as most of the time zone names defined in the JDK. Time zones are specified by
using the java.util.Calendar class.

Note: Do not use TimeZone.getTimeZone to create time zone
objects. The Oracle time zone data types support more time zone
names than does the JDK.

The following code shows how the TimeZone and Calendar objects are created for
US_PACIFIC, which is a time zone name not defined in the JDK:

TimeZone tz = TimeZone.getDefault();
tz.setID("US_PACIFIC");
GregorianCalendar gcal = new GregorianCalendar (tz);

The following Java classes represent the SQL date/time types:
m oracle.sqgl.TIMESTAMP

m oracle.sqgl.TIMESTAMPTZ

m oracle.sqgl.TIMESTAMPLTZ

Before accessing TIMESTAMP WITH LOCAL TIME ZONE data, call the
OracleConnection.setSessionTimeZone (String regionName) method to

Oracle Extensions 4-9

Oracle Character Data Types Support

set the session time zone. When this method is called, the JDBC driver sets the session
time zone of the connection and saves the session time zone so that any TIMESTAMP
WITH LOCAL TIME ZONE data accessed through JDBC can be adjusted using the
session time zone.

Class oracle.sql.OPAQUE

The oracle.sgl.OPAQUE class gives you the name and characteristics of the OPAQUE
type and any attributes. The OPAQUE type provides access only to the uninterrupted
bytes of the instance.

Note: There is minimal support for the OPAQUE type.

Package oracle.jdbc

The interfaces of the oracle. jdbc package define the Oracle extensions to the
interfaces in java. sql. These extensions provide access to Oracle SQL-format data
and other Oracle-specific functionality, including Oracle performance enhancements.

See Also: "The oracle.jdbc Package" on page 4-19

Oracle Character Data Types Support

Oracle character data types include the SQL CHAR and NCHAR data types. The
following sections describe how these data types can be accessed using the
oracle.sqgl. * classes:

= SQL CHAR Data Types
= SQL NCHAR Data Types
s Class oracle.sql. CHAR

SQL CHAR Data Types

The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let
you store character data in the database character set encoding scheme. The character
set of the database is established when you create the database.

SQL NCHAR Data Types

The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR
data types include NCHAR, NVARCHAR2, and NCLOB. These data types allow you to
store Unicode data in the database NCHAR character set encoding. The NCHAR character
set, which never changes, is established when you create the database.

Note: Because the UnicodeStream class is deprecated in favor of
the CharacterStream class, the setUnicodeStreamand
getUnicodeStream methods are not supported for NCHAR data
type access. Use the setCharacterStream method and the
getCharacterStream method if you want to use stream access.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types.
JDBC uses the same classes and methods to access SQL NCHAR data types that are used
for the corresponding SQL CHAR data types. Therefore, there are no separate,

4-10 Oracle Database JDBC Developer's Guide and Reference

Oracle Character Data Types Support

corresponding classes defined in the oracle.sqgl package for SQL NCHAR data types.
Similarly, there is no separate, corresponding constant defined in the
oracle. jdbc.OracleTypes class for SQL NCHAR data types.

The following code shows how to access SQL NCHAR data:

//

// Table TEST has the following columns:
// - NUMBER

// - NVARCHAR2

// - NCHAR

//

oracle.jdbc.OraclePreparedStatement pstmt =
(oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement ("insert into TEST values(?, ?, ?)");

//

// oracle.jdbc.OraclePreparedStatement . FORM_NCHAR should be used for all NCHAR,
// NVARCHAR2 and NCLOB data types.

//

pstmt.setInt (1, 1); // NUMBER column
pstmt.setNString (2, myUnicodeStringl); // NVARCHAR2 column
pstmt.setNString (3, myUnicodeString2); // NCHAR column
pstmt.execute() ;

Class oracle.sql.CHAR

The oracle.sqgl.CHAR class is used by Oracle JDBC in handling and converting
character data. This class provides the Globalization Support functionality to convert
character data. This class has two key attributes: Globalization Support character set
and the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set information, the data
bytes in the CHAR object are meaningless. The oracle.sgl .CHAR class is used for
both SQL CHAR and SQL NCHAR data types.

Note: In versions of Oracle JDBC drivers prior to 10g release 1
(10.1), there were performance advantages to using the
oracle.SQL.CHAR. Starting from Oracle Database 10g, there are
no longer any such advantages. In fact, optimum performance is
achieved using the java.lang. String. All Oracle JDBC drivers
handle all character data in the Java UCS2 character set. Using the
oracle.sqgl.CHAR does not prevent conversions between the
database character set and UCS2 character set.

The only remaining use of the oracle.sqgl.CHAR class is to handle character data in
the form of raw bytes encoded in an Oracle Globalization Support character set. All
character data retrieved from Oracle Database should be accessed using the
java.lang.String class. When processing byte data from another source, you can
use an oracle.sqgl.CHAR to convert the bytes to java.lang.String.

To convert an oracle. sql.CHAR, you must provide the data bytes and an
oracle.sql.CharactersSet instance that represents the Globalization Support
character set used to encode the data bytes.

Oracle Extensions 4-11

Oracle Character Data Types Support

The CHAR objects that are Oracle object attributes are returned in the database
character set.

JDBC application code rarely needs to construct CHAR objects directly, because the
JDBC driver automatically creates CHAR objects as needed.

To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the CharactersSet class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
CharacterSet instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object
Follow these general steps to construct a CHAR object:

1. Create a CharacterSet object by calling the static CharacterSet.make
method.

This method is a factory for the character set instance. The make method takes an
integer as input, which corresponds to a character set ID that Oracle supports. For
example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set ID,
// 832

CharacterSet mycharset = CharacterSet.make(oracleld);

Each character set that Oracle supports has a unique, predefined Oracle ID.
2. Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the factory method along
with the CharacterSet object that indicates how to interpret the bytes based on
the character set. For example:

String mystring = "teststring";
CHAR mychar = new CHAR(teststring, mycharset);

There are multiple factory methods for CHAR, which can take a String, a byte
array, or an object as input along with the CharactersSet object. In the case of a
String, the string is converted to the character set indicated by the
CharacterSet object before being placed into the CHAR object.

Note:
s The CharactersSet object cannot be a null value.

s The CharactersSet class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make method.

s The server recognizes the special value
CharacterSet .DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

s Oracle does not intend or recommend that users extend the
CharacterSet class.

4-12 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

oracle.sql.CHAR Conversion Methods

The CHAR class provides the following methods for translating character data to
strings:

m getString

This method converts the sequence of characters represented by the CHAR object to
a string, returning a Java String object. If you enter an invalid OracleID, then
the character set will not be recognized and the get String method will throw a
SQLException exception.

m toString

This method is identical to the get String method. But if you enter an invalid
OracleID, then the character set will not be recognized and the toString
method will return a hexadecimal representation of the CHAR data and will not
throw a SQLException exception.

m getStringWithReplacement

This method is identical to the get String method, except a default replacement
character replaces characters that have no unicode representation in the CHAR
object character set. This default character varies from character set to character
set, but is often a question mark (?).

The database server and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set or vice versa. To convert the data, the
drivers use Globalization Support.

See Also: Chapter 19, "Globalization Support"

Additional Oracle Type Extensions

Oracle JDBC drivers support the Oracle-specific BFILE and ROWID data types and REF
CURSOR types, which are not part of the standard JDBC specification. This section
describes the ROWID and REF CURSOR type extensions. The ROWID is supported as a
Java string, and REF CURSOR types are supported as JDBC result sets.

This section covers the following topics:

s Oracle ROWID Type

s Oracle REF CURSOR Type Category

s Oracle BINARY_FLOAT and BINARY_DOUBLE Types
s Oracle SYS.ANYTYPE and SYS.ANYDATA Types

» The oracle.jdbc Package

Oracle ROWID Type

A ROWID is an identification tag unique for each row of an Oracle Database table. The
ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sgl.ROWID class is supplied as a container for ROWID SQL data type.

ROWIDs provide functionality similar to the getCursorName method specified in
the java.sgl.ResultSet interface and the setCursorName method specified in
the java.sqgl.Statement interface.

Oracle Extensions 4-13

Additional Oracle Type Extensions

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set get String method. You can also bind a ROWID to a
PreparedStatement parameter with the setString method. This enables in-place
updating, as in the example that follows.

Note: The oracle.sgl.ROWID class replaces

oracle. jdbc.driver.ROWID, which was used in previous
releases of Oracle JDBC. But, use the former class only when using
J2SE 1.5. For JSE 6, use the java.sqgl .RowId interface instead.

Example
The following example shows how to access and manipulate ROWID data:

Statement stmt = conn.createStatement () ;

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query

while (rset.next ())

{
String ename = rset.getString (1);
oracle.sqgl.ROWID rowid = rset.getROWID (2); // Get the ROWID as a String
pstmt.setString (1, ename.toLowerCase ());
pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
pstmt.executeUpdate (); // Do the update

Oracle REF CURSOR Type Category

A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has
the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSOR, then, identifies a reference to a cursor variable.
Because many cursor variables might exist to point to many work areas, REF CURSOR
can be thought of as a category or data type specifier that identifies many different
types of cursor variables.

Note: REF CURSOR instances are not scrollable.

To create a cursor variable, begin by identifying a type that belongs to the REF CURSOR
category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then, create the cursor variable by declaring it to be of the type DeptCursorTyp:

4-14 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

dept_cv DeptCursorTyp - - declare cursor variable

REF CURSOR, then, is a category of data types, rather than a particular data type.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, a REF CURSOR is materialized as a ResultSet object and can be accessed as
follows:

1. Use a JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the getCursor method of the OracleCallableStatement class to
materialize the REF CURSOR as a JDBC ResultSet object.

4. The result set is processed as requested.

Important: The cursor associated with a REF CURSOR is closed
whenever the statement object that produced the REF CURSOR is
closed.

Unlike in past releases, the cursor associated with a REF CURSOR is
not closed when the result set object in which the REF CURSOR was
materialized is closed.

Example
This example shows how to access REF CURSOR data.

import oracle.jdbc.*;

CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter (1, OracleTypes.CURSOR);
cstmt.execute () ;
cursor = ((OracleCallableStatement)cstmt).getCursor(1l);

// Use the cursor like a standard ResultSet
while (cursor.next ())
{System.out.println (cursor.getString(1l));}

In the preceding example:

= A CallableStatement object is created by using the prepareCall method of
the connection class.

» The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

Oracle Extensions 4-15

Additional Oracle Type Extensions

= Asalways, the output parameter of the callable statement must be registered to
define its type. Use the type code OracleTypes.CURSOR for a REF CURSOR.

s The callable statement is run, returning the REF CURSOR.

s TheCallableStatement objectis cast to OracleCallableStatement to use
the getCursor method, which is an Oracle extension to the standard JDBC API,
and returns the REF CURSOR into a ResultSet object.

Oracle BINARY_FLOAT and BINARY_DOUBLE Types

The Oracle BINARY_FLOAT and BINARY_DOUBLE types are used to store IEEE 574
float and double data. These correspond to the Java float and double scalar types
with the exception of negative zero and NaN.

See Also: Oracle Database SQL Language Reference

If you include a BINARY_DOUBLE column in a query, then the data is retrieved from
the database in the binary format. Also, the getDouble method will return the data in
the binary format. In contrast, for a NUMBER data type column, the number bits are
returned and converted to the Java double data type.

Note: The Oracle representation for the SQL FLOAT, DOUBLE
PRECISION, and REAL data types use the Oracle NUMBER
representation. The BINARY_FLOAT and BINARY_DOUBLE data types
can be regarded as proprietary types.

A call to the JDBC standard setDouble (int, double) method of the
PreparedStatement interface converts the Java double argument to Oracle
NUMBER style bits and send them to the database. In contrast, the
setBinaryDouble (int, double) method of the
oracle.jdbc.OraclePreparedStatement interface converts the data to the
internal binary bits and sends them to the database.

You must ensure that the data format used matches the type of the target parameter of
the PreparedStatement interface. This will result in correct data and least use of
CPU. If you use setBinaryDouble for a NUMBER parameter, then the binary bits are
sent to the server and converted to NUMBER format. The data will be correct, but server
CPU load will be increased. If you use setDouble for a BINARY_DOUBLE parameter,
then the data will first be converted to NUMBER bits on the client and sent to the server,
where it will be converted back to binary format. This will increase the CPU load on
both client and server and can result in data corruption as well.

The SetFloatAndDoubleUseBinary connection property when set to true causes
the JDBC standard APIs, setFloat (int, float), setDouble(int, double),
and all the variations, to send internal binary bits instead of NUBMER bits.

Note: Although this section largely discusses BINARY_DOUBLE, the
same is true for BINARY_FLOAT.

Oracle SYS.ANYTYPE and SYS.ANYDATA Types

Oracle Database 11g Release 1 (11.1) provides a Java interface to access the
SYS.ANYTYPE and SYS.ANYDATA Oracle types.

4-16 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

See Also: For information about these Oracle types, refer Oracle
Database PL/SQL Packages and Types Reference

An instance of the SYS . ANYTYPE type contains a type description of any SQL type,
persistent or transient, named or unnamed, including object types and collection
types. You can use the oracle.sqgl.TypeDescriptor class to access the
SYS.ANYTYPE type. An ANYTYPE instance can be retrieved from a PL/SQL procedure
or a SQL SELECT statement where SYS . ANYTYPE is used as a column type. To
retrieve an ANYTYPE instance from the database, use the getObject method. This
method returns an instance of the TypeDescriptor.

The retrieved ANYTYPE instance could be any of the following:
» Transient object type

» Transient predefined type

» Persistent object type

» Persistent predefined type

Example 4-1 Code Snippet for Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance on ANYTYPE from
the database:

ResultSet rs = stmt.executeQuery("select anytype_column from my_table");
TypeDescriptor td = (TypeDescriptor)rs.getObject(1l);
short typeCode = td.getInternalTypeCode();
if (typeCode == TypeDescriptor.TYPECODE_OBJECT)
{
// check if it's a transient type
if (td.isTransientType())
{
AttributeDescriptor[] attributes =
((StructDescriptor)td) .getAttributesDescriptor();
for(int 1=0; i<attributes.length; i++)
System.out.println(attributes[i].getAttributeName());
}
else
{
System.out.println(td.getTypeName()) ;
}

Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving Through
JDBC

This example provides a code snippet illustrating how to retrieve a transient object
type through JDBC.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
("BEGIN ? := transient_obj_type (); END;");
cstmt.registerOutParameter (1,0racleTypes.OPAQUE, "SYS.ANYTYPE") ;
cstmt.execute() ;
TypeDescriptor obj = (TypeDescriptor)cstmt.getObject(1);
if (!obj.isTransient())
System.out.println("This must be a JDBC bug");
cstmt.close();

Oracle Extensions 4-17

Additional Oracle Type Extensions

return obj;

Example 4-3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN
Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that
takes an ANYTYPE as IN parameter:

CallableStatement cstmt = conn.prepareCall ("BEGIN ? := dumpanytype(?); END;");
cstmt.registerOutParameter (1,0racleTypes.VARCHAR) ;

// obj 1s the instance of TypeDescriptor that you have retrieved
cstmt.setObject (2,0bj) ;

cstmt.execute () ;

String str = (String)cstmt.getObject(1);

The oracle.sqgl.ANYDATA class enables you to access SYS . ANYDATA instances from
the database. An instance of this class can be obtained from any valid instance of
oracle.sql.Datum class. The convertDatum factory method takes an instance of
Datum and returns an instance of ANYDATA. The syntax for this factory method is as
follows:

public static ANYDATA convertDatum(Datum datum) throws SQLException

The following is sample code for creating an instance of oracle. sgl . ANYDATA:

// struct is a valid instance of oracle.sql.STRUCT that either comes from the
// database or has been constructed in Java.
ANYDATA myAnyData = ANYDATA.convertDatum(struct);

Example 4-4 Accessing an Instance of ANYDATA from the Database

// anydata_table has been created as:
// CREATE TABLE anydata_tab (data SYS.ANYDATA)
Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery("select data from my_anydata_tab");
while(rs.next())
{
ANYDATA anydata = (ANYDATA)rs.getObject(1l);
if (lanydata.isNull())
{
TypeDescriptor td = anydata.getTypeDescriptor();
if (td.getTypeCode() == OracleType.TYPECODE_OBJECT)
STRUCT struct = (STRUCT)anydata.accessDatum() ;

Example 4-5 Inserting an Object as ANYDATA in a Database Table
Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUMBER, data SYS.ANYDATA)

CREATE OR REPLACE TYPE employee AS OBJECT (empno NUMBER, ename VARCHAR2 (10))

4-18 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

To create an instance of the EMPLOYEE SQL object type and to insert it into
anydata_tab:

PreparedStatement pstmt = conn.prepareStatement ("insert into anydata_table values
(?,2)");

StructDescriptor sd =
StructDescriptor.createDescriptor ("EMPLOYEE", (OracleConnection)conn) ;
Object[] objattr = new Object[2];

objattr[0] = new BigDecimal (1120);

objattr[1l] = new String("Papageno");

STRUCT myEmployeeStr = new STRUCT (sd,conn,objattr);

ANYDATA anyda = ANYDATA.convertDatum (myEmployeeStr) ;
pstmt.setInt(1,123);

pstmt.setObject (2, anyda) ;

pstmt.executeUpdate() ;

Example 4-6 Selecting an ANYDATA Column from a Database Table

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from anydata_table");
while(rs.next())
{
ANYDATA obj = (ANYDATA)rs.getObject(1);
TypeDescriptor td = obj.getTypeDescriptor();

}
rs.close();
stmt.close();

The oracle.jdbc Package

The interfaces of the oracle. jdbc package define the Oracle extensions to the
interfaces in java. sql. These extensions provide access to SQL-format data as
described in this chapter. They also provide access to other Oracle-specific
functionality, including Oracle performance enhancements.

For the oracle. jdbc package, Table 4-2 lists key interfaces and classes used for
connections, statements, and result sets.

Table 4-2 Key Interfaces and Classes of the oracle.jdbc Package

Interface
Name or Class Key Functionality
OracleDriver Class Implements java.sgl.Driver
OracleConnection Interface Provides methods to start and stop an

Oracle Database instance and to return
Oracle statement objects and methods to
set Oracle performance extensions for any
statement run in the current connection.

Implements java.sgl.Connection.

Oracle Extensions 4-19

Additional Oracle Type Extensions

Table 4-2 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Interface
Name or Class Key Functionality

OracleStatement Interface Provides methods to set Oracle
performance extensions for individual
statement.

Is a supertype of
OraclePreparedStatement and
OracleCallableStatement.

Implements java.sgl.Statement.

OraclePreparedStatement Interface Provides set XXX methods to bind
oracle.sql. * types into a prepared
statement.

Implements
java.sql.PreparedStatement.

Extends OracleStatement.

Is a supertype of
OracleCallableStatement.

OracleCallableStatement Interface Provides get XXX methods to retrieve
data in oracle. sqgl format and set XXX
methods to bind oracle.sqgl.* types
into a callable statement.

Implements
java.sgl.CallableStatement.

Extends OraclePreparedStatement.

OracleResultSet Interface Provides get XXX methods to retrieve
data in oracle. sqgl format.

Implements java.sgl.ResultSet.

OracleResultSetMetaData Interface Provides methods to get metadata
information about Oracle result sets, such
as column names and data types.

Implements
java.sgl.ResultSetMetaData.

OracleDatabaseMetaData Class Provides methods to get metadata
information about the database, such as
database product name and version, table
information, and default transaction
isolation level.

Implements
java.sql.DatabaseMetaData).

OracleTypes Class Defines integer constants used to identify

SQL types.

For standard types, it uses the same
values as the standard java.sqgl.Types
class. In addition, it adds constants for
Oracle extended types.

This section covers the following topics:
= Interface oracle.jdbc.OracleConnection
= Interface oracle.jdbc.OracleStatement

= Interface oracle.jdbc.OraclePreparedStatement

4-20 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

= Interface oracle.jdbc.OracleCallableStatement
s Interface oracle.jdbc.OracleResultSet

s Interface oracle.jdbc.OracleResultSetMetaData
s Class oracle.jdbc.OracleTypes

= Method getJavaSqlConnection

Interface oracle.jdbc.OracleConnection

This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11¢ Release 1 (11.1), new methods have been added to this
interface that enable the starting up and shutting down of an Oracle Database
instance. Also, for better visibility and clarity, all connection properties are defined as
constants in the OracleConnection interface.

This interface also defines factory methods for constructing oracle.sql data values
like DATE and NUMBER. Remember the following points while using factory methods:

= All code that constructs instances of the oracle. sql types should use the Oracle
extension factory methods. For example, ARRAY, BFILE, DATE, INTERVALDS,
NUMBER, STRUCT, TIME, TIMESTAMP, and so on.

= All code that constructs instances of the standard types should use the JDBC 4.0
standard factory methods. For example, CL.OB, BLOB, NCLOB, and so on.

s There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescriptor, and
StructDescriptor. These types are for internal driver use only.

Client Identifiers

In a connection pooling environment, the client identifier can be used to identify the
lightweight user using the database session currently. A client identifier can also be
used to share the Globally Accessed Application Context between different database
sessions. The client identifier set in a database session is audited when database
auditing is turned on.

See Also: Oracle Database Advanced Application Developer’s Guide
The following oracle. jdbc.OracleConnection methods are Oracle-defined
extensions:
s cancel

Performs an immediate (asynchronous) termination of any currently executing
operation on this connection

= commit

Commits the transaction with the given options
s getDefaultExecuteBatch

Retrieves the default update-batching value for this connection
m setDefaultExecuteBatch

Sets the default update-batching value for this connection

s getDefaultRowPrefetch

Oracle Extensions 4-21

Additional Oracle Type Extensions

Retrieves the default row-prefetch value for this connection
s setDefaultRowPrefetch

Sets the default row-prefetch value for this connection

Interface oracle.jdbc.OracleStatement

This interface extends standard JDBC statement functionality and is the superinterface
of the OraclePreparedStatement and OracleCallableStatement classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the
OracleConnection interface that sets these on a connectionwide basis.

The following oracle. jdbc.OracleStatement methods are Oracle-defined
extensions:

s defineColumnType

Defines the type you will use to retrieve data from a particular database table
column

Note: This method is no longer needed or recommended for use
with the JDBC Thin driver.

s getRowPrefetch
Retrieves the row-prefetch value for this statement
m setRowPrefetch

Sets the row-prefetch value for this statement

Interface oracle.jdbc.OraclePreparedStatement

This interface extends the OracleStatement interface and extends standard JDBC
prepared statement functionality. Also, the
oracle.jdbc.OraclePreparedStatement interface is extended by the
OracleCallableStatement interface. Extended functionality consists of set Xxx
methods for binding oracle.sqgl. * types and objects to prepared statements, and
methods to support Oracle performance extensions on a statement-by-statement basis.

Note: Do not use the PreparedStatement interface to create a
trigger that refers to a : NEW or : OLD column. Use Statement
instead. Using PreparedStatement will cause execution to fail
with the message java.sgl.SQLException: Missing IN or
OUT parameter at index:: 1

Interface oracle.jdbc.OracleCallableStatement

This interface extends the OraclePreparedStatement interface, which extends the
OracleStatement interface and incorporates standard JDBC callable statement
functionality.

4-22 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

Note: Do not use the CallableStatement interface to create a
trigger that refers to a : NEW or : OLD column. Use Statement
instead; using CallableStatement will cause execution to fail
with the message java.sgl.SQLException: Missing IN or
OUT parameter at index::1

Note:
m The setXXX(String, ...) and
registerOutParameter (String, ...) methods can be used

only if all binds are procedure or function parameters only. The
statement can contain no other binds and the parameter binds
must be indicated with a question mark (?) and not : XX.

s Ifyouare using setXXX(int,...),
setXXXAtName (String, . ..) or a combination of both, then
any output parameter is bound with
registerOutParameter (int, ...) and not
registerOutParameter (String, .. .), which is for named

parameter notation.

Interface oracle.jdbc.OracleResultSet

This interface extends standard JDBC result set functionality, implementing get XXX
methods for retrieving data into oracle.sqgl. * objects.

Interface oracle.jdbc.OracleResultSetMetaData

This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

See Also: "Using Result Set Metadata Extensions" on page 11-14

Class oracle.jdbc.OracleTypes

The OracleTypes class defines constants that JDBC uses to identify SQL types. Each
variable in this class has a constant integer value. The oracle.jdbc.OracleTypes
class duplicates the type code definitions of the standard Java java.sgl . Types class
and contains these additional type codes for Oracle extensions:

m OracleTypes.BFILE

m OracleTypes.ROWID

m OracleTypes.CURSOR (for REF CURSOR types)

Asin java.sqgl.Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the OracleTypes class in two
main areas: registering output parameters and in the setNull method of the
PreparedStatement class.

OracleTypes and Registering Output Parameters

The type codes in java.sgl.Types or oracle. jdbc.OracleTypes identify the
SQL types of the output parameters in the registerOutParameter method of the

Oracle Extensions 4-23

Additional Oracle Type Extensions

java.sqgl.CallableStatement and
oracle.jdbc.OracleCallableStatement interfaces.

These are the forms that the registerOutputParameter method can take for the
CallableStatement and OracleCallableStatement interfaces

cs.registerOutParameter (int index, int sqlType);
cs.registerOutParameter (int index, int sqlType, String sgl_name);
cs.registerOutParameter (int index, int sqglType, int scale);

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, sgl_name is the name given to the data type, for user-defined
types, when sgqlType is a STRUCT, REF, or ARRAY type code, and scale represents
the number of digits to the right of the decimal point, when sqlType is a NUMERIC or
DECIMAL type code.

The following example uses a CallableStatement interface to call a procedure
named charout, which returns a CHAR data type. Note the use of the
OracleTypes.CHAR type code in the registerOutParameter method.

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);

cs.execute ();

System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement interface to call structout, which
returns a STRUCT data type. The form of registerOutParameter requires you to
specify the type code, Types.STRUCT or OracleTypes.STRUCT, as well as the SQL
name, EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type,
so it is retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an
oracle.sqgl.STRUCT object, the statement object cs is cast to
OracleCallableStatement and the Oracle extension get STRUCT method is
invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

OracleTypes and the setNull Method

The type codes in Types and OracleTypes identify the SQL type of the data item,
which the setNull method sets to NULL. The setNull method can be found in the
java.sql.PreparedStatement and
oracle.jdbc.OraclePreparedStatement interfaces.

These are the forms that the setNull method can take for the PreparedStatement
and OraclePreparedStatement objects:

ps.setNull (int index, int sqglType);
ps.setNull (int index, int sglType, String sqgl_name) ;

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, and sgql_name is the name given to the data type, for

4-24 Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Type Extensions

user-defined types, when sgqlType is a STRUCT, REF, or ARRAY type code. If you enter
an invalid sqlType, a ParameterTypeConflict exception is thrown.

The following example uses a prepared statement to insert a null value into the
database. Note the use of OracleTypes.NUMERIC to identify the numeric object set
to NULL. Alternatively, Types .NUMERIC can be used.

PreparedStatement pstmt =
conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.

PreparedStatement pstmt = conn.prepareStatement
("INSERT INTO employee_table VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

Method getJavaSqlConnection

The getJavaSglConnection method of the oracle.sqgl. * classes returns
java.sqgl.Connection. This method is available for the following Oracle data type
classes:

Note: The getConnection method used in Oracle 8i and earlier
versions of JDBC driver returns
oracle.jdbc.driver.OracleConnection. The use of the classes
in the oracle. jdbc.driver package was deprecated in favor of the
oracle. jdbc package in Oracle 9i release. In Oracle Database 11g
Release 1 (11.1), the classes in the package oracle.jdbc.driver
have been desupported.

m oracle.sqgl.ARRAY
m oracle.sqgl.BFILE
m oracle.sgl.BLOB

m oracle.sqgl.CLOB

m oracle.sqgl.OPAQUE
m oracle.sqgl.REF

m oracle.sqgl.STRUCT

The following code snippet shows the getJavaSglConnection method in the
Array class:

public class ARRAY
{

java.sqgl.Connection getJavaSglConnection()
throws SQLException;

Oracle Extensions 4-25

DML Returning

DML Returning

The DML returning feature provides more functionality compared to retrieval of
auto-generated keys. It can be used to retrieve not only auto-generated keys, but also
other columns or values that the application may use.

Note:

s The server-side internal driver does not support DML returning
and retrieval of auto-generated keys.

= You cannot use both DML returning and retrieval of
auto-generated keys in the same statement.

The following sections explain the support for DML returning:
s Oracle-Specific APIs

= Running DML Returning Statements

= Example of DML Returning

= Limitations of DML Returning

See Also: "Retrieval of Auto-Generated Keys" on page 3-4

Oracle-Specific APls

The OraclePreparedStatement interface is enhanced with Oracle-specific
application programming interfaces (APIs) to support DML returning. The
registerReturnParameter and getReturnResultSet methods have been
added to the oracle. jdbc.OraclePreparedStatement interface, to register
parameters that are returned and data retrieved by DML returning.

The registerReturnParameter method is used to register the return parameter
for DML returning. The method throws a SQLException instance if an error occurs.
You must pass a positive integer specifying the index of the return parameter. You
also must specify the type of the return parameter. You can also specify the maximum
bytes or characters of the return parameter. This method can be used only with char
or RAW types. You can also specify the fully qualified name of a SQL structure type.

Note: If you do not know the maximum size of the return
parameters, then you should use registerReturnParameter (int
paramIndex, int externalType), which picks the default
maximum size. If you know the maximum size of return parameters,
using registerReturnParameter (int paramIndex, int
externalType, int maxSize) canreduce memory consumption.

The getReturnResultSet method fetches the data returned from DML returning
and returns it as a ResultSet object. The method throws a SQLException exception
if an error occurs.

Note: The Oracle-specific APIs for the DML returning feature are in
ojdbcs. jar for Java Development Kit (JDK) 1.5 and in ojdbc6 . jar
for JDK 1.6.

4-26 Oracle Database JDBC Developer's Guide and Reference

DML Returning

Running DML Returning Statements

Before running a DML returning statement, the JDBC application must call one or
more of the registerReturnParameter methods. The method provides the JDBC
drivers with information, such as type and size, of the return parameters. The DML
returning statement is then processed using one of the standard JDBC APIs,
executeUpdate or execute. You can then fetch the returned parameters as a
ResultSet object using the getReturnResultSet method of the
oracle.jdbc.OraclePreparedStatement interface.

In order to read the values in the ResultSet object, the underlying Statement
object must be open. When the underlying Statement object is closed, the returned
ResultSet object is also closed. This is consistent with ResultSet objects that are
retrieved by processing SQL query statements.

When a DML returning statement is run, the concurrency of the ResultSet object
returned by the getReturnResultSet method must be CONCUR_READ_ONLY and
the type of the ResultSet object must be TYPE_FORWARD_ONLY or
TYPE_SCROLL_INSENSITIVE.

Example of DML Returning

This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example,
assume that the maximum size of the name column is 100 characters. Because the
maximum size of the name column is known, the registerReturnParameter (int
paramIndex, int externalType, int maxSize) method is used.

OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement (
"delete from tabl where age < ? returning name into ?");
pstmt.setInt(1,18);

/** register returned parameter
* in this case the maximum size of name is 100 chars
*/
pstmt.registerReturnParameter (2, OracleTypes.VARCHAR, 100);

// process the DML returning statement

count = pstmt.executeUpdate();

if (count>0)

{
ResultSet rset = pstmt.getReturnResultSet(); //rest is not null and not empty
while(rset.next())
{

String name = rset.getString(1l);

The following code example also illustrates the use of DML returning. However, in
this case, the maximum size of the return parameters is not known. Therefore, the
registerReturnParameter (int paramIndex, int externalType) method

is used.
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement (
"insert into lobtab values (100, empty_clob()) returning coll, col2 into ?, 2");

Oracle Extensions 4-27

Accessing PL/SQL Index-by Tables

// register return parameters
pstmt.registerReturnParameter (1, OracleTypes.INTEGER) ;
pstmt.registerReturnParameter (2, OracleTypes.CLOB) ;

// process the DML returning SQL statement
pstmt.executeUpdate() ;

ResultSet rset = pstmt.getReturnResultSet();
int r;

CLOB clob;

if

{

(rset.next())

= rset.getInt(1);

System.out.println(r);
clob = (CLOB)rset.getClob(2);

Limitations of DML Returning

When using DML returning, be aware of the following:

It is unspecified what the getReturnResultSet method returns when it is
invoked more than once. You should not rely on any specific action in this regard.

The ResultsSet objects returned from the execution of DML returning statements
do not support the ResultSetMetaData type. Therefore, the applications must
know the information of return parameters before running DML returning
statements.

Streams are not supported with DML returning.
DML returning cannot be combined with batch update.

You cannot use both the auto-generated key feature and the DML returning
feature in a single SQL DML statement. For example, the following is not allowed:

PreparedStatement pstmt = conn.prepareStatement (’insert into orders (?, ?, ?)
returning order_id into ?");

pstmt.setInt (1, seq0l.NEXTVAL);

pstmt.setInt (2, 100);

pstmt.setInt (3, 966431502);

pstmt.registerReturnParam(4, OracleTypes.INTEGER);

pstmt.executeUpdate;

ResultSet rset = pstmt.getGeneratedKeys;

Accessing PL/SQL Index-by Tables

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by
table parameters. This section covers the following topics:

Overview
Binding IN Parameters

Receiving OUT Parameters

4-28 Oracle Database JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

s Type Mappings

Note: Index-by tables of PL/SQL records are not supported.

Overview

Oracle JDBC drivers support PL/SQL index-by tables of scalar data types. Table 4-3
displays the supported scalar types and the corresponding JDBC type codes.

Table 4-3 PL/SQL Types and Corresponding JDBC Types

PL/SQL Types JDBC Types
BINARY_INTEGER NUMERIC
NATURAL NUMERIC
NATURALN NUMERIC
PLS_INTEGER NUMERIC
POSITIVE NUMERIC
POSITIVEN NUMERIC
SIGNTYPE NUMERIC
STRING VARCHAR

Note: Oracle JDBC does not support RAW, DATE, and PL/SQL
RECORD as element types.

Typical Oracle JDBC input binding, output registration, and data access methods do
not support PL/SQL index-by tables. This chapter introduces additional methods to
support these types.

The OraclePreparedStatement and OracleCallableStatement classes define
the additional methods. These methods include the following;:

m setPlsglIndexTable

s registerIndexTableOutParameter

m getOraclePlsglIndexTable

m getPlsglIndexTable

These methods handle PL/SQL index-by tables as IN, OUT, or IN OUT parameters,

including function return values.

See Also: Oracle Database PL/SQL Language Reference

Binding IN Parameters

To bind a PL/SQL index-by table parameter in the IN parameter mode, use the
setPlsglIndexTable method defined in the OraclePreparedStatement and
OracleCallableStatement classes.

synchronized public void setPlsglIndexTable
(int paramIndex, Object arrayData, int maxLen, int curLen, int elemSglType,

int elemMaxLen) throws SQLException

Oracle Extensions 4-29

Accessing PL/SQL Index-by Tables

Table 4-4 describes the arguments of the setP1sglIndexTable method.

Table 44 Arguments of the setPlsqlindexTable Method

Argument Description
int paramIndex Indicates the parameter position within the statement.
Object arrayData Is an array of values to be bound to the PL/SQL index-by table

parameter. The value is of type java. lang.Object. The value
can be a Java primitive type array, such as int [], or a Java
object array, such as BigDecimal[].

int maxLen Specifies the maximum table length of the index-by table bind
value that defines the maximum possible curLen for batch
updates. For standalone binds, maxLen should use the same
value as curLen. This argument is required.

int curLen Specifies the actual size of the index-by table bind value in
arrayData. If the curLen value is smaller than the size of
arrayData, then only the curLen number of table elements is
passed to the database. If the curLen value is larger than the
size of arrayData, then the entire arrayData is sent to the
database.

int elemSglType Specifies the index-by table element type based on the values
defined in the OracleTypes class.

int elemMaxLen Specifies the index-by table element maximum length in case the
element type is CHAR, VARCHAR, or RAW. This value is ignored
for other types.

The following code example uses the set P1sglIndexTable method to bind an
index-by table as an IN parameter:

// Prepare the statement
OracleCallableStatement procin = (OracleCallableStatement)
conn.prepareCall ("begin procin (?); end;");

// index-by table bind value
int[] values = { 1, 2, 3 };

// maximum length of the index-by table bind value. This

// value defines the maximum possible "currentLen" for batch
// updates. For standalone binds, "maxLen" should be the

// same as "currentLen".

int maxLen = values.length;

// actual size of the index-by table bind value
int currentLen = values.length;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types.

int elemMaxLen = 0;

// set the value

procin.setPlsglIndexTable (1, values,
maxLen, currentLen,
elemSqglType, elemMaxLen) ;

4-30 Oracle Database JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

// execute the call
procin.execute ();

Receiving OUT Parameters

This section describes how to register a PL/SQL index-by table as an OUT parameter.
In addition, it describes how to access the OUT bind values in various mapping styles.

Note: The methods described in this section apply to function
return values and the IN OUT parameter mode as well.

Registering the OUT Parameters

To register a PL/SQL index-by table as an OUT parameter, use the
registerIndexTableOutParameter method defined in the
OracleCallableStatement class.

synchronized public void registerIndexTableOutParameter
(int paramIndex, int maxLen, int elemSqglType, int elemMaxLen)
throws SQLException

Table 4-5 describes the arguments of the registerIndexTableOutParameter
method.

Table 4-5 Arguments of the registerindexTableOutParameter Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

int maxLen Specifies the maximum table length of the index-by table bind
value to be returned.

int elemSqglType Specifies the index-by table element type based on the values
defined in the OracleTypes class.

int elemMaxLen Specifies the index-by table element maximum length in case the
element type is CHAR, VARCHAR, or FIXED_CHAR. This value is
ignored for other types.

The following code example uses the registerIndexTableOutParameter method
to register an index-by table as an OUT parameter:

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSglType = OracleTypes.NUMBER;

// index-by table element length in case the element type

// is CHAR, VARCHAR or FIXED_CHAR. This value is ignored for other
// types

int elemMaxLen = 0;

// register the return value

funcnone.registerIndexTableOutParameter
(1, maxLen, elemSqlType, elemMaxLen) ;

Oracle Extensions 4-31

Accessing PL/SQL Index-by Tables

Accessing the OUT Parameter Values

To access the OUT bind value, the OracleCallableStatement class defines
multiple methods that return the index-by table values in different mapping styles.
There are three mapping choices available in JDBC drivers:

Mappings Methods to Use
JDBC default mappings getPlsglIndexTable (int)
Oracle mappings getOraclePlsglIndexTable (int)

Java primitive type mappings getPlsglIndexTable (int, Class)

Type Mappings
This section covers the following topics:
s JDBC Default Mappings
s Oracle Mappings
s Java Primitive Type Mappings

JDBC Default Mappings

The getPlsglIndexTable (int) method returns index-by table elements using the
JDBC default mappings. The syntax for this method is the following:

public Object getPlsglIndexTable (int paramIndex)
throws SQLException

Table 4-6 describes the argument of the get P1sglIndexTable method.

Table 4-6 Argument of the getPlsqlindexTable Method

Argument Description
int paramIndex This argument indicates the parameter position within the
statement.

The return value is a Java array. The elements of this array are of the default Java type
corresponding to the SQL type of the elements. For example, for an index-by table
with elements of NUMERIC type code, the element values are mapped to BigDecimal
by Oracle JDBC driver, and the get P1sglIndexTable method returns a
BigDecimal[] array. For a JDBC application, you must cast the return value to
BigDecimal [] to access the table element values.

The following code example uses the get P1sglIndexTable method to return
index-by table elements with JDBC default mapping;:

// access the value using JDBC default mapping
BigDecimal[] values =
(BigDecimal[]) procout.getPlsglIndexTable (1);

// print the elements
for (int i=0; i<values.length; i++)
System.out.println (values[i].intValue());

Oracle Mappings

The getOraclePlsglIndexTable method returns index-by table elements using
Oracle mapping.

4-32 Oracle Database JDBC Developer's Guide and Reference

Accessing PL/SQL Index-by Tables

public Datum[] getOraclePlsglIndexTable (int paramIndex)
throws SQLException

Table 4-7 describes the argument of the getOraclePlsglIndexTable method.

Table 4-7 Argument of the getOraclePlsqlindexTable Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

The return value is an oracle. sgl.Datum array, and the elements in the array are of
the default Datum type corresponding to the SQL type of the element. For example,
the element values of an index-by table of numeric elements are mapped to the
oracle.sqgl.NUMBER type in Oracle mapping, and the
getOraclePlsglIndexTable method returns an oracle.sql.Datum array that
contains oracle.sqgl .NUMBER elements.

The following code example uses the getOraclePlsglIndexTable method to
access the elements of a PL/SQL index-by table OUT parameter, using Oracle
mapping:

// Prepare the statement

OracleCallableStatement procout = (OracleCallableStatement)
conn.prepareCall ("begin procout (?); end;");

// run the call
procout.execute ();

// access the value using Oracle JDBC mapping
Datum[] outvalues = procout.getOraclePlsglIndexTable (1);

// print the elements
for (int i=0; i<outvalues.length; i++)
System.out.println (outvalues[i].intValue());

Java Primitive Type Mappings

The getPlsglIndexTable (int, Class) method returns index-by table elements
in Java primitive types. The return value is a Java array. The syntax for this method is
the following:

synchronized public Object getPlsglIndexTable
(int paramIndex, Class primitiveType) throws SQLException

Table 4-8 describes the arguments of the get P1sglIndexTable method.

Table 4-8 Arguments of the getPIsqlindexTable Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

Oracle Extensions 4-33

Accessing PL/SQL Index-by Tables

Table 4-8 (Cont.) Arguments of the getPisqlindexTable Method

Argument Description

Class primitiveType Specifies a Java primitive type to which the index-by table
elements are to be converted. For example, if you specify
java.lang.Integer.TYPE, the return value is an int
array.

The following are the possible values of this parameter:
java.lang.Integer.TYPE
java.lang.Long.TYPE

java.lang.Float.TYPE
java.lang.Double.TYPE

java.lang.Short.TYPE

The following code example uses the get P1sglIndexTable method to access the
elements of a PL/SQL index-by table of numbers. In the example, the second
parameter specifies java.lang.Integer.TYPE and the return value of the
getPlsglIndexTable method is an int array.

OracleCallableStatement funcnone = (OracleCallableStatement)
conn.prepareCall ("begin ? := funcnone; end;");

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types

int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter (1, maxLen,

elemSqlType, elemMaxLen) ;
// execute the call
funcnone.execute ();

// access the value as a Java primitive array.
int[] values = (int[])
funcnone.getPlsglIndexTable (1, java.lang.Integer.TYPE);

// print the elements

for (int i=0; i<values.length; i++)
System.out.println (values[i]);

4-34 Oracle Database JDBC Developer's Guide and Reference

O

Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers
the features supported only by the JDBC Thin driver. It also provides basic
information about working with Oracle JDBC applets. This following topics are
covered in this chapter:

s Overview of JDBC Thin Client
» Additional Features Supported
= JDBCin Applets

Overview of JDBC Thin Client

The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to install.
It provides high performance, comparable to the performance provided by the JDBC
Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in Java, and
therefore, it is platform-independent. Also, this driver does not require any additional
Oracle software on the client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed
by Oracle to access data from Oracle Database. It can be used for application servers as
well as for applets. The driver allows a direct connection to the database by providing
an implementation of TCP/IP that implements Oracle Net and TTC on top of Java
sockets. Both of these protocols are lightweight implementation versions of their
counterparts on the server. The Oracle Net protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the
client-side, drivers can be used in Java applications or Java applets that run either on
the client or in the middle tier of a three-tier configuration. On the server-side, this
driver is used to access a remote Oracle Database instance or another session on the
same database.

Additional Features Supported

The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also
provides support for the following additional features:

= Support for Applets
s Default Support for Native XA

Features Specific to JDBC Thin 5-1

JDBC in Applets

Support for Applets

The JDBC Thin driver is the only Oracle JDBC driver that provides support for applets.
This driver can be downloaded along with the Java applet that is being run in a
browser.

Note: When the JDBC Thin driver is used with an applet, the
browser used on the client-side must have the capability to support
Java sockets.

The HTTP protocol, which is usually used for communication over a network, is
stateless. However, the JDBC Thin driver is not stateless. Therefore, the initial HTTP
request to download the applet and the JDBC Thin driver is stateless. After the JDBC
Thin driver establishes the database connection, the communication between the
browser and the database is stateful and in a two-tier configuration.

See Also: "JDBC in Applets"

Default Support for Native XA

Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native
XA. However, the JDBC Thin driver provides support for Native XA by default. This is
unlike the case of the JDBC OCI driver, in which the support for Native XA is not
enabled by default.

See Also: "Native-XA in Oracle JDBC Drivers" on page 28-20

JDBC in Applets

You can use only the Oracle JDBC Thin driver for an applet. This section describes
what you must do to connect an applet to a database. This description includes how
to use the Connection Manager feature of Oracle Database, or signed applets if you are
connecting to a database that is running on a different host from the Web server. It also
describes how your applet can connect to a database through a firewall. The section
concludes with how to package and deploy the applet.

The following topics are covered:

= Connecting to the Database Through the Applet

s Connecting to a Database on a Different Host Than the Web Server
s Using Applets with Firewalls

» Packaging Applets

= Specifying an Applet in an HTML Page

Connecting to the Database Through the Applet

The most common task of an applet using the JDBC driver is to connect to and query a
database. Because of applet security restrictions, unless particular steps are taken, an
applet can open TCP/IP sockets only to the host from which it was downloaded. This
is the host on which the Web server is running. This means that without these steps,
your applet can connect only to a database that is running on the same host as the Web
server.

5-2 Oracle Database JDBC Developer's Guide and Reference

JDBC in Applets

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would from
an application.

As with connecting from an application, there are two ways in which you can specify
the connection information to the driver. You can provide it in the form of
host:port:sid or in the form of TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host prodHost,
at port 1521, and system identifier (SID) ORCL, and you want to connect with user
name scott and password tiger, then use either of the two following connection
strings:

s Using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:0RCL";

OracleDataSource ods = new OracleDataSource() ;
ods.setURL (connString) ;

ods.setUser ("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();

= Using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp) (port=1521) (host=prodHost)))
OracleDataSource ods = new OracleDataSource();

ods.setURL (connString) ;

ods.setUser ("scott");

ods.setPassword("tiger");

Connection conn = ods.getConnection();
(connect_data= (INSTANCE_NAME=ORCL)))";

If you use the TNS keyword /value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and database server both require many resources. You seldom
find both servers running on the same computer. Usually, your applet connects to a
database on a host other than the one on which the Web server runs. If you want your
applet to connect to a database running on a different computer, then you have the
following options:

s Use the Oracle Connection Manager on the host computer. The applet can connect
to the Connection Manager, which connects to a database on another computer.

= Use signed applets, which can request socket connection privileges to other
computers.

Your applet can also take advantage of the data encryption and integrity checksum
features of the Advanced Security option of Oracle Database.

Connecting to a Database on a Different Host Than the Web Server

If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do this
in the following ways:

= Using the Oracle Connection Manager

Features Specific to JDBC Thin 5-3

JDBC in Applets

= Using Signed Applets

Using the Oracle Connection Manager

The Oracle Connection Manager is a lightweight, highly scalable program that can
receive Oracle Net packets and retransmit them to a different server. To a client
running Oracle Net, the Connection Manager looks exactly like a database server. An
applet that uses the JDBC Thin driver can connect to a Connection Manager running
on the Web server host and have the Connection Manager redirect the Oracle Net
packets to an Oracle server running on a different host.

Figure 5-1 illustrates the relationship between the applet, the Oracle Connection
Manager, and the database.

Figure 5-1 Applet, Connection Manager, and Database Relationship

any Oracle Net Listener
Applet TCP/IP CMAN Oracle Net
in Browser (only) protocol
a7
Web Server
webHost oraHost

Using the Oracle Connection Manager requires two steps:
» Install and run the Connection Manager.

= Write the connection string that targets the Connection Manager.

Installing and Running the Oracle Connection Manager

You must install the Connection Manager, available on the Oracle distribution media,
onto the Web server host.

On the Web server host, create a CMAN. ORA file in the ORACLE_HOME/NET8 /ADMIN
directory. The options you can declare in a CMAN. ORA file include firewall and
connection pooling support.

Here is an example of a very simple CMAN. ORA file. Replace web-server-host with
the name of your Web server host. The fourth line in the file indicates that the
Connection Manager is listening on port 1610. You must use the same port number in
your connection string for JDBC.

cman = (ADDRESS_LIST =
(ADDRESS = (PROTOCOL=TCP)
(HOST=web-server-host)
(PORT=1610)))
cman_profile = (parameter_list =
(MAXIMUM_RELAYS=512)
(LOG_LEVEL=1)
(TRACING=YES)

(RELAY_STATISTICS=YES)
(SHOW_TNS_INFO=YES)
(USE_ASYNC_CALL=YES)
(AUTHENTICATION_LEVEL=0)
)

After you create the file, start the Connection Manager at the operating system prompt
with the following command:

5-4 Oracle Database JDBC Developer's Guide and Reference

JDBC in Applets

cmctl start

To use your applet, you must now write the connection string for it.

Writing the URL that Targets the Connection Manager

The following text describes how to write the URL in your applet, so that the applet
connects to the Connection Manager and the Connection Manager connects with the
database. In the URL, you specify an address list that lists the protocol, port, and name
of the Web server host on which the Connection Manager is running, followed by the
protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 5-1. The Web
server on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on host
oraHost, listening on port 1521, and SID ORCL. You write the URL in TNS
keyword-value format:

String myURL =
"jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp) (port=1610) (host=webHost))
(address=(protocol=tcp) (port=1521) (host=oraHost)))
(connect_data= (INSTANCE_NAME=orcl))
(source_route=yes))";

OracleDataSource ods = new OracleDataSource() ;
ods.setURL (myURL) ;

ods.setUser ("scott") ;
ods.setPassword("tiger");

Connection conn = ods.getConnection();

The first element in the address_1list entry represents the connection to the
Connection Manager. The second element represents the database to which you want
to connect. The order in which you list the addresses is important.

When your applet uses a URL, such as the preceding one, it will function exactly as if
it were connected directly to the database on the host oraHost.

Connecting Through Multiple Connection Managers

Your applet can reach its target database even if it first has to go through multiple
Connection Managers. For example, if the Connection Managers form a proxy chain.
To do this, add the addresses of the Connection Managers to the address list, in the
order that you plan to access them. The database listener should be the last address on
this list.

Using Signed Applets

In a Java Development Kit (JDK) 1.2.x-based or later browser, an applet can request
socket connection privileges and connect to a database running on a different host
than the Web server host. Starting from Netscape 4.0, you perform this by signing your
applet, that is, writing a signed applet. You must follow these steps:

1. Sign the applet. For information about the steps you must follow to sign an applet,
refer to the Signed Applet Example at

http://java.sun.com/developer/technicalArticles/Security/Sign
ed/index.html

2. Include applet code that asks for appropriate privileges before opening a socket.

If you are using Netscape, then your code would include a statement like this:

Features Specific to JDBC Thin 5-5

JDBC in Applets

netscape.security.PrivilegeManager.enablePrivilege ("UniversalConnect") ;
OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:oracle:thin:scott/tiger@dlsun511:1721:0rcl");
Connection conn = ods.getConnection();

3. You must obtain an object-signing certificate. Refer to a site that provides
information about obtaining and installing a certificate.

For information about the Java Security AP, including signed applet examples, see the
following Sun Microsystems site:

http://java.sun.com/security

Using Applets with Firewalls

Under standard circumstances, an applet that uses the JDBC Thin driver cannot access
the database through a firewall. In general, the purpose of a firewall is to prevent
unauthorized clients from reaching the server. In the case of applets trying to connect
to the database, the firewall prevents the opening of a TCP/IP socket to the database.

In general, firewalls are rule-based. They have a list of rules that define which clients
can connect, and which cannot. Firewalls compare the host name of the client with the
rules and, based on this comparison, either grant the client access or deny access. If the
host name lookup fails, then the firewall tries again. This time, the firewall extracts the
IP address of the client and compares it to the rules. The firewall is designed to do this
so that users can specify rules that include host names as well as IP addresses.

You can solve the firewall issue by using an Oracle Net-compliant firewall and
connection strings that comply with the firewall configuration. Oracle Net-compliant
tirewalls are available from many leading vendors.

An unsigned applet can access only the same host from which it is downloaded. In this
case, the Oracle Net-compliant firewall must be installed on that host. In contrast, a
signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

Connecting through a firewall requires two steps, as described in the following
sections:

= Configuring a Firewall for Applets that use the JDBC Thin Driver
= Writing a URL to Connect Through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running an Oracle Net-compliant
firewall.

Java applets do not have access to the local system. Because of the security limitations,
applets cannot access the host name or environment variables on the local system. As a
result, the JDBC Thin driver cannot access the host name on which it is running. The
firewall cannot be provided with the host name. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following to the list of firewall
rules:

= Add the IP address, and not the host name, of the host on which the JDBC applet
is running.

= Ensure that the host name, " jdbc__", never appears in the firewall rules. This
host name has been hard-coded as a false host name inside the driver to force an
IP address lookup. If you do enter this host name in the list of rules, then every
applet using the JDBC Thin driver will be able to go through your firewall.

5-6 Oracle Database JDBC Developer's Guide and Reference

JDBC in Applets

Writing a URL to Connect Through a Firewall

To write a URL that enables you to connect through a firewall, you must specify the
name of the firewall host and the name of the database host to which you want to
connect.

For example, if you want to connect to a database on host oraHost, listening on port
1521, with SID ORCL, and you are going though a firewall on host fireWallHost,
listening on port 1610, then use the following URL:

OracleDataSource ods = new OracleDataSource() ;

ods.setURL("jdbc:oracle:thin:" +
"@(description=(address_list=" +
(address=(protocol=tcp) (host=<firewall-host>) (port=1610))" +
" (address=(protocol=tcp) (host=oraHost) (port=1521)))" +
" (source_route=yes)" +
" (connect_data=(SERVICE_NAME=orcl)))");

)i

ods.setUser ("scott");

ods.setPassword ("tiger");

Connection conn = ods.getConnection();

Note: To connect through a firewall, you cannot specify the URL
in host :port:sid syntax. For example, a URL specified as
follows will not work:

String connString =
"jdbc:oracle:thin:@example.us.oracle.com:1521:0rcl";

OracleDataSource ods = new OracleDataSource() ;
ods.setURL (connString) ;

ods.setUser ("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();

The first element in the address_1list represents the connection to the firewall. The
second element represents the database to which you want to connect. Note that the
order in which you specify the addresses is important.

You can also write the preceding URL in the following format:

String connString =
"jdbc:oracle:thin:@(description=(address_list=
(address=(protocol=tcp) (port=1600) (host=fireWallHost))
(address=(protocol=tcp) (port=1521) (host=oraHost)))
(connect_data= (INSTANCE_NAME=orcl))
(source_route=yes))";

OracleDataSource ods = new OracleDataSource() ;

ods.setURL (connString) ;

ods.setUser ("scott");

ods.setPassword("tiger");

Connection conn = ods.getConnection();

When your applet uses a URL similar to the preceding URL, it will act as if it were
connected to the database on host oraHost.

Features Specific to JDBC Thin 5-7

JDBC in Applets

Note: All the parameters shown in the preceding example are
required. In address_1list, the firewall address must precede the
database server address.

Packaging Applets

After you have coded your applet, you must package it and make it available to users.
To package an applet, you will need your applet class files and the JDBC driver class
files contained in the ojdbc5. jar or ojdbcé . jar files.

Follow these steps:

1. Move the JDBC driver classes file ojdbc5 . jar or ojdbc6 . jar to an empty
directory.

If your applet connects to a database with a non-US7ASCITI and
non-WE8IS08859P1 character set and uses Oracle object types, then also move the
orail8n. jar file to the same directory.

2. Add your applet classes files to the directory and any other files that the applet
may require.

3. Zip the applet classes and driver classes together into a single ZIP or Java Archive
(JAR) file. The single ZIP file should contain the following:

» Class files from the ojdbc5. jar or ojdbcé6 . jar files and required class files
from the orail8n. jar files, if the applet requires Globalization Support

= Your applet classes
4. Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
CODEBASE=Applet_Samples
</APPLET>

Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have the following attributes: CODE, ARCHIVE, CODEBASE, WIDTH,
and HEIGHT. These attributes are described in the following sections:

= CODE, HEIGHT, and WIDTH
= CODEBASE
= ARCHIVE

CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial width
and height to specify the size of the applet display area. You use the HEIGHT and
WIDTH attributes to specify the size, measured in pixels. This size should not count any
windows or dialog boxes that the applet opens.

The APPLET tag must also specify the name of the file that contains the compiled
applet. Specify the file name with the CODE attribute. Any path specified must be
relative to the base URL of the applet. The path cannot be absolute.

5-8 Oracle Database JDBC Developer's Guide and Reference

JDBC in Applets

In the following example, JdbcApplet.class is the name of the compiled applet:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE attribute, then the classes for the applet and the JDBC
Thin driver must be in the same directory as the HTML page.

Note: Do not include the file name extension, .class, in the CODE
attribute.

CODEBASE

The CODEBASE attribute is optional. It specifies the base URL of the applet, that is, the
name of the directory that contains the code of the applet. If it is not specified, then the
URL of the document is used. This means that the classes for the applet and the JDBC
Thin driver must be in the same directory as the HTML page. For example, if the
current directory is my_Dir:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The attribute, CODEBASE=". ", indicates that the applet resides in the current
directory, my_Dir.

Now, consider that the value of CODEBASE is set to Applet_Samples, as follows:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="Applet_Samples"
</APPLET>

This would indicate that the applet resides in themy_Dir/Applet_Samples
directory.

ARCHIVE

The ARCHIVE attribute is optional. It specifies the name of the archive file that contains
the applet classes and resources the applet needs. Oracle recommends using an archive
file, which saves many extra round-trips to the server.

The archive file will be preloaded. If you have more than one archive file in the list,
separate them with commas. In the following example, the class files are stored in the
archive file, JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

Note: Version 3.0 browsers do not support the ARCHIVE attribute.

Features Specific to JDBC Thin 5-9

JDBC in Applets

5-10 Oracle Database JDBC Developer's Guide and Reference

6

Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity (JDBC)
Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This chapter
contains the following sections:

= OCI Connection Pooling

» Transparent Application Failover
s OCI Native XA

s OCI Instant Client

= Instant Client Light (English)

OCI Connection Pooling

The OCI connection pooling feature is an Oracle-designed extension. The connection
pooling provided by the JDBC OCI driver enables applications to have multiple logical
connections, all of which are using a small set of physical connections. Each call on a
logical connection is routed on to the physical connection that is available at the given
time.

See Also: Chapter 24, "OCI Connection Pooling"

Transparent Application Failover

The Transparent Application Failover feature of the JDBC OCI driver enables you to
automatically reconnect to a database if the database instance to which the connection
is made goes down. The new database connection, though created by a different node,
is identical to the original.

See Also: Chapter 27, "Transparent Application Failover"

OCI Native XA

The JDBC OCI driver also provides a feature called Native XA.

See Also: "OCI Native XA" on page 28-20

OCl Instant Client

This section covers the following topics:

s Overview of Instant Client

Features Specific to JDBC OCI Driver 6-1

OCI Instant Client

= Benefits of Instant Client

= JDBC OCI Instant Client Installation Process

= Usage of Instant Client

= Patching Instant Client Shared Libraries

= Regeneration of Data Shared Library and ZIP files
= Database Connection Names for OCI Instant Client

s Environment Variables for OCI Instant Client

Overview of Instant Client

The Instant Client feature makes it extremely easy to deploy OCI, Oracle C++ Call
Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-OCI based
customer applications, by eliminating the need for an Oracle home. The storage space
requirement of a JDBC OCI application running in the Instant Client mode is
significantly reduced compared to the same application running on a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk
space used by a full client installation.

Table 6-1 shows the Oracle client-side files required to deploy a JDBC OCI application.
Library names of release 11.1 are used in the table. The number part of library names
will change in future releases to agree with the release.

Table 6-1 OCI Instant Client Shared Libraries

Linux and UNIX

Description for Linux and UNIX

Systems Systems Microsoft Windows Description for Microsoft Windows
libclnstsh.so.11.1 Client Code Library oci.dll Forwarding functions that applications
link with
libociei.so OCI Instant Client Data Shared oraocieill.dll Data and code
Library
libnnzll.so Security Library orannzsbbll.dll Security Library
libocijdbcll.so OCI Instant Client JDBC Library ocijdbecll.dl1l OCI Instant Client JDBC Library

ALL JDBC Java Archive See Also: "Check the Environment All JDBC JAR files See Also: "Check the Environment

(JAR) files

Variables" on page 2-3 Variables" on page 2-3

Note: To provide Native XA functionality, you must copy the JDBC
XA class library. On UNIX systems, this library, 1ibheteroxall.so,
is located in the ORACLE_HOME/ jdbc/1ib directory. On Microsoft
Windows, this library, heteroxall.dll, is located in the
ORACLE_HOME\bin directory.

Benefits of Instant Client

The benefits of Instant Client are the following;:
= Installation involves copying a small number of files.

s The number of required files and the total disk storage on the Oracle client-side
are significantly reduced.

» There is no loss of functionality or performance for applications deployed with the
Instant Client.

» Itis simple for independent software vendors to package applications.

6-2 Oracle Database JDBC Developer's Guide and Reference

OCl Instant Client

JDBC OCI Instant Client Installation Process

The Instant Client libraries can be installed by choosing the Instant Client option from
Oracle Universal Installer. The Instant Client libraries can also be downloaded from
the Oracle Technology Network Web site. The installation process is as follows:

1. Download and install the Instant Client shared libraries and Oracle JDBC class
libraries to a directory, such as instantclient.

2. Set the library path environment variable to the directory from Step 1. For
example, on UNIX systems, set the LD_LIBRARY_PATH environment variable to
instantclient. On Microsoft Windows, set the PATH environment variable to
locate the instantclient directory.

3. Add the full path names of the JDBC class libraries to the CLASSPATH
environment variable.

After completing these steps you are ready to run the JDBC OCI application.

The JDBC OCI application operates in the Instant Client mode when the OCI and
JDBC shared libraries are accessible through the library path environment variable. In
the Instant Client mode, there is no dependency on the ORACLE_HOME and none of the
other code and data files provided in ORACLE_HOME is needed by JDBC OCI, except
for the tnsnames. ora file.

Instant Client can be also installed from Oracle Universal Installer by selecting the
Instant Client option. The Instant Client files should always be installed in an empty
directory. As with the OTN installation, you must set the LD_LIBRARY_PATH
environment variable to the Instant Client directory to operate in the Instant Client
mode.

If you have done a complete client installation by choosing the Admin option, then the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries and JDBC class libraries in a full client installation is:

On Linux or UNIX systems:
s libociei.solibraryisin $ORACLE_HOME/instantclient

m libclnstsh.so.11.1,1libocijdbcll.so,and libnnzll.so arein
SORACLE_HOME/1lib

s The JDBC class libraries are in SORACLE_HOME/jdbc/1ib

On Microsoft Windows:

= oraocieill.dll library isin ORACLE_HOME\instantclient

m oci.dll,ocijdbcl1.d1ll, and orannzsbbll.dll are in ORACLE_HOME\bin
s The JDBC class libraries are in ORACLE_HOME\ jdbc\1ib

By copying these files to a different directory, setting the library path to locate this
directory, and adding the path names of the JDBC class libraries to the CLASSPATH
environment variable, you can enable running the JDBC OCI application in the Instant
Client mode.

Features Specific to JDBC OCI Driver 6-3

OCI Instant Client

Note:

= To provide Native XA functionality, you must copy the JDBC XA
class library. On UNIX, this library, 1ibheteroxall. so, is
located in ORACLE_HOME/ jdbc/1lib. On Windows, this library,
heteroxall.dll,islocated in ORACLE_HOME\bin.

= All the libraries must be copied from the same ORACLE_HOME and
must be placed in the same directory.

= On hybrid platforms, such as Sparcé4, if the JDBC OCI driver
needs to be operated in the Instant Client mode, then you must
copy the 1libociei. so library from the
ORACLE_HOME/instantclient32 directory. You must copy all
other Sparc64 libraries needed for the JDBC OCI Instant Client
from the ORACLE_HOME/1ib32 directory.

= Only one set of Oracle libraries should be specified in the library
path environment variable. That is, if you have multiple
directories containing Instant Client libraries, then only one such
directory should be specified in the library path environment
variable.

= If you have an Oracle home on your computer, then you should
not have the ORACLE_HOME/1ib and Instant Client directories in
the library path environment variable simultaneously, regardless
of the order in which they appear in the variable. That is, only one
of ORACLE_HOME/11ib directory (for non-Instant Client operation)
or Instant Client directory (for Instant Client operation) should be
specified in the library path environment variable.

s Oracle recommends that you download Instant Client from Oracle
Technology Network (OTN)

http://www.oracle.com/technology/tech/oci/instantclien
t/instantclient.html

Usage of Instant Client

Instant Client is a deployment feature and should be used for running production
applications. For development, a full installation is necessary to access demonstration
programs and so on. In general, all JDBC OCI functionality is available to an
application being run in the Instant Client mode, except that the Instant Client mode is
for client-side operation only. Therefore, server-side external procedures cannot
operate in the Instant Client mode.

Patching Instant Client Shared Libraries

Because Instant Client is a deployment feature, the emphasis has been on reducing the
number and size of files required to run a JDBC OCI application. Therefore, all files
needed to patch Instant Client shared libraries are not available in an Instant Client
deployment. An ORACLE_HOME based full client installation is needed to patch the
Instant Client shared libraries. The opatch utility will take care of patching the Instant
Client shared libraries.

Note: On Microsoft Windows, you cannot patch the shared libraries.

6-4 Oracle Database JDBC Developer's Guide and Reference

OCl Instant Client

After applying the patch in an ORACLE_HOME environment, copy the files listed in
Table 6-1, " OCI Instant Client Shared Libraries" to the instant client directory as
described in "JDBC OCI Instant Client Installation Process".

Instead of copying individual files, you can generate Instant Client ZIP files for OCI,
OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared Library and
ZIP files". Then, you can copy the ZIP files to the target computer and unzip them as
described in "JDBC OCI Instant Client Installation Process".

The opatch utility stores the patching information of the ORACLE_HOME installation
in 1ibclnstsh.so.11.1. This information can be retrieved by the following
command:

genezi -v
Note that if the computer from where Instant Client is deployed does not have the

genezi utility, then it must be copied from the ORACLE_HOME/bin directory on the
computer that has the ORACLE_HOME installation.

Regeneration of Data Shared Library and ZIP files

The OCI Instant Client Data Shared Library, 1ibociei . so, can be regenerated by
performing the following steps in an Administrator Installation of ORACLE_HOME:

mkdir -p SORACLE_HOME/rdbms/install/instantclient/light
cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

A new version of the 1ibociei. so Data Shared Library based on the current files in
the ORACLE_HOME is then placed in the
ORACLE_HOME/rdbms/install/instantclient directory.

Note that the location of the regenerated Data Shared Library, 1ibociei. so,is
different from that of the original Data Shared Library, 1ibociei. so, which is
located in the ORACLE_HOME/instantclient directory.

The preceding steps also generate Instant Client ZIP files for OCI, OCCI, JDBC, and
SQL*Plus.

Regeneration of data shared library and ZIP files is not available on Microsoft
Windows platforms.

Database Connection Names for OCI Instant Client

All Oracle Net naming methods that do not require the ORACLE_HOME or TNS_ADMIN
environment variables to locate configuration files, such as tnsnames . ora or
sglnet.ora, work in the Instant Client mode. In particular, the connection string can
be specified in the following formats:

s A Thin-style connection string of the form:

host:port:service_name

For example:

url="jdbc:oracle:oci:@//example.com:5521:bjava2l"

= A SQL connection URL string of the form:

//host: [port] [/service name]

For example:

Features Specific to JDBC OCI Driver 6-5

OCI Instant Client

url="jdbc:oracle:oci:@//example.com:5521/bjava2l

= Asan Oracle Net keyword-value pair. For example:

url="jdbc:oracle:oci:@(DESCRIPTION= (ADDRESS= (PROTOCOL=tcp)
(HOST=dlsun242) (PORT=5521))
(CONNECT_DATA= (SERVICE_NAME=bjava2l)))"

Naming methods that require TNS_ADMIN to locate configuration files continue to
work if the TNS_ADMIN environment variable is set.

See Also: Oracle Database Net Services Administrator’s Guide for more
information about connection formats

If the TNS_ADMIN environment variable is not set and TNSNAMES entries, such as
instl, are used, then the ORACLE_HOME environment variable must be set and the
configuration files are expected to be in the SORACLE_HOME/network/admin
directory.

Note: In this case, the ORACLE_HOME environment variable is used
only for locating Oracle Net configuration files. No other component
of Client Code Library uses the value of the ORACLE_HOME
environment variable.

The empty connection string is not supported. However, an alternate way to use the
empty connection string is to set the TWO_TASK environment variable on UNIX
systems, or the LOCAL variable on Microsoft Windows, to either a tnsnames.ora
entry or an Oracle Net keyword-value pair. If TWO_TASK or LOCAL is set to a
tnsnames . ora entry, then the tnsnames. ora file must be loaded by the
TNS_ADMIN or ORACLE_HOME setting.

Example
Consider that the 1istener. ora file on the database server contains the following
information:

LISTENER = (ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573)))

SID_LIST_LISTENER = (SID_LIST=
(SID_DESC=(SID_NAME=rdbms3)
(GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
(ORACLE_HOME=/home/dba/rdbms3/oracle)))

You can connect to this server in one of the following ways:

url = "jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=server6) (PORT=1573))
(CONNECT_DATA= (SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

url "jdbc:oracle:oci:@//server6:1573/rdbms3.server6.us.alchemy.com"

Alternatively, you can set the TWO_TASK environment variable to any of the
connection strings and connect to the database server without specifying the
connection string along with the sqlplus command. For example, set the TWO_TASK
environment in one of the following ways:

setenv TWO_TASK " (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573))

6-6 Oracle Database JDBC Developer's Guide and Reference

OCl Instant Client

(CONNECT_DATA= (SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

setenv TWO_TASK //server6:1573/rdbms3.server6.us.alchemy.com

Now, you can connect to the database server using the following URL:

url = "jdbc:oracle:oci:@"

The connection string can also be stored in the tnsnames . ora file. For example,
consider that the tnsnames . ora file contains the following:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573))

(CONNECT_DATA= (SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

If this tnsnames . ora file is located in the /home/webuser/instantclient
directory, then you can set the TNS_ADMIN environment variable (or LOCAL on
Microsoft Windows) as follows:

setenv TNS_ADMIN /home/webuser/instantclient

Now, you can connect as follows:

url = "jdbc:oracle:oci:@conn_str"

Note: The TNS_ADMIN environment variable specifies the directory
where the tnsnames . ora file is located. However, TNS_ADMIN does
not specify the full path of the tnsnames . ora file, instead it specifies
the directory.

If this tnsnames . ora file is located in the
/network/serveré/home/dba/oracle/network/admin directory in the Oracle
home, then instead of using TNS_ADMIN to locate the tnsnames . ora file, you can set
the ORACLE_HOME environment variable as follows:

setenv ORACLE_HOME /network/server6/home/dba/oracle
Now, you can connect with either of the conn_str connection strings, as specified
previously.

If tnsnames . ora can be located by TNS_ADMIN or ORACLE_HOME, then TWO_TASK
can be set to:

setenv TWO_TASK conn_str

You can then connect with the following URL:

url = "jdbc:oracle:oci:@"

Environment Variables for OCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of the
Globalization Support files and error message files. An OCI-only application does not
require the ORACLE_HOME environment variable to be set. However, if the variable is
set, then it does not have an impact on the operation of the OCI driver. OCI will
always obtain its data from the Data Shared Library. If the Data Shared Library is not
available, only then is the ORACLE_HOME environment variable used and a full client

Features Specific to JDBC OCI Driver 6-7

Instant Client Light (English)

installation is assumed. Even though the ORACLE_HOME environment variable is not
required to be set, if it is set, then it must be set to a valid operating system path name
that identifies a directory.

Environment variables ORA_NLS10 and ORA_NLSPROFILES33 are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the smaller,
default, timezone.dat file from the Data Shared Library is used. If the larger
timezlrg.dat file is to be used from the Data Shared Library, then set the
ORA_TZFILE environment variable to the name of the file without any absolute or
relative path names. That is:

On UNIX systems:

setenv ORA_TZFILE timezlrg.dat

On Microsoft Windows:

set ORA_TZFILE timezlrg.dat

If the driver is not operating in the Instant Client mode, then the ORA_TZFILE
variable, if set, names a complete path name, as it does in previous Oracle Database
releases.

If TNSNAMES entries are used, then, as mentioned earlier, the TNS_ADMIN directory
must contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then the
ORACLE_HOME/network/admin directory must contain Oracle Net Services
configuration files.

Instant Client Light (English)

The lightweight version of Instant Client is called Instant Client Light (English).
Instant Client Light is the short name. Instant Client Light is a significantly smaller
version of Instant Client. This reduces the disk space requirements of the client
installation by about 63 MB. This is achieved by the lightweight Data Shared Library,
libociicus.so on UNIX systems, which is 4 MB in size and a subset of the data
shared library, 1ibociei. so, which is 67 MB in size.

The lightweight data shared library supports only a few character sets and error
messages that are only in English. Therefore, the name Instant Client Light (English).
Instant Client Light is designed for applications that require English-only error
messages and use either US7ASCII, WESDEC, or one of the Unicode character sets.

Table 6-2 lists the names of the data shared libraries for Instant Client and Instant
Client Light (English) on different platforms. The table also specifies the size of each
data shared library in parentheses following the library file name.

Table 6-2 Data Shared Library for Instant Client and Instant Client Light (English)

Platform Instant Client Instant Client Light (English)
Sun Solaris libociei.so (67 MB) libociicus.so (4 MB)
Linux libociei.so (67 MB) libociicus.so (4 MB)
Microsoft Windows oraocieill.dll (85 MB) oraociicus10.d11 (15 MB)

This section covers the following topics:

= Globalization Settings

6-8 Oracle Database JDBC Developer's Guide and Reference

Instant Client Light (English)

s Operation

s Installation

Globalization Settings

Operation

The NLS_LANG setting determines the language, territory, and character set as
language_territory.characterset. InInstant Client Light, Janguage can only
be American, territory can be any that is supported, and characterset can be
any one of the following:

= Single-byte
- US7ASCII
- WESDEC
- WESMSWIN1252
- WESISO8859P1
= Unicode
- UTE8
- AL16UTF16
- AL32UTE8

Specifying character set or national character set other than those listed as the client or
server character set or setting the language in NLS_LANG on the client will throw one
of the following errors:

s ORA-12734
s ORA-12735
s ORA-12736
s ORA-12737

With Instant Client Light, the error messages obtained are only in English. Therefore,
the valid values for the NLS_LANG setting are of the type:

American_territory.characterset

where, territory can be any valid and supported territory and characterset can
be any one the previously listed character sets.

Instant Client Light can operate with the OCI environment handles created in the
OCI_UTF16 mode.

See Also: Oracle Database Globalization Support Guide for more
information about NLS settings.

To operate in the Instant Client Light mode, an application must set the
LD_LIBARARY_PATH environment variable in UNIX systems or the PATH
environment variable in Microsoft Windows to a location containing the client and
data shared libraries. OCI applications by default look for the OCI Data Shared
Library, 1ibociei.so in the LD_ LIBRARY_PATH environment variable in UNIX
systems or the oraocieill.dll Data Shared Library in the PATH environment
variable in Microsoft Windows, to determine if the application should operate in the
Instant Client mode. In case this library is not found, then OCI tries to load the Instant

Features Specific to JDBC OCI Driver 6-9

Instant Client Light (English)

Client Light Data Shared Library, 1ibociicus.so in UNIX systems or
libociicus10.dl1l in Microsoft Windows. If this library is found, then the
application operates in the Instant Client Light mode. Otherwise, a non-Instant Client
mode is assumed.

Installation

Instant Client Light can be installed in one of the following ways:
s From OTN
You can download the required file from

http://www.oracle.com/technology/tech/oci/instantclient/insta
ntclient.html

For Instant Client Light, instead of downloading and expanding the Basic package,
download and unzip the Basic Light package. The instantclient_10_2
directory in which the lightweight libraries are unzipped should be empty before
unzipping the files.

s From Client Admin Install

Instead of copying 1ibociei.so or oraocieill.dll from the
ORACLE_HOME/instantclient directory, copy libociicus.so or
oraociicl0.dll from the ORACLE_HOME/instantclient/light directory.
That is, the Instant Client directory on the LD_LIBRARY_PATH environment
variable, in UNIX systems, should contain the Instant Client Light Data Shared
Library, 1ibociicus.so, instead of the larger OCI Instant Client Data Shared
Library, 1ibociei. so. In Microsoft Windows, the PATH environment variable
should contain oraociicus10.dl1 instead of oraocieill.dll.

s From Oracle Universal Installer

If the Instant Client option is selected from Oracle Universal Installer, then
libociei.so (or oraocieill.dll on Microsoft Windows) is installed in the
base directory of the installation which is going to be placed on the
LD_LIBRARY_PATH environment variable. This is so that Instant Client Light is
not enabled by default. The Instant Client Light Data Shared Library,
libociicus.so (or oraociicusl10.d1l1 on Microsoft Windows), is installed in
the 1ight subdirectory of the base directory. Therefore, to operate in the Instant
Client Light mode, the OCI Data Shared Library, 1ibociei.so (or
oraocieill.dll on Windows) must be deleted or renamed and the Instant
Client Light Data Shared Library must be copied from the 1ight subdirectory to
the base directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in
my_oraic_11_1 directory on the LD_LIBRARY_PATH environment variable, then
one would need to do the following to operate in the Instant Client Light mode:

cd my_oraic_11_1
rm libociei.so
mv light/libociicus.so .

Note: All the Instant Client files should always be copied or installed
in an empty directory. This is to ensure that no incompatible binaries
exist in the installation.

6-10 Oracle Database JDBC Developer's Guide and Reference

7

Server-Side Internal Driver

This chapter covers the following topics:

s Overview of the Server-Side Internal Driver
= Connecting to the Database

= Exception-Handling Extensions

= Session and Transaction Context

s Testing JDBC on the Server

s Loading an Application into the Server

Overview of the Server-Side Internal Driver

The server-side internal driver is intrinsically tied to Oracle Database and to the Java
Virtual Machine (JVM). The driver runs as part of the same process as the database. It
also runs within the default session, the same session in which the JVM was started.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database. The
entire JVM operates in the same address space as the database and the SQL engine.
Access to the SQL engine is a function call. This enhances the performance of your
Java Database Connectivity (JDBC) applications and is much faster than running a
remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, application programming
interfaces (APIs), and Oracle extensions as the client-side drivers. This makes
application partitioning very straightforward. For example, if you have a Java
application that is data-intensive, then you can easily move it into the database server
for better performance, without having to modify the application-specific calls.

Connecting to the Database

As described in the preceding section, the server-side internal driver runs within a
default session. Therefore, you are already connected. There are two methods to access
the default connection:

s Use the OracleDataSource.getConnection method, with any of the
following forms as the URL string:

— Jjdbc:oracle:kprb
— Jjdbc:default:connection

— Jjdbc:oracle:kprb:

Server-Side Internal Driver 7-1

Connecting to the Database

— Jjdbc:default:connection:

» Use the Oracle-specific defaultConnection method of the OracleDriver
class.

Using defaultConnection is generally recommended.

Note: You are no longer required to register the OracleDriver
class for connecting with the server-side internal driver.

Connecting with the OracleDriver Class defaultConnection Method

The defaultConnection method of the oracle. jdbc.OracleDriver classis an
Oracle extension and always returns the same connection object. Even if you call this
method multiple times, assigning the resulting connection object to different variable
names, then only a single connection object is reused.

You need not include a connection string in the defaultConnection call. For
example:

import java.sql.*;
import oracle.jdbc.*;

class JDBCConnection

{
public static Connection connect() throws SQLException

{

Connection conn = null;
try {
// connect with the server-side internal driver
conn = ora.defaultConnection();

}

} catch (SQLException e) {...}
return conn;
}
}

Note that there is no conn. close call in the example. When JDBC code is running
inside the target server, the connection is an implicit data channel, not an explicit
connection instance as from a client. It should not be closed.

If you do call the close method, then be aware of the following:

= All connection instances obtained through the defaultConnection method,
which actually reference the same database connection, will be closed and
unavailable for further use, with state and resource cleanup as appropriate.
Running defaultConnection afterward would result in a new connection
object.

= Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the OracleDataSource.getConnection Method

To connect to the internal server connection from code that is running within the target
server, you can use the OracleDataSource.getConnection method with either of
the following URLs:

OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:oracle:kprb") ;

7-2 Oracle Database JDBC Developer's Guide and Reference

Exception-Handling Extensions

Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:default:connection") ;
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb:");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL ("jdbc:default:connection:");
Connection conn = ods.getConnection();

Any user name or password you include in the URL is ignored in connecting to the
default server connection.

The OracleDataSource.getConnection method returns a new Java Connection
object every time you call it. The fact that OracleDataSource.getConnection
returns a new connection object every time you call it is significant if you are working
with object maps or type maps. A type map is associated with a specific Connection
object and with any state that is part of the object. If you want to use multiple type
maps as part of your program, then you can call getConnection to create a new
Connection object for each type map.

Note: Although the OracleDataSource.getConnection method
is returning a new object every time you call it, it is not creating a new
database connection every time.

Exception-Handling Extensions

The server-side internal driver, in addition to having standard exception-handling
capabilities, such as getMessage (), getErrorCode (), and getSQLState (),
provides the oracle. jdbc.driver.OracleSQLException class, which is a legacy
from the earliest server-side internal driver. This class is a subclass of the standard
java.sqgl.SQLException class and is not available to the client-side JDBC drivers
or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related errors
being placed in an internal error stack. The JDBC server-side internal driver retrieves
errors from the stack and places them in a chain of OracleSQLException objects.

You can use the following methods in processing these exceptions:
m SQLException getNextException/|()

This method returns the next exception in the chain or a null value if there are no
further exceptions. You can start with the first exception you receive and work
through the chain. This is a standard method.

s int getNumParameters () (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of the
error message. These may indicate what type of error occurred, what kind of

Server-Side Internal Driver 7-3

Session and Transaction Context

operation was being attempted, or the invalid or affected values. This method
returns the number of parameters included with this error. It is an Oracle
extension.

s Object[] getParameters () (Oracle extension)

This method returns a Java Object [] array containing the parameters included
with this error. It is an Oracle extension.

However, in 11g release 1, only a subset of the exceptions thrown by the driver are
instances of this class. In 11g release 1 (11.1), this class is deprecated and will be
removed in the next release.

Note: Oracle strongly discourages the use of this class.

Exception-handling differs depending on the version of JDK you are using.

Session and Transaction Context

The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was started. In effect, you
are already connected to the database on the server. This is different from the
client-side where there is no default session. You must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.commit () ;

or:

conn.rollback();

Note: As a best practice, it is recommended not to commit or
rollback a transaction inside the server.

Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All the
programs in the samples directory can be run on the server, with only minor
modifications. Usually, these modifications concern only the connection statement.

Consider the following code fragment which obtains a connection to a database:

ods.setUrl (
"jdbc:oracle:oci:@(DESCRIPTION=
(ADDRESS= (PROTOCOL=TCP) (HOST=cluster_alias)
(PORT=1521))
(CONNECT_DATA= (SERVICE_NAME=service_name)))");
ods.setUser ("scott");
ods.setPassword ("tiger");
Connection conn = ods.getConnection();

7-4 Oracle Database JDBC Developer's Guide and Reference

Loading an Application into the Server

We can modify this code fragment for use in the server-side internal driver. In the
server-side internal driver, no user, password, or database information is necessary.
For the connection statement, you use:

ods.setUrl (
"jdbc:oracle:kprb:@") ;
Connection conn = ods.getConnection();

However, the most convenient way to get a connection is to call the
OracleDriver.defaultConnection method, as follows:

Connection conn = OracleDriver.defaultConnection();

Loading an Application into the Server

When loading an application into the server, you can load . class files that you have
already compiled on the client or you can load . java source files and have them
automatically compiled on the server.

In either case, use the 1oadjava utility to load your files. You can either specify
source file names on the command line or put the files into a Java Archive (JAR) file
and specify the JAR file name on the command line.

The 1oadjava script, which runs the actual utility, is in the bin directory in your
Oracle home. This directory should already be in your path once Oracle has been
installed.

Note: The loadjava utility supports compressed files.

Loading Class Files into the Server

Consider a case where you have the following three class files in your application:
Fool.class, Foo2.class, and Foo3.class. Each class is written into its own class
schema object in the server.

You can load the class files using the default JDBC Oracle Call Interface (OCI) driver in
the following ways:

= Specifying the individual class file names, as follows:

loadjava -user scott Fool.class Foo2.class Foo3.class
Password: password

= Specifying the class file names using a wildcard, as follows:

loadjava -user scott Foo*.class
Password: password

= Specifying a JAR file that contains the class files, as follows:

loadjava -user scott Foo.jar
Password: password

You can load the files using the JDBC Thin driver, as follows:

loadjava -thin -user scott@localhost:1521:0RCL Foo.jar
Password: password

Server-Side Internal Driver 7-5

Loading an Application into the Server

Note: Because the server-side embedded JVM uses Java
Development Kit (JDK) 1.5, it is advisable to compile classes under
JDK 1.5, if they will be loaded into the server. This will catch
incompatibilities during compilation, instead of at run time.

Loading Source Files into the Server

If you enable the loadjava -resolve option when loading a . java source file,
then the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code and one or more class schema
objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema object
without any compilation. In this case, however, the source is implicitly compiled the
first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo . java, using the
default JDBC OCI driver:

loadjava -user scott -resolve Foo.java
Password: password

Or, use the following command to load using the JDBC Thin driver:

loadjava -thin -user scott@localhost:1521:0RCL -resolve Foo.java
Password: password

Either of these will result in appropriate class schema objects being created in addition
to the source schema object.

Note: Oracle generally recommends compiling source on the
client, whenever possible, and loading the . class files instead of
the source files into the server.

7-6 Oracle Database JDBC Developer's Guide and Reference

Part Il

Connection and Security

This part consists of chapters that discuss the use of data sources and URLs to connect
to the database. It also includes chapters that discuss the security features supported
by the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and Thin
drivers, Secure Sockets Layer (SSL) support in JDBC Thin driver, and middle-tier
authentication through proxy connections.

Part III contains the following chapters:

» Chapter 8, "Data Sources and URLs"

s Chapter 9, "JDBC Client-Side Security Features"
» Chapter 10, "Proxy Authentication"

8

Data Sources and URLs

This chapter discusses connecting applications to databases using Java Database
Connectivity (JDBC) data sources, as well as the URLs that describe databases. This
chapter contains the following sections:

s Data Sources

= Database URLs and Database Specifiers

Data Sources

Data sources are standard, general-use objects for specifying databases or other
resources to use. The JDBC 2.0 extension application programming interface (API)
introduced the concept of data sources. For convenience and portability, data sources
can be bound to Java Naming and Directory Interface (JNDI) entities, so that you can
access databases by logical names.

The data source facility provides a complete replacement for the previous JDBC
DriverManager facility. You can use both facilities in the same application, but it is
recommended that you transition your application to data sources.

This section covers the following topics:

s Overview of Oracle Data Source Support for JNDI

» Features and Properties of Data Sources

s Creating a Data Source Instance and Connecting

s Creating a Data Source Instance, Registering with JNDI, and Connecting
= Supported Connection Properties

= Using Roles for SYS Login

s Configuring Database Remote Login

= Bequeath Connection and SYS Logon

s Properties for Oracle Performance Extensions

Overview of Oracle Data Source Support for JNDI

The JNDI standard provides a way for applications to find and access remote services
and resources. These services can be any enterprise services. However, for a JDBC
application, these services would include database connections and services.

Data Sources and URLs 8-1

Data Sources

JNDI allows an application to use logical names in accessing these services, removing
vendor-specific syntax from application code. JNDI has the functionality to associate a
logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required to
use this functionality, but accessing databases through JNDI logical names makes the
code more portable.

Note: Using JNDI functionality requires the jndi . jar file to be
in the CLASSPATH environment variable. This file is included with
the Java products on the installation CD. You must add it to the
CLASSPATH environment variable separately. You can also obtain it
from the Sun Microsystems Web site, but it is advisable to use the
version from Oracle, because it has been tested with the Oracle
drivers.

Features and Properties of Data Sources

By using the data source functionality with JNDI, you do not need to register the
vendor-specific JDBC driver class name and you can use logical names for URLs and
other properties. This ensures that the code for opening database connections is
portable to other environments.

The DataSource Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard
javax.sql.DataSource interface:

public interface DataSource
{
Connection getConnection() throws SQLException;
Connection getConnection(String username, String password)
throws SQLException;

}

Oracle implements this interface with the OracleDataSource class in the
oracle. jdbc.pool package. The overloaded getConnection method returns a
connection to the database.

To use other values, you can set properties using appropriate setter methods. For
alternative user names and passwords, you can also use the getConnection method
that takes these parameters as input. This would take priority over the property
settings.

Note: The OracleDataSource class and all subclasses
implement the java.io.Serializable and
javax.naming.Referenceable interfaces.

Properties of DataSource

The OracleDataSource class, as with any class that implements the DataSource
interface, provides a set of properties that can be used to specify a database to connect
to. These properties follow the JavaBeans design pattern.

8-2 Oracle Database JDBC Developer's Guide and Reference

Data Sources

Table 8-1 and Table 8-2 list OracleDataSource properties. The properties in
Table 8-1 are standard properties according to the Sun Microsystems specification.
The properties in Table 8-2 are Oracle extensions.

Note: Oracle does not implement the standard roleName property.

Table 8—1 Standard Data Source Properties

Name Type Description

databaseName String Name of the particular database on the server. Also
known as the SID in Oracle terminology.

dataSourceName String Name of the underlying data source class. For
connection pooling, this is an underlying pooled
connection data source class. For distributed
transactions, this is an underlying XA data source class.

description String Description of the data source.

networkProtocol String Network protocol for communicating with the server.
For Oracle, this applies only to the JDBC Oracle Call
Interface (OCI) drivers and defaults to tcp.

password String Password for the connecting user.

portNumber int Number of the port where the server listens for requests

serverName String Name of the database server

user String Name for the login

The OracleDataSource class implements the following setter and getter methods
for the standard properties:

public
public
public
public
public
public
public
public
public
public
public
public
public
public

public

synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized
synchronized

synchronized

void setDatabaseName (String dbname)
String getDatabaseName ()

void setDataSourceName (String dsname)
String getDataSourceName ()

void setDescription(String desc)
String getDescription()

void setNetworkProtocol (String np)
String getNetworkProtocol ()

void setPassword(String pwd)

void setPortNumber (int pn)

int getPortNumber ()

void setServerName (String sn)
String getServerName ()

void setUser (String user)

String getUser ()

Note:

For security reasons, there is no getPassword () method.

Data Sources and URLs 8-3

Data Sources

Table 8-2 Oracle Extended Data Source Properties

Name

Type

Description

connectionCacheName

connectionCacheProperties

connectionCachingEnabled

connectionProperties

driverType

fastConnectionFailoverEnabled

implicitCachingEnabled

loginTimeout

logWriter

maxStatements

serviceName

tnsEntry

url

nativeXa

ONSConfiguration

String
java.util.P
roperties
Boolean

java.util.P
roperties

String

Boolean

Boolean

int

java.io.Pri
ntWriter

int

String

String

String

Boolean

String

Specifies the name of the cache. This cannot be
changed after the cache has been created.

Specifies properties for implicit connection cache.

Specifies whether implicit connection cache is in use.

Specifies the connection properties.

Specifies Oracle JDBC driver type. It can be one of
oci, thin, or kprb.

Specifies whether Fast Connection Failover is in use.

Specifies whether the implicit statement connection
cache is enabled.

Specifies the maximum time in seconds that this
data source will wait while attempting to connect to
a database.

Specifies the log writer for this data source.

Specifies the maximum number of statements in the
application cache.

Specifies the database service name for this data
source.

Specifies the TNS entry name, relevant only for the
OCI driver. The TNS entry name corresponds to the
TNS entry specified in the tnsnames . ora
configuration file. This property is only for
OracleXADatasource.

Enable this OracleXADataSource property when
using the Native XA feature with the OCI driver, to
access Oracle pre-8.1.6 databases and later. If the
tnsEntry property is not set when using the
Native XA feature, then a SQLException with
error code ORA-17207 is thrown

Specifies the URL of the database connection string.
Provided as a convenience, it can help you migrate
from an older Oracle Database. You can use this
property in place of the Oracle tnsEntry and
driverType properties and the standard
portNumber, networkProtocol, serverName,
and databaseName properties.

Allows an OracleXADataSource using the Native
XA feature with the OCI driver, to access Oracle
pre-8.1.6 databases and later. If the nativeXxa
property is enabled, be sure to set the tnsEntry
property as well. This property is only for
OracleXADatasource.

This DataSource property defaults to false.

Specifies the ONS configuration string that is used
to remotely subscribe to FaN/ONS events.

8-4 Oracle Database JDBC Developer's Guide and Reference

Data Sources

Note:

» This table omits properties that supported the deprecated
connection cache based on OracleConnectionCache.

= Because Native XA performs better than Java XA, use Native
XA whenever possible.

The OracleDataSource class implements the following set XXX and get XXX
methods for the Oracle extended properties:

String getConnectionCacheName ()

java.util.Properties getConnectionCacheProperties ()

void setConnectionCacheProperties(java.util.Properties cp)
java.util.Properties getConnectionProperties|()

void setConnectionProperties(java.util.Properties cp)

Note: Use the setConnectionProperties method to set the
properties of the connection and the
setConnectionCacheProperties method to set the properties of
the connection cache.

For more information about the properties of the connection refer to
"Supported Connection Properties" on page 8-8.

For more information about the properties of the connection refer to
"Connection Cache Properties" on page 21-8.

boolean getConnectionCachingEnabled()
void setImplicitCachingEnabled/()
String getDriverType ()

void setDriverType (String dt)
String getURL()

void setURL(String url)

String getTNSEntryName ()

void setTNSEntryName (String tns)
boolean getNativeXA ()

void setNativeXA (boolean nativeXAa)
String getONSConfiguration ()

void setONSConfiguration(String onsConfig)

If you are using the server-side internal driver, that is, the driverType property is set
to kprb, then any other property settings are ignored.

If you are using the JDBC Thin or OCI driver, then note the following:

A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and password
property settings:

Data Sources and URLs 8-5

Data Sources

jdbc:oracle:thin:scott/tiger@localhost:1521:0rcl

» Settings for user and password are required, either directly through the URL
setting or through the getConnection call. The user and password settings in
a getConnection call take precedence over any property settings.

» If the url property is set, then any tnsEntry, driverType, portNumber,
networkProtocol, serverName, and databaseName property settings are
ignored.

» If the tnsEntry property is set, which presumes the url property is not set, then
any databaseName, serverName, por tNumber, and networkProtocol
settings are ignored.

s If you are using an OCI driver, which presumes the driverType property is set
to oci, and the networkProtocol is set to ipc, then any other property settings
are ignored.

Also, note that getConnectionCacheName () will return the name of the cache only
if the ConnectionCacheName property of the data source is set after caching is
enabled on the data source.

Creating a Data Source Instance and Connecting

This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as
appropriate, and get a connection instance, as in the following example:

OracleDataSource ods = new OracleDataSource() ;
ods.setDriverType("oci");

ods.setServerName ("dlsun999") ;
ods.setNetworkProtocol ("tcp") ;
ods.setDatabaseName ("816") ;
ods.setPortNumber (1521) ;

ods.setUser ("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();

Or, optionally, override the user name and password, as follows:

Connection conn = ods.getConnection("bill", "lion");

Creating a Data Source Instance, Registering with JNDI, and Connecting

This section exhibits JNDI functionality in using data sources to connect to a database.
Vendor-specific, hard-coded property settings are required only in the portion of code

that binds a data source instance to a JNDI logical name. From that point onward, you
can create portable code by using the logical name in creating data sources from which
you will get your connection instances.

Note: Creating and registering data sources is typically handled
by a JNDI administrator, not in a JDBC application.

8-6 Oracle Database JDBC Developer's Guide and Reference

Data Sources

Initialize Data Source Properties

Create an OracleDataSource instance, and then initialize its properties as
appropriate, as in the following example:

OracleDataSource ods = new OracleDataSource() ;
ods.setDriverType ("oci");

ods.setServerName ("dlsun999") ;
ods.setNetworkProtocol ("tcp") ;
ods.setDatabaseName ("816") ;
ods.setPortNumber (1521) ;

ods.setUser ("scott");
ods.setPassword("tiger");

Register the Data Source

Once you have initialized the connection properties of the OracleDataSource
instance ods, as shown in the preceding example, you can register this data source
instance with JNDI, as in the following example:

Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);

Calling the JNDI InitialContext () constructor creates a Java object that references
the initial JNDI naming context. System properties, which are not shown, instruct
JNDI which service provider to use.

The ctx.bind call binds the OracleDataSource instance to a logical JNDI name.
This means that anytime after the ctx.bind call, you can use the logical name
jdbc/sampledb in opening a connection to the database described by the properties
of the OracleDataSource instance ods. The logical name jdbc/sampledb is
logically bound to this database.

The JNDI namespace has a hierarchy similar to that of a file system. In this example,
the JNDI name specifies the subcontext jdbc under the root naming context and
specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard
javax.naming package.

Note: The JDBC 2.0 Specification requires that all JDBC data
sources be registered in the jdbc naming subcontext of a JNDI
namespace or in a child subcontext of the jdbc subcontext.

Open a Connection

To perform a lookup and open a connection to the database logically bound to the
JNDI name, use the logical JNDI name. Doing this requires casting the lookup result,
which is otherwise a Java Object, to OracleDataSource and then using its
getConnection method to open the connection.

Here is an example:

OracleDataSource odsconn = (OracleDataSource)ctx.lookup ("jdbc/sampledb");
Connection conn = odsconn.getConnection();

Data Sources and URLs 8-7

Data Sources

Supported Connection Properties

For a detailed list of connection properties that Oracle JDBC drivers support, see the
Javadoc.

Using Roles for SYS Login

To specify the role for the SYS login, use the internal_logon connection property.
To logon as SYS, set the internal_logon connection property to SYSDBA or
SYSOPER.

Note: The ability to specify a role is supported only for the sys
user name.

For a bequeath connection, we can get a connection as SYS by setting the
internal_logon property. For a remote connection, we need additional password
file setting procedures.

Configuring Database Remote Login

Before the JDBC Thin driver can connect to the database as SYSDBA, you must
configure the user, because Oracle Database security system requires a password file
for remote connections as an administrator. Perform the following:

1.

Set a password file on the server-side or on the remote database, using the orapwd
password utility. You can add a password file for user sys as follows:

= InUNIX

orapwd file=$SORACLE_HOME/dbs/orapw entries=200
Enter password: password

s In Microsoft Windows
orapwd file=%0RACLE_HOME%\database\PWDsid_name.ora entries=200

Enter password: password

file must be the name of the password file. passwordis the password for the
user SYS. It can be altered using the ALTER USER statement in SQL Plus. You
should set entries to a value higher than the number of entries you expect.

The syntax for the password file name is different on Microsoft Windows and
UNIX.

See Also: Oracle Database Administrator’s Guide

Enable remote login as sysdba. This step grants SYSDBA and SYSOPER system
privileges to individual users and lets them connect as themselves.

Stop the database, and add the following line to initservice_name.ora,in
UNIX, or init.ora, in Microsoft Windows:

remote_login_passwordfile=exclusive
The initservice_name.ora file is located at ORACLE_HOME/dbs/ and also at

ORACLE_HOME/admin/db_name/pfile/. Ensure that you keep the two files
synchronized.

The init.ora file is located at $ORACLE_BASE%\ADMIN\db_name\pfile\.

8-8 Oracle Database JDBC Developer's Guide and Reference

Data Sources

3. Change the password for the SYS user. This is an optional step.

PASSWORD sys

Changing password for sys
New password: password
Retype new password: password

4. Verify whether SYS has the SYSDBA privilege.

SQL> select * from vSpwfile_users;
USERNAME SYSDB SYSOP

5. Restart the remote database.

Example 8-1 Using SYS Login To Make a Remote Connection

//This example works regardless of language settings of the database.
/** case of remote connection using sys **/

import java.sqgl.*;

import oracle.jdbc.*;

import oracle.jdbc.pool.*;

// create an OracleDataSource

OracleDataSource ods = new OracleDataSource() ;

// set connection properties

java.util.Properties prop = new java.util.Properties();

prop.put ("user", "sys");
prop.put ("password", "sys");
prop.put ("internal_logon", "sysoper");

ods.setConnectionProperties (prop) ;

// set the url

// the url can use oci driver as well as:

// url = "jdbc:oracle:oci8:@instl"; the instl is a remote database
String url = "jdbc:oracle:thin:@//myHost:1521/service_name";
ods.setURL(url) ;

// get the connection

Connection conn = ods.getConnection();

Bequeath Connection and SYS Logon

The following example illustrates how to use the internal_logon and SYSDBA
arguments to specify the SYS login. This example works regardless of the database's
national-language settings of the database.

/** Example of bequeath connection **/
import java.sqgl.*;

import oracle.jdbc.*;

import oracle.jdbc.pool.*;

// create an OracleDataSource instance
OracleDataSource ods = new OracleDataSource() ;

// set neccessary properties

java.util.Properties prop = new java.util.Properties();
prop.put ("user", "sys");

prop.put ("password", "sys");

prop.put ("internal_logon", "sysdba");
ods.setConnectionProperties (prop) ;

Data Sources and URLs 8-9

Data Sources

// the url for bequeath connection
String url = "jdbc:oracle:oci8:@";
ods.setURL(url) ;

// retrieve the connection
Connection conn = ods.getConnection();

Properties for Oracle Performance Extensions

Some of the connection properties are for use with Oracle performance extensions.
Setting these properties is equivalent to using corresponding methods on the
OracleConnection object, as follows:

» Setting the defaultRowPrefetch property is equivalent to calling
setDefaultRowPrefetch.

= Setting the remarksReporting property is equivalent to calling
setRemarksReporting.

See Also: "DatabaseMetaData TABLE_REMARKS Reporting" on
page 23-19

» Setting the defaultBatchvalue property is equivalent to calling
setDefaultExecuteBatch

See Also: "Oracle Update Batching" on page 23-3

Example

The following example shows how to use the put method of the
java.util.Properties class, in this case, to set Oracle performance extension
parameters.

//import packages and register the driver
import java.sql.*;

import java.math.*;

import oracle.jdbc.*;

import oracle.jdbc.pool.OracleDataSource;

//specify the properties object
java.util.Properties info = new java.util.Properties();

info.put ("user", "scott");

info.put ("password", "tiger");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchvalue", "5");

//specify the datasource object

OracleDataSource ods = new OracleDataSource() ;
ods.setURL("jdbc:oracle:thin:@//myhost:1521/orcl") ;
ods.setUser ("scott");

ods.setPassword ("tiger");
ods.setConnectionProperties (info);

8-10 Oracle Database JDBC Developer's Guide and Reference

Database URLs and Database Specifiers

Database URLs and Database Specifiers
Database URLs are strings. The complete URL syntax is:

jdbc:oracle:driver_type: [username/password] @database_specifier

Note:

s The brackets indicate that the username/password pair is
optional.

= kprb, the internal server-side driver, uses an implicit
connection. Database URLs for the server-side driver end after
the driver type.

The first part of the URL specifies which JDBC driver is to be used. The supported
driver_type values are thin, oci, and kprb.

The remainder of the URL contains an optional user name and password separated by
a slash, an @, and the database specifier, which uniquely identifies the database to
which the application is connected. Some database specifiers are valid only for the
JDBC Thin driver, some only for the JDBC OCI driver, and some for both.

Database Specifiers
Table 8-3, shows the possible database specifiers, listing which JDBC drivers support
each specifier.

Note:

» Starting Oracle Database 10g, Oracle Service IDs are not
supported.

s Oracle Database 10g no longer supports Oracle Names as a
naming method.

Table 8-3 Supported Database Specifiers

Supported
Specifier Drivers Example
Oracle Net Thin, OCI Thin, using an address list:
3222??3? url="jdbc:oracle:thin:@ (DESCRIPTION=
p (LOAD_BALANCE=0n)
(ADDRESS_LIST=
(ADDRESS= (PROTOCOL=TCP) (HOST=hostl) (PORT=1521))
(ADDRESS= (PROTOCOL=TCP) (HOST=host2) (PORT=1521)))
(CONNECT_DATA= (SERVICE_NAME=service name)))"
OCI, using a cluster:
"jdbc:oracle:oci:@(DESCRIPTION=
(ADDRESS= (PROTOCOL=TCP) (HOST=cluster_alias)
(PORT=1521))
(CONNECT_DATA= (SERVICE_NAME=service_name)))"
Thin-style service Thin Refer to "Thin-style Service Name Syntax" for details.
name

"jdbc:oracle:thin:scott/tiger@//myhost:1521/myservic
ename"

Data Sources and URLs 8-11

Database URLs and Database Specifiers

Table 8-3 (Cont.) Supported Database Specifiers

Supported
Specifier Drivers Example
LDAP syntax Thin Refer to LDAP Syntax for details.
Bequeath OCI Empty. That is, nothing after @

connection "jdbc:oracle:oci:scott/tiger/@"

TNSNames alias Thin, OCI Refer to "TNSNames Alias Syntax" for details.

Thin-style Service Name Syntax
Thin-style service names are supported only by the JDBC Thin driver. The syntax is:

@//host_name:port_number/service_name

For example:

jdbc:oracle:thin:scott/tiger@//myhost:1521/myservicename

Note: The JDBC Thin driver supports only the TCP/IP protocol.

TNSNames Alias Syntax

You can find the available TNSNAMES entries listed in the tnsnames . ora file on the
client computer from which you are connecting. On Windows, this file is located in the
ORACLE_HOME\NETWORK\ADMIN directory. On UNIX systems, you can find it in the
ORACLE_HOME directory or the directory indicated in your TNS_ADMIN environment
variable.

For example, if you want to connect to the database on host myhost as user scott
with password tiger that has a TNSNAMES entry of MyHostString, then write the
following:

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName ("MyTNSAlias") ;

ods.setUser ("scott");
ods.setPassword("tiger");
ods.setDriverType("oci");

Connection conn = ods.getConnection();

The oracle.net.tns_admin system property must be set to the location of the
tnsnames . ora file so that the JDBC Thin driver can locate the tnsnames . ora file.
For example:

System.setProperty ("oracle.net.tns_admin", "c:\\Temp");
String url = "jdbc:oracle:thin:@tns_entry";

Note: When using TNSNames with the JDBC Thin driver, you must
set the oracle.net. tns_admin property to the directory that
contains your tnsnames . ora file.

java -Doracle.net.tns_admin=$ORACLE_HOME/network/admin

8-12 Oracle Database JDBC Developer's Guide and Reference

Database URLs and Database Specifiers

LDAP Syntax

An example of database specifier using the Lightweight Directory Access Protocol
(LDAP) syntax is as follows:

"jdbc:oracle:thin:@ldap://1dap.acme.com:7777/sales, cn=0racleContext,dc=com"

When using SSL, change this to:

"jdbc:oracle:thin:@ldaps://ldap.acme.com:7777/sales, cn=0racleContext,dc=com"

Note: The JDBC Thin driver can use LDAP over SSL to
communicate with Oracle Internet Directory if you substitute
ldaps: for 1dap: in the database specifier. The LDAP server must
be configured to use SSL. If it is not, then the connection attempt
will hang.

The JDBC Thin driver supports failover of a list of LDAP servers during the service
name resolution process, without the need for a hardware load balancer. Also,
client-side load balancing is supported for connecting to LDAP servers. A list of space
separated LDAP URLs syntax is used to support failover and load balancing.

When a list of LDAP URLs is specified, both failover and load balancing are enabled
by default. The oracle.net.ldap_loadbalance connection property can be used
to disable load balancing, and the oracle.net.ldap_failover connection
property can be used to disable failover.

An example, which uses failover, but with client-side load balancing disabled, is as
follows:

Properties prop = new Properties();

String url =

"jdbc:oracle:thin:@ldap://1ldapl.acme.com:3500/cn=salesdept, cn=0racleContext,dc=com
/salesdb " +

"ldap://1ldap2.acme.com:3500/cn=salesdept, cn=0racleContext,dc=com/salesdb " +
"ldap://1ldap3.acme.com:3500/cn=salesdept, cn=0racleContext,dc=com/salesdb";

prop.put ("oracle.net.ldap_loadbalance", "OFF");
OracleDataSource ods = new OracleDataSource();
ods.setURL(url) ;
ods.setConnectionProperties (prop) ;

The JDBC Thin driver supports LDAP nonanonymous bind. A set of JNDI
environment properties, which contains authentication information, can be specified
for a data source. If a LDAP server is configured as not allowing anonymous bind,
then authentication information must be provided to connect to the LDAP server. The
following example shows a simple clear-text password authentication:

String url =
"jdbc:oracle:thin:@ldap://ldap.acme.com:7777/sales, cn=salesdept, cn=0OracleContext,d
c=com";

Properties prop = new Properties();

prop.put ("java.naming.security.authentication", "simple");
prop.put ("java.naming.security.principal", "cn=salesdept, cn=0racleContext,dc=com") ;
prop.put ("java.naming.security.credentials", "mysecret");

OracleDataSource ods = new OracleDataSource() ;
ods.setURL(url) ;

Data Sources and URLs 8-13

Database URLs and Database Specifiers

ods.setConnectionProperties (prop) ;

Since JDBC passes down the three properties to JNDI, the authentication mechanism
chosen by client is consistent with how these properties are interpreted by JNDI. For
example, if the client specifies authentication information without explicitly specifying
the java.naming.security.authentication property, then the default
authentication mechanism is "simple". Please refer to relevant JDNI documentation for
details.

8-14 Oracle Database JDBC Developer's Guide and Reference

9

JDBC Client-Side Security Features

This chapter discusses support in the Oracle Java Database Connectivity (JDBC) Oracle
Call Interface (OCI) and JDBC Thin drivers for login authentication, data encryption,
and data integrity, particularly, with respect to features of the Oracle Advanced
Security option.

Oracle Advanced Security, previously known as the Advanced Networking Option
(ANO) or Advanced Security Option (ASO), provides industry standards-based data
encryption, data integrity, third-party authentication, single sign-on, and access
authorization. From 11g release 1 (11.1), both the JDBC OCI and Thin drivers support
all the Oracle Advanced Security features. Earlier releases of the JDBC drivers did not
support some of the ASO features.

Note: This discussion is not relevant to the server-side internal
driver, given that all communication through that driver is
completely internal to the server.

This chapter contains the following sections:

= Support for Oracle Advanced Security

= Support for Login Authentication

= Support for Strong Authentication

= Support for OS Authentication

= Support for Data Encryption and Integrity
= Support for SSL

= Support for Kerberos

= Support for RADIUS

m Secure External Password Store

Support for Oracle Advanced Security
Oracle Advanced Security provides the following security features:
= Data Encryption

Sensitive information communicated over enterprise networks and the Internet
can be protected by using encryption algorithms, which transform information
into a form that can be deciphered only with a decryption key. Some of the
supported encryption algorithms are RC4, DES, 3DES, and AES.

JDBC Client-Side Security Features 9-1

Support for Oracle Advanced Security

To ensure data integrity during transmission, Oracle Advanced Security generates
a cryptographically secure message digest, using MD5 or SHA-1 hashing
algorithms, and includes it with each message sent across a network. This protects
the communicated data from attacks, such as data modification, deleted packets,
and replay attacks.

= Strong Authentication

To ensure network security in distributed environments, it is necessary to
authenticate the user and check his credentials. Password authentication is the
most common means of authentication. Oracle Advanced Security enables strong
authentication with Oracle authentication adapters, which support various
third-party authentication services, including SSL with digital certificates. Oracle
Advanced Security supports the following industry-standard authentication
methods:

- Kerberos

— Remote Authentication Dial-In User Service (RADIUS)
- Distributed Computing Environment (DCE)

- Secure Sockets Layer (SSL)

Tip: Oracle Database Advanced Security Administrator’s Guide

JDBC OCI Driver Support for Oracle Advanced Security

If you are using the JDBC OCI driver, which presumes you are running from a
computer with an Oracle client installation, then support for Oracle Advanced
Security and incorporated third-party features is fairly similar to the support provided
by in any Oracle client situation. Your use of Advanced Security features is
determined by related settings in the sglnet . ora file on the client computer.

Starting from Oracle Database 11¢ Release 1 (11.1), the JDBC OCI driver attempts to
use external authentication if you try connecting to a database without providing a
password. The following are some examples using the JDBC OCI driver to connect to a
database without providing a password:

SSL Authentication
Example 9-1 uses SSL authentication to connect to the database.

Example 9-1

import java.sqgl.*;
import java.util.Properties;

public class test
{
public static void main(String [] args) throws Exception
{
String url = "jdbc:oracle:oci:@"
+" (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps) (HOST=stadh25) (PORT=1529))"
+" (CONNECT_DATA= (SERVICE_NAME=mydatabaseinstance)))";
Driver driver = new oracle.jdbc.OracleDriver();
Properties props = new Properties();
Connection conn = driver.connect(url, props);
conn.close() ;

9-2 Oracle Database JDBC Developer's Guide and Reference

Support for Strong Authentication

Using Data Source
Example 9-2 uses a data source to connect to the database.

Example 9-2

import java.sqgl.*;

import javax.sql.*;

import java.util.Properties;
import oracle.jdbc.pool.*;

public class testpool {
public static void main(String args) throws Exception
{ String url = "jdbc:oracle:oci:@"
+" (DESCRIPTION= (ADDRESS=(PROTOCOL=tcps) (HOST=stadh25) (PORT=1529))"
+" (CONNECT_DATA= (SERVICE_NAME=mydatabaseinstance)))";
OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource() ;
ocpds.setURL (url) ;
PooledConnection pc = ocpds.getPooledConnection();
Connection conn = pc.getConnection();
}
}

Note: The key exception to the preceding, with respect to Java, is
that the Secure Sockets Layer (SSL) protocol is supported by the
Oracle JDBC OCI drivers only if you use native threads in your
application. This requires special attention, because green threads
are generally the default.

JDBC Thin Driver Support for Oracle Advanced Security

The JDBC Thin driver cannot assume the existence of an Oracle client installation or
the presence of the sglnet. ora file. Therefore, it uses a Java approach to support
Oracle Advanced Security. Java classes that implement Oracle Advanced Security are
included in the ojdbc5 . jar and ojdbc6 . jar files. Security parameters for
encryption and integrity, usually set in sglnet.ora, are set using a Java
Properties object or through system properties.

Support for Login Authentication

Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the getConnection
method call. This applies regardless of which client-side Oracle JDBC driver you are
using, but is irrelevant if you are using the server-side internal driver, which uses a
special direct connection and does not require a user name or password.

Starting with 11g release 1 (11.1), the Oracle JDBC Thin driver implements Oracle
O5Logon challenge-response protocol instead of O3Logon to authenticate the user.

Support for Strong Authentication

Oracle Advanced Security enables Oracle Database users to authenticate externally.
External authentication can be with RADIUS, KERBEROS, Certificate-Based
Authentication, Token Cards, Smart Cards, and DCE. This is called strong

JDBC Client-Side Security Features 9-3

Support for OS Authentication

authentication. Oracle JDBC drivers provide support for the following strong
authentication methods:

s Kerberos
= RADIUS

m SSL (certificate-based authentication)

Support for OS Authentication

Operating System (OS) authentication allows Oracle to pass control of user
authentication to the operating system. It allows the users to connect to the database
by authenticating their OS username in the database. No password is associated with
the account since it is assumed that OS authentication is sufficient. In other words, the
server delegates the authentication to the client OS. You need to perform the following
steps to achieve this:

= Use the following command to check the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter:

SQL> SHOW PARAMETER os_authent_prefix

NAME TYPE VALUE
os_authent_prefix string ops$
SQL>

Note: Remember the OS authentication prefix. You need to create a
database user to allow an OS authenticated connection, where the
username must be the prefix value concatenated to the OS username.

= Add the following linein the t _initl.ora file:
REMOTE_OS_AUTHENT = TRUE
When a connection is attempted from the local database server, the OS username is

passed to the Oracle server. If the username is recognized, the Oracle the connection is
accepted, otherwise the connection is rejected.

Configuration Steps for Linux

The configuration steps necessary to set up OS authentication on Linux are the
following:

1. Use the following commands to create an OS user w_rose:

useradd w_rose

passwd w_rose

Changing password for w_rose
New password: password

Retype new password: password

2. Use the following command to create a database user to allow an OS authenticated
connection:

CREATE USER ops$w_rose IDENTIFIED EXTERNALLY;
GRANT CONNECT TO opsSw_rose;

3. Use the following commands to test the OS authentication connection:

9-4 Oracle Database JDBC Developer's Guide and Reference

Support for OS Authentication

su - w_rose

export ORACLE_HOME=/u0l/app/oracle/product/10.1.0/db_1
export PATH=$PATH:$ORACLE_HOME/bin

export ORACLE_SID=DEV1

sqlplus /

SQL*Plus: Release 10.1.0.3.0 - Production on Wed Jun 7 08:41:15 2006
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production

With the Partitioning, Oracle Label Security, OLAP and Data Mining options

SQL>

Configuration Steps for Windows

The configuration steps necessary to set up OS authentication on Windows are the
following:

1.

Create a local user, say, w_rose, using the Computer Management dialog box. For
this you have to do the following:

1. Click Start.

2. From the Start menu, select Programs, then select Administrative Tools and
then select Computer Management.

Expand Local Users and Groups by clicking on the Plus ("+") sign.
Click Users.

Select New User from the Action menu.

o o & v

Enter details of the user in the New User dialog box and click Create.

Note: The preceding steps are only for creating a local user. Domain
users can be created in Active Directory.

Use the following command to create a database user to allow an OS authenticated
connection:

CREATE USER "OPSS$Syourdomain.com\p_floyd" IDENTIFIED EXTERNALLY;
GRANT CONNECT TO "OPSSyourdomain.com\p_floyd";

Note: When you create the database user in Windows environment,
the user name should be in the following format:

<0S_authentication_prefix_parameter>S$<DOMAIN>\<OS_user_name>

When using a Windows server, there is an additional consideration. The following
option must be set in the $ORACLE_HOME$ \network\admin\sglnet.ora file:

SQLNET . AUTHENTICATION_SERVICES= (NTS)

Use the following commands to test the OS authentication connection:

JDBC Client-Side Security Features 9-5

Support for Data Encryption and Integrity

C:\> set ORACLE_SID=DB10G

C:\> sqglplus /

SQL*Plus: Release 10.2.0.1.0 - Production on Tue Oct 17 11:47:01 2006
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL>

JDBC Code Using OS Authentication

Now that you have set up OS authentication to connect to the database, you can use
the following JDBC code for connecting to the database:

String url = "jdbc:oracle:thin:@oracleserver.mydomain.com:5521:dbja"
Driver driver = new oracle.jdbc.OracleDriver();
DriverManager.registerDriver (driver) ;

Properties props = new Properties();

Connection conn = DriverManager.getConnection(url, props);

The preceding code assumes that it is executed by p_£f1loyd on the client machine. The
JDBC drivers retrieve the OS username from the user . name system property that is
set by the JVM. As a result, the following thin driver-specific error no longer exists:

ORA-17443=Null user or password not supported in THIN driver

Note: By default, the JDBC driver retrieves the OS username from
the user . name system property, which is set by the JVM. If the JDBC
driver is unable to retrieve this system property or if you want to
override the value of this system property, then you can use the
OracleConnection.CONNECTION_PROPERTY_ _THIN VSESSION_O
SUSER connection property. For more information, see Oracle
Javadoc.

Support for Data Encryption and Integrity

You can use Oracle Advanced Security data encryption and integrity features in your
Java database applications, depending on related settings in the server. When using
the JDBC OCI driver, set parameters as you would in any Oracle client situation.
When using the Thin driver, set parameters through a Java properties object.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting. Similarly,
integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels, RETECTED, ACCEPTED,
REQUESTED, and REQUIRED. Table 9-1 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature. By default,
remote OS authentication (through TCP) is disabled in the database for obvious
security reasons.

9-6 Oracle Database JDBC Developer's Guide and Reference

Support for Data Encryption and Integrity

Table 9-1 Client/Server Negotiations for Encryption or Integrity

Client

Client Accepted Client Client

Rejected (default) Requested Required
Server Rejected OFF OFF OFF connection

fails

Server Accepted = OFF OFF ON ON
(default)
Server Requested OFF ON ON ON
Server Required connection ON ON ON

fails

Table 9-1 shows, for example, that if encryption is requested by the client, but rejected
by the server, it is disabled. The same is true for integrity. As another example, if
encryption is accepted by the client and requested by the server, it is enabled. And,
again, the same is true for integrity.

See Also: Oracle Database Advanced Security Administrator’s Guide

Note: The term checksum still appears in integrity parameter
names, but is no longer used otherwise. For all intents and
purposes, checksum and integrity are synonymous.

This section covers the following topics:
= JDBC OCI Driver Support for Encryption and Integrity
= JDBC Thin Driver Support for Encryption and Integrity

= Setting Encryption and Integrity Parameters in Java

JDBC OCI Driver Support for Encryption and Integrity

If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an
Oracle client installation, then you can enable or disable data encryption or integrity
and set related parameters as you would in any Oracle client situation, through
settings in the SQLNET . ORA file on the client.

To summarize, the client parameters are shown in Table 9-2:

JDBC Client-Side Security Features 9-7

Support for Data Encryption and Integrity

Table 9-2 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description

Parameter Name

Possible Settings

Client encryption level

Client encryption selected list

Client integrity level

Client integrity selected list

SQLNET . ENCRYPTION_CLIENT

SQLNET . ENCRYPTION_TYPES_CLIENT

SOLNET.CRYPTO_CHECKSUM_CLIENT

SOLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

REJECTED
ACCEPTED
REQUESTED
REQUIRED

RC4_40,RC4_56,
DES, DES40, AES128,
AES192, AES256,
3DES112, 3DES168

(see Note)

REJECTED
ACCEPTED
REQUESTED
REQUIRED

MD5, SHA-1

Note:

For the Oracle Advanced Security domestic edition only,
settings of RC4_128 and RC4_256 are also possible.

See Also:

JDBC Thin Driver Support for Encryption and Integrity

The JDBC Thin driver support for data encryption and integrity parameter settings
parallels the JDBC OCI driver support discussed in the preceding section.
Corresponding parameters can be set through a Java properties object that you would

then be used when opening a database connection.

Oracle Database Advanced Security Administrator’s Guide

Table 9-3 lists the parameter information for the JDBC Thin driver. These parameters
are defined in the oracle. jdbc.OracleConnection interface.

Table 9-3 Thin Driver Client Parameters for Encryption and Integrity

Parameter Name

Parameter
Type

Possible Settings

CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL String

CONNECTION_PROPERTY_THIN_NET ENCRYPTION_TYPES String

CONNECTION_PROPERTY_THIN_NET_ CHECKSUM_LEVEL

CONNECTION_PROPERTY_THIN_NET_ CHECKSUM_TYPES

String

String

REJECTED
ACCEPTED
REQUESTED
REQUIRED

AES256,AES192, AES128, 3DES168,
3DES112,DES56C,DES40C, RC4_256,
RC4_128,RC4_40,RC4_56

REJECTED
ACCEPTED
REQUESTED
REQUIRED

MD5, SHAL

9-8 Oracle Database JDBC Developer's Guide and Reference

Support for Data Encryption and Integrity

Note:

= Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes JAR file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export
edition are possible.

»s Theletter C in DES40C and DES56C refers to Cipher Block
Chaining (CBC) mode.

Setting Encryption and Integrity Parameters in Java

Use a Java properties object, that is, an instance of java.util.Properties, to set
the data encryption and integrity parameters supported by the JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 9-3, and then uses the properties object in opening a connection to
the database:

Properties prop = new Properties();

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET ENCRYPTION_LEVEL,
"REQUIRED") ;

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,
"(DES40C)");

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_ CHECKSUM_LEVEL,
"REQUESTED") ;

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET CHECKSUM_TYPES, " (
MD5)");

OracleDataSource ods = new OracleDataSource() ;
ods.setProperties (prop) ;
ods.setURL("jdbc:oracle:thin:@localhost:1521:main") ;
Connection conn = ods.getConnection();

The parentheses around the values encryption type and checksum type allow for lists
of values. When multiple values are supplied, the server and the client negotiate to
determine which value is to be actually used.

Example

Example 9-3 is a complete class that sets data encryption and integrity parameters
before connecting to a database to perform a query.

Note: In the example, the string "REQUIRED" is retrieved
dynamically through functionality of the AnoServices and
Service classes. You have the option of retrieving the strings in
this manner or hardcoding them as in the previous examples

Before running this example, you must turn on encryption in the sglnet. ora file.
For example, the following lines will turn on AES256, AES192, and AES128 for the
encryption and MD5 and SHA1 for the checksum:

SQLNET . ENCRYPTION_SERVER = ACCEPTED
SQLNET .CRYPTO_CHECKSUM_SERVER = ACCEPTED
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (MD5, SHAL)

JDBC Client-Side Security Features 9-9

Support for Data Encryption and Integrity

SQLNET . ENCRYPTION_TYPES_SERVER= (AES256, AES192, AES128)
SQLNET.CRYPTO_SEED = 2z0hslkdharUJCFtkwbjOLbgwsj7vkgt3bGoUylihnvkhgkdsbdskkKGhdk

Example 9-3 Setting Data Encryption and Integrity Parameters

import java.sql.*;

import java.util.Properties;
import oracle.net.ano.AnoServices;
import oracle.jdbc.*;

public class DemoAESAndSHAL
{
static final String USERNAME= "scott";
static final String PASSWORD= "tiger";
static final String URL =
"jdbc:oracle:thin:@(DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=WXYZ) (PORT=5561))"
+" (CONNECT_DATA= (SERVICE_NAME=mydatabaseinstance)))";

public static final void main(String[] argv)
{

DemoAESANdSHALl demo = new DemoAESAndSHAL () ;

try

{

demo.run() ;
}catch (SQLException ex)
{

ex.printStackTrace();

void run() throws SQLException

{
OracleDriver dr = new OracleDriver();
Properties prop = new Properties();

// We require the connection to be encrypted with either AES256 or AES192.
// If the database doesn't accept such a security level, then the connection
attempt will fail.

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET ENCRYPTION_LEVEL,An
oServices.ANO_REQUIRED) ;

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_ ENCRYPTION_TYPES, " (
" + AnoServices.ENCRYPTION_AES256
+ "," + AnoServices.ENCRYPTION_AES192 + ")");

// We also require the use of the SHAl algorithm for data integrity checking.

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL, AnoS
ervices.ANO_REQUIRED) ;

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET CHECKSUM_TYPES,"("

+ AnoServices.CHECKSUM_SHAl + ")");
prop.setProperty ("user", DemoAESANdSHAL .USERNAME) ;
prop.setProperty ("password", DemoAESAndSHAL . PASSWORD) ;
OracleConnection oraConn =

(OracleConnection)dr.connect (DemoAESAndSHAL.URL, prop) ;
System.out.println("Connection created! Encryption algorithm is: " +

9-10 Oracle Database JDBC Developer's Guide and Reference

Support for SSL

oraConn.getEncryptionAlgorithmName () + ", data
integrity algorithm is: " + oraConn.getDataIntegrityAlgorithmName());
oraConn.close();

}

Support for SSL

Oracle Database 10g provides support for the Secure Sockets Layer (SSL) protocol. SSL
is a widely used industry standard protocol that provides secure communication over
a network. SSL provides authentication, data encryption, and data integrity. It
provides a secure enhancement to the standard TCP/IP protocol, which is used for
Internet communication..

SSL uses digital certificates that comply with the X.509v3 standard for authentication
and a public and private key pair for encryption. SSL also uses secret key
cryptography and digital signatures to ensure privacy and integrity of data. When a
network connection over SSL is initiated, the client and server perform an SSL
handshake that includes the following steps:

» Client and server negotiate about the cipher suites to use. This includes deciding
on the encryption algorithms to be used for data transfer.

s Server sends its certificate to the client, and the client verifies that the certificate
was signed by a trusted certification authority (CA). This step verifies the identity
of the server.

» If client authentication is required, the client sends its own certificate to the server,
and the server verifies that the certificate was signed by a trusted CA.

» Client and server exchange key information using public key cryptography. Based
on this information, each generates a session key. All subsequent communications
between the client and the server is encrypted and decrypted by using this set of
session keys and the negotiated cipher suite.

Note: In Oracle Database 11¢ Release 1 (11.1), SSL authentication is
supported in the thin driver. So, you do not need to provide a
username/password pair if you are using SSL authentication.

SSL Terminology
The following terms are commonly used in the SSL context:

= certificate: A certificate is a digitally signed document that binds a public key with
an entity. The certificate can be used to verify that the public key belongs to that
individual.

= certification authority: A certification authority (CA), also known as certificate
authority, is an entity which issues digitally signed certificates for use by other
parties.

= cipher suite: A cipher suite is a set of cryptographic algorithms and key sizes used
to encrypt data sent over an SSL-enabled network.

= private key: A private key is a secret key, which is never transmitted over a
network. The private key is used to decrypt a message that has been encrypted
using the corresponding public key. It is also used to sign certificates. The
certificate is verified using the corresponding public key.

JDBC Client-Side Security Features 9-11

Support for SSL

= public key: A public key is an encryption key that can be made public or sent by
ordinary means such as an e-mail message. The public key is used for encrypting
the message sent over SSL. It is also used to verify a certificate signed by the
corresponding private key.

= wallet: A wallet is a password-protected container that is used to store
authentication and signing credentials, including private keys, certificates, and
trusted certificates required by SSL.

Java Version of SSL

The Java Secure Socket Extension (JSSE) provides a framework and an implementation
for a Java version of the SSL and TLS protocols. JSSE provides support for data
encryption, server and client authentication, and message integrity. It abstracts the
complex security algorithms and handshaking mechanisms and simplifies application
development by providing a building block for application developers, which they can
directly integrate into their applications. JSSE is integrated into Java Development Kit
(JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.

Oracle strongly recommends that you have a clear understanding of the JavaTM
Secure Socket Extension (JSSE) framework by Sun Microsystems before using SSL in
the Oracle JDBC drivers.

The JSSE standard application programming interface (API) is available in the
javax.net, javax.net.ssl, and javax.security.cert packages. These
packages provide classes for creating and configuring sockets, server sockets, SSL
sockets, and SSL server sockets. The packages also provide a class for secure HTTP
connections, a public key certificate API compatible with JDK1.1-based platforms, and
interfaces for key and trust managers.

SSL works the same way, as in any networking environment, in Oracle Database 10g.
This section covers the following;:

» Managing Certificates and Wallets

= Keys and certificates containers

Managing Certificates and Wallets

To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database server
sends its certificate, which is stored in its wallet. The client may or may not need a
certificate or wallet depending on the server configuration.

The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection. It
uses the default provider (SunJSSE) to create an SSL context. However you can
provide your own provider.

You do not need a certificate for the client, unless the
SSL_CLIENT_AUTHENTICATION parameter is set on the server.

Keys and certificates containers

Java clients can use multiple types of containers such as Oracle wallets, JKS, PKCS12,
and so on, as long as a provider is available. For Oracle wallets, OraclePKI provider
must be used because the PKCS12 support provided by SunJSSE provider does not
support all the features of PKCS12. In order to use OraclePKI provider, the following
JARs are required:

m oraclepki.jar

m osdt_cert.jar

9-12 Oracle Database JDBC Developer's Guide and Reference

Support for Kerberos

s osdt_core.jar

All these JAR files should be under $SORACLE_HOME/jlib directory.

Support for Kerberos

Oracle Database 11g Release 1 (11.1) introduces support for Kerberos. Kerberos is a
network authentication protocol that provides the tools of authentication and strong
cryptography over the network. Kerberos helps you secure your information systems
across your entire enterprise by using secret-key cryptography. The Kerberos protocol
uses strong cryptography so that a client or a server can prove its identity to its server
or client across an insecure network connection. After a client and server have used
Kerberos to prove their identity, they can also encrypt all of their communications to
assure privacy and data integrity as they go about their business.

The Kerberos architecture is centered around a trusted authentication service called
the key distribution center, or KDC. Users and services in a Kerberos environment are
referred to as principals; each principal shares a secret, such as a password, with the
KDC. A principal can be a user such as scott or a database server instance.

Configuring Oracle Database to Use Kerberos

Perform the following steps to configure Oracle Database to use Kerberos:
1. Use the following command to connect to the database:

SQL> connect system
Enter password: password

2. Use the following commands to create a user CLIENT@US . ORACLE . COM that is
identified externally:

SQL> create user "CLIENT@QUS.ORACLE.COM" identified externally;
SQL> grant create session to "CLIENTQUS.ORACLE.COM";

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following line to $T_WORK/t_init1l.ora file:

OS_AUTHENT_PREFIX=""

5. Use the following command to restart the database:

SQL> startup pfile=t_initl.ora

6. Modify the sglnet. ora file to include the following lines:

names.directory path = (tnsnames)
#Kerberos
sglnet.authentication_services = (beq, kerberos5)

sglnet.authentication_kerberos5_service = dbji

sqlnet.kerberos5_conf = /home/Jdbc/Security/kerberos/krb5.conf
sglnet.kerberos5_keytab = /home/Jdbc/Security/kerberos/dbji.oracleserver
sglnet.kerberos5_conf_mit = true

sglnet.kerberos_cc_name = /tmp/krb5cc_5088

logging (optional):

JDBC Client-Side Security Features 9-13

Support for Kerberos

trace_level_server=16
trace_directory_server=/scratch/sglnet/

7. Use the following commands to verify that you can connect through SQL*Plus:

> kinit client

> klist
Ticket cache: FILE:/tmp/krb5cc_5088
Default principal: client@US.ORACLE.COM

Valid starting Expires Service principal
06/22/06 07:13:29 06/22/06 17:13:29 krbtgt/US.ORACLE.COMQUS.ORACLE.COM

Kerberos 4 ticket cache: /tmp/tkt5088
klist: You have no tickets cached
> sqlplus
' /@ (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=oracleserver.mydomain.com) (PORT=55
29))
(CONNECT_DATA= (SERVICE_NAME=mydatabaseinstance)))'

Code Example

This following example demonstrates the new Kerberos authentication feature that is
part of Oracle Database 11g Release 1 (11.1) JDBC thin driver. This demo covers two
scenarios:

» In the first scenario, the OS maintains the user name and credentials. The
credentials are stored in the cache and the driver retrieves the credentials before
trying to authenticate to the server. This scenario is in the module
connectWithDefaultUser ().

Note: 1.Before you run this part of the demo, use the following command to
verify that you have valid credentials:

> /usr/kerberos/bin/kinit client
where, the password is welcome.

2. Use the following command to list your tickets:

> /usr/kerberos/bin/klist

= The second scenario covers the case where the application wants to control the
user credentials. This is the case of the application server where multiple web
users have their own credentials. This scenario is in the module
connectWithSpecificUser ().

Note: To run this demo, you need to have a working setup, that is, a
Kerberos server up and running, and an Oracle database server that is
configured to use Kerberos authentication. You then need to change
the URLs used in the example to compile and run it.

Example 9—4

import com.sun.security.auth.module.Krb5LoginModule;
import java.io.IOException;

9-14 Oracle Database JDBC Developer's Guide and Reference

Support for Kerberos

import
import
import
import
import

import
import
import
import
import
import
import

import
import
import
public
{

java.security.PrivilegedExceptionAction;

java.sqgl.Connection;
java.sgl.ResultSet;
java.sqgl.SQLException;
java.sqgl.Statement;

java.util.HashMap;
java.util.Properties;
javax.security.auth.Subject;
javax.security.auth.callback.Callback;

javax.security.auth.callback.CallbackHandler;
javax.security.auth.callback.PasswordCallback;
javax.security.auth.callback.UnsupportedCallbackException;

oracle.jdbc.OracleConnection;
oracle.jdbc.OracleDriver;
oracle.net.ano.AnoServices;
class KerberosJdbcDemo

String url ="jdbc:oracle:thin:@(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) "+
" (HOST=oracleserver.mydomain.com) (PORT=5561)) (CONNECT_DATA=" +

"

publ
{

*

SERVICE_NAME=mydatabaseinstance)))";

ic static void main(String[] arv)

If you see the following error message [Mechanism level: Could not load
configuration file c:\winnt\krb5.ini (The system cannot find the path
specified] it's because the JVM cannot locate your kerberos config file.
You have to provide the location of the file. For example, on Windows,
the MIT Kerberos client uses the config file: C\WINDOWS\krb5.ini:

/

// System.setProperty ("java.security.krb5.conf", "C:\\WINDOWS\\krb5.ini");

System.setProperty ("java.security.krb5.conf", " /home/Jdbc/Security/kerberos/krb5.co

nf");

KerberosJddbcDemo kerberosDemo = new KerberosJdbcDemo () ;

try

{
System.out.println("Attempt to connect with the default user:");
kerberosDemo.connectWithDefaultUser () ;

}

catch (Exception e)

{
e.printStackTrace() ;

}

try

{

}

System.out.println("Attempt to connect with a specific user:");

kerberosDemo.connectWithSpecificUser () ;

catch (Exception e)

{

e.printStackTrace();

void connectWithDefaultUser () throws SQLException

{

JDBC Client-Side Security Features 9-15

Support for Kerberos

OracleDriver driver = new OracleDriver();
Properties prop = new Properties();

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERV
ICES,
" ("+AnoServices.AUTHENTICATION_KERBEROS5+")") ;

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET AUTHENTICATION_KRB5
_MUTUAL,
n true") ;

/* If you get the following error [Unable to obtain Princpal Name for

* authentication] although you know that you have the right TGT in your
* credential cache, then it's probably because the JVM can't locate your
* cache.

* Note that the default location on windows is "C:\Documents and
Settings\krb5cc_username" .
*/

//
prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5
_CC_NAME,
/*
On linux:
> which kinit
/usr/kerberos/bin/kinit
> 1s -1 /etc/krb5.conf
LrwXrwxrwx 1 root root 47 Jun 22 06:56 /etc/krb5.conf ->
/home/Jdbc/Security/kerberos/krb5.conf

> kinit client

Password for client@US.ORACLE.COM:

> klist

Ticket cache: FILE:/tmp/krb5cc_5088
Default principal: client@US.ORACLE.COM

Valid starting Expires Service principal
11/02/06 09:25:11 11/02/06 19:25:11 krbtgt/US.ORACLE.COM@QUS.ORACLE.COM

Kerberos 4 ticket cache: /tmp/tkt5088
klist: You have no tickets cached
*/

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5

_CC_NAME,
"/tmp/krb5cc_5088") ;
Connection conn = driver.connect (url,prop);
String auth = ((OracleConnection)conn).getAuthenticationAdaptorName () ;

System.out.println("Authentication adaptor="+auth);
printUserName (conn) ;
conn.close();

void connectWithSpecificUser() throws Exception

{

Subject specificSubject = new Subject();

9-16 Oracle Database JDBC Developer's Guide and Reference

Support for Kerberos

// This first part isn't really meaningful to the sake of this demo. In
// a real world scenario, you have a valid "specificSubject" Subject that
// represents a web user that has valid Kerberos credentials.
Krb5LoginModule krb5Module = new Krb5LoginModule() ;

HashMap sharedState = new HashMap() ;

HashMap options = new HashMap();

options.put ("doNotPrompt", "false");

options.put ("useTicketCache", "false");

options.put ("principal", "client@US.ORACLE.COM") ;

krb5Module.initialize (specificSubject,newKrbCallbackHandler (), sharedState, options)
boolean retlLogin = krb5Module.login();
krb5Module.commit () ;
if (!retLogin)
throw new Exception("Kerberos5 adaptor couldn't retrieve credentials (TGT)
from the cache");

// to use the TGT from the cache:

// options.put ("useTicketCache", "true");

// options.put ("doNotPrompt", "true");

// options.put ("ticketCache", "C:\\Documents and Settings\\Jean de
Lavarene\\krb5cc") ;

// krbbModule.initialize(specificSubject,null, sharedState,options);

// Now we have a valid Subject with Kerberos credentials. The second scenario
// really starts here:
// execute driver.connect(...) on behalf of the Subject 'specificSubject':
Connection conn =
(Connection) Subject.doAs (specificSubject, new PrivilegedExceptionAction()
{
public Object run()
{
Connection con = null;
Properties prop = new Properties();
prop.setProperty (AnoServices.AUTHENTICATION_PROPERTY_SERVICES,
"(" + AnoServices.AUTHENTICATION_KERBEROS5 + ")");
try
{
OracleDriver driver = new OracleDriver();
con = driver.connect (url, prop);

} catch (Exception except)
{
except.printStackTrace() ;
}
return con;
}
i

String auth = ((OracleConnection)conn).getAuthenticationAdaptorName() ;
System.out.println("Authentication adaptor="+auth);

printUserName (conn) ;
conn.close();

void printUserName (Connection conn) throws SQLException

JDBC Client-Side Security Features 9-17

Support for RADIUS

Statement stmt = null;
try
{
stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery("select user from dual");
while(rs.next ()
System.out.println("User is:"+rs.getString(1));
rs.close();

}
finally
{
if(stmt != null)
stmt.close();
}
}
}

class KrbCallbackHandler implements CallbackHandler
{
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException
{
for (int i = 0; i1 < callbacks.length; i++)
{

if (callbacks[i] instanceof PasswordCallback)

PasswordCallback pc = (PasswordCallback)callbacks[i];

System.out.println("set password to 'welcome'");

pc.setPassword((new String("welcome")).toCharArray());
} else

{
throw new UnsupportedCallbackException(callbacks([i],
"Unrecognized Callback");

Support for RADIUS

Oracle Database 11g Release 1 (11.1) introduces support for Remote Authentication
Dial-In User Service (RADIUS). RADIUS is a client/server security protocol that is
most widely known for enabling remote authentication and access. Oracle Advanced
Security uses this standard in a client/server network environment to enable use of
any authentication method that supports the RADIUS protocol. RADIUS can be used
with a variety of authentication mechanisms, including token cards and smart cards.
This section contains the following sections:

= Configuring Oracle Database to Use RADIUS
s Code Example

Configuring Oracle Database to Use RADIUS

Perform the following steps to configure Oracle Database to use RADIUS:

1. Use the following command to connect to the database:

9-18 Oracle Database JDBC Developer's Guide and Reference

Support for RADIUS

SQL> connect system
Enter password: password

2. Use the following commands to create a new user aso from within a database:

SQL> create user aso identified externally;
SQL> grant create session to aso;

3. Use the following commands to connect to the database as sysdba and dismount

it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following lines to the t_init1.ora file:

os_authent_prefix = ""

Note: Once the test is over, you need to revert the preceding changes
made to the t_initl.ora file.

5. Use the following command to restart the database:

SQL> startup pfile=?/work/t_initl.ora

6. Modify the sglnet. ora file so that it contains only these lines:

sglnet.authentication_services = (beqg, radius)
sglnet.radius_authentication = <RADUIUS_SERVER_HOST_ NAME>
sglnet.radius_authentication_port = 1812
sglnet.radius_authentication_timeout = 120
sqlnet.radius_secret=/home/Jdbc/Security/radius/radius_key
logging (optional):

trace_level_server=16
trace_directory_server=/scratch/sglnet/

7. Use the following command to verify that you can connect through SQL*Plus:

>sglplus

'aso/1234@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=oracleserver .mydomain.com) (
PORT=5529))

(CONNECT_DATA= (SERVICE_NAME=mydatabaseinstance)))'

Code Example

This example demonstrates the new RADIUS authentication feature that is a part of
Oracle Database 11g Release 1 (11.1) JDBC thin driver. You need to have a working
setup, that is, a RADIUS server up and running, and an Oracle database server that is
configured to use RADIUS authentication. You then need to change the URLs given in
the example to compile and run it.

Example 9-5

import
import
import
import
import

java.sgl.Connection;
java.sgl.ResultSet;
java.sqgl.SQLException;
java.sqgl.Statement;
java.util.Properties;

JDBC Client-Side Security Features 9-19

Support for RADIUS

import oracle.jdbc.OracleConnection;

import oracle.jdbc.OracleDriver;

import oracle.net.ano.AnoServices;

public class RadiusJdbcDemo

{

String url ="jdbc:oracle:thin:@(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) "+

" (HOST=oracleserver.mydomain.com) (PORT=5561)) (CONNECT_DATA=" +
" (SERVICE_NAME=mydatabaseinstance)))";

public static void main(String[] arv)

{
RadiusJdbcDemo radiusDemo = new RadiusJdbcDemo () ;
try
{
radiusDemo.connect () ;
}
catch (Exception e)
{
e.printStackTrace() ;
}
}
/*

* This method attempts to logon to the database using the RADIUS
* authentication protocol.

* It should print the following output to stdout:
* Authentication adaptor=RADIUS
* User 1s:ASO
*/
void connect () throws SQLException
{
OracleDriver driver = new OracleDriver();
Properties prop = new Properties();

prop.setProperty (OracleConnection.CONNECTION_PROPERTY_THIN_NET AUTHENTICATION_SERV
ICES,
" ("+AnoServices.AUTHENTICATION_RADIUS+")");
// The user "aso" needs to be properly setup on the radius server with
// password "1234".
prop.setProperty("user", "aso");
prop.setProperty ("password", "1234") ;

Connection conn = driver.connect (url,prop);

String auth = ((OracleConnection)conn).getAuthenticationAdaptorName() ;
System.out.println("Authentication adaptor="+auth);

printUserName (conn) ;

conn.close();

void printUserName (Connection conn) throws SQLException
{

Statement stmt = null;

try

{

stmt = conn.createStatement () ;

9-20 Oracle Database JDBC Developer's Guide and Reference

Secure External Password Store

ResultSet rs = stmt.executeQuery("select user from dual");
while(rs.next ()
System.out.println("User is:"+rs.getString(1l));
rs.close();
}
finally
{
if (stmt != null)
stmt.close();

Secure External Password Store

As an alternative for large-scale deployments where applications use password
credentials to connect to databases, it is possible to store such credentials in a
client-side Oracle wallet. An Oracle wallet is a secure software container that is used to
store authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed user names and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
user names and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database _alias

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also: Oracle Database Advanced Security Administrator’s Guide for
information about configuring your client to use secure external
password store and for information about managing credentials in it.

JDBC Client-Side Security Features 9-21

Secure External Password Store

9-22 Oracle Database JDBC Developer's Guide and Reference

10

Proxy Authentication

Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called
N-tier authentication. This feature is supported through both the JDBC Oracle Call
Interface (OCI) driver and the JDBC Thin driver. This chapter contains the following
sections:

= About Proxy Authentication
= Types of Proxy Connections
s Creating Proxy Connections
s Closing a Proxy Session

s Caching Proxy Connections

Note: Oracle Database supports proxy authentication functionality
in three tiers only. It does not support it across multiple middle tiers.

About Proxy Authentication

Proxy authentication is the process of using a middle-tier for user authentication. You
can design a middle-tier server to proxy clients in a secure fashion by using the
following three forms of proxy authentication:

s The middle-tier server authenticates itself with the database server and a client. In
this case, an application user or another application, authenticates itself with the
middle-tier server. Client identities can be maintained all the way through to the
database.

» The client, that is, a database user, is not authenticated by the middle-tier server.
The client's identity and database password are passed through the middle-tier
server to the database server for authentication.

» The client, that is, a global user, is authenticated by the middle-tier server, and
passes either a Distinguished name (DN) or a Certificate through the middle tier
for retrieving the client's user name.

See Also: '"Creating Proxy Connections" on page 10-3

In all cases, an administrator must authorize the middle-tier server to proxy a client,
that is, to act on behalf of the client. Operations done on behalf of a client by a
middle-tier server can be audited. Issue the following command to authorize the
middle-tier server to proxy a client:

ALTER USER jeff GRANT CONNECT THROUGH scott;

Proxy Authentication 10-1

Types of Proxy Connections

where, scott is the name of the proxy user.
You can also:

» Specify roles that the middle tier is permitted to activate when connecting as the
client. For example,

CREATE ROLE rolel;
GRANT SELECT ON emp TO rolel;
The role clause limits the access only to those database objects that are mentioned

in the list of the roles. The list of roles can be empty.

= Find the users who are currently authorized to connect through a middle tier by
querying the PROXY_USERS data dictionary view.

= Disallow a proxy connection by using the REVOKE CONNECT THROUGH clause of
ALTER USER command.

Note: In this chapter, a JDBC connection to a database is a user
session in the database and vice versa.

You need to use the different fields and methods present in the
oracle.jdbc.OracleConnection interface to set up the different types of proxy
connections.

Types of Proxy Connections

You can create proxy connections using any one of the following options:
s USER NAME

This is done by supplying the user name or the password or both. The SQL
statement for specifying authentication using password is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING password;

In this case, jeff is the user name and scott is the proxy for jeff.

The password option exists for additional security. Having no authenticated
clause implies default authentication, which is using only the user name without
the password. The SQL statement for specifying default authentication is:

ALTER USER jeff GRANT CONNECT THROUGH scott

s DISTINGUISHED NAME

This is a global name in lieu of the password of the user being proxied for. An
example of the corresponding SQL statement using a distinguished name is:

CREATE USER jeff IDENTIFIED GLOBALLY AS
'CN=jeff,OU=americas, O=oracle, L=redwoodshores, ST=ca,C=us"';

The string that follows the identified globally as clause is the
distinguished name. It is then necessary to authenticate using this distinguished
name. The corresponding SQL statement to specify authentication using
distinguished name is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING DISTINGUISHED
NAME;

10-2 Oracle Database JDBC Developer's Guide and Reference

Creating Proxy Connections

s CERTIFICATE

This is a more encrypted way of passing the credentials of the user, who is to be
proxied, to the database. The certificate contains the distinguished name encoded
in it. One way of generating the certificate is by creating a wallet and then
decoding the wallet to get the certificate. The wallet can be created using runutl
mkwallet. It is then necessary to authenticate using the generated certificate. The
SQL statement for specifying authentication using certificate is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING CERTIFICATE;

Note: The use of certificates for proxy authentication will be
desupported in future Oracle Database releases.

Note:
= All the options can be associated with roles.

= When opening a new proxied connection, a new session is started
on the database server. Along with this session a new local
transaction is created.

Creating Proxy Connections

A user, say jeff, has to connect to the database through another user, say scott. The
proxy user, scott, should have an active authenticated connection. A proxy session is
then created on this active connection, with the driver issuing a command to the server
to create a session for the user, jef f£. The server returns the new session id, and the
driver sends a session switch command to switch to this new session.

The JDBC OCI and Thin driver switch sessions in the same manner. The drivers
permanently switch to the new session, jeff. As a result, the proxy session, scott, is
not available until the new session, jef £, is closed.

Note: You can use the isProxySession method from the
oracle.jdbc.OracleConnection interface to check if the current
session associated with your connection is a proxy session. This
method returns true if the current session associated with the
connection is a proxy session.

A new proxy session is opened by using the following method from the
oracle.jdbc.OracleConnection interface:

void openProxySession(int type, java.util.Properties prop) throws
SQLExceptionOpens

Where,
type is the type of the proxy session and can have the following values:
n OracleConnection.PROXYTYPE_USER_NAME

This type is used for specifying the user name.

m OracleConnection.PROXYTYPE_DISTINGUISHED_NAME

Proxy Authentication 10-3

Closing a Proxy Session

This type is used for specifying the distinguished name of the user.
n OracleConnection.PROXYTYPE_CERTIFICATE

This type is used for specifying the proxy certificate.
prop is the property value of the proxy session and can have the following values:
s PROXY_USER_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE USER_NAME. The value should be a
java.lang.String.

s PROXY_DISTINGUISHED_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE_DISTINGUISHED_ NAME. The value should be
a java.lang.String.

s PROXY_CERTIFICATE

This property value should be used with the type
OracleConnection.PROXYTYPE_CERTIFICATE. The valueisabytep[] array
that contains the certificate.

n PROXY_ROLES
This property value can be used with the following types:
— OracleConnection.PROXYTYPE_USER_NAME
— OracleConnection.PROXYTYPE_DISTINGUISHED_NAME
— OracleConnection.PROXYTYPE_CERTIFICATE
The value should be a java.lang.String.
n PROXY_SESSTION

This property value is used with the close method to close the proxy session.

See Also: Closing a Proxy Session on page 10-4

s PROXY_USER_PASSWORD

This property value should be used with the type
OracleConnection.PROXYTYPE USER_NAME. The value should be a
java.lang.String.

The following code snippet shows the use of the openProxySession method:

java.util.Properties prop = new java.util.Properties();

prop.put (OracleConnection.PROXY_USER_NAME, "jeff");

String[] roles = {"rolel", "role2"};

prop.put (OracleConnection.PROXY_ROLES, roles);
conn.openProxySession (OracleConnection.PROXYTYPE_USER_NAME, prop);

Closing a Proxy Session

You can close the proxy session opened with the
OracleConnection.openProxySession method by passing the
OracleConnection.PROXY_SESSION parameter to the
OracleConnection.close method in the following way:

10-4 Oracle Database JDBC Developer's Guide and Reference

Caching Proxy Connections

OracleConnection.close (OracleConnection.PROXY_SESSION) ;

This is similar to closing a proxy session on a non-cached connection. The standard
close method must be called explicitly to close the connection itself. If the close
method is called directly, without closing the proxy session, then both the proxy
session and the connection are closed. This can be achieved in the following way:

OracleConnection.close (OracleConnection.INVALID CONNECTION) ;

See Also: Chapter 21, "Implicit Connection Caching"

Caching Proxy Connections

Proxy connections, like standard connections, can be cached. Caching proxy
connections enhances the performance. To cache a proxy connection, you need to
create a connection using one of the getConnection methods on a cache enabled
OracleDataSource object.

See Also: Chapter 21, "Implicit Connection Caching"

A proxy connection may be cached in the connection cache using the connection
attributes feature of the connection cache. Connection attributes are name/value pairs
that are user-defined and help tag a connection before returning it to the connection
cache for reuse. When the tagged connection is retrieved, it can be directly used
without having to do a round-trip to create or close a proxy session. Implicit
connection cache supports caching of any user/password authenticated connection.
Therefore, any user authenticated proxy connection can be cached and retrieved.

It is recommended that proxy connections should not be closed without applying the
connection attributes. If a proxy connection is closed without applying the connection
attributes, the connection is returned to the connection cache for reuse, but cannot be
retrieved. The connection caching mechanism does not remember or reset session
state.

A proxy connection can be removed from the connection cache by closing the
connection directly.

See Also: "Closing a Proxy Session" on page 10-4

Proxy Authentication 10-5

Caching Proxy Connections

10-6 Oracle Database JDBC Developer's Guide and Reference

Part IV

Data Access and Manipulation

This part provides a chapter that discusses about accessing and manipulating Oracle
data. It also includes chapters that provide information about Java Database
Connectivity (JDBC) support for user-defined object types, large object (LOB) and
binary file (BFILE) locators and data, object references, and Oracle collections, such as
nested tables. This part also provides chapters that discuss the result set functionality
in JDBC, JDBC row sets, and globalization support provided by Oracle JDBC drivers.

Part IV contains the following chapters:

Chapter 11, "Accessing and Manipulating Oracle Data"
Chapter 12, "Java Streams in JDBC"

Chapter 13, "Working with Oracle Object Types"
Chapter 14, "Working with LOBs and BFILEs"

Chapter 15, "Using Oracle Object References"

Chapter 16, "Working with Oracle Collections"
Chapter 17, "Result Set"

Chapter 18, "JDBC RowSets"

Chapter 19, "Globalization Support"

11

Accessing and Manipulating Oracle Data

This chapter describes data access in oracle.sql. * formats, as opposed to standard
Java formats. Using oracle.sqgl. * formats involves casting your result sets and
statements to OracleResultSet, OracleStatement,
OraclePreparedStatement, and OracleCallableStatement, as appropriate,
and using the getOracleObject, setOracleObject, get XXX, and set XXX
methods of these classes, where XXX corresponds to the types in the oracle.sql
package.

This chapter covers the following topics:

s Data Type Mappings

= Data Conversion Considerations

= Result Set and Statement Extensions

= Comparison of Oracle get and set Methods to Standard JDBC
= Using Result Set Metadata Extensions

s Using SQL CALL and CALL INTO Statements

Data Type Mappings

The Oracle JDBC drivers support standard JDBC types as well as Oracle-specific data
types. This section documents standard and Oracle-specific SQL-Java default type
mappings. This section contains the following topics:

= Table of Mappings
= Notes Regarding Mappings

Table of Mappings

Table 11-1 shows the default mappings between SQL data types, JDBC type codes,
standard Java types, and Oracle extended types.

The SQL Data Types column lists the SQL types that exist in Oracle Database 10g. The
JDBC Type Codes column lists data type codes supported by the JDBC standard and
defined in the java.sqgl . Types class or by Oracle in the

oracle. jdbc.OracleTypes class. For standard type codes, the codes are identical
in these two classes.

The Standard Java Types column lists standard types defined in the Java language. The
Oracle Extension Java Types column lists the oracle.sql. * Java types that
correspond to each SQL data type in the database. These are Oracle extensions that let
you retrieve all SQL data in the form of a oracle.sqgl . * Java type. Manipulating

Accessing and Manipulating Oracle Data 11-1

Data Type Mappings

SQL data as oracle.sqgl. * data types minimizes conversions, improving
performance and eliminating conversion losses.

See Also: "Package oracle.sql" on page 4-5

Table 11-1 Default Mappings Between SQL Types and Java Types

Oracle Extension Java

SQL Data Types JDBC Type Codes Standard Java Types Types
STANDARD JDBC TYPES:
CHAR java.sqgl.Types.CHAR java.lang.String oracle.sqgl.CHAR
VARCHAR2 java.sqgl.Types.VARCHAR java.lang.String oracle.sqgl.CHAR
LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sqgl.CHAR
NUMBER java.sqgl.Types.NUMERIC java.math.BigDecima oracle.sql.NUMBER
1
NUMBER java.sqgl.Types.DECIMAL java.math.BigDecima oracle.sgl.NUMBER
1
NUMBER java.sqgl.Types.BIT boolean oracle.sgl.NUMBER
NUMBER java.sqgl.Types.TINYINT byte oracle.sqgl .NUMBER
NUMBER java.sqgl.Types.SMALLINT short oracle.sqgl .NUMBER
NUMBER java.sqgl.Types.INTEGER int oracle.sqgl .NUMBER
NUMBER java.sqgl.Types.BIGINT long oracle.sgl.NUMBER
NUMBER java.sqgl.Types.REAL float oracle.sgl.NUMBER
NUMBER java.sqgl.Types.FLOAT double oracle.sgl.NUMBER
NUMBER java.sql.Types.DOUBLE double oracle.sqgl .NUMBER
RAW java.sqgl.Types.BINARY bytel] oracle.sqgl.RAW
RAW java.sqgl.Types.VARBINARY bytel] oracle.sqgl.RAW
LONGRAW java.sgl.Types.LONGVARBINARY bytel] oracle.sqgl.RAW
DATE java.sqgl.Types.DATE java.sqgl.Date oracle.sqgl.DATE
DATE java.sqgl.Types.TIME java.sqgl.Time oracle.sqgl.DATE
TIMESTAMP java.sqgl.Types.TIMESTAMP javal.sqgl.Timestamp oracle.sqgl.TIMESTAMP
BLOB java.sqgl.Types.BLOB java.sqgl.Blob oracle.sgl.BLOB
CLOB java.sqgl.Types.CLOB java.sgl.Clob oracle.sqgl.CLOB
user-defined java.sql.Types.STRUCT java.sqgl.Struct oracle.sqgl.STRUCT
object
user-defined java.sql.Types.REF java.sqgl.Ref oracle.sql.REF
reference
user-defined java.sqgl.Types.ARRAY java.sql.Array oracle.sqgl.ARRAY
collection
ROWID java.sqgl.Types.ROWID java.sql.Rowld oracle.sgl.ROWID
NCLOB java.sql.Types.NCLOB java.sqgl.NClob oracle.sqgl.NCLOB
NCHAR java.sql.Types. NCHAR java.lang.String oracle.sql.CHAR
ORACLE EXTENSIONS:

11-2 Oracle Database JDBC Developer's Guide and Reference

Data Conversion Considerations

Table 11-1 (Cont.) Default Mappings Between SQL Types and Java Types

SQL Data Types

Oracle Extension Java

JDBC Type Codes Standard Java Types Types

BFILE

oracle.jdbc.OracleTypes.BFIL NA
E

oracle.sql.BFILE

REF CURSOR

oracle.jdbc.OracleTypes.CURS java.sgl.ResultSet oracle.jdbc.OracleRe

OR sultSet
TIMESTAMP oracle.jdbc.OracleTypes.TIME java.sqgl.Timestamp oracle.sqgl.TIMESTAMP
STAMP
TIMESTAMP oracle.jdbc.OracleTypes.TIME java.sql.Timestamp oracle.sgl.TIMESTAMP
WITH TIME STAMPTZ TZ
ZONE
TIMESTAMP oracle.jdbc.OracleTypes.TIME java.sql.Timestamp oracle.sgl.TIMESTAMP
WITH LOCAL STAMPLTZ LTZ
TIME ZONE
Note: For database versions, such as 8.1.7, which do not support
the TIMESTAMP data type, TIMESTAMP is mapped to DATE.
See Also :
= "Valid SQL-JDBC Data Type Mappings" on page A-1
» Chapter 4, "Oracle Extensions"
Notes Regarding Mappings

This section provides further detail regarding mappings for NUMBER and user-defined
types.

NUMBER Types

For the different type codes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work properly.
For example, call getByte to get a Java tinyint value for an item x, where -128 < x <
128.

User-Defined Types

User-defined types, such as objects, object references, and collections, map by default
to weak Java types, such as java.sql. Struct, but alternatively can map to strongly
typed custom Java classes. Custom Java classes can implement one of two interfaces:

s Thestandard java.sqgl.SQLData

» The Oracle-specific oracle.sgl.ORAData

See Also: "Mapping Oracle Objects" on page 13-1 and "Creating and
Using Custom Object Classes for Oracle Objects" on page 13-6

Data Conversion Considerations

When JDBC programs retrieve SQL data into Java, you can use standard Java types, or
you can use types of the oracle. sgl package. This section covers the following
topics:

Accessing and Manipulating Oracle Data 11-3

Data Conversion Considerations

= Standard Types Versus Oracle Types
s Converting SQL NULL Data
s Testing for NULLs

Standard Types Versus Oracle Types

The Oracle data types in oracle. sgl store data in the same bit format as used by the
database. In versions of the Oracle JDBC drivers prior to Oracle Database 10g, the
Oracle data types were generally more efficient. The Oracle Database 10g JDBC drivers
were substantially updated. As a result, in most cases the standard Java types are
preferred to the data types in oracle.sqgl. In particular, java.lang.Stringis
much more efficient than oracle.sqgl.CHAR.

In general, Oracle recommends that you use the Java standard types. The exceptions to
this are:

s Usethe oracle.sqgl.OraData rather than the java.sqgl.SglData if the
OraData functionality better suits your needs.

s Useoracle.sgl.NUMBER rather than java.lang.Double if you need to retain
the exact values of floating point numbers. Oracle NUMBER is a decimal
representation and Java Double and Float are binary representations.
Conversion from one format to the other can result in slight variations in the
actual value represented. Additionally, the range of values that can be represented
using the two formats is different.

m Useoracle.sgl.DATE or oracle.sqgl.TIMESTAMP rather than
java.sgl.Date or java.sql.Timestamp if you are using JDK 1.5 or earlier
versions or require maximum performance. You may also use the oracle.sql
data type if you want to read many date values or compute or display only a small
percentage. Due to a bug in all versions of Java prior to JDK 1.6, construction of
java.lang.Date and java.lang.Timestamp objects is slow, especially in
multithreaded environments. This bug is fixed in JDK 1.6.

Note: If you convert an oracle.sqgl data type to a Java standard
data type, then the benefits of using the oracle.sqgl data type are
lost.

Converting SQL NULL Data

Java represents a SQL NULL datum by the Java value null. Java data types fall into
two categories: primitive types, such as byte, int, and £loat, and object types, such
as class instances. The primitive types cannot represent null. Instead, they store null
as the value zero, as defined by the JDBC specification. This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an object
container type corresponding to every primitive type that can represent null. The
object container types must be used as the targets for SQL data to detect SQL NULL
without ambiguity.

Testing for NULLs

You cannot use a relational operator to compare NULL values with each other or with
other values. For example, the following SELECT statement does not return any row
even if the COMM column contains one or more NULL values.

11-4 Oracle Database JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

PreparedStatement pstmt = conn.prepareStatement (
"SELECT * FROM EMP WHERE COMM = ?");
pstmt.setNull (1, java.sql.Types.VARCHAR) ;

The next example shows how to compare values for equality when some return values
might be NULL. The following code returns all the ENAMES from the EMP table that are
NULL, if there is no value of 100 for COMM.

PreparedStatement pstmt = conn.prepareStatement ("SELECT ENAME FROM EMP
WHERE COMM =? OR ((COMM IS NULL) AND (? IS NULL))");

pstmt.setBigDecimal (1, new BigDecimal (100));

pstmt.setNull (2, java.sqgl.Types.VARCHAR);

Result Set and Statement Extensions

The JDBC Statement object returns an OracleResultSet object, typed as a
java.sqgl.ResultSet. If you want to apply only standard JDBC methods to the
object, then keep it as a ResultSet type. However, if you want to use the Oracle
extensions on the object, then you must cast it to OracleResultSet. All of the Oracle
ResultSet extensions are in the oracle. jdbc.OracleResultSet interface and
all the Statement extensions are in the oracle. jdbc.OracleStatement interface.

For example, assuming you have a standard Statement object stmt, do the
following if you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery ("SELECT * FROM emp");
If you need the extended functionality provided by the Oracle extensions to JDBC, you

can select the results into a standard ResultSet variable and then cast that variable
to OracleResultSet later.

Key extensions to the result set and statement classes include the getOracleObject
and setOracleObject methods, used to access and manipulate data in
oracle.sqgl.* formats.

Comparison of Oracle get and set Methods to Standard JDBC

This section describes get and set methods, particularly the JDBC standard
getObject and setObject methods and the Oracle-specific getOracleObject
and setOracleObject methods, and how to access data in oracle.sql. * format
compared with Java format.

Although there are specific get XXX methods for all the Oracle SQL types, you can use
the general get methods for convenience or simplicity, or if you are not certain in
advance what type of data you will receive.

This section covers the following topics:

= Standard getObject Method

» Oracle getOracleObject Method

= Summary of getObject and getOracleObject Return Types

» Other getXXX Methods

= Data Types For Returned Objects from getObject and getXXX
» The setObject and setOracleObject Methods

» Other setXXX Methods

Accessing and Manipulating Oracle Data 11-5

Comparison of Oracle get and set Methods to Standard JDBC

Note: You cannot qualify a column name with a table name and pass
it as a parameter to the get Xxxx method. For example:

ResultSet rset =
FROM emp, dept");
rset.getInt ("emp.deptno");

stmt .executeQuery ("SELECT emp.deptno, dept.deptno

The get Int method in the preceding code will throw an exception.
To uniquely identify the columns in the get XXX method, you can
either use column index or specify column aliases in the query and
use these aliases in the get XXX method.

Standard getObject Method

The standard getObject method of a result set or callable statement has a return type
of java.lang.Object. The class of the object returned is based on its SQL type, as
follows:

s For SQL data types that are not Oracle-specific, getObject returns the default
Java type corresponding to the SQL type of the column, following the mapping in
the JDBC specification.

s For Oracle-specific data types, getObject returns an object of the appropriate
oracle.sqgl. * class, such as oracle.sgl.ROWID.

» For Oracle database objects, getObject returns a Java object of the class specified
in your type map. Type maps specify a mapping from database named types to
Java classes. The getObject (parameter_index) method uses the default type
map of the connection. The getObject (parameter_index, map) enables you
to pass in a type map. If the type map does not provide a mapping for a particular
Oracle object, then getObject returns an oracle.sqgl . STRUCT object.

Oracle getOracleObject Method

If you want to retrieve data from a result set or callable statement as an

oracle.sql. * object, then you must follow a special process. For a ResultsSet, you
must cast the result set itself to oracle.jdbc.OracleResultSet and then call
getOracleObject instead of getObject. The same applies to
CallableStatement and oracle.jdbc.OracleCallableStatement.

The return type of getOracleObject is oracle.sqgl.Datum. The actual returned
object is an instance of the appropriate oracle.sql. * class. The method signature is:

public oracle.sqgl.Datum getOracleObject (int parameter._index)

When you retrieve data into a Datum variable, you can use the standard Java
instanceof operator to determine which oracle.sql. * type it really is.

Example: Using getOracleObject with a ResultSet

The following example creates a table that contains a column of CHAR data and a
column containing a BFILE locator. A SELECT statement retrieves the contents of the
table as a result set. The getOracleObject then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note
that because getOracleObject returns a Datum object, the return values must be
cast to CHAR and BFILE, respectively.

stmt.execute ("CREATE TABLE bfile_table (x VARCHAR2 (30), b BFILE)");
stmt.execute

11-6 Oracle Database JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

("INSERT INTO bfile_table VALUES ('one', BFILENAME ('TEST DIR', 'filel'))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM bfile_table");

while (rset.next ())

{
CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);

Example: Using getOracleObject in a Callable Statement

The following example prepares a call to the procedure myGetDate, which associates
a character string with a date. The program passes "SCOTT" to the prepared call and
registers the DATE type as an output parameter. After the call is run,
getOracleObject retrieves the date associated with "SCOTT". Note that because
getOracleObject returns a Datum object, the results are cast to DATE.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
("begin myGetDate (?, ?); end;");

cstmt.setString (1, "SCOTT");
cstmt.registerOutParameter (2, Types.DATE);
cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);

Summary of getObject and getOracleObject Return Types

Table 11-2 lists the underlying return types for the getObject and
getOracleObject methods for each Oracle SQL type.

Keep in mind the following when you use these methods:
s getObjectalways returns data into a java.lang.Object instance
m getOracleObject always returns data into an oracle. sql.Datum instance

You must cast the returned object to use any special functionality.

Table 11-2 getObject and getOracleObject Return Types

getObject getOracleObject
Oracle SQL Type Underlying Return Type Underlying Return Type
CHAR String oracle.sqgl.CHAR
VARCHAR?2 String oracle.sqgl.CHAR
NCHAR String oracle.sqgl.CHAR
LONG String oracle.sqgl.CHAR
NUMBER java.math.BigDecimal oracle.sqgl.NUMBER
RAW bytel] oracle.sqgl.RAW
LONGRAW bytel] oracle.sqgl.RAW
DATE java.sqgl.Date oracle.sql.DATE
TIMESTAMP java.sql.Timestampl oracle.sqgl.TIMESTAMP

Accessing and Manipulating Oracle Data 11-7

Comparison of Oracle get and set Methods to Standard JDBC

Table 11-2 (Cont.) getObject and getOracleObject Return Types

Oracle SQL Type

getObject
Underlying Return Type

getOracleObject
Underlying Return Type

TIMESTAMP WITH
TIME ZONE

TIMESTAMP WITH
LOCAL TIME ZONE

BINARY_FLOAT
BINARY_DOUBLE

INTERVAL DAY TO
SECOND

INTERVAL YEAR TO
MONTH

ROWID
REF CURSOR
BLOB
CLOB
NCLOB
BFILE

Oracle object

Oracle object reference

collection (varray or
nested table)

oracle.sqgl.TIMESTAMPTZ

oracle.sql.TIMESTAMPLTZ

java.lang.Float
java.lang.Double

oracle.sqgl.INTERVALDS
oracle.sql.INTERVALYM

oracle.sqgl.ROWID
java.sgl.ResultSet
oracle.sql.BLOB
oracle.sqgl.CLOB
java.sgl.NClob
oracle.sql.BFILE

class specified in type map

or oracle.sqgl.STRUCT
(if no type map entry)

oracle.sqgl.REF

oracle.sqgl.ARRAY

oracle.

oracle.

oracle.
oracle.

oracle.

oracle

oracle.

sql

sqgl

sqgl.
sqgl.

sqgl.

.sql.

sqgl

. TIMESTAMPTZ

. TIMESTAMPLTZ

BINARY_FLOAT
BINARY_DOUBLE

INTERVALDS

INTERVALYM

.ROWID

(not supported)

oracle.
oracle.
oracle.
oracle.

oracle.

oracle.

oracle

sqgl
sqgl

sqgl

sqgl.

sqgl.

sqgl

.sql.

.BLOB

.CLOB

.NCLOB

BFILE

STRUCT

.REF

ARRAY

1

ResultSet.getObject returns java.sqgl.Timestamp only if the oracle

property is set to TRUE, else the method returns oracle.sqgl . TIMESTAMP.

11-8 Oracle Database JDBC Developer's Guide and Reference

.jdbc.J2EE13Compliant connection

Comparison of Oracle get and set Methods to Standard JDBC

Note: The ResultSet.getObject method returns
java.sql.Timestamp for the TIMESTAMP SQL type, only when the
connection property oracle.jdbc.J2EEl3Compliant is set to
TRUE. This property has to be set when the connection is obtained. If
this connection property is not set or if it is set after the connection is
obtained, then the ResultSet .getObject method returns
oracle.sqgl.TIMESTAMP for the TIMESTAMP SQL type.

The oracle.jdbc.J2EE13Compliant connection property can also
be set without changing the code in the following ways:

s Including the ojdbc5dms . jar or ojdbc6dms . jar files in the
CLASSPATH. These files set oracle.jdbc.J2EEl13Compliant
to TRUE by default. These are specific to the Oracle Application
Server release and are not available as part of the general JDBC
release. They are located in SORACLE_HOME/jdbc/1ib.

» Setting the system property by calling the java command with
the flag -Doracle.jdbc.J2EE13Compliant=true. For
example,

java -Doracle.jdbc.J2EEl3Compliant=true ...

When the J2EE13Compliant is set to TRUE the action is as in Table
B-3 of the JDBC specification.

See Also: Table A-1," Valid SQL Data Type-Java Class Mappings"
on page A-1, for information about type compatibility between all
SQL and Java types.

Other getXXX Methods

Standard JDBC provides a get XXX for each standard Java type, such as getByte,
getInt, getFloat, and so on. Each of these returns exactly what the method name
implies.

In addition, the OracleResultSet and OracleCallableStatement classes
provide a full complement of get XXX methods corresponding to all the

oracle.sql. * types. Each get XXX method returns an oracle. sgl . XXX object. For
example, getROWID returns an oracle.sqgl .ROWID object.

There is no performance advantage in using the specific get XXX methods. However,
they do save you the trouble of casting, because the return type is specific to the object
being returned.

This section covers the following topics:
= Return Types of getXXX Methods
= Special Notes about getXXX Methods

Return Types of getXXX Methods

Refer to the Java doc to know the return types for each get XXX method and also
which are Oracle extensions under Java Development Kit (JDK) 1.6. You must cast the
returned object to OracleResultSet or OracleCallableStatement to use
methods that are Oracle extensions.

Accessing and Manipulating Oracle Data 11-9

Comparison of Oracle get and set Methods to Standard JDBC

Special Notes about getXXX Methods

This section provides additional details about some get XXX methods.

getBigDecimal

JDBC 2.0 simplified method signatures for the getBighecimal method. The previous
input signatures were:

(int columnIndex, int scale) or (String columnName, int scale)

The simplified input signature is:

(int columnIndex) or (String columnName)

The scale parameter, used to specify the number of digits to the right of the decimal,
is no longer necessary. The Oracle JDBC drivers retrieve numeric values with full
precision.

getBoolean

Because there is no BOOLEAN database type, when you use getBoolean a data type
conversion always occurs. The getBoolean method is supported only for numeric
columns. When applied to these columns, getBoolean interprets any zero value as
false and any other value as true. When applied to any other sort of column,
getBoolean raises the exception java.lang.NumberFormatException.

Data Types For Returned Objects from getObject and getXXX

The return type of getObject is java.lang.Object. The returned value is an
instance of a subclass of java.lang.Object. Similarly, the return type of
getOracleObject is oracle.sgl.Datum, and the class of the returned value is a
subclass of oracle. sql.Datum. You typically cast the returned object to the
appropriate class to use particular methods and functionality of that class.

In addition, you have the option of using a specific get XXX method instead of the
generic getObject or getOracleObject methods. The get XXX methods enable
you to avoid casting, because the return type of get XXX corresponds to the type of
object returned. For example, the return type of getCLOB is oracle.sqgl.CLOB, as
opposed to java.lang.Object.

Example of Casting Return Values

This example assumes that you have fetched data of the NUMBER type as the first
column of a result set. Because you want to manipulate the NUMBER data without
losing precision, cast your result set to OracleResultSet and use
getOracleObject to return the NUMBER data in oracle.sql. * format. If you do
not cast your result set, then you have to use getObject, which returns your numeric
data into a Java Float and loses some of the precision of your SQL data.

The getOracleObject method returns an oracle.sgl.NUMBER object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject output to oracle.sqgl .NUMBER if you want to use a NUMBER
return variable and any of the special functionality of that class.

NUMBER x = (NUMBER)ors.getOracleObject(1);

11-10 Oracle Database JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

The setObject and setOracleObject Methods

Just as there is a standard getObject and Oracle-specific getOracleObject in
result sets and callable statements, there are also standard setObject and
Oracle-specific setOracleObject methods in OraclePreparedStatement and
OracleCallableStatement. The setOracleObject methods take
oracle.sqgl.* input parameters.

To bind standard Java types to a prepared statement or callable statement, use the
setObject method, which takes a java.lang.Object as input. The setObject
method does support a few of the oracle.sql. * types. However, the method has
been implemented so that you can enter instances of the oracle.sql. * classes that
correspond to the following JDBC standard types: Blob, Clob, Struct, Ref, and
Array.

To bind oracle.sqgl. * types to a prepared statement or callable statement, use the
setOracleObject method, which takes a subclass of oracle.sql.Datum as input.
To use setOracleObject, you must cast your prepared statement or callable
statement to OraclePreparedStatement or OracleCallableStatement.

Example of Using setObject and setOracleObject

For a prepared statement, the setOracleObject method binds the
oracle.sqgl.CHAR data represented by the charval variable to the prepared
statement. To bind the oracle.sql. * data, the prepared statement must be cast to
OraclePreparedStatement. Similarly, the setObject method binds the Java
String data represented by the variable strval.

PreparedStatement ps= conn.prepareStatement ("text_of_ prepared_statement");
((OraclePreparedStatement)ps) .setOracleObject (1, charval);
ps.setObject (2,strval);

Other setXXX Methods

As with the get XXX methods, there are several specific set XXX methods. Standard
setXxX methods are provided for binding standard Java types, and Oracle-specific
set XXX methods are provided for binding Oracle-specific types.

Similarly, there are two forms of the setNull method:
m void setNull (int parameterIndex, int sqglType)

This is specified in the standard java.sql.PreparedStatement interface. This
signature takes a parameter index and a SQL type code defined by the
java.sql.Types or oracle.jdbc.OracleTypes class. Use this signature to
set an object other than a REF, ARRAY, or STRUCT to NULL.

s void setNull (int parameterIndex, int sglType, String
sqgl_type _name)

With JDBC 2.0, this signature is also specified in the standard
java.sql.PreparedStatement interface. This method takes a SQL type name
in addition to a parameter index and a SQL type code. Use this method when the
SQL type code is java.sqgl.Types.REF, ARRAY, or STRUCT. If the type code is
other than REF, ARRAY, or STRUCT, then the given SQL type name is ignored.

Similarly, the registerOutParameter method has a signature for use with REF,
ARRAY, or STRUCT data:

void registerOutParameter
(int parameterIndex, int sqglType, String sqgl_type name)

Accessing and Manipulating Oracle Data 11-11

Comparison of Oracle get and set Methods to Standard JDBC

Binding Oracle-specific types using the appropriate set XXX methods, instead of the
methods used for binding standard Java types, may offer some performance
advantage.

This section covers the following topics:
s Input Data Binding
= Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

Input Data Binding

There are three way to bind data for input:
= Direct binding where the data itself is placed in a bind buffer
= Stream binding where the data is streamed

= LOB binding where a temporary lob is created, the data placed in the LOB using
the LOB APIs, and the bytes of the LOB locator are placed in the bind buffer

The three kinds of binding have some differences in performance and have an impact
on batching. Direct binding is fast and batching is fine. Stream binding is slower, may
require multiple round trips, and turns batching off. LOB binding is very slow and
requires many round trips. Batching works, but might be a bad idea. They also have
different size limits, depending on the type of the SQL statement.

For SQL parameters, the length of standard parameter types, such as RAW and
VARCHAR?2, is fixed by the size of the target column. For PL/SQL parameters, the size
is limited to a fixed number of bytes, which is 32766.

In Oracle Database 10g release 2 (10.2), certain changes were made to the setString,
setCharacterStream, setAsciiStream, setBytes, and setBinaryStream
methods of Preparedstatement. The original behavior of these APIs were:

m setString: Direct bind of characters

s setCharacterStream: Stream bind of characters
= setAsciiStream: Stream bind of bytes

= setBytes: Direct bind of bytes

» setBinaryStream: Stream bind of bytes

Starting from Oracle Database 10g release 2 (10.2), automatic switching between
binding modes, based on the data size and on the type of the SQL statement is
provided.

setBytes and setBinaryStream
For SQL, direct bind is used for size up to 2000 and stream bind for larger.

For PL/SQL direct bind is used for size up to 32766 and LOB bind is used for larger.

setString, setCharacterStream, and setAsciiStream

For SQL, direct bind is used up to 32766 Java characters and stream bind is used for
larger. This is independent of character set.

For PL/SQL, you must be careful about the byte size of the character data in the
database character set or the national character set depending on the setting of the
form of use parameter. Direct bind is used for data where the byte length is less than
32766 and LOB bind is used for larger.

11-12 Oracle Database JDBC Developer's Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC

For fixed length character sets, multiply the length of the Java character data by the
fixed character size in bytes and compare that to the restrictive values. For variable
length character sets, there are three cases based on the Java character length, as
follows:

s If character length is less than 32766 divided by the maximum character size, then
direct bind is used.

s If character length is greater than 32766 divided by the minimum character size,
then LOB bind is used.

s If character length is in between and if the actual length of the converted bytes is
less than 32766, then direct bind is used, else LOB bind is used.

Note: When a PL/SQL procedure is embedded in a SQL statement,
the binding action is different. Refer to "Data Interface for LOBs" on
page 14-10 for more information.

The server-side internal driver has the following additional limitations:

m setString, setCharacterStream, and setASCIIStream APIs are not
supported for SQL CLOB columns when the data size in characters is over 4000
bytes

= setBytes and setBinaryStream APlIs are not supported for SQL BLOB
columns when the data size is over 2000 bytes

Important: Do not use these APIs with the server-side internal
driver, without careful checking of the datasize in client code.

See Also: JDBC Release Notes for further discussion and possible
workarounds

Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

CHAR data in the database is padded to the column width. This leads to a limitation in
using the setCHAR method to bind character data into the WHERE clause of a SELECT
statement. The character data in the WHERE clause must also be padded to the column
width to produce a match in the SELECT statement. This is especially troublesome if
you do not know the column width.

To remedy this, Oracle has added the setFixedCHAR method to the
OraclePreparedStatement class. This method runs a non-padded comparison.

Note:

= Remember to cast your prepared statement object to
OraclePreparedStatement to use the setFixedCHAR
method.

» There is no need to use setFixedCHAR for an INSERT
statement. The database always automatically pads the data to
the column width as it inserts it.

Accessing and Manipulating Oracle Data 11-13

Using Result Set Metadata Extensions

Example

The following example demonstrates the difference between the set CHAR and
setFixedCHAR methods.

/* Schema is :
create table my_table (coll char(10));
insert into my_table values ('JDBC');
*/
PreparedStatement pstmt = conn.prepareStatement
("select count(*) from my_table where coll = ?");

pstmt.setString (1, "JDBC"); // Set the Bind Value

runQuery (pstmt); // This will print " No of rows are 0"
CHAR ch = new CHAR("JDBC ", null);

((OraclePreparedStatement)pstmt) .setCHAR(1, ch); // Pad it to 10 bytes
runQuery (pstmt); // This will print "No of rows are 1"

((OraclePreparedStatement)pstmt) .setFixedCHAR (1, "JDBC");
runQuery (pstmt); // This will print "No of rows are 1"

void runQuery (PreparedStatement ps)
{
// Run the Query
ResultSet rs = pstmt.executeQuery ();

while (rs.next())
System.out.println("No of rows are " + rs.getInt(l));

i

rs.close();
rs = null;

Using Result Set Metadata Extensions

The oracle. jdbc.OracleResultSetMetaData interface is JDBC 2.0-compliant
but does not implement the get SchemaName and getTableName methods because
Oracle Database does not make this feasible..

The following code snippet uses several of the methods in the
OracleResultSetMetadata interface to retrieve the number of columns from the
EMP table and the numerical type and SQL type name of each column:

DatabaseMetaData dbmd = conn.getMetaData() ;
ResultSet rset = dbmd.getTables("", "SCOTT", "EMP", null);

while (rset.next())

{

OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaDatal();
int numColumns = orsmd.getColumnCount () ;
System.out.println("Num of columns = " + numColumns);

for (int 1i=0; i<numColumns; i++)

{
System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
System.out.print (" Type=" + orsmd.getColumnType (i + 1));
System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));

11-14 Oracle Database JDBC Developer's Guide and Reference

Using SQL CALL and CALL INTO Statements

The program returns the following output:

Num of columns = 5

Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2

Using SQL CALL and CALL INTO Statements

You can use the CALL statement to execute a routine from within SQL.

Note: A routine is a procedure or a function that is standalone or is
defined within a type or package. You must have EXECUTE privilege
on the standalone routine or on the type or package in which the
routine is defined. Refer to the "Oracle Database SQL Language
Reference" for more information about using the CALL statement.

You can execute a routine in two ways:
= By issuing a call to the routine itself by name or by using the routine_clause
» By using an object_access_expression inside the type of an expression

You can specify one or more arguments to the routine, if the routine takes arguments.
You can use positional, named, or mixed notation for argument.

CALL INTO Statement

The INTO clause applies only to calls to functions. You can use the following types of
variables with this clause:

s Host variable

s Indicator variable

PL/SQL Blocks

The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks,
which can be nested within each other. A PL/SQL block has three parts: a declarative
part, an executable part, and an exception-handling part. You get the following
advantages by using PL/SQL blocks in your application:

= Better performance

= Higher productivity

= Full portability

= Tight integration with Oracle
s Tight security

Accessing and Manipulating Oracle Data 11-15

Using SQL CALL and CALL INTO Statements

11-16 Oracle Database JDBC Developer's Guide and Reference

12

Overview

Java Streams in JDBC

This chapter describes how the Oracle Java Database Connectivity (JDBC) drivers
handle Java streams for several data types. Data streams enable you to read LONG
column data of up to 2 gigabytes (GB). Methods associated with streams let you read
the data incrementally.

This chapter covers the following topics:

Streaming LONG or LONG RAW Columns
Streaming CHAR, VARCHAR, or RAW Columns
Streaming LOBs and External Files

Data Streaming and Multiple Columns
Streaming and Row Prefetching

Closing a Stream

Notes and Precautions on Streams

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary, ASCII,
and Unicode. Following is a brief description of each type of stream:

Binary
Used for RAW bytes of data, and corresponds to the getBinaryStream method
ASCII

Used for ASCII bytes in ISO-Latin-1 encoding, and corresponds to the
getAsciiStream method

Unicode

Used for Unicode bytes with the UTF-16 encoding, and corresponds to the
getUnicodeStream method

The getBinaryStream, getAsciiStream, and getUnicodeStream methods
return the bytes of data in an InputStream object.

See Also: Chapter 14, "Working with LOBs and BFILEs"

Java Streams in JDBC 12-1

Streaming LONG or LONG RAW Columns

Streaming LONG or LONG RAW Columns

When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to executeQuery
or next, the data of the LONG column is waiting to be read.

Note: Oracle recommends avoiding LONG and LONG RAW columns.
Use LOB instead.

To access the data in a LONG column, you can get the column as a Java InputStream
object and use the read method of the InputStream object. As an alternative, you
can get the data as a String or byte array. In this case, the driver will do the
streaming for you.

You can get LONG and LONG RAW data with any of the three stream types. The driver
performs conversions for you, depending on the character set of the database and the
driver.

Note: Do not create tables with LONG columns. Use large object
(LOB) columns, CLOB, NCLOB, and BLOB, instead. LONG columns
are supported only for backward compatibility. Oracle recommends
that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns.

This section covers the following topics:

s Streaming LONG or LONG RAW Columns

s Streaming CHAR, VARCHAR, or RAW Columns
= Streaming LOBs and External Files

» Data Streaming and Multiple Columns

s Closing a Stream

s Notes and Precautions on Streams

LONG RAW Data Conversions

A call to getBinaryStream returns RAW data. A call to getAsciiStream converts
the RAW data to hexadecimal and returns the ASCII representation. A call to
getUnicodeStream converts the RAW data to hexadecimal and returns the Unicode
characters.

LONG Data Conversions

When you get LONG data with getAsciiStreamn, the drivers assume that the
underlying data in the database uses an US7TASCII or WEBIS08859P1 character set. If
the assumption is true, then the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCII or WEBIS08859P1 character set,
a call to getAsciiStreamreturns meaningless information.

When you get LONG data with getUnicodeStream, you get a stream of Unicode
characters in the UTF-16 encoding. This applies to all underlying database character
sets that Oracle supports.

When you get LONG data with getBinaryStream, there are two possible cases:

12-2 Oracle Database JDBC Developer's Guide and Reference

Streaming LONG or LONG RAW Columns

n If the driver is JDBC OCI and the client character set is not US7TASCII or
WEB8IS08859P1, then a call to getBinaryStream returns UTF-8. If the client
character set is US7ASCII or WESIS08859P1, then the call returns a US7TASCII
stream of bytes.

n If the driver is JDBC Thin and the database character set is not US7TASCIT or
WES8IS08859P1, then a call to getBinaryStream returns UTF-8. If the
server-side character set is US7TASCITI or WE8IS0O8859P1, then the call returns a
US7ASCII stream of bytes.

Tip: Chapter 19, "Globalization Support" and "Data Streaming and
Multiple Columns" on page 12-7

Note: Receiving LONG or LONG RAW columns as a stream requires
you to pay special attention to the order in which you retrieve
columns from the database.

Table 12-1 summarizes LONG and LONG RAW data conversions for each stream type.

Table 12-1 LONG and LONG RAW Data Conversions
Data type BinaryStream AsciiStream UnicodeStream
LONG Bytes representing characters in Bytes representing Bytes representing
Unicode UTF-8. The bytes can characters in ISO-Latin-1 characters in Unicode
represent characters in US7TASCII or (WE8ISO08859P1)encoding UTF-16 encoding
WE8IS08859P1 if the database
character set is US7ASCII or
WE8IS08859P1.
LONG RAW |unchanged data ASCII representation of Unicode representation
hexadecimal bytes of hexadecimal bytes
Streaming Example for LONG RAW Data

One of the features of a get XXxXStream method is that it enables you to fetch data
incrementally. In contrast, getBytes fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
getBinaryStream method to obtain LONG RAW data, and the second version uses the
getBytes method.

Getting a LONG RAW Data Column with getBinaryStream

This example writes the contents of a LONG RAW column to a file on the local file
system. In this case, the driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAW data associated
with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values ('LESLIE', '00010203040506070809");

The following Java code snippet writes the data from the LONG RAW column into a file
called leslie.gif:

ResultSet rset = stmt.executeQuery
("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row

Java Streams in JDBC 12-3

Streaming LONG or LONG RAW Columns

if (rset.next())

// Get the GIF data as a stream from Oracle to the client
InputStream gif_data = rset.getBinaryStream (1);
try
{
FileOutputStream file = null;
file = new FileOutputStream ("leslie.gif");
int chunk;
while ((chunk = gif_data.read()) != -1)
file.write(chunk) ;
}
catch (Exception e)
{
String err = e.toString();
System.out.println(err);
}
finally
{
if file != null()
file.close();

In this example, the InputStream object returned by the call to getBinaryStream
reads the data directly from the database connection.

Getting a LONG RAW Data Column with getBytes

This example gets the content of the GIFDATA column with getBytes instead of
getBinaryStream. In this case, the driver fetches all the data in one call and stores it
in a byte array. The code snippet is as follows:

ResultSet rset2 = stmt.executeQuery
("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset2.next())
{
// Get the GIF data as a stream from Oracle to the client
byte[] bytes = rset2.getBytes(1l);
try
{
FileOutputStream file = null;
file = new FileOutputStream ("leslie2.gif");
file.write (bytes);
}
catch (Exception e)
{
String err = e.toString();
System.out.println(err) ;
}
finally
{
if file != null()
file.close();

}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes
example can use much more memory than the getBinaryStream example. Use

12-4 Oracle Database JDBC Developer's Guide and Reference

Streaming CHAR, VARCHAR, or RAW Columns

streams if you do not know the maximum size of the data in your LONG or LONG RAW
columns.

Avoiding Streaming for LONG or LONG RAW

The JDBC driver automatically streams any LONG and LONG RAW columns. However,
there may be situations where you want to avoid data streaming. For example, if you
have a very small LONG column, then you may want to avoid returning the data
incrementally and, instead, return the data in one call.

To avoid streaming, use the defineColumnType method to redefine the type of the
LONG column. For example, if you redefine the LONG or LONG RAW column as
VARCHAR or VARBINARY type, then the driver will not automatically stream the data.

If you redefine column types with defineColumnType, then you must declare the
types of the columns in the query. If you do not declare the types of the columns, then
executeQuery will fail. In addition, you must cast the Statement object to
oracle.jdbc.OracleStatement.

As an added benefit, using defineColumnType saves the OCI and KPRB drivers a
database round-trip when running the query. Without defineColumnType, these
JDBC drivers must request the data types of the column types. The JDBC Thin driver
derives no benefit from defineColumnType, because it always uses the minimum
number of round-trips.

Using the example from the previous section, the Statement object stmt is cast to
OracleStatement and the column containing LONG RAW data is redefined to be of
the type VARBINARAY. The data is not streamed. Instead, it is returned in a byte array.
The code snippet is as follows:

//cast the statement stmt to an OracleStatement
oracle.jdbc.OracleStatement ostmt =
(oracle.jdbc.OracleStatement) stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType (1, Types.VARBINARY) ;

// Do a query to get the images named 'LESLIE'
ResultSet rset = ostmt.executeQuery
("select GIFDATA from streamexample where NAME='LESLIE'");

// The data is not streamed here
rset.next () ;
byte [] bytes = rset.getBytes(l);

Streaming CHAR, VARCHAR, or RAW Columns

If you use the def ineColumnType Oracle extension to redefine a CHAR, VARCHAR, or
RAW column as a LONGVARCHAR or LONGVARBINARY, then you can get the column as a
stream. The program will behave as if the column were actually of type LONG or LONG
RAW. Note that there is not much point to this, because these columns are usually
short.

If you try to get a CHAR, VARCHAR, or RAW column as a data stream without redefining
the column type, then the JDBC driver will return a Java InputStream, but no real
streaming occurs. In the case of these data types, the JDBC driver fully fetches the data
into an in-memory buffer during a call to the executeQuery method or the next

Java Streams in JDBC 12-5

Streaming LOBs and External Files

method. The get XXXStream entry points return a stream that reads data from this
buffer.

Streaming LOBs and External Files

The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table, which points to
the location of the actual data. External files are managed similarly. The JDBC drivers
can support the following types through the use of streams:

= Binary large object (BLOB)
For unstructured binary data
» Character large object (CLOB)
For character data
= National Character large object (NCLOB)
For national character data
= Binary file (BFILE)
For external files

LOBs and BFILEs behave differently from the other types of streaming data described
in this chapter. Instead of storing the actual data in the table, a locator is stored. The
actual data can be manipulated using this locator, including reading and writing the
data as a stream. Even when streaming, only the necessary bits of data move across the
network. By contrast, when streaming a LONG or LONG RAW, all the data always moves
across the network.

Streaming BLOBs, CLOBs, and NCLOBs

When a query fetches one or more BLOB, CLOB, or NCLOB columns, the JDBC driver
transfers the data to the client. This data can be accessed as a stream. To manipulate
BLOB, CLOB, or NCLOB data from JDBC, use methods in the Oracle extension classes
oracle.sgl.BLOB, oracle.sql.CLOB and oracle.sqgl .NCLOB. These classes
provide specific functionality, such as reading from the BL.OB, CLOB, or NCLOB into an
input stream, writing from an output stream into a BLOB, CLOB, or NCLOB,
determining the length of a BLOB, CLOB, or NCLOB, and closing a BLOB, CLOB, or
NCLOB.

See Also: "Reading and Writing BLOB, CLOB and NCLOB Data" on
page 14-5 and "Data Interface for LOBs" on page 14-10

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database. The
file can be stored somewhere on the file system of the data server. The locator points to
the actual location of the file.

When a query fetches one or more BFILE columns, the JDBC driver transfers the file
to the client as required. The data can be accessed as a stream To manipulate BFILE
data from JDBC, use methods in the Oracle extension class oracle.sqgl .BFILE. This
class provides specific functionality, such as reading from the BFILE into an input
stream, writing from an output stream into a BFILE, determining the length of a
BFILE, and closing a BFILE.

See Also: "Reading BFILE Data" on page 14-16

12-6 Oracle Database JDBC Developer's Guide and Reference

Data Streaming and Multiple Columns

Data Streaming and Multiple Columns

If a query fetches multiple columns and one of the columns contains a data stream,
then the contents of the columns following the stream column are not available until
the stream has been read, and the stream column is no longer available once any
following column is read. Any attempt to read a column beyond a streaming column
closes the streaming column.

See Also: "Streaming Data Precautions" on page 12-8

Streaming Example with Multiple Columns
Consider the following code:

ResultSet rset = stmt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
//get the date data
java.sqgl.Date date = rset.getDate(l);

// get the streaming data
InputStream is = rset.getAsciiStream(2);

// Open a file to store the gif data
FileOutputStream file = new FileOutputStream ("ascii.dat");

// Loop, reading from the ascii stream and

// write to the file

int chunk;

while ((chunk = is.read ()) != -1)
file.write(chunk) ;

// Close the file

file.close();

//get the number column data
int n = rset.getInt(3);
}

The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

As you process each row of the result set, you must complete any processing of the
stream column before reading the number column.

Tip: "Streaming LOBs and External Files" on page 12-6

Bypassing Streaming Data Columns

There may be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read such data, then call the c1ose method of
the stream object. This method discards the stream data and enables the driver to
continue reading data from all the columns that contain non-streaming data and
follow the column containing streaming data. Even though you are intentionally
discarding the stream, it is a good programming practice to retrieve the columns in the
same order as in the SELECT statement.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

Java Streams in JDBC 12-7

Closing a Stream

ResultSet rset = stmt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

while rset.next()
{
//get the date
java.sqgl.Date date = rset.getDate(1l);

// access the stream data and discard it with close()
InputStream is = rset.getAsciiStream(2);
is.close();

// get the number column data
int n = rset.getInt(3);

Closing a Stream

You can discard the data from a stream at any time by calling the close method. Itis a
good programming practice to close the connection when you no longer need it.

See Also: "Bypassing Streaming Data Columns" on page 12-7 and
"Streaming Data Precautions” on page 12-8

Note: Closing a stream has little performance effect on a LONG or
LONG RAW column. All of the data still move across the network and
the driver can read the bits from the network.

Notes and Precautions on Streams
This section discusses several cautionary issues regarding the use of streams:
= Streaming Data Precautions
= Using Streams to Avoid Limits on setBytes and setString

= Streaming and Row Prefetching

Streaming Data Precautions

This section describes some of the precautions you must take to ensure that you do not
accidentally discard or lose your stream data. The drivers automatically discard stream
data if you perform any JDBC operation that communicates with the database, other
than reading the current stream. Two common precautions are:

» Use the stream data after you access it.

To recover the data from a column containing a data stream, it is not enough to
fetch the column. You must immediately process the contents of the column.
Otherwise, the contents will be discarded when you fetch the next column.

s Call the stream column in the same order as in the SELECT statement.

If your query fetches multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, then the database sends the entire data stream before
proceeding to the next column.

12-8 Oracle Database JDBC Developer's Guide and Reference

Notes and Precautions on Streams

If you do not use the order as in the SELECT statement to access data, then you can
lose the stream data. That is, if you bypass the stream data column and access data
in a column that follows it, then the stream data will be lost. For example, if you
try to access the data for the NUMBER column before reading the data from the
stream data column, then the JDBC driver first reads then discards the streaming
data automatically. This can be very inefficient if the LONG column contains a large
amount of data.

If you try to access the LONG column later in the program, then the data will not be
available and the driver will return a "Stream Closed"error.

The later point is illustrated in the following example:

ResultSet rset = stmt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
int n = rset.getInt(3); // This discards the streaming data
InputStream is = rset.getAsciiStream(2);
// Raises an error: stream closed.

}

If you get the stream but do not use it before you get the NUMBER column, then the
stream still closes automatically:

ResultSet rset = stmt.executeQuery
("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
InputStream is = rset.getAsciiStream(2); // Get the stream
int n = rset.getInt(3);
// Discards streaming data and closes the stream

}

int ¢ = is.read(); // ¢ is -1: no more characters to read-stream closed

Using Streams to Avoid Limits on setBytes and setString

In Oracle Database 10g, the size limitation on data that may be used with setBytes
and setString have been reduced and, in certain cases, eliminated. Any Java byte
array can be passed to setBytes, and any Java String can be passed to setString.
The JDBC driver automatically switches to using setBinaryStream or
setCharacterStream or to using setBytesForBlob or setStringForClob,
depending on the size of the data, whether the statement is SQL or PL/SQL, and the
driver used.

There are some limitation with earlier versions of Oracle Database and in the
server-side internal driver.

See Also: "Data Interface for LOBs" on page 14-10 and release notes
for details

Streaming and Row Prefetching

If the JDBC driver encounters a column containing a data stream, then row fetch size is
set back to one. Row fetch size is an Oracle performance enhancement that allows
multiple rows of data to be retrieved with each trip to the database.

Java Streams in JDBC 12-9

Notes and Precautions on Streams

12-10 Oracle Database JDBC Developer's Guide and Reference

13

Working with Oracle Object Types

This chapter describes the Java Database Connectivity (JDBC) support for user-defined
object types. It discusses functionality of the generic, weakly typed
oracle.sqgl.STRUCT class, as well as how to map to custom Java classes that
implement either the JDBC standard SQLData interface or the Oracle ORAData
interface.

The following topics are covered:

= Mapping Oracle Objects

= Using the Default STRUCT Class for Oracle Objects

s Creating and Using Custom Object Classes for Oracle Objects
= Object-Type Inheritance

= Using JPublisher to Create Custom Object Classes

s Describing an Object Type

See Also: Oracle Database Object-Relational Developer’s Guide

Mapping Oracle Objects

Oracle object types provide support for composite data structures in the database. For
example, you can define a Person type that has the attributes name of CHAR type,
phoneNumber of CHAR type, and employeeNumber of NUMBER type.

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes.

Note: In this book, Java classes that you create to map to Oracle
objects will be referred to as custom Java classes or, more specifically,
custom object classes. This is as opposed to custom references
classes, which are Java classes that map to object references, and
custom collection classes, which are Java classes that map to Oracle
collections.

Custom object classes can implement either a standard JDBC interface or an Oracle
extension interface to read and write data. JDBC materializes Oracle objects as
instances of particular Java classes. Two main steps in using JDBC to access Oracle
objects are:

1. Creating the Java classes for the Oracle objects

Working with Oracle Object Types 13-1

Using the Default STRUCT Class for Oracle Objects

2. Populating these classes. You have the following options:
s Let JDBC materialize the object as a STRUCT object.
= Explicitly specify the mappings between Oracle objects and Java classes.

This includes customizing your Java classes for object data. The driver then
must be able to populate instances of the custom object classes that you
specify. This imposes a set of constraints on the Java classes. To satisfy these
constraints, you can define your classes to implement either the JDBC
standard java.sgl.SQLData interface or the Oracle extension
oracle.sqgl.ORAData interface.

You can use the Oracle JPublisher utility to generate custom Java classes.

Note: When you use the SQLData interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
java.sqgl.Struct objects will suffice.

Using the Default STRUCT Class for Oracle Objects

If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC will materialize the object as an instance of the
oracle.sqgl.STRUCT class.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you do not know the actual SQL type. For example, your Java
application might be a tool to manipulate arbitrary object data within the database, as
opposed to being an end-user application. You can select data from the database into
STRUCT objects and create STRUCT objects for inserting data into the database.
STRUCT objects completely preserve data, because they maintain the data in SQL
format. Using STRUCT objects is more efficient and more precise in situations where
you do not need the information in an application specific form.

This section covers the following topics:

s STRUCT Class Functionality

= Retrieving STRUCT Objects and Attributes
» Creating STRUCT Objects and Descriptors
= Binding STRUCT Objects into Statements

» STRUCT Automatic Attribute Buffering

STRUCT Class Functionality

This section discusses standard versus Oracle-specific features of the
oracle.sqgl.STRUCT class, introduces STRUCT descriptors, and lists methods of the
STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods

If your code must comply with standard JDBC 2.0, then use a java.sql.Struct
instance and use the following standard methods:

m getAttributes (map)

This method retrieves the values of the attributes, using entries in the specified
type map to determine the Java classes to use in materializing any attribute that is

13-2 Oracle Database JDBC Developer's Guide and Reference

Using the Default STRUCT Class for Oracle Objects

a structured object type. The Java types for other attribute values would be the
same as for a getObject call on data of the underlying SQL type.

getAttributes

This method is the same as the preceding getAttributes (map) method, except
it uses the default type map for the connection.

getSQLTypeName

This method returns a Java String that represents the fully qualified name of the
Oracle object type that this Struct represents.

Oracle oracle.sql.STRUCT Class Methods

If you want to take advantage of the extended functionality offered by Oracle-defined
methods, then use an oracle.sqgl.STRUCT instance.

The oracle.sgl.STRUCT class implements the java.sqgl . Struct interface and
provides extended functionality beyond the JDBC 2.0 standard.

The STRUCT class includes the following methods in addition to standard Struct
functionality:

getOracleAttributes
Retrieves the values of the values array as oracle.sql. * objects
getDescriptor

Returns the StructDescriptor object for the SQL type that corresponds to this
STRUCT object

getJavaSQLConnection
Returns the current connection instance
toJddbc

Consults the default type map of the connection to determine what class to map to
and, then, uses toClass

toJddbc (map)

Consults the specified type map to determine what class to map to, and then uses
toClass

Retrieving STRUCT Objects and Attributes

This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Note: The JDBC driver seamlessly handles embedded objects, that
is, STRUCT objects that are attributes of STRUCT objects, in the same
way that it typically handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion by using the type map, if it is available, or by using
default mapping.

Retrieving an Oracle Object as an oracle.sql.STRUCT Object

You can retrieve an Oracle object directly into an oracle.sqgl.STRUCT instance. In
the following example, getObject is used to get a type_struct object from the

Working with Oracle Object Types 13-3

Using the Default STRUCT Class for Oracle Objects

coll column of the table struct_table. Because getObject returns an Object
type, the return is cast to oracle. sql.STRUCT. This example assumes that the
Statement object stmt has already been created.

String cmd;
cmd = "CREATE TYPE type_struct AS object (fieldl NUMBER, field2 DATE)";
stmt.execute (cmd) ;

cmd = "CREATE TABLE struct_table (coll type_struct)";
stmt.execute (cmd) ;

cmd = "INSERT INTO struct_table VALUES (type_struct(10,'0l-apr-01'))";
stmt.execute (cmd) ;

cmd = "INSERT INTO struct_table VALUES (type_struct(20,'02-may-02'))";
stmt.execute (cmd) ;

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
oracle.sql.STRUCT oracleSTRUCT=(oracle.sql.STRUCT)rs.getObject (1) ;

Another way to return the object as a STRUCT object is to cast the result set to
OracleResultSet and use the Oracle extension get STRUCT method:

oracle.sqgl.STRUCT oracleSTRUCT=((OracleResultSet)rs).getSTRUCT(1);

Retrieving an Oracle Object as a java.sql.Struct Object

Alternatively, in the preceding example, you can use standard JDBC functionality, such
as getObject, to retrieve an Oracle object from the database as an instance of
java.sgl.Struct. Because getObject returns a java. lang.Object, you must
cast the output of the method to Struct. For example:

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
java.sgl.Struct jdbcStruct = (java.sgl.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types

If you want to retrieve Oracle object attributes from a STRUCT or Struct instance as
oracle.sql types, then use the getOracleAttributes method of the
oracle.sqgl.STRUCT class, as follows:

oracle.sqgl.Datum[] attrs = oracleSTRUCT.getOracleAttributes();

or:

oracle.sqgl.Datum[] attrs = ((oracle.sqgl.STRUCT)jdbcStruct).getOracleAttributes();

Retrieving Attributes as Standard Java Types

If you want to retrieve Oracle object attributes as standard Java types from a STRUCT
or Struct instance, use the standard getAttributes method:

Object[] attrs = jdbcStruct.getAttributes();

13-4 Oracle Database JDBC Developer's Guide and Reference

Using the Default STRUCT Class for Oracle Objects

Note: Oracle JDBC drivers cache array and structure descriptors.
This provides enormous performance benefits. However, it means
that if you change the underlying type definition of a structure type
in the database, the cached descriptor for that structure type will
become stale and your application will receive a SQLException
exception.

Creating STRUCT Objects and Descriptors

This section describes how to create STRUCT objects.

Steps in Creating StructDescriptor and STRUCT Objects
To create a STRUCT object, you must:

1. Createa StructDescriptor object for the given Oracle object type, if it does not
already exist.

2. Use the StructDescriptor to construct the STRUCT object.

A StructDescriptor is an instance of the oracle.sqgl.StructDescriptor class
and describes a type of Oracle object. Only one StructDescriptor is necessary for
each Oracle object type. The driver caches StructDescriptor objects to avoid
re-creating them if the type has already been encountered.

Before you can construct a STRUCT object, a StructDescriptor must first exist for
the given Oracle object type. If a StructDescriptor object does not exist, then you
can create one by calling the static StructDescriptor.createDescriptor
method. This method requires you to pass in the SQL type name of the Oracle object
type and a connection object, as follows:

StructDescriptor structdesc = StructDescriptor.createDescriptor
(sql_type_name, connection);

The sgl_type name parameter is a Java String containing the name of the Oracle
object type, such as EMPLOYEE, and connection is the connection object.

Once you have your StructDescriptor object for the Oracle object type, you can
construct the STRUCT object. To do this, provide the Connection object, the
StructDescriptor object, and an array of Java objects containing the attributes you
want the STRUCT to contain.

The following constructors of STRUCT are available:

STRUCT (Connection conn, java.sql.StructDescriptor structDesc, Object[] attributes)
STRUCT (Connection conn, java.sqgl.StructDescriptor structDesc, java.util.Map map)

The structDesc parameter is the StructDescriptor object created previously and
conn is your Connection object. The attributes can be passed as an array of
java.lang.Object orasa java.util.Map object.

The following code illustrates the use of the constructor that takes an Object array:

Object[] attributes = {"attributel", null};
STRUCT struct = new STRUCT (connection, structDescriptor, attributes);

The following code illustrates the use of the constructor that takes a Map object:

Working with Oracle Object Types 13-5

Creating and Using Custom Object Classes for Oracle Objects

HashMap map = new HashMap (1) ;
map.put ("Al", "attributel");
STRUCT struct = new STRUCT (connection, structDescriptor, map);

Binding STRUCT Objects into Statements

To bind an oracle.sgl.STRUCT object to a prepared statement or callable statement,
you can either use the standard setObject method (specifying the type code), or cast
the statement object to an Oracle statement type and use the Oracle extension
setOracleObject method. For example:

PreparedStatement ps= conn.prepareStatement ("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);

ps.setObject (1, mySTRUCT, Types.STRUCT);

or:

PreparedStatement ps= conn.prepareStatement ("text_of prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
((OraclePreparedStatement)ps) .setOracleObject (1, mySTRUCT) ;

STRUCT Automatic Attribute Buffering

Oracle JDBC driver furnishes public methods to enable and disable buffering of
STRUCT attributes.

See Also: "ARRAY Automatic Element Buffering" on page 16-4

The following methods are included with the oracle.sgl.STRUCT class:
s public void setAutoBuffering(boolean enable)
s public boolean getAutoBuffering()

The setAutoBuffering (boolean) method enables or disables auto-buffering. The
getAutoBuffering method returns the current auto-buffering mode. By default,
auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT
attributes will be accessed more than once by the getAttributes and getArray
methods, presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM)
memory without overflow.

Note: Buffering the converted attributes may cause the JDBC
application to consume a significant amount of memory.

When you enable auto-buffering, the oracle. sql.STRUCT object keeps a local copy
of all the converted attributes. This data is retained so that subsequent access of this
information does not require going through the data format conversion process.

Creating and Using Custom Object Classes for Oracle Objects

If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

13-6 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read from
a custom object class and write to it. In addition, the custom object class can provide
getXxxXand set XXX methods corresponding to the attributes of the Oracle object,
although this is not necessary. To create and populate the custom classes and provide
these read /write capabilities, you can choose between the following interfaces:

s The JDBC standard SQLData interface
s The ORAData and ORADataFactory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
ORAData interface can also be used to implement the custom reference class
corresponding to the custom object class. However, if you are using the SQLData
interface, then you can use only weak reference types in Java, such as java.sqgl.Ref
or oracle.sqgl.REF. The SQLData interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name, which is of the CHAR type and EmpNum, which is
of the NUMBER type. You use the type map to specify that the EMPLOYEE object should
map to a custom object class that you call TJEmployee. You can implement either the
SQLData or ORAData interface in the JEmployee class.

You can create custom object classes yourself, but the most convenient way to create
them is to use the Oracle JPublisher utility to create them for you. JPublisher supports
the standard SQLData interface as well as the Oracle-specific ORAData interface, and
is able to generate classes that implement either one.

See Also: "Using JPublisher to Create Custom Object Classes" on
page 13-30 and "Object-Type Inheritance" on page 13-19

This section covers the following topics:

= Relative Advantages of ORAData versus SQLData

s Understanding Type Maps for SQLData Implementations

s Creating Type Map and Defining Mappings for a SQLData Implementation

= Understanding the SQLData Interface

= Reading and Writing Data with a SQLData Implementation

= Understanding the ORAData Interface

= Reading and Writing Data with a ORAData Implementation

= Additional Uses for ORAData

s The Deprecated CustomDatum Interface

Relative Advantages of ORAData versus SQLData

In deciding which of the two interface implementations to use, you need to consider
the advantages of ORAData and SQLData.

The sQLData interface is for mapping SQL objects only. The ORAData interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create a ORAData object from any
data type found in Oracle Database. This could be useful, for example, for serializing
RAW data in Java.

Working with Oracle Object Types 13-7

Creating and Using Custom Object Classes for Oracle Objects

Advantages of ORAData
The advantages of ORAData are:

s It does not require an entry in the type map for the Oracle object.
= It has awareness of Oracle extensions.

= You can construct an ORAData from an oracle.sqgl . STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

= You can obtain the corresponding Datum object from the ORAData object, using
the toDatum method.

= It provides better performance. ORAData works directly with Datum types, which
is the internal format used by the driver to hold Oracle objects.

Advantages of SQLData
SQLData is a JDBC standard that makes your code portable.

Understanding Type Maps for SQLData Implementations

If you use the SQLData interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the Oracle object
type to Java. You can either use the default type map of the connection object or a type
map that you specify when you retrieve the data from the result set. The getObject
method of the ResultSet interface has a signature that lets you specify a type map.
You can use either of the following:

rs.getObject (int columnIndex) ;

rs.getObject (int columnIndex, Map map) ;

See Also: "Creating and Using Custom Object Classes for Oracle
Objects" on page 13-6

When using a SQLData implementation, if you do not include a type map entry, then
the object will map to the oracle.sgl.STRUCT class by default. ORAData
implementations, by contrast, have their own mapping functionality so that a type
map entry is not required. When using an ORAData implementation, use the Oracle
getORAData method instead of the standard getObject method.

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you read
data from an Oracle object, the JDBC driver considers the type map to determine
which Java class to use to materialize the data from the Oracle object type. When you
write data to an Oracle object, the JDBC driver gets the SQL type name from the Java
class by calling the get SQLTypeName method of the SQLData interface. The actual
conversion between SQL and Java is performed by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either Java
native types or Oracle native types to store attributes.

Creating Type Map and Defining Mappings for a SQLData Implementation

When using a SQLData implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class that
implements the standard java.util.Map interface.

13-8 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

You have the option of creating your own class to accomplish this, but the standard
java.util.Hashtable class meets the requirement.

Hashtable and other classes used for type maps implement a put method that takes
keyword-value pairs as input, where each key is a fully qualified SQL type name and
the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard
java.sqgl.Connection interface and the Oracle-specific
oracle.jdbc.OracleConnection interface include a getTypeMap method. Both
return a Map object.

This section covers the following topics:

= Adding Entries to an Existing Type Map

s Creating a New Type Map

= Materializing Object Types not Specified in the Type Map

Adding Entries to an Existing Type Map

When a connection instance is first established, the default type map is empty. You
must populate it.

Perform the following general steps to add entries to an existing type map:

1. Use the getTypeMap method of your OracleConnection object to return the
type map object of the connection. The get TypeMap method returns a
java.util.Map object. For example, presuming an OracleConnection
instance oraconn:

java.util.Map myMap = oraconn.getTypeMap () ;

Note: If the type map in the OracleConnection instance has
not been initialized, then the first call to getTypeMap returns an
empty map.

2. Use the put method of the type map to add map entries. The put method takes
two arguments: a SQL type name string and an instance of a specified Java class
that you want to map to.

myMap .put (sqlTypeName, classObject);
The sglTypeName is a string that represents the fully qualified name of the SQL
type in the database. The classObject is the Java class object to which you want

to map the SQL type. Get the class object with the Class. forName method, as
follows:

myMap .put (sqlTypeName, Class.forName (className)) ;
For example, if you have a PERSON SQL data type defined in the CORPORATE

database schema, then map it to a Person Java class defined as Person with this
statement:

myMap . put ("CORPORATE.PERSON", Class.forName("Person"));

The map has an entry that maps the PERSON SQL data type in the CORPORATE
database to the Person Java class.

Working with Oracle Object Types 13-9

Creating and Using Custom Object Classes for Oracle Objects

Note: SQL type names in the type map must be all uppercase,
because that is how Oracle Database stores SQL names.

Creating a New Type Map

Perform the following general steps to create a new type map. This example uses an
instance of java.util.Hashtable, which extends java.util.Dictionary and
implements java.util.Map.

1. Create a new type map object.
Hashtable newMap = new Hashtable();

2. Use the put method of the type map object to add entries to the map. For
example, if you have an EMPLOYEE SQL type defined in the CORPORATE database,

then you can map it to an Employee class object defined by Employee. java, as
follows:

newMap .put ("CORPORATE . EMPLOYEE", class.forName ("Employee"));
3. When you finish adding entries to the map, use the setTypeMap method of the

OracleConnection object to overwrite the existing type map of the connection.
For example:

oraconn.setTypeMap (newMap) ;

In this example, set TypeMap overwrites the original map of the oraconn
connection object with newMap.

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set getObject call that does not specify the map as input.

Materializing Object Types not Specified in the Type Map

If you do not provide a type map with an appropriate entry when using a getObject
call, then the JDBC driver will materialize an Oracle object as an instance of the
oracle.sqgl.STRUCT class. If the Oracle object type contains embedded objects and
they are not present in the type map, then the driver will materialize the embedded
objects as instances of oracle.sqgl.STRUCT as well. If the embedded objects are
present in the type map, then a call to the getAttributes method will return
embedded objects as instances of the specified Java classes from the type map.

Understanding the SQLData Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the SQLData interface.
Note that if you use this interface, you must supply a type map that specifies the
Oracle object types in the database and the names of the corresponding custom object
classes that you will create for them.

The sQLData interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLData interface and companion
SQLInput and SQLOutput interfaces in the java.sql package.

If you create a custom object class that implements SQLData, then you must provide a
readSQL method and a writeSQL method, as specified by the SQLData interface.

13-10 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

The JDBC driver calls your readsSQL method to read a stream of data values from the
database and populate an instance of your custom object class. Typically, the driver
would use this method as part of an OracleResultSet object getObject call.

Similarly, the JDBC driver calls your writeSQL method to write a sequence of data
values from an instance of your custom object class to a stream that can be written to
the database. Typically, the driver would use this method as part of an
OraclePreparedStatement object setObject call

Understanding the SQLInput and SQLOutput Interfaces

The JDBC driver includes classes that implement the SQLInput and SQLOutput
interfaces. It is not necessary to implement the SQLOutput or SQLInput objects. The
JDBC drivers will do this for you.

The SQLInput implementation is an input stream class, an instance of which is passed
to the readSQL method. SQLInput includes a readxxx method for every possible
Java type that attributes of an Oracle object may be converted to, such as
readObject, readInt, readLong, readFloat, readBlob, and so on. Each
readXxX method converts SQL data to Java data and returns it as the result with the
corresponding Java type. For example, readInt returns an int.

The SQLOutput implementation is an output stream class, an instance of which is
passed in to the writeSQL method. SQLOutput includes a writeXXX method for
each of these Java types. Each writeXXX method converts Java data to SQL data,
taking as input a parameter of the relevant Java type. For example, writeString
would take as input a String attribute from your Java class.

Implementing readSQL and writeSQL Methods

When you create a custom object class that implements SQLData, you must
implement the readsQL and writeSQL methods, as described here.

You must implement readSQL as follows:

public void readSQL(SQLInput stream, String sql_type_name) throws SQLException

s The readsQL method takes as input a SQLInput stream and a string that
indicates the SQL type name of the data, that is, the name of the Oracle object type,
such as EMPLOYEE.

When your Java application calls getObject, the JDBC driver creates a
SQLInput stream object and populates it with data from the database. The driver
can also determine the SQL type name of the data when it reads it from the
database. When the driver calls readsQL, it passes in these parameters.

s For each Java data type that maps to an attribute of the Oracle object, readSQL
must call the appropriate readxxx method of the SQLInput stream that is passed
in.

For example, if you are reading EMPLOYEE objects that have an employee name as
a CHAR variable and an employee number as a NUMBER variable, then you must
have a readstring call and a readInt call in your readsQL method. JDBC calls
these methods according to the order in which the attributes appear in the SQL
definition of the Oracle object type.

s The readsQL method takes the data that the read XXX methods read and convert
and assigns them to the appropriate fields or elements of a custom object class
instance.

You must implement writeSQL as follows:

Working with Oracle Object Types 13-11

Creating and Using Custom Object Classes for Oracle Objects

public void writeSQL(SQLOutput stream) throws SQLException

The writeSQL method takes as input a SQLOutput stream.

When your Java application calls setObject, the JDBC driver creates a
SQLOutput stream object. When the driver calls writeSQL, it passes in this
stream parameter.

For each Java data type that maps to an attribute of the Oracle object, writeSQL
must call the appropriate writeXXX method of the SQLOutput stream that is
passed in.

For example, if you are writing to EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, then you must
have awriteString call and a writeInt call in your writeSQL method. These
methods must be called according to the order in which attributes appear in the
SQL definition of the Oracle object type.

The writeSQL method then writes the data to the SQLOutput stream by calling
the writeXXX methods so that it can be sent to the database once you execute the
prepared statement.

Reading and Writing Data with a SQLData Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Reading SQLData Objects from a Result Set

The following text summarizes the steps to read data from an Oracle object into your
Java application when you choose the SQLData implementation for your custom
object class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

1.

Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery ("SELECT emp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_OBJECT.
This SQL type is defined in the type map to map to the Java class Employee.

Use the getObject method of your result set to populate an instance of your
custom object class with data from one row of the result set. The getObject
method returns the user-defined SQLData object because the type map contains
an entry for Employee.

if (rs.next())
Employee emp = (Employee)rs.getObject(1l);

Note that if the type map did not have an entry for the object, then getObject
would return an oracle.sqgl.STRUCT object. Cast the output to type STRUCT,
because the getObject method signature returns the generic
java.lang.Object type.

if (rs.next())

STRUCT empstruct = (STRUCT)rs.getObject(1l);

The getObject method calls readsQL, which, in turn, calls readxXxX from the
SQLData interface.

13-12 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

Note: If you want to avoid using the defined type map, then use
the get STRUCT method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

If you have get methods in your custom object class, then use them to read data
from your object attributes. For example, if EMPLOYEE has the attributes EmpName
of type CHAR and EmpNum of type NUMBER, then provide a get EmpName method
that returns a Java String and a get EmpNum method that returns an int value.
Then call them in your Java application, as follows:

String empname = emp.getEmpName () ;
int empnumber = emp.getEmpNum () ;

Retrieving SQLData Objects from a Callable Statement OUT Parameter

Consider you have an OracleCallableStatement instance, ocs, that calls a
PL/SQL function GETEMPLOYEE. The program passes an employee number to the
function. The function returns the corresponding Employee object. To retrieve this
object you do the following;:

1.

Prepare an OracleCallableStatement to call the GETEMPLOYEE function, as
follows:

OracleCallableStatement ocs = (OracleCallableStatement)conn.prepareCall("{ ? =
call GETEMPLOYEE(?) 1}");

Declare the empnumber as the input parameter to GETEMPLOYEE. Register the
SQLData object as the OUT parameter, with the type code
OracleTypes.STRUCT. Then, run the statement. This can be done as follows:

ocs.setInt (2, empnumber) ;
ocs.registerOutParameter (1, OracleTypes.STRUCT, "EMP_OBJECT");
ocs.execute();

Use the getObject method to retrieve the employee object. The following code
assumes that there is a type map entry to map the Oracle object to the Java type
Employee:

Employee emp = (Employee)ocs.getObject(1l);
If there is no type map entry, then getObject would return an
oracle.sqgl.STRUCT object. Cast the output to the STRUCT type, because the

getObject method returns an instance of the generic java.lang.Object class.
This is done as follows:

STRUCT emp = (STRUCT)ocs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter

Suppose you have a PL/SQL function addEmployee (?) that takes an Employee
object as an IN parameter and adds it to the PERSONNEL table. In this example, emp is
a valid Employee object.

1.

Prepare an OracleCallableStatement to call the addEmployee (?) function.

OracleCallableStatement ocs =
(OracleCallableStatement) conn.prepareCall("{ call addEmployee(?) }");

Working with Oracle Object Types 13-13

Creating and Using Custom Object Classes for Oracle Objects

2, Use setObject to pass the emp object as an IN parameter to the callable
statement. Then, call the statement.

ocs.setObject (1, emp);
ocs.execute() ;

Writing Data to an Oracle Object Using a SQLData Implementation

The following text describes the steps in writing data to an Oracle object from your
Java application when you choose the SQLData implementation for your custom
object class.

This description assumes you have already defined the Oracle object type, created the
corresponding Java class, and updated the type map to define the mapping between
the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

emp . setEmpName (empname) ;
emp . setEmpNum (empnumber) ;

This statement uses the emp object and the empname and empnumber variables
assigned in the preceding example.

2. Prepare a statement that updates an Oracle object in a row of a database table, as
appropriate, using the data provided in your Java data type object.

PreparedStatement pstmt = conn.prepareStatement
("INSERT INTO PERSONNEL VALUES (?)");
This assumes conn is your connection object.

3. Use the setObject method of the prepared statement to bind your Java data type
object to the prepared statement.

pstmt.setObject (1, emp);

4. Run the statement, which updates the database.

pstmt.executeUpdate() ;

Understanding the ORAData Interface

One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the
oracle.sqgl.ORAData and oracle.sqgl.ORADataFactory interfaces. The
ORAData and ORADataFactory interfaces are supplied by Oracle and are not a part
of the JDBC standard.

Note: The JPublisher utility supports the generation of classes that
implement the ORAData and ORADataFactory interfaces.

Understanding ORAData Features
The ORAData interface has the following advantages:

= Itrecognizes Oracle extensions to the JDBC. ORAData uses oracle.sgl.Datum
types directly.

13-14 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

= It does not require a type map to specify the names of the Java custom classes you
want to create.

s It provides better performance. ORAData works directly with Datum types, the
internal format the driver uses to hold Oracle objects.

The ORAData and ORADataFactory interfaces do the following:

s The toDatum method of the ORAData class transforms the data into an
oracle.sqgl. * representation.

= ORADataFactory specifies a create method equivalent to a constructor for
your custom object class. It creates and returns an ORAData instance. The JDBC
driver uses the create method to return an instance of the custom object class to
your Java application or applet. It takes as input an oracle. sqgl.Datum object
and an integer indicating the corresponding SQL type code as specified in the
OracleTypes class.

ORAData and ORADataFactory have the following definitions:

public interface ORAData
{

Datum toDatum (OracleConnection conn) throws SQLException;

}

public interface ORADataFactory

{
ORAData create (Datum d, int sqgl_Type_Code) throws SQLException;

}

Where conn represents the Connection object, d represents an object of type
oracle.sqgl.Datumand sgl_Type_Code represents the SQL type code of the
Datum object.

Retrieving and Inserting Object Data

The JDBC drivers provide the following methods to retrieve and insert object data as
instances of ORAData.

You can retrieve the object data in one of the following ways:

= Use the following get ORAData method of the Oracle-specific OracleResultSet
class:

ors.getORAData (int col_index, ORADataFactory factory);

This method takes as input the column index of the data in your result set and a
ORADataFactory instance. For example, you can implement a getORAFactory
method in your custom object class to produce the ORADataFactory instance to
input to getORAData. The type map is not required when using Java classes that
implement ORAData.

s Use the standard getObject (index, map) method specified by the
ResultSet interface to retrieve data as instances of ORAData. In this case, you
must have an entry in the type map that identifies the factory class to be used for
the given object type and its corresponding SQL type name.

You can insert object data in one of the following ways:

= Use the following setORAData method of the Oracle-specific
OraclePreparedStatement class:

ops.setORAData (int bind_index, ORAData custom obj) ;

Working with Oracle Object Types 13-15

Creating and Using Custom Object Classes for Oracle Objects

This method takes as input the parameter index of the bind variable and the name
of the object containing the variable.

» Use the standard setObject method specified by the PreparedStatement
interface. You can also use this method, in its different forms, to insert ORAData
instances without requiring a type map.

The following sections describe the getORAData and setORAData methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

ORAData datum = ors.getORAData(l, Employee.getORAFactory());

In this example, ors is an Oracle result set, getORAData is a method in the
OracleResultSet class used to retrieve a ORAData object, and the EMPLOYEE is in
column 1 of the result set. The static Employee.getORAFactory method will
return a ORADataFactory to the JDBC driver. The JDBC driver will call create ()
from this object, returning to your Java application an instance of the Employee class
populated with data from the result set.

Note:

= ORAData and ORADataFactory are defined as separate
interfaces so that different Java classes can implement them if
you wish.

= To use the ORAData interface, your custom object classes must
import oracle.sql.*.

Reading and Writing Data with a ORAData Implementation

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements ORAData.

Reading Data from an Oracle Object Using a ORAData Implementation

The following text summarizes the steps in reading data from an Oracle object into
your Java application. These steps apply whether you implement ORAData manually
or use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object stmt.

1. Query the database to read the Oracle object into a result set, casting it to an Oracle
result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
("SELECT Emp_col FROM PERSONNEL") ;

Where PERSONNEL is a one-column table. The column name is Emp_col of type
Employee_object.

2. Use the getORAData method of your Oracle result set to populate an instance of
your custom object class with data from one row of the result set. The
getORAData method returns an oracle.sqgl.ORAData object, which you can
cast to your specific custom object class.

if (ors.next())
Employee emp = (Employee)ors.getORAData(l, Employee.getORAFactory());

13-16 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects

or:

if (ors.next())
ORAData datum = ors.getORAData(l, Employee.getORAFactory());

This example assumes that Employee is the name of your custom object class and
ors is the name of your OracleResultSet object.

In case you do not want to use getORAData, the JDBC drivers let you use the
getObject method of a standard JDBC ResultSet to retrieve ORAData data.
However, you must have an entry in the type map that identifies the factory class
to be used for the given object type and its corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement ORAData. The
corresponding Factory class is EmployeeFactory, which will implement
ORADataFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the default type map of the connection already has an entry that identifies the
factory class to be used for the given object type and its corresponding SQL type
name, then you can use this form of getObject:

Employee emp = (Employee) rs.getObject (1);

If you have get methods in your custom object class, then use them to read data
from your object attributes into Java variables in your application. For example, if
EMPLOYEE has EmpName of type CHAR and EmpNum of type NUMBER, provide a
getEmpName method that returns a Java String and a get EmpNum method that
returns an integer. Then call them in your Java application as follows:

String empname = emp.getEmpName () ;
int empnumber = emp.getEmpNum() ;

Note: Alternatively, you can fetch data using a callable statement
object. The OracleCallableStatement class also has a
getORAData method.

Writing Data to an Oracle Object Using a ORAData Implementation

The following text summarizes the steps in writing data to an Oracle object from your
Java application. These steps apply whether you implement ORAData manually or use
JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class.

Note: The type map is not used when you are performing
database INSERT and UPDATE operations.

Working with Oracle Object Types 13-17

Creating and Using Custom Object Classes for Oracle Objects

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

emp . setEmpName (empname) ;

emp . set EmpNum (empnumber) ;

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java data type
object.

OraclePreparedStatement opstmt = conn.prepareStatement
("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

This assumes conn is your Connection object.

3. Use the setORAData method of the Oracle prepared statement to bind your Java
data type object to the prepared statement.

opstmt.setORAData(l, emp);
The setORAData method calls the toDatum method of the custom object class

instance to retrieve an oracle.sql . STRUCT object that can be written to the
database.

In this step you could also use the setObject method to bind the Java data type.
For example:

opstmt.setObject (1, emp) ;

Note: You can use your Java data type objects as either IN or OUT
bind variables.

Additional Uses for ORAData

The ORAData interface offers far more flexibility than the SQLData interface. The
SQLData interface is designed to let you customize the mapping of only Oracle object
types to Java types of your choice. Implementing the SQLData interface lets the JDBC
driver populate fields of a custom Java class instance from the original SQL object
data, and the reverse, after performing the appropriate conversions between Java and

SQL types.

The ORAData interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the oracle.sqgl package.

It may be useful to provide custom Java classes to wrap oracle.sqgl. * types and
perhaps implement customized conversions or functionality as well. The following are
some possible scenarios:

s Performing encryption and decryption or validation of data
= Performing logging of values that have been read or are being written

s Parsing character columns, such as character fields containing URL information,
into smaller components

= Mapping character strings into numeric constants

= Making data into more desirable Java formats, such as mapping a DATE field to
java.util.Date format

13-18 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

s Customizing data representation, for example, data in a table column is in feet but
you want it represented in meters after it is selected

= Serializing and deserializing Java objects

For example, use ORAData to store instances of Java objects that do not correspond to
a particular SQL object type in the database in columns of SQL type RAW. The create
method in ORADataFactory would have to implement a conversion from an object
of type oracle. sgl.RAW to the desired Java object. The toDatum method in
ORAData would have to implement a conversion from the Java object to an
oracle.sqgl.RAW object. This can be done, for example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sqgl .RAW and calls the create method of ORADataFactory to
convert the oracle. sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a column
of type RAW to store it. The driver transparently calls the ORAData.toDatum method to
convert the Java object to an oracle. sql.RAW object. This object is then stored in a
column of type RAW in the database.

Support for the ORAData interfaces is also highly efficient because the conversions are
designed to work using oracle.sqgl. * formats, which happen to be the internal
formats used by the JDBC drivers. Moreover, the type map, which is necessary for the
SQLData interface, is not required when using Java classes that implement ORAData.

See Also: "Understanding the ORAData Interface" on page 13-14

The Deprecated CustomDatum Interface

After the oracle. jdbc interfaces were introduced in Oracle9i Database as an
alternative to the oracle. jdbc.driver classes, the oracle.sqgl.CustomDatum
and oracle.sgl.CustomDatumFactory interfaces, formerly used to access
customized objects, were deprecated. Oracle recommends you use the new interfaces,
oracle.sgl.ORAData and oracle.sqgl.ORADataFactory.

Object-Type Inheritance

Object-type inheritance allows a new object type to be created by extending another
object type. The new object type is then a subtype of the object type from which it
extends. The subtype automatically inherits all the attributes and methods defined in
the supertype. The subtype can add attributes and methods and overload or override
methods inherited from the supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a
slot declared to hold a value of type T in addition to any subtype of type T. Oracle
JDBC drivers handle substitutability transparently.

A database object is returned with its most specific type without losing information.
For example, if the STUDENT_T object is stored in a PERSON_T slot, Oracle JDBC
driver returns a Java object that represents the STUDENT_T object.

This section covers the following topics:

s Creating Subtypes

s Implementing Customized Classes for Subtypes
= Retrieving Subtype Objects

s Creating Subtype Objects

Working with Oracle Object Types 13-19

Object-Type Inheritance

= Sending Subtype Objects
= Accessing Subtype Data Fields
s Inheritance Metadata Methods

Creating Subtypes

Create custom object classes if you want to have Java classes that explicitly correspond
to the Oracle object types. If you have a hierarchy of object types, you may want a
corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to run a SQL CREATE
TYPE command using the execute method of the java.sqgl.Statement interface.
For example, you want to create a type inheritance hierarchy for:

PERSON_T

STUDENT_T

PARTTIMESTUDENT_T

The JDBC code for this can be as follows:

Statement s = conn.createStatement();
s.execute ("CREATE TYPE Person_T (SSN NUMBER, name VARCHAR2 (30),
address VARCHAR2 (255))");
s.execute ("CREATE TYPE Student_T UNDER Person_t (deptid NUMBER,
major VARCHAR2(100))");
s.execute ("CREATE TYPE PartTimeStudent_t UNDER Student_t (numHours NUMBER)");

In the following code, the £oo member procedure in type ST is overloaded and the
member procedure print overwrites the copy it inherits from type T.

CREATE TYPE T AS OBJECT (...,
MEMBER PROCEDURE foo (x NUMBER),
MEMBER PROCEDURE Print(),

NOT FINAL;

CREATE TYPE ST UNDER T (...,
MEMBER PROCEDURE foo (x DATE), <-- overload "foo"
OVERRIDING MEMBER PROCEDURE Print(), <-- override "print"
STATIC FUNCTION bar(...)

)i

Once the subtypes have been created, they can be used as both columns of a base table
as well as attributes of a object type.

See Also: Oracle Database Object-Relational Developer’s Guide

Implementing Customized Classes for Subtypes

In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

You can use either the ORAData or SQLData solution in creating classes to map to the
hierarchy of object types.

This section covers the following topics:

13-20 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

= Use of ORAData for Type Inheritance Hierarchy
s Use of SQLData for Type Inheritance Hierarchy
= JPublisher Utility

Use of ORAData for Type Inheritance Hierarchy

Customized mapping where Java classes implement the oracle.sql.ORAData
interface is the recommended mapping. ORAData mapping requires the JDBC
application to implement the ORAData and ORADataFactory interfaces. The class
implementing the ORADataFactory interface contains a factory method that
produces objects. Each object represents a database object.

The hierarchy of the class implementing the ORAData interface can mirror the
database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT_T are as follows:

Person.java using ORAData

Code for the Person. java class which implements the ORAData and
ORADataFactory interfaces:

class Person implements ORAData, ORADataFactory

{

static final Person _personFactory = new Person();

public NUMBER ssn;
public CHAR name;
public CHAR address;

public static ORADataFactory getORADataFactory ()
{

return _personFactory;
}

public Person () {}

public Person (NUMBER ssn, CHAR name, CHAR address)
{

this.ssn = ssn;

this.name = name;

this.address = address;

}

public Datum toDatum(OracleConnection c¢) throws SQLException
{
StructDescriptor sd =
StructDescriptor.createDescriptor ("SCOTT.PERSON_T", c);
Object [] attributes = { ssn, name, address };
return new STRUCT(sd, c¢, attributes);

public ORAData create(Datum d, int sqglType) throws SQLException
{
if (d == null) return null;
Object [] attributes = ((STRUCT) d).getOracleAttributes();
return new Person((NUMBER) attributes(0],
(CHAR) attributes[1],
(CHAR) attributes[2]);

Working with Oracle Object Types 13-21

Object-Type Inheritance

Student.java extending Person.java
Code for the Student . java class, which extends the Person. java class:

class Student extends Person
{
static final Student _studentFactory = new Student ();

public NUMBER deptid;
public CHAR major;

public static ORADataFactory getORADataFactory ()
{
return _studentFactory;

}
public Student () {}

public Student (NUMBER ssn, CHAR name, CHAR address,
NUMBER deptid, CHAR major)

super (ssn, name, address);
this.deptid = deptid;
this.major = major;

public Datum toDatum(OracleConnection c) throws SQLException
{
StructDescriptor sd =
StructDescriptor.createDescriptor ("SCOTT.STUDENT_T", c);
Object [] attributes = { ssn, name, address, deptid, major };
return new STRUCT(sd, c, attributes);

public CustomDatum create(Datum d, int sqglType) throws SQLException
{
if (d == null) return null;
Object [] attributes = ((STRUCT) d).getOracleAttributes();
return new Student ((NUMBER) attributes[0],
(CHAR) attributes[1],
(CHAR) attributes[2],
(NUMBER) attributes[3],
(CHAR) attributes[4]);

7

}

Customized classes that implement the ORAData interface do not have to mirror the
database object type hierarchy. For example, you could have declared the Student
class without a superclass. In this case, Student would contain fields to hold the
inherited attributes from PERSON_T as well as the attributes declared by STUDENT_T.

ORADataFactory Implementation
The JDBC application uses the factory class in querying the database to return
instances of Person or its subclasses, as in the following example:

ResultSet rset = stmt.executeQuery ("select person from tabl");
while (rset.next())
{

13-22 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
}

A class implementing the ORADataFactory interface should be able to produce
instances of the associated custom object type, as well as instances of any subtype, or
at least all the types you expect to support.

In the following example, the PersonFactory.getORADataFactory method
returns a factory that can handle PERSON_T, STUDENT_T, and PARTTIMESTUDENT_T
objects, by returning person, student, or parttimestudent Java instances.

class PersonFactory implements ORADataFactory
{
static final PersonFactory _factory = new PersonFactory ();

public static ORADataFactory getORADataFactory()
{

return _factory;

public ORAData create(Datum d, int sglType) throws SQLException
{
STRUCT s = (STRUCT) d;
if (s.getSQLTypeName ().equals ("SCOTT.PERSON_T"))
return Person.getORADataFactory ().create (d, sqlType);
else if (s.getSQLTypeName ().equals ("SCOTT.STUDENT T"))
return Student.getORADataFactory ().create(d, sglType);
else if (s.getSQLTypeName ().equals ("SCOTT.PARTTIMESTUDENT_T"))
return ParttimeStudent.getORADataFactory ().create(d, sglType);
else
return null;

}

The following example assumes a table tabl1, such as the following:

CREATE TABLE tabll (idx NUMBER, person PERSON_T);

INSERT INTO tabll VALUES (1, PERSON_T (1000, 'Scott', '100 Oracle Parkway'));
INSERT INTO tabll VALUES (2, STUDENT_ T (1001, 'Peter', '200 Oracle Parkway', 101,
'CS'));

INSERT INTO tabll VALUES (3, PARTTIMESTUDENT T (1002, 'David', '300 Oracle
Parkway', 102, 'EE'));

Use of SQLData for Type Inheritance Hierarchy

The customized classes that implement the java.sgl . SQLData interface can mirror
the database object type hierarchy. The readSQL and writeSQL methods of a
subclass typically call the corresponding superclass methods to read or write the
superclass attributes before reading or writing the subclass attributes. For example, the
Java classes mapping to PERSON_T and STUDENT_T are as follows:

Person.java using SQLData
Code for the Person. java class, which implements the SQLData interface:

import java.sqgl.*;
public class Person implements SQLData

{
private String sqgl_type;

Working with Oracle Object Types 13-23

Object-Type Inheritance

public int ssn;
public String name;
public String address;

public Person () {}
public String getSQLTypeName () throws SQLException { return sqgl_type; }

public void readSQL(SQLInput stream, String typeName) throws SQLException
{

sqgl_type = typeName;

ssn = stream.readInt();

name = stream.readString();

address = stream.readString();

public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeInt (ssn);

stream.writeString (name);

stream.writeString (address);

Student.java extending Student.java
Code for the Student . java class, which extends the Person. java class:

import java.sql.*;

public class Student extends Person
{

private String sqgl_type;

public int deptid;

public String major;

public Student () { super(); }
public String getSQLTypeName () throws SQLException { return sqgl_type; }

public void readSQL(SQLInput stream, String typeName) throws SQLException
{
super.readSQL (stream, typeName); // read supertype attributes
sqgl_type = typeName;
deptid = stream.readInt();
major = stream.readString();

public void writeSQL (SQLOutput stream) throws SQLException
{
super.writeSQL (stream); // write supertype
// attributes
stream.writeInt (deptid);
stream.writeString (major);

Although not required, it is recommended that the customized classes, which
implement the SQLData interface, mirror the database object type hierarchy. For
example, you could have declared the Student class without a superclass. In this

13-24 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

case, Student would contain fields to hold the inherited attributes from PERSON_T as
well as the attributes declared by STUDENT_T.

Student.java using SQLData

Code for the Student . java class, which does not extend the Person. java class,
but implements the SQLData interface directly:

import java.sql.*;

public class Student implements SQLData

{
private String sqgl_type;

public int ssn;

public String name;
public String address;
public int deptid;
public String major;

public Student () {}
public String getSQLTypeName () throws SQLException { return sgl_type; }

public void readSQL(SQLInput stream, String typeName) throws SQLException
{

sqgl_type = typeName;

ssn = stream.readInt();

name = stream.readString();

address = stream.readString();

deptid = stream.readInt();

major = stream.readString();

public void writeSQL (SQLOutput stream) throws SQLException
{

stream.writeInt (ssn);

stream.writeString (name);

stream.writeString (address);

stream.writeInt (deptid);

stream.writeString (major);

JPublisher Utility
Even though you can manually create customized classes that implement the
SQLData, ORAData, and ORADataFactory interfaces, it is recommended that you
use Oracle JPublisher to automatically generate these classes. The customized classes
generated by Oracle JPublisher that implement the SQLData, ORAData, and
ORADataFactory interfaces, can mirror the inheritance hierarchy.

See Also:

s "Using JPublisher to Create Custom Object Classes" on page 13-30

» Oracle Database JPublisher User’s Guide

Working with Oracle Object Types 13-25

Object-Type Inheritance

Retrieving Subtype Objects
In a typical JDBC application, a subtype object is returned as one of the following;:
= A query result
= A PL/SQL OUT parameter
= A type attribute

You can use either the default mapping or the SQLData mapping or the ORAData
mapping to retrieve a subtype.

Using Default Mapping

By default, a database object is returned as an instance of the oracle.sgl.STRUCT
class. This instance may represent an object of either the declared type or subtype of
the declared type. If the STRUCT class represents a subtype object in the database, then
it contains the attributes of its supertype as well as those defined in the subtype.

Oracle JDBC driver returns database objects in their most specific type. The JDBC
application can use the get SQLTypeName method of the STRUCT class to determine
the SQL type of the STRUCT object. The following code shows this:

// tabl.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT T objects
ResultSet rset = stmt.executeQuery ("select person from tabl");
while (rset.next())
{
oracle.sqgl.STRUCT s = (oracle.sgl.STRUCT) rset.getObject(l);
if (s !'= null)
System.out.println (s.getSQLTypeName()); // print out the type name which
// may be SCOTT.PERSON_T, SCOTT.STUDENT_T or SCOTT.PARTTIMESTUDENT_T

Using SQLData Mapping

With sQLData mapping, the JDBC driver returns the database object as an instance of
the class implementing the SQLData interface.

To use SQLData mapping in retrieving database objects, do the following:

1. Implement the container classes that implement the SQLData interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java type
corresponds to each Oracle object type.

3. Use the getObject method to access the SQL object values.

The JDBC driver checks the type map for an entry match. If one exists, then the
driver returns the database object as an instance of the class implementing the
SQLData interface.

The following code shows the whole SQLData customized mapping process:

// The JDBC application developer implements Person.java for PERSON_T,
// Student.java for STUDENT_T
// and ParttimeStudent.java for PARTTIMESTUDEN_T.

Connection conn = ...; // make a JDBC connection

// obtains the connection typemap
java.util.Map map = conn.getTypeMap ();

13-26 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

// populate the type map

map.put ("SCOTT.PERSON_T", Class.forName ("Person"));

map.put ("SCOTT.STUDENT_T", Class.forName ("Student"));

map.put ("SCOTT.PARTTIMESTUDENT T", Class.forName ("ParttimeStudent"));

// tabl.person column can store PERSON_T, STUDENT_T and PARTTIMESTUDENT_ T objects
ResultSet rset = stmt.executeQuery ("select person from tabl");
while (rset.next())

{
// "s" is instance of Person, Student or ParttimeStudent
Object s = rset.getObject(1);

if (s !'= null)
{
if (s instanceof Person)
System.out.println ("This is a Person");
else if (s instanceof Student)
System.out.println ("This is a Student");
else if (s instanceof ParttimeStudent)
System.out.pritnln ("This is a PartimeStudent");
else
System.out.println ("Unknown type");

}

The JDBC drivers check the connection type map for each call to the following:

m getObject method of the java.sqgl.ResultSet and
java.sqgl.CallableStatement interfaces

m getAttribute method of the java.sqgl.Struct interface
m getArray method of the java.sqgl.Array interface

s getValue method of the oracle. sgl.REF interface

Using ORAData Mapping

With ORAData mapping, the JDBC driver returns the database object as an instance of
the class implementing the ORAData interface.

Oracle JDBC driver needs to be informed of what Java class is mapped to the Oracle
object type. The following are the two ways to inform Oracle JDBC drivers:

s The JDBC application uses the
getORAData (int idx, ORADataFactory f) method to access database
objects. The second parameter of the getORAData method specifies an instance of
the factory class that produces the customized class. The getORAData method is
available in the OracleResultSet and OracleCallableStatement classes.

s The JDBC application populates the connection type map with entries that specify
what custom Java type corresponds to each Oracle object type. The getObject
method is used to access the Oracle object values.

The second approach involves the use of the standard getObject method. The
following code example demonstrates the first approach:

// tabl.person column can store both PERSON_T and STUDENT T objects
ResultSet rset = stmt.executeQuery ("select person from tabl");
while (rset.next())
{
Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
if (s !'= null)

Working with Oracle Object Types 13-27

Object-Type Inheritance

if (s instanceof Person)
System.out.println ("This is a Person");
else if (s instanceof Student)
System.out.println ("This is a Student");
else if (s instanceof ParttimeStudent)
System.out.pritnln ("This is a PartimeStudent");
else
System.out.println ("Unknown type");

Creating Subtype Objects

There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLData- or
ORAData-based objects, depending on the approach you choose, to represent database
subtype objects. With default mapping, the JDBC application creates STRUCT objects to
represent database subtype objects. All the data fields inherited from the supertype as
well as all the fields defined in the subtype must have values. The following code
demonstrates this:

Connection conn = ... // make a JDBC connection
StructDescriptor desc = StructDescriptor.createDescriptor
("SCOTT.PARTTIMESTUDENT", conn);
Object[] attrs = {
new Integer(1234), "Scott", "500 Oracle Parkway", // data fields defined in

// PERSON_T

new Integer (102), "CS", // data fields defined in
// STUDENT_T

new Integer (4) // data fields defined in

// PARTTIMESTUDENT T
}i
STRUCT s = new STRUCT (desc, conn, attrs);

s is initialized with data fields inherited from PERSON_T and STUDENT_T, and data
fields defined in PARTTIMESTUDENT_T.

Sending Subtype Objects

In a typical JDBC application, a Java object that represents a database object is sent to
the databases as one of the following:

= A data manipulation language (DML) bind variable
= A PL/SQL IN parameter
= An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLData or ORAData interface. Oracle JDBC driver will
convert the Java object into the linearized format acceptable to the database SQL
engine. Binding a subtype object is the same as binding a standard object.

13-28 Oracle Database JDBC Developer's Guide and Reference

Object-Type Inheritance

Accessing Subtype Data Fields

While the logic to access subtype data fields is part of the customized class, this logic
for default mapping is defined in the JDBC application itself. The database objects are
returned as instances of the oracle.sgl.STRUCT class. The JDBC application needs
to call one of the following access methods in the STRUCT class to access the data
fields:

s Object[] getAttribute()

m oracle.sgl.Datum[] getOracleAttribute()

Subtype Data Fields from the getAttribute Method

The getAttribute method of the java.sqgl . Struct interface is used in JDBC 2.0
to access object data fields. This method returns a java.lang.Object array, where
each array element represents an object attribute. You can determine the individual
element type by referencing the corresponding attribute type in the JDBC conversion
matrix, as listed in Table 4-1. For example, a SQL NUMBER attribute is converted to a
java.math.BigDecimal object. The getAttribute method returns all the data
fields defined in the supertype of the object type as well as data fields defined in the
subtype. The supertype data fields are listed first followed by the subtype data fields.

Subtype Data Fields from the getOracleAttribute Method

The getOracleAttribute method is an Oracle extension method and is more
efficient than the getAttribute method. The getOracleAttribute method
returns an oracle.sql.Datum array to hold the data fields. Each element in the
oracle.sqgl.Datum array represents an attribute. You can determine the individual
element type by referencing the corresponding attribute type in the Oracle conversion
matrix, as listed in Table 4-1. For example, a SQL NUMBER attribute is converted to an
oracle.sqgl.NUMBER object. The getOracleAttribute method returns all the
attributes defined in the supertype of the object type, as well as attributes defined in
the subtype. The supertype data fields are listed first followed by the subtype data
fields.

The following code shows the use of the getAttribute method:

// tabl.person column can store PERSON_T, STUDENT_ T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tabl");
while (rset.next())
{
oracle.sql.STRUCT s = (oracle.sgl.STRUCT) rset.getObject(1l);
if (s !'= null)
{

String sglname

s.getSQLTypeName () ;

Object[] attrs s.getAttribute();

if (sglname.equals ("SCOTT.PERSON")

{
System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
System.out.println ("name="+((String)attrs[1]));
System.out.println ("address="+((String)attrs[2]));

}

else if (sglname.equals ("SCOTT.STUDENT"))

{
System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
System.out.println ("name="+((String)attrs[1l]));
System.out.println ("address="+((String)attrs[2]));
System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());

Working with Oracle Object Types 13-29

Using JPublisher to Create Custom Object Classes

System.out.println ("major="+((String)attrs[4]));
}
else if (sglname.equals ("SCOTT.PARTTIMESTUDENT"))

{

System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
System.out.println ("name="+((String)attrs[1]
System.out.println ("address="+((String)attrs

([0
());
([2
System.out.println ("deptid="+((BigDecimal)attr
(]
(a

1))
s[3]).intValue());
System.out.println ("major="+((String)attrs[4]));
System.out.println ("numHours="+((BigDecimal)attrs([5]).intValue());

}

else

throw new Exception ("Invalid type name: "+sqglname);
}

}
rset.close ();
stmt.close ();

conn.close ();

Inheritance Metadata Methods

Oracle JDBC drivers provide a set of metadata methods to access inheritance
properties. The inheritance metadata methods are defined in the
oracle.sqgl.StructDescriptor and oracle. jdbc.StructMetaData classes.

The StructMetaData class provides inheritance metadata methods for subtype
attributes. The getMetaData method of the StructDescriptor class returns an
instance of StructMetaData of the type. The StructMetaData class contains the
following inheritance metadata methods:

Using JPublisher to Create Custom Object Classes

A convenient way to create custom object classes, as well as other kinds of custom Java
classes, is to use the Oracle JPublisher utility. It generates a full definition for a custom
Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section covers the following topics:
= JPublisher Functionality
» JPublisher Type Mappings

See Also: Oracle Database JPublisher User’s Guide.

JPublisher Functionality

You can direct JPublisher to create custom object classes that implement either the
SQLData interface or the ORAData interface, according to how you set the JPublisher

type mappings.
If you use the ORAData interface, then JPublisher will also create a custom reference
class to map to object references for the Oracle object type. If you use the SQLData

interface, then JPublisher will not produce a custom reference class. You would use
standard java.sqgl.Ref instances instead.

If you want additional functionality, you can subclass the custom object class and add
features as desired. When you run JPublisher, there is a command-line option for

13-30 Oracle Database JDBC Developer's Guide and Reference

Using JPublisher to Create Custom Object Classes

specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.

JPublisher Type Mappings

JPublisher offers various choices for how to map user-defined types and their attribute
types between SQL and Java. This section lists categories of SQL types and the
mapping options available for each category.

Categories of SQL Types

JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as specifies:

s User-defined types (UDT)

This includes Oracle objects, references, and collections. You use the JPublisher
-usertypes option to specify the type-mapping implementation for UDTs, either
a standard SQLData implementation or an Oracle-specific ORAData
implementation.

= Numeric types

This includes anything stored in the database as the NUMBER SQL type. You use
the JPublisher -numbertypes option to specify type-mapping for numeric types.

= Large object (LOB) types

This includes the SQL types, BLOB and CLOB. You use the JPublisher -1obtypes
option to specify type-mapping for LOB types.

s Built-in types

This includes anything stored in the database as a SQL type not covered by the
preceding categories. For example, CHAR, VARCHAR2, LONG, and RAW. You use the
JPublisher -builtintypes option to specify type-mapping for built-in types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to numeric
types only:

» JDBC mapping (setting jdbc)

Uses standard default mappings between SQL types and Java native types. For a
custom object class, uses a SQLData implementation.

s Oracle mapping (setting oracle)

Uses corresponding oracle. sql types to map to SQL types. For a custom object,
reference, or collection class, uses a ORAData implementation.

s Object-JDBC mapping (setting objectjdbc)

Is an extension of the JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard java.lang package, such as

Working with Oracle Object Types 13-31

Using JPublisher to Create Custom Object Classes

java.lang.Integer, Float, and Double, instead of primitive Java types, such
as int, float, and double. The java. lang types are nullable, while the
primitive types are not.

= BigDecimal mapping (setting bigdecimal)

Uses java.math.BigDecimal to map to all numeric attributes. This is
appropriate if you are dealing with large numbers but do not want to map to the
oracle.sqgl .NUMBER class.

Note: Using BigDecimal mapping can significantly degrade
performance.

Mapping the Oracle object type to Java
Use the JPublisher -usertypes option to determine how JPublisher will implement
the custom Java class that corresponds to a Oracle object type:

= A setting of ~usertypes=oracle, which is the default setting, instructs
JPublisher to create a ORAData implementation for the custom object class. This
will also result in JPublisher producing a ORAData implementation for the
corresponding custom reference class.

= A setting of —~usertypes=jdbc instructs JPublisher to create a SQLData
implementation for the custom object class. No custom reference class can be
created. You must use java.sqgl.Ref or oracle.sqgl.REF for the reference

type.

Note: You can also use JPublisher with a ~-usertypes=oracle
setting in creating ORAData implementations to map SQL
collection types.

The -usertypes=jdbc setting is not valid for mapping SQL
collection types. The SQLData interface is intended only for
mapping Oracle object types.

Mapping Attribute Types to Java
If you do not specify mappings for the attribute types of the Oracle object type, then
JPublisher uses the following defaults:

s For numeric attribute types, the default mapping is object-JDBC.
= For LOB attribute types, the default mapping is Oracle.
» For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, then use the -numbertypes, -lobtypes, and
-builtintypes options, as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself an Oracle object type, then it will be mapped according to
the —~usertypes setting.

13-32 Oracle Database JDBC Developer's Guide and Reference

Describing an Object Type

Important: Be aware that if you specify an SQLData
implementation for the custom object class and want the code to be
portable, then you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify
-lobtypes=jdbc.

Summary of SQL Type Categories and Mapping Settings

Table 13-1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Table 13-1 JPublisher SQL Type Categories, Supported Settings, and Defaults
SQL Type JPublisher

Category Mapping Option Mapping Settings Default
UDT types -usertypes oracle, jdbc oracle
numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc
LOB types -lobtypes oracle, jdbc oracle
built-in types -builtintypes oracle, jdbc jdbc

Describing an Object Type

Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to retrieving
information from a result set about its column names and types, and in fact uses an
almost identical method.

This section covers the following topics:
s Functionality for Getting Object Metadata
= Steps for Retrieving Object Metadata

Functionality for Getting Object Metadata

The oracle.sqgl.StructDescriptor class includes functionality to retrieve
metadata about a structured object type. The StructDescriptor class has a
getMetaData method with the same functionality as the standard getMetaData
method available in result set objects. It returns a set of attribute information, such as
attribute names and types. Call this method on a StructDescriptor object to get
metadata about the Oracle object type that the StructDescriptor object describes.

The signature of the StructDescriptor class getMetaData method is the same as
the signature specified for getMetaData in the standard ResultSet interface. The
signature is as follows:

ResultSetMetaData getMetaData() throws SQLException
However, this method actually returns an instance of
oracle. jdbc.StructMetaData, a class that supports structured object metadata in

the same way that the standard java.sgl.ResultSetMetaData interface specifies
support for result set metadata.

The following method is also supported by StructMetaData:

String getOracleColumnClassName (int column) throws SQLException

Working with Oracle Object Types 13-33

Describing an Object Type

This method returns the fully qualified name of the oracle.sqgl . Datum subclass
whose instances are manufactured if the OracleResultSet class
getOracleObject method is called to retrieve the value of the specified attribute.
For example, oracle.sqgl .NUMBER.

To use the getOracleColumnClassName method, you must cast the
ResultSetMetaData object, which that was returned by the getMetaData method,
to StructMetaData.

Note: In all the preceding method signatures, column is
something of a misnomer. Where you specify a value of 4 for
column, you really refer to the fourth attribute of the object.

Steps for Retrieving Object Metadata
Use the following steps to obtain metadata about a structured object type:

1. Create or acquire a StructDescriptor instance that describes the relevant
structured object type.

2. Call the getMetaData method on the StructDescriptor instance.

3. Call the metadata getter methods, getColumnName, getColumnType, and
getColumnTypeName, as desired.

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.

Example

The following method shows how to retrieve information about the attributes of a
structured object type. This includes the initial step of creating a StructDescriptor
instance.

//
// Print out the ADT's attribute names and types
//
void getAttributeInfo (Connection conn, String type_name) throws SQLException
{
// get the type descriptor
StructDescriptor desc = StructDescriptor.createDescriptor (type_name, conn);

// get type metadata
ResultSetMetaData md = desc.getMetaData ();

// get # of attrs of this type
int numAttrs = desc.length ();

// temporary buffers
String attr_name;

int attr_type;

String attr_typeName;

System.out.println ("Attributes of "+type_name+" :");
for (int i=0; i<numAttrs; i++)
{

attr_name = md.getColumnName (i+1);

attr_type md.getColumnType (i+1);

13-34 Oracle Database JDBC Developer's Guide and Reference

Describing an Object Type

System.out.println (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

// drill down nested object
if (attrType == OracleTypes.STRUCT)
{
attr_typeName = md.getColumnTypeName (i+1);

// recursive calls to print out nested object metadata
getAttributeInfo (conn, attr_typeName);
}

Working with Oracle Object Types 13-35

Describing an Object Type

13-36 Oracle Database JDBC Developer's Guide and Reference

14

Working with LOBs and BFILEs

This chapter describes how to use Java Database Connectivity (JDBC) and the
oracle.sql. * classes to access and manipulate large object (LOB) and binary file
(BFILE) locators and data. This chapter contains the following sections:

Oracle Extensions for LOBs and BFILEs
Working with BLOBs, CLOBs and NCLOBs
Data Interface for LOBs

Working With Temporary LOBs

Using Open and Close With LOBs

Working with BFILEs

Oracle SecureFiles

Notes:

In Oracle Database 11g, the Oracle JDBC drivers support the
JDBC 4.0 java.sqgl .NClob interface.

In Oracle Database 10g, the Oracle JDBC drivers support the
JDBC 3.0 java.sqgl.Cloband java.sgl.Blob interfaces.
Certain Oracle extensions made in oracle.sgl.CLOB and
oracle.sqgl.BLOB in earlier Oracle Database releases are no
longer necessary and are deprecated. You should port your
application to the standard JDBC 3.0 interface.

Prior to Oracle Database 10g, the maximum size of a LOB was
2% bytes. This restriction has been removed since Oracle
Database 10g, and the maximum size is limited to the size of
available physical storage. The Java LOB application
programming interface (API) has not changed.

Oracle Extensions for LOBs and BFILEs

LOBs are stored in a way that optimizes space and provides efficient access. The JDBC
drivers provide support for three types of LOB: binary large object (BLOB), which is
used for unstructured binary data, character large object (CLOB), which is used for
character data, and national character large object (NCLOB), which is used for national
character data. BLOB, CLOB, and NCLOB data is accessed and referenced by using a
locator that is stored in the database table and points to the BLOB, CLOB, and NCLOB
data, which is outside the table.

Working with LOBs and BFILEs 14-1

Working with BLOBs, CLOBs and NCLOBs

BFILEs are large binary data objects stored in operating system files outside of
database tablespaces. These files use reference semantics. They can also be located on
tertiary storage devices, such as hard disks, CD-ROMs, PhotoCDs, and DVDs. As with
BLOB, CLOB, and NCLOBs, a BFILE is accessed and referenced by a locator which is
stored in the database table and points to the BFILE data.

To work with LOB data, you must first obtain a LOB locator. Then you can read or
write LOB data and perform data manipulation.

The JDBC drivers support the following oracle.sgl. * classes for BLOBs, CLOBs,
NCLOBs, and BFILEs:

m oracle.sqgl.BLOB
m oracle.sqgl.CLOB
m oracle.sqgl.NCLOB
m oracle.sqgl.BFILE

The oracle.sqgl.BLOB, oracle. sql.CLOB, and oracle.sq. NCLOB classes
implement the java.sqgl.Blob, java.sqgl.Clob,and java. sqgl.NClob interfaces,
respectively. In contrast, BFILE is an Oracle extension, without a corresponding
java.sql interface.

Instances of these classes contain only the locators for these data types, not the data.
After accessing the locators, you must perform some additional steps to access the
data.

Note: If you want to create a new LOB, then use the factory
methods from oracle. jdbc.OracleConnection interface.

Working with BLOBs, CLOBs and NCLOBs

This section describes how to read and write data to and from BLOBs, CLOBs, and
NCLOBs in Oracle Database, using LOB locators. This section covers the following
topics:

s Getting and Passing BLOB, CLOB, and NCLOB Locators

= Reading and Writing BLOB, CLOB and NCLOB Data

s Creating and Populating a BLOB, CLOB or NCLOB Column
» Accessing and Manipulating BLOB, CLOB, or NCLOB Data

Getting and Passing BLOB, CLOB, and NCLOB Locators

Standard as well as Oracle-specific getter and setter methods are available for
retrieving or passing LOB locators from or to the database. This section covers the
following topics:

s Retrieving BLOB, CLOB, and NCLOB Locators
= Passing BLOB, CLOB and NCLOB Locators

Retrieving BLOB, CLOB, and NCLOB Locators

Given a standard JDBC result set or callable statement that includes BLOB, CLOB, or
NCLOB locators, you can access the locators by using standard getter methods. You
can use the standard getBlob, getClob, and getNC1lob methods, which return
java.sqgl.Blob, Clob, and NC1lob objects, respectively.

14-2 Oracle Database JDBC Developer's Guide and Reference

Working with BLOBs, CLOBs and NCLOBs

Note: All the standard and Oracle-specific getter methods discussed
here take either an int column index or a String column name as
input.

If you retrieve or cast the result set or the callable statement to OracleResultSet or
OracleCallableStatement, then you can use Oracle extensions, as follows:

= You can use getBLOB, getCLOB, and getNCLOB, which return
oracle.sql.BLOB, CLOB, and NCLOB objects, respectively.

= You can also use the getOracleObject method, which returns an
oracle.sqgl.Datum object, and cast the output appropriately.

Example: Getting BLOB, CLOB, and NCLOB Locators from a Result Set

Assume the database has a table called 1ob_table with a column for a BLOB locator,
blob_col, a column for a CLOB locator, clob_col, and a column for a NCLOB
locator, nclob_col. This example assumes that you have already created the
Statement object, stmt.

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

// Select LOB locator into standard result set.
ResultSet rs =
stmt.executeQuery ("SELECT blob_col, clob_col, nclob_col FROM lob_table");
while (rs.next())
{
// Get LOB locators into Java container classes.

java.sgl.Blob blob = (java.sqgl.Blob)rs.getObject (1) ;
java.sgl.Clob clob = (java.sqgl.Clob)rs.getObject(2);
java.sgl.NClob nclob = (java.sqgl.NClob)rs.getObject(3);

(...process...)

}

The output is cast to java.sqgl.Blob, java.sgl.Clob, and java.sql.NClob. As an
alternative, you can cast the output to oracle.sgl.BLOB, oracle.sgl.CLOB, and
oracle.sql.NCLOB to take advantage of extended functionality offered by the
oracle.sql. * classes. For example, you can rewrite the preceding code to get the
LOB locators as:

// Get LOB locators into Java container classes.
oracle.sql.BLOB blob = (BLOB)rs.getObject(1);
oracle.sqgl.CLOB clob = (CLOB)rs.getObject(2);
oracle.sqgl.NCLOB nclob = (NCLOB)rs.getObject(3);
(...process...)

Example: Getting a CLOB Locator from a Callable Statement
The callable statement methods for retrieving LOBs are identical to the result set
methods.

For example, if you have an OracleCallableStatement instance, ocs, that calls a
function func that has a CLOB output parameter, then set up the callable statement as
in the following example.

This example registers OracleTypes . CLOB as the type code of the output parameter.

OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall("{? = call func()}");

Working with LOBs and BFILEs 14-3

Working with BLOBs, CLOBs and NCLOBs

ocs.registerOutParameter (1, OracleTypes.CLOB);
ocs.execute() ;
oracle.sqgl.CLOB clob = ocs.getCLOB (1) ;

Passing BLOB, CLOB and NCLOB Locators

Given a standard JDBC prepared statement or callable statement, you can use
standard setter methods to pass LOB locators. These methods are defined as follows:

public void setBlob(int index, Blob value);
public void setClob(int index, Clob value);
public void setNClob(int index, NClob value);

Note: If you pass a BLOB to a PL/SQL procedure, then the BLOB
must be no bigger than 32K - 7. If you pass a BLOB that exceeds this
limit, then you will receive a SQLException exception.

Given an Oracle-specific OraclePreparedStatement or
OracleCallableStatement, then you can use Oracle extensions as follows:

s Use setBLOB, setCLOB, and setNClob, which take oracle.sqgl.BLOB, CLOB
and NCLOB locators as input, respectively.

= Use the setOracleObject method, which simply specifies an
oracle.sqgl.Datuminput.

Example: Passing a BLOB Locator to a Prepared Statement

If you have an OraclePreparedStatement object ops and a BLOB named
my_blob, then write the BLOB to the database as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
("INSERT INTO blob_table VALUES(?)");

ops.setBLOB(1, my_blob);

ops.execute() ;

Example: Passing a CLOB Locator to a Callable Statement

If you have an OracleCallableStatement object ocs and a CLOB named
my_clob, then input the CLOB to the stored procedure proc as follows:

OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall ("{call proc(?))}");

ocs.setClob(1l, my_clob);

ocs.execute();

Example: Passing an NCLOB Locator to a Callable Statement

If you have an OracleCallableStatement object ocs and an NCLOB named
my_nclob, then input the NCLOB to the stored procedure proc as follows:

OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall ("{call proc(?))}");

ocs.setNClob(1l, my_nclob);

ocs.execute();

14-4 Oracle Database JDBC Developer's Guide and Reference

Working with BLOBs, CLOBs and NCLOBs

Reading and Writing BLOB, CLOB and NCLOB Data

Once you have a LOB locator, you can use JDBC methods to read and write the LOB
data. LOB data is materialized as a Java array or stream. Unlike LONG and LONG RAW
data, you can access the LOB data at any time during the life of the connection.

To read and write the LOB data, use the methods in the java.sqgl .BLOB,
java.sgl.CLOB, and java.sql .NCLOB class, as appropriate. These classes provide
functionality such as reading from the LOB into an input stream, writing from an
output stream into a LOB, determining the length of a LOB, and closing a LOB.

Notes: To write LOB data, the application must acquire a write
lock on the LOB object. One way to accomplish this is through a
SELECT FOR UPDATE. Also, you must disable auto-commit mode.

To read and write LOB data, you can use these methods:

s Toread from a BLOB, use the getBinaryStream method of an java.sqgl .BLOB
object to retrieve the entire BLOB as an input stream. This returns a
java.io.InputStream object.

As with any InputStream object, use one of the overloaded read methods to
read the LOB data and use the close method when you finish.

s To write to a BLOB, use the setBinaryStream method of an java.sgl .BLOB
object to retrieve the BLOB as an output stream. This returns a
java.io.OutputStream object to be written back to the BLOB.

As with any OutputStream object, use one of the overloaded write methods to
update the LOB data and use the c1ose method when you finish.

s Toread from a CLOB, use the getAsciiStreamor getCharacterStream
method of an java. sgl.CLOB object to retrieve the entire CLOB as an input
stream. The getAsciiStream method returns an ASCII input stream in a
java.io.InputStream object. The getCharacterStream method returns a
Unicode input stream in a java.io.Reader object.

As with any InputStream or Reader object, use one of the overloaded read
methods to read the LOB data and use the close method when you finish.

You can also use the get SubString method of java.sgl.CLOB object to
retrieve a subset of the CLOB as a character string of type java.lang.String.

s To write to a CLOB, use the setAsciiStreamor setCharacterStream
method of an java. sgl.CLOB object to retrieve the CLOB as an output stream to
be written back to the CLOB. The setAsciiStream method returns an ASCII
output stream in a java.io.OutputStream object. The setCharacterStream
method returns a Unicode output stream in a java.io.Writer object.

As with any Stream or Writer object, use one of the overloaded write methods
to update the LOB data and use the £1lush and close methods when you finish.

s Toread from an NCLOB, use the getAsciiStream or getCharacterStream
method of an java. sgl . NCLOB object to retrieve the entire NCLOB as an input
stream. The getAsciiStream method returns an ASCII input stream in a
java.io.InputStream object. The getCharacterStream method returns a
Unicode input stream in a java.io.Reader object.

As with any InputStream or Reader object, use one of the overloaded read
methods to read the LOB data and use the close method when you finish.

Working with LOBs and BFILEs 14-5

Working with BLOBs, CLOBs and NCLOBs

You can also use the get SubString method of java.sgl.NCLOB object to
retrieve a subset of the NCLOB as a character string of type java.lang.String.

s To write to an NCLOB, use the setAsciiStreamor setCharacterStream
method of an oracle. sgl.NCLOB object to retrieve the NCLOB as an output
stream to be written back to the NCLOB. The setAsciiStream method returns
an ASCII output stream in a java.io.OutputStream object. The
setCharacterStream method returns a Unicode output stream in a
java.io.Writer object.

As with any Stream or Writer object, use one of the overloaded write methods
to update the LOB data and use the f1ush and close methods when you finish.

Notes:

» The stream write methods described in this section write
directly to the database when you write to the output stream.
You do not need to run an UPDATE to write the data. However,
you need to call close or £1ush to ensure all changes are
written. CLOBs and BLOBs are transaction controlled. After
writing to either, you must commit the transaction for the
changes to be permanent. BFILEs are not transaction controlled.
Once you write to them the changes are permanent, even if the
transaction is rolled back, unless the external file system does
something else.

= When writing to or reading from a CLOB or an NCLOB, the
JDBC drivers perform all character set conversions for you.

s When reading a LOB using any of the getXXX methods
described in the section, the returned stream fetches blocks of
data from the database needed. The entire LOB is not fetched
all at once, which makes it practical to read very large LOBs.

Example: Reading BLOB Data

Use the getBinaryStream method of the oracle.sgl .BLOB class to read BLOB
data. The getBinaryStream method provides access to the BLOB data through a
binary stream.

The following example uses the getBinaryStream method to read BLOB data
through a byte stream and then reads the byte stream into a byte array, returning the
number of bytes read, as well.

// Read BLOB data from BLOB locator.

InputStream byte_stream = my_blob.getBinaryStream(1L);
byte [] byte_array = new byte [10];

int bytes_read = byte_stream.read (byte_array);

Example: Reading CLOB Data

The following example uses the getCharacterStream method to read CLOB data
into a Unicode character stream. It then reads the character stream into a character
array, returning the number of characters read, as well.

// Read CLOB data from CLOB locator into Reader char stream.
Reader char_stream = my_clob.getCharacterStream(1L) ;

char [] char_array = new char [10];

int chars_read = char_stream.read (char_array, 0, 10);

14-6 Oracle Database JDBC Developer's Guide and Reference

Working with BLOBs, CLOBs and NCLOBs

Example: Reading NCLOB Data

The following example uses the getCharacterStream method to read NCLOB data
into a Unicode character stream. It then reads the character stream into a character
array, returning the number of characters read, as well.

// Read NCLOB data from NCLOB locator into Reader char stream.
Reader char_stream = my_nclob.getCharacterStream(1L);

char [] char_array = new char [10];

int chars_read = char_stream.read (char_array, 0, 10);

The next example uses the getAsciiStream method of the oracle.sqgl.NCLOB
class to read NCLOB data through an ASCII character stream. It then reads the ASCII
stream into a byte array, returning the number of bytes read, as well.

// Read NCLOB data from NCLOB locator into Input ASCII character stream
Inputstream asciiChar_stream = my nclob.getAsciiStream(1L);

byte[] asciiChar_array = new byte[10];

int asciiChar_read = asciiChar_stream.read(asciiChar_array,0,10);

Example: Writing BLOB Data

Use the setBinaryOutputStream method of an oracle. sgl.BLOB object to write
BLOB data.

The following example reads a vector of data into a byte array, then uses the
setBinaryOutputStream method to write an array of character data to a BLOB.

java.io.OutputStream outstream;

// read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// write the array of binary data to a Blob
outstream = ((BLOB)my_blob) .setBinaryOutputStream(1lL);
outstream.write(data);

Example: Writing CLOB Data

Use the setCharacterStream method or the setAsciiStream method to write
data to a CLOB. The setCharacterStream method returns a Unicode output
stream. The setAsciiStream method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
setCharacterStream method to write the array of character data to a CLOB.

java.io.Writer writer;

// read data into a character array
char[1 data:{lO!lV1|,|2l,I3V,I4|Il5|lv6l,|7l,|8V,l9|};

// write the array of character data to a Clob
writer = ((CLOB)my_clob) .setCharacterStream();
writer.write(data);

writer.flush();

writer.close();

Working with LOBs and BFILEs 14-7

Working with BLOBs, CLOBs and NCLOBs

The next example reads a vector of data into a byte array, then uses the
setAsciiStream method to write the array of ASCII data to a CLOB.

java.io.OutputStream out;

// read data into a byte array
byte[} data = {'0‘,‘1',‘2','3‘,'4‘,'5',‘6',‘7','8‘,'9‘};

// write the array of ascii data to a CLOB
out = clob.setAsciiStream();
out.write(data);

out.flush();

out.close();

Example: Writing NCLOB Data

Use the setCharacterStream method or the setAsciiStream method to write
data to an NCLOB. The setCharacterStream method returns a Unicode output
stream. The setAsciiStream method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
setCharacterStream method to write the array of character data to an NCLOB.

java.io.Writer writer;

// read data into a character array
Char[} data:{IO|’V1|,|2l,|3V,I4|,l5l’v6l,|7l,|8V,l9|};

// write the array of character data to an NClob
writer = ((NCLOB)my_nclob).setCharacterStream();
writer.write(data);

writer.flush();

writer.close();

The next example reads a vector of data into a byte array, then uses the
setAsciiStream method to write the array of ASCII data to an NCLOB.

java.io.OutputStream out;

// read data into a byte array
byte[} data = {'0‘,‘1',‘2','3‘,'4‘,'5',‘6',‘7','8‘,'9‘};

// write the array of ascii data to a NClob
out = nclob.setAsciiStream();
out.write(data);

out.flush();

out.close();

Creating and Populating a BLOB, CLOB or NCLOB Column

Create and populate aBLOB, CLOB, or NCLOB column in a table by using SQL
statements.

Note: You cannot construct a new BLOB, CLOB, or NCLOB
locator in your application with a Java new statement. You must
create the locator through a SQL operation, and then select it into
your application or use the factory methods from
oracle.jdbc.OracleConnection interface.

14-8 Oracle Database JDBC Developer's Guide and Reference

Working with BLOBs, CLOBs and NCLOBs

Create a BLOB, CLOB, or NCLOB column in a table with the SQL. CREATE TABLE
statement, then populate the LOB. This includes creating the LOB entry in the table,
obtaining the LOB locator, and then copying the data into the LOB.

Creating a BLOB, CLOB, or NCLOB Column in a New Table

To create a BLOB, CLOB, or NCLOB column in a new table, run the SQL CREATE
TABLE statement. The following example code creates a BLOB column in a new table.
This example assumes that you have already created your Connection object conn
and Statement object stmt:

String cmd = "CREATE TABLE my_blob_table (x VARCHAR2 (30), c BLOB)";
stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number, such as 1 or 2, and
the BLOB column stores the locator of the BLOB data.

Populating a BLOB, CLOB, or NCLOB Column in a New Table

This example demonstrates how to populate a BLOB, CLOB, or NCLOB column by
reading data from a stream. These steps assume that you have already created your
Connection object conn and Statement object stmt. The tablemy_blob_table is
the table that was created in the previous section.

The following example writes the john.gif file to a BLOB:

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
empty_blob function to create the BLOB locator.

stmt.execute ("INSERT INTO my_blob_table VALUES ('rowl', empty_blob())");

2. Get the BLOB locator from the table.

BLOB blob;

cmd = "SELECT * FROM my blob_table WHERE X='rowl' FOR UPDATE";
ResultSet rset = stmt.executeQuery(cmd) ;

rset.next () ;

BLOB blob = ((OracleResultSet)rset).getBLOB(2);

Note: You must disable auto-commit mode.

3. Declare a file handler for the john. gif file, then print the length of the file. This
value will be used later to ensure that the entire file is read into the BLOB. Next,
create a FileInputStream object to read the contents of the file, and an
OutputStream object to retrieve the BLOB as a stream.

File binaryFile = new File("john.gif");
System.out.println("john.gif length = " + binaryFile.length());
FileInputStream instream = new FileInputStream(binaryFile);
OutputStream outstream = blob.setBinaryStream(1lL);

4, Call getBuffersSize to retrieve the ideal buffer size to use in writing to the
BLOB, then create the buf fer byte array.

int size = blob.getBufferSize();
byte[] buffer = new byte[size];
int length = -1;

Working with LOBs and BFILEs 14-9

Data Interface for LOBs

5. Use the read method to read the file to the byte array buffer, then use the
write method to write it to the BLOB. When you finish, close the input and
output streams and commit the changes.

while ((length = instream.read(buffer)) != -1)
outstream.write (buffer, 0, length);

instream.close();

outstream.close();

conn.commit () ;

Once your data is in the BLOB, CLOB, or NCLOB, you can manipulate the data.

Accessing and Manipulating BLOB, CLOB, or NCLOB Data

Once you have your BLOB, CLOB, or NCLOB locator in a table, you can access and
manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement.

After you select the locators, you can retrieve the BLOB, CLOB, or NCLOB data. After
retrieving the BLOB, CLOB, or NCLOB data, you can manipulate it however you
want.

This example is a continuation of the example in the previous section. It uses the SQL
SELECT statement to select the BLOB locator from the table my_blob_tableintoa
result set. The result of the data manipulation is to print the length of the BLOB in
bytes.

// Select the blob - what we are really doing here
// 1is getting the blob locator into a result set
BLOB blob;

cmd = "SELECT * FROM my_blob_table";

ResultSet rset = stmt.executeQuery (cmd);

// Get the blob data - cast to OracleResult set to
// retrieve the data in oracle.sql format

String index = ((OracleResultSet)rset).getString(1l);
blob = ((OracleResultSet)rset).getBLOB(2);

// get the length of the blob
int length = blob.length();

// print the length of the blob
System.out.println("blob length" + length);

// read the blob into a byte array

// then print the blob from the array
byte bytes[] = blob.getBytes(1l, length);
blob.printBytes (bytes, length);

Data Interface for LOBs

The data interface for LOBs provides a streamlined mechanism for writing and
reading the entire LOB contents. It is simpler to code and faster in many cases. It does
not provide the random access capability or access beyond 2147483648 elements as do
the standard java.sgl.Blob and java.sgl.Clob interfaces and the Oracle
extensions, oracle.sqgl .BLOB, oracle.sqgl.BFILE, and oracle.sqgl.CLOB.

14-10 Oracle Database JDBC Developer's Guide and Reference

Data Interface for LOBs

Input

In Oracle Database 10g release 2 (10.2), the setBytes, setBinaryStreamn,
setString, setCharacterStream, and setAsciiStream methods of
PreparedStatement are extended for BLOB and CLOB parameters.

For the JDBC Oracle Call Interface (OCI) and Thin drivers there is no limitation on the
size of the byte array or String and no limit on the length specified for the stream
functions except the limits imposed by the Java language, which is that array sizes are
limited to positive Java int or 2147483648 elements.

For the server-side internal driver there is currently a limitation of 4000 bytes for
operations on SQL statements, such as an INSERT statement. The limitation does not
apply for PL/SQL statements. There is a simple workaround for an INSERT statement,
which is to wrap it in a PL/SQL block, as follows:

BEGIN
INSERT id, ¢ INTO clob_tab VALUES(?,?);
END;

You must bear in mind the following automatic switching of the input mode for large
data:

s For SQL statements:
- setBytes switches to setBinaryStream for data larger than 2000 bytes

- setString switches to setCharacterStream for data larger than 32766
characters

s PL/SQL statements

- setBytes switches to setBinaryStream for data larger than 2000 bytes
and to setBytesForBlob for data larger that 32766 bytes

- setString switches to setStringForClob for string data larger than 32766
bytes in the database character set

- setNClobor setObject is used for large national character set type data. If
the setObject method is used , the target data type must be specified as
Types .NCHAR, Types .NCLOB, Types .NVARCHAR, or
Types . LONGNVARCHAR.

This will have impact on some programs, which formerly got ORA-17157 errors for
attempts to use setString for String values larger than 32766 characters. Now,
depending on the type of the target parameter an error may occur while the
application is executed or the operation may succeed.

Another impact is that the automatic switching may result in additional server-side
parsing to adapt to the change in the parameter type. This would result in a
performance effect if the data sizes vary above and below the limit for repeated
executions of the statement. Switching to the stream modes will effect batching as
well.

Oracle Database 10g release 1 (10.1) has the SetBigStringTryClob connection
property. Setting this property causes the standard setString method to switch to
setStringForClob method for large data. This property is no longer used or
needed. The setBytesForBlob and setStringForClob methods create temporary
LOBs, which are automatically freed when the statement is executed or closed before
execution.

However, when a PL/SQL procedure or function is embedded in a SQL statement,
data less than 4 KB is bound as String, which is the standard. When data is greater

Working with LOBs and BFILEs 14-11

Data Interface for LOBs

than 4KB, the driver binds the data as a String as for any SQL statement. This will
throw an error. The workaround is to use setClob or setCharacterStream
instead of setString or setStringForClob. You can also create a callable
statement.

Output

The getBytes, getBinaryStream, getSting, getCharacterStream, and
getAsciiStream methods of ResultSet and CallableStatement are extended
to work with BLOB, CLOB, and BFILE columns or OUT parameters. These methods will
work for any LOB of length less than 2147483648. This operates entirely on the
client-side and will work with any supported version of the database, that is, Oracle
Database 8.1.7 and later.

BLOB, BFILE, or CLOB data can be read and written using the same streaming
mechanism as for LONG RAW and LONG data. To read, use defineColumnType (nn,
Types .LONGVARBINARY) or defineColumnType (nn, Types.LONGVARCHAR) on
the column. This produces a direct stream on the data as if it were a LONG RAW or
LONG column. This technique is limited to Oracle Database 10g release 1 (10.1) and
later.

CallableSatement and IN OUT Parameter

It is a PL/SQL requirement that the Java types used as input and output for an IN
OUT parameter must be the same. The automatic switching of types done by the
extensions described in this chapter may cause problems with this.

Consider that you have an IN OUT CLOB parameter of a stored procedure and you
wish to use setString for setting the value for this parameter. For any IN and OUT
parameter, the binds must be of the same type. The automatic switching of the input
mode will cause problems unless you are sure of the data sizes. For example, if it is
known that neither the input nor output data will ever be larger than 32766 bytes, then
you could use setString for the input parameter and register the OUT parameter as
Types . VARCHAR and use getString for the output parameter.

A better solution is to change the stored procedure to have separate IN and OUT
parameters. That is, if you have:

CREATE PROCEDURE clob_proc(¢ IN OUT CLOB);

then, change it to:

CREATE PROCEDURE clob_proc(c_in IN CLOB, c_out OUT CLOB);

Another workaround is to use a container block to make the call. The clob_proc
procedure can be wrapped with a Java string to use for the prepareCall statement,
as follows:

"DECLARE c_temp; BEGIN c_temp := ?; clob_proc(c_temp); ? := c_temp; END;"

In either case you may use setString on the first parameter and
registerOutParameter with Types.CLOB on the second.

Size Limitations

Please be aware of the effect on the performance of the Java memory management
system due to creation of very large byte array or String. Please read the
information provided by your Java virtual machine (JVM) vendor about the impact of
very large data elements on memory management, and consider using the stream
interfaces instead.

14-12 Oracle Database JDBC Developer's Guide and Reference

Working With Temporary LOBs

Working With Temporary LOBs

You can use temporary LOBs to store transient data. The data is stored in temporary
table space rather than regular table space. You should free temporary LOBs after you
no longer need them. If you do not, then the space the LOB consumes in temporary
table space will not be reclaimed.

You can insert temporary LOBs into a table. When you do this, a permanent copy of
the LOB is created and stored. Inserting a temporary LOB may be preferable for some
situations. For example, if the LOB data is relatively small so that the overhead of
copying the data is less than the cost of a database round trip to retrieve the empty
locator. Remember that the data is initially stored in the temporary table space on the
server and then moved into permanent storage.

You create a temporary LOB with the static method

createTemporary (Connection, boolean, int).This method is defined in
both the oracle.sqgl.BLOB and oracle.sqgl.CLOB classes. You free a temporary
LOB with the freeTemporary method.

public static BLOB createTemporary (Connection conn, boolean isCached, int
duration);
public static CLOB createTemporary (Connection conn, boolean isCached, int
duration) ;

The duration must be either DURATION SESSION or DURATION_CALL as defined in
the oracle.sgl.BLOB or oracle.sql.CLOB class. In client applications,
DURATION_SESSION is appropriate. In Java stored procedures, you can use either
DURATION_SESSION or DURATION_CALL, which ever is appropriate.

You can test whether a LOB is temporary by calling the i sTemporary method. If the
LOB was created by calling the createTemporary method, then the isTemporary
method returns true, else it returns false.

You can free a temporary LOB by calling the freeTemporary method. Free any
temporary LOBs before ending the session or call. Otherwise, the storage used by the
temporary LOB will not be reclaimed.

Notes:

» Failure to free a temporary LOB will result in the storage used
by that LOB in the database being unavailable. Frequent failure
to free temporary LOBs will result in filling up temporary table
space with unavailable LOB storage.

= When fetching data from a ReultSet with columns that are
temporary LOBs, use getClob or getBlob instead of
getString or getBytes. Also invoke freeTemporary to
free the temporary LOBs.

Creating Temporary NCLOBs in JDK 1.5

You create temporary national character large objects (NCLOBs) using a variant of the
createTemporary method.

CLOB.createTemporary (Connection conn, boolean cache, int duration, short form);

The form argument specifies whether the created LOB is a CLOB or an NCLOB. If
formequals oracle. jdbc.OraclePreparedStatement . FORM_NCHAR, then the
method creates an NCLOB. If form equals

Working with LOBs and BFILEs 14-13

Using Open and Close With LOBs

oracle.jdbc.OraclePreparedStatement . FORM_CHAR, then the method creates
a CLOB.

Creating Temporary NCLOBs in JDK 1.6

JDBC 4.0 supports NCLOBs directly. You can use the standard factory method of
java.sql.Connection interface to create an NCLOB.

Using Open and Close With LOBs

You do not have to open and close your LOBs. You may choose to open and close
them for performance reasons.

If you do not wrap LOB operations inside an Open/Close call operation, then each
modification to the LOB will implicitly open and close the LOB, thereby firing any
triggers on a domain index. Note that in this case, any domain indexes on the LOB will
become updated as soon as LOB modifications are made. Therefore, domain LOB
indexes are always valid and may be used at any time.

If you wrap your LOB operations inside the Open/Close call operation, then triggers
will not be fired for each LOB modification. Instead, the trigger on domain indexes
will be fired at the Close call. For example, you might design your application so that
domain indexes are not be updated until you call the close method. However, this
means that any domain indexes on the LOB will not be valid in-between the
Open/Close calls.

You open a LOB by calling the open or open (int) method. You may then read and
write the LOB without any triggers associated with that LOB firing. When you are
done accessing the LOB, close the LOB by calling the close method. When you close
the LOB, any triggers associated with the LOB will fire. You can see if a LOB is open or
closed by calling the i sOpen method. If you open the LOB by calling the open (int)
method, the value of the argument must be either MODE_READONLY or
MODE_READWRITE, as defined in the oracle.sqgl .BLOB and oracle.sgl.CLOB
classes. If you open the LOB with MODE_READONLY, any attempt to write to the LOB
will result in a SQL exception.

Note: An error occurs if you commit the transaction before closing
all LOBs that were opened by the transaction. The openness of the
open LOBs is discarded, but the transaction is successfully
committed. Hence, all the changes made to the LOB and non-LOB
data in the transaction are committed, but the triggers for domain
indexing are not fixed.

Working with BFILEs

This section describes how to read data to BFILEs, using file locators. This section
covers the following topics:

s Getting and Passing BFILE Locators

= Reading BFILE Data

s Creating and Populating a BFILE Column
= Accessing and Manipulating BFILE Data

14-14 Oracle Database JDBC Developer's Guide and Reference

Working with BFILEs

Getting and Passing BFILE Locators

Getter and setter methods are available for retrieving or passing BFILE locators from
or to the database.

Retrieving BFILE Locators

Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard result set getObject
method. This method returns an oracle. sgl.BFILE object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject or getBFILE method.

Notes:

s IntheOracleResultSet and OracleCallableStatement
classes, getBFILE and getBfile both return
oracle.sqgl.BFILE. Thereis no java.sqgl interface for
BFILEs.

s Ifusing getObject or getOracleObject, remember to cast
the output, as necessary.

Example: Getting a BFILE locator from a Result Set

Assume that the database has a table called bfile_table with a single column for
the BFILE locator bfile_col. This example assumes that you have already created
your Statement object stmt.

Select the BFILE locator into a standard result set. If you cast the result set to
OracleResultSet, then you can use get BFILE to get the BFILE locator, as follows:

// Select the BFILE locator into a result set
ResultSet rs = stmt.executeQuery ("SELECT bfile_col FROM bfile_table");
while (rs.next())
{
oracle.sql.BFILE my _bfile = ((OracleResultSet)rs).getBFILE(1);

}

Note that as an alternative, you can use getObject to return the BFILE locator. In this
case, because getObject returns a java.lang.Object, cast the results to BFILE.
For example:

oracle.sql.BFILE my bfile = (BFILE)rs.getObject(1l);

Example: Getting a BFILE Locator from a Callable Statement

Assume you have an OracleCallableStatement object ocs that calls a function
func that has a BFILE output parameter. The following code example sets up the
callable statement, registers the output parameter as OracleTypes.BFILE, runs the
statement, and retrieves the BFILE locator:

OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall("{? = call func()}");

ocs.registerOutParameter (1, OracleTypes.BFILE);

ocs.execute();

oracle.sql.BFILE bfile = ocs.getBFILE(1);

Working with LOBs and BFILEs 14-15

Working with BFILEs

Passing BFILE Locators

To pass a BFILE locator to a prepared statement or callable statement, you can do one
of the following:

s Use the standard setObject method.

s Cast the statement to OraclePreparedStatement or
OracleCallableStatement, and use the setOracleObject or setBFILE
method.

These methods take the parameter index and an oracle.sqgl.BFILE object as input.

Example: Passing a BFILE Locator to a Prepared Statement

Assume you want to insert a BFILE locator into a table, and you have an
OraclePreparedStatement object ops to insert data into a table. The first column
is a string, the second column is a BFILE, and you have a valid oracle.sgl.BFILE
object, bf i1e. Write the BFILE to the database, as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
("INSERT INTO my bfile_table VALUES (?,?)");

ops.setString (1, "one") ;

ops.setBFILE(2, bfile);

ops.execute() ;

Example: Passing a BFILE Locator to a Callable Statement

Passing a BFILE locator to a callable statement is similar to passing it to a prepared
statement. In this case, the BFILE locator is passed to the myGetFileLength
procedure, which returns the BFILE length as a numeric value.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
("begin ? := myGetFileLength (?); end;");

try
{

cstmt.registerOutParameter (1, Types.NUMERIC);

cstmt.setBFILE (2, bfile);

cstmt.execute ();

return cstmt.getLong (1);

Reading BFILE Data

To read BFILE data, you must first get the BFILE locator. You can get the locator from
either a callable statement or a result set. Once you obtain the locator, you can call a
number of methods on the BFILE without opening it. For example, you can use the
oracle.sgl.BFILE methods fileExists () and isFileOpen () to determine
whether the BFILE exists and if it is open. However, if you want to read and
manipulate the data, then you must open and close the BFILE, as follows:

s Use the openFile method of the oracle.sqgl.BFILE class to open a BFILE.
= When you are done, use the closeFile method of the BFILE class.

BFILE data is through a Java stream. To read from a BFILE, use the
getBinaryStream method of an oracle. sqgl.BFILE object to access the file as an
input stream. This returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read methods to read
the file data and use the c1lose method when you finish.

14-16 Oracle Database JDBC Developer's Guide and Reference

Working with BFILEs

Notes:

» BFILEs are read-only. They reside in the OS (operating system)
File System and can be written to only using OS tools and
commands.

= You can create a BFILE. However, you cannot create an OS file
that a BFILE would refer to. Those are created only externally.

Example: Reading BFILE Data

The following example uses the getBinaryStream method of an
oracle.sql.BFILE object to read BFILE data into a byte stream and then read the
byte stream into a byte array. The example assumes that the BFILE has already been
opened.

// Read BFILE data from a BFILE locator
Inputstream in = bfile.getBinaryStream();
bytel[] byte_array = new byte{10};

int byte_read = in.read(byte_array);

Creating and Populating a BFILE Column

This section discusses how to create a BFILE column in a table with SQL operations
and specify the location where the BFILE resides. The examples in this section assume
that you have already created your Connection object conn and Statement object
stmt.

Creating a BFILE Column in a New Table

To work with BFILE data, create a BFILE column in a table, and specify the location of
the BFILE. To specify the location of the BFILE, use the SQL CREATE DIRECTORY...AS
statement to specify an alias for the directory where the BFILE resides. In this example,
the directory alias is test_dir and the BFILE resides in the /home /work directory.

String cmd;
cmd = "CREATE DIRECTORY test_dir AS '/home/work'";
stmt.execute (cmd);

Use the SQL CREATE TABLE statement to create a table containing a BFILE column. In
this example, the name of the table ismy_bfile_table.

// Create a table containing a BFILE field
cmd = "CREATE TABLE my_bfile_table (x varchar2 (30), b bfile)";
stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number and the BFILE
column stores the locator of the BFILE data.

Populating a BFILE Column

Use the SQL INSERT INTO. . .VALUES statement to populate the VARCHAR2 and
BFILE fields. The BFILE column is populated with the locator to the BFILE data. To
populate the BFILE column, use the bfilename function to specify the directory alias
and the name of the BFILE file.

cmd ="INSERT INTO my bfile_table VALUES ('one', bfilename(test_dir,
'filel.data'))";

stmt.execute (cmd);

cmd ="INSERT INTO my bfile_table VALUES ('two', bfilename(test_dir,

Working with LOBs and BFILEs 14-17

Working with BFILEs

'jdbcTest.data'))";
stmt.execute (cmd);

In this example, the name of the directory alias is test_dir. The locator of the BFILE
filel.data isloaded into the BFILE column on row one, and the locator of the
BFILE jdbcTest.data is loaded into the bfile column on row two.

As an alternative, you may want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table and null as a place holder for the BFILE locator.

cmd ="INSERT INTO my_bfile_table VALUES ('three', null)";
stmt.execute (cmd) ;

Here, three is inserted into the row number column and null is inserted as the place
holder. Later in your program, insert the BFILE locator into the table by using a
prepared statement.

First get a valid BFILE locator into the bfile object:

rs = stmt.executeQuery ("SELECT b FROM my_bfile_table WHERE x='two'");
rs.next () ;
oracle.sql.BFILE bfile = ((OracleResultSet)rs).getBFILE(1);

Then, create your prepared statement. Note that because this example uses the
setBFILE method to identify the BFILE, the prepared statement must be cast to
OraclePreparedStatement:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
(UPDATE my_bfile_table SET b=? WHERE X = 'three');

ops.setBFILE (1, bfile);

ops.execute() ;

Now row two and row three contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and manipulate
the BFILE data.

Accessing and Manipulating BFILE Data

Once you have the BFILE locator in a table, you can access and manipulate the data to
which it points. To access and manipulate the data, you must first select its locator
from a result set or a callable statement.

The following code continues the example from the preceding section, getting the
locator of the BFILE from row two of a table into a result set. The result set is cast to
OracleResultSet so that oracle.sqgl. * methods can be used on it. Several of the
methods applied to the BFILE, such as getDirAlias and getName, do not require
you to open the BFILE. Methods that manipulate the BFILE data, such as reading,
getting the length, and displaying, do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE.

// select the bfile locator
cmd = "SELECT * FROM my_bfile_table WHERE x = 'two'";
rset = stmt.executeQuery (cmd);

if (rset.next ())
BFILE bfile = ((OracleResultSet)rset).getBFILE (2);

// for these methods, you do not have to open the bfile
println("getDirAlias() = " + bfile.getDirAlias());

14-18 Oracle Database JDBC Developer's Guide and Reference

Oracle SecureFiles

println("getName() = " + bfile.getName());
println("fileExists() = " + bfile.fileExists());
println("isFileOpen() = " + bfile.isFileOpen());

// now open the bfile to get the data
bfile.openFile();

// get the BFILE data as a binary stream
InputStream in = bfile.getBinaryStream();
int length ;

// read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

while ((length = in.read(buf)) != -1)
{
// append and display the bfile data in 6-byte chunks
StringBuffer sb = new StringBuffer (length);
for (int 1=0; i<length; i++)
sb.append((char)buf[i]);
System.out.println(sb.toString());
}

// we are done working with the input stream. Close it.
in.close();

// we are done working with the BFILE. Close it.
bfile.closeFile();

Oracle SecureFiles

In Oracle Database 11g Release 1 (11.1), Oracle SecureFiles, a completely redesigned
storage for LOBs, provide the following capabilities:

= SecureFile compression enables users to compress data to save disk space.

= SecureFile encryption introduces a new encryption facility that allows for random
reads and writes of the encrypted data.

= Deduplication enables Oracle database to automatically detect duplicate LOB data
and conserve space by storing only one copy of data.

= LOB data path optimization includes logical cache above storage layer, read
prefetching, new caching modes, and vectored IO.

= High performance space management.

These features are implemented in the database and are transparenly available to
JDBC programs through the existing APIs.

The new setLobOptions and getLobOptions APIs are described in the PL/SQL
Packages and Types Reference, and may be accessed from JDBC through callable
statements.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide

Working with LOBs and BFILEs 14-19

Oracle SecureFiles

14-20 Oracle Database JDBC Developer's Guide and Reference

15

Using Oracle Object References

This chapter describes Oracle extensions to standard Java Database Connectivity
(JDBC) that let you access and manipulate object references. The following topics are
discussed:

= Oracle Extensions for Object References

s Overview of Object Reference Functionality

= Retrieving and Passing an Object Reference

» Accessing and Updating Object Values Through an Object Reference

s Custom Reference Classes with JPublisher

Oracle Extensions for Object References

Oracle supports the use of references to database objects. Oracle JDBC provides
support for object references as:

» Columns in a SELECT clause

= INor OUT bind variables

= Attributes in an Oracle object

= Elements in a collection type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, be aware that you are retrieving
only a pointer to an object, not the object itself. You have the choice of materializing
the reference as a weakly typed oracle. sql.REF instance, or a java.sqgl.Ref
instance for portability, or materializing it as an instance of a custom Java class that
you have created in advance, which is strongly typed. Custom Java classes used for
object references are referred to as custom reference classes and must implement the
oracle.sqgl.ORAData interface. The oracle.sqgl.REF class implements the
standard java.sqgl.Ref interface.

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the underlying
object.

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until run time.

Using Oracle Object References 15-1

Overview of Object Reference Functionality

Note:

= If you are using the oracle. sgl.ORAData interface for
custom object classes, then you will presumably use ORAData
for corresponding custom reference classes as well. However, if
you are using the standard java.sqgl.SQLData interface for
custom object classes, then you can only use weak Java types
for references. The SQLData interface is for mapping SQL
object types only.

= You can create and retrieve REF objects in your JDBC
application only by running SQL statements. There is no
JDBC-specific functionality for creating and retrieving REF
objects.

= You cannot have a reference to an array, even though arrays,
like objects, are structured types.

Overview of Object Reference Functionality

To access and update object data through an object reference, you must obtain the
reference instance through a result set or callable statement and then pass it back as a
bind variable in a prepared statement or callable statement. It is the reference instance
that contains the functionality to access and update object attributes.

This section covers the following topics:
» Object Reference Getter and Setter Methods
s Key REF Class Methods

Object Reference Getter and Setter Methods

You can use the result set, callable statement, and prepared statement methods to
retrieve and pass object references.

Result Set and Callable Statement Getter Methods

The OracleResultSet and OracleCallableStatement classes support getREF
and getRef methods to retrieve REF objects as output parameters. REF objects can be
retrieved either as oracle.sgl.REF instances or java.sqgl.Ref instances. You can
also use the getObject method. These methods take as input a String column
name or int column index.

Prepared and Callable Statement Setter Methods

The OraclePreparedStatement and OracleCallableStatement classes
support setREF and setRef methods to take REF objects as bind variables and pass
them to the database. You can also use the setObject method. These methods take as
input a String parameter name or int parameter index as well as an
oracle.sql.REF instance or a java.sqgl .Ref instance.

Key REF Class Methods

You can use the following oracle.sqgl.REF class methods to retrieve the SQL object
type name and retrieve and pass the underlying object data:

n getBaseTypeName

15-2 Oracle Database JDBC Developer's Guide and Reference

Retrieving and Passing an Object Reference

Retrieves the fully qualified SQL structured type name of the referenced object.
This is a standard method specified by the java.sqgl.Ref interface.

s getValue

Retrieves the referenced object from the database, enabling you to access its
attribute values. It optionally takes a type map object. You can use the default type
map of the database connection object. This method is an Oracle extension.

n setValue

Sets the referenced object in the database, allowing you to update its attribute
values. It takes an instance of the object type, either a STRUCT instance or an
instance of a custom object class, as input. This method is an Oracle extension.

Retrieving and Passing an Object Reference

This section discusses JDBC functionality for retrieving and passing object references.
It covers the following topics:

= Retrieving an Object Reference from a Result Set
= Retrieving an Object Reference from a Callable Statement

= Passing an Object Reference to a Prepared Statement

Retrieving an Object Reference from a Result Set

To demonstrate how to retrieve object references, the following example first defines
an Oracle object type ADDRESS, which is then referenced in the PEOPLE table:

create type ADDRESS as object
(street_name VARCHAR2 (30) ,
house_no NUMBER) ;

create table PEOPLE
(coll VARCHAR2 (30),
col2 NUMBER,
col3 REF ADDRESS) ;

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getREF to get the address reference from the result set into a REF object.

3. LetAddress be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

5. Use the getValue method to retrieve the contents of the Address reference. Cast
the output to Address.

The PEOPLE database table is defined earlier in this section. The code for the preceding
steps, except the step of adding Address to the type map, is as follows:

ResultSet rs = stmt.executeQuery ("SELECT col3 FROM PEOPLE");

Using Oracle Object References 15-3

Retrieving and Passing an Object Reference

while (rs.next())

{
REF ref = ((OracleResultSet)rs).getREF(1);
Address a = (Address)

ref.getValue()

}

7

Note: In the preceding code, stmt is a previously defined statement
object.

As with other SQL types, you could retrieve the reference with the getObject
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getObject(l);

There are no performance advantages in using getObject instead of getREF;
however, using getREF enables you to avoid casting the output.

Retrieving an Object Reference from a Callable Statement

To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs =
(OracleCallableStatement)conn.prepareCall ("{? = call func()}");

2. Register the OUT parameter with the following form of the
registerOutParameter method:
ocs.registerOutParameter (int param_index, int sqgl_type, String sqgl_type name) ;
param_index is the parameter index and sqgl_type is the SQL type code. The
sqgl_type name is the name of the structured object type that this reference is

used for. For example, if the OUT parameter is a reference to an ADDRESS object,
then ADDRESS is the sgl_type_name that should be passed in.

3. Run the call, as follows:

ocs.execute();

Passing an Object Reference to a Prepared Statement

Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject method or the setREF method of a
prepared statement object.

Use a prepared statement to update an address reference based on ROWID, as follows:

PreparedStatement pstmt =

conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
((OraclePreparedStatement)pstmt) .setREF (1, addr_ref);
((OraclePreparedStatement)pstmt) .setROWID (2, rowid);

15-4 Oracle Database JDBC Developer's Guide and Reference

Custom Reference Classes with JPublisher

Accessing and Updating Object Values Through an Object Reference

You can use the REF object setValue method to update the value of an object in the
database through an object reference. To do this, you must first retrieve the reference to
the database object and create a Java object that corresponds to the database object.

For example, you can use the code in "Retrieving and Passing an Object Reference" on
page 15-3, to retrieve the reference to a database ADDRESS object, as follows:

ResultSet rs = stmt.executeQuery ("SELECT col3 FROM PEOPLE");
if (rs.next())
{
REF ref = rs.getREF(1);
Address a = (Address)ref.getValue();
}

Then, you can create a Java Address object that corresponds to the database ADDRESS
object. Use the setValue method of the REF class to set the value of the database
object, as follows:

Address addr = new Address(...);
ref.setValue(addr) ;

Here, the setValue method updates the database ADDRESS object immediately.

Custom Reference Classes with JPublisher

This chapter primarily describes the functionality of the oracle.sqgl .REF class, but
it is also possible to access Oracle object references through custom Java classes or,
more specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter, as
well as the advantage of being strongly typed. A custom reference class must satisfy
three requirements:

= It must implement the oracle.sqgl.ORAData interface. Note that the standard
JDBC sQLData interface, which is an alternative for custom object classes, is not
intended for custom reference classes.

= It or a companion class, must implement the oracle.sqgl.ORADataFactory
interface, for creating instances of the custom reference class.

» It must provide a way to refer to the object data. JPublisher accomplishes this by
using an oracle.sqgl.REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to generate
a custom object class to map to an Oracle object and you specify that JPublisher use a
ORAData implementation, then JPublisher will also generate a custom reference class
that implements ORAData and ORADataFactory and includes an oracle.sql.REF
attribute. The ORAData implementation will be used if the JPublisher ~usertypes
mapping option is set to oracle, which is the default.

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Employee custom object class and
an EmployeeRef custom reference class. Using EmployeeRef instances instead of
generic oracle.sqgl .REF instances makes it easier to catch errors during compilation
instead of at run time. For example, if you accidentally assign some other kind of
object reference into an EmployeeRef variable.

Using Oracle Object References 15-5

Custom Reference Classes with JPublisher

Be aware that the standard SQLData interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLData
interface in creating a custom object class, then JPublisher will not generate a custom
reference class. In this case, your only option is to use standard java.sqgl.Ref
instances or oracle.sqgl.REF instances to map to your object references.

See Also:

= "Using JPublisher to Create Custom Object Classes" on page 13-30

» Oracle Database [Publisher User’s Guide

15-6 Oracle Database JDBC Developer's Guide and Reference

16

Working with Oracle Collections

This chapter describes Oracle extensions to standard Java Database Connectivity
(JDBC) that let you access and manipulate Oracle collections, which map to Java
arrays, and their data. The following topics are discussed:

= Oracle Extensions for Collections

» Overview of Collection Functionality

s ARRAY Performance Extension Methods
» Creating and Using Arrays

= Using a Type Map to Map Array Elements

s Custom Collection Classes with JPublisher

Oracle Extensions for Collections

An Oracle collection, either a variable array (VARRAY) or a nested table in the
database, maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms collection and array are sometimes used interchangeably.
However, collection is more appropriate on the database side and array is more
appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection. JDBC enables you to use arrays as any of the following:

s Columns in a SELECT clause

= INor OUT bind variables

= Attributes in an Oracle object

s Elements of other arrays

This section covers the following topics:
s Choices in Materializing Collections
s Creating Collections

n Creating Multilevel Collection Types

Choices in Materializing Collections

In your application, you have the choice of materializing a collection as an instance of
the oracle.sgl.ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection

Working with Oracle Collections 16-1

Oracle Extensions for Collections

classes. A custom collection class must implement the Oracle oracle.sgl.ORAData
interface. In addition, the custom class or a companion class must implement
oracle.sqgl.ORADataFactory. The standard java.sgl . SQLData interface is for
mapping SQL object types only.

The oracle. sqgl.ARRAY class implements the standard java.sqgl.Array interface.

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. However, you cannot write to the array, because there are no setter methods.

Custom collection classes, as with the ARRAY class, enable you to retrieve all or part of
the array and get the SQL base type name. They also have the advantage of being
strongly typed, which can help you find coding errors during compilation that might
not otherwise be discovered until run time.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements.

Note: There is no difference in the code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.

See Also: For more information about custom collection classes, see
"Custom Collection Classes with JPublisher" on page 16-13.

Creating Collections

Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. VARRAY and nested table are not types
themselves, but categories of types.

A SQL type name is assigned to a collection when you create it using the SQL CREATE
TYPE statement:

CREATE TYPE <sqgl_type name> AS <datatype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and all
the elements are of the same data type. Each element has an index, which is a number
corresponding to the position of the element in the VARRAY. The number of elements
in a VARRAY is the size of the VARRAY. You must specify a maximum size when you
declare the VARRAY type. For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;
This statement defines myNumType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10 elements.

A nested table is an unordered set of data elements, all of the same data type. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,
then it can also be viewed as a multi-column table, with a column for each attribute of
the object type. You can create a nested table as follows:

CREATE TYPE myNumList AS TABLE OF integer;

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type INTEGER.

16-2 Oracle Database JDBC Developer's Guide and Reference

ARRAY Performance Extension Methods

Creating Multilevel Collection Types

The most common way to create a new multilevel collection type in JDBC is to pass
the SQL CREATE TYPE statement to the execute method of the
java.sqgl.Statement class. The following code creates a one-level nested table,
first_level, and a two- levels nested table, second_level:

Connection conn = // make a database
// connection
Statement stmt = conn.createStatement(); // open a database
// cursor
stmt.execute ("CREATE TYPE first_level AS TABLE OF NUMBER"); // create a nested
// table of number
stmt.execute ("CREATE second_level AS TABLE OF first_level"); // create a

// two-levels nested table
// other operations here

stmt.close(); // release the
// resource
conn.close(); // close the

// database connection

Once the multilevel collection types have been created, they can be used as both
columns of a base table as well as attributes of a object type.

Overview of Collection Functionality

You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The oracle.sgl.ARRAY class, which implements the standard java.sqgl.Array
interface, provides the necessary functionality to access and update the data of an
Oracle collection.

This section covers Array Getter and Setter Methods. Use the following result set,
callable statement, and prepared statement methods to retrieve and pass collections as
Java arrays.

Result Set and Callable Statement Getter Methods

The OracleResultSet and OracleCallableStatement classes support
getARRAY and getArray methods to retrieve ARRAY objects as output parameters,
either as oracle.sqgl .ARRAY instances or java.sgl . Array instances. You can also
use the getObject method. These methods take as input a String column name or
int column index.

Prepared and Callable Statement Setter Methods

The OraclePreparedStatement and OracleCallableStatement classes
support setARRAY and setArray methods to take updated ARRAY objects as bind
variables and pass them to the database. You can also use the setObject method.
These methods take as input a String parameter name or int parameter index as
well as an oracle.sqgl.ARRAY instance or a java.sql .Array instance.

ARRAY Performance Extension Methods
This section discusses the following topics:

» Accessing oracle.sql. ARRAY Elements as Arrays of Java Primitive Types

Working with Oracle Collections 16-3

ARRAY Performance Extension Methods

= ARRAY Automatic Element Buffering
= ARRAY Automatic Indexing

Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types

The oracle.sgl.ARRAY class contains methods that return array elements as Java
primitive types. These methods allow you to access collection elements more
efficiently than accessing them as Datum instances and then converting each Datum
instance to its Java primitive value.

Note: These specialized methods of the oracle.sql.ARRAY
class are restricted to numeric collections.

Each method using the first signature returns collection elements as an Xxx[], where
XXX is a Java primitive type. Each method using the second signature returns a slice of
the collection containing the number of elements specified by count, starting at the
index location.

ARRAY Automatic Element Buffering

Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.

The following methods are included with the oracle.sqgl.ARRAY class:
m setAutoBuffering
m getAutoBuffering

It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the getAttributes and getArray
methods, presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM)
memory without overflow.

Important: Buffering the converted elements may cause the JDBC
application to consume a significant amount of memory.

When you enable auto-buffering, the oracle.sqgl.ARRAY object keeps a local copy of
all the converted elements. This data is retained so that a second access of this
information does not require going through the data format conversion process.

ARRAY Automatic Indexing

If an array is in auto-indexing mode, then the array object maintains an index table to
hasten array element access.

The oracle. sgl.ARRAY class contains the following methods to support automatic
array-indexing:

s setAutoIndexing
s setAutoIndexing

By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing
for ARRAY objects if random access of array elements may occur through the
getArray and getResultSet methods.

16-4 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Arrays

Creating and Using Arrays

This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

» Creating ARRAY Objects
= Retrieving an Array and Its Elements

= Passing Arrays to Statement Objects

Creating ARRAY Objects

Note: Oracle JDBC does not support the JDBC 4.0 method
createArrayOf method of java.sqgl.Connection interface. This
method only allows anonymous array types, while all Oracle array
types are named. Use the Oracle specific method createArray of
oracle.jdbc.OracleConnection instead.

This section describes how to create ARRAY objects. This section covers the following
topics:

= Steps in Creating ARRAY Objects

s Creating Multilevel Collections

Steps in Creating ARRAY Objects

Starting from Oracle Database 11g Release 1 (11.1), you can use the createArray
factory method of oracle.jdbc.OracleConnection interface to create an array
object. The factory method for creating arrays has been defined as follows:

public ARRAY createARRAY (java.lang.String typeName, java.lang.Object
elements) throws SQLException

where, typeName is the name of the SQL type of the created object and elements is
the elements of the created object.

Perform the following to create an array:

1. Create a collection with the CREATE TYPE statement as follows:

CREATE TYPE elements AS varray(22) OF NUMBER(5,2);

The two possibilities for the contents of elements are:
= Anarray of Java primitives. For example, int [].

= Anarray of Java objects, such as xxx[], where xxx is the name of a Java class.
For example, Integer[].

2. Construct the ARRAY object by passing the Java string specifying the user-defined
SQL type name of the array and a Java object containing the individual elements
you want the array to contain.

ARRAY array = oracle.jdbc.OracleConnection.createARRAY (sql_type_name,
elements) ;

Working with Oracle Collections 16-5

Creating and Using Arrays

Creating Multilevel Collections

As with single-level collections, the JDBC application can create an
oracle.sqgl.ARRAY instance to represent a multilevel collection, and then send the
instance to the database. The same createArray factory method you use to create
single-level collections, can be used to create multilevel collections as well. To create a
single-level collection, the elements are a one dimensional Java array, while to create a
multilevel collection, the elements can be either an array of oracle.sgl.ARRAY[]
elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

// prepare the multi level collection elements as a nested Java array
int[1[1[] elements = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{3}, {3, 4}} };

// create the ARRAY using the factory method
ARRAY array = oracle.jdbc.OracleConnection.createARRAY (sql_type_name, elements);

Retrieving an Array and Its Elements

This section first discusses how to retrieve an ARRAY instance as a whole from a result
set, and then how to retrieve the elements from the ARRAY instance. This section
covers the following topics:

s Retrieving the Array

= Data Retrieval Methods

s Comparing the Data Retrieval Methods

= Retrieving Elements of a Structured Object Array According to a Type Map
= Retrieving a Subset of Array Elements

= Retrieving Array Elements into an oracle.sql.Datum Array

» Accessing Multilevel Collection Elements

Retrieving the Array

You can retrieve a SQL array from a result set by casting the result set to
OracleResultSet and using the getARRAY method, which returns an
oracle.sqgl.ARRAY object. If you want to avoid casting the result set, then you can
get the data with the standard getObject method specified by the
java.sqgl.ResultSet interface and cast the output to oracle.sqgl . ARRAY.

Data Retrieval Methods

Once you have an ARRAY object, you can retrieve the data using one of these three
overloaded methods of the oracle.sgl.ARRAY class:

[getArray
m getOracleArray
m getResultSet

Oracle also provides methods that enable you to retrieve all the elements of an array;,
or a subset.

16-6 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Arrays

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.

getOracleArray

The getOracleArray method is an Oracle-specific extension that is not specified in
the standard Array interface. The getOracleArray method retrieves the element
values of the array into a Datum[] array. The elements are of the oracle.sqgl. * data
type corresponding to the SQL type of the data in the original array.

For an array of structured objects, this method will use oracle.sgl.STRUCT
instances for the elements.

Oracle also provides a getOracleArray (index, count) method to get a subset of
the array elements.

getResultSet

The getResultSet method returns a result set that contains elements of the array
designated by the ARRAY object. The result set contains one row for each array
element, with two columns in each row. The first column stores the index into the
array for that element, and the second column stores the element value. In the case of
VARRAYSs, the index represents the position of the element in the array. In the case of
nested tables, which are by definition unordered, the index reflects only the return
order of the elements in the particular query.

Oracle recommends using getResultSet when getting data from nested tables.
Nested tables can have an unlimited number of elements. The ResultSet object
returned by the method initially points at the first row of data. You get the contents of
the nested table by using the next method and the appropriate get XXx method. In
contrast, getArray returns the entire contents of the nested table at one time.

The getResultSet method uses the default type map of the connection to determine
the mapping between the SQL type of the Oracle object and its corresponding Java
data type. If you do not want to use the default type map of the connection, another
version of the method, getResultSet (map), enables you to specify an alternate type
map.

Oracle also provides the getResultSet (index, count) and

getResultSet (index, count, map) methods to retrieve a subset of the array
elements.

getArray

The getArray method is a standard JDBC method that returns the array elements as a
java.lang.Object, which you can cast as appropriate. The elements are converted
to the Java types corresponding to the SQL type of the data in the original array.

Oracle also provides a getArray (index, count) method to retrieve a subset of the
array elements.

Comparing the Data Retrieval Methods

If you use getOracleArray to return the array elements, then the use by that
method of oracle.sgl.Datum instances avoids the expense of data conversion from
SQL to Java. The non-character data inside the instance of a Datum class or any of its
subclass remains in raw SQL format.

Working with Oracle Collections 16-7

Creating and Using Arrays

If you use getResultSet to return an array of primitive data types, then the JDBC
driver returns a ResultSet object that contains, for each element, the index into the
array for the element and the element value. For example:

ResultSet rset = intArray.getResultSet();

In this case, the result set contains one row for each array element, with two columns
in each row. The first column stores the index into the array and the second column
stores the element value.

If the elements of an array are of a SQL type that maps to a Java type, then getArray
returns an array of elements of this Java type. The return type of the getArray
method is java.lang.Object. Therefore, the result must be cast before it can be
used.

BigDecimal[] values = (BigDecimal[]) intArray.getArray();

Here intArray is an oracle.sqgl.ARRAY, corresponding to a VARRAY of type
NUMBER. The values array contains an array of elements of type
java.math.BigDecimal, because the SQL NUMBER data type maps to Java
BigDecimal, by default, according to Oracle JDBC drivers.

Note: Using BigDecimal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to
BigDecimal by default, using getArray may impact
performance, and is not recommended for numeric collections.

Retrieving Elements of a Structured Object Array According to a Type Map

By default, if you are working with an array whose elements are structured objects,
and you use getArray or getResultSet, then the Oracle objects in the array will be
mapped to their corresponding Java data types according to the default mapping. This
is because these methods use the default type map of the connection to determine the
mapping.

However, if you do not want default behavior, then you can use the getArray (map)
or getResultSet (map) method to specify a type map that contains alternate
mappings. If there are entries in the type map corresponding to the Oracle objects in
the array, then each object in the array is mapped to the corresponding Java type
specified in the type map. For example:

Object[] object = (Object[])objArray.getArray(map) ;
Where objArray is an oracle.sgl.ARRAY object and map is a java.util.Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.sql.STRUCT object.

The getResultSet (map) method behaves similarly to the getArray (map)
method.

See Also: "Using a Type Map to Map Array Elements" on page 16-12

Retrieving a Subset of Array Elements

If you do not want to retrieve the entire contents of an array, then you can use
signatures of getArray, getResultSet, and getOracleArray that let you retrieve
a subset. To retrieve a subset of the array, pass in an index and a count to indicate

16-8 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Arrays

where in the array you want to start and how many elements you want to retrieve. As
previously described, you can specify a type map or use the default type map for your
connection to convert to Java types. For example:

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset = arr.getResultSet (index, count);

A similar example using getOracleArray is:

Datum[] arr = arr.getOracleArray(index, count);

Where arris an oracle.sqgl.ARRAY object, indexis type long, count is type int,
and mapisa java.util.Map object.

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.

Retrieving Array Elements into an oracle.sql.Datum Array

Use getOracleArray to return an oracle.sql.Datum[] array. The elements of
the returned array will be of the oracle.sqgl. * type that correspond to the SQL data
type of the elements of the original array. For example:

Datum arraydata[] = arr.getOracleArray();

arrisan oracle.sqgl.ARRAY object.

The following example assumes that a connection object conn and a statement object
stmt have already been created. In the example, an array with the SQL type name
NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is in turn
stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to
OracleResultSet; getARRAY is applied to it to retrieve the array data into
my_array, which is an oracle.sqgl . ARRAY object.

Because my_array is of type oracle. sql.ARRAY, you can apply the methods
getSQLTypeName and getBaseType to it to return the name of the SQL type of each
element in the array and its integer code.

The program then prints the contents of the array. Because the contents of NUM_ARRAY
are of the SQL data type NUMBER, the elements of my_array are of the type,
BigDecimal. Before you can use the elements, they must first be cast to
BigDecimal. In the for loop, the individual values of the array are cast to
BigDecimal and printed to standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (coll num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray (100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

// return the SQL type names, integer codes,

// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName()) ;

Working with Oracle Collections 16-9

Creating and Using Arrays

System.out.println ("Array element is of type code " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
BigDecimal[] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)

{
BigDecimal out_value = (BigDecimal) values[i];
System.out.println(">> index " + i + " = " + out_value.intValue());

}

Note that if you use getResultSet to obtain the array, then you must would first get
the result set object, and then use the next method to iterate through it. Notice the use
of the parameter indexes in the get Int method to retrieve the element index and the
element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{
// The first column contains the element index and the
// second column contains the element value
System.out.println(">> index " + rset.getInt(l)+" = " + rset.getInt(2));

Accessing Multilevel Collection Elements

The oracle. sqgl.ARRAY class provides three methods, which are overloaded, to
access collection elements. The JDBC drivers extend these methods to support
multilevel collections. These methods are:

s getArray method
s getOracleArray method
m getResultSet method

The getArray method returns a Java array that holds the collection elements. The
array element type is determined by the collection element type and the JDBC default
conversion matrix.

For example, the getArray method returns a java.math.BigDecimal array for
collection of SQL NUMBER. The getOracleArray method returns a Datum array that
holds the collection elements in Datum format. For multilevel collections, the
getArray and getOracleArray methods both return a Java array of
oracle.sqgl.ARRAY elements.

The getResultSet method returns a ResultSet object that wraps the multilevel
collection elements. For multilevel collections, the JDBC applications use the
getObject, getARRAY, or getArray method of the ResultSet class to access the
collection elements as instances of oracle.sqgl . ARRAY.

The following code shows how to use the getOracleArray, getArray, and
getResultSet methods:

Connection conn = ...; // make a JDBC connection
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("select col2 from tab2 where idx=1");

while (rset.next())

{
ARRAY varray3 = (ARRAY) rset.getObject (1);

16-10 Oracle Database JDBC Developer's Guide and Reference

Creating and Using Arrays

Object varrayElems = varray3.getArray (1);
// access array elements of "varray3"
Datum[] varray3Elems = (Datum[]) varrayElems;

for (int i=0; i<varray3Elems.length; i++)

{
ARRAY varray2 = (ARRAY) varray3Elems[i];
Datum[] varray2Elems = varray2.getOracleArray();
// access array elements of "varray2"

for (int j=0; j<varray2Elems.length; j++)

{
ARRAY varrayl = (ARRAY) varray2Elems[j];
ResultSet varraylElems = varrayl.getResultSet();
// access array elements of "varrayl"

while (varraylElems.next())
System.out.println ("idx="+varraylElems.getInt(1)+"
value="+varraylElems.getInt (2));

}

rset.close ();
stmt.close ();
conn.close ();

Passing Arrays to Statement Objects

This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows.

Note: you can use arrays as either IN or OUT bind variables.

1. Define the array that you want to pass to the prepared statement as an
oracle.sqgl.ARRAY object.

ARRAY array = oracle.jdbc.OracleConnection.createARRAY (sgl_type_name,
elements) ;

sql_type_name is a Java string specifying the user-defined SQL type name of
the array and elementsis a java.lang.Object containing a Java array of the
elements.

2. Createa java.sqgl.PreparedStatement object containing the SQL statement
to be run.

3. Cast your prepared statement to OraclePreparedStatement, and use
setARRAY to pass the array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY (parameterIndex, array);

parameterIndex is the parameter index and array is the oracle.sgl.ARRAY
object you constructed previously.

4. Run the prepared statement.

Working with Oracle Collections 16-11

Using a Type Map to Map Array Elements

Passing an Array to a Callable Statement

To retrieve a collection as an OUT parameter in PL/SQL blocks, perform the following
to register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs = (OracleCallableStatement)conn.prepareCall("{? =
call func()}");

2. Register the OUT parameter with the following form of the
registerOutParameter method:

ocs.registerOutParameter
(int param_index, int sqgl_type, string sqgl_type name) ;

param_index is the parameter index, sql_type is the SQL type code, and
sqgl_type name is the name of the array type. In this case, the sgl_typeis
OracleTypes.ARRAY.

3. Run the call, as follows:

ocs.execute();

4. Get the value, as follows:

oracle.sqgl.ARRAY array = ocs.getARRAY(1);

Using a Type Map to Map Array Elements

If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an oracle. sql.STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in the
array and the